Yeon, Su-Jung; Hong, Go-Eun; Kim, Chang-Kyu; Park, Woo Joon; Kim, Soo-Ki; Lee, Chi-Ho
2015-01-01
This experiment investigated whether yogurt containing fermented pepper juice (FPJY) affects cholesterol level in high fat and high cholesterol diet (HFCD) fed rat. Twenty five Sprague-Dawley male rats of 7 wk were divided into 5 groups, and fed following diets for 9 wk; CON (control diet), HFCD (HFCD), PY (HFCD supplemented with 2% of plain yogurt), LFY (HFCD supplemented with 2% of FPJY), and HFY (HFCD supplemented with 5% of FPJY). In the LFY group, hepatic total lipid level decreased significantly compared to the HFCD group (p<0.05). Serum HDL cholesterol level tended to increase and hepatic total cholesterol level decreased and were comparable to the CON group (p>0.05). In HFY group, body weight and hepatic total lipid level significantly decreased over the HFCD group (p<0.05). Serum and hepatic total cholesterol level, kidney, and body fat weights decreased, and were compared to the CON group (p>0.05). Liver weight decreased as FPJY content was increased. Results suggested FPJY would inhibit organ hypertrophy and accumulation of body fat, hepatic lipid, and cholesterol in HFCD fed rat.
Zhou, Chunyan; Chen, Jing; Zhang, Xiaolu; Costa, Lucio G; Guizzetti, Marina
2014-11-01
Cholesterol plays a pivotal role in many aspects of brain development; reduced cholesterol levels during brain development, as a consequence of genetic defects in cholesterol biosynthesis, leads to severe brain damage, including microcephaly and mental retardation, both of which are also hallmarks of the fetal alcohol syndrome. We had previously shown that ethanol up-regulates the levels of two cholesterol transporters, ABCA1 (ATP binding cassette-A1) and ABCG1, leading to increased cholesterol efflux and decreased cholesterol content in astrocytes in vitro. In the present study we investigated whether similar effects could be seen in vivo. Pregnant Sprague-Dawley rats were fed liquid diets containing 36% of the calories from ethanol from gestational day (GD) 6 to GD 21. A pair-fed control groups and an ad libitum control group were included in the study. ABCA1 and ABCG1 protein expression and cholesterol and phospholipid levels were measured in the neocortex of female and male fetuses at GD 21. Body weights were decreased in female fetuses as a consequence of ethanol treatments. ABCA1 and ABCG1 protein levels were increased, and cholesterol levels were decreased, in the neocortex of ethanol-exposed female, but not male, fetuses. Levels of phospholipids were unchanged. Control female fetuses fed ad libitum displayed an up-regulation of ABCA1 and a decrease in cholesterol content compared with pair-fed controls, suggesting that a compensatory up-regulation of cholesterol levels may occur during food restriction. Maternal ethanol consumption may affect fetal brain development by increasing cholesterol transporters' expression and reducing brain cholesterol levels. © The Author 2014. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Móczár, Csaba
2015-10-18
Prevention program including lifestyle changes was initiated with the participation of obese and overweight subjects recruited from the practices of 29 family doctors. The aim of the author was to analyse changes of non-HDL-cholesterol levels, especially when triglyceride levels were above 2.26 mmol/l, and when non-HDL cholesterol levels were high in association with low HDL-cholesterol levels in overweight or obese subjects who had no cardiovascular disease and diabetes mellitus. Data obtained from 1192 subjects (424 men and 768 women) before and 12 month after inclusion into the prevention program was analysed. The average level of non-HDL-cholesterol in the whole group of subjects decreased from 4.74 to 4.64 mmol/l, but the change was not significant. However, the average concentration of non-HDL-cholesterol was reduced significantly from 4.87 to 4.4 mmol/l in men, whereas no significant change was detected in women. In cases when triglyceride levels were higher than 2.26 mmol/l, the non-HDL-cholesterol level was reduced by 0.65 mmol/l. In cases when the non-HDL-cholesterol level was high in association with low HDL-cholesterol level, the non-HDL-cholesterol was significantly decreased from 5.22 to 4.48 mmol/l. In addition, in cases when HDL-cholesterol levels were low, the average level of the HDL-cholesterol significantly increased from 0.84 to 1.3 mmol/l. Lifestyle changes decrease the level of atherogenic lipid fractions, particularly in men with high triglyceride levels. Improvement of the atherogenic lipid profile in response to lifestyle changes is related not only to the reduction of atherogenic lipid fractions, but also to the increase of HDL-cholesterol level.
Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet
2013-01-01
Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression levels of liver enzymes related to cholesterol metabolism, including the down regulation of acyl-CoA:cholesterol acyltransferase (ACAT) and the upregulation of cholesterol 7α-hydroxylase (CYP7A1). Conclusion This study suggested that the two NS lactobacillus strains may affect lipid metabolism and have cholesterol-lowering effects in rats fed a high cholesterol diet. PMID:23656797
Castro-Torres, Ibrahim Guillermo; Naranjo-Rodríguez, Elia Brosla; Domínguez-Ortíz, Miguel Ángel; Gallegos-Estudillo, Janeth; Saavedra-Vélez, Margarita Virginia
2012-01-01
In Mexico, Raphanus sativus L. var. niger (black radish) has uses for the treatment of gallstones and for decreasing lipids serum levels. We evaluate the effect of juice squeezed from black radish root in cholesterol gallstones and serum lipids of mice. The toxicity of juice was analyzed according to the OECD guidelines. We used female C57BL/6 mice fed with a lithogenic diet. We performed histopathological studies of gallbladder and liver, and measured concentrations of cholesterol, HDL cholesterol and triglycerides. The juice can be considered bioactive and non-toxic; the lithogenic diet significantly induced cholesterol gallstones; increased cholesterol and triglycerides levels, and decreased HDL levels; gallbladder wall thickness increased markedly, showing epithelial hyperplasia and increased liver weight. After treatment with juice for 6 days, cholesterol gallstones were eradicated significantly in the gallbladder of mice; cholesterol and triglycerides levels decreased too, and there was also an increase in levels of HDL (P < 0.05). Gallbladder tissue continued to show epithelial hyperplasia and granulocyte infiltration; liver tissue showed vacuolar degeneration. The juice of black radish root has properties for treatment of cholesterol gallstones and for decreasing serum lipids levels; therefore, we confirm in a preclinical study the utility that people give it in traditional medicine. PMID:23093836
Li, Cong-Hui; Gong, Duo; Chen, Ling-Yan; Zhang, Min; Xia, Xiao-Dan; Cheng, Hai-Peng; Huang, Chong; Zhao, Zhen-Wang; Zheng, Xi-Long; Tang, Xiao-Er; Tang, Chao-Ke
2017-09-15
It was reported that puerarin decreases the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and increases high-density lipoprotein cholesterol (HDL-C) level, but the underlying mechanism is unclear. This study was designed to determine whether puerarin decreased lipid accumulation via up-regulation of ABCA1-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. Our results showed that puerarin significantly promoted the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor-alpha (LXR-α) pathway and decreased cellular lipid accumulation in human THP-1 macrophage-derived foam cells. The miR-7 directly targeted 3' untranslated region of STK11 (Serine/Threonine Kinase 11), which activated the AMPK pathway. Transfection with miR-7 mimic significantly reduced STK11 expression in puerarin-treated macrophages, decreased the phosphorylation of AMPK, down-regulated the expression of the PPARγ-LXR-α-ABCA1 expression. Additionally, treatment with miR-7 decreased cholesterol efflux and increased cholesterol levels in THP-1 macrophage-derived foam cells. Our study demonstrates that puerarin promotes ABCA1-mediated cholesterol efflux and decreases intracellular cholesterol levels through the pathway involving miR-7, STK11, and the AMPK-PPARγ-LXR-α-ABCA1 cascade. Copyright © 2017 Elsevier B.V. All rights reserved.
Viral MicroRNAs Repress the Cholesterol Pathway, and 25-Hydroxycholesterol Inhibits Infection.
Serquiña, Anna K P; Kambach, Diane M; Sarker, Ontara; Ziegelbauer, Joseph M
2017-07-11
From various screens, we found that Kaposi's sarcoma-associated herpesvirus (KSHV) viral microRNAs (miRNAs) target several enzymes in the mevalonate/cholesterol pathway. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR [a rate-limiting step in the mevalonate pathway]), and farnesyl-diphosphate farnesyltransferase 1 (FDFT1 [a committed step in the cholesterol branch]) are repressed by multiple KSHV miRNAs. Transfection of viral miRNA mimics in primary endothelial cells (human umbilical vein endothelial cells [HUVECs]) is sufficient to reduce intracellular cholesterol levels; however, small interfering RNAs (siRNAs) targeting only HMGCS1 did not reduce cholesterol levels. This suggests that multiple targets are needed to perturb this tightly regulated pathway. We also report here that cholesterol levels were decreased in de novo -infected HUVECs after 7 days. This reduction is at least partially due to viral miRNAs, since the mutant form of KSHV lacking 10 of the 12 miRNA genes had increased cholesterol compared to wild-type infections. We hypothesized that KSHV is downregulating cholesterol to suppress the antiviral response by a modified form of cholesterol, 25-hydroxycholesterol (25HC). We found that the cholesterol 25-hydroxylase (CH25H) gene, which is responsible for generating 25HC, had increased expression in de novo -infected HUVECs but was strongly suppressed in long-term latently infected cell lines. We found that 25HC inhibits KSHV infection when added exogenously prior to de novo infection. In conclusion, we found that multiple KSHV viral miRNAs target enzymes in the mevalonate pathway to modulate cholesterol in infected cells during latency. This repression of cholesterol levels could potentially be beneficial to viral infection by decreasing the levels of 25HC. IMPORTANCE A subset of viruses express unique microRNAs (miRNAs), which act like cellular miRNAs to generally repress host gene expression. A cancer virus, Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus 8 [HHV-8]), encodes multiple miRNAs that repress gene expression of multiple enzymes that are important for cholesterol synthesis. In cells with these viral miRNAs or with natural infection, cholesterol levels are reduced, indicating these viral miRNAs decrease cholesterol levels. A modified form of cholesterol, 25-hydroxycholesterol, is generated directly from cholesterol. Addition of 25-hydroxycholesterol to primary cells inhibited KSHV infection of cells, suggesting that viral miRNAs may decrease cholesterol levels to decrease the concentration of 25-hydroxycholesterol and to promote infection. These results suggest a new virus-host relationship and indicate a previously unidentified viral strategy to lower cholesterol levels. Copyright © 2017 Serquiña et al.
The effect of cholesterol overload on mouse kidney and kidney-derived cells.
Honzumi, Shoko; Takeuchi, Miho; Kurihara, Mizuki; Fujiyoshi, Masachika; Uchida, Masashi; Watanabe, Kenta; Suzuki, Takaaki; Ishii, Itsuko
2018-11-01
Dyslipidemia is one of the onset and risk factors of chronic kidney disease and renal function drop is seen in lipoprotein abnormal animal models. However, the detailed molecular mechanism of renal lipotoxicity has not been clarified. Therefore, the present study aimed to investigate the influence of cholesterol overload using mouse kidney tissue and kidney-derived cultured cells. C57BL/6 mice were fed normal diet (ND) or 1.25% cholesterol-containing high-cholesterol diet (HCD) for 11 weeks, and we used megalin as a proximal tubule marker for immunohistology. We added beta-very low density lipoprotein (βVLDL) to kidney-derived cells and examined the effect of cholesterol overload on megalin protein and mRNA expression level, cell proliferation and cholesterol content in cells. In the kidney of HCD mice, the gap between glomerulus and the surrounding Bowman's capsule decreased and the expression level of megalin decreased. After βVLDL treatment to the cells, the protein expression and mRNA expression level of megalin decreased and cell proliferation was restrained. We also observed an increase in cholesterol accumulation in the cell and free cholesterol/phospholipid ratios increased. These findings suggest that the increased cholesterol load on kidney contribute to the decrease of megalin and the overloaded cholesterol is taken into the renal tubule epithelial cells, causing suppression on cell proliferation, which may be the cause of kidney damage.
Beneficial effects of cytokine induced hyperlipidemia.
Feingold, K R; Hardardóttir, I; Grunfeld, C
1998-01-01
Infection, inflammation and trauma induce marked changes in the plasma levels of a wide variety of proteins (acute phase response), and these changes are mediated by cytokines. The acute phase response is thought to be beneficial to the host. The host's response to injury also results in dramatic alterations in lipid metabolism and circulating lipoprotein levels which are mediated by cytokines. A large number of cytokines including TNF, the interleukins, and the interferons increase serum triglyceride levels. This rapid increase (1-2 h) is predominantly due to an increase in hepatic VLDL secretion while the late increase may be due to a variety of factors including increased hepatic production of VLDL or delayed clearance secondary to a decrease in lipoprotein lipase activity and/or apolipoprotein E levels on VLDL. In animals other than primates, cytokines also increase serum cholesterol levels, most likely by increasing hepatic cholesterol. Cytokines increase hepatic cholesterol synthesis by stimulating HMG CoA reductase gene expression and decrease hepatic cholesterol catabolism by inhibiting cholesterol 7 alpha-hydroxylase, the key enzyme in bile acid synthesis. Injury and/or cytokines also decrease HDL cholesterol levels and induce alterations in the composition of HDL. The content of SAA and apolipoprotein J increase, apolipoprotein A1 may decrease, and the cholesterol ester content decreases while free cholesterol increases. Additionally, key proteins involved in HDL metabolism are altered by cytokines; LCAT activity, hepatic lipase activity, and CETP levels decrease. These changes in lipid and lipoprotein metabolism may be beneficial in a number of ways including: lipoproteins competing with viruses for cellular receptors, apolipoproteins neutralizing viruses, lipoproteins binding and targeting parasites for destruction, apolipoproteins lysing parasites, redistribution of nutrients to cells involved in the immune response and/or tissue repair, and lipoproteins binding toxic agents and neutralizing their harmful effects. Thus, cytokines induce marked changes in lipid metabolism that lead to hyperlipidemia which represents part of the innate immune response and may be beneficial to the host.
Huang, Fuqing; Zhang, Fen; Xu, Di; Zhang, Zhihong; Xu, Feng; Tao, Xueying; Qiu, Liang; Wei, Hua
2018-06-20
Enterococcus faecium WEFA23 is a potential probiotic strain from Chinese infants with the ability to decrease cholesterol levels. Aiming to explore the mechanism of E. faecium WEFA23 in lowering cholesterol in vivo, we examined the gene transcriptions related to cholesterol metabolism, the composition of bile acids in feces, the synthesis of trimethylamine N-oxide (TMAO) in liver, and the composition of the gut microbiota of rats. We found that E. faecium WEFA23 enhanced the synthesis of bile acids by promoting cholesterol excretion, upregulating the genes transcript level relevant to cholesterol decomposition and transportation, and downregulating the genes involved in cholesterol synthesis. In addition, E. faecium WEFA23 not only downregulated the transcript levels of farnesoid X receptor and fibroblast growth factor 15 as well as flavin-containing monooxygenase 3, but also decreased the TMAO production followed by increasing the CYP7A1 transcript level. Furthermore, when orally administered to rats for 35 d, E. faecium WEFA23 improved the gut microbiota diversity of rats fed a high-fat diet. Therein, the ratio of Bacteroidetes to Firmicutes and the abundance of Rikenellaceae increased, whereas the number of Veillonellaceae decreased. These results suggest that reduction of cholesterol level by E. faecium WEFA23 might be related to the changes in the gut microbiota. Our finding provides important information on lowering cholesterol by E. faecium and reveals that Enterococcus spp. might have the potential to decrease the TMAO level. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ballantyne, Christie M; Bays, Harold E; Kastelein, John J; Stein, Evan; Isaacsohn, Jonathan L; Braeckman, Rene A; Soni, Paresh N
2012-10-01
AMR101 is an ω-3 fatty acid agent containing ≥96% pure icosapent-ethyl, the ethyl ester of eicosapentaenoic acid. The efficacy and safety of AMR101 were evaluated in this phase 3, multicenter, placebo-controlled, randomized, double-blinded, 12-week clinical trial (ANCHOR) in high-risk statin-treated patients with residually high triglyceride (TG) levels (≥200 and <500 mg/dl) despite low-density lipoprotein (LDL) cholesterol control (≥40 and <100 mg/dl). Patients (n = 702) on a stable diet were randomized to AMR101 4 or 2 g/day or placebo. The primary end point was median percent change in TG levels from baseline versus placebo at 12 weeks. AMR101 4 and 2 g/day significantly decreased TG levels by 21.5% (p <0.0001) and 10.1% (p = 0.0005), respectively, and non-high-density lipoprotein (non-HDL) cholesterol by 13.6% (p <0.0001) and 5.5% (p = 0.0054), respectively. AMR101 4 g/day produced greater TG and non-HDL cholesterol decreases in patients with higher-efficacy statin regimens and greater TG decreases in patients with higher baseline TG levels. AMR101 4 g/day decreased LDL cholesterol by 6.2% (p = 0.0067) and decreased apolipoprotein B (9.3%), total cholesterol (12.0%), very-low-density lipoprotein cholesterol (24.4%), lipoprotein-associated phospholipase A(2) (19.0%), and high-sensitivity C-reactive protein (22.0%) versus placebo (p <0.001 for all comparisons). AMR101 was generally well tolerated, with safety profiles similar to placebo. In conclusion, AMR101 4 g/day significantly decreased median placebo-adjusted TG, non-HDL cholesterol, LDL cholesterol, apolipoprotein B, total cholesterol, very-low-density lipoprotein cholesterol, lipoprotein-associated phospholipase A(2), and high-sensitivity C-reactive protein in statin-treated patients with residual TG elevations. Copyright © 2012 Elsevier Inc. All rights reserved.
Pharmacological activation of LXRs decreases amyloid-β levels in Niemann-Pick type C model cells.
Stefulj, Jasminka; Peric, Maja; Malnar, Martina; Kosicek, Marko; Schweinzer, Cornelia; Zivkovic, Jelena; Scholler, Monika; Panzenboeck, Ute; Hecimovic, Silva
2013-01-01
Niemann-Pick type C disease (NPC) is an inherited disorder mainly caused by loss-of-function mutations in the NPC1 gene, that lead to intracellular cholesterol accumulation and disturbed cholesterol homeostasis. Similarly to Alzheimer's disease (AD), NPC is associated with progressive neurodegeneration and altered metabolism of amyloid precursor protein (APP). Liver X receptors (LXRs), the key transcriptional regulators of cholesterol homeostasis, were reported to play neuroprotective roles in NPC mice. We investigated the impacts of LXRs on APP metabolism in mutant CHO cells lacking the NPC1 gene (-NPC1 cells). Pharmacological activation of LXRs in -NPC1 cells tended to reduce the ratio of total secreted APP (sAPP) to full length APP (flAPP) levels and sAPPβ levels as well as to increase the ratio of APP Cterminal fragments to flAPP levels, resulting in decreased levels of amyloid β (Aβ) peptides. -NPC1 cells treated with LXR agonist TO901317 (TO90) displayed a modest increase in cholesterol efflux to apolipoprotein A-I (apoA-I) but not to HDL3, or in the absence of extracellular cholesterol acceptors. The observed similar reduction of Aβ levels upon TO90 treatment in the presence or in the absence of extracellular apoA-I indicated a cholesterol-efflux independent effect of TO90 on Aβ levels. Furthermore, TO90 had no effect on the cholesterol synthesis rate in -NPC1 cells, while it reduced the rate of cholesterol esterification. The obtained results indicate that LXR activation may decrease Aβ levels in NPC1- deficient conditions. The underlying mechanism of this action does not appear to be related to effects on cholesterol efflux or synthesis rates.
The effects of vitamine C on lipid metabolism.
Kotzé, J P
1975-09-20
Evidence is presented showing that vitamin C had definite effects on lipid metabolism. The stress of captivity on free-living baboons causes a decrease in serum vitamin C levels and an increase in serum cholesterol levels. Increased dietary intake of vitamin C during the initial stages of captivity significantly decreases the serum cholesterol values. Dietary vitamin C stimulates the synthesis of cholesterol from 14C-labelled acetate and mevalonate in baboon liver homogenates and increases the turnover rate of the cholesterol body pool. Vitamin C inhibits baboon cardiac lipoprotein lipase activity.
Effects of zinc and cholesterol/choleate on serum lipoproteins and the liver in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, C.H.; Chen, S.M.; Ogle, C.W.
1989-01-01
The effects of short-term treatment with orally-administered zinc sulfate and/or a mixture of cholesterol/choleate on serum lipoprotein and hepatic enzyme levels were studied. Administration of graded doses of zinc sulfate for 5 days, dose-dependently increased serum and hepatic zinc levels but depressed the serum high-density lipoprotein-cholesterol (HDL-C) concentration and liver cytochrome P-450 activity. However, it did not affect hepatic concentrations of malondialdehyde and free {beta}-glucuronidase. Cholesterol/choleate treatment for 5 days markedly damaged the liver, as reflected by elevations of hepatic concentrations of malondialdehyde (both in the mitochondrial and microsomal fractions) and of free {beta}-glucuronidase; total cholesterol and low-density lipoprotein-cholesterol inmore » the blood were increased, whereas HDL-C was decreased significantly. Concomitant administration of zinc sulfate with cholesterol/choleate further lowered HDL-C levels, but reversed the high hepatic concentrations of both malondialdehyde and free {beta}-glucuronidase. The present study indicates that both zinc ions and cholesterol can decrease circulatory HDL-C levels and that zinc protects against cholesterol-induced hepatic damage by reducing lysosomal enzyme release and preventing lipid peroxidation in the liver.« less
Meissner, Maxi; Lombardo, Elisa; Havinga, Rick; Tietge, Uwe J F; Kuipers, Folkert; Groen, Albert K
2011-10-01
Regular physical activity decreases the risk for atherosclerosis but underlying mechanisms are not fully understood. We questioned whether voluntary wheel running provokes specific modulations in cholesterol turnover that translate into a decreased atherosclerotic burden in hypercholesterolemic mice. Male LDLR-deficient mice (8 weeks old) had either access to a voluntary running wheel for 12 weeks (RUN) or remained sedentary (CONTROL). Both groups were fed a western-type/high cholesterol diet. Running activity and food intake were recorded. At 12 weeks of intervention, feces, bile and plasma were collected to determine fecal, biliary and plasma parameters of cholesterol metabolism and plasma cytokines. Atherosclerotic lesion size was determined in the aortic root. RUN weighed less (∼13%) while food consumption was increased by 17% (p=0.004). Plasma cholesterol levels were decreased by 12% (p=0.035) and plasma levels of pro-atherogenic lipoproteins decreased in RUN compared to control. Running modulated cholesterol catabolism by enhancing cholesterol turnover: RUN displayed an increased biliary bile acid secretion (68%, p=0.007) and increased fecal bile acid (93%, p=0.009) and neutral sterol (33%, p=0.002) outputs compared to control indicating that reverse cholesterol transport was increased in RUN. Importantly, aortic lesion size was decreased by ∼33% in RUN (p=0.033). Voluntary wheel running reduces atherosclerotic burden in hypercholesterolemic mice. An increased cholesterol turnover, specifically its conversion into bile acids, may underlie the beneficial effect of voluntary exercise in mice. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Kovtuniak, N A; Bordiakovskaia, L G; Stadniĭchuk, R F
1983-01-01
It has been shown in experiments that intramuscular injection of guaternary ammonium compounds (decamethoxine and decamine) and levorin changed the content of cholesterol, phospholipids and triglycerides in the liver of white rats. Decamethoxine decreased the content of phospholipids and cholesterol and raised the concentration of triglycerides. Decamine decreased the level of phospholipids and raised the content of cholesterol and triglycerides, while levorin minimized the content of phospholipids, cholesterol and triglycerides.
Deng, Junming; Zhang, Xi; Long, Xiaowen; Tao, Linli; Wang, Zhen; Niu, Guoyi; Kang, Bin
2014-12-01
This study was conducted to evaluate the effects of cholesterol on growth and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed diets with cottonseed meal (CSM) or rapeseed meal (RSM). Four experimental diets were formulated to contain 550 g kg(-1) CSM or 450 g kg(-1) RSM with or without 9 g kg(-1) supplemental cholesterol. Growth rate and feed utilization efficiency of fish fed diets with 450 g kg(-1) RSM were inferior to fish fed diets with 550 g kg(-1) CSM regardless of cholesterol level. Dietary cholesterol supplementation increased the growth rate of fish fed diets with RSM, and growth rate and feed utilization efficiency of fish fed diets with CSM. Similarly, dietary cholesterol supplementation increased the plasma total cholesterol (TC), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triiodothyronine levels, but decreased the plasma triglycerides and cortisol levels of fish fed diets with RSM or CSM. In addition, supplemental cholesterol increased the free cholesterol and TC levels in intestinal contents, but decreased the hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase activity of fish fed diets with RSM or CSM. These results indicate that 9 g kg(-1) cholesterol supplementation seems to improve the growth of rainbow trout fed diets with CSM or RSM, and the growth-promoting action may be related to the alleviation of the negative effects caused by antinutritional factors and/or make up for the deficiency of endogenous cholesterol in rainbow trout.
Mc Auley, Mark T; Mooney, Kathleen M
2017-07-01
The cardiovascular disease (CVD) risk factor, low density lipoprotein cholesterol (LDL-C) increases with age, up until the midpoint of life in males and females. However, LDL-C can decrease with age in older men and women. Intriguingly, a recent systematic review also revealed an inverse association between LDL-C levels and cardiovascular mortality in older people; low levels of LDL-C were associated with reduced risk of mortality. Such findings are puzzling and require a biological explanation. In this paper a hypothesis is proposed to explain these observations. We hypothesize that the free radical theory of ageing (FRTA) together with disrupted cholesterol homeostasis can account for these observations. Based on this hypothesis, dysregulated hepatic cholesterol homeostasis in older people is characterised by two distinct metabolic states. The first state accounts for an older person who has elevated plasma LDL-C. This state is underpinned by the FRTA which suggests there is a decrease in cellular antioxidant capacity with age. This deficiency enables hepatic reactive oxidative species (ROS) to induce the total activation of HMG-CoA reductase, the key rate limiting enzyme in cholesterol biosynthesis. An increase in cholesterol synthesis elicits a corresponding rise in LDL-C, due to the downregulation of LDL receptor synthesis, and increased production of very low density lipoprotein cholesterol (VLDL-C). In the second state of dysregulation, ROS also trigger the total activation of HMG-CoA reductase. However, due to an age associated decrease in the activity of cholesterol-esterifying enzyme, acyl CoA: cholesterol acyltransferase, there is restricted conversion of excess free cholesterol (FC) to cholesterol esters. Consequently, the secretion of VLDL-C drops, and there is a corresponding decrease in LDL-C. As intracellular levels of FC accumulate, this state progresses to a pathophysiological condition akin to nonalcoholic fatty liver disease. It is our conjecture this deleterious state has the potential to account for the inverse association between LDL-C level and CVD risk observed in older people. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kobayashi, Maki; Egusa, Shintaro; Fukuda, Mitsuru
2014-01-01
A high cholesterol diet induces dyslipidemia. This study investigated whether isoflavone aglycones in lactic acid-fermented soy milk (LFS) improve lipid metabolism in rats fed a high cholesterol diet. Male Sprague-Dawley rats aged seven weeks were fed an AIN-93G diet, a 1% cholesterol diet (a high cholesterol diet), a high-cholesterol diet containing 4% isoflavone extract of LFS (LFS extract diet), a high-cholesterol diet containing 19.4% ethanol-washed LFS (ethanol-washed LFS diet, isoflavone-poor diet), or a high cholesterol diet containing 23.2% intact LFS (intact LFS diet) for five weeks. The plasma total cholesterol (TC) level was increased in the rats fed the LFS extract diet compared with those fed the high cholesterol diet. The TC level was decreased by the intact LFS and ethanol-washed LFS diets. The cholesterol-lowering effect was stronger in the rats fed the intact LFS diet than those fed the ethanol-washed LFS diet. The plasma triglyceride (TG) level was unchanged in the rats fed the LFS extract diet, but it decreased in rats fed the intact LFS and ethanol-washed LFS diets. Although, compared with the high cholesterol diet, the LFS extract and ethanol-washed LFS diets did not reduce hepatic cholesterol and TG, both levels were remarkably lowered by the intact LFS diet. These results suggest that the improvement in lipid metabolism of rats fed a high-cholesterol diet containing LFS isoflavone aglycones is not due to an independent effect but due to a cooperative effect with soy protein. PMID:25514389
Contemporary trends in dyslipidemia in the Framingham Heart Study
USDA-ARS?s Scientific Manuscript database
Recent cross-sectional population studies in the United States have shown an increase in obesity, a decrease in cholesterol values, but no changes in levels of high-density lipoprotein cholesterol (HDL-C) or triglycerides (TG). Plasma total cholesterol, HDL-C, and TG levels, measured by the same met...
Synergistic effects of psyllium in the dietary treatment of hypercholesterolemia.
Neal, G W; Balm, T K
1990-10-01
We investigated psyllium fiber supplementation as a means of enhancing the cholesterol-lowering effect of the phase I American Heart Association diet. Fifty-nine subjects with total serum cholesterol (TC) levels ranging from 5.56 to 10.24 mmol/L (215 to 396 mg/dL) were given a 2-month dietary lead-in followed by 3 months of diet only (29 subjects) or diet supplemented with 20.4 g of psyllium daily (30 subjects). Unlike women, men had a significant decrease in levels of both TC (-8.0%) and low-density lipoprotein cholesterol (LDL-C) (-10.1%) during the dietary lead-in. Psyllium supplementation resulted in an additional 5.5% reduction in the TC levels as compared to diet alone. Psyllium supplementation combined with dietary lead-in resulted in an overall 17.3% decrease in the TC and a 20.0% decrease in LDL-C for men, with decreases of 7.7% and 11.6%, respectively, for women. Psyllium effectively enhances the cholesterol-lowering effect of the phase I diet.
... is used to treat poisonings, reduce intestinal gas (flatulence), lower cholesterol levels, prevent hangover, and treat bile ... lower cholesterol levels in the blood. Decreasing gas (flatulence). Some studies show that activated charcoal is effective ...
Zou, Xian-Guo; Huang, Yu-Hua; Xu, Tong-Cheng; Fan, Ya-Wei; Li, Jing
2018-01-01
This study aims to investigate the effect of Chinese diet pattern of fat content (30% or 36.06%), n-6/n-3 polyunsaturated fatty acid (PUFA) ratio (5 : 1 or 9 : 1), and cholesterol content (0.04 or 0.057 g/kg total diet) on lipid profile using a rat model. Results showed that rats' body weights (BWs) were controlled by the simultaneous intakes of cholesterol level of 0.04 g/kg total diet and n-6/n-3 ratio of 5 : 1. In addition, under high-fat diet, increased cholesterol feeding led to increased total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels and decreased triacylglycerols (TG) in rats' plasma. However, high density lipoprotein cholesterol (HDL-C) level and the ratios of HDL-C/LDL-C and HDL-C/TC in rats' plasma increased in response to simultaneous intakes of low n-6/n-3 ratio (5 : 1) and cholesterol (0.04 g/kg total diet) even under high-fat diet. Moreover, as the n-6/n-3 PUFA ratio in the diet decreased, the proportion of n-3 PUFAs increased in plasma, liver, and muscle and resulted in the decrease of n-6/n-3 PUFA ratio. PMID:29744358
Fleischmann, Roy; Davignon, Jean; Schwartz, Howard; Turner, Scott M.; Beysen, Carine; Milad, Mark; Hellerstein, Marc K.; Luo, Zhen; Kaplan, Irina V.; Riese, Richard; Zuckerman, Andrea; McInnes, Iain B.
2015-01-01
Objective Tofacitinib is an oral JAK inhibitor for the treatment of rheumatoid arthritis (RA). Systemic inflammation is proposed to play a fundamental role in the altered lipid metabolism associated with RA; however, the underlying mechanisms are unknown. We undertook this study to compare cholesterol and lipoprotein kinetics in patients with active RA with those in matched healthy volunteers. Methods This was a phase I open‐label mechanism‐of‐action study. Cholesterol and lipoprotein kinetics were assessed with 13C‐cholesterol and 13C‐leucine infusions. RA patients were reevaluated after receiving oral tofacitinib 10 mg twice daily for 6 weeks. Results Levels of high‐density lipoprotein (HDL) cholesterol, low‐density lipoprotein (LDL) cholesterol, total cholesterol, and apolipoprotein A‐I (Apo A‐I) as well as HDL cholesterol particle number were lower in RA patients (n = 36) than in healthy volunteers (n = 33). In contrast, the cholesterol ester fractional catabolic rate was higher in RA patients, but no differences were observed in cholesterol ester transfer protein, cholesterol ester production rate, HDL‐associated Apo A‐I fractional catabolic rate, or LDL‐associated Apo B fractional catabolic rate. Following tofacitinib treatment in RA patients, the cholesterol ester fractional catabolic rate decreased and cholesterol levels increased. The decrease in cholesterol ester fractional catabolic rate correlated significantly with the increase in HDL cholesterol. Additionally, HDL cholesterol particle number increased and markers of HDL cholesterol function improved. Conclusion This is the first study to assess cholesterol and lipoprotein kinetics in patients with active RA and matched healthy volunteers. The data suggest that low cholesterol levels in patients with active RA may be driven by increases in cholesterol ester catabolism. Tofacitinib treatment reduced cholesterol ester catabolism, thereby increasing cholesterol levels toward those in healthy volunteers, and markers of antiatherogenic HDL function improved. PMID:25470338
... gallbladder. It works by decreasing the production of cholesterol and by dissolving the cholesterol in bile so that it cannot form stones. ... Atromid-S), colestipol (Colestid), medications that lower lipid or cholesterol levels, medications that contain estrogen (including birth control ...
Naples, Mark; Baker, Chris; Lino, Marsel; Iqbal, Jahangir; Hussain, M. Mahmood
2012-01-01
Ezetimibe is a cholesterol uptake inhibitor that targets the Niemann-Pick C1-like 1 cholesterol transporter. Ezetimibe treatment has been shown to cause significant decreases in plasma cholesterol levels in patients with hypercholesterolemia and familial hypercholesterolemia. A recent study in humans has shown that ezetimibe can decrease the release of atherogenic postprandial intestinal lipoproteins. In the present study, we evaluated the mechanisms by which ezetimibe treatment can lower postprandial apoB48-containing chylomicron particles, using a hyperlipidemic and insulin-resistant hamster model fed a diet rich in fructose and fat (the FF diet) and fructose, fat, and cholesterol (the FFC diet). Male Syrian Golden hamsters were fed either chow or the FF or FFC diet ± ezetimibe for 2 wk. After 2 wk, chylomicron production was assessed following intravenous triton infusion. Tissues were then collected and analyzed for protein and mRNA content. FFC-fed hamsters treated with ezetimibe showed improved glucose tolerance, decreased fasting insulin levels, and markedly reduced circulating levels of TG and cholesterol in both the LDL and VLDL fractions. Examination of triglyceride (TG)-rich lipoprotein (TRL) fractions showed that ezetimibe treatment reduced postprandial cholesterol content in TRL lipoproteins as well as reducing apoB48 content. Although ezetimibe did not decrease TRL-TG levels in FFC hamsters, ezetimibe treatment in FF hamsters resulted in decreases in TRL-TG. Jejunal apoB48 protein expression was lower in ezetimibe-treated hamsters. Reductions in jejunal protein levels of scavenger receptor type B-1 (SRB-1) and fatty acid transport protein 4 were also observed. In addition, ezetimibe-treated hamsters showed significantly lower jejunal mRNA expression of a number of genes involved in lipid synthesis and transport, including srebp-1c, sr-b1, ppar-γ, and abcg1. These data suggest that treatment with ezetimibe not only inhibits cholesterol uptake, but may also alter intestinal function to promote improved handling of dietary lipids and reduced chylomicron production. These, in turn, promote decreases in fasting and postprandial lipid levels and improvements in glucose homeostasis. PMID:22345552
Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets.
Cha, Jae Hoon; Kim, Sun Rim; Kang, Hyun Joong; Kim, Myung Hwan; Ha, Ae Wha; Kim, Woo Kyoung
2016-10-01
Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hershock, D.; Vogel, W.H.
1989-02-09
Serum triglycerides, nonesterified fatty acids (NEFA), and total cholesterol were determined during one hour immobilization stress in adult male Sprague-Dawley rats after ethanol administration (2g/kg, i.p.). Stress and ethanol effects were evaluated in two experiments: (1) rats maintained on Purina Rodent Chow for six weeks and fasted for 24 hours; and (2) rats maintained on the same diet supplemented with 1% cholesterol and 10% peanut oil for six weeks and nonfasted prior to experimentation. Blood was obtained from indwelling jugular catheters. In each experiment, differences were seen in triglyceride and NEFA levels but not in total cholesterol. In the regularmore » diet-fed rats (1), serum triglyceride levels were not affected by either stress or ethanol. However, NEFA levels did show differences in the response to ethanol and stress. A 63% decrease from baseline after 5{prime} of stress was partially abolished by ethanol; instead, a 24% increase was observed. Also, a stress-induced increase in NEFA which occurred after 15{prime} was not observed in the ethanol treated rats; rather, a decrease in NEFA was noted. Total cholesterol did not change in response to stress or ethanol. In the high cholesterol diet-fed rats (2), ethanol did not suppress a stress-induced increase in triglyceride levels. NEFA levels in ethanol-treated rats were higher during the first 15{prime} of stress as compared to stress alone. A decrease in NEFA was however seen in the ethanol-treated rats after 30{prime} of stress and these levels remained lower than the stress alone group. A diet-induced increase in total cholesterol levels was observed; however, no changes were seen due to either or ethanol. Thus, ethanol administration prior to acute immobilization stress did affect serum triglyceride and NEFA levels but did not change total cholesterol.« less
Aguilar-Salinas, Carlos A; Assis-Luores-Vale, Andréia; Stockins, Benjamín; Rengifo, Hector Mario; Filho, José Dondici; Neto, Abrahão Afiune; Rabelo, Lísia Marcílio; Torres, Kerginaldo Paulo; Oliveira, José Egídio Paulo de; Machado, Carlos Alberto; Reyes, Eliana; Saavedra, Victor; Florenzano, Fernando; Hernández, Ma Victoria; Jiménez, Sergio Hernandez; Ramírez, Erika; Vazquez, Cuauhtémoc; Salinas, Saul; Hernández, Ismael; Medel, Octavio; Moreno, Ricardo; Lugo, Paula; Alvarado, Ricardo; Mehta, Roopa; Gutierrez, Victor; Gómez Pérez, Francisco J
2004-01-01
Background Hypertriglyceridemia in combination with low HDL cholesterol levels is a risk factor for cardiovascular disease. Our objective was to evaluate the efficacy of ciprofibrate for the treatment of this form of dyslipidemia and to identify factors associated with better treatment response. Methods Multicenter, international, open-label study. Four hundred and thirty seven patients were included. The plasma lipid levels at inclusion were fasting triglyceride concentrations between 1.6–3.9 mM/l and HDL cholesterol ≤ 1.05 mM/l for women and ≤ 0.9 mM/l for men. The LDL cholesterol was below 4.2 mM/l. All patients received ciprofibrate 100 mg/d. Efficacy and safety parameters were assessed at baseline and at the end of the treatment. The primary efficacy parameter of the study was percentage change in triglycerides from baseline. Results After 4 months, plasma triglyceride concentrations were decreased by 44% (p < 0.001). HDL cholesterol concentrations were increased by 10% (p < 0.001). Non-HDL cholesterol was decreased by 19%. A greater HDL cholesterol response was observed in lean patients (body mass index < 25 kg/m2) compared to the rest of the population (8.2 vs 19.7%, p < 0.001). In contrast, cases with excess body weight had a larger decrease in non-HDL cholesterol levels (-20.8 vs -10.8%, p < 0.001). There were no significant complications resulting from treatment with ciprofibrate. Conclusions Ciprofibrate is efficacious for the correction of hypertriglyceridemia / low HDL cholesterol. A greater decrease in non-HDL cholesterol was found among cases with excess body weight. The mechanism of action of ciprofibrate may be influenced by the pathophysiology of the disorder being treated. PMID:15272932
Thacker, Seth G.; Rousset, Xavier; Esmail, Safiya; Zarzour, Abdalrahman; Jin, Xueting; Collins, Heidi L.; Sampson, Maureen; Stonik, John; Demosky, Stephen; Malide, Daniela A.; Freeman, Lita; Vaisman, Boris L.; Kruth, Howard S.; Adelman, Steven J.; Remaley, Alan T.
2015-01-01
LCAT, a plasma enzyme that esterifies cholesterol, has been proposed to play an antiatherogenic role, but animal and epidemiologic studies have yielded conflicting results. To gain insight into LCAT and the role of free cholesterol (FC) in atherosclerosis, we examined the effect of LCAT over- and underexpression in diet-induced atherosclerosis in scavenger receptor class B member I-deficient [Scarab(−/−)] mice, which have a secondary defect in cholesterol esterification. Scarab(−/−)×LCAT-null [Lcat(−/−)] mice had a decrease in HDL-cholesterol and a high plasma ratio of FC/total cholesterol (TC) (0.88 ± 0.033) and a marked increase in VLDL-cholesterol (VLDL-C) on a high-fat diet. Scarab(−/−)×LCAT-transgenic (Tg) mice had lower levels of VLDL-C and a normal plasma FC/TC ratio (0.28 ± 0.005). Plasma from Scarab(−/−)×LCAT-Tg mice also showed an increase in cholesterol esterification during in vitro cholesterol efflux, but increased esterification did not appear to affect the overall rate of cholesterol efflux or hepatic uptake of cholesterol. Scarab(−/−)×LCAT-Tg mice also displayed a 51% decrease in aortic sinus atherosclerosis compared with Scarab(−/−) mice (P < 0.05). In summary, we demonstrate that increased cholesterol esterification by LCAT is atheroprotective, most likely through its ability to increase HDL levels and decrease pro-atherogenic apoB-containing lipoprotein particles. PMID:25964513
Beneficial effects of coconut water feeding on lipid metabolism in cholesterol-fed rats.
Sandhya, V G; Rajamohan, T
2006-01-01
The purpose of this study was to determine the effect of coconut water feeding in cholesterol-fed rats. Male albino rats were fed tender coconut water and mature coconut water at a dose level of 4 mL/100 g of body weight. Cholesterol feeding caused a marked increase in total cholesterol, very low-density lipoprotein (VLDL) + low-density lipoprotein (LDL) cholesterol, and triglycerides in serum. Administration of coconut water counteracts the increase in total cholesterol, VLDL + LDL cholesterol, and triglycerides, while high-density lipoprotein cholesterol was higher. Lipid levels in the tissues viz. liver, heart, kidney, and aorta were markedly decreased in cholesterol-fed rats supplemented with coconut water. Feeding coconut water resulted in increased activities of 3-hydroxy-3-methylglutaryl-CoA reductase in liver, lipoprotein lipase in heart and adipose tissue, and plasma lecithin:cholesterol acyl transferase, while lipogenic enzymes showed decreased activities. An increased rate of cholesterol conversion to bile acid and an increased excretion of bile acids and neutral sterols were observed in rats fed coconut water. Histopathological studies of liver and aorta revealed much less fatty accumulation in these tissues in cholesterol-fed rats supplemented with coconut water. Feeding coconut water resulted in increased plasma L-arginine content, urinary nitrite level, and nitric oxide synthase activity. These results indicate that both tender and mature coconut water has beneficial effects on serum and tissue lipid parameters in rats fed cholesterol-containing diet.
Modulation of cholesterol levels in broiler meat by dietary garlic and copper.
Konjufca, V H; Pesti, G M; Bakalli, R I
1997-09-01
Male Ross x Ross 208 chickens were fed from hatching to 21 d of age either a control diet (based on corn and soybean meal) or the control diet supplemented with 0, 1.5, 3.0, and 4.5% of a commercial garlic powder in Experiments 1 and 2. Once the dose-response relationship was established, 3% garlic powder or 63 or 180 mg/kg copper as cupric citrate or cupric sulfate pentahydrate were supplemented to the diet (Experiments 3, 4, 5, and 6). In the first two experiments, reductions of plasma cholesterol (P = 0.006) and triacylglycerols (P = 0.013) and liver (P = 0.012) and breast muscle (P = 0.165) cholesterol were observed in garlic-supplemented birds. Feeding either garlic powder or copper (63 and 180 mg/kg) resulted in reduced levels of plasma cholesterol, liver cholesterol, blood reduced glutathione, and breast and thigh muscle cholesterol. Differences were significant at P < 0.05 in at least one experiment. 3-Hydroxy-3-methylglutaryl reductase activity was decreased due to dietary garlic (P = 0.0369), but not by pharmacological levels of dietary copper (P = 0.982). The activity of fatty acid synthetase was decreased in birds fed copper (P = 0.035). Both garlic and copper supplements decreased cholesterol 7 alpha-hydroxylase activity (P = 0.024 and P = 0.022, respectively). The results of these trials confirm the findings that garlic and copper alter lipid and cholesterol metabolism. However, they do not work by the same mechanism. Feeding dietary garlic or copper for 21 d reduced cholesterol levels of broiler meat without altering growth of the chickens or feed efficiency.
Randomized controlled trial of a nonpharmacologic cholesterol reduction program at the worksite.
Bruno, R; Arnold, C; Jacobson, L; Winick, M; Wynder, E
1983-07-01
Under experimental clinical conditions diet modification has been shown to reduce serum cholesterol levels. This paper reports such a positive response to a nonpharmacologic, behavioral education program at the worksite. Employees at the New York Telephone Company corporate headquarters were assigned randomly to treatment and control groups. Treatment consisted of an 8-week group cholesterol reduction program conducted during employee lunch hours. It comprised a multiple-treatment approach--food behavior change techniques combined with nutrition education, physical activity planning, and self-management skills. The treatment group showed substantial change compared with the control group at the program's completion. Those treated displayed a significant 6.4% reduction in total serum cholesterol (266 mg% average at baseline) as compared with control subjects with a corresponding decrease in high-density lipoprotein levels. A significant increase in nutrition knowledge and moderate weight loss were also documented for this group. The magnitudes of a participant's baseline serum cholesterol level and his/her reduction in percentage of ideal body weight were positively and independently correlated with percentage changes in serum cholesterol levels. Over the same period, decreases in high-density lipoprotein levels and no changes in serum cholesterol, weight, and nutrition knowledge were observed for the control group. Overall, participants in the treatment program successfully reduced the coronary heart disease risk factors of elevated cholesterol and weight. Directions for future study are suggested.
de Bem, Andreza Fabro; Portella, Rafael de Lima; Colpo, Elisângela; Duarte, Marta Maria Medeiros Frescura; Frediane, Andressa; Taube, Paulo Sergio; Nogueira, Cristina Wayne; Farina, Marcelo; da Silva, Edson Luiz; Teixeira Rocha, João Batista
2009-07-01
Hypercholesterolaemia and oxidative stress are well-known risk factors in coronary artery diseases. Diphenyl diselenide is a synthetic organoselenium compound that has been shown to have in vitro and in vivo antioxidant properties. In this study, we investigated whether diphenyl diselenide could reduce the hypercholesterolaemia and diminish the tissue oxidative stress in cholesterol-fed rabbits. Twenty-four New Zealand white male rabbits were randomly divided into four groups. Each group was fed a different diet as follows: Control group--regular chow; Cholesterol group--1% cholesterol-enriched diet; diphenyl diselenide group--regular diet supplemented with 10 ppm diphenyl diselenide; and Chol/diphenyl diselenide group--the same cholesterol-rich supplemented with 10 ppm diphenyl diselenide. After 45 days of treatment, the rabbits were killed and the blood, liver, and brain were used for laboratory analysis. The results showed that the serum levels of total cholesterol were markedly increased in cholesterol-fed rabbits and the consumption of diphenyl diselenide decreased these levels approximately twofold in Chol/diphenyl diselenide rabbits (P < 0.05). The intake of diphenyl diselenide by hypercholesterolaemic rabbits diminished the serum and hepatic thiobarbituric acid reactive substances levels as well as the production of reactive oxygen species in the blood and brain (P < 0.05) when compared to the cholesterol group. In addition, diphenyl diselenide supplementation increased hepatic and cerebral delta-aminolevulinic dehydratase activity and hepatic non-protein thiol groups levels despite hypercholesterolaemia (P < 0.05). In summary, the results showed that diphenyl diselenide reduced the hypercholesterolaemia and the oxidative stress in cholesterol-fed rabbits.
Zwier, M V; Baardman, M E; van Dijk, T H; Jurdzinski, A; Wisse, L J; Bloks, V W; Berger, R M F; DeRuiter, M C; Groen, A K; Plösch, T
2017-08-01
LDL receptor-related protein type 2 (LRP2) is highly expressed on both yolk sac and placenta. Mutations in the corresponding gene are associated with severe birth defects in humans, known as Donnai-Barrow syndrome. We here characterized the contribution of LRP2 and maternal plasma cholesterol availability to maternal-fetal cholesterol transport and fetal cholesterol levels in utero in mice. Lrp2 +/- mice were mated heterozygously to yield fetuses of all three genotypes. Half of the dams received a 0.5% probucol-enriched diet during gestation to decrease maternal HDL cholesterol. At E13.5, the dams received an injection of D7-labelled cholesterol and were provided with 1- 13 C acetate-supplemented drinking water. At E16.5, fetal tissues were collected and maternal cholesterol transport and fetal synthesis quantified by isotope enrichments in fetal tissues by GC-MS. The Lrp2 genotype did not influence maternal-fetal cholesterol transport and fetal cholesterol. However, lowering of maternal plasma cholesterol levels by probucol significantly reduced maternal-fetal cholesterol transport. In the fetal liver, this was associated with increased cholesterol synthesis rates. No indications were found for an interaction between the Lrp2 genotype and maternal probucol treatment. Maternal-fetal cholesterol transport and endogenous fetal cholesterol synthesis depend on maternal cholesterol concentrations but do not involve LRP2 in the second half of murine pregnancy. Our results suggest that the mouse fetus can compensate for decreased maternal cholesterol levels. It remains a relevant question how the delicate system of cholesterol transport and synthesis is regulated in the human fetus and placenta. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Mung bean decreases plasma cholesterol by up-regulation of CYP7A1.
Yao, Yang; Hao, Liu; Shi, Zhenxing; Wang, Lixia; Cheng, Xuzhen; Wang, Suhua; Ren, Guixing
2014-06-01
Our results affirmed that supplementation of 1 or 2% mung bean could decrease plasma total cholesterol and triacylglycerol level. Mung bean increased mRNA 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase. Most importantly, mung bean increased not only the protein level of cholesterol-7α-hydroxylase (CYP7A1) but also mRNA CYP7A1. It was concluded that the hypocholesterolemic activity of mung bean was most probable mediated by enhancement of bile acid excretion and up-regulation of CYP7A1.
Yang, Jieping; Zhang, Song; Henning, Susanne M; Lee, Rupo; Hsu, Mark; Grojean, Emma; Pisegna, Rita; Ly, Austin; Heber, David; Li, Zhaoping
2018-02-01
It has been demonstrated in animal studies that both polyphenol-rich pomegranate extract (PomX) and the polysaccharide inulin, ameliorate metabolic changes induced by a high-fat diet, but little is known about the specific mechanisms. This study evaluated the effect of PomX (0.25%) and inulin (9%) alone or in combination on cholesterol and lipid metabolism in mice. Male C57BL/6 J mice were fed high-fat/high-sucrose [HF/HS (32% energy from fat, 25% energy from sucrose)] diets supplemented with PomX (0.25%) and inulin (9%) alone or in combination for 4 weeks. At the end of intervention, serum and hepatic cholesterol, triglyceride levels, hepatic gene expression of key regulators of cholesterol and lipid metabolism as well as fecal cholesterol and bile acid excretion were determined. Dietary supplementation of the HF/HS diet with PomX and inulin decreased hepatic and serum total cholesterol. Supplementation with PomX and inulin together resulted in lower hepatic and serum total cholesterol compared to individual treatments. Compared to HF/HS control, PomX increased gene expression of Cyp7a1 and Cyp7b1, key regulators of bile acid synthesis pathways. Inulin decreased gene expression of key regulators of cholesterol de novo synthesis Srebf2 and Hmgcr and significantly increased fecal elimination of total bile acids and neutral sterols. Only PomX in combination with inulin reduced liver and lipid weight significantly compared to the HF/HS control group. PomX showed a trend to decrease liver triglyceride (TG) levels, while inulin or PomX-inulin combination had no effect on either serum or liver TG levels. Dietary PomX and inulin supplementation decreased hepatic and serum total cholesterol by different mechanisms and the combination leading to a significant enhancement of the cholesterol-lowering effect. Copyright © 2017 Elsevier Inc. All rights reserved.
Miura, Yutaka; Hosono, Mayu; Oyamada, Chiaki; Odai, Hideharu; Oikawa, Shinichi; Kondo, Keiji
2005-04-01
The effects of dietary isohumulones, the main components accounting for the bitter taste of beer, on lipid metabolism were examined. Young female C57BL/6N mice were fed diets containing isomerized hop extract (IHE), which consists mainly of isohumulones. Administration of IHE with an atherogenic (high-fat and high-cholesterol) diet for 2 weeks resulted in a significant increase in plasma HDL-cholesterol (P<0.01), along with a concomitant reduction in the atherosclerosis index, an increase in liver weight and a decrease in body weight gain in a dose-dependent manner. When animals received IHE with either a cholesterol or a basal diet for 1 week, significant decreases in the liver content of cholesterol (P<0.01) and triacylglycerol (cholesterol diet, P<0.01) were observed. Quantitative analyses of hepatic mRNA levels revealed that IHE administration resulted in up-regulation of mRNA for acyl-CoA oxidase, acyl-CoA synthetase, hydroxymethylglutaryl-CoA synthetase, lipoprotein lipase and fatty acid transport protein, and down-regulation of mRNA for Apo CIII and Apo AI. Administration of purified isohumulones effectively resulted in the same changes as IHE. Administration of fenofibrate, an agonist for PPARalpha, with a cholesterol diet caused marked hepatomegaly, an increase in plasma HDL-cholesterol, a decrease in hepatic cholesterol content, and alterations in hepatic mRNA levels similar to those observed in mice given IHE. Taken together, these results suggest that the modulation of lipid metabolism observed in mice fed diets containing isohumulones is, at least in part, mediated by activation of PPARalpha.
High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis
Ossoli, Alice; Pavanello, Chiara
2016-01-01
Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716
Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M
2009-01-01
The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model. PMID:19638223
Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M
2009-07-28
The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model.
Cholesterol as a Causative Factor in Alzheimer Disease: A Debatable Hypothesis
Wood, W. Gibson; Li, Ling; Müller, Walter E.; Eckert, Gunter P.
2014-01-01
High serum/plasma cholesterol levels have been suggested as a risk factor for Alzheimer disease (AD). Some reports, mostly retrospective epidemiological studies, have observed a decreased prevalence of AD in patients taking the cholesterol lowering drugs, statins. The strongest evidence causally linking cholesterol to AD is provided by experimental studies showing that adding/reducing cholesterol alters amyloid precursor protein (APP) and amyloid beta-protein (Aβ) levels. However, there are problems with the cholesterol-AD hypothesis. Cholesterol levels in serum/plasma and brain of AD patients do not support cholesterol as a causative factor in AD. Prospective studies on statins and AD have largely failed to show efficacy. Even the experimental data are open to interpretation given that it is well-established that modification of cholesterol levels has effects on multiple proteins, not only APP and Aβ. The purpose of this review, therefore, is to examine the above-mentioned issues and discuss the pros and cons of the cholesterol-AD hypothesis, and the involvement of other lipids in the mevalonate pathway, such as isoprenoids and oxysterols, in AD. PMID:24329875
Aspirin Increases the Solubility of Cholesterol in Lipid Membranes
NASA Astrophysics Data System (ADS)
Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel
2014-03-01
Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.
Response of osteocalcin and insulin resistance after a hypocaloric diet in obese patients.
de Luis, D A; Perez Castrillon, J L; Aller, R; Izaola, O; Bachiller, C
2015-06-01
Osteocalcin is a hormone with a complex cross-talk between adipose tissue and the skeleton. The aim of the present study was to explore the change of osteocalcin, insulin resistance, and adipocytokines after hypocaloric diet in obese patients. A population of 178 obese patients was analyzed. At basal time and 2 months after the dietary intervention, weight, fat mass, body mass index, basal glucose, insulin, insulin resistance (HOMA), total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, leptin, adiponectin, IL-6, TNF alpha and osteocalcin levels were measured. After dietary treatment, BMI, weight, fat mass, waist circumference, waist to hip ratio, systolic pressure, glucose, HOMA, triglycerides, total cholesterol, leptin and LDL cholesterol decreased significantly. Osteocalcin levels have a significant decrease after weight loss (Osteocalcin (ng/ml); 9.76 ± 5.3 vs 9.31 ± 4.1: p < 0.05). In correlation analysis, a negative association was detected among osteocalcin and age, BMI, fat mass, glucose, C reactive protein, interleukin-6. In the linear regression with age-, sex-, BMI, fat mass- and insulin- adjusted, only C reactive protein concentrations are related with osteocalcin levels -0.21 (CI 95%: -0.40 -0.009). Osteocalcin decreased after a weight loss treatment. Moreover, osteocalcin levels, before and after treatment, were related in a negative way with CRP fat mass, body mass index, age and glucose levels.
Saravanan, Ramalingam; Ramachandran, Vinayagam
2013-09-01
The present study was to evaluate the protective effects of Rebaudioside A (Reb A) on antioxidant status and lipid profile in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Wistar rats by a single intraperitoneal administration of STZ (40mg/kg b.w). Diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, hydroperoxides and decreased levels of insulin. The activity of enzymatic antioxidants (superoxide dismutase, catalase and glutathione peroxidase) and the levels of non enzymatic antioxidants (vitamin C, vitamin E and reduced glutathione) were decreased in diabetic rats. The levels of total cholesterol (TC), triglycerides (TGs), free fatty acids (FFAs), phospholipids (PLs), low density lipoproteins (LDL-cholesterol) and very low-density lipoproteins (VLDL-cholesterol) in the plasma significantly increased, while plasma high-density lipoproteins (HDL-cholesterol) were significantly decreased in diabetic rats. Oral administration of Reb A (200mg/kg b.w) brought back plasma glucose, insulin, lipid peroxidation products, enzymatic, non-enzymatic antioxidants and lipid profile levels to near normal. The results of the present investigation suggests that Reb A, a natural sweetener exhibits antilipid peroxidative, antihyperlipidemic and antioxidant properties. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Yanan; Snel, Marieke; Jonker, Jacqueline T.; Hammer, Sebastiaan; Lamb, Hildo J.; de Roos, Albert; Meinders, A. Edo; Pijl, Hanno; Romijn, Johannes A.; Smit, Johannes W.A.; Jazet, Ingrid M.; Rensen, Patrick C.N.
2011-01-01
OBJECTIVE Using a mouse model for human-like lipoprotein metabolism, we observed previously that reduction of the hepatic triglyceride (TG) content resulted in a decrease in plasma cholesteryl ester transfer protein (CETP) and an increase in HDL levels. The aim of the current study was to investigate the effects of prolonged caloric restriction in obese patients with type 2 diabetes mellitus, resulting in a major reduction in hepatic TG content, on plasma CETP and HDL levels. RESEARCH DESIGN AND METHODS We studied 27 obese (BMI: 37.2 ± 0.9 kg/m2) insulin-dependent patients with type 2 diabetes mellitus (14 men and 13 women, aged 55 ± 2 years) who received a 16-week very low calorie diet (VLCD). At baseline and after a 16-week VLCD, plasma lipids, lipoproteins, and CETP were measured. Furthermore, functionality of HDL with respect to inducing cholesterol efflux from human monocyte cells (THP-1) was determined. RESULTS A 16-week VLCD markedly decreased plasma CETP concentration (−18%; P < 0.01) and increased plasma apolipoprotein (apo)AI levels (+16%; P < 0.05), without significantly affecting plasma HDL-cholesterol and HDL-phospholipids. Although a VLCD results in HDL that is less lipidated, the functionality of HDL with respect to inducing cholesterol efflux in vitro was unchanged. CONCLUSIONS The marked decrease in hepatic TG content induced by a 16-week VLCD is accompanied by a decrease in plasma CETP concentration and an increase in apoAI levels, without improving the cholesterol efflux properties of HDL in vitro. PMID:21994427
miR-758-5p regulates cholesterol uptake via targeting the CD36 3'UTR.
Li, Bi-Rong; Xia, Lin-Qin; Liu, Jing; Liao, Lin-Ling; Zhang, Yang; Deng, Min; Zhong, Hui-Juan; Feng, Ting-Ting; He, Ping-Ping; Ouyang, Xin-Ping
2017-12-09
miR-758-3p plays an important role via regulting ABCA1-mediated cholesterol efflux in atherosclerosis. However, the mechanism of miR-758-5p in cholesterol metabolism is still unclear. Here, we revealed that miR-758-5p decreased total cholesterol accumulation in THP-1 macrophage derived foam cells through markedly reducing cholesterol uptake, and no effect on the cholesterol efflux. Interestingly, computational analysis suggests that CD36 may be a target gene of miR-758-5p. Our study further demonstrated that miR-758-5p decreased CD36 expression at both protein and mRNA levels via targeting the CD36 3'UTR in THP-1 macrophage derived foam cells. The present present study concluded that miR-758-5p decreases lipid accumulation of foam cell via regulating CD36-mediated the cholesterol uptake. Therefore, targeting miR-758-5p may offer a promising strategy to treat atherosclerotic vascular disease. Copyright © 2017. Published by Elsevier Inc.
Güçlü, Feyzullah; Ozmen, Bilgin; Hekimsoy, Zeliha; Kirmaz, Cengiz
2004-12-01
In West of Scotland Coronary Prevention Study (WOSCOPS), development of type 2 diabetes mellitus (DM) was found to decrease by 30% in pravastatin-treated patients. In the study, it is suggested that pleiotropic effects of pravastatin may be responsible too as well as its lipid lowering effect. The aim of this study was to assess the effects of pravastatin treatment on the insulin resistance in patients with metabolic syndrome with impaired glucose tolerance (IGT), by Homeostasis Model Assessment (HOMA) test, insulin sensitivity indices and glucose half activation time (glucose t1/2). Study population consisted of 25 women who were diagnosed with metabolic syndrome. At baseline and 10 weeks after the 20 mg/daily tablet pravastatin treatment, waist/hip circumference, body weight and arterial blood pressure measurements, plasma glucose, total cholesterol, triglyceride, high density lipoprotein (HDL)-cholesterol, transaminases, glycosylated haemoglobin (A1C) and insulin level measurements were obtained along with HOMA test and insulin tolerance test after 12 h of fasting. Insulin sensitivity indices and glucose t1/2 were assessed. After the treatment, a statistically significant decrease was observed in arterial blood pressure values (P < 0.0001). While plasma total cholesterol, low density lipoprotein (LDL)-cholesterol, and triglyceride levels were found to decrease significantly and HDL-cholesterol levels increased significantly, a decrease in baseline insulin levels, an increase in insulin sensitivity levels were observed along with an decrease in glucose t1/2. Related to the improvement in aforementioned parameters, statistically significant decreases were noted in HOMA, postprandial and fasting glucose levels and A1C values (P < 0.0001). Our study suggests that using pravastatin in the dyslipidemia treatment of metabolic syndrome with IGT may be an effective approach by its advantageous effects on insulin resistance. Based on this result, it is possible to say that this can be a risk lowering treatment approach for the development of type 2 DM.
Xu, Dan; Luo, Hanwen W; Hu, Wen; Hu, Shuwei W; Yuan, Chao; Wang, Guihua H; Zhang, Li; Yu, Hong; Magdalou, Jacques; Chen, Liaobin B; Wang, Hui
2018-05-02
Clinical and animal studies have indicated that hypercholesterolemia and its associated diseases have intrauterine developmental origins. Our previous studies showed that prenatal caffeine exposure (PCE) led to fetal overexposure to maternal glucocorticoids (GCs) and increased serum total cholesterol levels in adult rat offspring. This study further confirms the intrauterine programming of PCE-induced hypercholesterolemia in female adult rat offspring. Pregnant Wistar rats were intragastrically administered caffeine (30, 60, and 120 mg/kg/d) from gestational day (GD)9 to 20. Female rat offspring were euthanized at GD20 and postnatal wk 12; several adult rat offspring were additionally subjected to ice-water swimming stimulation to induce chronic stress prior to death. The effects of GCs on cholesterol metabolism and epigenetic regulation were verified using the L02 cell line. The results showed that PCE induced hypercholesterolemia in adult offspring, which manifested as significantly higher levels of serum total cholesterol and LDL cholesterol (LDL-C) as well as higher ratios of LDL-C/HDL cholesterol. We further found that the cholesterol levels were increased in fetal livers but were decreased in fetal blood, accompanied by increased maternal blood cholesterol levels and reduced placental cholesterol transport. Furthermore, analysis of PCE offspring in the uterus and in a postnatal basal/chronic stress state and the results of in vitro experiments showed that hepatic cholesterol metabolism underwent GC-dependent changes and was associated with cholesterol synthase via abnormalities in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) histone acetylation. We concluded that, to compensate for intrauterine placentally derived decreases in fetal blood cholesterol levels, high intrauterine GC levels activated fetal hepatic CCAAT enhancer binding protein α signaling and down-regulated Sirtuin1 expression, which mediated the high levels of histone acetylation ( via H3K9ac and H3K14ac) and expression of HMGCR. This GC-dependent cholesterol metabolism programming effect was sustained through adulthood, leading to the occurrence of hypercholesterolemia.-Xu, D., Luo, H. W., Hu, W., Hu, S. W., Yuan, C., Wang, G. H., Zhang, L., Yu, H., Magdalou, J., Chen, L. B., Wang, H. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.
Amyloid precursor protein controls cholesterol turnover needed for neuronal activity
Pierrot, Nathalie; Tyteca, Donatienne; D'auria, Ludovic; Dewachter, Ilse; Gailly, Philippe; Hendrickx, Aurélie; Tasiaux, Bernadette; Haylani, Laetitia El; Muls, Nathalie; N'Kuli, Francisca; Laquerrière, Annie; Demoulin, Jean-Baptiste; Campion, Dominique; Brion, Jean-Pierre; Courtoy, Pierre J; Kienlen-Campard, Pascal; Octave, Jean-Noël
2013-01-01
Perturbation of lipid metabolism favours progression of Alzheimer disease, in which processing of Amyloid Precursor Protein (APP) has important implications. APP cleavage is tightly regulated by cholesterol and APP fragments regulate lipid homeostasis. Here, we investigated whether up or down regulation of full-length APP expression affected neuronal lipid metabolism. Expression of APP decreased HMG-CoA reductase (HMGCR)-mediated cholesterol biosynthesis and SREBP mRNA levels, while its down regulation had opposite effects. APP and SREBP1 co-immunoprecipitated and co-localized in the Golgi. This interaction prevented Site-2 protease-mediated processing of SREBP1, leading to inhibition of transcription of its target genes. A GXXXG motif in APP sequence was critical for regulation of HMGCR expression. In astrocytes, APP and SREBP1 did not interact nor did APP affect cholesterol biosynthesis. Neuronal expression of APP decreased both HMGCR and cholesterol 24-hydroxylase mRNA levels and consequently cholesterol turnover, leading to inhibition of neuronal activity, which was rescued by geranylgeraniol, generated in the mevalonate pathway, in both APP expressing and mevastatin treated neurons. We conclude that APP controls cholesterol turnover needed for neuronal activity. PMID:23554170
Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun
2014-01-01
Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function. © 2013.
Kumar, V R Santhosh; Inamdar, Md Naseeruddin; Nayeemunnisa; Viswanatha, G L
2011-08-01
To evaluate the anti-hyperlipidemic activity of lemongrass oil against in dexamethasone induced hyperlipidemia in rats. Administration of dexamethasone was given at 10 mg/kg, sc. to the adult rats for 8 d induces hyperlipidemia characterized by marked increase in serum cholesterol and triglyceride levels along with increase in atherogenic index. Lemongrass oil (100 and 200 mg/kg, po.) treatment has showed significant inhibition against dexamethasone hyperlipidemia by maintaining the serum levels of cholesterol, triglycerides and atherogenic index near to the normal levels and the antihyperlipidemic effect of the lemongross oil was comparable with atorvastatin 10 mg/kg, po. The possible mechanism may be associated with decrease in lecithin cholesterol acetyl transferase (LCAT) activity. These results suggested that Lemon gross oil possess significant anti-hyperlipidemic activity. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Borradaile, Nica M; de Dreu, Linda E; Wilcox, Lisa J; Edwards, Jane Y; Huff, Murray W
2002-01-01
Diets containing the soya-derived phytoestrogens, genistein and daidzein, decrease plasma cholesterol in humans and experimental animals. The mechanisms responsible for the hypocholesterolaemic effects of these isoflavones are unknown. The present study was conducted to determine if genistein and daidzein regulate hepatocyte cholesterol metabolism and apolipoprotein (apo) B secretion in cultured human hepatoma (HepG2) cells. ApoB secretion was decreased dose-dependently by up to 63% and 71% by genistein and daidzein (100 microM; P<0.0001) respectively. In contrast, no effect on apoAI secretion was observed. Cellular cholesterol synthesis was inhibited 41% by genistein (100 microM; P<0.005) and 18% by daidzein (100 microM; P<0.05), which was associated with significant increases in 3-hydroxy-3-methylglutaryl-CoA reductase mRNA. Cellular cholesterol esterification was decreased 56% by genistein (100 microM; P<0.04) and 29% by daidzein (100 microM; P<0.04); however, mRNA levels for acyl-CoA:cholesterol acyltransferase (ACAT) 1 and ACAT2 were unaffected. At 100 microM, both isoflavones equally inhibited the activities of both forms of ACAT in cells transfected with either ACAT1 or ACAT2. Genistein (100 microM) and daidzein (100 microM) significantly decreased the activity of microsomal triacylglycerol transfer protein (MTP) by 30% and 24% respectively, and significantly decreased MTP mRNA levels by 35% and 55%. Both isoflavones increased low-density lipoprotein (LDL)-receptor mRNA levels by 3- to 6-fold (100 microM; P<0.03) and significantly increased the binding, uptake and degradation of (125)I-labelled LDL, suggesting that enhanced reuptake of newly secreted apoB-containing lipoproteins contributed to the net decrease in apoB secretion. These results indicate that genistein and daidzein inhibit hepatocyte apoB secretion through several mechanisms, including inhibition of cholesterol synthesis and esterification, inhibition of MTP activity and expression and increased expression of the LDL-receptor. PMID:12030847
Qin, Li; Yang, Yun-bo; Yang, Yi-xin; Zhu, Neng; Gong, Yong-zhen; Zhang, Cai-ping; Li, Shun-xiang; Liao, Duan-fang
2014-01-01
Aim: To investigate the mechanisms of anti-atherosclerotic action of ezetimibe in rat vascular smooth muscle cells (VSMCs) in vitro. Methods: VSMCs of SD rats were cultured in the presence of Chol:MβCD (10 μg/mL) for 72 h, and intracellular lipid droplets and cholesterol levels were evaluated using Oil Red O staining, HPLC and Enzymatic Fluorescence Assay, respectively. The expression of caveolin-1, sterol response element-binding protein-1 (SREBP-1) and ERK1/2 were analyzed using Western blot assays. Translocation of SREBP-1 and ERK1/2 was detected with immunofluorescence. Results: Treatment with Chol:MβCD dramatically increased the cellular levels of total cholesterol (TC), cholesterol ester (CE) and free cholesterol (FC) in VSMCs, which led to the formation of foam cells. Furthermore, Chol:MβCD treatment significantly decreased the expression of caveolin-1, and stimulated the expression and nuclear translocation of SREBP-1 in VSMCs. Co-treatment with ezetimibe (3 μmol/L) significantly decreased the cellular levels of TC, CE and FC, which was accompanied by elevation of caveolin-1 expression, and by a reduction of SREBP-1 expression and nuclear translocation. Co-treatment with ezetimibe dose-dependently decreased the expression of phosphor-ERK1/2 (p-ERK1/2) in VSMCs. The ERK1/2 inhibitor PD98059 (50 μmol/L) altered the cholesterol level and the expression of p-ERK1/2, SREBP-1 and caveolin-1 in the same manner as ezetimibe did. Conclusion: Ezetimibe suppresses cholesterol accumulation in rat VSMCs in vitro by regulating SREBP-1 and caveolin-1 expression, possibly via the MAPK signaling pathway. PMID:25087996
Membrane Composition Tunes the Outer Hair Cell Motor
NASA Astrophysics Data System (ADS)
Rajagopalan, L.; Sfondouris, J.; Oghalai, J. S.; Pereira, F. A.; Brownell, W. E.
2009-02-01
Cholesterol and docosahexaenoic acid (DHA), an ω-3 fatty acid, affect membrane mechanical properties in different ways and modulate the function of membrane proteins. We have probed the functional consequence of altering cholesterol and DHA levels in the membranes of OHCs and prestin expressing HEK cells. Large, dynamic and reversible changes in prestin-associated charge movement and OHC motor activity result from altering the concentration of membrane cholesterol. Increasing membrane cholesterol shifts the q/V function ~ 50 mV in the hyperpolarizing direction, possibly a response related to increases in membrane stiffness. The voltage shift is linearly related to total membrane cholesterol. Increasing cholesterol also decreases the total charge moved in a linear fashion. Decreasing membrane cholesterol shifts the q/V function ~ 50 mV in the depolarizing direction with little or no effect on the amount of charge moved. In vivo increases in membrane cholesterol transiently increase but ultimately lead to decreases in DPOAE. Docosahexaenoic acid shifts the q/V function in the hyperpolarizing direction < 15 mV and increases total charge moved. Tuning of cochlear function by membrane cholesterol contributes to the exquisite temporal and frequency processing of mammalian hearing by optimizing the cochlear amplifier.
Meier, C; Staub, J J; Roth, C B; Guglielmetti, M; Kunz, M; Miserez, A R; Drewe, J; Huber, P; Herzog, R; Müller, B
2001-10-01
This study evaluated the effect of physiological, TSH-guided, L-thyroxine treatment on serum lipids and clinical symptoms in patients with subclinical hypothyroidism. Sixty-six women with proven subclinical hypothyroidism (TSH, 11.7 +/- 0.8 mIU/liter) were randomly assigned to receive L-thyroxine or placebo for 48 wk. Individual L-thyroxine replacement (mean dose, 85.5 +/- 4.3 microg/d) was performed based on blinded TSH monitoring, resulting in euthyroid TSH levels (3.1 +/- 0.3 mIU/liter). Lipid concentrations and clinical scores were measured before and after treatment. Sixty-three of 66 patients completed the study. In the L-thyroxine group (n = 31) total cholesterol and low density lipoprotein cholesterol were significantly reduced [-0.24 mmol/liter, 3.8% (P = 0.015) and -0.33 mmol/liter, 8.2% (P = 0.004), respectively]. Low density lipoprotein cholesterol decrease was more pronounced in patients with TSH levels greater than 12 mIU/liter or elevated low density lipoprotein cholesterol levels at baseline. A significant decrease in apolipoprotein B-100 concentrations was observed (P = 0.037), whereas high density lipoprotein cholesterol, triglycerides, apolipoprotein AI, and lipoprotein(a) levels remained unchanged. Two clinical scores assessing symptoms and signs of hypothyroidism (Billewicz and Zulewski scores) improved significantly (P = 0.02). This is the first double blind study to show that physiological L-thyroxine replacement in patients with subclinical hypothyroidism has a beneficial effect on low density lipoprotein cholesterol levels and clinical symptoms of hypothyroidism. An important risk reduction of cardiovascular mortality of 9-31% can be estimated from the observed improvement in low density lipoprotein cholesterol.
Lecerf, Jean-Michel; Luc, Gérald; Marécaux, Nadine; Bal, Sylvie; Bonte, Jean-Paul; Lacroix, Brigitte; Cayzeele, Amélie
2009-01-01
The diet is the first step in managing hypercholesterolemia. The objective of the present study is to assess whether moderate changes in dietary fatty acids improve plasma lipid parameters in mildly hypercholesterolemic outpatients. Using a randomized double-blind study, 121 outpatients within two groups received an isocaloric amount of unsaturated margarine or butter. Clinical and anthropometric measurements and a 3-day food record were made. Chi-square and Fisher's tests were used to compare qualitative variables and the general linear procedure was used to compare the groups. Additional analyses were performed after adjustment. There was a significant difference (P <0.03) in low-density lipoprotein-cholesterol levels between the groups. Total cholesterol, low-density lipoprotein-cholesterol, non-high-density lipoprotein-cholesterol and apolipoprotein B values decreased in the unsaturated group in comparison with the saturated group. Low-density lipoprotein-cholesterol changes were correlated with the variation in polyunsaturated fatty acid intake and with plasma phospholipid linoleic acid levels. A small change in saturated by polyunsaturated fatty acid intake may improve plasma lipid parameters in mildly hypercholesterolemic subjects.
Yang, Muhua; Liu, Weidong; Pellicane, Christina; Sahyoun, Christine; Joseph, Biny K.; Gallo-Ebert, Christina; Donigan, Melissa; Pandya, Devanshi; Giordano, Caroline; Bata, Adam; Nickels, Joseph T.
2014-01-01
Dysregulation of cholesterol homeostasis is associated with various metabolic diseases, including atherosclerosis and type 2 diabetes. The sterol response element binding protein (SREBP)-2 transcription factor induces the expression of genes involved in de novo cholesterol biosynthesis and low density lipoprotein (LDL) uptake, thus it plays a crucial role in maintaining cholesterol homeostasis. Here, we found that overexpressing microRNA (miR)-185 in HepG2 cells repressed SREBP-2 expression and protein level. miR-185-directed inhibition caused decreased SREBP-2-dependent gene expression, LDL uptake, and HMG-CoA reductase activity. In addition, we found that miR-185 expression was tightly regulated by SREBP-1c, through its binding to a single sterol response element in the miR-185 promoter. Moreover, we found that miR-185 expression levels were elevated in mice fed a high-fat diet, and this increase correlated with an increase in total cholesterol level and a decrease in SREBP-2 expression and protein. Finally, we found that individuals with high cholesterol had a 5-fold increase in serum miR-185 expression compared with control individuals. Thus, miR-185 controls cholesterol homeostasis through regulating SREBP-2 expression and activity. In turn, SREBP-1c regulates miR-185 expression through a complex cholesterol-responsive feedback loop. Thus, a novel axis regulating cholesterol homeostasis exists that exploits miR-185-dependent regulation of SREBP-2 and requires SREBP-1c for function. PMID:24296663
Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro
2012-03-01
Fish consumption is well known to provide health benefits in both experimental animals and human subjects. Numerous studies have demonstrated the beneficial effects of various protein hydrolysates on lipid metabolism. In this context, this study examined the effect of fish protein hydrolysates (FPH) on cholesterol metabolism compared with the effect of casein. FPHs were prepared from Alaska pollock meat using papain as a protease. Male Wistar rats were divided into the following four dietary groups of seven rats each: either casein (20%) or FPH (10%) + casein (10%), with or without 0.5% cholesterol and 0.1% sodium cholate. Serum and liver lipid levels, fecal cholesterol and bile acid excretions, and the hepatic expression of genes encoding proteins involved in cholesterol homeostasis were examined. In rats fed the FPH diets compared with casein diets with or without cholesterol and sodium cholate, the indexes of cholesterol metabolism-namely, serum cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels-were significantly lower, whereas fecal cholesterol and bile acid excretions were higher. Rats fed the FPH diets compared with casein with cholesterol exhibited a lower liver cholesterol level via an increased liver cholesterol 7α-hydroxylase (CYP7A1) expression level. This study demonstrates that the intake of FPH has hypocholesterolemic effects through the enhancement of fecal cholesterol and bile acid excretions and CYP7A1 expression levels. Therefore, fish peptides prepared by papain digestion might provide health benefits by decreasing the cholesterol content in the blood, which would contribute to the prevention of circulatory system diseases such as arteriosclerosis.
Dalcetrapib and anacetrapib differently impact HDL structure and function in rabbits and monkeys[S
Brodeur, Mathieu R.; Rhainds, David; Charpentier, Daniel; Mihalache-Avram, Teodora; Mecteau, Mélanie; Brand, Geneviève; Chaput, Evelyne; Perez, Anne; Niesor, Eric J.; Rhéaume, Eric; Maugeais, Cyrille; Tardif, Jean-Claude
2017-01-01
Inhibition of cholesteryl ester transfer protein (CETP) increases HDL cholesterol (HDL-C) levels. However, the circulating CETP level varies and the impact of its inhibition in species with high CETP levels on HDL structure and function remains poorly characterized. This study investigated the effects of dalcetrapib and anacetrapib, the two CETP inhibitors (CETPis) currently being tested in large clinical outcome trials, on HDL particle subclass distribution and cholesterol efflux capacity of serum in rabbits and monkeys. New Zealand White rabbits and vervet monkeys received dalcetrapib and anacetrapib. In rabbits, CETPis increased HDL-C, raised small and large α-migrating HDL, and increased ABCA1-induced cholesterol efflux. In vervet monkeys, although anacetrapib produced similar results, dalcetrapib caused opposite effects because the LDL-C level was increased by 42% and HDL-C decreased by 48% (P < 0.01). The levels of α- and preβ-HDL were reduced by 16% (P < 0.001) and 69% (P < 0.01), resulting in a decrease of the serum cholesterol efflux capacity. CETPis modulate the plasma levels of mature and small HDL in vivo and consequently the cholesterol efflux capacity. The opposite effects of dalcetrapib in different species indicate that its impact on HDL metabolism could vary greatly according to the metabolic environment. PMID:28515138
Park, Ji Hye; Mun, Seyeon; Choi, Dong Phil; Lee, Joo Young; Kim, Hyeon Chang
2017-12-11
Accumulating evidence suggests that high-density lipoprotein (HDL) cholesterol is associated with pulmonary function and pulmonary disorders. The aim of this study was to evaluate the association between HDL cholesterol and pulmonary function in healthy adolescents. This cross-sectional study was based on data collected for the JS High School study. The analysis included 644 adolescents (318 male and 326 female) aged 15-16 years old and free from asthma or chronic obstructive pulmonary disease. Fasting blood samples were collected for hematologic and biochemical assessment. Forced vital capacity volume (FVC) and forced expiratory volume in the 1 s (FEV1) were measured using dry-rolling-seal spirometry. The associations between HDL cholesterol and pulmonary function were analyzed using multiple linear regression models. Among male adolescents, an increase of 1.0 mg/dL in HDL cholesterol was associated with 10 mL decrease in FVC (p = 0.013) and FEV1 (p = 0.013) after adjusting for age, height, weight, alcohol drinking, smoking, physical activity, systolic blood pressure, total cholesterol, triglyceride, and monthly household income. Percent predicted values of FVC (p = 0.036) and FEV1 (p = 0.017) were also inversely associated with HDL cholesterol. However, among female adolescents, HDL cholesterol level was not significantly associated with absolute or percent predictive value of FVC and FEV1. Higher HDL cholesterol level may be associated with decreased pulmonary function among healthy male adolescents. The sex differences observed in the association between HDL cholesterol and pulmonary function need further investigation.
Hypercholesterolemia in Male Power Lifters Using Anabolic-Androgenic Steroids.
ERIC Educational Resources Information Center
Cohen, Jonathan C.; And Others
1988-01-01
Measurement of serum cholesterol concentrations in male power lifters who used anabolic-androgenic steroids for eight weeks, three years, or eight years indicated that mean serum cholesterol levels increased with drug use, but decreased promptly to near pre-steroid levels after steroid use ended. (Author/CB)
NASA Astrophysics Data System (ADS)
Tristantini, Dewi; Christina, Diana
2018-02-01
Atherosclerosis is the hardening of the arteries due to cholesterol accumulation in the blood vessels. The occurrence of cardiovascular disease can be reduced by lowering cholesterol levels in the blood. Nevertheless, using some pharmaceutical synthetic medicine for lowering the cholesterol has several side effects that dangerous for human body. There are 3 plants, tanjung leaf (Mimusops elengi L.), star fruit leaf (Averrhoa carambola L.), and curcuma (Curcuma xanthorrhiza L.), which are combined empirically believed would serve as multifunction herbs. Tanjung leaf has been known to have antioxidant, anti-cholesterol, and anti-platelet activity, also star fruit leaf have anti-hyperglycemia activity. Furthermore, curcuma has been known as a hepatoprotection agent. In this study, the combination of all three simplicias were used as anti-cholesterol. Anti-cholesterol activity test by in vivo method using mice (Mus muculus L.) result in decreased cholesterol as much as 47% for 250 mL human dosage in 7 days. This performance equals to 73% of simvastatin activity in decreased cholesterol. In this study, we can conclude the multifunction herbs that were combination of tanjung (M. elengi) leaf, star fruit leaf (Averrhoa carambola L.), and curcuma (Curcuma xanthorrhiza L.) extract can be used as cholesterol decreasing medicine.
Hu, Xu; Wang, Tao; Luo, Jia; Liang, Shan; Li, Wei; Wu, Xiaoli; Jin, Feng; Wang, Li
2014-09-01
Cholesterol is an essential component of brain and nerve cells and is essential for maintaining the function of the nervous system. Epidemiological studies showed that patients suffering from anxiety disorders have higher serum cholesterol levels. In this study, we investigated the influence of high cholesterol diet on anxiety-like behavior in elevated plus maze in animal model and explored the relationship between cholesterol and anxiety-like behavior from the aspect of central neurochemical changes. Young (3 weeks old) and adult (20 weeks old) rats were given a high cholesterol diet for 8 weeks. The anxiety-like behavior in elevated plus maze test and changes of central neurochemical implicated in anxiety were measured. In young rats, high cholesterol diet induced anxiolytic-like behavior, decreased serum corticosterone (CORT), increased hippocampal brain-derived neurotrophic factor (BDNF), increased hippocampal mineralocorticoid receptor (MR) and decreased glucocorticoid receptor (GR). In adult rats, high cholesterol diet induced anxiety-like behavior and increase of serum CORT and decrease of hippocampal BDNF comparing with their respective control group that fed the regular diet. High cholesterol diet induced age-dependent effects on anxiety-like behavior and central neurochemical changes. High cholesterol diet might affect the central nervous system (CNS) function differently, and resulting in different behavior performance of anxiety in different age period.
Effect of Two Ginger Varieties on Arginase Activity in Hypercholesterolemic Rats.
Akinyemi, Ayodele Jacob; Oboh, Ganiyu; Ademiluyi, Adedayo Oluwaseun; Boligon, Aline Augusti; Athayde, Margareth Linde
2016-04-01
Recently, ginger has been used in traditional Chinese medicine as an herbal therapy for treating several cardiovascular diseases, however, information on its mechanism of action is limited. The present study assessed the effect of two ginger varieties (Zingiber officinale and Curcuma longa) on the arginase activity, atherogenic index, levels of liver thiobarbituric acid reactive substances (TBARSs), and plasma lipids in rats fed with a high-cholesterol (2%) diet for 14 days. Following the treatment period, it was found that feeding a high-cholesterol diet to rats caused significant (p < 0.05) increases in arginase activity, atherogenic index, levels of TBARS, total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) with a concomitant decrease in high-density lipoprotein cholesterol (HDL-C). However, both ginger and turmeric (2% and 4%) caused significant (p < 0.05) decreases in arginase activity and the atherogenic index, and prevented hypercholesterolemia by decreasing the TC, TGs, and LDL-C while increasing the HDL-C when compared with the controls. In conclusion, dietary supplementation with both types of rhizomes (ginger and turmeric) inhibited arginase activity and prevented hypercholesterolemia in rats that received a high-cholesterol diet. Therefore, these activities of ginger and turmeric represent possible mechanisms underlying its use in herbal medicine to treat several cardiovascular diseases. Copyright © 2015. Published by Elsevier B.V.
Effects of Lycopene on the Initial State of Atherosclerosis in New Zealand White (NZW) Rabbits
Lorenz, Mario; Fechner, Mandy; Kalkowski, Janine; Fröhlich, Kati; Trautmann, Anne; Böhm, Volker; Liebisch, Gerhard; Lehneis, Stefan; Schmitz, Gerd; Ludwig, Antje; Baumann, Gert; Stangl, Karl; Stangl, Verena
2012-01-01
Background Lycopene is the main carotenoid in tomatoes, where it is found in high concentrations. Strong epidemiological evidence suggests that lycopene may provide protection against cardiovascular diseases. We therefore studied the effects of lycopene on diet-induced increase in serum lipid levels and the initiation of atherosclerosis in New Zealand White (NZW) rabbits. Methodology/Principal Findings The animals, divided into four groups of 9 animals each, were fed either a standard diet, a high-cholesterol diet containing 0.5% cholesterol, a high-cholesterol diet containing placebo beadlets, or a high-cholesterol diet plus 5 mg/kg body weight/day of lycopene (in the form of lycopene beadlets), for a period of 4 weeks. We found significantly elevated lycopene plasma levels in the animal group treated with lycopene beadlets. Compared to the high-cholesterol and the placebo group, this was associated with a significant reduction of 50% in total cholesterol and LDL cholesterol serum levels in the lycopene group. The amount of cholesteryl ester in the aorta was significantly decreased by lycopene. However, we did not observe a significant decrease in the extent of aortic surface lipid accumulation in the lycopene group. In addition, no differences in the intima-media thickness among groups were observed. Endothelial-dependent and endothelial-independent vasodilation in isolated rabbit aortic and carotid rings did not differ among any of the animal groups. Conclusions Lycopene supplementation for 4 weeks increased lycopene plasma levels in the animals. Although we found strongly reduced total and LDL cholesterol serum levels as well as significantly lower amounts of cholesteryl ester in the aortae in the lycopene-treated group, no significant differences in initial lesions in the aortae were detected. PMID:22295112
The effect of ghee (clarified butter) on serum lipid levels and microsomal lipid peroxidation.
Sharma, Hari; Zhang, Xiaoying; Dwivedi, Chandradhar
2010-04-01
Ghee, also known as clarified butter, has been utilized for thousands of years in Ayurveda as a therapeutic agent. In ancient India, ghee was the preferred cooking oil. In the last several decades, ghee has been implicated in the increased prevalence of coronary artery disease (CAD) in Asian Indians due to its content of saturated fatty acids and cholesterol and, in heated ghee, cholesterol oxidation products. Our previous research on Sprague-Dawley outbred rats, which serve as a model for the general population, showed no effect of 5 and 10% ghee-supplemented diets on serum cholesterol and triglycerides. However, in Fischer inbred rats, which serve as a model for genetic predisposition to diseases, results of our previous research showed an increase in serum total cholesterol and triglyceride levels when fed a 10% ghee-supplemented diet. In the present study, we investigated the effect of 10% dietary ghee on microsomal lipid peroxidation, as well as serum lipid levels in Fischer inbred rats to assess the effect of ghee on free radical mediated processes that are implicated in many chronic diseases including cardiovascular disease. Results showed that 10% dietary ghee fed for 4 weeks did not have any significant effect on levels of serum total cholesterol, but did increase triglyceride levels in Fischer inbred rats. Ghee at a level of 10% in the diet did not increase liver microsomal lipid peroxidation or liver microsomal lipid peroxide levels. Animal studies have demonstrated many beneficial effects of ghee, including dose-dependent decreases in serum total cholesterol, low density lipoprotein (LDL), very low density lipoprotein (VLDL), and triglycerides; decreased liver total cholesterol, triglycerides, and cholesterol esters; and a lower level of nonenzymatic-induced lipid peroxidation in liver homogenate. Similar results were seen with heated (oxidized) ghee which contains cholesterol oxidation products. A preliminary clinical study showed that high doses of medicated ghee decreased serum cholesterol, triglycerides, phospholipids, and cholesterol esters in psoriasis patients. A study on a rural population in India revealed a significantly lower prevalence of coronary heart disease in men who consumed higher amounts of ghee. Research on Maharishi Amrit Kalash-4 (MAK-4), an Ayurvedic herbal mixture containing ghee, showed no effect on levels of serum cholesterol, high density lipoprotein (HDL), LDL, or triglycerides in hyperlipidemic patients who ingested MAK-4 for 18 weeks. MAK-4 inhibited the oxidation of LDL in these patients. The data available in the literature do not support a conclusion of harmful effects of the moderate consumption of ghee in the general population. Factors that may be involved in the rise of CAD in Asian Indians include the increased use of vanaspati (vegetable ghee) which contains 40% trans fatty acids, psychosocial stress, insulin resistance, and altered dietary patterns. Research findings in the literature support the beneficial effects of ghee outlined in the ancient Ayurvedic texts and the therapeutic use of ghee for thousands of years in the Ayurvedic system of medicine.
Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice.
Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan A; Tietge, Uwe J F; Brufau, Gemma; Groen, Albert K
2016-08-01
Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.
Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice
Schonewille, Marleen; Freark de Boer, Jan; Mele, Laura; Wolters, Henk; Bloks, Vincent W.; Wolters, Justina C.; Kuivenhoven, Jan A.; Tietge, Uwe J. F.; Brufau, Gemma; Groen, Albert K.
2016-01-01
Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. PMID:27313057
Pande, Ashwini; Krishnamoorthy, Geetha; Moulick, N D
2012-09-01
This prospective study reports significant hypoglycaemic and hypolipidaemic effects in type 2 diabetic subjects who were provided the complete diet plan to be on low glycaemic index (GI) and low-medium glycaemic load (GL) Indian vegetarian snacks and mixed meals for 4 continuous weeks. Five millilitres of fasting blood sample drawn at weekly intervals for 4 weeks were analysed for blood glucose, HbA1c and lipid profile. Four weeks later mean blood glucose level of 173.6 mg% decreased to 137.8 mg%, HbA1c of 8% also decreased to 7.1% which reflected the blood glucose level during the study period and hence correlated well with the fall in blood glucose level. Triglyceride level of 244.5 mg% decreased to 164.7 mg% (p < 0.0001) and total cholesterol of 173.5 mg% decreased to 134.6 mg% (p < 0.0001). High-density lipoprotein cholesterol of 33 mg% increased to 39.8 mg% (p < 0.003), very low density lipoprotein (VLDL) cholesterol of 48.9 mg% decreased to 32.9 mg% (p < 0.0001) and low-density lipoprotein cholesterol of 90.1 mg% decreased to 64.3 (p < 0.009). This significant outcome can be improved further if compliance to low GI and low-to-medium GL diet is continued. This may achieve desired glycaemic control and that's limit oxidative stress.
Papazyan, Romeo; Liu, Xueqing; Liu, Jingwen; Dong, Bin; Plummer, Emily M; Lewis, Ronald D; Roth, Jonathan D; Young, Mark A
2018-06-01
Obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist that regulates bile acid and lipid metabolism. FXR activation induces distinct changes in circulating cholesterol among animal models and humans. The mechanistic basis of these effects has been elusive because of difficulties in studying lipoprotein homeostasis in mice, which predominantly package circulating cholesterol in HDLs. Here, we tested the effects of OCA in chimeric mice whose livers are mostly composed (≥80%) of human hepatocytes. Chimeric mice exhibited a human-like ratio of serum LDL cholesterol (LDL-C) to HDL cholesterol (HDL-C) at baseline. OCA treatment in chimeric mice increased circulating LDL-C and decreased circulating HDL-C levels, demonstrating that these mice closely model the cholesterol effects of FXR activation in humans. Mechanistically, OCA treatment increased hepatic cholesterol in chimeric mice but not in control mice. This increase correlated with decreased SREBP-2 activity and target gene expression, including a significant reduction in LDL receptor protein. Cotreatment with atorvastatin reduced total cholesterol, rescued LDL receptor protein levels, and normalized serum LDL-C. Treatment with two clinically relevant nonsteroidal FXR agonists elicited similar lipoprotein and hepatic changes in chimeric mice, suggesting that the increase in circulating LDL-C is a class effect of FXR activation.
[Characteristics of dyslipidemia in cancer patients].
Ostroumova, M N; Kovalenko, I G; Bershteĭn, L M; Tsyrlina, E V; Dil'man, V M
1986-01-01
Blood concentrations of total cholesterol, cholesterol of very high density lipoproteins (alpha-cholesterol), triglycerides, beta-lipoproteins and 11-hydroxycorticosteroids were studied in 560 patients with rectal, colon, lung, ovarian, breast and endometrial cancer as well as in 238 controls. Patients with breast and rectal cancer were examined before and repeatedly after operation (every 6-12 months within 4-5 years). The blood concentration of total cholesterol was found to be elevated in breast cancer patients and controls with fibroadenomatosis and decreased in females with ovarian cancer and males with lung cancer. The level of blood alpha-cholesterol was decreased in males with all tumor localizations under study and in females with ovarian and rectal cancer. The concentration of triglycerides was increased in women patients only. Three possible causes of dyslipidemia in cancer patients are discussed: its development before tumor manifestation, the effect of tumor on the metabolic status of the host and the role of emotional stress in the increase of triglycerides level in the blood of primary cancer patients.
NASA Astrophysics Data System (ADS)
Mu'nisa, A.; Asmawati, A.; Farida, A.; FA, Fressy; Erni
2018-01-01
The purpose of this study was to determine the effect of powdered leaves of breadfruit (Arthocarpus altilis) on oil is mandated origin of the Polman glucose and cholesterol levels in mice (Mus musculus). This study comprised 4 treatments and each treatment consisted of 5 replicates, ie groups of mice were fed a standard (negative control); 2 groups: group of mice fed with standard and cholesterol feed (positive control); Group 3 that mice fed with standard and Selayar oil; and group 4: group of mice fed with standard and Mandar oil that has been given powdered leaves of breadfruit. Measurement of glucose and blood cholesterol levels in mice done 3 times ie 2 weeks after the adaptation period (phase 1), 2 weeks after administration of the oil (phase 2) and 2 weeks after feeding cholesterol (stage 3). Based on the analysis of data both cholesterol and glucose levels showed that in a group of 4 decreased glucose and cholesterol levels in stage 2 but at stage 3 an increase in the group of mice given only the oil while in the group of mice given the oil and powdered leaves of breadfruit indicate glucose levels and normal cholesterol. The conclusion of this study show that the addition of powdered leaves of breadfruit into cooking oil Mandar influential in glucose levels and normalize blood cholesterol levels in mice.
Kim, Bohkyung; Park, Youngki; Wegner, Casey J; Bolling, Bradley W; Lee, Jiyoung
2013-09-01
Black chokeberry (Aronia melanocarpa) is a rich source of polyphenols. The hypolipidemic effects of polyphenol-rich black chokeberry extract (CBE) have been reported, but underlying mechanisms have not been well characterized. We investigated the effect of CBE on the expression of genes involved in intestinal lipid metabolism. Caco-2 cells were incubated with 50 or 100 μg/ml of CBE for 24 h for quantitative realtime polymerase chain reaction analysis. Expression of genes for cholesterol synthesis (3-hydroxy-3-methylglutaryl coenzyme A reductase and sterol regulatory element binding protein 2), apical cholesterol uptake (Niemann-Pick C1 Like 1 and scavenger receptor class B Type 1) and basolateral cholesterol efflux [ATP-binding cassette transporter A1 (ABCA1)] was significantly decreased by CBE compared with control. Western blot analysis confirmed that CBE inhibited expression of these proteins. In contrast, CBE markedly induced mRNA and/or protein levels of ABCG5 and ABCG8 that mediate apical cholesterol efflux to the intestinal lumen. Furthermore, CBE significantly increased mRNA and protein levels of low-density lipoprotein (LDL) receptor, and cellular LDL uptake. Expression of genes involved in lipid metabolism and lipoprotein assembly, including sterol regulatory element-binding protein 1c, fatty acid synthase and acyl-CoA oxidase 1, was significantly decreased by CBE in a dose-dependent manner. Concomitantly, CBE significantly increased sirtuin 1, 3 and 5 mRNA levels, while it decreased SIRT-2. Our data suggest that hypolipidemic effects of CBE may be attributed, at least in part, to increased apical efflux of LDL-derived cholesterol and to decreased chylomicron formation in the intestine; and specific isoforms of SIRT may play an important role in this process. Copyright © 2013 Elsevier Inc. All rights reserved.
Schultz, Olaf; Oberhauser, Frank; Saech, Jasemine; Rubbert-Roth, Andrea; Hahn, Moritz; Krone, Wilhelm; Laudes, Matthias
2010-01-01
Background Interleukin-6 (IL-6) is a pro-inflammatory cytokine that has been found to be increased in type 2 diabetic subjects. However, it still remains unclear if these elevated IL-6 levels are co-incidental or if this cytokine is causally related to the development of insulin resistance and type 2 diabetes in humans. Therefore, in the present study we examined insulin sensitivity, serum adipokine levels and lipid parameters in human subjects before and after treatment with the IL-6 receptor antibody Tocilizumab. Methodology/Principal Findings 11 non-diabetic patients with rheumatoid disease were included in the study. HOMA-IR was calculated and serum levels for leptin, adiponectin, triglycerides, LDL-cholesterol, HDL-cholesterol and lipoprotein (a) (Lp (a)) were measured before as well as one and three months after Tocilizumab treatment. The HOMA index for insulin resistance decreased significantly. While leptin concentrations were not altered by inhibition of IL-6 signalling, adiponectin concentrations significantly increased. Thus the leptin to adiponectin ratio, a novel marker for insulin resistance, exhibited a significant decrease. Serum triglycerides, LDL-cholesterol and HDL-cholesterol tended to be increased whereas Lp (a) levels significantly decreased. Conclusions/Significance Inhibition of IL-6 signalling improves insulin sensitivity in humans with immunological disease suggesting that elevated IL-6 levels in type 2 diabetic subjects might be causally involved in the pathogenesis of insulin resistance. Furthermore, our data indicate that inhibition of IL-6 signalling decreases Lp (a) serum levels, which might reduce the cardiovascular risk of human subjects. PMID:21179199
Segoviano-Mendoza, Marcela; Cárdenas-de la Cruz, Manuel; Salas-Pacheco, José; Vázquez-Alaniz, Fernando; La Llave-León, Osmel; Castellanos-Juárez, Francisco; Méndez-Hernández, Jazmín; Barraza-Salas, Marcelo; Miranda-Morales, Ernesto; Arias-Carrión, Oscar; Méndez-Hernández, Edna
2018-01-15
Cholesterol has been associated as a risk factor for cardiovascular disease. Recently, however, there is growing evidence about crucial requirement of neuron membrane cholesterol in the organization and function of the 5-HT 1A serotonin receptor. For this, low cholesterol level has been reported to be associated with depression and suicidality. However there have been inconsistent reports about this finding and the exact relationship between these factors remains controversial. Therefore, we investigated the link between serum cholesterol and its fractions with depression disorder and suicide attempt in 467 adult subjects in Mexican mestizo population. Plasma levels of total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-c) and low density lipoprotein cholesterol (LDL-c) were determined in 261 MDD patients meeting the DSM-5 criteria for major depressive disorder (MDD), 59 of whom had undergone an episode of suicide attempt, and 206 healthy controls. A significant decrease in total cholesterol, LDL-cholesterol, VLDL-cholesterol and triglyceride serum levels was observed in the groups of MDD patients and suicide attempt compared to those without suicidal behavior (p < 0.05). After adjusting for covariates, lower cholesterol levels were significantly associated with MDD (OR 4.229 CI 95% 2.555 - 7.000, p<.001) and suicide attempt (OR 5.540 CI 95% 2.825 - 10.866, p<.001) CONCLUSIONS: These results support the hypothesis that lower levels of cholesterol are associated with mood disorders like MDD and suicidal behavior. More mechanistic studies are needed to further explain this association.
Keleş, Telat; Akar Bayram, Nihal; Kayhan, Tuğba; Canbay, Alper; Sahin, Deniz; Durmaz, Tahir; Ozdemir, Ozcan; Aydoğdu, Sinan; Diker, Erdem
2008-12-01
In this study, we aimed at comparing the effects of standard once daily 20 mg atorvastatin treatment with that of atorvastatin 20 mg administered every other day on serum lipids and high sensitive C-reactive protein (hs-CRP) levels. Sixty-one patients with serum total cholesterol levels of above 200 mg/dl and low density lipoprotein (LDL)--cholesterol levels of above 130 mg/dl were included in this prospective, randomized study. The patients were randomized into daily treatment of 20 mg atorvastatin (standard treatment) and 20 mg atorvastatin every other day (every other day treatment) groups. Before the treatment and at each visit, serum lipids and hs-CRP levels of all the patients were measured. Statistical analyses were performed Chi-square, unpaired t and two-way repeated measurements ANOVA tests. In the every other day treatment group, there was a 36.1% reduction in LDL-cholesterol levels by the end of first month (p<0.01). At the end of three months there was further decrease of 10.2% in LDL-cholesterol levels when compared to 1 month levels (p>0.05). The LDL cholesterol levels of the group receiving 20 mg atorvastatin every day was reduced by %41 by the end of 1 month (p<0.01). At the end of three months, the difference between the changes in the all lipid parameters of the two groups was not found to be of statistical significance. In the group receiving the medication every other day, there was a 21% decrease in hs-CRP levels compared to the basal measurements at the end of first month (p<0.05). In the group, receiving the medication every day the decrease in hs-CRP levels at the end of one month was more striking (37%, p<0.05). However, the effects of both treatment arms on hs-CRP levels, did not differ significantly (p>0.05). Alternate-day dosing of atorvastatin causes a significant lipid-lowering and antiinflammatory effects similar to that of daily administration and yet may provide some cost savings.
Bremer, Andrew A; Auinger, Peggy; Byrd, Robert S
2009-04-01
To evaluate the relationship between insulin resistance-associated metabolic parameters and anthropometric measurements with sugar-sweetened beverage intake and physical activity levels. A cross-sectional analysis of the National Health and Nutrition Examination Survey data collected by the National Center for Health Statistics. Nationally representative samples of US adolescents participating in the National Health and Nutrition Examination Survey during the years 1999-2004. A total of 6967 adolescents aged 12 to 19 years. Sugar-sweetened beverage consumption and physical activity levels. Glucose and insulin concentrations, a homeostasis model assessment of insulin resistance (HOMA-IR), total, high-density lipoprotein, and low-density lipoprotein cholesterol concentrations, triglyceride concentrations, systolic and diastolic blood pressure, waist circumference, and body mass index (calculated as weight in kilograms divided by height in meters squared) percentile for age and sex. Multivariate linear regression analyses showed that increased sugar-sweetened beverage intake was independently associated with increased HOMA-IR, systolic blood pressure, waist circumference, and body mass index percentile for age and sex and decreased HDL cholesterol concentrations; alternatively, increased physical activity levels were independently associated with decreased HOMA-IR, low-density lipoprotein cholesterol concentrations, and triglyceride concentrations and increased high-density lipoprotein cholesterol concentrations. Furthermore, low sugar-sweetened beverage intake and high physical activity levels appear to modify each others' effects of decreasing HOMA-IR and triglyceride concentrations and increasing high-density lipoprotein cholesterol concentrations. Sugar-sweetened beverage intake and physical activity levels are each independently associated with insulin resistance-associated metabolic parameters and anthropometric measurements in adolescents. Moreover, low sugar-sweetened beverage intake and high physical activity levels appear to modify each others' effects on several health-related outcome variables.
The effect of simvastatin, aspirin, and their combination in reduction of atheroma plaque
NASA Astrophysics Data System (ADS)
Kurniati, Neng Fisheri; Permatasari, Anita
2015-09-01
Atherosclerosis is one of the risk factors of cardiovascular disease. Atherosclerosis is a chronic inflammatory disease caused by high level of cholesterol especially low density lipoprotein (LDL) and accumulation of neutrophil and macrophage in the artery wall. Thickness of aortic wall is an early stage of atherosclerosis plaque formation. Identification of atherosclerosis plaque formation was done by measuring level of total cholesterol, triglycerides, HDL, LDL, interleukin-18 (IL-18), myeloperoxidase (MPO) and measuring the thickness of aortic wall. Atherosclerosis's model induced by high fat diet and CCT (cholesterol, cholic acid, and propyltiouracil) oral administration. Rats induced cholesterol divided into positive control, simvastatin 25 mg/kg bw, aspirin 20 mg/kg bw, and combination simvastatin 25 mg/kg and aspirin 20 mg/kg bw group for 3 weeks. In the third week, therapy was given to atherosclerosis's model. Then, in the fourth and fifth week, therapy was given but induction of high cholesterol was stopped due to the massive loss of body weight. Total cholesterol, triglycerides, HDL, LDL, MPO, and IL-18 measured by uv-vis spectrophotometry and ELISA. In the end of therapy, aorta's rats was isolated to identify the thickness of aorta wall. In the fourth week, after 1 week of treatment, only combination group showed significantly higher total cholesterol, LDL and MPO compared to positive control group. Level of triglycerides and HDL in all groups did not significantly differ compared to positive control group. After 2 weeks continuing drug treatment, the level of total cholesterol, MPO, and IL-18 were decreased in all groups, and aspirin group showed the lowest level. The level of triglycerides was decreased in simvastatin and aspirin group, and aspirin group showed the lowest. Only combination group showed the lowest level of LDL. Based on histopathology result, the thickness of aortic wall was reduced in all groups and aspirin group showed the lowest.
Sawale, Pravin Digambar; Pothuraju, Ramesh; Abdul Hussain, Shaik; Kumar, Anuj; Kapila, Suman; Patil, Girdhari Ramdas
2016-03-15
Atherosclerosis is associated with coronary artery disease and occurs in developing as well as developed countries. In the present investigation, hypolipidaemic and anti-oxidative properties of encapsulated herb (Terminalia arjuna, 1.8%) added vanilla chocolate dairy drink was evaluated in high cholesterol fed Wistar rats for 60 days. At the end of the experimental period, a significant decrease in the body weight gain by rats receiving the encapsulated herb extract was noted as compared to high cholesterol fed rats. Administration of microencapsulated herb showed a statistically significant decrease in organ weights (epididymal fat and liver). Moreover, a significant decrease in serum lipids such as triglycerides, total cholesterol, low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol and atherogenic index was observed with encapsulated Terminalia arjuna extract in high cholesterol fed group. Increases in reduced glutathione and decreases in TBARS levels were also reported in both liver and red blood cell lysates with encapsulated herb supplementation. The results demonstrated that the bioactive components (phytosterols, flavanoids, saponins and tannins etc.) which are present in the encapsulated T. arjuna not only withstand the processing conditions but also are effectively released in the intestine and show their effects, such as hypolipidaemic and antioxidant activities, for better treating cardiovascular disease. © 2015 Society of Chemical Industry.
Henriksson, P; Angelin, B; Berglund, L
1992-01-01
Serum concentrations of lipoprotein (a) [Lp (a)] were determined in two groups of elderly males suffering from prostatic carcinoma, who were randomized to treatment with estrogen (n = 15) or orchidectomy (n = 16). Estrogen was given as oral ethinylestradiol, 150 micrograms daily, combined with intramuscular polyestradiol phosphate, 80 mg/mo. The baseline levels were similar in both groups, but 6 mo after initiation of therapy, serum Lp (a) levels were decreased approximately 50% in the estrogen-treated group (P less than 0.001) in contrast to a 20% increase (P less than 0.01) in the orchidectomized group. Concomitantly, LDL cholesterol decreased by 30% and HDL cholesterol increased by almost 60% in the estrogen-treated patients. There was no relationship between the change in LDL cholesterol and Lp (a) reduction. In conclusion, Lp (a) levels in males were found to drastically decrease upon estrogen treatment and to increase after orchidectomy, suggesting that sex hormones, and particularly estrogens, exert a regulatory role on the serum Lp (a) level in man. Images PMID:1532586
González-Torres, Laura; Matos, Cátia; Vázquez-Velasco, Miguel; Santos-López, Jorge A.; Sánchez-Martínez, Iria; García–Fernández, Camino; Bastida, Sara; Benedí, Juana; Sánchez-Muniz, Francisco J.
2017-01-01
ABSTRACT We evaluated the effects of glucomannan or glucomannan plus spirulina-restructured pork (RP) on liver fatty acid profile, desaturase/elongase enzyme activities and oxidative status of Zucker fa/fa rats for seven weeks. Control (C), glucomannan (G) and glucomannan/spirulina (GS)-RP; HC (cholesterol-enriched control), HG and HGS (cholesterol-enriched glucomannan and glucomannan/spirulina-RP) experimental diets were tested. Increased metabolic syndrome markers were found in C, G and GS rats. Cholesterol feeding increased liver size, fat, and cholesterol and reduced antioxidant enzyme levels and expressions. Cholesterolemia was lower in HG and HGS than in HC. GS vs. G showed higher stearic but lower oleic levels. SFA and PUFA decreased while MUFA increased by cholesterol feeding. The arachidonic/linoleic and docosahexaenoic/alpha-linolenic ratios were lower in HC, HG, and HGS vs. C, G, and GS, respectively, suggesting a delta-6-elongase-desaturase system inhibition. Moreover, cholesterol feeding, mainly in HGS, decreased low-density-lipoprotein receptor expression and the delta-5-desaturase activity and increased the delta-9-desaturase activity. In conclusion, the liver production of highly unsaturated fatty acids was limited to decrease their oxidation in presence of hypercholesterolaemia. Glucomannan or glucomannan/spirulina-RP has added new attributes to their functional properties in meat, partially arresting the negative effects induced by high-fat-high-cholesterol feeding on the liver fatty acid and antioxidant statuses. PMID:28325998
Gangwisch, James E; Malaspina, Dolores; Babiss, Lindsay A; Opler, Mark G; Posner, Kelly; Shen, Sa; Turner, J Blake; Zammit, Gary K; Ginsberg, Henry N
2010-07-01
To explore the relationship between sleep duration in adolescence and hypercholesterolemia in young adulthood. Experimental sleep restriction has been shown to significantly increase total cholesterol and LDL cholesterol levels in women. Short sleep duration has been found in cross sectional studies to be associated with higher total cholesterol and lower HDL cholesterol levels. Sleep deprivation could increase the risk for hypercholesterolemia by increasing appetite and dietary consumption of saturated fats, decreasing motivation to engage in regular physical activity, and increasing stress and resultant catecholamine induced lipolysis. No previous published population studies have examined the longitudinal relationship between sleep duration and high cholesterol. Multivariate longitudinal analyses stratified by sex of the ADD Health using logistic regression. United States nationally representative, school-based, probability-based sample. Adolescents (n = 14,257) in grades 7 to 12 at baseline (1994-95) and ages 18 to 26 at follow-up (2001-02). Among females, each additional hour of sleep was associated with a significantly decreased odds of being diagnosed with high cholesterol in young adulthood (OR = 0.85, 95% CI 0.75-0.96) after controlling for covariates. Additional sleep was associated with decreased, yet not statistically significant, odds ratios for hypercholesterolemia in males (OR = 0.91, 95% CI 0.79-1.05). Short sleep durations in adolescent women could be a significant risk factor for high cholesterol. Interventions that lengthen sleep could potentially serve as treatments and as primary preventative measures for hypercholesterolemia.
2014-01-01
Background Cholesterol is an essential component of brain and nerve cells and is essential for maintaining the function of the nervous system. Epidemiological studies showed that patients suffering from anxiety disorders have higher serum cholesterol levels. In this study, we investigated the influence of high cholesterol diet on anxiety-like behavior in elevated plus maze in animal model and explored the relationship between cholesterol and anxiety-like behavior from the aspect of central neurochemical changes. Methods Young (3 weeks old) and adult (20 weeks old) rats were given a high cholesterol diet for 8 weeks. The anxiety-like behavior in elevated plus maze test and changes of central neurochemical implicated in anxiety were measured. Results In young rats, high cholesterol diet induced anxiolytic-like behavior, decreased serum corticosterone (CORT), increased hippocampal brain-derived neurotrophic factor (BDNF), increased hippocampal mineralocorticoid receptor (MR) and decreased glucocorticoid receptor (GR). In adult rats, high cholesterol diet induced anxiety-like behavior and increase of serum CORT and decrease of hippocampal BDNF comparing with their respective control group that fed the regular diet. Discussion High cholesterol diet induced age-dependent effects on anxiety-like behavior and central neurochemical changes. High cholesterol diet might affect the central nervous system (CNS) function differently, and resulting in different behavior performance of anxiety in different age period. PMID:25179125
Regulation of plasma cholesterol by hepatic low-density lipoprotein receptors.
Kovanen, P T
1987-02-01
The endogenous lipoprotein system (very low-density lipoprotein [VLDL], intermediate-density lipoprotein [IDL], low-density lipoprotein [LDL] cascade) holds the key to understanding the mechanisms by which hormones, diet, and drugs interact to regulate the plasma cholesterol level. Crucial components of this system are hepatic LDL receptors that mediate the uptake and degradation of plasma LDL. With experimental animals, it has been possible to demonstrate that hepatic LDL receptors are sensitive to hormonal, dietary, and pharmacologic manipulation. The decrease in number of hepatic LDL receptors in hypothyroidism or after cholesterol feeding leads to elevation of plasma LDL cholesterol levels. Conversely, the increase in number of hepatic LDL receptors results in lowering of plasma LDL cholesterol levels. This can be observed in hyperthyroidism, during administration of pharmacologic doses of 17 alpha-ethinyl estradiol, or during treatment with cholesterol-lowering drugs such as the bile acid-binding resins and cholesterol-synthesis inhibitors. Since cholesterol excretion from the body occurs via the liver, the increased efficiency of disposal of plasma cholesterol by increasing hepatic LDL receptors will ultimately lead to depletion of excessive body cholesterol. Pharmacologic regulation of hepatic LDL receptors should be a valuable tool in the prevention and therapy of atherosclerosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Di-xian, E-mail: luodixian_2@163.com; Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan; First People's Hospital of Chenzhou City, Chenzhou 423000, Hunan
Research highlights: {yields} Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. {yields} Static pressure induces SREBP-1 activation. {yields} Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. {yields} Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. {yields} Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different staticmore » pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 {+-} 2.8 mg/g, 31.8 {+-} 0.7 mg/g, 92.3 {+-} 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 {+-} 9.4 mg/g, 235.9 {+-} 3.0 mg/g, 386.7 {+-} 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels were upregulated. Conclusion: Static pressures stimulate ox-LDL-induced cholesterol accumulation in cultured VSMCs through decreasing caveolin-1 expression via inducing the maturation and nuclear translocation of SREBP-1.« less
Wang, Jilite; Shimada, Masaya; Nagaoka, Satoshi
2017-06-01
In our previous study, rice bran protein (RBP) inhibited cholesterol micellar solubility in vitro and decreased serum cholesterol level in rats. In the present study, RBP was separated and purified by size-exclusion chromatography and reversed-phase chromatography. The active protein of RBP related to cholesterol micellar solubility was identified as lectin and non-specific lipid-transfer protein 1 using MALDI-TOF mass spectrometry analysis.
Operation Everest II. Plasma Lipid and Hormonal Responses
1988-01-01
cholesterol [TC] and high density lipoprotein cholesterol [ HDL -C] concentrations are shown in Fig 2. Pre-ascent...of altitude on fasting total cholesterol and high density lipoprotein ( HDL ) cholesterol concentrations. ** = p<O.Ol from 760 Torr Figure 3: The effect...157.7*9.7 mg/dl, decreased by 25% to .6 118.3*13.5 mg/dl following the 40-day exposure (p<O.Ol). High density lipoprotein [ HDL -C] levels
NASA Technical Reports Server (NTRS)
Angotti, C. M.; Levine, M. S.
1994-01-01
A chart review covering the first 5 years of clinical experience with a combined dietary and exercise intervention program for the reduction of hypercholesterolemia at the National Aeronautics and Space Administration headquarters demonstrated the program's success in maintaining high-density lipoprotein cholesterol (HDL-C) levels while significantly lowering total serum cholesterol levels. This combined program also resulted in improved ratios of total serum cholesterol to HDL-C and lowered levels of low-density lipoprotein cholesterol, thus further reducing the risk for cardiovascular disease. The National Aeronautics and Space Administration Cardiovascular Risk Reduction Program was developed after it was determined that although dietary intervention alone improved total cholesterol levels, it often resulted in a more than proportionate decrease in HDL-C and a worsening of the ratio of cholesterol to HDL-C. An approach was needed that would positively affect all factors of the lipid profile. The findings from the program indicate that reduction of cardiovascular risk can be accomplished easily and effectively at the worksite through dietary intervention, personal monitoring, and a reasonable exercise program.
Pitfalls in the detection of cholesterol in Huntington's disease models.
Marullo, Manuela; Valenza, Marta; Leoni, Valerio; Caccia, Claudio; Scarlatti, Chiara; De Mario, Agnese; Zuccato, Chiara; Di Donato, Stefano; Carafoli, Ernesto; Cattaneo, Elena
2012-10-11
Background Abnormalities in brain cholesterol homeostasis have been reported in Huntington's disease (HD), an adult-onset neurodegenerative disorder caused by an expansion in the number of CAG repeats in the huntingtin (HTT) gene. However, the results have been contradictory with respect to whether cholesterol levels increase or decrease in HD models. Biochemical and mass spectrometry methods show reduced levels of cholesterol precursors and cholesterol in HD cells and in the brains of several HD animal models. Abnormal brain cholesterol homeostasis was also inferred from studies in HD patients. In contrast, colorimetric and enzymatic methods indicate cholesterol accumulation in HD cells and tissues. Here we used several methods to investigate cholesterol levels in cultured cells in the presence or absence of mutant HTT protein. Results Colorimetric and enzymatic methods with low sensitivity gave variable results, whereas results from a sensitive analytical method, gas chromatography-mass spectrometry, were more reliable. Sample preparation, high cell density and cell clonality also influenced the detection of intracellular cholesterol. Conclusions Detection of cholesterol in HD samples by colorimetric and enzymatic assays should be supplemented by detection using more sensitive analytical methods. Care must be taken to prepare the sample appropriately. By evaluating lathosterol levels using isotopic dilution mass spectrometry, we confirmed reduced cholesterol biosynthesis in knock-in cells expressing the polyQ mutation in a constitutive or inducible manner. *Correspondence should be addressed to Elena Cattaneo: elena.cattaneo@unimi.it.
Racine, R; Grandcolas, L; Grison, S; Stefani, J; Delissen, O; Gourmelon, P; Veyssière, G; Souidi, M
2010-05-01
Depleted uranium (DU) is a radioactive heavy metal derived from the nuclear energy production. Its wide use in civilian and military items increases the risk of its environmental dissemination, and thus the risk of internal contamination of populations living in such contaminated territories. Previous studies have shown that vitamin D and cerebral cholesterol metabolisms were affected following chronic ingestion of DU. Even more than the brain, the liver is a crucial organ in cholesterol homeostasis since it regulates cholesterol distribution and elimination at body level. The aim of this work was to assess the impact of a low-level chronic ingestion of DU on hepatic cholesterol metabolism. Rats were contaminated with DU in their drinking water at a concentration of 40mg/l for 9 months. The major effect induced by DU was a decrease of CYP7A1 specific activity (-60%) correlated with a matching decrease of its product 7alpha-hydroxycholesterol in the plasma. Hepatic gene expression of transporters ABC A1, ABC G5, ABC G8 and of nuclear receptor RXR was increased, whereas that of catabolism enzyme CYP7B1 was decreased. Thus, after a chronic ingestion of DU, rats experience a modulation of cholesterol catabolism but overcome it, since their cholesterolemia is preserved and no pathology is declared.
2012-01-01
One experiment was conducted to determine the nutritive value of cholesterol for post-larval shrimp, Litopenaeus vannamei. Four isoenergetic and isonitrogenous diets supplemented with four levels of cholesterol (D1, D2, D3 and D4 with 0, 0.5%, 1% and 2% cholesterol, respectively) were fed to triplicate groups of L. vannamei shrimp (mean initial wet weight 0.8 mg) for 27 days. After the trial, shrimp fed the D1 diet had the best growth performance (final body weights: FBW; weight gain: WG; specific growth rate: SGR), while there was no significant difference between diet treatments with respect to survival. The whole body crude protein level in the shrimp decreased with the increase in dietary cholesterol levels, while the whole body crude lipid level in shrimps in the D4 diet treatment was significantly higher (P < 0.05) than in other diet treatments. Dietary analysis indicated that the D1 diet contained 0.92% cholesterol prior to supplementation, which may have satisfied the dietary cholesterol requirement of post-larval L. vannamei; excess dietary cholesterol may thus lead to adverse effects on the growth performance of post-larval shrimp. PMID:22958647
Decreased cholesterol efflux capacity and atherogenic lipid profile in young women with PCOS.
Roe, Andrea; Hillman, Jennifer; Butts, Samantha; Smith, Mathew; Rader, Daniel; Playford, Martin; Mehta, Nehal N; Dokras, Anuja
2014-05-01
Women with polycystic ovary syndrome (PCOS) have a high prevalence of cardiovascular disease (CVD) risk factors including dyslipidemia. Lipoproteins are heterogeneous, and measurement of serum lipids provides only the size of the pool and does not predict their function or composition. Recently, high-density lipoprotein cholesterol (HDL-C) function, as determined by cholesterol efflux capacity from macrophages, has been shown to be an independent predictor of subclinical CVD. The aim of the study was to comprehensively evaluate lipoprotein profile including lipid particle size and number and cholesterol efflux capacity in PCOS to better define CVD risk. A case control study was performed at an academic PCOS center. Women with PCOS (n = 124) and geographically matched controls (n = 67) were included in the study. The primary outcome was to measure HDL-C efflux capacity by an ex vivo system involving the incubation of macrophages with apolipoprotein (Apo) B-depleted serum from subjects, and the secondary outcome was to measure lipid particle size and number using nuclear magnetic resonance spectroscopy. Women with PCOS had significantly higher body mass index and blood pressure but similar HDL-C and low-density lipoprotein cholesterol levels compared to controls. The mean ApoA1 levels were lower, and the ApoB/ApoA1 ratio was higher in PCOS subjects compared to controls (P < .01). There were no differences in ApoB levels. Women with PCOS had an 7% decrease in normalized cholesterol efflux capacity compared to controls (P < .003). Cholesterol efflux capacity in PCOS correlated with body mass index, ApoA1, HDL-C, and the presence of metabolic syndrome. In a multivariable regression model, PCOS was significantly associated with diminished cholesterol efflux. PCOS was also associated with an atherogenic profile including an increase in large very low-density lipoprotein particles, very low-density lipoprotein (VLDL) size, and small low-density lipoprotein cholesterol particles (P < .01). Our novel findings of decreased cholesterol efflux and an atherogenic lipid particle number and size pattern in women with PCOS, independent of obesity, further substantiate the increased risk of CVD in this population.
Decreased Cholesterol Efflux Capacity and Atherogenic Lipid Profile in Young Women With PCOS
Roe, Andrea; Hillman, Jennifer; Butts, Samantha; Smith, Mathew; Rader, Daniel; Playford, Martin; Mehta, Nehal N.
2014-01-01
Context: Women with polycystic ovary syndrome (PCOS) have a high prevalence of cardiovascular disease (CVD) risk factors including dyslipidemia. Lipoproteins are heterogeneous, and measurement of serum lipids provides only the size of the pool and does not predict their function or composition. Recently, high-density lipoprotein cholesterol (HDL-C) function, as determined by cholesterol efflux capacity from macrophages, has been shown to be an independent predictor of subclinical CVD. Objective: The aim of the study was to comprehensively evaluate lipoprotein profile including lipid particle size and number and cholesterol efflux capacity in PCOS to better define CVD risk. Design and Setting: A case control study was performed at an academic PCOS center. Patients: Women with PCOS (n = 124) and geographically matched controls (n = 67) were included in the study. Main Outcome Measures: The primary outcome was to measure HDL-C efflux capacity by an ex vivo system involving the incubation of macrophages with apolipoprotein (Apo) B-depleted serum from subjects, and the secondary outcome was to measure lipid particle size and number using nuclear magnetic resonance spectroscopy. Results: Women with PCOS had significantly higher body mass index and blood pressure but similar HDL-C and low-density lipoprotein cholesterol levels compared to controls. The mean ApoA1 levels were lower, and the ApoB/ApoA1 ratio was higher in PCOS subjects compared to controls (P < .01). There were no differences in ApoB levels. Women with PCOS had an 7% decrease in normalized cholesterol efflux capacity compared to controls (P < .003). Cholesterol efflux capacity in PCOS correlated with body mass index, ApoA1, HDL-C, and the presence of metabolic syndrome. In a multivariable regression model, PCOS was significantly associated with diminished cholesterol efflux. PCOS was also associated with an atherogenic profile including an increase in large very low-density lipoprotein particles, very low-density lipoprotein (VLDL) size, and small low-density lipoprotein cholesterol particles (P < .01). Conclusions: Our novel findings of decreased cholesterol efflux and an atherogenic lipid particle number and size pattern in women with PCOS, independent of obesity, further substantiate the increased risk of CVD in this population. PMID:24512495
Influence of diadenosine tetraphosphate (Ap4A) on lipid metabolism.
Rüsing, D; Verspohl, E J
2004-01-01
Diadenosine polyphosphates (Ap(x)A) are physiologically released and may be partly involved in the pathogenesis of diabetes mellitus. Ap(4)A (diadenosine tetraphosphate) leads to an increase in blood glucose while it decreases insulin levels in plasma. A possible link between Ap(x)A and diabetes mellitus-associated diseases such as insulin resistance and hyperlipidemia (plasma free fatty acids, cholesterol and its biosynthesis, triacylglycerols) has not been investigated yet. Parameters such as free fatty acid and cholesterol content in blood were determined enzymically. The biosynthesis of cholesterol and triacylglycerols was determined in HepG2 cells using the radioactive precursor [(14)C]-acetate and by using gas chromatography. Plasma free fatty acids were significantly decreased 5 and 10 min after an Ap(4)A bolus (0.75 mg kg(-1) b.w.) given to rats. Plasma cholesterol was reduced 5 and 60 min after Ap(4)A administration. LPDS (lipoprotein-deficient serum)-stimulated cholesterol biosynthesis in HepG2 cells was significantly reduced after 1 h incubation with Ap(4)A. Triacylglycerol (TAG) biosynthesis in HepG2 cells was not significantly influenced by Ap(4)A; there was just a tendency for a concentration-dependent decrease in TAG levels. In conclusion Ap(4)A as a diabetogenetic compound is not likely to be responsible for the development of insulin resistance or of hyperlipidemia. Parameters such as free fatty acids, cholesterol and triacylglycerols are not elevated by Ap(4)A, but are even decreased. Ap(4)A seems to be involved in the development of diabetes mellitus by increasing blood glucose and decreasing plasma insulin as shown earlier, but not in diabetes mellitus-associated diseases such as insulin resistance or hyperlipidemia.
Hirotani, Yoshihiko; Ozaki, Nozomi; Tsuji, Yoshihiro; Urashima, Yoko; Myotoku, Michiaki
2015-01-01
We investigated the ability of eicosapentaenoic acid (EPA) to prevent high-fat diet (HFD)-induced obesity and non-alcoholic fatty liver disease (NAFLD). Male C57BL/6J mice were fed standard chow (5.3% fat content), an HFD (32.0% fat content) or an HFD + EPA (1 g/kg/day EPA for the last 6 weeks) for 12 weeks. Serum total cholesterol, hepatic triglyceride and total cholesterol levels were significantly increased in the HFD group, in comparison with those of normal mice (p < 0.01). In contrast, hepatic triglyceride and total cholesterol levels were significantly decreased in the HFD + EPA group, in comparison with those of the HFD group (p < 0.05). In addition, EPA decreased the body weight of obese mice and improved hepatic function. Hepatic superoxide dismutase activity and glutathione levels were significantly decreased in obese mice, but increased with EPA administration. Our data suggest that EPA supplementation has a beneficial effect on NAFLD progression.
High-Density Lipoprotein-Targeted Therapy and Apolipoprotein A-I Mimetic Peptides.
Uehara, Yoshinari; Chiesa, Giulia; Saku, Keijiro
2015-01-01
Numerous randomized clinical trials have established statins as the major standard therapy for atherosclerotic diseases because these molecules decrease the plasma level of low-density lipoprotein (LDL) cholesterol and moderately increase that of plasma high-density lipoprotein (HDL) cholesterol. The reverse cholesterol transport pathway, mediated by HDL particles, has a relevant antiatherogenic potential. An important approach to HDL-targeted therapy is optimization of the HDL-cholesterol level and enhanced removal of plasma cholesterol, together with the prevention and mitigation of inflammation related to atherosclerosis. Small-molecule inhibitors of cholesteryl ester transfer protein (CETP) increase the HDL-cholesterol level in subjects with normal or low HDL-cholesterol. However, CETP inhibitors do not seem to reduce the risk of atherosclerotic diseases. HDL therapies using reconstituted HDL, including apolipoprotein (Apo) A-I Milano, ApoA-I mimetics, or full-length ApoA-I, are dramatically effective in animal models. Of those, the ApoA-I-mimetic peptide called FAMP effectively removes cholesterol via the ABCA1 transporter and acts as an antiatherosclerotic agent by enhancing the biological functions of HDL without elevating the HDL-cholesterol level. Our review of the literature leads us to conclude that HDL-targeted therapies have significant atheroprotective potential and thus may effectively treat patients with cardiovascular diseases.
Non-Cholesterol Sterol Levels Predict Hyperglycemia and Conversion to Type 2 Diabetes in Finnish Men
Cederberg, Henna; Gylling, Helena; Miettinen, Tatu A.; Paananen, Jussi; Vangipurapu, Jagadish; Pihlajamäki, Jussi; Kuulasmaa, Teemu; Stančáková, Alena; Smith, Ulf; Kuusisto, Johanna; Laakso, Markku
2013-01-01
We investigated the levels of non-cholesterol sterols as predictors for the development of hyperglycemia (an increase in the glucose area under the curve in an oral glucose tolerance test) and incident type 2 diabetes in a 5-year follow-up study of a population-based cohort of Finnish men (METSIM Study, N = 1,050) having non-cholesterol sterols measured at baseline. Additionally we determined the association of 538,265 single nucleotide polymorphisms (SNP) with non-cholesterol sterol levels in a cross-sectional cohort of non-diabetic offspring of type 2 diabetes (the Kuopio cohort of the EUGENE2 Study, N = 273). We found that in a cross-sectional METSIM Study the levels of sterols indicating cholesterol absorption were reduced as a function of increasing fasting glucose levels, whereas the levels of sterols indicating cholesterol synthesis were increased as a function of increasing 2-hour glucose levels. A cholesterol synthesis marker desmosterol significantly predicted an increase, and two absorption markers (campesterol and avenasterol) a decrease in the risk of hyperglycemia and incident type 2 diabetes in a 5-year follow-up of the METSIM cohort, mainly attributable to insulin sensitivity. A SNP of ABCG8 was associated with fasting plasma glucose levels in a cross-sectional study but did not predict hyperglycemia or incident type 2 diabetes. In conclusion, the levels of some, but not all non-cholesterol sterols are markers of the worsening of hyperglycemia and type 2 diabetes. PMID:23840693
Addition of Garlic Extract in Ration to Reduce Cholesterol Level of Broiler
NASA Astrophysics Data System (ADS)
Utami, M. M. D.; Pantaya, D.; Agus, A.
2018-01-01
The purpose of this research is to know the effect of garlic extract (GE) in reducing cholesterol level of broiler chicken by analyzing cholesterol level of broiler chicken blood. Two hundred one day broiler age were used in this study for 35 days. The chickens were randomly divided into four treatments, each treatment consist of five replications and each repetition consist of ten chickens. This research is used completely randomized design, such as: T0: 0% EBP, T1: 2%, T2: 4% and T3: 6%. Furthermore, at age 35 days each chicken was taken blood to be analyzed cholesterol levels, low density lipoprotein (LDL), high density lipoprotein (HDL) and calculated the ratio of LDL and HDL levels. The data obtained were analyzed using software from Statistical Product and Service Solution (SPSS 16.0). The results of significant analysis continued by Duncan’s New Multiple Range Test. Addition of GE from the 2% level decreases (P <0.05) of LDL and total cholesterol, and increases HDL and HDL-LDL ratio. The conclusions is obtained garlic extract plays an important role in lowering cholesterol levels of broiler meat.
Correlation between non-alcoholic fatty liver disease (NAFLD) and dyslipidemia in type 2 diabetes.
Krishan, Saini
2016-01-01
Non-alcoholic fatty liver means the presence of hepatosteatosis without significant alcohol consumption; it is strongly associated with obesity and metabolic disorder like type 2 diabetes and dyslipideamia. NASH may progress to advanced stages of hepatic fibrosis and cirrhosis. Increased body mass index and viral genotype contribute to steatosis in chronic hepatitis. The sonographic features of NAFLD include the presence of bright hepatic echotexture deep attenuation, and vascular blurring either singly or in combination. Dyslipidemia in patients with NAFLD is atherogenic in nature and it is characterized by increased levels of serum triglycerides and decreased levels of HDL cholesterol. Statins are potent lipid-lowering agents which decrease LDL cholesterol by 20-60%, decrease triglycerides by 10-33% and increase HDL cholesterol by 5-10% for the patients with NAFLD. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Del Bas, Josep Maria; Fernández-Larrea, Juan; Blay, Mayte; Ardèvol, Anna; Salvadó, Maria Josepa; Arola, Lluis; Bladé, Cinta
2005-03-01
Moderate consumption of red wine reduces risk of death from cardiovascular disease. The polyphenols in red wine are ultimately responsible for this effect, exerting antiatherogenic actions through their antioxidant capacities and modulating intracellular signaling pathways and transcriptional activities. Lipoprotein metabolism is crucial in atherogenesis, and liver is the principal organ controlling lipoprotein homeostasis. This study was intended to identify the primary effects of procyanidins, the most abundant polyphenols in red wine, on both plasma lipoprotein profile and the expression of genes controlling lipoprotein homeostasis in the liver. We show that procyanidins lowered plasma triglyceride, free fatty acids, apolipoprotein B (apoB), LDL-cholesterol and nonHDL:nonLDL-cholesterol levels and slightly increased HDL-cholesterol. Liver mRNA levels of small heterodimer partner (SHP), cholesterol 7alpha-hydroxylase (CYP7A1), and cholesterol biosynthetic enzymes increased, whereas those of apoAII, apoCI, and apoCIII decreased. Lipoprotein lipase (LPL) mRNA levels increased in muscle and decreased in adipose tissue. In conclusion, procyanidins improve the atherosclerotic risk index in the postprandial state, inducing in the liver the overexpression of CYP7A1 (suggesting an increase of cholesterol elimination via bile acids) and SHP, a nuclear receptor emerging as a key regulator of lipid homeostasis at the transcriptional level. These results could explain, at least in part, the beneficial long-term effects associated with moderate red wine consumption.
Fan, Ying; Wu, Shuo-Dong; Fu, Bei-Bei; Weng, Chao; Wang, Xin-Peng
2014-01-01
To study the changes of interstitial cells of Cajal (ICCs) and expression of c-kt and scf mRNA in terminal ileum tissue during cholesterol gallstone formation in guinea pigs fed on high cholesterol diet, forty guinea pigs were divided into the gallstone group and the control group. The animals in the gallstone group were fed on a high cholesterol diet (HCD), while those in the control group fed on a standard diet (StD). The guinea pigs were sacrificed at the 8th week. The expression of c-kit and scf in terminal ileum were determined by RT-PCR and the morphological characteristics and number of ICCs were observed and calculated by using immunohistochemistry. RT-PCR showed that, compared with the control group, the c-kit and scf mRNA expression levels in the gallstone group were significantly declined. In the animal assay, the decreased number of ICCs was present obviously in the gallstone group. We concluded from the study that decreased number of ICCs, decreased expression of c-kit and scf in terminal ileum are present in guinea pigs fed on high cholesterol diet. The c-kit/scf pathway inhibition might be involved in the decline of intestinal transit function during cholesterol gallstone formation. PMID:24995081
Shen, Li; Peng, Hongchun; Peng, Ran; Fan, Qingsong; Zhao, Shuiping; Xu, Danyan; Morisseau, Christophe; Chiamvimonvat, Nipavan; Hammock, Bruce D
2015-04-01
Adipose tissue is the body largest free cholesterol reservoir and abundantly expresses ATP binding cassette transporter A1 (ABCA1), which maintains plasma high-density lipoprotein (HDL) levels. HDLs have a protective role in atherosclerosis by mediating reverse cholesterol transport (RCT). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has various beneficial effects on cardiovascular disease. The sEH is highly expressed in adipocytes, and it converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids. We previously showed that increasing EETs levels with a sEH inhibitor (sEHI) (t-AUCB) resulted in elevated ABCA1 expression and promoted ABCA1-mediated cholesterol efflux from 3T3-L1 adipocytes. The present study investigates the impacts of t-AUCB in mice deficient for the low density lipoprotein (LDL) receptor (Ldlr(-/-) mice) with established atherosclerotic plaques. The sEH inhibitor delivered in vivo for 4 weeks decreased the activity of sEH in adipose tissue, enhanced ABCA1 expression and cholesterol efflux from adipose depots, and consequently increased HDL levels. Furthermore, t-AUCB enhanced RCT to the plasma, liver, bile and feces. It also showed the reduction of plasma LDL-C levels. Consistently, t-AUCB-treated mice showed reductions in the size of atherosclerotic plaques. These studies establish that raising adipose ABCA1 expression, cholesterol efflux, and plasma HDL levels with t-AUCB treatment promotes RCT, decreasing LDL-C and atherosclerosis regression, suggesting that sEH inhibition may be a promising strategy to treat atherosclerotic vascular disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Geohas, Jeff; Daly, Anne; Juturu, Vijaya; Finch, Manley; Komorowski, James R
2007-03-01
The atherogenic index of plasma (AIP), defined as logarithm [log] of the ratio of plasma concentration of triglycerides to high-density lipoprotein (HDL) cholesterol, has recently been proposed as a predictive marker for plasma atherogenicity and is positively correlated with cardiovascular disease risk. The nutrient combination of chromium picolinate and biotin (CPB) has been previously shown to reduce insulin resistance and hyperglycemia in patients with type 2 diabetes (T2DM). Thirty-six moderately obese subjects with T2DM and with impaired glycemic control were randomized to receive CPB or placebo in addition to their oral hyperglycemic agents for 4 weeks. Measurements of blood lipids (including ratio of triglycerides to HDL cholesterol), fructosamine, glucose, and insulin were taken at baseline and after 4 weeks. At the final visit, the active group had a significantly lower AIP compared to the placebo group (P < 0.05). A significant difference in triglyceride level (P < 0.02) and the ratio of low-density lipoprotein (LDL) to HDL cholesterol (P < 0.05) was also observed between the groups at the final visit. In the active group, the changes in urinary chromium levels were inversely correlated with the change in AIP (P < 0.05). Urinary chromium levels were significantly increased in the CPB group. In the CPB group, glucose levels decreased at 1 hour and 2 hours and glucose area under the curve and fructosamine level were significantly decreased. Ratios of total to HDL cholesterol, LDL to HDL cholesterol, and non-HDL to HDL cholesterol were significantly decreased between the treatments at final visit. No significant adverse events were observed in the CPB or placebo groups. These results suggest that the combination of chromium picolinate and biotin may be a valuable nutritional adjuvant therapy to reduce AIP and correlated CVD risk factors in people with T2DM.
Shimizu, Mikiko; Hashiguchi, Masayuki; Shiga, Tsuyoshi; Tamura, Hiro-omi; Mochizuki, Mayumi
2015-01-01
Recent experimental and clinical studies have suggested that probiotic supplementation has beneficial effects on serum lipid profiles. However, there are conflicting results on the efficacy of probiotic preparations in reducing serum cholesterol. To evaluate the effects of probiotics on human serum lipid levels, we conducted a meta-analysis of interventional studies. Eligible reports were obtained by searches of electronic databases. We included randomized, controlled clinical trials comparing probiotic supplementation with placebo or no treatment (control). Statistical analysis was performed with Review Manager 5.3.3. Subanalyses were also performed. Eleven of 33 randomized clinical trials retrieved were eligible for inclusion in the meta-analysis. No participant had received any cholesterol-lowering agent. Probiotic interventions (including fermented milk products and probiotics) produced changes in total cholesterol (TC) (mean difference -0.17 mmol/L, 95% CI: -0.27 to -0.07 mmol/L) and low-density lipoprotein cholesterol (LDL-C) (mean difference -0.22 mmol/L, 95% CI: -0.30 to -0.13 mmol/L). High-density lipoprotein cholesterol and triglyceride levels did not differ significantly between probiotic and control groups. In subanalysis, long-term (> 4-week) probiotic intervention was statistically more effective in decreasing TC and LDL-C than short-term (≤ 4-week) intervention. The decreases in TC and LDL-C levels with probiotic intervention were greater in mildly hypercholesterolemic than in normocholesterolemic individuals. Both fermented milk product and probiotic preparations decreased TC and LDL-C levels. Gaio and the Lactobacillus acidophilus strain reduced TC and LDL-C levels to a greater extent than other bacterial strains. In conclusion, this meta-analysis showed that probiotic supplementation could be useful in the primary prevention of hypercholesterolemia and may lead to reductions in risk factors for cardiovascular disease.
Hashimoto, F; Taira, S; Hayashi, H
1998-11-01
We studied whether the peroxisomal proliferation, induction of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and activation of cholesterol synthesis by gemfibrozil shown in whole body (Hashimoto F., Ishikawa T., Hamada S. and Hayashi H., Biochemical. Pharm., 49, 1213-1221 (1995)) is also detected at a culture cell level, and we made a comparative analysis of the effects of clofibric acid. Gemfibrozil at 0.25 mM increased the activity of some peroxisomal enzymes (catalase and the cyanide-insensitive fatty acyl-CoA oxidizing system) after incubation for 72 h. However, contrary to whole body experiments, gemfibrozil decreased the activity of HMG-CoA reductase and cholesterol synthesis from [14C]acetate. At 1 mM, gemfibrozil decreased not only the activity of HMG-CoA reductase and cholesterol synthesis, but also the protein content of the cells and peroxisomal enzyme activity, indicating nonspecific inhibition at this concentration. Clofibric acid (0.25 and 1 mM) increased the activity of peroxisomal enzymes, but decreased the activity of HMG-CoA reductase and cholesterol synthesis. With respect to the direct effect on HMG-CoA reductase in the cell homogenate, gemfibrozil at 0.25 mm did not affect the activity, but it clearly inhibited the activity at 2 mM and above. Clofibric acid at 2 mM hardly affected the activity, but it clearly decreased the activity at 5 mM and over. That is, gemfibrozil directly inhibited the activity more strongly than clofibric acid. The direct inhibition of the enzyme itself required higher concentrations of both agents than did inhibition at the culture cell level. These results suggest that the cytotoxicity of gemfibrozil is greater than that of clofibric acid, and that gemfibrozil, as well as clofibric acid, can induce peroxisomal enzymes in the culture cell level. In contrast to whole body results, gemfibrozil may suppress cholesterol synthesis from [14C]acetate through the inhibition of HMG-CoA reductase at the culture cell level. The decreases in the reductase activity caused by gemfibrozil and clofibric acid at the culture cell level may not be caused by the direct inhibition of the enzyme.
Ferrara, A; Barrett-Connor, E; Shan, J
1997-07-01
The purpose of the present study was to study the effects of age, weight change, and covariates on lipid and lipoprotein levels cross-sectionally and prospectively in an elderly population. A community-based sample of 1041 men and 1303 women aged 50 to 93 years was studied cross-sectionally in 1984 to 1987, with follow-up of 372 men and 545 women 8 years later. In the cross-sectional study, levels of total cholesterol (TC) and LDL cholesterol (LDL-C) decreased and levels of HDL cholesterol (HDLC) increased with age in men (all P < .001) but not in women. In the prospective study, TC, LDL-C, and HDL-C levels all decreased in both men and women, in all age groups (50 to 64 years, 65 to 74 years, and > or = 75 years) and in all weight change groups (> 2.5-kg loss, change within 2.5 kg, and > 2.5-kg gain) and in all waist girth change groups, for an overall decrement of approximately 1% per year. In multiple linear regression models, change in weight was the most important independent and consistent predictor of changes in TC, LDL-C, and HDL-C. Similar results were obtained in analyses excluding subjects taking lipid-lowering drugs or estrogen and in analyses adjusted for changes in cigarette smoking, alcohol intake, physical activity, medication use, and incident myocardial infarction, cancer, or diabetes. Cross-sectional decrements in TC and LDL-C with age in men are not explained by survivor bias because they are also observed prospectively. Although weight change was the most important explanatory variable, TC, LDL-C, and HDL-C levels also decreased in those who lost or gained weight. Age was not an independent predictor of change. Other prospective studies are recommended to better define the causes and consequences of cholesterol and lipoprotein changes in old age.
Pitfalls in the detection of cholesterol in Huntington’s disease models
Marullo, Manuela; Valenza, Marta; Leoni, Valerio; Caccia, Claudio; Scarlatti, Chiara; De Mario, Agnese; Zuccato, Chiara; Di Donato, Stefano; Carafoli, Ernesto; Cattaneo, Elena
2012-01-01
Background Abnormalities in brain cholesterol homeostasis have been reported in Huntington’s disease (HD), an adult-onset neurodegenerative disorder caused by an expansion in the number of CAG repeats in the huntingtin (HTT) gene. However, the results have been contradictory with respect to whether cholesterol levels increase or decrease in HD models. Biochemical and mass spectrometry methods show reduced levels of cholesterol precursors and cholesterol in HD cells and in the brains of several HD animal models. Abnormal brain cholesterol homeostasis was also inferred from studies in HD patients. In contrast, colorimetric and enzymatic methods indicate cholesterol accumulation in HD cells and tissues. Here we used several methods to investigate cholesterol levels in cultured cells in the presence or absence of mutant HTT protein. Results Colorimetric and enzymatic methods with low sensitivity gave variable results, whereas results from a sensitive analytical method, gas chromatography-mass spectrometry, were more reliable. Sample preparation, high cell density and cell clonality also influenced the detection of intracellular cholesterol. Conclusions Detection of cholesterol in HD samples by colorimetric and enzymatic assays should be supplemented by detection using more sensitive analytical methods. Care must be taken to prepare the sample appropriately. By evaluating lathosterol levels using isotopic dilution mass spectrometry, we confirmed reduced cholesterol biosynthesis in knock-in cells expressing the polyQ mutation in a constitutive or inducible manner. *Correspondence should be addressed to Elena Cattaneo: elena.cattaneo@unimi.it PMID:23145355
Ruiz-Tovar, Jaime; Boix, Evangelina; Galindo, Isabel; Zubiaga, Lorea; Diez, María; Arroyo, Antonio; Calpena, Rafael
2014-05-01
There is an increased prevalence of subclinical hypothyroidism (SCH) in patients with obesity. It is unclear if this biochemical abnormality may be a secondary phenomenon of obesity or a real hypothyroid state. A retrospective study of all the morbidly obese patients undergoing laparoscopic sleeve gastrectomy as bariatric procedure between October 2007 and November 2012 was performed. Weight loss, body mass index (BMI) and excess weight loss, baseline glucose, lipid profiles, and TSH levels were obtained before operation and postoperative determinations at 3, 6, and 12 months after surgery. Sixty patients were included. Prevalence of subclinical hypothyroidism was 16.7% preoperatively, 10% at 3 months, 3.3% at 6 months, and 1.7% at 12 months. A significant correlation could be established between TSH decrease and weight loss at 12 months (Pearson 0.603; p = 0.007). TSH decrease showed a significant correlation with glucose and glycated hemoglobin decrease from 6th month onwards. Referring to lipid profile, an association of TSH decrease with total cholesterol, LDL cholesterol, or HDL cholesterol could not be determined. A significant association between TSH decrease and triglycerides and cardiovascular risk index triglycerides/HDL cholesterol reductions could also be established 12 months after surgery. SCH is usually corrected after bariatric surgery, while there are no significant changes in total or LDL cholesterol. This suggests that, in morbidly obese subjects, SCH is, in most patients, just a consequence of the abnormal fat accumulation and not a real hypothyroid state.
Titov, V N; Kotlovskii, M Yu; Pokrovskii, A A; Kotlovskaia, O S; Osedko, A V; Titova, N M; Kotlovskii, Yu V; Digaii, A M
2015-04-01
The hypolipidemic effect of statins is realized by inhibition of synthesis of local pool of cholesterol spirit in endoplasmic net of hepatocytes. The cholesterol spirit covers all hydrophobic medium of triglycerides with polar mono layer of phosphatidylcholines and cholesterol spirit prior to secretion of lipoproteins of very low density into hydrophilic medium. The lesser mono layer between lipase enzyme and triglycerides substrate contains of cholesterol spirit the higher are the parameters of hydrolysis of palmitic and oleic lipoproteins of very low density. The sequence of effect of statins is as follows: blocking of synthesis in hepatocytes and decreasing of content of unesterified cholesterol spirit in blood plasma; activation of hydrolysis of triglycerides in palmitic and oleic lipoproteins of very low density; formation of ligand lipoproteins of very low density and their absorption by cells by force of apoB-100 endocytosis; decreasing in blood of content of polyenoic fatty acids, equimolar esterified by cholesterol spirit, polyethers of cholesterol spirit and decreasing of level of cholesterol spirit-lipoproteins of very low density. There is no way to eliminate aphysiological effect of disordered biological function of trophology (nutrition) on metabolism of fatty acids in population by means of pharmaceuticals intake. It is necessary to eliminate aphysiological effect of environment. To decrease rate of diseases of cardiovascular system one has to decrease in food content of saturated fatty acids and in the first instance palmitic saturated fatty acid, trans-form fatty acid, palmitoleic fatty acids up to physiological values and increase to the same degree the content of polyenoic fatty acids. The saturated fatty acids block absorption of polyenoic fatty acids by cells. The atherosclerosis is a deficiency of polyenoic fatty acids under surplus of palmitic saturated fatty acid.
Zhou, Xiaoming; Lin, Haiyan; Zhang, Shigang; Ren, Jianwei; Wang, Zhe; Zhang, Yun; Wang, Mansen; Zhang, Qunye
2016-01-01
The rules and mechanisms of seasonal changes in plasma lipid levels, which may be related to annual rhythmicity of incidence and mortality of cardiovascular diseases, are still controversial. The objectives of this study were to study the effects of climatic factors on plasma lipid levels and to preliminarily reveal mechanisms of annual rhythmicity of plasma lipid levels. A longitudinal study was performed using health examination data of 5 consecutive years (47,270 subjects) in Jinan, China. The climate in Jinan is typical temperate continental monsoon climate with huge temperature difference between winter and summer (>30°C). After considering and adjusting those classical lipid-associated risk factors, such as age, gender, diet, exercise, blood pressure, body weight, change of body weight, body mass index, glycemia, alanine aminotransferase, and creatinine, only air temperature could still significantly affect plasma lipid levels among the main climatic factors (humidity, precipitation, and so forth). For men, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol was decreased significantly 0.35, 0.18, and 0.06 mmol/L, respectively, whereas triglyceride was increased significantly 0.12 mmol/L for every 10°C increase in air temperature. For women, total cholesterol and high-density lipoprotein cholesterol were decreased notably 0.73 and 0.32 mmol/L, and low-density lipoprotein cholesterol was increased significantly 0.26 mmol/L for every 10°C increase in air temperature, whereas triglyceride was not significantly affected by air temperature. Air temperature is an independent risk factor for plasma lipid levels besides those classical lipid-associated risk factors. The annual air temperature fluctuations might be an important mechanism of the seasonal changes of lipids. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Short term health impact of a yoga and diet change program on obesity.
Telles, Shirley; Naveen, Visweswaraiah K; Balkrishna, Acharya; Kumar, Sanjay
2010-01-01
Obese persons often find physical activity difficult. The effects of a yoga and diet change program, emphasizing breathing techniques practiced while seated, was assessed in obese persons. A single group of 47 persons were assessed on the first and last day of a yoga and diet change program, with 6 days of the intervention between assessments. The assessments were: body mass index (BMI), waist and hip circumferences, mid-arm circumference, body composition, hand grip strength, postural stability, serum lipid profile and fasting serum leptin levels. Participants practiced yoga for 5 hours every day and had a low fat, high fiber, vegetarian diet. Last and first day data were compared using a t-test for paired data. Following the 6-day residential program, participants showed a decrease in BMI (1.6 percent), waist and hip circumferences, fat-free mass, total cholesterol (7.7 percent decrease), high density lipoprotein (HDL) cholesterol (8.7 percent decrease), fasting serum leptin levels (44.2 percent decrease) and an increase in postural stability and hand grip strength (p<0.05, all comparisons). A 6-day yoga and diet change program decreased the BMI and the fat-free mass. Total cholesterol also decreased due to reduced HDL levels. This suggests that a brief, intensive yoga program with a change in diet can pose certain risks. Benefits seen were better postural stability, grip strength (though a 'practice effect' was not ruled out), reduced waist and hip circumferences and a decrease in serum leptin levels.
Sundram, Kalyana; French, Margaret A; Clandinin, M Thomas
2003-08-01
Partial hydrogenation of oil results in fats containing unusual isomeric fatty acids characterized by cis and trans configurations. Hydrogenated fats containing trans fatty acids increase plasma total cholesterol (TC) and LDL-cholesterol while depressing HDL-cholesterol levels. Identifying the content of trans fatty acids by food labeling is overshadowed by a reluctance of health authorities to label saturates and trans fatty acids separately. Thus, it is pertinent to compare the effects of trans to saturated fatty acids using stable isotope methodology to establish if the mechanism of increase in TC and LDL-cholesterol is due to the increase in the rate of endogenous synthesis of cholesterol. Ten healthy normocholesterolemic female subjects consumed each of two diets containing approximately 30% of energy as fat for a fourweek period. One diet was high in palmitic acid (10.6% of energy) from palm olein and the other diet exchanged 5.6% of energy as partially hydrogenated fat for palmitic acid. This fat blend resulted in monounsaturated fatty acids decreasing by 4.9 % and polyunsaturated fats increasing by 2.7%. The hydrogenated fat diet treatment provided 3.1% of energy as elaidic acid. For each dietary treatment, the fractional synthesis rates for cholesterol were measured using deuterium-labeling procedures and blood samples were obtained for blood lipid and lipoprotein measurements. Subjects exhibited a higher total cholesterol and LDL-cholesterol level when consuming the diet containing trans fatty acids while also depressing the HDL-cholesterol level. Consuming the partially hydrogenated fat diet treatment increased the fractional synthesis rate of free cholesterol. Consumption of hydrogenated fats containing trans fatty acids in comparison to a mixtur e of palmitic and oleic acids increase plasma cholesterol levels apparently by increasing endogenous synthesis of cholesterol.
Wolk, Robert; Armstrong, Ehrin J; Hansen, Peter R; Thiers, Bruce; Lan, Shuping; Tallman, Anna M; Kaur, Mandeep; Tatulych, Svitlana
Psoriasis is a systemic inflammatory disease associated with increased cardiovascular (CV) risk and altered lipid metabolism. Tofacitinib is an oral Janus kinase inhibitor. The aim of the study was to investigate the effects of tofacitinib on traditional and nontraditional lipid parameters and CV risk markers in patients with psoriasis from a phase III study, OPT Pivotal 1. Patients with psoriasis were randomized to tofacitinib 5 or 10 mg twice daily (BID) or placebo BID. Serum samples were collected at baseline, week 4, and week 16. Analyses included serum cholesterol levels, triglycerides, lipoproteins, lipid particles, lipid-related parameters/CV risk markers, and high-density lipoprotein (HDL) function analyses. At week 16, small concurrent increases in mean low-density lipoprotein cholesterol (LDL-C) and HDL cholesterol (HDL-C) levels were observed with tofacitinib; total cholesterol/HDL-C ratio did not change. There was no significant change in the number of small dense LDL particles, which are considered to be more atherogenic than large particles, and oxidized LDL did not increase. Paraoxonase 1 activity, linked to HDL antioxidant capacity, increased, and HDL-associated serum amyloid A, which reduces the anti-atherogenic potential of HDL, decreased. HDL capacity to promote cholesterol efflux from macrophages did not change. Lecithin-cholesterol acyltransferase activity, which is associated with reverse cholesterol transport, increased. Markers of systemic inflammation, serum amyloid A and C-reactive protein, decreased with tofacitinib. While small increases in lipid levels are observed with tofacitinib treatment in patients with psoriasis, effects on selected lipid-related parameters and other circulating CV risk biomarkers are not suggestive of an increased CV risk [NCT01276639]. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Hypogonadism Makes Dyslipidemia in Klinefelter's Syndrome.
Lee, Hyo Serk; Park, Chan Woo; Lee, Joong Shik; Seo, Ju Tae
2017-11-01
Klinefelter's syndrome (KS) is a genetic syndrome that presents with hypogonadism and is associated with metabolic syndrome. Patients demonstrating hypogonadism show a greater prevalence of metabolic syndrome due to changes in body composition. We aimed to determine the association between KS and dyslipidemia. The KS group comprised 55 patients who visited the infertility clinic for an infertility evaluation and were confirmed as having a diagnosis of KS. The control group comprised 120 patients who visited the clinic for health screening. Patient characteristics were compared between the two groups with respect to height, weight, body mass index (BMI), testosterone, total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride (TG) levels. Height and weight were significantly greater in patients belonging to the KS group, but no statistically significant difference was found with respect to the BMI. Testosterone levels in patients belonging to the KS group were significantly lower compared to the control group (2.4 ± 2.6 vs. 5.2 ± 1.8 ng/mL, P < 0.001). Compared to the control group, TG levels in patients belonging to the KS group were increased (134.9 ± 127.8 vs. 187.9 ± 192.1 mg/dL, P = 0.004) and HDL cholesterol was significantly decreased (51.2 ± 22.0 vs. 44.0 ± 9.5 mg/dL, P = 0.009). LDL cholesterol and total cholesterol were not significantly different between the two groups (P = 0.076 and P = 0.256, respectively). Significant differences were noted between patients belonging to the KS group and normal control group with respect to elevated TG and decreased HDL cholesterol levels. © 2017 The Korean Academy of Medical Sciences.
Korematsu, Seigo; Uchiyama, Shin-ichi; Honda, Akira; Izumi, Tatsuro
2014-06-01
Cholesterol is one of the main components of human cell membranes and constitutes an essential substance in the central nervous system, endocrine system, and its hormones, including sex hormones. A 19-year-old male patient presented with failure to thrive, psychomotor deterioration, intractable epilepsy, hypogonadism, and cerebro-cerebello-bulbar degeneration. His serum level of cholesterol was low, ranging from 78.7 to 116.5 mg/dL. The serum concentrations of intermediates in the cholesterol biosynthesis pathway, such as 7-dehydrocholesterol, 8-dehydrocholesterol, desmosterol, lathosterol, and dihydrolanosterol, were not increased. In addition, the levels of the urinary cholesterol biosynthesis marker mevalonic acid, the serum cholesterol absorption markers, campesterol and sitosterol, and the serum cholesterol catabolism marker, 7α-hydroxycholesterol, were all low. A serum biomarker analysis indicated that the patient's basic abnormality differed from that of Smith-Lemli-Opitz syndrome and other known disorders of cholesterol metabolism. Therefore, this individual may have a new metabolic disorder with hypocholesterolemia because of decreased biosynthesis and absorption of cholesterol. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiying; Ohno-Matsui, Kyoko, E-mail: k.ohno.oph@tmd.ac.jp; Morita, Ikuo
Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells inmore » vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas age-matched mice fed standard rodent chow diet did not. Activities and mRNA levels of NEP and {alpha}-secretase were significantly lower in native RPE cells freshly isolated from cholesterol-enriched chow fed mice compared to standard rodent chow fed mice. These findings suggest that cholesterol enhances subretinal A{beta} accumulation by modulating the activities of enzymes degrading and processing A{beta} in RPE cells in senescent subjects.« less
Xu, D; Liang, C; Chen, L; Wu, X D; He, J
2018-04-25
Objective: To study the variations and influencing factors of serum triglycerides and cholesterol levels during pregnancy and postpartum. Methods: A retrospective study was performed among 5 020 healthy singleton (95.10%, 4 774/5 020) and twin (4.90%, 246/5 020) women who had delivery in Women's Hospital, Zhejiang University School of Medicine from January 2011 to December 2016. Serum triglycerides and cholesterol levels during pregnancy and postpartum of all the cases were collected. Both singleton and twin pregnant women were divided into advanced age and appropriate age groups, and then data of serum sample were assigned to 3 groups according to the gestation weeks, which were second trimester pregnancy (24-28 gestation weeks) , third trimester pregnancy (32-41 gestation weeks) and postpartum (within 72 hours after delivery) . The serum triglycerides and cholesterol levels in each groups were compared. Results: (1) Serum triglycerides and cholesterol levels during the second trimester pregnancy, third trimester pregnancy and postpartum were higher than levels of non-pregnancy in both singleton and twin groups (all P< 0.05) . (2) Serum triglycerides and cholesterol levels in the third trimester pregnancy group were higher than those of second trimester pregnancy group in both advanced age and appropriate aged women regardless singleton or twin pregnancy (all P< 0.05) . The 95% CI of serum lipid levels in each group during second and third trimester pregnancy were as follows: in appropriate aged singleton group, the triglycerides levels were 1.07-4.13 and 1.52-7.21 mmol/L, and the cholesterol levels were 2.77-12.11 and 4.44-9.36 mmol/L. In advanced aged singleton group, the triglycerides levels were 1.28-4.61 and 1.70-7.80 mmol/L, and the cholesterol levels were 4.35-8.40 and 4.46-9.35 mmol/L; in appropriate aged twin group, the triglycerides levels were 1.39-7.16 and 1.90-9.29 mmol/L, and the cholesterol levels were 4.99-12.16 and 4.52-10.07 mmol/L; in advanced aged twin group, the triglycerides levels were 1.61-5.32 and 1.94-9.29 mmol/L, and the cholesterol levels were 5.24-8.10 and 4.53-8.86 mmol/L. (3) Serum lipids levels rapidly decreased during postpartum compared to the third trimester pregnancy. The 95% CI of blood lipid levels in each group were as follows: in appropriate aged singleton group, the triglycerides level was 0.90-5.64 mmol/L and the cholesterol level was 4.70-8.52 mmol/L; in advanced aged singleton group, the triglycerides level was 0.87-5.43 mmol/L and the cholesterol level was 4.68-9.04 mmol/L; in appropriate aged twin group, the triglycerides level was 1.20-8.21 mmol/L and the cholesterol level was 4.66-8.45 mmol/L; in advanced aged twin group, the triglycerides level was 1.32-6.61 mmol/L, and the cholesterol level was 5.01-7.94 mmol/L. (4) Serum triglycerides and cholesterol levels in twin pregnant women were significantly higher than in singleton during the second trimester and third trimester pregnancy both in advanced age and appropriate age groups (all P< 0.05) . During postpartum, there was no difference in serum lipid levels between the singleton and twin pregnant women in appropriate age group (triglycerides: P= 0.982; cholesterol: P= 0.759, respectively) . While the serum lipid levels in twin pregnant women were significantly higher than those of singleton women in advanced age group (triglycerides: P= 0.000; cholesterol: P= 0.000, respectively) . Conclusions: The standard of serum lipid levels of non-pregnant adults is not suitable for assessing that in pregnant women. Regardless of singleton or twin pregnancy, serum triglyceride and cholesterol levels during pregnancy elevate with the increasing gestational week and then rapidly decrease during postpartum. Age and twins are the influencing factors of the elevated physiological lipid levels during pregnancy.
Spielberg, Jeffrey M; Sadeh, Naomi; Leritz, Elizabeth C; McGlinchey, Regina E; Milberg, William P; Hayes, Jasmeet P; Salat, David H
2017-06-01
Mounting evidence indicates that serum cholesterol and other risk factors for cardiovascular disease intensify normative trajectories of age-related cognitive decline. However, the neural mechanisms by which this occurs remain largely unknown. To understand the impact of cholesterol on brain networks, we applied graph theory to resting-state fMRI in a large sample of early- to mid-life Veterans (N = 206, Mean age = 32). A network emerged (centered on the banks of the superior temporal sulcus) that evidenced age-related decoupling (i.e., decreased network connectivity with age), but only in participants with clinically-elevated total cholesterol (≥180 mg/dL). Crucially, decoupling in this network corresponded to greater day-to-day disability and mediated age-related declines in psychomotor speed. Finally, examination of network organization revealed a pattern of age-related dedifferentiation for the banks of the superior temporal sulcus, again present only with higher cholesterol. More specifically, age was related to decreasing within-module communication (indexed by Within-Module Degree Z-Score) and increasing between-module communication (indexed by Participation Coefficient), but only in participants with clinically-elevated cholesterol. Follow-up analyses indicated that all findings were driven by low-density lipoprotein (LDL) levels, rather than high-density lipoprotein (HDL) or triglycerides, which is interesting as LDL levels have been linked to increased risk for cardiovascular disease, whereas HDL levels appear inversely related to such disease. These findings provide novel insight into the deleterious effects of cholesterol on brain health and suggest that cholesterol accelerates the impact of age on neural trajectories by disrupting connectivity in circuits implicated in integrative processes and behavioral control. Hum Brain Mapp 38:3249-3261, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Chauhan, V.; Sheikh, A.; Chauhan, A.; Tsiouris, J.; Malik, M.; Vaughan, M.
2002-01-01
During hibernation, fat is known to be the preferred source of energy. A detailed analysis of different phospholipids, as well as free and esterified cholesterol, was conducted to investigate lipid abnormalities during hibernation. The levels of total phospholipids and total cholesterol in the serum of black bears were found to increase significantly in hibernation as compared with the active state. Both free and esterified cholesterol were increased in the hibernating state in comparison with the active state (P < 0.05). The percentage increase during hibernation was more in free cholesterol (57%) than in esterified cholesterol (27%). Analysis of subclasses of serum phospholipids showed that choline containing phospholipids, i.e., sphingomyelin (SPG) (14%) and phosphatidylcholine (PC) (76%), are the major phospholipids in the serum of bear. The minor phospholipids included 8% of phosphatidylserine (PS) + phosphatidylinositol (PI), while phosphatidylethanolamine (PE) was only 2% of the total phospholipids. A comparison of phospholipid subclasses showed that PC, PS + PI and SPG were significantly increased, while PE was significantly decreased (P < 0.05) in the hibernating state as compared with the active state in black bears. These results suggest that the catabolism of phospholipids and cholesterol is decreased during hibernation in black bears, leading to their increased levels in the hibernating state as compared with the active state. In summary, our results indicate that serum cholesterol and phospholipid fractions (except PE) are increased during hibernation in bears. It is proposed that the increase of these lipids may be due to the altered metabolism of lipoproteins that are responsible for the clearance of the lipids. ?? 2002 E??ditions scientifiques et me??dicales Elsevier SAS and Socie??te?? franc??aise de biochimie et biologie mole??culaire. All rights reserved.
Chmelík, Zdenek; Kotolová, Hana; Piekutowská, Zuzana; Horská, Katerina; Bartosová, Ladislava; Suchý, Pavel; Kollár, Peter
2013-01-01
Amaranth was identified as a possible component of an anti-sclerotic diet. To date, particular substances responsible for this effect have not been exactly specified. Squalene, which is contained in amaranth, could be responsible for this effect. However, there are also other potential substances and the hypolipidemic effect of amaranth can be caused by a synergistic effect of several components. This study investigated and compared the impact of amaranth flour and squalene on the total cholesterol (CHOL(TOT)) and LDL cholesterol (CHOL(LDL)) levels in mice with dyslipidemia induced by a cholesterol- and sugar-rich diet. The experiment included 40 inbred mice (C57Bl/6J SPF). After a 7-days acclimatization period, animals were divided into four groups by random. Individual groups were fed different diets for 49 days: control (group C), high energy diet (group HED), high energy diet with amaranth flour (group HED+A) and high energy diet with squalene (group HED+S). The sugar- and cholesterol-rich diet in HED resulted in the significant increase in the levels of CHOL(TOT) by 125% (P < 0.05) and CHOL(LDL) by 304% (P < 0.05), and at the same time in a decrease of HDL cholesterol (CHOL(HDL)) levels by 58% (P < 0.05) compared to group C. To the contrary, amaranth flour enriched diet in group HED+A led to a decrease of CHOL(TOT) levels by 33% (P < 0.05) and CHOL(LDL) by 37% (P < 0.05), compared to HED. Both, amaranth flour and squalene, had a positive impact on CHOL(HDL) levels. Compared to group HED, there was a 47% increase in HED+A and a 60% increase in HED+S. Results proved the favorable impact of amaranth flour on the levels of total cholesterol CHOL(TOT) and also on CHOL(LDL). Furthermore, the results imply that amaranth flour contains besides squalene other substances, which can actively participate in its hypolipidemic effect.
Lee, Hye-Sung; Choi, Jun-Hyeok; Kim, Young-Eon; Kim, In-Ho; Kim, Byoung-Mok; Lee, Chang-Ho
2013-09-01
The purpose of this study was to investigate the effects of the ethanol extract of Cynanchum wilfordii (ECW) on the blood lipid profile of hypercholesterolemic rats. Thirty 7-week-old male Sprague-Dawley rats were allowed free access to either a normal diet (AIN-93 diet), or 1% high-cholesterol diet with or without 0.5% or 1% ECW for 5 weeks. After sacrifice, the rat serum lipid profile was analyzed. The diets containing ECW decreased body weight gains compared to the normal diet. Serum HDL-cholesterol levels of ECW-fed groups were significantly increased in the hypercholesterolemic groups and normal groups (P<0.05). When 1% ECW was fed to the normal group, total cholesterol level was increased. Moreover, treatment of ECW in hypercholesterolemic groups yielded a dose-dependent and highly significant decrease in the atherogenic index as compared to the control. These results suggest that intake of Cynanchum wilfordii may help reduce the risks of hypercholesterolemia by increasing blood HDL-cholesterol and lowering the atherogenic index.
de Luis, D A; Aller, R; Izaola, O; Romero, E
2015-11-01
The role of GLP-1 R variants on body weight response after dietary intervention is unclear. The aim was to investigate the role of this polymorphism on cardiovascular risk factors, adipokine levels and weight loss secondary to a high-protein/low-carbohydrate vs. standard hypocaloric diets during 9 months. 211 obese subjects were randomly allocated to one of these two diets for a period of 9 months; diet HP (high protein/low carbohydrate) and diet S (standard). Ninety-four patients (44.5%) had the genotype GG (wild group) and 117 (55.5%) patients had the next genotypes; GA (89 patients, 42.2%) or AA (28 patients, 13.3%) (mutant group). With both diets and in both genotype groups, body mass index, weight, fat mass, waist circumference and systolic blood pressure decreased. Anthropometric parameters were higher in non-A allele carriers than A allele carriers. With diet HP in both genotypes, LDL cholesterol, total cholesterol, leptin, insulin levels and HOMA-R decreased. With the diet S and only in wild genotype, the same parameters decreased, too. Our data showed a lack of association of rs6923761 GLP-1 R polymorphism with weight loss. Better anthropometric parameters in obese subjects with the mutant allele (A) of rs6923761 GLP-1 R polymorphism were observed. Total cholesterol, LDL cholesterol, insulin levels and HOMA-R decreased in all patients with both diets, although A allele carriers treated with standard diet did not show these changes.
Uronen, Riikka-Liisa; Lundmark, Per; Orho-Melander, Marju; Jauhiainen, Matti; Larsson, Kristina; Siegbahn, Agneta; Wallentin, Lars; Zethelius, Björn; Melander, Olle; Syvänen, Ann-Christine; Ikonen, Elina
2010-08-01
To study how Niemann-Pick disease type C1 (NPC1) influences hepatic triacylglycerol (TG) metabolism and to determine whether this is reflected in circulating lipid levels. In Npc1(-/-) mice, the hepatic cholesterol content is increased but the TG content is decreased. We investigated lipid metabolism in Npc1(-/-) mouse hepatocytes and the association of NPC1 single-nucleotide polymorphisms with circulating TGs in humans. TGs were reduced in Npc1(-/-) mouse serum and hepatocytes. In Npc1(-/-) hepatocytes, the incorporation of [3H]oleic acid and [3H]acetate into TG was decreased, but shunting of oleic acid- or acetate-derived [3H]carbons into cholesterol was increased. Inhibition of cholesterol synthesis normalized TG synthesis, content, and secretion in Npc1(-/-) hepatocytes, suggesting increased hepatic cholesterol neogenesis as a cause for the reduced TG content and secretion. We found a significant association between serum TG levels and 5 common NPC1 single-nucleotide polymorphisms in a cohort of 1053 men, with the lowest P=8.7 x 10(-4) for the single-nucleotide polymorphism rs1429934. The association between the rs1429934 A allele and higher TG levels was replicated in 2 additional cohorts, which included 8041 individuals. This study provides evidence of the following: (1) in mice, loss of NPC1 function reduces hepatocyte TG content and secretion by increasing the metabolic flux of carbons into cholesterol synthesis; and (2) common variation in NPC1 contributes to serum TG levels in humans.
Localization and role of NPC1L1 in cholesterol absorption in human intestine.
Sané, Alain Théophile; Sinnett, Daniel; Delvin, Edgard; Bendayan, Moise; Marcil, Valérie; Ménard, Daniel; Beaulieu, Jean-François; Levy, Emile
2006-10-01
Recent studies have documented the presence of Niemann-Pick C1-Like 1 (NPC1L1) in the small intestine and its capacity to transport cholesterol in mice and rats. The current investigation was undertaken to explore the localization and function of NPC1L1 in human enterocytes. Cell fractionation experiments revealed an NPC1L1 association with apical membrane of the enterocyte in human jejunum. Signal was also detected in lysosomes, endosomes, and mitochondria. Confirmation of cellular NPC1L1 distribution was obtained by immunocytochemistry. Knockdown of NPC1L1 caused a decline in the ability of Caco-2 cells to capture micellar [(14)C]free cholesterol. Furthermore, this NPC1L1 suppression resulted in increased and decreased mRNA levels and activity of HMG-CoA reductase, the rate-limiting step in cholesterol synthesis, and of ACAT, the key enzyme in cholesterol esterification, respectively. An increase was also noted in the transcriptional factor sterol-regulatory element binding protein that modulates cholesterol homeostasis. Efforts were devoted to define the impact of NPC1L1 knockdown on other mediators of cholesterol uptake. RT-PCR evidence is presented to show the significant decrease in the levels of scavenger receptor class B type I (SR-BI) with no changes in ABCA1, ABCG5, and cluster determinant 36 in NPC1L1-deficient Caco-2 cells. Together, our data suggest that NPC1L1 contributes to intestinal cholesterol homeostasis and possibly cooperates with SR-BI to mediate cholesterol absorption in humans.
Corral, Pablo; Schreier, Laura
2014-01-01
There is irrefutable evidence that statins reduce the risk of cardiovascular events in a magnitude proportional to the intensity of the decrease in cholesterol transport by the low density lipoproteins. Despite this great advance there is still a residual risk of cardiovascular events. For this reason, an increase in the levels of high density lipoprotein is considered in order to boost the main action of this lipoprotein, which is reverse cholesterol transport. Distinct classes of evidence (epidemiological, genetic, and pathophysiological) show that the inhibition and/or modulation of cholesterol ester transfer protein increases plasma high density lipoprotein-cholesterol levels. The main reason for presenting this review is to look at the physiology of cholesterol ester transfer protein, its interrelationship with high density lipoproteins, and to give an update on the development of different cholesterol ester transfer protein inhibitor/modulator molecules. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.
Wu, Tinghuai; Tian, Jane; Cutler, Roy G.; Telljohann, Richard S.; Bernlohr, David; Mattson, Mark P.; Handa, James T.
2010-01-01
To maintain normal retinal function, retinal pigment epithelial (RPE) cells engulf photoreceptor outer segments (ROS) enriched in free fatty acids (FFAs). We have previously demonstrated fatty acid-binding protein 5 (FABP5) down-regulation in the RPE/choroidal complex in a mouse model of aging and early age-related macular degeneration. FABPs are involved in intracellular transport of FFAs and their targeting to specific metabolic pathways. To elucidate the role of FABP5 in lipid metabolism, the production of the FABP5 protein in a human RPE cell line was inhibited using RNA interference technology. As a result, the levels of cholesterol and cholesterol ester were decreased by about 40%, whereas FFAs and triglycerides were increased by 18 and 67% after siRNA treatment, respectively. Some species of phospholipids were decreased in siRNA-treated cells. Cellular lipid droplets were evident and apoB secretion was decreased by 76% in these cells. Additionally, we discovered that ARPE-19 cells could synthesize and secrete Apolipoprotein B100 (apoB100), which may serve as a backbone structure for the formation of lipoprotein particles in these cells. Our results indicate that FABP5 mRNA knockdown results in the accumulation of cellular triglycerides, decreased cholesterol levels, and reduced secretion of apoB100 protein and lipoprotein-like particles. These observations indicated that FABP5 plays a critical role in lipid metabolism in RPE cells, suggesting that FABP5 down-regulation in the RPE/choroid complex in vivo might contribute to aging and early age-related macular degeneration. PMID:19434059
Pan, Yongming; Xu, Jianqin; Chen, Cheng; Chen, Fangming; Jin, Ping; Zhu, Keyan; Hu, Chenyue W; You, Mengmeng; Chen, Minli; Hu, Fuliang
2018-01-01
Alzheimer's disease (AD) is the most common form of dementia characterized by aggregation of amyloid β (Aβ) and neuronal loss. One of the risk factors for AD is high cholesterol levels, which are known to promote Aβ deposition. Previous studies have shown that royal jelly (RJ), a product of worker bees, has potential neuroprotective effects and can attenuate Aβ toxicity. However, little is known about how RJ regulates Aβ formation and its effects on cholesterol levels and neuronal metabolic activities. Here, we investigated whether RJ can reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in an AD rabbit model induced by 2% cholesterol diet plus copper drinking water. Our results suggest that RJ significantly reduced the levels of plasma total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C), and decreased the level of Aβ in rabbit brains. RJ was also shown to markedly ameliorate amyloid deposition in AD rabbits from Aβ immunohistochemistry and thioflavin-T staining. Furthermore, our study suggests that RJ can reduce the expression levels of β-site APP cleaving enzyme-1 (BACE1) and receptor for advanced glycation end products (RAGE), and increase the expression levels of low density lipoprotein receptor-related protein 1 (LRP-1) and insulin degrading enzyme (IDE). In addition, we found that RJ remarkably increased the number of neurons, enhanced antioxidant capacities, inhibited activated-capase-3 protein expression, and enhanced neuronal metabolic activities by increasing N-acetyl aspartate (NAA) and glutamate and by reducing choline and myo-inositol in AD rabbits. Taken together, our data demonstrated that RJ could reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in AD rabbits, providing preclinical evidence that RJ treatment has the potential to protect neurons and prevent AD.
Dietary oxidized linoleic acid lowers triglycerides via APOA5/APOClll dependent mechanisms
Garelnabi, Mahdi; Selvarajan, Krithika; Litvinov, Dmitry; Santanam, Nalini; Parthasarathy, Sampath
2008-01-01
Previously we have shown that intestinal cells efficiently take up oxidized fatty acids (OxFAs) and that atherosclerosis is increased when animals are fed a high cholesterol diet in the presence of oxidized linoleic acid. Interestingly, we found that in the absence of dietary cholesterol, the oxidized fatty acid fed low-density lipoprotein (LDL) receptor negative mice appeared to have lower plasma triglyceride (TG) levels as compared to animals fed oleic acid. In the present study, we fed C57BL6 mice a normal mice diet supplemented with oleic acid or oxidized linoleic acid (at 18 mg/animal/day) for 2 weeks. After the mice were sacrificed, we measured the plasma lipids and collected livers for the isolation of RNA. The results showed that while there were no significant changes in the levels of total cholesterol and high-density lipoprotein cholesterol (HDLc), there was a significant decrease (41.14%) in the levels of plasma TG in the mice that were fed oxidized fatty acids. The decreases in plasma TG levels were accompanied by significant increases (P < 0.001) in the expressions of APOA5 and acetyl-CoA oxidase genes as well as a significant (P < 0.04) decrease in APOClll gene expression. Oxidized lipids have been suggested to be ligands for peroxisome proliferator-activated receptor (PPARα). However, there were no increases in the mRNA or protein levels of PPARα in the oxidized linoleic acid fed animals. These results suggest that oxidized fatty acids may act through an APOA5/APOClll mechanism that contributes to lowering of TG levels other than PPARα induction. PMID:18243209
Lim, Jisun; Park, Hye Soon; Lee, Seul Ki; Jang, Yeon Jin; Lee, Yeon Ji; Heo, Yoonseok
2016-04-01
Bariatric surgery has beneficial effects on weight loss and metabolic profiles. Recent evidence suggests that liver-derived hepatokines play a role in the pathophysiology of metabolic diseases. However, few studies have reported longitudinal changes in hepatokines after gastric bypass surgery. We investigated changes in the serum levels of angiopoietin-like protein 6 (Angptl6) and selenoprotein P after gastric bypass surgery. We followed 10 patients who were treated with gastric bypass for weight loss. We measured metabolic parameters and the serum levels of Angptl6 and selenoprotein P before, 1 month after, and 9 months after surgery. We investigated the changes in those hepatokines after surgery and the associations between changes in Angptl6 and selenoprotein P, respectively, and metabolic parameters. Body mass index decreased linearly. Levels of hemoglobin A1c (HbA1c), aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyltransferase (GGT), total cholesterol, triglyceride, LDL cholesterol, and Angptl6 were significantly lower 1 and 9 months after surgery. Fasting plasma glucose was normal throughout the study. Fasting insulin decreased 1 month after surgery but increased 9 months post-surgery. Levels of selenoprotein P increased linearly. Significant correlations were detected between the levels of Angptl6 and LDL cholesterol and fasting insulin. Changes in Angptl6 levels were significantly correlated with changes in total cholesterol and LDL cholesterol. Selenoprotein P levels were inversely correlated with GGT, and changes in selenoprotein P were inversely correlated with changes in homeostasis model assessment for insulin resistance (HOMA-IR). Our results suggest that gastric bypass may alter the serum levels of hepatokines independent of weight loss, and these changes are related to certain hepatic metabolic changes.
Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in diet-induced obese mice.
Song, M; Park, S; Lee, H; Min, B; Jung, S; Park, S; Kim, E; Oh, S
2015-03-01
We investigated the probiotic properties of Lactobacillus acidophilus NS1, such as acid resistance, bile tolerance, adherence to HT-29 cells, and cholesterol assimilation activity. In an animal study, 7-wk-old male C57BL/6 mice were fed a normal diet, a high-fat diet (HFD), or an HFD with L. acidophilus NS1 (ca. 1.0×10(8) cfu/mL) for 10 wk. Total cholesterol and low-density lipoprotein (LDL) cholesterol levels were significantly lower in mice fed an HFD with L. acidophilus NS1 than in those fed an HFD only, whereas high-density lipoprotein cholesterol levels were similar between these 2 groups. To understand the mechanism of the cholesterol-lowering effect of L. acidophilus NS1 on the HFD-mediated increase in plasma cholesterol levels, we determined mRNA levels of genes involved in cholesterol homeostasis in the liver. Expression of sterol regulatory element-binding protein 2 (Srebp2) and LDL receptor (Ldlr) in the liver was dramatically reduced in mice fed a HFD compared with those fed a normal diet. When L. acidophilus NS1 was administered orally to HFD-fed mice, an HFD-induced suppression of Srebp2 and Ldlr expression in the liver was abolished. These results suggest that the oral administration of L. acidophilus NS1 to mice fed an HFD increased the expression of Srebp2 and Ldlr in the liver, which was inhibited by high fat intake, thus leading to a decrease in plasma cholesterol levels. Lactobacillus acidophilus NS1 could be a useful probiotic microorganism for cholesterol-lowering dairy products and the improvement of hyperlipidemia and hepatic lipid metabolism. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C; Brown, Andrew J; Sandoval, Cecilia; Hallab, Jeannette C; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard
2014-03-14
The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes.
Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C.; Brown, Andrew J.; Sandoval, Cecilia; Hallab, Jeannette C.; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard
2014-01-01
The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes. PMID:24500716
Pande, S.; Platel, K.; Srinivasan, K.
2012-01-01
Background & objectives: Cluster beans (Cyamopsis tetragonoloba) are rich source of soluble fibre content and are known for their cholesterol lowering effect. The beneficial anti-hypercholesterolaemic effect of whole dietary cluster beans as a source of dietary fibre was evaluated in high cholesterol diet induced hypercholesterolaemia in experimental rats. Methods: Male Wistar rats (90-95 g) divided in six groups of 10 rats each were used. Freeze dried tender cluster beans were included at 12.5 and 25 per cent levels in the diet of animals maintained for 8 wk either on high (0.5%) cholesterol diet or basal control diet. Results: Significant anti-hypercholesterolaemic effect was seen in cluster bean fed animals, the decrease in serum cholesterol being particularly in the LDL associated fraction. There was also a beneficial increase in HDL associated cholesterol fraction. Hepatic lipid profile showed a significant decrease in both cholesterol and triglycerides as a result of feeding tender cluster beans along with high cholesterol diet. Interpretation & Conclusions: The present experimental results showed the beneficial hypocholesterolaemic and hypolipidimic influences dietary tender cluster beans in atherogenic situation. Studies in human need to be done to confirm the results. PMID:22561629
Al Mamun, Abdullah; Hashimoto, Michio; Katakura, Masanori; Tanabe, Yoko; Tsuchikura, Satoru; Hossain, Shahdat; Shido, Osamu
2017-01-01
The effects of cholesterol-lowering statins, which substantially benefit future cardiovascular events, on fatty acid metabolism have remained largely obscured. In this study, we investigated the effects of atorvastatin on fatty acid metabolism together with the effects of TAK-085 containing highly purified eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ethyl ester on atorvastatin-induced n-3 polyunsaturated fatty acid lowering in SHR.Cg-Lepr cp /NDmcr (SHRcp) rats, as a metabolic syndrome model. Supplementation with 10mg/kg body weight/day of atorvastatin for 17 weeks significantly decreased plasma total cholesterol and very low density lipoprotein cholesterol. Atorvastatin alone caused a subtle change in fatty acid composition particularly of EPA and DHA in the plasma, liver or erythrocyte membranes. However, the TAK-085 consistently increased both the levels of EPA and DHA in the plasma, liver and erythrocyte membranes. After confirming the reduction of plasma total cholesterol, 300mg/kg body weight/day of TAK-085 was continuously administered for another 6 weeks. Supplementation with TAK-085 did not decrease plasma total cholesterol but significantly increased the EPA and DHA levels in both the plasma and liver compared with rats administered atorvastatin only. Supplementation with atorvastatin alone significantly decreased sterol regulatory element-binding protein-1c, Δ5- and Δ6-desaturases, elongase-5, and stearoyl-coenzyme A (CoA) desaturase-2 levels and increased 3-hydroxy-3-methylglutaryl-CoA reductase mRNA expression in the liver compared with control rats. TAK-085 supplementation significantly increased stearoyl-CoA desaturase-2 mRNA expression. These results suggest that long-term supplementation with atorvastatin decreases the EPA and DHA levels by inhibiting the desaturation and elongation of n-3 fatty acid metabolism, while TAK-085 supplementation effectively replenishes this effect in SHRcp rat liver. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Horák, Daniel; Beneš, Milan; Procházková, Zuzana; Trchová, Miroslava; Borysov, Arsenii; Pastukhov, Artem; Paliienko, Konstantin; Borisova, Tatiana
2017-01-01
Changes in cholesterol concentration in the plasma membrane of presynaptic nerve terminals nonspecifically modulate glutamate transport and homeostasis in the central nervous system. Reduction of the cholesterol content in isolated rat brain nerve terminals (synaptosomes) using cholesterol-depleting agents decreases the glutamate uptake and increases the extracellular level of glutamate in nerve terminals. Extraction of cholesterol from the plasma membrane and its further removal from the synaptosomes by external magnetic field can be achieved by means of magnetic nanoparticles with immobilized cholesterol-depleting agent such as O-methyl-β-cyclodextrin (MCD). A simple approach is developed for preparation of maghemite (γ-Fe 2 O 3 ) nanoparticles containing chemically bonded MCD. The method is based on preparation of a silanization agent containing MCD. It is synthesized by the reaction of triethoxy(3-isocyanatopropyl)silane with MCD. Base-catalyzed silanization of superparamagnetic γ-Fe 2 O 3 provides a relatively stable colloid product containing 48μmol of MCDg -1 . MCD-modified γ-Fe 2 O 3 nanoparticles decrease the initial rate of the uptake and accumulation of l-[ 14 C]glutamate and increase the extracellular l-[ 14 C]glutamate level in the preparation of nerve terminals. The effect of MCD-immobilized nanoparticles is the same as that of MCD solution; moreover, magnetic manipulation of the nanoparticles enables removal of bonded cholesterol. Copyright © 2016 Elsevier B.V. All rights reserved.
Koppel, Kristina; Bratt, Göran; Schulman, Sam; Bylund, Håkan; Sandström, Eric
2002-04-15
Decreased insulin sensitivity, hyperlipidemia, and body fat changes are considered as risk factors for coronary heart disease (CHD). A clustering of such factors (metabolic syndrome [MSDR]) exponentially increases the risk. Impaired fibrinolysis and increased coagulation are additional independent risk factors for CHD. We studied the effects of protease inhibitor (PI)-containing highly active antiretroviral therapy (HAART) on metabolic and hemostatic parameters in 363 HIV-infected individuals, of whom 266 were receiving PI-containing HAART and 97 were treatment naive. The fasting plasma levels of insulin, glucose, triglycerides, cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, plasminogen activator inhibitor type 1 (PAI-1), and fibrinogen were evaluated together with the areas of visceral adipose tissue and the visceral adipose tissue/subcutaneous adipose tissue area ratio. The levels of insulin, triglycerides, cholesterol, and low-density lipoprotein cholesterol; visceral adipose tissue area; low-density lipoprotein/high-density lipoprotein ratio; and visceral adipose tissue/subcutaneous adipose tissue area ratio were significantly increased in patients receiving PI-containing HAART compared with treatment-naive patients. The levels of PAI-1 and fibrinogen were significantly higher in patients receiving PI-containing HAART. PAI-1 levels were higher in individuals with MSDR but also in patients without MSDR who were receiving PI-containing HAART. PAI-1 was independently correlated to use of PI-containing HAART, triglyceride level, insulin level, and body mass index (p <.001). These findings suggest that patients receiving PI-containing HAART have decreased fibrinolysis and increased coagulability, which may thus represent additional risk factors for cardiovascular disease in this patient group.
Gottsäter, A; Anwaar, I; Lind, P; Mattiasson, I; Lindgärde, F
1999-04-01
Lipid-lowering statin treatment reduces cardiovascular morbidity and mortality and improves endothelial function in patients with hypercholesterolemia. The aim of the present study was to evaluate plasma levels of fibrinogen, factor VII, and the macrophage-derived inflammatory mediator neopterin during lipid lowering. In addition, the endothelial production of platelet antiaggregatory and vasodilatory factors such as nitric oxide and prostacyclin, and vasoconstrictive factors such as endothelin-1, was assessed. Plasma fibrinogen, factor VII, endothelin-1, and the neopterin and intraplatelet nitric oxide and prostacyclin mediators cyclic 3'-5'guanosine monophosphate (cGMP) and cyclic 3'-5'adenosine monophosphate (cAMP) were measured before and 6 months after the institution of treatment with fluvastatin in 17 patients (eight men and nine women, median age 60 years) with vascular disease and previously untreated hypercholesterolemia. After 6 months, a decrease of 1.62 mmol/l [1.26-2.18 (19%); P < 0.01] was noted in levels of total cholesterol, and a decrease of 1.70 mmol/l [1.52-2.30 (28%); P < 0.01] in levels of low-density lipoprotein cholesterol. Plasma levels of fibrinogen had increased [from 4.81 g/l (4.26-5.27) to 5.17 g/l (4.81-5.67); P < 0.05], whereas no significant changes had occurred in intraplatelet levels of cGMP [decrease by 0.05 pmol/10(9) platelets (-0.17 to 0.24); NS], cAMP [decrease by 0.13 pmol/10(9) platelets (-0.37 to 0.86); NS], plasma endothelin-1 [decrease by 0.05 pg/ml (-0.60 to 0.70); NS], plasma factor VII [from 1.14 IE/ml (0.58-1.38) to 1.22 IE/ml (0.96-1.46); NS], or plasma neopterin [from 8.6 nmol/l (7.1-11.5) to 8.7 nmol/l (7.9-11.3); NS]. In conclusion, during cholesterol-lowering treatment with fluvastatin, plasma levels of fibrinogen increased whereas intraplatelet cyclic nucleotide levels and plasma endothelin-1, factor VII and neopterin levels were unchanged.
Lee, Jae-Joon; Lee, Hyun-Joo; Oh, Seon-Woo
2017-01-01
This study was performed to investigate the effects of Crataegi fructus ethanol extracts (CFEEs) on the differentiation of 3T3-L1 cells, and to evaluate the effects of C. fructus powder (CFP) on lipid metabolism and its antiobesity effect in rats fed a high-fat and high-cholesterol (HFC) diet. Both in vitro and in vivo studies were performed for physiological activity and antiobesity effects on the serum, liver, and adipose tissues in obesity-induced rats. CFEEs showed significant inhibitory action on differentiation and triglyceride (TG) accumulation in 3T3-L1 mature cells in a dose-dependent manner. Subcutaneous, mesenteric, epididymal, and total adipose tissue weights of HFC diet group were heavier than those of normal diet (N) group, whereas those of groups fed CFP were significantly decreased. Levels of serum TGs, total cholesterol (TC), and low-density lipoprotein cholesterol were significantly decreased in the CFP groups than in the HFC group, whereas the serum high-density lipoprotein cholesterol level decreased in the HFC group and markedly increased in the CFP groups. TC and TG levels in the liver and adipose tissues were significantly lower in CFP groups than in the HFC groups. In addition, feeding with CFP significantly reduced the occurrence of fatty liver deposits and steatosis, and inhibited an HFC diet-induced increase in adipocyte size. These results suggest that C. fructus may improve lipid metabolism in the serum, liver, and adipose tissue, and may potentially reduce lipid storage.
da Graça Cantarelli, Maria; Nardin, Patrícia; Buffon, Andréia; Eidt, Murilo Castilhos; Antônio Godoy, Luiz; Fernandes, Brisa S; Gonçalves, Carlos-Alberto
2015-02-01
Many peripheral biomarkers, including low cholesterol and its fractions, have been examined to identify suicidal behavior. Herein, we assessed serum lipid profile and some proteins putatively associated with suicidal behavior in subjects with mood disorder (bipolar disorder or major depressive disorder) with a recent suicide attempt and with no lifetime history of suicide attempts. Fifty subjects had presented an episode of attempted suicide during the last 15 days, and 36 subjects had no history of any suicide attempt. We measured total cholesterol, HDL, LDL and triglycerides as well as serum leptin, brain-derived neurotrophic factor (BDNF), S100B and C-reactive protein (CRP). Individuals that had attempted suicide presented decreased body mass index (BMI) and waist circumference. After adjusting for these confounders, we found that triglycerides were decreased in attempted suicide subjects. We found no differences among total cholesterol, LDL, and HDL or leptin, S100B, CRP and BDNF. This is a cross-sectional study, and we cannot therefore assess whether a decrease in triglycerides caused a mood episode with suicidal ideation that led to a suicide attempt or if the presence of a mood episode originated a loss of appetite and consequent loss of weight, therefore decreasing triglyceride levels. These results do not support the hypothesis that lower levels of cholesterol are associated with suicidal behavior in a mood disorder sample. However, our data support the idea that adiposity is differentiated in these patients (reduced BMI, waist circumference and serum triglycerides), which could lead to an altered communication between the adipose tissue and brain. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
The effect of sauna bathing on lipid profile in young, physically active, male subjects.
Gryka, Dorota; Pilch, Wanda; Szarek, Marta; Szygula, Zbigniew; Tota, Łukasz
2014-08-01
The aim of the study was to evaluate effects of Finnish sauna bathing on lipid profile in healthy, young men. Sixteen male subjects (20-23 years) were subjected to 10 sauna bathing sessions in a Finnish sauna every 1 or 2 days. The mean sauna temperature was 90±2°C, while humidity was 5-16%. Each session consisted of three 15-minute parts and a 2-minute cool-down between them. The following measurements were taken before and after the sauna sessions: body mass, heart rate, body skinfold thickness. The percentage fat content and then, the lean body mass were calculated. Total cholesterol, triacylglycerols, lipoprotein cholesterol LDL and HDL were measured in blood samples. A statistically significant decrease of total cholesterol and LDL cholesterol was observed during 3 weeks of sauna treatment and in the week afterwards. A significant decline in triacylglycerols was found directly after the 1st and 24 h directly after the 10th sauna session. After the 10th sauna session the level of HDL cholesterol remained slightly increased, but this change was not statistically significant. A decrease in blood plasma volume was found directly after the 1st and the last sauna bathing session due to perspiration. An adaptive increase in blood plasma volume was also found after the series of 10 sauna sessions. Ten complete sauna bathing sessions in a Finnish sauna caused a reduction in total cholesterol and LDL cholesterol fraction levels during the sessions and a gradual return of these levels to the initial level during the 1st and the 2nd week after the experiment. A small, statistically insignificant increase in HDL-C level and a transient decline in triacylglycerols were observed after those sauna sessions. The positive effect of sauna on lipid profile is similar to the effect that can be obtained through a moderate-intensity physical exercise.
Zhu, Ru-Gang; Sun, Yan-Di; Li, Tuo-Ping; Chen, Gang; Peng, Xue; Duan, Wen-Bin; Zheng, Zheng-Zheng; Shi, Shu-Lei; Xu, Jing-Guo; Liu, Yan-Hua; Jin, Xiao-Yi
2015-08-05
This study aims to compare the effects of feeding haw pectin (HP), haw pectin hydrolyzates (HPH), and haw pectin pentasaccharide (HPPS) on the cholesterol metabolism of hypercholesterolemic hamsters induced by high-cholesterol diets. The animals were fed a standard diet (SD), high-cholesterol diet (HCD), or HCD plus HP, HPH, or HPPS at a dose of 300mg/kg body weight for 4weeks. Results showed that HPPS was more effective than HP and HPH in decreasing the body weight gain (by 38.2%), liver weight (by 16.4%), and plasma and hepatic total cholesterol (TC; by 23.6% and 27.3%, respectively) of hamsters. In addition, the bile acid levels in the feces were significantly higher by 39.8% and 132.8% in the HPH and HPPS groups than in the HCD group. Such changes were not noted in the HP group. However, the HP group had higher cholesterol excretion capacities than the HPH and HPPS groups by inhibiting cholesterol absorption in the diet, with a 21.7% increase in TC excretion and a 31.1% decrease in TC absorption. Thus, HPPS could be a promising anti-atherogenic dietary ingredient for the development of functional food to improve cholesterol metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Li, Xing; Tang, Hailin; Wang, Jin; Xie, Xinhua; Liu, Peng; Kong, Yanan; Ye, Feng; Shuang, Zeyu; Xie, Zeming; Xie, Xiaoming
2017-04-01
Although dyslipidemia has been documented to be associated with several types of cancer including breast cancer, it remains uncertainty the prognostic value of serum lipid in breast cancer. The purpose of this study is to evaluate the association between the preoperative plasma lipid profile and the prognostic of breast cancer patients. The levels of preoperative serum lipid profile (including cholesterol [CHO], Triglycerides [TG], high-density lipoprotein-cholesterol [HDL-C], low-density lipoprotein-cholesterol [LDL-C], apolipoprotein A-I [ApoAI], and apolipoprotein B [ApoB]) and the clinical data were retrospectively collected and reviewed in 1044 breast cancer patients undergoing operation. Kaplan-Meier method and the Cox proportional hazards regression model were used in analyzing the overall survival [OS] and disease-free survival [DFS]. Combining the receiver-operating characteristic and Kaplan-Meier analysis, we found that preoperative lower TG and HDL-C level were risk factors of breast cancer patients. In multivariate analyses, a decreased HDL-C level showed significant association with worse OS (HR: 0.528; 95% CI: 0.302-0.923; P = 0.025), whereas a decreased TG level showed significant association with worse DFS (HR: 0.569; 95% CI: 0.370-0.873; P = 0.010). Preoperative serum levels of TG and HDL-C may be independent factor to predict outcome in breast cancer patient. Copyright © 2016 Elsevier Ltd. All rights reserved.
2013-01-01
Background Studies in animals showed that PCSK9 is involved in HDL metabolism. We investigated the molecular mechanism by which PCSK9 regulates HDL cholesterol concentration and also whether Pcsk9 inactivation might affect cholesterol efflux capacity of serum and atherosclerotic fatty streak volume. Methods Mass spectrometry and western blot were used to analyze the level of apolipoprotein E (APOE) and A1 (APOA1). A mouse model overexpressing human LDLR was used to test the effect of high levels of liver LDLR on the concentration of HDL cholesterol and APOE-containing HDL subfractions. Pcsk9 knockout males lacking LDLR and APOE were used to test whether LDLR and APOE are necessary for PCSK9-mediated HDL cholesterol regulation. We also investigated the effects of Pcsk9 inactivation on cholesterol efflux capacity of serum using THP-1 and J774.A1 macrophage foam cells and atherosclerotic fatty streak volume in the aortic sinus of Pcsk9 knockout males fed an atherogenic diet. Results APOE and APOA1 were reduced in the same HDL subfractions of Pcsk9 knockout and human LDLR transgenic male mice. In Pcsk9/Ldlr double-knockout mice, HDL cholesterol concentration was lower than in Ldlr knockout mice and higher than in wild-type controls. In Pcsk9/Apoe double-knockout mice, HDL cholesterol concentration was similar to that of Apoe knockout males. In Pcsk9 knockout males, THP-1 macrophage cholesterol efflux capacity of serum was reduced and the fatty streak lesion volume was similar to wild-type controls. Conclusions In mice, LDLR and APOE are important factors for PCSK9-mediated HDL regulation. Our data suggest that, although LDLR plays a major role in PCSK9-mediated regulation of HDL cholesterol concentration, it is not the only mechanism and that, regardless of mechanism, APOE is essential. Pcsk9 inactivation decreases the HDL cholesterol concentration and cholesterol efflux capacity in serum, but does not increase atherosclerotic fatty streak volume. PMID:23883163
Lipid profile in oral submucous fibrosis.
Mehrotra, Ravi; Pandya, Shruti; Chaudhary, Ajay Kumar; Singh, Himanshu Pratap; Jaiswal, Ritesh Kumar; Singh, Mangal; Gupta, S C; Singh, Mamta
2009-07-24
Changes in lipid profile have long been associated with malignancies as lipids play a key role in maintenance of cell integrity. This study evaluated the alterations in extended lipid profile in untreated patients of oral submucous fibrosis (OSMF) and studied the correlation between lipid levels with tobacco consumption. In this hospital-based study, 65 clinically diagnosed and histopathologically proven patients of OSMF and 42 age and sex matched controls were studied. In these samples serum lipids including: (i) Total cholesterol, (ii) LDL cholesterol (LDLC), (iii) HDL cholesterol (HDLC) (iv) VLDL cholesterol (VLDLC) (v) triglycerides (vi) Apo-A1 (viii) Apo-B and (viii) LPa were analyzed. A significant decrease in plasma total cholesterol, HDLC and Apo-A1 was observed in patients with OSMF as compared to the controls. Thus an inverse relationship between plasma lipid levels and patients was found in OSMF. The lower levels of plasma cholesterol and other lipid constituents in patients might be due to their increased utilization. The findings strongly warrant an in-depth study of alterations in plasma lipid profile in patients with oral precancerous conditions.
Impact of a public cholesterol screening program.
Fischer, P M; Guinan, K H; Burke, J J; Karp, W B; Richards, J W
1990-12-01
The National Cholesterol Education Program (NCEP) has endorsed physician case finding as the primary method to detect individuals with elevated cholesterol levels. Despite this recommendation, promotional and for-profit public screening programs have flourished. We surveyed participants of a mall-based cholesterol screening program 1 year after their screening. Sixty-four percent of those screened had not previously known their cholesterol levels. Those who were newly screened were less likely to benefit from this testing than the general public, since they were older (mean age, 55.3 years), more likely to be female (67.4%), and nonsmokers (88%). Screenees had excellent recall of their cholesterol level (mean absolute reporting error, 0.24 mmol/L [9 mg/dL]) and a good understanding of cholesterol as a coronary heart disease risk. Those with elevated cholesterol levels reported high distress from screening but no reduction in overall psychosocial well-being and an actual decrease in absenteeism. Only 53.7% of all who were advised to seek follow-up because of an elevated screening value had done so within the year following the screening program. However, of those with values greater than 6.2 mmol/L (240 mg/dL), 68% had sought follow-up. Many of those who participate in public screening programs have been previously tested, fall into low-benefit groups, or fail to comply with recommended follow-up. We therefore conclude that cholesterol screening programs of the type now commonly offered are unlikely to contribute greatly to the national efforts to further reduce coronary heart disease.
2013-01-01
Background Because of the absorption of glucose in peritoneal dialysis (PD) solution, PD patients show an atherogenic lipid profile, which is predictive of poor survival in PD patients. Lipoprotein subclasses consist of a continuous spectrum of particles of different sizes and densities (fraction). In this study, we investigated the lipoprotein fractions in PD patients with controlled serum low-density lipoprotein (LDL) cholesterol level, and evaluated the effects of icodextrin on lipid metabolism. Methods Forty-nine PD patients were enrolled in this cross-sectional study in Japan. The proportions of cholesterol levels to total cholesterol level (cholesterol proportion) in 20 lipoprotein fractions were measured using an improved method of high-performance gel permeation chromatography (HPGPC). Results Twenty-six patients used icodextrin. Although no significant differences in cholesterol levels in LDL and high-density lipoprotein (HDL) were observed between the patients using icodextrin (icodextrin group) and control groups, HPGPC showed that the icodextrin group had significantly lower cholesterol proportions in the small LDL (t-test, p=0.053) and very small LDL (p=0.019), and significantly higher cholesterol proportions in the very large HDL and large HDL than the control group (p=0.037; p=0.066, respectively). Multivariate analysis adjusted for patient characteristics and statin use showed that icodextrin use was negatively associated with the cholesterol proportions in the small LDL (p=0.037) and very small LDL (p=0.026), and positively with those in the very large HDL (p=0.040), large HDL (p=0.047), and medium HDL (p=0.009). Conclusions HPGPC showed the relationship between icodextrin use and the cholesterol proportions in lipoprotein fractions in PD patients. These results suggest that icodextrin may improve atherogenic lipid profiles in a manner different from statin. PMID:24161017
Strategies for increasing house staff management of cholesterol with inpatients.
Boekeloo, B O; Becker, D M; Levine, D M; Belitsos, P C; Pearson, T A
1990-01-01
This study tested the effectiveness of two conceptually different chart audit-based approaches to modifying physicians' clinical practices to conform with quality-assurance standards. The objective was to increase intern utilization of cholesterol management opportunities in the inpatient setting. Using a clinical trial study design, 29 internal medicine interns were randomly assigned to four intervention groups identified by the intervention they received: control, reminder checklists (checklists), patient-specific feedback (feedback), or both interventions (combined). Over a nine-month period, intern management of high blood cholesterol levels in internal medicine inpatients (n = 459) was monitored by postdischarge chart audit. During both a baseline and subsequent intervention period, interns documented significantly more cholesterol management for inpatients with coronary artery disease (CAD) than without CAD. During baseline, 27.3%, 24.3%, 21.7%, 12.4%, 5.4%, and 2.7% of all inpatient charts had intern documentation concerning a low-fat hospital diet, cholesterol history, screening blood cholesterol level assessment, follow-up lipid profile, nutritionist consult, and preventive cardiology consult, respectively. The feedback intervention significantly increased overall intern-documented cholesterol management among inpatients with CAD. The checklists significantly decreased overall intern-documented cholesterol management. Feedback appears to be an effective approach to increasing intern cholesterol management in inpatients.
XIAO, YANG; LI, LAI-LAI; WANG, YAN-YAN; GUO, JING-JING; XU, WEN-PING; WANG, YAN-YAN; WANG, YI
2014-01-01
This study investigated the effects of naringin on platelet aggregation and release in hyperlipidemic rabbits, and the underlying mechanisms. The safety of naringin was also investigated. The rabbits were orally administered 60, 30 or 15 mg/kg of naringin once a day for 14 days after being fed a high fat/cholesterol diet for four weeks. Following the two weeks of drug administration, the degree of platelet aggregation induced by arachidonic acid, adenosine diphosphate and collagen was significantly reduced by naringin at certain doses compared with those in the rabbits of the model group (P<0.01). The levels of P-selectin and platelet factor 4 (PF4) also decreased following treatment with naringin compared with those of the model group. Certain doses of naringin significantly reduced the total cholesterol (TC) levels and elevated the ratio of high-density lipoprotein cholesterol to TC compared with those in the model group, and significantly decreased the cytosolic free calcium concentration ([Ca2+]i). No significant difference in the coagulation function was observed between the control and drug-treatment groups. These results indicate that naringin improved platelet aggregation and inhibited the excessive release of P-selectin and PF4 in hyperlipidemic rabbits. This study suggests that the antiplatelet effect of naringin may be due to its ability to regulate the levels of blood cholesterol and [Ca2+]i in platelets. Naringin also did not cause bleeding in the hyperlipidemic rabbits. PMID:25120631
Ullrich, I H; Albrink, M J
1982-07-01
Eight healthy young men were fed a 72% carbohydrate high starch diet either high or low in dietary fiber for 4 days in a double cross-over design. Both groups showed a slight transient increase in plasma triglyceride level and a decrease in total and high-density lipoprotein cholesterol. There were few differences in glucose and insulin levels after glucose and meal tolerance tests after each diet. Fasting triglycerides and high-density lipoprotein cholesterol were inversely related at base-line; insulin response to oral glucose was inversely related to high-density lipoprotein cholesterol levels at the end of the study. We conclude that a high carbohydrate high starch diet, whether high or low in fiber, caused little increase in triglycerides, with little difference between the high and low fiber diets. Dietary fiber did not influence the fall in plasma cholesterol or high-density lipoprotein cholesterol concentrations over and above that seen after the low fiber diet.
Goto, Moritaka; Furuta, Shinji; Yamashita, Satoko; Hashimoto, Hiroyuki; Yano, Wataru; Inoue, Noriyuki; Kato, Noriaki; Kaku, Kohei
2018-05-13
Recent data showed that DPP-4 inhibitors exert a lipid-lowering effect in diabetic patients. However, the mechanism of action is not yet clearly understood. We investigated the effect of anagliptin on cholesterol metabolism and transport in the small intestine using non-diabetic hyperlipidemic animals, to clarify the mechanisms underlying the cholesterol-lowering action. Male ApoE-deficient mice were orally administered anagliptin in the normal chow. Serum cholesterol levels and lipoprotein profiles were measured, and cholesterol transport was assessed by measuring the radioactivity in the tissues after oral loading of 14 C-labeled cholesterol ( 14 C-Chol). In additional experiments, effects of exendin-4 in mice and of anagliptin in DPP-4-deficient rats were assessed. Effect on target gene expressions in the intestine were analyzed by qPCR in normal mice. The serum total and non-HDL cholesterol concentrations decreased after anagliptin treatment in the ApoE-deficient mice. The cholesterol-lowering effect was predominantly observed in the chylomicron fraction. The plasma 14 C-Chol radioactivity was significantly decreased by 26% at 2 hours after cholesterol loading, and the fecal 14 C-Chol excretion was significantly increased by 38% at 72 hours. The aforementioned effects on cholesterol transport were abrogated in rats lacking DPP-4 activity, and exendin-4 had no effect on the 14 C-Chol transport in ApoE-deficient mice. Furthermore, significant decreases of the intestinal cholesterol transport related MTTP, ACAT2, ApoA2 and ApoC2 mRNA expressions were observed in the mice treated with repeated doses of anagliptin. These findings suggest that anagliptin may exert a cholesterol-lowering action via DPP-4-dependent and GLP-1-independent suppression of intestinal cholesterol transport. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
de Luis, D A; Aller, R; Izaola, O; Gonzalez Sagrado, M; Conde, R
2010-01-01
The aim of our study was to examine the changes in hypertransaminasemia after weight reduction in obese patients with and without NAFLD and the relation with insulin resistance. A population of 162 obese patients was randomly allocated to two groups: a) diet I (low fat) and b) diet II (low carbohydrate), dieting along 3 months. Patients were classified as group I (n=112) when serum ALT activity was normal or group II (NAFLD, n=30) when serum ALT activity was (>or=43 UI/L). In control group with diet I, BMI, weight, fat mass, waist to hip ratio, waist circumference, systolic pressure, total cholesterol, LDL cholesterol, HOMA and insulin levels decreased. In NAFLD group with diet I improved the same parameters and glucose, triglycerides, ALT, AST, gamaglutamine transferase levels, too. In control group with diet II, BMI, weight, fat mass, waist to hip ratio, waist circumference, systolic pressure, total cholesterol, LDL cholesterol, HOMA and insulin levels decreased. In NAFLD group with diet II improved the same parameters and glucose, triglycerides, ALT and gamaglutamine transferase levels, without statistical changes in AST. We showed that weight reduction secondary to two hypocaloric diets was associated with improvement in hipertransaminasemia and insulin resistance in NAFLD patients.
Kariv-Inbal, Zehavit; Yacobson, Shiri; Berkecz, Robert; Peter, Maria; Janaky, Tamas; Lütjohann, Dieter; Broersen, Laus M; Hartmann, Tobias; Michaelson, Daniel M
2012-01-01
Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease (AD). Epidemiological studies revealed that consumption of docosahexaenoic acid (DHA: 22 : 6 (ω3)), a major brain polyunsaturated fatty acid, is protective for AD and that elevated cholesterol levels are an AD risk factor. We presently investigated the extent to which the pathological effects of apoE4 in vivo can be prevented by consuming fish oil (DHA) or can be modified by cholesterol. Accordingly, apoE3- and apoE4-targeted replacement mice were subjected, following weaning, to a fish oil diet enriched in DHA and to a cholesterol-containing diet under regular and enriched environments. Cholesterol metabolism in the hippocampus and the corresponding phospholipid and fatty acid levels were affected by fish oil (DHA) and cholesterol diets and by environmental stimulation. Importantly, cholesterol metabolism and the fatty acid levels were not affected by apoE4. The phospholipid levels were, however, affected by apoE4. This effect was most pronounced in the cholesterol-fed mice and was abolished by the fish oil (DHA) diet. ApoE4 elevated hippocampal intraneuronal amyloid-β levels under regular conditions and lowered them following environmental stimulation, relative to those of the apoE3 mice. ApoE4 also elevated the levels of the presynaptic transporters Vglut and Vgat, and decreased behavioral performance in an object recognition test. Importantly, all of these apoE4 phenotypes were abolished by the fish oil (DHA) diet, whereas the cholesterol diet modified them. These findings suggest that a fish oil (DHA) diet could be used to attenuate the effects of apoE4 in AD.
Albrink, M J; Ullrich, I H
1986-03-01
High sucrose diets may cause increased serum triglycerides and decreased high density lipoprotein concentration. To determine whether dietary fiber protects against these effects, four groups of six healthy young men were assigned to one of four very high carbohydrate diets providing 0, 18, 36, or 52% of calories as sucrose. Each diet was fed in both low (less than 14 g) and high (greater than 34 g) levels of dietary fiber for 10 days each. Triglycerides increased during the 36 and 52% sucrose diets compared to 0 and 18% sucrose diets, and fiber protected partially against this rise. Serum cholesterol and LDL cholesterol were lower during the 0 and 18% sucrose diets than the 36 or 52% sucrose diets but fiber had no effect. HDL cholesterol decreased during all low fat diets, with a trend toward a greater decrease during the high sucrose diets. The results suggest that fiber protects against carbohydrate-induced lipemia but has no effect on cholesterol during very high carbohydrate diets.
Gasparotto, Francielly Mourão; Lívero, Francislaine Aparecida Dos Reis; Palozi, Rhanany Allan Caloi; Ames, Maria Leticia; Nunes, Bruna; Donadel, Guilherme; Ribeiro, Rita de Cassia Lima; Lourenço, Emerson Luiz Botelho; Kassuya, Cândida Aparecida Leite; Junior, Arquimedes Gasparotto
2018-06-21
Excess weight and dyslipidemia are among the most serious health problems in Western societies. These conditions enhance the risk of cardiac disease and have been linked with a higher prevalence of cardiac arrhythmias and sudden death. The present study investigated the cardioprotective effects of Echinodorus grandiflorus on ventricular remodeling in rabbits that were fed a 1% cholesterol-rich diet. We first obtained an ethanol-soluble fraction of E. grandiflorus and performed a detailed phytochemical study by liquid chromatography-DAD/ESI-MS. For 60 days, male rabbits were fed the cholesterol-rich diet or a diet without the addition of cholesterol. After 30 days, different groups of rabbits were treated with the ethanol-soluble fraction of E. grandiflorus (10, 30, and 100 mg/kg, p. o.), simvastatin (2.5 mg/kg), or vehicle once daily for 30 days. At the end of 60 days, the serum lipoprotein ratio, electrocardiographic profile, histopathological alterations, and the cardiac antioxidant defense system were investigated. Echocardiographic analysis showed morphological and functional alterations in cholesterol-rich diet-fed animals, indicating left ventricle hypertrophy. The total cholesterol/high-density lipoprotein ratio and low-density lipoprotein/high-density lipoprotein ratio were significantly higher in cholesterol-rich diet-fed rabbits. Myocardial flaccidity, fatty degeneration, and concentric left ventricular hypertrophy were observed. An increase in lipid peroxidation levels, a decrease in superoxide dismutase activity, and a decrease in reduced glutathione levels were observed in the myocardium of all cholesterol-rich diet-fed rabbits. Treatment with the ethanol-soluble fraction of E. grandiflorus , especially the highest dose, significantly reduced all of these alterations, thus demonstrating the cardioprotective effect of the ethanol-soluble fraction of E. grandiflorus on cardiac changes that are induced by a cholesterol-rich diet. Georg Thieme Verlag KG Stuttgart · New York.
Delgado-Ramírez, Mayra; Sánchez-Armass, Sergio; Meza, Ulises; Rodríguez-Menchaca, Aldo A
2018-05-01
Kv7.2/Kv7.3 channels are the molecular correlate of the M-current, which stabilizes the membrane potential and controls neuronal excitability. Previous studies have shown the relevance of plasma membrane lipids on both M-currents and Kv7.2/Kv7.3 channels. Here, we report the sensitive modulation of Kv7.2/Kv7.3 channels by membrane cholesterol level. Kv7.2/Kv7.3 channels transiently expressed in HEK-293 cells were significantly inhibited by decreasing the cholesterol level in the plasma membrane by three different pharmacological strategies: methyl-β-cyclodextrin (MβCD), Filipin III, and cholesterol oxidase treatment. Surprisingly, Kv7.2/Kv7.3 channels were also inhibited by membrane cholesterol loading with the MβCD/cholesterol complex. Depletion or enrichment of plasma membrane cholesterol differentially affected the biophysical parameters of the macroscopic Kv7.2/Kv7.3 currents. These results indicate a complex mechanism of Kv7.2/Kv7.3 channels modulation by membrane cholesterol. We propose that inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol depletion involves a loss of a direct cholesterol-channel interaction. However, the inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol enrichment could include an additional direct cholesterol-channel interaction, or changes in the physical properties of the plasma membrane. In summary, our results indicate that an optimum cholesterol level in the plasma membrane is required for the proper functioning of Kv7.2/Kv7.3 channels. Copyright © 2018 Elsevier B.V. All rights reserved.
Cho, Yun-Young; Kwon, Eun-Young; Kim, Hye-Jin; Jeon, Seon-Min; Lee, Ki-Teak; Choi, Myung-Sook
2011-01-20
Trans fat are not desirable in many aspects on health maintenance. Low trans structured fats have been reported to be relatively more safe than trans fats. We examined the effects of low trans structured fat from corn oil (LC), compared with high trans fat shortening, on cholesterol and fatty acid metabolism in apo E deficient mice which is an atherogenic animal model. The animals were fed a high trans fat (10% fat: commercial shortening (CS)) or a low trans fat (LC) diet for 12 weeks. LC decreased apo B and hepatic cholesterol and triglyceride concentration compared to the CS group but significantly increased plasma total cholesterol and triglyceride concentration and fecal lipids with a simultaneous increase in HDL-cholesterol level, apo A-I, and the ratio of HDL-cholesterol to total cholesterol (HTR). Reduction of hepatic lipid levels by inclusion of LC intake was observed alongside modulation of hepatic enzyme activities related to cholesterol esterification, fatty acid metabolism and fecal lipids level compared to the CS group. The differential effects of LC intake on the plasma and hepatic lipid profile seemed to be partly due to the fatty acid composition of LC which contains higher MUFA, PUFA and SFA content as well as lower content of trans fatty acids compared to CS. We suggest that LC may exert a dual effect on plasma and hepatic lipid metabolism in an atherogenic animal model. Accordingly, LC, supplemented at 10% in diet, had an anti-atherogenic effect on these apo E-/- mice, and increased fecal lipids, decreased hepatic steatosis, but elevated plasma lipids. Further studies are needed to verify the exact mode of action regarding the complex physiological changes and alteration in lipid metabolism caused by LC.
Jung, Ji-Hye; Kim, Hyun-Sook
2013-10-01
Non-alcoholic fatty liver disease (NAFLD) is defined as excess of fat in the liver. We investigated the effects of black soybean on the cholesterol metabolism and insulin resistance of mice fed high cholesterol/fat diets. Mice were randomly allocated into four groups that were fed different diets: the normal cholesterol/fat diet; high cholesterol/fat diets (HCD); and HCD with 1%, and 4% black soybean powder (1B-HCD, and 4B-HCD). Liver total cholesterol and triglyceride concentrations were significantly lower in the black soybean-supplemented groups than that in the HCD group. PCR revealed significantly lower hepatic SREBP2 and HMG-CoA reductase mRNA levels of black soybean-supplemented mice. Real-time PCR revealed significantly higher hepatic ABCA1 mRNA level of black soybean-supplemented mice, which may increase cholesterol efflux. Liver bile acids concentration was significantly high in the 4B-HCD group. Black soybean stimulated secretion of adiponectin, activation of pAMPK, and eliminated free fatty acids in the liver. Black soybean supplementation decreased MDA and nitrate level. The activities of SOD, catalase, and GPx were restored by black soybean supplementation. Our data strongly indicate that black soybean influences the balance between oxidative and antioxidative stress. We suggest that black soybean improves cholesterol metabolism, insulin resistance, and alleviates oxidative damage in NAFLD. Published by Elsevier Ltd.
Cholesterol-dependent balance between evoked and spontaneous synaptic vesicle recycling
Wasser, Catherine R; Ertunc, Mert; Liu, Xinran; Kavalali, Ege T
2007-01-01
Cholesterol is a prominent component of nerve terminals. To examine cholesterol's role in central neurotransmission, we treated hippocampal cultures with methyl-β-cyclodextrin, which reversibly binds cholesterol, or mevastatin, an inhibitor of cholesterol biosynthesis, to deplete cholesterol. We also used hippocampal cultures from Niemann-Pick type C1-deficient mice defective in intracellular cholesterol trafficking. These conditions revealed an augmentation in spontaneous neurotransmission detected electrically and an increase in spontaneous vesicle endocytosis judged by horseradish peroxidase uptake after cholesterol depletion by methyl-β-cyclodextrin. In contrast, responses evoked by action potentials and hypertonicity were severely impaired after the same treatments. The increase in spontaneous vesicle recycling and the decrease in evoked neurotransmission were reversible upon cholesterol addition. Cholesterol removal did not impact on the low level of evoked neurotransmission seen in the absence of synaptic vesicle SNARE protein synaptobrevin-2 whereas the increase in spontaneous fusion remained. These results suggest that synaptic cholesterol balances evoked and spontaneous neurotransmission by hindering spontaneous synaptic vesicle turnover and sustaining evoked exo-endocytosis. PMID:17170046
2012-01-01
Background Rheumatoid arthritis (RA) is associated with increased morbidity and mortality from cardiovascular disease (CVD). This can be only partially attributed to traditional CVD risk factors such as dyslipidaemia and their downstream effects on endothelial function. The most common lipid abnormality in RA is reduced levels of high-density lipoprotein (HDL) cholesterol, probably due to active inflammation. In this longitudinal study we hypothesised that anti-tumor necrosis factor-α (anti-TNFα) therapy in patients with active RA improves HDL cholesterol, microvascular and macrovascular endothelial function. Methods Twenty-three RA patients starting on anti-TNFα treatment were assessed for HDL cholesterol level, and endothelial-dependent and -independent function of microvessels and macrovessels at baseline, 2-weeks and 3 months of treatment. Results Disease activity (CRP, fibrinogen, DAS28) significantly decreased during the follow-up period. There was an increase in HDL cholesterol levels at 2 weeks (p < 0.05) which was paralleled by a significant increase in microvascular endothelial-dependent function (p < 0.05). However, both parameters returned towards baseline at 12 weeks. Conclusion Anti-TNFα therapy in RA patients appears to be accompanied by transient but significant improvements in HDL cholesterol levels, which coexists with an improvement in microvascular endothelial-dependent function. PMID:22824166
Smith, U; Holm, G
1982-10-01
Six healthy volunteers and 17 diabetics (6 insulin-dependent and 11 diet- and tablet-treated) were treated with a special processed, palatable guar gum (10 g b.i.d. immediately before meals) for periods of one or three weeks or, in some cases, up to 13 weeks. A standardized test meal was given to study the effect of the fiber on postprandial glucose levels. Ten g guar was stirred in water and taken immediately before the test meal. The postprandial blood glucose levels were similar in the healthy volunteers but significantly lower in the diabetics following treatment with guar for one and three weeks, respectively. Furthermore, the fasting blood glucose levels were significantly lower in the diabetics after three, but not one, weeks of treatment. The lower postprandial glucose levels were coupled with attenuated and delayed insulin levels in accordance with an effect of guar gum on the rate of carbohydrate absorption. The cholesterol levels were on average reduced with 14% in the diabetics following three weeks' treatment with guar. The higher the initial cholesterol level, the greater the reduction in cholesterol; 26% reduction was achieved in four patients with initial levels above 7 mM. The alpha-lipoprotein cholesterol levels were not significantly changed, thus an increase in the alpha-lipoprotein cholesterol/total serum cholesterol ratio was obtained. Neither plasma triglycerides nor body weights altered during treatment. The reported side-effects were as expected and were usually mild and transient (e.g. increased flatulence). The data show that guar gum also reduces postprandial glucose levels on a long-term basis and may improve the diabetic control. Additionally, treatment with this fiber leads to a concentration-dependent decrease in cholesterol levels.
Zwald, Marissa L; Akinbami, Lara J; Fakhouri, Tala H I; Fryar, Chryl D
2017-03-01
Data from the National Health and Nutrition Examination Survey •The prevalence of low high-density lipoprotein (HDL) cholesterol was significantly higher among adults who did not meet recommended physical activity guidelines (21.0%) than adults who met the guidelines (17.7%). •Low HDL cholesterol prevalence differed significantly for both men and women by adherence to physical activity guidelines. •Prevalence of low HDL cholesterol declined as age increased for both those who did and did not meet the physical activity guidelines. •Non-Hispanic white and non-Hispanic black adults who did not meet the physical activity guidelines had a higher prevalence than those who met the guidelines. •Low HDL cholesterol prevalence declined with increasing education level regardless of adherence to physical activity guidelines. Regular physical activity can improve cholesterol levels among adults, including increasing high-density lipoprotein (HDL) cholesterol (1). HDL cholesterol is known as "good" cholesterol because high levels can reduce cardiovascular disease risk (2). The 2008 Physical Activity Guidelines for Americans recommend that adults engage in 150 minutes or more of moderate-intensity aerobic activity per week, 75 minutes of vigorous-intensity aerobic activity per week, or an equivalent combination (3). Adherence to these guidelines is expected to decrease the prevalence of low HDL cholesterol levels (4-8). This report presents national data for 2011-2014 on low HDL cholesterol prevalence among U.S. adults aged 20 and over, by whether they met these guidelines. All material appearing in this report is in the public domain and may be reproduced or copied without permission; citation as to source, however, is appreciated.
Probiotic Properties of Lactobacillus Strains Isolated from Tibetan Kefir Grains
Zheng, Yongchen; Lu, Yingli; Wang, Jinfeng; Yang, Longfei; Pan, Chenyu; Huang, Ying
2013-01-01
The objective of this study was to evaluate the functional properties of lactic acid bacteria (LAB) isolated from Tibetan kefir grains. Three Lactobacillus isolates identified as Lactobacillus acidophilus LA15, Lactobacillus plantarum B23 and Lactobacillus kefiri D17 that showed resistance to acid and bile salts were selected for further evaluation of their probiotic properties. The 3 selected strains expressed high in vitro adherence to Caco-2 cells. They were sensitive to gentamicin, erythromycin and chloramphenicol and resistant to vancomycin with MIC values of 26 µg/ml. All 3 strains showed potential bile salt hydrolase (BSH) activity, cholesterol assimilation and cholesterol co-precipitation ability. Additionally, the potential effect of these strains on plasma cholesterol levels was evaluated in Sprague-Dawley (SD) rats. Rats in 4 treatment groups were fed the following experimental diets for 4 weeks: a high-cholesterol diet, a high-cholesterol diet plus LA15, a high-cholesterol diet plus B23 or a high-cholesterol diet plus D17. The total cholesterol, triglyceride and low-density lipoprotein cholesterol levels in the serum were significantly (P<0.05) decreased in the LAB-treated rats compared with rats fed a high-cholesterol diet without LAB supplementation. The high-density lipoprotein cholesterol levels in groups B23 and D17 were significantly (P<0.05) higher than those in the control and LA15 groups. Additionally, both fecal cholesterol and bile acid levels were significantly (P<0.05) increased after LAB administration. Fecal lactobacilli counts were significantly (P<0.05) higher in the LAB treatment groups than in the control groups. Furthermore, the 3 strains were detected in the rat small intestine, colon and feces during the feeding trial. The bacteria levels remained high even after the LAB administration had been stopped for 2 weeks. These results suggest that these strains may be used in the future as probiotic starter cultures for manufacturing novel fermented foods. PMID:23894554
Portman, Oscar W.; Hegsted, D. Mark; Stare, Fredrick J.; Bruno, Dorothy; Murphy, Robert; Sinisterra, Leonardo
1956-01-01
A study was carried out to determine the effect of the level and type of dietary fat on the concentration of cholesterol and beta lipoproteins in the sera of Cebus monkeys. Three groups of monkeys were fed isocaloric diets containing a fixed ratio of alpha protein and cholesterol to calories but with different amounts of corn oil and sucrose. Corn oil provided 10, 32, and 45 per cent of the calories in the three diets, and the level of sucrose was varied inversely. After 8 weeks the serum cholesterol and Sf 12 to 100 beta lipoprotein concentrations were significantly greater in the medium and high fat groups. When corn oil was decreased from 45 to 10 per cent of dietary calories and sucrose was increased, the serum cholesterol fell in all cases, and when the reverse change was made, the concentration of serum cholesterol increased. Variation in dietary sucrose had no specific effect. Substitution of starch for sucrose with diets otherwise constant did not cause significant change in the concentration of serum cholesterol. When monkeys fed corn oil diets at any of three levels were changed to hydrogenated cottonseed oil diets at the same level, the serum cholesterol and Sf 12 to 100 beta lipoproteins rose. However, hydrogenated cottonseed oil had no greater hypercholesteremic effect than did corn oil in the absence of dietary cholesterol. Diets containing lard with cholesterol also produced strikingly greater serum lipide responses than did diets based on corn oil and cholesterol. Hydrogenated cottonseed oil had a greater hypercholesteremic effect than an unhydrogenated cottonseed oil from the same lot. Preliminary studies indicated that the saturated fats (hydrogenated cottonseed oil) produced the most striking elevation of serum cholesterol values (above controls fed corn oil) when casein was the dietary protein. PMID:13376806
Pezzini, Alessandro; Grassi, Mario; Iacoviello, Licia; Zedde, Marialuisa; Marcheselli, Simona; Silvestrelli, Giorgio; DeLodovici, Maria Luisa; Sessa, Maria; Zini, Andrea; Paciaroni, Maurizio; Azzini, Cristiano; Gamba, Massimo; Del Sette, Massimo; Toriello, Antonella; Gandolfo, Carlo; Bonifati, Domenico Marco; Tassi, Rossana; Cavallini, Anna; Chiti, Alberto; Calabrò, Rocco Salvatore; Musolino, Rossella; Bovi, Paolo; Tomelleri, Giampaolo; Di Castelnuovo, Augusto; Vandelli, Laura; Ritelli, Marco; Agnelli, Giancarlo; De Vito, Alessandro; Pugliese, Nicola; Martini, Giuseppe; Lanari, Alessia; Ciccone, Alfonso; Lodigiani, Corrado; Malferrari, Giovanni; Del Zotto, Elisabetta; Morotti, Andrea; Costa, Paolo; Poli, Loris; De Giuli, Valeria; Bonaiti, Silvia; La Spina, Paolo; Marcello, Norina; Micieli, Giuseppe; de Gaetano, Giovanni; Colombi, Marina; Padovani, Alessandro
2016-09-01
Although a concern exists that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) might increase the risk of intracerebral haemorrhage (ICH), the contribution of these agents to the relationship between serum cholesterol and disease occurrence has been poorly investigated. We compared consecutive patients having ICH with age and sex-matched stroke-free control subjects in a case-control analysis, as part of the Multicenter Study on Cerebral Haemorrhage in Italy (MUCH-Italy), and tested the presence of interaction effects between total serum cholesterol levels and statins on the risk of ICH. A total of 3492 cases (mean age, 73.0±12.7 years; males, 56.6%) and 3492 control subjects were enrolled. Increasing total serum cholesterol levels were confirmed to be inversely associated with ICH. We observed a statistical interaction between total serum cholesterol levels and statin use for the risk of haemorrhage (Interaction OR (IOR), 1.09; 95% CI 1.05 to 1.12). Increasing levels of total serum cholesterol were associated with a decreased risk of ICH within statin strata (average OR, 0.87; 95% CI 0.86 to 0.88 for every increase of 0.26 mmol/l of total serum cholesterol concentrations), while statin use was associated with an increased risk (OR, 1.54; 95% CI 1.31 to 1.81 of the average level of total serum cholesterol). The protective effect of serum cholesterol against ICH was reduced by statins in strictly lobar brain regions more than in non-lobar ones. Statin therapy and total serum cholesterol levels exhibit interaction effects towards the risk of ICH. The magnitude of such effects appears higher in lobar brain regions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Shimizu, Mikiko; Hashiguchi, Masayuki; Shiga, Tsuyoshi; Tamura, Hiro-omi; Mochizuki, Mayumi
2015-01-01
Introduction Recent experimental and clinical studies have suggested that probiotic supplementation has beneficial effects on serum lipid profiles. However, there are conflicting results on the efficacy of probiotic preparations in reducing serum cholesterol. Objective To evaluate the effects of probiotics on human serum lipid levels, we conducted a meta-analysis of interventional studies. Methods Eligible reports were obtained by searches of electronic databases. We included randomized, controlled clinical trials comparing probiotic supplementation with placebo or no treatment (control). Statistical analysis was performed with Review Manager 5.3.3. Subanalyses were also performed. Results Eleven of 33 randomized clinical trials retrieved were eligible for inclusion in the meta-analysis. No participant had received any cholesterol-lowering agent. Probiotic interventions (including fermented milk products and probiotics) produced changes in total cholesterol (TC) (mean difference –0.17 mmol/L, 95% CI: –0.27 to –0.07 mmol/L) and low-density lipoprotein cholesterol (LDL-C) (mean difference –0.22 mmol/L, 95% CI: –0.30 to –0.13 mmol/L). High-density lipoprotein cholesterol and triglyceride levels did not differ significantly between probiotic and control groups. In subanalysis, long-term (>4-week) probiotic intervention was statistically more effective in decreasing TC and LDL-C than short-term (≤4-week) intervention. The decreases in TC and LDL-C levels with probiotic intervention were greater in mildly hypercholesterolemic than in normocholesterolemic individuals. Both fermented milk product and probiotic preparations decreased TC and LDL-C levels. Gaio and the Lactobacillus acidophilus strain reduced TC and LDL-C levels to a greater extent than other bacterial strains. Conclusions In conclusion, this meta-analysis showed that probiotic supplementation could be useful in the primary prevention of hypercholesterolemia and may lead to reductions in risk factors for cardiovascular disease. PMID:26473340
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yan; Wu, Jian-Feng; Tang, Yan-Yan
Highlights: • U II reduces cholesterol efflux in THP-1 macrophages. • U II decreases the expression of ABCA1. • Inhibition of the ERK/NF-κB pathway reduces U II effects on ABCA1 expression and cholesterol efflux. - Abstract: Objective: Foam cell formation in the arterial wall plays a key role in the development of atherosclerosis. Recent studies showed that Urotensin II (U II) is involved in the pathogenesis of atherosclerosis. Here we examined the effects of human U II on ATP-binding cassette transporter A1 (ABCA1) expression and the underlying mechanism in THP-1 macrophages. Methods and results: Cultured THP-1 macrophages were treated withmore » U II, followed by measuring the intracellular lipid contents, cholesterol efflux and ABCA1 levels. The results showed that U II dramatically decreased ABCA1 levels and impaired cholesterol efflux. However, the effects of U II on ABCA1 protein expression and cellular cholesterol efflux were partially reversed by inhibition of extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa B (NF-κB) activity, suggesting the potential roles of ERK1/2 and NF-κB in ABCA1 expression, respectively. Conclusion: Our current data indicate that U II may have promoting effects on the progression of atherosclerosis, likely through suppressing ABCA1 expression via activation of the ERK/NF-κB pathway and reducing cholesterol efflux to promote macrophage foam cell formation.« less
Diet-induced effects on neuronal and glial elements in the middle-aged rat hippocampus
Freeman, Linnea R.; Haley-Zitlin, Vivian; Stevens, Cheryl; Granholm, Ann-Charlotte
2014-01-01
Consumption of a high-fat and/or high-cholesterol diet can have detrimental effects on the brain. In the present study, dietary treatment with saturated fats, trans fats, or cholesterol to middle-aged Fischer 344 rats resulted in alterations to serum triglyceride and cholesterol levels, organ weights, and hippocampal morphology. Previously, we demonstrated that a 10% hydrogenated coconut oil and 2% cholesterol diet resulted in worse performance on the 12-day water radial arm maze, increased cholesterol and triglyceride levels, and decreased dendritic microtubule associated protein 2 (MAP2) staining in the hippocampus. The diets administered herein were used to examine components from the previous diet and further examine their effects on hippocampal morphology. Specifically, neuronal morphology, dendritic integrity, fatty acid metabolism, microgliosis, and blood vessel structure in the hippocampus and/or adjacent structures were explored. Our results indicate alterations to peripheral and neural systems following each of the diets. PMID:21535919
Cholesterol Regulates μ-Opioid Receptor-Induced β-Arrestin 2 Translocation to Membrane Lipid RaftsS⃞
Qiu, Yu; Wang, Yan; Chen, Hong-Zhuan; Loh, Horace H.
2011-01-01
μ-Opioid receptor (OPRM1) is mainly localized in lipid raft microdomains but internalizes through clathrin-dependent pathways. Our previous studies demonstrated that disruption of lipid rafts by cholesterol-depletion reagent blocked the agonist-induced internalization of OPRM1 and G protein-dependent signaling. The present study demonstrated that reduction of cholesterol level decreased and culturing cells in excess cholesterol increased the agonist-induced internalization and desensitization of OPRM1, respectively. Further analyses indicated that modulation of cellular cholesterol level did not affect agonist-induced receptor phosphorylation but did affect membrane translocation of β-arrestins. The translocation of β-arrestins was blocked by cholesterol reduction, and the effect could be reversed by incubating with cholesterol. OptiPrep gradient separation of lipid rafts revealed that excess cholesterol retained more receptors in lipid raft domains and facilitated the recruitment of β-arrestins to these microdomains upon agonist activation. Moreover, excess cholesterol could evoke receptor internalization and protein kinase C-independent extracellular signal-regulated kinases activation upon morphine treatment. Therefore, these results suggest that cholesterol not only can influence OPRM1 localization in lipid rafts but also can effectively enhance the recruitment of β-arrestins and thereby affect the agonist-induced trafficking and agonist-dependent signaling of OPRM1. PMID:21518774
Glycated albumin and direct low density lipoprotein cholesterol levels in type 2 diabetes mellitus
USDA-ARS?s Scientific Manuscript database
Diabetes mellitus is a major risk factor for coronary heart disease (CHD), renal failure, retinopathy, and neuropathy. Lowering glycosylated hemoglobin (HbA1c) as well as low-density lipoprotein-cholesterol (LDL-C) has been associated with a decreased risk of these complications. We evaluated the ut...
de Luis, Daniel; Aller, Rocio; Izaola, Olatz; Sagrado, Manuel Gonzalez; de la Fuente, Beatriz; Conde, Rosa; Primo, David
2012-12-01
It has been found that the expression of fatty acid-binding protein 2 messenger RNA is under dietary control. The aim of our study was to investigate the influence of Thr54 polymorphism in the FABP2 gene on weight loss and secondarily in cardiovascular risk factors and serum adipokine after an enriched polyunsaturated fat hypocaloric diet in obese patients. A sample of 111 obese patients was analyzed. The enriched polyunsaturated fat hypocaloric diet during 3 months' intervention consisted of 1459 kcal, 45.7% carbohydrates, 34.4% lipids, and 19.9% proteins. The distribution of fats was as follows: 21.8% saturated fats, 55.5% monounsaturated fats, and 22.7% polyunsaturated fats. Level of significance was P < 0.05. In Ala54Ala genotype, body mass index (-1.6 ± 1.5 kg/m(2)), weight (-3.2 ± 3.3 kg), fat mass (-3.1 ± 3.5 kg), and waist circumference (-3.3 ± 2.1 cm) decreased. In carriers of the Thr54 allele, body mass index (-1.9 ± 1.6 kg/m(2)), weight (- 4.7 ± 1.4 kg), and waist circumference (-3.9 ± 3.7 cm) decreased. These changes were significantly higher in the carriers of the Thr54 allele than noncarriers. Only in the carriers of Thr54 allele, total cholesterol levels (-11.4 ± 20.6 mg/dl), low-density lipoprotein cholesterol levels (-5.4 ± 10.6 mg/dL), insulin (-2.6 ± 3.4 MUI/L), and the level of homeostasis model assessment for insulin sensitivity (-0.9 ± 1.7 U) decreased. Carriers of Thr54 allele have a better metabolic response than obese carriers with Ala54Ala genotype, with a decrease of total cholesterol, low-density lipoprotein cholesterol, insulin levels, leptin levels, and homeostasis model assessment for insulin sensitivity.
Lee, Hye-Sung; Choi, Jun-Hyeok; Kim, Young-Eon; Kim, In-Ho; Kim, Byoung-Mok; Lee, Chang-Ho
2013-01-01
The purpose of this study was to investigate the effects of the ethanol extract of Cynanchum wilfordii (ECW) on the blood lipid profile of hypercholesterolemic rats. Thirty 7-week-old male Sprague-Dawley rats were allowed free access to either a normal diet (AIN-93 diet), or 1% high-cholesterol diet with or without 0.5% or 1% ECW for 5 weeks. After sacrifice, the rat serum lipid profile was analyzed. The diets containing ECW decreased body weight gains compared to the normal diet. Serum HDL-cholesterol levels of ECW-fed groups were significantly increased in the hypercholesterolemic groups and normal groups (P<0.05). When 1% ECW was fed to the normal group, total cholesterol level was increased. Moreover, treatment of ECW in hypercholesterolemic groups yielded a dose-dependent and highly significant decrease in the atherogenic index as compared to the control. These results suggest that intake of Cynanchum wilfordii may help reduce the risks of hypercholesterolemia by increasing blood HDL-cholesterol and lowering the atherogenic index. PMID:24471126
[Effects of foot reflexology on essential hypertension patients].
Park, Hyoung-Sook; Cho, Gyoo-Yeong
2004-08-01
This study was to evaluate the effects of foot reflexology on blood pressure, serum lipids level and life satisfaction in essential hypertension patients. The research design used was a nonequivalent control group pretest-posttest design. Foot Reflexology was used as the experimental treatment from June 23rd, 2003 until August 31st, 2003. Thirty-four subjects were assigned to an experimental group(18) and control group(16). Foot Reflexology was administered twice a week for 6 weeks and self foot Reflexology was administered twice a week for 4 weeks on the experimental group. There was a significant decrease in systolic blood pressure but no significant decrease in diastolic pressure in the experimental group compared to the control group. The total cholesterol level in the experimental group compared to the control group was not significantly decreased after foot reflexology. However, the triglyceride level in the experimental group compared to the control group was significantly decreased after foot reflexology. On the other hand, high density lipoprotein and low density lipoprotein levels in the experimental group compared to the control group was not significantly decreased after foot reflexology. Life satisfaction in the experimental group compared to the control group was significantly improved after foot reflexology. The results proved that foot reflexology was an effective nursing intervention to decrease systolic pressure, and triglyceride but not for the blood cholesterol and to improve life satisfaction. Therefore, blood cholesterol should be further evaluated in a larger group of subjects and for a longer period. Further research is regarded as necessary to evaluate and to compare effects of self-foot reflexology and foot reflexology.
Early life lipid profile and metabolic programming in very young children.
Wijnands, K P J; Obermann-Borst, S A; Steegers-Theunissen, R P M
2015-06-01
Lipid derangements during early postnatal life may induce stable epigenetic changes and alter metabolic programming. We investigated associations between serum lipid profiles in very young children and DNA methylation of tumor necrosis factor-alpha (TNFα) and leptin (LEP). Secondly, we explored if the maternal serum lipid profile modifies DNA methylation in the child. In 120 healthy children at 17 months of age, DNA methylation of TNFα and LEP was measured in DNA derived from whole blood. Linear mixed models were used to calculate exposure-specific differences and associations. Total cholesterol in children was associated with decreased methylation of TNFα (-5.8%, p = 0.036), and HDL-cholesterol was associated with decreased methylation of both TNFα (-6.9%, p = 0.013) and LEP (-3.4%, p = 0.021). Additional adjustment for gestational age at birth, birth weight, sex, breastfeeding and educational level attenuated the effects, TNFα (-6.1%, p = 0.058) and LEP (-3.1%, p = 0.041). In mothers, HDL-cholesterol only was associated with decreased methylation of TNFα in the child (-8.7%, p = 0.001). Our data support the developmental origin of health and disease hypothesis by showing that total cholesterol and HDL-cholesterol levels in very young children are associated with epigenetic metabolic programming, which may affect their vulnerability for developing cardiovascular diseases in later life. Copyright © 2015 Elsevier B.V. All rights reserved.
Chauke, Chesa G; Arieff, Zainunisha; Kaur, Mandeep; Seier, Jurgen V
2014-02-01
Niacin is the most effective drug available for raising levels of high-density lipoprotein (HDL) cholesterol. To evaluate its effects on plasma lipid concentrations, the authors administered a low dose of niacin to healthy, adult, female African green monkeys for 3 months. In the treated monkeys, low-density lipoprotein cholesterol concentrations decreased by 43% from baseline, whereas concentrations of HDL cholesterol and apolipoprotein A-I increased by 49% and 34%, respectively. The results suggest that in this primate model, a low dose of niacin can effectively increase concentrations of HDL cholesterol.
Shang, Hong Mei; Song, Hui; Shen, Si Jie; Yao, Xu; Wu, Bo; Wang, Li Na; Jiang, Yun Yao; Ding, Guo Dong
2015-01-01
The present study was conducted to investigate the lipid-lowering effect of polysaccharides from the submerged fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers. (HFCP) in broilers. A total of 480 female Arbor Acres broilers were randomly divided into four dietary treatments, each consisting of six pens as replicates, and fed diets containing 0 (control), 1, 3 or 5 g kg(-1) HFCP. The results revealed that the average daily gain of broilers increased (linear (L), P < 0.01; quadratic (Q), P < 0.01) when the HFCP levels increased. The serum cholesterol, triglyceride and low-density lipoprotein cholesterol levels decreased (Q, P < 0.05) while the high-density lipoprotein cholesterol level increased (Q, P < 0.05) when the HFCP levels increased. The caecum Escherichia coli count and pH decreased (Q, P < 0.01) while the lactobacilli count and bifidobacteria count increased (L, P < 0.05; Q, P < 0.05) when the HFCP levels increased. The propionic acid and butyric acid concentrations increased (L, P < 0.001; Q, P < 0.001) while the abdominal fat rate and liver fat content decreased (L, P < 0.01; Q, P < 0.05) when the HFCP levels increased. Dietary supplementation with HFCP may lead to the development of low abdominal fat of broilers as demanded by health-conscious consumers. © 2014 Society of Chemical Industry.
TSHB mRNA is linked to cholesterol metabolism in adipose tissue.
Moreno-Navarrete, José María; Moreno, María; Ortega, Francisco; Xifra, Gemma; Hong, Shangyu; Asara, John M; Serrano, José C E; Jové, Mariona; Pissios, Pavlos; Blüher, Matthias; Ricart, Wifredo; Portero-Otin, Manuel; Fernández-Real, José Manuel
2017-10-01
Subclinical hypothyroidism is known to be associated with increased serum cholesterol. Since thyroid-stimulating hormone (TSH) exerts an inductor effect on cholesterol biosynthesis, we aimed to investigate the relationship between TSH mRNA and cholesterol metabolism in human adipose tissue (AT). Cross-sectionally, AT TSH-β ( TSHB ) mRNA was evaluated in 4 independent cohorts in association with serum total and LDL cholesterol, and AT lipidomics. Longitudinally, the effects of statins and of diet and exercise on AT TSHB mRNA were also examined. The bidirectional relationship between cholesterol and TSHB were studied in isolated human adipocytes. TSHB mRNA was consistently detected in AT from euthyroid subjects, and positively associated with serum total- and LDL-cholesterol, and with AT-specific cholesterol metabolism-associated lipids [arachidonoyl cholesteryl ester, C8-dihydroceramide, N -stearoyl-d-sphingosine, and GlcCer(18:0, 24:1)]. Reduction of cholesterol with statins and with diet and exercise interventions led to decreased TSHB mRNA in human AT, whereas excess cholesterol up-regulated TSHB mRNA in human adipocytes. In addition, recombinant human TSH α/β administration resulted in increased HMGCR mRNA levels in human adipocytes. In mice, subcutaneous AT Tshb expression levels correlated directly with circulating cholesterol levels. In summary, current results provide novel evidence of TSHB as a paracrine factor that is modulated in parallel with cholesterol metabolism in human AT.-Moreno-Navarrete, J. M., Moreno, M., Ortega, F., Xifra, G., Hong, S., Asara, J. M., Serrano, J. C. E., Jové, M., Pissios, P., Blüher, M., Ricart, W., Portero-Otin, M., Fernández-Real, J. M. TSHB mRNA is linked to cholesterol metabolism in adipose tissue. © FASEB.
Hennuyer, Nathalie; Duplan, Isabelle; Paquet, Charlotte; Vanhoutte, Jonathan; Woitrain, Eloise; Touche, Véronique; Colin, Sophie; Vallez, Emmanuelle; Lestavel, Sophie; Lefebvre, Philippe; Staels, Bart
2016-06-01
Atherosclerosis is characterized by lipid accumulation and chronic inflammation in the arterial wall. Elevated levels of apolipoprotein (apo) B-containing lipoproteins are a risk factor for cardiovascular disease (CVD). By contrast, plasma levels of functional high-density lipoprotein (HDL) and apoA-I are protective against CVD by enhancing reverse cholesterol transport (RCT). Activation of peroxisome proliferator-activated receptor-α (PPARα), a ligand-activated transcription factor, controls lipid metabolism, cellular cholesterol trafficking in macrophages and influences inflammation. To study whether pharmacological activation of PPARα with a novel highly potent and selective PPARα modulator, pemafibrate, improves lipid metabolism, macrophage cholesterol efflux, inflammation and consequently atherosclerosis development in vitro and in vivo using human apolipoprotein E2 Knock-In (apoE2KI) and human apoA-I transgenic (hapoA-I tg) mice. Pemafibrate treatment decreases apoB secretion in chylomicrons by polarized Caco-2/TC7 intestinal epithelium cells and reduces triglyceride levels in apoE2KI mice. Pemafibrate treatment of hapoA-I tg mice increases plasma HDL cholesterol, apoA-I and stimulates RCT to feces. In primary human macrophages, pemafibrate promotes macrophage cholesterol efflux to HDL and exerts anti-inflammatory activities. Pemafibrate also reduces markers of inflammation and macrophages in the aortic crosses as well as aortic atherosclerotic lesion burden in western diet-fed apoE2KI mice. These results demonstrate that the novel selective PPARα modulator pemafibrate exerts beneficial effects on lipid metabolism, RCT and inflammation resulting in anti-atherogenic properties. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Estrada-Luna, D; Martínez-Hinojosa, E; Cancino-Diaz, J C; Belefant-Miller, H; López-Rodríguez, G; Betanzos-Cabrera, G
2018-02-01
Studies have found that pomegranate juice (PJ) consumption increases the binding of high-density lipoproteins (HDL) to paraoxonase 1 (PON1), thus increasing the catalytic activity of this enzyme. PON1 is an antioxidant arylesterase synthesized in the liver and transported in plasma in association with HDL. Decreased levels of PON1 are associated with higher levels of cholesterol. We determined the effects of PJ on body weight, cholesterol, and triacylglycerols through 5 months of supplementation. In addition, the effect of PJ on pon1 gene expression in the liver was also measured by RT-qPCR as well as the activity in serum by a semiautomated method using paraoxon as a substrate. CD-1 mice were either fed a control diet or were fed a high-fat diet 1.25% (wt/wt) cholesterol, 0.5% (wt/wt) sodium cholate, and 15% (wt/wt) saturated fat. 300 μL of PJ containing 0.35 mmol total polyphenols was administered by oral gavage to half of the high fat mice daily. The rest of the high fat mice and the control mice were administered with 300 μL of water. PJ-supplemented animals had significantly higher levels of expression of pon1 compared to the unsupplemented group. PJ-supplemented animals had twice the PON1 activity of the unsupplemented group. In addition, PJ-supplemented animals had the lowest body weight and significantly reduced cholesterol and triacylglycerol levels, although the tricylglycerol levels were not consistently decreased. These results suggest that PJ protects against the effects of a high-fat diet in body weight, and cholesterol levels.
2010-01-01
Multiple Sclerosis (MS) patients present a decrease of antioxidants and neuroprotective and immunoregulatory vitamins and an increase of total homocysteine (tHcy), cholesterol (CHL), HDL-cholesterol, and of cellular stress markers, variably associated with the different phases of the disease. We compared the blood levels of uric acid, folic acid, vitamins B12, A, and E, tHcy, CHL, HDL-cholesterol, and triglycerides in forty MS patients during a phase of clinical inactivity with those of eighty healthy controls, matched for age and sex. We found higher levels of tHcy (p = 0.032) and of HDL-cholesterol (p = 0.001) and lower levels of vitamin E (p = 0.001) and the ratio vitamin E/CHL (p = 0.001) in MS patients. In conclusion, modifications of some biochemical markers of cell damage were detected in MS patients during a phase of clinical inactivity. PMID:20163740
Swanson, Eric
2011-09-01
Triglyceride levels of 150 mg/dL or greater are known to be associated with an increased cardiovascular risk and metabolic syndrome. This study investigated the effect of liposuction and abdominoplasty on lipid levels, complete blood count, and other parameters. A prospective study was undertaken among 322 consecutive patients (270 women and 52 men) who presented for liposuction (n = 229), abdominoplasty with liposuction (n = 87), and abdominoplasty without liposuction (n = 6). The mean body mass index was 26.6 kg/m2 (range, 18.6 to 44.1 kg/m2). Ultrasonic liposuction using a superwet infusion technique was used in all cases, usually treating the lower body in women (64.4 percent) and the trunk in men (86.5 percent). Mean weight loss 3 months after liposuction was 2.2 lbs for liposuction alone (p < 0.001) and 4.2 lbs for liposuction and abdominoplasty (p < 0.05). Mean fasting triglyceride level decreased 25.7 percent after liposuction (p < 0.001). The triglyceride level decreased 43.0 percent (n = 56, p < 0.001) after liposuction in patients with preoperative levels of 150 mg/dl or greater. There was a significant decrease in white cell count after both liposuction and liposuction/abdominoplasty (p < 0.001). There were no significant changes in total, low-density lipoprotein, or high-density lipoprotein cholesterol. Fasting glucose was unchanged. A significant (p < 0.001) reduction in triglyceride level in patients with elevated preoperative levels and a significant decrease in leukocyte count (p < 0.001) are favorable metabolic effects of liposuction and liposuction/abdominoplasty. Cholesterol levels are unaffected. Therapeutic, IV.
Han, Joon-Seung; Sung, Jong Hwan; Lee, Seung Kwon
2017-11-01
GINST, a hydrolyzed ginseng extract, has been reported to have antidiabetic effects and to reduce hyperglycemia and hyperlipidemia. Hypercholesterolemia is caused by diet or genetic factors and can lead to atherosclerosis and coronary heart disease. Thus, the purpose of this study is to determine whether GINST and the ginsenoside metabolite, IH-901 (compound K), reduce cholesterol synthesis in HepG2 cells and the signal transduction pathways involved. Concentrations of cholesterol were measured by using an enzymatic method. Expression levels of sterol regulatory element-binding protein 2 (SREBP2), HMG-CoA reductase (HMGCR), peroxisome proliferators-activated receptor γ (PPARγ), CCAAT/enhancer-binding proteins α (C/EBPα), GAPDH, and phosphorylation of AMP-activated protein kinase α (AMPKα), protein kinase B (PKB, also known as Akt), and mechanistic target of rapamycin complex 1 (mTORC1) were measured using western blot. Total cholesterol concentration decreased after GINST treatment for 24 and 48 h. Expression of HMGCR decreased more with GINST than with the inhibitors, U18666A and atorvastatin, after 48 h in a dose-dependent manner. Phosphorylation of AMPKα increased 2.5x by GINST after 360 min of treatment, and phosphorylation of Akt decreased after 120 and 360 min. We separated compound K from GINST extracts flash chromatography. Compound K decreased cholesterol synthesis in HepG2 cells at 24 and 48 h. Therefore, we conclude that GINST inhibits cholesterol synthesis in HepG2 cells by decreasing HMGCR expression via AMPKα activation. GINST, a hydrolyzed ginseng extract, can inhibit cholesterol synthesis in liver cells via activation of AMPKα. IH-901 (compound K), which is the main component with bioactivity in GINST, also has anticholesterol effects. Thus, we suggest that GINST can be used to reduce hypercholesterolemia. © 2017 Institute of Food Technologists®.
Mercado, Carla I; Gregg, Edward; Gillespie, Cathleen; Loustalot, Fleetwood
2018-01-01
With a cholesterol-lowering focus for diabetic adults and in the age of polypharmacy, it is important to understand how lipid profile levels differ among those with and without diabetes. Investigate the means, differences, and trends in lipid profile measures [TC, total cholesterol; LDL-c, low-density lipoprotein; HDL-c, high-density lipoprotein; and TG, triglycerides] among US adults by diabetes status and cholesterol-lowering medication. Population number and proportion of adults aged ≥21 years with diabetes and taking cholesterol-lowering medication were estimated using data on 10,384 participants from NHANES 2003-2012. Age-standardized means, trends, and differences in lipid profile measures were estimated by diabetes status and cholesterol medication use. For trends and differences, linear regression analysis were used adjusted for age, gender, and race/ethnicity. Among diabetic adults, 52% were taking cholesterol-lowering medication compared to the 14% taking cholesterol-lowering medication without diabetes. Although diabetic adults had significantly lower TC and LDL-c levels than non-diabetic adults [% difference (95% confidence interval): TC = -5.2% (-6.8 --3.5), LDL-c = -8.0% (-10.4 --5.5)], the percent difference was greater among adults taking cholesterol medication [TC = -8.0% (-10.3 --5.7); LDL-c = -13.7% (-17.1 --10.2)] than adults not taking cholesterol medication [TC = -3.5% (-5.2 --1.6); LDL-c = -4.3% (-7.1 --1.5)] (interaction p-value: TC = <0.001; LDL-c = <0.001). From 2003-2012, mean TC and HDL-c significantly decreased among diabetic adults taking cholesterol medication [% difference per survey cycle (p-value for linear trend): TC = -2.3% (0.003) and HDL-c = -2.3% (0.033)]. Mean TC, HDL-c, and LDL-c levels did not significantly change from 2003 to 2012 in non-diabetic adults taking cholesterol medication or for adults not taking cholesterol medications. Diabetic adults were more likely to have lower lipid levels, except for triglyceride levels, than non-diabetic adults with profound differences when considering cholesterol medication use, possibly due to the positive effects from clinical diabetes management.
Lee, Kyeong; Goo, Ja-Il; Jung, Hwa Young; Kim, Minkyoung; Boovanahalli, Shanthaveerappa K; Park, Hye Ran; Kim, Mun-Ock; Kim, Dong-Hyun; Lee, Hyun Sun; Choi, Yongseok
2012-12-15
A novel series of benzimidazole derivatives was prepared and evaluated for their diacylglycerol acyltransferase (DGAT) inhibitory activity using microsome from rat liver. Among the newly synthesized compounds, furfurylamine containing benzimidazole carboxamide 10j showed the most potent DGAT inhibitory effect (IC(50)=4.4 μM) and inhibited triglyceride formation in HepG2 cells. Furthermore, compound 10j reduced body weight gain of Institute of Cancer Research mice on a high-fat diet and decreased levels of total triglyceride, total cholesterol, and LDL-cholesterol in the blood accompanied with a significant increase in HDL-cholesterol level. Copyright © 2012 Elsevier Ltd. All rights reserved.
Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.
Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V
2017-05-26
Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Revis, N W; McCauley, P; Bull, R; Holdsworth, G
1986-01-01
The effects of drinking water containing 2 or 15 ppm chlorine (pH 6.5 and 8.5), chlorine dioxide, and monochloramine on thyroid function and plasma cholesterol were studied because previous investigators have reported cardiovascular abnormalities in experimental animals exposed to chlorinated water. Plasma thyroxine (T4) levels, as compared to controls, were significantly decreased in pigeons fed a normal or high-cholesterol diet and drinking water containing these drinking water disinfectants at a concentration of 15 ppm (the exception was chlorine at pH 6.5) for 3 months. In most of the treatment groups, T4 levels were significantly lower following the exposure to drinking water containing the 2 ppm dose. Increases in plasma cholesterol were frequently observed in the groups with lower T4 levels. This association was most evident in pigeons fed the high-cholesterol diet and exposed to these disinfectants at a dose of 15 ppm. For example, after 3 months of exposure to deionized water or water containing 15 ppm monochloramine, plasma cholesterol was 1266 +/- 172 and 2049 +/- 212 mg/dl, respectively, a difference of 783 mg/dl. The factor(s) associated with the effect of these disinfectants on plasma T4 and cholesterol is not known. We suggest however that these effects are probably mediated by products formed when these disinfectants react with organic matter in the upper gastrointestinal tract. PMID:3456597
Pan, Yongming; Xu, Jianqin; Chen, Cheng; Chen, Fangming; Jin, Ping; Zhu, Keyan; Hu, Chenyue W.; You, Mengmeng; Chen, Minli; Hu, Fuliang
2018-01-01
Alzheimer’s disease (AD) is the most common form of dementia characterized by aggregation of amyloid β (Aβ) and neuronal loss. One of the risk factors for AD is high cholesterol levels, which are known to promote Aβ deposition. Previous studies have shown that royal jelly (RJ), a product of worker bees, has potential neuroprotective effects and can attenuate Aβ toxicity. However, little is known about how RJ regulates Aβ formation and its effects on cholesterol levels and neuronal metabolic activities. Here, we investigated whether RJ can reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in an AD rabbit model induced by 2% cholesterol diet plus copper drinking water. Our results suggest that RJ significantly reduced the levels of plasma total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C), and decreased the level of Aβ in rabbit brains. RJ was also shown to markedly ameliorate amyloid deposition in AD rabbits from Aβ immunohistochemistry and thioflavin-T staining. Furthermore, our study suggests that RJ can reduce the expression levels of β-site APP cleaving enzyme-1 (BACE1) and receptor for advanced glycation end products (RAGE), and increase the expression levels of low density lipoprotein receptor-related protein 1 (LRP-1) and insulin degrading enzyme (IDE). In addition, we found that RJ remarkably increased the number of neurons, enhanced antioxidant capacities, inhibited activated-capase-3 protein expression, and enhanced neuronal metabolic activities by increasing N-acetyl aspartate (NAA) and glutamate and by reducing choline and myo-inositol in AD rabbits. Taken together, our data demonstrated that RJ could reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in AD rabbits, providing preclinical evidence that RJ treatment has the potential to protect neurons and prevent AD. PMID:29556189
Jabbari, Abbas; Argani, Hassan; Ghorbanihaghjo, Amir; Mahdavi, Reza
2005-05-19
Hyperlipidemia and increased degree of oxidative stress are among the important risk factors for Atherosclerosis in renal transplant recipients (RTR). The Medical treatment of hyperlipidemia in RTR because of drugs side effects has been problematic, therefore alternative methods such as using of Garlic as an effective material in cholesterol lowering and inhibition of LDL Oxidation has been noted. For evaluation of garlic effect on RTR, 50 renal transplant patients with stable renal function were selected and divided into 2 groups. They took one clove of garlic (1 gr) by chewing or swallowing for two months, after one month wash-out period, they took garlic by the other route. Results indicated that although lipid profile, BUN, Cr, serum levels of cyclosporine and diastolic blood pressure did not change, Systolic blood pressure decreased from 138.2 to 132.8 mmHg (p=0.001) and Malondialdehyde (MDA) decreased from 2.4 to 1.7 nmol/ml (p=0.009) by swallowing route, Cholesterol decreased from 205.1 to 195.3 mg/dl (p=0.03), triglyceride decreased from 195.7 to 174.8 mg/dl (p=0.008), MDA decreased from 2.5 to 1.6 nmol/ml (p=0.001), systolic blood pressure decreased from 137.5 to 129.8 mmHg (p=0.001), diastolic blood pressure decreased from 84.6 to 77.6 mmHg (p=0.001) and Cr decreased from 1.51 to 1.44 mg/dl (p=0.03) by chewing route too. However HDL, LDL and cyclosporine serum levels had no significant differences by both of swallowing and chewing routes. We conclude that undamaged garlic (swallowed) had no lowering effect on lipid level of serum. But Crushed garlic (chewed) reduces cholesterol, triglyceride, MDA and blood pressure. Additionally creatinine reduced without notable decrease in cyclosporine serum levels may be due to cyclosporine nephrotoxicity ameliorating effect of garlic.
Kuwano, Takashi; Bi, Xin; Cipollari, Eleonora; Yasuda, Tomoyuki; Lagor, William R.; Szapary, Hannah J.; Tohyama, Junichiro; Millar, John S.; Billheimer, Jeffrey T.; Lyssenko, Nicholas N.; Rader, Daniel J.
2017-01-01
Phospholipid transfer protein (PLTP) may affect macrophage reverse cholesterol transport (mRCT) through its role in the metabolism of HDL. Ex vivo cholesterol efflux capacity and in vivo mRCT were assessed in PLTP deletion and PLTP overexpression mice. PLTP deletion mice had reduced HDL mass and cholesterol efflux capacity, but unchanged in vivo mRCT. To directly compare the effects of PLTP overexpression and deletion on mRCT, human PLTP was overexpressed in the liver of wild-type animals using an adeno-associated viral (AAV) vector, and control and PLTP deletion animals were injected with AAV-null. PLTP overexpression and deletion reduced plasma HDL mass and cholesterol efflux capacity. Both substantially decreased ABCA1-independent cholesterol efflux, whereas ABCA1-dependent cholesterol efflux remained the same or increased, even though preβ HDL levels were lower. Neither PLTP overexpression nor deletion affected excretion of macrophage-derived radiocholesterol in the in vivo mRCT assay. The ex vivo and in vivo assays were modified to gauge the rate of cholesterol efflux from macrophages to plasma. PLTP activity did not affect this metric. Thus, deviations in PLTP activity from the wild-type level reduce HDL mass and ex vivo cholesterol efflux capacity, but not the rate of macrophage cholesterol efflux to plasma or in vivo mRCT. PMID:28137768
NASA Astrophysics Data System (ADS)
Sa'adah, Noor Nailis; Purwani, Kristanti Indah; Nurhayati, Awik Puji Dyah; Ashuri, Nova Maulidina
2017-06-01
Diet of high lipids cause hyperlipidemia, which marked by an increase of total cholesterols, triglycerides, LDL-C, and decreasing of HDL-C. Hyperlipidemia lead the occurrence of atherosclerosis, one of factors that trigger cardiovascular disease, as hypertention; coronary heart and stroke. Parijoto (M. speciosa) is endemic plants in Asia with a distribution center in Malaysia, Indonesia and Philippines. Parijoto contain phytochemical components such as flavonoids, saponins and kardenolin. Flavonoid potensial as an antioxidants and can improve the hyperlipidemia condition. This study was aimed to determine lipid profiles and atherogenic index of hyperlipidemic Wistar rats (R. norvegicus Berkenhout, 1769) which given the methanolic extract of Parijoto (M. speciosa). The research was done with pre and post test randomized control group design. Rats were given a mixture of duck yolk and reused cooking oil (1:1) orally as much as 1% of body weight (BW) for 30 days. After hyperlipidemia achieved, rats were divided into 5 group: normal rats, hyperlipidemic rats, hyperlipidemic rats were given the methanolic extract of Parijoto (M. speciosa) 500 mg/kg, 1000 mg/kg, and 1500 mg/kg BW. Blood samples were collected when rats in hyperlipidemia conditions and after treatment with the methanolic extract of Parijoto (M. speciosa) for 30 days. The data of total cholesterol, HDL-Cholesterol, LDL-Cholesterol level, and atherogenic index were analyzed using ANOVA followed by Tukey test at 5% significance level. The result showed that giving of methanolic extract of Parijoto (M. speciosa) in hyperlipidemic rats reduced the total cholesterol, LDL-Cholesterol levels, and increased of HDL-cholesterol levels significantly (p<0.01), so atherogenic index reduced significantly too (p<0.01). Total cholesterol and LDL-Cholesterol levels were positively correlated with the atherogenic index, whereas HDL-cholesterol levels were negatively correlated with the atherogenic index.
Martin, Gregory G.; Atshaves, Barbara P.; Landrock, Kerstin K.; Landrock, Danilo; Storey, Stephen M.; Howles, Philip N.; Kier, Ann B.
2014-01-01
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol. PMID:25277800
Deficiency of Cholesteryl Ester Transfer Protein Protects Against Atherosclerosis in Rabbits.
Zhang, Jifeng; Niimi, Manabu; Yang, Dongshan; Liang, Jingyan; Xu, Jie; Kimura, Tokuhide; Mathew, Anna V; Guo, Yanhong; Fan, Yanbo; Zhu, Tianqing; Song, Jun; Ackermann, Rose; Koike, Yui; Schwendeman, Anna; Lai, Liangxue; Pennathur, Subramaniam; Garcia-Barrio, Minerva; Fan, Jianglin; Chen, Y Eugene
2017-06-01
CETP (cholesteryl ester transfer protein) plays an important role in lipoprotein metabolism; however, whether inhibition of CETP activity can prevent cardiovascular disease remains controversial. We generated CETP knockout (KO) rabbits by zinc finger nuclease gene editing and compared their susceptibility to cholesterol diet-induced atherosclerosis to that of wild-type (WT) rabbits. On a chow diet, KO rabbits showed higher plasma levels of high-density lipoprotein (HDL) cholesterol than WT controls, and HDL particles of KO rabbits were essentially rich in apolipoprotein AI and apolipoprotein E contents. When challenged with a cholesterol-rich diet for 18 weeks, KO rabbits not only had higher HDL cholesterol levels but also lower total cholesterol levels than WT rabbits. Analysis of plasma lipoproteins revealed that reduced plasma total cholesterol in KO rabbits was attributable to decreased apolipoprotein B-containing particles, while HDLs remained higher than that in WT rabbits. Both aortic and coronary atherosclerosis was significantly reduced in KO rabbits compared with WT rabbits. Apolipoprotein B-depleted plasma isolated from CETP KO rabbits showed significantly higher capacity for cholesterol efflux from macrophages than that from WT rabbits. Furthermore, HDLs isolated from CETP KO rabbits suppressed tumor necrosis factor-α-induced vascular cell adhesion molecule 1 and E-selectin expression in cultured endothelial cells. These results provide evidence that genetic ablation of CETP activity protects against cholesterol diet-induced atherosclerosis in rabbits. © 2017 American Heart Association, Inc.
Kreuzer, M; Hanneken, H; Wittmann, M; Gerdemann, M M; Machmuller, A
2002-04-01
Knowledge is limited on the efficacy of hindgut-fermentable dietary fibre to reduce blood, bile and body tissue cholesterol levels. In three experiments with growing pigs the effects of different kinds and levels of bacterially fermentable fibre (BFS) on cholesterol metabolism were examined. Various diets calculated to have similar contents of metabolizable energy were supplied for complete fattening periods. In the first experiment, a stepwise increase from 12 to 20% BFS was performed by supplementing diets with fermentable fibre from sugar beet pulp (modelling hemicelluloses and pectin). Beet pulp, rye bran (modelling cellulose) and citrus pulp (pectin) were offered either independently or in a mixture in the second experiment. These diets were opposed to rations characterized in carbohydrate type by starch either mostly non-resistant (cassava) or partly resistant (maize) to small intestinal digestion. The third experiment was planned to explore the interactions of BFS from citrus pulp with fat either through additional coconut oil/palm kernel oil blend or full-fat soybeans. In all experiments the increase of the BFS content was associated with a constant (cellulose) or decreasing (hemicelluloses, pectin) dietary proportion of non-digestible fibre. In experiment 1 an inverse dose-response relationship between BFS content and cholesterol in blood serum and adipose tissue as well as bile acid concentration in bile was noted while muscle cholesterol did not respond. In experiment 2 the ingredients characterized by cellulose and hemicelluloses/pectin reduced cholesterol-related traits relative to the low-BFS-high-starch controls whereas, except in adipose tissue cholesterol content, the pectinous ingredient had the opposite effect. However, the changes in serum cholesterol mainly affected HDL and not LDL cholesterol. Adipose tissue cholesterol also was slightly lower with partly resistant starch compared to non-resistant starch in the diet. Experiment 3 showed that the use of citrus pulp increased serum cholesterol concentrations when levels were low in the corresponding low-BFS diets (low-fat and soy bean diets), but caused no further increase in the coconut-oil/palm kernel oil blend diet. From the present results it seems that fermentable hemicelluloses have a more favourable effect of decreasing metabolic cholesterol and related traits than hardly digestible fibre, fermentable cellulose or, particularly, pectin. Furthermore, some types of fibre expressed a certain potential to reduce cholesterol content of fat pork and pork products by up to 10% (experiment 1) and 25% (experiment 2).
Sanbe, Toshihiro; Tomofuji, Takaaki; Ekuni, Daisuke; Azuma, Tetsuji; Tamaki, Naofumi; Yamamoto, Tatsuo
2007-11-01
A high-cholesterol diet stimulates alveolar bone resorption, which may be induced via tissue oxidative damage. Vitamin C reduces tissue oxidative damage by neutralizing free radicals and scavenging hydroxyl radicals, and its antioxidant effect may offer the clinical benefit of preventing alveolar bone resorption in cases of hyperlipidemia. We examined whether vitamin C could suppress alveolar bone resorption in rats fed a high-cholesterol diet. In this 12-week study, rats were divided into four groups: a control group (fed a regular diet) and three experimental groups (fed a high-cholesterol diet supplemented with 0, 1, or 2 g/l vitamin C). Vitamin C was provided by adding it to the drinking water. The bone mineral density of the alveolar bone was analyzed by microcomputerized tomography. As an index of tissue oxidative damage, the 8-hydroxydeoxyguanosine level in the periodontal tissue was determined using a competitive enzyme-linked immunosorbent assay. Hyperlipidemia, induced by a high-cholesterol diet, decreased rat alveolar bone density and increased the number of tartrate-resistant acid phosphatase-positive osteoclasts. The expression of 8-hydroxydeoxyguanosine was upregulated in the periodontal tissues. Intake of vitamin C reduced the effect of a high-cholesterol diet on alveolar bone density and osteoclast differentiation and decreased periodontal 8-hydroxydeoxyguanosine expression. In the rat model, vitamin C suppressed alveolar bone resorption, induced by high dietary cholesterol, by decreasing the oxidative damage of periodontal tissue.
Miettinen, T A; Nissinen, M; Lepäntalo, M; Albäck, A; Railo, M; Vikatmaa, P; Kaste, M; Mustanoja, S; Gylling, H
2011-03-01
It is not known whether dietary intake of plant stanols or sterols changes the composition of arterial sterols. Therefore, we compared serum and carotid artery cholesterol and non-cholesterol sterols after plant stanol (staest) or sterol (steest) ester feeding in endarterectomized patients. Elderly statin-treated asymptomatic patients undergoing carotid endarterectomy were randomized double-blind to consume staest (n=11) or steest (n=11) spread (2 g of stanol or sterol/day) for four weeks preoperatively. Non-cholesterol sterols from serum and carotid artery tissue were analysed with gas-liquid chromatography. Staest spread lowered serum total (17.2%), VLDL, and LDL cholesterol and serum triglycerides, while steest spread lowered serum total (13.8%) and LDL cholesterol levels from baseline (p<0.05 for all). Serum cholestanol and avenasterol were decreased in both groups, but campesterol and sitosterol were decreased by staest and increased by steest from baseline (p<0.05 from baseline and between the groups). Serum sitostanol to cholesterol ratio was increased by staest, but in arterial tissue this ratio was similar in both groups. On staest, lathosterol, campesterol, and sitosterol, and on steest sitosterol and avenasterol correlated significantly between serum and arterial tissue. Cholesterol metabolism, eg. lathosterol/campesterol, suggested that plant sterols were reduced in serum and in arterial tissue during staest. The novel observations were that plant stanol ester consumption, in contrast to plant sterols, tended to reduce carotid artery plant sterols in statin-treated patients. Furthermore, despite increased serum sitostanol contents during plant stanol ester consumption, their arterial levels were unchanged suggesting that sitostanol is not taken up into the arterial wall. Copyright © 2009 Elsevier B.V. All rights reserved.
Galle, Marianela; Kladniew, Boris Rodenak; Castro, María Agustina; Villegas, Sandra Montero; Lacunza, Ezequiel; Polo, Mónica; de Bravo, Margarita García; Crespo, Rosana
2015-07-15
Geraniol (G) is a natural isoprenoid present in the essential oils of several aromatic plants, with various biochemical and pharmacologic properties. Nevertheless, the mechanisms of action of G on cellular metabolism are largely unknown. We propose that G could be a potential agent for the treatment of hyperlipidemia that could contribute to the prevention of cardiovascular disease. The aim of the present study was to advance our understanding of its mechanism of action on cholesterol and TG metabolism. NIH mice received supplemented diets containing 25, 50, and 75 mmol G/kg chow. After a 3-week treatment, serum total-cholesterol and triglyceride levels were measured by commercial kits and lipid biosynthesis determined by the [(14)C] acetate incorporated into fatty acids plus nonsaponifiable and total hepatic lipids of the mice. The activity of the mRNA encoding HMGCR-the rate-limiting step in cholesterol biosynthesis-along with the enzyme levels and catalysis were assessed by real-time RT-PCR, Western blotting, and HMG-CoA-conversion assays, respectively. In-silico analysis of several genes involved in lipid metabolism and regulated by G in cultured cells was also performed. Finally, the mRNA levels encoded by the genes for the low-density-lipoprotein receptor (LDLR), the sterol-regulatory-element-binding transcription factor (SREBF2), the very-low-density-lipoprotein receptor (VLDLR), and the acetyl-CoA carboxylase (ACACA) were determined by real-time RT-PCR. Plasma total-cholesterol and triglyceride levels plus hepatic fatty-acid, total-lipid, and nonsaponifiable-lipid biosynthesis were significantly reduced by feeding with G. Even though an up-regulation of the mRNA encoding HMGCR occurred in the G treated mouse livers, the protein levels and specific activity of the enzyme were both inhibited. G also enhanced the mRNAs encoding the LDL and VLDL receptors and reduced ACACA mRNA, without altering the transcription of the mRNA encoding the SREBF2. The following mechanisms may have mediated the decrease in plasma lipids levels in mice: a down-regulation of hepatocyte-cholesterol synthesis occurred as a result of decreased HMGCR protein levels and catalytic activity; the levels of LDLR mRNA became elevated, thus suggesting an increase in the uptake of serum LDL, especially by the liver; and TG synthesis became reduced very likely because of a decrease in fatty-acid synthesis. Copyright © 2015 Elsevier GmbH. All rights reserved.
Fredericks, William J.; Sepulveda, Jorge; Lal, Priti; Tomaszewski, John E.; Lin, Ming-Fong; McGarvey, Terry; Rauscher, Frank J; Malkowicz, S. Bruce
2013-01-01
Castrate-Resistant Prostate Cancer (CRPC) is characterized by persistent androgen receptor-driven tumor growth in the apparent absence of systemic androgens. Current evidence suggests that CRPC cells can produce their own androgens from endogenous sterol precursors that act in an intracrine manner to stimulate tumor growth. The mechanisms by which CRPC cells become steroidogenic during tumor progression are not well defined. Herein we describe a novel link between the elevated cholesterol phenotype of CRPC and the TERE1 tumor suppressor protein, a prenyltransferase that synthesizes vitamin K-2, which is a potent endogenous ligand for the SXR nuclear hormone receptor. We show that 50% of primary and metastatic prostate cancer specimens exhibit a loss of TERE1 expression and we establish a correlation between TERE1 expression and cholesterol in the LnCaP-C81 steroidogenic cell model of the CRPC. LnCaP-C81 cells also lack TERE1 protein, and show elevated cholesterol synthetic rates, higher steady state levels of cholesterol, and increased expression of enzymes in the de novo cholesterol biosynthetic pathways than the non-steroidogenic prostate cancer cells. C81 cells also show decreased expression of the SXR nuclear hormone receptor and a panel of directly regulated SXR target genes that govern cholesterol efflux and steroid catabolism. Thus, a combination of increased synthesis, along with decreased efflux and catabolism likely underlies the CRPC phenotype: SXR might coordinately regulate this phenotype. Moreover, TERE1 controls synthesis of vitamin K-2, which is a potent endogenous ligand for SXR activation, strongly suggesting a link between TERE1 levels, K-2 synthesis and SXR target gene regulation. We demonstrate that following ectopic TERE1 expression or induction of endogenous TERE1, the elevated cholesterol levels in C81 cells are reduced. Moreover, reconstitution of TERE1 expression in C81 cells reactivates SXR and switches on a suite of SXR target genes that coordinately promote both cholesterol efflux and androgen catabolism. Thus, loss of TERE1 during tumor progression reduces K-2 levels resulting in reduced transcription of SXR target genes. We propose that TERE1 controls the CPRC phenotype by regulating the endogenous levels of Vitamin K-2 and hence the transcriptional control of a suite of steroidogenic genes via the SXR receptor. These data implicate the TERE1 protein as a previously unrecognized link affecting cholesterol and androgen accumulation that could govern acquisition of the CRPC phenotype. PMID:23919967
Damodharan, Karthiyaini; Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Suh, Joo-Won
2016-10-28
We characterized the probiotic properties of Lactobacillus helveticus strains KII13 and KHI1 isolated from fermented cow milk by in vitro and in vivo studies. The strains exhibited tolerance to simulated orogastrointestinal condition, adherence to Caco-2 cells, and antimicrobial activity. Both L. helveticus strains produced bioactive tripeptides, isoleucylprolyl-proline and valyl-prolyl-proline, during fermentation of milk. KII13 showed higher in vitro cholesterol-lowering activity (47%) compared with KHI1 (28%) and L. helveticus ATCC 15009 (22%), and hence, it was selected for in vivo study of cholesterol-lowering activity in atherogenic diet-fed hypercholesterolemic mice. For the study, mice were divided into four groups ( viz ., normal diet control group, atherogenic diet control group (HCD), KII13- atherogenic diet group (HCD-KII13), and Lactobacillus acidophilus ATCC 43121-atherogenic diet group (HCD- L.ac ) as positive control). The serum total cholesterol level was significantly decreased by 8.6% and 7.78% in the HCD-KII13 and HCD- L.ac groups ( p < 0.05), respectively, compared with the HCD group. Low-density lipoprotein cholesterol levels in both HCD-KII13 and HCD- L.ac groups were decreased by 13% and 11%, respectively, compared with the HCD group (both, p < 0.05). Analysis of cholesterol metabolism-related gene expression in mice liver showed increased expression of LDLR and SREBF2 genes in mice fed with KII13. By comparing all the results, we conclude that L. helveticus KII13 could be used as a potential probiotic strain to produce antihypertensive peptides and reduce serum cholesterol.
Rosenbaum, Anton I.; Zhang, Guangtao; Warren, J. David; Maxfield, Frederick R.
2010-01-01
Niemann-Pick type C disease (NPC) is a lysosomal storage disorder causing accumulation of unesterified cholesterol in lysosomal storage organelles. Recent studies have shown that hydroxypropyl-β-cyclodextrin injections in npc1−/− mice are partially effective in treating this disease. Using cultured fibroblasts, we have investigated the cellular mechanisms responsible for reduction of cholesterol accumulation. We show that decreased levels of cholesterol accumulation are maintained for several days after removal of cyclodextrin from the culture medium. This suggests that endocytosed cyclodextrin can reduce the cholesterol storage by acting from inside endocytic organelles rather than by removing cholesterol from the plasma membrane. To test this further, we incubated both NPC1 and NPC2 mutant cells with cholesterol-loaded cyclodextrin for 1 h, followed by chase in serum-containing medium. Although the cholesterol content of the treated cells increased after the 1-h incubation, the cholesterol levels in the storage organelles were later reduced significantly. We covalently coupled cyclodextrin to fluorescent dextran polymers. These cyclodextrin–dextran conjugates were delivered to cholesterol-enriched lysosomal storage organelles and were effective at reducing the cholesterol accumulation. We demonstrate that methyl-β-cyclodextrin is more potent than hydroxypropyl-β-cyclodextrin in reducing both cholesterol and bis(monoacylglycerol) phosphate accumulation in NPC mutant fibroblasts. Brief treatment of cells with cyclodextrins causes an increase in cholesterol esterification by acyl CoA:cholesterol acyl transferase, indicating increased cholesterol delivery to the endoplasmic reticulum. These findings suggest that cyclodextrin-mediated enhanced cholesterol transport from the endocytic system can reduce cholesterol accumulation in cells with defects in either NPC1 or NPC2. PMID:20212119
Yalçin, Sakine; Yalçin, Suzan; Cakin, Kemal; Eltan, Onder; Dağaşan, Levent
2010-08-15
The objective of this study was to determine the effects of dietary yeast autolysate on performance, egg traits, egg cholesterol content, egg yolk fatty acid composition, lipid oxidation of egg yolk, some blood parameters and humoral immune response of laying hens during a 16 week period. A total of 225 Hyline Brown laying hens, 22 weeks of age, were allocated equally to one control group and four treatment groups. Yeast autolysate (Saccharomyces cerevisiae, InteWall) was used at levels of 1, 2, 3 and 4 g kg(-1) in the diets of the first, second, third and fourth treatment groups respectively. Dietary treatments did not significantly affect body weight, feed intake and egg traits. Yeast autolysate supplementation increased egg production (P < 0.001) and egg weight (P < 0.001) and improved feed efficiency (P < 0.05). Yeast autolysate at levels of 2, 3 and 4 g kg(-1) decreased egg yolk cholesterol level as mg g(-1) yolk (P < 0.01) and blood serum levels of cholesterol and triglyceride (P < 0.05) and increased antibody titres to sheep red blood cells (P < 0.01). Total saturated fatty acids and the ratio of saturated/unsaturated fatty acids increased (P < 0.01) and total monounsaturated fatty acids (P < 0.001) decreased with yeast autolysate supplementation. Dietary yeast autolysate at levels of 2, 3 and 4 g kg(-1) had beneficial effects on performance, egg cholesterol content and humoral immune response. It is concluded that 2 g kg(-1) yeast autolysate will be enough to have beneficial effects in laying hens. Copyright (c) 2010 Society of Chemical Industry.
Hopstock, Laila A; Eggen, Anne Elise; Løchen, Maja-Lisa; Mathiesen, Ellisiv B; Njølstad, Inger; Wilsgaard, Tom
2018-02-01
Secondary prevention guidelines after myocardial infarction (MI) are gender neutral, but underutilisation of treatment in women has been reported. We investigated the change in total and low-density lipoprotein (LDL) cholesterol levels and lipid-lowering drug (LLD) use after first-ever MI in a population-based study. We followed 10,005 participants (54% women) attending the Tromsø Study 1994-1995 and 8483 participants (55% women) attending the Tromsø Study 2007-2008 for first-ever MI up to their participation in 2007-2008 and 2015-2016, respectively. We used linear and logistic regression models to investigate sex differences in change in lipid levels. A total of 395 (MI cohort I) and 132 participants (MI cohort II) had a first-ever MI during 1994-2008 and 2007-2013, respectively. Mean change in total cholesterol was -2.34 mmol/L (SD 1.15) in MI cohort I, and in LDL cholesterol was -1.63 mmol/L (SD 1.12) in MI cohort II. Men had a larger decrease in lipid levels compared to women: the linear regression coefficient for change was -0.33 (95% confidence interval [CI] -0.51 to -0.14) for total cholesterol and -0.21 (95% CI -0.37 to -0.04) for LDL cholesterol, adjusted for baseline lipid value, age and cohort. Men had 73% higher odds (95% CI 1.15-2.61) of treatment target achievement compared to women, adjusted for baseline lipid value, age and cohort. LLD use was reported in 85% of women and 92% of men in MI cohort I, and 80% in women and 89% in men in MI cohort II. Compared to men, women had significantly less decrease in lipid levels after MI, and a smaller proportion of women achieved the treatment target.
Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing.
Ding, Qiurong; Strong, Alanna; Patel, Kevin M; Ng, Sze-Ling; Gosis, Bridget S; Regan, Stephanie N; Cowan, Chad A; Rader, Daniel J; Musunuru, Kiran
2014-08-15
Individuals with naturally occurring loss-of-function proprotein convertase subtilisin/kexin type 9 (PCSK9) mutations experience reduced low-density lipoprotein cholesterol levels and protection against cardiovascular disease. The goal of this study was to assess whether genome editing using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system can efficiently introduce loss-of-function mutations into the endogenous PCSK9 gene in vivo. We used adenovirus to express CRISPR-associated 9 and a CRISPR guide RNA targeting Pcsk9 in mouse liver, where the gene is specifically expressed. We found that <3 to 4 days of administration of the virus, the mutagenesis rate of Pcsk9 in the liver was as high as >50%. This resulted in decreased plasma PCSK9 levels, increased hepatic low-density lipoprotein receptor levels, and decreased plasma cholesterol levels (by 35-40%). No off-target mutagenesis was detected in 10 selected sites. Genome editing with the CRISPR-CRISPR-associated 9 system disrupts the Pcsk9 gene in vivo with high efficiency and reduces blood cholesterol levels in mice. This approach may have therapeutic potential for the prevention of cardiovascular disease in humans. © 2014 American Heart Association, Inc.
Na, Lixin; Zhang, Qiao; Jiang, Shuo; Du, Shanshan; Zhang, Wei; Li, Ying; Sun, Changhao; Niu, Yucun
2015-05-19
Our previous studies have shown that mangiferin decreased serum triglycerides and free fatty acids (FFAs) by increasing FFAs oxidation in both animal and cell experiments. This study sought to evaluate the effects of mangiferin on serum lipid profiles in overweight patients with hyperlipidemia. Overweight patients with hyperlipidemia (serum triglyceride ≥ 1.70 mmol/L, and total cholesterol ≥ 5.2 mmol/L) were included in this double-blind randomized controlled trial. Participants were randomly allocated to groups, either receiving mangiferin (150 mg/day) or identical placebo for 12 weeks. The lipid profile and serum levels of mangiferin, glucose, L-carnitine, β-hydroxybutyrate, and acetoacetate were determined at baseline and 12 weeks. A total of 97 participants completed the trial. Compared with the placebo control, mangiferin supplementation significantly decreased the serum levels of triglycerides and FFAs, and insulin resistance index. Mangiferin supplementation also significantly increased the serum levels of mangiferin, high-density lipoprotein cholesterol, L-carnitine, β-hydroxybutyrate, and acetoacetate, and increased lipoprotein lipase activity. However, there were no differences in the serum levels of total cholesterol, low-density lipoprotein cholesterol, serum glucose, and insulin between groups. Mangiferin supplementation could improve serum lipid profiles by reducing serum triglycerides and FFAs in overweight patients with hyperlipidemia, partly due to the promotion of FFAs oxidation.
Na, Lixin; Zhang, Qiao; Jiang, Shuo; Du, Shanshan; Zhang, Wei; Li, Ying; Sun, Changhao; Niu, Yucun
2015-01-01
Our previous studies have shown that mangiferin decreased serum triglycerides and free fatty acids (FFAs) by increasing FFAs oxidation in both animal and cell experiments. This study sought to evaluate the effects of mangiferin on serum lipid profiles in overweight patients with hyperlipidemia. Overweight patients with hyperlipidemia (serum triglyceride ≥ 1.70 mmol/L, and total cholesterol ≥ 5.2 mmol/L) were included in this double-blind randomized controlled trial. Participants were randomly allocated to groups, either receiving mangiferin (150 mg/day) or identical placebo for 12 weeks. The lipid profile and serum levels of mangiferin, glucose, L-carnitine, β-hydroxybutyrate, and acetoacetate were determined at baseline and 12 weeks. A total of 97 participants completed the trial. Compared with the placebo control, mangiferin supplementation significantly decreased the serum levels of triglycerides and FFAs, and insulin resistance index. Mangiferin supplementation also significantly increased the serum levels of mangiferin, high-density lipoprotein cholesterol, L-carnitine, β-hydroxybutyrate, and acetoacetate, and increased lipoprotein lipase activity. However, there were no differences in the serum levels of total cholesterol, low-density lipoprotein cholesterol, serum glucose, and insulin between groups. Mangiferin supplementation could improve serum lipid profiles by reducing serum triglycerides and FFAs in overweight patients with hyperlipidemia, partly due to the promotion of FFAs oxidation. PMID:25989216
Chen, Jing; Costa, Lucio G.
2011-01-01
Recent studies suggest that retinoids may be effective in the treatment of Alzheimer's disease, although exposure to an excess of retinoids during gestation causes teratogenesis. Cholesterol is essential for brain development, but high levels of cholesterol have been associated with Alzheimer's disease. We hypothesized that retinoic acid may affect cholesterol homeostasis in rat astrocytes, which regulate cholesterol distribution in the brain, through the up-regulation of cholesterol transporters ATP binding cassette (Abc)a1 and Abcg1. Tretinoin, 13-cis retinoic acid (13-cis-RA), 9-cis-RA, and the selective retinoid X receptor (RXR) agonist methoprene significantly increased cholesterol efflux induced by cholesterol acceptors and protein levels of Abca1 by 2.3- (±0.25), 3.6- (±0.42), 4.1- (±0.5), and 1.75- (±0.43) fold, respectively, and Abcg1 by 2.1- (±0.26), 2.2- (±0.33), 2.5- (±0.23), and 2.2- (±0.21) fold, respectively. 13-cis-RA and 9-cis-RA also significantly increased mRNA levels of Abca1 (maximal induction 7.3 ± 0.42 and 2.7 ± 0.17, respectively) and Abcg1 (maximal induction 2.0 ± 0.18 and 1.8 ± 0.09, respectively), and the levels of membrane-bound Abca1 (2.5 ± 0.3 and 2.5 ± 0.40-fold increase, respectively), whereas they significantly decreased intracellular cholesterol content without affecting cholesterol synthesis. The effect of 9-cis-RA on cholesterol homeostasis in astrocytes can be ascribed to the activation of RXR, whereas the effects of 13-cis-RA and tretinoin were independent of either RXRs or retinoic acid receptors. These findings suggest that retinoids affect cholesterol homeostasis in astrocytes and that this effect may be involved in both their therapeutic and teratogenic actions. PMID:21628419
Sasani, Mehdi; Yazgan, Burak; Celebi, Irfan; Aytan, Nurgul; Catalgol, Betul; Oktenoglu, Tunc; Kaner, Tuncay; Ozer, Nesrin Kartal; Ozer, Ali Fahir
2011-01-01
Background: Aneurysm rupture results in subarachnoid hemorrhage (SAH) with subsequent vasospasm in the cerebral and cerebellar major arteries. In recent years, there has been increasing evidence that hypercholesterolemia plays a role in the pathology of SAH. It is known that hypercholesterolemia is one of the major risk factors for the development of atherosclerosis. Among the factors that have been found to retard the development of atherosclerosis is the intake of a sufficient amount of Vitamin E. An inverse association between serum Vitamin E and coronary heart disease mortality has been demonstrated in epidemiologic studies. Therefore, we tested, in an established model of enhanced cholesterol feed in rabbits, the effects of hypercholesterolemia on vasospasm after SAH by using computed tomography (CT) angiograms of the rabbit basilar artery; in addition, we tested the effects of Vitamin E on these conditions, which have not been studied up to now. Methods: In this study rabbits were divided into 3 major groups: control, cholesterol fed, and cholesterol + Vitamin E fed. Hypercholesterolemia was induced by a 2% cholesterol-containing diet. Three rabbit groups were fed rabbit diet; one group was fed a diet that also contained 2% cholesterol and another group was fed a diet containing 2% cholesterol and they received i.m. injections of 50 mg/kg of Vitamin E. After 8 weeks, SAH was induced by the double-hemorrhage method and distilled water was injected into cisterna magna. Blood was taken to measure serum cholesterol and Vitamin E levels. Basilar artery samples were taken for microscopic examination. CT angiography and measurement of basilar artery diameter were performed at days 0 and 3 after SAH. Results: Two percent cholesterol diet supplementation for 8 weeks resulted in a significant increase in serum cholesterol levels. Light microscopic analysis of basilar artery of hypercholesterolemic rabbits showed disturbances in the subendothelial and medial layers, degeneration of elastic fibers in the medial layer from endothelial cell desquamation, and a reduction of waves in the endothelial layer. However, the cholesterol + Vitamin E group did not exhibit these changes. The mean diameter of the basilar artery after SAH induction in the cholesterol-treated group was decreased 47% compared with the mean diameter of the control group. This value was less affected in cholesterol + Vitamin E-treated rabbits, which decreased 18% compared with the mean diameter of the control group. Conclusions: Hypercholesterolemia-related changes in the basilar artery aggravate vasospasm after SAH. Adding Vitamin E to cholesterol-treated rabbits decreased the degree of vasospasm following SAH in the rabbit basilar artery SAH model. We suggest that Vitamin E supplements and a low cholesterol diet may potentially diminish SAH complicated by vasospasm in high-risk patients. PMID:21451728
Effect of vildagliptin and pravastatin combination on cholesterol efflux in adipocytes.
Mostafa, Ahmed M; Hamdy, Nadia M; Abdel-Rahman, Sherif Z; El-Mesallamy, Hala O
2016-07-01
Many reports suggested that some statins are almost ineffective in reducing triglycerides or enhancing HDL-C plasma levels, although statin treatment was still efficacious in reducing LDL-C. In diabetic dyslipidemic patients, it may therefore be necessary to use a combination therapy with other drugs to achieve either LDL-C- and triglyceride-lowering or HDL-C-enhancing goals. Such ineffectiveness of statins can be attributed to their effect on the liver X receptor (LXR) which regulates the expression of the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. A decrease in the expression of these transporters eventually leads to decreased cholesterol efflux from peripheral tissues leading to low levels of HDL-C. Although manipulating the LXR pathway may complement the effects of statins, LXR synthetic ligands as T091317 have shown significant hypertriglyceridemic action which limits their use. We recently found that the antidiabetic drug vildagliptin stimulates LXR expression leading to increased ABCB1/ABCG1 expression which improves cholesterol efflux from adipocytes. Therefore, a combination of vildagliptin and statin may provide a solution without the hypertriglyceridemic action observed with LXR agonist. We hypothesize that a combination of vildagliptin and pravastatin will improve cholesterol efflux in adipocytes. Statin-treated 3T3-L1 adipocytes were treated with vildagliptin, and the expression of LXR-ABCA1/ABCG1 cascade and the cholesterol efflux were then determined. Our data indicate that a combination of vildagliptin and pravastatin significantly induces the expression of LXR-ABCA1/ABCG1 cascade and improves cholesterol efflux (P > 0.05) in adipocytes. Our data may explain, at least in part, the improvement in HDL-C levels observed in patients receiving both medications. © 2016 IUBMB Life, 68(7):535-543, 2016. © 2016 International Union of Biochemistry and Molecular Biology.
Effects of apoA-V on HDL and VLDL metabolism in APOC3 transgenic mice.
Qu, Shen; Perdomo, German; Su, Dongming; D'Souza, Fiona M; Shachter, Neil S; Dong, H Henry
2007-07-01
Apolipoprotein A-V (apoA-V) and apoC-III are exchangeable constituents of VLDL and HDL. ApoA-V counteracts the effect of apoC-III on triglyceride (TG) metabolism with poorly defined mechanisms. To better understand the effects of apoA-V on TG and cholesterol metabolism, we delivered apoA-V cDNA into livers of hypertriglyceridemic APOC3 transgenic mice by adenovirus-mediated gene transfer. In response to hepatic apoA-V production, plasma TG levels were reduced significantly as a result of enhanced VLDL catabolism without alternations in VLDL production. This effect was associated with reduced apoC-III content in VLDL. Increased apoA-V production also resulted in decreased apoC-III and increased apoA-I content in HDL. Furthermore, apoA-V-enriched HDL was associated with enhanced LCAT activity and increased cholesterol efflux. This effect, along with apoE enrichment in HDL, contributed to HDL core expansion and alpha-HDL formation, accounting for significant increases in both the number and size of HDL particles. As a result, apoA-V-treated APOC3 transgenic mice exhibited decreased VLDL-cholesterol and increased HDL-cholesterol levels. ApoA-V-mediated reduction of apoC-III content in VLDL represents an important mechanism by which apoA-V acts to ameliorate hypertriglyceridemia in adult APOC3 transgenic mice. In addition, increased apoA-V levels accounted for cholesterol redistribution from VLDL to larger HDL particles. These data suggest that in addition to its TG-lowering effect, apoA-V plays a significant role in modulating HDL maturation and cholesterol metabolism.
Effects of apoA-V on HDL and VLDL metabolism in APOC3 transgenic mice1
Qu, Shen; Perdomo, German; Su, Dongming; D’Souza, Fiona M.; Shachter, Neil S.; Dong, H. Henry
2009-01-01
Apolipoprotein A-V (apoA-V) and apoC-III are exchangeable constituents of VLDL and HDL. ApoA-V counteracts the effect of apoC-III on triglyceride (TG) metabolism with poorly defined mechanisms. To better understand the effects of apoA-V on TG and cholesterol metabolism, we delivered apoA-V cDNA into livers of hypertriglyceridemic APOC3 transgenic mice by adenovirus-mediated gene transfer. In response to hepatic apoA-V production, plasma TG levels were reduced significantly as a result of enhanced VLDL catabolism without alternations in VLDL production. This effect was associated with reduced apoC-III content in VLDL. Increased apoA-V production also resulted in decreased apoC-III and increased apoA-I content in HDL. Furthermore, apoA-V-enriched HDL was associated with enhanced LCAT activity and increased cholesterol efflux. This effect, along with apoE enrichment in HDL, contributed to HDL core expansion and α-HDL formation, accounting for significant increases in both the number and size of HDL particles. As a result, apoA-V-treated APOC3 transgenic mice exhibited decreased VLDL-cholesterol and increased HDL-cholesterol levels. ApoA-V-mediated reduction of apoC-III content in VLDL represents an important mechanism by which apoA-V acts to ameliorate hypertriglyceridemia in adult APOC3 transgenic mice. In addition, increased apoA-V levels accounted for cholesterol redistribution from VLDL to larger HDL particles. These data suggest that in addition to its TG-lowering effect, apoA-V plays a significant role in modulating HDL maturation and cholesterol metabolism PMID:17438339
Mohania, Dheeraj; Kansal, Vinod Kumar; Shah, Dilip; Nagpal, Ravinder; Kumar, Manoj; Gautam, Sanjeev Kumar; Singh, Birbal; Behare, Pradip Vishnu
2013-09-01
This study examined the effects of probiotic dahi prepared by Lactobacillus plantarum Lp9 and dahi culture in buffalo milk on lowering cholesterol in rats fed a hypercholesterolemic basal diet. Male Wistar rats were divided into 3 groups and fed with probiotic dahi, dahi, or buffalo milk for 120 days. Following the consumption of supplements (probiotic dahi, dahi or buffalo milk), the animals were fed a basal hypercholesterolemic diet. Plasma total cholesterol and triglycerides (TAGs) were decreased by 35% and 72% in rats fed with probiotic dahi group, while cholesterol levels increased by 70% and TAGs increased by 97% in buffalo milk and 59% in dahi fed groups. Supplementation of probiotic dahi further lowered plasma low-density lipoprotein (LDL) + very-low-density lipoprotein (VLDL)- cholesterol by 59%, while it elevated plasma high-density lipoprotein (HDL)-cholesterol by 116%. As a result, atherogenic index, the ratio of HDL to LDL + VLDL was markedly improved. Deposition of cholesterol and TAGs in liver and aorta were significantly reduced in rats fed with probiotic dahi. These observations suggest that probiotic dahi may have therapeutic potential to decrease plasma, hepatic and aortic lipid profile, and attenuate diet-induced hypercholesterolemia.
Asadi, Farzad; Shahriari, Ali; Chahardah-Cheric, Marjan
2010-01-01
The aim of the present study was to determine the effect of long-term optional intake of vegetable oils (canola, grape seed, corn) and yogurt butter on the serum, liver and muscle cholesterol status. Twenty-five male Wistar rats were randomly categorized into five groups (n=5) as follows: control, canola oil, grape seed oil, corn oil and manually prepared yogurt butter. In each group, 24h two bottle choice (oil and water) tests were performed for 10 weeks. Serum cholesterol values showed a trend to decrease in grape seed oil, corn oil and yogurt butter groups compared to the control. Optional intake of yogurt butter made a significant increase in HDL-C values (42.34+/-9.98 mg/dL) yet decrease in LDL-C values (11.68+/-2.06 mg/dL) compared to the corresponding control (19.07+/-3.51; 30.96+/-6.38 mg/dL, respectively). Furthermore, such findings were concomitant with a significant decrease in the liver TC levels (1.75+/-0.31 mg/g liver) and an increase in the muscle TC levels (1.85+/-0.32 mg/g liver) compared to the corresponding control (2.43+/-0.31; 0.94+/-0.14 mg/g liver, respectively). Optional intake of manually prepared yogurt butter has more beneficial effects on serum lipoprotein cholesterol values with some alterations in the liver and muscle cholesterol states than the vegetable oils. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Serum antioxidant and cholesterol levels in patients with different types of cancer.
Abiaka, C; Al-Awadi, F; Al-Sayer, H; Gulshan, S; Behbehani, A; Farghally, M; Simbeye, A
2001-01-01
Serum antioxidant (urate, alpha-tocopherol) activity and cholesterol concentration in 142 patients of Indian and Arab (Kuwaitis and other Arabs) origin with different types of cancer (breast, colon, stomach, thyroid, oral, rectal, pancreatic, and renal) were compared to 100 age- and sex-matched control subjects. Values were expressed as medians (interquartile range). Urate concentration was significantly decreased in male patients compared to male controls (P < 0.0001) and in female patients and female breast cancer cases compared to female controls; P < 0.0001 and P = 0.001, respectively. Alpha-tocopherol concentration decreased significantly in total cancer, stomach, colon, rectal, and breast cancer cases than the controls; P < 0.0001, P < 0.0001, P < 0.0001, P = 0.012, and P = 0.022, respectively. Cholesterol concentration decreased significantly in stomach, oral, colon, and total cancer cases compared to the controls; P < 0.0001, P < 0.0001, P = 0.002, and P = 0.012, respectively. Among controls, females had significantly (P < 0.0001) lower concentrations of alpha-tocopherol than males. Among patients, cholesterol, urate, and alpha-tocopherol concentrations decreased significantly in smokers than in nonsmokers; P < 0.0001, P = 0.004, and P = 0.047, respectively. Generally, changes in alpha-tocopherol/cholesterol ratios mimicked changes in alpha-tocopherol concentration. Concentrations of all parameters decreased significantly in male patients compared to male controls. Age was positively associated with all three analytes with respect to the controls. Alpha-tocopherol correlated with cholesterol in cancer patients (r = 0.367; P < 0.0001) and with urate in the controls (r = 0.342; P < 0.0001). The data suggest cancer-related diminished synthesis of cholesterol and, generally, a greater antioxidant burden for alpha-tocopherol than urate in cancer-generated oxidative stress. The increased incidence of pancreatic cancer in Kuwaitis warrants further study. Copyright 2001 Wiley-Liss, Inc.
Rabani, Vahideh; Montange, Damien; Meneveau, Nicolas; Davani, Siamak
2017-10-11
Ticagrelor is an antiplatelet agent that inhibits platelet activation via P2Y12 antagonism. There are several studies showing that P2Y12 needs lipid rafts to be activated, but there are few data about how ticagrelor impacts lipid raft organization. Therefore, we aimed to investigate how ticagrelor could impact the distribution of cholesterol and consequently alter the organization of lipid rafts on platelet plasma membranes. We identified cholesterol-enriched raft fractions in platelet membranes by quantification of their cholesterol levels. Modifications in cholesterol and protein profiles (Flotillin 1, Flotillin 2, CD36, P2Y1, and P2Y12) were studied in platelets stimulated by ADP, treated by ticagrelor, or both. In ADP-stimulated and ticagrelor-treated groups, we found a decreased level of cholesterol in raft fractions of platelet plasma membrane compared to the control group. In addition, the peak of cholesterol in different experimental groups changed its localization on membrane fractions. In the control group, it was situated on fraction 2, while in ADP-stimulated platelets, it was located in fractions 3 to 5, and in fraction 4 in ticagrelor-treated group. The proteins studied also showed changes in their level of expression and localization in fractions of plasma membrane. Cholesterol levels of plasma membranes have a direct role in the organization of platelet membranes and could be modified by stimulation or drug treatment. Since ticagrelor and ADP both changed lipid composition and protein profile, investigating the lipid and protein composition of platelet membranes is of considerable importance as a focus for further research in anti-platelet management.
Nishizawa, Naoyuki; Togawa, Tubasa; Park, Kyung-Ok; Sato, Daiki; Miyakoshi, Yo; Inagaki, Kazuya; Ohmori, Norimasa; Ito, Yoshiaki; Nagasawa, Takashi
2009-02-01
Millet is an important food crop in Asia and Africa, but the health benefits of dietary millet are little known. This study defined the effects of dietary Japanese millet on diabetic mice. Feeding of a high-fat diet containing Japanese millet protein concentrate (JMP, 20% protein) to type 2 diabetic mice for 3 weeks significantly increased plasma levels of adiponectin and high-density lipoprotein cholesterol (HDL cholesterol) and decreased the levels of glucose and triglyceride as compared to control. The starch fraction of Japanese millet had no effect on glucose or adiponectin levels, but the prolamin fraction beneficially modulated plasma glucose and insulin concentrations as well as adiponectin and tumor necrosis factor-alpha gene expression. Considering the physiological significance of adiponectin and HDL cholesterol levels in type 2 diabetes, insulin resistance, and cardiovascular disease, our findings imply that dietary JMP has the potential to ameliorate these diseases.
Pushpavalli, Ganesan; Veeramani, Chinnadurai; Pugalendi, Kodukkur Viswanathan
2009-01-01
Betle leaf chewing is an old traditional practice in India and other countries of East Asia. We have investigated the antioxidant and antihyperlipidaemic potential of an alcoholic leaf-extract of Piper betle against D-galactosamine (D-GalN; 400 mg/kg body weight, i.p. single dose) intoxication in male albino Wistar rats. Rats were treated with leaf-extract (200 mg/kg body weight) by intragastric intubations daily for 20 days. The animals were divided randomly into five groups of six animals each as control, control plus extract, D-GalN control, D-GalN-rats on treatment with extract or silymarin, a standard drug. We observed an increase in the plasma levels of thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides, and a decrease in vitamin C, vitamin E and reduced glutathione concentrations. Very low density lipoprotein cholesterol and low density lipoprotein cholesterol increased significantly while high density lipoprotein cholesterol decreased. Further, increase in the levels of total cholesterol, phospholipids, triglycerides, free fatty acids in the plasma and tissues of liver and kidney were observed in D-GalN-treated rats. Administration of P. betle leaf-extract prevented the increase or decrease of these parameters and brought towards normality. These results suggest that P. betle could afford a significant antioxidant and antihyperlipidaemic effect against D-GalN-intoxication.
Docosahexaenoic Acid Reduces Amyloid β Production via Multiple Pleiotropic Mechanisms*
Grimm, Marcus O. W.; Kuchenbecker, Johanna; Grösgen, Sven; Burg, Verena K.; Hundsdörfer, Benjamin; Rothhaar, Tatjana L.; Friess, Petra; de Wilde, Martijn C.; Broersen, Laus M.; Penke, Botond; Péter, Mária; Vígh, László; Grimm, Heike S.; Hartmann, Tobias
2011-01-01
Alzheimer disease is characterized by accumulation of the β-amyloid peptide (Aβ) generated by β- and γ-secretase processing of the amyloid precursor protein (APP). The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) has been associated with decreased amyloid deposition and a reduced risk in Alzheimer disease in several epidemiological trials; however, the exact underlying molecular mechanism remains to be elucidated. Here, we systematically investigate the effect of DHA on amyloidogenic and nonamyloidogenic APP processing and the potential cross-links to cholesterol metabolism in vivo and in vitro. DHA reduces amyloidogenic processing by decreasing β- and γ-secretase activity, whereas the expression and protein levels of BACE1 and presenilin1 remain unchanged. In addition, DHA increases protein stability of α-secretase resulting in increased nonamyloidogenic processing. Besides the known effect of DHA to decrease cholesterol de novo synthesis, we found cholesterol distribution in plasma membrane to be altered. In the presence of DHA, cholesterol shifts from raft to non-raft domains, and this is accompanied by a shift in γ-secretase activity and presenilin1 protein levels. Taken together, DHA directs amyloidogenic processing of APP toward nonamyloidogenic processing, effectively reducing Aβ release. DHA has a typical pleiotropic effect; DHA-mediated Aβ reduction is not the consequence of a single major mechanism but is the result of combined multiple effects. PMID:21324907
Plasma thyroxine changes of the Apollo crewmen
NASA Technical Reports Server (NTRS)
Sheinfeld, M.; Leach, C. S.; Johnson, P. C.
1975-01-01
Blood drawn from Apollo crew members prior to the mission, at recovery, and postmission, was used to examine the effect Apollo mission activities have on thyroid hormone levels. At recovery, statistically significant increases in thyroxine and the free thyroxine index were found. Serum cholesterol and triglycerides were decreased. No change of statistical significance was found in the T3 binding percentage, total serum proteins, and albumin. We conclude that Apollo activities and environment caused the postmission increase in plasma thyroxine. The prolonged postmission decreases in serum cholesterol may be one result of the increased thyroxine activity.
Inhibition of cholesterol absorption and synthesis in rats by sesamin.
Hirose, N; Inoue, T; Nishihara, K; Sugano, M; Akimoto, K; Shimizu, S; Yamada, H
1991-04-01
The effects of sesamin, a lignan from sesame oil, on various aspects of cholesterol metabolism were examined in rats maintained on various dietary regimens. When given at a dietary level of 0.5% for 4 weeks, sesamin reduced the concentration of serum and liver cholesterol significantly irrespective of the presence or absence of cholesterol in the diet, except for one experiment in which the purified diet free of cholesterol was given. On feeding sesamin, there was a decrease in lymphatic absorption of cholesterol accompanying an increase in fecal excretion of neutral, but not acidic, steroids, particularly when the cholesterol-enriched diet was given. Sesamin inhibited micellar solubility of cholesterol, but not bile acids, whereas it neither bound taurocholate nor affected the absorption of fatty acids. Only a marginal proportion (ca. 0.15%) of sesamin administered intragastrically was recovered in the lymph. There was a significant reduction in the activity of liver microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase after feeding sesamin, although the activity of hepatic cholesterol 7 alpha-hydroxylase, drug metabolizing enzymes, and alcohol dehydrogenase remained uninfluenced. Although the weight and phospholipid concentration of the liver increased unequivocally on feeding sesamin, the histological examination by microscopy showed no abnormality, and the activity of serum GOT and GPT remained unchanged. Since sesamin lowered both serum and liver cholesterol levels by inhibiting absorption and synthesis of cholesterol simultaneously, it deserves further study as a possible hypocholesterolemic agent of natural origin.
Tabara, Yasuharu; Ueshima, Hirotsugu; Takashima, Naoyuki; Hisamatsu, Takashi; Fujiyoshi, Akira; Zaid, Maryam; Sumi, Masaki; Kohara, Katsuhiko; Miki, Tetsuro; Miura, Katsuyuki
2016-11-01
While alcohol consumption is known to increase plasma high-density lipoprotein (HDL) cholesterol levels, its relationship with low-density lipoprotein (LDL) cholesterol levels is unclear. Aldehyde dehydrogenase 2 (ALDH2) is a rate-controlling enzyme in alcohol metabolism, but a large number of Japanese people have the inactive allele. Here, we conducted a Mendelian randomization analysis using the ALDH2 genotype to clarify a causal role of alcohol on circulating cholesterol levels and lipoprotein particle numbers. This study was conducted in three independent general Japanese populations (men, n = 2289; women, n = 1940; mean age 63.3 ± 11.2 years). Alcohol consumption was assessed using a questionnaire. Lipoprotein particle numbers were determined by nuclear magnetic resonance spectroscopy. Alcohol consumption increased linearly in proportion to the number of subjects carrying the enzymatically active *1 allele in men (p < 0.001). The *1 allele was also positively associated with HDL cholesterol level (adjusted mean ± standard error, *1*1: 60 ± 0.5, *1*2: 56 ± 0.6, *2*2: 55 ± 1.3 mg/dl, p < 0.001) and inversely associated with LDL cholesterol level (116 ± 0.9, 124 ± 1.1, 130 ± 2.6 mg/dl, p < 0.001). The *1 allele was also positively associated with HDL particle numbers (per-allele: 2.60 ± 0.32 μmol/l, p < 0.001) and inversely associated with LDL particle numbers (-67.8 ± 19.6 nmol/l, p = 0.001). Additional Mendelian randomization analysis failed to clarify the involvement of cholesteryl ester transfer protein in alcohol-related changes in lipoprotein cholesterol levels. No significant association was observed in women, presumably due to their small amount of alcohol intake. Alcohol consumption has a causal role in not only increasing HDL cholesterol levels but also decreasing LDL cholesterol levels and particle numbers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Recent insights into the Smith-Lemli-Opitz syndrome.
Yu, H; Patel, S B
2005-11-01
Recent insights into the Smith-Lemli-Opitz syndrome. The Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive multiple congenital anomaly/mental retardation disorder caused by an inborn error of post-squalene cholesterol biosynthesis. Deficient cholesterol synthesis in SLOS is caused by inherited mutations of 3beta-hydroxysterol-Delta7 reductase gene (DHCR7). DHCR7 deficiency impairs both cholesterol and desmosterol production, resulting in elevated 7DHC/8DHC levels, typically decreased cholesterol levels and, importantly, developmental dysmorphology. The discovery of SLOS has led to new questions regarding the role of the cholesterol biosynthesis pathway in human development. To date, a total of 121 different mutations have been identified in over 250 patients with SLOS who represent a continuum of clinical severity. Two genetic mouse models have been generated which recapitulate some of the developmental abnormalities of SLOS and have been useful in elucidating the pathogenesis. This mini review summarizes the recent insights into SLOS genetics, pathophysiology and potential therapeutic approaches for the treatment of SLOS.
Martin, Gregory G; Atshaves, Barbara P; Landrock, Kerstin K; Landrock, Danilo; Storey, Stephen M; Howles, Philip N; Kier, Ann B; Schroeder, Friedhelm
2014-12-01
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol. Copyright © 2014 the American Physiological Society.
Does dietary vitamin E or C decrease egg yolk cholesterol?
Mohiti-Asli, Maziar; Zaghari, Mojtaba
2010-12-01
An experiment was conducted to determine the effect of dietary vitamin E and C on serum metabolites, yolk cholesterol, egg quality, and performance of layer hens. One hundred sixty-eight commercial Hy-Line W-36 layer hens were randomly divided into seven groups and six replicates with four hens in each. Dietary treatments were introduced after the pre-experimental period (10 days) to adjust egg production. Treatments were levels of vitamin E or C (100, 200, and 400 mg/kg diet) supplementation to the basal diet for 4 weeks, whereas the control group received no supplementation. Egg production, egg weight, and feed consumption were recorded during the study. Shell thickness, Haugh unit score, yolk color, yolk weight, yolk cholesterol, and blood parameters were measured at the end of experiment. There was no significant effect of dietary vitamin E or C on hen performance. Egg yolk cholesterol concentrations decreased linearly by antioxidant vitamin supplementation (P < 0.01). Egg yolk cholesterol reduction did not have any negative effect on egg production rate. Antioxidants, especially vitamin C, increased serum glucose concentration (P < 0.05). Serum total cholesterol content did not change by vitamin supplementation but cholesterol in high-density lipoprotein (HDL-C) decreased and cholesterol in low-density lipoprotein (LDL-C) increased (P < 0.05), as dietary vitamin E or C supplementation increased in diets. These results are in conflict with the previous hypothesis that antioxidants have a role in LDL-C removal from the blood or increasing HDL-C. Vitamin E was more effective than vitamin C in this case and if these results are confirmed by further studies, they may result to revision in researchers' point of view about antioxidant especially in human medicine.
Zhou, Quan; Wu, Jiang; Tang, Jie; Wang, Jia-Ji; Lu, Chu-Hong; Wang, Pei-Xi
2015-01-01
Research has shown that high-dose supplemental dietary fiber intake has beneficial effects on cardiovascular risk factors. To clarify such a relationship, we examined the association between daily dietary fiber intake and plasma lipids using a cross-sectional design including 1034 (M 502, F 532) rural-to-urban workers in China. We found a dose-response relationship between increased dietary fiber intakes and increase of HDL cholesterol in male workers. There was also a dose-response relationship between increased dietary fiber intake and decreased total cholesterol to HDL cholesterol (TC/HDL-C) ratio in both male and female workers, after adjusting for potential confounders (p for trend, all p < 0.05). When the average dietary fiber intake increased from less than 18 g/day to over 30 g/day, the average HDL cholesterol level increased by 10.1%, and the TC/HDL-C ratio decreased by 14.4% for males (p = 0.020) and by 11.1% for females (p = 0.048). In conclusion, higher daily dietary fiber consumption is associated with beneficial effect on cholesterol for rural-to-urban workers in China, suggesting its potential beneficial effect on decreasing the risk of cardiovascular diseases. PMID:25938914
Zhou, Quan; Wu, Jiang; Tang, Jie; Wang, Jia-Ji; Lu, Chu-Hong; Wang, Pei-Xi
2015-04-29
Research has shown that high-dose supplemental dietary fiber intake has beneficial effects on cardiovascular risk factors. To clarify such a relationship, we examined the association between daily dietary fiber intake and plasma lipids using a cross-sectional design including 1034 (M 502, F 532) rural-to-urban workers in China. We found a dose-response relationship between increased dietary fiber intakes and increase of HDL cholesterol in male workers. There was also a dose-response relationship between increased dietary fiber intake and decreased total cholesterol to HDL cholesterol (TC/HDL-C) ratio in both male and female workers, after adjusting for potential confounders (p for trend, all p < 0.05). When the average dietary fiber intake increased from less than 18 g/day to over 30 g/day, the average HDL cholesterol level increased by 10.1%, and the TC/HDL-C ratio decreased by 14.4% for males (p = 0.020) and by 11.1% for females (p = 0.048). In conclusion, higher daily dietary fiber consumption is associated with beneficial effect on cholesterol for rural-to-urban workers in China, suggesting its potential beneficial effect on decreasing the risk of cardiovascular diseases.
Nelson, Erik R.; DuSell, Carolyn D.; Wang, Xiaojuan; Howe, Matthew K.; Evans, Glenda; Michalek, Ryan D.; Umetani, Michihisa; Rathmell, Jeffrey C.; Khosla, Sundeep; Gesty-Palmer, Diane
2011-01-01
Osteoporosis and age-related bone loss are important public health concerns. Therefore, there is a high level of interest in the development of medical interventions and lifestyle changes that reduce the incidence of osteoporosis and age-related bone loss. Decreased bone mineral density is associated with high cholesterol, and patients on statins have increased bone mineral densities, strongly implicating cholesterol as a negative regulator of bone homeostasis. In this study, using both molecular and pharmacological approaches, we have been able to demonstrate that the primary cholesterol metabolite, 27-hydroxycholesterol, through its actions on both estrogen receptors and liver X receptors, decreases osteoblast differentiation and enhances osteoclastogenesis, resulting in increased bone resorbtion in mice. Induction of the short heterodimer partner protein by estrogens in osteoblasts can attenuate the liver X receptor-mediated actions of 27-hydroxycholesterol in bone. These data establish a mechanistic link between cholesterol and bone quality, highlight an unexpected target of estrogens in osteoblasts, and define a signaling axis, the therapeutic exploitation of which is likely to yield novel antiosteoporotic drugs. PMID:21933863
Casella-Filho, Antonio; Chagas, Antonio Carlos P; Maranhão, Raul C; Trombetta, Ivani C; Cesena, Fernando H Y; Silva, Vanessa M; Tanus-Santos, Jose Eduardo; Negrão, Carlos E; da Luz, Protasio L
2011-04-15
Intense lifestyle modifications can change the high-density lipoprotein (HDL) cholesterol concentration. The aim of the present study was to analyze the early effects of short-term exercise training, without any specific diet, on the HDL cholesterol plasma levels and HDL functional characteristics in patients with the metabolic syndrome (MS). We studied 30 sedentary subjects, 20 with and 10 without the MS. The patients with the MS underwent moderate intensity exercise training for 3 months on bicycle ergometers. Blood was sampled before and after training for biochemical analysis, paraoxonase-1 activity, and HDL subfraction composition and antioxidative capacity. Lipid transfer to HDL was assayed in vitro using a labeled nanoemulsion as the lipid donor. At baseline, the MS group had greater triglyceride levels and a lower HDL cholesterol concentration and lower paraoxonase-1 activity than did the controls. Training decreased the plasma triglycerides but did not change the low-density lipoprotein or HDL cholesterol levels. Nonetheless, exercise training increased the HDL subfractions' antioxidative capacity and paraoxonase-1 activity. After training, the MS group had compositional changes in the smallest HDL subfractions associated with increased free cholesterol and cholesterol ester transfers to HDL, reaching normal values. In conclusion, the present investigation has added relevant information about the dissociation between the quantitative and qualitative aspects of HDL after short-term exercise training without any specific diet in those with the MS, highlighting the importance of evaluating the functional aspects of the lipoproteins, in addition to their plasma levels. Copyright © 2011 Elsevier Inc. All rights reserved.
Gonçalves, Danielle; Lima, Claudia; Ferreira, Paula; Costa, Paulo; Costa, Angela; Figueiredo, Walter; Cesar, Thais
2017-01-01
Background: HCV causes alterations in liver metabolism, resulting in biochemical and nutritional disorders. Supplementation with antioxidants has been suggested to minimize the diseases effects. Objective: This study assessed whether orange juice, a source of citrus flavonoids and vitamin C, may contribute to the treatment of patients with chronic hepatitis C. Design: Anthropometric, hemodynamic, dietary, and biochemical parameters, CRP and liver enzymes were measured in 43 adult patients of both genders who were diagnosed with chronic hepatitis C and were under antiviral therapy. Twenty-three patients were supplemented with orange juice for eight consecutive weeks, while 20 were enrolled as control group. Results: Following regular use of orange juice, no alterations were found in body mass, fat, and waist circumference. The serum levels of total cholesterol, LDL-cholesterol, CRP and parameters of oxidative stress decreased in the orange juice group. Furthermore, the levels of the liver enzyme AST decreased in those who had high levels before the intervention. Conclusion: The orange juice was a convenient food in the diet of patients due to the increase in antioxidant capacity and decreased inflammation and cholesterol in blood serum, in addition to maintaining body mass, which protect against the harmful effects caused by the chronic hepatitis C virus..
Orange juice as dietary source of antioxidants for patients with hepatitis C under antiviral therapy
Gonçalves, Danielle; Lima, Claudia; Ferreira, Paula; Costa, Paulo; Costa, Angela; Figueiredo, Walter; Cesar, Thais
2017-01-01
ABSTRACT Background: HCV causes alterations in liver metabolism, resulting in biochemical and nutritional disorders. Supplementation with antioxidants has been suggested to minimize the diseases effects. Objective: This study assessed whether orange juice, a source of citrus flavonoids and vitamin C, may contribute to the treatment of patients with chronic hepatitis C. Design: Anthropometric, hemodynamic, dietary, and biochemical parameters, CRP and liver enzymes were measured in 43 adult patients of both genders who were diagnosed with chronic hepatitis C and were under antiviral therapy. Twenty-three patients were supplemented with orange juice for eight consecutive weeks, while 20 were enrolled as control group. Results: Following regular use of orange juice, no alterations were found in body mass, fat, and waist circumference. The serum levels of total cholesterol, LDL-cholesterol, CRP and parameters of oxidative stress decreased in the orange juice group. Furthermore, the levels of the liver enzyme AST decreased in those who had high levels before the intervention. Conclusion: The orange juice was a convenient food in the diet of patients due to the increase in antioxidant capacity and decreased inflammation and cholesterol in blood serum, in addition to maintaining body mass, which protect against the harmful effects caused by the chronic hepatitis C virus. PMID:28469541
Liu, Yang; Zhai, Chengkai; Sun, Guiju; Zhang, Hong; Jiang, Mingxia; Zhang, Haifeng; Guo, Junling; Lan, Xi
2014-05-01
To observe and compare the effects of grain-bean package, dietary fiber (DF) extracted from grain-bean package, and DF from grain corn on the blood lipids and fatty acid synthase (FAS) activity in high-fat, high-cholesterol feeding induced dyslipidemia rats, and observe its effects on regulation of sterol regulatory element protein-1c (SREBP-1c) mRNA expression in rat liver. Consolidation 50 SD rats of clean grade feeding adaptation for one week, randomly assigned into normal control group, hyperlipidemia model group, grain-bean package group, grain-bean package DF group and grain corn group. Feed with corresponding diets for 8 weeks, and measure the total cholesterol (TC), triglyceridaemia (TG), high density lipoprotein cholesterol (HDL-C), fasting blood glucose (FBG), FAS, SREBP-1c mRNA of all groups. Compared with control group, TC, TG, FBG levels of hyperlipidemia model group were significantly increased (P < 0.05). Compared with model group, TC, TG, FBG levels of grain-bean package group, grain-bean package DF group were significantly decreased, HDL-C levels significantly increased, and activity of FAS, regulation of SREBP-1c were significantly decreased (P < 0.05). The Grain-bean package dietary fiber can improve blood lipids levels of dyslipidemia rats, and decrease FAS activity and SREBP-1c mRNA expression.
Tibolone inhibits aortic atherosclerotic lesionformation in oophorectomized cholesterol-fed rabbits
Castelo-Branco, Camil; Sanjuán, Alex; Ascaso, Carles; Colodrón, Marta; Blümel, Juan Enrique; Casals, Elena; Ordi, Jaume; Vanrell, Juan Antonio
2003-01-01
BACKGROUND: Tibolone is a synthetic steroid effective for the treatment of climacteric symptoms and osteoporosis. Long term treatment with tibolone is associated with a significant decrease in cholesterol levels due to a parallel decrease in high-density lipoprotein. However, the effect of these changes on atherogenesis is not known. OBJECTIVE: To investigate the effect of tibolone therapy on aorta atherogenesis. MATERIAL AND METHODS: Thirty-two New Zealand white rabbits were fed cholesterol-rich feed and studied for four months. The rabbits underwent laparotomy and were randomly assigned to four groups. Twenty-four rabbits underwent bilateral ovariectomy; of these, eight received tibolone (group T), eight received estradiol valerate (group E), eight received placebo after sterilization (group C), and eight were sham operated (group S). RESULTS: After receiving the cholesterol-rich diet, total levels of cholesterol increased in group C from 3.17±0.72 mmol/L to 35.36±9.01 mmol/L, in group S from 2.88±0.9 mmol/L to 28.76±9.442 mmol/L, in group E from 1.69±0.44 mmol/L to 1.69±0.44 mmol/L and in group T from 2.03±0.22 mmol/L to 26.33±13.45 mmol/L (no significant differences were observed among the groups at the end of the study). At four months, the cholesterol- rich diet caused atherosclerotic lesions in both treated and untreated rabbits, affecting 30.47±12.2%, 24.51±16.1%, 17.91±10.19% and 10.21±6.8% of the aortic surface for groups C, S, E and T, respectively (P<0.01 for treated groups). CONCLUSION: The principal result from this study was that treatment with tibolone in cholesterol-fed ovariectomized rabbits reduces aortic atherosclerotic lesion formation and that this reduction is not related to plasma lipid levels. PMID:19644583
2011-01-01
Background Trans fat are not desirable in many aspects on health maintenance. Low trans structured fats have been reported to be relatively more safe than trans fats. Methods We examined the effects of low trans structured fat from corn oil (LC), compared with high trans fat shortening, on cholesterol and fatty acid metabolism in apo E deficient mice which is an atherogenic animal model. The animals were fed a high trans fat (10% fat: commercial shortening (CS)) or a low trans fat (LC) diet for 12 weeks. Results LC decreased apo B and hepatic cholesterol and triglyceride concentration compared to the CS group but significantly increased plasma total cholesterol and triglyceride concentration and fecal lipids with a simultaneous increase in HDL-cholesterol level, apo A-I, and the ratio of HDL-cholesterol to total cholesterol (HTR). Reduction of hepatic lipid levels by inclusion of LC intake was observed alongside modulation of hepatic enzyme activities related to cholesterol esterification, fatty acid metabolism and fecal lipids level compared to the CS group. The differential effects of LC intake on the plasma and hepatic lipid profile seemed to be partly due to the fatty acid composition of LC which contains higher MUFA, PUFA and SFA content as well as lower content of trans fatty acids compared to CS. Conclusions We suggest that LC may exert a dual effect on plasma and hepatic lipid metabolism in an atherogenic animal model. Accordingly, LC, supplemented at 10% in diet, had an anti-atherogenic effect on these apo E-/- mice, and increased fecal lipids, decreased hepatic steatosis, but elevated plasma lipids. Further studies are needed to verify the exact mode of action regarding the complex physiological changes and alteration in lipid metabolism caused by LC. PMID:21247503
The potential of pigeon pea (Cajanus cajan) beverage as an anti-diabetic functional drink
NASA Astrophysics Data System (ADS)
Ariviani, S.; Affandi, D. R.; Listyaningsih, E.; Handajani, S.
2018-01-01
The number of patients with diabetes continues to increase. Diabetes complications might induce serious diseases such as kidney, nervous, cardiovascular diseases and stroke. Diabetic complications can be prevented by keeping blood glucose and cholesterol at normal levels. This study aims to determine the potential of pigeon pea beverage for lowering glucose and total cholesterol plasma levels and increasing the antioxidant status of diabetic-hypercholesterolemia rats. The research was conducted using 18 Sprague Dawley male rats aged 3 months old with an average body weight of 154 g. The rats were divided into three groups: normal group, D-H group (diabetic-hypercholesterolemia group), and pigeon pea beverage group. The results showed that pigeon pea beverage diet showed hypoglycemic and hypocholesterolemic activities, and could improve the antioxidant status of diabetic-hypercholesterolemia rats. Plasma glucose and total cholesterol levels of diabetic-hypercholesterolemia rats decreased 33.86% and 19.78% respectively. The improvement of the plasma antioxidant status was indicated by the decrease of plasma MDA (malondialdehyde) level, reaching 37.16%. The research result provides an alternative to diabetes management by using the local bean as an anti-diabetic functional drink.
Antioxidant and hypolipidemic activity of Kumbhajatu in hypercholesterolemic rats.
Ghosh, Rumi; Kadam, Parag P; Kadam, Vilasrao J
2010-07-01
To study the efficacy of Kumbhajatu in reducing the cholesterol levels and as an antioxidant in hypercholesterolemic rats. Hypercholesterolemia was induced in normal rats by including 2% w/w cholesterol, 1% w/w sodium cholate and 2.5% w/w coconut oil in the normal diet. Powdered form of Kumbhajatu was administered as feed supplement at 250 and 500 mg/kg dose levels to the hypercholesterolemic rats. Plasma lipid profile, hepatic superoxide dismutase (SOD) activity, catalase activity, reduced glutathione and extent of lipid peroxidation in the form of malondialdehyde were estimated using standard methods. Feed supplementation with 250 and 500 mg/kg of Kumbhajatu resulted in a significant decline in plasma lipid profiles. The feed supplementation increased the concentration of catalase, SOD, glutathione and HDL-c significantly in both the experimental groups (250 and 500 mg/kg). On the other hand, the concentration of malondialdehyde, cholesterol, triglycerides, LDL-c and VLDL in these groups (250 and 500 mg/kg) were decreased significantly. The present study demonstrates that addition of Kumbhajatu powder at 250 and 500 mg/kg level as a feed supplement reduces the plasma lipid levels and also decreases lipid peroxidation.
Antioxidant and hypolipidemic activity of Kumbhajatu in hypercholesterolemic rats
Ghosh, Rumi; Kadam, Parag P.; Kadam, Vilasrao J.
2010-01-01
Objective: To study the efficacy of Kumbhajatu in reducing the cholesterol levels and as an antioxidant in hypercholesterolemic rats. Materials and Methods: Hypercholesterolemia was induced in normal rats by including 2% w/w cholesterol, 1% w/w sodium cholate and 2.5% w/w coconut oil in the normal diet. Powdered form of Kumbhajatu was administered as feed supplement at 250 and 500 mg/kg dose levels to the hypercholesterolemic rats. Plasma lipid profile, hepatic superoxide dismutase (SOD) activity, catalase activity, reduced glutathione and extent of lipid peroxidation in the form of malondialdehyde were estimated using standard methods. Results: Feed supplementation with 250 and 500 mg/kg of Kumbhajatu resulted in a significant decline in plasma lipid profiles. The feed supplementation increased the concentration of catalase, SOD, glutathione and HDL-c significantly in both the experimental groups (250 and 500 mg/kg). On the other hand, the concentration of malondialdehyde, cholesterol, triglycerides, LDL-c and VLDL in these groups (250 and 500 mg/kg) were decreased significantly. Conclusion: The present study demonstrates that addition of Kumbhajatu powder at 250 and 500 mg/kg level as a feed supplement reduces the plasma lipid levels and also decreases lipid peroxidation. PMID:21170207
Nicolle, Catherine; Cardinault, Nicolas; Gueux, Elyett; Jaffrelo, Lydia; Rock, Edmond; Mazur, Andrzej; Amouroux, Pierre; Rémésy, Christian
2004-08-01
It is often assumed that fruits and vegetables contribute to protect against degenerative pathologies such as cardiovascular diseases. Besides epidemiological observations, scientific evidences for their mechanism of action are scarce. In the present study, we investigated the mean term and post-prandial effects of lettuce ingestion on lipid metabolism and antioxidant protection in the rat. Feeding rats a 20% lettuce diet for 3 weeks resulted in a decrease cholesterol LDL/HDL ratio and a marked decrease of liver cholesterol levels (-41%). Concurrently, fecal total steroid excretion increased (+44%) and apparent absorption of dietary cholesterol was significantly depressed (-37%) by the lettuce diet. Lettuce diet also displayed an improvement of vitamin E/TG ratio in plasma and limited lipid peroxidation in heart as evidenced by TBARS. In post-prandial experiment, lettuce intake significantly increased both ascorbic acid and alpha-tocopherol plasma levels which contribute to improve plasma antioxidant capacity within 2 h of consumption. Other lipid-soluble antioxidants (lutein and vitamin E) may also improve the plasma antioxidant capacity. Lettuce consumption increases the total cholesterol end-products excretion and improves antioxidant status due to the richness in antioxidants (vitamins C, E and carotenoids). In our model, lettuce clearly shows a beneficial effect on lipid metabolism and on tissue oxidation. Therefore regular consumption of lettuce should contribute to improve protection against cardiovascular diseases. Copyright 2003 Elsevier Ltd.
Jo, Se Yeon; Choi, Eun A; Lee, Jae Joon; Chang, Hae Choon
2015-10-01
The hypocholesterolemic effects of lactic acid bacteria and kimchi have been demonstrated previously. However, the kimchi fermentation process still relies on naturally present microorganisms. To obtain functional kimchi with consistent quality, we validated the capacity of Leuconostoc kimchii GJ2 as a starter culture to control kimchi fermentation. Moreover, cholesterol-lowering effects of starter kimchi as a health-promoting product were explored. Bacteriocin production by Lc. kimchii GJ2 was highly enhanced in the presence of 5% Lactobacillus sakei NJ1 cell fractions. When kimchi was fermented with bacteriocin-enhanced Lc. kimchii GJ2, Lc. kimchii GJ2 became overwhelmingly predominant (98.3%) at the end of fermentation and maintained its dominance (up to 82%) for 84 days. Growing as well as dead cells of Lc. kimchii GJ2 showed high cholesterol assimilation (in vitro). Rats were fed a high-fat and high-cholesterol diet supplemented with starter kimchi. The results showed that feeding of starter kimchi significantly reduced serum total cholesterol, triglyceride and low-density lipoprotein cholesterol levels. Additionally, atherogenic index, cardiac risk factor and triglyceride and total cholesterol levels in liver and epididymal adipose tissue decreased significantly in rats fed starter kimchi. Kimchi fermented with Lc. kimchii GJ2 as a starter culture has efficient cholesterol-lowering effects. © 2014 Society of Chemical Industry.
2-heptyl-formononetin increases cholesterol and induces hepatic steatosis in mice.
Andersen, Charlotte; Schjoldager, Janne G; Tortzen, Christian G; Vegge, Andreas; Hufeldt, Majbritt R; Skaanild, Mette T; Vogensen, Finn K; Kristiansen, Karsten; Hansen, Axel K; Nielsen, John
2013-01-01
Consumption of isoflavones may prevent adiposity, hepatic steatosis, and dyslipidaemia. However, studies in the area are few and primarily with genistein. This study investigated the effects of formononetin and its synthetic analogue, 2-heptyl-formononetin (C7F), on lipid and cholesterol metabolism in C57BL/6J mice. The mice were fed a cholesterol-enriched diet for five weeks to induce hypercholesterolemia and were then fed either the cholesterol-enriched diet or the cholesterol-enriched diet-supplemented formononetin or C7F for three weeks. Body weight and composition, glucose homeostasis, and plasma lipids were compared. In another experiment, mice were fed the above diets for five weeks, and hepatic triglyceride accumulation and gene expression and histology of adipose tissue and liver were examined. Supplementation with C7F increased plasma HDL-cholesterol thereby increasing the plasma level of total cholesterol. Supplementation with formononetin did not affect plasma cholesterol but increased plasma triglycerides levels. Supplementation with formononetin and C7F induced hepatic steatosis. However, formononetin decreased markers of inflammation and liver injury. The development of hepatic steatosis was associated with deregulated expression of hepatic genes involved in lipid and lipoprotein metabolism. In conclusion, supplementation with formononetin and C7F to a cholesterol-enriched diet adversely affected lipid and lipoprotein metabolism in C57BL/6J mice.
2-Heptyl-Formononetin Increases Cholesterol and Induces Hepatic Steatosis in Mice
Andersen, Charlotte; Schjoldager, Janne G.; Tortzen, Christian G.; Vegge, Andreas; Hufeldt, Majbritt R.; Skaanild, Mette T.; Vogensen, Finn K.; Kristiansen, Karsten; Hansen, Axel K.; Nielsen, John
2013-01-01
Consumption of isoflavones may prevent adiposity, hepatic steatosis, and dyslipidaemia. However, studies in the area are few and primarily with genistein. This study investigated the effects of formononetin and its synthetic analogue, 2-heptyl-formononetin (C7F), on lipid and cholesterol metabolism in C57BL/6J mice. The mice were fed a cholesterol-enriched diet for five weeks to induce hypercholesterolemia and were then fed either the cholesterol-enriched diet or the cholesterol-enriched diet-supplemented formononetin or C7F for three weeks. Body weight and composition, glucose homeostasis, and plasma lipids were compared. In another experiment, mice were fed the above diets for five weeks, and hepatic triglyceride accumulation and gene expression and histology of adipose tissue and liver were examined. Supplementation with C7F increased plasma HDL-cholesterol thereby increasing the plasma level of total cholesterol. Supplementation with formononetin did not affect plasma cholesterol but increased plasma triglycerides levels. Supplementation with formononetin and C7F induced hepatic steatosis. However, formononetin decreased markers of inflammation and liver injury. The development of hepatic steatosis was associated with deregulated expression of hepatic genes involved in lipid and lipoprotein metabolism. In conclusion, supplementation with formononetin and C7F to a cholesterol-enriched diet adversely affected lipid and lipoprotein metabolism in C57BL/6J mice. PMID:23738334
di Giuseppe, Romina; Pechlivanis, Sonali; Fisher, Eva; Arregui, Maria; Weikert, Beate; Knüppel, Sven; Buijsse, Brian; Fritsche, Andreas; Willich, Stefan N; Joost, Hans-Georg; Boeing, Heiner; Moebus, Susanne; Weikert, Cornelia
2013-01-29
The microsomal triglyceride transfer protein (MTTP) is encoded by the MTTP gene that is regulated by cholesterol in humans. Previous studies investigating the effect of MTTP on ischemic heart disease have produced inconsistent results. Therefore, we have tested the hypothesis that the rare allele of the -164T > C polymorphism in MTTP alters the risk of cardiovascular disease (CVD), depending on the cholesterol levels. The -164T > C polymorphism was genotyped in a case-cohort study (193 incident myocardial infarction (MI) and 131 incident ischemic stroke (IS) cases and 1 978 non-cases) nested within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study, comprising 27 548 middle-aged subjects. The Heinz Nixdorf Recall study (30 CVD cases and 1 188 controls) was used to replicate our findings. Genotype frequencies were not different between CVD and CVD free subjects (P = 0.79). We observed an interaction between the -164T > C polymorphism and total cholesterol levels in relation to future CVD. Corresponding stratified analyses showed a significant increased risk of CVD (HR(additve) = 1.38, 95% CI: 1.07 to 1.78) for individuals with cholesterol levels <200 mg/dL in the EPIC-Potsdam study. HR(additive) was 1.06, 95% CI: 0.33 to 3.40 for individuals in the Heinz Nixdorf Recall study. A borderline significant decrease in CVD risk was observed in subjects with cholesterol levels ≥ 200 mg/dL (HR(additve) = 0.77, 95% CI: 0.58 to 1.03) in the EPIC-Potsdam study. A similar trend was observed in the independent cohort (HR(additve) = 0.60, 95% CI: 0.29 to 1.25). Our study suggests an interaction between MTTP -164T > C functional polymorphism with total cholesterol levels. Thereby risk allele carriers with low cholesterol levels may be predisposed to an increased risk of developing CVD, which seems to be abolished among risk allele carriers with high cholesterol levels.
The 32-year relationship between cholesterol and dementia from midlife to late life.
Mielke, M M; Zandi, P P; Shao, H; Waern, M; Östling, S; Guo, X; Björkelund, C; Lissner, L; Skoog, I; Gustafson, D R
2010-11-23
Cellular and animal studies suggest that hypercholesterolemia contributes to Alzheimer disease (AD). However, the relationship between cholesterol and dementia at the population level is less clear and may vary over the lifespan. The Prospective Population Study of Women, consisting of 1,462 women without dementia aged 38-60 years, was initiated in 1968-1969 in Gothenburg, Sweden. Follow-ups were conducted in 1974-1975, 1980-1981, 1992-1993, and 2000-2001. All-cause dementia was diagnosed according to DSM-III-R criteria and AD according to National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association criteria. Cox proportional hazards regression examined baseline, time-dependent, and change in cholesterol levels in relation to incident dementia and AD among all participants. Analyses were repeated among participants who survived to the age of 70 years or older and participated in the 2000-2001 examination. Higher cholesterol level in 1968 was not associated with an increased risk of AD (highest vs lowest quartile: hazard ratio [HR] 2.82, 95% confidence interval [CI] 0.94-8.43) among those who survived to and participated in the 2000-2001 examination. While there was no association between cholesterol level and dementia when considering all participants over 32 years, a time-dependent decrease in cholesterol over the follow-up was associated with an increased risk of dementia (HR 2.35, 95% CI 1.22-4.58). These data suggest that midlife cholesterol level is not associated with an increased risk of AD. However, there may be a slight risk among those surviving to an age at risk for dementia. Declining cholesterol levels from midlife to late life may better predict AD risk than levels obtained at one timepoint prior to dementia onset. Analytic strategies examining this and other risk factors across the lifespan may affect interpretation of results.
NASA Astrophysics Data System (ADS)
Husen, Saikhu Akhmad; Winarni, Dwi; Khaleyla, Firas; Kalqutny, Septian Hary; Ansori, Arif Nur Muhammad
2017-09-01
This study aimed to explore the activity of pericarp extract of mangosteen (Garcinia mangostana L.). Mangosteen pericarp contains various active compounds which are beneficial for human health. In-vivo antioxidant assay of pericarp extract was carried out using 3-4 month male mice of strain BALB/c weighed 30-40 g. The mice were divided into two groups: normal control (KN) group and STZ-induced diabetic group. STZ induction was performed using multiple low-dose method 30 mg/kg body weight treated daily for five consecutive days. Diabetic group was separated into two subgroups: diabetic control (KD), metformin control (KM), and crude extract treatment subgroups. The fasting blood glucose and the cholesterol level were measured before and after lard treatment, we also did it on the first, seventh, and fourteenth day of mangosteen pericarp crude extract treatment. The mice were treated with mangosteen pericarp crude extract for 14 days. The MDA level of the fasting blood serum was measured. The body weight and fasting blood cholesterol level before and after lard treatment were analyzed by t-test, whereas, the fasting blood cholesterol and the MDA level were analyzed using one-way variant analysis continued with Duncan test. The correlation between the increasing body weight and the fasting blood cholesterol level was determined by Pearson correlation test. The results of the study showed that the administration of mangosteen pericarp crude extract was able to reduce the fasting blood cholesterol and the malondialdehide level significantly.
Kubota, K; Kadomura, T; Ohta, K; Koyama, K; Okuda, H; Kobayashi, M; Ishii, C; Fujiwara, Y; Nishiora, T; Ohmae, Y; Ohmae, T; Kitajima, M
2012-04-01
Protein-energy malnutrition is a common disorder in the elderly. Although serum albumin is commonly used as a nutritional marker, data is lacking on serum albumin levels in the elderly. The purpose of this study was to determine whether serum albumin levels decrease with advancing age and to establish reference value and interval of laboratory data for elderly people (75 years and over). Blood samples from 13821 healthy people, 42064 outpatients, and 15959 inpatients were collected during 2008. Blood from 127 of our nutrition support team (NST) patients was also collected during August 2006 and May 2009, and analyzed. Serum albumin, hemoglobin, total cholesterol levels and lymphocyte count were determined. We analyzed the change in each parameter in accordance with age, compared the data for elderly people with younger people, and established new reference values. Clinical outcomes were examined depending on the improved reference values. Albumin was lower in older persons than in younger persons. The estimated reference value and interval were 42 (48-36) g/l in older persons and was much lower in NST patients. Hemoglobin was decreased while cholesterol and lymphocyte count were not changed in older persons: all were markedly decreased in NST patients. Terms of hospital stay were significantly longer and mortality rates were significantly higher in older persons, comparing from above to below using a new reference value of albumin (36 g/l). The serum albumin level decreases with advancing age, but it was maintained to some extent in healthy older people. Serum albumin levels related to the clinical outcome. Hemoglobin and cholesterol levels and lymphocyte count were all lower in NST patients. These measurements may be valuable markers of nutritional status and can help in guiding the need for nutritional support.
Estrogen receptor is activated by korean red ginseng in vitro but not in vivo.
Shim, Myeong Kuk; Lee, Young Joo
2012-04-01
Ginseng has been used as a traditional medicine for treatment of many diseases and for general health maintenance in people of all ages. Ginseng is also used to ameliorate menopausal systems. We investigated the estrogenic activity of Korean red ginseng (KRG) in a transient transfection system, using estrogen receptor (ER) and estrogen-responsive luciferase plasmids in MCF-7 cells. The extract activated both ERα and ERβ. KRG modulated the mRNA levels of estrogen-responsive genes such as pS2 and ESR1 and decreased the protein level of ERα. In order to examine in vivo estrogenic activity of KRG, sixteen female Sprague-Dawley rats separated into four groups were studied for nine weeks: non-ovariectomized (OVX) rats treated with olive oil, OVX rats treated with olive oil, OVX rats treated with 17-β-estradiol (E2) in olive oil, and OVX rats treated with KRG extract in olive oil. The experiments were repeated for three times and the data of twelve rats were combined. Body weight of OVX rats was greater than that of sham-operated control rats and was decreased by E2 treatment. Uterine weight increased after E2 treatment compared to OVX rats. However, no difference in body or uterine weight was observed with KRG intake. KRG induced reductions in total cholesterol, low density lipoprotein cholesterol/total cholesterol, high density lipoprotein cholesterol/total cholesterol, and low density lipoprotein cholesterol/high density lipoprotein cholesterol, but not to the same degree as did E2 intake. These results show that KRG does contain estrogenic activity as manifested by in vitro study but the activity is not strong enough to elicit physiological responses.
Estrogen Receptor Is Activated by Korean Red Ginseng In Vitro but Not In Vivo
Shim, Myeong Kuk; Lee, Young Joo
2012-01-01
Ginseng has been used as a traditional medicine for treatment of many diseases and for general health maintenance in people of all ages. Ginseng is also used to ameliorate menopausal systems. We investigated the estrogenic activity of Korean red ginseng (KRG) in a transient transfection system, using estrogen receptor (ER) and estrogen-responsive luciferase plasmids in MCF-7 cells. The extract activated both ERα and ERβ. KRG modulated the mRNA levels of estrogen-responsive genes such as pS2 and ESR1 and decreased the protein level of ERα. In order to examine in vivo estrogenic activity of KRG, sixteen female Sprague-Dawley rats separated into four groups were studied for nine weeks: non-ovariectomized (OVX) rats treated with olive oil, OVX rats treated with olive oil, OVX rats treated with 17-β-estradiol (E2) in olive oil, and OVX rats treated with KRG extract in olive oil. The experiments were repeated for three times and the data of twelve rats were combined. Body weight of OVX rats was greater than that of sham-operated control rats and was decreased by E2 treatment. Uterine weight increased after E2 treatment compared to OVX rats. However, no difference in body or uterine weight was observed with KRG intake. KRG induced reductions in total cholesterol, low density lipoprotein cholesterol/total cholesterol, high density lipoprotein cholesterol/total cholesterol, and low density lipoprotein cholesterol/high density lipoprotein cholesterol, but not to the same degree as did E2 intake. These results show that KRG does contain estrogenic activity as manifested by in vitro study but the activity is not strong enough to elicit physiological responses. PMID:23717117
Al-Waili, Noori S
2004-01-01
This study included the following experiments: (1) effects of dextrose solution (250 mL of water containing 75 g of dextrose) or honey solution (250 mL of water containing 75 g of natural honey) on plasma glucose level (PGL), plasma insulin, and plasma C-peptide (eight subjects); (2) effects of dextrose, honey, or artificial honey (250 mL of water containing 35 g of dextrose and 40 g of fructose) on cholesterol and triglycerides (TG) (nine subjects); (3) effects of honey solution, administered for 15 days, on PGL, blood lipids, C-reactive protein (CRP), and homocysteine (eight subjects); (4) effects of honey or artificial honey on cholesterol and TG in six patients with hypercholesterolemia and five patients with hypertriglyceridemia; (5) effects of honey for 15 days on blood lipid and CRP in five patients with elevated cholesterol and CRP; (6) effects of 70 g of dextrose or 90 g of honey on PGL in seven patients with type 2 diabetes mellitus; and (7) effects of 30 g of sucrose or 30 g of honey on PGL, plasma insulin, and plasma C-peptide in five diabetic patients. In healthy subjects, dextrose elevated PGL at 1 (53%) and 2 (3%) hours, and decreased PGL after 3 hours (20%). Honey elevated PGL after 1 hour (14%) and decreased it after 3 hours (10%). Elevation of insulin and C-peptide was significantly higher after dextrose than after honey. Dextrose slightly reduced cholesterol and low-density lipoprotein-cholesterol (LDL-C) after 1 hour and significantly after 2 hours, and increased TG after 1, 2, and 3 hours. Artificial honey slightly decreased cholesterol and LDL-C and elevated TG. Honey reduced cholesterol, LDL-C, and TG and slightly elevated high-density lipoprotein-cholesterol (HDL-C). Honey consumed for 15 days decreased cholesterol (7%), LDL-C (1%), TG (2%), CRP (7%), homocysteine (6%), and PGL (6%), and increased HDL-C (2%). In patients with hypertriglyceridemia, artificial honey increased TG, while honey decreased TG. In patients with hyperlipidemia, artificial honey increased LDL-C, while honey decreased LDL-C. Honey decreased cholesterol (8%), LDL-C (11%), and CRP (75%) after 15 days. In diabetic patients, honey compared with dextrose caused a significantly lower rise of PGL. Elevation of PGL was greater after honey than after sucrose at 30 minutes, and was lower after honey than it was after sucrose at 60, 120, and 180 minutes. Honey caused greater elevation of insulin than sucrose did after 30, 120, and 180 minutes. Honey reduces blood lipids, homocysteine, and CRP in normal and hyperlipidemic subjects. Honey compared with dextrose and sucrose caused lower elevation of PGL in diabetics.
Ogier, Nicolas; Amiot, Marie-Josèphe; Georgé, Stéphane; Maillot, Matthieu; Mallmann, Cécilia; Maraninchi, Marie; Morange, Sophie; Lescuyer, Jean-François; Peltier, Sébastien L; Cardinault, Nicolas
2013-03-01
Red yeast rice (RYR), sugar cane-derived policosanols (SCdP) and artichoke leaf extracts (ALEs) are currently incorporated alone or in combination into dietary supplements for their potential low-density-lipoprotein cholesterol (LDL-cholesterol)-lowering effects. Yet, there is no information supporting the efficacy of this association on the reduction in LDL-cholesterol. The main objective of this study was to investigate the effects of a new dietary supplement (DS) with RYR, SCdP and ALEs on LDL-cholesterol. In a double-blind, randomized, parallel controlled study, 39 subjects from 21 to 55 years with moderate hypercholesterolemia without drug treatment were assigned to 2 groups and then consumed either a DS containing RYR, SCdP and ALEs or a placebo over a 16-week period. Plasma concentrations of lipids [LDL-cholesterol, total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-cholesterol), triacylglycerols (TG)] and plasma levels of vitamins C and E, total polyphenols and malondialdehyde were determined at baseline and after 4, 8, 12 and 16 weeks. LDL-cholesterol and TC were reduced by, respectively, 21.4 % (95 % CI, -13.3 to -24.9 %, p < 0.001) and 14.1 % (95 % CI, -10.1 to -18.0 %, p < 0.001) at week 16 in the DS group compared with baseline. Similar results were obtained at weeks 4, 8 and 12. TG decreased by 12.2 % after 16 weeks in the DS group (95 % CI: -24.4 to -0.1 %, p < 0.05). For the vitamin E/TC ratio, a difference was observed between groups at week 16 (p < 0.05). Other parameters were not modified. Daily consumption of this new DS decreased LDL-cholesterol and TC and is therefore an interesting, convenient aid in managing mild to moderate hypercholesterolemia.
2014-01-01
Background The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. Methods We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas–liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. Results The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Conclusions Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol absorption inhibition with STAEST. Serum plant sterol concentrations decrease dose-dependently in response to plant stanols suggesting that the higher the plant stanol dose, the more cholesterol absorption is inhibited and the greater the reduction in LDL cholesterol level is that can be achieved. Trial registration Clinical Trials Register # NCT00698256 [Eur J Nutr 2010, 49:111-117] PMID:24766766
Hallikainen, Maarit; Simonen, Piia; Gylling, Helena
2014-04-27
The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas-liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol absorption inhibition with STAEST. Serum plant sterol concentrations decrease dose-dependently in response to plant stanols suggesting that the higher the plant stanol dose, the more cholesterol absorption is inhibited and the greater the reduction in LDL cholesterol level is that can be achieved. Clinical Trials Register # NCT00698256 [Eur J Nutr 2010, 49:111-117].
Bruna, Marcos; Gumbau, Verónica; Guaita, Marcos; Canelles, Enrique; Mulas, Claudia; Basés, Carla; Celma, Isabel; Puche, José; Marcaida, Goitzane; Oviedo, Miguel; Vázquez, Antonio
2014-03-01
Different hormones and peptides involved in lipid and carbohydrate metabolism have been studied in relation to morbid obesity and its variation after bariatric surgery. The aim of this study is toevaluate variations in different molecules related to glico-lipidic metabolism during the first year after sleeve gastrectomy in morbidly obese patients. Prospective study in patients undergoing sleeve gastrectomy between November 2009 and January 2011. We analyzed changes in different clinical, anthropometric and analytic parameters related with glico-lipidic metabolism in all patients in the preoperative period, first postoperative day, fifth day, one month, 6 months and one year after surgery. Statistical analysis was performed using SPSS 20.0. We included 20 patients, 60% were women with a median of age of 45 years. Median of body mass index (IMC) was 48,5 kg/m(2) and 70% had obstructive sleep apnea syndrome (SAOS), 65% arterial hypertension (HTA), 45% dyslipidemia and 40% diabetes mellitus. One year after surgery, the percentage of excess of BMI loss was 72% and the rate of cure or improvement of dyslipidemia was 100%, diabetes 87,5%, HTA 84,6% and SAOS 57,1%. At this time, glycemia levels decreased significantly (P<.001), and levels of IGF-1 and HDL-cholesterol increased significantly. Levels of adiponectine increased and leptine (P=.003), insulin (P=.004) and triglycerides (P=.016) decreased significantly one year after the surgery. ACTH levels (that decreased during first 6 months after surgery), glycosilated hemoglobin, total cholesterol and LDL-cholesterol had no changes one year after surgery. Sleeve gastrectomy is a surgical technique with good results of weight loss and cure of comorbidities. This procedure induces significant modifications in blood levels of glico-lipidic metabolism related peptides and hormones, such as glucose, IGF-1, insulin, leptin, triglycerides and HDL-cholesterol. Copyright © 2013 AEC. Published by Elsevier Espana. All rights reserved.
Um, Min Young; Ahn, Jiyun; Ha, Tae Youl
2013-09-01
Black rice is rich in anthocyanins, especially cyanidin-3-glucoside (C3G). This study examined the effects of a C3G-rich extract from black rice on hyperlipidaemia induced by a high fat/cholesterol diet (HFCD) in rats. Male Sprague-Dawley rats were fed either HFCD or HFCD containing 150 mg kg⁻¹ body weight C3G (HFCD+C3G) for 4 weeks. We found that C3G significantly decreased serum levels of total cholesterol, free cholesterol, triglycerides, and free fatty acids in rats fed a HFCD. Similarly, hepatic cholesterol and triglyceride levels and the activities of hepatic lipogenic enzymes (malic enzyme and glucose-6-phosphate dehydrogenase) were significantly reduced by C3G supplementation. These results suggest that C3G can ameliorate HFCD-induced hyperlipidaemia in part by modulating the activities of hepatic lipogenic enzymes. © 2013 Society of Chemical Industry.
Rao, Reena; Lokesh, Belur R
2003-06-01
Coconut oil is rich in medium chain fatty acids, but deficient in polyunsaturated fatty acids (PUFA). Structured lipids (SL) enriched with omega 6 PUFA were synthesized from coconut oil triglycerides by employing enzymatic acidolysis with free fatty acids obtained from safflower oil. Rats were fed a diet containing coconut oil, coconut oil-safflower oil blend (1:0.7 w/ w) or structured lipid at 10% levels for a period of 60 days. The SL lowered serum cholesterol levels by 10.3 and 10.5% respectively in comparison with those fed coconut oil and blended oil. Similarly the liver cholesterol levels were also decreased by 35.9 and 26.6% respectively in animals fed structured lipids when compared to those fed on coconut oil or the blended oil. Most of the decrease observed in serum cholesterol levels of animals fed structured lipids was found in LDL fraction. The triglyceride levels in serum showed a decrease by 17.5 and 17.4% while in the liver it was reduced by 45.8 and 23.5% in the structured lipids fed animals as compared to those fed coconut oil or blended oil respectively. Differential scanning calorimetric studies indicated that structured lipids had lower melting points and solid fat content when compared to coconut oil or blended oils. These studies indicated that enrichment of coconut oil triglycerides with omega 6 fatty acids lowers its solid fat content. The omega 6 PUFA enriched structured lipids also exhibited hypolipidemic activity.
Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel
2014-01-01
Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits. PMID:25549336
Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel
2014-01-01
Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits.
Gurbuz, Y; Salih, Y G
2017-12-01
The aim of the study was to evaluate the potential effect of different levels of sumac (Rhus coriaria L.) seed powder and ginger (Zingiber officinale) root powder on egg yolk fatty acid composition, blood/yolk cholesterol in laying hen. A total of 63 (ATAK-S: Domestic Turkish Laying Hens) laying hens (average weight: 1470 g each hen, 25-weeks of age) were assigned to seven treatment diets including sumac seed (S) and ginger root powder (G) at 0 g/kg (control), 10 g/kg (S1), 20 g/kg (S2), and 30 g/kg (S3); 10 g/kg (G1), 20 g/kg (G2), or 30 g/kg in rations respectively, for 8 weeks. After a two-week adaptation period to cages, the hens were allocated to 7 groups with 9 replicates of 1 hen in per cage each. The replications were allotted equally into the upper and lower cages to minimize the effects of cage level. In this study, egg yolk cholesterol had a decrease (p <0.05) in supplemented diet( sumac seed and ginger root powder). Fatty acid content in yolk; saturated fatty acid, monounsaturated fatty acids, polyunsaturated fatty acids and rate of n6/n3 were not significant (p <0.05). However, dietary supplementation with sumac and ginger powder reduced and yolk/blood cholesterol concentrations in laying hens. Supplementation of sumac and ginger affected on HDL, there was found a significant effect (p < 0.05) in treatment groups. Moreover, LDL positively decreased in all treatment groups compared with the control group. The findings of this study suggested that feeding sumac and ginger tend to be decreasing cholesterol levels in both yolk and blood on laying hens. It can be concluded that ginger root and sumac seed powder can be used as an effective feed additive to improve fatty acid composition and yolk and blood cholesterol in ATAK-S laying hens. Journal of Animal Physiology and Animal Nutrition © 2017 Blackwell Verlag GmbH.
Choi, Jun-Hui; Kim, Dae-Won; Kim, Seung; Kim, Sung-Jun
2017-01-01
We investigated the effect of the culinary-medicinal mushroom Pleurotus eryngii var. ferulae DDL01 on oxidative damage in the liver and brain and a high-fat/high-cholesterol-induced hyperlipidemic model. In in vitro studies, the water extracts of the fruiting bodies showed strong scavenging activities of DPPH (139.46 ± 3.2 μg) and hydroxyl (139.46 ± 3.2 μg) radicals. Moreover, the extracts showed Fe2+ chelating and reducing abilities, as well as a large amount of polyphenols and an inhibitory effect on lipid peroxidation in the liver and brain tissues. The rats were fed a pellet diet (7.5 g/rat/day) containing P. eryngii var. ferulae DDL01 (PD) for 3 weeks. In the high-fat/high-cholesterol-induced hyperlipidemic rat model, administration of PD caused a significant decrease (P < 0.05) in the levels of serum triacylglycerols, low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, aspartate aminotransferase, and alanine aminotransferase and a significant increase (P < 0.05) in the level of high-density lipoprotein cholesterol. PD administration significantly decreased high-fat/high-cholesterol-induced hepatic lipid accumulation. Treatment with the extracts (up to 500 μg/mL) did not significantly affect the viability of HepG2 and 3T3-L1 cells. Our findings suggest that this mushroom has potential as an antiatherogenic dietary source in the development of therapeutic agents and functional foods.
Aledo, Rosa; Padró, Teresa; Mata, Pedro; Alonso, Rodrigo; Badimon, Lina
2015-04-01
Recent genome-wide association studies have identified a locus on chromosome 12q13.3 associated with plasma levels of triglyceride and high-density lipoprotein cholesterol, with rs11613352 being the lead single nucleotide polymorphism in this genome-wide association study locus. The aim of the study is to investigate the involvement of rs11613352 in a population with high cardiovascular risk due to familial hypercholesterolemia. The single nucleotide polymorphism was genotyped by Taqman(®) assay in a cohort of 601 unrelated familial hypercholesterolemia patients and its association with plasma triglyceride and high-density lipoprotein cholesterol levels was analyzed by multivariate methods based on linear regression. Minimal allele frequency was 0.17 and genotype frequencies were 0.69, 0.27, and 0.04 for CC, CT, and TT genotypes, respectively. The polymorphism is associated in a recessive manner (TT genotype) with a decrease in triglyceride levels (P=.002) and with an increase in high-density lipoprotein cholesterol levels (P=.021) after adjusting by age and sex. The polymorphism rs11613352 may contribute to modulate the cardiovascular risk by modifying plasma lipid levels in familial hypercholesterolemia patients. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice
Zhao, Yang; Dai, Xiao-yan; Zhou, Zhou; Zhao, Ge-xin; Wang, Xian; Xu, Ming-jiang
2016-01-01
Aim: Recent evidence suggests that the essential amino acid leucine may be involved in systemic cholesterol metabolism. In this study, we investigated the effects of leucine supplementation on the development of atherosclerosis in apoE null mice. Methods: ApoE null mice were fed with chow supplemented with leucine (1.5% w/v) in drinking water for 8 week. Aortic atherosclerotic lesions were examined using Oil Red O staining. Plasma lipoprotein-cholesterol levels were measured with fast protein liquid chromatography. Hepatic gene expression was detected using real-time PCR and Western blot analyses. Results: Leucine supplementation resulted in 57.6% reduction of aortic atherosclerotic lesion area in apoE null mice, accompanied by 41.2% decrease of serum LDL-C levels and 40.2% increase of serum HDL-C levels. The body weight, food intake and blood glucose level were not affected by leucine supplementation. Furthermore, leucine supplementation increased the expression of Abcg5 and Abcg8 (that were involved in hepatic cholesterol efflux) by 1.28- and 0.86-fold, respectively, and significantly increased their protein levels. Leucine supplementation also increased the expression of Srebf1, Scd1 and Pgc1b (that were involved in hepatic triglyceride metabolism) by 3.73-, 1.35- and 1.71-fold, respectively. Consequently, leucine supplementation resulted in 51.77% reduction of liver cholesterol content and 2.2-fold increase of liver triglyceride content. Additionally, leucine supplementation did not affect the serum levels of IL-6, IFN-γ, TNF-α, IL-10 and IL-12, but markedly decreased the serum level of MCP-1. Conclusion: Leucine supplementation effectively attenuates atherosclerosis in apoE null mice by improving the plasma lipid profile and reducing systemic inflammation. PMID:26687933
Bundy, Rafe; Walker, Ann F; Middleton, Richard W; Wallis, Carol; Simpson, Hugh C R
2008-09-01
Cardiovascular diseases are the chief causes of death in the UK, and are associated with high circulating levels of total cholesterol in the plasma. Artichoke leaf extracts (ALEs) have been reported to reduce plasma lipids levels, including total cholesterol, although high quality data is lacking. The objective of this trial was to assess the effect of ALE on plasma lipid levels and general well-being in otherwise healthy adults with mild to moderate hypercholesterolemia. 131 adults were screened for total plasma cholesterol in the range 6.0-8.0 mmol/l, with 75 suitable volunteers randomised onto the trial. Volunteers consumed 1280 mg of a standardised ALE, or matched placebo, daily for 12 weeks. Plasma total cholesterol decreased in the treatment group by an average of 4.2% (from 7.16 (SD 0.62) mmol/l to 6.86 (SD 0.68) mmol/l) and increased in the control group by an average of 1.9% (6.90 (SD 0.49) mmol/l to 7.03 (0.61) mmol/l), the difference between groups being statistically significant (p=0.025). No significant differences between groups were observed for LDL cholesterol, HDL cholesterol or triglyceride levels. General well-being improved significantly in both the treatment (11%) and control groups (9%) with no significant differences between groups. In conclusion, ALE consumption resulted in a modest but favourable statistically significant difference in total cholesterol after 12 weeks. In comparison with a previous trial, it is suggested that the apparent positive health status of the study population may have contributed to the modesty of the observed response.
Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Tain-Junn; Department of Neurology, Chi Mei Medical Center, 901 Chung-Hwa Road, Tainan 710, Taiwan; Department of Occupational Medicine, Chi Mei Medical Center, 901 Chung-Hwa Road, Yongkang, Tainan 710, Taiwan
2011-10-15
Arsenic in drinking water is a global environmental health problem, and the exposure may increase cardiovascular and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of atherosclerosis formation after arsenic exposure is still unclear. To study the mechanism of atherosclerosis formation after arsenic exposure and explore the role of high cholesterol diet (HCD) in this process, we fed spontaneous hypertensive rats and Wistar Kyoto rats with basal diet or HCD and provided with them drinking water containing arsenic at different ages and orders for 20 consecutive weeks. We measured high density lipoprotein cholesterol (HDL-C), low density lipoproteinmore » cholesterol (LDL-C), total cholesterol, triglycerides, heat shock protein 70 (HSP 70), and high sensitive C-reactive protein (hs-CRP) at predetermined intervals and determined expressions of cholesteryl ester transfer protein-1 (CETP-1) and liver X receptor {beta} (LXR{beta}) in the liver. Atherosclerosis was determined by examining the aorta with hematoxylin and eosin stain. After 20 weeks, we found arsenic, alone or combined with HCD, may promote atherosclerosis formation with transient increases in HSP 70 and hs-CRP. Early combination exposure decreased the HDL-C/LDL-C ratio without changing the levels of total cholesterol and triglyceride until 30 weeks old. Both CETP-1 and LXR{beta} activities were suppressed, most significantly in early combination exposure. In conclusion, arsenic exposure may induce atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism and suppressing LXR{beta} and CEPT-1 expressions. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element. - Highlights: > Arsenic causes cardiovascular and cerebrovascular diseases through atherosclerosis. > Arsenic may promote atherosclerosis with transient increase in HSP 70 and hs-CRP. > Arsenic exposure and high cholesterol diet early in life suppress CEPT-1 and LXR? > Arsenic may induce atherosclerosis by modifying reverse cholesterol transport. > Prevent arsenic exposure in early life is important to decreasing atherosclerosis.« less
Myocardial potency of Bio-tea against Isoproterenol induced myocardial damage in rats.
Lobo, Reema Orison; Shenoy, Chandrakala K
2015-07-01
Kombucha (Bio-tea) is a beverage produced by the fermentation of sugared black tea using a symbiotic association of bacteria and yeasts. Traditional claims about Kombucha report beneficial effects such as antibiotic properties, gastric regulation, relief from joint rheumatism and positive influence on the cholesterol level, arteriosclerosis, diabetes, and aging problems. The present investigation was carried out to understand the preventive effect of Kombucha on heart weight, blood glucose, total protein, lipid profile and cardiac markers in rats with myocardial damage induced using Isoproterenol. As Bio-tea is produced by fermenting tea, the parameters were compared in rats pre-treated with normal black tea and Bio-tea for 30 days followed by subcutaneous injection of Isoproterenol (85 mg/kg body weight). Normal rats as well as Isoproterenol induced myocardial infarcted rats were also used, which served as controls. Isoproterenol induced myocardial infarcted control rats showed a significant increase in heart weight, blood glucose and cardiac markers and a decrease in plasma protein. Increased levels of cholesterol, triglycerides, low density lipids (LDL) and very low density lipids (VLDL) were also observed, while the high density lipid (HDL) content decreased. Bio-tea showed a higher preventive effect against myocardial infarction when compared to tea, as was observed by the significant reduction in heart weight, and blood glucose and increase in plasma albumin levels. Bio-tea significantly decreased cholesterol, triglycerides, LDL and VLDL while simultaneously increasing the levels of HDL. Similarly a decrease in leakage of cardiac markers from the myocardium was also observed.
Potì, Francesco; Ceglarek, Uta; Burkhardt, Ralph; Simoni, Manuela; Nofer, Jerzy-Roch
2015-05-01
Sphingosine 1-phosphate (S1P) is a lysosphingolipid associated with high-density lipoproteins (HDL) that contributes to their anti-atherogenic potential. We investigated whether a reduction in S1P plasma levels affects atherosclerosis in low-density lipoprotein receptor deficient (LDL-R-/-) mice. LDL-R-/- mice on Western diet containing low (0.25% w/w) or high (1.25% w/w) cholesterol were treated for 16 weeks with SKI-II, a sphingosine kinase 1 inhibitor that significantly reduced plasma S1P levels. SKI-II treatment increased atherosclerotic lesions in the thoracic aorta in mice on high but not low cholesterol diet. This compound did not affect body weight, blood cell counts and plasma total and HDL cholesterol, but decreased triglycerides. In addition, mice on high cholesterol diet receiving SKI-II showed elevated levels of tumor necrosis factor-α and endothelial adhesion molecules (sICAM-1, sVCAM-1). Prolonged lowering of plasma S1P produces pro-atherogenic effects in LDL-R-/- mice that are evident under condition of pronounced hypercholesterolemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Tang, Xiao-Er; Li, Heng; Chen, Ling-Yan; Xia, Xiao-Dan; Zhao, Zhen-Wang; Zheng, Xi-Long; Zhao, Guo-Jun; Tang, Chao-Ke
2018-04-24
Previous studies suggest that IL-8 has an important role in the regulation of cholesterol efflux, but whether miRNAs are involved in this process is still unknown. The purpose of this study is to explore whether IL-8 promotes cholesterol accumulation by enhancing miR-183 expression in macrophages and its underlying mechanism. Treatment of THP-1 macrophage-derived foam cells with IL-8 decreased ABCA1 expression and cholesterol efflux. Using bioinformatics analyses and dual-luciferase reporter assays, we found that miR-183 was highly conserved during evolution and directly inhibited ABCA1 protein and mRNA expression by targeting ABCA1 3'UTR. MiR-183 directly regulated endogenous ABCA1 expression levels. Furthermore, IL-8 enhanced the expression of miR-183 and decrease ABCA1 expression. Cholesterol transport assays confirmed that IL-8 dramatically inhibited apolipoprotein AI-mediated ABCA1-dependent cholesterol efflux by increasing miR-183 expression. In contrast, treatment with anti-IL-8 antibody reversed these effects. IL-8 enhances the expression of miR-183, which then inhibits ABCA1 expression and cholesterol efflux. Our studies suggest that the IL-8-miR-183-ABCA1 axis may play an intermediary role in the development of atherosclerosis. Copyright © 2018 Elsevier Ltd. All rights reserved.
He, Mingyan; Hou, Jiayun; Wang, Lingyan; Zheng, Minghuan; Fang, Tingting; Wang, Xiangdong; Xia, Jinglin
2017-06-27
Actinidia chinensis Planch root extract (acRoots) is a traditional Chinese medicine with anti-tumor efficacy. To investigate the mechanisms responsible for this activity, we examined the effects of acRoots on cholesterol metabolism in hepatocellular carcinoma (HCC). mRNA chip analysis was used to identify the metabolic genes regulated by acRoots. The effects of acRoots on cholesterol synthesis and uptake were evaluated by measuring intracellular cholesterol levels and 3,3'-dioctadecylindocarbocyanine-labeled low-density lipoprotein (Dil-LDL) uptake. Expression of metabolic genes was analyzed using quantitative reverse transcription PCR, western blotting, and flow cytometry. acRoots reduced the viability of LM3 and HepG2 cells at 5 mg/mL and HL-7702 cells at 30 mg/mL. Gene expression profiling revealed that treatment with acRoots altered expression of genes involved in immune responses, inflammation, proliferation, cell cycle control, and metabolism. We also confirmed that acRoots enhances expression of PCSK9, which is important for cholesterol metabolism. This resulted in decreased LDL receptor expression, inhibition of LDL uptake by LM3 cells, decreased total intracellular cholesterol, and reduced proliferation. These effects were promoted by PCSK9 overexpression and rescued by PCSK9 knockdown. Our data demonstrate that acRoots is a novel anti-tumor agent that inhibits cholesterol metabolism though a PCSK9-mediated signaling pathway.
Chen, Yung-Yi; Lee, Pei-Chi; Wu, Yi-Long; Liu, Li-Yun
2015-01-01
Astaxanthin extracted from Pomacea canaliculata eggs was made into free-form astaxanthin powder (FFAP) and its effects on lipid metabolism, liver function, antioxidants activities and astaxanthin absorption rate were investigated. 45 hamsters were split into 5 groups and fed with normal diet, high-cholesterol control (0.2% cholesterol), 1.6FFAP (control+1.6% FFAP), 3.2FFAP (control+3.2% FFAP) and 8.0FFAP (control+8.0% FFAP), respectively, for 6 weeks. FFAP diets significantly decreased the liver total cholesterol, triglyceride levels and increased liver fatty acids (C20:5n3; C22:6n3) compositions. It decreased plasma alanine aminotransferase and aspartate aminotransferase. In terms of anti-oxidative activities, we found 8.0 FFAP diet significantly decreased plasma and liver malonaldehyde (4.96±1.96 μg TEP eq./mL and 1.56±0.38 μg TEP eq./g liver) and liver 8-isoprostane levels (41.48±13.69 μg 8-ISOP/g liver). On the other hand, it significantly increased liver catalase activity (149.10±10.76 μmol/min/g liver), Vitamin C (2082.97±142.23 μg/g liver), Vitamin E (411.32±81.67 μg/g liver) contents, and glutathione levels (2.13±0.42 mg GSH eq./g liver). Furthermore, 80% of astaxanthin absorption rates in all FFAP diet groups suggest FFAP is an effective form in astaxanthin absorption. Finally, astaxanthin was found to re-distribute to the liver and eyes in a dose dependent manner. Taken together, our results suggested that the appropriate addition of FFAP into high cholesterol diets increases liver anti-oxidative activity and reduces the concentration of lipid peroxidase and therefore, it may be beneficial as a material in developing healthy food. PMID:26262684
Zasowska-Nowak, Anna; Nowak, Piotr J; Bialasiewicz, Piotr; Prymont-Przyminska, Anna; Zwolinska, Anna; Sarniak, Agata; Wlodarczyk, Anna; Markowski, Jaroslaw; Rutkowski, Krzysztof P; Nowak, Dariusz
2016-07-01
Strawberries can improve oxidants-antioxidants balance and reduce some cardiovascular risk factors in obese subjects. Paraoxonase-1 (PON-1) is a high-density lipoprotein-associated enzyme with antioxidant properties that can protect from coronary artery disease in humans. We examined the effect of strawberry consumption on plasma PON-1 activity and lipid profile in healthy nonobese subjects. Thirty-one subjects (body mass index [BMI] 24.4 ± 4.0 kg/m(2)) on their usual diet consumed 500 g of strawberry pulp daily for 30 days (first course) and after a 10-day washout the cycle was repeated (second course). Fasting blood and spot morning urine samples were collected before, during, and after each strawberry course (8 time points) for determination of paraoxonase and arylesterase PON-1 activities and lipid profile. Twenty subjects served as controls with respect to cholesterol and PON-1 activities changes over the study period. Strawberries decreased mean plasma paraoxonase PON-1 activity and this effect was more evident after the second course (by 11.6%, p < 0.05) than after the first course (5.4%, p = 0.06), whereas arylesterase activity was constant. Strawberries altered total cholesterol levels (p < 0.05) with a tendency to transiently decrease it (by 5.1%) only after 15 days of the first course. Triglycerides and high- and low-density lipoprotein cholesterol did not change in response to fruit consumption. No changes in PON-1 activities and lipid profile were noted in controls. Paraoxonase correlated with arylesterase activity (ƿ from 0.33 to 0.46 at the first 7 time points, p < 0.05). This association disappeared at the end of study (ƿ = 0.07) when the strongest inhibition of paraoxonase was noted. Supplementation of the usual diet with strawberries decreased paraoxonase PON-1 activity and did not improve lipid profiles in healthy nonobese subjects. Further studies are necessary to establish the clinical significance of paraoxonase suppression and to define a group of healthy subjects who can benefit from strawberry consumption with respect to cholesterol levels.
Bin Sayeed, Muhammad Shahdaat; Mostofa, A G M; Ferdous, F M Touhidul Islam; Islam, Md Siddiqul
2013-09-01
A randomized, single-center, double-blind, crossover clinical trial investigated the effects of an herbal preparation containing Vernonia cinerea in patients with type 2 diabetes mellitus. 48 patients with type 2 diabetes mellitus for longer than 6 months were divided into two groups matched for demographic and paraclinical variables. One group received a standard preparation of V. cinerea for 3 months, followed by placebo for another 3 months, and the other group received treatment in the reverse order. All patients received detailed advice on diet, exercise, and lifestyle modification. Glucose level was documented every 2 weeks, and hemoglobin A1c, total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein cholesterol, triglycerides, aspartate aminotransferase, alanine aminotransferase, and creatinine levels were determined at recruitment, 3 months, and study completion at 6 months. Glucose, hemoglobin A1c, cholesterol, LDL cholesterol, and triglyceride levels decreased significantly in both groups. No significant differences were seen in aspartate aminotransferase, alanine aminotransferase, or creatinine levels, indicating that use of the herbal preparation had no adverse effect on liver or renal function. Herbal treatment with V. cinerea has a beneficial effect on reducing the glycemic state in patients with type 2 diabetes.
Brejchova, Jana; Vosahlikova, Miroslava; Roubalova, Lenka; Parenti, Marco; Mauri, Mario; Chernyavskiy, Oleksandr; Svoboda, Petr
2016-08-01
Decrease of cholesterol level in plasma membrane of living HEK293 cells transiently expressing FLAG-δ-OR by β-cyclodextrin (β-CDX) resulted in a slight internalization of δ-OR. Massive internalization of δ-OR induced by specific agonist DADLE was diminished in cholesterol-depleted cells. These results suggest that agonist-induced internalization of δ-OR, which has been traditionally attributed exclusively to clathrin-mediated pathway, proceeds at least partially via membrane domains. Identification of internalized pools of FLAG-δ-OR by colocalization studies with proteins of Rab family indicated the decreased presence of receptors in early endosomes (Rab5), late endosomes and lysosomes (Rab7) and fast recycling vesicles (Rab4). Slow type of recycling (Rab11) was unchanged by cholesterol depletion. As expected, agonist-induced internalization of oxytocin receptors was totally suppressed in β-CDX-treated cells. Determination of average fluorescence lifetime of TMA-DPH, the polar derivative of hydrophobic membrane probe diphenylhexatriene, in live cells by FLIM indicated a significant alteration of the overall PM structure which may be interpreted as an increased "water-accessible space" within PM area. Data obtained by studies of HEK293 cells transiently expressing FLAG-δ-OR by "antibody feeding" method were extended by analysis of the effect of cholesterol depletion on distribution of FLAG-δ-OR in sucrose density gradients prepared from HEK293 cells stably expressing FLAG-δ-OR. Major part of FLAG-δ-OR was co-localized with plasma membrane marker Na,K-ATPase and β-CDX treatment resulted in shift of PM fragments containing both FLAG-δ-OR and Na,K-ATPase to higher density. Thus, the decrease in content of the major lipid constituent of PM resulted in increased density of resulting PM fragments.
Wang, Guang; Liu, Jia; Yang, Ning; Hu, Yanjin; Zhang, Heng; Miao, Li; Yao, Zhi; Xu, Yuan
2016-06-01
Fibroblast growth factor 21 (FGF21) is an important endogenous regulator of energy metabolism. Thyroid hormone has been shown to regulate hepatic FGF21 expression in rodents. The goal of this study was to evaluate the plasma FGF21 levels in participants with normal thyroid function, subclinical hypothyroidism, or overt hypothyroidism and to investigate the change of plasma FGF21 levels in patients with overt hypothyroidism after levothyroxine treatment. A total of 473 drug-naive participants were recruited, including 250 healthy control subjects, 116 patients with subclinical hypothyroidism, and 107 patients with overt hypothyroidism. Thirty-eight patients with overt hypothyroidism were assigned to receive levothyroxine treatment. The overt hypothyroidism group had decreased FGF21 levels compared with the control and subclinical hypothyroidism groups (P<0.01). Levothyroxine treatment markedly attenuated the increased circulating levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), high-sensitivity C-reactive protein (hsCRP), and homeostasis model assessment index of insulin resistance (HOMA-IR) in patients with overt hypothyroidism. A significant increase in plasma FGF21 levels was observed after levothyroxine treatment (P<0.01). The change in FGF21 levels was correlated with the increase of FT3 and FT4 after levothyroxine treatment (FT3: r=0.44; FT4: r=0.53; all P<0.05). Levothyroxine treatment ameliorated metabolic disorders and restored the decreased circulating FGF21 levels in patients with overt hypothyroidism. The increase in FGF21 levels after levothyroxine treatment might be partly associated with the amelioration of metabolic disorders in patients with hypothyroidism. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Lv, Yun-Cheng; Tang, Yan-Yan; Peng, Juan; Zhao, Guo-Jun; Yang, Jing; Yao, Feng; Ouyang, Xin-Ping; He, Ping-Ping; Xie, Wei; Tan, Yu-Lin; Zhang, Min; Liu, Dan; Tang, Deng-Pei; Cayabyab, Francisco S; Zheng, Xi-Long; Zhang, Da-Wei; Tian, Guo-Ping; Tang, Chao-Ke
2014-09-01
Macrophage accumulation of cholesterol leads to foam cell formation which is a major pathological event of atherosclerosis. Recent studies have shown that microRNA (miR)-19b might play an important role in cholesterol metabolism and atherosclerotic diseases. Here, we have identified miR-19b binding to the 3'UTR of ATP-binding cassette transporter A1 (ABCA1) transporters, and further determined the potential roles of this novel interaction in atherogenesis. To investigate the molecular mechanisms involved in a miR-19b promotion of macrophage cholesterol accumulation and the development of aortic atherosclerosis. We performed bioinformatics analysis using online websites, and found that miR-19b was highly conserved during evolution and directly bound to ABCA1 mRNA with very low binding free energy. Luciferase reporter assay confirmed that miR-19b bound to 3110-3116 sites within ABCA1 3'UTR. MiR-19b directly regulated the expression levels of endogenous ABCA1 in foam cells derived from human THP-1 macrophages and mouse peritoneal macrophages (MPMs) as determined by qRT-PCR and western blot. Cholesterol transport assays revealed that miR-19b dramatically suppressed apolipoprotein AI-mediated ABCA1-dependent cholesterol efflux, resulting in the increased levels of total cholesterol (TC), free cholesterol (FC) and cholesterol ester (CE) as revealed by HPLC. The excretion of (3)H-cholesterol originating from cholesterol-laden MPMs into feces was decreased in mice overexpressing miR-19b. Finally, we evaluated the proatherosclerotic role of miR-19b in apolipoprotein E deficient (apoE(-/-)) mice. Treatment with miR-19b precursor reduced plasma high-density lipoprotein (HDL) levels, but increased plasma low-density lipoprotein (LDL) levels. Consistently, miR-19b precursor treatment increased aortic plaque size and lipid content, but reduced collagen content and ABCA1 expression. In contrast, treatment with the inhibitory miR-19b antisense oligonucleotides (ASO) prevented or reversed these effects. MiR-19b promotes macrophage cholesterol accumulation, foam cell formation and aortic atherosclerotic development by targeting ABCA1. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Afolabi, Olusegun K; Wusu, Adedoja D; Ogunrinola, Olabisi O; Abam, Esther O; Babayemi, David O; Dosumu, Oluwatosin A; Onunkwor, Okechukwu B; Balogun, Elizabeth A; Odukoya, Olusegun O; Ademuyiwa, Oladipo
2015-06-05
Recent epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and cardiovascular diseases. However, the exact mechanism of this arsenic-mediated increase in cardiovascular risk factors remains enigmatic. In order to investigate the effects of inorganic arsenic exposure on lipid metabolism, male albino rats were exposed to 50, 100 and 150 ppm arsenic as sodium arsenite and 100, 150 and 200 ppm arsenic as sodium arsenate respectively in their drinking water for 12 weeks. Dyslipidemia induced by the two arsenicals exhibited different patterns. Hypocholesterolemia characterised the effect of arsenite at all the doses, but arsenate induced hypercholesterolemia at the 150 ppm As dose. Hypertriglyceridemia was the hallmark of arsenate effect whereas plasma free fatty acids (FFAs) was increased by the two arsenicals. Reverse cholesterol transport was inhibited by the two arsenicals as evidenced by decreased HDL cholesterol concentrations whereas hepatic cholesterol was increased by arsenite (100 ppm As), but decreased by arsenite (150 ppm As) and arsenate (100 ppm As) respectively. Brain cholesterol and triglyceride were decreased by the two arsenicals; arsenate decreased the renal content of cholesterol, but increased renal content of triglyceride. Arsenite, on the other hand, increased the renal contents of the two lipids. The two arsenicals induced phospholipidosis in the spleen. Arsenite (150 ppm As) and arsenate (100 ppm As) inhibited hepatic HMG CoA reductase. At other doses of the two arsenicals, hepatic activity of the enzyme was up-regulated. The two arsenicals however up-regulated the activity of the brain enzyme. We observed positive associations between tissue arsenic levels and plasma FFA and negative associations between tissue arsenic levels and HDL cholesterol. Our findings indicate that even though sub-chronic exposure to arsenite and arsenate through drinking water produced different patterns of dyslipidemia, our study identified two common denominators of dyslipidemia namely: inhibition of reverse cholesterol transport and increase in plasma FFA. These two denominators (in addition to other individual perturbations of lipid metabolism induced by each arsenical), suggest that in contrast to strengthening a dose-dependent effect phenomenon, the two forms of inorganic arsenic induced lipotoxic and non-lipotoxic dyslipidemia at "low" or "medium" doses and these might be responsible for the cardiovascular and other disease endpoints of inorganic arsenic exposure through drinking water.
Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong; Kim, Mee Ree
2012-05-01
Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague-Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (P<.05). The results suggest that high temperature/high pressure-processed garlic may be useful as a functional food to improve lipid profiles.
Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong
2012-01-01
Abstract Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague–Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (P<.05). The results suggest that high temperature/high pressure-processed garlic may be useful as a functional food to improve lipid profiles. PMID:22404600
Umemoto, Tomio; Subramanian, Savitha; Ding, Yilei; Goodspeed, Leela; Wang, Shari; Han, Chang Yeop; Teresa, Antonio Sta.; Kim, Jinkyu; O'Brien, Kevin D.; Chait, Alan
2012-01-01
Adipose tissue inflammation is associated with insulin resistance and increased cardiovascular disease risk in obesity. We previously showed that addition of cholesterol to a diet rich in saturated fat and refined carbohydrate significantly worsens dyslipidemia, insulin resistance, adipose tissue macrophage accumulation, systemic inflammation, and atherosclerosis in LDL receptor-deficient (Ldlr−/−) mice. To test whether inhibition of intestinal cholesterol absorption would improve metabolic abnormalities and adipose tissue inflammation in obesity, we administered ezetimibe, a dietary and endogenous cholesterol absorption inhibitor, to Ldlr−/− mice fed chow or high-fat, high-sucrose (HFHS) diets without or with 0.15% cholesterol (HFHS+C). Ezetimibe blunted weight gain and markedly reduced plasma lipids in the HFHS+C group. Ezetimibe had no effect on glucose homeostasis or visceral adipose tissue macrophage gene expression in the HFHS+C fed mice, although circulating inflammatory markers serum amyloid A (SSA) and serum amyloid P (SSP) levels decreased. Nevertheless, ezetimibe treatment led to a striking (>85%) reduction in atherosclerotic lesion area with reduced lesion lipid and macrophage content in the HFHS+C group. Thus, in the presence of dietary cholesterol, ezetimibe did not improve adipose tissue inflammation in obese Ldlr−/− mice, but it led to a major reduction in atherosclerotic lesions associated with improved plasma lipids and lipoproteins. PMID:22956784
Sacks, Frank M; Hermans, Michel P; Fioretto, Paola; Valensi, Paul; Davis, Timothy; Horton, Edward; Wanner, Christoph; Al-Rubeaan, Khalid; Aronson, Ronnie; Barzon, Isabella; Bishop, Louise; Bonora, Enzo; Bunnag, Pongamorn; Chuang, Lee-Ming; Deerochanawong, Chaicharn; Goldenberg, Ronald; Harshfield, Benjamin; Hernández, Cristina; Herzlinger-Botein, Susan; Itoh, Hiroshi; Jia, Weiping; Jiang, Yi-Der; Kadowaki, Takashi; Laranjo, Nancy; Leiter, Lawrence; Miwa, Takashi; Odawara, Masato; Ohashi, Ken; Ohno, Atsushi; Pan, Changyu; Pan, Jiemin; Pedro-Botet, Juan; Reiner, Zeljko; Rotella, Carlo Maria; Simo, Rafael; Tanaka, Masami; Tedeschi-Reiner, Eugenia; Twum-Barima, David; Zoppini, Giacomo; Carey, Vincent J
2014-03-04
Microvascular renal and retinal diseases are common major complications of type 2 diabetes mellitus. The relation between plasma lipids and microvascular disease is not well established. The case subjects were 2535 patients with type 2 diabetes mellitus with an average duration of 14 years, 1891 of whom had kidney disease and 1218 with retinopathy. The case subjects were matched for diabetes mellitus duration, age, sex, and low-density lipoprotein cholesterol to 3683 control subjects with type 2 diabetes mellitus who did not have kidney disease or retinopathy. The study was conducted in 24 sites in 13 countries. The primary analysis included kidney disease and retinopathy cases. Matched analysis was performed by use of site-specific conditional logistic regression in multivariable models that adjusted for hemoglobin A1c, hypertension, and statin treatment. Mean low-density lipoprotein cholesterol concentration was 2.3 mmol/L. The microvascular disease odds ratio increased by a factor of 1.16 (95% confidence interval, 1.11-1.22) for every 0.5 mmol/L (≈1 quintile) increase in triglycerides or decreased by a factor of 0.92 (0.88-0.96) for every 0.2 mmol/L (≈1 quintile) increase in high-density lipoprotein cholesterol. For kidney disease, the odds ratio increased by 1.23 (1.16-1.31) with triglycerides and decreased by 0.86 (0.82-0.91) with high-density lipoprotein cholesterol. Retinopathy was associated with triglycerides and high-density lipoprotein cholesterol in matched analysis but not significantly after additional adjustment. Diabetic kidney disease is associated worldwide with higher levels of plasma triglycerides and lower levels of high-density lipoprotein cholesterol among patients with good control of low-density lipoprotein cholesterol. Retinopathy was less robustly associated with these lipids. These results strengthen the rationale for studying dyslipidemia treatment to prevent diabetic microvascular disease.
Radhakishun, Nalini; Blokhuis, Charlotte; van Vliet, Mariska; von Rosenstiel, Ines; Weijer, Olivier; Heymans, Martijn; Beijnen, Jos; Brandjes, Dees; Diamant, Michaela
2014-08-01
The radical change of lifestyle during Ramadan fast has shown to affect cardiometabolic risk variables in adults. In youth, however, no studies are available. We aimed to evaluate the effect of Ramadan fast on Body Mass Index (BMI) and the cardiometabolic profile of obese adolescents. A prospective cohort study was conducted. We measured weight, height, body composition, blood pressure, heart rate, glucose, insulin, total cholesterol, low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol, triglycerides, and high sensitivity C-reactive protein (hs-CRP) levels before, during the last week of and at 6 weeks after Ramadan. Twenty-five obese adolescents were included. BMI and glucose metabolism did not change after Ramadan or at 6 week after cessation of Ramadan. At the end of Ramadan, a significant decrease in body fat percentage was observed, while significant increases in heart rate, total cholesterol, LDL cholesterol, HDL cholesterol, and hs-CRP were found (all P < 0.05). Six weeks after Ramadan, all parameters returned to baseline levels. In this sample of 25 ethnic obese adolescents transient cardiometabolic changes were observed during Ramadan fasting. Since most of these changes were reversible within 6 weeks, there seems no harm or benefit for obese adolescents to participate in Ramadan.
Kuo, Dar-Chih; Hsu, Shih-Ping; Chien, Chiang-Ting
2009-01-01
Increased reactive oxygen species (ROS) and hyperlipidemia can promote arterial thrombus. We evaluated the potential of a partially hydrolyzed guar gum (PHGG) as dietary fiber on lipid profiles and FeCl3-induced arterial thrombosis in the high fat-diet fed hamsters. Our in vitro results found that PHGG is efficient to scavenge O2-•, H2O2, and HOCl. High fat-diet increased plasma triglyceride, total cholesterol, LDL, VLDL, methylguanidine and dityrosine level and accelerated FeCl3-induced arterial thrombosis formation (from 463 ± 51 to 303 ± 45 sec). Low dose PHGG supplement significantly decreased the total cholesterol, LDL, methylguanidine and dityrosine level and delayed the time for arterial thrombosis formation (528 ± 75 sec). High dose PHGG supplement decreased the level in triglyceride, total cholesterol, LDL and VLDL and further delayed the time for arterial thrombus (671 ± 36 sec). The increased Bax protein and decreased Bcl-2 and HSP-70 protein expression was found in the carotid and femoral arteries of high fat-diet hamsters. Low and high dose of PHGG supplement decreased Bax expression and increased Bcl-2 and HSP-70 protein expression. We found that FeCl3 significantly enhanced intercellular adhesion molecule-1 and 4-hydroxynonenal expression in the endothelial site of damaged artery after 150-sec FeCl3 stimulation. PHGG supplement decreased the endothelial ICAM-1 and 4-hydroxynonenal expression after 150-sec FeCl3 stimulation. Based on these results, we conclude that PHGG supplement can increase antioxidant protein expression and thus decrease oxidative stress induced arterial injury. PMID:19272178
Lipid-lowering therapy in older persons
2015-01-01
Numerous randomized, double-blind, placebo-controlled studies and observational studies have shown that statins reduce mortality and major cardiovascular events in older high-risk persons with hypercholesterolemia. The Heart Protection Study showed that statins reduced mortality and major cardiovascular events in high-risk persons regardless of the initial level of serum lipids, age, or gender. The updated National Cholesterol Education Program III guidelines state that in very high-risk persons, a serum low-density lipoprotein (LDL) cholesterol level of < 70 mg/dl (1.8 mmol/l) is a reasonable clinical strategy for moderately high-risk persons (2 or more risk factors and a 10-year risk for coronary artery disease of 10% to 20%), and the serum LDL cholesterol should be reduced to < 100 mg/dl (2.6 mmol/l). When LDL cholesterol-lowering drug therapy is used to treat high-risk persons or moderately high-risk persons, the serum LDL cholesterol should be reduced by at least 30% to 40%. The serum LDL cholesterol should be decreased to less than 160 mg/dl in persons at low risk for cardiovascular disease. Addition of other lipid-lowering drugs to statin therapy has not been demonstrated to further reduce cardiovascular events and mortality. PMID:25861289
Iaea, David B.; Mao, Shu; Lund, Frederik W.; Maxfield, Frederick R.
2017-01-01
Cholesterol is an essential constituent of membranes in mammalian cells. The plasma membrane and the endocytic recycling compartment (ERC) are both highly enriched in cholesterol. The abundance and distribution of cholesterol among organelles are tightly controlled by a combination of mechanisms involving vesicular and nonvesicular sterol transport processes. Using the fluorescent cholesterol analogue dehydroergosterol, we examined sterol transport between the plasma membrane and the ERC using fluorescence recovery after photobleaching and a novel sterol efflux assay. We found that sterol transport between these organelles in a U2OS cell line has a t1/2 =12–15 min. Approximately 70% of sterol transport is ATP independent and therefore is nonvesicular. Increasing cellular cholesterol levels dramatically increases bidirectional transport rate constants, but decreases in cholesterol levels have only a modest effect. A soluble sterol transport protein, STARD4, accounts for ∼25% of total sterol transport and ∼33% of nonvesicular sterol transport between the plasma membrane and ERC. This study shows that nonvesicular sterol transport mechanisms and STARD4 in particular account for a large fraction of sterol transport between the plasma membrane and the ERC. PMID:28209730
Cholesterol Regulates Multiple Forms of Vesicle Endocytosis at a Mammalian Central Synapse
Yue, Hai-Yuan; Xu, Jianhua
2015-01-01
Endocytosis in synapses sustains neurotransmission by recycling vesicle membrane and maintaining the homeostasis of synaptic membrane. A role of membrane cholesterol in synaptic endocytosis remains controversial because of conflicting observations, technical limitations in previous studies, and potential interference from nonspecific effects after cholesterol manipulation. Furthermore, it is unclear whether cholesterol participates in distinct forms of endocytosis that function under different activity levels. In this study, applying the whole-cell membrane capacitance measurement to monitor endocytosis in real time at the rat calyx of Held terminals, we found that disrupting cholesterol with dialysis of cholesterol oxidase (COase) or methyl-β-cyclodextrin (MCD) impaired three different forms of endocytosis, i.e., slow endocytosis, rapid endocytosis, and endocytosis of the retrievable membrane that exists at the surface before stimulation. The effects were observed when disruption of cholesterol was mild enough not to change Ca2+ channel current or vesicle exocytosis, indicative of stringent cholesterol requirement in synaptic endocytosis. Extracting cholesterol with high concentrations of MCD reduced exocytosis, mainly by decreasing the readily releasable pool (RRP) and the vesicle replenishment after RRP depletion. Our study suggests that cholesterol is an important, universal regulator in multiple forms of vesicle endocytosis at mammalian central synapses. PMID:25893258
Lipid-lowering properties of TAK-475, a squalene synthase inhibitor, in vivo and in vitro.
Nishimoto, Tomoyuki; Amano, Yuichiro; Tozawa, Ryuichi; Ishikawa, Eiichiro; Imura, Yoshimi; Yukimasa, Hidefumi; Sugiyama, Yasuo
2003-07-01
1. Squalene synthase is the enzyme that converts farnesyl pyrophosphate to squalene in the cholesterol biosynthesis pathway. We examined the lipid-lowering properties of 1-[[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-5-(2,3-dimethoxyphenyl)-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]acetyl]piperidine-4-acetic acid (TAK-475), a novel squalene synthase inhibitor. 2. TAK-475 inhibited hepatic cholesterol biosynthesis in rats (ED(50), 2.9 mg kg(-1)) and showed lipid-lowering effects in beagle dogs, marmosets, cynomolgus monkeys and Wistar fatty rats. 3. In marmosets, TAK-475 (30, 100 mg kg(-1), p.o., for 4 days) lowered both plasma non-high-density lipoprotein (HDL) cholesterol and triglyceride, but did not affect plasma HDL cholesterol. On the other hand, atorvastatin (10, 30 mg kg(-1), p.o., for 4 days) lowered the levels of all these lipids. A correlation between decrease in triglyceride and increase in HDL cholesterol was observed, and TAK-475 increased HDL cholesterol with a smaller decrease in triglyceride than did atorvastatin. 4. TAK-475 (60 mg kg(-1), p.o., for 15 days) suppressed the rate of triglyceride secretion from the liver in hypertriglyceridemic Wistar fatty rats, which show an enhanced triglyceride secretion rate from the liver compared with their lean littermates. 5. In HepG2 cells, TAK-475 and its pharmacologically active metabolite, T-91485, increased the binding of (125)I-low-density lipoprotein (LDL) to LDL receptors. 6. These results suggest that TAK-475 has clear hypolipidemic effects in animals via inhibition of hepatic triglyceride secretion and upregulation of LDL receptors, and that TAK-475 might increase HDL cholesterol by decreasing triglyceride. Thus, TAK-475 is expected to be useful for the treatment of dyslipidemia.
Lipid-lowering properties of TAK-475, a squalene synthase inhibitor, in vivo and in vitro
Nishimoto, Tomoyuki; Amano, Yuichiro; Tozawa, Ryuichi; Ishikawa, Eiichiro; Imura, Yoshimi; Yukimasa, Hidefumi; Sugiyama, Yasuo
2003-01-01
Squalene synthase is the enzyme that converts farnesyl pyrophosphate to squalene in the cholesterol biosynthesis pathway. We examined the lipid-lowering properties of 1-[[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-5-(2,3-dimethoxyphenyl)-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]acetyl]piperidine-4-acetic acid (TAK-475), a novel squalene synthase inhibitor. TAK-475 inhibited hepatic cholesterol biosynthesis in rats (ED50, 2.9 mg kg−1) and showed lipid-lowering effects in beagle dogs, marmosets, cynomolgus monkeys and Wistar fatty rats. In marmosets, TAK-475 (30, 100 mg kg−1, p.o., for 4 days) lowered both plasma non-high-density lipoprotein (HDL) cholesterol and triglyceride, but did not affect plasma HDL cholesterol. On the other hand, atorvastatin (10, 30 mg kg−1, p.o., for 4 days) lowered the levels of all these lipids. A correlation between decrease in triglyceride and increase in HDL cholesterol was observed, and TAK-475 increased HDL cholesterol with a smaller decrease in triglyceride than did atorvastatin. TAK-475 (60 mg kg−1, p.o., for 15 days) suppressed the rate of triglyceride secretion from the liver in hypertriglyceridemic Wistar fatty rats, which show an enhanced triglyceride secretion rate from the liver compared with their lean littermates. In HepG2 cells, TAK-475 and its pharmacologically active metabolite, T-91485, increased the binding of 125I-low-density lipoprotein (LDL) to LDL receptors. 6 These results suggest that TAK-475 has clear hypolipidemic effects in animals via inhibition of hepatic triglyceride secretion and upregulation of LDL receptors, and that TAK-475 might increase HDL cholesterol by decreasing triglyceride. Thus, TAK-475 is expected to be useful for the treatment of dyslipidemia. PMID:12839864
Shrime, Mark G; Bauer, Scott R; McDonald, Anna C; Chowdhury, Nubaha H; Coltart, Cordelia E M; Ding, Eric L
2011-11-01
A growing body of evidence suggests that the consumption of foods rich in polyphenolic compounds, particularly cocoa, may have cardioprotective effects. No review, however, has yet examined the effect of flavonoid-rich cocoa (FRC) on all major cardiovascular risk factors or has examined potential dose-response relationships for these effects. A systematic review and meta-analysis of randomized, controlled trials was performed to evaluate the effect of FRC on cardiovascular risk factors and to assess a dose-response relationship. Inclusion and exclusion criteria as well as dependent and independent variables were determined a priori. Data were collected for: blood pressure, pulse, total cholesterol, HDL cholesterol, LDL cholesterol, TG, BMI, C-reactive protein, flow-mediated vascular dilation (FMD), fasting glucose, fasting insulin, serum isoprostane, and insulin sensitivity/resistance indices. Twenty-four papers, with 1106 participants, met the criteria for final analysis. In response to FRC consumption, systolic blood pressure decreased by 1.63 mm Hg (P = 0.033), LDL cholesterol decreased by 0.077 mmol/L (P = 0.038), and HDL cholesterol increased by 0.046 mmol/L (P = 0.037), whereas total cholesterol, TG, and C-reactive protein remained the same. Moreover, insulin resistance decreased (HOMA-IR: -0.94 points; P < 0.001), whereas FMD increased (1.53%; P < 0.001). A nonlinear dose-response relationship was found between FRC and FMD (P = 0.004), with maximum effect observed at a flavonoid dose of 500 mg/d; a similar relationship may exist with HDL cholesterol levels (P = 0.06). FRC consumption significantly improves blood pressure, insulin resistance, lipid profiles, and FMD. These short-term benefits warrant larger long-term investigations into the cardioprotective role of FRC.
Mistry, Hiten D; Kurlak, Lesia O; Mansour, Yosef T; Zurkinden, Line; Mohaupt, Markus G; Escher, Geneviève
2017-06-01
Preeclampsia is a pregnancy-specific condition that leads to increased cardiovascular risk in later life. A decrease in cholesterol efflux capacity is linked to CVD. We hypothesized that in preeclampsia there would be a disruption of maternal/fetal plasma to efflux cholesterol, as well as differences in the concentrations of both placental sterol 27-hydroxylase (CYP27A1) and apoA1 binding protein (AIBP). Total, HDL-, and ABCA1-mediated cholesterol effluxes were performed with maternal and fetal plasma from women with preeclampsia and normotensive controls (both n = 17). apoA1 and apoE were quantified by chemiluminescence, and 27-hydroxycholesterol (27-OHC) by GC-MS. Immunohistochemistry was used to determine placental expression/localization of CYP27A1, AIBP, apoA1, apoE, and SRB1. Maternal and fetal total and HDL-mediated cholesterol efflux capacities were increased in preeclampsia (by 10-20%), but ABCA1-mediated efflux was decreased (by 20-35%; P < 0.05). Maternal and fetal apoE concentrations were higher in preeclampsia. Fetal plasma 27-OHC levels were decreased in preeclamptic samples ( P < 0.05). Placental protein expression of both CYP27A1 and AIBP were localized around fetal vessels and significantly increased in preeclampsia ( P = 0.04). Placental 27-OHC concentrations were also raised in preeclampsia ( P < 0.05). Increased HDL-mediated cholesterol efflux capacity and placental CYP27A1/27-OHC could be a rescue mechanism in preeclampsia, to remove cholesterol from cells to limit lipid peroxidation and increase placental angiogenesis. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Fleetcroft, Robert; Schofield, Peter; Duerden, Martin; Ashworth, Mark
2012-12-01
There is conflicting evidence as to whether achievement of cholesterol targets at the population level is dependent on the choice and cost of statin. To investigate the practice-level relationship between cholesterol quality indicators in patients with heart disease, stroke, and diabetes and prescribing of low-cost statins. Correlations and linear regression modelling of retrospective cross-sectional practice-level data with potential explanatory variables in 7909 (96.4%) general practices in England in 2008-2009. Quality indicator data were obtained from the Information Centre and prescribing data from the NHS Business Authority. A 'cholesterol quality indicator' score was constructed by dividing the numbers of patients achieving the target for cholesterol control of ≤5 mmol/l in stroke, diabetes, and heart disease by the numbers on each register. A 'low-cost statin' ratio score was constructed by dividing the numbers of defined daily doses of simvastatin and pravastatin by the total numbers of defined daily doses of statins. Simvastatin accounted for 83.3% (standard deviation [SD] = 15.7%) of low-cost statins prescribed and atorvastatin accounted for 85.7% (SD = 14.8%) of high-cost statins prescribed. The mean cholesterol score was 73.7% (SD = 6.0%). Practices using a higher proportion of the low-cost statins were less successful in achieving cholesterol targets. An increase of 10% in the prescribing of low-cost statins was associated with a decrease of 0.46% in the cholesterol quality indicator score (95% confidence interval = -0.54% to -0.38%, P<0.001). Greater use of low-cost statins was associated with a small reduction in cholesterol control.
Tous, Mònica; Ribas, Vicent; Ferré, Natàlia; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco; Alonso-Villaverde, Carlos; Coll, Blai; Camps, Jordi; Joven, Jorge
2005-04-15
We aimed to investigate the effect of turpentine-induced inflammation in an atherosclerosis-prone murine model. We have induced a chronic aseptic inflammation in apolipoprotein E-deficient mice, with or without a dietary supplement of aspirin (n = 10, each), by the injection of a mixture (1:1) of turpentine and olive oil in the hind limb twice weekly for a period of 12 weeks. Control animals were injected with olive oil alone (n = 10). The control mice did show any alteration neither in plasma nor at the site of injection. Turpentine-treated mice showed a significant increase in plasma TNF-alpha and SAA concentrations which indicated a systemic inflammatory response that was not substantially affected by aspirin. Also, turpentine injections significantly reduced the plasma cholesterol concentration, probably decreasing intestinal cholesterol re-absorption, and attenuated the size of atherosclerotic lesion. Both effects were minimally influenced by aspirin. The burden of atherosclerosis correlated with plasma lipid levels but not with plasma inflammatory markers. Finally, there was a concomitant decrease in the expression of the hepatic mdr1b gene that correlated with the decrease in plasma cholesterol concentration. Therefore, we conclude that mdr1 is an additional factor to consider in the complexity of alterations in cholesterol metabolism that occur in this model.
Krysiak, Robert; Gilowski, Wojciech; Okopień, Bogusław
2016-02-01
By reducing LDL cholesterol levels, statins may decrease androgen production. This study was aimed at investigating whether testosterone treatment has an impact on cardiometabolic risk factors in statin-treated men with late-onset hypogonadism (LOH). The study included 31 men with LOH who had been treated for at least 6 months with atorvastatin (20-40mg daily). On the basis of patient preference, atorvastatin-treated patients were divided into two matched groups of patients: receiving intramuscular testosterone enanthate (100mg weekly, n=16) and not treated with this hormone (n=15). Plasma lipids, glucose homeostasis markers, as well as plasma levels of androgens, uric acid, high-sensitivity C-reactive protein (hsCRP), homocysteine, and fibrinogen were assessed before and after 4 months of therapy. Compared with the control age-, weight, and lipid-matched statin-naïve subjects with LOH (n=12), atorvastatin-treated patients were characterized by decreased levels of testosterone, hsCRP, and homocysteine. In patients not receiving testosterone therapy, plasma lipids, glucose homeostasis markers, as well as plasma levels of the investigated risk factors remained at the similar levels throughout the whole period of atorvastatin treatment. In atorvastatin-naïve patients, testosterone increased its plasma levels and decreased HDL cholesterol. Apart from an increase in testosterone levels, if administered to atorvastatin-treated subjects with LOH, testosterone reduced plasma levels of LDL cholesterol, uric acid, hsCRP, homocysteine, and fibrinogen, as well as improved insulin sensitivity. Our study may suggest the clinical benefits associated with combination therapy with a statin and testosterone in elderly men with LOH. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Rader, D J; Ikewaki, K; Duverger, N; Schmidt, H; Pritchard, H; Frohlich, J; Clerc, M; Dumon, M F; Fairwell, T; Zech, L
1994-01-01
Classic (complete) lecithin:cholesterol acyltransferase (LCAT) deficiency and Fish-eye disease (partial LCAT deficiency) are genetic syndromes associated with markedly decreased plasma levels of high density lipoprotein (HDL) cholesterol but not with an increased risk of atherosclerotic cardiovascular disease. We investigated the metabolism of the HDL apolipoproteins (apo) apoA-I and apoA-II in a total of five patients with LCAT deficiency, one with classic LCAT deficiency and four with Fish-eye disease. Plasma levels of apoA-II were decreased to a proportionately greater extent (23% of normal) than apoA-I (30% of normal). In addition, plasma concentrations of HDL particles containing both apoA-I and apoA-II (LpA-I:A-II) were much lower (18% of normal) than those of particles containing only apoA-I (LpA-I) (51% of normal). The metabolic basis for the low levels of apoA-II and LpA-I:A-II was investigated in all five patients using both exogenous radiotracer and endogenous stable isotope labeling techniques. The mean plasma residence time of apoA-I was decreased at 2.08 +/- 0.27 d (controls 4.74 +/- 0.65 days); however, the residence time of apoA-II was even shorter at 1.66 +/- 0.24 d (controls 5.25 +/- 0.61 d). In addition, the catabolism of apoA-I in LpA-I:A-II was substantially faster than that of apoA-I in LpA-I. In summary, genetic syndromes of either complete or partial LCAT deficiency result in low levels of HDL through preferential hypercatabolism of apoA-II and HDL particles containing apoA-II. Because LpA-I has been proposed to be more protective than LpA-I:A-II against atherosclerosis, this selective effect on the metabolism of LpA-I:A-II may provide a potential explanation why patients with classic LCAT deficiency and Fish-eye disease are not at increased risk for premature atherosclerosis despite markedly decreased levels of HDL cholesterol and apoA-I. PMID:8282802
Ambient and at-the-ear occupational noise exposure and serum lipid levels.
Arlien-Søborg, Mai C; Schmedes, Astrid S; Stokholm, Z A; Grynderup, M B; Bonde, J P; Jensen, C S; Hansen, Å M; Frederiksen, T W; Kristiansen, J; Christensen, K L; Vestergaard, J M; Lund, S P; Kolstad, H A
2016-10-01
Occupational and residential noise exposure has been related to increased risk of cardiovascular disease. Alteration of serum lipid levels has been proposed as a possible causal pathway. The objective of this study was to investigate the relation between ambient and at-the-ear occupational noise exposure and serum levels of total cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, and triglycerides when accounting for well-established predictors of lipid levels. This cross-sectional study included 424 industrial workers and 84 financial workers to obtain contrast in noise exposure levels. They provided a serum sample and wore portable dosimeters that every 5-s recorded ambient noise exposure levels during a 24-h period. We extracted measurements obtained during work and calculated the full-shift mean ambient noise level. For 331 workers who kept a diary on the use of a hearing protection device (HPD), we subtracted 10 dB from every noise recording obtained during HPD use and estimated the mean full-shift noise exposure level at the ear. Mean ambient noise level was 79.9 dB (A) [range 55.0-98.9] and the mean estimated level at the ear 77.8 dB (A) [range 55.0-94.2]. Ambient and at-the-ear noise levels were strongly associated with increasing levels of triglycerides, cholesterol-HDL ratio, and decreasing levels of HDL-cholesterol, but only in unadjusted analyses that did not account for HPD use and other risk factors. No associations between ambient or at-the-ear occupational noise exposure and serum lipid levels were observed. This indicates that a causal pathway between occupational and residential noise exposure and cardiovascular disease does not include alteration of lipid levels.
Kamtchueng Simo, Olivier; Ikhlef, Souade; Berrougui, Hicham; Khalil, Abdelouahed
2017-08-01
Reverse cholesterol transport (RCT), which is intimately linked to high-density lipoproteins (HDLs), plays a key role in cholesterol homeostasis and the prevention of atherosclerosis. The goal of the present study was to investigate the effect of aging and advanced glycation end products (AGEs) on RCT as well as on other factors that may affect the antiatherogenic property of HDLs. The transfer of macrophage-derived cholesterol to the plasma and liver and then to the feces for elimination was significantly lower in aged mice than in young mice. Chronic injection of d -galactose (D-gal) or AGEs also significantly reduced RCT (65.3% reduction in [ 3 H]cholesterol levels in the plasma of D-gal-treated mice after 48 h compared with control mice, P < 0.01). The injection of both D-gal and aminoguanidine hydrochloride increased [ 3 H]cholesterol levels in the plasma, although the levels were lower than those of control mice. The in vitro incubation of HDLs with dicarbonyl compounds increased the carbonyl and conjugated diene content of HDLs and significantly reduced PON1 paraoxonase activity (87.4% lower than control HDLs, P < 0.0001). Treating J774A.1 macrophages with glycated fetal bovine serum increased carbonyl formation (39.5% increase, P < 0.003) and reduced ABCA1 protein expression and the capacity of macrophages to liberate cholesterol (69.1% decrease, P < 0.0001). Our results showed, for the first time, that RCT is altered with aging and that AGEs contribute significantly to this alteration.
Lee, Ju-Hee; Kim, Sang-Hyun; Choi, Dong-Ju; Tahk, Seung-Jea; Yoon, Jung-Han; Choi, Si Wan; Hong, Taek-Jong; Kim, Hyo-Soo
2017-01-01
This study was designed to compare the efficacy and tolerability of the generic formulation (Atorva ® ) and the reference formulation (Lipitor ® ) of atorvastatin, both at a dosage of 20 mg once daily. This study was a prospective open-label, randomized controlled study. Hypercholesterolemic patients who had not achieved low-density lipoprotein (LDL) cholesterol goals according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) guideline were randomized to generic formulation or reference formulation of atorvastatin. The primary end point was the percent change of blood LDL cholesterol at 8 weeks from the baseline. The secondary end points included the percent changes of total cholesterol, high-density lipoprotein (HDL) cholesterol, triglyceride (TG), apolipoprotein B (ApoB), and apolipoprotein A1 (ApoA1) levels, the percent changes of ApoB/ApoA1 and total cholesterol/HDL cholesterol ratios, and the change in high-sensitivity C-reactive protein (hsCRP) levels. The LDL cholesterol goal achievement rate according to the NCEP-ATP III guideline was also evaluated. Three hundred and seventy-six patients were randomized, and 346 patients (176 in the generic group and 170 in the reference group) completed the study. After the 8 weeks of treatment, LDL cholesterol level was significantly decreased in both the groups, and the decrement was comparable between the two groups (-43.9%±15.3% in the generic group, -43.3%±17.0% in the reference group, P =0.705). The percent changes of total cholesterol, HDL cholesterol, TG, ApoB, ApoA1, ApoB/ApoA1 ratio, total cholesterol/HDL cholesterol ratio, and hsCRP showed insignificant difference between the two groups. However, LDL cholesterol goal achievement rate was significantly higher in the generic group compared to the reference group (90.6% vs 83.0%, P =0.039) in per-protocol analysis. Adverse event rate was comparable between the two groups (12.0% vs 13.7%, P =0.804). The generic formulation of atorvastatin 20 mg was not inferior to the reference formulation of atorvastatin 20 mg in the management of hypercholesterolemia.
Lee, Ju-Hee; Kim, Sang-Hyun; Choi, Dong-Ju; Tahk, Seung-Jea; Yoon, Jung-Han; Choi, Si Wan; Hong, Taek-Jong; Kim, Hyo-Soo
2017-01-01
Purpose This study was designed to compare the efficacy and tolerability of the generic formulation (Atorva®) and the reference formulation (Lipitor®) of atorvastatin, both at a dosage of 20 mg once daily. Methods This study was a prospective open-label, randomized controlled study. Hypercholesterolemic patients who had not achieved low-density lipoprotein (LDL) cholesterol goals according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) guideline were randomized to generic formulation or reference formulation of atorvastatin. The primary end point was the percent change of blood LDL cholesterol at 8 weeks from the baseline. The secondary end points included the percent changes of total cholesterol, high-density lipoprotein (HDL) cholesterol, triglyceride (TG), apolipoprotein B (ApoB), and apolipoprotein A1 (ApoA1) levels, the percent changes of ApoB/ApoA1 and total cholesterol/HDL cholesterol ratios, and the change in high-sensitivity C-reactive protein (hsCRP) levels. The LDL cholesterol goal achievement rate according to the NCEP-ATP III guideline was also evaluated. Results Three hundred and seventy-six patients were randomized, and 346 patients (176 in the generic group and 170 in the reference group) completed the study. After the 8 weeks of treatment, LDL cholesterol level was significantly decreased in both the groups, and the decrement was comparable between the two groups (−43.9%±15.3% in the generic group, −43.3%±17.0% in the reference group, P=0.705). The percent changes of total cholesterol, HDL cholesterol, TG, ApoB, ApoA1, ApoB/ApoA1 ratio, total cholesterol/HDL cholesterol ratio, and hsCRP showed insignificant difference between the two groups. However, LDL cholesterol goal achievement rate was significantly higher in the generic group compared to the reference group (90.6% vs 83.0%, P=0.039) in per-protocol analysis. Adverse event rate was comparable between the two groups (12.0% vs 13.7%, P=0.804). Conclusion The generic formulation of atorvastatin 20 mg was not inferior to the reference formulation of atorvastatin 20 mg in the management of hypercholesterolemia. PMID:28814835
Duchnowicz, Piotr; Nowicka, Agmieszka; Koter-Michalak, Maria; Broncel, Marlena
2012-09-01
Hypercholesterolemia increases cholesterol concentration in erythrocyte membranes, which results in decrease of membrane fluidity and decreases the deformability of red blood cells. The fruits of Arona melanocarpa contains many of polyphenols and other compounds that have beneficial health effects. The aim of the study was to estimate the influence of 2-month supplementation of extract from Aronia melanocarpa (100 mg Aronox, three times per day) on cholesterol concentration, lipid peroxidation, membrane fluidity, level of thiol groups and activity of ATPase in erythrocytes from patients with hypercholesterolemia. The study involved 25 patients with hypercholesterolemia without pharmacological treatment and 20 healthy individuals as a control group. Blood samples were collected before, and after 1 and 2 months of Aronia administration. The 2-month Aronia supplementation resulted in a decrease of cholesterol concentration (by 22%) and a decrease of lipid peroxidation (by 40%), and an increase of membrane fluidity. No statistically significant increase of the concentration of thiol groups and of ATPase activity were observed. Our study shows that supplementation of extract from Aronia melanocarpa has a beneficial effect on rheological properties of erythrocytes.
Mohammadi, Vahid; Anassori, Ehsan; Jafari, Shoja
2016-01-01
Makouei sheep is one of the famous breeds in Iran which is reared in Azerbaijan province for their meat, milk and wool. Fifty clinically healthy Makouei ewes were selected to study the variations in energy-related blood metabolites during peri-partum period. Blood was collected from Jugular vein from each sheep on day 7 before the expected lambing time, day of parturition and also day 7 postpartum to determine total protein, albumin, urea, cholesterol, glucose, triglyceride, β-hydroxybutyrate (BHB) and non- esterified fatty acid (NEFA) levels. Serum total protein and albumin concentrations were gradually decreased during pre-partum period and reached the lowest level after parturition (p > 0.05). Blood urea concentration was significantly decreased to the lowest level at parturition (p < 0.05). Serum cholesterol and triglycerides were gradually decreased and reached low levels after lambing (p < 0.05). Serum glucose concentrations were significantly lower at pre-partum period than post-partum (p < 0.05). The serum NEFA and BHB concentrations were higher before lambing and thereafter decreased (p < 0.05). Current findings regarding the blood parameters may expand our knowledge for the diagnosis and prognosis of reproductive and metabolic diseases in Makouei sheep during these phases. PMID:27226885
Sandhya, V G; Rajamohan, T
2008-12-01
The coconut water presents a series of nutritional and therapeutic properties, being a natural, acid and sterile solution, which contains several biologically active components, l-arginine, ascorbic acid, minerals such as calcium, magnesium and potassium, which have beneficial effects on lipid levels. Recent studies in our laboratory showed that both tender and mature coconut water feeding significantly (P<0.05) reduced hyperlipidemia in cholesterol fed rats [Sandhya, V.G., Rajamohan, T., 2006. Beneficial effects of coconut water feeding on lipid metabolism in cholesterol fed rats. J. Med. Food 9, 400-407]. The current study evaluated the hypolipidemic effect of coconut water (4ml/100g body weight) with a lipid lowering drug, lovastatin (0.1/100g diet) in rats fed fat-cholesterol enriched diet ad libitum for 45 days. Coconut water or lovastatin supplementation lowered the levels of serum total cholesterol, VLDL+LDL cholesterol, triglycerides and increased HDL cholesterol in experimental rats (P<0.05). Coconut water feeding decreased activities of hepatic lipogenic enzymes and increased HMG CoA reductase and lipoprotein lipase activity (P<0.05). Incorporation of radioactive acetate into free and ester cholesterol in the liver were higher in coconut water treated rats. Coconut water supplementation increased hepatic bile acid and fecal bile acids and neutral sterols (P<0.05). Coconut water has lipid lowering effect similar to the drug lovastatin in rats fed fat-cholesterol enriched diet.
Hypoxia-ischemia brain damage disrupts brain cholesterol homeostasis in neonatal rats.
Yu, Z; Li, S; Lv, S H; Piao, H; Zhang, Y H; Zhang, Y M; Ma, H; Zhang, J; Sun, C K; Li, A P
2009-08-01
The first 3 weeks of life is the peak time of oligodendrocytes development and also the critical period of cholesterol increasing dramatically in central nervous system in rats. Neonatal hypoxia-ischemia (HI) brain damage happening in this period may disturb the brain cholesterol balance as well as white matter development. To test this hypothesis, postnatal day 7 (P7) Sprague-Dawley rats were subjected to HI insult. Cholesterol concentrations from brain and plasma were measured. White matter integrity was evaluated by densitometric analysis of myelin basic protein (MBP) immunostaining and electron microscopy. Brain TNF-alpha and IL-6 levels were also measured. HI-induced brain cholesterol, but not the plasma cholesterol, levels decreased significantly during the first three days after HI compared with naïve and sham operated rats (p<0.05). Obvious hypomyelination was indicated by marked reductions in MBP immunostaining on both P10 and P14 (p<0.01) and less and thinner myelinated axons were detected on P21 by electron microscopy observation. High expressions of brain TNF-alpha and IL-6 12 h after HI (p<0.05) were also observed. The present work provides evidence that HI insult destroyed brain cholesterol homeostasis, which might be important in the molecular pathology of hypoxic-ischemic white matter injury. Proinflammatory cytokines insulting oligodendrocytes, may cause cholesterol unbalance. Furthermore, specific therapeutic interventions to maintain brain cholesterol balance may be effective for the recovery of white matter function. Georg Thieme Verlag KG Stuttgart New York.
Evaluation of Cholesterol as a Biomarker for Suicidality in a Veteran Sample.
Reuter, Chuck; Caldwell, Barbara; Basehore, Heather
2017-08-01
A reduction in total cholesterol may alter the microviscosity of the brain-cell-membrane, reducing serotonin receptor exposure. The resulting imbalance between serotonin and dopamine may lead to an increased risk for suicidality. The objective of this research was to evaluate total cholesterol as a biological marker for suicidality in a sample of US military veterans. The study population consisted of veterans who received care at the Coatesville Veterans Affairs Medical Center (VAMC) and were included in the Suicide Prevention Coordinator's database for having suicidal ideation with evidence of escalating intent, a documented suicide attempt, or committed suicide between 2009 and 2015. The veterans' medical data were obtained from the facility's computerized patient record system. The final sample was 188 observations from 128 unique veterans. Veterans with total cholesterol levels below 168 mg/dl appeared to have a higher suicide risk than those with higher levels. The cholesterol levels of veterans reporting suicidal ideation or attempt were significantly lower than the group reporting neither [F(2, 185) = 30.19, p < .001]. When data from multiple visits were available, veterans reporting suicidal ideation or attempt had experienced a significant (20%) decrease in cholesterol levels from an earlier visit in which they did not report suicidality. A latent class analysis revealed that among other differences, suicidal veterans were younger, leaner, and had more anxiety, sleep problems, and higher education than those being seen for an issue unrelated to suicidality. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
[Types of dislipidemia in children with metabolic syndrome].
Hromnats'ka, N M
2014-01-01
To study dyslipidemia types in children with metabolic syndrome. From 1520 children of total population 155 children aged from 9 to 18 years were selected, who formed 2 groups: 1 group--85 children with metabolic syndrome, 2 group--54 children with normal body mass. Anthropometry, blood pressure measurement, estimation of total cholesterol, low density cholesterol, very low density cholesterol, high density cholesterol, tryglicerides in blood were done. The total cholesterol level was 1,1 times higher (p = 0.001), low density cholesterol 1,4 times higher (p = 0.001), very low density cholesterol 1,1 times higher (p= 0.015), tryglicerides 1,1 times higher (p = 0.020) in children with metabolic syndrome than in children of control group. In children with metabolic syndrome sensitively more often IIa, IV dislipidemia types and isolated hypercholesterolemia and less often IIb, III dislipidemia types and high density cholesterol isolated decrease were diagnosed. So children with metabolic syndrome were characterized by atherogenic types of dislipidemias which determine early atherosclerosis development. Children with metabolic syndrome must be examined on the lipid metabolism violation with the aim of its prevention and correction.
Rizzo, M R; Barbieri, M; Grella, R; Passariello, N; Paolisso, G
2005-06-01
Aim our study is to compare the effects of repaglinide vs glimepiride administration on cardiovascular risk factors after meal test. Thus, after 2 weeks washout period, a 3-month randomised, cross-over parallel group trial of repaglinide (1 mg x 2/day) vs glimepiride (2 mg/day) in 14 patients with type 2 diabetes "naive" on diet treatment was made. Both treatments significantly declined plasma glucose, total-cholesterol, LDL-cholesterol, triglycerides, PAI-1, PAP levels and increased HDL-cholesterol. Lowering in plasma PAI-1 and PAP levels was significantly greater in repaglinide group. Furthermore, repaglinide administration resulted in a significant decrease in fasting plasma free fatty acids, fibrinogen, thrombin-antithrombin complex and reaction product of malondialdehyde with thiobarbituric acid (TBARS) levels, in absence of significant difference in fasting plasma insulin levels. Decrease in plasma TBARS levels correlated with the decrease in Plasminogen Activator Inhibitor-1 (r = 0.72; P < 0.003) and free fatty acids concentrations (r = 0.62; P < 0.01). Analysis of the insulin and glucose concentrations throughout the meal test revealed that AUC for glucose (758 +/- 19 vs 780 +/- 28 mg/Lxmin; P = 0.02) was significantly lower after repaglinide than glimepiride administration despite similar AUC for insulin (2327 +/- 269 vs 2148 +/- 292 mU/Lxmin; P = 0.105). At time 120' of meal test, repaglinide vs glimepiride administration was associated with a significant decline in plasma triglycerides, free fatty acids, fibrinogen, Plasminogen Activator Inhibitor-1, plasmin-alpha(2)-antiplasmin complex, thrombin-antithrombin complex, TBARS levels and increase in plasma HDL-cholesterol levels. In repaglinide group a negative correlation between insulin secretion during 1st phase of meal-test and plasma TBARS levels (r = -0.55; P < 0.03) at time 120' was found. Such correlation was lost after adjusting for changes in postprandial hyperglycaemia (r = -0.48; P < 0.09). In conclusion, our results support the hypothesis that repaglinide is more efficient than glimepiride on controlling for postprandial glucose excursion and may have beneficial effect on reducing cardiovascular risk factors.
Aleluia, Milena Magalhães; da Guarda, Caroline Conceição; Santiago, Rayra Pereira; Fonseca, Teresa Cristina Cardoso; Neves, Fábia Idalina; de Souza, Regiana Quinto; Farias, Larissa Alves; Pimenta, Felipe Araújo; Fiuza, Luciana Magalhães; Pitanga, Thassila Nogueira; Ferreira, Júnia Raquel Dutra; Adorno, Elisângela Vitória; Cerqueira, Bruno Antônio Veloso; Gonçalves, Marilda de Souza
2017-04-11
Sickle cell anemia (SCA) patients exhibit sub-phenotypes associated to hemolysis and vaso-occlusion. The disease has a chronic inflammatory nature that has been also associated to alterations in the lipid profile. This study aims to analyze hematological and biochemical parameters to provide knowledge about the SCA sub-phenotypes previously described and suggest a dyslipidemic sub-phenotype. A cross-sectional study was conducted from 2013 to 2014, and 99 SCA patients in steady state were enrolled. We assessed correlations and associations with hematological and biochemical data and investigated the co-inheritance of -α 3.7Kb -thalassemia (-α 3.7Kb -thal). Correlation analyses were performed using Spearman and Pearson coefficient. The median of quantitative variables between two groups was compared using t-test and Mann-Whitney. P-values <0.05 were considered statistically significant. We found significant association of high lactate dehydrogenase levels with decreased red blood cell count and hematocrit as well as high levels of total and indirect bilirubin. SCA patients with low nitric oxide metabolites had high total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol and reduced very low-density cholesterol, triglycerides, direct bilirubin level and reticulocyte counts. In SCA patients with high-density lipoprotein cholesterol greater than 40 mg/dL, we observed increased red blood cell count, hemoglobin, hematocrit, and fetal hemoglobin and decreased nitric oxide metabolites levels. The presence of -α 3.7Kb -thal was associated with high red blood cell count and low mean corpuscular volume, mean corpuscular hemoglobin, platelet count and total and indirect bilirubin levels. Our results provide additional information about the association between biomarkers and co-inheritance of -α 3.7Kb -thal in SCA, and suggest the role of dyslipidemia and nitric oxide metabolites in the characterization of this sub-phenotype.
Ramasamy, Pasiyappazham; Subhapradha, Namasivayam; Shanmugam, Vairamani; Shanmugam, Annaian
2014-04-01
Carbon tetrachloride (CCl4) is a potent hepatotoxic agent causing hepatic necrosis and it is widely used in animal models for induction of acute and chronic liver damage. The antioxidative and hepatoprotective effects of chitosan from Sepia kobiensis against CCl4 induced liver toxicity in Wistar rats was studied by measuring the activity of lipid peroxidation (TBARS, lipid hydroperoxides), non enzymatic antioxidant (GSH), antioxidant enzyme activities (SOD, CAT and GPx), liver marker enzymes (ALT and AST), lipid profile (FFA, TG, cholesterol and HDL cholesterol) and histopathological changes. Rats treated with chitosan against CCl4 toxicity showed significantly decreased levels of ALT and AST activities, total cholesterol, triglyceride and free fatty acid in plasma and tissue. Whereas the treatment with chitosan along with CCl4 showed markedly increased level of hepatic and circulatory in SOD, CAT, GPx and reduced glutathione and decreased the malondialdehyde level. Histopathological observations proved the marked hepatoprotective effect of chitosan. The CCl4 induced alterations in circulatory and hepatic antioxidant defense system were normalized by chitosan and it could be concluded that the hepatoprotective effect of chitosan may be due to its antioxidant and antilipidemic properties. Copyright © 2014 Elsevier B.V. All rights reserved.
Grajeta, H
1999-04-01
The effect of amaranth and oat bran on the lipids of blood and liver in rats depending on the kind of fats in diet was the subject of our study. Sixty male Buffalo rats were fed for 28 days one of six diet containing 15% of fat (lard or sunflower oil), 20% of protein and 0.5% of cholesterol. Amaranth and oat bran added to diet provided 4-4.5% of dietary fiber, water soluble fraction of which amounted to 30%. Amaranth significantly decreased the level of total cholesterol in rats blood serum (by 10.7% in the case of diet with lard and by 14% with sunflower oil) and in liver (by 20% in the case of diet with lard and by 23% with sunflower oil). Similarly oat bran decreased the level of total cholesterol in the blood serum: by 19% in the case of diet with lard and by 22% with sunflower oil; and in liver by 22 and 27%, respectively. Amaranth and oat bran did not influence HDL-cholesterol in the blood of rats. The influence of amaranth and oat bran on the concentration of triglycerides in the blood serum depended on the kind of fats in a diet. The diets containing amaranth or oat bran with lard did not decrease the concentration of this lipids, however, the same diets but with sunflower oil decreased this concentration significantly (by 22%). In liver significant hypotriglyceridemic effect of amaranth and oat bran was observed for both of the diets: based on lard and sunflower. The decrease of triglycerides concentration under the influence of amaranth amounted to 10% (diet with lard) and 15% (diet with sunflower oil). Oat bran decreased the concentration of triglycerides in liver by 15% (diet with lard) and 20% (diet with sunflower oil). Sunflower oil added to the diets augmented the hypolipemic effect of amaranth and oat bran.
Chen, Kun; Li, Shaocong; Chen, Fang; Li, Jun; Luo, Xuegang
2016-02-01
Lactic acid bacteria have been identified to be effective in reducing cholesterol levels. Most of the mechanistic studies were focused on the bile salt deconjugation ability of bile salt hydrolase in lactic acid bacteria. However, the mechanism by which Lactobacillus decreases cholesterol levels has not been thoroughly studied in intact primate cells. 3-Hydroxy-3- methyl-glutaryl-coenzyme A reductase (HMGCR) is the vital enzyme in cholesterol synthesis. To confirm the effect of probiotic Lactobacillus strains on HMGCR level, in the present study, human hepatoma HepG2 cells were treated with Lactobacillus strains, and then the HMGCR level was illustrated by luciferase reporter assay and RT-PCR. The results showed that the level of HMGCR was suppressed after being treated with the live Lactobacillus strains. These works might set a foundation for the following study of the antihyperlipidemic effects of L. acidophilus, and contribute to the development of functional foods or drugs that benefit patients suffering from hyperlipidemia diseases.
Mumford, Sunni L.; Schisterman, Enrique F.; Siega-Riz, Anna Maria; Gaskins, Audrey J.; Steiner, Anne Z.; Daniels, Julie L.; Olshan, Andrew F.; Hediger, Mary L.; Hovey, Kathleen; Wactawski-Wende, Jean; Trevisan, Maurizio; Bloom, Michael S.
2011-01-01
BACKGROUND Sporadic anovulation among regularly menstruating women is not well understood. It is hypothesized that cholesterol abnormalities may lead to hormone imbalances and incident anovulation. The objective was to evaluate the association between lipoprotein cholesterol levels and endocrine and metabolic disturbances and incident anovulation among ovulatory and anovulatory women reporting regular menstruation. METHODS The BioCycle Study was a prospective cohort study conducted at the University at Buffalo from September 2005 to 2007, which followed 259 self-reported regularly menstruating women aged 18–44 years, for one or two complete menstrual cycles. Sporadic anovulation was assessed across two menstrual cycles. RESULTS Mean total and low-density lipoprotein cholesterol and triglycerides levels across the menstrual cycles were higher during anovulatory cycles (mean difference: 4.6 (P = 0.01), 3.0 (P = 0.06) and 6.4 (P = 0.0002) mg/dl, respectively, adjusted for age and BMI). When multiple total cholesterol (TC) measures prior to expected ovulation were considered, we observed a slight increased risk of anovulation associated with increased levels of TC (odds ratio per 5 mg/dl increase, 1.07; 95% confidence interval, 0.99, 1.16). Sporadic anovulation was associated with an increased LH:FSH ratio (P = 0.002), current acne (P = 0.02) and decreased sex hormone-binding globulin levels (P = 0.005). CONCLUSIONS These results do not support a strong association between lipoprotein cholesterol levels and sporadic anovulation. However, sporadic anovulation among regularly menstruating women is associated with endocrine disturbances which are typically observed in women with polycystic ovary syndrome. PMID:21115506
Hypolipidemic Effect of Tomato Juice in Hamsters in High Cholesterol Diet-Induced Hyperlipidemia
Lee, Li-Chen; Wei, Li; Huang, Wen-Ching; Hsu, Yi-Ju; Chen, Yi-Ming; Huang, Chi-Chang
2015-01-01
Tomato is a globally famous food and contains several phytonutrients including lycopene, β-carotene, anthocyanin, and flavonoids. The increased temperature used to produce tomato juice, ketchup, tomato paste and canned tomato enhances the bioactive composition. We aimed to verify the beneficial effects of processed tomato juice from Kagome Ltd. (KOT) on hypolipidemic action in hamsters with hyperlipidemia induced by a 0.2% cholesterol and 10% lard diet (i.e., high-cholesterol diet (HCD)). Male Golden Syrian hamsters were randomly divided into two groups for treatment: normal (n = 8), standard diet (control); and experimental (n = 32), HCD. The 32 hamsters were further divided into four groups (n = 8 per group) to receive vehicle or KOT by oral gavage at 2787, 5573, or 13,934 mg/kg/day for six weeks, designated the HCD-1X, -2X and -5X groups, respectively. The efficacy and safety of KOT supplementation was evaluated by lipid profiles of serum, liver and feces and by clinical biochemistry and histopathology. HCD significantly increased serum levels of total cholesterol (TC), triacylglycerol (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), LDL-C/HDL-C ratio, hepatic and fetal TC and TG levels, and degree of fatty liver as compared with controls. KOT supplementation dose-dependently decreased serum TC, TG, LDL-C levels, LDL-C/HDL-C ratio, hepatic TC and TG levels, and fecal TG level. Our study provides experiment-based evidence to support that KOT may be useful in treating or preventing the onset of hyperlipidemia. PMID:26694461
Hypolipidemic Effect of Tomato Juice in Hamsters in High Cholesterol Diet-Induced Hyperlipidemia.
Lee, Li-Chen; Wei, Li; Huang, Wen-Ching; Hsu, Yi-Ju; Chen, Yi-Ming; Huang, Chi-Chang
2015-12-17
Tomato is a globally famous food and contains several phytonutrients including lycopene, β-carotene, anthocyanin, and flavonoids. The increased temperature used to produce tomato juice, ketchup, tomato paste and canned tomato enhances the bioactive composition. We aimed to verify the beneficial effects of processed tomato juice from Kagome Ltd. (KOT) on hypolipidemic action in hamsters with hyperlipidemia induced by a 0.2% cholesterol and 10% lard diet (i.e., high-cholesterol diet (HCD)). Male Golden Syrian hamsters were randomly divided into two groups for treatment: normal (n = 8), standard diet (control); and experimental (n = 32), HCD. The 32 hamsters were further divided into four groups (n = 8 per group) to receive vehicle or KOT by oral gavage at 2787, 5573, or 13,934 mg/kg/day for six weeks, designated the HCD-1X, -2X and -5X groups, respectively. The efficacy and safety of KOT supplementation was evaluated by lipid profiles of serum, liver and feces and by clinical biochemistry and histopathology. HCD significantly increased serum levels of total cholesterol (TC), triacylglycerol (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), LDL-C/HDL-C ratio, hepatic and fetal TC and TG levels, and degree of fatty liver as compared with controls. KOT supplementation dose-dependently decreased serum TC, TG, LDL-C levels, LDL-C/HDL-C ratio, hepatic TC and TG levels, and fecal TG level. Our study provides experiment-based evidence to support that KOT may be useful in treating or preventing the onset of hyperlipidemia.
Hsu, Howard H T; Culley, Nathan C
2006-06-23
Vascular calcification is implicated in myocardial infarction, instability and rigidity of the aortic wall, and bioprosthetic failures. Although an increase in the calcium (Ca) content in atherogenic diets has been shown to decrease atherosclerosis in rabbits, whether Ca supplementation and deficiency can affect atherosclerosis-related aortic calcification remains unknown. New Zealand White male rabbit littermates were fed an atherogenic diet containing 0.5% cholesterol and 2% peanut oil. The Ca content of the diet, which normally contains 1%, was adjusted to 0.5 or 3%. Segments of thoracic aortas were dissected from rabbits for histological evaluations and Ca and Pi determinations. Rabbits with calcium supplementation were maintained for 4 months, whereas those with calcium deficiency were maintained for 2 1/2 months due to severe icterus beyond this stage. The ratios of intimal to medial areas and calcified to intimal areas were used to semi-quantify lesion accumulation and calcification, respectively. Icterus was estimated from the extent of yellowing of the skin, sclera, and mucous membranes along with gross evidence of hepatic lipidosis and/or biliary obstructions. Statistical analysis of 16 matched littermates shows that Ca supplementation significantly decreased the lesions by 41% (p < 0.05) and markedly inhibited calcification by 62% (p < 0.05). Statistical analysis of 11 matched littermates shows that Ca deficiency significantly increased the lesions by 2.7-fold (p < 0.05) and that the diet caused a small but significant calcification not seen in the sibling groups with normal dietary Ca. Ca supplementation caused a significant 30% decrease in serum cholesterol (p < 0.05). Calcium deficiency increased serum cholesterol by 57% (p < 0.001). Serum cholesterol and LDL-cholesterol levels in Ca deficient rabbits were 2-fold higher than those with high Ca diets. Ca supplementation decreased soluble Ca and Pi content in aortas, suggesting that this effect may underlie the effects of Ca supplementation on calcification. Calcium deficiency increased icterus by 33% (p < 0.05), which may affect hepatic clearance of cholesterol, while calcium supplementation decreased it by 43% (p < 0.001). Ca supplementation to an atherogenic diet inhibits atherosclerosis, aortic calcification, and icterus, whereas a Ca deficient-diet promotes them.
Madani, S; Prost, J; Belleville, J
2000-05-01
The effects of different proportions (10, 20, and 30%) of dietary casein or highly purified soybean protein on lipid metabolism were studied in growing Wistar rats. Hepatic, plasma and lipoprotein lipid, and protein concentrations, plasma thiobarbituric acid-reactive substance (TBARS) levels, and resistance of red blood cells against free-radical attack were determined after a 4-wk dietary regimen. Compared with the 20% casein diet, the 20% soybean protein diet exhibited similar cholesterolemia but lower plasma triacylglycerol concentrations and very-low-density lipoprotein (VLDL) particle number, as measured by diminished contents of VLDL-triacylglycerol, VLDL-protein, and VLDL-apolipoprotein (Apo) B (B-100 and B-48). The soybean protein diet raised high-density lipoprotein (HDL)(2-3) particle number, as measured by enhanced concentrations of HDL(2-3) cholesterol, HDL-phospholipid, and HDL-ApoA-I. Increasing casein or soybean protein level (from 10 to 30%) in the diet involved higher VLDL-ApoB (B-100 and B-48), indicating an increase in the number of VLDL particles. Feeding the 30% casein or 30% soybean protein diet enhanced LDL-HDL(1) cholesterol contents. Despite similar HDL(2-3)-ApoA-I levels, the 30% casein diet enhanced the HDL(2-3) mass and its cholesterol concentrations. In contrast, feeding either the 10 or 30% soybean protein diet significantly lowered HDL(2-3) cholesterol and ApoA-I levels. These effects on cholesterol distribution in lipoprotein fractions occurred despite unchanged total cholesterol concentrations in plasma. Feeding 20% soybean protein versus 20% casein involved lower plasma TBARS concentrations. Decreasing casein or soybean protein levels in the diet were associated with higher plasma TBARS concentrations and had a lower resistance of red blood cells against free-radical attack. The present study shows that dietary protein level and origin play an important role in lipoprotein metabolism and the antioxidative defense status but do not affect total cholesterol concentrations in plasma.
Bakalli, R I; Pesti, G M; Ragland, W L; Konjufca, V
1995-02-01
Male commercial broiler strain chickens were fed from hatching to 42 d of age either a control diet (based on corn and soybean meal) or the control diet supplemented with 250 mg copper/kg diet from cupric sulfate pentahydrate (for 35 or 42 d). Hypocholesterolemia (11.8% reduction) and decreased breast muscle cholesterol (20.4% reduction) were observed in copper-supplemented birds. There was a slight increase (P > .05) in breast muscle copper (14.5%), and all levels were very low (< .5 mg/kg). Feeding copper for 42 vs 35 d resulted in lower levels of cholesterol in the plasma (12.9 vs 10.8% reduction) and breast muscle (24.6 vs 16.2% reduction). Very similar results were found in two additional experiments in which hypocholesterolemia and reduced breast muscle cholesterol were associated with reduced plasma triglycerides and blood reduced glutathione. It is well known that hypercholesterolemia is a symptom of dietary copper deficiency. The data presented here indicate that blood and breast muscle cholesterol are inversely related to dietary copper in excess of the dietary requirement for maximal growth. The cholesterol content of the edible muscle tissue of broiler chickens can be reduced by approximately 25% after feeding a supranormal level of copper for 42 d without altering the growth of the chickens or substantially increasing the copper content of the edible meat.
Oláh, Mihály; Koncz, Agnes; Fehér, Judit; Kálmánczhey, Judit; Oláh, Csaba; Balogh, Sándor; Nagy, György; Bender, Tamás
2010-05-01
An increasing body of evidence substantiating the effectiveness of balneotherapy has accumulated during recent decades. In the present study, 42 ambulatory patients (23 males and 19 females, mean age 59.5 years) with degenerative musculoskeletal disease were randomised into one of two groups-bathing in tap water or in mineral water at the same temperature-and subjected to 30-min balneotherapy sessions on 15 occasions. Study parameters comprised serum levels of sensitised C-reactive protein (CRP), plasma lipids, heat shock protein (HSP-60) and total antioxidant status (TAS). In both groups, CRP levels followed a decreasing tendency, which still persisted 3 months later. At 3 months after balneotherapy, serum cholesterol levels were still decreasing in patients who had used medicinal water, but exhibited a trend towards an increase in the control group. Triglyceride levels followed a decreasing trend in both patient groups. TAS showed a declining tendency in both groups. No changes of HSP-60 levels were observed in either group. Balneotherapy with the thermal water from Hajdúszoboszló spa had a more pronounced physiological effect compared to that seen in the control group treated with tap water in a 3 month period.
Effect of Dietary Ethanolic Extract of Lavandula officinalis on Serum Lipids Profile in Rats
Rabiei, Zahra; Rafieian-Kopaei, Mahmoud; Mokhtari, Shiva; Shahrani, Mehrdad
2014-01-01
Antioxidants are effective in prevention and treatment of cardiovascular diseases. Lavandula officinalis possesses antioxidant activity, therefore, in this study; the effects of Lavandula officinalis extract were investigated on serum lipids levels of rats. Experimental mature male Wistar rats were treated with 100, 200 or 400 mg/Kg/day of lavender ethanolic extract or distilled water for 25 days via gastric gavage (n=8 each group). At the end of 25th day, the serum cholesterol, triglyceride, HDL, LDL and VLDL levels, as well as atherogenic indices were determined in rats’ serum. The ethanolic extract of lavender decreased serum cholesterol, triglyceride, LDL and VLDL levels in 100 mg/Kg group (p=0.03, p=0.001, p=0.001, p=0.001, respectively). Serum HDL level increased in 100 mg/Kg/day group (p=0.01). Lavender extract decreased LDL/HDL level at doses of 100 and 200 mg/Kg/day (p=0.001, p=0.001, respectively). The TG/HDL levels decreased in experimental groups with doses of 100 and 200 mg/Kg/day (p=0.001, p=0.001, respectively). Lavandula officinalis extract exerts hypolipidemic effect in rats and might be beneficial in hyperlipidemic patients. PMID:25587318
You, Jeong Soon; Park, Ji Yeon; Zhao, Xu; Jeong, Jin Seok; Choi, Mi Ja; Chang, Kyung Ja
2013-01-01
Human adipose tissue is not only a storage organ but also an active endocrine organ to release adipokines. This study was conducted to investigate the relationship among serum taurine and adipokine levels, and body composition during 8-week human body weight control program in obese female college students. The program consisted of diet therapy, exercise, and behavior modification. After the program, body weight, body fat mass, percent body fat, and body mass index (BMI) were significantly decreased. Serum triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels were significantly decreased. Also serum adiponectin level was significantly increased and serum leptin level was significantly decreased. There were no differences in serum taurine and homocysteine levels. The change of serum adiponectin level was positively correlated with change of body fat mass and percent body fat. These results may suggest that body fat loss by human body weight control program is associated with an increase in serum adiponectin in obese female college students. Therefore, further study such as taurine intervention study is needed to know more exact correlation between dietary taurine intake and serum adipokines or body composition.
Suanarunsawat, Thamolwan; Devakul Na Ayutthaya, Watcharaporn; Songsak, Thanapat; Thirawarapan, Suwan; Poungshompoo, Somlak
2011-01-01
The present study was conducted to investigate the lipid-lowering and antioxidative activities of Ocimum sanctum L. (OS) leaf extracts in liver and heart of rats fed with high-cholesterol (HC) diet for seven weeks. The results shows that OS suppressed the high levels of serum lipid profile and hepatic lipid content without significant effects on fecal lipid excretion. Fecal bile acids excretion was increased in HC rats treated with OS. The high serum levels of TBARS as well as AST, ALT, AP, LDH, CK-MB significantly decreased in HC rats treated with OS. OS suppressed the high level of TABARS and raised the low activities of GPx and CAT without any impact on SOD in the liver. As for the cardiac tissues, OS lowered the high level of TABARS, and raised the activities of GPx, CAT, and SOD. Histopathological results show that OS preserved the liver and myocardial tissues. It can be concluded that OS leaf extracts decreased hepatic and serum lipid profile, and provided the liver and cardiac tissues with protection from hypercholesterolemia. The lipid-lowering effect is probably due to the rise of bile acids synthesis using cholesterol as precursor, and antioxidative activity to protect liver from hypercholesterolemia. PMID:21949899
Cairoli, E; Rebella, M; Danese, N; Garra, V; Borba, E F
2012-10-01
The influence of antimalarials on lipids in systemic lupus erythematosus (SLE) has been identified in several studies but not in many prospective cohorts. The aim of this study was to longitudinally determine the effect of antimalarials on the lipoprotein profile in SLE. Fasting total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL) and low-density lipoprotein cholesterol (LDL) plasma levels were determined at entry and after 3 months of hydroxychloroquine (HCQ) treatment in a longitudinal evaluation of 24 patients with SLE. a significant decrease in TC (198 ± 33.7 vs. 183 ± 30.3 mg/dl, p = 0.023) and LDL levels (117 ± 31.3 vs. 101 ± 26.2 mg/dl, p = 0.023) were detected after the 3 months of HCQ therapy. The reduction of 7.6% in TC (p = 0.055) and 13.7% in LDL levels (p = 0.036) determined a significant decrease in the frequency of dyslipidemia (26% vs. 12.5%, p = 0.013) after HCQ therapy. This longitudinal study demonstrated the beneficial effect of antimalarials on lipids in SLE since this therapy induced a reduction of atherogenic lipoproteins.
Ieromuzo, A A; Medkova, I L; Nemytin, Iu V; Ivanov, A N
2012-01-01
Clinical, hemodynamic and metabolic parameters were investigated for 42 patients with coronary heart disease, after myocardial infarct, recieved selective beta-adrenoblockers. Patients were divided in two groups. The first group (24 patients) were given methoprolol (50 mg/daily) and antiatherogenic lacto vegetarian diet, the second (18 patients)--methoprolol (50 mg/daily) and standard mixed antiatherogenic diet. After the treatment, positive changes clinical and gemodynamic parameters were observed in both groups of patients. Among the clinical symptoms, a more pronounced decrease in blood pressure in the patients on vegetarian diet and a more significant increase in their exercise tolerance. The level of total cholesterol on the serum of blood decreased by 16%, low-density lipoproteins cholesterol decreased by 18%, the atherogenic coefficient (KA) decreased by 31%, only in vegetarian group. High-density lipoprotein cholesterol increased in vegetarian group, by 14% and decreased in control group. Balanced antiatherogenic lacto vegetarian diet in patients with coronary heart disease prevents the hyperlipedemic effect caused by the selective beta-adrenoblockers and it is an agent for preventing its negative effect on lipid metabolism.
Combined effect of Lactobacillus acidophilus and β-cyclodextrin on serum cholesterol in pigs.
Alonso, L; Fontecha, J; Cuesta, P
2016-01-14
A total of twenty-four Yorkshire gilt pigs of 6-7 weeks of age were used in a 2×2 factorial experiment to determine the individual and combined effects of the inclusion of two dietary factors (cholesterol rich, 3% β-cyclodextrin (BCD) and Lactobacillus acidophilus cultures) on total cholesterol and LDL-cholesterol levels in blood serum. Pigs were assigned randomly to treatment groups (n 6). Total serum cholesterol concentrations decreased after 3 weeks in all the experimental treatment groups, including diets with BCD, L. acidophilus or both. Similar trends were observed for serum LDL-cholesterol concentrations among the experimental treatments. No statistically significant differences from the control group were observed in either total serum cholesterol or LDL-cholesterol concentrations (P<0·05) for each of the individual treatment groups: BCD or L. acidophilus. However, significant differences in total serum cholesterol concentrations were observed when comparing the combined treatment group (BCD and L. acidophilus) with the control group, which consisted of a basal diet and sterile milk. The combined treatment group exhibited 17·9% lower total serum cholesterol concentration after 3 weeks. Similar significant differences were observed when comparing the combined effect experimental group with the control group after 3 weeks. The combined treatment group exhibited 27·9% lower serum LDL-cholesterol concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Kuan-Chung; Chu, Chia-Ho; Hsu, Chen-Pin
In this study, a cost-effective and highly sensitive cholesterol microsensor, which is consisted of cholesterol oxidase (ChOx), horseradish peroxidase (HRP), and polyaniline (PANI), was developed based on the enzyme-induced conductivity change of PANI with fast response. Hydrogen peroxide is produced via the reaction between cholesterol and ChOx, which was immobilized in a dialysis membrane. The produced hydrogen peroxide can oxidize HRP, which can be reduced by oxidizing PANI, thus resulting in decreased conductivity of the polyaniline thin film. The reduced HRP can be oxidized again by hydrogen peroxide and the cycle of the oxidation/reduction continues until all hydrogen peroxide aremore » reacted, leading to the high sensitivity of the sensor due to the signal contributed from all hydrogen peroxide molecules. Cholesterol was detected near the physiological concentrations ranging from 100 mg/dl to 400 mg/dl with the cholesterol microsensors. The results show linear relation between cholesterol concentration and the conductivity change of the PANI. The microsensor showed no response to cholesterol when the PANI was standalone without cholesterol oxidase immobilized, indicating that the enzymatic reaction is required for cholesterol detection. The simple process of the sensor fabrication allows the sensor to be cost-effective and disposable usage. This electronic cholesterol microsensor is promising for point-of-care health monitoring in cholesterol level with low cost and fast response.« less
Arunima, S; Rajamohan, T
2012-11-01
Effect of virgin coconut oil (VCO) on lipid levels and regulation of lipid metabolism compared with copra oil (CO), olive oil (OO), and sunflower oil (SFO) has been reported. Male Sprague-Dawley rats were fed different oils at 8% level for 45 days along with synthetic diet. Results showed that VCO feeding significantly lowered (P < 0.05) levels of total cholesterol, LDL+ VLDL cholesterol, Apo B and triglycerides in serum and tissues compared to rats fed CO, OO and SFO, while HDL-cholesterol and Apo A1 were significantly (P < 0.05) higher in serum of rats fed VCO than other groups. Hepatic lipogenesis was also down regulated in VCO fed rats, which was evident from the decreased activities of enzymes viz., HMG CoA reductase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase and malic enzyme. In addition, VCO significantly (P < 0.05) increased the activities of lipoprotein lipase, lecithin cholesterol acyl transferase and enhanced formation of bile acids. Results demonstrated hypolipidemic effect of VCO by regulating the synthesis and degradation of lipids.
Jiang, Luohua; Manson, Spero M.; Beals, Janette; Henderson, William; Pratte, Katherine; Acton, Kelly J.; Roubideaux, Yvette
2014-01-01
Objectives. We evaluated cardiovascular disease (CVD) risk factors in American Indians/Alaska Natives (AI/ANs) with diabetes in the Special Diabetes Program for Indians Healthy Heart (SDPI-HH) Demonstration Project. Methods. Multidisciplinary teams implemented an intensive case management intervention among 30 health care programs serving 138 tribes. The project recruited 3373 participants, with and without current CVD, between 2006 and 2009. We examined data collected at baseline and 1 year later to determine whether improvements occurred in CVD risk factors and in Framingham coronary heart disease (CHD) risk scores, aspirin use, and smoking status. Results. A1c levels decreased an average of 0.2% (P < .001). Systolic and diastolic blood pressure, low-density lipoprotein (LDL) cholesterol, and triglyceride levels decreased, with the largest significant reduction in LDL cholesterol (∆ = −5.29 mg/dL; P < .001). Average Framingham CHD risk scores also decreased significantly. Aspirin therapy increased significantly, and smoking decreased. Participants with more case management visits had significantly greater reductions in LDL cholesterol and A1c values. Conclusions. SDPI-HH successfully translated an intensive case management intervention. Creative retention strategies and an improved understanding of organizational challenges are needed for future Indian health translational efforts. PMID:25211728
Threshold level or not for low-density lipoprotein cholesterol.
Barter, P J; Sacks, F M
2001-05-01
As drugs, such as the statins, and other therapies demonstrate the ability to significantly lower levels of low-density lipoprotein cholesterol (LDL-C), one issue is whether there is a lower threshold below which no further decline in coronary heart disease occurs. Those who evaluate the data from multiple trials and conclude that no significant decrease in coronary event rates occurs at or below 125 mg/dL suggest using this level as a guideline for clinical application of cholesterol-lowering therapy. On the other hand, analysis of the results of the same population and primary prevention studies concludes that no such threshold exists. The issues affected by the decision of whether to use a threshold include costs to the healthcare system for additional physician time, tests, and medication; unknown clinical events and safety related to very low LDL-C; and resource prioritization to an unestablished therapeutic approach.
Mipomersen injection is used to decrease levels of cholesterol and other fatty substances in the blood in ... procedure that removes LDL from the blood), but mipomersen injection should not be used along with this ...
Cochran, Blake J.; Hou, Liming; Manavalan, Anil Paul Chirackal; Moore, Benjamin M.; Tabet, Fatiha; Sultana, Afroza; Cuesta Torres, Luisa; Tang, Shudi; Shrestha, Sudichhya; Senanayake, Praween; Patel, Mili; Ryder, William J.; Bongers, Andre; Maraninchi, Marie; Wasinger, Valerie C.; Westerterp, Marit; Tall, Alan R.; Barter, Philip J.
2016-01-01
Elevated pancreatic β-cell cholesterol levels impair insulin secretion and reduce plasma insulin levels. This study establishes that low plasma insulin levels have a detrimental effect on two major insulin target tissues: adipose tissue and skeletal muscle. Mice with increased β-cell cholesterol levels were generated by conditional deletion of the ATP-binding cassette transporters, ABCA1 and ABCG1, in β-cells (β-DKO mice). Insulin secretion was impaired in these mice under basal and high-glucose conditions, and glucose disposal was shifted from skeletal muscle to adipose tissue. The β-DKO mice also had increased body fat and adipose tissue macrophage content, elevated plasma interleukin-6 and MCP-1 levels, and decreased skeletal muscle mass. They were not, however, insulin resistant. The adipose tissue expansion and reduced skeletal muscle mass, but not the systemic inflammation or increased adipose tissue macrophage content, were reversed when plasma insulin levels were normalized by insulin supplementation. These studies identify a mechanism by which perturbation of β-cell cholesterol homeostasis and impaired insulin secretion increase adiposity, reduce skeletal muscle mass, and cause systemic inflammation. They further identify β-cell dysfunction as a potential therapeutic target in people at increased risk of developing type 2 diabetes. PMID:27702832
Hypocholesterolemic property of Yucca schidigera and Quillaja saponaria extracts in human body.
Kim, Sang-Woo; Park, Sang-Kyu; Kang, Sung-Il; Kang, Han-Chul; Oh, Han-Jin; Bae, Chul-Young; Bae, Dong-Ho
2003-12-01
This study was undertaken to observe the effects of the blend of partially purified Yucca schidigera and Quillaja saponaria extracts on cholesterol levels in the human's blood and gastrointestinal functions, and to determine if a new cholesterol-lowering drug can be developed by the further purification of the extracts. Ultrafiltration and sequential diafiltration increased the amounts of steroidal saponin in aqueous yucca extract and terpenoid saponin in aqueous quillaja extract from 9.3% and 21.4% to 17.2% and 61.8%, respectively. Taking 0.9 mg of the blend (6:4, v:v) of the resulting filtrates a day for 4 weeks resulted in the decreases in total and LDL cholesterol levels in blood plasma of hyper-cholesterolemic patients with enhancement in gastrointestinal symptoms of patients.
Spigoni, Valentina; Antonini, Monica; Micheli, Maria Maddalena; Fantuzzi, Federica; Fratter, Andrea; Pellizzato, Marzia; Derlindati, Eleonora; Zavaroni, Ivana; Bonadonna, Riccardo C.; Dei Cas, Alessandra
2017-01-01
Increased non high-density lipoprotein (HDL)/low-density lipoprotein (LDL) cholesterol levels are independent risk factors for cardiovascular (CV) mortality with no documented threshold. A new combination of nutraceuticals (berberine 200 mg, monacolin K 3 mg, chitosan 10 mg and coenzyme Q 10 mg) with additive lipid-lowering properties has become available. The aim of the study is to test the efficacy of the nutraceutical formulation (one daily) in lowering non-HDL cholesterol vs. placebo at 12 weeks in individuals with non-HDL-cholesterol levels ≥160 mg/dL. 39 subjects (age 52 ± 11 years; 54% females; body mass index 27 ± 4 kg/m2) were randomized (3:1) in a double blind phase II placebo-controlled study. At baseline, 4 and 12 weeks main clinical/biohumoral parameters, pro-inflammatory cytokines, (gut)-hormones, proprotein convertase subtilisin/kexin type 9 (PCSK9) levels and endothelial progenitor cell (EPC) number were assessed. Baseline characteristics were comparable in the two groups. The intervention significantly decreased non-HDL cholesterol (−30 ± 20 mg/dL; p = 0.012), LDL cholesterol (−31 ± 18 mg/dL, p = 0.011) and apolipoprotein (Apo) B (−14 ± 12 mg/dL, p = 0.030) levels compared to the placebo. Pro-inflammatory, hormonal, PCSK9 and EPC levels remained stable throughout the study in both groups. The intervention was well tolerated. Three adverse events occurred: Epstein Barr virus infection, duodenitis and asymptomatic but significant increase in creatine phosphokinase (following intense physical exercise) which required hospitalization. The tested nutraceutical formulation may represent a possible therapeutic strategy in dyslipidemic individuals in primary prevention. PMID:28704936
2013-01-01
Background Assessment of cardiovascular disease (CVD) risk factors can predict clinical manifestations of atherosclerosis in adulthood. In this pilot study with hypercholesterolemic children and adolescents, we investigated the effects of a combination of plant sterols, fish oil and B vitamins on the levels of four independent risk factors for CVD; LDL-cholesterol, triacylglycerols, C-reactive protein and homocysteine. Methods Twenty five participants (mean age 16 y, BMI 23 kg/m2) received daily for a period of 16 weeks an emulsified preparation comprising plant sterols esters (1300 mg), fish oil (providing 1000 mg eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA)) and vitamins B12 (50 μg), B6 (2.5 mg), folic acid (800 μg) and coenzyme Q10 (3 mg). Atherogenic and inflammatory risk factors, plasma lipophilic vitamins, provitamins and fatty acids were measured at baseline, week 8 and 16. Results The serum total cholesterol, LDL- cholesterol, VLDL-cholesterol, subfractions LDL-2, IDL-1, IDL-2 and plasma homocysteine levels were significantly reduced at the end of the intervention period (p<0.05). The triacylglycerols levels decreased by 17.6%, but did not reach significance. No significant changes in high sensitivity C-reactive protein, HDL-cholesterol and apolipoprotein A-1 were observed during the study period. After standardisation for LDL cholesterol, there were no significant changes in the levels of plasma γ-tocopherol, β-carotene and retinol, except for reduction in α-tocopherol levels. The plasma levels of n-3 fatty acids increased significantly with the dietary supplementation (p<0.05). Conclusions Daily intake of a combination of plant sterols, fish oil and B vitamins may modulate the lipid profile of hypercholesterolemic children and adolescents. Trial registration Current Controlled Trials ISRCTN89549017 PMID:23297818
Spigoni, Valentina; Aldigeri, Raffaella; Antonini, Monica; Micheli, Maria Maddalena; Fantuzzi, Federica; Fratter, Andrea; Pellizzato, Marzia; Derlindati, Eleonora; Zavaroni, Ivana; Bonadonna, Riccardo C; Dei Cas, Alessandra
2017-07-12
Increased non high-density lipoprotein (HDL)/low-density lipoprotein (LDL) cholesterol levels are independent risk factors for cardiovascular (CV) mortality with no documented threshold. A new combination of nutraceuticals (berberine 200 mg, monacolin K 3 mg, chitosan 10 mg and coenzyme Q 10 mg) with additive lipid-lowering properties has become available. The aim of the study is to test the efficacy of the nutraceutical formulation (one daily) in lowering non-HDL cholesterol vs. placebo at 12 weeks in individuals with non-HDL-cholesterol levels ≥160 mg/dL. 39 subjects (age 52 ± 11 years; 54% females; body mass index 27 ± 4 kg/m²) were randomized (3:1) in a double blind phase II placebo-controlled study. At baseline, 4 and 12 weeks main clinical/biohumoral parameters, pro-inflammatory cytokines, (gut)-hormones, proprotein convertase subtilisin/kexin type 9 (PCSK9) levels and endothelial progenitor cell (EPC) number were assessed. Baseline characteristics were comparable in the two groups. The intervention significantly decreased non-HDL cholesterol (-30 ± 20 mg/dL; p = 0.012), LDL cholesterol (-31 ± 18 mg/dL, p = 0.011) and apolipoprotein (Apo) B (-14 ± 12 mg/dL, p = 0.030) levels compared to the placebo. Pro-inflammatory, hormonal, PCSK9 and EPC levels remained stable throughout the study in both groups. The intervention was well tolerated. Three adverse events occurred: Epstein Barr virus infection, duodenitis and asymptomatic but significant increase in creatine phosphokinase (following intense physical exercise) which required hospitalization. The tested nutraceutical formulation may represent a possible therapeutic strategy in dyslipidemic individuals in primary prevention.
Deng, Junming; Kang, Bin; Tao, Linli; Rong, Hua; Zhang, Xi
2013-01-01
This study evaluated the effects of dietary cholesterol on antioxidant capacity, non-specific immune response and resistance to Aeromonas hydrophila in rainbow trout (Oncorhynchus mykiss) fed soybean meal-based diets. Fish were fed diets supplemented with graded cholesterol levels (0 [control], 0.3, 0.6, 0.9, 1.2, and 1.5%) for nine weeks. The fish were then challenged by A. hydrophila and their survival rate recorded for the next week. Dietary cholesterol supplementation generally increased the serum and hepatic superoxide dismutase (SOD), glutathione-peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (TAC) activities, but decreased the serum and hepatic malondialdehyde (MDA) contents. Further, the hepatic CAT and serum SOD, CAT, and TAC activities were significantly higher in fish fed diets supplemented with 0.9 or 1.2% cholesterol compared to those fed the control diet, whereas the serum and hepatic MDA contents were significantly lower. The respiratory burst activity, alternative complement activity, and hepatic lysozyme activity increased steadily when the supplemental cholesterol was increased by up to 1.2% and then declined with further addition. The serum lysozyme activity and phagocytic activity increased steadily with increasing dietary supplemental cholesterol level up to 0.9% and then declined with further addition. Dietary cholesterol supplementation generally enhanced the protection against A. hydrophila infection, and fish fed diets supplemented with 0.9 or 1.2% cholesterol exhibited the highest post-challenge survival rate. The results indicated that cholesterol may be under-supplied in rainbow trout fed soybean meal-based diets, and dietary cholesterol supplementation (0.9-1.2%) contributed to improved immune response and disease resistance of rainbow trout against A. hydrophila. Published by Elsevier Ltd.
Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid.
Correia, Marta; Casal, Susana; Vinagre, João; Seruca, Raquel; Figueiredo, Ceu; Touati, Eliette; Machado, José C
2014-05-01
Helicobacter pylori colonizes half of the world population and is associated with gastric cancer. We have previously demonstrated that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid known for its anti-inflammatory and antitumor effects, directly inhibits H. pylori growth in vitro and in mice. Nevertheless, the concentration of DHA shown to reduce H. pylori mice gastric colonization was ineffective in vitro. Related to the auxotrophy of H. pylori for cholesterol, we hypothesize that other mechanisms, in addition to DHA direct antibacterial effect, must be responsible for the reduction of the infection burden. In the present study we investigated if DHA affects also H. pylori growth, by reducing the availability of membrane cholesterol in the epithelial cell for H. pylori uptake. Levels of cholesterol in gastric epithelial cells and of cholesteryl glucosides in H. pylori were determined by thin layer chromatography and gas chromatography. The consequences of epithelial cells' cholesterol depletion on H. pylori growth were assessed in liquid cultures. We show that H. pylori uptakes cholesterol from epithelial cells. In addition, DHA lowers cholesterol levels in epithelial cells, decreases its de novo synthesis, leading to a lower synthesis of cholesteryl glucosides by H. pylori. A previous exposition of H. pylori to cholesterol influences the bacterium response to the direct inhibitory effect of DHA. Overall, our results suggest that a direct effect of DHA on H. pylori survival is modulated by its access to epithelial cell cholesterol, supporting the notion that cholesterol enhances the resistance of H. pylori. The cholesterol-dependent resistance of H. pylori to antimicrobial compounds raises new important aspects for the development of new anti-bacterial strategies. Copyright © 2013 Elsevier GmbH. All rights reserved.
Del Bas, Josep Maria; Crescenti, Anna; Arola-Arnal, Anna; Oms-Oliu, Gemma; Arola, Lluís; Caimari, Antoni
2015-12-01
Cardiovascular disease (CVD) is one of the most prevalent noncommunicable diseases in humans. Different studies have identified dietary procyanidins as bioactive compounds with beneficial properties against CVD by improving lipid homeostasis, among other mechanisms. The aim of this work was to assess whether grape seed procyanidin consumption at a physiological dose during the perinatal period could influence the CVD risk of the offspring. Wistar rat dams were treated with a grape seed procyanidin extract (GSPE; 25mg/kg of body weight per day) or vehicle during gestation and lactation. The adult male offspring of GSPE-treated dams presented decreased high-density lipoprotein cholesterol (HDL-C) levels, increased total cholesterol-to-HDL-C ratios and an exacerbated fasting triglyceride-to-HDL-C ratios (atherogenic index of plasma) compared to the control group. Impaired reverse cholesterol transport (RCT) was evidenced by the accumulation of cholesterol in skeletal muscle and by decreased fecal excretion of cholesterol and bile acids, which was consistent with the observed mRNA down-regulation of the rate-limiting enzyme in the hepatic bile acid synthesis pathway Cyp7A1. Conversely, GSPE programming also resulted in up-regulated gene expression of different key components of the RCT process, such as hepatic Npc1, Abcg1, Abca1, Lxra, Srebp2, Lcat, Scarb1 and Pltp, and the repression of microRNA miR-33a expression, a key negative controller of hepatic RCT at the gene expression level. Our results show that maternal intake of grape procyanidins during the perinatal period impacts different components of the RCT process, resulting in increased CVD risk in the adult offspring. Copyright © 2015 Elsevier Inc. All rights reserved.
High dietary fat and cholesterol exacerbates chronic vitamin C deficiency in guinea pigs.
Frikke-Schmidt, Henriette; Tveden-Nyborg, Pernille; Birck, Malene Muusfeldt; Lykkesfeldt, Jens
2011-01-01
Vitamin C deficiency - or hypovitaminosis C defined as a plasma concentration below 23 μm - is estimated to affect hundreds of millions of people in the Western world, in particular subpopulations of low socio-economic status that tend to eat diets of poor nutritional value. Recent studies by us have shown that vitamin C deficiency may result in impaired brain development. Thus, the aim of the present study was to investigate if a poor diet high in fat and cholesterol affects the vitamin C status of guinea pigs kept on either sufficient or deficient levels of dietary ascorbate (Asc) for up to 6 months with particular emphasis on the brain. The present results show that a high-fat and cholesterol diet significantly decreased the vitamin C concentrations in the brain, irrespective of the vitamin C status of the animal (P < 0·001). The brain Asc oxidation ratio only depended on vitamin C status (P < 0·0001) and not on the dietary lipid content. In plasma, the levels of Asc significantly decreased when vitamin C in the diet was low or when the fat/cholesterol content was high (P < 0·0001 for both). The Asc oxidation ratio increased both with low vitamin C and with high fat and cholesterol content (P < 0·0001 for both). We show here for the first time that vitamin C homoeostasis of brain is affected by a diet rich in fat and cholesterol. The present findings suggest that this type of diet increases the turnover of Asc; hence, individuals consuming high-lipid diets may be at increased risk of vitamin C deficiency.
Saeed, Omar; Otsuka, Fumiyuki; Polavarapu, Rohini; Karmali, Vinit; Weiss, Daiana; Davis, Talina; Rostad, Brad; Pachura, Kimberly; Adams, Lila; Elliott, John; Taylor, W. Robert; Narula, Jagat; Kolodgie, Frank; Virmani, Renu; Hong, Charles C.; Finn, Aloke V.
2012-01-01
Objectives We recently reported that lowering of macrophage free intracellular iron increases expression of cholesterol efflux transporters ABCA1 and ABCG1 by reducing generation of reactive oxygen species. In this study, we explore whether reducing macrophage intracellular iron levels via pharmacologic suppression of hepcidin can increase macrophage-specific expression of cholesterol efflux transporters and reduce atherosclerosis. Methods and Results To suppress hepcidin, increase expression of the iron exporter ferroportin (FPN), and reduce macrophage intracellular iron, we used a small molecule inhibitor of BMP signaling, LDN 193189 (LDN). LDN (10 mg/kg i.p. bid) was administered to mice and its effects on atherosclerosis, intracellular iron, oxidative stress, lipid efflux, and foam cell formation were measured in plaques and peritoneal macrophages. Long-term LDN administration to Apo E (-/-) mice increased ABCA1 immunoreactivity within intraplaque macrophages by 3.7-fold (n=8; p=0.03), reduced oil-red-o positive lipid area by 50% (n=8; p=0.02) and decreased total plaque area by 43% (n=8; p=0.001). LDN suppressed liver hepcidin transcription and increased macrophage FPN, lowering intracellular iron and hydrogen peroxide production. LDN treatment increased macrophage ABCA1 and ABCG1 expression, significantly raised cholesterol efflux to ApoA-1 and decreased foam cell formation. All preceding LDN-induced effects on cholesterol efflux were reversed by exogenous hepcidin administration, suggesting that modulation of intracellular iron levels within macrophages as the mechanism by which LDN triggers these effects. Conclusion These data suggest that pharmacologic manipulation of iron homeostasis may be a promising target to increase macrophage reverse cholesterol transport and limit atherosclerosis. PMID:22095982
Chang, Chuchun L; Torrejon, Claudia; Jung, Un Ju; Graf, Kristin; Deckelbaum, Richard J
2014-06-01
Effects of progressive substitution of dietary n-3 fatty acids (FA) for saturated FA (SAT) on modulating risk factors for atherosclerosis have not been fully defined. Our previous reports demonstrate that SAT increased, but n-3 FA decreased, arterial lipoprotein lipase (LpL) levels and arterial LDL-cholesterol deposition early in atherogenesis. We now questioned whether incremental increases in dietary n-3 FA can counteract SAT-induced pro-atherogenic effects in atherosclerosis-prone LDL-receptor knockout (LDLR-/-) mice and have identified contributing mechanisms. Mice were fed chow or high-fat diets enriched in SAT, n-3, or a combination of both SAT and n-3 in ratios of 3:1 (S:n-3 3:1) or 1:1 (S:n-3 1:1). Each diet resulted in the expected changes in fatty acid composition in blood and aorta for each feeding group. SAT-fed mice became hyperlipidemic. By contrast, n-3 inclusion decreased plasma lipid levels, especially cholesterol. Arterial LpL and macrophage levels were increased over 2-fold in SAT-fed mice but these were decreased with incremental replacement with n-3 FA. n-3 FA partial inclusion markedly decreased expression of pro-inflammatory markers (CD68, IL-6, and VCAM-1) in aorta. SAT diets accelerated advanced atherosclerotic lesion development, whereas all n-3 FA-containing diets markedly slowed atherosclerotic progression. Mechanisms whereby dietary n-3 FA may improve adverse cardiovascular effects of high-SAT, high-fat diets include improving plasma lipid profiles, increasing amounts of n-3 FA in plasma and the arterial wall. Even low levels of replacement of SAT by n-3 FA effectively reduce arterial lipid deposition by decreasing aortic LpL, macrophages and pro-inflammatory markers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Maekawa, Masashi; Lee, Minhyoung; Wei, Kuiru; Ridgway, Neale D; Fairn, Gregory D
2016-11-02
Accumulation of phosphatidylserine in the inner leaflet of the plasma membrane is a hallmark of eukaryotes. Sublethal levels of staurosporine and related compounds deplete phosphatidylserine from the plasma membrane and abrogate K-Ras signaling. Here, we report that low-dose staurosporine and related compounds increase sphingomyelin mass. Mass-spectrometry and metabolic tracer analysis revealed an increase in both the levels and rate of synthesis of sphingomyelin in response to sublethal staurosporine. Mechanistically, it was determined that the abundance of the ORMDL proteins, which negatively regulate serine-palmitoyltransferase, are decreased by low-dose staurosporine. Finally, inhibition of ceramide synthesis, and thus sphingomyelin, prevented the displacement of phosphatidylserine and cholesterol from the inner leaflet of the plasma membrane. The results establish that an optimal level of sphingomyelin is required to maintain the distribution of phosphatidylserine and cholesterol in the plasma membrane and further demonstrate a complex relationship between the trafficking of phosphatidylserine and sphingomyelin.
Çınar, Miyase; Yalçınkaya, İlkay; Atmaca, Nurgül; Güncüm, Enes
2014-01-01
This study investigated the effects of cocoa butter and sunflower oil alone and in combination on performance, some biochemical parameters, immunoglobulin, and antioxidant vitamin status in Wistar rats. Forty-eight male rats were assigned to four groups, consisting of 12 rats with 3 replicates. Control received balanced rat diet without oil, cocoa butter group received 3.5% cocoa butter, sunflower oil group received 3.5% sunflower oil, the last group received 1.75% sunflower oil + 1.75% cocoa butter supplementation in the rat diet for 8 weeks. The total feed consumption in sunflower oil group was statistically lower than in the other groups. The serum creatinine level was decreased in cocoa butter group compared to control. Triglyceride and VLDL cholesterol levels were decreased in only sunflower oil and only cocoa butter groups as compared to control. The level of Ig M was statistically lower in cocoa butter and cocoa butter + sunflower oil groups than in control and sunflower oil groups. There were no statistically important difference in vitamin concentrations among trial groups. It was concluded that the supplementation of cocoa butter in diet decreased Ig M level, while the supplementation of cocoa butter and sunflower oil alone decreased the triglyceride and VLDL cholesterol levels. PMID:25136602
Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice.
Zarzecki, Micheli Stéfani; Araujo, Stífani M; Bortolotto, Vandreza C; de Paula, Mariane Trindade; Jesse, Cristiano Ricardo; Prigol, Marina
2014-01-01
Chrysin (5,7-dihydroxyflavone) is a flavonoid, natural component of traditional medicinal herbs, present in honey, propolis and many plant extracts. The objective of this study was to investigate the hypolipidemic properties of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Triton WR-1339 was administered intraperitoneally (400 mg/kg) to overnight-fasted mice to develop acute hyperlipidemia. Chrysin was administered orally (10 mg/kg) 30 min before Triton WR-1339. At 24 h after Triton WR-1339 injection, blood samples were collected to measure plasma lipid levels. The hepatic thiobarbituric acid reactive substances (TBARS), carbonyl content, non-protein sulfhydryl (NPSH) and ascorbic acid (AA) levels, as well as catalase (CAT) and superoxide dismutase (SOD) activity were recorded. Chrysin administration significantly decreased total cholesterol levels. In addition, it partially decreased non-high density lipoprotein-cholesterol and triglycerides levels in plasma of hyperlipidaemic mice. In addition chrysin administration prevented the increase on TBARS levels and prevented the decrease in SOD activity induced by Triton WR-1339. These findings indicated that chrysin was able to decrease plasma lipids concentration and that its antioxidant properties was, at least in part, involved in the hypolipidaemic action of chrysin.
2013-01-01
Background The microsomal triglyceride transfer protein (MTTP) is encoded by the MTTP gene that is regulated by cholesterol in humans. Previous studies investigating the effect of MTTP on ischemic heart disease have produced inconsistent results. Therefore, we have tested the hypothesis that the rare allele of the -164T > C polymorphism in MTTP alters the risk of cardiovascular disease (CVD), depending on the cholesterol levels. Methods The -164T > C polymorphism was genotyped in a case-cohort study (193 incident myocardial infarction (MI) and 131 incident ischemic stroke (IS) cases and 1 978 non-cases) nested within the European Prospective Investigation into Cancer and Nutrition (EPIC)–Potsdam study, comprising 27 548 middle-aged subjects. The Heinz Nixdorf Recall study (30 CVD cases and 1 188 controls) was used to replicate our findings. Results Genotype frequencies were not different between CVD and CVD free subjects (P = 0.79). We observed an interaction between the -164T > C polymorphism and total cholesterol levels in relation to future CVD. Corresponding stratified analyses showed a significant increased risk of CVD (HRadditve = 1.38, 95% CI: 1.07 to 1.78) for individuals with cholesterol levels <200 mg/dL in the EPIC-Potsdam study. HRadditive was 1.06, 95% CI: 0.33 to 3.40 for individuals in the Heinz Nixdorf Recall study. A borderline significant decrease in CVD risk was observed in subjects with cholesterol levels ≥200 mg/dL (HRadditve = 0.77, 95% CI: 0.58 to 1.03) in the EPIC-Potsdam study. A similar trend was observed in the independent cohort (HRadditve = 0.60, 95% CI: 0.29 to 1.25). Conclusions Our study suggests an interaction between MTTP -164T > C functional polymorphism with total cholesterol levels. Thereby risk allele carriers with low cholesterol levels may be predisposed to an increased risk of developing CVD, which seems to be abolished among risk allele carriers with high cholesterol levels. PMID:23356586
Freark de Boer, Jan; Annema, Wijtske; Schreurs, Marijke; van der Veen, Jelske N.; van der Giet, Markus; Nijstad, Niels; Kuipers, Folkert; Tietge, Uwe J. F.
2012-01-01
Type I diabetes mellitus (T1DM) increases atherosclerotic cardiovascular disease; however, the underlying pathophysiology is still incompletely understood. We investigated whether experimental T1DM impacts HDL-mediated reverse cholesterol transport (RCT). C57BL/6J mice with alloxan-induced T1DM had higher plasma cholesterol levels (P < 0.05), particularly within HDL, and increased hepatic cholesterol content (P < 0.001). T1DM resulted in increased bile flow (2.1-fold; P < 0.05) and biliary secretion of bile acids (BA, 10.5-fold; P < 0.001), phospholipids (4.5-fold; P < 0.001), and cholesterol (5.5-fold; P < 0.05). Hepatic cholesterol synthesis was unaltered, whereas BA synthesis was increased in T1DM (P < 0.001). Mass fecal BA output was significantly higher in T1DM mice (1.5-fold; P < 0.05), fecal neutral sterol excretion did not change due to increased intestinal cholesterol absorption (2.1-fold; P < 0.05). Overall in vivo macrophage-to-feces RCT, using [3H]cholesterol-loaded primary mouse macrophage foam cells, was 20% lower in T1DM (P < 0.05), mainly due to reduced tracer excretion within BA (P < 0.05). In vitro experiments revealed unchanged cholesterol efflux toward T1DM HDL, whereas scavenger receptor class BI-mediated selective uptake from T1DM HDL was lower in vitro and in vivo (HDL kinetic experiments) (P < 0.05), conceivably due to increased glycation of HDL-associated proteins (+65%, P < 0.01). In summary, despite higher mass biliary sterol secretion T1DM impairs macrophage-to-feces RCT, mainly by decreasing hepatic selective uptake, a mechanism conceivably contributing to increased cardiovascular disease in T1DM. PMID:22180634
Low dose colestipol in adolescents with familial hypercholesterolaemia.
Tonstad, S; Sivertsen, M; Aksnes, L; Ose, L
1996-01-01
The effects of orange flavoured colestipol granules, 10 g/day, in 37 boys and 29 girls aged 10-16 years with familial hypercholesterolaemia were examined first in an eight week double blind, placebo controlled protocol, then in open treatment for 44-52 weeks. All patients were on a low fat diet. Low density lipoprotein cholesterol levels were reduced by 19.5% by colestipol v 1.0% by placebo. Levels of serum folate, vitamin E, and carotenoids were reduced in the colestipol group, but not the vitamin E/cholesterol and carotenoid/cholesterol ratios or serum concentrations of vitamins A and D. After one year of colestipol, two thirds of the participants remained in the study, of whom half took > or = 80% of the prescribed dose. Those who took > or = 80% of the dose had a greater decrease in serum 25-hydroxyvitamin D levels than those who took < 80%. No adverse effects on weight gain or linear growth velocity were observed. Although low dose colestipol effectively reduces low density lipoprotein cholesterol levels, only a minority of adolescents adhered to the new formulation for one year. Folate and possibly vitamin D supplementation is recommended. PMID:8660081
Asai, Saori; Kusada, Mio; Watanabe, Suzuyo; Kawashima, Takuji; Nakamura, Tadashi; Shimada, Masaya; Goto, Tsuyoshi; Nagaoka, Satoshi
2014-01-01
Royal jelly (RJ) intake lowers serum cholesterol levels in animals and humans, but the active component in RJ that lowers serum cholesterol level and its molecular mechanism are unclear. In this study, we set out to identify the bile acid-binding protein contained in RJ, because dietary bile acid-binding proteins including soybean protein and its peptide are effective in ameliorating hypercholesterolemia. Using a cholic acid-conjugated column, we separated some bile acid-binding proteins from RJ and identified the major RJ protein 1 (MRJP1), MRJP2, and MRJP3 as novel bile acid-binding proteins from RJ, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified MRJP1, which is the most abundant protein of the bile acid-binding proteins in RJ, exhibited taurocholate-binding activity in vitro. The micellar solubility of cholesterol was significantly decreased in the presence of MRJP1 compared with casein in vitro. Liver bile acids levels were significantly increased, and cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein tended to increase by MRJP1 feeding compared with the control. CYP7A1 mRNA and protein levels were significantly increased by MRJP1 tryptic hydrolysate treatment compared with that of casein tryptic hydrolysate in hepatocytes. MRJP1 hypocholesterolemic effect has been investigated in rats. The cholesterol-lowering action induced by MRJP1 occurs because MRJP1 interacts with bile acids induces a significant increase in fecal bile acids excretion and a tendency to increase in fecal cholesterol excretion and also enhances the hepatic cholesterol catabolism. We have identified, for the first time, a novel hypocholesterolemic protein, MRJP1, in RJ. Interestingly, MRJP1 exhibits greater hypocholesterolemic activity than the medicine β-sitosterol in rats. PMID:25144734
Sharma, S K; Verma, S H
2016-09-01
To study the complete fasting lipid profile and other parameters (weight, body mass index, HbA1c, fasting blood sugar and postprandial blood sugar)in Type 2 diabetes mellitus patients on OHA/insulin, to study the effect of addition of pioglitazone on lipid profile and other parameters in Type 2 diabetes mellitus patients on OHA/insulin, to study the effect of addition of rosiglitazone on lipid profile and other parameters in Type 2 diabetes mellitus patients on OHA/insulin and to compare the effect of pioglitazone and rosiglitazone on lipid profile and other parameters in Type 2 diabetes mellitus patients on OHA/insulin. In the study, 100 Type 2 diabetes cases on oral hypoglycemic agent/insulin with deranged lipid profile were chosen and divided into 2 groups 50 and 50 in group A and group B respectively.Pioglitazone was given initially 15mg/day then if required increasing upto 45mg/day in group A for period of 18 weeks and rosiglitazone was given initially 2 mg/day then if required increasing upto 8 mg/day in group B for period of 18 weeks. Detailed clinical history was obtained and thorough physical examination was done and following parameters were established-Age, Height, Weight, Body mass index, Fasting and Postprandial blood sugar, HbA1c levels and fasting complete lipid profile done at 0 and 18 weeks. Each patient itself served as a control for this study. Maximum no. of patients were in sixth decade (53.30%) and minimum patients were in seventh decade (6.6%). Males were 63.3% and females were 36.8%. Fasting blood sugar levels decreased by 23% with pioglitazone in group A and 14.07% with rosiglitazone in group B. The postprandial blood sugar levels decreased by 29.9% with pioglitazone in group A and 20.17% with rosiglitazone in group B.The mean HbA1c decreased by 2.13 % pioglitazone in group A and 3.8% with rosiglitazone in group B after 18 weeks of therapy. The effects of both drugs on BMI and weight were not significant. In group A the total cholesterol level decreased by 8.62% with pioglitazone but in group B there was no significant decrease in total cholesterol level after 18 weeks of therapy with rosiglitazone. There was no significant reduction in mean LDL cholesterol level in both groups. HDL-c level increased by 17.14% with pioglitazone in group A and decreased by 1.2% with rosiglitazone in group B. Triglycerides levels decreased by 12.33% with pioglitazone in group A and 6.16% with rosiglitazone in group B. Treatment with pioglitazone and rosiglitazone both were associated with reduction in fasting and postprandial blood sugar levels but more with pioglitazone. There was significant reduction in HbA1c with both pioglitazone and rosiglitazone but more with rosiglitazone. The total cholesterol level decreased by pioglitazone significantly but not with rosiglitazone. The LDL levels were not affected much by both drugs, while HDL levels were significantly increased with pioglitazone. Triglycerides levels were decreased with both pioglitazone and rosiglitazone but more with pioglitazone. Both drugs are useful but pioglitazone proved to be more beneficial on deranged lipid profile as compared to rosiglitazone in Type 2 Diabetes mellitus patients on OHA/insulin.
Optimizing the effect of plant sterols on cholesterol absorption in man.
Mattson, F H; Grundy, S M; Crouse, J R
1982-04-01
During three experimental periods, nine adults were hospitalized on a metabolic ward and fed a meal containing 500 mg of cholesterol as a component of scrambled eggs. In addition, the meal contained: 1) no additive, 2) 1 g beta-sitosterol, or 3) 2 g beta-sitosteryl oleate. Stools for the succeeding 5 days were analyzed to determine the percentage of the cholesterol in the test meal that was absorbed. The addition of beta-sitosterol resulted in a 42% decrease in cholesterol absorption; the beta-sitosteryl oleate caused a 33% reduction. These results indicate that the judicious addition of beta-sitosterol or beta-sitosteryl oleate to meals containing cholesterol-rich foods will result in a significant decrease in cholesterol absorption, with a consequent decrease in plasma cholesterol.
Hogan, Natacha S; Currie, Suzanne; LeBlanc, Sacha; Hewitt, L Mark; MacLatchy, Deborah L
2010-06-10
Previous studies have shown that mummichog (Fundulus heteroclitus; a lunar, asynchronous-spawning killifish of the western Atlantic) exposed to 17alpha-ethynylestradiol (EE2) exhibit decreased plasma reproductive steroid levels, decreased gonadal steroid production, increased plasma vitellogenin, decreased fecundity and impaired fertilization. The objective of this study was to determine the potential mechanisms by which EE2 depresses gonadal steroidogenesis and influences estrogen signalling in the mummichog. Adult recrudesced fish were exposed to the potent synthetic estrogen, ethinylestradiol (EE2; 0-270ng/L) for 14 days. Following exposure, gonadal tissue was removed and incubated for 24h with stimulators of steroidogenesis, including forskolin; 25-OH cholesterol; or pregnenolone. Testosterone production was decreased in basal, forskolin-stimulated and pregnenolone-stimulated EE2-exposed males, indicating effects on the steroidogenic pathway both at and downstream of cholesterol mobilization to P450 side-chain cleavage (P450scc) and/or P450scc conversion of cholesterol to pregnenolone. Hepatic transcript levels of estrogen receptor alpha (ERalpha) and vitellogenin were increased in EE2-treated males compared to control recrudescing males and females confirming an estrogenic response. Hepatic heat shock protein 90 (Hsp90), a chaperoning molecule involved in estrogen signalling, was not affected by EE2 exposure at either the transcript or protein level. However, higher levels of Hsp90 observed in the membrane fractions of female fish raise interesting questions regarding the influence of gender on Hsp90's role in estrogen signalling. These results demonstrate that EE2 can alter steroid production at specific sites within the steroidogenic pathway and can stimulate hepatic estrogen signalling, providing important information regarding the molecular mechanisms underlying the endocrine response of the mummichog to exogenous estrogen.
Fifteen years of GH replacement improves body composition and cardiovascular risk factors.
Elbornsson, Mariam; Götherström, Galina; Bosæus, Ingvar; Bengtsson, Bengt-Åke; Johannsson, Gudmundur; Svensson, Johan
2013-05-01
Few studies have determined the effects of more than 5-10 years of GH replacement in adults on body composition and cardiovascular risk factors. In this prospective, single-center, open-label study, the effects of 15 years of GH replacement on body composition and cardiovascular risk factors were determined in 156 hypopituitary adults (93 men) with adult-onset GH deficiency (GHD). Mean age was 50.5 (range 22-74) years at study start. Body composition was measured using dual-energy X-ray absorptiometry. The mean initial GH dose of 0.55 (S.E.M. 0.03) mg/day was gradually lowered to 0.40 (0.01) mg/day after 15 years. The mean serum IGF1 SDS increased from -1.53 (0.10) at baseline to 0.74 (0.13) at study end (P<0.001 vs baseline). Lean soft tissue (LST) increased to 3% above the baseline level at study end (P<0.001). After a 9% decrease during the first year of treatment (P<0.001 vs baseline), body fat (BF) started to increase and had returned to the baseline level after 15 years. Serum levels of total cholesterol and LDL-cholesterol decreased and serum HDL-cholesterol level increased. Fasting plasma glucose increased from 4.4 (0.1) at baseline to 4.8 (0.1) mmol/l at study end (P<0.001). However, blood HbA1c decreased from 5.0 (0.1) to 4.6 (0.1) % (P<0.001). Fifteen-year GH replacement in GHD adults induced a transient decrease in BF and sustained improvements of LST and serum lipid profile. Fasting plasma glucose increased whereas blood HbA1c was reduced.
Razmjou, Sahar; Abdulnour, Joseph; Bastard, Jean-Philippe; Fellahi, Soraya; Doucet, Éric; Brochu, Martin; Lavoie, Jean-Marc; Rabasa-Lhoret, Rémi; Prud'homme, Denis
2018-01-01
Menopausal transition and postmenopause are usually associated with changes in body composition and a decrease in physical activity energy expenditure (PAEE). This study investigated body composition, cardiometabolic risk factors, PAEE, and inflammatory markers in premenopausal women after a 10-year follow-up. In all, 102 premenopausal women participated in the 5-year observational longitudinal Montreal Ottawa New Emerging Team (MONET) study. This present substudy included 48 participants (age: 60.0 ± 1.7 years; body mass index: 23.2 ± 2.2 kg/m) 6.0 ± 0.3 years after completion of the initial MONET study. Measures included body composition, waist circumference (WC), fasting glucose and insulin levels, insulin sensitivity (QUICKI model), plasma lipid levels, PAEE, and inflammatory markers. Compared with baseline measures of the MONET study, analyses revealed no significant increase in body weight, although there were significant increases in WC, fat mass (FM), % FM, total cholesterol, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol, haptoglobin, apolipoprotein B, ferritin, adiponectin, and soluble cluster of differentiation 14 (all P < 0.001) after the 10-year follow-up. However, significant decreases were observed for fat-free mass, PAEE, fasting glucose levels, interleukin-8 levels, and soluble tumor necrosis factor receptors 1 and 2 (sTNFR-1 and sTNFR-2) levels (all P < 0.05). To determine the effect of postmenopausal years, data were restructured based on final menstrual period (FMP), and one-way analyses of variance were performed.Waist circumference, % FM, total cholesterol, high-density lipoprotein cholesterol, apolipoprotein B, ferritin, adiponectin, and soluble cluster of differentiation 14 were higher in early and late postmenopausal periods in these women. sTNFR-1 and sTNFR-2 levels were higher at the FMP and early postmenopausal years as compared with the late postmenopausal periods. Finally, interleukin-8 levels were lower in years after FMP. The number of years elapsed since the FMP can affect body composition, cardiometabolic risk factors, and inflammatory markers in healthy premenopausal women going through menopausal transition and postmenopausal periods.
Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice
Ai, Ding; Chen, Chiyuan; Han, Seongah; Ganda, Anjali; Murphy, Andrew J.; Haeusler, Rebecca; Thorp, Edward; Accili, Domenico; Horton, Jay D.; Tall, Alan R.
2012-01-01
Individuals with type 2 diabetes have an increased risk of atherosclerosis. One factor underlying this is dyslipidemia, which in hyperinsulinemic subjects with early type 2 diabetes is typically characterized by increased VLDL secretion but normal LDL cholesterol levels, possibly reflecting enhanced catabolism of LDL via hepatic LDLRs. Recent studies have also suggested that hepatic insulin signaling sustains LDLR levels. We therefore sought to elucidate the mechanisms linking hepatic insulin signaling to regulation of LDLR levels. In WT mice, insulin receptor knockdown by shRNA resulted in decreased hepatic mTORC1 signaling and LDLR protein levels. It also led to increased expression of PCSK9, a known post-transcriptional regulator of LDLR expression. Administration of the mTORC1 inhibitor rapamycin caused increased expression of PCSK9, decreased levels of hepatic LDLR protein, and increased levels of VLDL/LDL cholesterol in WT but not Pcsk9–/– mice. Conversely, mice with increased hepatic mTORC1 activity exhibited decreased expression of PCSK9 and increased levels of hepatic LDLR protein levels. Pcsk9 is regulated by the transcription factor HNF1α, and our further detailed analyses suggest that increased mTORC1 activity leads to activation of PKCδ, reduced activity of HNF4α and HNF1α, decreased PCSK9 expression, and ultimately increased hepatic LDLR protein levels, which result in decreased circulating LDL levels. We therefore suggest that PCSK9 inhibition could be an effective way to reduce the adverse side effect of increased LDL levels that is observed in transplant patients taking rapamycin as immunosuppressive therapy. PMID:22426206
Fedoseienko, Alina; Wijers, Melinde; Wolters, Justina C; Dekker, Daphne; Smit, Marieke; Huijkman, Nicolette; Kloosterhuis, Niels; Klug, Helene; Schepers, Aloys; Willems van Dijk, Ko; Levels, Johannes H M; Billadeau, Daniel D; Hofker, Marten H; van Deursen, Jan; Westerterp, Marit; Burstein, Ezra; Kuivenhoven, Jan Albert; van de Sluis, Bart
2018-06-08
COMMD (copper metabolism MURR1 domain)-containing proteins are a part of the CCC (COMMD-CCDC22 [coiled-coil domain containing 22]-CCDC93 [coiled-coil domain containing 93]) complex facilitating endosomal trafficking of cell surface receptors. Hepatic COMMD1 inactivation decreases CCDC22 and CCDC93 protein levels, impairs the recycling of the LDLR (low-density lipoprotein receptor), and increases plasma low-density lipoprotein cholesterol levels in mice. However, whether any of the other COMMD members function similarly as COMMD1 and whether perturbation in the CCC complex promotes atherogenesis remain unclear. The main aim of this study is to unravel the contribution of evolutionarily conserved COMMD proteins to plasma lipoprotein levels and atherogenesis. Using liver-specific Commd1 , Commd6 , or Commd9 knockout mice, we investigated the relation between the COMMD proteins in the regulation of plasma cholesterol levels. Combining biochemical and quantitative targeted proteomic approaches, we found that hepatic COMMD1, COMMD6, or COMMD9 deficiency resulted in massive reduction in the protein levels of all 10 COMMDs. This decrease in COMMD protein levels coincided with destabilizing of the core (CCDC22, CCDC93, and chromosome 16 open reading frame 62 [C16orf62]) of the CCC complex, reduced cell surface levels of LDLR and LRP1 (LDLR-related protein 1), followed by increased plasma low-density lipoprotein cholesterol levels. To assess the direct contribution of the CCC core in the regulation of plasma cholesterol levels, Ccdc22 was deleted in mouse livers via CRISPR/Cas9-mediated somatic gene editing. CCDC22 deficiency also destabilized the complete CCC complex and resulted in elevated plasma low-density lipoprotein cholesterol levels. Finally, we found that hepatic disruption of the CCC complex exacerbates dyslipidemia and atherosclerosis in ApoE3*Leiden mice. Collectively, these findings demonstrate a strong interrelationship between COMMD proteins and the core of the CCC complex in endosomal LDLR trafficking. Hepatic disruption of either of these CCC components causes hypercholesterolemia and exacerbates atherosclerosis. Our results indicate that not only COMMD1 but all other COMMDs and CCC components may be potential targets for modulating plasma lipid levels in humans. © 2018 American Heart Association, Inc.
Mancini, G B John; Hegele, Robert A
2018-05-01
Intravascular levels of low-density lipoprotein cholesterol (LDL-C) at approximately ≤ 0.6 mmol/L are likely to minimize, and perhaps eliminate, LDL-C-related vascular toxicity while having no effect on essential, intracellular cholesterol homeostatic pathways, according to accumulated knowledge from basic science. Randomized clinical trials, observational reports, and Mendelian randomization trials are also forcing a reconsideration of what "normal" LDL-C means. Recent trials of secondary prevention have substantiated that such levels are safe and associated with a decreased risk of cardiovascular events (CVEs) compared with patients with higher levels of LDL-C. Similarly, treatment to this low range is associated with regression and stabilization of established atherosclerosis. Primary prevention trials also show that low levels of LDL-C are safe and associated with decreased risk of CVEs through cholesterol-lowering in adults with LDL-C ≥ 3.5 mmol/L or when levels are < 3.5 mmol/L in association with other cardiovascular risks. Although there are no randomized clinical outcome trials of familial hypercholesterolemia patients, such patients have very high, lifetime risk of CVE, and registry studies show that LDL-C reduction has nearly normalized their CVE rates. The possibility of familial hypercholesterolemia should be considered if LDL-C is > 4.5 and > 4.0 mmol/L at ages 18-39 years and younger than 18 years, respectively. On the basis of these convergent and internally consistent lines of evidence, in this article we speculate on a translational paradigm aimed at eliminating LDL-C-related CVEs through aggressive primary prevention strategies that are already proven and well accepted in principle. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Shirwaikar, Annie; Rajendran, K; Barik, Rakesh
2006-09-19
A study was undertaken to evaluate the antihyperglycemic activity of aqueous extract of bark of Garuga pinnata Roxb. (Burseraceae). The various parameters studied included fasting blood sugar levels, serum lipid levels, liver glycogen content, serum insulin level and glycated hemoglobin in diabetic and normal rats. Streptozotocin-nicotinamide was used to induce type-II diabetes mellitus. Treatment with the extract at two dose levels showed a significant increase in the liver glycogen and serum insulin level and a significant decrease in fasting blood glucose and glycated hemoglobin levels. The total cholesterol and serum triglycerides levels were also significantly reduced and the HDL cholesterol levels were significantly increased upon treatment with the extract thus proving the potent antidiabetic property of the plant.
Ebrahimi-Mamaghani, Mehranghiz; Saghafi-Asl, Maryam; Pirouzpanah, Saeed; Asghari-Jafarabadi, Mohammad
2014-04-01
We aimed to evaluate the effects of raw red onion consumption on metabolic features in overweight and obese women with polycystic ovary syndrome. In this randomized controlled clinical trial, the patients (n=54) were randomly allocated to the intervention group as 'high-onion' (raw red onions: 2 × 40-50 g/day if overweight and 2 × 50-60 g/day if obese) or to the control group as 'low-onion' (raw red onions: 2 × 10-15 g/day) along with limited liliaceous vegetables for 8 weeks. Body mass index, dietary record, and metabolic parameters (fasting blood sugar, triglycerides, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and lipoprotein (a)) were evaluated in the follicular phase of the menstrual cycle at baseline and after 8 weeks. Hormonal variables (progesterone, prolactin, and 17-OH progesterone) were also measured at baseline. Onion significantly decreased the levels of total cholesterol within each group; however, these changes were stronger in the high-onion group (weighted mean differences [WMD]: -5.60 [95% confidence interval [CI]: -9.16, -2.03]; P=0.003) than in the low-onion group (WMD: -6.42 [95%CI: -11.97, -0.87]; P=0.025). Similarly, low-density lipoprotein cholesterol decreased significantly (WMD: -5.13 [95%CI: -9.46, -0.81); P=0.022) in the high-onion group, and (WMD: -2.90 [95%CI -5.57, -0.21]; P=0.035) in the low-onion group after treatment. The levels of fasting blood sugar, triglycerides, high-density lipoprotein cholesterol and lipoprotein (a) did not differ significantly after 8-week onion treatment. Adjustment for confounders did not make any significant changes in any of the parameters in post-treatment levels. Raw red onion consumption appears to be effective as a cholesterol-lowering food agent in women with polycystic ovary syndrome. However, further investigation is warranted. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.
Matsuoka, Ryosuke; Usuda, Mika; Masuda, Yasunobu; Kunou, Masaaki; Utsunomiya, Kazunori
2017-05-30
Lactic-fermented egg white (LE), produced by lactic acid fermentation of egg white, is an easy-to-consume form of egg white. Here we assessed the effect of daily consumption of LE for 8 weeks on serum total cholesterol (TC) levels. The study followed a double-blind, parallel-arm design and included 88 adult men with mild hypercholesterolemia (mean ± standard error) serum TC levels, 229 ± 1.6 mg/dL; range, 204-259 mg/dL). The subjects were randomly divided into three groups, which consumed LE containing 4, 6, or 8 g of protein daily for 8 weeks. Blood samples were collected before starting LE consumption (baseline) and at 4 and 8 weeks to measure serum TC and low-density lipoprotein cholesterol (LDL-C) levels. After 8 weeks of consumption, serum TC levels in the 8 g group decreased by 11.0 ± 3.7 mg/dL, a significant decrease compared to baseline (p < 0.05) and a significantly greater decrease than for the 4 g group (3.1 ± 3.4 mg/dL; p < 0.05). Serum LDL-C levels in the 8 g group decreased by 13.7 ± 3.1 mg/dL, again a significant decrease compared with baseline (p < 0.05) and a significantly greater decrease than that for the 4 g group (2.1 ± 2.9 mg/dL; p < 0.05). Consumption of LE for 8 weeks at a daily dose of 8 g of proteins reduced serum TC and LDL-C levels in men with mild hypercholesterolemia, suggesting this may be effective in helping to prevent arteriosclerotic diseases. This clinical trial was retrospectively registered with the Japan Medical Association Center for Clinical Trials, (JMA-IIA00279; registered on 13/03/2017; https://dbcentre3.jmacct.med.or.jp/JMACTR/App/JMACTRE02_04/JMACTRE02_04.aspx?kbn=3&seqno=6530 ).
Kim, Kyoung-Ok; Park, HyunJin; Chun, Mison; Kim, Hyun-Sook
2014-09-01
We hypothesized that a high-protein diet and/or resveratrol supplementation will improve acute inflammatory responses in rats after receiving experimental abdominal radiation treatment (ART). Based on our previous study, the period of 10 days after ART was used as an acute inflammation model. Rats were exposed to a radiation dose of 17.5 Gy and were supplied with a control (C), 30% high-protein diet (HP), resveratrol supplementation (RES), or HP with RES diet ([HP+RES]). At day 10 after ART, we measured profiles of lipids, proteins, and immune cells in blood. The levels of clusters of differentiating 4(+) (CD4(+)) cells and regulatory T cells, serum proinflammatory cytokines, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine were also measured. ART caused significant disturbances of lipid profiles by increasing triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C), and decreasing high-density lipoprotein cholesterol. The proinflammatroy cytokine levels were also increased by ART. All the experimental diets (HP, RES, and [HP+RES]) significantly decreased levels of TG, monocytes, proinflammatory cytokines, and 8-OHdG, whereas the platelet counts were increased. In addition, the HP and [HP+RES] diets decreased the concentrations of plasma LDL-C and total cholesterol. Also, the HP and RES diets decreased regulatory T cells compared with those of the control diet in ART group. Further, the HP diet led to a significant recovery of white blood cell counts, as well as increased percentages of lymphocyte and decreased percentages of neutrophils. In summary, RES appeared to be significantly effective in minimizing radiation-induced damage to lipid metabolism and immune responses. Our study also demonstrated the importance of dietary protein intake in recovering from acute inflammation by radiation.
Croft, J B; Foster, T A; Parker, F C; Cresanta, J L; Hunter, S M; Webber, L S; Srinivasan, S R; Berenson, G S
1986-01-01
Adolescence and young adulthood represents a transition period for biologic and lifestyle characteristics. In a preliminary investigation of young adults (ages 18-20 years), the Bogalusa Heart Study documented patterns of alcohol, tobacco, and oral contraceptive use, as well as changes in education, occupational, marital and parenting status. Such behaviors accelerate the cardiovascular disease process and may differentially influence risk factor patterns of race and sex groups. Adverse levels of systolic blood pressure and alpha-lipoprotein cholesterol were more frequent in married vs single men; elevated triglyceride levels were more frequent in married vs single whites. However adverse levels of beta- and alpha-lipoprotein cholesterol were more frequent in nonparents than in parents. Cigarette smoking and oral contraceptive use were independently related to elevated beta-lipoprotein cholesterol and decreased alpha-lipoprotein cholesterol levels of young white women. Alcohol consumption was highest among white males, with 32% reporting daily consumption of the equivalent of two or more beers or one mixed drink. Alcohol consumption was negatively correlated with blood pressure in white males and positively correlated with alpha-lipoprotein cholesterol in black males. Since such lifestyle factors are related to physiologic risk factors that result in heart disease and adult cardiovascular morbidity and mortality in the older ages, early targeting during adolescence and young adulthood is important.
Miyoshi, Toru; Nakamura, Keigo; Doi, Masayuki; Ito, Hiroshi
2015-06-01
The increase in proprotein convertase subtilisin/kexin type 9 (PCSK9) leads to low-density lipoprotein (LDL) receptor degradation. Statins significantly reduce LDL-cholesterol levels, but upregulate PCSK9. This study evaluated the effect of ezetimibe monotherapy or ezetimibe in combination with a statin on serum levels of PCSK9 in patients with type 2 diabetes and hypercholesterolemia. Ezetimibe treatment was given to ten patients with diabetes without statin therapy and ten patients with statin therapy. Plasma levels of PCSK9 were examined at baseline and 24 weeks after treatment. At baseline, PCSK9 concentrations in patients with statin therapy were significantly higher than those in patients without statin use and in control subjects [median (25th-75th percentile) 411 (272-467) and 382 (356-453) ng/mL, respectively, p < 0.01]. After ezetimibe treatment for 24 weeks, LDL-cholesterol, triglyceride and remnant-like lipoprotein cholesterol were significantly decreased in both groups. However, PCSK9 concentration did not change compared with baseline measurements in both groups. The percentage change in LDL-cholesterol after ezetimibe therapy for 24 weeks was not correlated with the percentage change in PCSK9 concentration. Ezetimibe may reduce LDL-cholesterol levels without affecting PCSK9 in patients with type 2 diabetes and hypercholesterolemia.
Small, D M; Bond, M G; Waugh, D; Prack, M; Sawyer, J K
1984-01-01
To identify the temporal changes occurring during progression and regression of atherosclerosis in nonhuman primates, we have studied the physicochemical and histological characteristics of arterial wall lesions during a 30-mo progression period of diet-induced hypercholesterolemia and during a 12-mo period of regression. Three groups of cynomolgous monkeys (Macaca fascicularis) were studied. Control groups were fed a basal chow diet for 18, 24, and 30 mo and were compared with progression groups that were fed a high-cholesterol-containing diet for up to 30 mo. Regression groups were fed a high-cholesterol diet for 18 mo to induce atherosclerosis and then fed monkey chow for up to 12 mo. The progression group monkeys were killed at 6, 12, 18, 24, and 30 mo, and the regression animals were killed at 24 and 30 mo (i.e., after 6 and 12 mo of being fed a noncholesterol-containing chow diet). Histology and morphometry, physical microscopy for cholesterol monohydrate crystals, foam cell and droplet melting points and chemical composition studies were completed on a large number of individual arterial lesions. Control animals had very little cholesterol ester, rare foam cells, and no extracellular cholesterol ester droplets or cholesterol crystals. During progression, the arteries first increased cholesterol ester content to produce high melting (approximately 45 degrees C) foam cell-rich lesions essentially devoid of cholesterol crystals. With time, the number of cholesterol crystals increased so that by 30 mo large numbers were present. Foam cells decreased with time but their melting temperature remained high while that of extracellular droplets fell to approximately 38 degrees C. Between 18 and 30 mo necrosis appeared and worsened. After 6-mo regression, unexpected changes occurred in the lesions. Compared with 24-mo progression, the chemical composition showed a relative increase in free cholesterol, a decrease in cholesterol ester and microscopy revealed large numbers of cholesterol crystals. Concomitantly, foam cells decreased and the melting temperature of both intra- and extracellular cholesterol ester markedly decreased. After 12-mo regression cholesterol decreased, cholesterol crystals and necrosis diminished and collagen appeared increased. Thus, during progression there is initially an increase in the number of foam cells containing very high-melting intracellular cholesterol ester droplets. By 30 mo, cholesterol crystals and necrosis dominate and high-melting foam cells appear only at lesion margins, suggesting that the initial process continues at the lesion edge. The lower melting point of extracellular esters indicates a lipid composition different from intracellular droplets. Thus, the changes observed in these animals generally reflect those predicted for progression of human atherosclerosis. During the initial 6 mo of regression, necrosis remains, the number of foam cell decreases, and cholesterol ester content decreases; however the relative proportion of free cholesterol content increases, and large numbers of cholesterol content are formed. Thus, large and rapid decreases in serum cholesterol concentration to produce regression in fact may result in the precipitation of cholesterol monohydrate and an apparent worsening of the lesions. More prolonged regression (12-mo) tends to return the lipid composition of the artery wall towards normal, partially reduces cholesterol crystals, and results in an improved but scarred intima. Images PMID:6725553
Guar gum effects on food intake, blood serum lipids and glucose levels of Wistar rats.
Frias, A C; Sgarbieri, V C
1998-01-01
The effects of guar gum derived from the endosperm of Cyamopsis tetragonoloba (75% soluble fiber, 7.6% insoluble fiber, 2.16% crude protein, 0.78% total lipids, 0.54% ash and 9.55% moisture) on food intake, levels of blood serum cholesterol, triacylglycerols, glucose and LDL and HDL-cholesterol were studied. The effects of guar gum on indices of protein absorption and utilization were also investigated. Diets containing 0%, 10% and 20% (w/w) guar gum or 10% and 20% cellulose powder (reference) were fed to normal rats for 60 days. The rats fed the guar gum diets showed significantly (p < or = 0.05) lower levels of blood serum cholesterol, triacylglycerols, reduced food intake and body weight gain. Furthermore, a concomitant increase in HDL-cholesterol with a substantial elevation of the HDL/LDL cholesterol ratio were noted. Guar gum decreased blood serum glucose only during the first month of the experiment, and no changes in the indices of protein absorption and utilization were found. The guar gum caused a 10% increase in the small intestine length and a 25% retardation in the intestinal transit. The results of this research suggested that guar gum could potentially be effective in the treatment of hypercholesterolemia and obesity in humans.
Sub-acute toxicological effects of Jobelyn on pregnant albino rats
NASA Astrophysics Data System (ADS)
Adebayo, Abiodun Humphrey; Yakubu, Omolara Faith; Egbung, Godwin Eneji; Williams, Olabisi Ibidun; Okubena, Olajuwon
2018-04-01
The aim of the present study was to investigate the sub-acute toxicological effects of Jobelyn® on pregnant albino rats by employing biochemical, haematological and histopathological methods. A total of 32 pregnant female rats were randomly assigned to four different groups of eight rats each. The control group received distilled water and different doses of Jobelyn®; 250, 500, 1000 mg kg-1 were administered orally once a day for 2 weeks to the other groups. Biochemical analysis revealed a significant decrease (p<0.05) in the levels of alanine aminotransferase, albumin, urea, PCV and Hb in the treatment groups when compared to the control. However, the significant decrease in PCV and Hb was observed solely in the group treated with 1000 mg kg-1body weight, suggesting that this decrease could be dose-dependent. Alkaline phosphatase, total protein, triglycerides, cholesterol, HDL cholesterol, LDL cholesterol, eosinophils, basophils, neutrophils, monocytes, lymphocytes, WBC count, revealed no significant difference (p<0.05) when compared to the control. The results show that at an appropriate dosage, the use of Jobelyn® during pregnancy may have no adverse effect on the liver and kidney tissues and may possess hepatoprotective and nephroprotective properties however the histopathological studies revealed that very high levels of Jobelyn may be hepatotoxic.
Bartuzi, Paulina; Billadeau, Daniel D; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K; Elliott, Alison M; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D; Burstein, Ezra; Hofker, Marten H; van de Sluis, Bart
2016-03-11
The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal sorting of LDLR and for its function. We find that patients with X-linked intellectual disability caused by mutations in CCDC22 are hypercholesterolaemic, and that COMMD1-deficient dogs and liver-specific Commd1 knockout mice have elevated plasma LDL cholesterol levels. Furthermore, Commd1 depletion results in mislocalization of LDLR, accompanied by decreased LDL uptake. Increased total plasma cholesterol levels are also seen in hepatic COMMD9-deficient mice. Inactivation of the CCC-associated WASH complex causes LDLR mislocalization, increased lysosomal degradation of LDLR and impaired LDL uptake. Furthermore, a mutation in the WASH component KIAA0196 (strumpellin) is associated with hypercholesterolaemia in humans. Altogether, this study provides valuable insights into the mechanisms regulating cholesterol homeostasis and LDLR trafficking.
Potential use of cholesterol lipoprotein profile to confirm obesity status in dogs.
Mori, Nobuko; Lee, Peter; Kondo, Kazuo; Kido, Toshimi; Saito, Terumasa; Arai, Toshiro
2011-04-01
A common sign of obesity, in dogs, is hyperlipidemia, which is characterized by hypercholesterolemia and/or hypertriglycemia. Hyperlipidemia can be caused by a quantitative increase in circulating lipoproteins (LP) or by a higher lipid concentration in the various LP classes. In this study, we sought to determine whether aberrations occur with cholesterol lipoprotein profile, especially with sub HDL-cholesterol fraction % in obese dogs. Using clinically healthy and disease free (no overt signs) body condition score classified obese dogs, of all ages, we attempted to determine the influence of age, gender and obesity status on cholesterol lipoprotein profiling. Overall, no aberration in pattern was observed in obese dogs <8 years of age. However, in older obese animals (≥8 years of age), the general aberration pattern to cholesterol lipoprotein observed was that a significant decrease in HDL2 and 3 fraction % occurs with a concomitant increase in either HDL1-Cho or VLDL and LDL -Cho fraction % depending on gender. Linear regression analysis indicated that obesity status appears to significantly affect total cholesterol, HDL2 and 3-Cho, VLDL and LDL-Cho levels (P=0.02, 0.046, and 0.045, respectively), whereas it is borderline with HDL1-Cho (P=0.062). On the other hand, age significantly influenced TG, Total cholesterol, and HDL1-Cho levels (P=0.009, 0.006, and 0.002, respectively), while gender influenced VLDL and LDL-Cho (P=0.024) level. Therefore, aberrations in cholesterol lipoprotein profile pattern might be of potential use to assess and diagnose obesity status, in conjunction with BCS, especially of older overweight animals which might be considered borderline obese. © Springer Science+Business Media B.V. 2011
Guo, Yitian; Luo, Hanwen; Wu, Yimeng; Magdalou, Jacques; Chen, Liaobin; Wang, Hui
2018-05-22
Epidemiological surveys suggest that adult hypercholesterolemia has an intrauterine origin and exhibits gender differences. Our previous study demonstrated that adult rats with intrauterine growth retardation (IUGR) offspring rats induced by prenatal caffeine exposure (PCE) had a higher serum total cholesterol (TCH) level. In this study, we aimed to analyze the influencing factors, underlying mechanism and interactions affecting hypercholesterolemia in adult offspring with caffeine exposure during pregnancy. Pregnant rats were administered caffeine (120 mg/kg d) from gestational day 11 until delivery. Offspring rats fed a normal diet or a high-fat diet (HFD) were euthanized at postnatal week 24, and blood and liver samples were collected. The results showed that PCE could increase the serum levels of TCH and low-density lipoprotein-cholesterol (LDL-C), and the hepatic expression of HMG CoA reductase (HMGCR) and apolipoprotein B (ApoB), but decreased the high-density lipoprotein-cholesterol (HDL-C) level and the hepatic expression of scavenger receptor B1 (SR-B1) and LDL receptor (LDLR). Furthermore, PCE, HFD and gender interact with each other to influence the serum cholesterol phenotype and expression of hepatic cholesterol metabolic genes. These results suggest that the hypercholesterolemia in adult offspring rats induced by PCE mainly resulted from enhanced synthesis and the weakened reverse transport of cholesterol in the liver, furthermore HFD could aggravate this effect, which is caused by hepatic cholesterol metabolic disorders. Moreover, cholesterol metabolism in female rats was more sensitive to neuroendocrine changes and HFD than that in males. This study confirmed the influencing factors (such as a HFD and female gender) of hypercholesterolemia in IUGR offspring providing theoretical and experimental bases for the effective prevention of fetal-originated hypercholesterolemia. Copyright © 2018 Elsevier Inc. All rights reserved.
Preventive effects of heregulin-beta1 on macrophage foam cell formation and atherosclerosis.
Xu, Gang; Watanabe, Takuya; Iso, Yoshitaka; Koba, Shinji; Sakai, Tetsuo; Nagashima, Masaharu; Arita, Shigeko; Hongo, Shigeki; Ota, Hidekazu; Kobayashi, Youichi; Miyazaki, Akira; Hirano, Tsutomu
2009-08-28
Human heregulins, neuregulin-1 type I polypeptides that activate proliferation, differentiation, and survival of glial cells, neurons, and myocytes, are expressed in macrophage foam cells within human coronary atherosclerotic lesions. Macrophage foam cell formation, characterized by cholesterol ester accumulation, is modulated by scavenger receptor class A (SR-A), acyl-coenzyme A:cholesterol acyltransferase (ACAT)1, and ATP-binding cassette transporter (ABC)A1. The present study clarified the roles of heregulins in macrophage foam cell formation and atherosclerosis. Plasma heregulin-beta(1) levels were significantly decreased in 31 patients with acute coronary syndrome and 33 patients with effort angina pectoris compared with 34 patients with mild hypertension and 40 healthy volunteers (1.3+/-0.3, 2.0+/-0.4 versus 7.6+/-1.4, 8.2+/-1.2 ng/mL; P<0.01). Among all patients with acute coronary syndrome and effort angina pectoris, plasma heregulin-beta(1) levels were further decreased in accordance with the severity of coronary artery lesions. Expression of heregulin-beta(1) was observed at trace levels in intracoronary atherothrombosis obtained by aspiration thrombectomy from acute coronary syndrome patients. Heregulin-beta(1), but not heregulin-alpha, significantly reduced acetylated low-density lipoprotein-induced cholesterol ester accumulation in primary cultured human monocyte-derived macrophages by reducing SR-A and ACAT1 expression and by increasing ABCA1 expression at both mRNA and protein levels. Heregulin-beta(1) significantly decreased endocytic uptake of [(125)I]acetylated low-density lipoprotein and ACAT activity, and increased cholesterol efflux to apolipoprotein (Apo)A-I from human macrophages. Chronic infusion of heregulin-beta(1) into ApoE(-/-) mice significantly suppressed the development of atherosclerotic lesions. This study provided the first evidence that heregulin-beta(1) inhibits atherogenesis and suppresses macrophage foam cell formation via SR-A and ACAT1 downregulation and ABCA1 upregulation.
de Luis, Daniel Antonio; Aller, Rocio; Gonzalez Sagrado, Manuel; Conde, Rosa; Izaola, Olatz; de la Fuente, Beatriz
2013-08-01
An intragenic polymorphism (1359 G/A) of the cannabinoid receptor 1 (CNR1) gene was reported as a common polymorphism in Caucasian populations (rs1049353). Intervention studies with this polymorphism have yield contradictories results. We decide to investigate the role of polymorphism (G1359A) of (CNR1) gene on metabolic parameters and weight loss secondary to a high monounsaturated fat and high polyunsaturated fat hypocaloric diets in obese subjects. A population of 258 obese subjects was analyzed in a randomized trial. A nutritional evaluation was performed at the beginning and at the end of a 3-month period in which subjects received 1 of 2 diets (diet M: high monounsaturated fat diet vs diet P: high polyunsaturated fat diet). One hundred and sixty five patients (63.9%) had the genotype G1359G and 93 (36.1%) patients (A allele carriers) had G1359A (78 patients,30.3%) or A1359A (15 patients,5.8%) genotypes. In subjects with both genotypes, body mass index, weight, fat mass, waist circumference and systolic blood pressures decreased with both diets. With the diet-type M and in both genotype groups, biochemical parameters remained unchanged. After the diet type P and in subjects with both genotypes, glucose, total cholesterol, low-density lipoprotein (LDL) cholesterol, insulin and homeostasis model assessment for insulin resistance (HOMA-IR) levels decreased. In G1359G genotype subjects after both diets, leptin levels decreased. The finding of this study is the association of the A allele with a lack of improvement on leptin levels. Subjects with both genotypes and after a high polyunsaturated fat hypocaloric diet showed a significant improvement of LDL cholesterol, total cholesterol, HOMA-IR and insulin levels. Copyright © 2013 Elsevier Inc. All rights reserved.
Betteridge, D John; Gibson, J Martin; Sager, Philip T
2007-10-15
Decreasing C-reactive protein (CRP) in addition to decreasing low-density lipoprotein (LDL) cholesterol may further decrease coronary heart disease risk. The effects of rosuvastatin compared with atorvastatin in achieving a combined target of LDL cholesterol <70 mg/dl and CRP <2 mg/L in 509 patients with type 2 diabetes mellitus was evaluated. CRP decreased significantly versus baseline in both treatment groups. Significantly more patients treated with rosuvastatin achieved the combined end point of LDL cholesterol <70 mg/dl and CRP <2 mg/L compared with atorvastatin by the end of the study period (58% vs 37%; p <0.001 vs atorvastatin). In conclusion, CRP was effectively decreased in patients with type 2 diabetes receiving rosuvastatin or atorvastatin, whereas rosuvastatin decreased LDL cholesterol significantly more than atorvastatin.
Huang, Chiu-Ling; Tai, Yen-Kuang; Yang, Yi-Hsin; Wang, Ruey-Hsia
2012-08-01
The purpose of this quasi-experimental study was to determine the efficacy of Five-Element Gymnastics (FEG) in controlling glycosylated hemoglobin (HbA1C), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG) at the 8th and the 16th weeks of intervention for patients with type 2 diabetes in Taiwan. FEG consolidates several traditional Chinese exercises including Qigong, Xiang Gong, and martial arts with gymnastics. The experimental group (n = 31) practiced FEG at home for 16 weeks. The control group (n = 35) maintained usual activities. FEG was associated with decrease of HbA1C, TG, and LDL-C levels at the 8th week and continuous decrease of HbA1C through the 16th week. FEG could be an exercise choice for patients with type 2 diabetes. Copyright © 2012 Wiley Periodicals, Inc.
Aho, Vilma; Ollila, Hanna M; Kronholm, Erkki; Bondia-Pons, Isabel; Soininen, Pasi; Kangas, Antti J; Hilvo, Mika; Seppälä, Ilkka; Kettunen, Johannes; Oikonen, Mervi; Raitoharju, Emma; Hyötyläinen, Tuulia; Kähönen, Mika; Viikari, Jorma S A; Härmä, Mikko; Sallinen, Mikael; Olkkonen, Vesa M; Alenius, Harri; Jauhiainen, Matti; Paunio, Tiina; Lehtimäki, Terho; Salomaa, Veikko; Orešič, Matej; Raitakari, Olli T; Ala-Korpela, Mika; Porkka-Heiskanen, Tarja
2016-04-22
Sleep loss and insufficient sleep are risk factors for cardiometabolic diseases, but data on how insufficient sleep contributes to these diseases are scarce. These questions were addressed using two approaches: an experimental, partial sleep restriction study (14 cases and 7 control subjects) with objective verification of sleep amount, and two independent epidemiological cohorts (altogether 2739 individuals) with questions of sleep insufficiency. In both approaches, blood transcriptome and serum metabolome were analysed. Sleep loss decreased the expression of genes encoding cholesterol transporters and increased expression in pathways involved in inflammatory responses in both paradigms. Metabolomic analyses revealed lower circulating large HDL in the population cohorts among subjects reporting insufficient sleep, while circulating LDL decreased in the experimental sleep restriction study. These findings suggest that prolonged sleep deprivation modifies inflammatory and cholesterol pathways at the level of gene expression and serum lipoproteins, inducing changes toward potentially higher risk for cardiometabolic diseases.
Takase, Susumu; Matoba, Tetsuya; Nakashiro, Soichi; Mukai, Yasushi; Inoue, Shujiro; Oi, Keiji; Higo, Taiki; Katsuki, Shunsuke; Takemoto, Masao; Suematsu, Nobuhiro; Eshima, Kenichi; Miyata, Kenji; Yamamoto, Mitsutaka; Usui, Makoto; Sadamatsu, Kenji; Satoh, Shinji; Kadokami, Toshiaki; Hironaga, Kiyoshi; Ichi, Ikuyo; Todaka, Koji; Kishimoto, Junji; Egashira, Kensuke; Sunagawa, Kenji
2017-02-01
We sought to investigate whether treatment with ezetimibe in combination with statins improves coronary endothelial function in target vessels in coronary artery disease patients after coronary stenting. We conducted a multicenter, prospective, randomized, open-label, blinded-end point trial among 11 cardiovascular treatment centers. From 2011 to 2013, 260 coronary artery disease patients who underwent coronary stenting were randomly allocated to 2 arms (statin monotherapy, S versus ezetimibe [10 mg/d]+statin combinational therapy, E+S). We defined target vessel dysfunction as the primary composite outcome, which comprised target vessel failure during treatment and at the 6- to 8-month follow-up coronary angiography and coronary endothelial dysfunction determined via intracoronary acetylcholine testing performed in cases without target vessel failure at the follow-up coronary angiography. Coadministration of ezetimibe with statins further lowered low-density lipoprotein cholesterol levels (83±23 mg/dL in S versus 67±23 mg/dL in E+S; P<0.0001), with significant decreases in oxidized low-density lipoprotein and oxysterol levels. Among patients without target vessel failure, 46 out of 89 patients (52%) in the S arm and 34 out of 96 patients (35%) in the E+S arm were found to have coronary endothelial dysfunction (P=0.0256), and the incidence of target vessel dysfunction at follow-up was significantly decreased in the E+S arm (69/112 (62%) in S versus 47/109 (43%) in E+S; P=0.0059). A post hoc analysis of post-treatment low-density lipoprotein cholesterol-matched subgroups revealed that the incidence of both target vessel dysfunction and coronary endothelial dysfunction significantly decreased in the E+S arm, with significant reductions in oxysterol levels. The CuVIC trial (Effect of Cholesterol Absorption Inhibitor Usage on Target Vessel Dysfunction after Coronary Stenting) has shown that ezetimibe with statins, compared with statin monotherapy, improves functional prognoses, ameliorating endothelial dysfunction in stented coronary arteries, and was associated with larger decreases in oxysterol levels. © 2016 American Heart Association, Inc.
Cholesterol regulates multiple forms of vesicle endocytosis at a mammalian central synapse.
Yue, Hai-Yuan; Xu, Jianhua
2015-07-01
Endocytosis in synapses sustains neurotransmission by recycling vesicle membrane and maintaining the homeostasis of synaptic membrane. A role of membrane cholesterol in synaptic endocytosis remains controversial because of conflicting observations, technical limitations in previous studies, and potential interference from non-specific effects after cholesterol manipulation. Furthermore, it remains unclear whether cholesterol participates in distinct forms of endocytosis that function under different activity levels. In this study, applying the whole-cell membrane capacitance measurement to monitor endocytosis in real time at the rat calyx of Held terminals, we found that disrupting cholesterol with dialysis of cholesterol oxidase or methyl-β-cyclodextrin impaired three different forms of endocytosis, including slow endocytosis, rapid endocytosis, and endocytosis of the retrievable membrane that exists at the surface before stimulation. The effects were observed when disruption of cholesterol was mild enough not to change Ca(2+) channel current or vesicle exocytosis, indicative of stringent cholesterol requirement in synaptic endocytosis. Extracting cholesterol with high concentrations of methyl-β-cyclodextrin reduced exocytosis, mainly by decreasing the readily releasable pool and the vesicle replenishment after readily releasable pool depletion. Our study suggests that cholesterol is an important, universal regulator in multiple forms of vesicle endocytosis at mammalian central synapses. © 2015 International Society for Neurochemistry.
Smith, R C; Segman, R H; Golcer-Dubner, T; Pavlov, V; Lerer, B
2008-06-01
Schizophrenic patients who are treated with antipsychotics, especially second generation antipsychotics, such as clozapine and olanzapine, manifest an increase in cholesterol and triglycerides as well as other changes associated with diabetes or the metabolic syndrome. Previous studies have shown that polymorphisms in several genes that regulate lipid metabolism can influence the levels of these lipids and response to drug treatment. We have investigated in an exploratory study whether polymorphisms in the apolipoprotein C-III (ApoC3), apolipoprotein A-V gene (ApoA5) and lipoprotein lipase genes influence differential lipid response to treatment with three second generation antipsychotics-olanzapine, clozapine and risperidone-or treatment with a first generation antipsychotic. A total of 189 patients with schizophrenia or schizoaffective disorder who were being treated with a single antipsychotic were studied in a cross-sectional study design in which fasting serum cholesterol and triglycerides and selected single-nucleotide polymorphosms (SNPs) in the three lipid metabolism genes were assessed. The treatment with antipsychotic monotherapy makes drug haplotype ascertainment less complex. Our analyses showed several nominally significant drug x gene and drug x haplotype interactions. The rarer C allele or the ApoA5_1131 (T/C) SNP was associated with higher cholesterol levels in patients treated with first generation antipsychotics and lower cholesterol levels in patients treated with olanzapine or clozapine. The rarer C allele of the ApoA5_SW19 (G/C) SNP was associated with higher cholesterol in risperidone-treated patients. An ApoA5 CG haplotype was associated with decreased cholesterol in olanzapine- or clozapine-treated patients and higher cholesterol in patients treated with first generation antipsychotics. The presence of the rarer T allele of the ApoC3_1100 (C/T) SNP or the presence of the ApoC3 TG haplotype was associated with decreased triglyceride levels in patients treated with olanzapine or clozapine and a nonsignificant trend for increased triglycerides in patients treated with first generation antipsychotics. The presence of the ApoC3 CC haplotype was associated with increased triglycerides in patients treated with olanzapine or clozapine. The overall magnitude of the effects was not large. These results provide a potential initial step toward a pharmacogenetic approach to selection of antipsychotic treatment which may help minimize the side effect of increases in serum lipids.
A novel role for CRTC2 in hepatic cholesterol synthesis through SREBP‐2
Li, Yujie; Song, Yongfeng; Zhao, Meng; Guo, Yanjing; Yu, Chunxiao; Chen, Wenbin; Shao, Shanshan; Xu, Chao; Zhou, Xinli; Zhao, Lifang; Zhang, Zhenhai; Bo, Tao; Xia, Yu; Proud, Christopher G.; Wang, Xuemin; Wang, Li; Zhao, Jiajun
2017-01-01
Cholesterol synthesis is regulated by the transcription factor sterol regulatory element binding protein 2 (SREBP‐2) and its target gene 3‐hydroxy‐3‐methylglutaryl‐coenzyme A reductase (HMGCR), which is the rate‐limiting enzyme in cholesterol synthesis. Cyclic adenosine monophosphate–responsive element (CRE) binding protein–regulated transcription coactivator (CRTC) 2 is the master regulator of glucose metabolism. However, the effect of CRTC2 on cholesterol and its potential molecular mechanism remain unclear. Here, we demonstrated that CRTC2 expression and liver cholesterol content were increased in patients with high serum cholesterol levels who underwent resection of liver hemangiomas, as well as in mice fed a 4% cholesterol diet. Mice with adenovirus‐mediated CRTC2 overexpression also showed elevated lipid levels in both serum and liver tissues. Intriguingly, hepatic de novo cholesterol synthesis was markedly increased under these conditions. In contrast, CRTC2 ablation in mice fed a 4% cholesterol diet (18 weeks) showed decreased lipid levels in serum and liver tissues compared with those in littermate wild‐type mice. The expression of lipogenic genes (SREBP‐2 and HMGCR) was consistent with hepatic CRTC2 levels. In vivo imaging showed enhanced adenovirus‐mediated HMGCR‐luciferase activity in adenovirus‐mediated CRTC2 mouse livers; however, the activity was attenuated after mutation of CRE or sterol regulatory element sequences in the HMGCR reporter construct. The effect of CRTC2 on HMGCR in mouse livers was alleviated upon SREBP‐2 knockdown. CRTC2 modulated SREBP‐2 transcription by CRE binding protein, which recognizes the half‐site CRE sequence in the SREBP‐2 promoter. CRTC2 reduced the nuclear protein expression of forkhead box O1 and subsequently increased SREBP‐2 transcription by binding insulin response element 1, rather than insulin response element 2, in the SREBP‐2 promoter. Conclusion: CRTC2 regulates the transcription of SREBP‐2 by interfering with the recognition of insulin response element 1 in the SREBP‐2 promoter by forkhead box O1, thus inducing SREBP‐2/HMGCR signaling and subsequently facilitating hepatic cholesterol synthesis. (Hepatology 2017;66:481–497). PMID:28395113
Osada, K; Hoshina, S; Nakamura, S; Sugano, M
2000-09-01
The levels of cholesterol oxidation derivatives (OxChol) in eight commercial species of meat products were examined. These products contained more than 1 mg/100 g of OxChol, and 7beta-hydroxycholesterol + 5beta-epoxycholesterol (111-1092 microg/100 g), 5alpha-epoxycholesterol (80-712 microg/100 g), cholestanetriol (0-368 microg/100 g), and 7-ketocholesterol (708-1204 microg/100 g) were detected. To know the interaction of sodium nitrite supplementation against cholesterol oxidation in meat products, sausage was produced with or without varying levels of sodium nitrite and stored in the refrigerator for 15 days. As a result, cholesterol oxidation in sausage was inhibited by addition of sodium nitrite in a dose-dependent manner. This observation may be associated with inactivation of O(2)(-) radical and stabilization of polyunsaturated fatty acids (PUFAs). In fact, the levels of OxChol in sausage increased, accompanying the decrease of coexisting linoleic acid when sodium nitrite was not added to sausage meat. Thus, cholesterol oxidation in meat products seems to be considarably promoted by the oxidation of coexisting PUFAs. On the other hand, additive apple polyphenol also inhibited linoleic acid oxidation in sausage and then suppressed cholesterol oxidation through its radical scavenging effects. Therefore, apple polyphenol, having a large amount of an oligomer of catechin, may interfere with cholesterol oxidation in meat processing or storage of meat products through its antioxidative action and be useful as a new antioxitant for meat products when it is added to the original meat before processing.
Ryan, Jennifer Joan; Hanes, Douglas Allen; Schafer, Morgan Beth; Mikolai, Jeremy; Zwickey, Heather
2015-05-01
Elevated blood cholesterol levels are a major risk factor for coronary artery disease, the leading cause of death worldwide. Probiotics have been investigated as potential cholesterol-lowering therapies, but no previous studies have assessed the effect of the probiotic yeast Saccharomyces boulardii on cholesterol levels in human volunteers. The objective of this study was to examine the effect of S. boulardii on serum cholesterol and lipoprotein particles in hypercholesterolemic adults. This study was a single-arm, open-label pilot study. Twelve hypercholesterolemic participants were recruited into the study; one dropped out. Participants took 5.6×10(10) colony forming unit (CFU) encapsulated S. boulardii (Saccharomyces cerevisiae var. boulardii CNCM I-1079) twice daily for an 8-week period. Fasting concentrations of cholesterol (total cholesterol, low-density lipoprotein-cholesterol [LDL-C], high-density lipoprotein-cholesterol [HDL-C], and triglycerides), lipoprotein particles (very-low-density lipoprotein-particle [VLDL-P], remnant lipoprotein particle [RLP-P], total LDL-P, LDL III-P, LDL IV-P, total HDL-P, and HDL 2b-P), and additional cardiovascular biomarkers (apo B-100, lipoprotein [a], high-sensitivity C-reactive protein, homocysteine, fibrinogen, and insulin) were measured at baseline, after 4 weeks, and after 8 weeks. Remnant lipoprotein particles decreased by 15.5% (p=0.03) over the 8-week period. The remaining outcome measures were not significantly altered. In this pilot study, 8 weeks of daily supplementation with S. boulardii lowered remnant lipoprotein, a predictive biomarker and potential therapeutic target in the treatment and prevention of coronary artery disease.
de Luis, Daniel Antonio; Aller, Rocío; Izaola, Olatz; Díaz Soto, G; López Gómez, J J; Gómez Hoyos, E; Torres, B; Villar, A; Romero, Enrique
2015-01-01
We decided to investigate the role of this polymorphism on cardiovascular risk factors and weight loss secondary to a high-protein/low-carbohydrate vs. a standard hypocaloric diet (1,000 kcal/day) over a period of 9 months. A nutritional evaluation was performed at the beginning and at the end of a 9-month period in which subjects received 1 of 2 diets (diet HP: high protein/low carbohydrate vs. S: standard diet). One hundred and four patients (54.7%) had the genotype G1359G and 86 (45.3%) patients had G1359A (77 patients, 25.8%) or A1359A (9 patients, 3.7%) (A-allele-carriers). In subjects with both genotypes, the body mass index, weight, fat mass, waist circumference and systolic blood pressures decreased with both diets. After the diet type HP and in subjects with both genotypes, the glucose, leptin, total cholesterol, LDL-cholesterol, insulin and HOMA-R levels decreased. After diet S and in all subjects, the total cholesterol, LDL cholesterol and leptin levels decreased, too. Our interventional study didn't show a relationship between the rs1049353 CNR-1 polymorphism and body weight response after two different hypocaloric (low carbohydrate/high protein vs. standard) diets over a period of 9 months. However, a low-carbohydrate/high-protein diet for 9 months improved glucose metabolism in subjects with both genotypes. © 2015 S. Karger AG, Basel.
Metabolic Syndrome in Preeclampsia Women in Gorgan
Rafeeinia, Arash; Tabandeh, Afsaneh; Khajeniazi, Safoura; Marjani, Abdoljalal
2014-01-01
The aim of study was to assess the metabolic syndrome in preeclampsia women. The study was performed on 50 women. The metabolic syndrome prevalence was 66%. Serum glucose, triglyceride and LDL-cholesterol levels significantly were increased and HDL- cholesterol level significantly was decreased in metabolic syndrome patients. These patients showed high prevalence of components of the syndrome. Our results show the importance of dyslipidemia in preeclampsia in overweight and obese women. Preeclampsia and cardiovascular disease are important problems for the health of women. It may be useful to give a treat to people with a high-normal blood pressure in early pregnancy. PMID:25553139
Yamamoto, Yukiyo; Saito, Reiko; Goto, Motohide; Araki, Shunsuke; Kubo, Kazuyasu; Kawagoe, Rinko; Kawada, Yasusada; Kusuhara, Koichi
2012-04-01
A 20-d-old boy was referred to our department because of hyperthyrotropinemia at neonatal mass screening and diagnosed with neonatal transient hyperthyrotropinemia. A follow-up examination when the patient was 5 mo old revealed severe hypercholesterolemia. Familial hypercholesterolemia was first suspected because of the patient's significantly high levels of total and low-density lipoprotein cholesterol. The parent's serum lipid profiles were examined and found to be normal. He was completely breast-fed until 6 mo of age. Breast milk was still the main source of food for a period following weaning. At 14 mo old, the patient was weaned completely from breast milk, and his serum cholesterol levels decreased dramatically. According to the normal lipid profiles of the patient's parents and the spontaneous normalization of serum cholesterol levels after complete weaning from breast milk, breast-feeding was suggested to be responsible for his transient severe hypercholesterolemia. It is well documented that breast-fed infants have higher serum cholesterol levels than formula-fed infants. However, there is no reported case with severe hypercholesterolemia equivalent to or higher than the levels observed in the case of familial hypercholesterolemia. Although the exact mechanism is unknown, it is necessary to consider that a small number of cases develop severe hypercholesterolemia related to breast-feeding.
Korou, Laskarina-Maria; Agrogiannis, George; Koros, Christos; Kitraki, Efthimia; Vlachos, Ioannis S.; Tzanetakou, Irene; Karatzas, Theodore; Pergialiotis, Vasilios; Dimitroulis, Dimitrios; Perrea, Despina N.
2014-01-01
Hyperlipidemia and stress are important factors affecting cardiovascular health in middle-aged individuals. We investigated the effects of N-acetylcysteine (NAC) and sesame oil on the lipidemic status, liver architecture and the hypothalamic-pituitary-adrenal (HPA) axis of middle-aged mice fed a cholesterol-enriched diet. We randomized 36 middle-aged C57bl/6 mice into 6 groups: a control group, a cholesterol/cholic acid diet group, a cholesterol/cholic acid diet group with NAC supplementation, a cholesterol/cholic acid diet enriched with 10% sesame oil and two groups receiving a control diet enriched with NAC or sesame oil. NAC administration prevented the onset of the disturbed lipid profile, exhibiting decreased lipid peroxidation and alkaline phosphatase (ALP) levels, restored nitric oxide bioavailability and reduced hepatic damage, compared to non-supplemented groups. High-cholesterol feeding resulted in increased hypothalamic glucocorticoid receptors (GR) levels, while NAC supplementation prevented this effect. NAC supplementation presented significant antioxidant capacity by means of preventing serum lipid status alterations, hepatic damage, and HPA axis disturbance due to high-cholesterol feeding in middle-aged mice. These findings suggest a beneficial preventive action of plant-derived antioxidants, such as NAC, on lipid metabolism and on the HPA axis. PMID:25348324
Valcheva-Kuzmanova, S; Kuzmanov, K; Tancheva, S; Belcheva, A
2007-03-01
Aronia melanocarpa fruit juice (AMFJ) is rich in phenolic antioxidants, especially flavonoids from the anthocyanin subclass. The aim of the present study was to investigate the influence of AMFJ on plasma glucose and lipids in diabetic rats. Diabetes was induced by an intraperitoneal injection of streptozotocin (50 mg/kg). AMFJ was applied by gavage at doses of 10 and 20 ml/kg for 6 weeks to normal and diabetic rats. Streptozotocin caused a significant elevation of plasma glucose by 141% and of plasma triglycerides (TG) by 64% in comparison with normal control rats and induced statistically insignificant elevations of total cholesterol and LDL-cholesterol and a reduction of HDL-cholesterol. Applied to normal rats, AMFJ did not influence plasma glucose and lipid levels. Applied to diabetic rats, AMFJ (10 and 20 ml/kg) significantly reduced plasma glucose by 44% and 42% and TG by 35% and 39%, respectively, to levels that did not significantly differ from those of the normal control rats and counteracted the influence of streptozotocin on total cholesterol, LDL-cholesterol and HDL-cholesterol. In conclusion, AMFJ significantly decreased the streptozotocin-induced abnormalities in blood glucose and TG in diabetic rats and might be useful in prevention and control of diabetes mellitus and diabetes-associated complications. Copyright 2007 Prous Science.
Patel, P S; Shah, M H; Jha, F P; Raval, G N; Rawal, R M; Patel, M M; Patel, J B; Patel, D D
2004-01-01
The changes in lipid profile have long been associated with cancer because lipids play a key role in maintenance of cell integrity. The present study evaluated alterations in plasma lipid profile in untreated head and neck cancer patients as well as patients with oral precancerous conditions (OPC) and its association with habit of tobacco consumption. This hospital-based case control study included 184 head and neck cancer patients, 153 patients with OPC and 52 controls. Plasma lipids including: (i) Total cholesterol, (ii) LDL cholesterol (LDLC), (iii) HDL cholesterol (HDLC) (iv) VLDL cholesterol (VLDLC) and (v) triglycerides were analysed by spectrophotometric kits. Student's t-test was performed to compare mean values of the parameters. A significant decrease in plasma total cholesterol and HDLC was observed in cancer patients (P=0.008 and P=0.000 respectively) as well as in patients with OPC (P=0.014 and P=0.000, respectively) as compared to the controls. The plasma VLDL and triglycerides levels were significantly lower in cancer patients as compared to the patients with OPC (P=0.04) and controls (P=0.059). The tobacco habituates showed lower plasma lipid levels than the non-habituates. Our data strengthen the evidence of an inverse relationship between plasma lipid levels and head and neck malignancies as well as OPC. The lower levels of plasma cholesterol and other lipid constituents in patients might be due to their increased utilization by neoplastic cells for new membrane biogenesis. The findings strongly warrant an in-depth study of alterations in plasma lipid profile in head neck cancer patients.
Tziakas, Dimitrios; Chalikias, Georgios; Kapelouzou, Alkistis; Tentes, Ioannis; Schäfer, Katrin; Karayannakos, Panagiotis; Kostakis, Alkiviadis; Boudoulas, Harissios; Konstantinides, Stavros
2013-12-10
Lipid core expansion is partly responsible for the conversion of a stable atherosclerotic lesion to a rupture-prone plaque. Intraplaque hemorrhage contributes to the accumulation of cholesterol within unstable plaques. In the present study, we investigated, using a rabbit model of atherosclerosis, the extent to which diet-induced increases in cholesterol content of erythrocyte membranes (CEM) contribute to lipid core expansion and the modulatory effect of rosuvastatin use. Rabbits fed with atherogenic diet (0.75% cholesterol) for 5 months exhibited advanced atherosclerotic lesions (mean plaque area, 0.39 ± 0.03 mm(2)), and lipid core size was associated with the concentration-time integral (CTI) of CEM levels (r=0.567, P=0.004) independent of other established predictors of lipid core size. Further experiments were performed by feeding rabbits atherogenic diet (1% cholesterol) for 3 months, followed by either normal diet or normal diet plus rosuvastatin for the next 3 months. Although no differences were observed in total plaque area between both groups, administration of rosuvastatin was associated with significantly smaller lipid cores, fewer macrophages within the lipid core, less microvessels as well as with lower CTI of CEM levels compared to normal diet alone. Moreover, intraplaque erythrocyte membranes covered a smaller lipid core area in rabbits under rosuvastatin plus normal diet as opposed to rabbits under diet alone. Increased CEM levels, induced by high-cholesterol diet, are associated with lipid core growth. Ingestion of a potent HMG-CoA reductase inhibitor (rosuvastatin) may decrease CEM levels, and this effect may contribute to regression of the lipid core. © 2013.
The E3 ubiquitin ligase, HECTD1, is involved in ABCA1-mediated cholesterol export from macrophages.
Aleidi, Shereen M; Yang, Alryel; Sharpe, Laura J; Rao, Geetha; Cochran, Blake J; Rye, Kerry-Anne; Kockx, Maaike; Brown, Andrew J; Gelissen, Ingrid C
2018-04-01
The ABC lipid transporters, ABCA1 and ABCG1, are essential for maintaining lipid homeostasis in cells such as macrophages by exporting excess cholesterol to extracellular acceptors. These transporters are highly regulated at the post-translational level, including protein ubiquitination. Our aim was to investigate the role of the E3 ubiquitin ligase HECTD1, recently identified as associated with ABCG1, on ABCG1 and ABCA1 protein levels and cholesterol export function. Here, we show that HECTD1 protein is widely expressed in a range of human and murine primary cells and cell lines, including macrophages, neuronal cells and insulin secreting β-cells. siRNA knockdown of HECTD1 unexpectedly decreased overexpressed ABCG1 protein levels and cell growth, but increased native ABCA1 protein in CHO-K1 cells. Knockdown of HECTD1 in unloaded THP-1 macrophages did not affect ABCG1 but significantly increased ABCA1 protein levels, in wild-type as well as THP-1 cells that do not express ABCG1. Cholesterol export from macrophages to apoA-I over time was increased after knockdown of HECTD1, however these effects were not sustained in cholesterol-loaded cells. In conclusion, we have identified a new candidate, the E3 ubiquitin ligase HECTD1, that may be involved in the regulation of ABCA1-mediated cholesterol export from unloaded macrophages to apoA-I. The exact mechanism by which this ligase affects this pathway remains to be elucidated. Copyright © 2018 Elsevier B.V. All rights reserved.
Xie, Ying; He, Yu-Bin; Zhang, Shi-Xin; Pan, Ai-Qun; Zhang, Jun; Guan, Xiao-Hong; Wang, Jin-Xue; Guo, Wen-Sheng
2014-09-01
To evaluate the efficacy and safety of using Jiangzhi Tongluo Soft Capsule (JTSC) combined with Atorvastatin Calcium Tablet (ACT) or ACT alone in treatment of combined hyperlipidemia. A randomized, double blinded, parallel control, and multi-center clinical research design was adopted. Totally 138 combined hyperlipidemia patients were randomly assigned to the combined treatment group (A) and the atorvastatin treatment group (B) by random digit table, 69 in each group. All patients took ACT 20 mg per day. Patients in the A group took JTSC 100 mg each time, 3 times per day. Those in the B group took JTSC simulated agent, 100 mg each time, 3 times per day. The treatment period for all was 8 weeks. Serum levels of triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), and high density lipoprotein cholesterol (HDL-C) were observed before treatment, at week 4 and 8 after treatment; and safety was assessed as well. At week 4 and 8 after treatment serum TG decreased by 26.69% and 33.29% respectively in the A group (both P < 0.01), while it was decreased by 25.7% and 22.98% respectively in the B group (both P < 0.01). At week 8 decreased serum TG was obviously higher in the A group than in the B group (P < 0.05). Compared with before treatment, serum levels of LDL-C and TC levels decreased significantly in the two groups (all P < 0.01). There was no statistical difference in the drop-out value and the drop-out rate of serum LDL-C and TC levels (P > 0.05). At week 8 the serum HDL-C level showed an increasing tendency in the two groups. No obvious increase in peptase or creatase occurred in the two groups after treatment. JTSC combined with ACT could lower the serum TG level of combined hyperlipidemia patients with safety.
Hussein, S A; Azab, M E
1998-01-01
Concentrations of blood lipids and some lipoproteins were investigated in normal female Baladi goats during late pregnancy, parturition and onset of lactation as well as in their newborn kids during the first two weeks of life. A total number of 60 herparinized blood samples was collected from does at 4, 3, 2 and 1 weeks pre-partum, day of parturition and at 1, 2, 3 and 4 weeks postpartum. In addition, blood samples were also collected from their newborn kids during the first two weeks of life (day of birth, 1 and 2 weeks of age). Plasma was separated and analyzed for concentration of total lipid, total cholesterol, triacylglycerols, phospholipids, non esterified fatty acids (NEFA) and some lipoproteins as high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C). The obtained results revealed that there was a significant decrease in plasma level of total lipids at one week after parturition. Plasma level of triaclyglycerols was significantly higher at 4, 3 and 2 weeks before parturition. This increase became very highly significant at one week before parturition. Meanwhile, plasma phospholipid concentrations showed a significant decrease at 3 weeks before parturition, followed by an significant increase at 2 and 3 weeks after parturition and highly significant increase at 4 weeks after parturition. The concentration of plasma NEFA showed a significant increase at 4 weeks before parturition followed by a very highly significant increase at 2 and 1 week before parturition. On the other hand plasma NEFA was non detected at 2, 3 and 4 weeks post-partum when compared with the value reported at day of parturition. Regarding plasma lipoprotein concentrations the obtained results showed that there was a significant increase in plasma HDL-C level at 2 and 3 weeks after parturition, followed by a very highly significant decrease at the fourth week post-partum. However, plasma LDL-C level showed a significant decrease at 3, 2 and 1 weeks before parturition, followed by a further highly significant decrease at 1 and 2 weeks post-partum. In newborn kids plasma concentrations of total lipids, total cholesterol, phospholipids, HDL-C and LDL-C were very markedly increased at 1 and 2 weeks of age. However, plasma triacylglycerol concentrations showed a highly significant decrease at 1 and 2 weeks of age. The concentration of plasma NEFA showed a very highly significant decrease at 2 weeks of age, whereas, at one week of age plasma NEFA were not detected in comparison with first day of life.
Dotson, Rachel J; Smith, Casey R; Bueche, Kristina; Angles, Gary; Pias, Sally C
2017-06-06
Cholesterol is widely known to alter the physical properties and permeability of membranes. Several prior works have implicated cell membrane cholesterol as a barrier to tissue oxygenation, yet a good deal remains to be explained with regard to the mechanism and magnitude of the effect. We use molecular dynamics simulations to provide atomic-resolution insight into the influence of cholesterol on oxygen diffusion across and within the membrane. Our simulations show strong overall agreement with published experimental data, reproducing the shapes of experimental oximetry curves with high accuracy. We calculate the upper-limit transmembrane oxygen permeability of a 1-palmitoyl,2-oleoylphosphatidylcholine phospholipid bilayer to be 52 ± 2 cm/s, close to the permeability of a water layer of the same thickness. With addition of cholesterol, the permeability decreases somewhat, reaching 40 ± 2 cm/s at the near-saturating level of 62.5 mol % cholesterol and 10 ± 2 cm/s in a 100% cholesterol mimic of the experimentally observed noncrystalline cholesterol bilayer domain. These reductions in permeability can only be biologically consequential in contexts where the diffusional path of oxygen is not water dominated. In our simulations, cholesterol reduces the overall solubility of oxygen within the membrane but enhances the oxygen transport parameter (solubility-diffusion product) near the membrane center. Given relatively low barriers to passing from membrane to membrane, our findings support hydrophobic channeling within membranes as a means of cellular and tissue-level oxygen transport. In such a membrane-dominated diffusional scheme, the influence of cholesterol on oxygen permeability is large enough to warrant further attention. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
2012-01-01
Background An increased interest is given to the impact of high fat diet on health worldwide. Abnormalities in lipid metabolism induced by high cholesterol diet (HCD) were reported to exacerbate renal diseases via oxidative stress pathways. Rutin and ascorbic acid showed a protective role against oxidative stress-mediated diseases. Furthermore, both lipid metabolism and tissue response to oxidative stress damage was found to vary according to animal gender. Thus, the objective of this work was to examine possible gender-related differences and the possible protective effects of rutin and ascorbic acid supplementation on high cholesterol diet induced nephrotoxicity. Methods 96 young male and female Wistar albino rats were used. HCD supplemented animals were treated with rutin alone or in combination with ascorbic acid for 6 weeks. Creatinine plasma level was estimated. Furthermore, kidney levels of nucleic acids, total protein, malondialdehyde (MDA), reduced glutathione (GSH), total cholesterol, and triglycerides were determined. Finally, kidney tissues were used for histopathological examination. Results HCD supplementation decreased kidney level of nucleic acids, which was more prominent in female animals. Both vitamin combination significantly attenuated HCD induced decrease in nucleic acids. Moreover, kidney level of MDA was significantly altered by HCD in both genders, which was inhibited by rutin and ascorbic acid alone or in combination in male groups and by both vitamins in female groups. There was a reduction in kidney level of GSH by HCD, especially in male groups, which was attenuated by rutin and ascorbic acid combination. Kidney levels of total cholesterol and triglycerides were significantly increased by HCD supplementation in both genders. Coadministration with rutin and/or ascorbic acid protected from such increase, which was more obvious in both vitamins combination. Histopathological investigation supported vitamins protective effect, which was more prominent in male vitamins combination group. Conclusions HCD-induced renal injury in female was higher than in male animals, suggesting a better anti-oxidative stress defense response in male's kidney. Moreover, the antioxidant and reno-protective effects of rutin and ascorbic acid were augmented following their combination. PMID:22423898
Al-Rejaie, Salim Salih; Abuohashish, Hatem Mustafa; Alkhamees, Osama Abdelrahman; Aleisa, Abdulaziz Mohammed; Alroujayee, Abdulaziz S
2012-03-16
An increased interest is given to the impact of high fat diet on health worldwide. Abnormalities in lipid metabolism induced by high cholesterol diet (HCD) were reported to exacerbate renal diseases via oxidative stress pathways. Rutin and ascorbic acid showed a protective role against oxidative stress-mediated diseases. Furthermore, both lipid metabolism and tissue response to oxidative stress damage was found to vary according to animal gender. Thus, the objective of this work was to examine possible gender-related differences and the possible protective effects of rutin and ascorbic acid supplementation on high cholesterol diet induced nephrotoxicity. 96 young male and female Wistar albino rats were used. HCD supplemented animals were treated with rutin alone or in combination with ascorbic acid for 6 weeks. Creatinine plasma level was estimated. Furthermore, kidney levels of nucleic acids, total protein, malondialdehyde (MDA), reduced glutathione (GSH), total cholesterol, and triglycerides were determined. Finally, kidney tissues were used for histopathological examination. HCD supplementation decreased kidney level of nucleic acids, which was more prominent in female animals. Both vitamin combination significantly attenuated HCD induced decrease in nucleic acids. Moreover, kidney level of MDA was significantly altered by HCD in both genders, which was inhibited by rutin and ascorbic acid alone or in combination in male groups and by both vitamins in female groups. There was a reduction in kidney level of GSH by HCD, especially in male groups, which was attenuated by rutin and ascorbic acid combination. Kidney levels of total cholesterol and triglycerides were significantly increased by HCD supplementation in both genders. Coadministration with rutin and/or ascorbic acid protected from such increase, which was more obvious in both vitamins combination. Histopathological investigation supported vitamins protective effect, which was more prominent in male vitamins combination group. HCD-induced renal injury in female was higher than in male animals, suggesting a better anti-oxidative stress defense response in male's kidney. Moreover, the antioxidant and reno-protective effects of rutin and ascorbic acid were augmented following their combination.
Degrace, Pascal; Moindrot, Bastien; Mohamed, Ismaël; Gresti, Joseph; Clouet, Pierre
2006-12-01
This study was designed to address the effects of a moderate consumption of beer on serum and liver lipid parameters and on the development of aortic lesions in a mouse model associated with a human atherogenic lipoprotein profile. LDLr(-/-) apoB(100/100) mice received each day during 12 weeks either water, mild beer (0.570g of ethanol/kg of body weight) or ethanol-free beer in a single pure dose. Serum and liver lipid parameters were analyzed and atherosclerotic lesions were estimated in heart and aorta through their total cholesterol content. mRNA levels of enzymes and receptors involved in lipoprotein uptake, in fatty acid esterification and oxidation, and in reverse cholesterol transport were also measured in the liver. Serum glucose, triglyceride (TG) and cholesterol levels were altered neither by ethanol-free beer nor by mild beer. Nevertheless, both beer treatments significantly increased HDL-cholesterol (HDL-C) and VLDL-C levels by reference to controls with no change in LDL-C levels. Liver TG contents were significantly decreased by either beer treatment. Cholesterol accumulation was attenuated in the whole aorta of mice treated with mild beer at p<0.05 and not significantly with ethanol-free beer. Heart cholesterol contents were comparable in the three series. Among the genes studied, only scavenger receptor-B1 was downregulated by both beer-based beverages. LDL receptor related protein, lecithin-cholesterol acyltransferase and sterol regulatory element-binding protein 2 were downregulated only by mild beer. The expression of other genes assayed was not altered. When administered in chronic and moderate dose, unidentified components of beer may exert beneficial effects towards atherosclerosis development through alteration of lipoprotein metabolism in LDLr(-/-) apoB(100/100) mice. This effect was slightly amplified by the presence of ethanol in beer.
Wang, Yanping; Xu, Nv; Xi, Aodeng; Ahmed, Zaheer; Zhang, Bin; Bai, Xiaojia
2009-08-01
The objective of this study was to evaluate the effects of Lactobacillus plantarum MA2, an isolate from Chinese traditional Tibet kefir, on cholesterol-lowering and microflora of rat in vivo. Rats were fed on cholesterol-enriched experimental diet, supplemented with lyophilized L. plantarum MA2 powder, with a dose of 10(11) cells/day per mice. The results showed that L. plantarum MA2 feeding significantly lowered serum total cholesterol, low-density lipoprotein cholesterol, and triglycerides level, while there was no change in high-density lipoprotein cholesterol. In addition, liver total cholesterol and triglycerides was also decreased. However, fecal cholesterol and triglycerides was increased significantly (P < 0.05) in comparison with the control. Also, L. plantarum MA2 increased the population of lactic acid bacteria and bifidobacteria in the fecal, but it did not change the number of Escherichia coli as compared to control. Moreover, pH, moisture, and organic acids in the fecal were also measured. The present results indicate the probiotic potential of the L. plantarum MA2 strain in hypocholesterolemic effect and also increasing the probiotic count in the intestine.
Nutraceuticals as an Important Part of Combination Therapy in Dyslipidaemia.
Patti, Angelo M; Toth, Peter P; Giglio, Rosaria V; Banach, Maciej; Noto, Marcello; Nikolic, Dragana; Montalto, Giuseppe; Rizzo, Manfredi
2017-01-01
Several risk factors such as abnormality of lipid metabolism (e.g. high levels of low-density lipoprotein cholesterol (LDL-C), elevated triglycerides and low levels of high-density lipoprotein cholesterol (HDL-C)) play a central role in the aetiology of cardiovascular disease (CVD). Nutraceutical combination together with a cholesterol- lowering action, when associated with suitable lifestyle, should furnish an alternative to pharmacotherapy in patients reporting statin-intolerance and in subjects at low cardiovascular risk. The present review is focused on nutraceuticals and their synergetic combinations demonstrating a beneficial effect in the management of dyslipidaemia. Several nutraceuticals have been shown to positively modulate lipid metabolism having different functions. Plant sterols and soluble fibres can, for example, decrease the intestinal assimilation of lipids and increase their elimination. Furthermore, berberine and soybean proteins improve the cholesterol uptake in the liver. Policosanols, monacolins and bergamot inhibit hydroxy-methyl-glutaryl coenzyme A reductase (HMGCoA reductase) enzyme action determining the cholesterol hepatic synthesis. Moreover, pomegranate can decrease LDL oxidation and positively affect subclinical atherosclerosis; red yeast rice and berberine play, instead, an important role on endothelial dysfunction and psyllium, plant sterols and bergamot have positive effects on LDL subclasses. To the best of our knowledge, there are no long-term large-scale studies on the anti-atherogenic effect of the nutraceuticals that are available on the market. Thus, further clinical studies should investigate in order to achieve long term tolerability and safety and to provide a better nutraceutical combination tailored to the patient needs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Liu, Suwen; You, Lu; Zhao, Yuhua; Chang, Xuedong
2018-05-01
The hypocholesterolemic effect of Lonicera caerulea berry extract rich in polyphenols (LCBP) on high cholesterol-induced hypercholesterolemia and lipoprotein metabolite changes was examined in Caco-2 cells and rats. Cyanidin-3-glucoside, catechin, and chlorogenic acid are the major phenolic components of LCBP. The cholesterol-reducing effect and antioxidant capacity of these components were compared in Caco-2 cells. LCBP (80 μg/mL) and cyanidin-3-glucoside, catechin, and chlorogenic acid (50 μM) were found to be effective (p < 0.05). Rats were fed a high cholesterol diet (HCD) with or without LCBP supplementation (75, 150, and 300 mg/kg body weight intragastrically once daily) for 12 weeks. Compared with the HCD control group, LCBP supplementation at 150 and 300 mg/kg decreased the levels of TC, TG, and LDL-C, but increased that of HDL-C. LCBP treatment promoted greater neutral and acidic sterol excretion (p < 0.05) and improved the antioxidant capacity of the colon tissue, colon contents, and blood. Moreover, trimethylamine N-oxide (TMAO) levels were decreased in serum (p < 0.05). NPC1L1, ACAT2, and MTP mRNA and protein expression were reduced and ABCG5/8 expression was increased (p < 0.05) after LCBP treatment. Our results suggest that LCBP could be used as a functional food for the prevention and treatment of diseases related to excessive cholesterol accumulation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Valizadeh, Rohollah; Hosseini Askarabadi, Siroos; Karampour, Sedigheh; Abdolhamid Tehrani, Mona
2014-01-01
The present study aims to consider the effect of 10 weeks resistance trainings on cholesterol and blood triglyceride (TG) levels of patients with having fatty liver, aged 50 to 60 in National Iranian South Oil Company (NISOC). This research is practical and its plan has been done experimentally with pretest and post-test on experimental and control groups. In this study, 20 samples from 100 patients who referred to sonography clinic in NISOC with distinction of fatty liver were selected randomly and divided into two groups of control (n = 10) and experimental (n = 10). Cholesterol and blood trigly-ceride were measured as pretest. Test of normality for TG was (p = 0/200) by Kolmogorov-Smirnov and (p = 0/070) for cholesterol by Shapiro-Wilk test. After 10 weeks resistance trainings, the analysis and resolution of data were done by computer and SPSS (16) software as well as the descriptive and statistical methods (t-test). Comparison between these two groups showed that 8 weeks resistance trainings with a ≤ 0.05 causes significant decrease in the amount of TG but did not any significant effect on cholesterol of fatty liver patients. How to cite this article: Valizadeh R, Askarabadi SH, Karampour S, Tehrani MA. The Effect of 10 Weeks Resistance Training on Cholesterol and Blood Triglyceride Levels of Patients with Fatty Liver Disease. Euroasian J Hepato-Gastroenterol 2014;4(1):64-65.
Li, Sing-Chung; Liu, Yen-Hua; Liu, Jen-Fang; Chang, Wen-Hsin; Chen, Chiao-Ming; Chen, C-Y Oliver
2011-04-01
Almond consumption is associated with ameliorations in obesity, hyperlipidemia, hypertension, and hyperglycemia. The hypothesis of this 12-week randomized crossover clinical trial was that almond consumption would improve glycemic control and decrease the risk for cardiovascular disease in 20 Chinese patients with type 2 diabetes mellitus (T2DM) (9 male, 11 female; 58 years old; body mass index, 26 kg/m²) with mild hyperlipidemia. After a 2-week run-in period, patients were assigned to either a control National Cholesterol Education Program step II diet (control diet) or an almond diet for 4 weeks, with a 2-week washout period between alternative diets. Almonds were added to the control diet to replace 20% of total daily calorie intake. Addition of approximately 60 g almonds per day increased dietary intakes of fiber, magnesium, polyunsaturated fatty acid, monounsaturated fatty acid, and vitamin E. Body fat determined with bioelectrical impedance analysis was significantly lower in patients consuming almonds (almonds vs control: 29.6% vs 30.4%). The almond diet enhanced plasma α-tocopherol level by a median 26.8% (95% confidence intervals, 15.1-36.6) compared with control diet. Furthermore, almond intake decreased total cholesterol, low-density lipoprotein cholesterol, and the ratio of low-density lipoprotein cholesterol to high-density lipoprotein cholesterol by 6.0% (1.6-9.4), 11.6% (2.8-19.1), and 9.7% (0.3-20.9), respectively. Plasma apolipoprotein (apo) B levels, apo B/apo A-1 ratio, and nonesterified fatty acid also decreased significantly by 15.6% (5.1-25.4), 17.4% (2.8-19.9), and 5.5% (3.0-14.4), respectively. Compared with subjects in the control diet, those in the almond diet had 4.1% (0.9-12.5), 0.8% (0.4-6.3), and 9.2% (4.4-13.2) lower levels of fasting insulin, fasting glucose, and homeostasis model assessment of insulin resistance index, respectively. Our results suggested that incorporation of almonds into a healthy diet has beneficial effects on adiposity, glycemic control, and the lipid profile, thereby potentially decreasing the risk for cardiovascular disease in patients with type 2 diabetes mellitus. Copyright © 2011 Elsevier Inc. All rights reserved.
Jackowska, Paulina; Pytel, Edyta; Koter-Michalak, Maria; Olszewska-Banaszczyk, Małgorzata; Legęza, Aleksandra; Broncel, Marlena
2016-01-01
Erythrocytes play an important role in atherogenesis. An excessive accumulation of cholesterol in erythrocyte membranes leads to disruption of the erythrocytes. The aim of the study was to compare the effect of two different hypolipidemic therapies on the structure of erythrocyte membranes. The study included 18 patients with angiographic confirmed coronary artery disease who, despite at least 6 months of hypolipidemic treatment, had not achieved LDL-C < 70 mg/dL and 18 healthy individuals as the control group. The following parameters were studied: total cholesterol level and erythrocyte membrane fluidity, lipid peroxidation, SH groups in membrane protein and plasma lipids. We observed a decrease in TC (20%), LDL-C (35%), level of lipid peroxidation (25%) and total cholesterol in erythrocytes (23%), and an increase in HDL-C (8%) and erythrocyte membrane fluidity of subsurface layers (14%) after 6 months of 10 mg atorvastatin + 10 mg ezetimibe therapy, in comparison with healthy controls. In the group treated with 40 mg atorvastatin for 6 months, decreased LDL-C (23%), lipid peroxidation (37%) and membrane cholesterol concentration (18%) was noted, as well as an increase in erythrocyte membrane fluidity in the subsurface layers (12%). Both the combination therapy and the monotherapy lead to an improvement of erythrocyte membrane structure, whose parameters reached values close to those in the control healthy group.
Intermittent hypoxia induces hyperlipidemia in lean mice.
Li, Jianguo; Thorne, Laura N; Punjabi, Naresh M; Sun, Cheuk-Kwan; Schwartz, Alan R; Smith, Philip L; Marino, Rafael L; Rodriguez, Annabelle; Hubbard, Walter C; O'Donnell, Christopher P; Polotsky, Vsevolod Y
2005-09-30
Obstructive sleep apnea, a syndrome leading to recurrent intermittent hypoxia (IH), has been associated previously with hypercholesterolemia, independent of underlying obesity. We examined the effects of experimentally induced IH on serum lipid levels and pathways of lipid metabolism in the absence and presence of obesity. Lean C57BL/6J mice and leptin-deficient obese C57BL/6J-Lep(ob) mice were exposed to IH for five days to determine changes in serum lipid profile, liver lipid content, and expression of key hepatic genes of lipid metabolism. In lean mice, exposure to IH increased fasting serum levels of total cholesterol, high-density lipoprotein (HDL) cholesterol, phospholipids (PLs), and triglycerides (TGs), as well as liver TG content. These changes were not observed in obese mice, which had hyperlipidemia and fatty liver at baseline. In lean mice, IH increased sterol regulatory element binding protein 1 (SREBP-1) levels in the liver, increased mRNA and protein levels of stearoyl-coenzyme A desaturase 1 (SCD-1), an important gene of TG and PL biosynthesis controlled by SREBP-1, and increased monounsaturated fatty acid content in serum, which indicated augmented SCD-1 activity. In addition, in lean mice, IH decreased protein levels of scavenger receptor B1, regulating uptake of cholesterol esters and HDL by the liver. We conclude that exposure to IH for five days increases serum cholesterol and PL levels, upregulates pathways of TG and PL biosynthesis, and inhibits pathways of cholesterol uptake in the liver in the lean state but does not exacerbate the pre-existing hyperlipidemia and metabolic disturbances in leptin-deficient obesity.
[Relationship between hypothyroidism and cholesterol out of the records of 1756 patients].
Sampaolo, Guido; Campanella, Nando; Catozzo, Vania; Ferretti, Maurizio; Vichi, Giovanna; Morosini, Pierpaolo
2014-02-01
Subclinical hypothyroidism (SH) is settled whenever high levels of serum thyroid-stimulating hormone (TSH) are detected, whereas free thyroid hormone levels are within the normal range. Benefits and risks of therapy for SH have been debated for 2 decades. However, consensus has not yet been achieved. Besides preventing the progression to overt hypothyroidism, the decision of undertaking replacement therapy in SH is made mainly by basing on the risk of metabolic (dyslypidemia) and subsequent cardiovascular complications. A series, made up of 1756 patients (mean age 42,8±16,8, range 0,5-94) and filed from 1984 to 2013, was studied retrospectively. 169 patients were affected by clinical (overt) hypothyroidism (IC: TSH >40). 1587 patients were affected by SH, out of whom 1121 were mild (TSH <10) and 466 medium (TSH ≥ 10 ≤40). The series of patients was properly followed-up. The mean follow-up time was 6 years. In all patients TSH, Ft4, and total cholesterol were evaluated basally and after appropriate (TSH normalized) medical therapy. By medical replacement treatment, clinical hypothyroidism (CI) related hypercholesterolemia decreased significantly in 28%. In SH, the baseline serum cholesterol levels were wide. However, replacement treatment did not reduce such levels. No major cardiovascular accident occurred to any patient over the follow-up period. Hypercholesterolemia is certainly due to CI, therapy reduces cholesterol levels that not always fall below 200 mg/dl and this condition persists over time. SH is not characterized by hypercholesterolemia. Cholesterol levels in these patients are variable equal to the normal people and can not be reduced with thyroxine.
Fernández-Suárez, María E.; Escolà-Gil, Joan C.; Pastor, Oscar; Dávalos, Alberto; Blanco-Vaca, Francisco; Lasunción, Miguel A.; Martínez-Botas, Javier; Gómez-Coronado, Diego
2016-01-01
Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [3H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [3H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages. PMID:27601313
Duchnowicz, Piotr; Nowicka, Agnieszka; Koter-Michalak, Maria; Broncel, Marlena
2012-01-01
Summary Background Hypercholesterolemia increases cholesterol concentration in erythrocyte membranes, which results in decrease of membrane fluidity and decreases the deformability of red blood cells. The fruits of Arona melanocarpa contains many of polyphenols and other compounds that have beneficial health effects. Material/Methods The aim of the study was to estimate the influence of 2-month supplementation of extract from Aronia melanocarpa (100 mg Aronox, three times per day) on cholesterol concentration, lipid peroxidation, membrane fluidity, level of thiol groups and activity of ATPase in erythrocytes from patients with hypercholesterolemia. The study involved 25 patients with hypercholesterolemia without pharmacological treatment and 20 healthy individuals as a control group. Blood samples were collected before, and after 1 and 2 months of Aronia administration. Results The 2-month Aronia supplementation resulted in a decrease of cholesterol concentration (by 22%) and a decrease of lipid peroxidation (by 40%), and an increase of membrane fluidity. No statistically significant increase of the concentration of thiol groups and of ATPase activity were observed. Conclusions Our study shows that supplementation of extract from Aronia melanocarpa has a beneficial effect on rheological properties of erythrocytes. PMID:22936193
Delacrétaz, Aurélie; Vandenberghe, Frederik; Gholam-Rezaee, Mehdi; Saigi Morgui, Nuria; Glatard, Anaïs; Thonney, Jacques; Solida-Tozzi, Alessandra; Kolly, Stéphane; Gallo, Sylfa Fassassi; Baumann, Philipp; Berney, Sylvie; Zulauff, Sandrine Valloton; Aubry, Jean-Michel; Hasler, Roland; Ebbing, Karsten; von Gunten, Armin; Conus, Philippe; Eap, Chin B
Cardiovascular diseases and dyslipidemia represent a major health issue in psychiatry. Many psychotropic drugs can induce a rapid and substantial increase of blood lipid levels. This study aimed to determine the potential predictive power of an early change of blood lipid levels during psychotropic treatment on long-term change and on dyslipidemia development. Data were obtained from a prospective study including 181 psychiatric patients with metabolic parameters monitored during the first year of treatment and with adherence ascertained. Blood lipid levels (ie, total cholesterol [TC], low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol [HDL-C], non-high-density lipoprotein cholesterol [non-HDL-C], and fasting triglycerides [TGs]) were measured at baseline and after 1, 3, and/or 12 months of treatment. Receiver-operating characteristic analyses indicated that early (ie, after 1 month of psychotropic treatment) increases (≥5%) for TC, LDL-C, TG, and non-HDL-C and decrease (≥5%) for HDL-C were the best predictors for clinically relevant modifications of blood lipid levels after 3 months of treatment (≥30% TC, ≥40% LDL-C, ≥45% TG, ≥55% non-HDL-C increase, and ≥20% HDL-C decrease; sensitivity 70%-100%, specificity 53%-72%). Predictive powers of these models were confirmed by fitting longitudinal multivariate models in the same cohort (P ≤ .03) as well as in a replication cohort (n = 79; P ≤ .003). Survival models showed significantly higher incidences of new onset dyslipidemia (TC, LDL-C, and non-HDL-C hypercholesterolemia, HDL-C hypocholesterolemia, and hypertriglyceridemia) for patients with early changes of blood lipid levels compared to others (P ≤ .01). Early modifications of blood lipid levels following prescription of psychotropic drugs inducing dyslipidemia should therefore raise questions on clinical strategies to control long-term dyslipidemia. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Constantinides, Alexander; de Vries, Rindert; van Leeuwen, Jeroen J J; Gautier, Thomas; van Pelt, L Joost; Tselepis, Alexandros D; Lagrost, Laurent; Dullaart, Robin P F
2012-10-01
Plasma lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) levels predict incident cardiovascular disease, impacting Lp-PLA(2) as an emerging therapeutic target. We determined Lp-PLA(2) responses to statin and fibrate administration in type 2 diabetes mellitus, and assessed relationships of changes in Lp-PLA(2) with subclinical inflammation and lipoprotein characteristics. A placebo-controlled cross-over study (three 8-week treatment periods with simvastatin (40 mg daily), bezafibrate (400mg daily) and their combination) was carried out in 14 male type 2 diabetic patients. Plasma Lp-PLA(2) mass was measured by turbidimetric immunoassay. Plasma Lp-PLA(2) decreased (-21 ± 4%) in response to simvastatin (p<0.05 from baseline and placebo), but was unaffected by bezafibrate (1 ± 5%). The drop in Lp-PLA(2) during combined treatment (-17 ± 3%, p<0.05) was similar compared to that during simvastatin alone. The Lp-PLA(2) changes during the 3 active lipid lowering treatment periods were related positively to baseline levels of high sensitive C-reactive protein, non-HDL cholesterol, triglycerides, the total cholesterol/HDL cholesterol ratio and less LDL electronegativity (p<0.02 to p<0.01), and inversely to baseline Lp-PLA(2) (p<0.01). LpPLA(2) responses correlated inversely with changes in non-HDL cholesterol, triglycerides and the total cholesterol/HDL cholesterol ratio during treatment (p<0.05 to p<0.02). In type 2 diabetes mellitus, plasma Lp-PLA(2) is likely to be lowered by statin treatment only. Enhanced subclinical inflammation and more severe dyslipidemia may predict diminished LpPLA(2) responses during lipid lowering treatment, which in turn appear to be quantitatively dissociated from decreases in apolipoprotein B lipoproteins. Conventional lipid lowering treatment may be insufficient for optimal LpPLA(2) lowering in diabetes mellitus. Copyright © 2012 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Cholesterol-Independent Effects of Methyl-β-Cyclodextrin on Chemical Synapses
Ormerod, Kiel G.; Coorssen, Jens R.; Mercier, A. Joffre
2012-01-01
The cholesterol chelating agent, methyl-β-cyclodextrin (MβCD), alters synaptic function in many systems. At crayfish neuromuscular junctions, MβCD is reported to reduce excitatory junctional potentials (EJPs) by impairing impulse propagation to synaptic terminals, and to have no postsynaptic effects. We examined the degree to which physiological effects of MβCD correlate with its ability to reduce cholesterol, and used thermal acclimatization as an alternative method to modify cholesterol levels. MβCD impaired impulse propagation and decreased EJP amplitude by 40% (P<0.05) in preparations from crayfish acclimatized to 14°C but not from those acclimatized to 21°C. The reduction in EJP amplitude in the cold-acclimatized group was associated with a 49% reduction in quantal content (P<0.05). MβCD had no effect on input resistance in muscle fibers but decreased sensitivity to the neurotransmitter L-glutamate in both warm- and cold-acclimatized groups. This effect was less pronounced and reversible in the warm-acclimatized group (90% reduction in cold, P<0.05; 50% reduction in warm, P<0.05). MβCD reduced cholesterol in isolated nerve and muscle from cold- and warm-acclimatized groups by comparable amounts (nerve: 29% cold, 25% warm; muscle: 20% cold, 18% warm; P<0.05). This effect was reversed by cholesterol loading, but only in the warm-acclimatized group. Thus, effects of MβCD on glutamate-sensitivity correlated with its ability to reduce cholesterol, but effects on impulse propagation and resulting EJP amplitude did not. Our results indicate that MβCD can affect both presynaptic and postsynaptic properties, and that some effects of MβCD are unrelated to cholesterol chelation. PMID:22590538
The PPARα/γ dual agonist chiglitazar improves insulin resistance and dyslipidemia in MSG obese rats
Li, Ping-Ping; Shan, Song; Chen, Yue-Teng; Ning, Zhi-Qiang; Sun, Su-Juan; Liu, Quan; Lu, Xian-Ping; Xie, Ming-Zhi; Shen, Zhu-Fang
2006-01-01
The aim of this study was to investigate the capacity of chiglitazar to improve insulin resistance and dyslipidemia in monosodium L-glutamate (MSG) obese rats and to determine whether its lipid-lowering effect is mediated through its activation of PPARα. Chiglitazar is a PPARα/γ dual agonist. The compound improved impaired insulin and glucose tolerance; decreased plasma insulin level and increased the insulin sensitivity index and decreased HOMA index. Euglycemic hyperinsulinemic clamp studies showed chiglitazar increased the glucose infusion rate in MSG obese rats. Chiglitazar inhibited alanine gluconeogenesis, lowered the hepatic glycogen level in MSG obese rats. Like rosiglitazone, chiglitazar promoted the differentiation of adipocytes and decreased the maximal diameter of adipocytes. In addition, chiglitazar decreased the fibrosis and lipid accumulation in the islets and increased the size of islets. Chiglitazar reduced plasma triglyceride, total cholesterol (TCHO), nonesterified fatty acids (NEFA) and low density lipoprotein-cholesterol levels; lowered hepatic triglyceride and TCHO contents; decreased muscular NEFA level. Unlike rosiglitazone, chiglitazar showed significant increase of mRNA expression of PPARα, CPT1, BIFEZ, ACO and CYP4A10 in the liver of MSG obese rats. These data suggest that PPARα/γ coagonist, such as chiglitazar, affect lipid homeostasis with different mechanisms from rosiglitazone, chiglitazar may have better effects on lipid homeostasis in diabetic patients than selective PPARγ agonists. PMID:16751799
Kołodziejski, Paweł A; Pruszyńska-Oszmałek, Ewa; Strowski, Mathias Z; Nowak, Krzysztof W
2017-06-01
Obestatin and ghrelin are peptides encoded by the preproghrelin gene. Obestatin inhibits food intake, in addition to regulation of glucose and lipid metabolism. Here, we test the ability of obestatin at improving metabolic control and liver function in type 2 diabetic animals (type 2 diabetes mellitus). The effects of chronic obestatin treatment of mice with experimentally induced type 2 diabetes mellitus on serum levels of glucose and lipids, and insulin sensitivity are characterized. In addition, alterations of hepatic lipid and glycogen contents are evaluated. Obestatin reduced body weight and decreased serum glucose, fructosamine, and β-hydroxybutyrate levels, as well as total and low-density lipoprotein fractions of cholesterol. In addition, obestatin increased high-density lipoproteins cholesterol levels and enhanced insulin sensitivity in mice with type 2 diabetes mellitus. Moreover, obestatin diminished liver mass, hepatic triglycerides and cholesterol contents, while glycogen content was higher in livers of healthy and mice with type 2 diabetes mellitus treated with obestatin. These changes were accompanied by reduction of increased alanine aminotransferase, aspartate aminotransferase, and gamma glutamyl transpeptidase in T2DM mice with type 2 diabetes mellitus. Obestatin increased adiponectin levels and reduced leptin concentration. Obestatin influenced the expression of genes involved in lipid and carbohydrate metabolism by increasing Fabp5 and decreasing G6pc, Pepck, Fgf21 mRNA in the liver. Obestatin increased both, AKT and AMPK phosphorylation, and sirtuin 1 (SIRT1) protein levels as well as mRNA expression in the liver. Obestatin improves metabolic abnormalities in type 2 diabetes mellitus, restores hepatic lipid contents and decreases hepatic enzymes. Therefore, obestatin could potentially have a therapeutic relevance in treating of insulin resistance and metabolic dysfunctions in type 2 diabetes mellitus.
Lycopene attenuates dichlorvos-induced oxidative damage and hepatotoxicity in rats.
El-Saad, Am Abu; Ibrahim, M M; Hazani, A A; El-Gaaly, G A
2016-06-01
Because of the widespread use of dichlorvos (DDVP) for domestic applications, evaluation of their toxic effects is of major concern to public health. Lycopene may lower oxidative stress by a mechanism that is not fully elucidated. The present study was undertaken to evaluate the protective efficacy of lycopene in terms of normalization of altered biochemical parameters following DDVP treatment in rats. Animals were divided into four groups. The first group was used as control, while groups 2, 3, and 4 were orally treated with lycopene (10 mg kg(-1) body weight (b.w.)), DDVP (1.6 mg kg(-1) b.w.), and DDVP plus lycopene, respectively. Results showed that oral administration of DDVP for 30 days increased the levels of lipid peroxidation markers such as malondialdehyde, 4-hydroxynonanal, and protein carbonyl content in liver. Also, a decrease in levels of vitamin C, vitamin E, and reduced glutathione was detected due to DDVP administration. These were accompanied by a decrease in the activities of antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase in the liver tissue. Moreover, DDVP increased the activities of serum transaminases, alkaline phosphatase, lactate dehydrogenase, and lipoxygenase, and the levels of bilirubin, total cholesterol, low-density lipoprotein cholesterol, triglyceride and DNA-protein crosslinks, and 8-hydroxy-2-deoxyguanosine, while decreased the level of high-density lipoprotein cholesterol. Our results provide new insights into the biochemical studies of relation between DDVP hepatotoxicity and lycopene treatment. Administration of lycopene to DDVP-treated rats reverted the status of hepatic markers to near-normal levels. These data suggest that lycopene can protect against the liver damage induced by DDVP. © The Author(s) 2015.
Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Oude Elferink, Ronald P. J.; Kuipers, Folkert; Groen, Albert K.
2009-01-01
Peroxisome proliferator-activated receptor delta (PPARδ) is involved in regulation of energy homeostasis. Activation of PPARδ markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased hepatobiliary cholesterol secretion, nor by reduced cholesterol absorption. To test the hypothesis that PPARδ activation leads to stimulation of transintestinal cholesterol efflux (TICE), we quantified it by intestine perfusions in FVB mice treated with PPARδ agonist GW610742. To exclude the effects on cholesterol absorption, mice were also treated with cholesterol absorption inhibitor ezetimibe or ezetimibe/GW610742. GW601742 treatment had little effect on plasma lipid levels but stimulated both fecal neutral sterol excretion (∼200%) and TICE (∼100%). GW610742 decreased intestinal Npc1l1 expression but had no effect on Abcg5/Abcg8. Interestingly, expression of Rab9 and LIMPII, encoding proteins involved in intracellular cholesterol trafficking, was increased upon PPARδ activation. Although treatment with ezetimibe alone had no effect on TICE, it reduced the effect of GW610742 on TICE. These data show that activation of PPARδ stimulates fecal cholesterol excretion in mice, primarily by the two-fold increase in TICE, indicating that this pathway provides an interesting target for the development of drugs aiming at the prevention of atherosclerosis. PMID:19439761
Novel natural food colourant G8000 benefits LDL- and HDL-cholesterol in humans.
Peres, Rogerio Correa; Gollücke, Andrea Pitelli Boiago; Soares, Clayton; Machado, Patricia; Viveiros Filho, Vitor; Rocha, Silvana; Morais, Damila Rodrigues; Bataglion, Giovana Anceski; Eberlin, Marcos Nogueira; Ribeiro, Daniel Araki
2015-01-01
The aim of this study was to investigate the phenolic composition of a natural food colourant (G8000™) as well as its effects on plasma markers after 28-day consumption by healthy individuals at a dietary dose (70 g). Parameters of total cholesterol and its fractions, triglycerides and plasma enzymes biomarkers of muscle injury were measured. Major compounds identified in G8000™ by ESI-MS showed the presence of anthocyanins, organic acids, phenolic acids as well as monosaccharides. HDL levels significantly increased from 43 ± 10.2 mg/dL to 95 ± 16.9 mg/dL. LDL levels significantly decreased from 110 ± 40.9 mg/dL to 69 ± 39 mg/dL (p < 0.001). No significant statistical differences (p > 0.05) were observed for total cholesterol, triglycerides and VLDL. After the intake, plasma enzyme CK-MB decreased from 20 ± 12.1 U/L to 10 ± 1.9 U/L while LDH levels increased from 275 ± 124.4 U/L to 317 ± 114.7 U/L (p < 0.005). No significant differences were observed for CK levels. Taken together, dietary intake of natural colourant G8000™ was able to exert beneficial effects on atherosclerosis biomarkers.
VLDL metabolism in rats is affected by the concentration and source of dietary protein.
Madani, Sihem; Prost, Josiane; Narce, Michel; Belleville, Jacques
2003-12-01
The present study was designed to determine if changes in dietary protein level and source are related to changes in VLDL lipid concentrations and VLDL binding by hepatic membranes and isolated hepatocytes. Male Wistar rats were fed cholesterol-free diets containing 10, 20 or 30 g/100 g casein or highly purified soybean protein for 4 wk. Hepatic, plasma and VLDL lipids, VLDL apo B-100 and VLDL uptake by isolated hepatocytes and VLDL binding to hepatic membrane were determined. Increasing casein or soybean protein level (from 10 to 30 g/100 g) in the diet increased VLDL apo B-100, indicating an increase in the number of VLDL particles. VLDL uptake by isolated hepatocytes and VLDL binding to hepatic membrane increased when the protein level increased from 10 to 20 g/100 g in the diet and decreased with 30 g/100 g protein, regardless of protein type. The dietary protein source did not affect plasma total cholesterol concentrations at any protein level. Feeding 20 g/100 g soybean protein compared with casein lowered plasma triglyceride concentrations and VLDL number as measured by decreased VLDL-protein, -phospholipid, -triglyceride, -cholesterol and -apo B-100. VLDL uptake by isolated hepatocytes and VLDL binding to hepatic membrane were higher in rats fed soybean protein than those fed casein. The higher VLDL uptake could be responsible for the hypotriglyceridemia in rats fed soybean protein.
Nuñez-Garcia, Maitane; Gomez-Santos, Beatriz; Buqué, Xabier; García-Rodriguez, Juan L; Romero, Marta R; Marin, Jose J G; Arteta, Beatriz; García-Monzón, Carmelo; Castaño, Luis; Syn, Wing-Kin; Fresnedo, Olatz; Aspichueta, Patricia
2017-09-01
Osteopontin (OPN) is involved in different liver pathologies in which metabolic dysregulation is a hallmark. Here, we investigated whether OPN could alter liver, and more specifically hepatocyte, lipid metabolism and the mechanism involved. In mice, lack of OPN enhanced cholesterol 7α-hydroxylase (CYP7A1) levels and promoted loss of phosphatidylcholine (PC) content in liver; in vivo treatment with recombinant (r)OPN caused opposite effects. rOPN directly decreased CYP7A1 levels through activation of focal adhesion kinase-AKT signaling in hepatocytes. PC content was also decreased in OPN-deficient (OPN-KO) hepatocytes in which de novo FA and PC synthesis was lower, whereas cholesterol (CHOL) synthesis was higher, than in WT hepatocytes. In vivo inhibition of cholesterogenesis normalized liver PC content in OPN-KO mice, demonstrating that OPN regulates the cross-talk between liver CHOL and PC metabolism. Matched liver and serum samples showed a positive correlation between serum OPN levels and liver PC and CHOL concentration in nonobese patients with nonalcoholic fatty liver. In conclusion, OPN regulates CYP7A1 levels and the metabolic fate of liver acetyl-CoA as a result of CHOL and PC metabolism interplay. The results suggest that CYP7A1 is a main axis and that serum OPN could disrupt liver PC and CHOL metabolism, contributing to nonalcoholic fatty liver disease progression in nonobese patients.
Barrientos, Genaro; Llanos, Paola; Hidalgo, Jorge; Bolaños, Pura; Caputo, Carlo; Riquelme, Alexander; Sánchez, Gina; Quest, Andrew F. G.; Hidalgo, Cecilia
2015-01-01
Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation–contraction (E–C) coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum (SR) calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not SR membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX) activity and protein content of NOX2 subunits (p47phox and gp91phox), implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs E–C coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged animals. PMID:25914646
Nicolas, Xavier; Djebli, Nassim; Rauch, Clémence; Brunet, Aurélie; Hurbin, Fabrice; Martinez, Jean-Marie; Fabre, David
2018-05-03
Alirocumab, a human monoclonal antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9), significantly lowers low-density lipoprotein cholesterol levels. This analysis aimed to develop and qualify a population pharmacokinetic/pharmacodynamic model for alirocumab based on pooled data obtained from 13 phase I/II/III clinical trials. From a dataset of 2799 individuals (14,346 low-density lipoprotein-cholesterol values), individual pharmacokinetic parameters from the population pharmacokinetic model presented in Part I of this series were used to estimate alirocumab concentrations. As a second step, we then developed the current population pharmacokinetic/pharmacodynamic model using an indirect response model with a Hill coefficient, parameterized with increasing low-density lipoprotein cholesterol elimination, to relate alirocumab concentrations to low-density lipoprotein cholesterol values. The population pharmacokinetic/pharmacodynamic model allowed the characterization of the pharmacokinetic/pharmacodynamic properties of alirocumab in the target population and estimation of individual low-density lipoprotein cholesterol levels and derived pharmacodynamic parameters (the maximum decrease in low-density lipoprotein cholesterol values from baseline and the difference between baseline low-density lipoprotein cholesterol and the pre-dose value before the next alirocumab dose). Significant parameter-covariate relationships were retained in the model, with a total of ten covariates (sex, age, weight, free baseline PCSK9, total time-varying PCSK9, concomitant statin administration, total baseline PCSK9, co-administration of high-dose statins, disease status) included in the final population pharmacokinetic/pharmacodynamic model to explain between-subject variability. Nevertheless, the high number of covariates included in the model did not have a clinically meaningful impact on model-derived pharmacodynamic parameters. This model successfully allowed the characterization of the population pharmacokinetic/pharmacodynamic properties of alirocumab in its target population and the estimation of individual low-density lipoprotein cholesterol levels.
Martina, Valentino; Benso, Andrea; Gigliardi, Valentina Ramella; Masha, Andi; Origlia, Carla; Granata, Riccarda; Ghigo, Ezio
2006-03-01
Several clinical and population-based studies suggest that dehydroepiandrosterone (DHEA) and its sulphate (DHEA-S) play a protective role against atherosclerosis and coronary artery disease in human. However, the mechanisms underlying this action are still unknown. It has recently been suggested that DHEA-S could delay atheroma formation through an increase in nitric oxide (NO) production. Twenty-four aged male subjects [age (mean +/- SEM): 65.4 +/- 0.7 year; range: 58.2-67.6 years] underwent a blinded placebo controlled study receiving DHEA (50 mg p.o. daily at bedtime) or placebo for 2 months. Platelet cyclic guanosine-monophosphate (cGMP) concentration (as marker of NO production) and serum levels of DHEA-S, DHEA, IGF-I, insulin, glucose, oestradiol (E(2)), testosterone, plasminogen activator inhibitor (PAI)-1 antigen (PAI-1 Ag), homocysteine and lipid profile were evaluated before and after the 2-month treatment with DHEA or placebo. At the baseline, all variables in the two groups were overlapping. All parameters were unchanged after treatment with placebo. Conversely, treatment with DHEA (a) increased (P < 0.001 vs. baseline) platelet cGMP (111.9 +/- 7.1 vs. 50.1 +/- 4.1 fmol/10(6) plts), DHEA-S (13.6 +/- 0.8 vs. 3.0 +/- 0.3 micromol/l), DHEA (23.6 +/- 1.7 vs. 15.3 +/- 1.4 nmol/l), testosterone (23.6 +/- 1.0 vs. 17.7 +/- 1.0 nmol/l) and E(2) (72.0 +/- 5.0 vs. 60.0 +/- 4.0 pmol/l); and (b) decreased (P < 0.05 vs. baseline) PAI-1 Ag (27.4 +/- 3.8 vs. 21.5 +/- 2.5 ng/ml) and low-density lipoprotein (LDL) cholesterol (3.4 +/- 0.2 vs. 3.0 +/- 0.2 mmol/l). IGF-I, insulin, glucose, triglycerides, total cholesterol, HDL cholesterol, HDL2 cholesterol, HDL3 cholesterol, apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB) and homocysteine levels were not modified by DHEA treatment. This study shows that short-term treatment with DHEA increased platelet cGMP production, a marker of NO production, in healthy elderly subjects. This effect is coupled with a decrease in PAI-1 and LDL cholesterol levels as well as an increase in testosterone and E(2) levels. These findings, therefore, suggest that chronic DHEA supplementation would exert antiatherogenic effects, particularly in elderly subjects who display low circulating levels of this hormone.
Bay leaves improve glucose and lipid profile of people with type 2 diabetes.
Khan, Alam; Zaman, Goher; Anderson, Richard A
2009-01-01
Bay leaves (Laurus nobilis) have been shown to improve insulin function in vitro but the effects on people have not been determined. The objective of this study was to determine if bay leaves may be important in the prevention and/or alleviation of type 2 diabetes. Forty people with type 2 diabetes were divided into 4 groups and given capsules containing 1, 2 or 3 g of ground bay leaves per day for 30 days or a placebo followed by a 10 day washout period. All three levels of bay leaves reduced serum glucose with significant decreases ranging from 21 to 26% after 30 d. Total cholesterol decreased, 20 to 24%, after 30 days with larger decreases in low density lipoprotein (LDL) cholesterol of 32 to 40%. High density lipoprotein (HDL) cholesterol increased 29 and 20% in the groups receiving 1 and 2 g of bay leaves, respectively. Triglycerides also decreased 34 and 25% in groups consuming 1 and 2 g of bay leaves, respectively, after 30 d. There were no significant changes in the placebo group. In summary, this study demonstrates that consumption of bay leaves, 1 to 3 g/d for 30 days, decreases risk factors for diabetes and cardiovascular diseases and suggests that bay leaves may be beneficial for people with type 2 diabetes.
Phytosterol plasma concentrations and coronary heart disease in the prospective Spanish EPIC cohort
Escurriol, Verónica; Cofán, Montserrat; Moreno-Iribas, Concepción; Larrañaga, Nerea; Martínez, Carmen; Navarro, Carmen; Rodríguez, Laudina; González, Carlos A.; Corella, Dolores; Ros, Emilio
2010-01-01
Phytosterol intake with natural foods, a measure of healthy dietary choices, increases plasma levels, but increased plasma phytosterols are believed to be a coronary heart disease (CHD) risk factor. To address this paradox, we evaluated baseline risk factors, phytosterol intake, and plasma noncholesterol sterol levels in participants of a case control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) Spanish cohort who developed CHD (n = 299) and matched controls (n = 584) who remained free of CHD after a 10 year follow-up. Sitosterol-to-cholesterol ratios increased across tertiles of phytosterol intake (P = 0.026). HDL-cholesterol level increased, and adiposity measures, cholesterol/HDL ratios, and levels of glucose, triglycerides, and lathosterol, a cholesterol synthesis marker, decreased across plasma sitosterol tertiles (P < 0.02; all). Compared with controls, cases had nonsignificantly lower median levels of phytosterol intake and plasma sitosterol. The multivariable-adjusted odds ratio for CHD across the lowest to highest plasma sitosterol tertile was 0.59 (95% confidence interval, 0.36–0.97). Associations were weaker for plasma campesterol. The apolipoprotein E genotype was unrelated to CHD risk or plasma phytosterols. The data suggest that plasma sitosterol levels are associated with a lower CHD risk while being markers of a lower cardiometabolic risk in the EPIC-Spain cohort, a population with a high phytosterol intake. PMID:19786566
Barley β-glucan reduces blood cholesterol levels via interrupting bile acid metabolism.
Wang, Yanan; Harding, Scott V; Thandapilly, Sijo J; Tosh, Susan M; Jones, Peter J H; Ames, Nancy P
2017-11-01
Underlying mechanisms responsible for the cholesterol-lowering effect of β-glucan have been proposed, yet have not been fully demonstrated. The primary aim of this study was to determine whether the consumption of barley β-glucan lowers cholesterol by affecting the cholesterol absorption, cholesterol synthesis or bile acid synthesis. In addition, this study was aimed to assess whether the underlying mechanisms are related to cholesterol 7α hydroxylase (CYP7A1) SNP rs3808607 as proposed by us earlier. In a controlled, randomised, cross-over study, participants with mild hypercholesterolaemia (n 30) were randomly assigned to receive breakfast containing 3 g high-molecular weight (HMW), 5 g low-molecular weight (LMW), 3 g LMW barley β-glucan or a control diet, each for 5 weeks. Cholesterol absorption was determined by assessing the enrichment of circulating 13C-cholesterol over 96 h following oral administration; fractional rate of synthesis for cholesterol was assessed by measuring the incorporation rate of 2H derived from deuterium oxide within the body water pool into the erythrocyte cholesterol pool over 24 h; bile acid synthesis was determined by measuring serum 7α-hydroxy-4-cholesten-3-one concentrations. Consumption of 3 g HMW β-glucan decreased total cholesterol (TC) levels (P=0·029), but did not affect cholesterol absorption (P=0·25) or cholesterol synthesis (P=0·14). Increased bile acid synthesis after consumption of 3 g HMW β-glucan was observed in all participants (P=0·049), and more pronounced in individuals carrying homozygous G of rs3808607 (P=0·033). In addition, a linear relationship between log (viscosity) of β-glucan and serum 7α-HC concentration was observed in homozygous G allele carriers. Results indicate that increased bile acid synthesis rather than inhibition of cholesterol absorption or synthesis may be responsible for the cholesterol-lowering effect of barley β-glucan. The pronounced TC reduction in G allele carriers of rs3808607 observed in the previous study may be due to enhanced bile acid synthesis in response to high-viscosity β-glucan consumption in those individuals.
Hwang, Ji Hye; Kang, Seok Yong; Kang, An Na; Jung, Hyo Won; Jung, Chul; Jeong, Jin-Ho; Park, Yong-Ki
2017-12-15
In this study, we evaluated the therapeutic effect of MOK, a pharmacopuncture medicine, on thyroid dysfunction in L-thyroxin (LT4)-induced hyperthyroidism rats. The experimental hyperthyroidism model was prepared by the intraperitoneal injection of LT4 (0.5 mg/kg) once daily for 2 weeks in SD rats. MOK extract was injected at doses of 0.3 or 3 mg/kg on acupuncture points in the thyroid glands of LT4-induced hypothyroidism rats once a day for 2 weeks. The body temperature, body weight, and food/water intake were measured once a week for 2 weeks. The levels of thyroid hormones, total cholesterol, LDL-cholesterol, GOT, and GPT were measured in the sera of rats using ELISA and an automatic blood analyzer. The histological changes of thyroid tissues were observed by H&E staining. The expression of thermo-regulating protein, TRPV1 was determined by western blot in dorsal root ganglion (DRG) and brain tissues. We also measured the contents of GSH in the liver and antioxidant enzymes, SOD, and catalase in the liver, heart, and brain tissues by enzyme-based assay and Western blot, respectively. The acupuncture of MOK extract on the thyroid gland of LT4-induced hyperthyroidism rats significantly decreased the body temperature, and did not change body weight and food and water intakes. MOK acupuncture significantly increased the level of TSH, and decreased the levels of T3 and T4 in hyperthyroidism rats. The expression of TRPV1 was inhibited in both DRG and brain tissues after MOK acupuncture, and the levels of GOT, GPT, total cholesterol, and LDL-cholesterol were also decreased. MOK acupuncture also inhibited the pathological feature with follicular lining epithelial thicknesses and increased follicular colloid depositions in the thyroid glands of hypothyroidism. MOK acupuncture significantly increased hepatic GSH levels and decreased the expression of SOD and catalase in the liver, heart, and brain tissues of hyperthyroidism rats. These results suggest that the pharmacopuncture with MOK extract in hyperthyroidism can improve the pathophysiological changes through regulating the body temperature, thyroid hormones imbalance, lipid accumulation, and oxidation. This anti-hyperthyroidism effect of MOK pharmacopuncture is thought to be related to the control of thermo-regulating protein TRPV1 in DRG and brain.
Merkel, Martin; Velez-Carrasco, Wanda; Hudgins, Lisa C.; Breslow, Jan L.
2001-01-01
Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway. PMID:11606787
de Luis, Daniel Antonio; Izaola, Olatz; de la Fuente, Beatriz; Primo, David; Romero, Enrique
2015-01-01
It has been found that the expression of fatty acid-binding protein 2 gene mRNA is under dietary control. The polymorphism Ala54Thr of this protein was associated with high insulin resistance. The aim of our study was to investigate the influence of Thr54 polymorphism on metabolic response, weight loss and serum adipokine levels secondary to high-protein/low-carbohydrate vs. standard hypocaloric diets during 9 months. A population of 193 obese subjects was analyzed in a randomized trial. A nutritional evaluation was performed at the beginning and at the end of a 9-month period in which subjects received 1 of 2 diets (diet HP: high-protein/low-carbohydrate vs. diet S: standard diet). With both diets and in both genotype groups, body mass index, weight, fat mass, waist circumference, systolic blood pressure and leptin levels decreased. With both diets and only in wild genotype (diet HP vs. diet S), glucose (-6.2 ± 2.1 vs. -4.9 ± 2.0 mg/dl; p < 0.05), insulin levels (-5.0 ± 3.9 vs. -2.0 ± 2.1 UI/l; p < 0.05), homeostasis model assessment for insulin resistance (HOMA-R) (-1.1 ± 0.9 vs. -0.7 ± 1.0 units; p < 0.05) decreased. The improvement in these parameters was higher with diet HP than HS. With both diets and only in the wild genotype, total cholesterol and LDL-total cholesterol levels decreased. Carriers of Thr54 allele have a different metabolic response after weight loss than wild type non-A carriers obese, with a lack of decrease of LDL-cholesterol, glucose, insulin levels and HOMA-R. © 2015 S. Karger AG, Basel.
Merkel, M; Velez-Carrasco, W; Hudgins, L C; Breslow, J L
2001-11-06
Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway.
Wu, Chongming; Luan, Hong; Zhang, Xue; Wang, Shuai; Zhang, Xiaopo; Sun, Xiaobo; Guo, Peng
2014-01-01
Chlorogenic acid (CGA) is one of the most abundant polyphenols in the human diet and is suggested to be a potential antiatherosclerotic agent due to its proposed hypolipidemic, anti-inflammatory and antioxidative properties. The aim of this study was to evaluate the effect of CGA on atherosclerosis development in ApoE−/− mice and its potential mechanism. ApoE−/− mice were fed a cholesterol-rich diet without (control) or with CGA (200 and 400 mg/kg) or atorvastatin (4 mg/kg) for 12 weeks. During the study plasma lipid and inflammatory parameters were determined. Treatment with CGA (400 mg/kg) reduced atherosclerotic lesion area and vascular dilatation in the aortic root, comparable to atorvastatin. CGA (400 mg/kg) also significantly decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol as well as inflammatory markers. Supplementation with CGA or CGA metabolites-containing serum suppressed oxidized low-density lipoprotein (oxLDL)-induced lipid accumulation and stimulated cholesterol efflux from RAW264.7 cells. CGA significantly increased the mRNA levels of PPARγ, LXRα, ABCA1 and ABCG1 as well as the transcriptional activity of PPARγ. Cholesterol efflux assay showed that three major metabolites, caffeic, ferulic and gallic acids, significantly stimulated cholesterol efflux from RAW264.7 cells. These results suggest that CGA potently reduces atherosclerosis development in ApoE−/− mice and promotes cholesterol efflux from RAW264.7 macrophages. Caffeic, ferulic and gallic acids may be the potential active compounds accounting for the in vivo effect of CGA. PMID:25187964
[Dyslipidemia in schoolchildren with a history of a high birth weight].
Rodríguez Vargas, Nuris; Martínez Pérez, Tania P; Martínez García, Rolando; Garriga Reyes, Mailin; Ortega Soto, Manuel; Rojas, Teresa
2014-01-01
The process of atherosclerosis begins at early ages and is closely related to plasma lipid levels, specifically, an increase in low density lipoprotein (LDL), very low density lipoprotein (VLDL), and a decrease in high density lipoprotein (HDL). To determine if high birth weight, or macrosomia, is of predictive value for dyslipidemia in school children. A descriptive study with a case control design was conducted on two groups of children; one group of 140 children with a history of macrosomia, and another group of 100 children with normal weight at birth, born between January 1992 and December 1995. The aim was the early identification of atherosclerotic risk factors in school children with high weight at birth. Anthropometric variables and lipid profile were studied (cholesterol, HDL-cholesterol, LDL-cholesterol, VLDL-cholesterol, and triglycerides). There were significant differences between the mean weights of the two groups. There were no significant statistical differences between the two groups in the cholesterol levels (93.57% normal and 6.43% abnormal in the study group, and 90.00% normal and 10.00% abnormal in the control group), or in the values of HDL cholesterol. LDL cholesterol was abnormal in more children in the control group, and abnormal values of triglycerides were observed in 14.00% of cases in the study group 0.00% in the control group. High birth weight is not a predictive factor for hypercholesterolemia or HDL and LDL-cholesterol esters, but is positive for triglycerides in our study. Copyright © 2014 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.
Wu, Chongming; Luan, Hong; Zhang, Xue; Wang, Shuai; Zhang, Xiaopo; Sun, Xiaobo; Guo, Peng
2014-01-01
Chlorogenic acid (CGA) is one of the most abundant polyphenols in the human diet and is suggested to be a potential antiatherosclerotic agent due to its proposed hypolipidemic, anti-inflammatory and antioxidative properties. The aim of this study was to evaluate the effect of CGA on atherosclerosis development in ApoE(-/-) mice and its potential mechanism. ApoE(-/-) mice were fed a cholesterol-rich diet without (control) or with CGA (200 and 400 mg/kg) or atorvastatin (4 mg/kg) for 12 weeks. During the study plasma lipid and inflammatory parameters were determined. Treatment with CGA (400 mg/kg) reduced atherosclerotic lesion area and vascular dilatation in the aortic root, comparable to atorvastatin. CGA (400 mg/kg) also significantly decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol as well as inflammatory markers. Supplementation with CGA or CGA metabolites-containing serum suppressed oxidized low-density lipoprotein (oxLDL)-induced lipid accumulation and stimulated cholesterol efflux from RAW264.7 cells. CGA significantly increased the mRNA levels of PPARγ, LXRα, ABCA1 and ABCG1 as well as the transcriptional activity of PPARγ. Cholesterol efflux assay showed that three major metabolites, caffeic, ferulic and gallic acids, significantly stimulated cholesterol efflux from RAW264.7 cells. These results suggest that CGA potently reduces atherosclerosis development in ApoE(-/-) mice and promotes cholesterol efflux from RAW264.7 macrophages. Caffeic, ferulic and gallic acids may be the potential active compounds accounting for the in vivo effect of CGA.
Chou, Ting-Yi; Lu, Yi-Fa; Inbaraj, Baskaran Stephen; Chen, Bing-Huei
2018-02-07
The aim of this study was to examine the effects of several vegetable oils and blended oil composed of soybean and camellia oils on blood lipid reduction and antioxidative activity. Forty male hamsters were fed an AIN-93 G diet for 1 wk, followed by dividing into five groups: control group-1 was fed a low-fat diet containing 5% oil for 6 wk, and the other four groups were fed high-fat diets with group-2 containing 14% palm oil, group-3 containing 14% camellia oil, group-4 containing 14% soybean oil, and group-5 containing 14% blended oil (8.4% soybean oil and 5.6% camellia oil) along with 0.2% cholesterol and 0.1% bile acid. High-fat diets raised serum triacylglycerol, total cholesterol, and aspartate aminotransferase in hamsters without affecting alanine aminotransferase. Compared with palm oil-containing diet, the other three high-fat diets reduced serum total cholesterol, low-density lipoprotein cholesterol, and the ratio of low-density lipoprotein to high-density lipoprotein cholesterol with an opposite trend for liver total cholesterol. However, compared with the control group, the serum high-density lipoprotein cholesterol level was raised for all four high-fat diets. The higher the degree of oil unsaturation, the higher the serum thiobarbituric acid reactive substances and the lower the liver triacylglycerol level and activities of fatty acid synthase, glucose 6-phosphate dehydrogenase, and malic enzymes. Both soybean and blended oils lowered the antioxidative activity of liver. Camellia and blended oils were more efficient than soybean oil in elevating serum high-density lipoprotein cholesterol and decreasing the ratio of low-density lipoprotein to high-density lipoprotein cholesterol in hamsters. Copyright © 2018 Elsevier Inc. All rights reserved.
Hattori, Sachiko
2017-11-28
Remnant lipoproteins are thought to be atherogenic. Remnant-like particle cholesterol (RLP-C), which reflects the levels of various kinds of remnant lipoproteins in the blood, has a significant correlation with insulin resistance. In the present study, we measured the effect of empagliflozin (EMPA) on the levels of RLP-C, and investigated whether EMPA-mediated change in RLP-C is associated with a change in insulin resistance in type 2 diabetes patients who have insulin resistance. Patients were allocated to receive a placebo (n = 51) or EMPA (n = 58) as an add-on treatment. Fasting blood samples were collected before and 12 weeks after this intervention. EMPA significantly decreased glycated hemoglobin, bodyweight, systolic blood pressure, plasma triglycerides, liver transaminases and estimated glomerular filtration rate, and increased high-density lipoprotein cholesterol. Furthermore, EMPA decreased RLP-C and homeostatic model assessment of insulin resistance. In the placebo group, there were no significant changes in these factors except for slight increases in liver transaminases. Multiple regression analysis showed that the change in homeostatic model assessment of insulin resistance (P = 0.0102) and the change in alanine aminotransferase (P = 0.0301) were significantly associated with the change in RLP-C in the EMPA group. The change in RLP-C significantly correlated with the change in homeostatic model assessment of insulin resistance (Pearson correlation coefficient 0.503, 95% confidence interval 0.199-0.719; P = 0.00241). EMPA decreases RLP-C levels, which is closely associated with amelioration of insulin sensitivity in diabetes patients who have insulin resistance. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.
Skoczyńska, Anna H; Gluza, Ewa; Wojakowska, Anna; Turczyn, Barbara; Skoczyńska, Marta
2018-04-24
Linseed oil has cardio-protective effects. However, its antihypertensive action has not yet been well characterized. The primary purpose of the study was to evaluate the effect of short-term dietary supplementation with linseed oil on blood pressure (BP) and lipid metabolism in patients with mild hypercholesterolemia. The secondary aim was to evaluate the effect of linseed oil on nitric oxide pathway and selected serum trace metals. 150 volunteers: 43 men (49.9±11.5 years) and 107 women (53.2±10.3 years), diagnosed with mild hypercholesterolemia, were assessed prospectively for BP and lipids' levels, before and after lipid-lowering diet plus linseed oil supplementation at a dose of 15 ml daily for 4 weeks (study groups) or 4-weekly lipid-lowering diet (control group). The multivariate logistic regression analysis model was used to determine the effect of linseed oil on BP after adjustment for age, gender, height, body weight, BMI, smoking and alcohol consumption. The supplementation with linseed oil significantly decreased LDL- and non-HDL cholesterol, and increased HDL- and HDL₃- cholesterol levels. Additionally, linseed oil decreased diastolic BP in men (CI:-6.0;-1.1, p<0.006), whereas in women, linseed oil reduced (p<0.001) systolic (-3,6 mmHg; CI:-5.8;-1.5), as well as diastolic BP (-4 mmHg; CI:-5.8;-2.1). Women with higher blood pressure displayed an increase in serum L-arginine level (p<0.01). In the logistic regression model oil consumption was associated with a decrease in mean BP (aOR 3.85, 95%CI 1.32-11.33). Our findings confirm the benefit of short-term linseed oil use in mild hypercholesterolemia, in particular in patients with increased blood pressure.
Effects of Urtica dioica extract on lipid profile in hypercholesterolemic rats.
Nassiri-Asl, Marjan; Zamansoltani, Farzaneh; Abbasi, Esmail; Daneshi, Mohammad-Mehdi; Zangivand, Amir-Abdollah
2009-05-01
To investigate the effects of extract of Urtica dioica, a perennial herb in Iran, on lipid profile in hypercholesterolemic rats. The effects of Urtica dioica extract were tested by using it as a supplement in a high-cholesterol diet. Male rats were fed a high cholesterol diet (10 mL/kg) for 4 weeks with Urtica dioica extract (100 or 300 mg/kg) or 10 mg/kg lovastatin supplementation to study the hypocholesterolemic effects of Urtica dioica on plasma lipid levels, hepatic enzymes activities, and liver histopathological changes. Urtica dioica extract at 100 and 300 mg/kg significantly reduced the levels of total cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) and also markedly decreased liver enzymes and weight in animals with a high cholesterol diet. Hematoxylin and eosin staining showed that in the 100 mg/kg extract of Urtica dioica group, the appearance of the liver cells was similar to the control group, and steatosis and inflammation were not found. In the 300 mg/kg extract of Urtica dioica group, mild steatosis was observed but mononuclear inflammatory infiltration was not found. The hepatic histopathological results reflect the correlation of Urtica dioica extract with both liver weight and the levels of plasma TC and LDL-C. These results indicate that Urtica dioica extract has hypocholesterolemic effects in the animal model.
Hypolipidemic effect of fruit fibers in rats fed with high dietary fat.
Esmael, O A; Sonbul, S N; Kumosani, T A; Moselhy, S S
2015-03-01
The hypolipidemic effect of 10% fruit fibers in rats fed with high-fat diet (HFD) was evaluated. This study was conducted on a total of 50 male Albino rats divided into 10 equal groups fed with different types of dietary fruits. The feeding period lasted for 24 weeks. Fasting blood samples were collected and sera separated and subjected to lipid profile assay and atherogenic index. In addition, total antioxidant activity of different fruits was determined. The results obtained showed that pomegranate had higher content of antioxidants followed by apple, strawberry and guava compared with other fruits. Rats fed with 20% coconut oil showed a highly significant elevation in the levels of serum total cholesterol, low-density lipoprotein cholesterol and atherogenic factor while the level of high-density lipoprotein cholesterol was significantly decreased when compared with control rats. Histological examination revealed that there was a large lipid and cholesterol deposition in the livers of rats fed with HFD. The potential in lowering the levels of plasma total cholesterol and triglyceride is in the following order: pomegranate > apple > strawberry > guava > papaya > mandarin and orange. Accumulation of hepatic lipid droplets was diminished when compared with the HFD group. Also, antiatherogenic is better than the untreated groups. Accordingly these hypolipidemic effects may be due to high-fiber content and antioxidant activity of these fruits. © The Author(s) 2012.
Mazokopakis, Elias E; Starakis, Ioannis K; Papadomanolaki, Maria G; Mavroeidi, Niki G; Ganotakis, Emmanuel S
2014-02-01
Spirulina (Arthrospira platensis) is a filamentous cyanobacterium used as a food supplement. The objective of the study was to determine the lipid-lowering effects of Spirulina in Cretan Greek dyslipidaemic patients, and to document its effectiveness as a possible alternative treatment for dyslipidaemia. Fifty-two adultCretan outpatients (32 men, 20 women), median age 47 (range, 37-61) years, with recently diagnosed dyslipidaemia, consumed orally 1 g Spirulina (Greek production) per day for 12 weeks. The full lipid profile was measured in fasting blood samples at the beginning and end of the study period. Anthropometric measurements including systolic and diastolic blood pressure, height, weight and body mass index were also recorded. At the end of the 3-month intervention period the mean levels of triglycerides, low density lipoprotein-cholesterol, total cholesterol, non-high density lipoprotein-cholesterol levels, and the ratio of total cholesterol to high-density lipoproteincholesterol were significantly decreased: 16.3% (P < 0.0001), 10.1% (P < 0.0001), 8.9% (P < 0.0001), 10.8% (P < 0.0001) and 11.5% (P = 0.0006) respectively, whereas the mean high-density lipoprotein-cholesterol levels were not significantly increased (3.5%). Blood pressure, weight and body mass index remained almost unchanged. Spirulina supplementation at a dose of 1 g daily has powerful hypolipidaemic effects, especially on the triglyceride concentration in dyslipidaemic Cretan outpatients. © 2013 Society of Chemical Industry.
Effects of Shiitake Intake on Serum Lipids in Rats Fed Different High-Oil or High-Fat Diets.
Asada, Norihiko; Kairiku, Rumi; Tobo, Mika; Ono, Akifumi
2018-04-27
Shiitake (Lentinula edodes) extract, eritadenine, has been shown to reduce cholesterol levels, and its hypocholesterolemic actions are involved in the metabolism of methionine. However, the mechanisms by which eritadenine affects cholesterol metabolism in animals fed a high-fat diet containing different sources of lipids have not yet been elucidated in detail. This study was conducted to investigate the effects of shiitake supplementation on serum lipid concentrations in rats fed a diet including a high amount of a plant oil (HO [high oil] and HOS [high oil with shiitake] groups), animal fat (HF [high fat] and HFS [high fat with shiitake] groups), or MCT- (medium-chain triglyceride-) rich plant oil (HM [high MCT] and HMS [high MCT with shiitake] groups). Rats in the HOS, HFS, and HMS groups were fed shiitake. When rats were fed a diet containing shiitake, serum triglyceride, cholesterol levels, and LCAT (lecithin-cholesterol acyltransferase) activities were lower in rats given MCT-rich plant oil than in those that consumed lard. The lipid type in the diet with shiitake also affected serum cholesterol levels and LCAT activities. The diet containing MCT-rich plant oil showed the greatest rates of decrease in all serum lipid profiles and LCAT activities. These results suggest that shiitake and MCT-rich plant oil work together to reduce lipid profiles and LCAT activity in serum.
Plasma thyroxine changes of the Apollo Crewman.
Sheinfeld, M; Leach, C S; Johnson, P C
1975-01-01
Blood drawn from Apollo crew member; to the mission, at recovery, and postmission was used to examine the effect Apollo mission activities have on tyroid hormone levels. At recovery, statistically significant increases in thyroxine and the free thyroxine index were found. Serum cholesterol and triglycerides were decreased. No change of statistical significance was found in the T3 binding percentage, total serum proteins, and albumin. We conclude that apollo activities and environment caused the postmission increase in serum cholesterol may be one result of the increased thyroxine activity.
Peng, Rui; Dai, Wen; Li, Yan
2018-05-24
The present research was carried out to observe the relationships between serum free triiothyronine (FT3), free thyroxine (FT4), thyroid-stimulating hormone (TSH) levels and lipid profile and suicide risk in depressive subjects. Serum concentrations of albumin, total bilrubin, uric acid, total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), high-sensitivity C-reactive protein (hs-CRP), FT3, FT4 and TSH were measured in 271 patients meeting the DSM-IV criteria for major depressive disorder (202 subjects without suicidal behavior and 69 suicide attempters). A significant decrease in serum TC, TG and FT4 levels was found in suicide attempters with major depressive disorder compared with non-suicide attempters (all p < 0.0025). For the other biochemical factors levels (albumin, total bilrubin, uric acid, HDL, LDL, hs-CRP, FT3, and TSH), there were no significant differences between suicide attempters and non-suicide attempters. Relativity analysis suggested that FT4 is positively and significantly correlated with TC (p < 0.0025); TSH is positively associated with HDL (p < 0.0025). Univariate analysis showed that serum TC and FT4 abundances are correlated with the suicide attempts in major depressive subjects. This research demonstrated that the levels of serum TC, TG, and FT4 levels in suicidal patients were greatly decreased compared with patients without suicidal behavior. These findings support the hypothesis that low serum FT4 level affects lipid profile in major depressive patients with suicidal attempt. Copyright © 2018 Elsevier B.V. All rights reserved.
ZHANG, XIAOQIAN
2013-01-01
The aim of this study was to investigate whether calcium dobesilate (calcium dihydroxy-2,5-benzenesulfonate) may be used to treat diabetic nephropathy. A total of 121 patients with type 2 diabetic nephropathy received calcium dobesilate (500 mg, 3 times a day) for 3 months. The levels of glycated hemoglobin, fasting serum C peptide, triglyceride, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, alanine aminotransferase, γ-glutamyl transferase, urea nitrogen, creatinine, hematocrit, plasma viscosity, whole blood reduced viscosity, high, medium and low shear rate whole blood viscosity, fibrinogen, plasminogen activator inhibitor-1 (PAI-1) and endothelin were determined. The urinary albumin excretion rate (UAER) was also determined once a month during the study. The UAER and medium and low shear rate whole blood viscosity were significantly lower in the treated patients. The rate of microalbuminuria normalization was 90%. During the treatment, the UAERs decreased. The results revealed that calcium dobesilate has therapeutic effects on type 2 diabetes patients with microalbuminuria. In addition, the benefit was positively correlated with the calcium dobesilate treatment time. The therapeutic effect may be due to decreases in the levels of PAI-1. PMID:23251286
Correlations between metabolic syndrome, serologic factors, and gallstones
Sang, Jae Hong; Ki, Nam Kyun; Cho, Jae Hwan; Ahn, Jae Ouk; Sunwoo, Jae Gun
2016-01-01
[Purpose] This study investigated the serologic factors associated with metabolic syndrome and gallstones. [Subjects and Methods] The study evaluated subjects who visited a health promotion center in Seoul from March 2, 2013 to February 28, 2014, and had undergone abdominal ultrasonography. Height, weight, and blood pressure were measured. Blood sampling was performed for high-density lipoprotein cholesterol, triglyceride, fasting blood glucose, total bilirubin, direct bilirubin, indirect bilirubin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, uric acid, total cholesterol, low-density lipoprotein cholesterol, thyroid stimulating hormone, and red and white blood cell counts. We conducted logistic regression analysis to assess the risk factors associated with metabolic syndrome. [Results] The risk factors for metabolic syndrome in men, in order of decreasing weight, were red blood cell count, body mass index, maximum size of gallstones, white blood cell count, waist circumference, and uric acid level. The factors in women, in order of decreasing weight, were red blood cell count, presence/absence of gallstones, uric acid level, body mass index, fasting blood glucose, and waist circumference. [Conclusion] Most serum biochemical factors and gallstone occurrence could be used to indicate the presence or absence of metabolic syndrome, independent of gender. PMID:27630427
Shibata, Shinya; Hayakawa, Kazuhito; Egashira, Yukari; Sanada, Hiroo
2007-01-16
Nuclear receptors are involved in regulating the expression of cholesterol 7alpha-hydroxylase (CYP7A1), however, their roles in the up-regulation of CYP7A1 by cholestyramine (CSR) are still unclear. In the present study, male Wistar rats were divided into four groups and fed [high sucrose + 10% lard diet] (H), [H + 3% CSR diet] (H + CSR), [H + 0.5% cholesterol + 0.25% sodium cholate diet] (C), or [C + 3% CSR diet] (C + CSR) for 2 weeks. Cholestyramine decreased serum and liver cholesterol levels significantly in rats fed C-based diets, but had no effect on these parameters in rats fed H-based diets. Cholestyramine raised hepatic levels of CYP7A1 mRNA and activity in both groups. The gene expression of hepatic ATP-binding cassettes A1 and G5, regulated by liver X receptor (LXR), were unchanged and down-regulated by cholestyramine, respectively. The mRNA levels of the hepatic ATP-binding cassette B11 and short heterodimer partner (SHP), regulated by farnesoid X receptor (FXR), were not changed by cholestyramine. C-based diets, which contained cholesterol and cholic acid, increased SHP mRNA levels compared to H-based diets. Consequently, in rats fed the C+CSR diet, hepatic FXR was activated by dietary bile acids, but the hepatic CYP7A1 mRNA level was increased 16-fold compared to that in rats fed an H diet. These results suggest that cholestyramine up-regulates the expression of CYP7A1 independently via LXR- or FXR-mediated pathways in rats.
Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones shawi rats.
Aissaoui, Abderrahmane; Zizi, Soumia; Israili, Zafar H; Lyoussi, Badiâa
2011-09-01
The use of an aqueous extract of coriander (Coriandrum sativum L.; Apiaceae, Umbelliferae) seeds (CS-extract) in Moroccan traditional treatment of diabetes remains to be experimentally validated. The study aim was to investigate potential hypoglycemic (and hypolipidemic) activity of CS-extract after a single oral dose and after daily dosing for 30 days (sub-chronic study) in normal and obese-hyperglycemic-hyperlipidemic (OHH) Meriones shawi rats. After a single oral dose of CS-extract (20mg/kg; predetermined as optimum), plasma glucose, insulin, total cholesterol (TC), and triglycerides (TG) were measured in normal and OHH rats (hypercaloric diet and forced limited physical activity); glibenclamide (GLB; 2.5mg/kg) was used as reference. In the sub-chronic study, the effect of CS-extract and GLB (at the above doses) on body weight (BW), plasma glucose, insulin, TC, LDL-cholesterol, HDL-cholesterol, TG, urea and creatinine was determined in normal and OHH rats; insulin resistance (IR as HOMA-IR), atherosclerotic and cardioprotective indices were calculated. A single dose of CS-extract or GLB suppressed hyperglycemia in OHH rats, and normo-glycemia was achieved at 6-h post-dose; there was no effect on lipids, TG or insulin, but IR decreased significantly. The hypoglycemic effect was lower in normal rats. In the sub-chronic study in OHH rats, the test substances (CS-extract>GLB) reduced plasma glucose (normoglycemia on Day 21), insulin and IR, TC, LDL-cholesterol, and TG. Atherosclerotic index decreased while cardioprotective indices increased only by CS-extract, with no effect on BW, urea or creatinine. Sub-chronic administration of CS-extract in OHH Meriones shawi rats normalized glycemia and decreased the elevated levels of insulin, IR, TC, LDL-cholesterol and TG. Since, the CS-extract decreased several components of the metabolic syndrome and decreased atherosclerotic and increased cardioprotective indices, CS-extract may have cardiovascular protective effect. The present study validates the traditional use of coriander in diabetes. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Valensia, Rosy; Masulili, Sri Lelyati C.; Lessang, Robert; Radi, Basuni
2017-02-01
Coronary heart disease (CHD) is an abnormal narrowing of heart arteries associated with local accumulation of lipids, in the form of cholesterol and triglycerides. Periodontal disease is a chronic inflammatory that suggests link to the development of CHD. In periodontitis have been reported changes in lipid profile, include increased of cholesterol levels of blood. Objective: to analyse correlation between blood cholesterol level with periodontal status of CHD and non CHD subjects. Methods: Periodontal status and blood cholesterol level of 60 CHD and 40 non CHD subjects was measured. Result: Blood cholesterol level in CHD subjects differs from non CHD subjects (p=0.032). Blood cholesterol level correlates with pocket depth (p=0.003) and clinical attachment loss (CAL) (p=0.000) in CHD subjects. Blood cholesterol level correlates with pocket depth (p=0.010) in non CHD subjects. There is no significant correlation between blood cholesterol level and bleeding on probing (BOP) in CHD subjects. There is no significant correlation between blood cholesterol level with BOP and CAL in non CHD subjects. Conclusion: Blood cholesterol level in control group is higher than CHD patients. Blood cholesterol level positively associated with pocket depth (r=0.375) and CAL (r=0.450) in CHD patients. Blood cholesterol level is positively associated with pocket depth (r=0.404) in control group.
Wattoo, Feroza Hamid; Memon, Muhammad Saleh; Memon, Allah Nawaz; Wattoo, Muhammad Hamid Sarwar; Tirmizi, Syed Ahmed; Iqbal, Javed
2008-01-01
To evaluate environmental, psychological and physiological stresses in college teachers and housewives, and to correlate with their serum total cholesterol, HDL cholesterol, and LDL cholesterol, and triglyceride levels. This cohort study was performed at the Institute of Biochemistry, University of Sindh, Jamshoro, Pakistan during 2003-2005. Eighty females from middle socioeconomic groups, college teachers (40) and housewives (40) aged between 25-45 years participated in this study and subjects were selected from Hyderabad and its adjoining areas. Environmental, psychological and physiological stress levels were measured with Likert scale. Total cholesterol, LDL cholesterol and HDL cholesterol were measured by CHOD-PAP method and triglyceride levels were measured by GPO method. Housewives had high levels of total cholesterol, LDL cholesterol and triglyceride but low levels of HDL cholesterol were found in college teachers. Environmental, psychological and physiological stresses were significantly higher in housewives as compared to college teachers. Housewives were under more stress than college teachers. High levels of total cholesterol, LDL cholesterol and triglyceride but low levels of HDL cholesterol were found in housewives compared to college teachers.
[Hypercholesterolemia reduction in children and adolescents after two years of intervention].
Robledo, Jorge A; Siccardi, Leonardo J; Cosio, Francisco; Rodríguez, María I; Robledo, Pamela; Rojas, Natalia; Lubetkin, Alberto
2009-12-01
Hypercholesterolemia, one of the main risk factors for cardiovascular diseases, can be detected since childhood. The early detection and a suitable educational process would allow to generate changes of habits and to decrease its prevalence. In 2003, total cholesterol (TC) > 170 mg/dl was found in 39.2% school children and adolescents, aged 5-17 years, of Jovita, Córdoba. To assess cholesterol levels decrease after an educational process and to analyze the relation between hypercholesterolemia and family history for cardiovascular diseases. Formal and no formal educational intervention was developed for two years, through curricular adaptations, talks, campaigns in radio and TV, graphic press, drama, workshops and leaflets. In 2005, cholesterol level was assessed, along with a survey on changes of nutritional habits and physical activity, and family history. A group of 161 students was assesses in both opportunities. There was a significant reduction in total cholesterol (average 13 mg/dl; p< 0.0000), 51 students (31.7%) normalized their TC values (<170 mg/dl). The effect of regression to the average was 3 mg/dl. In a group of 66 students with TC > 199 mg/dl, the variations of the averages were: TC= -21 mg/dl, LDL-C= -16 mg/dl. The survey revealed improvements in the habits; family history was positive in 59%, unknown in 14%, and negative in 27%, the last ones had the best response to the intervention. A significant reduction of TC was obtained in the studied population; this may be due to the educational intervention. More than a quarter of the individuals presented negative family history for cardiovascular risk factors. Decrease in TC was proportionally better in this group than in those with positive family history.
Zhang, D-D; Yu, H-L; Ma, W-W; Liu, Q-R; Han, J; Wang, H; Xiao, R
2015-08-06
Cholesterol metabolism is important for neuronal function in the central nervous system (CNS). The oxysterol 27-hydroxycholesterol (27-OHC) is a cholesterol metabolite that crosses the blood-brain barrier (BBB) and may be a useful substitutive marker for neurodegenerative diseases. However, the effects of 27-OHC on learning and memory and the underlying mechanisms are unclear. To determine this mechanism, we investigated learning and memory and cholesterol metabolism in rat brain following the injection of various doses of 27-OHC into the caudal vein. We found that 27-OHC increased cholesterol levels and upregulated the expression of liver X receptor-α (LXR-α) and adenosine triphosphate (ATP)-binding cassette transporter protein family member A1 (ABCA1). In addition, 27-OHC decreased the expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CR) and low-density lipoprotein receptor (LDLR) in rat brain tissues. These findings suggest that 27-OHC may negatively modulate cognitive effects and cholesterol metabolism in the brain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Abrams, Donald I; Couey, Paul; Shade, Starley B; Kelly, Mary Ellen; Kamanu-Elias, Nnemdi; Stamets, Paul
2011-08-10
Antiretroviral treatment (ART) regimens in HIV patients commonly cause significant lipid elevations, including increases in both triglycerides and cholesterol. Standard treatments for hypercholesterolemia include the HMG CoA reductase inhibitors, or "statins." Because many ART agents and statins share a common metabolic pathway that uses the cytochrome P450 enzyme system, coadministration of ART with statins could increase statin plasma levels significantly. The oyster mushroom, Pleurotus ostreatus, has been shown in animal models to decrease lipid levels--a finding that has been supported by preliminary data in a small human trial. To assess the safety and efficacy of P. ostreatus in patients with HIV and ART-induced hyperlipidemia, a single-arm, open-label, proof-of-concept study of 8 weeks' duration with a target enrollment of 20 subjects was conducted. Study patients with ART-induced elevated non-HDL cholesterol levels (> 160 mg/dL) were enrolled. Participants received packets of freeze-dried P. ostreatus (15 gm/day) to be administered orally for the 8 week trial period. Lipid levels were drawn every two weeks to assess efficacy. Safety assessments included self-reported incidence of muscle aches and measurement of liver and muscle enzymes. Mean within-person change in lipid levels were estimated using generalized estimating equations to account for repeated observations on individuals. A 30 mg/dL decrease in non-HDL cholesterol was deemed clinically significant. 126 patients were screened to enroll 25, of which 20 completed the 8-week study. The mean age was 46.4 years (36-60). Patients had a mean 13.7 yrs of HIV infection. Mean non-HDL cholesterol was 204.5 mg/dL at day 0 and 200.2 mg/dL at day 56 (mean within-person change = -1.70; 95% confidence interval (CI) = -17.4, 14.0). HDL cholesterol levels increased from 37.8 mg/dL at day 0 to 40.4 mg/dL on day 56 (mean within-person change = 2.6; 95% CI = -0.1, 5.2). Triglycerides dropped from 336.4 mg/dL on day 0 to 273.4 mg/dL on day 56 (mean within-person change = -63.0; 95% CI = -120.9, -5.1). Only 3 individuals achieved a sustained clinically significant (30 mg/dL) decline in non-HDL cholesterol after 8 weeks of therapy. There were no adverse experiences reported other than patients' distaste for the preparation. Liver function tests and muscle enzymes were not affected by the 8 weeks of treatment. Pleurotus ostreatus as administered in this experiment did not lower non-HDL cholesterol in HIV patients with ART-induced hypercholesterolemia. Small changes in HDL and triglycerides were not of a clinical magnitude to warrant further study.
Yang, X; Wang, H; Zhu, Z; Deng, A
1998-01-01
Serum lipoprotein(a) [Lp(a)] concentration was determined in 42 patients with primary nephrotic syndrome (NS) and the relationships between Lp (a) and plasma lipids, apolipoproteins, serum creatinine (Scr), albumin, urinary proteins (Upro) were also analyzed. The results showed that: (1) serum Lp(a) concentrations in the patients with NS were higher than those in healthy controls; (2) the levels of serum Lp(a) were correlated positively with total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C), apolipoprotein B (Apo-B), Upros (Upro). It is concluded that the NS patients had the potential risk of suffering from coronary artery disease, glomerular sclerosis and thrombosis. The remission of NS may partially decrease the serum Lp(a) levels. Further studies are needed to explore the prevention and treatment of dislipedemia in patients with NS.
Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili
2014-01-01
The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE−/−) mice. Eight-week-old ApoE−/− mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE−/− mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P < 0.05) higher in the L. acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis. PMID:25261526
Anti-hypercholesterolemic effect of Saccharomyces boulardii in the hamster.
Girard, Philippe; Pansart, Yannick; Verleye, Marc
2014-01-01
Hypercholesterolemia is a major risk factor for coronary artery disease and probiotics have been suggested as tools to manage elevated cholesterol levels. The present study investigated the ability of the biotherapeutic agent Saccharomyces boulardii (Sb-Biocodex) to reduce the hypercholesterolemia induced by a 0.1% cholesterol-enriched diet in the hamster. In a first experiment, chronic oral treatment with S. boulardii at 12 × 10(10) CFU/kg (3 g/kg) twice a day was started from the beginning of the cholesterol diet and continued for 14 days ('preventive protocol'). In the second experiment, S. boulardii was given 14 days after the beginning of the cholesterol diet when hypercholesterolemia had developed and continued for an additional 14 days ('curative protocol'). In the preventive protocol, administration of the yeast significantly reduced hypercholesterolemia (14%) induced by the cholesterol-enriched diet compared to the group receiving only the cholesterol diet. In the curative protocol, S. boulardii significantly reduced hypercholesterolemia (12%) induced by the cholesterol-enriched diet, too. Moreover, the yeast significantly decreased the serum triglyceride increase by 39%. S. boulardii possesses anti-hypercholesterolemic properties in the hamster worthy of further evaluation in clinical studies. © 2014 S. Karger AG, Basel.
Cardiovascular protection of deep-seawater drinking water in high-fat/cholesterol fed hamsters.
Hsu, Chin-Lin; Chang, Yuan-Yen; Chiu, Chih-Hsien; Yang, Kuo-Tai; Wang, Yu; Fu, Shih-Guei; Chen, Yi-Chen
2011-08-01
Cardiovascular protection of deep-seawater (DSW) drinking water was assessed using high-fat/cholesterol-fed hamsters in this study. All hamsters were fed a high-fat/cholesterol diet (12% fat/0.2% cholesterol), and drinking solutions were normal distiled water (NDW, hardness: 2.48ppm), DSW300 (hardness: 324.5ppm), DSW900 (hardness: 858.5ppm), and DSW1500 (hardness: 1569.0ppm), respectively. After a 6-week feeding period, body weight, heart rates, and blood pressures of hamsters were not influenced by DSW drinking waters. Serum total cholesterol (TC), triacylglycerol (TAG), atherogenic index, and malondialdehyde (MDA) levels were decreased (p<0.05) in the DSW-drinking-water groups, as compared to those in the NDW group. Additionally, increased (p<0.05) serum Trolox equivalent antioxidant capacity (TEAC), and faecal TC, TAG, and bile acid outputs were measured in the DSW-drinking-water groups. Hepatic low-density-lipoprotein receptor (LDL receptor) and cholesterol-7α-hydroxylase (CYP7A1) gene expressions were upregulated (p<0.05) by DSW drinking waters. These results demonstrate that DSW drinking water benefits the attenuation of high-fat/cholesterol-diet-induced cardiovascular disorders in hamsters. Copyright © 2011 Elsevier Ltd. All rights reserved.
Korean Curcuma longa L. induces lipolysis and regulates leptin in adipocyte cells and rats
Song, Won-Yeong
2016-01-01
BACKGROUND/OBJECTIVES Turmeric (Curcuma longa L.) has been reported to have many biological functions including anti-obesity. Leptin, peptide hormone produced by adipocytes and its concentration is increased in proportion to the amount of the adipocytes. In the present study, we examined the effects of Korean turmeric on the regulation of adiposity and leptin levels in 3T3-L1 adipocytes and rats fed a high-fat and high-cholesterol diet. MATERIALS/METHODS Leptin secretion, free fatty acid and glycerol contents in 3T3-L1 adipocytes were measured after incubation of cells with turmeric for 24 hours. Rats were divided into four experimental groups: a normal diet group (N), a high-fat and high-cholesterol diet group (HF), a high-fat and high-cholesterol diet group supplemented with 2.5% turmeric extracts (TPA group) and a high-fat and high-cholesterol diet group supplemented with 5% turmeric extracts (TPB group). Serum samples were used for the measurement of leptin concentration. RESULTS Contents of free fatty acid and glycerol showed concentration dependent increase in response to turmeric extracts. Effects of turmeric extracts on reduction of lipid accumulation in 3T3-L1 cells were examined by Oil Red O staining. Treatment with turmeric extracts resulted in increased expression levels of adipose triglyceride lipase and hormone-sensitive lipase mRNA. The concentration of leptin from 3T3-L1 adipocytes was significantly decreased by turmeric. Proportional abdominal and epididymal fats weights of the turmeric 5% supplemented group, TPB has significantly decreased compared to the HF group. The serum levels of leptin in the TPA and TPB groups were significantly lower than those of the HF group. CONCLUSIONS Based on these results, we suggested that Korean turmeric may contribute to the decreasing of body fat and regulating leptin secretion. PMID:27698955
Antidiabetic effects of cinnamon oil in diabetic KK-Ay mice.
Ping, Hua; Zhang, Guijun; Ren, Guixing
2010-01-01
The hypoglycemic effect of cinnamon oil (CO) in a type 2 diabetic animal model (KK-A(y) mice) was studied. The main component of CO was cinnamaldehyde, and other nineteen components were also determined. CO was administrated at doses of 25, 50 and 100mg/kg for 35 days. It was found that fasting blood glucose concentration was significantly decreased (P<0.05) with the 100mg/kg group (P<0.01) the most efficient compared with the diabetic control group. In addition, there was significant decrease in plasma C-peptide, serum triglyceride, total cholesterol and blood urea nitrogen levels while serum high density lipoprotein (HDL)-cholesterol levels were significantly increased after 35 days. Meanwhile, glucose tolerance was improved, and the immunoreactive of pancreatic islets beta-cells was promoted. These results suggest that CO had a regulative role in blood glucose level and lipids, and improved the function of pancreatic islets. Cinnamon oil may be useful in the treatment of type 2 diabetes mellitus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Papp, Nóra; Blázovics, Anna; Fébel, Hedvig; Salido, Sofía; Altarejos, Joaquín; Fehér, Erzsébet; Kocsis, Ibolya; Szentmihályi, Klára; Abrankó, László; Hegedűs, Attila; Stefanovits-Bányai, Éva
2015-12-01
The aims of the present study were to clarify in vivo effects of three sour cherry cultivars characterized by different polyphenolic composition in hyperlipidemic animals in a short term experiment. The three different sour cherry cultivars were chosen based on their total in vitro antioxidant capacity, total polyphenolic, monomeric anthocyanin and flavonoid content. Male Wistar rats were divided randomly into eight groups: rats kept on normal diet (control) and normal diet supplied with sour cherry powder of one of the three cultivars; others were kept on fat-rich diet and fat-rich diet supplied with sour cherry powder prepared from one of the three cultivars. The treatment lasted 10 days. Lyophilized sour cherry administered in the diet decreased both total cholesterol and LDL cholesterol levels, and increased the HDL cholesterol concentration in sera of hyperlipidemic animals. Significant differences were found in the efficacy of different sour cherry cultivars in case of hyperlipidemia. Sour cherries characterized by higher polyphenol content seem to have a more pronounced effect on serum cholesterol levels. Our results suggest that besides anthocyanins, colourless polyphenols also have lipid lowering effect.
CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL
Bartuzi, Paulina; Billadeau, Daniel D.; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H.; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K.; Elliott, Alison M.; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D.; Burstein, Ezra; Hofker, Marten H.; van de Sluis, Bart
2016-01-01
The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal sorting of LDLR and for its function. We find that patients with X-linked intellectual disability caused by mutations in CCDC22 are hypercholesterolaemic, and that COMMD1-deficient dogs and liver-specific Commd1 knockout mice have elevated plasma LDL cholesterol levels. Furthermore, Commd1 depletion results in mislocalization of LDLR, accompanied by decreased LDL uptake. Increased total plasma cholesterol levels are also seen in hepatic COMMD9-deficient mice. Inactivation of the CCC-associated WASH complex causes LDLR mislocalization, increased lysosomal degradation of LDLR and impaired LDL uptake. Furthermore, a mutation in the WASH component KIAA0196 (strumpellin) is associated with hypercholesterolaemia in humans. Altogether, this study provides valuable insights into the mechanisms regulating cholesterol homeostasis and LDLR trafficking. PMID:26965651
El-Newary, Samah A; Sulieman, A M; El-Attar, S R; Sitohy, M Z
2016-07-01
Hyperlipidemia is a major risk factor for coronary heart disease. Hyperlipidemia increases the incidence of myocardial ischemia and cardiac events. This study evaluated the potential hypolipidemic and antioxidant action of the aqueous extract from the uneaten pulp of the fruit from Cordia dichotoma ("CDNP extract"). In vivo studies were performed for 10 weeks on dietary hyperlipidemic and healthy Wistar albino rat models that received two dose levels of the CDNP extract (0.50 and 1.00 g/kg body weight). Serum lipid profiles were determined for the experimental animals. Dietary hyperlipidemic rats were characterized by an elevated lipid profile compared to the healthy control, i.e., increased levels of serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C), and triglycerides (TG), although the level of high-density lipoprotein (HDL-C) was reduced. Levels of antioxidant enzymes, i.e., glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT), were significantly higher in the dietary hyperlipidemic rats than in the normal healthy ones, while the level of malondialdehyde (MDA) was significantly lower. Force-feeding hyperlipidemic Wistar albino rats with the CDNP extract at two doses decreased TC, LDL-C, VLDL-C, and TG to normal levels. The risk ratio, which was as high as 870 % for the hyperlipidemic rats was decreased by the treatment to levels close to that calculated for the healthy control rats. Levels of high-density lipoprotein cholesterol (HDL-C) were very low in the hyperlipidemic Wistar albino rats but increased significantly when CDNP extract was adminstered, attaining similar HDL-C levels to those of healthy control rats. Treatment with the CDNP extract also improved the levels of antioxidant enzymes (GR, GST, GPx, SOD, and CAT) in hyperlipidemic Wistar albino rats. Thus, the CDNP extract improves the lipid metabolism of healthy and hyperlipidemic Wistar albino rats and can be employed in the management of dietary hyperlipidemia.
Wong, Tsz Yan; Lin, Shu-mei; Leung, Lai K.
2015-01-01
High blood cholesterol has been associated with cardiovascular diseases. The enzyme HMG CoA reductase (HMGCR) is responsible for cholesterol synthesis, and inhibitors of this enzyme (statins) have been used clinically to control blood cholesterol. Sterol regulatory element binding protein (SREBP) -2 is a key transcription factor in cholesterol metabolism, and HMGCR is a target gene of SREBP-2. Attenuating SREBP-2 activity could potentially minimize the expression of HMGCR. Luteolin is a flavone that is commonly detected in plant foods. In the present study, Luteolin suppressed the expression of SREBP-2 at concentrations as low as 1 μM in the hepatic cell lines WRL and HepG2. This flavone also prevented the nuclear translocation of SREBP-2. Post-translational processing of SREBP-2 protein was required for nuclear translocation. Luteolin partially blocked this activation route through increased AMP kinase (AMPK) activation. At the transcriptional level, the mRNA and protein expression of SREBP-2 were reduced through luteolin. A reporter gene assay also verified that the transcription of SREBF2 was weakened in response to this flavone. The reduced expression and protein processing of SREBP-2 resulted in decreased nuclear translocation. Thus, the transcription of HMGCR was also decreased after luteolin treatment. In summary, the results of the present study showed that luteolin modulates HMGCR transcription by decreasing the expression and nuclear translocation of SREBP-2. PMID:26302339
Hypocholesterolaemic effect of whole-grain highland hull-less barley in rats fed a high-fat diet.
Xia, Xuejuan; Li, Guannan; Song, Jiaxin; Zheng, Jiong; Kan, Jianquan
2018-05-01
Whole-grain highland hull-less barley (WHLB) contains high amounts of bioactive compounds that potentially exhibit cholesterol-lowering effects. This study investigated the hypocholesterolaemic effect of WHLB. A total of seventy-two male Sprague-Dawley rats were divided into four groups and were fed with the normal control diet, high-fat diet (HFD) and HFD containing low or high dose (10 or 48·95 %) of WHLB. High dose of WHLB significantly decreased the organ indexes of liver and abdominal fat and lipid levels of plasma and liver in HFD rats. The lipid regulation effect of WHLB, which was reconfirmed through hepatocyte morphologic observation, was accompanied by a large excretion of bile acids in the small intestinal contents and the faeces. Real-time PCR analyses, which were further reconfirmed through Western blot analyses, revealed that a high dose of WHLB significantly enhanced the hepatic expressions of AMP-activated protein kinase α, cholesterol 7α-hydroxylase, LDL receptor, liver X receptor, and PPARα and decreased the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase. It also enhanced the ileal expression of farnesoid X receptor and resulted in the decrease of expression of apical sodium-dependent bile acid transporter. WHLB exhibited hypocholesterolaemic effects mainly by inhibiting cholesterol synthesis, cholesterol accumulation in peripheral tissue, and bile acid reabsorption and by stimulating bile acid synthesis.
Changes in selected serum parameters of broiler chicken fed supplemental chromium.
Króliczewska, B; Zawadzki, W; Dobrzanski, Z; Kaczmarek-Oliwa, A
2004-12-01
The present study was conducted to evaluate the effect of chromium (Cr) from Cr yeast on the growth performance and total cholesterol, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol, triglycerides, glucose, total protein and Cr concentration in the serum of broiler chicken. The birds were fed a control diet or a control diet supplemented with Cr at a level of 300, 500 microg/kg Cr. The supplementation of 500 mug/kg Cr increased body weight, weight gain and feed efficiency (p < 0.05). In addition, supplementation with Cr decreased the serum total cholesterol, LDL cholesterol (p < 0.05), triglycerides (p < 0.05) and glucose (p < 0.05) concentrations whereas serum HDL cholesterol increased. Serum total protein and serum Cr concentration slightly but not significantly increased in both Cr groups. The study suggest that Cr supplementation particularly at 500 microg/kg Cr from Cr yeast can influence on carbohydrate and lipid metabolism of broiler chicken and can be used as additives in animal diet but it still needs more investigations.
2012-01-01
Background The effects of exposure to a 50 Hz electric field (EF) on plasma level of triacylglycerol, free fatty acids, total cholesterol and phospholipid and mRNA expression level of diacylglycerol acyltransferase (DGAT) 1 and 2 in liver and intestines from C57BL/6 J mice were studied. Methods The test was based on comparison between mice post treated with 50 Hz EF of 45 kV/m intensity for 30 min per day for 11 days or without EF. DGATs mRNA expression was analyzed by real-time quantitative polymerase chain reaction. Results There was no difference in the gene expression level of DGAT1 in liver and intestines. The DGAT2 gene expression level in liver derived from mice treated with EF was significantly lower than those in the control (P < 0.001). Both plasma total cholesterol (P < 0.01) and phospholipid (P < 0.05) in the group exposed to EF were lower than those in the control, but there was no difference in triacylglycerol or free fatty acid levels. Conclusion Exposure to 50 Hz EF decrease the plasma levels of total cholesterol and phospholipids, and downregulated DGAT2 mRNA expression in liver. The mechanisms for the effects of EF on lipid metabolism are not well understand yet, but altered DGAT2 activity may be involved. PMID:22676350
Ganji, V; Kies, C V
1996-03-01
The objective of this study was to investigate the effect of psyllium husk fiber supplementation to the diets of soybean and coconut oil on serum lipids in normolipidemic humans. A 28-day study was divided into four 7-day experimental periods. Dietary periods were soybean oil (SO), soybean oil plus psyllium fiber (SO + PF), coconut oil (CO) and coconut oil plus psyllium fiber (CO + PF), and were arranged to a randomized cross over design. Ten subjects consumed controlled diet containing 30% fat calories (20% from test oils and 10% from controlled diet) and 20 g per day of psyllium during fiber supplementation periods. SO + PF diet significantly reduced serum cholesterol compared with SO diet (P < 0.001). CO + PF diet significantly reduced serum cholesterol compared with CO diet (P < 0.014). Hypocholesterolemic response was greater with SO + PF compared with CO + PF (0.36 mmol 1(-1) vs 0.31 mmol 1(-1)). Reductions in low-density lipoprotein (LDL) cholesterol and apolipoprotein (apo) B were parallel to reductions of serum cholesterol. SO diet decreased, while CO diet increased serum cholesterol, LDL cholesterol and apo B. Very-low density lipoprotein cholesterol, high-density lipoprotein cholesterol and apo A-1 were unaffected by psyllium fiber and saturation of fat. Reduction of serum cholesterol was due to reduction of LDL cholesterol. Psyllium fiber supplementation lowered serum cholesterol regardless of saturation level of dietary fat.
Shirao, Satoshi; Yoneda, Hiroshi; Shinoyama, Mizuya; Sugimoto, Kazutaka; Koizumi, Hiroyasu; Ishihara, Hideyuki; Oka, Fumiaki; Sadahiro, Hirokazu; Nomura, Sadahiro; Fujii, Masami; Tamechika, Masakatsu; Kagawa, Yoshiteru; Owada, Yuji; Suzuki, Michiyasu
2015-05-01
Hyperlipidemia is a risk factor for abnormal cerebrovascular events. Rafts are cholesterol-enriched membrane microdomains that influence signal transduction. We previously showed that Rho-kinase-mediated Ca(2+) sensitization of vascular smooth muscle (VSM) induced by sphingosylphosphorylcholine (SPC) has a pivotal role in cerebral vasospasm. The goals of the study were to show SPC-Rho-kinase-mediated VSM contraction in vivo and to link this effect to cholesterol and rafts. The SPC-induced VSM contraction measured using a cranial window model was reversed by Y-27632, a Rho-kinase inhibitor, in rats fed a control diet. The extent of SPC-induced contraction correlated with serum total cholesterol. Total cholesterol levels in the internal carotid artery (ICA) were significantly higher in rats fed a cholesterol diet compared with a control diet or a β-cyclodextrin diet, which depletes VSM cholesterol. Western blotting and real-time PCR revealed increases in flotillin-1, a raft marker, and flotillin-1 mRNA in the ICA in rats fed a cholesterol diet, but not in rats fed the β-cyclodextrin diet. Depletion of cholesterol decreased rafts in VSM cells, and prevention of an increase in cholesterol by β-cyclodextrin inhibited SPC-induced contraction in a cranial window model. These results indicate that cholesterol potentiates SPC-Rho-kinase-mediated contractions of importance in cerebral vasospasm and are compatible with a role for rafts in this process.
Kim, Bo-Young; Son, Yonghae; Lee, Jeonga; Choi, Jeongyoon; Kim, Chi Dae; Bae, Sun Sik; Eo, Seong-Kug; Kim, Koanhoi
2017-01-01
Molecular mechanisms underlying the decreased number of macrophages and T cells in the arteries of cholesterol-fed-rabbits following dexamethasone administration are unknown. We investigated the possibility that dexamethasone could affect activation of monocytic cells induced by oxygenated derivatives of cholesterol (oxysterols) using THP-1 monocyte/macrophage cells. 27-Hydroxycholesterol (27OHChol), an oxysterol elevated with hypercholesterolemia, enhanced production of CCL2, known as MCP1, chemokine from monocytes/macrophages and migration of the monocytic cells, but the CCL2 production and the cell migration were reduced by treatment with dexamethasone. Dexamethasone inhibited superproduction of CCL2 induced by 27OHChol plus LPS and attenuated transcription of matrix metalloproteinase 9 as well as secretion of its active gene product induced by 27OHChol. The drug downregulated cellular and surface levels of CD14 and blocked release of soluble CD14 without altering transcription of the gene. Dexamethasone also inhibited expression and phosphorylation of the NF-κB p65 subunit enhanced by 27OHChol. Collectively, these results indicate that dexamethasone inhibits activation of monocytes/macrophages in response to 27OHChol, thereby leading to decreased migration of inflammatory cells in milieu rich in oxygenated derivatives of cholesterol.
Kim, Bo-Young; Son, Yonghae; Lee, Jeonga; Choi, Jeongyoon; Kim, Chi Dae; Bae, Sun Sik; Eo, Seong-Kug
2017-01-01
Molecular mechanisms underlying the decreased number of macrophages and T cells in the arteries of cholesterol-fed-rabbits following dexamethasone administration are unknown. We investigated the possibility that dexamethasone could affect activation of monocytic cells induced by oxygenated derivatives of cholesterol (oxysterols) using THP-1 monocyte/macrophage cells. 27-Hydroxycholesterol (27OHChol), an oxysterol elevated with hypercholesterolemia, enhanced production of CCL2, known as MCP1, chemokine from monocytes/macrophages and migration of the monocytic cells, but the CCL2 production and the cell migration were reduced by treatment with dexamethasone. Dexamethasone inhibited superproduction of CCL2 induced by 27OHChol plus LPS and attenuated transcription of matrix metalloproteinase 9 as well as secretion of its active gene product induced by 27OHChol. The drug downregulated cellular and surface levels of CD14 and blocked release of soluble CD14 without altering transcription of the gene. Dexamethasone also inhibited expression and phosphorylation of the NF-κB p65 subunit enhanced by 27OHChol. Collectively, these results indicate that dexamethasone inhibits activation of monocytes/macrophages in response to 27OHChol, thereby leading to decreased migration of inflammatory cells in milieu rich in oxygenated derivatives of cholesterol. PMID:29236764
Drexel, Heinz
2009-12-01
Classes of lipid lowering drugs differ strongly with respect to the types of lipids or lipoproteins they predominantly affect. Statins inhibit the de-novo synthesis of cholesterol. Consequently, the liver produces less VLDL, and the serum concentration primarily of LDL cholesterol (but, to a lesser extent, also of triglycerides) is lowered. Further, statins somewhat increase HDL cholesterol. There is abundant evidence that statins lower the rate of cardiovascular events. Cardiovascular risk reduction is the better, the lower the LDL cholesterol values achieved with statin therapy are. Some evidence is available that anion exchange resins which also decrease LDL cholesterol decrease vascular risk, too. This is not the case for the ezetimibe, which strongly lowers LDL cholesterol: its potential to decrease vascular risk remains to be proven. In contrast evidence for cardiovascular risk reduction through the mainly triglyceride lowering fibrates as well as for niacin is available. Niacin is the most potent HDL increasing drug currently available and besides increasing HDL cholesterol efficaciously lowers triglycerides and LDL cholesterol. Large ongoing trials address the decisive question whether treatment with fibrates and niacin provides additional cardiovascular risk reduction when given in addition to statin treatment.
Vengerovsky, A I; Yakimova, T V; Nasanova, O N
2015-01-01
The influence of low-fat diet, nettle (Urtica dioica) leafs and burdock (Arctium lappa) roots extracts on lipid metabolism and glycosylation reactions has been investigated in experimental diabetes mellitus. These extracts were applied in diets with both high and low fat content. The experiments were performed on 90 noninbred male albino rats (200–220 g) that were divided into 9 experimental groups. Diabetes mellitus was modeled with twice-repeated intraperitoneal streptozotocin (30 mg/kg) injections. The animals received food with increased fat content (proteins – 8%, fats – 30%, carbohydrates – 62% of total daily caloric content) during 4 weeks before streptozotocine injections and 8 weeks after its discontinuation. Simultaneously the rats were daily administered nettle leafs (100 mg/kg), burdock roots (25 mg/kg) extracts or metformin (100 mg/kg) into the stomach during 10 days. During the period of agents introduction half the animals continued to receive food with high fat content, the other half received low fat diet (proteins – 20%, fats – 8%, carbohydrates – 72% of the total daily caloric content). The forth (control) group received low fat food only without extracts or metformin administration. The levels of blood glucose, glycosylated hemoglobin, malonic dialdehyde, lipid and lipoprotein fractions content were measured. It has been shown that after streptozotocine injections and 30% fat diet consumption the blood glucose level increased by 5.3 fold compared to that of the intact animals, the content of atherogenic lipid fractions increased by 2–8.3 fold and the protein glycosylation reactions were intensified by 1.9–2.5 fold. In animals fed with 8% fat diet the blood glucose and malonic dialdehyde content decreased by 1.8–2.3 fold. In this experiment the levels of triglycerides, total cholesterol, cholesterol of nonhigh-density lipoproteins, low-density and very low-density lipoproteins, as well as the cholesterol and protein content of high-density lipoproteins normalized. The low fat food did not cause glycosylation reactions regression. With the administration of nettle, burdock extracts or metformin to animals that continued to receive high fat food the blood glucose, triglycerides, total cholesterol, cholesterol of nonhigh-density lipoproteins, low-density and very low-density lipoproteins levels decreased by l.6–7.l fold as compared to the parameters in streptozotocine diabetes mellitus. Cholesterol and protein content of high-density lipoproteins increased by l.4–3.7 fold. The herbal extracts also prevented malonic dialdehyde formation, high-density lipoproteins and hemoglobin glycosylation. The nettle and burdock extracts more effectively decreased hyperglycemia, hypertriglyceridemia and lipoperoxidation in animals fed with low fat food. Metformin in the experiment with low fat intake decreased the glucose, low-density and very low-density lipoproteins content to a maximal degree and prevented high-density lipoproteins glycosylation.
Lee, Kuan-I; Chiang, Chin-Wei; Lin, Hui-Ching; Zhao, Jin-Feng; Li, Cheng-Ta; Shyue, Song-Kun; Lee, Tzong-Shyuan
2016-05-01
Long-term exposure to di-(2-ethylhexyl) phthalate (DEHP) is highly associated with carcinogenicity, fetotoxicity, psychological disorders and metabolic diseases, but the detrimental effects and mechanisms are not fully understood. We investigated the effect of exposing mouse mothers to DEHP, and the underlying mechanism, on blood pressure, obesity and cholesterol metabolism as well as psychological and learning behaviors in offspring. Tail-cuff plethysmography was used for blood pressure measurement; Western blot used was for phosphorylation and expression of protein; hematoxylin and eosin staining, Nissl staining and Golgi staining were used for histological examination. The serum levels of cholesterol, triglycerides and glucose were measured by blood biochemical analysis. Hepatic cholesterol and triglyceride levels were assessed by colorimetric assay kits. Offspring behaviors were evaluated by open-field activity, elevated plus maze, social preference test and Morris water maze. Maternal DEHP exposure deregulated the phosphorylation of endothelial nitric oxide synthase and upregulated angiotensin type 1 receptor in offspring, which led to increased blood pressure. It led to obesity in offspring by increasing the size of adipocytes in white adipose tissue and number of adipocytes in brown adipose tissue. It increased the serum level of cholesterol in offspring by decreasing the hepatic capacity for cholesterol clearance. The impaired social interaction ability induced by maternal DEHP exposure might be due to abnormal neuronal development. Collectively, our findings provide new evidence that maternal exposure to DEHP has a lasting effect on the physiological functions of the vascular system, adipose tissue and nerve system in offspring.
Fioravanti, Antonella; Adamczyk, Przemysław; Pascarelli, Nicola Antonio; Giannitti, Chiara; Urso, Renato; Tołodziecki, Michał; Ponikowska, Irena
2015-07-01
Obesity is a major risk factor for arterial hypertension, coronary artery disease, dyslipidemias, and type 2 diabetes. Spa therapy has long been used for treating obesity and its comorbidities. Enlargement of adipose tissue has been linked to a dysregulation of adipokine secretion and adipose tissue inflammation. Adipokines are currently investigated as potential drug targets in these conditions. Our primary aim was to assess the clinical efficacy of a 3-week program of diet combined with spa therapy in obese patients with and without type 2 diabetes. The secondary aim was to examine whether this combined program influences the response of serum levels of leptin, adiponectin, visfatin, and high-sensitivity C-reactive protein. Fifty obese males were enrolled and 21 of these featured a type 2 diabetes. During the 3-week period of the study, the patients were on a 1,000-kcal diet and were involved in mineral bath and total body's mud-pack applications (15 procedures). Patients were assessed at baseline and at the end of the therapy for clinical and biochemical parameters (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, glycemia, and adipokines). We showed that a 3-week program of spa therapy in obese patients induced significant decrease of body weight, body mass index, triglycerides, total cholesterol, low-density lipoprotein (LDL) cholesterol, glycemia, and serum levels of leptin and high-sensitivity C-reactive protein. So, a cycle of mud-bath therapy associated with a controlled diet may be a promising treatment for obesity and type 2 diabetes decreasing body weight and many risk factors for atherosclerosis and metabolic syndrome.
Zhang, Xinsheng; Zhang, Yong; Liu, Yinghua; Wang, Jin; Xu, Qing; Yu, Xiaoming; Yang, Xueyan; Liu, Zhao; Xue, Changyong
2016-09-01
We previously observed that medium-chain triglycerides (MCTs) could reduce body fat mass and improve the metabolism of cholesterol. We hypothesized that MCTs can improve atherosclerosis by promoting the reverse cholesterol transport (RCT) process. Therefore, the objective of this study was to investigate the roles of MCTs in macrophage RCT and the progression of atherosclerosis. To test this hypothesis, 30 4-week-old ApoE-deficient (ApoE(-/-)) mice were randomly divided into 2 groups and fed a diet of 2% MCTs or long-chain triglycerides (LCTs) for 16 weeks. Ten age- and sex-matched C57BL/6J mice were fed a diet of 2% LCTs as the control. Macrophage-to-feces RCT was assessed in vivo by intraperitoneal injection of RAW 264.7 macrophages containing (3)H-labeled cholesterol, and atherosclerotic plaques were measured. The mRNA and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. There was a greater decrease in body fat mass, atherosclerotic plaques, and an improvement in serum lipid profiles. In addition, the MCT mice group showed an increase in (3)H-tracer in the feces and a decrease in the liver. Significantly higher levels of mRNA and protein expression of hepatic ATP-binding cassette transporter A1, ATP-binding cassette transporter G5, cholesterol 7α-hydroxylase, and intestinal ATP-binding cassette transporter G8, as well as lower levels of expression of intestinal Niemann-Pick C1-like 1, were found in the MCT group. These results suggest that MCTs could obviously promote macrophage RCT and improve atherosclerosis in ApoE(-/-) mice, indicating that MCTs have the potential to prevent cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.
History and development of plant sterol and stanol esters for cholesterol-lowering purposes.
Thompson, Gilbert R; Grundy, Scott M
2005-07-04
Plant stanol esters provide a novel approach to lowering plasma low-density lipoprotein (LDL) cholesterol by dietary means. Their development was preceded by a long period of research into the cholesterol-lowering properties of plant sterols and, recently, plant stanols. Both classes of compound competitively inhibit the absorption of cholesterol and thus lower its level in plasma. Initial impressions were that stanols were more effective and safer than sterols, but the negative outcome of a study led to the recognition that the lipid solubility of free stanols was very limited. This was overcome by esterifying them with fatty acids, with the resultant stanol esters being freely soluble in fat spreads. This led to the launch of Benecol (margarine; Raisio Group, Raisio, Finland) in 1995. The coincident publication of the year-long North Karelia study conclusively demonstrated the long-term LDL-lowering efficacy of plant stanol esters. Variables that might influence the efficacy of stanol esters include dose, frequency of administration, food vehicle in which the stanol ester is incorporated, and background diet. The effective dose is 1 to 3 g/day, expressed as free stanol, which, in placebo-controlled studies, decreased LDL cholesterol by 6% to 15%. This effect is maintained, appears to be similar with once-daily or divided dosage, and is independent of the fat content of the food vehicle. Short-term studies suggest that equivalent amounts of plant sterol and stanol esters are similarly effective in lowering LDL, the main difference being that plasma plant sterol levels increase on plant sterols and decrease on plant stanols. The clinical significance of these changes remains to be determined.
Krajnicáková, M; Bekeová, E; Hendrichovský, V; Maracek, I
1993-01-01
Our investigations were concerned with dynamic changes in total lipids (CL), cholesterol (CHOL) and progesterone (P4) in blood serum of sheep in the period of oestrus synchronization treatment and during mating and gravidity. Our experiment was carried out using 10 animals housed under the conditions of productive rearing. Blood samples were taken from v. jugularis on day of swab application (day 0) and on days 3 and 7 of the action of Agelin vaginal swabs, on day of insemination, and on days 7, 14, 17 and in the 2nd, 3rd and 4th month of gravidity. Blood serum was used to determine total lipids and cholesterol by means of Bio-Lachema tests, and P4 concentrations employing RIA-test-Prog kits (URVJT, Kosice). A statistically significant decrease in concentrations of total lipids (Fig. 1, Tab. I) in sheep blood serum was recorded on day of insemination (P < 0.05) compared to day 0, with the value 1.59 +/- 0.31 g/l of serum, and in the 3rd month of gravidity (P < 0.01), at concentrations 1.36 +/- 0.38 g/l of serum. The determined decrease in their values in the mentioned period can be modulated by the mutually changing ratio of steroid hormones or by inhibition of synthesis of lipoproteins responsible for changes in total plasma lipids. Changes in cholesterol concentrations (Fig. 2, Tab. I) during the introduction of swabs were insignificant and ranged from 1.60 +/- 0.42 to 1.73 +/- 0.33 mmol/l of serum. An insignificant increase in cholesterol concentrations (P < 0.05), with its highest levels 1.98 +/- 0.43 mmol/l of serum, was recorded in the 3rd month of gravidity.(ABSTRACT TRUNCATED AT 250 WORDS)
Effects of simvastatin and pravastatin on gonadal function in male hypercholesterolemic patients.
Dobs, A S; Miller, S; Neri, G; Weiss, S; Tate, A C; Shapiro, D R; Musliner, T A
2000-01-01
Inhibition of cholesterol biosynthesis by hydroxymethyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors could, in theory, adversely affect male gonadal function because cholesterol is a precursor of steroid hormones. The objective of this randomized double-blind trial was to compare the effects of simvastatin, pravastatin, and placebo on gonadal testosterone production and spermatogenesis. After a 6-week placebo and lipid-lowering diet run-in period, 159 male patients aged 21 to 55 years with type IIa or IIb hypercholesterolemia, low-density lipoprotein (LDL) cholesterol between 145 and 240 mg/dL, and normal basal levels of testosterone were randomly assigned to treatment with simvastatin 20 mg (n = 40), simvastatin 40 mg (n = 41), pravastatin 40 mg (n = 39), or placebo (n = 39) once daily. After 24 weeks of treatment, mean total cholesterol levels were decreased 24% to 27% and mean LDL cholesterol was decreased 30% to 34% in the 3 active-treatment groups (P < .001 for all comparisons to placebo). At 24 weeks, there were no statistically significant differences between the placebo group and any of the active-treatment groups for the change from baseline in testosterone, human chorionic gonadotropin (hCG)stimulated testosterone, free testosterone index, follicle-stimulating hormone (FSH), luteinizing hormone (LH), or sex hormone-binding globulin (SHBG). Moreover, there were no statistically significant differences at week 12 or week 24 for the change from baseline in sperm concentration, ejaculate volume, or sperm motility for any active treatment relative to placebo. Both simvastatin and pravastatin were well tolerated. In summary, we found no evidence for clinically meaningful effects of simvastatin or pravastatin on gonadal testosterone production, testosterone reserve, or multiple parameters of semen quality.
NASA Astrophysics Data System (ADS)
Fioravanti, Antonella; Adamczyk, Przemysław; Pascarelli, Nicola Antonio; Giannitti, Chiara; Urso, Renato; Tołodziecki, Michał; Ponikowska, Irena
2015-07-01
Obesity is a major risk factor for arterial hypertension, coronary artery disease, dyslipidemias, and type 2 diabetes. Spa therapy has long been used for treating obesity and its comorbidities. Enlargement of adipose tissue has been linked to a dysregulation of adipokine secretion and adipose tissue inflammation. Adipokines are currently investigated as potential drug targets in these conditions. Our primary aim was to assess the clinical efficacy of a 3-week program of diet combined with spa therapy in obese patients with and without type 2 diabetes. The secondary aim was to examine whether this combined program influences the response of serum levels of leptin, adiponectin, visfatin, and high-sensitivity C-reactive protein. Fifty obese males were enrolled and 21 of these featured a type 2 diabetes. During the 3-week period of the study, the patients were on a 1,000-kcal diet and were involved in mineral bath and total body's mud-pack applications (15 procedures). Patients were assessed at baseline and at the end of the therapy for clinical and biochemical parameters (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, glycemia, and adipokines). We showed that a 3-week program of spa therapy in obese patients induced significant decrease of body weight, body mass index, triglycerides, total cholesterol, low-density lipoprotein (LDL) cholesterol, glycemia, and serum levels of leptin and high-sensitivity C-reactive protein. So, a cycle of mud-bath therapy associated with a controlled diet may be a promising treatment for obesity and type 2 diabetes decreasing body weight and many risk factors for atherosclerosis and metabolic syndrome.
Harada, Yukiko; Tanaka, Naoki; Ichikawa, Motoki; Kamijo, Yuji; Sugiyama, Eiko; Gonzalez, Frank J; Aoyama, Toshifumi
2016-12-01
It was reported that 2,4-dichlorophenoxyacetic acid (2,4-D), a commonly used herbicide and a possible endocrine disruptor, can disturb spermatogenesis, but the precise mechanism is not understood. Since 2,4-D is a weak peroxisome proliferator in hepatocytes and peroxisome proliferator-activated receptor α (PPARα) is also expressed in Leydig cells, this study aimed to investigate the link between PPARα and 2,4-D-mediated testicular dysfunction. 2,4-D (130 mg/kg/day) was administered to wild-type and Ppara-null mice for 2 weeks, and the alterations in testis and testosterone/cholesterol metabolism in Leydig cells were examined. Treatment with 2,4-D markedly decreased testicular testosterone in wild-type mice, leading to degeneration of spermatocytes and Sertoli cells. The 2,4-D decreased cholesterol levels in Leydig cells of wild-type mice through down-regulating the expression of 3-hydroxy-3-methylglutaryl coenzyme A synthase 1 and reductase, involved in de novo cholesterogenesis. However, the mRNAs encoding the important proteins involved in testosterone synthesis were unchanged by 2,4-D except for CYP17A1, indicating that exhausted cholesterol levels in the cells is a main reason for reduced testicular testosterone. Additionally, pregnancy rate and the number of pups between 2,4-D-treated wild-type male mice and untreated female mice were significantly lower compared with those between untreated couples. These phenomena were not observed in 2,4-D-treated Ppara-null males. Collectively, these results suggest a critical role for PPARα in 2,4-D-induced testicular toxicity due to disruption of cholesterol/testosterone homeostasis in Leydig cells. This study yields novel insights into the possible mechanism of testicular dysfunction and male infertility caused by 2,4-D.
Fournier, Natalie; Tardivel, Sylviane; Benoist, Jean-François; Vedie, Benoît; Rousseau-Ralliard, Delphine; Nowak, Maxime; Allaoui, Fatima; Paul, Jean-Louis
2016-04-01
A diet rich in n-3/n-6 polyunsaturated fatty acids (PUFAs) is cardioprotective. Dietary PUFAs affect the cellular phospholipids composition, which may influence the function of membrane proteins. We investigated the impact of the membrane incorporation of several PUFAs on ABCA1-mediated cholesterol efflux, a key antiatherogenic pathway. Arachidonic acid (AA) (C20:4 n-6) and docosahexaenoic acid (DHA) (C22:6 n-3) decreased or increased cholesterol efflux from J774 mouse macrophages, respectively, whereas they had no effect on efflux from human monocyte-derived macrophages (HMDM). Importantly, eicosapentaenoic acid (EPA) (C20:5 n-3) induced a dose-dependent reduction of ABCA1 functionality in both cellular models (-28% for 70μM of EPA in HMDM), without any alterations in ABCA1 expression. These results show that PUFA membrane incorporation does not have the same consequences on cholesterol efflux from mouse and human macrophages. The EPA-treated HMDM exhibited strong phospholipid composition changes, with high levels of both EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which is associated with a decreased level of AA. In HMDM, EPA reduced the ATPase activity of the membrane transporter. Moreover, the activation of adenylate cyclase by forskolin and the inhibition of cAMP phosphodiesterase by isobutylmethylxanthine restored ABCA1 cholesterol efflux in EPA-treated human macrophages. In conclusion, EPA membrane incorporation reduces ABCA1 functionality in mouse macrophages as well as in primary human macrophages and this effect seems to be PKA-dependent in human macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.
Alterations in the lipid metabolism of rat aorta: effects of vitamin a deficiency.
Gatica, Laura V; Vega, Verónica A; Zirulnik, Fanny; Oliveros, Liliana B; Gimenez, María S
2006-01-01
Antioxidants are known to reduce cardiovascular disease by reducing the concentration of free radicals in the vessel wall and by preventing the oxidative modification of low-density lipoproteins. The prooxidative effect of a vitamin-A-deficient diet on the aorta has previously been demonstrated by us. In this study, the lipid metabolism in the aorta of rats fed on a vitamin-A-deficient diet was evaluated. Vitamin A deficiency induced a hypolipidemic effect (lower serum triglyceride and cholesterol levels) and a decreased serum paraoxonase 1/arylesterase activity. The concentrations of triglycerides, total cholesterol, free and esterified cholesterol, and phospholipids were increased in the aorta of vitamin-A-deficient rats. The phospholipid compositions showed an increase in phosphatidylcholine (PC), phosphatidylinositol plus phosphatidylserine and phosphatidylethanolamine, a decrease in sphingomyelin, and no change in phosphatidylglycerol. In the aorta, the increase in triglycerides was associated with an increased fatty acid synthesis and mRNA expression of diacylglycerol acyltransferase 1. The increased PC content was attributed to an increased synthesis, as measured by [methyl-(14)C]choline incorporation into PC and high CTP:phosphocholine cytidylyltransferase-alpha mRNA expression. The cholesterol synthesis, evaluated by [1-(14)C]acetate incorporated into cholesterol and mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase, did not change. The lipoprotein lipase and lectin-like oxidized low-density lipoprotein receptor 1 mRNA expression levels increased in the aorta of vitamin-A-deficient animals. The incorporation of vitamin A into the diet of vitamin-A-deficient rats reverted all the changes observed. These results indicate that a vitamin-A-deficient diet,in addition to having a prooxidative effect, alters the aorta lipid metabolism.
Loregger, Anke; Cook, Emma Claire Laura; Nelson, Jessica Kristin; Moeton, Martina; Sharpe, Laura Jane; Engberg, Susanna; Karimova, Madina; Lambert, Gilles; Brown, Andrew John
2015-01-01
Cholesterol synthesis and lipoprotein uptake are tightly coordinated to ensure that the cellular level of cholesterol is adequately maintained. Hepatic dysregulation of these processes is associated with pathological conditions, most notably cardiovascular disease. Using a genetic approach, we have recently identified the E3 ubiquitin ligase MARCH6 as a regulator of cholesterol biosynthesis, owing to its ability to promote degradation of the rate-limiting enzymes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) and squalene epoxidase (SQLE). Here, we present evidence for MARCH6 playing a multifaceted role in the control of cholesterol homeostasis in hepatocytes. We identify MARCH6 as an endogenous inhibitor of the sterol regulatory element binding protein (SREBP) transcriptional program. Accordingly, loss of MARCH6 increases expression of SREBP-regulated genes involved in cholesterol biosynthesis and lipoprotein uptake. Unexpectedly, this is associated with a decrease in cellular lipoprotein uptake, induced by enhanced lysosomal degradation of the low-density lipoprotein receptor (LDLR). Finally, we provide evidence that induction of the E3 ubiquitin ligase IDOL represents the molecular mechanism underlying this MARCH6-induced phenotype. Our study thus highlights a MARCH6-dependent mechanism to direct cellular cholesterol accretion that relies on uncoupling of cholesterol synthesis from lipoprotein uptake. PMID:26527619
Guay, Valérie; Lamarche, Benoît; Charest, Amélie; Tremblay, André J; Couture, Patrick
2012-01-01
High-fat, low-carbohydrate diets have been shown to raise plasma cholesterol levels, an effect associated with the formation of large low-density lipoprotein (LDL) particles. However, the impact of dietary intervention on time-course changes in LDL particle size has not been investigated. To test whether a short-term dietary intervention affects LDL particle size, we conducted a randomized, double-blind, crossover study using an intensive dietary modification in 12 nonobese healthy men with normal plasma lipid profile. Participants were subjected to 2 isocaloric 3-day diets: high-fat diet (37% energy from fat and 50% from carbohydrates) and low-fat diet (25% energy from fat and 62% from carbohydrates). Plasma lipid levels and LDL particle size were assessed on fasting blood samples after 3 days of feeding on each diet. The LDL particles were characterized by polyacrylamide gradient gel electrophoresis. Compared with the low-fat diet, plasma cholesterol, LDL cholesterol, and high-density lipoprotein cholesterol were significantly increased (4.45 vs 4.78 mmol/L, P = .04; 2.48 vs 2.90 mmol/L, P = .005; and 1.29 vs 1.41 mmol/L, P = .005, respectively) following the 3-day high-fat diet. Plasma triglycerides and fasting apolipoprotein B-48 levels were significantly decreased after the high-fat diet compared with the low-fat diet (1.48 vs 1.01 mmol/L, P = .0003 and 9.6 vs 5.5 mg/L, P = .008, respectively). The high-fat diet was also associated with a significant increase in LDL particle size (255.0 vs 255.9 Å;P = .01) and a significant decrease in the proportion of small LDL particle (<255.0 Å) (50.7% vs 44.6%, P = .01). As compared with a low-fat diet, the cholesterol-raising effect of a high-fat diet is associated with the formation of large LDL particles after only 3 days of feeding. Copyright © 2012 Elsevier Inc. All rights reserved.
Adeyemi, Kazeem D; Sabow, Azad B; Aghwan, Zeiad A; Ebrahimi, Mahdi; Samsudin, Anjas A; Alimon, Abdul R; Sazili, Awis Q
2016-01-01
Dietary supplementation of unsaturated fats in ruminants, if not stabilized, can instigate oxidative stress which can have negative impact on production performance and enhance the susceptibility to various diseases. The current study examined the effect of dietary 80 % canola oil and 20 % palm oil blend (CPOB) on serum fatty acids, antioxidant profile and biochemical indices in goats. Thirty Boer bucks (4-5 months old; initial BW, 20.34 ± 0.77 kg) were randomly assigned to diets containing 0, 4 or 8 % CPOB and fed daily for a period of 90 days. Blood was sampled from the goats on 0, 30, 60 and 90 days of the trial and the serum was analyzed for fatty acids, cholesterol, glucose, total protein, antioxidants and lipid oxidation. Neither diet nor sampling time influenced serum TBARS value, catalase, glutathione peroxidase and superoxide dismutase activities, LDL cholesterol, VLDL cholesterol, triglycerides, glucose and total protein. Goats fed 4 and 8 % CPOB had higher (P < 0.05) total cholesterol and HDL cholesterol than the control goats on day 30, 60 and 90. The proportion of C15:0 decreased with increasing level of CPOB on day 30 and 60. Serum C18:1n-9 increased with increasing level of CPOB in diet on day 60. The proportion of C18:3n-3 and C22:5n-3 increased (P < 0.05), while the proportion of C18:2n-6 decreased (P < 0.05) with increase in the level of CPOB on day 60 and 90. Dietary CPOB did not affect serum total carotenoid and δ-tocopherol but did increase (P < 0.05) α and γ-tocopherol. Dietary canola oil and palm oil blend could be supplemented in diets without instigating oxidative stress in goats.
Naringin enhances reverse cholesterol transport in high fat/low streptozocin induced diabetic rats.
Rotimi, Solomon Oladapo; Adelani, Isaacson Bababode; Bankole, Goodness Esther; Rotimi, Oluwakemi Anuoluwapo
2018-05-01
Naringin, a citrus-derived flavonoid with antihyperglycemic, antihyperlipidemic, and antioxidant properties, is reported to be a useful nutraceutical in the management of diabetes and its complications. This study investigated the mechanism of antiatherogenic properties of naringin in type 2 diabetes (T2DM) using high fat-low streptozocin rat model of T2DM. Rats were treated daily with 50, 100 and 200 mg/kg naringin orally for 21days. Levels of biomarkers of T2DM, lipid profile and activity of paraoxonase (PON) were assayed spectrophotometrically. The levels of expression of hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase (Hmgcr), scavenger receptor class B member 1 (Scarb1), aryl hydrocarbon receptor (Ahr), hepatic Lipase (Lipc), and lecithin-cholesterol acyltransferase (Lcat) were assessed using relative reverse transcriptase polymerase chain reaction technique. Naringin treatment resulted in a dose-dependent significant (p < 0.05) decrease in the levels of plasma cholesterol and triglyceride from 84.84 ± 1.62 to 55.59 ± 1.50 mg/dL and 123.03 ± 15.11 to 55.00 ± 0.86 mg/dL, respectively, at 200 mg/kg naringin. In the liver, Scarb1 and Ahr were significantly (p < 0.05) upregulated at 200 mg/kg naringin while Lipc and Lcat were significantly (p < 0.05) upregulated by 50 mg/kg naringin. T2DM-induced decrease in PON activities in the plasma, liver and HDL was significantly (p < 0.05) reversed by 200 mg/kg naringin treatment. These genes play critical roles in reverse cholesterol transport and hence our results showed that the antiatherogenic property of naringin in T2DM involves enhancement of reverse cholesterol transport and PON activity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Taner Ertugrul, D; Yavuz, B; Okhan Akin, K; Arif Yalcin, A; Ata, N; Kucukazman, M; Algul, B; Dal, K; Sinan Deveci, O; Tutal, E
2010-03-01
Sibutramine is a selective inhibitor of the reuptake of monoamines. Plasma levels of brain natriuretic peptide (BNP) appear to be inversely associated with body mass index (BMI) in subjects with and without heart failure for reasons that remain unexplained. The aim of this study was to investigate the possible influence of sibutramine treatment on BNP levels in severely obese patients. Fifty-two severely obese female patients with BMI > 40 kg/m(2) were included to this study. The women were recommended to follow a weight-reducing daily diet of 25 kcal/kg of ideal body weight. During the treatment period, all patients were to receive 15 mg of sibutramine once a day. Blood chemistry tests were performed before the onset of the medication and after 12 weeks of treatment. None of the subjects was withdrawn from the study because of the adverse effects of sibutramine. Body weight (108.8 +/- 13.3 kg vs. 101.7 +/- 15.6 kg, p < 0.001), BMI (44.6 +/- 4.6 kg/m(2) vs. 41.8 +/- 5.7 kg/m(2), p < 0.001) and BNP [8.6 (0.5-49.5) ng/l vs. 3.1 (0.2-28.6) ng/l, p = 0.018] levels were significantly decreased after 12 weeks of sibutramine treatment. Total cholesterol (5.19 +/- 0.90 mmol/l vs. 4.82 +/- 1.05 mmol/l respectively; p < 0.001), low-density lipoprotein-cholesterol (3.26 +/- 0.86 mmol/l vs. 2.99 +/- 0.40 mmol/l respectively; p = 0.008), levels were significantly decreased; however, there was no significant alteration in high-density lipoprotein-cholesterol and triglyceride levels. This study has shown a decrease in BNP levels which may lead to improvement in cardiac outcome after sibutramine treatment. Further randomised studies are needed to be conducted to clarify the relationship between sibutramine and BNP.
Cholesterol - what to ask your doctor
... your doctor; What to ask your doctor about cholesterol ... What is my cholesterol level? What should my cholesterol level be? What are HDL ("good") cholesterol and LDL ("bad") cholesterol? Does my cholesterol ...
Mechanistic studies of high-density lipoproteins.
Kashyap, M L
1998-12-17
There is increasing evidence that high-density lipoprotein (HDL) and its subfractions are protective against atherosclerotic cardiovascular disease. Physical exercise, weight reduction, smoking cessation, diabetes mellitus control, and specific drugs, including niacin, fibrates, and estrogens, are effective methods to increase HDL levels. Niacin is the oldest and most powerful clinical agent for raising HDL levels. Niaspan, an extended-release niacin formulation, is as potent as immediate-release niacin in increasing levels of HDL cholesterol; subfractions HDL2 and HDL3; apolipoprotein A-I, the major protein of HDL, and its cardioprotective subfraction lipoprotein A-I. Recent research from our laboratory suggests a novel mechanism by which niacin inhibits hepatic removal of HDL-apoprotein A-I without interfering with the removal of cholesterol carried by HDL, thus augmenting reverse cholesterol transport. Other mechanistic studies indicate that fibrates and estrogens stimulate the synthesis and production of HDL-apoprotein A-I. Because niacin decreases HDL-apoprotein A-I removal, and fibrates and estrogens increase HDL-apoprotein A-I production, combinations of niacin with these agents may raise HDL levels more than fibrates or estrogens alone.
Rahman, Mahboob; Baimbridge, Charles; Davis, Barry R; Barzilay, Joshua; Basile, Jan N; Henriquez, Mario A; Huml, Anne; Kopyt, Nelson; Louis, Gail T; Pressel, Sara L; Rosendorff, Clive; Sastrasinh, Sithiporn; Stanford, Carol
2008-09-01
Dyslipidemia is common in patients with chronic kidney disease. The role of statin therapy in the progression of kidney disease is unclear. Prospective randomized clinical trial, post hoc analyses. 10,060 participants in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (lipid-lowering component) stratified by baseline estimated glomerular filtration rate (eGFR): less than 60, 60 to 89, and 90 or greater mL/min/1.73 m(2). Mean follow-up was 4.8 years. Randomized; pravastatin, 40 mg/d, or usual care. Total, high-density lipoprotein, and low-density lipoprotein cholesterol; end-stage renal disease (ESRD), eGFR. Through year 6, total cholesterol levels decreased in the pravastatin (-20.7%) and usual-care groups (-11.2%). No significant differences were seen between groups for rates of ESRD (1.36 v 1.45/100 patient-years; P = 0.9), composite end points of ESRD and 50% or 25% decrease in eGFR, or rate of change in eGFR. Findings were consistent across eGFR strata. In patients with eGFR of 90 mL/min/1.73 m(2) or greater, the pravastatin arm tended to have a higher eGFR. Proteinuria data unavailable, post hoc analyses, unconfirmed validity of the Modification of Diet in Renal Disease Study equation in normal eGFR range, statin drop-in rate in usual-care group with small cholesterol differential between groups. In hypertensive patients with moderate dyslipidemia and decreased eGFR, pravastatin was not superior to usual care in preventing clinical renal outcomes. This was consistent across the strata of baseline eGFR. However, benefit from statin therapy may depend on the degree of the cholesterol level decrease achieved.
Takiguchi, Shunichi; Ayaori, Makoto; Yakushiji, Emi; Nishida, Takafumi; Nakaya, Kazuhiro; Sasaki, Makoto; Iizuka, Maki; Uto-Kondo, Harumi; Terao, Yoshio; Yogo, Makiko; Komatsu, Tomohiro; Ogura, Masatsune; Ikewaki, Katsunori
2018-05-10
Reverse cholesterol transport (RCT) is a major mechanism by which HDL (high-density lipoprotein) protects against atherosclerosis. Endothelial lipase (EL) reportedly reduces HDL levels, which, in theory, would increase atherosclerosis. However, it remains unclear whether EL affects RCT in vivo. Adenoviral vectors expressing EL or luciferase were intravenously injected into mice, and a macrophage RCT assay was performed. As expected, hepatic EL overexpression markedly reduced HDL levels. In parallel, plasma 3 H-cholesterol counts from the EL-expressing mice decreased by 85% compared with control. Surprisingly, there was no difference in fecal 3 H-cholesterol excretion between the groups. Kinetic studies revealed increased catabolism/hepatic uptake of 3 HDL-cholesteryl ether, resulting in no change in fecal HDL-cholesteryl ester excretion in the mice. To explore underlying mechanisms for the preservation of RCT despite low HDL levels in the EL-expressing mice, we investigated the effects of hepatic SR-BI (scavenger receptor class B type I) knockdown. RCT assay revealed that knockdown of SR-BI alone reduced fecal excretion of macrophage-derived 3 H-cholesterol. Interestingly, hepatic EL overexpression under SR-BI inhibition further attenuated fecal tracer counts as compared with control. Finally, we observed that EL overexpression enhanced in vivo RCT under pharmacological inhibition of hepatic ABCA1 (ATP-binding cassette transporter A1) by probucol. Hepatic EL expression compensates for reduced macrophage-derived cholesterol efflux to plasma because of low HDL levels by promoting cholesterol excretion to bile/feces via an SR-BI pathway, maintaining overall RCT in vivo. In contrast, EL-modified HDL might negatively regulate RCT via hepatic ABCA1. Despite extreme hypoalphalipoproteinemia, RCT is maintained in EL-expressing mice via SR-BI/ABCA1-dependent pathways. © 2018 American Heart Association, Inc.
Choi, Won Hee; Gwon, So Young; Ahn, Jiyun; Jung, Chang Hwa; Ha, Tae Youl
2013-07-01
Rice has many health-beneficial components for ameliorating obesity, diabetes, and dyslipidemia. However, the effect of cooked rice as a useful carbohydrate source has not been investigated yet; so we hypothesized that cooked rice may have hypolipidemic effects. In the present study, we investigated the effect of cooked rice on hyperlipidemia and on the expression of hepatic genes involved in lipid metabolism. Golden Syrian hamsters were divided into 2 groups and fed a high-fat (15%, wt/wt)/cholesterol (0.5%, wt/wt) diet supplemented with either corn starch (HFD, 54.5% wt/wt) or cooked rice (HFD-CR, 54.5% wt/wt) as the main carbohydrate source for 8 weeks. In the HFD-CR group, the triglyceride and total cholesterol levels in the serum and liver were decreased, and the total lipid, total cholesterol, and bile acid levels in the feces were increased, compared with the HFD group. In the cooked-rice group, the messenger RNA and protein levels of 3-hydroxy-3-methylglutaryl CoA reductase were significantly downregulated; and the messenger RNA and protein levels of the low-density lipoprotein receptor and cholesterol-7α-hydroxylase were upregulated. Furthermore, the expressions of lipogenic genes such as sterol response element binding protein-1, fatty acid synthase, acetyl CoA carboxylase, and stearoyl CoA desaturase-1 were downregulated, whereas the β-oxidation related genes (carnitine palmitoyl transferase-1, acyl CoA oxidase, and peroxisome proliferator-activated receptor α) were upregulated, in the cooked-rice group. Our results suggest that the hypolipidemic effect of cooked rice is partially mediated by the regulation of hepatic genes involved in lipid metabolism, which results in the suppression of cholesterol and fatty acid synthesis and the enhancement of cholesterol excretion and fatty acid β-oxidation. Copyright © 2013 Elsevier Inc. All rights reserved.
Sun, Jun-En; Ao, Zong-Hua; Lu, Zhen-Ming; Xu, Hong-Yu; Zhang, Xiao-Mei; Dou, Wen-Fang; Xu, Zheng-Hong
2008-06-19
The antihyperglycemic and antilipidperoxidative effects of the dry matter of culture broth (DMCB) of Inonotus obliquus were investigated. The normal, glucose-induced hyperglycemic and alloxan-induced diabetic mice were used to evaluate the antihyperglycemic and antilipidperoxidative effects of the DMCB of Inonotus obliquus. Treatment with the DMCB (500 and 1000 mg/kg body weight) exhibited a mild hypoglycemic effect in normal mice, and failed to reduce the peak glucose levels after glucose administration. However, euglycemia was achieved in the DMCB of Inonotus obliquus (1000 mg/kg) and glibenclamide-treated mice after 120 min of glucose loading. In alloxan-induced diabetic mice, the DMCB (500 and 1000 mg/kg body weight for 21 days) showed a significant decrease in blood glucose level, the percentages reduction on the 7th day were 11.90 and 15.79%, respectively. However, feeding of this drug for 3 weeks produced reduction was 30.07 and 31.30%. Furthermore, the DMCB treatment significantly decreased serum contents of free fatty acid (FFA), total cholesterol (TC), triglyceride (TG) and low density lipoprotein-cholesterol (LDL-C), whereas effectively increased high density lipoprotein-cholesterol (HDL-C), insulin level and hepatic glycogen contents in liver on diabetic mice. Besides, the DMCB treatment significantly increased catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities except for decreasing maleic dialdehyde (MDA) level in diabetic mice. Histological morphology examination showed that the DMCB restored the damage of pancreas tissues in mice with diabetes mellitus. The results showed that the DMCB of Inonotus obliquus possesses significant antihyperglycemic, antilipidperoxidative and antioxidant effects in alloxan-induced diabetic mice.
Saltissi, D; Morgan, C; Knight, B; Chang, W; Rigby, R; Westhuyzen, J
2001-06-01
Patients with end-stage renal failure are a high-risk group for atherosclerotic cardiovascular disease and commonly have dyslipidemia as a major factor. Dietary manipulation is the recommended first line of therapy for reducing lipid levels in people with normal renal function; however, complex dietary requirements of dialysis-treated patients with end-stage renal failure impose significant constraints. In this study, we evaluated the effect of trying to comply with established lipid-lowering recommendations superimposed on our normally prescribed dialysis diet over 14 weeks in stable subjects treated with either hemodialysis (HD) or chronic peritoneal dialysis (PD). Of 306 dialysis patients screened, 75 subjects were enrolled; 8 subjects did not complete the study. In the remainder, HD subjects (n = 41) decreased saturated fat intakes by 18% overall and cholesterol intakes by 16%. This was associated with a decrease in total cholesterol levels from 232 +/- 8 to 209 +/- 4 mg/dL (mean +/- SEM; P = 0.007) and low-density lipoprotein cholesterol levels from 147 +/- 4 to 131 +/- 4 mg/dL (P = 0.009). However, energy intakes decreased by almost 10%. There were no statistically significant changes in PD patients (n = 26). Only 24.4% of HD (10 of 41 patients) and 15.4% of PD patients (4 of 26 patients) normalized their lipid levels. Considerable problems were encountered in maintaining compliance with the modified dialysis diets. This study shows that if adhered to, properly constructed dialysis diets are close to optimal lipid-lowering recommendations. Further dietary manipulation is difficult, leads to little benefit in the majority, and is accompanied by added problems of adherence. We conclude that the vast majority of dyslipidemic patients with end-stage renal failure require pharmacological therapy.
Theuwissen, Elke; Mensink, Ronald P
2007-03-01
Intake of food products rich in water-soluble fiber beta-glucan and products enriched with plant stanol esters lower serum cholesterol. Combining 2 functional food ingredients into one food product may achieve additional reductions of serum cholesterol. Our objective was to investigate the effects of a simultaneous intake of beta-glucan plus plant stanol esters on lipid metabolism in mildly hypercholesterolemic volunteers. In a randomized, controlled, 3-period crossover study, 40 mildly hypercholesterolemic men and women received muesli in random order twice a day for 4 wk, which provided, in total, 5 g control fiber from wheat (control muesli), 5 g oat beta-glucan (beta-glucan muesli), or 5 g oat beta-glucan plus 1.5 g plant stanols (combination muesli). beta-Glucan muesli decreased serum LDL cholesterol by 5.0% compared with control muesli (P = 0.013). Combination muesli reduced LDL cholesterol by 9.6% compared with control muesli (P < 0.001), and by 4.4% compared with beta-glucan muesli (P = 0.036). Serum HDL cholesterol and triacylglycerol concentrations did not differ after the 3 treatments. Compared with control muesli, beta-glucan muesli increased bile acid synthesis (P = 0.043) and decreased cholesterol absorption (P = 0.011). Addition of plant stanols did not influence bile acid synthesis but decreased cholesterol absorption (P < 0.001) and raised cholesterol synthesis (P = 0.016) compared with control muesli, and the plant stanols decreased cholesterol absorption compared with beta-glucan muesli (P = 0.004). The combination muesli decreased serum concentrations of sitostanol compared with control muesli (P = 0.010). Plasma concentrations of lipid-soluble antioxidants did not differ after the 3 treatments. beta-Glucan muesli effectively lowered serum LDL cholesterol concentrations. The addition of plant stanol esters to beta-glucan-enriched muesli further lowered serum LDL cholesterol, although effects were slightly less than predicted.
NASA Astrophysics Data System (ADS)
Amelia, R.; Harahap, J.; Wahyuni, A. S.; Pratama, A.
2018-03-01
Health problems in the elderly come from declining body cells, so the function and body endurance decreased along with increased risk factors for diseases. This study aimed to determine the elderly health status in Public Health Center of Tuntungan Medan. Health status includes measurement of daily activities living (DAL),and health parameter include blood pressure, blood sugar level (BSL), cholesterol level and uric acid level. The study design was descriptive with cross-sectional approach. The study population was the entire elderly population residing in the service area of public health center of Tuntungan Medan (55 subjects). The elderly who had a reasonable level of independence were 47 subjects (85.5%), the majority of elderly were in the category of hypertension stage I (20 subjects; 36.4%) with a mean systolic blood pressure level was 143mmHg. Most of them have BSL that exceeded the standard limit (42 subjects; 76.4%) with BSL mean value was 177mg/dL.Uric acid levels were in the high category (34 subjects; 61.98%) with a mean value of 7.0mm/dL, and most of them have normal cholesterol (43 subjects; 78.2%).
Nwozo, Sarah O; Orojobi, Bosede F; Adaramoye, Oluwatosin A
2011-01-01
A short-term study was carried out on Wistar strain rats to determine the effects of Xylopia aethiopica extract on serum and postmitochondrial fractions (PMFs) of visceral organs in experimental hypercholesterolemia. Animals received normal diet and were administered cholesterol orally by intubations at a dose of 40 mg/kg/0.3 mL, plant extracts at 250 mg/kg, and cholestyramine (Questran®, Bristol-Myers Squibb, Hounslow, United Kingdom) at 0.26 g/kg five times a week for 8 consecutive weeks. Thereafter the hypolipidemic effects were assessed by measuring total cholesterol, low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol, and triglycerides, whereas the extent of oxidative stress was assayed by measuring thiobarbituric acid-reactive substances and enzymatic antioxidants such as superoxide dismutase, catalase, and reduced glutathione (GSH) in serum and PMF of liver and kidney. We assayed two liver biomarkers-alanine aminotransferase and aspartate aminotransferase-for safety of X. aethiopica at the dose given in this experiment. Cholesterol feeding resulted in a significant increase (P < .05) in body weight of the hypercholesterolemic animals relative to control animals, and administration of X. aethiopica (250 mg/kg) caused a more than 60% reduction in body weight. Simultaneous treatment with X. aethiopica and Questran elicited 33.75% and 23.94% reductions, respectively, in serum cholesterol levels of hypercholesterolemic rats. In addition, the LDL-C level decreased significantly (P < .05) by 49.09% and 78.92% in serum and by 64.97% and 37.29% in the liver with cotreatment with the plant extract and Questran, respectively, compared to untreated hypercholesterolemic rats. X. aethiopica counteracted the decreases in enzymatic antioxidants, especially in GSH, where there was a greater than 300% increase compared with hypercholesterolemic animals. This study has shown that intake of X. aethiopica reduced the composition of lipids and produced a favorable lipid profile in the serum and PMF of visceral organs in experimental hypercholesterolemia.
Khang, Ah Reum; Song, Young Shin; Kim, Kyoung Min; Moon, Jae Hoon; Lim, Soo; Park, Kyong Soo; Jang, Hak Chul; Choi, Sung Hee
2016-01-01
It is difficult to apply the proper intensity of statin for new treatment guidelines in clinical settings because of few data about the statin efficacy in Asians. We conducted a retrospective, observational study to estimate the percentage changes in lipid parameters and glucose induced by different statins. We analyzed 3854 patients including those with nondiabetes and diabetes treated at the outpatient clinic between 2003 and 2013 who were statin-naïve and maintained fixed-dose of statin for at least 18 months. Moderate- and low-intensity statin therapy was effective in reducing low-density lipoprotein cholesterol (LDL-C) to <100 mg/dL (70.3%, 83.0%, and 87.2% of diabetic patients in the low-, moderate-, and high-intensity therapy groups, respectively). The rapid decrease of LDL-C was observed in the first 8 months, and LDL-C-lowering effect was maintained throughout the observation period in even the low-intensity statin group. The effects of statins in elevating high-density lipoprotein cholesterol were similar in each statin groups, except the ezetimibe-simvastatin group (4.5 ± 2.1%) and high-dose atorvastatin groups (9.7 ± 3.3% and 8.7 ± 2.4% for 40 mg and 80 mg of atorvastatin/day, respectively). High-density lipoprotein cholesterol increased less and LDL-C decreased more in diabetes than in nondiabetes. There were no significant changes of fasting glucose after statin use in nondiabetic patients. Moderate- or low-intensity statin was effective enough in reaching National Cholesterol Education Program Adult Treatment Panel III LDL-C target goals in Koreans. Low-intensity statin showed around 30% LDL-C reduction from the baseline level in Koreans, which is comparable to moderate-intensity statin in new guideline. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Gatto, Mariana; de Abreu, Mariana Miziara; Tasca, Karen Ingrid; Simão, José Cláudio; Fortaleza, Carlos Magno Castelo Branco; Pereira, Paulo Câmara Marques; Calvi, Sueli Aparecida
2013-01-01
Visceral leishmaniasis (VL) is caused by the intracellular protozoan Leishmania donovani complex. VL may be asymptomatic or progressive and is characterized by fever, anemia, weight loss and the enlargement of the spleen and liver. The nutritional status of the patients with VL is a major determinant of the progression, severity and mortality of the disease, as it affects the clinical progression of the disease. Changes in lipoproteins and plasma proteins may have major impacts in the host during infection. Thus, our goal was evaluate the serum total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, glucose, albumin, globulin and total protein levels, as well as the body composition, of VL patients before and after treatment. Nutritional evaluation was performed using the bioelectrical impedance analysis (BIA) to assess body composition. Biochemical data on the serum total cholesterol, HDL, LDL, triglycerides, glucose, albumin, globulin and total protein were collected from the medical charts of the patients. BIA indicated that both pre-treatment and post-treatment patients exhibited decreased phase angles compared to the controls, which is indicative of disease. Prior to treatment, the patients exhibited lower levels of total body water compared to the controls. Regarding the biochemical evaluation, patients with active VL exhibited lower levels of total cholesterol, HDL, LDL and albumin and higher triglyceride levels compared to patients after treatment and the controls. Treatment increased the levels of albumin and lipoproteins and decreased the triglyceride levels. Our results suggest that patients with active VL present biochemical and nutritional changes that are reversed by treatment.
Schwingshackl, Lukas; Hoffmann, Georg
2013-12-01
Dietary fat plays an important role in the primary prevention of cardiovascular disease, but long-term (≥12 months) effects of different percentages of fat in the diet on blood lipid levels remain to be established. Our systematic review and meta-analysis focused on randomized controlled trials assessing the long-term effects of low-fat diets compared with diets with high amounts of fat on blood lipid levels. Relevant randomized controlled trials were identified searching MEDLINE, EMBASE, and the Cochrane Trial Register until March 2013. Thirty-two studies were included in the meta-analysis. Decreases in total cholesterol (weighted mean difference -4.55 mg/dL [-0.12 mmol/L], 95% CI -8.03 to -1.07; P=0.01) and low-density lipoprotein (LDL) cholesterol (weighted mean difference -3.11 mg/dL [-0.08 mmol/L], 95% CI -4.51 to -1.71; P<0.0001) were significantly more pronounced following low-fat diets, whereas rise in high-density lipoprotein (HDL) cholesterol (weighted mean difference 2.35 mg/dL [0.06 mmol/L], 95% CI 1.29 to 3.42; P<0.0001) and reduction in triglyceride levels (weighted mean difference -8.38 mg/dL [-0.095 mmol/L], 95% CI -13.50 to -3.25; P=0.001) were more distinct in the high-fat diet groups. Including only hypocaloric diets, the effects of low-fat vs high-fat diets on total cholesterol and LDL cholesterol levels were abolished. Meta-regression revealed that lower total cholesterol level was associated with lower intakes of saturated fat and higher intakes of polyunsaturated fat, and increases in HDL cholesterol levels were related to higher amounts of total fat largely derived from monounsaturated fat (of either plant or animal origin) in high-fat diets (composition of which was ~17% of total energy content in the form of monounsaturated fatty acids, ~8% of total energy content in the form of polyunsaturated fatty acids), whereas increases in triglyceride levels were associated with higher intakes of carbohydrates. In addition, lower LDL cholesterol level was marginally associated with lower saturated fat intake. The results of our meta-analysis do not allow for an unequivocal recommendation of either low-fat or high-fat diets in the primary prevention of cardiovascular disease. Copyright © 2013 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Yeganeh, Sakineh; Teimouri, Mahdi; Amirkolaie, Abdolsamad Keramat
2015-08-01
This study evaluated the effects of diets containing 0, 2.5, 5, 7.5 and 10% of Spirulina platensis on hematological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss). Fish (n=180; 101±8 g) were randomly divided into fifteen 300 L fiberglass tanks in triplicates for a period of ten weeks. The RBC, WBC, hemoglobin, total protein and albumin levels increased significantly in the groups supplemented with S. platensis. Dietary inclusion of S. platensis had no significant effects on hematocrit, cholesterol, triglyceride and lactate of the blood. HDL-cholesterol was larger in rainbow trout fed 10% S. platensis in comparison with the other diets, whereas LDL-cholesterol significantly decreased with increasing of S. platensis inclusion. Cortisol and glucose significantly decreased with increasing of S. platensis inclusion. The present results demonstrate that inclusion of 10% S. platensis can be introduced as an immunostimulant in rainbow trout diets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Tsung-Han; Yao, Hsien-Tsung; Chiang, Meng-Tsan
2017-10-01
The purpose of this study was to investigate the effects of Gelidium amansii (GA) hot-water extracts (GHE) on lipid metabolism in hamsters. Six-week-old male Syrian hamsters were used as the experimental animals. Hamsters were divided into four groups: (1) control diet group (CON); (2) high-fat diet group (HF); (3) HF with GHE diet group (HF + GHE); (4) HF with probucol diet group (HF + PO). All groups were fed the experimental diets and drinking water ad libitum for 6 weeks. The results showed that GHE significantly decreased body weight, liver weight, and adipose tissue (perirenal and paraepididymal) weight. The HF diet induced an increase in plasma triacylglycerol (TG), total cholesterol (TC), low-density lipoprotein cholesterol and very-low-density lipoprotein cholesterol levels. However, GHE supplementation reversed the increase of plasma lipids caused by the HF diet. In addition, GHE increased fecal cholesterol, TG and bile acid excretion. Lower hepatic TC and TG levels were found with GHE treatment. GHE reduced hepatic sterol regulatory element-binding proteins (SREBP) including SREBP 1 and SREBP 2 protein expressions. The phosphorylation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) protein expression in hamsters was decreased by the HF diet; however, GHE supplementation increased the phosphorylation of AMPK protein expression. Our results suggest that GHE may ameliorate lipid metabolism in hamsters fed a HF diet. Copyright © 2017. Published by Elsevier B.V.
Vázquez-Velasco, Miguel; González-Torres, Laura; López-Gasco, Patricia; Bastida, Sara; Benedí, Juana; González-Muñoz, María José; Sánchez-Muniz, Francisco J
2015-12-01
Cholesterolemia is associated with pro-oxidative and proinflammatory effects. Glucomannan- or glucomannan plus spirulina-enriched surimis were included in cholesterol-enriched high-saturated diets to test the effects on lipemia; antioxidant status (glutathione status, and antioxidant enzymatic levels, expressions and activities); and inflammation biomarkers (endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α)) in Zucker fa/fa rats. Groups of eight rats each received diet containing squid-surimi (C), squid-surimi cholesterol-enriched diet (HC), glucomannan-squid-surimi cholesterol-enriched diet (HG), or glucomannan-spirulina-squid-surimi cholesterol-enriched diet (HGS) over a period of 7 weeks. HC diet induced severe hyperlipemia, hepatomegalia, increased inflammation markers, and impaired antioxidant status significantly (at least p < 0.05) vs. C diet. HG diet decreased lipemia and liver size and normalized antioxidant status to C group levels, but increased TNF-α with respect to HC diet (p < 0.05). In general terms, 3 g/kg of spirulina in diet maintained the positive results observed in the HG diet but, in addition, increased inflammation index [eNOS/(eNOS + iNOS)] and decreased plasma TNF-α (both p < 0.05). In conclusion, glucomannan plus a small amount of spirulina blocks negative effects promoted by hypercholesterolemic diets. Although more studies are needed, present results suggest the utility of including glucomannan and/or spirulina as functional ingredients into fish derivates to be consumed by people on metabolic syndrome risk.
Xu, Hong-Yu; Sun, Jun-En; Lu, Zhen-Ming; Zhang, Xiao-Mei; Dou, Wen-Fang; Xu, Zheng-Hong
2010-04-01
The antihyperglycaemic and antilipidperoxidative effects of the ethanol extract from the dry matter of a culture broth (DMCB) of Inonotus obliquus were investigated in alloxan-induced diabetic mice and the possible mechanism of action was also discussed. In alloxan-induced diabetic mice, treatment with the ethanol extract from DMCB of I. obliquus (30 and 60 mg kg(-1) body weight (b.w.) for 21 days) showed a significant decrease in blood glucose level: the percentage reductions on the 7th day were 11.54 and 11.15%, respectively. However, feeding of this drug for three weeks produced reduction of 22.51 and 24.32%. Furthermore, the ethanol extract from the DMCB of I. obliquus treatment significantly decreased serum contents of free fatty acids, total cholesterol, triglycerides and low-density lipoprotein-cholesterol, whereas it effectively increased high-density lipoprotein-cholesterol, insulin levels and hepatic glycogen contents in livers of diabetic mice. Besides this, the ethanol extracts from the DMCB treatment significantly increased catalase, superoxide dismutase and glutathione peroxidase activities, except for decreasing the maleic dialdehyde level in diabetic mice. Histological morphology examination showed that the ethanol extract from the DMCB of I. obliquus restored the damage of pancreatic tissues in mice with diabetes mellitus. The results showed that the ethanol extract from the DMCB of I. obliquus possesses significant antihyperglycaemic, antilipidperoxidative and antioxidant effects in alloxan-induced diabetic mice.
Wang, Dongdong; Tosevska, Anela; Heiß, Elke H; Ladurner, Angela; Mölzer, Christine; Wallner, Marlies; Bulmer, Andrew; Wagner, Karl-Heinz; Dirsch, Verena M; Atanasov, Atanas G
2017-04-28
Mild but chronically elevated circulating unconjugated bilirubin is associated with reduced total and low-density lipoprotein cholesterol concentration, which is associated with reduced cardiovascular disease risk. We aimed to investigate whether unconjugated bilirubin influences macrophage cholesterol efflux, as a potential mechanism for the altered circulating lipoprotein concentrations observed in hyperbilirubinemic individuals. Cholesterol efflux from THP-1 macrophages was assessed using plasma obtained from normo- and hyperbilirubinemic (Gilbert syndrome) humans (n=60 per group) or (heterozygote/homozygote Gunn) rats (n=20 per group) as an acceptor. Hyperbilirubinemic plasma from patients with Gilbert syndrome and Gunn rats induced significantly reduced cholesterol efflux compared with normobilirubinemic plasma. Unconjugated bilirubin (3-17.1 μmol/L) exogenously added to plasma- or apolipoprotein A1-supplemented media also decreased macrophage cholesterol efflux in a concentration- and time-dependent manner. We also showed reduced protein expression of the ATP-binding cassette transporter A1 (ABCA1), a transmembrane cholesterol transporter involved in apolipoprotein A1-mediated cholesterol efflux, in THP-1 macrophages treated with unconjugated bilirubin and in peripheral blood mononuclear cells obtained from hyperbilirubinemic individuals. Furthermore, we demonstrated that bilirubin accelerates the degradation rate of the ABCA1 protein in THP-1 macrophages. Cholesterol efflux from THP-1 macrophages is decreased in the presence of plasma obtained from humans and rats with mild hyperbilirubinemia. A direct effect of unconjugated bilirubin on cholesterol efflux was demonstrated and is associated with decreased ABCA1 protein expression. These data improve our knowledge concerning bilirubin's impact on cholesterol transport and represent an important advancement in our understanding of bilirubin's role in cardiovascular disease. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Add-On Effect of Probucol in Atherosclerotic, Cholesterol-Fed Rabbits Treated with Atorvastatin
Keyamura, Yuka; Nagano, Chifumi; Kohashi, Masayuki; Niimi, Manabu; Nozako, Masanori; Koyama, Takashi; Yasufuku, Reiko; Imaizumi, Ayako; Itabe, Hiroyuki; Yoshikawa, Tomohiro
2014-01-01
Objective Lowering the blood concentration of low-density lipoprotein (LDL) cholesterol is the primary strategy employed in treating atherosclerotic disorders; however, most commonly prescribed statins prevent cardiovascular events in just 30% to 40% of treated patients. Therefore, additional treatment is required for patients in whom statins have been ineffective. In this study of atherosclerosis in rabbits, we examined the effect of probucol, a lipid-lowering drug with potent antioxidative effects, added to treatment with atorvastatin. Methods and Results Atherosclerosis was induced by feeding rabbits chow containing 0.5% cholesterol for 8 weeks. Probucol 0.1%, atorvastatin 0.001%, and atorvastatin 0.003% were administered solely or in combination for 6 weeks, beginning 2 weeks after the start of atherosclerosis induction. Atorvastatin decreased the plasma concentration of non-high-density lipoprotein cholesterol (non-HDLC) dose-dependently; atorvastatin 0.003% decreased the plasma concentration of non-HDLC by 25% and the area of atherosclerotic lesions by 21%. Probucol decreased the plasma concentration of non-HDLC to the same extent as atorvastatin (i.e., by 22%) and the area of atherosclerotic lesions by 41%. Probucol with 0.003% atorvastatin decreased the plasma concentration of non-HDLC by 38% and the area of atherosclerotic lesions by 61%. Co-administration of probucol with atorvastatin did not affect the antioxidative effects of probucol, which were not evident on treatment with atorvastatin alone, such as prevention of in vitro LDL-oxidation, increase in paraoxonase-1 activity of HDL, and decreases in plasma and plaque levels of oxidized-LDL in vivo. Conclusions Probucol has significant add-on anti-atherosclerotic effects when combined with atorvastatin treatment; suggesting that this combination might be beneficial for treatment of atherosclerosis. PMID:24810608
Ajiboye, T O; Hussaini, A A; Nafiu, B Y; Ibitoye, O B
2017-02-23
Hunteria umbellata is used in the management and treatment of diabetes and obesity in Nigeria. This study evaluates the effect of aqueous seed extract of Hunteria umbellata on insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome MATERIALS AND METHODS: Rats were randomized into seven groups (A-G). Control (group A) and group C rats received control diet for nine weeks while rats in groups B, D - G were placed on high-fructose diet for 9 weeks. In addition to the diets, groups C - F rats orally received 400, 100, 200 and 400mg/kg body weight aqueous seed extract of Hunteria umbellata for 3 weeks starting from 6th - 9th week. High-fructose diet (when compared to control rats) mediated a significant (p<0.05) increase in body weight, body mass index and abdominal circumference. Similarly, levels of blood glucose, insulin, leptin, adiponectin and insulin resistance were increased. It also caused a significant increase in the levels of cholesterol, triglycerides, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, atherogenic index, cardiac index and coronary artery index while high-density lipoprotein cholesterol was decreased significantly. Levels of proinflammatory factor, tumour necrosis factor-α, interleukin-6 and 8 were also increased by the high fructose diet. Moreover, it mediated decrease in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and level of glutathione reduced. Conversely, levels of malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and fragmented DNA were elevated. Aqueous seed extract of Hunteria umbellata significantly ameliorated the high fructose diet-mediated alterations. From this study, it is concluded that aqueous seed extract of Hunteria umbellata possesses hypoglycemic, hypolipidemic and antioxidants abilities as evident from its capability to extenuate insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Han, Jeong-Hwa; Lee, Hye-Jin; Kim, Tae-Seok; Kang, Myung-Hee
2015-02-01
Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of reactive oxygen species. This study examines whether daily supplementation of kale juice can modulate blood pressure (BP), levels of lipid profiles, and blood glucose, and whether this modulation could be affected by the GSTM1 and GSTT1 polymorphisms. 84 subclinical hypertensive patients showing systolic BP over 130 mmHg or diastolic BP over 85 mmHg received 300 ml/day of kale juice for 6 weeks, and blood samples were collected on 0-week and 6-week in order to evaluate plasma lipid profiles (total cholesterol, triglyceride, HDL-cholesterol, and LDL-cholesterol) and blood glucose. Systolic and diastolic blood pressure was significantly decreased in all patients regardless of their GSTM1 or GSTT1 polymorphisms after kale juice supplementation. Blood glucose level was decreased only in the GSTM1-present genotype, and plasma lipid profiles showed no difference in both the GSTM1-null and GSTM1-present genotypes. In the case of GSTT1, on the other hand, plasma HDL-C was increased and LDL-C was decreased only in the GSTT1-present type, while blood glucose was decreased only in the GSTT1-null genotype. These findings suggest that the supplementation of kale juice affected blood pressure, lipid profiles, and blood glucose in subclinical hypertensive patients depending on their GST genetic polymorphisms, and the improvement of lipid profiles was mainly greater in the GSTT1-present genotype and the decrease of blood glucose was greater in the GSTM1-present or GSTT1-null genotypes.
Reiss, Allison B.; Voloshyna, Iryna; DeLeon, Joshua; Miyawaki, Nobuyuki; Mattana, Joseph
2015-01-01
Patients with chronic kidney disease (CKD) have a substantial risk of developing coronary artery disease. Traditional cardiovascular disease (CVD) risk factors such as hypertension and hyperlipidemia do not adequately explain the high prevalence of CVD in CKD. Both CVD and CKD are inflammatory states and inflammation adversely impacts lipid balance. Dyslipidemia in CKD is characterized by elevated triglycerides and high density lipoprotein that is both decreased and dysfunctional. This dysfunctional high density lipoprotein becomes pro-inflammatory and loses its atheroprotective ability to promote cholesterol efflux from cells, including lipid-overloaded macrophages in the arterial wall. Elevated triglycerides result primarily from defective clearance. The weak association between low density lipoprotein cholesterol level and coronary risk in CKD has led to controversy over the usefulness of statin therapy. This review examines disrupted cholesterol transport in CKD, presenting both clinical and pre-clinical evidence of the impact of the uremic environment on vascular lipid accumulation. Preventative and treatment strategies are explored. PMID:26337134
Li, Wenfeng; Lu, Yalong
2018-02-01
The dried fruit of Sophora japonica L. is a traditional Chinese herb tea rich in sophoricoside that is an isoflavone glycoside. The aim of current study was to investigate the hepatic protective effect of sophoricoside in high fructose (HF) diet fed mice. Healthy male mice were fed 30% fructose water and treated 80 and 160 mg/kg·bw sophoricoside continuously for 8 wk. Our data showed that administration of sophoricoside at 80 and 160 mg/kg·bw observably decreased the body weight and liver weight in HF-fed mice. It was found that the treatment of sophoricoside decreased the hepatic cholesterol and triglyceride levels, and serum low-density lipoprotein-cholesterol and apolipoprotein-B levels, and elevated the serum high-density lipoprotein-cholesterol and apolipoprotein-A1 levels. Moreover, the administration of sophoricoside decreased the HF-caused elevations of hepatic malonaldehyde, interleukin-1 and tumor necrosis factor-α levels, while increased the HF-induced decreases of hepatic superoxide dismutase and glutathione peroxidase activities. Meanwhile, serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase activities were reduced by treatment of sophoricoside in HF-fed mice. Histopathology of hematoxylin and eosin (H&E) and oil red O staining of liver tissues also confirmed the beneficial effects of sophoricoside against liver injury induced by HF-diet in mice. These findings indicated that sophoricoside may be a novel natural isoflavone for alleviating HF-induced liver injury. Fruit of Sophora japonica L. is a traditional herb tea and it recently becomes popular in China. Sophoricoside is an isoflavone glycoside (Genistein-4'-O-β-d-glucopyranoside) isolated from S. japonical L, and it possessed differential effects on the body health. The ingestion of sophoricoside or sophora fruit tea may be a novel strategy to prevent non-alcoholic fatty liver disease. © 2018 Institute of Food Technologists®.
Ichim, Thomas E; Patel, Amit N; Shafer, Kim A
2016-06-22
Elevated levels of blood cholesterol are associated with cardiovascular disease, a leading cause of morbidity and mortality worldwide. Current therapies for addressing elevated blood cholesterol can be inadequate, ineffective or associated with side effects; therefore, the search for additional therapies is ongoing. This study evaluated Daily Body Restore (DBR), a proprietary blend of 9 probiotic organisms of the genera Lactobacillus and Bifidobacterium, and 10 digestive enzymes, for its effects on cholesterol metabolism using an in vitro system and a mouse model. We used a murine model of hypercholesterolemia induced by a high fat diet to evaluate the effects of DBR on blood cholesterol concentrations. Hypercholesterolemic mice were supplemented with DBR in their drinking water for 8 weeks and compared to control mice given low fat diets or unsupplemented high fat diets. To evaluate the effects of DBR on the activity of gut microbiota in vitro, the Shime(®) system consisting of sequential colon reactors was supplemented with DBR for analysis of short chain fatty acid production. Analysis of hypercholesterolemic mice after 4 and 8 weeks of DBR supplementation revealed significant decreases in blood concentrations of low-density lipoprotein (LDL) and increases in high-density lipoprotein (HDL) while triglyceride concentrations were unaltered. Specifically, after 4 weeks of DBR supplementation, there was a 47 % decrease in LDL and a 32 % increase in HDL in peripheral blood compared to unsupplemented, high fat diet-fed mice. After 8 weeks of DBR treatment, LDL concentrations were dramatically reduced by 78 % and HDL was increased by 52 % relative to control mice. Addition of DBR to the Shime(®) system led to significantly increased production of propionate in colon reactors, indicative of microbial production of short chain fatty acids known to inhibit cholesterol synthesis. DBR, a probiotic and digestive enzyme supplement, lowered harmful LDL and increased HDL levels in a mouse model and also exerted in vitro effects consistent with cholesterol-lowering activity. Given the magnitude of the effects of DBR, these findings are promising for clinical implementation of DBR for treating hypercholesterolemia.
Veres, Gábor; Szpisjak, László; Bajtai, Attila; Siska, Andrea; Klivényi, Péter; Ilisz, István; Földesi, Imre; Vécsei, László; Zádori, Dénes
2017-09-01
Evidence suggests that decreased α-tocopherol (the most biologically active substance in the vitamin E group) level can cause neurological symptoms, most likely ataxia. The aim of the current study was to first provide reference intervals for serum tocopherols in the adult Hungarian population with appropriate sample size, recruiting healthy control subjects and neurological patients suffering from conditions without symptoms of ataxia, myopathy or cognitive deficiency. A validated HPLC method applying a diode array detector and rac-tocol as internal standard was utilized for that purpose. Furthermore, serum cholesterol levels were determined as well for data normalization. The calculated 2.5-97.5% reference intervals for α-, β/γ- and δ-tocopherols were 24.62-54.67, 0.81-3.69 and 0.29-1.07 μm, respectively, whereas the tocopherol/cholesterol ratios were 5.11-11.27, 0.14-0.72 and 0.06-0.22 μmol/mmol, respectively. The establishment of these reference intervals may improve the diagnostic accuracy of tocopherol measurements in certain neurological conditions with decreased tocopherol levels. Moreover, the current study draws special attention to the possible pitfalls in the complex process of the determination of reference intervals as well, including the selection of study population, the application of internal standard and method validation and the calculation of tocopherol/cholesterol ratios. Copyright © 2017 John Wiley & Sons, Ltd.
Hu, Huiming; Zhu, Qiaoqiao; Su, Jie; Wu, Yajun; Zhu, Yanchen; Wang, Yin; Fang, Hui; Pang, Minxia; Li, Bo; Chen, Suhong; Lv, Guiyuan
2017-01-01
Background Paeoniflorin is a monoterpene glycoside extracted from the roots of Paeonia lactiflora and is used in Chinese herbal medicine to treat hyperlipidemia. The aim of this study was to evaluate the effects of an enriched extract of paeoniflorin on cholesterol levels, hemodynamics, and oxidative stress in a hyperlipidemic rat model. Material/Methods Male Sprague-Dawley rats were fed high-cholesterol diets and treated with three different doses of paeoniflorin for 12 weeks. The effects of paeoniflorin treatment were assessed on cholesterol levels, cholesterol metabolism, red blood cell vascular flow using hemorheology, antioxidant enzymes, and expression of the rate-limiting enzyme in the mevalonate pathway, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR). Rat liver histology and immunohistochemical analysis were performed to evaluate the expression of nuclear factor erythroid 2–related factor 2 (Nrf2), cytochrome P450 7A1 (CYP7A1), and peroxisome proliferator-activated receptors (PPAR)-α. Protein expression HMG-CoAR, low-density lipoprotein receptor (LDLR), PPAR-α and CYP7A1 was measured by Western blotting. Antioxidant activity in rat liver was determined by measuring superoxide dismutase (SOD) and malondialdehyde (MDA). Results Serum and hepatic cholesterol, hepatic steatosis and the products of cholesterol metabolism were reduced by paeoniflorin treatment, which also reduced the activity of HMG-CoAR and upregulated the expression of LDLR, PPAR-α, and CYP7A1 expression, increased SOD, decreased MDA, and upregulated Nrf2 expression. Conclusions The findings of this study in a rat model of hyperlipidemia have shown that paeoniflorin regulates hepatic cholesterol synthesis and metabolism and may also protect the liver from oxidative stress. PMID:28706181
2011-01-01
Background Synthetic activators of peroxisome proliferator-activated receptors (PPARs) stimulate cholesterol removal from macrophages through PPAR-dependent up-regulation of liver × receptor α (LXRα) and subsequent induction of cholesterol exporters such as ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type 1 (SR-BI). The present study aimed to test the hypothesis that the hydroxylated derivative of linoleic acid (LA), 13-HODE, which is a natural PPAR agonist, has similar effects in RAW264.7 macrophages. Methods RAW264.7 macrophages were treated without (control) or with LA or 13-HODE in the presence and absence of PPARα or PPARγ antagonists and determined protein levels of LXRα, ABCA1, ABCG1, SR-BI, PPARα and PPARγ and apolipoprotein A-I mediated lipid efflux. Results Treatment of RAW264.7 cells with 13-HODE increased PPAR-transactivation activity and protein concentrations of LXRα, ABCA1, ABCG1 and SR-BI when compared to control treatment (P < 0.05). In addition, 13-HODE enhanced cholesterol concentration in the medium but decreased cellular cholesterol concentration during incubation of cells with the extracellular lipid acceptor apolipoprotein A-I (P < 0.05). Pre-treatment of cells with a selective PPARα or PPARγ antagonist completely abolished the effects of 13-HODE on cholesterol efflux and protein levels of genes investigated. In contrast to 13-HODE, LA had no effect on either of these parameters compared to control cells. Conclusion 13-HODE induces cholesterol efflux from macrophages via the PPAR-LXRα-ABCA1/SR-BI-pathway. PMID:22129452
Dong, Pengzhi; Pan, Lanlan; Zhang, Xiting; Zhang, Wenwen; Wang, Xue; Jiang, Meixiu; Chen, Yuanli; Duan, Yajun; Wu, Honghua; Xu, Yantong; Zhang, Peng; Zhu, Yan
2017-02-23
Hawthorn (Crataegus pinnatifida Bunge) leave have been used to treat cardiovascular diseases in China and Europe. Hawthorn leave flavonoids (HLF) are the main part of extraction. Whether hawthorn leave flavonoids could attenuate the development of atherosclerosis and the possible mechanism remain unknown. High-fat diet (HFD) mixed with HLF at concentrations of 5mg/kg and 20mg/kg were administered to apolipoprotein E (apoE) knock out mice. 16 weeks later, mouse serum was collected to determine the lipid profile while the mouse aorta dissected was prepared to measure the lesion area. Hepatic mRNA of genes involved in lipid metabolism were determined. Peritoneal macrophages were collected to study the impact of HLF on cholesterol efflux, formation of foam cell and the expression of ATP binding cassette transporter A1 (ABCA1). Besides, in vivo reverse cholesterol transport (RCT) was conducted. HLF attenuated the development of atherosclerosis that the mean atherosclerotic lesion area in en face aortas was reduced by 23.1% (P<0.05). In mice fed with 20mg/kg HLF, Total cholesterol (TC) level was decreased by 18.6% and very low density lipoprotein cholesterol plus low density lipoprotein cholesterol (VLDLc+LDLc) level were decreased by 23.1% whereas high density lipoprotein cholesterol (HDLc) and triglyceride (TG) levels were similar compared to that of the control group. Peroxisome proliferator activated receptor alpha (PPARα) mRNA was increased by 31.2% (P<0.05) and 60.9% (P<0.05) in mice fed with 5mg/kg and 20mg/kg HLF respectively. Sterol regulatory element binding protein-1c (SREBP-1c) was decreased by 59.3% in the group of 20mg/kg. Carnitine palmitoyl transferase 1 (CPT-1) mRNA level of 20mg/kg group was induced 66.7% (P<0.05). Superoxide dismutase 1 and 2 (SOD1 and SOD2) mRNA were induced 25.4% (P<0.05) and 71.4% (P<0.05) while induced by 36.3% (P<0.05) and 73.2% (P<0.05) in group of 20mg/kg. Glutathione peroxidase 3 (Gpx3) mRNA in the group of 20mg/kg was induced by 96.7% (P<0.05). Hepatic hydroxymethylglutaryl CoA reductase (HMG-CoAR) expression was as same level as the control group while LDL receptor (LDLR) mRNA and protein were induced by 84.2% (P<0.05) and 98.8% (P<0.05) in group of 20mg/kg. HLF inhibit the formation of foam cell by 27.9% (P<0.05) in the dosage of 25μg/ml, and 33.3% (P<0.05) in the dosage of 50μg/ml. HLF increased the reverse cholesterol transport (RCT) in vivo. Hawthorn leave flavonoids can slow down the development of atherosclerosis in apoE knockout mice via induced expression of genes involved in antioxidant activities, inhibition of the foam cell formation and promotion of RCT in vivo, which implies the potential use in the prevention of atherosclerosis. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Akinyemi, Ayodele Jacob; Ademiluyi, Adedayo Oluwaseun; Oboh, Ganiyu
2014-03-01
Angiotensin-1-converting enzyme (ACE) inhibitors are widely used in the treatment of cardiovascular diseases. This study sought to investigate the inhibitory effect of two varieties of ginger (Zingiber officinale) commonly consumed in Nigeria on ACE activity in rats fed a high cholesterol diet. The inhibition of ACE activity of two varieties of ginger (Z. officinale) was investigated in a high cholesterol (2%) diet fed to rats for 3 days. Feeding high cholesterol diets to rats caused a significant (P<.05) increase in the ACE activity. However, there was a significant (P<.05) inhibition of ACE activity as a result of supplementation with the ginger varieties. Rats that were fed 4% white ginger had the greatest inhibitory effect as compared with a control diet. Furthermore, there was a significant (P<.05) increase in the plasma lipid profile with a concomitant increase in malondialdehyde (MDA) content in rat liver and heart tissues. However, supplementing the diet with red and white ginger (either 2% or 4%) caused a significant (P<.05) decrease in the plasma total cholesterol, triglyceride, very low density lipoprotein-cholesterol, and low-density lipoprotein-cholesterol levels, and in MDA content in the tissues. Conversely, supplementation caused a significant (P<.05) increase in plasma high-density lipoprotein-cholesterol level when compared with the control diet. Nevertheless, rats fed 4% red ginger had the greatest reduction as compared with control diet. In conclusion, both ginger varieties exhibited anti-hypercholesterolemic properties in a high cholesterol diet fed to rats. This activity of the gingers may be attributed to its ACE inhibitory activity. However, white ginger inhibited ACE better in a high cholesterol diet fed to rats than red ginger. Therefore, both gingers could serve as good functional foods/nutraceuticals in the management/treatment of hypertension and other cardiovascular diseases.
Sharawy, Maha H; El-Awady, Mohammed S; Megahed, Nirmeen; Gameil, Nariman M
2016-05-01
This study investigates the effect of the ergogenic supplement β-hydroxy-β-methylbutyrate (HMB) on insulin resistance induced by high-fructose diet (HFD) in rats. Male Sprague Dawley rats were fed 60% HFD for 12 weeks and HMB (320 mg·kg(-1)·day(-1), orally) for 4 weeks. HFD significantly increased fasting insulin, fasting glucose, glycosylated hemoglobin (HBA1C), liver glycogen content, and homeostasis model assessment of insulin resistance (HOMA-IR) index, while it decreased glucose and insulin tolerance. Furthermore, HFD significantly increased serum triglycerides (TG), low density lipoprotein cholesterol (LDL-C), and very low density lipoprotein cholesterol (VLDL-C) levels, while it significantly decreased high density lipoprotein cholesterol (HDL-C). Moreover, HFD significantly increased mRNA expression of glucose transporter type-2 (GLUT-2), the mammalian target of rapamycin (mTOR), and sterol regulatory element-binding protein-1c (SREBP-1c) but decreased peroxisome proliferator-activated receptor-alpha (PPAR-α) in liver. Aortic relaxation to acetylcholine (ACh) was impaired and histopathology showed severe hepatic steatosis. HMB significantly increased insulin tolerance and decreased fasting insulin, HOMA-IR, HBA1C, hepatic glycogen content, serum TG, LDL-C, and VLDL-C. Additionally, HMB enhanced ACh-induced relaxation, ameliorated hepatic steatosis, and decreased mRNA expression of GLUT-2. In conclusion, HMB may attenuate insulin resistance and hepatic steatosis through inhibiting GLUT-2 in liver.
Bay Leaves Improve Glucose and Lipid Profile of People with Type 2 Diabetes
Khan, Alam; Zaman, Goher; Anderson, Richard A.
2009-01-01
Bay leaves (Laurus nobilis) have been shown to improve insulin function in vitro but the effects on people have not been determined. The objective of this study was to determine if bay leaves may be important in the prevention and/or alleviation of type 2 diabetes. Forty people with type 2 diabetes were divided into 4 groups and given capsules containing 1, 2 or 3 g of ground bay leaves per day for 30 days or a placebo followed by a 10 day washout period. All three levels of bay leaves reduced serum glucose with significant decreases ranging from 21 to 26% after 30 d. Total cholesterol decreased, 20 to 24%, after 30 days with larger decreases in low density lipoprotein (LDL) cholesterol of 32 to 40%. High density lipoprotein (HDL) cholesterol increased 29 and 20% in the groups receiving 1 and 2 g of bay leaves, respectively. Triglycerides also decreased 34 and 25% in groups consuming 1 and 2 g of bay leaves, respectively, after 30 d. There were no significant changes in the placebo group. In summary, this study demonstrates that consumption of bay leaves, 1 to 3 g/d for 30 days, decreases risk factors for diabetes and cardiovascular diseases and suggests that bay leaves may be beneficial for people with type 2 diabetes. PMID:19177188
The Effect of Testosterone on Cardiovascular Biomarkers in the Testosterone Trials.
Mohler, Emile R; Ellenberg, Susan S; Lewis, Cora E; Wenger, Nanette K; Budoff, Matthew J; Lewis, Michael R; Barrett-Connor, Elizabeth; Swerdloff, Ronald S; Stephens-Shields, Alisa; Bhasin, Shalender; Cauley, Jane A; Crandall, Jill P; Cunningham, Glenn R; Ensrud, Kristine E; Gill, Thomas M; Matsumoto, Alvin M; Molitch, Mark E; Pahor, Marco; Preston, Peter E; Hou, Xiaoling; Cifelli, Denise; Snyder, Peter J
2018-02-01
Studies of the possible cardiovascular risk of testosterone treatment are inconclusive. To determine the effect of testosterone treatment on cardiovascular biomarkers in older men with low testosterone. Double-blind, placebo-controlled trial. Twelve academic medical centers in the United States. In all, 788 men ≥65 years old with an average of two serum testosterone levels <275 ng/dL who were enrolled in The Testosterone Trials. Testosterone gel, the dose adjusted to maintain the testosterone level in the normal range for young men, or placebo gel for 12 months. Serum markers of cardiovascular risk, including lipids and markers of glucose metabolism, fibrinolysis, inflammation, and myocardial damage. Compared with placebo, testosterone treatment significantly decreased total cholesterol (adjusted mean difference, -6.1 mg/dL; P < 0.001), high-density lipoprotein cholesterol (adjusted mean difference, -2.0 mg/dL; P < 0.001), and low-density lipoprotein cholesterol (adjusted mean difference, -2.3 mg/dL; P = 0.051) from baseline to month 12. Testosterone also slightly but significantly decreased fasting insulin (adjusted mean difference, -1.7 µIU/mL; P = 0.02) and homeostatic model assessment‒insulin resistance (adjusted mean difference, -0.6; P = 0.03). Testosterone did not change triglycerides, d-dimer, C-reactive protein, interleukin 6, troponin, glucose, or hemoglobin A1c levels more than placebo. Testosterone treatment of 1 year in older men with low testosterone was associated with small reductions in cholesterol and insulin but not with other glucose markers, markers of inflammation or fibrinolysis, or troponin. The clinical importance of these findings is unclear and requires a larger trial of clinical outcomes. Copyright © 2017 Endocrine Society