NASA Technical Reports Server (NTRS)
Meng, P. R.; Skorobatckyi, M.; Cosgrove, D. V.; Kempke, E. E., Jr.
1976-01-01
A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased.
NASA Technical Reports Server (NTRS)
Holdeman, J. D.
1976-01-01
Emissions of total oxides of nitrogen, nitric oxide, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16.0 to 23.5 km. For each flight condition exhaust measurements were made for four or five power levels, from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen emissions decreased with increasing altitude and increased with increasing flight speed. Oxides of nitrogen emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without.
[Effect of ethanol gasoline and unleaded gasoline on exhaust emissions of EFI vehicles with TWC].
Wang, Chun-jie; Wang, Wei; Tang, Da-gang; Cui, Ping
2004-07-01
The injectors' flow-rate of all test vehicles that each was fixed with a three-way catalytic converter (TWC) and Electronic Fuel Injection System (EFI) was tested including before and after vehicles operated on unleaded and ethanol gasoline respectively running for a long time on real road. The three main engine-out exhaust emissions (HC, CO and NOx) from vehicles operating on different fuels were also analyzed by exhaust testing procedure for the whole light-duty vehicle. Test results showed that comparing with unleaded gasoline and ethanol gasoline has a remarkable effect on decreasing engine-out exhaust emissions of CO and HC (both at about ten percent) and the exhaust emissions of CO, HC and NOx from vehicles with TWC respectively. When burning with unleaded gasoline the three main pollutants from vehicles with TWC have already or nearly reached Europe Exhaust First Standard, after changing to ethanol gasoline CO has drastically decreased at about thirty percent, while HC and NOx decreased at about eighteen and ten percent respectively, at this time which they were all above Europe Exhaust Standard First or nearly reached Europe Exhaust Second Standard; ethanol gasoline has also other better performance such as a slight cleaning function on injectors, a slower deteriorative trend of engine-out CO and HC and a longer operating life-span of TWC.
Damanik, Natalina; Ong, Hwai Chyuan; Tong, Chong Wen; Mahlia, Teuku Meurah Indra; Silitonga, Arridina Susan
2018-06-01
Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.
Research of biofuels on performance, emission and noise of diesel engine under high-altitude area
NASA Astrophysics Data System (ADS)
Xu, Kai; Huang, Hua
2018-05-01
At high altitudes and with no any adjustment for diesel engine, comparative experiments on a diesel engine about the engine's performance, emission and exhaust noise, are carried out by combusting different biofuels (pure diesel (D100), biodiesel (B100), and ethanol-biodiesel (E20)). The test results show that: compared with D100, the power performance of combusting B100 and E20 decreases, and the average drop of the torque at full-load are 4.5% and 5.7%. The equivalent fuel consumption is lower than that of diesel fuel, The decline of oil consumption rate 3˜10g/ (kW • h); At low load the emission of NOx decreases, Hat high loads, equal and higher than D100; the soot emissions decreases heavier, among them, E20 carbon dioxide emissions improved considerably; An full-load exhaust noise of B100 decreases average 3.6dB(A), E20 decreases average 4.8dB(A); In road simulation experiments exhaust noise max decreases 8.5dB(A).
Prokopowicz, Adam; Zaciera, Marzena; Sobczak, Andrzej; Bielaczyc, Piotr; Woodburn, Joseph
2015-06-16
The influence of fatty acid methyl esters (FAME) and hydrotreated vegetable oil (HVO) diesel blends on the exhaust emissions from a passenger car was examined. The impact of FAME for the cold urban phase (UDC) was increased CO and HC emissions, probably due to blend physical properties promoting incomplete combustion. The HVO blend caused the lowest CO and HC emissions for the UDC. NOx emissions did not change significantly with the fuel used, however the UDC was characterized by lower NOx emission for FAME blends. Particle emissions were highest with standard diesel. Emissions of carbonyl compounds increased as fuel biodiesel content increased, especially during the UDC. HVO in diesel fuel decreased carbonyl emissions. Formaldehyde and acetaldehyde were the most abundant carbonyl compounds in the exhaust gas. Total particle-bound PAH emissions were variable, the emission of heavier PAHs increased with blend biodiesel content. The HVO blend increased emission of lighter PAHs. Nitro-PAHs were identified only during the UDC and not for all blends; the highest emissions were measured for pure diesel. The results showed that emission of nitro-PAHs may be decreased to a greater extent by using biodiesel than using a HVO blend.
Effect of gasoline/methanol blends on motorcycle emissions: Exhaust and evaporative emissions
NASA Astrophysics Data System (ADS)
Li, Lan; Ge, Yunshan; Wang, Mingda; Li, Jiaqiang; Peng, Zihang; Song, Yanan; Zhang, Liwei
2015-02-01
The emission characteristics of motorcycles using gasoline and M15 (consisting of 85% gasoline and 15% methanol by volume) were investigated in this article. Exhaust and evaporative emissions, including regulated and unregulated emissions, of three motorcycles were investigated on the chassis dynamometer over the Urban Driving Cycle (UDC) and in the Sealed Housing for Evaporative Determination (SHED), respectively. The regulated emissions were detected by an exhaust gas analyzer directly. The unregulated emissions, including carbonyls, volatile organic compounds (VOCs) and methanol, were sampled through battery-operated air pumps using tubes coated with 2,4-dintrophenylhydrazine (DNPH), Tenax TA and silica gel, respectively. The experimental results showed that, for exhaust emission, compared with those from gasoline fueled motorcycles, the concentration of total hydrocarbons (THC) and CO from motorcycles fueled with M15 decreased by 11%-34.5% and 63%-84% respectively, while the concentration of NOx increased by 76.9%-107.7%. Compared with those from gasoline fueled motorcycles, BTEX from motorcycles fueled with M15 decreased by 16%-60% while formaldehyde increased by 16.4%-52.5%. For evaporative emission, diurnal losses were more than hot soak losses and turned out to be dominated in evaporative emissions. In addition, compared with gasoline fueling motorcycles, the evaporative emissions of THC, carbonyls and VOCs from motorcycles fueled with M15 increased by 11.7%-37%, 38%-45% and 16%-42%, respectively. It should be noted that the growth rate of methanol was as high as 297%-1429%. It is important to reduce the evaporative emissions of methanol fueling motorcycles.
NASA Astrophysics Data System (ADS)
Hossain, Md. Alamgir; Rahman, Fariha; Mamun, Maliha; Naznin, Sadia; Rashid, Adib Bin
2017-12-01
Biodiesel is a captivating renewable resource providing the potential to reduce particulate emissions in compressionignition engines. A comparative study is conducted to evaluate the effects of using biodiesel on exhaust emissions. Exhaust smokiness, noise and exhaust regulated gas emissions such as carbon di oxides, carbon monoxide and oxygen are measured. It is observed that methanol-biodiesel blends (mustard oil, palm oil) cause reduction of emissions remarkably. Most of the harmful pollutants in the exhaust are reduced significantly with the use of methanol blended fuels. Reduction in CO emission is more with mustard oil blend compared to palm oil blend. Comparatively clean smoke is observed with biodiesel than diesel. It is also observed that, there is a decrease of noise while performing with biodiesel blends which is around 78 dB whereas noise caused by diesel is 80 dB. Biodiesel, more importantly mustard oil is a clean burning fuel that does not contribute to the net increase of carbon dioxide.
Lean burn natural gas fueled S.I. engine and exhaust emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varde, K.S.; Patro, N.; Drouillard, K.
1995-12-31
An experimental study was undertaken to study exhaust emission from a lean-burn natural gas spark ignition engine. The possibility that such an engine may help to reduce exhaust emissions substantially by taking advantage of natural gas fuel properties, such as its antiknock properties and extended lean flammability limit compared to gasoline, was the main motivation behind the investigation. A four cylinder, automotive type spark ignition engine was used in the investigation. The engine was converted to operate on natural gas by replacing its fuel system with a gaseous carburetion system. A 3-way metal metrix catalytic converter was used in themore » engine exhaust system to reduce emission levels. The engine operated satisfactorily at an equivalence ratio as lean as 0.6, at all speeds and loads. As a result NOx emissions were significantly reduced. However, hydrocarbon emissions were high, particularly at very lean conditions and light loads. Most of these hydrocarbons were made up of methane with small concentrations of ethane and propane. Coefficient of variations in hydrocarbons were generally high at very lean operating conditions and light loads, but decreased with increasing equivalence ratio and engine speed. Methane concentrations in the engine exhaust decreased with increasing load and equivalence ratio. At lean air-to-fuel ratios and light loads oxidation of methane in the catalyst was substantially limited and no NOx reduction was achieved. In addition, the proportion of nitric oxide in oxides of nitrogen increased with increasing amount of NOx in the engine exhaust. A major problem encountered in the study was the inability of the fuel system to maintain near constant air-to-fuel ratios at steady operating conditions.« less
Ryu, Kyunghyun
2010-01-01
The aim of this study is to investigate the effects of antioxidants on the oxidation stability of biodiesel fuel, the engine performance and the exhaust emissions of a diesel engine. Biodiesel fuel used in the study was derived from soybean oil. The results show that the efficiency of antioxidants is in the order TBHQ>PrG>BHA>BHT>alpha-tocopherol. The oxidative stability of biodiesel fuel attained the 6-h quality standard with 100 ppm TBHQ and with 300 ppm PrG in biodiesel fuel. Combustion characteristics and exhaust emissions in diesel engine were not influenced by the addition of antioxidants in biodiesel fuel. The BSFC of biodiesel fuel with antioxidants decreased more than that of biodiesel fuel without antioxidants, but no trends were observed according to the type or amount of antioxidant. Antioxidants had few effects on the exhaust emissions of a diesel engine running on biodiesel.
NASA Astrophysics Data System (ADS)
Poulopoulos, S. G.; Samaras, D. P.; Philippopoulos, C. J.
In the present work, the effect of ethanol addition to gasoline on regulated and unregulated emissions is studied. A 4-cylinder OPEL 1.6 L internal combustion engine equipped with a hydraulic brake dynamometer was used in all the experiments. For exhaust emissions treatment a typical three-way catalyst was used. Among the various compounds detected in exhaust emissions, the following ones were monitored at engine and catalyst outlet: methane, hexane, ethylene, acetaldehyde, acetone, benzene, 1,3-butadiene, toluene, acetic acid and ethanol. Addition of ethanol in the fuel up to 10% w/w had as a result an increase in the Reid vapour pressure of the fuel, which indicates indirectly increased evaporative emissions, while carbon monoxide tailpipe emissions were decreased. For ethanol-containing fuels, acetaldehyde emissions were appreciably increased (up to 100%), especially for fuel containing 3% w/w ethanol. In contrast, aromatics emissions were decreased by ethanol addition to gasoline. Methane and ethanol were the most resistant compounds to oxidation while ethylene was the most degradable compound over the catalyst. Ethylene, methane and acetaldehyde were the main compounds present at engine exhaust while methane, acetaldehyde and ethanol were the main compounds in tailpipe emissions for ethanol fuels after the catalyst operation.
Impact of reformulated fuels on motor vehicle emissions
NASA Astrophysics Data System (ADS)
Kirchstetter, Thomas
Motor vehicles continue to be an important source of air pollution. Increased vehicle travel and degradation of emission control systems have offset some of the effects of increasingly stringent emission standards and use of control technologies. A relatively new air pollution control strategy is the reformulation of motor vehicle fuels, both gasoline and diesel, to make them cleaner- burning. Field experiments in a heavily traveled northern California roadway tunnel revealed that use of oxygenated gasoline reduced on-road emissions of carbon monoxide (CO) and volatile organic compounds (VOC) by 23 +/- 6% and 19 +/- 8%, respectively, while oxides of nitrogen (NOx) emissions were not significantly affected. The introduction of reformulated gasoline (RFG) in California led to large changes in gasoline composition including decreases in alkene, aromatic, benzene, and sulfur contents, and an increase in oxygen content. The combined effects of RFG and fleet turnover between summers 1994 and 1997 were decreases in on-road vehicle exhaust emissions of CO, non-methane VOC, and NOx by 31 +/- 5, 43 +/- 8, and 18 +/- 4%, respectively. Although it was difficult to separate the fleet turnover and RFG contributions to these changes, it was clear that the effect of RFG was greater for VOC than for NOx. The RFG effect on exhaust emissions of benzene was a 30-40% reduction. Use of RFG reduced the reactivity of liquid gasoline and gasoline headspace vapors by 23 and 19%, respectively. Increased use of methyl tert-butyl ether in gasoline led to increased concentrations of highly reactive formaldehyde and isobutene in vehicle exhaust. As a result, RFG reduced the reactivity of exhaust emissions by only about 5%. Per unit mass of fuel burned, heavy-duty diesel trucks emit about 25 times more fine particle mass and 15-20 times the number of fine particles compared to light-duty vehicles. Exhaust fine particle emissions from heavy-duty diesels contain more black carbon than particulate matter emissions from light-duty vehicles (52 vs. 32% of PM2.5 mass). Sulfate emission rates measured for heavy-duty diesel trucks fueled with low- sulfur, low-aromatic diesel are significantly lower than emission rates reported before the introduction of cleaner-burning diesel fuel. Statewide fuel consumption and measured emission rates indicate that diesel vehicles in California are responsible for nearly half of NOx emissions and greater than three quarters of exhaust fine particle emissions from on-road motor vehicles.
[Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].
Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan
2003-07-01
The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.
NASA Technical Reports Server (NTRS)
Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempe, E. E., Jr.
1978-01-01
A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions include carburetor lean out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity.
NASA Technical Reports Server (NTRS)
Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempke, E. R.
1976-01-01
A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points.
Fukui, M
2004-04-01
The radioactive gas 41Ar has been produced at high concentration by neutron activation near the reactor core in the Kyoto University Research Reactor. A pipe line for an exhaust stream, so-called sweep gas, was fabricated at the construction of the reactor in 1964 in order to exhale 41Ar from the facilities above to the environment. Other exhaust lines with decay tanks were established separately from the sweep line for both the cold neutron source in 1986 and the heavy-water tank in 1996, respectively, because a higher amount of 41Ar was thought to be produced from these facilities due to the improvement. As a result, a slight change in the flow rate of the exhaust was found to have a great deal of influence on both the 41Ar concentration in the reactor room and the rate of emission from the stack. By monitoring the exhaust air from the decay tanks, the mechanism for decreasing the emission was clarified together with identifying an obstacle, i.e., the condensate against the steady state flow, formed in the exhaust pipe. By setting the flow rate suitably in the exhaust line, the rate of 41Ar emission from the biological shielding into both the work place in the reactor room and the environment has been controlled as low as reasonably achievable.
Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine
NASA Astrophysics Data System (ADS)
Rifal, Mohamad; Sinaga, Nazaruddin
2016-04-01
In this study, the effect of methanol-gasoline fuel blend (M15, M30 and M50) on the fuel consumption and exhaust emission of a spark ignition engine (SI) were investigated. In the experiment, an engine four-cylinder, four stroke injection system (engine of Toyota Kijang Innova 1TR-FE) was used. Test were did to know the relation of fuel consumption and exhaust emission (CO, CO2, HC) were analyzed under the idle throttle operating condition and variable engine speed ranging from 1000 to 4000 rpm. The experimental result showed that the fuel consumption decrease with the use of methanol. It was also shown that the CO and HC emission were reduced with the increase methanol content while CO2 were increased.
Effect of some Turkish vegetable oil-diesel fuel blends on exhaust emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergeneman, M.; Oezaktas, T.; Cigizoglu, K.B.
1997-10-01
For different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade No. 2-D diesel fuel at a ratio of 20/80 (v/v). The effect of the compression ratio on exhaust emissions is investigated in an American Society for Testing and Materials (ASTM)-cooperative fuel research (CFR) engine working with the mentioned fuel blends and a baseline diesel fuel. A decrease in soot, CO, CO{sub 2}, and HC emissions and an increase in NO{sub x} emissions have been observed for fuel blends compared to diesel fuel.
He, Chao; Li, Jiaqiang; Ma, Zhilei; Tan, Jianwei; Zhao, Longqing
2015-09-01
Diesel vehicles are responsible for most of the traffic-related nitrogen oxide (NOx) emissions, including nitric oxide (NO) and nitrogen dioxide (NO2). The use of after-treatment devices increases the risk of high NO2/NOx emissions from diesel engines. In order to investigate the factors influencing NO2/NOx emissions, an emission experiment was carried out on a high pressure common-rail, turbocharged diesel engine with a catalytic diesel particulate filter (CDPF). NO2 was measured by a non-dispersive ultraviolet analyzer with raw exhaust sampling. The experimental results show that the NO2/NOx ratios downstream of the CDPF range around 20%-83%, which are significantly higher than those upstream of the CDPF. The exhaust temperature is a decisive factor influencing the NO2/NOx emissions. The maximum NO2/NOx emission appears at the exhaust temperature of 350°C. The space velocity, engine-out PM/NOx ratio (mass based) and CO conversion ratio are secondary factors. At a constant exhaust temperature, the NO2/NOx emissions decreased with increasing space velocity and engine-out PM/NOx ratio. When the CO conversion ratios range from 80% to 90%, the NO2/NOx emissions remain at a high level. Copyright © 2015. Published by Elsevier B.V.
Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline blends.
Li, Lan; Ge, Yunshan; Wang, Mingda; Peng, Zihang; Song, Yanan; Zhang, Liwei; Yuan, Wanli
2015-01-01
The emission characteristics of motorcycles using gasoline and E10 (90% gasoline and 10% ethanol by volume) were investigated in this article. Exhaust and evaporative emissions of three motorcycles were investigated on the chassis dynamometer over the Urban Driving Cycle (UDC) and in the Sealed Housing for Evaporative Determination (SHED) including regulated and unregulated emissions. The regulated emissions were detected by an exhaust gas analyzer directly. The unregulated emissions including carbonyls and volatile organic compounds (VOCs) were sampled through battery-operated air pumps using tubes coated with 2,4-dinitrophenylhydrazine (DNPH) and Tenax TA, respectively. The experimental results showed that the emission factors of total hydrocarbons (THC) and carbon monoxide (CO) from E10 fueling motorcycles decreased by 26%-45% and 63%-73%, while the emission factor of NOx increased by 36%-54% compared with those from gasoline fueling motorcycles. For unregulated emissions, the emission amount of VOCs from motorcycles fueled with E10 decreased by 18%-31% while total carbonyls were 2.6-4.5 times higher than those for gasoline. For evaporative emissions of THC and VOCs, for gasoline or E10, the diurnal breathing loss (DBL) was higher than hot soak loss (HSL). Using E10 as a fuel does not make much difference in the amount of evaporative THC, while resulted in a slightly growth of 14%-17% for evaporative BETX (benzene, toluene, ethylbenzene, xylene). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Koseki, Hidenori
This paper describes an investigation conducted on flame stability and exhaust emissions from a turbulent diffusion combustor, fueled with low-calorific gas, for a small-scale fuel cell. It is important to maintain flame stability in the combustor, even under lean fuel conditions, and to suppress CO emission in the exhaust gas. An imitation off-gas, in which hydrogen and methane were diluted by adding nitrogen, with Wobbe indices ranging from ca. 4400-8700, corresponding to the fuel utility ratio of 90%-60%in the fuel cell, was supplied to the combustor, and the blow-off limits, CO, and NOx emissions were experimentally investigated. The results show that the blow-off excess air ratios increases with an increasing Wobbe index and with decreasing fuel input to the combustor, and that they are proportional to the hydrogen concentration in the fuel to the power of 0.5-1.0. In addition, it was found that the Damköhler numbers at blow-off limits decreased with decreasing fuel input and with increasing Wobbe indices, and that the product of (SS / V·M)A[H2][O2]0.5 was constant at blow-off limits. Furthermore, NOx emissions from the combustor were low, less than 20ppmV (O2=0%), it was also found that the apparent activation energy of NOx emission derived from Arrhenius plots was almost equal to that of prompt NO in the combustion of imitation off-gas.
Road traffic emission factors for heavy metals
NASA Astrophysics Data System (ADS)
Johansson, Christer; Norman, Michael; Burman, Lars
Quantifying the emissions and concentrations of heavy metals in urban air is a prerequisite for assessing their health effects. In this paper a combination of measurements and modelling is used to assess the contribution from road traffic emissions. Concentrations of particulate heavy metals in air were measured simultaneously during 1 year at a densely trafficked street and at an urban background site in Stockholm, Sweden. Annual mean concentrations of cadmium were 50 times lower than the EU directive and for nickel and arsenic concentrations were 10 and six times lower, respectively. More than a factor of two higher concentrations was in general observed at the street in comparison to roof levels indicating the strong influence from local road traffic emissions. The only compound with a significantly decreasing trend in the urban background was Pb with 9.1 ng m -3 in 1995/96 compared to 3.4 ng m -3 2003/04. This is likely due to decreased emissions from wear of brake linings and reduced emissions due to oil and coal combustion in central Europe. Total road traffic emission factors for heavy metals were estimated using parallel measurements of NOx concentrations and knowledge of NOx emission factors. In general, the emission factors for the street were higher than reported in road tunnel measurements. This could partly be due to different driving conditions, since especially for metals which are mainly emitted from brake wear, more stop and go driving in the street compared to in road tunnels is likely to increase emissions. Total emissions were compared with exhaust emissions, obtained from the COPERT model and brake wear emissions based on an earlier study in Stockholm. For Cu, Ni and Zn the sum of brake wear and exhaust emissions agreed very well with estimated total emission factors in this study. More than 90% of the road traffic emissions of Cu were due to brake wear. For Ni more than 80% is estimated to be due to exhaust emissions and for Zn around 40% of road traffic emissions are estimated to be due to exhaust emissions. Pb is also mainly due to exhaust emissions (90%); a fuel Pb content of only 0.5 mg L -1 would give similar emission factor as that based on the concentration increment at the street. This is the first study using simultaneous measurements of heavy metals at street and roof enabling calculations of emission factors using a tracer technique.
Mohamed Ibrahim, N H; Udayakumar, M
2016-12-01
The investigation presented in this paper focuses on determination of gaseous exhaust emissions by computational simulation during combustion in compression ignition engine with pongamia oil substitution. Combustion is modeled using Equilibrium Constants Method (ECM) with MATLAB program to calculate the mole fraction of 10 combustion products when pongamia oil is burnt along with diesel at variable equivalence ratio and blend ratio. It had been observed that pongamia oil substitution causes decrease in the CO emission and increase in the NO x emission as the blend ratio as well as equivalence ratio increases. Copyright © 2015 Elsevier Inc. All rights reserved.
Pirjola, Liisa; Karjalainen, Panu; Heikkilä, Juha; Saari, Sampo; Tzamkiozis, Theodoros; Ntziachristos, Leonidas; Kulmala, Kari; Keskinen, Jorma; Rönkkö, Topi
2015-03-17
Particle emissions from a modern turbocharged gasoline direct injection passenger car equipped with a three-way catalyst and an exhaust gas recirculation system were studied while the vehicle was running on low-sulfur gasoline and, consecutively, with five different lubrication oils. Exhaust particle number concentration, size distribution, and volatility were determined both at laboratory and on-road conditions. The results indicated that the choice of lubricant affected particle emissions both during the cold start and warm driving cycles. However, the contribution of engine oil depended on driving conditions being higher during acceleration and steady state driving than during deceleration. The highest emission factors were found with two oils that had the highest metal content. The results indicate that a 10% decrease in the Zn content of engine oils is linked with an 11-13% decrease to the nonvolatile particle number emissions in steady driving conditions and a 5% decrease over the New European Driving Cycle. The effect of lubricant on volatile particles was even higher, on the order of 20%.
NASA Astrophysics Data System (ADS)
Warju; Harto, S. P.; Soenarto
2018-01-01
One of the automotive technologies to reduce exhaust gas emissions from the spark-ignition engine (SIE) is by using a catalytic converter. The aims of this research are firstly to conduct a metallic catalytic converter, secondly to find out to what extend chrome-coated copper plate (Cu+Cr) as a catalyst is efficient. To measure the concentration of carbon monoxide (CO) and hydrocarbon (HC) on the frame there are two conditions required. First is when the standard condition, and second is when Cu+Cr metallic catalytic converter is applied using exhaust gas analyzer. Exhaust gas emissions from SIE are measured by using SNI 19-7118.1-2005. The testing of CO and HC emissions were conducted with variable speed to find the trend of exhaust gas emissions from idle speed to high speed. This experiment results in the fact that the use of Cu+Cr metallic catalytic converter can reduce the production of CO and HC of a four-stroke gasoline engine. The reduction of CO and HC emission are 95,35% and 79,28%. Using active metal catalyst in form of metallic catalytic converter, it is gained an optimum effective surface of a catalyst which finally is able to decrease the amount of CO and HC emission significantly in every spinning happened in the engine. Finally, this technology can be applied to the spark ignition engine both car and motorcycle to support blue sky program in Indonesia.
Influence of bio-fuels on passenger car vehicle emissions
NASA Astrophysics Data System (ADS)
Petrea, M.; Kapernaum, M.; Wahl, C.
2009-04-01
In order to reduce the emissions of air pollutants, vehicles design and fuel formulation have changed. Ultra clean vehicle technologies started to be used in increased number. As a result, the emissions composition is expected to change as well. The use of new technologies and new fuels require new emissions tests especially for non-regulated compounds. The interest in using bio fuels as alternative fuels for petroleum-based ones has increased constantly in the last years. The advantages of the bio fuels usage is given by their similar proprieties, characteristics of renew ability, biodegradability and potential beneficial effects on the exhaust emission. The study involved measurements on a roller test facility of a reference passenger car representing new technologies (emission standards, injection system). The vehicle operated by use of reference gasoline and reference gasoline blended (10 and 20%) with bio-ethanol (EtOH). The measurements used different driving cycles: ARTEMIS cycle, real world driving cycle, NEDC cycle, the standard European driving cycle and additionally, a driving cycle consisting in Idle, 30, 50, 90 km/h. The sampling positions were before and after the catalyst and in the exhaust pipe. The detailed speciation of NMVOC' (non methane volatile organic compounds) was completed by use of active carbon tubes, DNPH (2,4-dinitrophenylhydrazine) tubes and cold traps. The particles were monitored by use of an on-line EEPS (Engine Exhaust Particle Sizer). CO2, NO, NO2 and NOX (NO +NO2) were continuously monitored by use of an on- line FTIR (Fourier transform infrared spectroscopy)- MEXA system. The investigations reveal that among the carbonylic compounds 15 oxygenated species were found in engine out exhaust and only 3 in tailpipe emissions, namely formaldehyde, acetaldehyde and acroleine. These are of great interest due to their impacts on human health. The hydrocarbons emissions decrease by increased of EtOH content. New compounds were observed. The nitro-compounds found in the after engine position by increased EtOH were no more found in the exhaust gas. The results show that total particle concentration, mass and diameter decreased substantially after catalyst and filter by increased ethanol blend.
40 CFR 1048.801 - What definitions apply to this part?
Code of Federal Regulations, 2011 CFR
2011-07-01
.... 7401-7671q. Adjustable parameter means any device, system, or element of design that someone can adjust... design function is to decrease emissions in the engine exhaust before it is exhausted to the environment... engine that is designed to run using an alcohol fuel. For purposes of this definition, alcohol fuels do...
40 CFR 1048.801 - What definitions apply to this part?
Code of Federal Regulations, 2012 CFR
2012-07-01
.... 7401-7671q. Adjustable parameter means any device, system, or element of design that someone can adjust... design function is to decrease emissions in the engine exhaust before it is exhausted to the environment... engine that is designed to run using an alcohol fuel. For purposes of this definition, alcohol fuels do...
Broiler litter ammonia emissions near sidewalls, feeders and waterers
USDA-ARS?s Scientific Manuscript database
Ammonia (NH3) volatilized from broiler litter diminishes indoor air quality which can potentially decrease bird productivity. Emissions of NH3 exhausted from broiler houses pose environmental concerns for ecosystem biodiversity, aquatic nutrient enrichment and particulate formation in the atmospher...
One dimensional modeling of a diesel-CNG dual fuel engine
NASA Astrophysics Data System (ADS)
Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir
2017-04-01
Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.
14 CFR 34.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall...
14 CFR 34.21 - Standards for exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.21 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974...
14 CFR 34.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall...
14 CFR 34.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall...
Kilic, Dogushan; Brem, Benjamin T; Klein, Felix; El-Haddad, Imad; Durdina, Lukas; Rindlisbacher, Theo; Setyan, Ari; Huang, Rujin; Wang, Jing; Slowik, Jay G; Baltensperger, Urs; Prevot, Andre S H
2017-04-04
Nonmethane organic gas emissions (NMOGs) from in-service aircraft turbine engines were investigated using a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) at an engine test facility at Zurich Airport, Switzerland. Experiments consisted of 60 exhaust samples for seven engine types (used in commercial aviation) from two manufacturers at thrust levels ranging from idle to takeoff. Emission indices (EIs) for more than 200 NMOGs were quantified, and the functional group fractions (including acids, carbonyls, aromatics, and aliphatics) were calculated to characterize the exhaust chemical composition at different engine operation modes. Total NMOG emissions were highest at idling with an average EI of 7.8 g/kg fuel and were a factor of ∼40 lower at takeoff thrust. The relative contribution of pure hydrocarbons (particularly aromatics and aliphatics) of the engine exhaust decreased with increasing thrust while the fraction of oxidized compounds, for example, acids and carbonyls increased. Exhaust chemical composition at idle was also affected by engine technology. Older engines emitted a higher fraction of nonoxidized NMOGs compared to newer ones. Idling conditions dominated ground level organic gas emissions. Based on the EI determined here, we estimate that reducing idle emissions could substantially improve air quality near airports.
A fuel-based approach to estimating motor vehicle exhaust emissions
NASA Astrophysics Data System (ADS)
Singer, Brett Craig
Motor vehicles contribute significantly to air pollution problems; accurate motor vehicle emission inventories are therefore essential to air quality planning. Current travel-based inventory models use emission factors measured from potentially biased vehicle samples and predict fleet-average emissions which are often inconsistent with on-road measurements. This thesis presents a fuel-based inventory approach which uses emission factors derived from remote sensing or tunnel-based measurements of on-road vehicles. Vehicle activity is quantified by statewide monthly fuel sales data resolved to the air basin level. Development of the fuel-based approach includes (1) a method for estimating cold start emission factors, (2) an analysis showing that fuel-normalized emission factors are consistent over a range of positive vehicle loads and that most fuel use occurs during loaded-mode driving, (3) scaling factors relating infrared hydrocarbon measurements to total exhaust volatile organic compound (VOC) concentrations, and (4) an analysis showing that economic factors should be considered when selecting on-road sampling sites. The fuel-based approach was applied to estimate carbon monoxide (CO) emissions from warmed-up vehicles in the Los Angeles area in 1991, and CO and VOC exhaust emissions for Los Angeles in 1997. The fuel-based CO estimate for 1991 was higher by a factor of 2.3 +/- 0.5 than emissions predicted by California's MVEI 7F model. Fuel-based inventory estimates for 1997 were higher than those of California's updated MVEI 7G model by factors of 2.4 +/- 0.2 for CO and 3.5 +/- 0.6 for VOC. Fuel-based estimates indicate a 20% decrease in the mass of CO emitted, despite an 8% increase in fuel use between 1991 and 1997; official inventory models predict a 50% decrease in CO mass emissions during the same period. Cold start CO and VOC emission factors derived from parking garage measurements were lower than those predicted by the MVEI 7G model. Current inventories in California appear to understate total exhaust CO and VOC emissions, while overstating the importance of cold start emissions. The fuel-based approach yields robust, independent, and accurate estimates of on-road vehicle emissions. Fuel-based estimates should be used to validate or adjust official vehicle emission inventories before society embarks on new, more costly air pollution control programs.
Karavalakis, G; Tzirakis, E; Mattheou, L; Stournas, S; Zannikos, F; Karonis, D
2008-12-01
The purpose of this work was to investigate the impact of marine gas oil (MGO)/biodiesel blends on the exhaust emissions and fuel consumption in a single cylinder, stationary, diesel engine. Three different origins of biodiesel were used as the blending feedstock with the reference MGO, at proportions of 5 and 10% by volume. Methyl esters were examined according to the automotive FAME standard EN 14214. The baseline MGO and biodiesel blends were examined according to ISO 8217:2005 specifications for the DMA category. Independently of the biodiesel used, a decrease of PM, HC, CO and CO(2) emissions was observed. Emissions of NO(x) were also lower with respect to MGO. This reduction in NO(x) may be attributed to some physicochemical properties of the fuels applied, such as the higher cetane number and the lower volatility of methyl esters. Reductions in PM for biodiesel blends were lower in the exhaust than those of the reference fuel which was attributed to the oxygen content and the near absence of sulphur and aromatics compounds in biodiesel. However, a slight increase in fuel consumption was observed for the biodiesel blends that may be tolerated due to the exhaust emissions benefits. Brake thermal efficiency was also determined. Unregulated emissions were characterized by determining the soluble organic fraction content of the particulate matter.
Anchupogu, Praveen; Rao, Lakshmi Narayana; Banavathu, Balakrishna
2018-06-04
In the present study, the combined effect of alumina nanoparticles into the Calophyllum inophyllum biodiesel blend and exhaust gas recirculation on the combustion, performance, and emission characteristics of a diesel engine was investigated. The alumina (Al 2 O 3 ) nanoparticles with the mass fraction of 40 ppm were dispersed into the C. inophyllum biodiesel blend (20% of C. inophyllum biodiesel + 80% of diesel (CIB20)) by the ultrasonication process. Further, the exhaust gas recirculation was adopted to control the oxides of nitrogen (NOx) emissions of a diesel engine. The experiments were conducted on a single cylinder diesel engine with the diesel, CIB20, 20% of C. inophyllum biodiesel + 80% of diesel + 40 ppm Al 2 O 3 nanoparticles (CIB20ANP40), CIB20 + 20% exhaust gas recirculation (EGR), and CIB20ANP40 + 20% EGR fuel samples at different load conditions. The results reveal that brake thermal efficiency of CIB20ANP40 fuel increased by 5.04 and 7.71% compared to the CIB20 and CIB20ANP40 + 20% EGR fuels, respectively. The addition of alumina nanoparticles to the CIB20 fuel, CO, and hydrocarbon (HC) emissions were was reduced compared to the CIB20 fuel. The smoke opacity was decreased with the addition of alumina nanoparticles to the CIB20 fuel by 7.3% compared to the CIB20 fuel. The NOx emissions for the CIB20ANP40 + 20% EGR fuel was decreased by 36.84, 31.53, and 17.67% compared to the CIB20, CIB20ANP40, and CIB20 + 20% EGR fuel samples at full load condition.
Smits, Marianne; Vanpachtenbeke, Floris; Horemans, Benjamin; De Wael, Karolien; Hauchecorne, Birger; Van Langenhove, Herman; Demeestere, Kristof; Lenaerts, Silvia
2012-01-01
Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results. PMID:22442670
Trends in exhaust emissions from in-use Mexico City vehicles, 2000-2006. A remote sensing study.
Schifter, I; Díaz, L; Rodríguez, R; Durán, J; Chávez, O
2008-02-01
A remote sensing study was conducted in year 2006 in four locations of the Metropolitan Area of Mexico City (MAMC). Two of the sites were the same studied back by us in year 2000 and by others in year 1994. A database was compiled containing 11,289 valid measurements for the carbon monoxide (CO), total hydrocarbons (THC), and nitric oxide (NO) exhaust vehicles emissions. Valid measurements were binned for each pollutant by the vehicle specific power (between -5 and 20 kW tonne(-1)) for the 2000 and 2006 databases. The mean average CO, THC, and NO emissions for year 2006 were determined to be 1.10 +/- 0.18 vol.%, 299 +/- 88.4 ppm, and 610 +/- 115.0 ppm, respectively. Matching the vehicle driving patterns of the fleet measured in year 2000 with the emissions factors obtained in this work, allows estimating the trends in the exhaust emissions of vehicles in the MAMC. The adjusted results of the remote sensing study performed in year 2006 shows that the fleet has decrease 22% in CO and 17% in NO emissions, with small change in total hydrocarbons emissions. The improvements could be related with the introduction in year 2001 of vehicles that met tighter emissions standards, particularly for nitrogen oxides.
Narula, Chaitanya K.; Yang, Xiaofan
2017-07-04
A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.
Schifter, I; Díaz, L; Rodríguez, R; González-Macías, C
2014-06-01
The strategy for decreasing volatile organic compound emissions in Mexico has been focused much more on tailpipe emissions than on evaporative emissions, so there is very little information on the contribution of evaporative emissions to the total volatile organic compound inventory. We examined the magnitudes of exhaust and evaporative volatile organic compound emissions, and the species emitted, in a representative fleet of light-duty gasoline vehicles in the Metropolitan Area of Mexico City. The US "FTP-75" test protocol was used to estimate volatile organic compound emissions associated with diurnal evaporative losses, and when the engine is started and a journey begins. The amount and nature of the volatile organic compounds emitted under these conditions have not previously been accounted in the official inventory of the area. Evaporative emissions from light-duty vehicles in the Metropolitan Area of Mexico City were estimated to be 39 % of the total annual amount of hydrocarbons emitted. Vehicles built before 1992 (16 % of the fleet) were found to be responsible for 43 % of the total hydrocarbon emissions from exhausts and 31 % of the evaporative emissions of organic compounds. The relatively high amounts of volatile organic compounds emitted from older vehicles found in this study show that strong emission controls need to be implemented in order to decrease the contribution of evaporative emissions of this fraction of the fleet.
Power-dependent speciation of volatile organic compounds in aircraft exhaust
NASA Astrophysics Data System (ADS)
Beyersdorf, Andreas J.; Thornhill, K. Lee; Winstead, Edward L.; Ziemba, Luke D.; Blake, Donald R.; Timko, Michael T.; Anderson, Bruce E.
2012-12-01
As part of the third NASA Aircraft Particle Emissions Experiment (APEX-3, November 2005), whole air samples were collected to determine the emission rates of volatile organic compounds (VOCs) from aircraft equipped with three different gas-turbine engines (an Allison Engine 3007-A1E, a Pratt-Whitney 4158, and a Rolls-Royce RB211-535E4B). Samples were collected 1 m behind the engine exhaust plane of the engines while they were operated at powers ranging from idle up to 30% of maximum rated thrust. Exhaust emission indices (mass emitted per kilogram of fuel used) for CO and non-methane hydrocarbons (NMHCs) were calculated based on enhancements over background relative to CO2. Emissions of all NMHCs were greatest at low power with values decreasing by an order of magnitude with increasing power. Previous studies have shown that scaling idle hydrocarbon emissions to formaldehyde or ethene (which are typically emitted at a ratio of 1-to-1 at idle) reduces variability amongst engine types. NMHC emissions were found to scale at low power, with alkenes contributing over 50% of measured NMHCs. However, as the power increases hydrocarbon emissions no longer scale to ethene, as the aromatics become the dominant species emitted. This may be due in part to a shift in combustion processes from thermal cracking (producing predominantly alkenes) to production of new molecules (producing proportionally more aromatics) as power increases. The formation of these aromatics is an intermediate step in the production of soot, which also increases with increasing power. The increase in aromatics relative to alkenes additionally results in a decrease in the hydroxyl radical reactivity and ozone formation potential of aircraft exhaust. Samples collected 30 m downwind of the engine were also analyzed for NMHCs and carbonyl compounds (acetone, 2-butanone and C1-C9 aldehydes). Formaldehyde was the predominant carbonyl emitted; however, the ratio of ethene-to-formaldehyde varied between the aircraft, possibly due to the sampling of transient emissions such as engine start-up and power changes. A large portion of the measured emissions (27-42% by mass) in the plume samples was made up of hazardous air pollutants (HAPs) with oxygenated compounds being most significant.
Anthropogenic mercury emissions from 1980 to 2012 in China.
Huang, Ying; Deng, Meihua; Li, Tingqiang; Japenga, Jan; Chen, Qianqian; Yang, Xiaoe; He, Zhenli
2017-07-01
China was considered the biggest contributor for airborne mercury in the world but the amount of mercury emission in effluents and solid wastes has not been documented. In this study, total national and regional mercury emission to the environment via exhaust gases, effluents and solid wastes were accounted with updated emission factors and the amount of goods produced and/or consumed. The national mercury emission in China increased from 448 to 2151 tons during the 1980-2012 period. Nearly all of the emissions were ended up as exhaust gases and solid wastes. The proportion of exhaust gases decreased with increasing share of solid wastes and effluents. Of all the anthropogenic sources, coal was the most important contributor in quantity, followed by mercury mining, gold smelting, nonferrous smelting, iron steel production, domestic wastes, and cement production, with accounting for more than 90% of the total emission. There was a big variation of regional cumulative mercury emission during 1980-2012 in China, with higher emissions occurred in eastern areas and lower values in the western and far northern regions. The biggest cumulative emission occurred in GZ (Guizhou), reaching 3974 t, while the smallest cumulative emission was lower than 10 t in XZ (Tibet). Correspondingly, mercury accumulation in soil were higher in regions with larger emissions in unit area. Therefore, it is urgent to reduce anthropogenic mercury emission and subsequent impact on ecological functions and human health. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Modi, Ashishkumar Jashvantlal; Gosai, Dipak Chimangiri; Solanki, Chandresh Maheshchandra
2018-04-01
Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5-40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.
Evaluation of mobile source emission trends in the United States
NASA Astrophysics Data System (ADS)
Dallmann, Timothy R.; Harley, Robert A.
2010-07-01
A fuel-based approach is used to estimate exhaust emissions of nitrogen oxides (NOx) and fine particulate matter (PM2.5) from mobile sources in the United States for the years 1996-2006. Source categories considered include on-road and off-road gasoline and diesel engines. Pollutant emissions for each mobile source category were estimated by combining fuel consumption with emission factors expressed per unit of fuel burned. Over the 10-year time period that is the focus of this study, sales of gasoline and diesel fuel intended for on-road use increased by 15 and 43%, respectively. Diesel fuel use by off-road equipment increased by ˜20% over the same time period. Growth in fuel consumption offset some of the reductions in pollutant emission factors that occurred during this period. For NOx, there have been dramatic (factor of 2) decreases in emission factors for on-road gasoline engines between 1996 and 2006. In contrast, diesel NOx emission factors decreased more gradually. Exhaust PM2.5 emission factors appear to have decreased for most engine categories, but emission uncertainties are large for this pollutant. Diesel engines appear to be the dominant mobile source of both NOx and PM2.5; the diesel share of total NOx has increased over time as gasoline engine emissions have declined. Comparing fuel-based emission estimates with U.S. Environmental Protection Agency's national emission inventory led to the following conclusions: (1) total emissions of NOx and PM2.5 estimated by two different methods were similar, (2) source contributions to these totals differ significantly, with higher relative contributions coming from on-road diesel engines in this study.
Effect of ethanol-gasoline blends on small engine generator energy efficiency and exhaust emission.
Lin, Wen-Yinn; Chang, Yuan-Yi; Hsieh, You-Ru
2010-02-01
This study was focused on fuel energy efficiency and pollution analysis of different ratios of ethanol-gasoline blended fuels (E0, E3, E6, and E9) under different loadings. In this research, the experimental system consisted of a small engine generator, a particulate matter measurement system, and an exhaust gas analyzer system. Different fuels, unleaded gasoline, and ethanol-gasoline blends (E0, E3, E6, and E9) were used to study their effects on the exhaust gas emission and were expressed as thermal efficiency of the small engine generator energy efficiency. The results suggested that particle number concentration increased as the engine loading increased; however, it decreased as the ethanol content in the blend increased. While using E6 as fuel, the carbon monoxide (CO) concentration was less than other fuels (E0, E3, and E9) for each engine loading. The average of CO concentration reduction by using E3, E6, and E9 is 42, 86, and 83%, respectively. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 78.7, 97.5, and 89.46% of the mean average values of hydrocarbons (HCs) with E3, E6, and E9 fuels, respectively, for all engine loadings. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 35, 86, and 77% of the mean average values of nitrogen oxides (NOx) with E3, E6, and E9 fuels, respectively, at each engine loading. The E6 fuel gave the best results of the exhaust emissions, and the E9 fuel gave the best results of the particle emissions and engine performance. The thermal efficiency of the small engine generator increased as the ethanol content in the blend increased and as the engine loading increased.
Effects of Retrofitting Emission Control Systems on all In-Use Heavy Diesel Trucks
NASA Astrophysics Data System (ADS)
Millstein, D.; Harley, R. A.
2009-12-01
Diesel exhaust is now the largest source of nitrogen oxide (NOx) emissions nationally in the US, and contributes significantly to emissions of fine particulate black carbon (soot) as well. New national standards call for dramatically lower emissions of exhaust particulate matter (PM) and NOx from new diesel engines starting in 2007 and 2010, respectively. Unfortunately it will take decades for the cleaner new engines to replace those currently in service on existing heavy-duty trucks. The state of California recently adopted a rule to accelerate fleet turnover in the heavy-duty truck sector, requiring that all in-use trucks meet the new exhaust PM standards by 2014. This will entail retrofit of diesel particle filters or replacement for over a million existing diesel engines. Diesel particle filters can replace the muffler on existing trucks, and there is extensive experience with retrofit of this control equipment on public sector fleets such as diesel-powered transit buses. Nitrogen dioxide (NO2) is used as an oxidizing agent to remove carbon particles from the particle filter, to prevent it from becoming plugged. To create the needed NO2, NOx already present in engine exhaust as nitric oxide (NO) is deliberately oxidized to NO2 upstream of the particle filter using a platinum catalyst. The NO2/NOx ratio in exhaust emissions therefore increases to ~35% in comparison to much lower values (~5%) typical of older engines without particle filters. We evaluate the effects on air quality of increased use of diesel particle traps and NOx controls in southern California using the Community Multiscale Air Quality (CMAQ) model. Compared to a reference scenario without the retrofit program, we found black carbon concentrations decreased by ~20%, with small increases (4%) in ambient ozone concentrations. During summer, average NO2 concentrations decrease despite the increase in primary NO2 emissions - because total NOx emissions are reduced as part of a parallel but more gradual program to retrofit NOx control systems on in-use engines. During winter, NO2 concentrations increase by 1-2% at locations with high diesel truck traffic, and larger increases may occur if diesel trucks outfitted with particle traps do not meet the in-use NOx emission reduction requirements. Small changes to fine particulate nitrate are seen as well with increases over the Los Angeles area of 3 and 6% during the summer and fall, respectively. During the summer, but not the fall, downwind nitrate decreased by 2% east of Los Angeles near Riverside. Emissions reductions due to fleet turnover in the reference scenario (without retrofit) may be optimistic, and the air quality benefits of retrofits could therefore be understated, due to slow sales of new engines in recent years. In any case, significant changes in diesel engine emissions of NOx and PM are expected to occur over the next 5 years in California.
Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A
2013-01-01
Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.
14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.64 Sampling and analytical procedures for measuring gaseous exhaust emissions. The...
14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.64 Sampling and analytical procedures for measuring gaseous exhaust emissions. The...
Mabilia, Rosanna; Cecinato, Angelo; Tomasi Scianò, Maria Concetta; Di Palo, Vincenzo; Possanzini, Massimiliano
2004-01-01
Exhaust emissions from a recent model heavy-duty diesel vehicle (city bus) in a chassis dynamometer were measured during a transient driving cycle. Particle-bound polycyclic aromatic hydrocarbons (PAHs) and gaseous carbonyls, substances that create health hazards and are, as yet, unregulated were collected, the former on filters and the latter on dinitrophenylhydrazine (DNPH)-coated silica cartridges and analysed by GC-MS and HPLC, respectively. PAH emission rates decreased with the number of benzene fused rings. They averaged 0.2 mg km(-1) for a total of 11 PAHs ranging from fluoranthene to benzo(ghi)perylene. Fluoranthene and pyrene accounted for 90% of total PAHs. The sum of emission rates of C1 approximately C6 carbonyls averaged 174 mg km(-1), even if formaldehyde alone represented approximately 70% of the total carbonyl mass, followed by acetaldehyde (13%). Results obtained were compared with emission data reported in previous studies.
Preparation and emission characteristics of ethanol-diesel fuel blends.
Zhang, Run-Duo; He, Hong; Shi, Xiao-Yan; Zhang, Chang-Bin; He, Bang-Quan; Wang, Jian-Xin
2004-01-01
The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection (DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon (HC), and carbon monoxide (CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.
Gao, Zhiming; Curran, Scott J.; Parks, James E.; ...
2015-04-06
We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxidemore » (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.« less
Shelef, M
1994-05-23
In 1970, before the implementation of strict controls on emissions in motor vehicle exhaust gas (MVEG), the annual USA incidence of fatal accidents by carbon monoxide in the MVEG was approximately 800 and that of suicides approximately 2000 (somewhat less than 10% of total suicides). In 1987, there were approximately 400 fatal accidents and approximately 2700 suicides by MVEG. Accounting for the growth in population and vehicle registration, the yearly lives saved in accidents by MVEG were approximately 1200 in 1987 and avoided suicides approximately 1400. The decrease in accidents continues unabated while the decrease in expected suicides by MVEG reached a plateau in 1981-1983. The reasons for this disparity are discussed. Juxtaposition of these results with the projected cancer risk avoidance of less than 500 annually in 2005 (as compared with 1986) plainly shows that, in terms of mortality, the unanticipated benefits of emission control far overshadow the intended benefits. With the spread of MVEG control these benefits will accrue worldwide.
NASA Astrophysics Data System (ADS)
Nitnaware, Pravin Tukaram; Suryawanshi, Jiwak G.
2018-01-01
This paper shows exhaust gas recirculation (EGR) effects on multi-cylinder bi-fuel SI engine using blends of 0, 5, 10 and 15% hydrogen by energy with CNG. All trials are performed at a speed of 3000, 3500 and 4000 rpm with EGR rate of 0, 5, 10 and 15%, with equal spark timing and injection pressure of 2.6 bar. At specific hydrogen percentage with increase in EGR rate NOx emission reduces drastically and increases with increase in hydrogen addition. Hydrocarbon (HC) and carbon monoxide (CO) emission decreases with increase in speed and hydrogen addition. There is considerable improvement in brake thermal efficiency (BTE) and brake specific energy consumption (BSEC) at 15% EGR rate. At 3000 rpm, 5% EGR rate with 5% hydrogen had shown maximum cylinder pressure. Brake specific fuel consumption (b.s.f.c) increased with increase in EGR rate and decreased with increase in hydrogen addition for all speeds.
NASA Astrophysics Data System (ADS)
Ballesteros, R.; Monedero, E.; Guillén-Flores, J.
2011-05-01
Biodiesel from animal fats appears as an alternative for conventional diesel in automotive consumption. Animal fats are classified into three categories, although only one of them can be used for biodiesel production, according to regulation. Due to its novelty, researchers testing animal-fat biodiesel on diesel engines focus only on regulated emissions. In this paper, the experiments carried out analyze carbonyl compounds emissions, due to its highly atmospheric reactivity, to complete the characterization of the total emissions in this kind of biofuel. Two fuels, a reference petro-diesel and a pure animal-fat biodiesel, were tested in a 4-cylinder, direct injection, diesel engine Nissan Euro 5 M1D-Bk. Samples were collected in 4 different operating modes and 3 points along the exhaust line. The analyses of samples were made in a high performance liquid chromatography, following the method recommended by the CARB to analyze air quality. Results show, on the one hand, a significant rise in carbonyl emissions, almost three times at the mode with highest hydrocarbon emissions, when biodiesel is used. On the other hand, on average, a reduction of 90% of carbonyl emissions when exhaust gases go through the different post-treatment systems installed. Despite this reduction, specific reactivity does not decrease substantially.
40 CFR 87.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF and...
40 CFR 87.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF and...
40 CFR 87.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF and...
40 CFR 87.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF and...
40 CFR 87.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) Definitions. Exhaust Emissions (In-Use Aircraft Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8... in-use aircraft gas turbine engine of class TF and of rated output of 129 kilonewtons thrust or...
14 CFR 34.21 - Standards for exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (New Aircraft Gas Turbine Engines) § 34.21 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974...) Exhaust emission of smoke from each new aircraft gas turbine engine of class T3 manufactured on or after...
14 CFR 34.21 - Standards for exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (New Aircraft Gas Turbine Engines) § 34.21 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974...) Exhaust emission of smoke from each new aircraft gas turbine engine of class T3 manufactured on or after...
NASA Astrophysics Data System (ADS)
Made Suarta, I.; Nyoman Gede Baliarta, I.; Sopan Rahtika, I. P. G.; Wijaya Sunu, Putu
2018-01-01
In this study observed the role of hydrogen bonding to the composition of exhaust emissions which is produced hydrous ethanol fuel (95.5% v). Testing is done by using single cylinder four stroke motor engine. The composition of exhaust gas emissions is tested using exhaust gas analyzer on lean and stoichiometry mixer. The exhaust emissions produced by anhydrous ethanol were also tested. The composition of emissions produced by that two fuels is compared. The results showed CO emissions levels produced by hydrous ethanol are slightly higher than anhydrous ethanol in stoichiometric mixtures. But the composition of CO hydrous ethanol emissions is lower in the lean mix. If lean the mixer the different in the composition of emissions is increasing. On hydrous ethanol emission CO2 content little bit lower on the stoichiometric mixer and higher on the lean mixture. Exhaust emissions of ethanol fuel also produce O2. O2 hydrous ethanol emissions is higher than anhydrous ethanol fuel.
NASA Astrophysics Data System (ADS)
Keuken, M. P.; Roemer, M. G. M.; Zandveld, P.; Verbeek, R. P.; Velders, G. J. M.
2012-07-01
Application of an oxidation catalyst mainly by diesel-fuelled passenger cars reduces harmful exhaust emissions of particulate matter (PM). As a side effect, the primary NO2/NOx emission ratio by these vehicles increased from 10% in 2000 (before the introduction of the oxidation catalyst) to between 55% and 70% in 2010. The impact of this evolution in traffic emissions was studied from both a health and a regulatory perspective. Primary NO2 emissions from road traffic in the Netherlands is expected to increase from 8 kt in 2000 to 15 kt by 2015 and subsequently to decrease to 9 kt by 2020. Meanwhile, exhaust PM emissions from road traffic in the Netherlands will decrease from 7 kt in 2000 to 3 kt by 2020. The impact of exhaust PM on air quality and health was assessed according to the mass concentrations of elemental carbon (EC) in ambient air, as EC is a more sensitive indicator than PM. Monitoring data on the NO2/EC concentration ratios near road traffic between 2000 and 2010 indicate no significant change in ambient air quality. This indicates that health effects in epidemiological studies associated with long-term exposure to NO2 concentrations are still valid. The health impact from the introduction of the oxidation catalyst was assessed by comparing the relatively higher NO2 ("cost") and lower EC ("benefit") concentrations at street locations. "Relative" refers to traffic emissions in situations "with" and "without" the oxidation catalyst being introduced. The cost-benefit ratio in 2010 was in balance, but benefits are expected to outweigh costs by 2015 and 2020. It is concluded that the application of oxidation catalysts is beneficial from a health perspective, but from a regulatory perspective it complicates compliance with the average annual limit value of NO2. This indicates that additional local measures may be required in order to meet air quality standards at locations with high traffic intensities.
Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles
NASA Astrophysics Data System (ADS)
Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.
2015-03-01
In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric ageing processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.
Toxicity and health effects of vehicle emissions in Shanghai
NASA Astrophysics Data System (ADS)
Ye, Shun-Hua; Zhou, Wei; Song, Jian; Peng, Bao-Cheng; Yuan, Dong; Lu, Yuan-Ming; Qi, Ping-Ping
In China, the number of vehicles is increasing rapidly with the continuous development of economy, and vehicle emission pollution in major cities is more serious than ever. In this article, we summarized the results of a series of short-term assays, animal experiments and epidemiology investigations on the genotoxicity, immunotoxicity, respiratory toxicity and health effects of vehicle emissions in Shanghai, including gasoline exhausts (gas condensate and particles), diesel exhaust particles (DEP) and scooter exhaust particles (SEP). The results showed that: (1) Both gases and particulate phases of the exhausts of different kinds of vehicles showed strong mutagenicity in Ames test (TA98 and TA100 strains), rat hepatocyte unscheduled DNA synthesis (UDS) assay, and mouse micronucleus assay, and vehicle emissions could induce the transformation of Syrian hamster embryo (SHE) cells. DEP and SEP could induce the transformation of human diploid cell strain (KMB-13) cells, immunohistochemistry assay showed that c-myc and p21 proteins were highly expressed in the transformed cells. DEP and SEP could also inhibit the gap junctional intercellular communication (GJIC) of BALB/C3T3 cells (2) Vehicle emissions could decrease the number of macrophages in the lung (bronchial alveolar lavage fluid) (BALF) of male SD rats. Vehicle emissions could also increase the proportion of polymorphonuclear leukocytes (PMN), the content of cetyneuraminic acid (NA), the activity of lactate dehydrogenase (LDH), alkali phosphate (AKP), acid phosphate (ACP) in the lung BALF of the animals. (3) In epidemiology investigation, the proportion of those who have respiratory symptoms and chronic obstructive pulmonary diseases (COPD) in the workers who were exposed to DEP ( n=806) were much higher than those of the controls ( n=413). The OR (odd ratio) values of angina, nasal obstruction, phlegm, short of breath and COPD were 2.27, 3.08, 3.00, 3.19 and 2.32, respectively, and the proportion of those who have indisposed sensation of nose or laryngopharynx, cough, phlegm and pharyngitis in the workers who were occupationally exposed to gasoline exhausts ( n=157) were also higher than those of controls ( n=121), the OR values were 2.43, 3.76, 2.58, and 3.70, respectively, and in the 40 gasoline exhausts exposed workers, the frequencies of 6-TG (thioguanine), sister chromatid exchanges (SCEs) and micronuclei in peripheral blood were markedly higher ( P<0.05) than those of controls. The SI (T lymphocytes transformation) activity, total E rosette, E active rosette, content of immunoglobulin A (IgA) and fibrin (FN) of the exposed group were significantly ( P<0.05) decreased compared with those of the control. All the results showed that vehicle emissions could not only induce adverse effects on respiratory and immune system of occupationally exposed people, but also have potential carcinogenicity to human beings.
Chiang, Hung-Lung; Lin, Kuo-Hsiung
2014-01-15
The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H2, CH4, CO2, and NOx, were 60-115, 0.4-4.0, 1.1-10, 30-95, and 0-0.7mg/g, corresponding to temperatures ranging from 200 to 500°C. When the pyrolysis temperature was lower than 300°C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400°C. When VOC exhaust was flowed through the bed of Fe-impregnated Al2O3, the emission of ozone precursor VOCs could be reduced by 70-80%. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of outboard motor exhaust emissions on goldfish (Carassius auratus)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brenniman, G.R.; Anver, M.R.; Hartung, R.
1979-07-01
Goldfish (Carassius auratus) were exposed to outboard exhaust products in water or to toluene (a constituent of outboard motor exhaust water) via a continuous flow bioassay dosing apparatus. Various physiologic and pathologic changes were noted. In the blood a consistent decrease (p less than 0.05) in the partial pressure of oxygen, a significant increase (p less than 0.05) in the partial pressure of carbon dioxide, and significant decreases (p less than 0.05) in pH and oxygen saturation were found in many of the blood gas experiments. Laboratory experiments also indicated that these fish are capable of metabolizing toluene to hippuricmore » acid (p less than 0.05). Exposure up to 30 days to these exhaust products produced gross and microscopic lesions in the high-, intermediate-, and low-dose fish. Grossly, livers were smaller and pale; intestines were empty of ingesta and feces; and gills were coated excessively with mucus. Microscopically, the livers of the exposed fish had a decreased cytoplasmic:nuclear ratio, gill filaments were fused, and some kidneys had tubular vacuolization.« less
NASA Astrophysics Data System (ADS)
Zamboni, Giorgio; Capobianco, Massimo; Daminelli, Enrico
An investigation into road transport exhaust emissions in the Genoa urban area was performed by comparing the quantities of carbon monoxide (CO), nitrogen oxides (NO x), nitrogen dioxide (NO 2) and particulate matter (PM) emitted by different vehicle categories with air quality measurements referred to the same pollutants. Exhaust emissions were evaluated by applying the PROGRESS (computer PROGramme for Road vehicle EmiSSions evaluation) code, developed by the Internal Combustion Engines Group of the University of Genoa, to eight different years (from 1992 to 2010), considering spark ignition and Diesel passenger cars and light duty vehicles, heavy duty vehicles and buses, motorcycles and mopeds. Changes in terms of vehicles number, mileage and total emissions are presented together with relative distributions among the various vehicle categories. By comparing 1992 and 2010 data, calculated trends show a 7% increase in the number of vehicles, with total mileage growing at a faster rate (approx. 22%); total emissions decrease considerably, by approximately 50% for NO x and PM, 70% for HC and 80% for CO, due to improvements in engines and fuels forced by the stricter European legislation and the fleet renewal, while primary NO 2 emission will be very close to 1992 level, after a decrease of about 18% in 2000. Air quality was analysed by selecting traffic and background measuring stations from the monitoring network managed by the Environmental Department of the Province of Genoa: average annual concentrations of considered pollutants from 1994 to 2007 were calculated in order to obtain the relative historical trends and compare them with European public health limits and with road vehicle emissions. Though an important reduction in pollutant concentrations has been achieved as a consequence of cleaner vehicles, some difficulties in complying with present and/or future NO 2 and PM 10 limits are also apparent, thus requiring suitable measures to be taken by the local authorities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Requirements § 1039.102 What exhaust emission standards and phase-in allowances apply for my engines in model year 2014 and earlier? The exhaust emission standards of this section apply for 2014 and earlier model years. See § 1039.101 for exhaust emission standards that apply to later model years. See 40 CFR 89.112...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Requirements § 1039.102 What exhaust emission standards and phase-in allowances apply for my engines in model year 2014 and earlier? The exhaust emission standards of this section apply for 2014 and earlier model years. See § 1039.101 for exhaust emission standards that apply to later model years. See 40 CFR 89.112...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Requirements § 1039.102 What exhaust emission standards and phase-in allowances apply for my engines in model year 2014 and earlier? The exhaust emission standards of this section apply for 2014 and earlier model years. See § 1039.101 for exhaust emission standards that apply to later model years. See 40 CFR 89.112...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Requirements § 1039.102 What exhaust emission standards and phase-in allowances apply for my engines in model year 2014 and earlier? The exhaust emission standards of this section apply for 2014 and earlier model years. See § 1039.101 for exhaust emission standards that apply to later model years. See 40 CFR 89.112...
NASA Astrophysics Data System (ADS)
Braban, Christine; Tang, Sim; Poskitt, Janet; Van Dijk, Netty; Leeson, Sarah; Dragosits, Ulli; Hutchings, Torben; Twigg, Marsailidh; Di Marco, Chiara; Langford, Ben; Tremper, Anja; Nemitz, Eiko; Sutton, Mark
2017-04-01
Emissions of ammonia affect both rural and urban air quality primarily via reaction of ammonia in the atmosphere forming secondary ammonium salts in particulate matter (PM). Urban ammonia emissions come from a variety of sources including biological decomposition, human waste, industrial processes and combustion engines. In the UK, the only long-term urban ammonia measurement is a UK National Ammonia Monitoring Network site at London Cromwell Road, recording monthly average concentrations. Short term measurements have also been made in the past decade at Marylebone Road, North Kensington and on the BT Tower. Cromwell Road is a kerbside site operational since 1999. The Cromwell Road data indicates that ammonia concentrations may be increasing since 2010-2012 after a long period of decreasing. Data from the National Atmospheric Emissions Inventory indicates ammonia emissions from diesel fleet exhausts increasing over this time period but an overall net decrease in ammonia emissions. With changes in engine and exhaust technology to minimise pollutant emissions and the importance of ammonia as a precursor gas for secondary PM, there is a challenge to understand urban ammonia concentrations and subsequent impacts on urban air quality. In this paper the long term measurements are assessed in conjunction with the short-term measurements.The challenges to assess the relative importance of local versus long range ammonia emission are discussed.
Particulate emissions from diesel engines: correlation between engine technology and emissions.
Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian
2014-03-07
In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission.
Particulate emissions from diesel engines: correlation between engine technology and emissions
2014-01-01
In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted. Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions. Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission. PMID:24606725
NASA Technical Reports Server (NTRS)
Marchionna, N. R.; Diehl, L. A.; Trout, A. M.
1973-01-01
The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.
40 CFR 80.91 - Individual baseline determination.
Code of Federal Regulations, 2013 CFR
2013-07-01
...—6.45 Exhaust benzene emissions, complex model—33.03 mg/mile Exhaust toxics emissions, Phase I—50.67 mg/mile Exhaust toxics emissions, Phase II—104.5 mg/mile NOX emissions, Phase I—714.4 mg/mile NOX emissions, Phase II—1461. mg/mile (d) Data collection and testing requirements—(1) Minimum sampling...
40 CFR 80.91 - Individual baseline determination.
Code of Federal Regulations, 2014 CFR
2014-07-01
...—6.45 Exhaust benzene emissions, complex model—33.03 mg/mile Exhaust toxics emissions, Phase I—50.67 mg/mile Exhaust toxics emissions, Phase II—104.5 mg/mile NOX emissions, Phase I—714.4 mg/mile NOX emissions, Phase II—1461. mg/mile (d) Data collection and testing requirements—(1) Minimum sampling...
40 CFR 80.91 - Individual baseline determination.
Code of Federal Regulations, 2011 CFR
2011-07-01
...—6.45 Exhaust benzene emissions, complex model—33.03 mg/mile Exhaust toxics emissions, Phase I—50.67 mg/mile Exhaust toxics emissions, Phase II—104.5 mg/mile NOX emissions, Phase I—714.4 mg/mile NOX emissions, Phase II—1461. mg/mile (d) Data collection and testing requirements—(1) Minimum sampling...
40 CFR 80.91 - Individual baseline determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
...—6.45 Exhaust benzene emissions, complex model—33.03 mg/mile Exhaust toxics emissions, Phase I—50.67 mg/mile Exhaust toxics emissions, Phase II—104.5 mg/mile NOX emissions, Phase I—714.4 mg/mile NOX emissions, Phase II—1461. mg/mile (d) Data collection and testing requirements—(1) Minimum sampling...
14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE... Turbine Engines) § 34.64 Sampling and analytical procedures for measuring gaseous exhaust emissions. The...
Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel.
Bünger, Jürgen; Krahl, Jürgen; Schröder, Olaf; Schmidt, Lasse; Westphal, Götz A
2012-10-01
Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel "hydrotreated vegetable oil" (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a decreased mutagenicity.
Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel
Bünger, Jürgen; Krahl, Jürgen; Schröder, Olaf; Schmidt, Lasse; Westphal, Götz A.
2012-01-01
Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel “hydrotreated vegetable oil” (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a decreased mutagenicity. PMID:22871157
40 CFR 87.21 - Standards for exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) Definitions. Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.21 Standards for exhaust... each new aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each new aircraft gas turbine engine of...
NASA Astrophysics Data System (ADS)
Zhu, Ruijun; Cheung, C. S.; Huang, Zuohua; Wang, Xibin
2011-04-01
Experiments were carried out on a four-cylinder direct-injection diesel engine operating on Euro V diesel fuel blended with diethyl adipate (DEA). The blended fuels contain 8.1%, 16.4%, 25% and 33.8% by volume fraction of DEA, corresponding to 3%, 6%, 9% and 12% by mass of oxygen in the blends. The engine performance and exhaust gas emissions of the different fuels were investigated at five engine loads at a steady speed of 1800 rev/min. The results indicated an increase of brake specific fuel consumption and brake thermal efficiency when the engine was fueled with the blended fuels. In comparison with diesel fuel, the blended fuels resulted in an increase in hydrocarbon (HC) and carbon monoxide (CO), but a decrease in particulate mass concentrations. The nitrogen oxides (NO x) emission experienced a slight variation among the test fuels. In regard to the unregulated gaseous emissions, formaldehyde and acetaldehyde increased, while 1,3-butadiene, ethene, ethyne, propylene and BTX (benzene, toluene and xylene) in general decreased. A diesel oxidation catalyst (DOC) was found to reduce significantly most of the investigated unregulated pollutants when the exhaust gas temperature was sufficiently high.
NASA Astrophysics Data System (ADS)
Ispas, N.; Cofaru, C.; Aleonte, M.
2017-10-01
Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., hydrocarbon, and particulate matter exhaust emission standards. 89.112 Section 89.112 Protection of....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., hydrocarbon, and particulate matter exhaust emission standards. 89.112 Section 89.112 Protection of....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...
NASA Astrophysics Data System (ADS)
Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.
2015-08-01
In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.
Cyclone performance by velocity
USDA-ARS?s Scientific Manuscript database
Cyclones are used almost exclusively in the US cotton ginning industry for emission abatement on pneumatic conveying system exhausts because of their high efficiency, and low capital and operating cost.. Cyclone performance is improved by increasing collection effectiveness or decreasing energy cons...
Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu
2016-01-01
As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.
Reducing exhaust gas emissions from Citydiesel busses
NASA Astrophysics Data System (ADS)
Mikkonen, Seppo
The effect of fuel composition and exhaust gas aftertreatment on the emissions was measured from truck and bus engines. Possibilities to measure unregulated emissions (aldehydes, polyaromatic hydrocarbons, mutagenicity) were built. A reformulated diesel fuel 'Citydiesel' was developed. Citydiesel was able to reduce emissions compared to standard diesel fuel as follows: particulates by 10 to 30%, nitrogen oxides by 2 to 10%, sulphur dioxide by 97%, polyaromatic hydrocarbons (PAH) over 50%, mutagenicity of the exhaust particulates clearly, odor of the exhaust, and smoke after a cold start. The use of Citydiesel fuel reduces emissions of the existing vehicles immediately which is a remarkable benefit. The very low sulphur content (below 50 ppm) makes it possible to use oxidation. catalytic converters to reduce emissions of diesel vehicles. The new Euro 2 exhaust regulations coming into force during 1996 can be met with a modern diesel engine, Citydiesel fuel, and exhaust gas aftertreatment. Properties of Citydiesel fuel were verified in a three year field test with 140 city buses. Experience was good; e.g., engine oil change interval could be lengthened. Total value of the exhaust was estimated with different fuels and aftertreatment device in order to find out cheap ways to reduce emissions.
NASA Astrophysics Data System (ADS)
Warneke, C.; Finewax, Z.; Koss, A.; Coggon, M.; Gilman, J.; Ziemann, P. J.; De Gouw, J. A.
2017-12-01
Vehicle emissions are a large source of volatile organic compounds (VOCs) in urban areas. As vehicle emissions have strongly decreased over the last few decades, several studies have shown that a relatively small fraction of vehicles are now responsible for total mobile emissions. While tunnel studies have measured on-road vehicular emissions representative of a vehicular fleet, there is limited data describing vehicle-specific, on-road VOC profiles. In this study VOCs were measured in real-time at one-second time resolution using NO+ time-of-flight chemical ionization mass spectrometry (NO+ ToF-CIMS) on a Denver Metro freeway ramp for several hours in the summer of 2016 and on Highway 7, east of Boulder, Colorado, in the summer of 2017. With this setup plumes from single vehicles were successfully measured. Using positive matrix factorization (PMF), three VOC sources were obtained from the data: gasoline vapor, gasoline exhaust and diesel exhaust, which were validated by laboratory samples of gasoline and diesel headspace, of vehicle exhaust and from literature. Chemical identification of the PMF factors was further aided by authentic samples of canisters via improved Whole Air Sampling (iWAS) and Gas Chromatography - NO+ ToF-CIMS. A small portion of total vehicles measured had VOC emissions greatly exceeding the average vehicle sampled. These high-emitting vehicles will be investigated to determine the relative importance of high-emitting vehicles to overall emissions in urban areas, and how the emissions composition of high-emitting vehicles is different from the average vehicle.
A comparison of emissions from vehicles fueled with diesel or compressed natural gas.
Hesterberg, Thomas W; Lapin, Charles A; Bunn, William B
2008-09-01
A comprehensive comparison of emissions from vehicles fueled with diesel or compressed natural gas (CNG) was developed from 25 reports on transit buses, school buses, refuse trucks, and passenger cars. Emissions for most compounds were highest for untreated exhaust emissions and lowest for treated exhaust CNG buses without after-treatment had the highest emissions of carbon monoxide, hydrocarbons, nonmethane hydrocarbons (NMHC), volatile organic compounds (VOCs; e.g., benzene, butadiene, ethylene, etc.), and carbonyl compounds (e.g., formaldehyde, acetaldehyde, acrolein). Diesel buses without after-treatment had the highest emissions of particulate matter and polycyclic aromatic hydrocarbons (PAHs). Exhaust after-treatments reduced most emissions to similar levels in diesel and CNG buses. Nitrogen oxides (NO(x)) and carbon dioxide (CO2) emissions were similar for most vehicle types, fuels, and exhaust after-treatments with some exceptions. Diesel school buses had higher CO2 emissions than the CNG bus. CNG transit buses and passenger cars equipped with three-way catalysts had lower NO(x) emissions. Diesel buses equipped with traps had higher nitrogen dioxide emissions. Fuel economy was best in the diesel buses not equipped with exhaust after-treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markle, S.P.
1994-05-01
A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSDmore » 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.« less
40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... standards. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured... from each new aircraft gas turbine engine of class TF and of rated output of 129 kilonewtons thrust or...
40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... standards. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured... from each new aircraft gas turbine engine of class TF and of rated output of 129 kilonewtons thrust or...
Wang, Zhong; An, Yu-Guang; Xu, Guang-Ju; Wang, Xiao-Zhe
2011-07-01
The polycyclic aromatic hydrocarbons (PAHs) were measured by glass fiber filter and XAD-2 collector, ultrasonic extraction, soxhlet extraction and GC-MS analysis equipment. The exhaust emission of the DI single cylinder diesel engine fueled with pure diesel, biodiesel and biodiesel blends of 50% (B50) were measured. The results indicate that the particle-phase PAHs emissions of diesel engine decrease with the increasing of load. The gas-phase PAHs emissions of diesel engine decrease with the increasing of load in the beginning and it turns to going up with further increasing of load. The particle-phase and gas-phase PAHs emissions of biodiesel decrease and mean concentration are lower than that of diesel. The total PAHs emission concentration of biodisesl is 41.1-70.1 microg/m3. Total PAHs mean concentration emissions of biodiesel is decreased 33.3% than that of diesel. The mass proportion of three-ring PAHs emissions of those 3 kinds tested fuels is about 44% in the total PAHs. Biodiesel can increase the proportion of three-ring PAHs. Toxic equivalence of PAHs emissions of biodiesel are greatly lower than that of diesel. It is less harmful to human than diesel fuel.
NASA Astrophysics Data System (ADS)
Magara-Gomez, Kento T.; Olson, Michael R.; Okuda, Tomoaki; Walz, Kenneth A.; Schauer, James J.
2012-04-01
Emission rates and composition of known hazardous air pollutants in the exhaust gas from a commercial agriculture tractor, burning a range of biodiesel blends operating at two different load conditions were investigated to better understand the emission characteristics of biodiesel fuel. Ultra-Low Sulfur Petroleum Diesel (ULSD) fuel was blended with soybean oil and beef tallow based biodiesel to examine fuels containing 0% (B0), 50% (B50) and 100% (B100) soybean oil based biodiesel, and 50% (B50T) and 100% (B100T) beef tallow biodiesel. Samples were collected using a dilution source sampler to simulate atmospheric dilution. Particulate matter and exhaust gases were analyzed for carbonyls, Volatile Organic Compounds (VOCs), and Polycyclic Aromatic Hydrocarbons (PAHs) to determine their respective emission rates. This analysis is focused on the emissions of organic compounds classified by the US EPA as air toxics and include 2,2,4 trimethylpentane, benzene, toluene, ethylbenzene, m-, p- and o-xylene, formaldehyde, acetaldehyde and methylethyl ketone. Emission rates of 2,2,4 trimethylpentane, toluene, ethylbenzene, m-, p- and o-xylene decreased more than 90% for B50, B100 and B100T blends; decreases in emission rates of benzene, formaldehyde and acetaldehyde were more modest, producing values between 23 and 67%, and methyl ethyl ketone showed decreases not exceeding 7% for the studied biodiesel blends. PAHs emission rates were reduced by 66% for B50, 84% for B100, and by 89% for B100T. The overall emissions of toxic organic compounds were calculated and expressed as benzene equivalents. The largest contributors of toxic risk were found to be formaldehyde and acetaldehyde. Reductions in formaldehyde emissions were 23% for B50 and 42% for B100 soybean, and 40% for B100T beef tallow compared to B0. Similarly, acetaldehyde reductions were 34% for B50 and 53% for B100 soybean biodiesel and 42% for B100T beef tallow biodiesel.
Westphal, Götz A; Krahl, Jürgen; Munack, Axel; Ruschel, Yvonne; Schröder, Olaf; Hallier, Ernst; Brüning, Thomas; Bünger, Jürgen
2012-06-05
Concerns about adverse health effects of diesel engine emissions prompted strong efforts to minimize this hazard, including exhaust treatment by diesel oxidation catalysts (DOC). The effectiveness of such measures is usually assessed by the analysis of the legally regulated exhaust components. In recent years additional analytical and toxicological tests were included in the test panel with the aim to fill possible analytical gaps, for example, mutagenic potency of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nPAH). This investigation focuses on the effect of a DOC on health hazards from combustion of four different fuels: rapeseed methyl ester (RME), common mineral diesel fuel (DF), SHELL V-Power Diesel (V-Power), and ARAL Ultimate Diesel containing 5% RME (B5ULT). We applied the European Stationary Cycle (ESC) to a 6.4 L turbo-charged heavy load engine fulfilling the EURO III standard. The engine was operated with and without DOC. Besides regulated emissions we measured particle size and number distributions, determined the soluble and solid fractions of the particles and characterized the bacterial mutagenicity in the gas phase and the particles of the exhaust. The effectiveness of the DOC differed strongly in regard to the different exhaust constituents: Total hydrocarbons were reduced up to 90% and carbon monoxide up to 98%, whereas nitrogen oxides (NO(X)) remained almost unaffected. Total particle mass (TPM) was reduced by 50% with DOC in common petrol diesel fuel and by 30% in the other fuels. This effect was mainly due to a reduction of the soluble organic particle fraction. The DOC caused an increase of the water-soluble fraction in the exhaust of RME, V-Power, and B5ULT, as well as a pronounced increase of nitrate in all exhausts. A high proportion of ultrafine particles (10-30 nm) in RME exhaust could be ascribed to vaporizable particles. Mutagenicity of the exhaust was low compared to previous investigations. The DOC reduced mutagenic effects most effectively in the gas phase. Mutagenicity of particle extracts was less efficiently diminished. No significant differences of mutagenic effects were observed among the tested fuels. In conclusion, the benefits of the DOC concern regulated emissions except NO(X) as well as nonregulated emissions such as the mutagenicity of the exhaust. The reduction of mutagenicity was particularly observed in the condensates of the gas phase. This is probably due to better accessibility of gaseous mutagenic compounds during the passage of the DOC in contrast to the particle-bound mutagens. Concerning the particulate emissions DOC especially decreased ultrafine particles.
DOT National Transportation Integrated Search
2011-06-01
The primary objective of this project is to develop an improved understanding of the factors affecting the toxicology of particulate exhaust emissions. Diesel particulate matter is a known carcinogen, and particulate exhaust emissions from both light...
Models for nearly every occasion: Part III - One box decreasing emission models.
Hewett, Paul; Ganser, Gary H
2017-11-01
New one box "well-mixed room" decreasing emission (DE) models are introduced that allow for local exhaust or local exhaust with filtered return, as well the recirculation of a filtered (or cleaned) portion of the general room ventilation. For each control device scenario, a steady state and transient model is presented. The transient equations predict the concentration at any time t after the application of a known mass of a volatile substance to a surface, and can be used to predict the task exposure profile, the average task exposure, as well as peak and short-term exposures. The steady state equations can be used to predict the "average concentration per application" that is reached whenever the substance is repeatedly applied. Whenever the beginning and end concentrations are expected to be zero (or near zero) the steady state equations can also be used to predict the average concentration for a single task with multiple applications during the task, or even a series of such tasks. The transient equations should be used whenever these criteria cannot be met. A structured calibration procedure is proposed that utilizes a mass balance approach. Depending upon the DE model selected, one or more calibration measurements are collected. Using rearranged versions of the steady state equations, estimates of the model variables-e.g., the mass of the substance applied during each application, local exhaust capture efficiency, and the various cleaning or filtration efficiencies-can be calculated. A new procedure is proposed for estimating the emission rate constant.
14 CFR 34.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall... Section 34.31 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 34.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall... Section 34.31 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
Non-exhaust PM emissions from electric vehicles
NASA Astrophysics Data System (ADS)
Timmers, Victor R. J. H.; Achten, Peter A. J.
2016-06-01
Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.
NASA Astrophysics Data System (ADS)
As'adi, Muhamad; Chrisna Ayu Dwiharpini Tupan, Diachirta
2018-02-01
The purpose and target for this analyze experiment is we get the performance variabel from gasoline motor which used LGV for fuel and Pertamax, so can give knowledge to community if LGV can be using LGV for fuel to transportation industry and more economic. We used experiment method of engine gasoline motor with 2000 cc which is LGV and Pertamax for fuel. The experiment with static experiment tes above Dyno Test. The result is engine perform to subscribe Torque, power, fuel consumption. Beside the static test we did the Exhaust Steam Emission. The result is the used LGV with the commercial brand Vigas can increase the maximum Engine Power 20.86% and Average Power 14.1%, the maximum torque for Motor which is use LGV as fuel is smaller than Motor with Pertamax, the decrease is 0.94%.Using Vigas in Motor can increase the mileage until 6.9% compare with the Motor with pertamax.Air Fuel Ratio (AFR) for both of the fuels still below the standard, so still happen waste of fuel, specially in low compression.Using Vigas can reduce the Exhaust Steam Emission especially CO2
Code of Federal Regulations, 2013 CFR
2013-07-01
... economy and carbon-related exhaust emission values require input of the weighted grams/mile values for... the calculations of the carbon-related exhaust emissions require the input of grams/mile values for... as follows: (1) Calculate the weighted grams/mile values for the FTP test for CO2, HC, and CO, and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... economy and carbon-related exhaust emission values require input of the weighted grams/mile values for... the calculations of the carbon-related exhaust emissions require the input of grams/mile values for... as follows: (1) Calculate the weighted grams/mile values for the FTP test for CO2, HC, and CO, and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... economy and carbon-related exhaust emission values require input of the weighted grams/mile values for... the calculations of the carbon-related exhaust emissions require the input of grams/mile values for... as follows: (1) Calculate the weighted grams/mile values for the FTP test for CO2, HC, and CO, and...
40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.23 Exhaust emission standards for Tier 6 and Tier 8...
40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.23 Exhaust emission standards for Tier 6 and Tier 8...
40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Exhaust emission standards for Tier 6 and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87...
40 CFR 1066.610 - Mass-based and molar-based exhaust emission calculations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Mass-based and molar-based exhaust... (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Calculations § 1066.610 Mass-based and molar-based exhaust emission calculations. (a) Calculate your total mass of emissions over a test cycle as...
40 CFR 1066.610 - Mass-based and molar-based exhaust emission calculations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Mass-based and molar-based exhaust... (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Calculations § 1066.610 Mass-based and molar-based exhaust emission calculations. (a) Calculate your total mass of emissions over a test cycle as...
NASA Astrophysics Data System (ADS)
Aslan, E.; Ozturk, Y.; Dileroglu, S.
2017-07-01
The focus of this study is to determine the most appropriate exhaust tail pipe form among three different type of designs with respect to their temperature loss efficiency for a 9.5m intercity bus equipped with an Euro VI diesel engine and an automated transmission. To provide lower temperatures at the exhaust outlet, mentioned designs were submitted on to a CFD simulation using Ansys Fluent 17.1, while for manufactured products, temperature measurement tests were conducted in an environmental chamber with Omega K-type thermocouples, and Flir T420 thermal camera was used to monitor outer surface temperature distributions to make a comparison between theoretical and practical results. In order to obtain these practical results, actual tests were performed in an environmental chamber with a constant ambient temperature during the vehicle exhaust emission system regeneration process. In conclusion, an exhaust tail pipe design with a diffuser having a circular contraction and expansion forms is designated since it was the most optimized option in terms of temperature loss efficiency, inconsiderable exhaust backpressure increase and manufacturing costs.
Fujita, Eric M; Zielinska, Barbara; Campbell, David E; Arnott, W Patrick; Sagebiel, John C; Mazzoleni, Lynn; Chow, Judith C; Gabele, Peter A; Crews, William; Snow, Richard; Clark, Nigel N; Wayne, W Scott; Lawson, Douglas R
2007-06-01
The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used gasoline motor oil but not in fresh oil and are negligible in used diesel engine oil. The contributions of lubrication oils to abundances of these PAHs in the exhaust were large in some cases and were variable with the age and consumption rate of the oil. These factors contributed to the observed variations in their abundances to total carbon or PM2.5 among the SI composition profiles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...
40 CFR 80.60 - Test fleet requirements for exhaust emission testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... vehicle with an exhaust total hydrocarbon (THC) emissions rate which is less than or equal to twice the... THC emissions rate which is greater than two times the applicable emissions standard shall be placed...
40 CFR 80.60 - Test fleet requirements for exhaust emission testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... vehicle with an exhaust total hydrocarbon (THC) emissions rate which is less than or equal to twice the... THC emissions rate which is greater than two times the applicable emissions standard shall be placed...
40 CFR 80.60 - Test fleet requirements for exhaust emission testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... vehicle with an exhaust total hydrocarbon (THC) emissions rate which is less than or equal to twice the... THC emissions rate which is greater than two times the applicable emissions standard shall be placed...
40 CFR 80.60 - Test fleet requirements for exhaust emission testing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... vehicle with an exhaust total hydrocarbon (THC) emissions rate which is less than or equal to twice the... THC emissions rate which is greater than two times the applicable emissions standard shall be placed...
40 CFR 80.60 - Test fleet requirements for exhaust emission testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... vehicle with an exhaust total hydrocarbon (THC) emissions rate which is less than or equal to twice the... THC emissions rate which is greater than two times the applicable emissions standard shall be placed...
40 CFR 88.311-93 - Emissions standards for Inherently Low-Emission Vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... section depending on the vehicle's weight classification. (ii) The vehicle shall be certified as having... class shall have exhaust emissions which do not exceed the exhaust emission standards in grams per brake...
40 CFR 88.311-93 - Emissions standards for Inherently Low-Emission Vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... section depending on the vehicle's weight classification. (ii) The vehicle shall be certified as having... class shall have exhaust emissions which do not exceed the exhaust emission standards in grams per brake...
40 CFR 88.311-93 - Emissions standards for Inherently Low-Emission Vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... section depending on the vehicle's weight classification. (ii) The vehicle shall be certified as having... class shall have exhaust emissions which do not exceed the exhaust emission standards in grams per brake...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-08...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Regulations for 1978 and Later...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-12...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-12...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-08...
40 CFR 80.62 - Vehicle test procedures to place vehicles in emitter group sub-fleets.
Code of Federal Regulations, 2014 CFR
2014-07-01
... following test procedures must be used to screen candidate vehicles for their exhaust THC emissions to place... vehicles may be tested for their exhaust THC emissions using the Federal test procedure as detailed in 40... emitter groups. (b) Alternatively, candidate vehicles may be screened for their exhaust THC emissions with...
40 CFR 80.62 - Vehicle test procedures to place vehicles in emitter group sub-fleets.
Code of Federal Regulations, 2013 CFR
2013-07-01
... following test procedures must be used to screen candidate vehicles for their exhaust THC emissions to place... vehicles may be tested for their exhaust THC emissions using the Federal test procedure as detailed in 40... emitter groups. (b) Alternatively, candidate vehicles may be screened for their exhaust THC emissions with...
40 CFR 80.62 - Vehicle test procedures to place vehicles in emitter group sub-fleets.
Code of Federal Regulations, 2010 CFR
2010-07-01
... following test procedures must be used to screen candidate vehicles for their exhaust THC emissions to place... vehicles may be tested for their exhaust THC emissions using the Federal test procedure as detailed in 40... emitter groups. (b) Alternatively, candidate vehicles may be screened for their exhaust THC emissions with...
40 CFR 80.62 - Vehicle test procedures to place vehicles in emitter group sub-fleets.
Code of Federal Regulations, 2011 CFR
2011-07-01
... following test procedures must be used to screen candidate vehicles for their exhaust THC emissions to place... vehicles may be tested for their exhaust THC emissions using the Federal test procedure as detailed in 40... emitter groups. (b) Alternatively, candidate vehicles may be screened for their exhaust THC emissions with...
40 CFR 80.62 - Vehicle test procedures to place vehicles in emitter group sub-fleets.
Code of Federal Regulations, 2012 CFR
2012-07-01
... following test procedures must be used to screen candidate vehicles for their exhaust THC emissions to place... vehicles may be tested for their exhaust THC emissions using the Federal test procedure as detailed in 40... emitter groups. (b) Alternatively, candidate vehicles may be screened for their exhaust THC emissions with...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-10-01
The Environmental Protection Agency is currently undertaking programs that measure the exhaust emissions of in-use vehicles. One of these programs, the Emission Factors Program (EFP), has generated data indicating that a high percentage of in-use 1975 automobiles have exhaust emissions exceeding the Federal emission standards for 1975-1976 light-duty vehicles. Typical failing vehicles have very high CO emissions. High CO emissions may be indicative of improper adjustment of either the idle mixture or the choke. Since idle mixture and choke adjustments are easily accessible and adjusted on most cars, it seems probable that the maladjustment of these two items may bemore » responsible for some of the high emission levels measured in the EFP. In order to further investigate these possibilities, a test program was conducted by the EPA to quantify the effects of various engine maladjustments on exhaust emissions. This test program would help identify maladjustments resulting in the types of failures encountered in the EFP.« less
Emission control devices, fuel additive, and fuel composition changes.
Piver, W T
1977-01-01
Emission control devices are installed to meet the exhaust standards of the Clean Air Act for carbon monoxide and hydrocarbons, and it is necessary to know, from a public health point of view, how exhaust emissions may be affected by changes in fuel additives and fuel composition. Since these topics are concerned with developing technologies, the available literature on exhaust emission characteristics and the limited information on health effects, is reviewed. PMID:71235
Gentner, Drew R; Worton, David R; Isaacman, Gabriel; Davis, Laura C; Dallmann, Timothy R; Wood, Ezra C; Herndon, Scott C; Goldstein, Allen H; Harley, Robert A
2013-10-15
Motor vehicles are major sources of gas-phase organic carbon, which includes volatile organic compounds (VOCs) and other compounds with lower vapor pressures. These emissions react in the atmosphere, leading to the formation of ozone and secondary organic aerosol (SOA). With more chemical detail than previous studies, we report emission factors for over 230 compounds from gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from on-road vehicles in summer 2010. Second, we use a fuel composition-based approach to quantify uncombusted fuel components in exhaust using the emission factor for total uncombusted fuel in exhaust together with detailed chemical characterization of liquid fuel samples. There is good agreement between the two methods except for products of incomplete combustion, which are not present in uncombusted fuels and comprise 32 ± 2% of gasoline exhaust and 26 ± 1% of diesel exhaust by mass. We calculate and compare ozone production potentials of diesel exhaust, gasoline exhaust, and nontailpipe gasoline emissions. Per mass emitted, the gas-phase organic compounds in gasoline exhaust have the largest potential impact on ozone production with over half of the ozone formation due to products of incomplete combustion (e.g., alkenes and oxygenated VOCs). When combined with data on gasoline and diesel fuel sales in the U.S., these results indicate that gasoline sources are responsible for 69-96% of emissions and 79-97% of the ozone formation potential from gas-phase organic carbon emitted by motor vehicles.
Effect of fuel injection pressure on a heavy-duty diesel engine nonvolatile particle emission.
Lähde, Tero; Rönkkö, Topi; Happonen, Matti; Söderström, Christer; Virtanen, Annele; Solla, Anu; Kytö, Matti; Rothe, Dieter; Keskinen, Jorma
2011-03-15
The effects of the fuel injection pressure on a heavy-duty diesel engine exhaust particle emissions were studied. Nonvolatile particle size distributions and gaseous emissions were measured at steady-state engine conditions while the fuel injection pressure was changed. An increase in the injection pressure resulted in an increase in the nonvolatile nucleation mode (core) emission at medium and at high loads. At low loads, the core was not detected. Simultaneously, a decrease in soot mode number concentration and size and an increase in the soot mode distribution width were detected at all loads. Interestingly, the emission of the core was independent of the soot mode concentration at load conditions below 50%. Depending on engine load conditions, growth of the geometric mean diameter of the core mode was also detected with increasing injection pressure. The core mode emission and also the size of the mode increased with increasing NOx emission while the soot mode size and emission decreased simultaneously.
Colorado SIP: Reg 11, Motor Vehicle Emissions Inspection Program—Part F, Maximum Allowable Emissions Limits for Motor Vehicle Exhaust, Evaporative and Visible Emissions for Light-Duty and Heavy-Duty Vehicles
14 CFR 34.71 - Compliance with gaseous emission standards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.71...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy and average carbon-related exhaust emissions. 600.510-12 Section 600.510-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulation...
Code of Federal Regulations, 2011 CFR
2011-07-01
... exhaust emission values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy and carbon-related exhaust emission values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy...
NASA Astrophysics Data System (ADS)
Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.
2015-12-01
This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.
Effect of Fuel Composition on Particulate Matter Emissions from a Gasoline Direct Injection Engine
NASA Astrophysics Data System (ADS)
Smallwood, Bryden Alexander
The effects of fuel composition on reducing PM emissions were investigated using a Ford Focus wall-guided gasoline direct injection engine (GDI). Initial results with a 65% isooctane and 35% toluene blend showed significant reductions in PM emissions. Further experiments determined that this decrease was due to a lack of light-end components in that fuel blend. Tests with pentane content lower than 15% were found to have PN concentrations 96% lower than tests with 20% pentane content. This indicates that there is a shift in mode of soot production. Pentane significantly increases the vapour pressure of the fuel blend, potentially resulting in surface boiling, less homogeneous mixtures, or decreased fuel rebound from the piston. PM mass measurements and PN Index values both showed strong correlations with the PN concentration emissions. In the gaseous exhaust, THC, pentane, and 1,3 butadiene showed strong correlations with the PM emissions.
14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.82...
Diesel Locomotive Exhaust Emission Control and Abatement
DOT National Transportation Integrated Search
1972-06-01
Exhaust emissions from diesel locomotives are a product of engine design and combustion characteristics. These pollutants, control methods, and emissions reduction through engine maintenance and retrofittable equipment changes are discussed in this r...
Abu-Hamdeh, Nidal H; Alnefaie, Khaled A
2015-01-01
This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NO x using blends of almond biodiesel was measured.
Alnefaie, Khaled A.
2015-01-01
This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NOx using blends of almond biodiesel was measured. PMID:25874218
Catalysts, systems and methods to reduce NOX in an exhaust gas stream
Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard
2010-07-20
Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.
Comparative effects of MTBE and ethanol additions into gasoline on exhaust emissions
NASA Astrophysics Data System (ADS)
Song, Chong-Lin; Zhang, Wen-Mei; Pei, Yi-Qiang; Fan, Guo-Liang; Xu, Guan-Peng
The effects of the additives of ethanol (EA) and methyl tert-butyl ether (MTBE) in various blend ratios into the gasoline fuel on the exhaust emissions and the catalytic conversion efficiencies were investigated in an EFI gasoline engine. The regulated exhaust emissions (CO, THC and NO X) and the unregulated exhaust emissions (benzene, formaldehyde, acetaldehyde, unburned EA and MTBE) before and after the three-way catalytic converter were measured. The experimental results showed that EA brought about generally lower regulated engine-out emissions than MTBE did. But, the comparison of the unregulated engine-out emissions between both additives was different. Concretely, the effect of EA on benzene emission was worse than that of MTBE on the whole, which was a contrast with formaldehyde emission. The difference in the acetaldehyde comparison depended much on the engine operating conditions, especially the engine speed. Both EA and MTBE were identified in the engine exhaust gases only when they were added to the fuel, and their volume fraction increased with blend ratios. The catalytic conversion efficiencies of the regulated emissions for the EA blends were in general lower than those for MTBE blends, especially at the low and high engine speeds. There was little difference in the catalytic conversion efficiencies for both benzene and formaldehyde, while distinct difference for acetaldehyde.
14 CFR 34.71 - Compliance with gaseous emission standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.71... Protection, Volume II, Aircraft Engine Emissions, Second Edition, July 1993, effective July 26, 1993...
14 CFR 34.71 - Compliance with gaseous emission standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.71... Protection, Volume II, Aircraft Engine Emissions, Second Edition, July 1993, effective July 26, 1993...
40 CFR 1033.245 - Deterioration factors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families § 1033.245 Deterioration factors... deterioration factors that predict emission increases over the useful life of a locomotive or locomotive engine... the difference between exhaust emissions at the end of the useful life and exhaust emissions at the...
40 CFR 1033.245 - Deterioration factors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families § 1033.245 Deterioration factors... deterioration factors that predict emission increases over the useful life of a locomotive or locomotive engine... the difference between exhaust emissions at the end of the useful life and exhaust emissions at the...
Multi-Year On-Road Emission Factor Trends of Two Heavy-Duty California Fleets
NASA Astrophysics Data System (ADS)
Haugen, M.; Bishop, G.
2017-12-01
New heavy-duty vehicle emission regulations have resulted in the development of advanced exhaust after-treatment systems that specifically target particulate matter (PM) and nitrogen oxides (NOx = NO + NO2). This has resulted in significant decreases in the emissions of these species. The University of Denver has collected three data sets of on-road gaseous (CO, HC, NO and NOx) and PM (particle mass, black carbon and particle number) emission measurements from heavy-duty vehicles (HDVs) in the spring of 2013, 2015 and 2017 at two different locations in California. One site is located at the Port of Los Angeles, CA (1,150 HDVs measured in 2017) and the other site is located at a weigh station in Northern California near Cottonwood, CA (780 HDVs measured in 2017). The On-Road Heavy-Duty Measurement Setup measures individual HDV's fuel specific emissions (DOI: 10.1021/acs.est.6b06172). Vehicles drive under a tent-like structure that encapsulates vehicle exhaust and 15 seconds of data collection is integrated to give fuel specific information. The measurements obtained from these campaigns contain real-world emissions affected by different driving modes, after-treatment systems and location. The Port of Los Angeles contributes a fleet that is fully equipped with diesel particulate filters (DPFs) as a result of the San Pedro Ports Clean Air Action Plan enforced since 2010 that allows only vehicles model year 2007 or newer on the premises. This fleet, although comprised with relatively new HDVs with lower PM emissions, has increased PM emissions as it has aged. Cottonwood's fleet contains vehicles with and without after-treatment systems, a result of a gradual turnover rate, and fleet PM has decreased at a slower rate than at the Port of Los Angeles. The decrease in PM emissions is a result of more HDVs being newer model years as well as older model years being retrofit with DPFs. The complimentary fleets, studied over multiple years, have given the University of Denver an extensive data repository to quantify on-road vehicle emission trends on individual vehicles as well as categories of vehicles. Here, the 2017 campaign results will be discussed and compared to previous campaigns.
40 CFR 600.509-12 - Voluntary submission of additional data.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions... addition to the data required by the Administrator. (b) Additional fuel economy and carbon-related exhaust...
40 CFR 600.509-12 - Voluntary submission of additional data.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions... addition to the data required by the Administrator. (b) Additional fuel economy and carbon-related exhaust...
Exhaust system with emissions storage device and plasma reactor
Hoard, John W.
1998-01-01
An exhaust system for a combustion system, comprising a storage device for collecting NO.sub.x, hydrocarbon, or particulate emissions, or mixture of these emissions, and a plasma reactor for destroying the collected emissions is described. After the emission is collected in by the storage device for a period of time, the emission is then destroyed in a non-thermal plasma generated by the plasma reactor. With respect to the direction of flow of the exhaust stream, the storage device must be located before the terminus of the plasma reactor, and it may be located wholly before, overlap with, or be contained within the plasma reactor.
14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.82..., Environmental Protection, Volume II, Aircraft Engine Emissions, Second Edition, July 1993, effective July 26...
14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.82..., Environmental Protection, Volume II, Aircraft Engine Emissions, Second Edition, July 1993, effective July 26...
Power plant emissions reduction
Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy
2015-10-20
A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy and carbon-related exhaust emission calculations for FTP, HFET, US06, SC03 and cold temperature FTP tests. 600.113-12 Section 600.113-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values for a model type. 600.208-12 Section 600.208-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR...
Hydrothermally stable, low-temperature NO.sub.x reduction NH.sub.3-SCR catalyst
Narula, Chaitanya K.; Yang, Xiaofan
2016-10-25
A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.
Hydrothermally stable, low-temperature NO.sub.x reduction NH.sub.3-SCR catalyst
Narula, Chaitanya K; Yang, Xiaofan
2015-03-24
A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.
Exhaust Emission Rates for Heavy-Duty On road Vehicles in MOVES201X
Updated running exhaust gaseous emission rates (THC, CO, NOx, CO2) for heavy-duty diesel trucks model year 2010 and later based on portable emission measurements from the manufacturer-run, heavy-duty in-use testing (HDIUT) program. Updated cold start emission rates and soak adjus...
40 CFR 1048.101 - What exhaust emission standards must my engines meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.101 What exhaust emission standards must my engines meet...
NASA Astrophysics Data System (ADS)
Zhang, Z. H.; Cheung, C. S.; Chan, T. L.; Yao, C. D.
2010-03-01
Experiments were conducted on a four-cylinder direct-injection diesel engine with part of the engine load taken up by fumigation methanol injected into the air intake of each cylinder to investigate the regulated and unregulated gaseous emissions and particulate emission of the engine under five engine loads at an engine speed of 1920 rev min -1. The fumigation methanol was injected to top up 10%, 20% and 30% of the engine load under different engine operating conditions. The experimental results show that at low engine loads, the brake thermal efficiency (BTE) decreases with increase in fumigation methanol; but at high engine loads, the BTE is not significantly affected by fumigation methanol. The fumigation methanol results in significant increase in hydrocarbon (HC), carbon monoxide (CO) and nitrogen dioxide (NO 2) emissions, but decrease in nitrogen oxides (NO x). For the unregulated gaseous emissions, unburned methanol, formaldehyde and BTX (benzene, toluene and xylene) emissions increase but ethyne, ethene and 1,3-butadiene emissions decrease. Particulate mass and number concentrations also decrease with increase in fumigation methanol. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics, when the exhaust gas temperature is sufficiently high.
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission standards must my outboard and personal watercraft engines meet? (a) Duty-cycle emission standards.... (3) Other engines: THC emissions. (e) Useful life. Your engines must meet the exhaust emission standards in paragraphs (a) through (c) of this section over the full useful life as follows: (1) For...
Evaluation of PM emissions from two in-service gas turbine general aviation aircraft engines
NASA Astrophysics Data System (ADS)
Yu, Zhenhong; Liscinsky, David S.; Fortner, Edward C.; Yacovitch, Tara I.; Croteau, Philip; Herndon, Scott C.; Miake-Lye, Richard C.
2017-07-01
We determined particulate matter (PM) emissions in the exhaust plumes from two gas turbine aircraft engines: a CF34-3A1 turbofan engine and a TPE331-6-252B turboprop engine in a dedicated study on in-service general aviation aircraft. The engine power states were from 16% to 100% engine thrust. Both nucleation and soot mode particles were observed from the emission exhausts of the CF34-3A1 engine but only soot particle mode was detected from the TPE331-6-252B engine. For the CF34-3A1 engine, the contribution of soot mode to total PM emissions was dominant at high power, while at decreased engine power states nucleation mode organic PM became important. PM emissions indices of the TPE331-6-252B engine were found to be generally larger than those of the CF34-3A1 engine. For both engines, medium power conditions (40-60% of thrust) yielded the lowest PM emissions. For the TPE331-6-252B engine, volatile PM components including organic and sulfate were more than 50% in mass at low power, while non-volatile black carbon became dominant at high power conditions such as takeoff.
DEVELOPMENT OF A PROPORTIONAL SAMPLER FOR AUTOMOBILE EXHAUST EMISSIONS TESTING
The report describes the development of a device that is capable of sampling gaseous emissions from automobiles. The device samples exhaust gases at a mass rate that is proportional to the total exhaust gas mass flow rate, which is measured using an ultrasonic vortex flowmeter. T...
Feasibility of Reburning for Controlling NOx Emissions from Air Force Jet Engine Test Cells
1989-06-01
the engine exhaust by the augmenter air. For this reason, it is important to examine the effect of inlet NOX concentration on achieved reduction...Schedule at Tinker AFB .... ......... 8 3 Typical Nonafterburning Turbine Engine Emission Trends. . 9 4 Temperature of Diluted Exhaust J-79 Engine ... Exhaust Temperature on Reburner NOX Reduction .......... ......................... . 43 24 Effect of Exhaust Gas Inlet Flow Rate on Reburner NOx
Jaworski, Artur; Kuszewski, Hubert; Ustrzycki, Adam; Balawender, Krzysztof; Lejda, Kazimierz; Woś, Paweł
2018-04-20
Measurement of car engines exhaust pollutants emissions is very important because of their harmful effects on the environment. This article presents the assessment of repeatability of the passenger car engine exhaust pollutants emission research results obtained in the conditions of a chassis dynamometer. The research was conducted in a climate chamber, enabling the temperature conditions to be determined from - 20 to + 30 °C. The emission of CO, CH 4 , CO 2 , NO X , THC, and NMHC was subjected to the analysis. The aim of the research is to draw attention to the accuracy of the pollutant emission research results in driving cycles, and the comparison of pollutant emission results and their repeatability obtained in successive NEDC cycles under cold and hot start conditions. The results of the analysis show that, in the case of a small number of measurements, the results repeatability analysis is necessary for a proper interpretation of the pollutant emission results on the basis of the mean value. According to the authors' judgment, it is beneficial to determine the coefficient of variation for a more complete assessment of exhaust emission result repeatability obtained from a small number of measurements. This parameter is rarely presented by the authors of papers on exhaust components emission research.
Marine Engine-Exhaust Emissions Test Cell
DOT National Transportation Integrated Search
1974-11-01
A marine engine exhaust emissions test cell for boat-size diesel engines (approx. 200 hp) and outboard engines was constructed as part of a project sponsored by the United States Coast Guard for the monitoring and control of emissions from marine sou...
Gangwar, Jitendra; Gupta, Tarun; Gupta, Sudhir; Agarwal, Avinash K
2011-07-01
The diesel tailpipe emissions typically undergo substantial physical and chemical transformations while traveling through the tailpipe, which tend to modify the original characteristics of the diesel exhaust. Most of the health-related attention for diesel exhaust has focused on the carcinogenic potential of inhaled exhaust components, particularly the highly respirable diesel particulate matter (DPM). In the current study, parametric investigations were made using a modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at constant engine speed (2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from karanja oil. A partial flow dilution tunnel was employed to measure the mass of the primary particulates from diesel and biodiesel blend on a 47-mm quartz substrate. This was followed by chemical analysis of the particulates collected on the substrate for benzene-soluble organic fraction (BSOF) (marker of toxicity). BSOF results showed decrease in its level with increasing engine load for both diesel and biodiesel. In addition, real-time measurements for organic carbon/elemental carbon (OC/EC), and polycyclic aromatic hydrocarbons (PAHs) (marker of toxicity) were carried out on the diluted primary exhaust coming out of the partial flow dilution tunnel. PAH concentrations were found to be the maximum at 20% rated engine load for both the fuels. The collected particulates from diesel and biodiesel-blend exhaust were also analyzed for concentration of trace metals (marker of toxicity), which revealed some interesting results.
Code of Federal Regulations, 2014 CFR
2014-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.60 Introduction. (a) Use the equipment...
Keuken, Menno; Denier van der Gon, Hugo; van der Valk, Karin
2010-09-15
From research on PM(2.5) and PM(10) in 2007/2008 in the Netherlands, it was concluded that the coarse fraction (PM(2.5-10)) attributed 60% and 50% respectively, to the urban-regional and street-urban increments of PM(10). Contrary to Scandinavian and Mediterranean countries which exhibit significant seasonal variation in the coarse fraction of particulate matter (PM), in the Netherlands the coarse fraction in PM at a street location is rather constant during the year. Non-exhaust emissions by road traffic are identified as the main source for coarse PM in urban areas. Non-exhaust emissions mainly originate from re-suspension of accumulated deposited PM and road wear related particles, while primary tire and brake wear hardly contribute to the mass of non-exhaust emissions. However, tire and brake wear can clearly be identified in the total mass through the presence of the heavy metals: zinc, a tracer for tire wear and copper, a tracer for brake wear. The efficiency of road sweeping and washing to reduce non-exhaust emissions in a street-canyon in Amsterdam was investigated. The increments of the coarse fraction at a kerbside location and a housing façade location versus the urban background were measured at days with and without sweeping and washing. It was concluded that this measure did not significantly reduce non-exhaust emissions. Copyright 2010 Elsevier B.V. All rights reserved.
Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus
NASA Technical Reports Server (NTRS)
Breton, Leo Alphonse Gerard (Inventor)
2002-01-01
A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.
40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... cold-start test, grams. (3) PH = Mass particulate measured during the hot-start test, grams. (4) BHP-hr..., grams per test phase. (PH = Pmass for the hot-start test and PC = Pmass for the cold-start test. (2... Exhaust Test Procedures § 86.1343-88 Calculations; particulate exhaust emissions. (a) The final reported...
40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... cold-start test, grams. (3) PH = Mass particulate measured during the hot-start test, grams. (4) BHP-hr..., grams per test phase. (PH = Pmass for the hot-start test and PC = Pmass for the cold-start test. (2... Exhaust Test Procedures § 86.1343-88 Calculations; particulate exhaust emissions. (a) The final reported...
40 CFR 1051.205 - What must I include in my application?
Code of Federal Regulations, 2010 CFR
2010-07-01
... placed in service. If this cannot be done by simply adding a 20-centimeter extension to the exhaust pipe... describe in detail all system components for controlling exhaust emissions, including all auxiliary... requirements of § 1051.135. (l) Identify the exhaust emission standards or FELs to which you are certifying...
40 CFR 86.1865-12 - How to comply with the fleet average CO2 standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... different strategies are and why they are used. (i) Calculating the fleet average carbon-related exhaust emissions. (1) Manufacturers must compute separate production-weighted fleet average carbon-related exhaust... as defined in § 86.1818-12. The model type carbon-related exhaust emission results determined...
40 CFR 86.1865-12 - How to comply with the fleet average CO2 standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... different strategies are and why they are used. (i) Calculating the fleet average carbon-related exhaust emissions. (1) Manufacturers must compute separate production-weighted fleet average carbon-related exhaust... as defined in § 86.1818-12. The model type carbon-related exhaust emission results determined...
40 CFR 86.1865-12 - How to comply with the fleet average CO2 standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... different strategies are and why they are used. (i) Calculating the fleet average carbon-related exhaust emissions. (1) Manufacturers must compute separate production-weighted fleet average carbon-related exhaust... as defined in § 86.1818-12. The model type carbon-related exhaust emission results determined...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. 600.114-12 Section 600.114-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST...
COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
COROLLER, P; PLASSAT, G
2003-08-24
Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typicallymore » have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus networks.« less
Method and apparatus for controlling fuel/air mixture in a lean burn engine
Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James
1998-04-07
The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.
40 CFR 600.511-08 - Determination of domestic production.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions...
40 CFR 600.511-08 - Determination of domestic production.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions...
NASA Astrophysics Data System (ADS)
Balawender, K.; Jaworski, A.; Kuszewski, H.; Lejda, K.; Ustrzycki, A.
2016-09-01
Measurements concerning emissions of pollutants contained in automobile combustion engine exhaust gases is of primary importance in view of their harmful impact on the natural environment. This paper presents results of tests aimed at determining exhaust gas pollutant emissions from a passenger car engine obtained under repeatable conditions on a chassis dynamometer. The test set-up was installed in a controlled climate chamber allowing to maintain the temperature conditions within the range from -20°C to +30°C. The analysis covered emissions of such components as CO, CO2, NOx, CH4, THC, and NMHC. The purpose of the study was to assess repeatability of results obtained in a number of tests performed as per NEDC test plan. The study is an introductory stage of a wider research project concerning the effect of climate conditions and fuel type on emission of pollutants contained in exhaust gases generated by automotive vehicles.
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1975-01-01
The effect of fuel properties on exhaust emissions and blowout limits of a high-pressure combustor segment is evaluated using a splash-groove air-atomizing fuel injector and a pressure-atomizing simplex fuel nozzle to burn both diesel number 2 and Jet A fuels. Exhaust emissions and blowout data are obtained and compared on the basis of the aromatic content and volatility of the two fuels. Exhaust smoke number and emission indices for oxides of nitrogen, carbon monoxide, and unburned hydrocarbons are determined for comparison. As compared to the pressure-atomizing nozzle, the air-atomizing nozzle is found to reduce nitrogen oxides by 20%, smoke number by 30%, carbon monoxide by 70%, and unburned hydrocarbons by 50% when used with diesel number 2 fuel. The higher concentration of aromatics and lower volatility of diesel number 2 fuel as compared to Jet A fuel appears to have the most detrimental effect on exhaust emissions. Smoke number and unburned hydrocarbons are twice as high with diesel number 2 as with Jet A fuel.
Biological activity of particle exhaust emissions from light-duty diesel engines.
Carraro, E; Locatelli, A L; Ferrero, C; Fea, E; Gilli, G
1997-01-01
Whole diesel exhaust has been classified recently as a probable carcinogen, and several genotoxicity studies have found particulate exhaust to be clearly mutagenic. Moreover, genotoxicity of diesel particulate is greatly influenced by fuel nature and type of combustion. In order to obtain an effective environmental pollution control, combustion processes using alternative fuels are being analyzed presently. The goal of this study is to determine whether the installation of exhaust after treatment-devices on two light-duty, exhaust gas recirculation (EGR) valve-equipped diesel engines (1930 cc and 2500 cc) can reduce the mutagenicity associated with particles collected during U.S.A. and European driving cycles. Another interesting object was to compare the ability of alternative biodiesel and conventional diesel fuels to reduce the mutagenic activity associated with collected particles from two light duty diesel engines (both 1930 cc) during the European driving cycle. SOF mutagenicity was assayed using the Salmonella/microsome test (TA 98 and TA 100 strains, +/- S9 fraction). In the first part of our study, the highest mutagenicity was revealed by TA98 strain without enzymatic activation, suggesting a direct-acting mutagenicity prevalence in diesel particulate. The 2500 cc engine revealed twofold mutagenic activity compared with the 1930 cc engine (both EGR valve equipped), whereas an opposite result was found in particulate matter amount. The use of a noncatalytic ceramic trap produced a decrease of particle mutagenic activity in the 2500 cc car, whereas an enhancement in the 1930 cc engine was found. The catalytic converter and the electrostatic filter installed on the 2500 cc engine yielded a light particle amount and an SOF mutagenicity decrease. A greater engine stress was obtained using European driving cycles, which caused the strongest mutagenicity/km compared with the U.S.A. cycles. In the second part of the investigation, even though a small number of assays were available, exhaust emission generation by biodiesel fuel seemed to yield a smaller environmental impact than that of the referenced diesel fuel. The results point out the usefulness of mutagenicity testing in the research of both newer, more efficient automotive aftertreatment devices and less polluting fuels.
USCG Pollution Abatement Program : A Preliminary Study of Vessel and Boat Exhaust Emissions
DOT National Transportation Integrated Search
1971-11-30
A preliminary study of exhaust emissions from Coast Guard vessels and boats indicates that the Coast Guard fleet is an insignificant contributor to air pollution on a national and regional basis. Based upon fuel usage data, emission estimates by vess...
40 CFR 86.1313-2004 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...
40 CFR 86.1313-2004 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...
40 CFR 86.1313-2004 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...
40 CFR 86.1313-2004 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...
Application of an EGR system in a direct injection diesel engine to reduce NOx emissions
NASA Astrophysics Data System (ADS)
De Serio, D.; De Oliveira, A.; Sodré, J. R.
2016-09-01
This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.
Aircraft Piston Engine Exhaust Emission Symposium
NASA Technical Reports Server (NTRS)
1976-01-01
A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.
Ye, Dan; Gao, Dengshan; Yu, Gang; Shen, Xianglin; Gu, Fan
2005-12-09
A plasma reactor with catalysts was used to treat exhaust gas from a gasoline engine in order to decrease particulate matter (PM) emissions. The effect of non-thermal plasma (NTP) of the dielectric discharges on the removal of PM from the exhaust gas was investigated experimentally. The removal efficiency of PM was based on the concentration difference in PM for particle diameters ranging from 0.3 to 5.0 microm as measured by a particle counter. Several factors affecting PM conversion, including the density of plasma energy, reaction temperature, flow rate of exhaust gas, were investigated in the experiment. The results indicate that PM removal efficiency ranged approximately from 25 to 57% and increased with increasing energy input in the reactor, reaction temperature and residence time of the exhaust gas in the reactor. Enhanced removal of the PM was achieved by filling the discharge gap of the reactor with Cu-ZSM-5 catalyst pellets. In addition, the removal of unburned hydrocarbons was studied. Finally, available approaches for PM conversion were analyzed involving the interactions between discharge and catalytic reactions.
Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust
NASA Astrophysics Data System (ADS)
Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei
Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than diesel does. Major difference in both fuels is formaldehyde emission which drops by 23% on the average. Lower aldehyde emissions found in B20 correspond to lower ozone formation potentials. As a result, use of biodiesel in diesel engines has the beneficial effect in terms of aldehyde emissions.
NASA Technical Reports Server (NTRS)
Norgren, C. T.; Ingebo, R. D.
1974-01-01
The effects of reducing the primary-zone equivalence ratio on the exhaust emission levels of oxides of nitrogen, carbon monoxide, and unburned hydrocarbons in experimental hydrocarbon-fueled combustor segments at simulated supersonic cruise and idle conditions were investigated. In addition, the effects of the injection of hydrogen fuel (up to 4 percent of the total weight of fuel) on the stability of the hydrocarbon flame and exhaust emissions were studied and compared with results obtained without hydrogen addition.
NASA Astrophysics Data System (ADS)
Struś, M. S.; Poprawski, W.; Rewolte, M.
2016-09-01
This paper presents results of research of Diesel engines emission of toxic substances in exhaust gases fuelled with a second generation biofuel BIOXDIESEL, which is a blend of Fatty Acid Ethyl Esters obtained from waste resources such waste vegetable and animal fats, bioethanol and standard Diesel fuel. Presented results are very promising, showing that the emission of toxic substances in exhaust gases are significantly reduced when fuelling with BIOXDIESEL fuel in comparison with standard Diesel fuel.
40 CFR 89.111 - Averaging, banking, and trading of exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Averaging, banking, and trading of... ENGINES Emission Standards and Certification Provisions § 89.111 Averaging, banking, and trading of exhaust emissions. Regulations regarding the availability of an averaging, banking, and trading program...
40 CFR 600.001-12 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the related exhaust emissions of CO2, HC, and CO, and where applicable for alternative fuel vehicles... FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977... of 2012 and later model year automobiles. (b) Fuel economy and related emissions data. Unless stated...
40 CFR 89.111 - Averaging, banking, and trading of exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Averaging, banking, and trading of... ENGINES Emission Standards and Certification Provisions § 89.111 Averaging, banking, and trading of exhaust emissions. Regulations regarding the availability of an averaging, banking, and trading program...
40 CFR 89.111 - Averaging, banking, and trading of exhaust emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Averaging, banking, and trading of... ENGINES Emission Standards and Certification Provisions § 89.111 Averaging, banking, and trading of exhaust emissions. Regulations regarding the availability of an averaging, banking, and trading program...
40 CFR 89.111 - Averaging, banking, and trading of exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Averaging, banking, and trading of... ENGINES Emission Standards and Certification Provisions § 89.111 Averaging, banking, and trading of exhaust emissions. Regulations regarding the availability of an averaging, banking, and trading program...
40 CFR 89.111 - Averaging, banking, and trading of exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Averaging, banking, and trading of... ENGINES Emission Standards and Certification Provisions § 89.111 Averaging, banking, and trading of exhaust emissions. Regulations regarding the availability of an averaging, banking, and trading program...
NASA Astrophysics Data System (ADS)
Rohadi, Heru; Syaiful, Bae, Myung-Whan
2016-06-01
Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.
A Lagrangian Simulation of Subsonic Aircraft Exhaust Emissions
NASA Technical Reports Server (NTRS)
Schoeberl, M. R.; Morris, G. A.
1999-01-01
To estimate the effect of subsonic and supersonic aircraft exhaust on the stratospheric concentration of NO(y), we employ a trajectory model initialized with air parcels based on the standard release scenarios. The supersonic exhaust simulations are in good agreement with 2D and 3D model results and show a perturbation of about 1-2 ppbv of NO(y) in the stratosphere. The subsonic simulations show that subsonic emissions are almost entirely trapped below the 380 K potential temperature surface. Our subsonic results contradict results from most other models, which show exhaust products penetrating above 380 K, as summarized. The disagreement can likely be attributed to an excessive vertical diffusion in most models of the strong vertical gradient in NO(y) that forms at the boundary between the emission zone and the stratosphere above 380 K. Our results suggest that previous assessments of the impact of subsonic exhaust emission on the stratospheric region above 380 K should be considered to be an upper bound.
40 CFR 600.110-08 - Equipment calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.110-08 Equipment calibration. The equipment used for fuel economy...
40 CFR 600.110-08 - Equipment calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.110-08 Equipment calibration. The equipment used for fuel economy...
DOT National Transportation Integrated Search
1976-01-01
This report reviews stratified charge concepts and engines, with emphasis on the important issues of exhaust emissions, fuel economy, and performance. Divided and open chamber designs are discussed. Potential improvements in exhaust emissions and fue...
40 CFR 600.108-08 - Analytical gases.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.108-08 Analytical gases. The analytical gases for all fuel economy testing...
40 CFR 600.108-08 - Analytical gases.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.108-08 Analytical gases. The analytical gases for all fuel economy testing...
40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...
40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...
40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...
40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...
40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...
40 CFR 86.244-94 - Calculations; exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.244-94 Calculations; exhaust...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...
40 CFR 1039.101 - What exhaust emission standards must my engines meet after the 2014 model year?
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission standards must my engines meet after the 2014 model year? The exhaust emission standards of this section apply after the 2014 model year. Certain of these standards also apply for model year 2014 and... emission standards that apply to 2014 and earlier model years. Section 1039.105 specifies smoke standards...
40 CFR 1039.101 - What exhaust emission standards must my engines meet after the 2014 model year?
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission standards must my engines meet after the 2014 model year? The exhaust emission standards of this section apply after the 2014 model year. Certain of these standards also apply for model year 2014 and... emission standards that apply to 2014 and earlier model years. Section 1039.105 specifies smoke standards...
40 CFR 1039.101 - What exhaust emission standards must my engines meet after the 2014 model year?
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission standards must my engines meet after the 2014 model year? The exhaust emission standards of this section apply after the 2014 model year. Certain of these standards also apply for model year 2014 and... emission standards that apply to 2014 and earlier model years. Section 1039.105 specifies smoke standards...
40 CFR 1039.101 - What exhaust emission standards must my engines meet after the 2014 model year?
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission standards must my engines meet after the 2014 model year? The exhaust emission standards of this section apply after the 2014 model year. Certain of these standards also apply for model year 2014 and... emission standards that apply to 2014 and earlier model years. Section 1039.105 specifies smoke standards...
Utilization of LPG and gasoline engine exhaust emissions by microalgae.
Taştan, Burcu Ertit; Duygu, Ergin; Ilbaş, Mustafa; Dönmez, Gönül
2013-02-15
The effect of engine exhaust emissions on air pollution is one of the greatest problems that the world is facing today. The study focused on the effects of realistic levels of engine exhaust emissions of liquid petroleum gas (LPG) and gasoline (GSN) on Phormidium sp. and Chlorella sp. Multi parameters including pH, different medial compositions, fuel types, flow rates and biomass concentrations were described in detail. Effects of some growth factors such as triacontanol (TRIA) and salicylic acid (SA) have also been tested. The maximum biomass concentration of Phormidium sp. reached after 15 days at 0.36 and 0.15 g/L initial biomass concentrations were found as 1.160 g/L for LPG emission treated cultures and 1.331 g/L for GSN emission treated cultures, respectively. The corresponding figures were 1.478 g/L for LPG emission treated cultures and 1.636 g/L for GSN emission treated cultures at 0.65 and 0.36 g/L initial Chlorella sp. biomass concentrations. This study highlights the significance of using Phormidium sp. and Chlorella sp. for utilization of LPG and GSN engine exhaust emissions by the help of growth factors. Copyright © 2013. Published by Elsevier B.V.
Combustion characteristics of an SI engine fueled with biogas fuel
NASA Astrophysics Data System (ADS)
Chen, Lei; Long, Wuqiang; Song, Peng
2017-04-01
An experimental research of the effect of H2 substitution and CO2 dilution on CH4 combustion has been carried out on a spark ignition engine. The results show that H2 addition could improve BMEP, thermal efficiency, CO and THC emissions. NOX emissions increased for higher low heating value (LHV) of H2 than CH4. CO2 dilution could effective reduce NOX emission of H2-CH4 combustion. Although engine performance, thermal efficiency and exhaust get unacceptable under high fuel dilution ratio (F.D.R.) conditions, it could be solved by decreasing F.D.R. and/or increasing hydrogen substitution ratio (H.S.R.).
40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 87.82 Sampling and analytical procedures for measuring smoke exhaust...
Fine particle and organic vapor emissions from staged tests of an in-use aircraft engine
NASA Astrophysics Data System (ADS)
Presto, Albert A.; Nguyen, Ngoc T.; Ranjan, Manish; Reeder, Aaron J.; Lipsky, Eric M.; Hennigan, Christopher J.; Miracolo, Marissa A.; Riemer, Daniel D.; Robinson, Allen L.
2011-07-01
Staged tests were conducted to measure the particle and vapor emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135T Stratotanker airframe at different engine loads. Exhaust was sampled using a rake inlet installed 1-m downstream of the engine exit plane of a parked and chocked aircraft and a dilution sampler and portable smog chamber were used to investigate the particulate matter (PM) emissions. Total fine PM mass emissions were highest at low (4%) and high (85%) load and lower at intermediate loads (7% and 30%). PM mass emissions at 4% load are dominated by organics, while at 85% load elemental carbon is dominant. Quantifying the primary organic aerosol (POA) emissions is complicated by substantial filter sampling artifacts. Partitioning experiments reveal that the majority of the POA is semivolatile; for example, the POA emission factor changed by a factor of two when the background organic aerosol concentration was increased from 0.7 to 4 μg m -3. Therefore, one cannot define a single non-volatile PM emission factor for aircraft exhaust. The gas- and particle-phase organic emissions were comprehensively characterized by analyzing canister, sorbent and filter samples with gas-chromatography/mass-spectrometry. Vapor-phase organic emissions are highest at 4% load and decrease with increasing load. Low-volatility organics (less volatile than a C 12n-alkane) contributed 10-20% of the total organic emissions. The low-volatility organic emissions contain signatures of unburned fuel and aircraft lubricating oil but are dominated by an unresolved complex mixture (UCM) of presumably branched and cyclic alkanes. Emissions at all loads contain more low-volatility organic vapors than POA; thus secondary organic aerosol formation in the aging plume will likely exceed POA emissions.
Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions.
Karjalainen, Panu; Rönkkö, Topi; Pirjola, Liisa; Heikkilä, Juha; Happonen, Matti; Arnold, Frank; Rothe, Dieter; Bielaczyc, Piotr; Keskinen, Jorma
2014-02-18
Sulfur driven diesel exhaust nucleation particle formation processes were studied in an aerosol laboratory, on engine dynamometers, and on the road. All test engines were equipped with a combination of a diesel oxidation catalyst (DOC) and a partial diesel particulate filter (pDPF). At steady operating conditions, the formation of semivolatile nucleation particles directly depended on SO2 conversion in the catalyst. The nucleation particle emission was most significant after a rapid increase in engine load and exhaust gas temperature. Results indicate that the nucleation particle formation at transient driving conditions does not require compounds such as hydrocarbons or sulfated hydrocarbons, however, it cannot be explained only by the nucleation of sulfuric acid. A real-world exhaust study with a heavy duty diesel truck showed that the nucleation particle formation occurs even with ultralow sulfur diesel fuel, even at downhill driving conditions, and that nucleation particles can contribute 60% of total particle number emissions. In general, due to sulfur storage and release within the exhaust aftertreatment systems and transients in driving, emissions of nucleation particles can even be the dominant part of modern diesel vehicle exhaust particulate number emissions.
40 CFR 90.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...
40 CFR 90.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...
40 CFR 90.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...
40 CFR 90.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...
40 CFR 90.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...
Code of Federal Regulations, 2011 CFR
2011-01-01
... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.63 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.63 [Reserved] ...
Ethanol used as an environmentally sustainable energy resource for thermal power plants
NASA Astrophysics Data System (ADS)
Markov, V. A.; Biryukov, V. V.; Kas'kov, S. I.
2016-09-01
Justification of using renewable energy sources and a brief analysis of their application prospects is given. The most common renewable energy sources for mobile thermal power plants are presented. The possibilities and ways of using ethanol as an energy source for such plants with diesel engines are analyzed. It is shown that it is feasible to add small amounts of ethanol to oil diesel fuel (DF) for obtaining an environmentally sustainable energy source for diesel engines. Therewith, a stable mixture of components can be obtained by adding anhydrous (absolute) ethanol to the oil fuel. The authors studied a mixture containing 4% (by volume) of absolute ethanol and 96% of oil DF. The physicochemical properties of the mixture and each of its components are presented. Diesel engine of the type D-245.12S has been experimentally studied using the mixture of DF and ethanol. The possibility of reducing the toxicity level of the exhaust emissions when using this mixture as an energy source for diesel engines of mobile power plants is shown. Transition of the studied diesel engine from oil DF to its mixture with ethanol made it possible to reduce the smoke capacity of the exhaust gases by 15-25% and to decrease the specific mass emissions of nitrogen oxides by 17.4%. In this case, we observed a slight increase in the exhaust gas emissions of carbon monoxide and light unburned hydrocarbons, which, however, can easily be eliminated by providing the exhaust system of a diesel engine with a catalytic converter. It is noted that the studied mixture composition should be optimized. The conclusion is made that absolute ethanol is a promising ecofriendly additive to oil diesel fuel and should be used in domestic diesel engines.
Diaz, Edgar A.; Chung, Yeonseung; Papapostolou, Vasileios; Lawrence, Joy; Long, Mark S.; Hatakeyama, Vivian; Gomes, Brenno; Calil, Yasser; Sato, Rodrigo; Koutrakis, Petros; Godleski, John J.
2013-01-01
The study presented here is a laboratory pilot study using diluted car exhaust from a single vehicle to assess differences in toxicological response between primary emissions and secondary products resulting from atmospheric photochemical reactions of gas phase compounds with O3, OH and other radicals. Sprague-Dawley rats were exposed for five hours to either filtered room air (Sham) or one of two different atmospheres: 1. Diluted Car Exhaust (P) + Mt. Saint Helens Ash (MSHA); 2. P+MSHA+SOA (Secondary Organic Aerosol, formed during simulated photochemical aging of diluted exhaust). Primary and secondary gases were removed using a non-selective diffusion denuder. Continuous respiratory data was collected during the exposure, and broncho-alveolar lavage (BAL) and complete blood counts (CBC) were performed 24 hours after exposure. ANOVA models were used to assess the exposure effect and to compare those effects across different exposure types. Total average exposures were 363±66 μg/m3 P+MSHA and 212±95 μg/m3 P+MSHA+SOA. For both exposures, we observed decreases in breathing rate, tidal and minute volumes (TV, MV) and peak and median flows (PIF, PEF and EF50) along with increases in breathing cycle times (Ti, Te) compared to sham. These results indicate that the animals are changing their breathing pattern with these test atmospheres. Exposure to P+MSHA+SOA produced significant increases in Total Cells, Macrophages and Neutrophils in the BAL and in-vivo chemiluminescence of the lung. There were no significant differences in CBC parameters. Our data suggest that simulated atmospheric photochemistry, producing SOA in the P+MSHA+SOA exposures, enhanced the toxicity of vehicular emissions. PMID:22486346
Diaz, Edgar A; Chung, Yeonseung; Papapostolou, Vasileios; Lawrence, Joy; Long, Mark S; Hatakeyama, Vivian; Gomes, Brenno; Calil, Yasser; Sato, Rodrigo; Koutrakis, Petros; Godleski, John J
2012-04-01
The study presented here is a laboratory pilot study using diluted car exhaust from a single vehicle to assess differences in toxicological response between primary emissions and secondary products resulting from atmospheric photochemical reactions of gas phase compounds with O₃, OH and other radicals. Sprague Dawley rats were exposed for 5 h to either filtered room air (sham) or one of two different atmospheres: (i) diluted car exhaust (P)+Mt. Saint Helens Ash (MSHA); (ii) P+MSHA+secondary organic aerosol (SOA, formed during simulated photochemical aging of diluted exhaust). Primary and secondary gases were removed using a nonselective diffusion denuder. Continuous respiratory data was collected during the exposure, and bronchoalveolar lavage (BAL) and complete blood counts (CBC) were performed 24 h after exposure. ANOVA models were used to assess the exposure effect and to compare those effects across different exposure types. Total average exposures were 363 ± 66 μg/m³ P+MSHA and 212 ± 95 µg/m³ P+MSHA+SOA. For both exposures, we observed decreases in breathing rate, tidal and minute volumes (TV, MV) and peak and median flows (PIF, PEF and EF50) along with increases in breathing cycle times (Ti, Te) compared to sham. These results indicate that the animals are changing their breathing pattern with these test atmospheres. Exposure to P+MSHA+SOA produced significant increases in total cells, macrophages and neutrophils in the BAL and in vivo chemiluminescence of the lung. There were no significant differences in CBC parameters. Our data suggest that simulated atmospheric photochemistry, producing SOA in the P+MSHA+SOA exposures, enhanced the toxicity of vehicular emissions.
Ether oxygenate additives in gasoline reduce toxicity of exhausts.
Westphal, G A; Krahl, J; Brüning, T; Hallier, E; Bünger, J
2010-02-09
Fuel additives can improve combustion and knock resistance of gasoline engines. Common additives in commercial fuels are "short-chain, oxygen containing hydrocarbons" such as methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE). Since these additives change the combustion characteristics, this may as well influence toxic effects of the resulting emissions. Therefore we compared toxicity and BTEX emissions of gasoline engine exhaust regarding addition of MTBE or ETBE. Non-reformulated gasoline served as basic fuel. This fuel was supplemented with 10%, 20%, 25% and 30% ETBE or 15% MTBE. The fuels were combusted in a gasoline engine at idling, part load and rated power. Condensates and particulate matter (PM) were collected and PM samples extracted with dichloromethane. Cytotoxic effects were investigated in murine fibroblasts (L929) using the neutral red uptake assay and mutagenicity using the bacterial reverse mutation assay. BTEX emissions were analyzed by gas chromatography. PM-extracts showed mutagenicity with and without metabolic activation. Mutagenicity was reduced by the addition of MTBE and ETBE, 10% ETBE being most effective. The condensates produced no significant mutagenic response. The cytotoxicity of the condensates from ETBE- and MTBE-reformulated fuels was reduced as well. The BTEX content in the exhaust was lowered by the addition of MTBE and ETBE. This effect was significantly related to the ETBE content at rated power and part load. Addition of MTBE and ETBE to fuels can improve combustion and leads to decreased toxicity and BTEX content of the exhaust. Reduction of mutagenicity in the PM-extracts is most probably caused by a lower content of polycyclic aromatic hydrocarbons. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
40 CFR 1066.815 - Exhaust emission test procedures for FTP testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... must meet the requirements related to filter face velocity as described in 40 CFR 1065.170(c)(1)(vi..., set the filter face velocity to a weighting target of 1.0 to meet the requirements of 40 CFR 1065.170(c)(1)(vi). Allow filter face velocity to decrease as a percentage of the weighting factor if the...
Impact of varying area of polluting surface materials on perceived air quality.
Sakr, W; Knudsen, H N; Gunnarsen, L; Haghighat, F
2003-06-01
A laboratory study was performed to investigate the impact of the concentration of pollutants in the air on emissions from building materials. Building materials were placed in ventilated test chambers. The experimental set-up allowed the concentration of pollution in the exhaust air to be changed either by diluting exhaust air with clean air (changing the dilution factor) or by varying the area of the material inside the chamber when keeping the ventilation rate constant (changing the area factor). Four different building materials and three combinations of two or three building materials were studied in ventilated small-scale test chambers. Each individual material and three of their combinations were examined at four different dilution factors and four different area factors. An untrained panel of 23 subjects assessed the air quality from the chambers. The results show that a certain increase in dilution improves the perceived air quality more than a similar decrease in area. The reason for this may be that the emission rate of odorous pollutants increases when the concentration in the chamber decreases. The results demonstrate that, in some cases the effect of increased ventilation on the air quality may be less than expected from a simple dilution model.
Shukla, Pravesh Chandra; Gupta, Tarun; Agarwal, Avinash Kumar
2018-02-15
In present study, engine exhaust was sampled for measurement and analysis of unregulated emissions from a four cylinder transportation diesel engine using a state-of-the-art FTIR (Fourier transform infrared spectroscopy) emission analyzer. Test fuels used were Karanja biodiesel blend (B20) and baseline mineral diesel. Real-time emission measurements were performed for raw exhaust as well as exhaust sampled downstream of the two in-house prepared non-noble metal based diesel oxidation catalysts (DOCs) and a baseline commercial DOC based on noble metals. Two prepared non-noble metal based DOCs were based on Co-Ce mixed oxide and Lanthanum based perovskite catalysts. Perovskite based DOC performed superior compared to Co-Ce mixed oxide catalyst based DOC. Commercial noble metal based DOC was found to be the most effective in reducing unregulated hydrocarbon emissions in the engine exhaust, followed by the two in-house prepared non-noble metal based DOCs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Merkisz, J.; Lijewski, P.; Fuc, P.; Siedlecki, M.; Ziolkowski, A.
2016-09-01
The paper analyzes the exhaust emissions from farm vehicles based on research performed under field conditions (RDE) according to the NTE procedure. This analysis has shown that it is hard to meet the NTE requirements under field conditions (engine operation in the NTE zone for at least 30 seconds). Due to a very high variability of the engine conditions, the share of a valid number of NTE windows in the field test is small throughout the entire test. For this reason, a modification of the measurement and exhaust emissions calculation methodology has been proposed for farm vehicles of the NRMM group. A test has been developed composed of the following phases: trip to the operation site (paved roads) and field operations (including u-turns and maneuvering). The range of the operation time share in individual test phases has been determined. A change in the method of calculating the real exhaust emissions has also been implemented in relation to the NTE procedure.
Impact of freeway weaving segment design on light-duty vehicle exhaust emissions.
Li, Qing; Qiao, Fengxiang; Yu, Lei; Chen, Shuyan; Li, Tiezhu
2018-06-01
In the United States, 26% of greenhouse gas emissions is emitted from the transportation sector; these emisssions meanwhile are accompanied by enormous toxic emissions to humans, such as carbon monoxide (CO), nitrogen oxides (NO x ), and hydrocarbon (HC), approximately 2.5% and 2.44% of a total exhaust emissions for a petrol and a diesel engine, respectively. These exhaust emissions are typically subject to vehicles' intermittent operations, such as hard acceleration and hard braking. In practice, drivers are inclined to operate intermittently while driving through a weaving segment, due to complex vehicle maneuvering for weaving. As a result, the exhaust emissions within a weaving segment ought to vary from those on a basic segment. However, existing emission models usually rely on vehicle operation information, and compute a generalized emission result, regardless of road configuration. This research proposes to explore the impacts of weaving segment configuration on vehicle emissions, identify important predictors for emission estimations, and develop a nonlinear normalized emission factor (NEF) model for weaving segments. An on-board emission test was conducted on 12 subjects on State Highway 288 in Houston, Texas. Vehicles' activity information, road conditions, and real-time exhaust emissions were collected by on-board diagnosis (OBD), a smartphone-based roughness app, and a portable emission measurement system (PEMS), respectively. Five feature selection algorithms were used to identify the important predictors for the response of NEF and the modeling algorithm. The predictive power of four algorithm-based emission models was tested by 10-fold cross-validation. Results showed that emissions are also susceptible to the type and length of a weaving segment. Bagged decision tree algorithm was chosen to develop a 50-grown-tree NEF model, which provided a validation error of 0.0051. The estimated NEFs are highly correlated with the observed NEFs in the training data set as well as in the validation data set, with the R values of 0.91 and 0.90, respectively. Existing emission models usually rely on vehicle operation information to compute a generalized emission result, regardless of road configuration. In practice, while driving through a weaving segment, drivers are inclined to perform erratic maneuvers, such as hard braking and hard acceleration due to the complex weaving maneuver required. As a result, the exhaust emissions within a weaving segment vary from those on a basic segment. This research proposes to involve road configuration, in terms of the type and length of a weaving segment, in constructing an emission nonlinear model, which significantly improves emission estimations at a microscopic level.
40 CFR 86.127-00 - Test procedures; overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
... following emissions: (1) Gaseous exhaust THC, CO, NOX. CO2 (for petroleum-fueled and gaseous- fueled... vehicles). (b) The FTP Otto-cycle exhaust emission test is designed to determine gaseous THC, CO, CO2, CH4... determine gaseous THC, NMHC, CO, CO2, CH4, and NOX emissions from gasoline-fueled or diesel-fueled vehicles...
40 CFR 86.127-96 - Test procedures; overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or all of the following emissions: (1) Gaseous exhaust THC, CO, NOX. CO2 (for petroleum-fueled and... gaseous-fueled vehicles). (b) The Otto-cycle exhaust emission test is designed to determine gaseous THC... analyzed for THC using a heated sample line and analyzer; the other gaseous emissions (CH4, CO, CO2, and...
40 CFR 86.127-96 - Test procedures; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... or all of the following emissions: (1) Gaseous exhaust THC, CO, NOX. CO2 (for petroleum-fueled and... gaseous-fueled vehicles). (b) The Otto-cycle exhaust emission test is designed to determine gaseous THC... analyzed for THC using a heated sample line and analyzer; the other gaseous emissions (CH4, CO, CO2, and...
40 CFR 86.127-96 - Test procedures; overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
... or all of the following emissions: (1) Gaseous exhaust THC, CO, NOX. CO2 (for petroleum-fueled and... gaseous-fueled vehicles). (b) The Otto-cycle exhaust emission test is designed to determine gaseous THC... analyzed for THC using a heated sample line and analyzer; the other gaseous emissions (CH4, CO, CO2, and...
40 CFR 86.127-00 - Test procedures; overview.
Code of Federal Regulations, 2014 CFR
2014-07-01
... following emissions: (1) Gaseous exhaust THC, CO, NOX. CO2 (for petroleum-fueled and gaseous- fueled... vehicles). (b) The FTP Otto-cycle exhaust emission test is designed to determine gaseous THC, CO, CO2, CH4... determine gaseous THC, NMHC, CO, CO2, CH4, and NOX emissions from gasoline-fueled or diesel-fueled vehicles...
40 CFR 86.127-96 - Test procedures; overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or all of the following emissions: (1) Gaseous exhaust THC, CO, NOX. CO2 (for petroleum-fueled and... gaseous-fueled vehicles). (b) The Otto-cycle exhaust emission test is designed to determine gaseous THC... analyzed for THC using a heated sample line and analyzer; the other gaseous emissions (CH4, CO, CO2, and...
40 CFR 86.127-00 - Test procedures; overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
... following emissions: (1) Gaseous exhaust THC, CO, NOX. CO2 (for petroleum-fueled and gaseous- fueled... vehicles). (b) The FTP Otto-cycle exhaust emission test is designed to determine gaseous THC, CO, CO2, CH4... determine gaseous THC, NMHC, CO, CO2, CH4, and NOX emissions from gasoline-fueled or diesel-fueled vehicles...
40 CFR 1051.105 - What are the exhaust emission standards for off-highway motorcycles?
Code of Federal Regulations, 2014 CFR
2014-07-01
... standards for off-highway motorcycles? 1051.105 Section 1051.105 Protection of Environment ENVIRONMENTAL... off-highway motorcycles? (a) Apply the exhaust emission standards in this section by model year. Measure emissions with the off-highway motorcycle test procedures in subpart F of this part. (1) Follow...
40 CFR 1051.105 - What are the exhaust emission standards for off-highway motorcycles?
Code of Federal Regulations, 2013 CFR
2013-07-01
... standards for off-highway motorcycles? 1051.105 Section 1051.105 Protection of Environment ENVIRONMENTAL... off-highway motorcycles? (a) Apply the exhaust emission standards in this section by model year. Measure emissions with the off-highway motorcycle test procedures in subpart F of this part. (1) Follow...
40 CFR 1051.105 - What are the exhaust emission standards for off-highway motorcycles?
Code of Federal Regulations, 2012 CFR
2012-07-01
... standards for off-highway motorcycles? 1051.105 Section 1051.105 Protection of Environment ENVIRONMENTAL... off-highway motorcycles? (a) Apply the exhaust emission standards in this section by model year. Measure emissions with the off-highway motorcycle test procedures in subpart F of this part. (1) Follow...
40 CFR 86.1708-99 - Exhaust emission standards for 1999 and later light-duty vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and later light-duty vehicles. 86.1708-99 Section 86.1708-99 Protection of Environment ENVIRONMENTAL... VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86.1708-99 Exhaust emission standards for 1999 and...
40 CFR 86.708-94 - In-use emission standards for 1994 and later model year light-duty vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Later Model Year Light-Duty Vehicles and Light-Duty Trucks § 86.708-94 In-use emission standards for... exhaust emissions from 1994 and later model year light-duty vehicles shall meet all standards in tables... applicable Tier 1I standards in table H94-3. (2) Particulates. For in-use exhaust emissions for model years...
40 CFR 86.708-94 - In-use emission standards for 1994 and later model year light-duty vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Later Model Year Light-Duty Vehicles and Light-Duty Trucks § 86.708-94 In-use emission standards for... exhaust emissions from 1994 and later model year light-duty vehicles shall meet all standards in tables... applicable Tier 1I standards in table H94-3. (2) Particulates. For in-use exhaust emissions for model years...
40 CFR 86.708-94 - In-use emission standards for 1994 and later model year light-duty vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Later Model Year Light-Duty Vehicles and Light-Duty Trucks § 86.708-94 In-use emission standards for... exhaust emissions from 1994 and later model year light-duty vehicles shall meet all standards in tables... applicable Tier 1I standards in table H94-3. (2) Particulates. For in-use exhaust emissions for model years...
40 CFR 86.708-94 - In-use emission standards for 1994 and later model year light-duty vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Later Model Year Light-Duty Vehicles and Light-Duty Trucks § 86.708-94 In-use emission standards for... exhaust emissions from 1994 and later model year light-duty vehicles shall meet all standards in tables... applicable Tier 1I standards in table H94-3. (2) Particulates. For in-use exhaust emissions for model years...
Evolution of vehicle exhaust particles in the atmosphere.
Canagaratna, Manjula R; Onasch, Timothy B; Wood, Ezra C; Herndon, Scott C; Jayne, John T; Cross, Eben S; Miake-Lye, Richard C; Kolb, Charles E; Worsnop, Douglas R
2010-10-01
Aerosol mass spectrometer (AMS) measurements are used to characterize the evolution of exhaust particulate matter (PM) properties near and downwind of vehicle sources. The AMS provides time-resolved chemically speciated mass loadings and mass-weighted size distributions of nonrefractory PM smaller than 1 microm (NRPM1). Source measurements of aircraft PM show that black carbon particles inhibit nucleation by serving as condensation sinks for the volatile and semi-volatile exhaust gases. Real-world source measurements of ground vehicle PM are obtained by deploying an AMS aboard a mobile laboratory. Characteristic features of the exhaust PM chemical composition and size distribution are discussed. PM mass and number concentrations are used with above-background gas-phase carbon dioxide (CO2) concentrations to calculate on-road emission factors for individual vehicles. Highly variable ratios between particle number and mass concentrations are observed for individual vehicles. NRPM1 mass emission factors measured for on-road diesel vehicles are approximately 50% lower than those from dynamometer studies. Factor analysis of AMS data (FA-AMS) is applied for the first time to map variations in exhaust PM mass downwind of a highway. In this study, above-background vehicle PM concentrations are highest close to the highway and decrease by a factor of 2 by 200 m away from the highway. Comparison with the gas-phase CO2 concentrations indicates that these vehicle PM mass gradients are largely driven by dilution. Secondary aerosol species do not show a similar gradient in absolute mass concentrations; thus, their relative contribution to total ambient PM mass concentrations increases as a function of distance from the highway. FA-AMS of single particle and ensemble data at an urban receptor site shows that condensation of these secondary aerosol species onto vehicle exhaust particles results in spatial and temporal evolution of the size and composition of vehicle exhaust PM on urban and regional scales.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values for vehicle configurations. 600.206-12 Section 600.206-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST...
Environmental impact of exhaust emissions by Arctic shipping.
Schröder, Christian; Reimer, Nils; Jochmann, Peter
2017-12-01
Since 2005, a dramatic decline of the Arctic sea-ice extent is observed which results in an increase of shipping activities. Even though this provides commercial and social development opportunities, the resulting environmental impacts need to be investigated and monitored. In order to understand the impact of shipping in arctic areas, the method described in this paper determines the travel time, fuel consumption and resulting exhaust emissions of ships navigating in arctic waters. The investigated case studies are considering ship particulars as well as environmental conditions with special focus on ice scenarios. Travel time, fuel consumption and exhaust gas emission were investigated for three different vessels, using different passages of the Northern Sea Route (NSR) in different seasons of years 1960, 2000 and 2040. The presented results show the sensitivity of vessel performance and amount of exhaust emissions to optimize arctic traffic with respect to efficiency, safety and environmental impact.
Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.
2015-01-01
Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83–99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments. PMID:25709535
Huang, Lei; Bohac, Stanislav V; Chernyak, Sergei M; Batterman, Stuart A
2015-02-01
Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM 2.5 , Σ 15 PAHs, Σ 11 NPAHs, Σ 5 Hopanes and Σ 6 Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM 2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM 2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83-99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments.
NASA Astrophysics Data System (ADS)
Rothen-Rutishauser, B.
2017-12-01
Hazard assessment of exhaust emissions - The next generation of fast and reliable tools for in vitro screening Barbara Rothen-Rutishauser Adolphe Merkle Institute, University of Fribourg, Switzerland; barbara.rothen@unifr.ch Pollution by vehicles is a major problem for the environment due to the various components in the exhaust gasses that are emitted into the atmosphere. A large number of epidemiological studies demonstrate the profound impact of vehicle emissions upon human health [1-3]. Such studies however, are unable to attribute a given subset of emissions to a certain adverse effect, which renders decision making difficult. Standardized protocols for exhaust toxicity assessment are lacking and it relies in many aspects on epidemiological and in vivo studies (animals), which are very time and cost-intensive and suffer from considerable ethical issues. An overview about the current state of research and clinical aspects in the field, as well as about the development of sophisticated in vitro approaches mimicking the inhalation of airborne particles / exhaust for the toxicological testing of engine emissions will be provided. Data will be presented that show that the combination of an air-liquid exposure system and 3D lung-cell culture model offers an adequate tool for fast and reliable investigations of complete exhaust toxicity as well as the effects of particulate fraction [4,5]. This approach yields important results for novel and improved emission technologies in the early stages of product development. [1] Donaldson et al. Part Fibre Toxicol 2005, 2: 10. [2] Ghio et al. J Toxicol Environ Health B Crit Rev 2012, 15: 1-21. [3] Peters et al. Res Rep Health Eff Inst 2009, 5-77. [4] Bisig et al. Emiss Control Sci Technol 2015, 1: 237-246. [5] Steiner et al. Atmos Environ 2013, 81: 380-388.
NASA Technical Reports Server (NTRS)
Cassidy, J. F.
1977-01-01
A multicylinder reciprocating engine was used to extend the efficient lean operating range of gasoline by adding hydrogen. Both bottled hydrogen and hydrogen produced by a research methanol steam reformer were used. These results were compared with results for all gasoline. A high-compression-ratio, displacement production engine was used. Apparent flame speed was used to describe the differences in emissions and performance. Therefore, engine emissions and performance, including apparent flame speed and energy lost to the cooling system and the exhaust gas, were measured over a range of equivalence ratios for each fuel. All emission levels decreased at the leaner conditions. Adding hydrogen significantly increased flame speed over all equivalence ratios.
Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musculus, Mark P.
Regulatory drivers and market demands for lower pollutant emissions, lower carbon dioxide emissions, and lower fuel consumption motivate the development of clean and fuel-efficient engine operating strategies. Most current production engines use a combination of both in-cylinder and exhaust emissions-control strategies to achieve these goals. The emissions and efficiency performance of in-cylinder strategies depend strongly on flow and mixing processes associated with fuel injection. Various diesel engine manufacturers have adopted close-coupled post-injection combustion strategies to both reduce pollutant emissions and to increase engine efficiency for heavy-duty applications, as well as for light- and medium-duty applications. Close-coupled post-injections are typically shortmore » injections that follow a larger main injection in the same cycle after a short dwell, such that the energy conversion efficiency of the post-injection is typical of diesel combustion. Of the various post-injection schedules that have been reported in the literature, effects on exhaust soot vary by roughly an order of magnitude in either direction of increasing or decreasing emissions relative to single injections (O’Connor et al., 2015). While several hypotheses have been offered in the literature to help explain these observations, no clear consensus has been established. For new engines to take full advantage of the benefits that post-injections can offer, the in-cylinder mechanisms that affect emissions and efficiency must be identified and described to provide guidance for engine design.« less
NASA Astrophysics Data System (ADS)
Khalid, Amir; Jaat, Norrizam; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari; Basharie, Mariam
2017-08-01
Major research has been conducted on the use of input products, such as rapeseed, canola, soybean, sunflower oil, waste cooking oil (WCO), crude palm oil (CPO) and crude jatropha oil as alternative fuels. Biodiesel is renewable, biodegradable and oxygenated, where it can be easily adopted by current existing conventional diesel engine without any major modification of the engine. To meet the future performance and emission regulations, is urged to improve the performance and exhaust emissions from biodiesel fuels. Hence, further investigation have been carried out on the emission characteristics of small diesel engine that fuelled by variant blending ratio of WCO and CPO with booster additive. For each of the biodiesel blends ratio from 5 to 15 percent volume which are WCO5, WCO10 and WCO15 for WCO biodiesel and CPO5, CPO10 and CPO15 for CPO biodiesel. The exhaust emissions were measured at engine speeds varied at 2000 rpm and 2500 rpm with different booster additive volume DRA (biodiesel without additive), DRB (0.2 ml) and DRC (0.4 ml). Emissions characteristics that had been measured were Hydrocarbon (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Oxide (NOx), and smoke opacity. The results showed that increased of blending ratio with booster additive volume significantly decreased the CO emission, while increased in NOx and CO2 due to changes of fuel characteristics in biodiesel fuel blends.
Forecast of jet engine exhaust emissions for future high altitude commercial aircraft
NASA Technical Reports Server (NTRS)
Grobman, J.; Ingebo, R. D.
1974-01-01
Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.
Forecast of jet engine exhaust emissions for future high altitude commercial aircraft
NASA Technical Reports Server (NTRS)
Grobman, J.; Ingebo, R. D.
1974-01-01
Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.
NASA Astrophysics Data System (ADS)
Gietl, Johanna K.; Lawrence, Roy; Thorpe, Alistair J.; Harrison, Roy M.
2010-01-01
Traffic-generated air pollutant emissions can be classified into exhaust and non-exhaust emissions. Increased attention is focussing on non-exhaust emissions as exhaust emissions are progressively limited by regulations. To characterise metal-rich emission from abrasion processes, size-segregated analysis of atmospheric aerosol particles sampled with micro-orifice uniform deposit impactors (MOUDI) in March 2007 in London was performed. The samples were collected at a roadside and a background site and were analysed for Al, Ba, Cu, Fe, Sb, Ti, V, Zn, Ca 2+, K +, Mg 2+, Na +, and NH 4+. Most components showed a clear roadside increment, which was evident as a higher mass concentration and a change in the size distribution. In particular, Fe, Cu, Ba, and Sb correlated highly, indicative of a common traffic-related source. Using complementary information on the fleet composition, vehicle number and average speed, the brake wear emission was calculated using the EMEP/CORINAIR emission database. The total PM 10 and barium emission of the traffic was determined by ratio to NO x whose source strength was estimated from published emission factors. Barium was found to comprise 1.1% of brake wear (PM 10) particles from the traffic fleet as a whole, allowing its use as a quantitative tracer of brake wear emissions at other traffic-influenced sites.
49 CFR 325.91 - Exhaust systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 5 2013-10-01 2013-10-01 false Exhaust systems. 325.91 Section 325.91... EMISSION STANDARDS Exhaust Systems and Tires § 325.91 Exhaust systems. A motor vehicle does not conform to the visual exhaust system inspection requirements, 40 CFR 202.22, of the Interstate Motor Carrier...
49 CFR 325.91 - Exhaust systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 5 2012-10-01 2012-10-01 false Exhaust systems. 325.91 Section 325.91... EMISSION STANDARDS Exhaust Systems and Tires § 325.91 Exhaust systems. A motor vehicle does not conform to the visual exhaust system inspection requirements, 40 CFR 202.22, of the Interstate Motor Carrier...
49 CFR 325.91 - Exhaust systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false Exhaust systems. 325.91 Section 325.91... EMISSION STANDARDS Exhaust Systems and Tires § 325.91 Exhaust systems. A motor vehicle does not conform to the visual exhaust system inspection requirements, 40 CFR 202.22, of the Interstate Motor Carrier...
49 CFR 325.91 - Exhaust systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Exhaust systems. 325.91 Section 325.91... EMISSION STANDARDS Exhaust Systems and Tires § 325.91 Exhaust systems. Link to an amendment published at 75 FR 57193, Sept. 20, 2010. A motor vehicle does not conform to the visual exhaust system inspection...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas... aircraft gas turbine engines certificated for operation within the United States of the classes specified...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas... aircraft gas turbine engines certificated for operation within the United States of the classes specified...
14 CFR 34.65-34.70 - [Reserved
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) 34.65-34.70 [Reserved] ...
40 CFR 86.160-00 - Exhaust emission test procedure for SC03 emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
....161-00. (ii) Turn on the solar heating system. (iii) All vehicle test phases of preconditioning, soak... percent relative humidity), a solar heat load intensity of 850 W/m2, and vehicle cooling air flow... all vehicle windows. (4) Connect the emission test sampling system to the vehicle's exhaust tail pipe...
General Purpose Vehicle Mechanic Career Ladder, AFSCs 47232, 47252, and 47275.
1983-03-01
general-purpose vehicles; gasoline and diesel engines; automotive electrical and emission control systems maintenance; drive trains and brake systems...OR HYDRAULIC PRESSES ELECTRONIC IGNITION TESTERS HEADLIGHT TESTERS OSCILLOSCOPES DYNAMOMETERS EXHAUST EMISSION TESTERS GAS SHIELD WELDING...collection forms; man-hour accounting forms and reports; corrosion control procedures; troubleshooting exhaust systems, and emission control systems
40 CFR 86.1709-99 - Exhaust emission standards for 1999 and later light light-duty trucks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86.1709-99 Exhaust emission standards for... not exceed the standards in Tables R99-8 and R99-9 in rows designated with the applicable vehicle...
NASA Technical Reports Server (NTRS)
Moss, J. E.; Cullom, R. R.
1981-01-01
Emissions of carbon monoxide, total oxides of nitrogen, unburned hydrocarbons, and carbon dioxide from an F100, afterburning, two spool turbofan engine at simulated flight conditions are reported. For each flight condition emission measurements were made for two or three power levels from intermediate power (nonafterburning) through maximum afterburning. The data showed that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate power (nonafterburning) and partial afterburning, but regions of high carbon monoxide were present downstream of the flame holder at maximum afterburning. Unburned hydrocarbon emissions were low for most of the simulated flight conditions. The local NOX concentrations and their variability with power level increased with increasing flight Mach number at constant altitude, and decreased with increasing altitude at constant Mach number. Carbon dioxide emissions were proportional to local fuel air ratio for all conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nix, Andrew; Johnson, Derek; Heltzel, Robert
Researchers at the Center for Alternative Fuels, Engines, and Emissions (CAFEE) completed a multi-year program under DE-FE0013689 entitled, “Assessing Fugitive Methane Emissions Impact Using Natural Gas Engines in Unconventional Resource Development.” When drilling activity was high and industry sought to lower operating costs and reduce emissions they began investing in dual fuel and dedicated natural gas engines to power unconventional well equipment. From a review of literature we determined that the prime-movers (or major fuel consumers) of unconventional well development were the service trucks (trucking), horizontal drilling rig (drilling) engines, and hydraulic stimulation pump (fracturing) engines. Based on early findingsmore » from on-road studies we assessed that conversion of prime movers to operate on natural gas could contribute to methane emissions associated with unconventional wells. As such, we collected significant in-use activity data from service trucks and in-use activity, fuel consumption, and gaseous emissions data from drilling and fracturing engines. Our findings confirmed that conversion of the prime movers to operate as dual fuel or dedicated natural gas – created an additional source of methane emissions. While some gaseous emissions were decreased from implementation of these technologies – methane and CO 2 equivalent emissions tended to increase, especially for non-road engines. The increases were highest for dual fuel engines due to methane slip from the exhaust and engine crankcase. Dedicated natural gas engines tended to have lower exhaust methane emissions but higher CO 2 emissions due to lower efficiency. Therefore, investing in currently available natural gas technologies for prime movers will increase the greenhouse gas footprint of the unconventional well development industry.« less
Concepts for reducing exhaust emissions and fuel consumption of the aircraft piston engine
NASA Technical Reports Server (NTRS)
Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.
1979-01-01
A study was made to reduce exhaust emissions and fuel consumption of a general aviation aircraft piston engine by applying known technology. Fourteen promising concepts such as stratified charge combustion chambers, cooling cylinder head improvements, and ignition system changes were evaluated for emission reduction and cost effectiveness. A combination of three concepts, improved fuel injection system, improved cylinder head with exhaust port liners and exhaust air injection was projected as the most cost effective and safe means of meeting the EPA standards for CO, HC and NO. The fuel economy improvement of 4.6% over a typical single engine aircraft flight profile does not though justify the added cost of the three concepts, and significant reductions in fuel consumption must be applied to the cruise mode where most of the fuel is used. The use of exhaust air injection in combination with exhaust port liners reduces exhaust valve stem temperatures which can result in longer valve guide life. The use of exhaust port liners alone can reduce engine cooling air requirements by 11% which is the equivalent of a 1.5% increase in propulsive power. The EPA standards for CO, HC and NO can be met in the IO-520 engine using air injection alone or the Simmonds improved fuel injection system.
Too easily lead? Health effects of gasoline additives.
Menkes, D B; Fawcett, J P
1997-01-01
Octane-enhancing constituents of gasoline pose a number of health hazards. This paper considers the relative risks of metallic (lead, manganese), aromatic (e.g., benzene), and oxygenated additives in both industrialized and developing countries. Technological advances, particularly in industrialized countries, have allowed the progressive removal of lead from gasoline and the increased control of exhaust emissions. The developing world, by contrast, has relatively lax environmental standards and faces serious public health problems from vehicle exhaust and the rapid increase in automobile use. Financial obstacles to the modernization of refineries and vehicle fleets compound this problem and the developing world continues to import large quantities of lead additives and other hazardous materials. Progress in decreasing environmental health problems depends both on the adoption of international public health standards as well as efforts to decrease dependence on the private automobile for urban transport. Images Figure 1. Figure 2. PMID:9171982
Promoted decomposition of NOx in automotive diesel-like exhausts by electro-catalytic honeycombs.
Huang, Ta-Jen; Chiang, De-Yi; Shih, Chi; Lee, Cheng-Chin; Mao, Chih-Wei; Wang, Bo-Chung
2015-03-17
NO and NO2 (collectively called NOx) are major air pollutants in automotive emissions. More effective and easier treatments of NOx than those achieved by the present methods can offer better protection of human health and higher fuel efficiency that can reduce greenhouse gas emissions. However, currently commercialized technologies for automotive NOx emission control cannot effectively treat diesel-like exhausts with high NOx concentrations. Thus, exhaust gas recirculation (EGR) has been used extensively, which reduces fuel efficiency and increases particulate emission considerably. Our results show that the electro-catalytic honeycomb (ECH) promotes the decomposition of NOx to nitrogen and oxygen, without consuming reagents or other resources. NOx can be converted to nitrogen and oxygen almost completely. The ECHs are shown to effectively remove NOx from gasoline-fueled diesel-like exhausts. A very high NO concentration is preferred in the engine exhaust, especially during engine cold-start. Promoted NOx decomposition (PND) technology for real-world automotive applications is established in this study by using the ECH. With PND, EGR is no longer needed. Diesel-like engines can therefore achieve superior fuel efficiency, and all major automotive pollutants can be easily treated due to high concentration of oxygen in the diesel-like exhausts, leading to zero pollution.
Hawley, Brie; L'Orange, Christian; Olsen, Dan B.; Marchese, Anthony J.; Volckens, John
2014-01-01
The composition of diesel exhaust has changed over the past decade due to the increased use of alternative fuels, like biodiesel, and to new regulations on diesel engine emissions. Given the changing nature of diesel fuels and diesel exhaust emissions, a need exists to understand the human health implications of switching to “cleaner” diesel engines run with particulate filters and engines run on alternative fuels like biodiesel. We exposed well-differentiated normal human bronchial epithelial cells to fresh, complete exhaust from a diesel engine run (1) with and without a diesel particulate filter and (2) using either traditional petro- or alternative biodiesel. Despite the lowered emissions in filter-treated exhaust (a 91–96% reduction in mass), significant increases in transcripts associated with oxidative stress and polycyclic aromatic hydrocarbon response were observed in all exposure groups and were not significantly different between exposure groups. Our results suggest that biodiesel and filter-treated diesel exhaust elicits as great, or greater a cellular response as unfiltered, traditional petrodiesel exhaust in a representative model of the bronchial epithelium. PMID:25061111
Stirling engines for hybrid electric vehicle applications
NASA Astrophysics Data System (ADS)
Ernst, William D.
Laboratory and vehicle chassis dynamometer test data based on natural gas fuel are presented for kinematic Stirling engine emissions levels over a range of air/fuel ratios and exhaust gas recirculation levels. It is concluded that the natural-gas-fired Stirling engine is capable of producing exhaust pipe emissions levels significantly below those of other engines. The projected emissions levels are found to be compliant with the 1995 California Air Resources Board Mobile Source Emission Standards for ultra-low-emissions vehicles.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.20 Applicability. The provisions of this subpart are applicable to all aircraft gas...
14 CFR 34.65-34.70 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) §§ 34.65-34.70 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.20 Applicability. The provisions of this subpart are applicable to all aircraft gas...
40 CFR 86.160-00 - Exhaust emission test procedure for SC03 emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... simulates testing in an environmental test cell (see § 86.162-00 (a) for a discussion of simulation... exhaust and dilution air bag samples to the analytical system and process the samples according to § 86...
Schifter, I; Vera, M; Díaz, L; Guzmán, E; Ramos, F; López-Salinas, E
2001-05-15
Motor vehicle emission tests were performed on 12 in-use light duty vehicles, made up of the most representative emission control technologies in Mexico City: no catalyst, oxidative catalyst, and three way catalyst. Exhaust regulated (CO, NOx, and hydrocarbons) and toxic (benzene, formaldehyde, acetaldehyde, and 1,3-butadiene) emissions were evaluated for MTBE (5 vol %)- and ethanol (3, 6, and 10 vol %)-gasoline blends. The most significant overall emissions variations derived from the use of 6 vol % ethanol (relative to a 5% MTBE base gasoline) were 16% decrease in CO, 28% reduction in formaldehyde, and 80% increase in acetaldehyde emissions. A 26% reduction in CO emissions from the oldest fleet (< MY 1991, without catalytic converter), which represents about 44% of the in-use light duty vehicles in Mexico city, can be attained when using 6 vol% ethanol-gasoline, without significant variation in hydrocarbons and NOx emissions, when compared with a 5% vol MTBE-gasoline. On the basis of the emissions results, an estimation of the change in the motor vehicle emissions of the metropolitan area of Mexico city was calculated for the year 2010 if ethanol were to be used instead of MTBE, and the outcome was a considerable decrease in all regulated and toxic emissions, despite the growing motor vehicle population.
Inhaled Diesel Emissions Alter Atherosclerotic Plaque Composition in ApoE−/− Mice
Campen, Matthew J.; Lund, Amie K.; Knuckles, Travis L.; Conklin, Daniel J.; Bishop, Barbara; Young, David; Seilkop, Steven; Seagrave, JeanClare; Reed, Matthew D.; McDonald, Jacob D.
2009-01-01
Recent epidemiological studies suggest that traffic-related air pollution may have detrimental effects on cardiovascular health. Previous studies reveal that gasoline emissions can induce several enzyme pathways involved in the formation and development of atherosclerotic plaques. As a direct comparison, the present study examined the impact of diesel engine emissions on these pathways, and further examined the effects on vascular lesion pathology. Apolipoprotein E-null mice were simultaneously placed on a high fat chow diet and exposed to four concentrations, plus a high concentration exposure with particulates (PM) removed by filtration, of diesel emissions for 6 h/d for 50 days. Aortas were subsequently assayed for alteration in matrix metalloproteinase-9, endothelin-1, and several other biomarkers. Diesel induced dose-related alterations in gene markers of vascular remodeling and aortic lipid peroxidation; filtration of PM did not significantly alter these vascular responses, indicating that the gaseous portion of the exhaust was a principal driver. Immunohistochemical analysis of aortic leaflet sections revealed no net increase in lesion area, but a significant decrease in lipid-rich regions and increasing trends in macrophage accumulation and collagen content, suggesting that plaques were advanced to a more fragile, potentially more vulnerable state by diesel exhaust exposure. Combined with previous studies, these results indicate that whole emissions from mobile sources may have a significant role in promoting chronic vascular disease. PMID:19891982
40 CFR 86.509-90 - Exhaust gas sampling system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system. 86.509-90... 1978 and Later New Motorcycles; Test Procedures § 86.509-90 Exhaust gas sampling system. (a)(1) General. The exhaust gas sampling system is designed to measure the true mass emissions of vehicle exhaust. In...
40 CFR 86.509-90 - Exhaust gas sampling system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system. 86.509-90... 1978 and Later New Motorcycles; Test Procedures § 86.509-90 Exhaust gas sampling system. (a)(1) General. The exhaust gas sampling system is designed to measure the true mass emissions of vehicle exhaust. In...
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission data from tests conducted on these vehicle configuration(s) at high altitude to calculate the fuel... values from the tests performed using alcohol or natural gas test fuel. (b) For each model type, as..., highway, and combined fuel economy and carbon-related exhaust emission values from the tests performed...
40 CFR 1039.101 - What exhaust emission standards must my engines meet after the 2014 model year?
Code of Federal Regulations, 2010 CFR
2010-07-01
... my engines meet after the 2014 model year? 1039.101 Section 1039.101 Protection of Environment... emission standards must my engines meet after the 2014 model year? The exhaust emission standards of this section apply after the 2014 model year. Certain of these standards also apply for model year 2014 and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What are the exhaust emission standards for all-terrain vehicles (ATVs) and offroad utility vehicles? 1051.107 Section 1051.107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What are the exhaust emission standards for all-terrain vehicles (ATVs) and offroad utility vehicles? 1051.107 Section 1051.107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What are the exhaust emission standards for all-terrain vehicles (ATVs) and offroad utility vehicles? 1051.107 Section 1051.107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES...
High-speed Civil Transport Aircraft Emissions
NASA Technical Reports Server (NTRS)
Miake-Lye, Richard C.; Matulaitis, J. A.; Krause, F. H.; Dodds, Willard J.; Albers, Martin; Hourmouziadis, J.; Hasel, K. L.; Lohmann, R. P.; Stander, C.; Gerstle, John H.
1992-01-01
Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance.
Code of Federal Regulations, 2012 CFR
2012-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.60 Introduction. (a) Except as provided... determine the conformity of new aircraft gas turbine engines with the applicable standards set forth in this...
Code of Federal Regulations, 2012 CFR
2012-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.30 Applicability. The provisions of this subpart are applicable to all in-use aircraft gas turbine engines certificated for operation within the United States of the classes specified...
Code of Federal Regulations, 2013 CFR
2013-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.30 Applicability. The provisions of this subpart are applicable to all in-use aircraft gas turbine engines certificated for operation within the United States of the classes specified...
Code of Federal Regulations, 2014 CFR
2014-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.30 Applicability. The provisions of this subpart are applicable to all in-use aircraft gas turbine engines certificated for operation within the United States of the classes specified...
Code of Federal Regulations, 2014 CFR
2014-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.20 Applicability. The provisions of this subpart are applicable to all aircraft gas turbine engines of the classes specified beginning on the dates specified in § 34.21. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.20 Applicability. The provisions of this subpart are applicable to all aircraft gas turbine engines of the classes specified beginning on the dates specified in § 34.21. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.20 Applicability. The provisions of this subpart are applicable to all aircraft gas turbine engines of the classes specified beginning on the dates specified in § 34.21. ...
14 CFR 34.62 - Test procedure (propulsion engines).
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 34.62 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.62 Test procedure...
14 CFR 34.62 - Test procedure (propulsion engines).
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 34.62 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.62 Test procedure...
Claxton, Larry D
2015-01-01
Within this review the genotoxicity of diesel and gasoline fuels and emissions is placed in an historical context. New technologies have changed the composition of transportation methods considerably, reducing emissions of many of the components of health concern. The similarity of modern diesel and gasoline fuels and emissions to other carbonaceous fuels and emissions is striking. Recently an International Agency for Research on Cancer (IARC) Working Group concluded that there was sufficient evidence in humans for the carcinogenicity of diesel exhaust (Group 1). In addition, the Working Group found that diesel exhaust has "a positive association (limited evidence) with an increased risk of bladder cancer." Like most other carbonaceous fuel emissions, diesel and gasoline exhausts contain toxic levels of respirable particles (PM <2.5μm) and polycyclic aromatic hydrocarbons. However, the level of toxic components in exhausts from diesel and gasoline emissions has declined in certain regions over time because of changes in engine design, the development of better aftertreatment devices (e.g., catalysts), increased fuel economy, changes in the fuels and additives used, and greater regulation. Additional research and better exposure assessments are needed so that decision makers and the public can decide to what extent diesel and gasoline engines should be replaced. Copyright © 2014 Elsevier B.V. All rights reserved.
Performance of a Line Loss Correction Method for Gas Turbine Emission Measurements
NASA Astrophysics Data System (ADS)
Hagen, D. E.; Whitefield, P. D.; Lobo, P.
2015-12-01
International concern for the environmental impact of jet engine exhaust emissions in the atmosphere has led to increased attention on gas turbine engine emission testing. The Society of Automotive Engineers Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter from aircraft engines, and is developing an Aerospace Recommended Practice (ARP) for methodology and system specification. The Missouri University of Science and Technology (MST) Center for Excellence for Aerospace Particulate Emissions Reduction Research has led numerous jet engine exhaust sampling campaigns to characterize emissions at different locations in the expanding exhaust plume. Particle loss, due to various mechanisms, occurs in the sampling train that transports the exhaust sample from the engine exit plane to the measurement instruments. To account for the losses, both the size dependent penetration functions and the size distribution of the emitted particles need to be known. However in the proposed ARP, particle number and mass are measured, but size is not. Here we present a methodology to generate number and mass correction factors for line loss, without using direct size measurement. A lognormal size distribution is used to represent the exhaust aerosol at the engine exit plane and is defined by the measured number and mass at the downstream end of the sample train. The performance of this line loss correction is compared to corrections based on direct size measurements using data taken by MST during numerous engine test campaigns. The experimental uncertainty in these correction factors is estimated. Average differences between the line loss correction method and size based corrections are found to be on the order of 10% for number and 2.5% for mass.
Zeolite-based SCR catalysts and their use in diesel engine emission treatment
Narula, Chaitanya K.; Yang, Xiaofan
2016-08-02
A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al.sup.+3, wherein the catalyst decreases NO.sub.x emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu--Fe-ZSM5, Cu--La-ZSM-5, Fe--Cu--La-ZSM5, Cu--Sc-ZSM-5, and Cu--In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.
Zeolite-based SCR catalysts and their use in diesel engine emission treatment
Narula, Chaitanya K; Yang, Xiaofan
2015-03-24
A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al.sup.+3, wherein the catalyst decreases NO.sub.x emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu--Fe-ZSM5, Cu--La-ZSM-5, Fe--Cu--La-ZSM5, Cu--Sc-ZSM-5, and Cu--In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.
Mumtaz, Muhammad Waseem; Mukhtar, Hamid; Anwar, Farooq; Saari, Nazamid
2014-01-01
Current study presents RSM based optimized production of biodiesel from palm oil using chemical and enzymatic transesterification. The emission behavior of biodiesel and its blends, namely, POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 was examined using diesel engine (equipped with tube well). Optimized palm oil fatty acid methyl esters (POFAMEs) yields were depicted to be 47.6 ± 1.5, 92.7 ± 2.5, and 95.4 ± 2.0% for chemical transesterification catalyzed by NaOH, KOH, and NaOCH3, respectively, whereas for enzymatic transesterification reactions catalyzed by NOVOZYME-435 and A. n. lipase optimized biodiesel yields were 94.2 ± 3.1 and 62.8 ± 2.4%, respectively. Distinct decrease in particulate matter (PM) and carbon monoxide (CO) levels was experienced in exhaust emissions from engine operating on biodiesel blends POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 comparative to conventional petroleum diesel. Percentage change in CO and PM emissions for different biodiesel blends ranged from -2.1 to -68.7% and -6.2 to -58.4%, respectively, relative to conventional diesel, whereas an irregular trend was observed for NOx emissions. Only POB-5 and POB-20 showed notable reductions, whereas all other blends (POB-40 to POB-100) showed slight increase in NOx emission levels from 2.6 to 5.5% comparative to petroleum diesel.
Primary and Aggregate Size Distributions of PM in Tail Pipe Emissions form Diesel Engines
NASA Astrophysics Data System (ADS)
Arai, Masataka; Amagai, Kenji; Nakaji, Takayuki; Hayashi, Shinji
Particulate matter (PM) emission exhausted from diesel engine should be reduced to keep the clean air environment. PM emission was considered that it consisted of coarse and aggregate particles, and nuclei-mode particles of which diameter was less than 50nm. However the detail characteristics about these particles of the PM were still unknown and they were needed for more physically accurate measurement and more effective reduction of exhaust PM emission. In this study, the size distributions of solid particles in PM emission were reported. PMs in the tail-pipe emission were sampled from three type diesel engines. Sampled PM was chemically treated to separate the solid carbon fraction from other fractions such as soluble organic fraction (SOF). The electron microscopic and optical-manual size measurement procedures were used to determine the size distribution of primary particles those were formed through coagulation process from nuclei-mode particles and consisted in aggregate particles. The centrifugal sedimentation method was applied to measure the Stokes diameter of dry-soot. Aerodynamic diameters of nano and aggregate particles were measured with scanning mobility particle sizer (SMPS). The peak aggregate diameters detected by SMPS were fallen in the same size regime as the Stokes diameter of dry-soot. Both of primary and Stokes diameters of dry-soot decreased with increases of engine speed and excess air ratio. Also, the effects of fuel properties and engine types on primary and aggregate particle diameters were discussed.
Mumtaz, Muhammad Waseem; Anwar, Farooq; Saari, Nazamid
2014-01-01
Current study presents RSM based optimized production of biodiesel from palm oil using chemical and enzymatic transesterification. The emission behavior of biodiesel and its blends, namely, POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 was examined using diesel engine (equipped with tube well). Optimized palm oil fatty acid methyl esters (POFAMEs) yields were depicted to be 47.6 ± 1.5, 92.7 ± 2.5, and 95.4 ± 2.0% for chemical transesterification catalyzed by NaOH, KOH, and NaOCH3, respectively, whereas for enzymatic transesterification reactions catalyzed by NOVOZYME-435 and A. n. lipase optimized biodiesel yields were 94.2 ± 3.1 and 62.8 ± 2.4%, respectively. Distinct decrease in particulate matter (PM) and carbon monoxide (CO) levels was experienced in exhaust emissions from engine operating on biodiesel blends POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 comparative to conventional petroleum diesel. Percentage change in CO and PM emissions for different biodiesel blends ranged from −2.1 to −68.7% and −6.2 to −58.4%, respectively, relative to conventional diesel, whereas an irregular trend was observed for NOx emissions. Only POB-5 and POB-20 showed notable reductions, whereas all other blends (POB-40 to POB-100) showed slight increase in NOx emission levels from 2.6 to 5.5% comparative to petroleum diesel. PMID:25162053
Neutron-$$\\gamma$$ competition for β-delayed neutron emission
Mumpower, Matthew Ryan; Kawano, Toshihiko; Moller, Peter
2016-12-19
Here we present a coupled quasiparticle random phase approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information, which starts with Gamow-Teller strength distributions in the daughter nucleus and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is γ-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-γ competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. Finally, a second consequence of this formalismmore » is a prediction of more neutrons on average being emitted after β decay for nuclei near the neutron drip line compared to models that do not consider the statistical decay.« less
40 CFR 600.512-08 - Model year report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions § 600.512-08 Model year... average fuel economy. The results of the manufacturer calculations and summary information of model type...
40 CFR 600.513-08 - Gas Guzzler Tax.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions § 600.513-08 Gas Guzzler... fuel economy while such automobiles are operated on gasoline will be used for Gas Guzzler Tax...
40 CFR 600.513-08 - Gas Guzzler Tax.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions § 600.513-08 Gas Guzzler... fuel economy while such automobiles are operated on gasoline will be used for Gas Guzzler Tax...
40 CFR 600.510-08 - Calculation of average fuel economy.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Calculation of average fuel economy...) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions...
40 CFR 600.510-08 - Calculation of average fuel economy.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Calculation of average fuel economy...) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions...
40 CFR 600.512-08 - Model year report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions § 600.512-08 Model year... average fuel economy. The results of the manufacturer calculations and summary information of model type...
SENSOR FOR MONITORING OF PARTICULATE EMISSIONS IN DIESEL EXHAUST GASES - PHASE I
Active Spectrum, Inc., proposes a novel, low-cost soot sensor for on-board measurement of soot emissions in diesel exhaust gases. The proposed technology is differentiated from existing methods by excellent sensitivity, high specificity to carbon particulates, and robustness ...
Westerholm, R; Egebäck, K E
1994-01-01
This paper presents results from the characterization of vehicle exhaust that were obtained primarily within the Swedish Urban Air Project, "Tätortsprojektet." Exhaust emissions from both gasoline- and diesel-fueled vehicles have been investigated with respect to regulated pollutants (carbon monoxide [CO], hydrocarbon [HC], nitrogen oxides [NOx], and particulate), unregulated pollutants, and in bioassay tests (Ames test, TCDD receptor affinity tests). Unregulated pollutants present in both the particle- and the semi-volatile phases were characterized. Special interest was focused on the impact of fuel composition on heavy-duty diesel vehicle emissions. It was confirmed that there exists a quantifiable relationship between diesel-fuel variables of the fuel blends, the chemical composition of the emissions, and their biological effects. According to the results from the multivariate analysis, the most important fuel parameters are: polycyclic aromatic hydrocarbons (PAH) content, 90% distillation point, final boiling point, specific heat, aromatic content, density, and sulfur content. PMID:7529699
Subramanian, Thiyagarajan; Varuvel, Edwin Geo; Martin, Leenus Jesu; Beddhannan, Nagalingam
2017-11-01
The present study deals with performance, emission and combustion studies in a single cylinder CI engine with lower and higher alcohol fuel synergies with biofuel blends and exhaust treatment system. Karanja oil methyl ester (KOME), widely available biofuel in India, and orange oil (ORG), a low carbon biofuel, were taken for this study, and equal volume blend was prepared for testing. Methanol (M) and n-pentanol (P) was taken as lower and higher alcohol and blended 20% by volume with KOME-ORG blend. Activated carbon-based exhaust treatment indigenous system was designed and tested with KOME-ORG + M20 and KOME-ORG + P20 blend. The tests were carried out at various load conditions at a constant speed of 1500 rpm. The study revealed that considering performance, emission and combustion studies, KOME-ORG + M20 + activated carbon are found optimum in reducing NO, smoke and CO 2 emission. Compared to KOME, for KOME-ORG + M20 + activated carbon, NO emission is reduced from 10.25 to 7.85 g/kWh, the smoke emission is reduced from 49.4 to 28.9%, and CO 2 emission is reduced from 1098.84 to 580.68 g/kWh. However, with exhaust treatment system, an increase in HC and CO emissions and reduced thermal efficiency is observed due to backpressure effects.
[Quantitative estimation source of urban atmospheric CO2 by carbon isotope composition].
Liu, Wei; Wei, Nan-Nan; Wang, Guang-Hua; Yao, Jian; Zeng, You-Shi; Fan, Xue-Bo; Geng, Yan-Hong; Li, Yan
2012-04-01
To effectively reduce urban carbon emissions and verify the effectiveness of currently project for urban carbon emission reduction, quantitative estimation sources of urban atmospheric CO2 correctly is necessary. Since little fractionation of carbon isotope exists in the transportation from pollution sources to the receptor, the carbon isotope composition can be used for source apportionment. In the present study, a method was established to quantitatively estimate the source of urban atmospheric CO2 by the carbon isotope composition. Both diurnal and height variations of concentrations of CO2 derived from biomass, vehicle exhaust and coal burning were further determined for atmospheric CO2 in Jiading district of Shanghai. Biomass-derived CO2 accounts for the largest portion of atmospheric CO2. The concentrations of CO2 derived from the coal burning are larger in the night-time (00:00, 04:00 and 20:00) than in the daytime (08:00, 12:00 and 16:00), and increase with the increase of height. Those derived from the vehicle exhaust decrease with the height increase. The diurnal and height variations of sources reflect the emission and transport characteristics of atmospheric CO2 in Jiading district of Shanghai.
40 CFR 205.164 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... as defined in § 205.151(a)(3). (e) The provisions of the subpart do not apply to exhaust header pipes... EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.164 Applicability. (a) Except as... exhaust system or motorcycle replacement exhaust system component which: (1) Meets the definition of the...
Exhaust emissions reduction for intermittent combustion aircraft engines
NASA Technical Reports Server (NTRS)
Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.
1982-01-01
Three concepts which, to an aircraft piston engine, provide reductions in exhaust emissions of hydrocarbons and carbon monoxide while simultaneously improving fuel economy. The three chosen concepts, (1) an improved fuel injection system, (2) an improved cooling cylinder head, and (3) exhaust air injection, when combined, show a synergistic relationship in achieving these goals. In addition, the benefits of variable ignition timing were explored and both dynamometer and flight testing of the final engine configuration were accomplished.
Update of the development on the new Audi NSU rotary engine generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Basshuysen, R.; Wilmers, G.
At AUDI NSU a new generation of rotary engines has been developed of which the significant layout parameters are outlined. The present status of development is characterized by a lean burn concept with fuel injection and an exhaust emission control system with catalytic converter. Test results indicate that the fuel economy ranges at the same level as comparable reciprocating engines. The future US-exhaust emission standards are kept below but in respect to the Japanese standards further reduction of NO/sub x/ is necessary. Endurance tests proving the durability of the exhaust emission control system have still to be performed.
NASA Astrophysics Data System (ADS)
Aziz, M. A.; Yusop, A. F.; Mat Yasin, M. H.; Hamidi, M. A.; Alias, A.; Hussin, H.; Hamri, S.
2017-10-01
Diesel engine which is one of the larger contributors to total consumption for petroleum is an attractive power unit used widely in many fields. However, diesel engines are among the main contributors to air pollutions for the large amount of emissions, such as CO, CO2 and NOx lead to an adverse effect on human health. Many researches have been done to find alternative fuels that are clean and efficient. Biodiesel is preferred as an alternative source for diesel engine which produces lower emission of pollutants. This study has focused on the evaluation of diesel and alcohol-diesel fuel properties and also the performance, combustion and exhaust emission from diesel engine fuelled with diesel and alcohol. Butanol and ethanol is blend with diesel fuel at 1:9 ratio. There are three test fuel that is tested which Diesel (100% diesel), D90BU10 (10% Butanol and 90% diesel) and D90E10 (10% Ethanol and 90% diesel). The comparison between diesel and alcohol-diesel blend has been made in terms of fuel properties characterization, engine performance such as brake power (BP) and brake specific fuel consumption (BSFC) also the in cylinder maximum pressure characteristic. Thus, exhaust gas emission of CO, CO2, NOx and O2 emission also has been observed at constant load of 50% but in different operating engine speed (1100 rpm, 1400 rpm, 1700 rpm, 2000 rpm and 2300 rpm). The results show the addition of 10% of each butanol and ethanol to diesel fuel had decreased the fuel density about 0.3% to 0.5% compared to mineral diesel. In addition, viscosity and energy content are also decrease. The addition of 10% butanol had improved the fuel cetane number however the ethanol blends react differently. In term of engine performance, as the engine speed increased, BP output also increase respectively. Hence, the alcohol blends fuel generates lower BP compared to diesel, plus BSFC for all test fuel shows decreasing trend at low and medium speed, however increased gradually at higher engine speed. Thus, D90BU10 had higher BSFC compared to mineral diesel and D90E10. In general, the addition of alcohol blend in diesel fuel had increase the BSFC. In term of in cylinder pressure, as the engine speed is increased, the crank angle noted to move away from TDC for all test fuel. The maximum cylinder pressure increased at low and medium speed, but decrease in higher engine speed. The addition of 10% of butanol and ethanol in the mineral diesel decreased the maximum cylinder pressure. Meanwhile, O2 emission of D90E10 is higher compared to D90BU10 due to higher oxygen content found in ethanol. The CO2 emission of D90BU10 recorded higher compared to mineral diesel due to the high oxygen contents in the alcohol. CO emission of alcohol blend on the other hand had lower emission at higher engine speed compared to mineral diesel. As engine speed is increased, NOx emission of mineral diesel and D90E10 had decreased gradually. However, D90BU10 had increased of NOx emission at lower to medium engine speed, than gradually decreased at higher engine speed.
40 CFR 91.103 - Averaging, banking, and trading of exhaust emission credits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Averaging, banking, and trading of... Standards and Certification Provisions § 91.103 Averaging, banking, and trading of exhaust emission credits. Regulations regarding averaging, banking, and trading provisions along with applicable recordkeeping...
40 CFR 600.507-08 - Running change data requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions § 600.507-08... manufacturer shall submit additional running change fuel economy data as specified in paragraph (b) of this...
40 CFR 600.509-08 - Voluntary submission of additional data.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions... data in addition to the data required by the Administrator. (b) Additional fuel economy data may be...
40 CFR 600.509-08 - Voluntary submission of additional data.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions... data in addition to the data required by the Administrator. (b) Additional fuel economy data may be...
40 CFR 91.103 - Averaging, banking, and trading of exhaust emission credits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Averaging, banking, and trading of... Standards and Certification Provisions § 91.103 Averaging, banking, and trading of exhaust emission credits. Regulations regarding averaging, banking, and trading provisions along with applicable recordkeeping...
40 CFR 91.103 - Averaging, banking, and trading of exhaust emission credits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Averaging, banking, and trading of... Standards and Certification Provisions § 91.103 Averaging, banking, and trading of exhaust emission credits. Regulations regarding averaging, banking, and trading provisions along with applicable recordkeeping...
40 CFR 91.103 - Averaging, banking, and trading of exhaust emission credits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Averaging, banking, and trading of... Standards and Certification Provisions § 91.103 Averaging, banking, and trading of exhaust emission credits. Regulations regarding averaging, banking, and trading provisions along with applicable recordkeeping...
40 CFR 91.103 - Averaging, banking, and trading of exhaust emission credits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Averaging, banking, and trading of... Standards and Certification Provisions § 91.103 Averaging, banking, and trading of exhaust emission credits. Regulations regarding averaging, banking, and trading provisions along with applicable recordkeeping...
Military Aircraft Emissions Research - Case of Hercules Cargo Plane (C-130H) Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Mengdawn; Corporan, E.; DeWitt, M.
2007-01-01
Tactical airlifter like C-130H has been in use for more than 50 years, and is expected to serve for many years to come. However, the emission characteristics data of the aircraft are scarce. To increase our understanding of turboprop engine emissions, emissions from a military C-130H cargo aircraft were characterized in field conditions in the fall of 2005. Particulate and gaseous pollutants were measured by conventional and advanced instrumentation platforms that were built with in-situ extractive or remote optical sensing technologies. The measurements performed at the C-130H engine exhaust exit showed increased levels of emissions as the engine power settingmore » increased. In contrast, there was no such a relationship found for the C-130H emitted particulate matter (as a function of engine power setting) measured at about 15-m downstream of the engine exhaust plane. The emitted gaseous species measured at both locations were, however, proportional to the engine power setting and comparable (at both locations) when corrected for ambient dilution indicating the lack of particulate emission-power setting relationship at the far field is unique. The result clearly indicates that the aircraft emission factor or index for particulate matter cannot be experimentally determined at a downstream location away from the exhaust exit and has to be determined right at the engine exhaust plane. Emission indices that are needed for air quality modeling will be presented.« less
NASA Astrophysics Data System (ADS)
Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.
2015-12-01
The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.
40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... delivers the appropriate exhaust flow, exhaust constituents, and exhaust temperature to the face of the... vehicles. (2) This data set must consist of randomly procured vehicles from actual customer use. The... equivalency factor. (C) The manufacturer must submit an analysis which evaluates whether the durability...
Code of Federal Regulations, 2010 CFR
2010-07-01
... respect to the parameters listed in § 205.168 of this subpart. (2) Exhaust header pipe means any tube of... be “exhaust header pipes.” (3) Failing exhaust system means that, when installed on any Federally... EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.165 Definitions. (a) As used in this...
Jacobson, M Z; Wilkerson, J T; Naiman, A D; Lele, S K
2013-01-01
This study examines the 20-year impacts of emissions from all commercial aircraft flights worldwide on climate, cloudiness, and atmospheric composition. Aircraft emissions from each individual flight worldwide were modeled to evolve from the subgrid to grid scale with the global model described and evaluated in Part I of this study. Simulations with and without aircraft emissions were run for 20 years. Aircraft emissions were found to be responsible for -6% of Arctic surface global warming to date, -1.3% of total surface global warming, and -4% of global upper tropospheric warming. Arctic warming due to aircraft slightly decreased Arctic sea ice area. Longer simulations should result in more warming due to the further increase in CO2. Aircraft increased atmospheric stability below cruise altitude and decreased it above cruise altitude. The increase in stability decreased cumulus convection in favor of increased stratiform cloudiness. Aircraft increased total cloud fraction on average. Aircraft increased surface and upper tropospheric ozone by -0.4% and -2.5%, respectively and surface and upper-tropospheric peroxyacetyl nitrate (PAN) by -0.1% and -5%, respectively. Aircraft emissions increased tropospheric OH, decreasing column CO and CH4 by -1.7% and -0.9%, respectively. Aircraft emissions increased human mortality worldwide by -620 (-240 to 4770) deaths per year, with half due to ozone and the rest to particulate matter less than 2.5 micrometers in diameter (PM2.5).
Aircraft Particle Emissions eXperiment (APEX)
NASA Technical Reports Server (NTRS)
Wey, C. C.; Anderson, B. E.; Hudgins, C.; Wey, C.; Li-Jones, X.; Winstead, E.; Thornhill, L. K.; Lobo, P.; Hagen, D.; Whitefield, P.
2006-01-01
APEX systematically investigated the gas-phase and particle emissions from a CFM56-2C1 engine on NASA's DC-8 aircraft as functions of engine power, fuel composition, and exhaust plumage. Emissions parameters were measured at 11 engine power, settings, ranging from idle to maximum thrust, in samples collected at 1, 10, and 30 m downstream of the exhaust plane as the aircraft burned three fuels to stress relevant chemistry. Gas-phase emission indices measured at 1 m were in good agreement with the ICAO data and predictions provided by GEAE empirical modeling tools. Soot particles emitted by the engine exhibited a log-normal size distribution peaked between 15 and 40 nm, depending on engine power. Samples collected 30 m downstream of the engine exhaust plane exhibited a prominent nucleation mode.
NASA Astrophysics Data System (ADS)
Merkisz, Jerzy; Lijewski, Piotr; Fuć, Paweł
2011-06-01
The tests performed under real traffic conditions provide invaluable information on the relations between the engine parameters, vehicle parameters and traffic conditions (traffic congestion) on one side and the exhaust emissions on the other. The paper presents the result of road tests obtained in an urban and extra-urban cycles for vehicles fitted with different engines, spark ignition engine and compression ignition engine. For the tests a portable emission analyzer SEMTECH DS. by SENSORS was used. This analyzer provides online measurement of the concentrations of exhaust emission components on a vehicle in motion under real traffic conditions. The tests were performed in city traffic. A comparative analysis has been presented of the obtained results for vehicles with individual powertrains.
Nano-metal oxides: Exposure and engineering control assessment.
Garcia, Alberto; Eastlake, Adrienne; Topmiller, Jennifer L; Sparks, Christopher; Martinez, Kenneth; Geraci, Charles L
2017-09-01
In January 2007, the National Institute for Occupational Safety and Health (NIOSH) conducted a field study to evaluate process specific emissions during the production of ENMs. This study was performed using the nanoparticle emission assessment technique (NEAT). During this study, it was determined that ENMs were released during production and cleaning of the process reactor. Airborne concentrations of silver, nickel, and iron were found both in the employee's personal breathing zone and area samples during reactor cleaning. At the completion of this initial survey, it was suggested that a flanged attachment be added to the local exhaust ventilation system. NIOSH re-evaluated the facility in December 2011 to assess worker exposures following an increase in production rates. This study included a fully comprehensive emissions, exposure, and engineering control evaluation of the entire process. This study made use of the nanoparticle exposure assessment technique (NEAT 2.0). Data obtained from filter-based samples and direct reading instruments indicate that reactor cleanout increased the overall particle concentration in the immediate area. However, it does not appear that these concentrations affect areas outside of the production floor. As the distance between the reactor and the sample location increased, the observed particle number concentration decreased, creating a concentration gradient with respect to the reactor. The results of this study confirm that the flanged attachment on the local exhaust ventilation system served to decrease exposure potential. Given the available toxicological data of the metals evaluated, caution is warranted. One should always keep in mind that occupational exposure levels were not developed specifically for nanoscale particles. With data suggesting that certain nanoparticles may be more toxic than the larger counterparts of the same material; employers should attempt to control emissions of these particles at the source, to limit the potential for exposure.
40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Sampling and analytical procedures for measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES...
40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Sampling and analytical procedures for measuring gaseous exhaust emissions. 87.64 Section 87.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES...
40 CFR 600.006-86 - Data and information requirements for fuel economy vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuel economy vehicles. 600.006-86 Section 600.006-86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Regulations for 1977 and Later Model Year Automobiles-General...
40 CFR 600.115-11 - Criteria for determining the fuel economy label calculation method.
Code of Federal Regulations, 2012 CFR
2012-07-01
... economy label calculation method. 600.115-11 Section 600.115-11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.115-11 Criteria for...
40 CFR 600.115-11 - Criteria for determining the fuel economy label calculation method.
Code of Federal Regulations, 2013 CFR
2013-07-01
... economy label calculation method. 600.115-11 Section 600.115-11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.115-11 Criteria for...
40 CFR 600.006-89 - Data and information requirements for fuel economy vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuel economy vehicles. 600.006-89 Section 600.006-89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Regulations for 1977 and Later Model Year Automobiles-General...
40 CFR 600.006-87 - Data and information requirements for fuel economy vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuel economy vehicles. 600.006-87 Section 600.006-87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Regulations for 1977 and Later Model Year Automobiles-General...
40 CFR 600.006-08 - Data and information requirements for fuel economy data vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuel economy data vehicles. 600.006-08 Section 600.006-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Regulations for 1977 and Later Model Year...
40 CFR 86.884-5 - Test procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... New Diesel Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-5 Test procedures. The procedures..., or eliminating smoke emissions and to uncontrolled engines. (b) The test is designed to determine the opacity of smoke in exhaust emissions during those engine operating conditions which tend to promote smoke...
40 CFR 86.884-5 - Test procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... New Diesel Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-5 Test procedures. The procedures..., or eliminating smoke emissions and to uncontrolled engines. (b) The test is designed to determine the opacity of smoke in exhaust emissions during those engine operating conditions which tend to promote smoke...
40 CFR 86.884-5 - Test procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... New Diesel Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-5 Test procedures. The procedures..., or eliminating smoke emissions and to uncontrolled engines. (b) The test is designed to determine the opacity of smoke in exhaust emissions during those engine operating conditions which tend to promote smoke...
40 CFR 86.211-94 - Exhaust gas analytical system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.211-94 Exhaust gas...
40 CFR 86.240-94 - Exhaust sample analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.240-94 Exhaust sample analysis. The...
REDUCING DIESEL NOX AND SOOT EMISSIONS VIA PARTICLE-FREE EXHAUST GAS RECIRCULATION - PHASE I
Diesel engines play an important role in the United States economy for power generation and transportation. However, NOx and soot emissions from both stationary and mobile diesel engines are a major contributor to air pollution. Many engine modifications and exhaust-after-t...
40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Sampling and analytical procedures for measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES...
40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Sampling and analytical procedures for measuring gaseous exhaust emissions. 87.64 Section 87.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES...
40 CFR 63.3004 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Requirements and Information § 63.3004 What definitions apply to this subpart? Terms used in this subpart are... application vacuum exhaust means the exhaust from the vacuum system used to remove excess resin solution from... binds the fibers. Emission limitation means an emission limit, operating limit, or work practice...
40 CFR 63.3004 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Requirements and Information § 63.3004 What definitions apply to this subpart? Terms used in this subpart are... application vacuum exhaust means the exhaust from the vacuum system used to remove excess resin solution from... binds the fibers. Emission limitation means an emission limit, operating limit, or work practice...
40 CFR 86.1828-01 - Emission data vehicle selection.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., considering all exhaust emission constituents, all exhaust test procedures, and the potential impact of air conditioning on test results. The selected vehicle will include an air conditioning engine code unless the.... (a) FTP and SFTP testing. Within each test group, the vehicle configuration shall be selected which...
40 CFR 86.1828-01 - Emission data vehicle selection.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., considering all exhaust emission constituents, all exhaust test procedures, and the potential impact of air conditioning on test results. The selected vehicle will include an air conditioning engine code unless the.... (a) FTP and SFTP testing. Within each test group, the vehicle configuration shall be selected which...
40 CFR 86.1828-01 - Emission data vehicle selection.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., considering all exhaust emission constituents, all exhaust test procedures, and the potential impact of air conditioning on test results. The selected vehicle will include an air conditioning engine code unless the.... (a) FTP and SFTP testing. Within each test group, the vehicle configuration shall be selected which...
40 CFR 86.1828-01 - Emission data vehicle selection.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., considering all exhaust emission constituents, all exhaust test procedures, and the potential impact of air conditioning on test results. The selected vehicle will include an air conditioning engine code unless the.... (a) FTP and SFTP testing. Within each test group, the vehicle configuration shall be selected which...
40 CFR 90.301 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the test engine is operated using a steady state test cycle on an engine dynamometer. The exhaust... concentrations are converted to mass emission rates in grams per hour based on either fuel flow, fuel flow and engine intake air flow, or exhaust volume flow. Weighted emission rates are reported as grams per brake...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is...
Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L
2015-10-06
Emissions of intermediate-volatility organic compounds (IVOCs) from five on-road diesel vehicles and one off-road diesel engine were characterized during dynamometer testing. The testing evaluated the effects of driving cycles, fuel composition and exhaust aftertreatment devices. On average, more than 90% of the IVOC emissions were not identified on a molecular basis, instead appearing as an unresolved complex mixture (UCM) during gas-chromatography mass-spectrometry analysis. Fuel-based emissions factors (EFs) of total IVOCs (speciated + unspeciated) depend strongly on aftertreatment technology and driving cycle. Total-IVOC emissions from vehicles equipped with catalyzed diesel particulate filters (DPF) are substantially lower (factor of 7 to 28, depending on driving cycle) than from vehicles without any exhaust aftertreatment. Total-IVOC emissions from creep and idle operations are substantially higher than emissions from high-speed operations. Although the magnitude of the total-IVOC emissions can vary widely, there is little variation in the IVOC composition across the set of tests. The new emissions data are combined with published yield data to investigate secondary organic aerosol (SOA) formation. SOA production from unspeciated IVOCs is estimated using surrogate compounds, which are assigned based on gas-chromatograph retention time and mass spectral signature of the IVOC UCM. IVOCs contribute the vast majority of the SOA formed from exhaust from on-road diesel vehicles. The estimated SOA production is greater than predictions by previous studies and substantially higher than primary organic aerosol. Catalyzed DPFs substantially reduce SOA formation potential of diesel exhaust, except at low speed operations.
Propane and butane emission sources to ambient air of Mexico City metropolitan area.
Jaimes, L; Sandoval, J
2002-04-22
Samples of volatile organic compounds (VOCs) were collected in a smog chamber in order to determine whether automotive exhausts or LP Gas emissions play a greater role in the source of propane and butane, which affect ozone formation and other pollutants in the ambient air of the Mexico City metropolitan area (MCMA). These samples were collected in April 1995 during mornings and evenings. The testing methodology used for measuring exhaust emission were FTP or EPA-74 tests, and SHED type tests were also conducted in order to evaluate evaporative emissions. The finding from analysis of the VOCs collected in the morning demonstrate that in the atmosphere, propane concentrations are higher than that of butane but the reverse in evaporative and exhaust emissions, with the concentration of propane lower than that of butane. Our conclusion is that most of C3 and C4 in the ambient air comes from LP gas and not vehicle exhaust or evaporative emission, due to the higher levels of propane than butane in its formulation. The analysis of VOCs also indicates that although the conversion (in the smog chamber) of alkanes is low during the day, due to the high initial concentration, their contribution in the reaction mechanism to produce ozone can be appreciable.
NASA Astrophysics Data System (ADS)
Muhsin Ithnin, Ahmad; Jazair Yahya, Wira; Baun Fletcher, Jasmine; Kadir, Hasannuddin Abd
2017-10-01
Water-in-diesel emulsion fuel (W/D) is one of the alternative fuels that capable to reduce the exhaust emission of diesel engine significantly especially the nitrogen oxides (NOx) and particulate matter (PM). However, the usage of W/D emulsion fuels contributed to higher CO emissions. Supplementing metal additive into the fuel is the alternate way to reduce the CO emissions and improve performance. The present paper investigates the effect of using W/D blended with organic based manganese metal additives on the diesel engine performance and exhaust emission. The test were carried out by preparing and analysing the results observed from five different tested fuel which were D2, emulsion fuel (E10: 89% D2, 10% - water, 1% - surfactant), E10Mn100, E10Mn150, E10Mn200. Organic based Manganese (100ppm, 150ppm, 200ppm) used as the additive in the three samples of the experiments. E10Mn200 achieved the maximum reduction of BSFC up to 13.66% and has the highest exhaust gas temperature. Whereas, E10Mn150 achieved the highest reduction of CO by 14.67%, and slightly increased of NOx emissions as compared to other emulsion fuels. Organic based manganese which act as catalyst promotes improvement of the emulsion fuel performance and reduced the harmful emissions discharged.
Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D
2012-06-05
We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene.
NASA Astrophysics Data System (ADS)
Alanen, Jenni; Simonen, Pauli; Saarikoski, Sanna; Timonen, Hilkka; Kangasniemi, Oskari; Saukko, Erkka; Hillamo, Risto; Lehtoranta, Kati; Murtonen, Timo; Vesala, Hannu; Keskinen, Jorma; Rönkkö, Topi
2017-07-01
Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM) chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6-268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA) formation potential was measured to be 9-20 mg kgfuel-1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize - more than half an hour - which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission source and system temperatures. Sulfate was measured to have the highest evaporation temperature, and nitrate had the lowest. The evaporation temperature of ammonium depended on the fractions of nitrate and sulfate in the particles. The average volatility of the total aged particles was measured to be lower than that of primary particles, indicating better stability of the aged natural gas engine-emitted aerosol in the atmosphere. According to the results of this study, the exhaust of a natural gas engine equipped with a catalyst forms secondary aerosol when the atmospheric ages in a PAM chamber are several days long. The secondary aerosol matter has different physical characteristics from those of primary particulate emissions.
NASA Astrophysics Data System (ADS)
Inomata, S.; Tanimoto, H.; Fujitani, Y.; Fushimi, A.; Sato, K.; Sekimoto, K.; Yamada, H.; Hori, S.; Shimono, A.; Hikida, T.
2011-12-01
On-line measurements of nitro organic compounds in automobile exhaust were carried out by proton transfer reaction mass spectrometry (PTR-MS) with a chassis dynamometer. Diesel vehicles with oxidation catalyst system (diesel vehicle A) and with diesel PM-NOx reduction system ((diesel vehicle B) and a gasoline vehicle were used as a test vehicle. In the case of the diesel vehicle A, the emissions of nitromethane, nitrophenol (NPh), C7-, C8-, C9-, and C10-nitrophenols, and dihydroxynitrobenzenes (DHNB) were observed in the diesel exhaust from the experiment under the constant driving at 60 km hr-1. Temporal variations of mixing ratios for nitromethane, NPh, and DHNB along with related volatile organic compounds (VOCs) were measured during a transient driving cycle. The time-resolved measurement revealed that the nitromethane emission was strongly correlated with the emissions of CO, benzene, and acetone, which are relatively quickly produced in acceleration processes and appeared as sharp peaks. On the other hand, the NPh emission was moderately correlated with the emissions of acetic acid and phenol, which peaks were broad. The emission of nitromethane was observed from the exhaust of the diesel vehicle B but the emission of other nitro organic compounds was not observed. This suggests that the emission of nitro organic compounds besides nitromethane may depend on the diesel exhaust aftertreatment devices. The emission of nitromethane was also observed from the exhaust of the gasoline vehicle with cold start. An in-situ measurement of nitro organic compounds and their related VOCs was carried out at the crossing of an urban city, Kawasaki. Nitromethane was observed at the crossing and we found that the concentration of nitrometane varied rapidly. During the measurement, the maximum of the concentration of nitrometane reached 5 ppbv. Not only nitrophenols but also nitroaromatics were sometimes detected in the field measurement.
NASA Astrophysics Data System (ADS)
Goldsworthy, Brett
2017-08-01
Ship exhaust emissions need to be allocated accurately in both space and time in order to examine many of the associated impacts, including on air quality and health. Data on ship activity from the Automatic Identification System (AIS) allow ship exhaust emissions to be calculated with fine spatial and temporal resolution. However, there are spatial gaps in the coverage afforded by the coastal network of ground stations that are used to collect the AIS data. This paper focuses on the problem of allocating emissions to the coastal gap regions. Allocating emissions to these regions involves generating interpolated ship tracks that both span the gaps and avoid coming too close to land. In most cases, a simple shortest path or straight line interpolation produces tracks that do not overlap or come too close to land. Where the simple method does not produce acceptable results, vessel tracks are steered around land on shortest available paths using a combination of visibility graphs and Dijkstra's algorithm. A geographical cluster analysis is first used to identify the boundary regions of the data gaps. The properties of the data gaps are summarised in terms of the length, duration and speed of the spanning tracks. The interpolation methods are used to improve the spatial distribution of emissions. It is also shown that emissions in the gap regions can contribute substantially to the total ship exhaust emissions in close proximity to highly populated areas.
40 CFR 89.412 - Raw gaseous exhaust sampling and analytical system description.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw gaseous exhaust sampling and...-IGNITION ENGINES Exhaust Emission Test Procedures § 89.412 Raw gaseous exhaust sampling and analytical... must be incorporated in each system used for raw testing under this subpart. (1) [Reserved] (2) The...
40 CFR 89.412 - Raw gaseous exhaust sampling and analytical system description.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Raw gaseous exhaust sampling and...-IGNITION ENGINES Exhaust Emission Test Procedures § 89.412 Raw gaseous exhaust sampling and analytical... must be incorporated in each system used for raw testing under this subpart. (1) [Reserved] (2) The...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
... on the International Maritime Organization Guidelines for Exhaust Gas Cleaning Systems for Marine... Organization guidelines for exhaust gas cleaning systems for marine engines in Washington, DC. The purpose of... exhaust gas cleaning systems for marine engines to remove sulphur oxide emissions in order to comply with...
Experimental Analysis of Exhaust Manifold with Ceramic Coating for Reduction of Heat Dissipation
NASA Astrophysics Data System (ADS)
Saravanan, J.; Valarmathi, T. N.; Nathc, Rajdeep; Kumar, Prasanth
2017-05-01
Exhaust manifold plays an important role in the exhaust system, the manifold delivers the waste toxic gases to a safe distance and it is used to reduce the sound pollution and air pollution. Exhaust manifold suffers with lot of thermal stress, due to this blow holes occurs in the surface of the exhaust manifold and also more noise is developed. The waste toxic gases from the multiple cylinders are collected into a single pipe by the exhaust manifold. The waste toxic gases can damage the material of the manifold. In this study, to prevent the damage zirconia powder has been coated in the inner surface and alumina (60%) combined with titania (40%) has been used for coating the outer surface of the exhaust manifold. After coating experiments have been performed using a multiple-cylinder four stroke stationary petrol engine. The test results of hardness, emission, corrosion and temperature of the coated and uncoated manifolds have been compared. The result shows that the performance is improved and also emission is reduced in the coated exhaust manifold.
Maikawa, Caitlin L; Zimmerman, Naomi; Rais, Khaled; Shah, Mittal; Hawley, Brie; Pant, Pallavi; Jeong, Cheol-Heon; Delgado-Saborit, Juana Maria; Volckens, John; Evans, Greg; Wallace, James S; Godri Pollitt, Krystal J
2016-10-15
Gasoline direct injection (GDI) engines are increasingly prevalent in the global vehicle fleet. Particulate matter emissions from GDI engines are elevated compared to conventional gasoline engines. The pulmonary effects of these higher particulate emissions are unclear. This study investigated the pulmonary responses induced by GDI engine exhaust using an ex vivo model. The physiochemical properties of GDI engine exhaust were assessed. Precision cut lung slices were prepared using Balb/c mice to evaluate the pulmonary response induced by one-hour exposure to engine-out exhaust from a laboratory GDI engine operated at conditions equivalent to vehicle highway cruise conditions. Lung slices were exposed at an air-liquid interface using an electrostatic aerosol in vitro exposure system. Particulate and gaseous exhaust was fractionated to contrast mRNA production related to polycyclic aromatic hydrocarbon (PAH) metabolism and oxidative stress. Exposure to GDI engine exhaust upregulated genes involved in PAH metabolism, including Cyp1a1 (2.71, SE=0.22), and Cyp1b1 (3.24, SE=0.12) compared to HEPA filtered air (p<0.05). GDI engine exhaust further increased Cyp1b1 expression compared to filtered GDI engine exhaust (i.e., gas fraction only), suggesting this response was associated with the particulate fraction. Exhaust particulate was dominated by high molecular weight PAHs. Hmox1, an oxidative stress marker, exhibited increased expression after exposure to GDI (1.63, SE=0.03) and filtered GDI (1.55, SE=0.04) engine exhaust compared to HEPA filtered air (p<0.05), likely attributable to a combination of the gas and particulate fractions. Exposure to GDI engine exhaust contributes to upregulation of genes related to the metabolism of PAHs and oxidative stress. Copyright © 2016 Elsevier B.V. All rights reserved.
Influence of particulate trap oxidizers on emission of mutagenic compounds by diesel automobiles.
Rasmussen, R E; Devillez, G; Smith, L R
1989-06-01
Diesel exhaust particles are known to contain mutagenic and carcinogenic chemicals. The aim of this study was to determine whether, and to what extent, catalytic particulate trap oxidizers on light-duty diesel engines may reduce the emission of particle-associated mutagenic chemicals into the environment. Exhaust particles were collected from Mercedes Benz and Volkswagen diesel automobiles, equipped with or without the manufacturer's exhaust traps, while running on a chassis dynamometer under specified load conditions. Exhaust particles were collected from a dilution tunnel onto 20" X 20" Teflon-coated fiberglass filters. Mutagenesis tests of dichloromethane (DCM) extracts of the particles were conducted using the Ames Salmonella bacterial test system. The mutation rate was calculated in terms of histidine revertants per mile of travel during a set of standard test cycles. With both vehicles the traps produced an 87-92% reduction in the total amount of particulate material collected by the filters. There was no significant change in the specific mutagenic activity (revertants per microgram of DCM particle extract) with or without the traps. These studies support the notion that installation of exhaust traps which reduce particulate emission on diesel-powered vehicles will also reduce the emission of particle-associated mutagenic and carcinogenic materials into the environment.
Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts.
Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf
2017-02-18
Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.
Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts
Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf
2017-01-01
Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700
Health effects of subchronic exposure to environmental levels of diesel exhaust.
Reed, M D; Gigliotti, A P; McDonald, J D; Seagrave, J C; Seilkop, S K; Mauderly, J L
2004-04-01
Diesel exhaust is a public health concern and contributor to both ambient and occupational air pollution. As part of a general health assessment of multiple anthropogenic source emissions conducted by the National Environmental Respiratory Center (NERC), a series of health assays was conducted on rats and mice exposed to environmentally relevant levels of diesel exhaust. This article summarizes the study design and exposures, and reports findings on several general indicators of toxicity and carcinogenic potential. Diesel exhaust was generated from a commonly used 2000 model 5.9-L, 6-cylinder turbo diesel engine operated on a variable-load heavy-duty test cycle burning national average certification fuel. Animals were exposed to clean air (control) or four dilutions of whole emissions based on particulate matter concentration (30, 100, 300, and 1000 microg/m(3)). Male and female F344 rats and A/J mice were exposed by whole-body inhalation 6 h/day, 7 days/wk, for either 1 wk or 6 mo. Exposures were characterized in detail. Effects of exposure on clinical observations, body and organ weights, serum chemistry, hematology, histopathology, bronchoalveolar lavage, and serum clotting factors were mild. Significant exposure-related effects occurring in both male and female rats included decreases in serum cholesterol and clotting Factor VII and slight increases in serum gamma-glutamyl transferase. Several other responses met screening criteria for significant exposure effects but were not consistent between genders or exposure times and were not corroborated by related parameters. Carcinogenic potential as determined by micronucleated reticulocyte counts and proliferation of adenomas in A/J mice were unaffected by 6 mo of exposure. Parallel studies demonstrated effects on cardiac function and resistance to viral infection; however, the results reported here show few and only modest health hazards from subchronic or shorter exposures to realistic concentrations of contemporary diesel emissions.
Recent advances in investigations of toxicity of automotive exhaust
Stupfel, Maurice
1976-01-01
The influence of auto exhaust on man's health is difficult to gauge considering the intricacy of human environmental urban stresses and particularly of other air polluting (industrial, domestic) emissions. Epidemiological surveys made in road tunnel employees and in traffic officers have not demonstrated specific effects and have often been complicated by cigarette smoking as a factor. Long-term animal experiments run mostly on small rodents give evidence of little effect of the pathological actions of dilutions such as those encountered in high polluted cities. However the acute toxicity of gasoline exhaust emission is well known and mostly due to carbon monoxide. Considering the different types of cycles and operating conditions of vehicles (gasoline and diesel), auto exhaust gases constitute no more a chemical entity than they show, a definite toxicity. A great number of substances that they contain (nitrogen oxides, aldehydes, antiknock additives, heavy metals, possible catalysts are highly toxic as shown by in vivo and in vitro (mutagenic) tests. Interactions of the components are for the moment ignored or poorly understood. Besides, the evolution of the physicochemical properties and natures of the auto exhaust emission in the gaseous biotope of man under determined conditions of ultraviolet irradiation, temperature, and hygrometry provoke the formation of secondary products such as oxidants and ozone. Several experiments show clearly that irradiation increases the toxicity of auto exhaust significantly. For these reasons, geographical, meteorological, and chronological (circadian and seasonal) factors should be taken into consideration, especially with regard to emission standards. PMID:67944
Effect of exhaust gas recirculation on emissions from a flame-tube combustor using Liquid Jet A fuel
NASA Technical Reports Server (NTRS)
Marek, C. J.; Tacina, R. R.
1976-01-01
The effects of uncooled exhaust gas recirculation as an inert diluent on emissions of oxides of nitrogen (NO + NO2) and on combustion efficiency were investigated. Ratios of recirculated combustion products to inlet airflow were varied from 10 to 80 percent by using an inlet air ejector nozzle. Liquid Jet A fuel was used. The flame-tube combustor was 10.2 cm in diameter. It was operated with and without a flameholder present. The combustor pressure was maintained constant at 0.5 MPa. The equivalence ratio was varied from 0.3 to 1.0. The inlet air temperature was varied from 590 to 800 K, and the reference velocity from 10 to 30 m/sec. Increasing the percent recirculation from 10 to 25 had the following effects: (1) the peak NOx emission was decreased by 37 percent, from 8 to 5 g NO2/kg fuel, at an inlet air temperature of 590 K and a reference velocity of 15 m/sec; (2) the combustion efficiency was increased, particularly at the higher equivalence ratios; and (3) for a high combustion efficiency of greater than 99.5 percent, the range of operation of the combustor was nearly doubled in terms of equivalence ratio. Increasing the recirculation from 25 to 50 percent did not change the emissions significantly.
Air quality and climate impacts of alternative bus technologies in Greater London.
Chong, Uven; Yim, Steve H L; Barrett, Steven R H; Boies, Adam M
2014-04-15
The environmental impact of diesel-fueled buses can potentially be reduced by the adoption of alternative propulsion technologies such as lean-burn compressed natural gas (LB-CNG) or hybrid electric buses (HEB), and emissions control strategies such as a continuously regenerating trap (CRT), exhaust gas recirculation (EGR), or selective catalytic reduction with trap (SCRT). This study assessed the environmental costs and benefits of these bus technologies in Greater London relative to the existing fleet and characterized emissions changes due to alternative technologies. We found a >30% increase in CO2 equivalent (CO2e) emissions for CNG buses, a <5% change for exhaust treatment scenarios, and a 13% (90% confidence interval 3.8-20.9%) reduction for HEB relative to baseline CO2e emissions. A multiscale regional chemistry-transport model quantified the impact of alternative bus technologies on air quality, which was then related to premature mortality risk. We found the largest decrease in population exposure (about 83%) to particulate matter (PM2.5) occurred with LB-CNG buses. Monetized environmental and investment costs relative to the baseline gave estimated net present cost of LB-CNG or HEB conversion to be $187 million ($73 million to $301 million) or $36 million ($-25 million to $102 million), respectively, while EGR or SCRT estimated net present costs were $19 million ($7 million to $32 million) or $15 million ($8 million to $23 million), respectively.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.116-12 Special procedures related to electric vehicles and plug-in hybrid electric vehicles. (a) Determine fuel economy...
40 CFR 600.209-85 - Calculation of fuel economy values for labeling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Calculation of fuel economy values for... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values for 1977 and Later Model Year Automobiles...
40 CFR 600.008-77 - Review of fuel economy data, testing by the Administrator.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Review of fuel economy data, testing... PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Regulations for 1977 and Later Model Year...
40 CFR 600.207-86 - Calculation of fuel economy values for a model type.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Calculation of fuel economy values for... AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values for 1977 and Later Model...
40 CFR 600.211-08 - Sample calculation of fuel economy values for labeling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Sample calculation of fuel economy... AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values for 1977 and Later Model...
40 CFR 610.31 - Vehicle tests for fuel economy and exhaust emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Vehicle tests for fuel economy and... (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.31 Vehicle tests for fuel economy and exhaust emissions. (a) The tests described in...
40 CFR 610.31 - Vehicle tests for fuel economy and exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Vehicle tests for fuel economy and... (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.31 Vehicle tests for fuel economy and exhaust emissions. (a) The tests described in...
40 CFR 610.31 - Vehicle tests for fuel economy and exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Vehicle tests for fuel economy and... (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.31 Vehicle tests for fuel economy and exhaust emissions. (a) The tests described in...
40 CFR 610.31 - Vehicle tests for fuel economy and exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Vehicle tests for fuel economy and... (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.31 Vehicle tests for fuel economy and exhaust emissions. (a) The tests described in...
Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.
Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn
2014-08-01
Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use of water-emulsified diesel helps improve the effectiveness of the testing program. The analyzed consequences provide useful information to the government for setting policies to curb pollutant emissions from a light-duty diesel engine generator more effectively.
Exhaust gas emissions of a vortex breakdown stabilized combustor
NASA Technical Reports Server (NTRS)
Yetter, R. A.; Gouldin, F. C.
1976-01-01
Exhaust gas emission data are described for a swirl stabilized continuous combustor. The combustor consists of confined concentric jets with premixed fuel and air in the inner jet and air in the outer jet. Swirl may be induced in both inner and outer jets with the sense of rotation in the same or opposite directions (co-swirl and counter-swirl). The combustor limits NO emissions by lean operation without sacrificing CO and unburned hydrocarbon emission performance, when commercial-grade methane and air fired at one atmosphere without preheat are used. Relative swirl direction and magnitude are found to have significant effects on exhaust gas concentrations, exit temperatures, and combustor efficiencies. Counter-swirl gives a large recirculation zone, a short luminous combustion zone, and large slip velocities in the interjet shear layer. For maximum counter-swirl conditions, the efficiency is low.
A Fuel-Based Assessment of On-Road and Off-Road Mobile Source Emission Trends
NASA Astrophysics Data System (ADS)
Dallmann, T. R.; Harley, R. A.
2009-12-01
Mobile sources contribute significantly to emissions of nitrogen oxides (NOx) and fine particulate matter (PM2.5) in the United States. These emissions lead to a variety of environmental concerns including adverse human health effects and climate change. In the electric power sector, sulfur dioxide (SO2) and NOx emissions from power plants are measured directly using continuous emission monitoring systems. In contrast for mobile sources, statistical models are used to estimate average emissions from a very large and diverse population of engines. Despite much effort aimed at improving them, mobile source emission inventories continue to have large associated uncertainties. Alternate methods are needed to help evaluate estimates of mobile source emissions and quantify and reduce the associated uncertainties. In this study, a fuel-based approach is used to estimate emissions from mobile sources, including on-road and off-road gasoline and diesel engines. In this approach, engine activity is measured by fuel consumed (in contrast EPA mobile source emission models are based on vehicle km of travel and total amount of engine work output for on-road and off-road engines, respectively). Fuel consumption is defined in this study based on highway fuel tax reports for on-road engines, and from surveys of fuel wholesalers who sell tax-exempt diesel fuel for use in various off-road sectors such as agriculture, construction, and mining. Over the decade-long time period (1996-2006) that is the focus of the present study, national sales of taxable gasoline and diesel fuel intended for on-road use increased by 15 and 43%, respectively. Diesel fuel use by off-road equipment increased by about 20% over the same time period. Growth in fuel consumption offset some of the reductions in pollutant emission factors that occurred during this period. This study relies on in-use measurements of mobile source emission factors, for example from roadside and tunnel studies, remote sensing, and plume capture experiments. Extensive in-use emissions data are available for NOx, especially for on-road engines. Measurements of exhaust PM2.5 emission factors are sparse in comparison. For NOx, there have been dramatic (factor of 2) decreases in emission factors for on-road gasoline engines between 1996 and 2006, due to use of improved catalytic converters on most engines. In contrast, diesel NOx emission factors decreased more gradually over the same time period. Exhaust PM2.5 emission factors appear to have decreased for most engine categories, but emission uncertainties are large for this pollutant. Pollutant emissions were estimated by combining fuel sales with emission factors expressed per unit of fuel burned. Diesel engines are the dominant mobile source of both NOx and PM2.5; the diesel contribution to NOx has increased over time as gasoline engine emissions have declined. Comparing fuel-based emission estimates with EPA’s national emission inventory led to the following conclusions: (1) total emissions of both NOx and PM2.5 estimated by two different methods were similar, (2) the distribution of source contributions to these totals differ significantly, with higher relative contributions coming from on-road diesel engines in this study compared to EPA.
Monitoring Engine Vibrations And Spectrum Of Exhaust
NASA Technical Reports Server (NTRS)
Martinez, Carol L.; Randall, Michael R.; Reinert, John W.
1991-01-01
Real-time computation of intensities of peaks in visible-light emission spectrum of exhaust combined with real-time spectrum analysis of vibrations into developmental monitoring technique providing up-to-the-second information on conditions of critical bearings in engine. Conceived to monitor conditions of bearings in turbopump suppling oxygen to Space Shuttle main engine, based on observations that both vibrations in bearings and intensities of visible light emitted at specific wavelengths by exhaust plume of engine indicate wear and incipient failure of bearings. Applicable to monitoring "health" of other machinery via spectra of vibrations and electromagnetic emissions from exhausts. Concept related to one described in "Monitoring Bearing Vibrations For Signs Of Damage", (MFS-29734).
Wang, Yan Jason; Yang, Bo; Lipsky, Eric M; Robinson, Allen L; Zhang, K Max
2013-01-15
Experimental results from laboratory emission testing have indicated that particulate emission measurements are sensitive to the dilution process of exhaust using fabricated dilution systems. In this paper, we first categorize the dilution parameters into two groups: (1) aerodynamics (e.g., mixing types, mixing enhancers, dilution ratios, residence time); and (2) mixture properties (e.g., temperature, relative humidity, particle size distributions of both raw exhaust and dilution gas). Then we employ the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to investigate the effects of those parameters on a set of particulate emission measurements comparing two dilution tunnels, i.e., a T-mixing lab dilution tunnel and a portable field dilution tunnel with a type of coaxial mixing. The turbulent flow fields and aerosol dynamics of particles are simulated inside two dilution tunnels. Particle size distributions under various dilution conditions predicted by CTAG are evaluated against the experimental data. It is found that in the area adjacent to the injection of exhaust, turbulence plays a crucial role in mixing the exhaust with the dilution air, and the strength of nucleation dominates the level of particle number concentrations. Further downstream, nucleation terminates and the growth of particles by condensation and coagulation continues. Sensitivity studies reveal that a potential unifying parameter for aerodynamics, i.e., the dilution rate of exhaust, plays an important role in new particle formation. The T-mixing lab tunnel tends to favor the nucleation due to a larger dilution rate of the exhaust than the coaxial mixing field tunnel. Our study indicates that numerical simulation tools can be potentially utilized to develop strategies to reduce the uncertainties associated with dilution samplings of emission sources.
NASA Astrophysics Data System (ADS)
Kukkonen, Jaakko; Kangas, Leena; Kauhaniemi, Mari; Sofiev, Mikhail; Aarnio, Mia; Jaakkola, Jouni J. K.; Kousa, Anu; Karppinen, Ari
2018-06-01
Reliable and self-consistent data on air quality are needed for an extensive period of time for conducting long-term, or even lifetime health impact assessments. We have modelled the urban-scale concentrations of fine particulate matter (PM2.5) in the Helsinki Metropolitan Area for a period of 35 years, from 1980 to 2014. The regional background concentrations were evaluated based on reanalyses of the atmospheric composition on global and European scales, using the SILAM model. The high-resolution urban computations included both the emissions originated from vehicular traffic (separately exhaust and suspension emissions) and those from small-scale combustion, and were conducted using the road network dispersion model CAR-FMI and the multiple-source Gaussian dispersion model UDM-FMI. The modelled concentrations of PM2.5 agreed fairly well with the measured data at a regional background station and at four urban measurement stations, during 1999-2014. The modelled concentration trends were also evaluated for earlier years, until 1988, using proxy analyses. There was no systematic deterioration of the agreement of predictions and data for earlier years (the 1980s and 1990s), compared with the results for more recent years (2000s and early 2010s). The local vehicular emissions were about 5 times higher in the 1980s, compared with the emissions during the latest considered years. The local small-scale combustion emissions increased slightly over time. The highest urban concentrations of PM2.5 occurred in the 1980s; these have since decreased to about to a half of the highest values. In general, regional background was the largest contribution in this area. Vehicular exhaust has been the most important local source, but the relative shares of both small-scale combustion and vehicular non-exhaust emissions have increased in time. The study has provided long-term, high-resolution concentration databases on regional and urban scales that can be used for the assessment of health effects associated with air pollution.
Cohn, J G
1975-01-01
The development of PTX, monolithic catalytic exhaust purifiers, is outlined, and their first use for exhaust emissions control of commercial equipment is described. The main use of PTX converters is on forklift trucks. The purification achievable with PTX-equipped fork-lift trucks under various operational conditions is discussed, and examples from the field are given. During more than ten years of operation, no adverse health effects have been reported, and PTX-equipped internal combustion engines appear safe for use in confined areas. PMID:50933
Basophil mediated pro-allergic inflammation in vehicle-emitted particles exposure.
Zakharenko, Alexander M; Engin, Ayse Basak; Chernyshev, Valery V; Chaika, Vladimir V; Ugay, Sergey M; Rezaee, Ramin; Karimi, Gholamreza; Drozd, Vladimir A; Nikitina, Anna V; Solomennik, Sergey F; Kudryavkina, Olga R; Xin, Liu; Wenpeng, Yuan; Tzatzarakis, Manolis; Tsatsakis, Aristidis M; Golokhvast, Kirill S
2017-01-01
Despite of the fact that engine manufacturers develop a new technology to reduce exhaust emissions, insufficient attention given to particulate emissions. However, diesel exhaust particles are a major source of air-borne pollution, contain vast amount of polycyclic aromatic hydrocarbons (PAHs) and may have deleterious effects on the immune system, resulting in the induction and enhancement of pro-allergic processes. In the current study, vehicle emitted particles (VEP) from 2 different types of cars (diesel - D and gasoline - G) and locomotive (L) were collected. Overall, 129 four-week-old, male SPF-class Kunming mice were subcutaneously instilled with either low dose 100, 250 or high dose, 500mg/kg VEP and 15 mice were assigned as control group. The systemic toxicity was evaluated and alterations in the percentages of the CD3, CD4, CD8, CD16, CD25 expressing cells, basophils, eosinophils and neutrophils were determined. Basophil percentages were inversely associated with the PAH content of the VEPs, however basophil sensitization was more important than cell count in VEP exposure. Thus, the effects of VEP-PAHs emerge with the activation of basophils in an allergen independent fashion. Despite the increased percentage of CD4+ T cells, a sharp decrease in basophil counts at 500mg/kg of VEP indicates a decreased inhibitory effect of CD16+ monocytes on the proliferation of CD4+ T cell and suppressed polarization into a Th2 phenotype. Therefore, although the restrictions for vehicles emissions differ between countries, follow up studies and strict regulations are needed. Copyright © 2016 Elsevier Inc. All rights reserved.
40 CFR 205.168-1 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.168-1 General requirements. (a) Each manufacturer of motorcycle exhaust systems manufactured for Federally regulated... exhaust system in accordance with the requirements of § 205.169 of this subpart; and (2) Must only...
40 CFR 60.743 - Compliance provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operations not using carbon adsorption beds with individual exhausts. This method is applicable when the... carbon adsorption system with individual exhaust stacks for each adsorber vessel. The owner or operator... operations using carbon adsorption beds with individual exhausts. This method is applicable when emissions...
40 CFR 60.743 - Compliance provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operations not using carbon adsorption beds with individual exhausts. This method is applicable when the... carbon adsorption system with individual exhaust stacks for each adsorber vessel. The owner or operator... operations using carbon adsorption beds with individual exhausts. This method is applicable when emissions...
40 CFR 60.743 - Compliance provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operations not using carbon adsorption beds with individual exhausts. This method is applicable when the... carbon adsorption system with individual exhaust stacks for each adsorber vessel. The owner or operator... operations using carbon adsorption beds with individual exhausts. This method is applicable when emissions...
NASA Astrophysics Data System (ADS)
Mahmudul, H. M.; Hagos, Ftwi Y.; Mamat, Rizalman; Abdullah, Abdul A.
2016-11-01
Butanol is receiving huge interest in the area of alternative fuel in the compression ignition (CI) engines. In this work, butanol is used as an oxygenated additive to diesel and biodiesel blend fuels to evaluate the performance and emission of CI engine. The commercially available pure diesel fuel (D100) and 80% commercially available diesel- biodiesel bled (5% biodiesel and 95% by volume) and 20% butanol (BU20) fuels were investigated to evaluate the effects of the fuel blends on the performance and exhaust emissions of a single cylinder diesel engine. The experiment was conducted at fixed load of 75% with the five engine speeds (from 1200-2400 rpm with an interval of 300 rpm). The engine performance parameters such as power, torque, fuel consumption and thermal efficiency and exhaust gas emissions such as nitrogen oxides, carbon monoxide, and exhaust gas temperature were analysed from the experimental data. The results shows that although butanol addition has caused a slight reduction in power and torque values (11.1% and 3.5%, respectively), the emission values of the engine were improved. With respect to the exhaust gas temperature, CO and NOx emissions, of BU20 is reported to have reduction by 17.7%, 20% and 3%, respectively than the B100. Therefore, butanol can be used as a fuel additive to diesel-biodiesel blends.
Costagliola, M Antonietta; Murena, Fabio; Prati, M Vittoria
2014-01-15
Powered two-wheeler (PTW) vehicles complying with recent European type approval standards (stages Euro 2 and Euro 3) were tested on chassis dynamometer in order to measure exhaust emissions of about 25 volatile organic compounds (VOCs) in the range C1-C7, including carcinogenic compounds as benzene and 1,3-butadiene. The fleet consists of a moped (engine capacity ≤ 50 cm(3)) and three fuel injection motorcycles of different engine capacities (150, 300 and 400 cm(3)). Different driving conditions were tested (US FPT cycle, constant speed). Due to the poor control of the combustion and catalyst efficiency, moped is the highest pollutant emitter. In fact, fuel injection strategy and three way catalyst with lambda sensor are able to reduce VOC motorcycles' emission of about one order of magnitude with respect to moped. Cold start effect, that is crucial for the assessment of actual emission of PTWs in urban areas, was significant: 30-51% of extra emission for methane. In the investigated speed range, moped showed a significant maximum of VOC emission factor at minimum speed (10 km/h) and a slightly decreasing trend from 20 to 60 km/h; motorcycles showed on the average a less significant peak at 10 km/h, a minimum at 30-40 km/h and then an increasing trend with a maximum emission factor at 90 km/h. Carcinogenic VOCs show the same pattern of total VOCs. Ozone Formation Potential (OFP) was estimated by using Maximum Incremental Reactivity scale. The greatest contribution to tropospheric ozone formation comes from alkenes group which account for 50-80% to the total OFP. VOC contribution effect on greenhouse effect is negligible with respect to CO2 emitted. © 2013.
Increase of diesel car raises health risk in spite of recent development in engine technology.
Leem, Jong Han; Jang, Young-Kee
2014-01-01
Diesel exhaust particles (DEP) contain elemental carbon, organic compounds including Polyaromatic hydrocarbons (PAHs), metals, and other trace compounds. Diesel exhaust is complex mixture of thousands of chemicals. Over forty air contaminants are recognized as toxicants, such as carcinogens. Most diesel exhaust particles have aerodynamic diameters falling within a range of 0.1 to 0.25 μm. DEP was classified as a definite human carcinogen (group 1) by the International Agency for Research on Cancer at 2012 based on recently sufficient epidemiological evidence for lung cancer. Significant decreases in DEP and other diesel exhaust constituents will not be evident immediately, and outworn diesel car having longer mileage still threatens health of people in spite of recent remarkable development in diesel engine technology. Policy change in South Korea, such as introduction of diesel taxi, may raise health risk of air pollution in metropolitan area with these limitations of diesel engine. To protect people against DEP in South Korea, progressive strategies are needed, including disallowance of diesel taxi, more strict regulation of diesel engine emission, obligatory diesel particulate filter attachment in outworn diesel car, and close monitoring about health effects of DEP.
40 CFR 610.31 - Vehicle tests for fuel economy and exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Vehicle tests for fuel economy and exhaust emissions. 610.31 Section 610.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.31 Vehicle tests for fuel...
40 CFR 87.21 - Standards for exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each new aircraft gas turbine engine of class TF and of... gas turbine engine of class T3 manufactured on or after January 1, 1978, shall not exceed: Smoke...
40 CFR 87.21 - Standards for exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each new aircraft gas turbine engine of class TF and of... gas turbine engine of class T3 manufactured on or after January 1, 1978, shall not exceed: Smoke...
Code of Federal Regulations, 2011 CFR
2011-07-01
... economy label calculation method for 2011 and later model year vehicles. 600.115-08 Section 600.115-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Regulations...
40 CFR 86.1865-12 - How to comply with the fleet average CO2 standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Calculating the fleet average carbon-related exhaust emissions. (1) Manufacturers must compute separate production-weighted fleet average carbon-related exhaust emissions at the end of the model year for passenger... for sale, and certifying model types to standards as defined in § 86.1818-12. The model type carbon...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 34 and 45 [Docket No.: FAA-2012-1333; Amendment No. 34-5A] RIN 2120-AK15 Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013-24712, appearing on...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I demonstrate that my engine... PROPULSION MARINE ENGINES AND VESSELS Certifying Engine Families § 1045.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I demonstrate that my engine... SPARK-IGNITION ENGINES Certifying Engine Families § 1048.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine family is...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I demonstrate that my engine... ENGINES AND VEHICLES Certifying Engine Families § 1051.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine family is...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I demonstrate that my engine... ENGINES AND VEHICLES Certifying Engine Families § 1051.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine family is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I demonstrate that my engine... PROPULSION MARINE ENGINES AND VESSELS Certifying Engine Families § 1045.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I demonstrate that my engine... ENGINES AND VEHICLES Certifying Engine Families § 1051.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine family is...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I demonstrate that my engine... PROPULSION MARINE ENGINES AND VESSELS Certifying Engine Families § 1045.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I demonstrate that my engine... ENGINES AND VEHICLES Certifying Engine Families § 1051.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine family is...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I demonstrate that my engine... SPARK-IGNITION ENGINES Certifying Engine Families § 1048.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine family is...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I demonstrate that my engine... SPARK-IGNITION ENGINES Certifying Engine Families § 1048.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine family is...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I demonstrate that my engine... ENGINES AND VEHICLES Certifying Engine Families § 1051.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine family is...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I demonstrate that my engine... PROPULSION MARINE ENGINES AND VESSELS Certifying Engine Families § 1045.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I demonstrate that my engine... SPARK-IGNITION ENGINES Certifying Engine Families § 1048.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine family is...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I demonstrate that my engine... SPARK-IGNITION ENGINES Certifying Engine Families § 1048.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine family is...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I demonstrate that my engine... PROPULSION MARINE ENGINES AND VESSELS Certifying Engine Families § 1045.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine...
Code of Federal Regulations, 2010 CFR
2010-07-01
...-cycle vehicles not requiring particulate emission measurements. 86.109-94 Section 86.109-94 Protection... Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.109-94 Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate...
NASA Astrophysics Data System (ADS)
Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Müller, Loretta L.; Heeb, Norbert V.; Mayer, Andreas; Petri-Fink, Alke; Rothen-Rutishauser, Barbara
2013-12-01
Increasingly stringent regulation of particulate matter emissions from diesel vehicles has led to the widespread use of diesel particle filters (DPFs), the effect of which on exhaust toxicity is so far poorly understood. We exposed a cellular model of the human respiratory epithelium at the air-liquid interface to non-catalyzed wall-flow DPF-filtered diesel exhaust and compared the resulting biological responses to the ones observed upon exposure to unfiltered exhaust. Filtered diesel exhaust acted highly oxidative, even though to a lesser extent than unfiltered exhaust (quantification of total reduced glutathione), and both exhaust types triggered comparable responses to oxidative stress (measurement of heme-oxygenase 1 (HMOX1) and superoxide-dismutase (SOD1) gene expression). Further, diesel exhaust filtration significantly reduced pro-inflammatory responses (measurement of tumor necrosis factor (TNF) and interleukin-8 (IL-8) gene expression and quantification of the secretion of their gene products TNF-α and IL-8). Because inflammatory processes are central to the onset of adverse respiratory health effects caused by diesel exhaust inhalation, our results imply that DPFs may make a valuable contribution to the detoxification of diesel vehicle emissions. The induction of significant oxidative stress by filtered diesel exhaust however, also implies that the non-particulate exhaust components also need to be considered for lung cell risk assessment.
NASA Astrophysics Data System (ADS)
Mihlan, G. I.; Mitchell, R. I.; Smith, R. K.
1984-07-01
A survey to assess control technology for integrated circuit fabrication was conducted. Engineering controls included local and general exhaust ventilation, shielding, and personal protective equipment. Devices or work stations that contained toxic materials that were potentially dangerous were controlled by local exhaust ventilation. Less hazardous areas were controlled by general exhaust ventilation. Process isolation was used in the plasma etching, low pressure chemical vapor deposition, and metallization operations. Shielding was used in ion implantation units to control X-ray emissions, in contact mask alignes to limit ultraviolet (UV) emissions, and in plasma etching units to control radiofrequency and UV emissions. Most operations were automated. Use of personal protective equipment varied by job function.
[Experimental study on characteristics of biodiesel exhausted particle].
Ge, Yun-shan; He, Chao; Han, Xiu-kun; Wu, Si-jin; Lu, Xiao-ming
2007-07-01
A particle emission experiment of a direct-injection turbocharged diesel engine with biodiesel and diesel was carried out. A pump of 80 L/min and fiber glass filters with diameter of 90 mm was used to sample engine particles in exhaust pipe. The size distribution, soluble organic fraction (SOF) and 16 polycyclic aromatic hydrocarbons (PAHs) of particles were analyzed by a laser diffraction particle size analyzer and GC-MS. The results indicate that the volume weighted size distribution of biodiesel particle is single-peak and its median diameter d(0.5) and mean diameter d32 are decreased with the increasing speed. At the high speed the d32 and d(0.5) of biodiesel are larger than those of diesel, and quite the contrary at the low speed. SOF mass concentration and mass percentage of biodiesel are 12.3 - 31.5 mg/m3 and 38.2% - 58.0% respectively, which are much higher than those of diesel. The total PAHs emission concentration of biodiesel is 2.9 - 4.7 microg/m3 lower than that of diesel as much as 29.1% - 92.4%.
Hallberg, Lance M; Ward, Jonathan B; Wickliffe, Jeffrey K; Ameredes, Bill T
2017-01-01
Since its beginning, more than 117 years ago, the compression-ignition engine, or diesel engine, has grown to become a critically important part of industry and transportation. Public concerns over the health effects from diesel emissions have driven the growth of regulatory development, implementation, and technological advances in emission controls. In 2001, the United States Environmental Protection Agency and California Air Resources Board issued new diesel fuel and emission standards for heavy-duty engines. To meet these stringent standards, manufacturers used new emission after-treatment technology, and modified fuel formulations, to bring about reductions in particulate matter and nitrogen oxides within the exhaust. To illustrate the impact of that technological transition, a brief overview of pre-2007 diesel engine exhaust biomarkers of genotoxicity and health-related concerns is provided, to set the context for the results of our research findings, as part of the Advanced Collaborative Emissions Study (ACES), in which the effects of a 2007-compliant diesel engine were examined. In agreement with ACES findings reported in other tissues, we observed a lack of measurable 2007-compliant diesel treatment–associated DNA damage, in lung tissue (comet assay), blood serum (8-hydroxy-2′-deoxyguanosine [8-OHdG] assay), and hippocampus (lipid peroxidation assay), across diesel exhaust exposure levels. A time-dependent assessment of 8-OHdG and lipid peroxidation also suggested no differences in responses across diesel exhaust exposure levels more than 24 months of exposure. These results indicated that the 2007-compliant diesel engine reduced measurable reactive oxygen species–associated tissue derangements and suggested that the 2007 standards–based mitigation approaches were effective. PMID:28659715
NASA Astrophysics Data System (ADS)
Huang, C.; Wang, H. L.; Li, L.; Wang, Q.; Lu, Q.; de Gouw, J. A.; Zhou, M.; Jing, S. A.; Lu, J.; Chen, C. H.
2015-10-01
Volatile organic compound (VOC) species from vehicle exhausts and gas evaporation were investigated by chassis dynamometer and on-road measurements of nine gasoline vehicles, seven diesel vehicles, five motorcycles, and four gas evaporation samples. The secondary organic aerosol (SOA) mass yields of gasoline, diesel, motorcycle exhausts, and gas evaporation were estimated based on the mixing ratio of measured C2-C12 VOC species and inferred carbon number distributions. High aromatic contents were measured in gasoline exhausts and contributed comparatively more SOA yield. A vehicular emission inventory was compiled based on a local survey of on-road traffic in Shanghai and real-world measurements of vehicle emission factors from previous studies in the cities of China. The inventory-based vehicular organic aerosol (OA) productions to total CO emissions were compared with the observed OA to CO concentrations (ΔOA / ΔCO) in the urban atmosphere. The results indicate that vehicles dominate the primary organic aerosol (POA) emissions and OA production, which contributed about 40 and 60 % of OA mass in the urban atmosphere of Shanghai. Diesel vehicles, which accounted for less than 20 % of vehicle kilometers of travel (VKT), contribute more than 90 % of vehicular POA emissions and 80-90 % of OA mass derived by vehicles in urban Shanghai. Gasoline exhaust could be an important source of SOA formation. Tightening the limit of aromatic content in gasoline fuel will be helpful to reduce its SOA contribution. Intermediate-volatile organic compounds (IVOCs) in vehicle exhausts greatly contribute to SOA formation in the urban atmosphere of China. However, more experiments need to be conducted to determine the contributions of IVOCs to OA pollution in China.
Jet engine exhaust emissions of high altitude commercial aircraft projected to 1990
NASA Technical Reports Server (NTRS)
Grobman, J.; Ingebo, R. D.
1974-01-01
Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high-altitude cruise conditions are presented. The forecasts are based on:(1) current knowledge of emission characteristics of combustors and augmentors; (2) the status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft fueled by either JP fuel, liquefied natural gas, or hydrogen. Results are presented for cruise conditions in terms of both an emission index (g constituent/kg fuel) and an emission rate (g constituent/hr).
Wu, Yingying; Zhao, Peng; Zhang, Hongwei; Wang, Yuan; Mao, Guozhu
2012-01-01
In the recent years, China's auto industry develops rapidly, thus bringing a series of burdens to society and environment. This paper uses Logistic model to simulate the future trend of China's vehicle population and finds that China's auto industry would come into high speed development time during 2020-2050. Moreover, this paper predicts vehicles' fuel consumption and exhaust emissions (CO, HC, NO(x), and PM) and quantificationally evaluates related industry policies. It can be concluded that (1) by 2020, China should develop at least 47 million medium/heavy hybrid cars to prevent the growth of vehicle fuel consumption; (2) China should take the more stringent vehicle emission standard V over 2017-2021 to hold back the growth of exhaust emissions; (3) developing new energy vehicles is the most effective measure to ease the pressure brought by auto industry.
Experimental clean combustor program: Diesel no. 2 fuel addendum, phase 3
NASA Technical Reports Server (NTRS)
Gleason, C. C.; Bahr, D. W.
1979-01-01
A CF6-50 engine equipped with an advanced, low emission, double annular combustor was operated 4.8 hours with No. 2 diesel fuel. Fourteen steady-state operating conditions ranging from idle to full power were investigated. Engine/combustor performance and exhaust emissions were obtained and compared to JF-5 fueled test results. With one exception, fuel effects were very small and in agreement with previously obtained combustor test rig results. At high power operating condition, the two fuels produced virtually the same peak metal temperatures and exhaust emission levels. At low power operating conditions, where only the pilot stage was fueled, smoke levels tended to be significantly higher with No. 2 diesel fuel. Additional development of this combustor concept is needed in the areas of exit temperature distribution, engine fuel control, and exhaust emission levels before it can be considered for production engine use.
Zhao, Peng; Zhang, Hongwei; Wang, Yuan; Mao, Guozhu
2012-01-01
In the recent years, China's auto industry develops rapidly, thus bringing a series of burdens to society and environment. This paper uses Logistic model to simulate the future trend of China's vehicle population and finds that China's auto industry would come into high speed development time during 2020–2050. Moreover, this paper predicts vehicles' fuel consumption and exhaust emissions (CO, HC, NOx, and PM) and quantificationally evaluates related industry policies. It can be concluded that (1) by 2020, China should develop at least 47 million medium/heavy hybrid cars to prevent the growth of vehicle fuel consumption; (2) China should take the more stringent vehicle emission standard V over 2017–2021 to hold back the growth of exhaust emissions; (3) developing new energy vehicles is the most effective measure to ease the pressure brought by auto industry. PMID:23365524
Code of Federal Regulations, 2010 CFR
2010-07-01
... removal or puncturing the muffler, baffles, header pipes, or any other component which conducts exhaust... EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.173-2 Tampering. The manufacturer must... exhaust system which causes the motorcycle to exceed the Federal noise standard. Use of the motorcycle...
Code of Federal Regulations, 2012 CFR
2012-07-01
... EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.165 Definitions. (a) As used in this.... (1) Category means a group of exhaust systems which are identical in all material aspects with... regulated motorcycle for which it is designed and marketed, that motorcycle and exhaust system exceed the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.165 Definitions. (a) As used in this.... (1) Category means a group of exhaust systems which are identical in all material aspects with... regulated motorcycle for which it is designed and marketed, that motorcycle and exhaust system exceed the...
An expert system for spectroscopic analysis of rocket engine plumes
NASA Technical Reports Server (NTRS)
Reese, Greg; Valenti, Elizabeth; Alphonso, Keith; Holladay, Wendy
1991-01-01
The expert system described in this paper analyzes spectral emissions of rocket engine exhaust plumes and shows major promise for use in engine health diagnostics. Plume emission spectroscopy is an important tool for diagnosing engine anomalies, but it is time-consuming and requires highly skilled personnel. The expert system was created to alleviate such problems. The system accepts a spectral plot in the form of wavelength vs intensity pairs and finds the emission peaks in the spectrum, lists the elemental emitters present in the data and deduces the emitter that produced each peak. The system consists of a conventional language component and a commercially available inference engine that runs on an Apple Macintosh computer. The expert system has undergone limited preliminary testing. It detects elements well and significantly decreases analysis time.
Reduction of Harmful Emissions During Start and Warming Up of the Engine
NASA Astrophysics Data System (ADS)
Volkov, N.; Chainikov, D.
2018-01-01
The question of decrease in harmful emissions when idling of a truck engine in the conditions of low temperatures is considered. The implementation of the thermogenerator for a power supply of electrical elements is offered in a design of the self-powered heater. The principle of the device operation is based on a thermoelectric effect at which there is heat absorption and thermo-EMF emergence. In a consequence of this process electricity is produced. The exhaust gases of the self-powered heater are the source of the absorbed heat and act as fuel for the thermogenerator. It allows developing energy for a power supply of electrical elements of the heater. It gives the chance not to start the engine for warming up during the long parking, thereby reducing harmful emissions.
Air pollutants and toxic emissions of various mileage motorcycles for ECE driving cycles
NASA Astrophysics Data System (ADS)
Tsai, Jiun-Horng; Huang, Pei-Hsiu; Chiang, Hung-Lung
2017-03-01
Motorcycles were selected to determine their fuel consumption and exhaust emissions following ECE driving cycles. Exhaust constituents including CO2, CO, NOx, total hydrocarbons (THC) and hydrocarbon species (27 paraffins, 9 olefins, 16 aromatics and 15 carbonyls) were investigated for this work. The age of 10- 90% of the selected motorcycles ranged from 2.5 to 12.4 years, and their mileage ranged from 5400 to 39,300 km. CO emission ranged from 1.4 to 6.4 g/km (median value: 2.98 g/km), THC from 0.41 to 1.54 g/km (median value: 0.98 g/km), NOx from 0.16 to 0.28 g/km (median value: 0.21 g/km), CO2 from 58.9 to 62.2 g/km (median value: 60.5 g/km) and fuel consumption from 30.7 to 36.4 km/L (median value: 33.4 km/L), corresponding to the percentage cumulative data from 10 to 90% of the selected motorcycles. Results indicated that the motorcycle exhaust emission and fuel consumption depended on their mileage and ages. An increase in mileage of 1000 km resulted in an increase of 103 mg for CO emission and 14.7 mg for hydrocarbon emission and a reduction of 1.52 mg NOx emission and 0.11 km per liter fuel consumption. For various VOC groups, a mileage increase of 1000 km corresponding to the increased exhaust emission of paraffins was 6.71 mg, olefins 1.90 mg, aromatics 7.04 mg, carbonyls 0.283 mg and 67 VOC species 15.9 mg. Fuel consumption and emissions of CO and hydrocarbon increased in motorcycles over the guaranteed mileage of 15,000 km.
Compact high-speed MWIR spectrometer applied to monitor CO2 exhaust dynamics from a turbojet engine
NASA Astrophysics Data System (ADS)
Linares-Herrero, R.; Vergara, G.; Gutiérrez Álvarez, R.; Fernández Montojo, C.; Gómez, L. J.; Villamayor, V.; Baldasano Ramírez, A.; Montojo, M. T.; Archilla, V.; Jiménez, A.; Mercader, D.; González, A.; Entero, A.
2013-05-01
Dfgfdg Due to international environmental regulations, aircraft turbojet manufacturers are required to analyze the gases exhausted during engine operation (CO, CO2, NOx, particles, unburned hydrocarbons (aka UHC), among others).Standard procedures, which involve sampling the gases from the exhaust plume and the analysis of the emissions, are usually complex and expensive, making a real need for techniques that allow a more frequent and reliable emissions measurements, and a desire to move from the traditional gas sampling-based methods to real time and non-intrusive gas exhaust analysis, usually spectroscopic. It is expected that the development of more precise and faster optical methods will provide better solutions in terms of performance/cost ratio. In this work the analysis of high-speed infrared emission spectroscopy measurements of plume exhaust are presented. The data was collected during the test trials of commercial engines carried out at Turbojet Testing Center-INTA. The results demonstrate the reliability of the technique for studying and monitoring the dynamics of the exhausted CO2 by the observation of the infrared emission of hot gases. A compact (no moving parts), high-speed, uncooled MWIR spectrometer was used for the data collection. This device is capable to register more than 5000 spectra per second in the infrared band ranging between 3.0 and 4.6 microns. Each spectrum is comprised by 128 spectral subbands with aband width of 60 nm. The spectrometer operated in a passive stand-off mode and the results from the measurements provided information of both the dynamics and the concentration of the CO2 during engine operation.
NASA Astrophysics Data System (ADS)
Na, Kwangsam; Biswas, Subhasis; Robertson, William; Sahay, Keshav; Okamoto, Robert; Mitchell, Alexander; Lemieux, Sharon
2015-04-01
As part of a broad evaluation of the environmental impacts of biodiesel and renewable diesel as alternative motor fuels and fuel blends in California, the California Air Resources Board's (CARB) Heavy-duty Diesel Emission Testing Laboratory conducted chassis dynamometer exhaust emission measurements on in-use heavy-heavy-duty diesel trucks (HHDDT). The results presented here detail the impact of biodiesel and renewable diesel fuels and fuel blends as compared to CARB ULSD on particulate matter (PM), regulated gases, and two greenhouse gases emissions from a HHDDT with a 2000 C15 Caterpillar engine with no exhaust after treatment devices. This vehicle was tested over the Urban Dynamometer Driving Schedule (UDDS) and the cruise portion of the California HHDDT driving schedule. Three neat blend stocks (soy-based and animal-based fatty acid methyl ester (FAME) biodiesels, and a renewable diesel) and CARB-certified ultra-low sulfur diesel (CARB ULSD) along with their 20% and 50% blends (blended with CARB ULSD) were tested. The effects of blend level on emission characteristics were discussed on g·km-1 basis. The results showed that PM, total hydrocarbon (THC), and carbon monoxide (CO) emissions were dependent on driving cycles, showing higher emissions for the UDDS cycles with medium load than the highway cruise cycle with high load on per km basis. When comparing CARB ULSD to biodiesels and renewable diesel blends, it was observed that the PM, THC, and CO emissions decreased with increasing blend levels regardless of the driving cycles. Note that biodiesel blends showed higher degree of emission reductions for PM, THC, and CO than renewable diesel blends. Both biodiesels and renewable diesel blends effectively reduced PM emissions, mainly due to reduction in elemental carbon emissions (EC), however no readily apparent reductions in organic carbon (OC) emissions were observed. When compared to CARB ULSD, soy- and animal-based biodiesel blends showed statistically significant increases in nitrogen oxides (NOx) emissions for 50% or higher biodiesel blends. The 20% blends of the biodiesels showed no statistically significant effect on NOx emissions on any cycle. In contrast, renewable diesel slightly decreased NOx emissions and the degree of reduction was statistically significant for 50% or higher blends over the UDDS cycle, but not at the 20% blends. The highway cruise cycles did not show a statistically strong NOx emission trend with increasing blend level of renewable diesel. Biodiesel and renewable fuel impacts on two greenhouse gases, CO2 and N2O emissions were of lower magnitude when compared to other regulated pollutants emissions, showing a change in their emissions within approximately ±3% from the CARB ULSD.
Prucz, J C; Clark, N N; Gautam, M; Lyons, D W
2001-05-01
In the U.S.A., exhaust emissions from city buses fueled by diesel are not characterized well because current emission standards require engine tests rather than tests of whole vehicles. Two transportable chassis dynamometer laboratories developed and operated by West Virginia University (WVU) have been used extensively to gather realistic emission data from heavy-duty vehicles, including buses, tested in simulated driving conditions. A subset of these data has been utilized for a comprehensive introspection into the trends of regulated emissions from transit buses over the last 7 years, which has been prompted by continuously tightening restrictions on one hand, along with remarkable technological progress, on the other hand. Two widely used models of diesel engines manufactured by the Detroit Diesel Corporation (DDC) have been selected as a case-study for such an overview, based on full-scale, on-site testing of actual city buses, driven in accordance with the SAE J1376 standard of a Commercial Business District (CBD) cycle. The results provide solid, quantitative evidence that most regulated emissions from engines produced by DDC have declined over the years, especially with the transition from the 6V-92TA to the Series 50 models. This improvement is remarkable mainly for the emissions of particulate matter (PM), that are lower by over 70%, on average, for the Series 50 engines, though the emissions of nitrogen oxides (NOx) exhibit a reversed trend, showing a degradation of about 6%, on average, with the transition from 6V-92TA to the Series 50 engines. The expected trend of decreasing emission levels with the model year of the engine is clear and consistent for particulate matter (PM), hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), starting with the 1990 models, although it is not conclusive for carbon dioxide (CO2) emissions.
NASA Astrophysics Data System (ADS)
Moss, J. A.; Baum, M.; Castonguay, A. E.; Aguirre, V., Jr.; Pesta, A.; Fanter, R. K.; Anderson, M.
2015-12-01
Emission control systems in light-duty motor vehicles (LDMVs) have played an important role in improving regional air quality by dramatically reducing the concentration of criteria pollutants (carbon monoxide, hydrocarbons, and nitrogen oxides) in exhaust emissions. Unintended side-reactions occurring on the surface of three-way catalysts may lead to emission of a number of non-criteria pollutants whose identity and emission rates are poorly understood. A series of near-roadway field studies conducted between 2009-2015 has investigated LDMV emissions of these pollutants with unprecedented depth of coverage, including reactive nitrogen compounds (NH3, amines, HCN, HONO, and HNO3), organic peroxides, and carbonyl compounds (aldehydes, ketones, and carboxylic acids). Methods to collect these pollutants using mist chambers, annular denuders, impingers, and solid-phase cartridges and quantify their concentration using GC-MS, LC-MS/MS, IC, and colorimetry were developed and validated in the laboratory and field. These methods were subsequently used in near-roadway field studies where the concentrations of the target compounds integrated over 1-4 hour blocks were measured at the edge of a freeway and at a background site 140 m from the roadway. Concentrations followed a steep decreasing gradient from the freeway to the background site. Emission factors (pollutant mass emitted per mass fuel consumed) were calculated by carbon mass balance using the difference in concentration measured between the freeway and background sites for the emitted pollutant and CO2 as a measure of carbon mass in the vehicle exhaust. The significance of these results will be discussed in terms of emissions inventories in the South Coast Air Basin of California, emission trends at this site over the period of 2009-2015, and for NH3, emission measurements conducted by our group and others over the period 2000-2015.
Control of Nitrogen Dioxide in Stack Emission by Reaction with Ammonia
NASA Technical Reports Server (NTRS)
Metzler, A. J.; Stevenson, E. F.
1970-01-01
The development of an acid base gas-phase reaction system which utilizes anhydrous ammonia as the reactant to remove nitrogen dioxide from hydrazine-nitrogen tetroxide rocket combustion exhaust is reported. This reaction reduced NO2 levels in exhaust emissions so that the resulting stack emission is completely white instead of the earlier observed typical reddish-brown coloration. Preliminary analyses indicate the importance of reaction time and ammonia concentration on removal efficiency and elimination of the health hazard to individuals with respiratory problems.
Diesel Engine Exhaust: Basis for Occupational Exposure Limit Value.
Taxell, Piia; Santonen, Tiina
2017-08-01
Diesel engines are widely used in transport and power supply, making occupational exposure to diesel exhaust common. Both human and animal studies associate exposure to diesel exhaust with inflammatory lung effects, cardiovascular effects, and an increased risk of lung cancer. The International Agency for Research on Cancer has evaluated diesel exhaust as carcinogenic to humans. Yet national or regional limit values for controlling occupational exposure to diesel exhaust are rare. In recent decades, stricter emission regulations have led to diesel technologies evolving significantly, resulting in changes in exhaust emissions and composition. These changes are also expected to influence the health effects of diesel exhaust. This review provides an overview of the current knowledge on the health effects of diesel exhaust and the influence of new diesel technologies on the health risk. It discusses the relevant exposure indicators and perspectives for setting occupational exposure limit values for diesel exhaust, and outlines directions for future research. The review is based on a collaborative evaluation report by the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals and the Dutch Expert Committee on Occupational Safety. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Johnson, Derek R; Covington, April N; Clark, Nigel N
2015-07-07
As part of the Environmental Defense Fund's Barnett Coordinated Campaign, researchers completed leak and loss audits for methane emissions at three natural gas compressor stations and two natural gas storage facilities. Researchers employed microdilution high-volume sampling systems in conjunction with in situ methane analyzers, bag samples, and Fourier transform infrared analyzers for emissions rate quantification. All sites had a combined total methane emissions rate of 94.2 kg/h, yet only 12% of the emissions total resulted from leaks. Methane slip from exhausts represented 44% of the total emissions. Remaining methane emissions were attributed to losses from pneumatic actuators and controls, engine crankcases, compressor packing vents, wet seal vents, and slop tanks. Measured values were compared with those reported in literature. Exhaust methane emissions were lower than emissions factor estimates for engine exhausts, but when combined with crankcase emissions, measured values were 11.4% lower than predicted by AP-42 as applicable to emissions factors for four-stroke, lean-burn engines. Average measured wet seal emissions were 3.5 times higher than GRI values but 14 times lower than those reported by Allen et al. Reciprocating compressor packing vent emissions were 39 times higher than values reported by GRI, but about half of values reported by Allen et al. Though the data set was small, researchers have suggested a method to estimate site-wide emissions factors for those powered by four-stroke, lean-burn engines based on fuel consumption and site throughput.
Evaluation of a disposable diesel exhaust filter for permissible mining machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambs, J.L.; Cantrell, B.K.; Watts, W.F.
1994-01-01
The US Bureau of Mines (USBM) Diesel Research Program emphasizes the development and evaluation of emission control devices to reduce exposure of miners to diesel exhaust pollutants. Studies by the USBM have shown that diesel exhaust aerosol (DEA) contributes a substantial portion of the respirable aerosol in underground coal mines using diesel equipment not equipped with emission controls. The USBM and the Donaldson Co., Inc., Minneapolis, MN, have developed a low-temperature, disposable diesel exhaust filter (DDEF) for use on permissible diesel haulage vehicles equipped with waterbath exhaust conditioners. These were evaluated in three underground mines to determine their effectiveness inmore » reducing DEA concentrations. The DDEF reduced DEA concentrations from 70 to 90% at these mines. The usable life of the filter ranged from 10 to 32 h, depending on factors that affect DEA output, such as mine altitude, engine type, and duty-cycle. Cost per filter is approximately $40.« less
Unsuccessful Suicide by Carbon Monoxide: A Secondary Benefit of Emissions Control
Landers, Dennis
1981-01-01
Emission systems and devices are required on automobile engines to reduce air pollution problems. Catalytic converters have been used on most 1975 and newer automobiles to reduce hydrocarbon and carbon monoxide (CO) emissions to a value that meets the Environmental Protection Agency requirements established for 1975 and 1976. The 1980-1981 Boise, Idaho, study shows that with a functioning catalytic converter either unmeasurable or sublethal quantities of CO appear in automobile exhaust. Thus, emissions control has produced a secondary benefit in reducing the number of suicides by CO poisoning from automobile exhaust fumes. PMID:6176074
Unsuccessful suicide by carbon monoxide: a secondary benefit of emissions control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landers, D.
Emission systems and devices are required on automobile engines to reduce air pollution problems. Catalytic converters have been used on most 1975 and newer automobiles to reduce hydrocarbon and carbon monoxide (CO) emissions to a value that meets the Environmental Protection Agency requirements established for 1975 and 1976. The 1980-1981 Boise, Idaho, study shows that with a functioning catalytic converter either unmeasurable or sublethal quantities of CO appear in automobile exhaust. Thus, emissions control has produced a secondary benefit in reducing the number of suicides by CO poisoning from automobile exhaust fumes.
40 CFR 600.112-78 - Exhaust sample analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Exhaust sample analysis. 600.112-78 Section 600.112-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978...
40 CFR 600.112-08 - Exhaust sample analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Exhaust sample analysis. 600.112-08 Section 600.112-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978...
40 CFR 600.112-08 - Exhaust sample analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Exhaust sample analysis. 600.112-08 Section 600.112-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related...
40 CFR 600.112-08 - Exhaust sample analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Exhaust sample analysis. 600.112-08 Section 600.112-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related...
40 CFR 600.112-08 - Exhaust sample analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Exhaust sample analysis. 600.112-08 Section 600.112-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related...
Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun
2014-09-01
Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.
Stratospheric aircraft exhaust plume and wake chemistry studies
NASA Technical Reports Server (NTRS)
Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.
1992-01-01
This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3.
NASA Astrophysics Data System (ADS)
Wang, Zi-han; Wang, Chun-mei; Tang, Hua-xin; Zuo, Cheng-ji; Xu, Hong-ming
2009-06-01
Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition timing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its application, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recirculation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.
NASA Astrophysics Data System (ADS)
Ballinger, Marcel Y.; Larson, Timothy V.
2014-12-01
Research and development (R&D) facility emissions are difficult to characterize due to their variable processes, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compound (VOC) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified between 9 and 11 source-related factors contributing to stack emissions, depending on the building. Similar factors between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions; other factors had similar profiles for two or more buildings but not all four. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit.
Diesel fuel burner for diesel emissions control system
Webb, Cynthia C.; Mathis, Jeffrey A.
2006-04-25
A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., and carbon-related exhaust emissions from the tests performed using gasoline or diesel test fuel. (ii... from the tests performed using alcohol or natural gas test fuel. (b) For each model type, as determined... from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., and carbon-related exhaust emissions from the tests performed using gasoline or diesel test fuel. (ii... from the tests performed using alcohol or natural gas test fuel. (b) For each model type, as determined... from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., and carbon-related exhaust emissions from the tests performed using gasoline or diesel test fuel. (ii... from the tests performed using alcohol or natural gas test fuel. (b) For each model type, as determined... from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and...
NASA Astrophysics Data System (ADS)
Lim, McKenzie C. H.; Ayoko, Godwin A.; Morawska, Lidia; Ristovski, Zoran D.; Jayaratne, E. Rohan; Kokot, Serge
Elements emitted from the exhausts of new Ford Falcon Forte cars powered by unleaded petrol (ULP) and liquefied petroleum gas (LPG) were measured on a chassis dynamometer. The measurements were carried out in February, June and August 2001, and at two steady state driving conditions (60 and 80 km h -1). Thirty seven elements were quantified in the exhaust samples by inductively coupled plasma mass spectrometry (ICPMS). The total emission factors of the elements from the exhausts of ULP cars were higher than those of LPG cars at both engine speeds even though high variability in the exhaust emissions from different cars was noted. The effect of the operating conditions such as mileage of the cars, engine speed, fuel and lubricating oil compositions on the emissions was studied. To investigate the effects of these conditions, multivariate data analysis methods were employed including exploratory principal component analysis (PCA), and the multi-criteria decision making methods (MCDM), preference ranking organization method for enrichment evaluation (PROMETHEE) and geometrical analysis for interactive aid (GAIA), for ranking the cars on the basis of the emission factors of the elements. PCA biplot of the complete data matrix showed a clear discrimination of the February, June and August emission test results. In addition, (i) platinum group elements (PGE) emissions were separated from each other in the three different clusters viz. Pt with February, Pd with June and Rh with August; (ii) the motor oil related elements, Zn and P, were particularly associated with the June and August tests (these vectors were also grouped with V, Al and Cu); and (iii) highest emissions of most major elements were associated with the August test after the cars have recorded their highest mileage. Extensive analysis with the aid of the MCDM ranking methods demonstrated clearly that cars powered by LPG outperform those powered by ULP. In general, cars tested in June perform better than those tested in August, which suggested that mileage was the key criterion of car performance on the basis of elemental emission factors.
Wardoyo, Arinto Y P; Juswono, Unggul P; Noor, Johan A E
2018-01-01
Ultrafine particles (UFPs) are one of motorcycle exhaust emissions which can penetrate the lung alveoli and deposit in the kidney. This study was aimed to investigate mice kidney cell physical damage (deformation) due to motorcycle exhaust emission exposures. The motorcycle exhaust emissions were sucked from the muffler with the rate of 33 cm 3 /s and passed through an ultrafine particle filter system before introduced into the mice exposure chamber. The dose concentration of the exhaust emissions was varied by setting the injected time of the 20s, 40s, 60s, 80s, and 100s. The mice were exposed to the smoke in the chamber for 100 s twice a day. The impact of the ultrafine particles on the kidney was observed by identifying the histological image of the kidney cell deformation using a microscope. The exposure was conducted for 10 days. The kidney observations were carried out on day 11. The results showed that there was a significant linear correlation between the total concentration of ultrafine particles deposited in the kidneys and the physical damage percentages. The increased concentrations of ultrafine particles caused larger cell deformation to the kidneys.
NASA Astrophysics Data System (ADS)
Parikh, H. M.; Carlton, A. G.; Zhang, H.; Kamens, R.; Vizuete, W.
2011-12-01
Secondary organic aerosol (SOA) is simulated for 6 outdoor smog chamber experiments using a SOA model based on a kinetic chemical mechanism in conjunction with a volatility basis set (VBS) approach. The experiments include toluene, a non-SOA-forming hydrocarbon mixture, diesel exhaust or meat cooking emissions and NOx, and are performed under varying conditions of relative humidity. SOA formation from toluene is modeled using a condensed kinetic aromatic mechanism that includes partitioning of lumped semi-volatile products in particle organic-phase and incorporates particle aqueous-phase chemistry to describe uptake of glyoxal and methylglyoxal. Modeling using the kinetic mechanism alone, along with primary organic aerosol (POA) from diesel exhaust (DE) /meat cooking (MC) fails to simulate the rapid SOA formation at the beginning hours of the experiments. Inclusion of a VBS approach with the kinetic mechanism to characterize the emissions and chemistry of complex mixture of intermediate volatility organic compounds (IVOCs) from DE/MC, substantially improves SOA predictions when compared with observed data. The VBS model includes photochemical aging of IVOCs and evaporation of POA after dilution. The relative contribution of SOA mass from DE/MC is as high as 95% in the morning, but substantially decreases after mid-afternoon. For high humidity experiments, aqueous-phase SOA fraction dominates the total SOA mass at the end of the day (approximately 50%). In summary, the combined kinetic and VBS approach provides a new and improved framework to semi-explicitly model SOA from VOC precursors in conjunction with a VBS approach that can be used on complex emission mixtures comprised with hundreds of individual chemical species.
NASA Technical Reports Server (NTRS)
Glawe, George E; Shepard, Charles E
1954-01-01
Thermocouples were exposed to exhaust gases from the combustion of propane, 72-octane gasoline, and JP-4 fuel. Exposure increased the emissivity of the thermocouple wire, which increased its radiation error. Two methods are presented for determining the emittance of the wires. The emissivity of a clean platinum rhodium-platinum thermocouple was approximately 0.2 in the temperature range investigated, while the emittance of an exposed thermocouple coated with exhaust residue was about 0.5. The exposure caused negligible change in the thermoelectric power of the thermocouples.
40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... judgement, a catalyst aging bench that follows the SBC and delivers the appropriate exhaust flow, exhaust... set must consist of randomly procured vehicles from actual customer use. The vehicles selected for... submit an analysis which evaluates whether the durability objective will be achieved for the vehicle...
14 CFR 34.89 - Compliance with smoke emission standards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.89 Compliance with smoke emission...
Khalek, Imad A; Bougher, Thomas L; Merritt, Patrick M; Zielinska, Barbara
2011-04-01
As part of the Advanced Collaborative Emissions Study (ACES), regulated and unregulated exhaust emissions from four different 2007 model year U.S. Environmental Protection Agency (EPA)-compliant heavy-duty highway diesel engines were measured on an engine dynamometer. The engines were equipped with exhaust high-efficiency catalyzed diesel particle filters (C-DPFs) that are actively regenerated or cleaned using the engine control module. Regulated emissions of carbon monoxide, nonmethane hydrocarbons, and particulate matter (PM) were on average 97, 89, and 86% lower than the 2007 EPA standard, respectively, and oxides of nitrogen (NOx) were on average 9% lower. Unregulated exhaust emissions of nitrogen dioxide (NO2) emissions were on, average 1.3 and 2.8 times higher than the NO, emissions reported in previous work using 1998- and 2004-technology engines, respectively. However, compared with other work performed on 1994- to 2004-technology engines, average emission reductions in the range of 71-99% were observed for a very comprehensive list of unregulated engine exhaust pollutants and air toxic contaminants that included metals and other elements, elemental carbon (EC), inorganic ions, and gas- and particle-phase volatile and semi-volatile organic carbon (OC) compounds. The low PM mass emitted from the 2007 technology ACES engines was composed mainly of sulfate (53%) and OC (30%), with a small fraction of EC (13%) and metals and other elements (4%). The fraction of EC is expected to remain small, regardless of engine operation, because of the presence of the high-efficiency C-DPF in the exhaust. This is different from typical PM composition of pre-2007 engines with EC in the range of 10-90%, depending on engine operation. Most of the particles emitted from the 2007 engines were mainly volatile nuclei mode in the sub-30-nm size range. An increase in volatile nanoparticles was observed during C-DPF active regeneration, during which the observed particle number was similar to that observed in emissions of pre-2007 engines. However, on average, when combining engine operation with and without active regeneration events, particle number emissions with the 2007 engines were 90% lower than the particle number emitted from a 2004-technology engine tested in an earlier program.
NASA Astrophysics Data System (ADS)
Fernández-Camacho, R.; Rodríguez, S.; de la Rosa, J.; Sánchez de la Campa, A. M.; Alastuey, A.; Querol, X.; González-Castanedo, Y.; Garcia-Orellana, I.; Nava, S.
2012-12-01
Urban air quality impairment by ultrafine particles has become a matter of concern due to the adverse effects on human health. Most of the studies of ultrafine particles in urban air quality have focused on vehicle exhaust emissions. We studied how industrial emissions contribute to ultrafine particle concentrations in downwind urban ambient air. This research is based on experimental data collected in the ambient air of the industrial city of Huelva (SW Spain) over April 2008-December 2009 period (particle number, gaseous pollutants and black carbon concentrations and levels and chemical composition of PM10 and PM2.5 with daily and hourly resolution). This city is affected by emissions from the second largest Cu-smelter in Europe, phosphoric acid and fertilizer production plants and an oil refinery and petrochemical plant. Industrial emissions are the main cause of ultrafine particle episodes. When vehicle exhaust emissions are the main source, ultrafine particles typically show (24-h mean) concentrations within the range 14,700-5000 cm-3 (50th-1st), with 60% of these linked to this source and 30% to industrial emissions. In contrast, when daily mean levels of N are within the range 50,000-25,500 cm-3 (100th-70th), industrial and vehicle exhaust emissions accounted for 49 and 30%, respectively. High concentrations of toxic trace metals (As, Cu, Cd, Zn and Pb) were recorded when the study city suffered fumigations of the Cu-smelter plumes (e.g. 10-25 ng m-3 As, 1-2 ng m-3 Cd and >105 cm-3 of ultrafine particles). Because of these industrial emissions, ultrafine particle concentrations during daylight are about two times higher than those observed in other European cities. Recently, ultrafine particle emissions in vehicle exhausts have been subject to limit values in a recent stage of the EURO standards. Industrial emissions should also be considered.
Deng, Wei; Hu, Qihou; Liu, Tengyu; Wang, Xinming; Zhang, Yanli; Song, Wei; Sun, Yele; Bi, Xinhui; Yu, Jianzhen; Yang, Weiqiang; Huang, Xinyu; Zhang, Zhou; Huang, Zhonghui; He, Quanfu; Mellouki, Abdelwahid; George, Christian
2017-09-01
In China diesel vehicles dominate the primary emission of particulate matters from on-road vehicles, and they might also contribute substantially to the formation of secondary organic aerosols (SOA). In this study tailpipe exhaust of three typical in-use diesel vehicles under warm idling conditions was introduced directly into an indoor smog chamber with a 30m 3 Teflon reactor to characterize primary emissions and SOA formation during photo-oxidation. The emission factors of primary organic aerosol (POA) and black carbon (BC) for the three types of Chinese diesel vehicles ranged 0.18-0.91 and 0.15-0.51gkg-fuel -1 , respectively; and the SOA production factors ranged 0.50-1.8gkg-fuel -1 and SOA/POA ratios ranged 0.7-3.7 with an average of 2.2. The fuel-based POA emission factors and SOA production factors from this study for idling diesel vehicle exhaust were 1-3 orders of magnitude higher than those reported in previous studies for idling gasoline vehicle exhaust. The emission factors for total particle numbers were 0.65-4.0×10 15 particleskg-fuel -1 , and particles with diameters less than 50nm dominated in total particle numbers. Traditional C 2 -C 12 precursor non-methane hydrocarbons (NMHCs) could only explain less than 3% of the SOA formed during aging and contribution from other precursors including intermediate volatile organic compounds (IVOC) needs further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.
Rhys-Tyler, Glyn A; Bell, Margaret C
2012-10-02
A method is proposed to relate essentially instantaneous roadside measurements of vehicle exhaust emissions, with emission results generated over a type approval driving cycle. An urban remote sensing data set collected in 2008 is used to define the dynamic relationship between vehicle specific power and exhaust emissions, across a range of vehicle ages, engine capacities, and fuel types. The New European Driving Cycle is synthesized from the remote sensing data using vehicle specific power to characterize engine load, and the results compared with official published emissions data from vehicle type approval tests over the same driving cycle. Mean carbon monoxide emissions from gasoline-powered cars ≤ 3 years old measured using remote sensing are found to be 1.3 times higher than published original type approval test values; this factor increases to 2.2 for cars 4-8 years old, and 6.4 for cars 9-12 years old. The corresponding factors for diesel cars are 1.1, 1.4, and 1.2, respectively. Results for nitric oxide, hydrocarbons, and particulate matter are also reported. The findings have potential implications for the design of traffic management interventions aimed at reducing emissions, fleet inspection and maintenance programs, and the specification of vehicle emission models.
Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Yu, Linxiao; Li, Jiaqiang; Wang, Xin
2014-02-15
A particulate oxidation catalyst (POC) was employed to perform experiments on the engine test bench to evaluate the effects on the nitrogen dioxide (NO2) and particulate matter (PM) emissions from diesel engine. The engine exhaust was sampled from both upstream and downstream of the POC. The results showed that the POC increased the ratios of NO2/NOx significantly in the middle and high loads, the ratio of NO2/nitrogen oxides (NOx) increased 4.5 times on average under all experiment modes with the POC. An engine exhaust particle sizer (EEPS) was used to study the particle number-weighted size distributions and the abnormal particle emissions with the POC. The results indicated that the average reduction rate of particle number (PN) was 61% in the operating range of the diesel engine. At the engine speed of 1,400 r/min, the reduction rates of PN tended to decrease with the larger particle size. In the long time run under the steady mode (520 Nm, 1,200 r/min), abnormal particle emissions after the POC happened seven times in the first hour, and the average PN concentration of these abnormal emission peaks was much higher than that in normal state. The particle emissions of peaks 1-5 equaled the particles emitted downstream of the POC in normal state for 1.9h in number concentration, and for 3.6h in mass concentration. The PN concentrations tended to increase over time in 5h under the steady engine mode and the increase of the PN in the size range of 6.04-14.3 nm was more evident. Copyright © 2013 Elsevier B.V. All rights reserved.