Sample records for decrease insulin secretion

  1. Insulin Sensitivity and Secretion in Obese Type 2 Diabetic Women after Various Bariatric Operations

    PubMed Central

    Vrbikova, Jana; Kunesova, Marie; Kyrou, Ioannis; Tura, Andrea; Hill, Martin; Grimmichova, Tereza; Dvorakova, Katerina; Sramkova, Petra; Dolezalova, Karin; Lischkova, Olga; Vcelak, Josef; Hainer, Vojtech; Bendlova, Bela; Kumar, Sudhesh; Fried, Martin

    2017-01-01

    Objective To compare the effects of biliopancreatic diversion (BPD) and laparoscopic gastric banding (LAGB) on insulin sensitivity and secretion with the effects of laparoscopic gastric plication (P). Methods A total of 52 obese women (age 30-66 years) suffering from type 2 diabetes mellitus (T2DM) were prospectively recruited into three study groups: 16 BPD; 16 LAGB, and 20 P. Euglycemic clamps and mixed meal tolerance tests were performed before, at 1 month and at 6 months after bariatric surgery. Beta cell function derived from the meal test parameters was evaluated using mathematical modeling. Results Glucose disposal per kilogram of fat free mass (a marker of peripheral insulin sensitivity) increased significantly in all groups, especially after 1 month. Basal insulin secretion decreased significantly after all three types of operations, with the most marked decrease after BPD compared with P and LAGB. Total insulin secretion decreased significantly only following the BPD. Beta cell glucose sensitivity did not change significantly post-surgery in any of the study groups. Conclusion We documented similar improvement in insulin sensitivity in obese T2DM women after all three study operations during the 6-month postoperative follow-up. Notably, only BPD led to decreased demand on beta cells (decreased integrated insulin secretion), but without increasing the beta cell glucose sensitivity. PMID:27951535

  2. Fenofibrate Decreases Insulin Clearance and Insulin Secretion to Maintain Insulin Sensitivity*

    PubMed Central

    Ramakrishnan, Sadeesh K.; Russo, Lucia; Ghanem, Simona S.; Patel, Payal R.; Oyarce, Ana Maria; Heinrich, Garrett; Najjar, Sonia M.

    2016-01-01

    High fat diet reduces the expression of CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a transmembrane glycoprotein that promotes insulin clearance and down-regulates fatty acid synthase activity in the liver upon its phosphorylation by the insulin receptor. Because peroxisome proliferator-activated receptor α (PPARα) transcriptionally suppresses CEACAM1 expression, we herein examined whether high fat down-regulates CEACAM1 expression in a PPARα-dependent mechanism. By activating PPARα, the lipid-lowering drug fenofibrate reverses dyslipidemia and improves insulin sensitivity in type 2 diabetes in part by promoting fatty acid oxidation. Despite reducing glucose-stimulated insulin secretion, fenofibrate treatment does not result in insulin insufficiency. To examine whether this is mediated by a parallel decrease in CEACAM1-dependent hepatic insulin clearance pathways, we fed wild-type and Pparα−/− null mice a high fat diet supplemented with either fenofibrate or Wy14643, a selective PPARα agonist, and examined their effect on insulin metabolism and action. We demonstrated that the decrease in insulin secretion by fenofibrate and Wy14643 is accompanied by reduction in insulin clearance in wild-type but not Pparα−/− mice, thereby maintaining normoinsulinemia and insulin sensitivity despite continuous high fat intake. Intact insulin secretion in L-CC1 mice with protected hepatic insulin clearance and CEACAM1 levels provides in vivo evidence that insulin secretion responds to changes in insulin clearance to maintain physiologic insulin and glucose homeostasis. These results also emphasize the relevant role of hepatic insulin extraction in regulating insulin sensitivity. PMID:27662905

  3. Adipose Triglyceride Lipase Is Implicated in Fuel- and Non-fuel-stimulated Insulin Secretion*

    PubMed Central

    Peyot, Marie-Line; Guay, Claudiane; Latour, Martin G.; Lamontagne, Julien; Lussier, Roxane; Pineda, Marco; Ruderman, Neil B.; Haemmerle, Guenter; Zechner, Rudolf; Joly, Érik; Madiraju, S. R. Murthy; Poitout, Vincent; Prentki, Marc

    2009-01-01

    Reduced lipolysis in hormone-sensitive lipase-deficient mice is associated with impaired glucose-stimulated insulin secretion (GSIS), suggesting that endogenous β-cell lipid stores provide signaling molecules for insulin release. Measurements of lipolysis and triglyceride (TG) lipase activity in islets from HSL−/− mice indicated the presence of other TG lipase(s) in the β-cell. Using real time-quantitative PCR, adipose triglyceride lipase (ATGL) was found to be the most abundant TG lipase in rat islets and INS832/13 cells. To assess its role in insulin secretion, ATGL expression was decreased in INS832/13 cells (ATGL-knockdown (KD)) by small hairpin RNA. ATGL-KD increased the esterification of free fatty acid (FFA) into TG. ATGL-KD cells showed decreased glucose- or Gln + Leu-induced insulin release, as well as reduced response to KCl or palmitate at high, but not low, glucose. The KATP-independent/amplification pathway of GSIS was considerably reduced in ATGL-KD cells. ATGL−/− mice were hypoinsulinemic and hypoglycemic and showed decreased plasma TG and FFAs. A hyperglycemic clamp revealed increased insulin sensitivity and decreased GSIS and arginine-induced insulin secretion in ATGL−/− mice. Accordingly, isolated islets from ATGL−/− mice showed reduced insulin secretion in response to glucose, glucose + palmitate, and KCl. Islet TG content and FFA esterification into TG were increased by 2-fold in ATGL−/− islets, but glucose usage and oxidation were unaltered. The results demonstrate the importance of ATGL and intracellular lipid signaling for fuel- and non-fuel-induced insulin secretion. PMID:19389712

  4. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β).

    PubMed

    Wang, Chunjiong; Geng, Bin; Cui, Qinghua; Guan, Youfei; Yang, Jichun

    2014-03-01

    Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed. © 2013 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  5. Glucose acutely decreases pH of secretory granules in mouse pancreatic islets. Mechanisms and influence on insulin secretion.

    PubMed

    Stiernet, Patrick; Guiot, Yves; Gilon, Patrick; Henquin, Jean-Claude

    2006-08-04

    Glucose-induced insulin secretion requires a rise in beta-cell cytosolic Ca2+ ([Ca2+]c) that triggers exocytosis and a mechanistically unexplained amplification of the action of [Ca2+]c. Insulin granules are kept acidic by luminal pumping of protons with simultaneous Cl- uptake to maintain electroneutrality. Experiments using patched, dialyzed beta-cells prompted the suggestion that acute granule acidification by glucose underlies amplification of insulin secretion. However, others found glucose to increase granular pH in intact islets. In this study, we measured islet granular pH with Lysosensor DND-160, a fluorescent dye that permits ratiometric determination of pH < 6 in acidic compartments. Stimulation of mouse islets with glucose reversibly decreased granular pH by mechanisms that are dependent on metabolism and Cl- ions but independent of changes in [Ca2+]c and protein kinase A or C activity. Granular pH was increased by concanamycin (blocker of the vesicular type H+-ATPase) > methylamine (weak base) > Cl- omission. Concanamycin and methylamine did not alter glucose-induced [Ca2+]c increase in islets but strongly inhibited the two phases of insulin secretion. Omission of Cl- did not affect the first phase but decreased the second phase of both [Ca2+]c and insulin responses. Neither experimental condition affected the [Ca2+]c rise induced by 30 mM KCl, but the insulin responses were inhibited by concanamycin > methylamine and not affected by Cl- omission. The amplification of insulin secretion by glucose was not suppressed. We conclude that an acidic granular pH is important for insulin secretion but that the acute further acidification produced by glucose is not essential for the augmentation of secretion via the amplifying pathway.

  6. A Novel GLP1 Receptor Interacting Protein ATP6ap2 Regulates Insulin Secretion in Pancreatic Beta Cells*

    PubMed Central

    Dai, Feihan F.; Bhattacharjee, Alpana; Liu, Ying; Batchuluun, Battsetseg; Zhang, Ming; Wang, Xinye Serena; Huang, Xinyi; Luu, Lemieux; Zhu, Dan; Gaisano, Herbert; Wheeler, Michael B.

    2015-01-01

    GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H+-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca2+ influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion. PMID:26272612

  7. Increased risk of diabetes with statin treatment is associated with impaired insulin sensitivity and insulin secretion: a 6 year follow-up study of the METSIM cohort.

    PubMed

    Cederberg, Henna; Stančáková, Alena; Yaluri, Nagendra; Modi, Shalem; Kuusisto, Johanna; Laakso, Markku

    2015-05-01

    The aim of this work was to investigate the mechanisms underlying the risk of type 2 diabetes associated with statin treatment in the population-based Metabolic Syndrome in Men (METSIM) cohort. A total of 8,749 non-diabetic participants, aged 45-73 years, were followed up for 5.9 years. New diabetes was diagnosed in 625 men by means of an OGTT, HbA1c ≥6.5% (48 mmol/mol) or glucose-lowering medication started during the follow-up. Insulin sensitivity and secretion were evaluated with OGTT-derived indices. Participants on statin treatment (N = 2,142) had a 46% increased risk of type 2 diabetes (adjusted HR 1.46 [95% CI 1.22, 1.74]). The risk was dose dependent for simvastatin and atorvastatin. Statin treatment significantly increased 2 h glucose (2hPG) and glucose AUC of an OGTT at follow-up, with a nominally significant increase in fasting plasma glucose (FPG). Insulin sensitivity was decreased by 24% and insulin secretion by 12% in individuals on statin treatment (at FPG and 2hPG <5.0 mmol/l) compared with individuals without statin treatment (p < 0.01). Decreases in insulin sensitivity and insulin secretion were dose dependent for simvastatin and atorvastatin. Statin treatment increased the risk of type 2 diabetes by 46%, attributable to decreases in insulin sensitivity and insulin secretion.

  8. The Mitochondrial 2-Oxoglutarate Carrier Is Part of a Metabolic Pathway That Mediates Glucose- and Glutamine-stimulated Insulin Secretion*

    PubMed Central

    Odegaard, Matthew L.; Joseph, Jamie W.; Jensen, Mette V.; Lu, Danhong; Ilkayeva, Olga; Ronnebaum, Sarah M.; Becker, Thomas C.; Newgard, Christopher B.

    2010-01-01

    Glucose-stimulated insulin secretion from pancreatic islet β-cells is dependent in part on pyruvate cycling through the pyruvate/isocitrate pathway, which generates cytosolic α-ketoglutarate, also known as 2-oxoglutarate (2OG). Here, we have investigated if mitochondrial transport of 2OG through the 2-oxoglutarate carrier (OGC) participates in control of nutrient-stimulated insulin secretion. Suppression of OGC in clonal pancreatic β-cells (832/13 cells) and isolated rat islets by adenovirus-mediated delivery of small interfering RNA significantly decreased glucose-stimulated insulin secretion. OGC suppression also reduced insulin secretion in response to glutamine plus the glutamate dehydrogenase activator 2-amino-2-norbornane carboxylic acid. Nutrient-stimulated increases in glucose usage, glucose oxidation, glutamine oxidation, or ATP:ADP ratio were not affected by OGC knockdown, whereas suppression of OGC resulted in a significant decrease in the NADPH:NADP+ ratio during stimulation with glucose but not glutamine + 2-amino-2-norbornane carboxylic acid. Finally, OGC suppression reduced insulin secretion in response to a membrane-permeant 2OG analog, dimethyl-2OG. These data reveal that the OGC is part of a mechanism of fuel-stimulated insulin secretion that is common to glucose, amino acid, and organic acid secretagogues, involving flux through the pyruvate/isocitrate cycling pathway. Although the components of this pathway must remain intact for appropriate stimulus-secretion coupling, production of NADPH does not appear to be the universal second messenger signal generated by these reactions. PMID:20356834

  9. Insulin secretion and action in North Indian women during pregnancy.

    PubMed

    Arora, G P; Almgren, P; Thaman, R G; Pal, A; Groop, L; Vaag, A; Prasad, R B; Brøns, C

    2017-10-01

    The relative roles(s) of impaired insulin secretion vs. insulin resistance in the development of gestational diabetes mellitus depend upon multiple risk factors and diagnostic criteria. Here, we explored their relative contribution to gestational diabetes as defined by the WHO 1999 (GDM1999) and adapted WHO 2013 (GDM2013) criteria, excluding the 1-h glucose value, in a high-risk Indian population from Punjab. Insulin secretion (HOMA2-B) and insulin action (HOMA2-IR) were assessed in 4665 Indian women with or without gestational diabetes defined by the GDM1999 or adapted GDM2013 criteria. Gestational diabetes defined using both criteria was associated with decreased insulin secretion compared with pregnant women with normal glucose tolerance. Women with gestational diabetes defined by the adapted GDM2013, but not GDM1999 criteria, were more insulin resistant than pregnant women with normal glucose tolerance, and furthermore displayed lower insulin secretion than GDM1999 women. Urban habitat, illiteracy, high age and low BMI were independently associated with reduced insulin secretion, whereas Sikh religion, increasing age and BMI, as well as a family history of diabetes were independently associated with increased insulin resistance. Gestational diabetes risk factors influence insulin secretion and action in North Indian women in a differential manner. Gestational diabetes classified using the adapted GDM2013 compared with GDM1999 criteria is associated with more severe impairments of insulin secretion and action. © 2017 Diabetes UK.

  10. A beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion in mice.

    PubMed

    Attané, Camille; Peyot, Marie-Line; Lussier, Roxane; Poursharifi, Pegah; Zhao, Shangang; Zhang, Dongwei; Morin, Johane; Pineda, Marco; Wang, Shupei; Dumortier, Olivier; Ruderman, Neil B; Mitchell, Grant A; Simons, Brigitte; Madiraju, S R Murthy; Joly, Erik; Prentki, Marc

    2016-12-01

    To directly assess the role of beta cell lipolysis in insulin secretion and whole-body energy homeostasis, inducible beta cell-specific adipose triglyceride lipase (ATGL)-deficient (B-Atgl-KO) mice were studied under normal diet (ND) and high-fat diet (HFD) conditions. Atgl flox/flox mice were cross-bred with Mip-Cre-ERT mice to generate Mip-Cre-ERT /+ ;Atgl flox/flox mice. At 8 weeks of age, these mice were injected with tamoxifen to induce deletion of beta cell-specific Atgl (also known as Pnpla2), and the mice were fed an ND or HFD. ND-fed male B-Atgl-KO mice showed decreased insulinaemia and glucose-induced insulin secretion (GSIS) in vivo. Changes in GSIS correlated with the islet content of long-chain saturated monoacylglycerol (MAG) species that have been proposed to be metabolic coupling factors for insulin secretion. Exogenous MAGs restored GSIS in B-Atgl-KO islets. B-Atgl-KO male mice fed an HFD showed reduced insulinaemia, glycaemia in the fasted and fed states and after glucose challenge, as well as enhanced insulin sensitivity. Moreover, decreased insulinaemia in B-Atgl-KO mice was associated with increased energy expenditure, and lipid metabolism in brown (BAT) and white (WAT) adipose tissues, leading to reduced fat mass and body weight. ATGL in beta cells regulates insulin secretion via the production of signalling MAGs. Decreased insulinaemia due to lowered GSIS protects B-Atgl-KO mice from diet-induced obesity, improves insulin sensitivity, increases lipid mobilisation from WAT and causes BAT activation. The results support the concept that fuel excess can drive obesity and diabetes via hyperinsulinaemia, and that an islet beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion.

  11. Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence

    PubMed Central

    Vallaghe, Julie; Gregor, Nathalie; Donthamsetti, Prashant; Harris, Paul E.; Pierre, Nicolas; Freyberg, Robin; Charrier-Savournin, Fabienne; Javitch, Jonathan A.; Freyberg, Zachary

    2016-01-01

    Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment. PMID:26849707

  12. Effects of the pesticide amitraz and its metabolite BTS 27271 on insulin and glucagon secretion from the perfused rat pancreas: involvement of alpha2D-adrenergic receptors.

    PubMed

    Abu-Basha, E A; Yibchok-Anun, S; Hopper, D L; Hsu, W H

    1999-11-01

    The study purpose was to investigate the direct effect of amitraz, a formamidine insecticide/acaricide, and its active metabolite BTS 27271 on insulin and glucagon secretion from the perfused rat pancreas. Amitraz and BTS 27271 (0.01, 0.1, 1, and 10 micromol/L) inhibited insulin secretion in a concentration-dependent manner. Amitraz increased glucagon secretion at 10 micromol/L, whereas BTS 27271 increased glucagon secretion at 1 and 10 micromol/L. Amitraz- and BTS 27271-induced decreases in insulin secretion and increases in glucagon secretion were not abolished during the 10-minute washout period. During the arginine treatment, both amitraz and BTS 27271 groups (0.1, 1, and 10 micromol/L) had lower insulin secretion and higher glucagon secretion than the control group. Idazoxan, an alpha2A/2D-adrenergic receptor (AR) antagonist, prevented the inhibitory effect of amitraz on insulin secretion in a concentration-dependent manner, but prazosin, an alpha1- and alpha2B/2C-AR antagonist, failed to antagonize the effect of amitraz. These results demonstrate that (1) amitraz and BTS 27271 inhibit insulin and stimulate glucagon secretion from the perfused rat pancreas, (2) amitraz inhibits insulin secretion by activation of alpha2D-ARs, since rats have alpha2D- but not alpha2A-ARs, and (3) amitraz and BTS 27271 may have a high binding affinity to the alpha2D-ARs of pancreatic islets.

  13. Hepatic Insulin Resistance is Sufficient to Produce Dyslipidemia and Susceptibility to Atherosclerosis

    PubMed Central

    Biddinger, Sudha B.; Hernandez-Ono, Antonio; Rask-Madsen, Christian; Haas, Joel T.; Alemán, José O.; Suzuki, Ryo; Scapa, Erez F.; Agarwal, Chhavi; Carey, Martin C.; Stephanopoulos, Gregory; Cohen, David E.; King, George L.; Ginsberg, Henry; Kahn, C. Ronald

    2014-01-01

    Insulin resistance plays a central role in the development of the metabolic syndrome, but how it relates to cardiovascular disease remains controversial. Liver insulin receptor knockout (LIRKO) mice have pure hepatic insulin resistance. On a chow diet, LIRKO mice have a proatherogenic lipoprotein profile with reduced HDL cholesterol and VLDL particles that are markedly enriched in cholesterol. This is due to increased secretion and decreased clearance of apoB-containing lipoproteins, coupled with decreased triglyceride secretion secondary to increased expression of PGC-1β, which promotes VLDL secretion, but decreased expression of SREBP-1c, SREBP-2 and their targets, the lipogenic enzymes and the LDL receptor. Within twelve weeks on an atherogenic diet, LIRKO mice show marked hypercholesterolemia, and 100% of LIRKO mice, but 0% of controls, develop severe atherosclerosis. Thus, insulin resistance at the level of the liver is sufficient to produce the dyslipidemia and increased risk of atherosclerosis associated with the metabolic syndrome. PMID:18249172

  14. One-year metreleptin improves insulin secretion in patients with diabetes linked to genetic lipodystrophic syndromes.

    PubMed

    Vatier, C; Fetita, S; Boudou, P; Tchankou, C; Deville, L; Riveline, Jp; Young, J; Mathivon, L; Travert, F; Morin, D; Cahen, J; Lascols, O; Andreelli, F; Reznik, Y; Mongeois, E; Madelaine, I; Vantyghem, Mc; Gautier, Jf; Vigouroux, C

    2016-07-01

    Recombinant methionyl human leptin (metreleptin) therapy was shown to improve hyperglycaemia, dyslipidaemia and insulin sensitivity in patients with lipodystrophic syndromes, but its effects on insulin secretion remain controversial. We used dynamic intravenous (i.v.) clamp procedures to measure insulin secretion, adjusted to insulin sensitivity, at baseline and after 1 year of metreleptin therapy, in 16 consecutive patients with lipodystrophy, diabetes and leptin deficiency. Patients, with a mean [± standard error of the mean (s.e.m.)] age of 39.2 (±4) years, presented with familial partial lipodystrophy (n = 11, 10 women) or congenital generalized lipodystrophy (n = 5, four women). Their mean (± s.e.m.) BMI (23.9 ± 0.7 kg/m(2) ), glycated haemoglobin levels (8.5 ± 0.4%) and serum triglycerides levels (4.6 ± 0.9 mmol/l) significantly decreased within 1 month of metreleptin therapy, then remained stable. Insulin sensitivity (from hyperglycaemic or euglycaemic-hyperinsulinaemic clamps, n = 4 and n = 12, respectively), insulin secretion during graded glucose infusion (n = 12), and acute insulin response to i.v. glucose adjusted to insulin sensitivity (disposition index, n = 12), significantly increased after 1 year of metreleptin therapy. The increase in disposition index was related to a decrease in percentage of total and trunk body fat. Metreleptin therapy improves not only insulin sensitivity, but also insulin secretion in patients with diabetes attributable to genetic lipodystrophies. © 2015 John Wiley & Sons Ltd.

  15. Effect of Salsalate on Insulin Action, Secretion, and Clearance in Nondiabetic, Insulin-Resistant Individuals: A Randomized, Placebo-Controlled Study

    PubMed Central

    Liu, Alice; Ariel, Danit; Abbasi, Fahim; Lamendola, Cindy; Grove, Kaylene; Tomasso, Vanessa; Ochoa, Hector; Reaven, Gerald

    2014-01-01

    OBJECTIVE Salsalate treatment has been shown to improve glucose homeostasis, but the mechanism remains unclear. The aim of this study was to evaluate the effect of salsalate treatment on insulin action, secretion, and clearance rate in nondiabetic individuals with insulin resistance. RESEARCH DESIGN AND METHODS This was a randomized (2:1), single-blind, placebo-controlled study of salsalate (3.5 g daily for 4 weeks) in nondiabetic individuals with insulin resistance. All individuals had measurement of glucose tolerance (75-g oral glucose tolerance test), steady-state plasma glucose (SSPG; insulin suppression test), and insulin secretion and clearance rate (graded-glucose infusion test) before and after treatment. RESULTS Forty-one individuals were randomized to salsalate (n = 27) and placebo (n = 14). One individual from each group discontinued the study. Salsalate improved fasting (% mean change −7% [95% CI −10 to −14] vs. 1% [−3 to 5], P = 0.005) but not postprandial glucose concentration compared with placebo. Salsalate also lowered fasting triglyceride concentration (−25% [−34 to −15] vs. −6% [−26 to 14], P = 0.04). Salsalate had no effect on SSPG concentration or insulin secretion rate but significantly decreased insulin clearance rate compared with placebo (−23% [−30 to −16] vs. 3% [−10 to 15], P < 0.001). Salsalate was well tolerated, but four individuals needed a dose reduction due to symptoms. CONCLUSIONS Salsalate treatment in nondiabetic, insulin-resistant individuals improved fasting, but not postprandial, glucose and triglyceride concentration. These improvements were associated with a decrease in insulin clearance rate without change in insulin action or insulin secretion. PMID:24963111

  16. β-Cell deletion of Nr4a1 and Nr4a3 nuclear receptors impedes mitochondrial respiration and insulin secretion.

    PubMed

    Reynolds, Merrick S; Hancock, Chad R; Ray, Jason D; Kener, Kyle B; Draney, Carrie; Garland, Kevin; Hardman, Jeremy; Bikman, Benjamin T; Tessem, Jeffery S

    2016-07-01

    β-Cell insulin secretion is dependent on proper mitochondrial function. Various studies have clearly shown that the Nr4a family of orphan nuclear receptors is essential for fuel utilization and mitochondrial function in liver, muscle, and adipose. Previously, we have demonstrated that overexpression of Nr4a1 or Nr4a3 is sufficient to induce proliferation of pancreatic β-cells. In this study, we examined whether Nr4a expression impacts pancreatic β-cell mitochondrial function. Here, we show that β-cell mitochondrial respiration is dependent on the nuclear receptors Nr4a1 and Nr4a3. Mitochondrial respiration in permeabilized cells was significantly decreased in β-cells lacking Nr4a1 or Nr4a3. Furthermore, respiration rates of intact cells deficient for Nr4a1 or Nr4a3 in the presence of 16 mM glucose resulted in decreased glucose mediated oxygen consumption. Consistent with this reduction in respiration, a significant decrease in glucose-stimulated insulin secretion rates is observed with deletion of Nr4a1 or Nr4a3. Interestingly, the changes in respiration and insulin secretion occur without a reduction in mitochondrial content, suggesting decreased mitochondrial function. We establish that knockdown of Nr4a1 and Nr4a3 results in decreased expression of the mitochondrial dehydrogenase subunits Idh3g and Sdhb. We demonstrate that loss of Nr4a1 and Nr4a3 impedes production of ATP and ultimately inhibits glucose-stimulated insulin secretion. These data demonstrate for the first time that the orphan nuclear receptors Nr4a1 and Nr4a3 are critical for β-cell mitochondrial function and insulin secretion. Copyright © 2016 the American Physiological Society.

  17. Effect of Artemisia dracunculus Administration on Glycemic Control, Insulin Sensitivity, and Insulin Secretion in Patients with Impaired Glucose Tolerance.

    PubMed

    Méndez-Del Villar, Miriam; Puebla-Pérez, Ana M; Sánchez-Peña, María J; González-Ortiz, Luis J; Martínez-Abundis, Esperanza; González-Ortiz, Manuel

    2016-05-01

    To evaluate the effect of Artemisia dracunculus on glycemic control, insulin sensitivity, and insulin secretion in patients with impaired glucose tolerance (IGT). A randomized, double blind, placebo-controlled clinical trial was performed in 24 patients with diagnosis of IGT. Before and after the intervention, glucose and insulin levels were measured every 30 min for 2 h after a 75-g dextrose load, along with glycated hemoglobin A1c (A1C) and lipid profile. Twelve patients received A. dracunculus (1000 mg) before breakfast and dinner for 90 days; the remaining 12 patients received placebo. Area under the curve (AUC) of glucose and insulin, total insulin secretion, first phase of insulin secretion, and insulin sensitivity were calculated. Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests were used for statistical analyses. The institutional ethics committee approved the protocol. After A. dracunculus administration, there were significant decreases in systolic blood pressure (SBP; 120.0 ± 11.3 vs. 113.0 ± 11.2 mmHg, P < .05), A1C (5.8 ± 0.3 vs. 5.6% ± 0.4%, P < .05), AUC of insulin (56,136.0 ± 27,426.0 vs. 44,472.0 ± 23,370.0 pmol/L, P < .05), and total insulin secretion (0.45 ± 0.23 vs. 0.35 ± 0.18, P < .05), with a significant increase in high-density lipoprotein cholesterol (HDL-C) (1.3 ± 0.3 vs. 1.4 ± 0.3 mmol/L, P < .05). There were no significant differences after placebo administration. A. dracunculus administration for 90 days in patients with IGT significantly decreased SBP, A1C, AUC of insulin, and total insulin secretion with a significant increase in HDL-C levels.

  18. Age-Related Mitochondrial DNA Depletion and the Impact on Pancreatic Beta Cell Function

    PubMed Central

    Nile, Donna L.; Brown, Audrey E.; Kumaheri, Meutia A.; Blair, Helen R.; Heggie, Alison; Miwa, Satomi; Cree, Lynsey M.; Payne, Brendan; Chinnery, Patrick F.; Brown, Louise; Gunn, David A.; Walker, Mark

    2014-01-01

    Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes. PMID:25532126

  19. Age-related mitochondrial DNA depletion and the impact on pancreatic Beta cell function.

    PubMed

    Nile, Donna L; Brown, Audrey E; Kumaheri, Meutia A; Blair, Helen R; Heggie, Alison; Miwa, Satomi; Cree, Lynsey M; Payne, Brendan; Chinnery, Patrick F; Brown, Louise; Gunn, David A; Walker, Mark

    2014-01-01

    Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes.

  20. Mechanism of hyperinsulinemia after reticuloendothelial system phagocytosis.

    PubMed

    Filkins, J P; Yelich, M R

    1982-02-01

    Endocytic loading of the reticuloendothelial system (RES) results in acute hyperinsulinemia and functional hyperinsulinism. Colloidal carbon blockade of the RES in rats resulted in elevations of both portal vein and systemic serum immunoreactive insulin and increases in the hepatic portal vein insulin glucose ratios. Two mechanisms for the hyperinsulinemia were evaluated: 1) decreased removal of insulin by the postendocytic liver and 2) increased secretion of insulin by the isolated perfused pancreas. Colloidal carbon blockade did not alter removal of 125I-insulin as evaluated in the isolated perfused rat liver. Pancreases from postendocytic donor rats when perfused according to the technique of Grodsky manifested enhanced insulin secretion. Macrophage culture-conditioned media enhanced glucose-mediated insulin secretion both as assayed in vivo and in the isolated perfused rat pancreas. The data suggest that postendocytic activated macrophages secrete a monokine that alters insulin release and thus produces the hyperinsulinemia of RES blockade. The acronym MIRA for macrophage insulin-releasing activity is proposed for the monokine.

  1. Momordica charantia Administration Improves Insulin Secretion in Type 2 Diabetes Mellitus.

    PubMed

    Cortez-Navarrete, Marisol; Martínez-Abundis, Esperanza; Pérez-Rubio, Karina G; González-Ortiz, Manuel; Villar, Miriam Méndez-Del

    2018-02-12

    An improvement in parameters of glycemic control has been observed with Momordica charantia in patients with type 2 diabetes mellitus (T2DM). It is unknown whether this improvement is through a modification of insulin secretion, insulin sensitivity, or both. We hypothesized that M. charantia administration can improve insulin secretion and/or insulin sensitivity in patients with T2DM, without pharmacological treatment. The objective of the study was to evaluate the effect of M. charantia administration on insulin secretion and sensitivity. A randomized, double-blinded, placebo-controlled, clinical trial was carried out in 24 patients who received M. charantia (2000 mg/day) or placebo for 3 months. A 2-h oral glucose tolerance test (OGTT) was done before and after the intervention to calculate areas under the curve (AUC) of glucose and insulin, total insulin secretion (insulinogenic index), first phase of insulin secretion (Stumvoll index), and insulin sensitivity (Matsuda index). In the M. charantia group, there were significant decreases in weight, body mass index (BMI), fat percentage, waist circumference (WC), glycated hemoglobin A1c (A1C), 2-h glucose in OGTT, and AUC of glucose. A significant increase in insulin AUC (56,562 ± 36,078 vs. 65,256 ± 42,720 pmol/L/min, P = .043), in total insulin secretion (0.29 ± 0.18 vs. 0.41 ± 0.29, P = .028), and during the first phase of insulin secretion (557.8 ± 645.6 vs. 1135.7 ± 725.0, P = .043) was observed after M. charantia administration. Insulin sensitivity was not modified with any intervention. In conclusion, M. charantia administration reduced A1C, 2-h glucose, glucose AUC, weight, BMI, fat percentage, and WC, with an increment of insulin AUC, first phase and total insulin secretion.

  2. Effects of experimentally induced mild hyperthyroidism on growth hormone and insulin secretion and sex steroid levels in healthy young men.

    PubMed

    Lovejoy, J C; Smith, S R; Bray, G A; Veldhuis, J D; Rood, J C; Tulley, R

    1997-12-01

    Although triiodothyronine (T3) exerts major regulatory actions in both animals and humans, most clinical studies of T3 administration have been relatively short-term. The present study examined the effects of more than 2 months (63 days) of low-dose T3 treatment on overnight pulsatile growth hormone (GH) secretion, short-term insulin secretion, and of sex steroid levels in seven healthy, lean men studied at an inpatient metabolic unit. At baseline, there were strong correlations between sex hormone-binding globulin (SHBG) and several measures of GH production, including total GH production (r = .99), GH interburst interval (r = -.75), and GH mass (r = .82). SHBG was also inversely correlated with basal insulin secretion (r = -.74). There was a 42% increase in serum levels of total testosterone (18.5 +/- 1.3 to 26.3 +/- 1.8 nmol/L, P = .005) and a 150% increase in SHBG (18.0 +/- 2.2 to 44.9 +/- 7.0 nmol/L, P = .008) following T3 treatment. Estradiol and free testosterone levels were unchanged by treatment, although free testosterone decreased from 142.8 +/- 18.4 to 137.3 +/- 19.5 pmol/L. T3 treatment significantly reduced the GH interburst interval (P < .05) and produced slight increases in the measures of GH secretion. There were no statistically significant effects of T3 treatment on insulin secretion, although insulin peak amplitude, mass secreted per burst, and total production all decreased. We conclude that experimentally induced T3 excess in healthy men produces significant and sustained changes in sex hormone levels and GH secretion. Furthermore, there are strong associations between SHBG and both GH and insulin secretion independent of thyroid hormone excess that require additional study.

  3. Reduction in insulin sensitivity and inadequate β-cell capacity to counteract the increase in insulin resistance in children with idiopathic growth hormone deficiency during 12 months of growth hormone treatment.

    PubMed

    Ciresi, A; Amato, M C; Giordano, C

    2015-03-01

    To evaluate the performance of various indexes of insulin sensitivity and secretion and to identify the most useful indicator of deterioration of glucose metabolism in a cohort of children with growth hormone (GH) deficiency (GHD) during GH treatment. In 73 GHD children (55 M, 18 F; mean age 10.5 years) at baseline and after 12 months of treatment, we evaluated a number of surrogate indexes of insulin secretion and sensitivity. In a subgroup of 11 children we also performed an euglycemic hyperinsulinemic clamp. After 12 months, a significant increase in fasting glucose (p < 0.001) and HbA1c levels (p < 0.001) was documented, despite all children remained with a normal glucose tolerance. With regard the insulin secretion, Homa-β did not show any significant change (p = 0.073), while oral disposition index (DIo) showed a significant decrease (p = 0.031). With regard the insulin sensitivity, Homa-IR significantly increased (p < 0.001) with a concomitant decrease in QUICKI (p < 0.001). ISI Matsuda showed a decrease, although not statistically significant (p = 0.069). In the subgroup of 11 children, the M value derived from clamp showed a significant decrease (p = 0.011) and a significant positive correlation was found between M value and ISI Matsuda both at baseline (ρ 0.950; p = 0.001) and after 12 months (ρ 0.980; p = 0.001) but not with Homa-IR and QUICKI. 12 months of GH treatment lead to a decrease in insulin sensitivity and impairment in insulin secretion relative to insulin sensitivity even without evident changes in glucose tolerance. DIo has proven to be the most useful indicator of deterioration of glucose metabolism even in cases in which the overt glucose abnormalities have not yet appeared.

  4. Antiaging Gene Klotho Enhances Glucose-Induced Insulin Secretion by Up-Regulating Plasma Membrane Levels of TRPV2 in MIN6 β-Cells

    PubMed Central

    Lin, Yi

    2012-01-01

    Klotho is a recently discovered antiaging gene. Klotho is expressed in mouse pancreatic islets and in insulinoma β-cells (MIN6 β-cells). The purpose of this study was to investigate whether Klotho plays a role in the regulation of insulin secretion in MIN6 β-cells by overexpression and silencing of Klotho. It is interesting that overexpression of Klotho increased glucose-induced insulin secretion in MIN6 β-cells. Overexpression of mouse Klotho protein also significantly increased plasma membrane levels of transient receptor potential V2 (TRPV2), calcium entry, and the glucose-induced increase in intracellular calcium. On the other hand, knockdown of Klotho by siRNA significantly decreased plasma membrane levels of TRPV2 and attenuated glucose-induced calcium entry and insulin secretion. Tranilast, a selective inhibitor of TRPV2, abolished the promoting effects of overexpression of Klotho on glucose-induced calcium entry and insulin secretion in MIN6 cells. Thus, TRPV2 lies in the downstream of Klotho in the regulation of glucose-induced insulin secretion. This study demonstrated, for the first time, that Klotho may enhance glucose-induced insulin secretion by up-regulating plasma membrane levels of TRPV2 and thus glucose-induced calcium responses. These findings reveal a previously unidentified role of Klotho in the regulation of glucose-induced insulin secretion in MIN6 β-cells. PMID:22597535

  5. Antiaging gene Klotho enhances glucose-induced insulin secretion by up-regulating plasma membrane levels of TRPV2 in MIN6 β-cells.

    PubMed

    Lin, Yi; Sun, Zhongjie

    2012-07-01

    Klotho is a recently discovered antiaging gene. Klotho is expressed in mouse pancreatic islets and in insulinoma β-cells (MIN6 β-cells). The purpose of this study was to investigate whether Klotho plays a role in the regulation of insulin secretion in MIN6 β-cells by overexpression and silencing of Klotho. It is interesting that overexpression of Klotho increased glucose-induced insulin secretion in MIN6 β-cells. Overexpression of mouse Klotho protein also significantly increased plasma membrane levels of transient receptor potential V2 (TRPV2), calcium entry, and the glucose-induced increase in intracellular calcium. On the other hand, knockdown of Klotho by siRNA significantly decreased plasma membrane levels of TRPV2 and attenuated glucose-induced calcium entry and insulin secretion. Tranilast, a selective inhibitor of TRPV2, abolished the promoting effects of overexpression of Klotho on glucose-induced calcium entry and insulin secretion in MIN6 cells. Thus, TRPV2 lies in the downstream of Klotho in the regulation of glucose-induced insulin secretion. This study demonstrated, for the first time, that Klotho may enhance glucose-induced insulin secretion by up-regulating plasma membrane levels of TRPV2 and thus glucose-induced calcium responses. These findings reveal a previously unidentified role of Klotho in the regulation of glucose-induced insulin secretion in MIN6 β-cells.

  6. Somatostatin and insulin mediate glucose-inhibited glucagon secretion in the pancreatic α-cell by lowering cAMP

    PubMed Central

    Elliott, Amicia D.; Ustione, Alessandro

    2014-01-01

    The dysregulation of glucose-inhibited glucagon secretion from the pancreatic islet α-cell is a critical component of diabetes pathology and metabolic disease. We show a previously uncharacterized [Ca2+]i-independent mechanism of glucagon suppression in human and murine pancreatic islets whereby cAMP and PKA signaling are decreased. This decrease is driven by the combination of somatostatin, which inhibits adenylyl cyclase production of cAMP via the Gαi subunit of the SSTR2, and insulin, which acts via its receptor to activate phosphodiesterase 3B and degrade cytosolic cAMP. Our data indicate that both somatostatin and insulin signaling are required to suppress cAMP/PKA and glucagon secretion from both human and murine α-cells, and the combination of these two signaling mechanisms is sufficient to reduce glucagon secretion from isolated α-cells as well as islets. Thus, we conclude that somatostatin and insulin together are critical paracrine mediators of glucose-inhibited glucagon secretion and function by lowering cAMP/PKA signaling with increasing glucose. PMID:25406263

  7. Comparison of Regulation Mechanisms of Five Mulberry Ingredients on Insulin Secretion under Oxidative Stress.

    PubMed

    Zheng, Yun-Chong; He, Hao; Wei, Xing; Ge, Sheng; Lu, Yan-Hua

    2016-11-23

    The effects of mulberry ingredients including 1-deoxynojrimycin (DNJ), resveratrol (RES), oxyresveratrol (OXY), cyanidin-3-glucoside (C3G), and cyanidin-3-rutinoside (C3R) on insulin secretion under oxidative stress were investigated. The results revealed that they had distinct effects on insulin secretion in H 2 O 2 -induced MIN 6 cells, especially DNJ, C3G, and C3R, while RES and OXY showed modest effects in low dose (12.5 μM). The mechanisms were demonstrated in signal pathway that after treatment with DNJ, C3G, and C3R, the expressions of glucokinase (GK) were up-regulated, leading to intracellular ATP accumulation and insulin secretion. They also bound to glucagon-like peptide-1 receptor (GLP-1R), improved GLP-1R, duodenal homeobox factor-1 (PDX-1) expression, and stimulated insulin secretion. Moreover, ROS production was inhibited, followed by a decreasing apoptosis rate, while RES and OXY accelerated the apoptosis at high dose (50 μM). This work expounded the potential mechanisms of mulberry ingredients on insulin secretion, indicating the potential application in the intervention against hyperglycemia.

  8. Role of insulin in the hyperandrogenemia of lean women with polycystic ovary syndrome and normal insulin sensitivity.

    PubMed

    Baillargeon, Jean-Patrice; Carpentier, André

    2007-10-01

    To determine the effect of reducing insulin secretion on hyperandrogenemia in lean normoinsulinemic women with polycystic ovary syndrome (PCOS) and normal metabolic insulin sensitivity. Transversal assessment at baseline and prospective follow-up of lean PCOS group after 8 days of diazoxide, which reduces insulin secretion, and 1 month of leuprolide, which suppresses LH. Clinical research center of an academic hospital. Nine lean women (body mass index

  9. Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity.

    PubMed

    Yamamoto, Soh; Kuramoto, Kenta; Wang, Nan; Situ, Xiaolei; Priyadarshini, Medha; Zhang, Weiran; Cordoba-Chacon, Jose; Layden, Brian T; He, Congcong

    2018-06-12

    Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1 F121A ) mice manifesting constitutively active autophagy. With a high-fat-diet challenge, the autophagy-hyperactive mice unexpectedly show impaired glucose tolerance, but improved insulin sensitivity, compared to mice with normal autophagy. Autophagy hyperactivation enhances insulin signaling, via suppressing ER stress in insulin-responsive cells, but decreases insulin secretion by selectively sequestrating and degrading insulin granule vesicles in β cells, a process we term "vesicophagy." The reduction in insulin storage, insulin secretion, and glucose tolerance is reversed by transient treatment of autophagy inhibitors. Thus, β cells and insulin-responsive tissues require different autophagy levels for optimal function. To improve insulin sensitivity without hampering secretion, acute or intermittent, rather than chronic, activation of autophagy should be considered in diabetic therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Low Level Pro-inflammatory Cytokines Decrease Connexin36 Gap Junction Coupling in Mouse and Human Islets through Nitric Oxide-mediated Protein Kinase Cδ*

    PubMed Central

    Farnsworth, Nikki L.; Walter, Rachelle L.; Hemmati, Alireza; Westacott, Matthew J.; Benninger, Richard K. P.

    2016-01-01

    Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. PMID:26668311

  11. THE EFFECT OF ADRENAL MEDULLECTOMY ON METABOLIC RESPONSES TO CHRONIC INTERMITTENT HYPOXIA

    PubMed Central

    Shin, Mi-Kyung; Han, Woobum; Bevans-Fonti, Shannon; Jun, Jonathan C.; Punjabi, Naresh M.; Polotsky, Vsevolod Y.

    2014-01-01

    Obstructive sleep apnea causes intermittent hypoxia (IH) and is associated with insulin resistance and type 2 diabetes. IH increases plasma catecholamine levels, which may increase insulin resistance and suppress insulin secretion. The objective of this study was to determine if adrenal medullectomy (MED) prevents metabolic dysfunction in IH. MED or sham surgery was performed in 60 male C57BL/6J mice, which were then exposed to IH or control conditions (intermittent air) for 6 weeks. IH increased plasma epinephrine and norepinephrine levels, increased fasting blood glucose and lowered basal and glucose-stimulated insulin secretion. MED decreased baseline epinephrine and prevented the IH induced increase in epinephrine, whereas the norepinephrine response remained intact. MED improved glucose tolerance in mice exposed to IH, attenuated the impairment in basal and glucose-stimulated insulin secretion, but did not prevent IH-induced fasting hyperglycemia or insulin resistance. We conclude that the epinephrine release from the adrenal medulla during IH suppresses insulin secretion causing hyperglycemia. PMID:25179887

  12. Plasma HDL-cholesterol and triglycerides, but not LDL-cholesterol, are associated with insulin secretion in non-diabetic subjects.

    PubMed

    Natali, Andrea; Baldi, Simona; Bonnet, Fabrice; Petrie, John; Trifirò, Silvia; Tricò, Domenico; Mari, Andrea

    2017-04-01

    Experimental data support the notion that lipoproteins might directly affect beta cell function, however clinical data are sparse and inconsistent. We aimed at verifying whether, independently of major confounders, serum lipids are associated with alterations in insulin secretion or clearance non-diabetic subjects. Cross sectional and observational prospective (3.5yrs), multicentre study in which 1016 non-diabetic volunteers aged 30-60yrs. and with a wide range of BMI (20.0-39.9kg/m 2 ) were recruited in a setting of University hospital ambulatory care (RISC study). baseline fasting lipids, fasting and OGTT-induced insulin secretion and clearance (measured by glucose and C-peptide modeling), peripheral insulin sensitivity (by the euglycemic clamp). Lipids and OGTT were repeated in 980 subjects after 3.5years. LDL-cholesterol did not show independent associations with fasting or stimulated insulin secretion or clearance. After accounting for potential confounders, HDL-cholesterol displayed negative and triglycerides positive independent associations with fasting and OGTT insulin secretion; neither with insulin clearance. Low HDL-cholesterol and high triglycerides were associated with an increase in glucose-dependent and a decrease in non-glucose-dependent insulin secretion. Over 3.5years both an HDL-cholesterol decline and a triglycerides rise were associated with an increase in fasting insulin secretion independent of changes in body weight or plasma glucose. LDL-cholesterol does not seem to influence any major determinant of insulin bioavailability while low HDL-cholesterol and high triglycerides might contribute to sustain the abnormalities in insulin secretion that characterize the pre-diabetic state. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Control of Insulin Secretion by Cholinergic Signaling in the Human Pancreatic Islet

    PubMed Central

    Molina, Judith; Rodriguez-Diaz, Rayner; Fachado, Alberto; Jacques-Silva, M. Caroline

    2014-01-01

    Acetylcholine regulates hormone secretion from the pancreatic islet and is thus crucial for glucose homeostasis. Little is known, however, about acetylcholine (cholinergic) signaling in the human islet. We recently reported that in the human islet, acetylcholine is primarily a paracrine signal released from α-cells rather than primarily a neural signal as in rodent islets. In this study, we demonstrate that the effects acetylcholine produces in the human islet are different and more complex than expected from studies conducted on cell lines and rodent islets. We found that endogenous acetylcholine not only stimulates the insulin-secreting β-cell via the muscarinic acetylcholine receptors M3 and M5, but also the somatostatin-secreting δ-cell via M1 receptors. Because somatostatin is a strong inhibitor of insulin secretion, we hypothesized that cholinergic input to the δ-cell indirectly regulates β-cell function. Indeed, when all muscarinic signaling was blocked, somatostatin secretion decreased and insulin secretion unexpectedly increased, suggesting a reduced inhibitory input to β-cells. Endogenous cholinergic signaling therefore provides direct stimulatory and indirect inhibitory input to β-cells to regulate insulin secretion from the human islet. PMID:24658304

  14. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yunli, E-mail: chrisyu1255@yahoo.com.cn; Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009; Wang, Xinting, E-mail: wxinting1986@yahoo.com.cn

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-daymore » gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K{sub ATP} channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ► Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ► Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ► Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ► GLP-1 over-secretion may be involved in gatifloxacin-induced hyperglycemia.« less

  15. Ultra-structural study of insulin granules in pancreatic β-cells of db/db mouse by scanning transmission electron microscopy tomography.

    PubMed

    Xue, Yanhong; Zhao, Wei; Du, Wen; Zhang, Xiang; Ji, Gang; Ying, Wang; Xu, Tao

    2012-07-01

    Insulin granule trafficking is a key step in the secretion of glucose-stimulated insulin from pancreatic β-cells. The main feature of type 2 diabetes (T2D) is the failure of pancreatic β-cells to secrete sufficient amounts of insulin to maintain normal blood glucose levels. In this work, we developed and applied tomography based on scanning transmission electron microscopy (STEM) to image intact insulin granules in the β-cells of mouse pancreatic islets. Using three-dimensional (3D) reconstruction, we found decreases in both the number and the grey level of insulin granules in db/db mouse pancreatic β-cells. Moreover, insulin granules were closer to the plasma membrane in diabetic β-cells than in control cells. Thus, 3D ultra-structural tomography may provide new insights into the pathology of insulin secretion in T2D.

  16. Glycogen metabolism in the glucose-sensing and supply-driven β-cell.

    PubMed

    Andersson, Lotta E; Nicholas, Lisa M; Filipsson, Karin; Sun, Jiangming; Medina, Anya; Al-Majdoub, Mahmoud; Fex, Malin; Mulder, Hindrik; Spégel, Peter

    2016-12-01

    Glycogen metabolism in β-cells may affect downstream metabolic pathways controlling insulin release. We examined glycogen metabolism in human islets and in the rodent-derived INS-1 832/13 β-cells and found them to express the same isoforms of key enzymes required for glycogen metabolism. Our findings indicate that glycogenesis is insulin-independent but influenced by extracellular glucose concentrations. Levels of glycogen synthase decrease with increasing glucose concentrations, paralleling accumulation of glycogen. We did not find cAMP-elicited glycogenolysis and insulin secretion to be causally related. In conclusion, our results reveal regulated glycogen metabolism in human islets and insulin-secreting cells. Whether glycogen metabolism affects insulin secretion under physiological conditions remains to be determined. © 2016 Federation of European Biochemical Societies.

  17. Reduced insulin secretion and glucose intolerance are involved in the fasting susceptibility of common vampire bats.

    PubMed

    Freitas, Mariella B; Queiroz, Joicy F; Dias Gomes, Carolinne I; Collares-Buzato, Carla B; Barbosa, Helena C; Boschero, Antonio C; Gonçalves, Carlos A; Pinheiro, Eliana C

    2013-03-01

    Susceptibility during fasting has been reported for the common vampire bat (Desmodus rotundus), to the point of untimely deaths after only 2-3 nights of fasting. To investigate the underlying physiology of this critical metabolic condition, we analyzed serum insulin levels, pancreatic islets morphometry and immunocytochemistry (ICC), static insulin secretion in pancreas fragments, and insulin signaling mechanism in male vampire bats. A glucose tolerance test (ipGTT) was also performed. Serum insulin was found to be lower in fed vampires compared to other mammals, and was significantly reduced after 24h fasting. Morphometrical analyses revealed small irregular pancreatic islets with reduced percentage of β-cell mass compared to other bats. Static insulin secretion analysis showed that glucose-stimulated insulin secretion was impaired, as insulin levels did not reach significance under high glucose concentrations, whereas the response to the amino acid leucin was preserved. Results from ipGTT showed a failure on glucose clearance, indicating glucose intolerance due to diminished pancreatic insulin secretion and/or decreased β-cell response to glucose. In conclusion, data presented here indicate lower insulinemia and impaired insulin secretion in D. rotundus, which is consistent with the limited ability to store body energy reserves, previously reported in these animals. Whether these metabolic and hormonal features are associated with their blood diet remains to be determined. The peculiar food sharing through blood regurgitation, reported to this species, might be an adaptive mechanism overcoming this metabolic susceptibility. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Mechanism of action of hypoglycemic effects of an intestine-specific inhibitor of microsomal triglyceride transfer protein (MTP) in obese rats.

    PubMed

    Sakata, Shohei; Katsumi, Sohei; Mera, Yasuko; Kuroki, Yukiharu; Nashida, Reiko; Kakutani, Makoto; Ohta, Takeshi

    2015-01-01

    Diminished insulin sensitivity in the peripheral tissues and failure of pancreatic beta cells to secrete insulin are known major determinants of type 2 diabetes mellitus. JTT-130, an intestine-specific microsomal transfer protein inhibitor, has been shown to suppress high fat-induced obesity and ameliorate impaired glucose tolerance while enhancing glucagon-like peptide-1 (GLP-1) secretion. We investigated the effects of JTT-130 on glucose metabolism and elucidated the mechanism of action, direct effects on insulin sensitivity and glucose-stimulated insulin secretion in a high fat diet-induced obesity rat model. Male Sprague Dawley rats fed a high-fat diet were treated with a single administration of JTT-130. Glucose tolerance, hyperglycemic clamp and hyperinsulinemic-euglycemic testing were performed to assess effects on insulin sensitivity and glucose-stimulated insulin secretion, respectively. Plasma GLP-1 and tissue triglyceride content were also determined under the same conditions. A single administration of JTT-130 suppressed plasma glucose elevations after oral glucose loading and increased the disposition index while elevating GLP-1. JTT-130 also enhanced glucose-stimulated insulin secretion in hyperglycemic clamp tests, whereas increased insulin sensitivity was observed in hyperinsulinemic-euglycemic clamp tests. Single-dose administration of JTT-130 decreased lipid content in the liver and skeletal muscle. JTT-130 demonstrated acute and direct hypoglycemic effects by enhancing insulin secretion and/or insulin sensitivity. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  19. Low Level Pro-inflammatory Cytokines Decrease Connexin36 Gap Junction Coupling in Mouse and Human Islets through Nitric Oxide-mediated Protein Kinase Cδ.

    PubMed

    Farnsworth, Nikki L; Walter, Rachelle L; Hemmati, Alireza; Westacott, Matthew J; Benninger, Richard K P

    2016-02-12

    Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Dual effect of cell-cell contact disruption on cytosolic calcium and insulin secretion.

    PubMed

    Jaques, Fabienne; Jousset, Hélène; Tomas, Alejandra; Prost, Anne-Lise; Wollheim, Claes B; Irminger, Jean-Claude; Demaurex, Nicolas; Halban, Philippe A

    2008-05-01

    Cell-to-cell interactions play an important role in insulin secretion. Compared with intact islets, dispersed pancreatic beta-cells show increased basal and decreased glucose-stimulated insulin secretion. In this study, we used mouse MIN6B1 cells to investigate the mechanisms that control insulin secretion when cells are in contact with each other or not. RNAi-mediated silencing of the adhesion molecule E-cadherin in confluent cells reduced glucose-stimulated secretion to the levels observed in isolated cells but had no impact on basal secretion. Dispersed cells presented high cytosolic Ca(2+) activity, depolymerized cytoskeleton and ERK1/2 activation in low glucose conditions. Both the increased basal secretion and the spontaneous Ca(2+) activity were corrected by transient removal of Ca(2+) or prolonged incubation of cells in low glucose, a procedure that restored the ability of dispersed cells to respond to glucose (11-fold stimulation). In conclusion, we show that dispersed pancreatic beta-cells can respond robustly to glucose once their elevated basal secretion has been corrected. The increased basal insulin secretion of dispersed cells is due to spontaneous Ca(2+) transients that activate downstream Ca(2+) effectors, whereas engagement of cell adhesion molecules including E-cadherin contributes to the greater secretory response to glucose seen in cells with normal intercellular contacts.

  1. Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes.

    PubMed Central

    Mangiapane, E H; Brindley, D N

    1986-01-01

    Rat hepatocytes in monolayer culture were preincubated for 19 h with 1 microM-dexamethasone, and the incubation was continued for a further 23 h with [14C]oleate, [3H]glycerol and 1 microM-dexamethasone. Dexamethasone increased the secretion of triacylglycerol into the medium in particles that had the properties of very-low-density lipoproteins. The increased secretion was matched by a decrease in the triacylglycerol and phosphatidylcholine that remained in the hepatocytes. Preincubating the hepatocytes for the total 42 h period with 36 nM-insulin decreased the amount of triacylglycerol in the medium and in the cells after the final incubation for 23 h with radioactive substrates. However, insulin had no significant effect on the triacylglycerol content of the cell and medium when it was present only in the final 23 h incubation. Insulin antagonized the effects of dexamethasone in stimulating the secretion of triacylglycerol from the hepatocytes, especially when it was present throughout the total 42 h period. The labelling of lysophosphatidylcholine in the medium when hepatocytes were incubated with [14C]oleate and [3H]glycerol was greater than that of phosphatidylcholine. The appearance of this lipid in the medium, unlike that of triacylglycerol and phosphatidylcholine, was not stimulated by dexamethasone, or inhibited by colchicine. However, the presence of lysophosphatidylcholine in the medium was decreased when the hepatocytes were incubated with both dexamethasone and insulin. These findings are discussed in relation to the control of the synthesis of glycerolipids and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by the liver, particularly in relation to the interactions of glucocorticoids and insulin. PMID:3513755

  2. High-fat diet with stress impaired islets' insulin secretion by reducing plasma estradiol and pancreatic GLUT2 protein levels in rats' proestrus phase.

    PubMed

    Salimi, M; Zardooz, H; Khodagholi, F; Rostamkhani, F; Shaerzadeh, F

    2016-10-01

    This study was conducted to determine whether two estrus phases (proestrus and diestrus) in female rats may influence the metabolic response to a high-fat diet and/or stress, focusing on pancreatic insulin secretion and content. Animals were divided into high-fat and normal diet groups, then each group was subdivided into stress and non-stress groups, and finally, each one of these was divided into proestrus and diestrus subgroups. At the end of high-fat diet treatment, foot-shock stress was applied to the animals. Then, blood samples were taken to measure plasma factors. Finally, the pancreas was removed for determination of glucose transporter 2 (GLUT2) protein levels and assessment of insulin content and secretion of the isolated islets. In the normal and high-fat diet groups, stress increased plasma corticosterone concentration in both phases. In both study phases, high-fat diet consumption decreased estradiol and increased leptin plasma levels. In the high-fat diet group in response to high glucose concentration, a reduction in insulin secretion was observed in the proestrus phase compared with the same phase in the normal diet group in the presence and absence of stress. Also, high-fat diet decreased the insulin content of islets in the proestrus phase compared with the normal diet. High-fat diet and/or stress caused a reduction in islet GLUT2 protein levels in both phases. In conclusion, it seems possible that high-fat diet alone or combined with foot-shock, predispose female rats to impaired insulin secretion, at least in part, by interfering with estradiol levels in the proestrus phase and decreasing pancreatic GLUT2 protein levels.

  3. Neuromedin U suppresses glucose-stimulated insulin secretion in pancreatic β cells.

    PubMed

    Zhang, Weidong; Sakoda, Hideyuki; Miura, Ayako; Shimizu, Koichiro; Mori, Kenji; Miyazato, Mikiya; Takayama, Kentaro; Hayashi, Yoshio; Nakazato, Masamitsu

    2017-11-04

    Neuromedin U (NMU), a highly conserved peptide in mammals, is implicated in energy homeostasis and glycemic control, and may also be involved in the regulation of adipoinsular axis function. However, the role of NMU in regulating insulin secretion has not been clearly established. In this study, we investigated the role of NMU in the regulation of insulin secretion both in vitro and in vivo. We found that NMU and NMU receptor (NMUR) 1 were expressed in mouse islets and β cell-derived MIN6-K8 cells. In mice, NMU suppressed glucose-stimulated insulin secretion (GSIS) both in vitro and in vivo. Additionally, an NMUR1 agonist inhibited GSIS in both MIN6-K8 cells and mice islets. Moreover, NMU attenuated intracellular Ca 2+ influx in MIN6-K8 cells, potentially causing a decrease in insulin secretion. siNmu-transfected MIN6-K8 cells showed elevated GSIS. Treatment with anti-NMU IgG increased GSIS in isolated mouse pancreatic islets. These results suggested that NMU can act directly on β cells through NMUR1 in an autocrine or paracrine fashion to suppress insulin secretion. Collectively, our results highlight the crucial role of NMU in suppressing pancreatic insulin secretion, and may improve our understanding of glucose homeostasis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. The effect of curcumin on insulin release in rat-isolated pancreatic islets.

    PubMed

    Abdel Aziz, Mohamed T; El-Asmar, Mohamed F; El Nadi, Essam G; Wassef, Mohamed A; Ahmed, Hanan H; Rashed, Laila A; Obaia, Eman M; Sabry, Dina; Hassouna, Amira A; Abdel Aziz, Ahmed T

    2010-08-01

    Curcumin exerts a hypoglycemic action and induces heme-oxygenase-1 (HO-1). We evaluated the effect of curcumin on isolated islets of Langerhans and studied whether its action on insulin secretion is mediated by inducible HO-1. Islets were isolated from rats and divided into control islets, islets incubated in different curcumin concentrations, islets incubated in hemin, islets incubated in curcumin and HO inhibitor, stannous mesoporphyrin (SnMP), islets incubated in hemin and SnMP, islets incubated in SnMP only, and islets incubated in 16.7 mmol/L glucose. Heme-oxygenase activity, HO-1 expression, and insulin estimation was assessed. Insulin secretion, HO-1 gene expression and HO activity were significantly increased in islets incubated in curcumin, hemin, and glucose compared with controls. This increase in insulin secretion was significantly decreased by incubation of islets in SnMP. The action of curcumin on insulin secretion from the isolated islets may be, in part, mediated through increased HO-1 gene expression.

  5. Theophylline prevents the inhibitory effect of prostaglandin E2 on glucose-induced insulin secretion in man.

    PubMed

    Giugliano, D; Cozzolino, D; Salvatore, T; Giunta, R; Torella, R

    1988-06-01

    This study was undertaken to assess the mechanism by which prostaglandins of the E series inhibit glucose-induced insulin secretion in man. Acute insulin response (mean change 3-10 min) to iv glucose (0.33 g/kg) was decreased by 40% during the infusion of prostaglandin E2 (10 micrograms/min) and glucose disappearance rates were reduced (P less than 0.05). Insulin response to arginine (5 g iv) and tolbutamide (1 g iv) were not affected by the same rate of prostaglandin E2 infusion. The inhibitory effect of prostaglandin E2 on glucose-induced insulin secretion was prevented by theophylline (100 mg as a loading dose followed by a 5 mg/min infusion), a drug that increases the intracellular cAMP concentrations by inhibiting phosphodiesterase activity. Our data suggest the involvement of the adenylate cyclase system in the inhibitory action of prostaglandin E2 on glucose-induced insulin secretion in man.

  6. A common variant upstream of the PAX6 gene influences islet function in man.

    PubMed

    Ahlqvist, E; Turrini, F; Lang, S T; Taneera, J; Zhou, Y; Almgren, P; Hansson, O; Isomaa, B; Tuomi, T; Eriksson, K; Eriksson, J G; Lyssenko, V; Groop, L

    2012-01-01

    Impaired glucose tolerance and impaired insulin secretion have been reported in families with PAX6 mutations and it is suggested that they result from defective proinsulin processing due to lack of prohormone convertase 1/3, encoded by PCSK1. We investigated whether a common PAX6 variant would mimic these findings and explored in detail its effect on islet function in man. A PAX6 candidate single nucleotide polymorphism (rs685428) was associated with fasting insulin levels in the Diabetes Genetics Initiative genome-wide association study. We explored its potential association with glucose tolerance and insulin processing and secretion in three Scandinavian cohorts (N = 8,897 individuals). In addition, insulin secretion and the expression of PAX6 and transcriptional target genes were studied in human pancreatic islets. rs685428 G allele carriers had lower islet mRNA expression of PAX6 (p = 0.01) and PCSK1 (p = 0.001) than AA homozygotes. The G allele was associated with increased fasting insulin (p (replication) = 0.02, p (all) = 0.0008) and HOMA-insulin resistance (p (replication) = 0.02, p (all) = 0.001) as well as a lower fasting proinsulin/insulin ratio (p (all) = 0.008) and lower fasting glucagon (p = 0.04) and gastric inhibitory peptide (GIP) (p = 0.05) concentrations. Arginine-stimulated (p = 0.02) insulin secretion was reduced in vivo, which was further reflected by a reduction of glucose- and potassium-stimulated insulin secretion (p = 0.002 and p = 0.04, respectively) in human islets in vitro. A common variant in PAX6 is associated with reduced PAX6 and PCSK1 expression in human islets and reduced insulin response, as well as decreased glucagon and GIP concentrations and decreased insulin sensitivity. These findings emphasise the central role of PAX6 in the regulation of islet function and glucose metabolism in man.

  7. Effect of Gymnema sylvestre Administration on Metabolic Syndrome, Insulin Sensitivity, and Insulin Secretion.

    PubMed

    Zuñiga, Laura Y; González-Ortiz, Manuel; Martínez-Abundis, Esperanza

    2017-08-01

    Gymnema sylvestre is a medicinal plant whose consumption has demonstrated benefits on lipid and glucose levels, blood pressure, and body weight (BWt). The aim of this study was to evaluate the effect of G. sylvestre administration on metabolic syndrome (MetS), insulin secretion, and insulin sensitivity. A randomized, double-blind, placebo-controlled clinical trial was carried out in 24 patients (without pharmacological treatment), 30-60 years old, with diagnosis of MetS in accordance with the modified International Diabetes Federation criteria. Patients were randomly assigned to receive G. sylvestre or placebo twice daily before breakfast and dinner in 300 mg capsules for a total of 600 mg per day for 12 weeks. Before and after the intervention, the components of MetS were evaluated as well as BWt, body mass index (BMI), total cholesterol, low-density lipoprotein cholesterol, and very low-density lipoprotein (VLDL). Area under the curve of glucose and insulin, phases of insulin secretion, and insulin sensitivity were calculated. Statistical analysis was performed using Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests; P ≤ .05 was considered statistically significant. After G. sylvestre administration, significant decreases in BWt (81.3 ± 10.6 kg vs. 77.9 ± 8.4 kg, P = .02), BMI (31.2 ± 2.5 kg/m 2 vs. 30.4 ± 2.2 kg/m 2 , P = .02), and VLDL levels (0.45 ± 0.15 mmol/dL vs. 0.35 ± 0.15 mmol/dL, P = .05) were observed, without modifying the components of MetS, insulin secretion, and insulin sensitivity. In conclusion, G. sylvestre administration decreased BWt, BMI, and VLDL levels in subjects with MetS, without changes in insulin secretion and insulin sensitivity.

  8. Importance of NADPH oxidase-mediated redox signaling in the detrimental effect of CRP on pancreatic insulin secretion.

    PubMed

    Chan, Pei-Chi; Wang, Ya-Chin; Chen, Yi-Ling; Hsu, Wan-Ning; Tian, Yu-Feng; Hsieh, Po-Shiuan

    2017-11-01

    Elevations in C-reactive protein (CRP) levels are positively correlated with the progress of type 2 diabetes mellitus. However, the effect of CRP on pancreatic insulin secretion is unknown. Here, we showed that purified human CRP impaired insulin secretion in isolated mouse islets and NIT-1 insulin-secreting cells in dose- and time-dependent manners. CRP increased NADPH oxidase-mediated ROS (reactive oxygen species) production, which simultaneously promoted the production of nitrotyrosine (an indicator of RNS, reactive nitrogen species) and TNFα, to diminish cell viability, insulin secretion in islets and insulin-secreting cells. These CRP-mediated detrimental effects on cell viability and insulin secretion were significantly reversed by adding NAC (a potent antioxidant), apocynin (a selective NADPH oxidase inhibitor), L-NAME (a non-selective nitric oxide synthase (NOS) inhibitor), aminoguanidine (a selective iNOS inhibitor), PDTC (a selective NFκB inhibitor) or Enbrel (an anti-TNFα fusion protein). However, CRP-induced ROS production failed to change after adding L-NAME, aminoguanidine or PDTC. In isolated islets and NIT-1 cells, the elevated nitrotyrosine contents by CRP pretreatment were significantly suppressed by adding L-NAME but not PDTC. Conversely, CRP-induced increases in TNF-α production were significantly reversed by administration of PDTC but not L-NAME. In addition, wild-type mice treated with purified human CRP showed significant decreases in the insulin secretion index (HOMA-β cells) and the insulin stimulation index in isolated islets that were reversed by the addition of L-NAME, aminoguanidine or NAC. It is suggested that CRP-activated NADPH-oxidase redox signaling triggers iNOS-mediated RNS and NFκB-mediated proinflammatory cytokine production to cause β cell damage in state of inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Adjunct therapy for type 1 diabetes mellitus.

    PubMed

    Lebovitz, Harold E

    2010-06-01

    Insulin replacement therapy in type 1 diabetes mellitus (T1DM) is nonphysiologic. Hyperinsulinemia is generated in the periphery to achieve normal insulin concentrations in the liver. This mismatch results in increased hypoglycemia, increased food intake with weight gain, and insufficient regulation of postprandial glucose excursions. Islet amyloid polypeptide is a hormone synthesized in pancreatic beta cells and cosecreted with insulin. Circulating islet amyloid polypeptide binds to receptors located in the hindbrain and increases satiety, delays gastric emptying and suppresses glucagon secretion. Thus, islet amyloid polypeptide complements the effects of insulin. T1DM is a state of both islet amyloid polypeptide and insulin deficiency. Pramlintide, a synthetic analog of islet amyloid polypeptide, can replace this hormone in patients with T1DM. When administered as adjunctive therapy to such patients treated with insulin, pramlintide decreases food intake and causes weight loss. Pramlintide therapy is also associated with suppression of glucagon secretion and delayed gastric emptying, both of which decrease postprandial plasma glucose excursions. Pramlintide therapy improves glycemic control and lessens weight gain. Agents that decrease intestinal carbohydrate digestion (alpha-glucosidase inhibitors) or decrease insulin resistance (metformin) might be alternative adjunctive therapies in T1DM, though its benefits are marginally supported by clinical data.

  10. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaca, Pilar; Berna, Genoveva; Araujo, Raquel

    2008-03-10

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice.more » Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells.« less

  11. Lipolysis, and not hepatic lipogenesis, is the primary modulator of triglyceride levels in streptozotocin-induced diabetic mice

    PubMed Central

    Willecke, Florian; Scerbo, Diego; Nagareddy, Prabhakara; Obunike, Joseph C; Barrett, Tessa J; Abdillahi, Mariane L.; Trent, Chad M.; Huggins, Lesley Ann; Fisher, Edward A; Drosatos, Konstantinos; Goldberg, Ira J.

    2014-01-01

    Objective Diabetic hypertriglyceridemia is thought to be primarily driven by increased hepatic de novo lipogenesis. However, experiments in animal models indicated that insulin deficiency should decrease hepatic de novo lipogenesis and reduce plasma triglyceride levels. Approach and Results To address the discrepancy between human data and genetically altered mouse models, we investigated whether insulin deficient diabetic mice had triglyceride changes that resemble those in diabetic humans. Streptozotocin (STZ)–induced insulin deficiency increased plasma triglyceride levels in mice. Contrary to the mouse models with impaired hepatic insulin receptor signalling, insulin deficiency did not reduce hepatic triglyceride secretion and de novo lipogenesis-related gene expression. Diabetic mice had a marked decrease in postprandial TG clearance, which was associated with decreased lipoprotein lipase (LpL) and PPARα mRNA levels in peripheral tissues and decreased LpL activity in skeletal muscle, heart and brown adipose tissue. Diabetic heterozygous LpL knockout mice had markedly elevated fasting plasma triglyceride levels and prolonged postprandial TG clearance. Conclusion Insulin deficiency causes hypertriglyceridemia by decreasing peripheral lipolysis and not by an increase in hepatic TG production and secretion. PMID:25395613

  12. Exocrine cell-derived microparticles in response to lipopolysaccharide promote endocrine dysfunction in cystic fibrosis.

    PubMed

    Constantinescu, Andrei Alexandru; Gleizes, Céline; Alhosin, Mahmoud; Yala, Elhassan; Zobairi, Fatiha; Leclercq, Alexandre; Stoian, Gheorghe; Mitrea, Ioan Liviu; Prévost, Gilles; Toti, Florence; Kessler, Laurence

    2014-03-01

    Diabetes in cystic fibrosis (CF) is a result of exocrine pancreas alteration followed by endocrine dysfunction at a later stage. Microparticles (MPs) are plasma membrane fragments shed from stimulated or damaged cells that act as cellular effectors. Our aim was to identify a new form of interaction between exocrine and endocrine pancreatic cells mediated by exocrine MPs, in the context of recurrent infection in CF. MPs from either human exocrine CFTRΔF508-mutated (CFPAC-1) cells or exocrine normal pancreatic (PANC-1) cells were collected after treatment by LPS from Pseudomonas aeruginosa and applied to rat endocrine normal insulin-secreting RIN-m5F cells. MP membrane integration in target cells was established by confocal microscopy and flow cytometry using PKH26 lipid probe. Apoptosis, lysosomal activity, insulin secretion were measured after 18 h. MP-mediated NF-κB activation was measured in HEK-Blue reporter cells by SEAP reporter gene system and in RIN-m5F cells by Western blot. In endocrine normal cells, CFTR inhibition was achieved using Inhibitor-172. Compared to PANC-1, MPs from CFPAC-1 significantly reduced insulin secretion and lysosomal activity in RIN-m5F. MPs induced NF-κB activation by increasing the level of IκB phosphorylation. Moreover, the inhibition of NF-κB activation using specific inhibitors was associated with a restored insulin secretion. Interestingly, CFTR inhibition in normal RIN-m5F cells promoted apoptosis and decreased insulin secretion. During recurrent infections associated with CF, exocrine MPs may contribute to endocrine cell dysfunction via NF-κB pathways. Membrane CFTR dysfunction is associated with decreased insulin secretion. © 2013. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. All rights reserved.

  13. Family history of diabetes and its relationship with insulin secretion and insulin sensitivity in Iraqi immigrants and native Swedes: a population-based cohort study.

    PubMed

    Bennet, Louise; Franks, Paul W; Zöller, Bengt; Groop, Leif

    2018-03-01

    Middle Eastern immigrants to western countries are at high risk of developing type 2 diabetes. However, the heritability and impact of first-degree family history (FH) of type 2 diabetes on insulin secretion and action have not been adequately described. Citizens of Malmö, Sweden, aged 30-75 years born in Iraq or Sweden were invited to participate in this population-based study. Insulin secretion (corrected insulin response and oral disposition index) and action (insulin sensitivity index) were assessed by oral glucose tolerance tests. In total, 45.7% of Iraqis (616/1348) and 27.4% of native Swedes (201/733) had FH in parent(s), sibling(s) or single parent and sibling, i.e., FH+. Approximately 8% of Iraqis and 0.7% of Swedes had ≥ 3 sibling(s) and parent(s) with diabetes, i.e., FH++. Irrespective of family size, prediabetes and diabetes increased with family burden (FH- 29.4%; FH+ 38.8%; FH++ 61.7%) without significant differences across ethnicities. With increasing level of family burden, insulin secretion rather than insulin action decreased. Individuals with a combination of ≥ 3 siblings and parents with diabetes presented with the lowest levels of insulin secretion. The Iraqi immigrant population often present with a strong familial burden of type 2 diabetes with the worst glycemic control and highest diabetes risk in individuals with ≥ 3 siblings and parents with diabetes. Our data show that in a population still free from diabetes familial burden influences insulin secretion to a higher degree than insulin action and may be a logical target for intervention.

  14. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion.

    PubMed

    Zheng, Hongzhi; Fu, Jingqi; Xue, Peng; Zhao, Rui; Dong, Jian; Liu, Dianxin; Yamamoto, Masayuki; Tong, Qingchun; Teng, Weiping; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E; Pi, Jingbo

    2015-04-01

    The inability of pancreatic β-cells to secrete sufficient insulin in response to glucose stimulation is a major contributing factor to the development of type 2 diabetes (T2D). We investigated both the in vitro and in vivo effects of deficiency of nuclear factor-erythroid 2-related factor 1 (Nrf1) in β-cells on β-cell function and glucose homeostasis. Silencing of Nrf1 in β-cells leads to a pre-T2D phenotype with disrupted glucose metabolism and impaired insulin secretion. Specifically, MIN6 β-cells with stable knockdown of Nrf1 (Nrf1-KD) and isolated islets from β-cell-specific Nrf1-knockout [Nrf1(b)-KO] mice displayed impaired glucose responsiveness, including elevated basal insulin release and decreased glucose-stimulated insulin secretion (GSIS). Nrf1(b)-KO mice exhibited severe fasting hyperinsulinemia, reduced GSIS, and glucose intolerance. Silencing of Nrf1 in MIN6 cells resulted in oxidative stress and altered glucose metabolism, with increases in both glucose uptake and aerobic glycolysis, which is associated with the elevated basal insulin release and reduced glucose responsiveness. The elevated glycolysis and reduced glucose responsiveness due to Nrf1 silencing likely result from altered expression of glucose metabolic enzymes, with induction of high-affinity hexokinase 1 and suppression of low-affinity glucokinase. Our study demonstrated a novel role of Nrf1 in regulating glucose metabolism and insulin secretion in β-cells and characterized Nrf1 as a key transcription factor that regulates the coupling of glycolysis and mitochondrial metabolism and GSIS. Nrf1 plays critical roles in regulating glucose metabolism, mitochondrial function, and insulin secretion, suggesting that Nrf1 may be a novel target to improve the function of insulin-secreting β-cells.

  15. Stress-induced dissociations between intracellular calcium signaling and insulin secretion in pancreatic islets.

    PubMed

    Qureshi, Farhan M; Dejene, Eden A; Corbin, Kathryn L; Nunemaker, Craig S

    2015-05-01

    In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca(2+)]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca(2+)]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48h to a variety of stressors: cytokines (low-grade inflammation), 28mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca(2+)]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca(2+)]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3-11mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca(2+)]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3mM glucose) observed for FFAs and also for 28G. We also clamped [Ca(2+)]i using 30mM KCl+250μM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3-11mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca(2+)]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca(2+)]i but not conventional insulin secretion and 'metabolic' stressors (FFAs, 28G, rotenone) impacted insulin secretion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Insulin resistance in dairy cows.

    PubMed

    De Koster, Jenne D; Opsomer, Geert

    2013-07-01

    Glucose is the molecule that drives milk production, and insulin plays a pivotal role in the glucose metabolism of dairy cows. The effect of insulin on the glucose metabolism is regulated by the secretion of insulin by the pancreas and the insulin sensitivity of the skeletal muscles, the adipose tissue, and the liver. Insulin resistance may develop as part of physiologic (pregnancy and lactation) and pathologic processes, which may manifest as decreased insulin sensitivity or decreased insulin responsiveness. A good knowledge of the normal physiology of insulin is needed to measure the in vivo insulin resistance of dairy cows. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Epigallocatechin-3-gallate (EGCG) activates AMPK through the inhibition of glutamate dehydrogenase in muscle and pancreatic ß-cells: A potential beneficial effect in the pre-diabetic state?

    PubMed

    Pournourmohammadi, Shirin; Grimaldi, Mariagrazia; Stridh, Malin H; Lavallard, Vanessa; Waagepetersen, Helle S; Wollheim, Claes B; Maechler, Pierre

    2017-07-01

    Glucose homeostasis is determined by insulin secretion from the ß-cells in pancreatic islets and by glucose uptake in skeletal muscle and other insulin target tissues. While glutamate dehydrogenase (GDH) senses mitochondrial energy supply and regulates insulin secretion, its role in the muscle has not been elucidated. Here we investigated the possible interplay between GDH and the cytosolic energy sensing enzyme 5'-AMP kinase (AMPK), in both isolated islets and myotubes from mice and humans. The green tea polyphenol epigallocatechin-3-gallate (EGCG) was used to inhibit GDH. Insulin secretion was reduced by EGCG upon glucose stimulation and blocked in response to glutamine combined with the allosteric GDH activator BCH (2-aminobicyclo-[2,2,1] heptane-2-carboxylic acid). Insulin secretion was similarly decreased in islets of mice with ß-cell-targeted deletion of GDH (ßGlud1 -/- ). EGCG did not further reduce insulin secretion in the mutant islets, validating its specificity. In human islets, EGCG attenuated both basal and nutrient-stimulated insulin secretion. Glutamine/BCH-induced lowering of AMPK phosphorylation did not operate in ßGlud1 -/- islets and was similarly prevented by EGCG in control islets, while high glucose systematically inactivated AMPK. In mouse C2C12 myotubes, like in islets, the inhibition of AMPK following GDH activation with glutamine/BCH was reversed by EGCG. Stimulation of GDH in primary human myotubes caused lowering of insulin-induced 2-deoxy-glucose uptake, partially counteracted by EGCG. Thus, mitochondrial energy provision through anaplerotic input via GDH influences the activity of the cytosolic energy sensor AMPK. EGCG may be useful in obesity by resensitizing insulin-resistant muscle while blunting hypersecretion of insulin in hypermetabolic states. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. β-Cell lipotoxicity in response to free fatty acid elevation in prepubertal youth: African American versus Caucasian contrast.

    PubMed

    Michaliszyn, Sara F; Bonadonna, Riccardo C; Sjaarda, Lindsey A; Lee, Sojung; Farchoukh, Lama; Arslanian, Silva A

    2013-08-01

    Prepubertal African American (AA) youth compared with their Caucasian (C) peers have higher insulin secretion, which correlates positively with free fatty acid (FFA) concentration. In our continued efforts to explain the racial disparity in insulinemia, and because FFAs modulate insulin secretion, we hypothesized that AA youth would have a greater response to FFA-induced β-cell insulin secretion than C youth. We compared the short-term effects of FFA elevation on fasting and glucose-stimulated C-peptide-modeled insulin secretion in prepubertal normal-weight AA versus C peers during a 2-h hyperglycemic clamp (12.5 mmol/L) on two occasions: 1) infusion of normal saline and 2) infusion of 20% intralipid (IL). During IL infusion, insulin sensitivity (IS) declined comparably in AA and C youth. Glucose sensitivity of first- and second-phase insulin secretion showed a significant condition × race interaction being higher in AA youth. Disposition index, β-cell function relative to IS, declined with IL infusion in AA and C youth, with a significantly greater decrease in Cs compared with AAs. In conclusion, AA and C prepubertal youth both demonstrated a decline in β-cell function relative to IS during IL infusion, indicative of acute lipotoxicity. The greater decline in C youth compared with AAs may suggest that C youth are more susceptible to β-cell lipotoxicity than AA youth, or alternatively, that AA youth are hypersensitive to FFA stimulation of β-cell insulin secretion, consistent with our theory.

  19. Ectonucleotidase NTPDase3 is abundant in pancreatic β-cells and regulates glucose-induced insulin secretion.

    PubMed

    Syed, Samreen K; Kauffman, Audra L; Beavers, Lisa S; Alston, James T; Farb, Thomas B; Ficorilli, James; Marcelo, Marialuisa C; Brenner, Martin B; Bokvist, Krister; Barrett, David G; Efanov, Alexander M

    2013-11-15

    Extracellular ATP released from pancreatic β-cells acts as a potent insulinotropic agent through activation of P2 purinergic receptors. Ectonucleotidases, a family of membrane-bound nucleotide-metabolizing enzymes, regulate extracellular ATP levels by degrading ATP and related nucleotides. Ectonucleotidase activity affects the relative proportion of ATP and its metabolites, which in turn will impact the level of purinergic receptor stimulation exerted by extracellular ATP. Therefore, we investigated the expression and role of ectonucleotidases in pancreatic β-cells. Of the ectonucleotidases studied, only ENTPD3 (gene encoding the NTPDase3 enzyme) mRNA was detected at fairly abundant levels in human and mouse pancreatic islets as well as in insulin-secreting MIN6 cells. ARL67156, a selective ectonucleotidase inhibitor, blocked degradation of extracellular ATP that was added to MIN6 cells. The compound also decreased degradation of endogenous ATP released from cells. Measurements of insulin secretion in MIN6 cells as well as in mouse and human pancreatic islets demonstrated that ARL67156 potentiated glucose-dependent insulin secretion. Downregulation of NTPDase3 expression in MIN6 cells with the specific siRNA replicated the effects of ARL67156 on extracellular ATP hydrolysis and insulin secretion. Our results demonstrate that NTPDase3 is the major ectonucleotidase in pancreatic β-cells in multiple species and that it modulates insulin secretion by controlling activation of purinergic receptors.

  20. A Central Role for GRB10 in Regulation of Islet Function in Man

    PubMed Central

    Prasad B, Rashmi; Salehi, S. Albert; Almgren, Peter; Osmark, Peter; Bouatia-Naji, Nabila; Wierup, Nils; Fall, Tove; Stančáková, Alena; Barker, Adam; Lagou, Vasiliki; Osmond, Clive; Xie, Weijia; Lahti, Jari; Jackson, Anne U.; Cheng, Yu-Ching; Liu, Jie; O'Connell, Jeffrey R.; Blomstedt, Paul A.; Fadista, Joao; Alkayyali, Sami; Dayeh, Tasnim; Ahlqvist, Emma; Taneera, Jalal; Lecoeur, Cecile; Kumar, Ashish; Hansson, Ola; Hansson, Karin; Voight, Benjamin F.; Kang, Hyun Min; Levy-Marchal, Claire; Vatin, Vincent; Palotie, Aarno; Syvänen, Ann-Christine; Mari, Andrea; Weedon, Michael N.; Loos, Ruth J. F.; Ong, Ken K.; Nilsson, Peter; Isomaa, Bo; Tuomi, Tiinamaija; Wareham, Nicholas J.; Stumvoll, Michael; Widen, Elisabeth; Lakka, Timo A.; Langenberg, Claudia; Tönjes, Anke; Rauramaa, Rainer; Kuusisto, Johanna; Frayling, Timothy M.; Froguel, Philippe; Walker, Mark; Eriksson, Johan G.; Ling, Charlotte; Kovacs, Peter; Ingelsson, Erik; McCarthy, Mark I.; Shuldiner, Alan R.; Silver, Kristi D.; Laakso, Markku; Groop, Leif; Lyssenko, Valeriya

    2014-01-01

    Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father. PMID:24699409

  1. β-Arrestin2 plays a key role in the modulation of the pancreatic beta cell mass in mice.

    PubMed

    Ravier, Magalie A; Leduc, Michele; Richard, Joy; Linck, Nathalie; Varrault, Annie; Pirot, Nelly; Roussel, Morgane M; Bockaert, Joël; Dalle, Stéphane; Bertrand, Gyslaine

    2014-03-01

    Beta cell failure due to progressive secretory dysfunction and limited expansion of beta cell mass is a key feature of type 2 diabetes. Beta cell function and mass are controlled by glucose and hormones/neurotransmitters that activate G protein-coupled receptors or receptor tyrosine kinases. We have investigated the role of β-arrestin (ARRB)2, a scaffold protein known to modulate such receptor signalling, in the modulation of beta cell function and mass, with a specific interest in glucagon-like peptide-1 (GLP-1), muscarinic and insulin receptors. β-arrestin2-knockout mice and their wild-type littermates were fed a normal or a high-fat diet (HFD). Glucose tolerance, insulin sensitivity and insulin secretion were assessed in vivo. Beta cell mass was evaluated in pancreatic sections. Free cytosolic [Ca(2+)] and insulin secretion were determined using perifused islets. The insulin signalling pathway was evaluated by western blotting. Arrb2-knockout mice exhibited impaired glucose tolerance and insulin secretion in vivo, but normal insulin sensitivity compared with wild type. Surprisingly, the absence of ARRB2 did not affect glucose-stimulated insulin secretion or GLP-1- and acetylcholine-mediated amplifications from perifused islets, but it decreased the islet insulin content and beta cell mass. Additionally, there was no compensatory beta cell mass expansion through proliferation in response to the HFD. Furthermore, Arrb2 deletion altered the islet insulin signalling pathway. ARRB2 is unlikely to be involved in the regulation of insulin secretion, but it is required for beta cell mass plasticity. Additionally, we provide new insights into the mechanisms involved in insulin signalling in beta cells.

  2. Effect of repaglinide and gliclazide on glycaemic control, early-phase insulin secretion and lipid profiles in.

    PubMed

    Zhang, Hong; Bu, Ping; Xie, Yan-Hong; Luo, Juan; Lei, Min-Xiang; Mo, Zhao-Hui; Liao, Er-Yuan

    2011-01-01

    Both repaglinide and gliclazide are insulin secretagogues widely used in the treatment of type 2 diabetes. They stimulate insulin secretion through distinct mechanisms and may benefit patients from different aspects. The present study was to evaluate the effects of repaglinide or gliclazide on glycaemic control, insulin secretion, and lipid profiles in type 2 diabetes patients. A total of 47 newly diagnosed type 2 diabetes patients were randomized 1:1 to receive a 4-week treatment with repaglinide or gliclazide. The standard mixed meal tolerance test was performed before and after the treatment. Plasma glucose (PG), insulin concentration, and lipid profiles were measured. The area under insulin concentration curve (AUC(ins)) and the early-phase insulin secretion index (ΔI(30)/ΔG(30)) were calculated. After the trial, fasting and postprandial PG and postprandial insulin improved significantly in both groups (P < 0.05). The maximum insulin concentration occurred earlier in the repaglinide group than that in the gliclazide group. AUC(ins) increased in both groups (P < 0.05), but no significant difference was found between groups. ΔI(30)/ΔG(30) increased in both groups (P < 0.05), especially in the repaglinide group (P < 0.05). Triglyceride and total cholesterol decreased significantly in the repaglinide group in some time points, while no significant change was observed in the gliclazide group. Repaglinide and gliclazide had similar effects on glycaemic control and total insulin secretion, while repaglinide had more effects on improvements in β-cell function and lipid metabolism.

  3. Microtubules negatively regulate insulin secretion in pancreatic β cells

    PubMed Central

    Zhu, Xiaodong; Hu, Ruiying; Brissova, Marcela; Stein, Roland W.; Powers, Alvin C.; Gu, Guoqiang; Kaverina, Irina

    2015-01-01

    Summary For glucose-stimulated insulin secretion (GSIS) insulin granules have to be localized close to the plasma membrane. The role of microtubule-dependent transport in granule positioning and GSIS has been debated. Here, we report that microtubules, counterintuitively, restrict granule availability for secretion. In β cells, microtubules originate at the Golgi and form a dense non-radial meshwork. Non-directional transport along these microtubules limits granule dwelling at the cell periphery, restricting granule availability for secretion. High glucose destabilizes microtubules, decreasing their density; such local microtubule depolymerization is necessary for GSIS, likely because granule withdrawal from the cell periphery becomes inefficient. Consistently, microtubule depolymerization by nocodazole blocks granule withdrawal, increases their concentration at exocytic sites, and dramatically enhances GSIS in vitro and in mice. Furthermore, glucose-driven MT destabilization is balanced by new microtubule formation, which likely prevents over-secretion. Importantly, microtubule density is greater in dysfunctional β cells of diabetic mice. PMID:26418295

  4. Regulation of adipocytokine secretion and adipocyte hypertrophy by polymethoxyflavonoids, nobiletin and tangeretin.

    PubMed

    Miyata, Yoshiki; Tanaka, Haruyuki; Shimada, Arata; Sato, Takashi; Ito, Akira; Yamanouchi, Toshikazu; Kosano, Hiroshi

    2011-03-28

    The polymethoxyflavonoids nobiletin and tangeretin possess several important biological properties such as neuroprotective, antimetastatic, anticancer, and anti-inflammatory properties. The present study was undertaken to examine whether nobiletin and tangeretin could modulate adipocytokine secretion and to evaluate the effects of these flavonoids on the hypertrophy of mature adipocytes. All experiments were performed on the murine preadipocyte cell line 3T3-L1. We studied the formation of intracellular lipid droplets in adipocytes and the apoptosis-inducing activity to evaluate the effects of polymethoxyflavonoids on adipocyte differentiation and hypertrophy, respectively. The secretion of adipocytokines was measured using ELISA. We demonstrated that the combined treatment of differentiation reagents with nobiletin or tangeretin differentiated 3T3-L1 preadipocytes into adipocytes possessing less intracellular triglyceride as compared to vehicle-treated differentiated 3T3-L1 adipocytes. Both flavonoids increased the secretion of an insulin-sensitizing factor, adiponectin, but concomitantly decreased the secretion of an insulin-resistance factor, MCP-1, in 3T3-L1 adipocytes. Furthermore, nobiletin was found to decrease the secretion of resistin, which serves as an insulin-resistance factor. In mature 3T3-L1 adipocytes, nobiletin induced apoptosis; tangeretin, in contrast, did not induce apoptosis, but suppressed further triglyceride accumulation. Our results suggest that nobiletin and tangeretin are promising therapeutic candidates for the prevention and treatment of insulin resistance by modulating the adipocytokine secretion balance. We also demonstrated the different effects of nobiletin and tangeretin on mature adipocytes. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Radiofrequency radiation emitted from Wi-Fi (2.4 GHz) causes impaired insulin secretion and increased oxidative stress in rat pancreatic islets.

    PubMed

    Masoumi, Ali; Karbalaei, Narges; Mortazavi, S M J; Shabani, Mohammad

    2018-06-18

    There is a great concern regarding the possible adverse effects of electromagnetic radiation (EMR). This study investigated the effects of EMR induced by Wi-Fi (2.45GHz) on insulin secretion and antioxidant redox systems in the rat pancreas. Adult male Sprague-Dawley rats in the weight range of 230 to 260 g were divided into control, sham, Wi-Fi exposed groups. After long term exposure (4 h/day for 45 days) to Wi-Fi electromagnetic radiation, plasma levels of glucose and insulin during intraperitoneal glucose tolerance test were measured. Islet insulin secretion and content, lipid peroxidation and antioxidant status in pancreas of rats were determined. Our data showed that the weight gain in the WI-FI exposed group was significantly lower than the control group (p<0.05). Wi-Fi (2.45 GHz) exposed group showed hyperglycemia. Plasma insulin level and glucose-stimulated insulin secretion from pancreatic islet were significantly reduced in the Wi-Fi exposed group. EMR emitted from Wi-Fi caused a significant increase in lipid peroxidation and a significant decrease in GSH level, SOD and GPx activities of the pancreas. these data showed that EMR of Wi-Fi leads to hyperglycemia, increased oxidative stress and impaired insulin secretion in the rat pancreatic islets.

  6. Impact of 9 Days of Bed Rest on Hepatic and Peripheral Insulin Action, Insulin Secretion, and Whole-Body Lipolysis in Healthy Young Male Offspring of Patients With Type 2 Diabetes

    PubMed Central

    Alibegovic, Amra C.; Højbjerre, Lise; Sonne, Mette P.; van Hall, Gerrit; Stallknecht, Bente; Dela, Flemming; Vaag, Allan

    2009-01-01

    OBJECTIVE The aim of this study was to investigate the impact of 9 days of bed rest on insulin secretion, insulin action, and whole-body glucose and fat metabolism in first-degree relative (FDR) and matched control (CON) subjects. RESEARCH DESIGN AND METHODS A total of 13 FDR and 20 CON subjects participated in the study. All were studied before and after 9 days of bed rest using the clamp technique combined with indirect calorimetry preceded by an intravenous glucose tolerance test. Glucose and glycerol turnover rates were studied using stable isotope kinetics. RESULTS Bed rest caused a significant decrease in whole-body insulin sensitivity in both groups. Hepatic insulin resistance was elevated in FDR subjects prior to bed rest and was significantly augmented by bed rest in FDR (P < 0.01) but not in CON (P = NS) subjects. The rate of whole-body lipolysis decreased during bed rest in both FDR and CON subjects, with no significant differences between the groups. Insulin resistance induced by bed rest was fully accounted for by the impairment of nonoxidative glucose metabolism in both groups (overall P < 0.001). CONCLUSIONS Whole-body insulin action in both insulin-resistant FDR and healthy CON subjects deteriorates with 9 days of bed rest, converging toward similar degrees of whole-body insulin resistance. FDR subjects exhibit hepatic insulin resistance (HIR), which, in contrast to CON subjects, deteriorates in response to physical inactivity. FDR subjects exhibit reduced insulin secretion when seen in relation to their degree of HIR but not peripheral insulin resistance. PMID:19720789

  7. Effect of activators and inhibitors of K+ channels on insulin secretion in the amphibian pancreas.

    PubMed

    Francini, F; Pirotte, B; Gagliardino, J J

    1997-02-01

    The aim of this study was to obtain pharmacological evidence for the presence and participation of K+ channels in amphibian pancreatic islets. Pancreases from the toad Bufo arenarum were thus incubated with activators or blockers of K+ channels and the immunoreactive insulin released into the medium was measured by radioimmunoassay. Two K(+)-ATP channel openers (diazoxide and BPDZ44) inhibited; while a K(+)-ATP channel blocker (tolbutamide) and metabolizable sugars (glucose, glyceraldehyde) significantly stimulated the output of insulin. Although a nonmetabolizable sugar (galactose) failed to increase insulin release, dinitrophenol decreased the secretagogue effect of glucose. By contrast, although somatostatin and clonidine blocked the release of insulin, tetraethylammonium significantly stimulated secretion. For each compound tested, the effects on both insulin secretion and B-cell K+ channel activity were similar to those observed in the mammalian pancreas. These findings point to the existence of mammalian-like K+ channels in the B-cells of some amphibians.

  8. Dissecting the relationship between obesity and hyperinsulinemia: Role of insulin secretion and insulin clearance.

    PubMed

    Kim, Mee Kyoung; Reaven, Gerald M; Kim, Sun H

    2017-02-01

    The aim of this study was to better delineate the complex interrelationship among insulin resistance (IR), secretion rate (ISR), and clearance rate (ICR) to increase plasma insulin concentrations in obesity. Healthy volunteers (92 nondiabetic individuals) had an insulin suppression test to measure IR and graded-glucose infusion test to measure ISR and ICR. Obesity was defined as a body mass index (BMI) ≥30 kg/m 2 , and IR was defined as steady-state plasma glucose (SSPG) ≥10 mmol/L during the insulin suppression test. Plasma glucose and insulin concentrations, ISR, and ICR were compared in three groups: insulin sensitive/overweight; insulin sensitive/obesity; and insulin resistant/obesity. Compared with the insulin-sensitive/overweight group, the insulin-sensitive/obesity had significantly higher insulin area under the curve (AUC) and ISR AUC during the graded-glucose infusion test (P < 0.001). Glucose AUC and ICR were similar. The insulin-resistant/obesity group had higher insulin AUC and ISR AUC compared with the insulin-sensitive/obesity but also had higher glucose AUC and decreased ICR (P < 0.01). In multivariate analysis, both BMI and SSPG were significantly associated with ISR. Plasma insulin concentration and ISR are increased in individuals with obesity, irrespective of degree of IR, but a decrease in ICR is confined to the subset of individuals with IR. © 2016 The Obesity Society.

  9. Dietary Sodium Restriction Decreases Insulin Secretion Without Affecting Insulin Sensitivity in Humans

    PubMed Central

    Byrne, Loretta M.; Yu, Chang; Wang, Thomas J.; Brown, Nancy J.

    2014-01-01

    Context: Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. Objective: To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. Design: We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. Setting: Academic clinical research center. Participants: Healthy, nondiabetic, normotensive volunteers. Interventions: Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5–7 days. Main Outcome Measures: Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. Results: A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (−16.0 ± 5.6%; P = .007) and C-peptide responses (−21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (−1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. Conclusions: Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity. PMID:25029426

  10. Insulin hypersecretion together with high luteinizing hormone concentration augments androgen secretion in oral glucose tolerance test in women with polycystic ovarian disease.

    PubMed

    Anttila, L; Koskinen, P; Jaatinen, T A; Erkkola, R; Irjala, K; Ruutiainen, K

    1993-08-01

    Female hyperandrogenism is often associated with hyperinsulinaemia and insulin resistance. We evaluated the hormone responses in an oral glucose tolerance test to investigate the interactions of gonadotrophins, insulin, C-peptide and androgens in women with polycystic ovarian disease (PCOD). In 28 patients with ultrasonographically diagnosed PCOD, hyperinsulinaemia and insulin resistance were mainly associated with obesity. Both basal and cumulative sum of insulin to C-peptide ratios were high in obese subjects, suggesting decreasing hepatic removal of insulin caused by obesity. Nevertheless, in some lean PCOD women, despite normal fasting insulin concentrations, insulin hypersecretion existed. The mean concentration of testosterone decreased significantly during the oral glucose tolerance test both in PCOD and control women, and of androstenedione in the PCOD patients only. However, an increase in androgen responses was found in a subgroup of PCOD patients, who had both elevated luteinizing hormone (LH) concentrations and hyperinsulinaemic response to oral glucose. In the remaining PCOD patients an inverse correlation between LH and insulin was found. The patients with hyperinsulinaemia together with LH hypersecretion may represent a subgroup of PCOD with deranged regulation of androgen secretion.

  11. Decreased insulin secretion in pregnant rats fed a low protein diet.

    PubMed

    Gao, Haijun; Ho, Eric; Balakrishnan, Meena; Yechoor, Vijay; Yallampalli, Chandra

    2017-10-01

    Low protein (LP) diet during pregnancy leads to reduced plasma insulin levels in rodents, but the underlying mechanisms remain unclear. Glucose is the primary insulin secretagogue, and enhanced glucose-stimulated insulin secretion (GSIS) in beta cells contributes to compensation for insulin resistance and maintenance of glucose homeostasis during pregnancy. In this study, we hypothesized that plasma insulin levels in pregnant rats fed LP diet are reduced due to disrupted GSIS of pancreatic islets. We first confirmed reduced plasma insulin levels, then investigated in vivo insulin secretion by glucose tolerance test and ex vivo GSIS of pancreatic islets in the presence of glucose at different doses, and KCl, glibenclamide, and L-arginine. Main findings include (1) plasma insulin levels were unaltered on day 10, but significantly reduced on days 14-22 of pregnancy in rats fed LP diet compared to those of control (CT) rats; (2) insulin sensitivity was unchanged, but glucose intolerance was more severe in pregnant rats fed LP diet; (3) GSIS in pancreatic islets was lower in LP rats compared to CT rats in the presence of glucose, KCl, and glibenclamide, and the response to L-arginine was abolished in LP rats; and (4) the total insulin content in pancreatic islets and expression of Ins2 were reduced in LP rats, but expression of Gcg was unaltered. These studies demonstrate that decreased GSIS in beta cells of LP rats contributes to reduced plasma insulin levels, which may lead to placental and fetal growth restriction and programs hypertension and other metabolic diseases in offspring. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Effects of butyric acid and arsenic on isolated pancreatic islets and liver mitochondria of male mouse

    PubMed Central

    Ahangarpour, Akram; Oroojan, Ali Akbar; Rezae, Mohsen; Khodayar, Mohammad Javad; Alboghobeish, Soheila; Zeinvand, Marzieh

    2017-01-01

    Aim: The aim of the present study was to evaluate the different doses of Butyric acid (BA) and Arsenic (As) in liver mitochondria oxidative stress and pancreatic islet insulin secretion of male mouse. Background: BA is found in many foods and As as a toxic metal is present in drinking water. They can induce oxidative stress in tissues. Methods: In this experimental study, Liver mitochondria were isolated by administration of the different centrifugation method and pancreatic islets were isolated by collagenase method. Mitochondria were incubated by BA (35, 75, 150, 300 μM) and As (20, 50, 100, 200 μM) as the islets were incubated by BA (250, 500, 1000, 1500 μM) and As (50, 100, 200 μM) for 1 hour. At the end of the experiment, mitochondrial viability and membrane potential, ROS, MDA, GSH and islets insulin secretion were measured by their specific methods. Results: BA and As administration increased mitochondrial levels of ROS, MDA and decreased GSH and pancreatic islet insulin secretion in a dose dependent manner (p<0.05). The doses of BA 75μM and As 100μM have been revealed the most mitochondria toxic concentrations. Also, the doses of 1000μM for BA and 100μM for As were considered as reducing concentrations for islets insulin secretion. Additionally, co administration of them intensified more these effects Conclusion: Alone or in combination administration of BA and As induced oxidative stress in liver mitochondria and decreased insulin secretion of pancreatic islets. PMID:28331564

  13. Oxytocin increases extrapancreatic glucagon secretion and glucose production in pancreatectomized dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altszuler, N.; Puma, F.; Winkler, B.

    1986-05-01

    Infusion of oxytocin into normal dogs increases plasma levels of insulin and glucagon and glucose production and uptake. To determine whether infused oxytocin also increases glucagon secretion from extrapancreatic sites, pancreatectomized dogs, off insulin of 18 hr, were infused with oxytocin and plasma glucagon, and glucose production and uptake were measured using the (6-/sup 3/H)glucose primer-infusion technique. The diabetic dogs, in the control period, had elevated plasma glucose and glucagon levels, an increased rate of glucose production, and a relative decrease in glucose uptake (decreased clearance). Infusion of oxytocin (500 ..mu..U/kg/min) caused a rise in plasma glucagon and glucose levels,more » increased glucose production, and further decreased glucose clearance. it is concluded that oxytocin can stimulate secretion of extrapancreatic glucagon, which contributes to the increased glucose production.« less

  14. Improved human islet preparations using Glucocorticoid and Exendin-4

    PubMed Central

    Miki, Atsushi.; Ricordi, Camillo.; Yamamoto, Toshiyuki.; Sakuma, Yasunaru.; Misawa, Ryosuke.; Mita, Atsuyoshi.; Inverardi, Luca.; Alejandro, Rodolfo; Ichii, Hirohito.

    2014-01-01

    Objectives The effects of Glucocorticoid during culture on human islet cells have been controversial. Exendin-4 (EX) enhances the insulin secretion and significantly improves clinical outcomes in islet cell transplantation. In this study, we examined the effects of Glucocorticoids and exendin-4 on human islet cells during pre-transplant culture. Methods Methylprednisolone (MP) and/or EX were added to the standard culture medium for clinical islet cell transplantation. Islets were cultured for 24 hours with three different conditions (Control: no additives, MP alone, MP+EX). Beta cell fractional viability, cellular composition, multiple cytokine/chemokine production, multiple phosphorylation proteins and glucose induced insulin secretion were evaluated. Results Viable beta cell survival in MP and MP+EX group was significantly higher than in the control group. EX prevented MP induced reduction of insulin secretion. MP supplementation to the culture medium decreased cytokine and chemokine production. Moreover, Erk1/2 phosphorylation was significantly increased by MP and MP+EX. Conclusions Glucocorticoid supplementation into culture media significantly decreased the cytokine/chemokine production and increased the Erk1/2 phosphorylation, resulting in the improvement of human beta cell survival. In addition, EX maintained the insulin secretion suppressed by MP. The supplementation of MP and EX together could be a useful strategy to create suitable human islets for transplantation. PMID:25036907

  15. Central infusion of leptin improves insulin resistance and suppresses beta-cell function, but not beta-cell mass, primarily through the sympathetic nervous system in a type 2 diabetic rat model.

    PubMed

    Park, Sunmin; Ahn, Il Sung; Kim, Da Sol

    2010-06-05

    We investigated whether hypothalamic leptin alters beta-cell function and mass directly via the sympathetic nervous system (SNS) or indirectly as the result of altered insulin resistant states. The 90% pancreatectomized male Sprague Dawley rats had sympathectomy into the pancreas by applying phenol into the descending aorta (SNSX) or its sham operation (Sham). Each group was divided into two sections, receiving either leptin at 300ng/kgbw/h or artificial cerebrospinal fluid (aCSF) via intracerebroventricular (ICV) infusion for 3h as a short-term study. After finishing the infusion study, ICV leptin (3mug/kg bw/day) or ICV aCSF (control) was infused in rats fed 30 energy % fat diets by osmotic pump for 4weeks. At the end of the long-term study, glucose-stimulated insulin secretion and islet morphometry were analyzed. Acute ICV leptin administration in Sham rats, but not in SNSX rats, suppressed the first- and second-phase insulin secretion at hyperglycemic clamp by about 48% compared to the control. Regardless of SNSX, the 4-week administration of ICV leptin improved glucose tolerance during oral glucose tolerance tests and insulin sensitivity at hyperglycemic clamp, compared to the control, while it suppressed second-phase insulin secretion in Sham rats but not in SNSX rats. However, the pancreatic beta-cell area and mass were not affected by leptin and SNSX, though ICV leptin decreased individual beta-cell size and concomitantly increased beta-cell apoptosis in Sham rats. Leptin directly decreases insulin secretion capacity mainly through the activation of SNS without modulating pancreatic beta-cell mass.

  16. L-Histidine sensing by calcium sensing receptor inhibits voltage-dependent calcium channel activity and insulin secretion in β-cells

    PubMed Central

    Parkash, Jai; Asotra, Kamlesh

    2011-01-01

    Aims Our goal was to test the hypothesis that the histidine-induced activation of calcium sensing receptor (CaR) can regulate calcium channel activity of L-type voltage dependent calcium channel (VDCC) due to increased spatial interaction between CaR and VDCC in β-cells and thus modulate glucose-induced insulin secretion. Main methods Rat insulinoma (RINr1046-38) insulin-producing β-cells were cultured in RPMI-1640 medium on 25 mm diameter glass coverslips in six-well culture plates in a 5% CO2 incubator at 37°C. The intracellular calcium concentration, [Ca2+]i, was determined by ratio fluorescence microscopy using Fura-2AM. The spatial interactions between CaR and L-type VDCC in β-cells were measured by immunofluorescence confocal microscopy using a Nikon C1 laser scanning confocal microscope. The insulin release was determined by enzyme-linked immunosorbent assay (ELISA). Key findings The additions of increasing concentrations of L-histidine along with 10 mM glucose resulted in 57% decrease in [Ca2+]i. The confocal fluorescence imaging data showed 5.59 to 8.62-fold increase in colocalization correlation coefficient between CaR and VDCC in β-cells exposed to L-histidine thereby indicating increased membrane delimited spatial interactions between these two membrane proteins. The insulin ELISA data showed 54% decrease in 1st phase of glucose-induced insulin secretion in β-cells exposed to increasing concentrations of L-histidine. Significance L-histidine-induced increased spatial interaction of CaR with VDCC can inhibit calcium channel activity of VDCC and consequently regulate glucose-induced insulin secretion by β-cells. The L-type VDCC could therefore be potential therapeutic target in diabetes. PMID:21219913

  17. Targeted Disruption of Pancreatic-Derived Factor (PANDER, FAM3B) Impairs Pancreatic β-Cell Function

    PubMed Central

    Robert-Cooperman, Claudia E.; Carnegie, Jason R.; Wilson, Camella G.; Yang, Jichun; Cook, Joshua R.; Wu, Jianmei; Young, Robert A.; Wolf, Bryan A.; Burkhardt, Brant R.

    2010-01-01

    OBJECTIVE Pancreatic-derived factor (PANDER, FAM3B) is a pancreatic islet-specific cytokine-like protein that is secreted from β-cells upon glucose stimulation. The biological function of PANDER is unknown, and to address this we generated and characterized a PANDER knockout mouse. RESEARCH DESIGN AND METHODS To generate the PANDER knockout mouse, the PANDER gene was disrupted and its expression was inhibited by homologous recombination via replacement of the first two exons, secretion signal peptide and transcriptional start site, with the neomycin gene. PANDER−/− mice were then phenotyped by a number of in vitro and in vivo tests to evaluate potential effects on glucose regulation, insulin sensitivity, and β-cell morphology and function. RESULTS Glucose tolerance tests demonstrated significantly higher blood glucose levels in PANDER−/− versus wild-type male mice. To identify the mechanism of the glucose intolerance, insulin sensitivity and pancreatic β-cell function were examined. Hyperinsulinemic-euglycemic clamps and insulin tolerance testing showed similar insulin sensitivity for both the PANDER−/− and wild-type mice. The in vivo insulin response following intraperitoneal glucose injection surprisingly produced significantly higher insulin levels in the PANDER−/− mice, whereas insulin release was blunted with arginine administration. Islet perifusion and calcium imaging studies showed abnormal responses of the PANDER−/− islets to glucose stimulation. In contrast, neither islet architecture nor insulin content was impacted by the loss of PANDER. Interestingly, the elevated insulin levels identified in vivo were attributed to decreased hepatic insulin clearance in the PANDER−/− islets. Taken together, these results demonstrated decreased pancreatic β-cell function in the PANDER−/− mouse. CONCLUSIONS These results support a potential role of PANDER in the pancreatic β-cell for regulation or facilitation of insulin secretion. PMID:20566664

  18. β cell membrane remodelling and procoagulant events occur in inflammation-driven insulin impairment: a GLP-1 receptor dependent and independent control.

    PubMed

    Gleizes, Céline; Kreutter, Guillaume; Abbas, Malak; Kassem, Mohamad; Constantinescu, Andrei Alexandru; Boisramé-Helms, Julie; Yver, Blandine; Toti, Florence; Kessler, Laurence

    2016-02-01

    Inflammation and hyperglycaemia are associated with a prothrombotic state. Cell-derived microparticles (MPs) are the conveyors of active procoagulant tissue factor (TF) and circulate at high concentration in diabetic patients. Liraglutide, a glucagon-like peptide (GLP)-1 analogue, is known to promote insulin secretion and β-cell preservation. In this in vitro study, we examined the link between insulin impairment, procoagulant activity and plasma membrane remodelling, under inflammatory conditions. Rin-m5f β-cell function, TF activity mediated by MPs and their modulation by 1 μM liraglutide were examined in a cell cross-talk model. Methyl-β-cyclodextrine (MCD), a cholesterol depletor, was used to evaluate the involvement of raft on TF activity, MP shedding and insulin secretion as well as Soluble N-éthylmaleimide-sensitive-factor Attachment protein Receptor (SNARE)-dependent exocytosis. Cytokines induced a two-fold increase in TF activity at MP surface that was counteracted by liraglutide. Microparticles prompted TF activity on the target cells and a two-fold decrease in insulin secretion via protein kinase A (PKA) and p38 signalling, that was also abolished by liraglutide. Large lipid raft clusters were formed in response to cytokines and liraglutide or MCD-treated cells showed similar patterns. Cells pre-treated by saturating concentration of the GLP-1r antagonist exendin (9-39), showed a partial abolishment of the liraglutide-driven insulin secretion and liraglutide-decreased TF activity. Measurement of caspase 3 cleavage and MP shedding confirmed the contribution of GLP-1r-dependent and -independent pathways. Our results confirm an integrative β-cell response to GLP-1 that targets receptor-mediated signalling and membrane remodelling pointing at the coupling of insulin secretion and inflammation-driven procoagulant events. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  19. Sleep Architecture and Glucose and Insulin Homeostasis in Obese Adolescents

    PubMed Central

    Koren, Dorit; Levitt Katz, Lorraine E.; Brar, Preneet C.; Gallagher, Paul R.; Berkowitz, Robert I.; Brooks, Lee J.

    2011-01-01

    OBJECTIVE Sleep deprivation is associated with increased risk of adult type 2 diabetes mellitus (T2DM). It is uncertain whether sleep deprivation and/or altered sleep architecture affects glycemic regulation or insulin sensitivity or secretion. We hypothesized that in obese adolescents, sleep disturbances would associate with altered glucose and insulin homeostasis. RESEARCH DESIGN AND METHODS This cross-sectional observational study of 62 obese adolescents took place at the Clinical and Translational Research Center and Sleep Laboratory in a tertiary care children’s hospital. Subjects underwent oral glucose tolerance test (OGTT), anthropometric measurements, overnight polysomnography, and frequently sampled intravenous glucose tolerance test (FSIGT). Hemoglobin A1c (HbA1c) and serial insulin and glucose levels were obtained, indices of insulin sensitivity and secretion were calculated, and sleep architecture was assessed. Correlation and regression analyses were performed to assess the association of total sleep and sleep stages with measures of insulin and glucose homeostasis, adjusted for confounding variables. RESULTS We found significant U-shaped (quadratic) associations between sleep duration and both HbA1c and serial glucose levels on OGTT and positive associations between slow-wave sleep (N3) duration and insulin secretory measures, independent of degree of obesity, pubertal stage, sex, and obstructive sleep apnea measures. CONCLUSIONS Insufficient and excessive sleep was associated with short-term and long-term hyperglycemia in our obese adolescents. Decreased N3 was associated with decreased insulin secretion. These effects may be related, with reduced insulin secretory capacity leading to hyperglycemia. We speculate that optimizing sleep may stave off the development of T2DM in obese adolescents. PMID:21933909

  20. Utility of C-peptide for a reliable estimate of insulin secretion in children with growth hormone deficiency.

    PubMed

    Ciresi, Alessandro; Cicciò, Floriana; Radellini, Stefano; Giordano, Carla

    2016-08-01

    GH treatment (GHT) can lead to glucose metabolism impairment through decreased insulin sensitivity and impaired pancreatic β-cell function, which are the two key components of the pathogenesis of diabetes. Therefore, in addition to insulin sensitivity, during GHT it is very important to perform a reliable evaluation of insulin secretion. However, conflicting data exist regarding the insulin secretion in children during GHT. C-peptide provides a more reliable estimate of β-cell function than insulin, but few studies evaluated it during GHT. Our aim was to assess the usefulness of C-peptide in the evaluation of insulin secretion in GH deficiency (GHD) children. In 48 GHD children, at baseline and after 12 and 24months of GHT, and in 56 healthy subjects we evaluated fasting and glucagon-stimulated (AUCCpep) C-peptide levels in addition to other commonly used secretion indexes, such as fasting and oral glucose tolerance test-stimulated insulin levels (AUCINS), Homa-β, and insulinogenic index. The main outcomes were the change in C-peptide during GHT and its correlation with the auxological and hormonal parameters. At baseline GHD children showed a significant lower AUCCpep (p=0.006), while no difference was found for the other indexes. Both fasting C-peptide (beta 0.307, p=0.016) and AUCCpep (beta 0.379, p=0.002) were independently correlated with IGF-I SDS, while no correlation was found for all other indexes. After 12months an increase in Homa-β (p<0.001), fasting C-peptide (p=0.002) and AUCCpep (p<0.001) was found. At multivariate analysis, only fasting C-peptide (beta 0.783, p=0.001) and AUCCpep (beta 0.880, p<0.001) were independently correlated with IGF-I SDS. C-peptide, rather than the insulin-derived indexes, has proved to be the most useful marker of insulin secretion correlated to IGF-I levels in GHD children. Therefore, we suggest the use of glucagon test both as diagnostic test for the GH assessment and as a useful tool for the evaluation of insulin secretion during GHT in children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwasaki, Yuko; Iwasaki, Hitoshi; Yatoh, Shigeru

    Transgenic mice expressing nuclear sterol regulatory element-binding protein-1a under the control of the insulin promoter were generated to determine the role of SREBP-1a in pancreatic {beta}-cells. Only low expressors could be established, which exhibited mild hyperglycemia, impaired glucose tolerance, and reduced plasma insulin levels compared to C57BL/6 controls. The islets isolated from the transgenic mice were fewer and smaller, and had decreased insulin content and unaltered glucagon staining. Both glucose- and potassium-stimulated insulin secretions were decreased. The transgenic islets consistently expressed genes for fatty acids and cholesterol synthesis, resulting in accumulation of triglycerides but not cholesterol. PDX-1, {beta}{epsilon}{tau}{alpha}2, MafA, andmore » IRS-2 were suppressed, partially explaining the loss and dysfunction of {beta}-cell mass. The transgenic mice on a high fat/high sucrose diet still exhibited impaired insulin secretion and continuous {beta}-cell growth defect. Therefore, nuclear SREBP-1a, even at a low level, strongly disrupts {beta}-cell mass and function.« less

  2. The effect of unabsorbable carbohydrate on gut hormones. Modification of post-prandial GIP secretion by guar.

    PubMed

    Morgan, L M; Goulder, T J; Tsiolakis, D; Marks, V; Alberti, K G

    1979-08-01

    Five healthy volunteers and 6 diabetics were given a mixed test meal on two occasions--once with and once without 10 g guar flour. Addition of guar caused a 47% decrease in maximum post-prandial GIP levels, a 48% decrease in blood glucose and a 48% decrease in plasma insulin in normal subjects. In diabetics, addition of guar caused a 30% reduction in maximum post-prandial GIP and 58% decrease in blood glucose. Four normal and 6 diabetic subjects were given a predominantly carbohydrate meal, again with and without 10 g guar. Addition of guar caused a 78% decrease in blood glucose and a 59% decrease in plasma insulin in normal subjects. In diabetics addition of guar caused a 71% decrease in maximum post-prandial plasma GIP and a 68% decrease in blood glucose. Lowering of post-prandial blood glucose, plasma insulin and GIP levels by guar was statistically significant in every case. Addition of guar to the predominantly carbohydrate meal caused a decrease in total plasma GLI in both normal and diabetic subjects but reached statistical significance only in the normal subjects. There was a highly significant correlation (r = 0.83; p less than 0.0005) between peak post-prandial insulin levels in normal subjects and the corresponding plasma GIP concentration. The reduction of GIP or GLI secretion may, therefore, be partly responsible for the smaller rise in plasma insulin observed in normal volunteers when guar is added to meals.

  3. Induction of insulin secretion by a component of Urtica dioica leave extract in perifused Islets of Langerhans and its in vivo effects in normal and streptozotocin diabetic rats.

    PubMed

    Farzami, Bijan; Ahmadvand, D; Vardasbi, S; Majin, F J; Khaghani, Sh

    2003-11-01

    The blood glucose lowering effect of Urtica dioica (Stinging Nettle) as a medicinal plant has been noted in old writings such as those of Avicenna. Recently, there has also been other investigators that indicated the hypoglycemic effect of Urtica dioica. But so far, the mechanism of this effect has not been deduced. In this report, a perifusion system is arranged in which an exact number of Langerhans Islets were exposed to several fractions of extracts of Urtica dioica by TLC. The active ingredient fraction named F(1), caused a marked increase in insulin secretion. A simultaneous assay of glucose showed that the increase in insulin level was associated with a decrease in glucose level. Furthermore, the active component of Urtica dioica was found to increase the insulin content of blood sera in normal and streptozotocin diabetic rats that were injected intraperitoneally (i.p.) with the active ingredient of the extract. The in vivo studies presented in this report show that not only an increase in insulin level of blood sera was observed in rats after 30 min from the initial point of injection but a simultaneous decrease of blood sugar was detected when similar sera was tested for glucose. The increase in insulin level was six times during the 120 min of our determination. The decrease in blood sugar was found to be similar both in the level and time of initiation. On the basis of our findings, we assume that F(1) is the active ingredient of plant leaves extract. The results show that the blood lowering effect of the extract was due to the enhancement of insulin secretion by Langerhance Isletes.

  4. Effects of High Glucose Levels and Glycated Serum on GIP Responsiveness in the Pancreatic Beta Cell Line HIT-T15.

    PubMed

    Puddu, Alessandra; Sanguineti, Roberta; Montecucco, Fabrizio; Viviani, Giorgio Luciano

    2015-01-01

    Glucose-dependent insulinotropic peptide (GIP) is an incretin hormone produced in the gastrointestinal tract that stimulates glucose dependent insulin secretion. Impaired incretin response has been documented in diabetic patients and was mainly related to the inability of the pancreatic beta cells to secrete insulin in response to GIP. Advanced Glycation End Products (AGEs) have been shown to play an important role in pancreatic beta cell dysfunction. The aim of this study is to investigate whether the exposure to AGEs can induce GIP resistance in the pancreatic beta cell line HIT-T15. Cells were cultured for 5 days in low (CTR) or high glucose (HG) concentration in the presence of AGEs (GS) to evaluate the expression of GIP receptor (GIPR), the intracellular signaling activated by GIP, and secretion of insulin in response to GIP. The results showed that incubation with GS alone altered intracellular GIP signaling and decreased insulin secretion as compared to CTR. GS in combination with HG reduced the expression of GIPR and PI3K and abrogated GIP-induced AKT phosphorylation and GIP-stimulated insulin secretion. In conclusion, we showed that treatment with GS is associated with the loss of the insulinotropic effect of GIP in hyperglycemic conditions.

  5. Hormone-sensitive lipase deficiency suppresses insulin secretion from pancreatic islets of Lep{sup ob/ob} mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekiya, Motohiro; Yahagi, Naoya, E-mail: nyahagi-tky@umin.ac.jp; Laboratory of Molecular Physiology on Energy Metabolism, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655

    2009-09-25

    It has long been a matter of debate whether the hormone-sensitive lipase (HSL)-mediated lipolysis in pancreatic {beta}-cells can affect insulin secretion through the alteration of lipotoxicity. We generated mice lacking both leptin and HSL (Lep{sup ob/ob}/HSL{sup -/-}) and explored the role of HSL in pancreatic {beta}-cells in the setting of obesity. Lep{sup ob/ob}/HSL{sup -/-} developed elevated blood glucose levels and reduced plasma insulin levels compared with Lep{sup ob/ob}/HSL{sup +/+} in a fed state, while the deficiency of HSL did not affect glucose homeostasis in Lep{sup +/+} background. The deficiency of HSL exacerbated the accumulation of triglycerides in Lep{sup ob/ob} islets,more » leading to reduced glucose-stimulated insulin secretion. The deficiency of HSL also diminished the islet mass in Lep{sup ob/ob} mice due to decreased cell proliferation. In conclusion, HSL affects insulin secretary capacity especially in the setting of obesity.« less

  6. Central effects of humanin on hepatic triglyceride secretion.

    PubMed

    Gong, Zhenwei; Su, Kai; Cui, Lingguang; Tas, Emir; Zhang, Ting; Dong, H Henry; Yakar, Shoshana; Muzumdar, Radhika H

    2015-08-01

    Humanin (HN) is an endogenous mitochondria-associated peptide that has been shown to protect against various Alzheimer's disease-associated insults, myocardial ischemia-reperfusion injury, and reactive oxygen species-induced cell death. We have shown previously that HN improves whole body glucose homeostasis by improving insulin sensitivity and increasing glucose-stimulated insulin secretion (GSIS) from the β-cells. Here, we report that intraperitoneal treatment with one of HN analogs, HNG, decreases body weight gain, visceral fat, and hepatic triglyceride (TG) accumulation in high-fat diet-fed mice. The decrease in hepatic TG accumulation is due to increased activity of hepatic microsomal triglyceride transfer protein (MTTP) and increased hepatic TG secretion. Both intravenous (iv) and intracerebroventricular (icv) infusion of HNG acutely increase TG secretion from the liver. Vagotomy blocks the effect on both iv and icv HNG on TG secretion, suggesting that the effects of HNG on hepatic TG flux are centrally mediated. Our data suggest that HN is a new player in central regulation of peripheral lipid metabolism. Copyright © 2015 the American Physiological Society.

  7. Portosystemic shunt as a cause of congenital hyperinsulinemic hypoglycemia.

    PubMed

    Yoshii, Keisuke; Noda, Masahiro; Naiki, Yasuhiro; Horikawa, Reiko

    2017-04-01

    Congenital hyperinsulinemic hypoglycemia (CHH) is characterized by the inappropriate secretion of insulin from pancreatic beta cells in the presence of hypoglycemia. We herein describe the case of a 5-month-old boy with CHH due to congenital portosystemic shunt (CPSS). Insulin secreted from pancreatic beta cells flows into the portal vein and is first metabolized in the liver. First-pass elimination of insulin in the liver leads to great decrease in insulin concentration by approximately 40-80% in humans. CPSS accounts for a large quantity of insulin delivery into the systemic circulation due to the lack of hepatic first-pass elimination. Hypoglycemia can result from consistently high levels of insulin after reaching normal glucose level. CPSS therefore should be considered as a rare cause of CHH, especially in the case of post-prandial hyperinsulinemic hypoglycemia. © 2017 Japan Pediatric Society.

  8. Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism

    PubMed Central

    Cochran, Blake J.; Hou, Liming; Manavalan, Anil Paul Chirackal; Moore, Benjamin M.; Tabet, Fatiha; Sultana, Afroza; Cuesta Torres, Luisa; Tang, Shudi; Shrestha, Sudichhya; Senanayake, Praween; Patel, Mili; Ryder, William J.; Bongers, Andre; Maraninchi, Marie; Wasinger, Valerie C.; Westerterp, Marit; Tall, Alan R.; Barter, Philip J.

    2016-01-01

    Elevated pancreatic β-cell cholesterol levels impair insulin secretion and reduce plasma insulin levels. This study establishes that low plasma insulin levels have a detrimental effect on two major insulin target tissues: adipose tissue and skeletal muscle. Mice with increased β-cell cholesterol levels were generated by conditional deletion of the ATP-binding cassette transporters, ABCA1 and ABCG1, in β-cells (β-DKO mice). Insulin secretion was impaired in these mice under basal and high-glucose conditions, and glucose disposal was shifted from skeletal muscle to adipose tissue. The β-DKO mice also had increased body fat and adipose tissue macrophage content, elevated plasma interleukin-6 and MCP-1 levels, and decreased skeletal muscle mass. They were not, however, insulin resistant. The adipose tissue expansion and reduced skeletal muscle mass, but not the systemic inflammation or increased adipose tissue macrophage content, were reversed when plasma insulin levels were normalized by insulin supplementation. These studies identify a mechanism by which perturbation of β-cell cholesterol homeostasis and impaired insulin secretion increase adiposity, reduce skeletal muscle mass, and cause systemic inflammation. They further identify β-cell dysfunction as a potential therapeutic target in people at increased risk of developing type 2 diabetes. PMID:27702832

  9. Effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia in the frequently sampled intravenous glucose tolerance test.

    PubMed

    Shin, Mi-Kyung; Han, Woobum; Joo, Hoon; Bevans-Fonti, Shannon; Shiota, Masakazu; Stefanovski, Darko; Polotsky, Vsevolod Y

    2017-04-01

    Obstructive sleep apnea is associated with type 2 diabetes. We have previously developed a mouse model of intermittent hypoxia (IH) mimicking oxyhemoglobin desaturations in patients with sleep apnea and have shown that IH increases fasting glucose, hepatic glucose output, and plasma catecholamines. We hypothesize that adrenal medulla modulates glucose responses to IH and that such responses can be prevented by adrenal medullectomy. We performed adrenal medullectomy or sham surgery in lean C57BL/6J mice, which were exposed to IH or intermittent air (control) for 4 wk followed by the frequently sampled intravenous glucose tolerance test (FSIVGTT) in unanesthetized unrestrained animals. IH was administered during the 12-h light phase (9 AM to 9 PM) by decreasing inspired oxygen from 21 to 6.5% 60 cycles/h. Insulin sensitivity (S I ), insulin independent glucose disposal [glucose effectiveness (S G )], and the insulin response to glucose (AIR G ) were determined using the minimal model method. In contrast to our previous data obtained in restrained mice, IH did not affect fasting blood glucose and plasma insulin levels in sham-operated mice. IH significantly decreased S G but did not affect S I and AIR G Adrenal medullectomy decreased fasting blood glucose and plasma insulin levels and increased glycogen synthesis in the liver in hypoxic mice but did not have a significant effect on the FSIVGTT metrics. We conclude that, in the absence of restraints, IH has no effect on glucose metabolism in lean mice with exception of decreased S G , whereas adrenal medullectomy decreases fasting glucose and insulin levels in the IH environment. NEW & NOTEWORTHY To our knowledge, this is the first study examining the role of adrenal catecholamines in glucose metabolism during intermittent hypoxia (IH) in unanesthetized unrestrained C57BL/6J mice. We report that IH did not affect fasting glucose and insulin levels nor insulin sensitivity and insulin secretion during, whereas glucose effectiveness was decreased. Adrenal medullectomy decreased fasting blood glucose and insulin levels in mice exposed to IH but had no effect on glucose metabolism, insulin secretion, and insulin sensitivity. Copyright © 2017 the American Physiological Society.

  10. Effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia in the frequently sampled intravenous glucose tolerance test

    PubMed Central

    Shin, Mi-Kyung; Han, Woobum; Joo, Hoon; Bevans-Fonti, Shannon; Shiota, Masakazu; Stefanovski, Darko

    2017-01-01

    Obstructive sleep apnea is associated with type 2 diabetes. We have previously developed a mouse model of intermittent hypoxia (IH) mimicking oxyhemoglobin desaturations in patients with sleep apnea and have shown that IH increases fasting glucose, hepatic glucose output, and plasma catecholamines. We hypothesize that adrenal medulla modulates glucose responses to IH and that such responses can be prevented by adrenal medullectomy. We performed adrenal medullectomy or sham surgery in lean C57BL/6J mice, which were exposed to IH or intermittent air (control) for 4 wk followed by the frequently sampled intravenous glucose tolerance test (FSIVGTT) in unanesthetized unrestrained animals. IH was administered during the 12-h light phase (9 AM to 9 PM) by decreasing inspired oxygen from 21 to 6.5% 60 cycles/h. Insulin sensitivity (SI), insulin independent glucose disposal [glucose effectiveness (SG)], and the insulin response to glucose (AIRG) were determined using the minimal model method. In contrast to our previous data obtained in restrained mice, IH did not affect fasting blood glucose and plasma insulin levels in sham-operated mice. IH significantly decreased SG but did not affect SI and AIRG. Adrenal medullectomy decreased fasting blood glucose and plasma insulin levels and increased glycogen synthesis in the liver in hypoxic mice but did not have a significant effect on the FSIVGTT metrics. We conclude that, in the absence of restraints, IH has no effect on glucose metabolism in lean mice with exception of decreased SG, whereas adrenal medullectomy decreases fasting glucose and insulin levels in the IH environment. NEW & NOTEWORTHY To our knowledge, this is the first study examining the role of adrenal catecholamines in glucose metabolism during intermittent hypoxia (IH) in unanesthetized unrestrained C57BL/6J mice. We report that IH did not affect fasting glucose and insulin levels nor insulin sensitivity and insulin secretion during, whereas glucose effectiveness was decreased. Adrenal medullectomy decreased fasting blood glucose and insulin levels in mice exposed to IH but had no effect on glucose metabolism, insulin secretion, and insulin sensitivity. PMID:28104753

  11. Regulation of Endogenous (Male) Rodent GLP-1 Secretion and Human Islet Insulin Secretion by Antagonism of Somatostatin Receptor 5.

    PubMed

    Farb, Thomas B; Adeva, Marta; Beauchamp, Thomas J; Cabrera, Over; Coates, David A; Meredith, Tamika DeShea; Droz, Brian A; Efanov, Alexander; Ficorilli, James V; Gackenheimer, Susan L; Martinez-Grau, Maria A; Molero, Victoriano; Ruano, Gema; Statnick, Michael A; Suter, Todd M; Syed, Samreen K; Toledo, Miguel A; Willard, Francis S; Zhou, Xin; Bokvist, Krister B; Barrett, David G

    2017-11-01

    Incretin and insulin responses to nutrient loads are suppressed in persons with diabetes, resulting in decreased glycemic control. Agents including sulfonylureas and dipeptidyl peptidase-4 inhibitors (DPP4i) partially reverse these effects and provide therapeutic benefit; however, their modes of action limit efficacy. Because somatostatin (SST) has been shown to suppress insulin and glucagonlike peptide-1 (GLP-1) secretion through the Gi-coupled SST receptor 5 (SSTR5) isoform in vitro, antagonism of SSTR5 may improve glycemic control via intervention in both pathways. Here, we show that a potent and selective SSTR5 antagonist reverses the blunting effects of SST on insulin secretion from isolated human islets, and demonstrate that SSTR5 antagonism affords increased levels of systemic GLP-1 in vivo. Knocking out Sstr5 in mice provided a similar increase in systemic GLP-1 levels, which were not increased further by treatment with the antagonist. Treatment of mice with the SSTR5 antagonist in combination with a DPP4i resulted in increases in systemic GLP-1 levels that were more than additive and resulted in greater glycemic control compared with either agent alone. In isolated human islets, the SSTR5 antagonist completely reversed the inhibitory effect of exogenous SST-14 on insulin secretion. Taken together, these data suggest that SSTR5 antagonism should increase circulating GLP-1 levels and stimulate insulin secretion (directly and via GLP-1) in humans, improving glycemic control in patients with diabetes. Copyright © 2017 Endocrine Society.

  12. IL-6-Type Cytokine Signaling in Adipocytes Induces Intestinal GLP-1 Secretion.

    PubMed

    Wueest, Stephan; Laesser, Céline I; Böni-Schnetzler, Marianne; Item, Flurin; Lucchini, Fabrizio C; Borsigova, Marcela; Müller, Werner; Donath, Marc Y; Konrad, Daniel

    2018-01-01

    We recently showed that interleukin (IL)-6-type cytokine signaling in adipocytes induces free fatty acid release from visceral adipocytes, thereby promoting obesity-induced hepatic insulin resistance and steatosis. In addition, IL-6-type cytokines may increase the release of leptin from adipocytes and by those means induce glucagon-like peptide 1 (GLP-1) secretion. We thus hypothesized that IL-6-type cytokine signaling in adipocytes may regulate insulin secretion. To this end, mice with adipocyte-specific knockout of gp130, the signal transducer protein of IL-6, were fed a high-fat diet for 12 weeks. Compared with control littermates, knockout mice showed impaired glucose tolerance and circulating leptin, GLP-1, and insulin levels were reduced. In line, leptin release from isolated adipocytes was reduced, and intestinal proprotein convertase subtilisin/kexin type 1 ( Pcsk1 ) expression, the gene encoding PC1/3, which controls GLP-1 production, was decreased in knockout mice. Importantly, treatment with the GLP-1 receptor antagonist exendin 9-39 abolished the observed difference in glucose tolerance between control and knockout mice. Ex vivo, supernatant collected from isolated adipocytes of gp130 knockout mice blunted Pcsk1 expression and GLP-1 release from GLUTag cells. In contrast, glucose- and GLP-1-stimulated insulin secretion was not affected in islets of knockout mice. In conclusion, adipocyte-specific IL-6 signaling induces intestinal GLP-1 release to enhance insulin secretion, thereby counteracting insulin resistance in obesity. © 2017 by the American Diabetes Association.

  13. Effect of Diacerein on Insulin Secretion and Metabolic Control in Drug-Naïve Patients With Type 2 Diabetes

    PubMed Central

    Ramos-Zavala, Maria G.; González-Ortiz, Manuel; Martínez-Abundis, Esperanza; Robles-Cervantes, José A.; González-López, Roberto; Santiago-Hernández, Nestor J.

    2011-01-01

    OBJECTIVE To assess the effect of diacerein on insulin secretion and metabolic control in drug-naïve patients with type 2 diabetes. RESEARCH DESIGN AND METHODS A randomized, double-blind, placebo-controlled clinical trial was carried out in 40 drug-naïve adult patients with type 2 diabetes. A metabolic profile including interleukin (IL)-1β, tumor necrosis factor-α, IL-6, and fasting insulin levels was carried out before the intervention and 2 months afterward. A hyperglycemic-hyperinsulinemic clamp technique was performed to assess the phases of insulin secretion and insulin sensitivity. After randomization, 20 patients received diacerein (50 mg once daily) for the first 15 days and twice daily for 45 additional days. The remaining patients received placebo. Intra- and intergroup differences were calculated by Wilcoxon signed rank and Mann-Whitney U tests. RESULTS There were significant increases in first (102 ± 63 vs. 130 ± 75 pmol/L; P < 0.01), late (219 ± 111 vs. 280 ± 135 pmol/L; P < 0.01), and total insulin (178 ± 91 vs. 216 ± 99 pmol/L; P < 0.01) secretions without changes in insulin sensitivity after diacerein administration. There were significant decreases in fasting glucose (7.9 ± 1.4 vs. 6.8 ± 1.0 mmol/L; P < 0.01) and in A1C levels (8.3 ± 1.0 vs. 7.0 ± 0.8%; P < 0.001) after diacerein administration. There were no significant changes after placebo administration in the above-mentioned evaluations. CONCLUSIONS Insulin secretion increased and metabolic control improved after diacerein administration in drug-naïve patients with type 2 diabetes. PMID:21610123

  14. Effect of somatostatin on meal-induced gastric secretion in duodenal ulcer patients.

    PubMed

    Konturek, S J; Swierczek, J; Kwiecień, N; Mikoś, E; Oleksy, J; Wierzbicki, Z

    1977-11-01

    The effect of somatostatin, a growth hormone releasing-inhibiting hormone (GH-RIH) on basal and meal-, pentagastrin-, or histamine-stimulated gastric acid and pepsin secretion was studied in six duodenal ulcer patients. Intravenous GH-RIH infused in graded doses ranging from 0.62 to 5.0 microgram/kg/hr produced a dose-related inhibition of pentagastrin-induced acid secretion reaching about 15% of control level at the dose of 5.0 microgram/kg/hr. Acid inhibition was paralleled by a decrease in the pepsin output and accompanied by a dose-dependent reduction in serum growth hormone and insulin levels measured by radioimmunoassay. GH-RIH used in a single dose of 2.5 microgram/kg/hr produced about 85% inhibition of acid secretion induced by a meal (measured by intragastric titration) accompanied by a significant decrease in serum gastrin and insulin levels. The effect of GH-RIH on histamine-stimulated secretion was very modest and observed only after stopping the GH-RIH infusion. Thus GH-RIH suppressed acid and pepsin secretion induced by pentagastrin and a meal, and this effect was accompanied by a suppression of serum growth hormone and gastrin levels which may contribute to the inhibition of gastric secretion observed.

  15. Assessment of the effects of feed restriction and amino acid supplementation on glucose tolerance in llamas.

    PubMed

    Cebra, Christopher K; Tornquist, Susan J; Jester, Rebecca M; Stelletta, Calogero

    2004-07-01

    To assess the effects of prolonged feed deprivation on glucose tolerance, insulin secretion, and lipid homeostasis in llamas. 9 adult female llamas. On each of 2 consecutive days, food was withheld from the llamas for 8 hours. Blood samples were collected before and 5, 15, 30, 45, 60, 120, and 240 minutes after IV injection of dextrose (0.5 g/kg) for determination of plasma insulin and serum glucose, triglyceride, and nonesterified fatty acid concentrations. Between experimental periods, the llamas received supplemental amino acids IV (185 mg/kg in solution). The llamas were then fed a limited diet (grass hay, 0.25% of body weight daily) for 23 days, after which the experimental procedures were repeated. Feed restriction decreased glucose tolerance and had slight effects on insulin secretion in llamas. Basal lipid fractions were higher after feed restriction, but dextrose administration resulted in similar reductions in serum lipid concentrations with and without feed restriction. Insulin secretion was decreased on the second day of each study period, which lessened reduction of serum lipid concentrations but did not affect glucose tolerance. Despite having a comparatively competent pancreatic response, feed-restricted llamas assimilated dextrose via an IV bolus more slowly than did llamas on full rations. However, repeated administration of dextrose reduced insulin secretion and could promote hyperglycemia and fat mobilization. These findings suggested that veterinarians should use alternative methods of supplying energy to camelids with long-term reduced feed intake or consider administering agents to improve the assimilation of glucose.

  16. Overexpression of p35 in Min6 pancreatic beta cells induces a stressed neuron-like apoptosis.

    PubMed

    Zheng, Ya-Li; Hu, Ya-Fang; Zhang, Aiping; Wang, Wei; Li, Bo; Amin, Niranjana; Grant, Philip; Pant, Harish C

    2010-12-15

    Cdk5 activity has been implicated in brain development and the regulation of many neuronal processes. Recently, the expression of p35 and Cdk5 activity has been reported in pancreatic beta cells. Decreased Cdk5 activity enhanced glucose-stimulated insulin secretion. This suggests that Cdk5 may play an important role in the regulation of insulin secretion. To further understand how Cdk5 regulates insulin secretion in glucose-stimulated pancreatic β cells, we first confirmed the presence of a low level of p35 in pancreatic Min6 cells. Next, in a time-course experiment in high glucose (25 mM) we showed that endogenous p35 increased gradually accompanied by a 3-fold increase in Cdk5 activity by 16 h. Insulin secretion, however, doubled after 2 h followed by progressive downregulation, negatively correlated with Cdk5 activity. On the other hand, overexpression of p35 in these cells resulted in more than a three-fold increase in Cdk5 activity within 2 h coupled to a 50% reduction in insulin secretion in both high and low (3 mM) glucose. Most significantly, cells overexpressing p35, treated with high glucose for 4 h, showed induction of p25, the p35-derived truncated fragment which hyperactivates Cdk5 in neurons. As a result, insulin secretion was inhibited and cells became apoptotic. Roscovitine or co-infection of dominant negative Cdk5 (dnCdk5) with p35 increased insulin secretion and inhibited apoptosis. These results suggest that the model for deregulation and hyperactivation of Cdk5 in neurodegeneration may apply to the pathology seen in type 2 diabetes (T2DM). It is consistent with the view that Alzheimer's disease and T2DM are linked metabolically and pathologically by Cdk5 in a number of ways. Copyright © 2010. Published by Elsevier B.V.

  17. Impaired muscarinic type 3 (M3) receptor/PKC and PKA pathways in islets from MSG-obese rats.

    PubMed

    Ribeiro, Rosane Aparecida; Balbo, Sandra Lucinei; Roma, Letícia Prates; Camargo, Rafael Ludemann; Barella, Luiz Felipe; Vanzela, Emerielle Cristine; de Freitas Mathias, Paulo Cesar; Carneiro, Everardo Magalhães; Boschero, Antonio Carlos; Bonfleur, Maria Lúcia

    2013-07-01

    Monosodium glutamate-obese rats are glucose intolerant and insulin resistant. Their pancreatic islets secrete more insulin at increasing glucose concentrations, despite the possible imbalance in the autonomic nervous system of these rats. Here, we investigate the involvement of the cholinergic/protein kinase (PK)-C and PKA pathways in MSG β-cell function. Male newborn Wistar rats received a subcutaneous injection of MSG (4 g/kg body weight (BW)) or hyperosmotic saline solution during the first 5 days of life. At 90 days of life, plasma parameters, islet static insulin secretion and protein expression were analyzed. Monosodium glutamate rats presented lower body weight and decreased nasoanal length, but had higher body fat depots, glucose intolerance, hyperinsulinemia and hypertrigliceridemia. Their pancreatic islets secreted more insulin in the presence of increasing glucose concentrations with no modifications in the islet-protein content of the glucose-sensing proteins: the glucose transporter (GLUT)-2 and glycokinase. However, MSG islets presented a lower secretory capacity at 40 mM K(+) (P < 0.05). The MSG group also released less insulin in response to 100 μM carbachol, 10 μM forskolin and 1 mM 3-isobutyl-1-methyl-xantine (P < 0.05, P < 0.0001 and P < 0.01). These effects may be associated with a the decrease of 46 % in the acetylcholine muscarinic type 3 (M3) receptor, and a reduction of 64 % in PKCα and 36 % in PKAα protein expressions in MSG islets. Our data suggest that MSG islets, whilst showing a compensatory increase in glucose-induced insulin release, demonstrate decreased islet M3/PKC and adenylate cyclase/PKA activation, possibly predisposing these prediabetic rodents to the early development of β-cell dysfunction.

  18. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity.

    PubMed

    Cui, Ju; Pang, Jing; Lin, Ya-Jun; Gong, Huan; Wang, Zhen-He; Li, Yun-Xuan; Li, Jin; Wang, Zai; Jiang, Ping; Dai, Da-Peng; Li, Jian; Cai, Jian-Ping; Huang, Jian-Dong; Zhang, Tie-Mei

    2017-06-01

    Recent studies have shown that KIF5B (conventional kinesin heavy chain) mediates glucose transporter type 4 translocation and adiponectin secretion in 3T3-L1 adipocytes, suggesting an involvement of KIF5B in the homeostasis of metabolism. However, the in vivo physiologic function of KIF5B in adipose tissue remains to be determined. In this study, adipose-specific Kif5b knockout (F-K5bKO) mice were generated using the Cre-LoxP strategy. F-K5bKO mice had similar body weights to controls fed on a standard chow diet. However, F-K5bKO mice had hyperlipidemia and significant glucose intolerance and insulin resistance. Deletion of Kif5b aggravated the deleterious impact of a high-fat diet (HFD) on body weight gain, hepatosteatosis, glucose tolerance, and systematic insulin sensitivity. These changes were accompanied by impaired insulin signaling, decreased secretion of adiponectin, and increased serum levels of leptin and proinflammatory adipokines. F-K5bKO mice fed on an HFD exhibited lower energy expenditure and thermogenic dysfunction as a result of whitening of brown adipose due to decreased mitochondria biogenesis and down-regulation of key thermogenic gene expression. In conclusion, selective deletion of Kif5b in adipose tissue exacerbates HFD-induced obesity and its associated metabolic disorders, partly through a decrease in energy expenditure, dysregulation of adipokine secretion, and insulin signaling.-Cui, J., Pang, J., Lin, Y.-J., Gong, H., Wang, Z.-H., Li, Y.-X., Li, J., Wang, Z., Jiang, P., Dai, D.-P., Li, J., Cai, J.-P., Huang, J.-D., Zhang, T.-M. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity. © FASEB.

  19. Reduced glucose-induced insulin secretion in low-protein-fed rats is associated with altered pancreatic islets redox status.

    PubMed

    Cappelli, Ana Paula G; Zoppi, Claudio C; Silveira, Leonardo R; Batista, Thiago M; Paula, Flávia M; da Silva, Priscilla M R; Rafacho, Alex; Barbosa-Sampaio, Helena C; Boschero, Antonio C; Carneiro, Everardo M

    2018-01-01

    In the present study, we investigated the relationship between early life protein malnutrition-induced redox imbalance, and reduced glucose-stimulated insulin secretion. After weaning, male Wistar rats were submitted to a normal-protein-diet (17%-protein, NP) or to a low-protein-diet (6%-protein, LP) for 60 days. Pancreatic islets were isolated and hydrogen peroxide (H 2 O 2 ), oxidized (GSSG) and reduced (GSH) glutathione content, CuZn-superoxide dismutase (SOD1), glutathione peroxidase (GPx1) and catalase (CAT) gene expression, as well as enzymatic antioxidant activities were quantified. Islets that were pre-incubated with H 2 O 2 and/or N-acetylcysteine, were subsequently incubated with glucose for insulin secretion measurement. Protein malnutrition increased CAT mRNA content by 100%. LP group SOD1 and CAT activities were 50% increased and reduced, respectively. H 2 O 2 production was more than 50% increased whereas GSH/GSSG ratio was near 60% lower in LP group. Insulin secretion was, in most conditions, approximately 50% lower in LP rat islets. When islets were pre-incubated with H 2 O 2 (100 μM), and incubated with glucose (33 mM), LP rats showed significant decrease of insulin secretion. This effect was attenuated when LP islets were exposed to N-acetylcysteine. © 2017 Wiley Periodicals, Inc.

  20. Developmental programming of polycystic ovary syndrome (PCOS): prenatal androgens establish pancreatic islet α/β cell ratio and subsequent insulin secretion.

    PubMed

    Ramaswamy, S; Grace, C; Mattei, A A; Siemienowicz, K; Brownlee, W; MacCallum, J; McNeilly, A S; Duncan, W C; Rae, M T

    2016-06-06

    Exogenous androgenic steroids applied to pregnant sheep programmes a PCOS-like phenotype in female offspring. Via ultrasound guidance we applied steroids directly to ovine fetuses at d62 and d82 of gestation, and examined fetal (day 90 gestation) and postnatal (11 months old) pancreatic structure and function. Of three classes of steroid agonists applied (androgen - Testosterone propionate (TP), estrogen - Diethystilbesterol (DES) and glucocorticoid - Dexamethasone (DEX)), only androgens (TP) caused altered pancreatic development. Beta cell numbers were significantly elevated in prenatally androgenised female fetuses (P = 0.03) (to approximately the higher numbers found in male fetuses), whereas alpha cell counts were unaffected, precipitating decreased alpha:beta cell ratios in the developing fetal pancreas (P = 0.001), sustained into adolescence (P = 0.0004). In adolescence basal insulin secretion was significantly higher in female offspring from androgen-excess pregnancies (P = 0.045), and an exaggerated, hyperinsulinaemic response to glucose challenge (P = 0.0007) observed, whereas prenatal DES or DEX treatment had no effects upon insulin secretion. Postnatal insulin secretion correlated with beta cell numbers (P = 0.03). We conclude that the pancreas is a primary locus of androgenic stimulation during development, giving rise to postnatal offspring whose pancreas secreted excess insulin due to excess beta cells in the presence of a normal number of alpha cells.

  1. Developmental programming of polycystic ovary syndrome (PCOS): prenatal androgens establish pancreatic islet α/β cell ratio and subsequent insulin secretion

    PubMed Central

    Ramaswamy, S.; Grace, C.; Mattei, A. A.; Siemienowicz, K.; Brownlee, W.; MacCallum, J.; McNeilly, A. S.; Duncan, W. C.; Rae, M. T.

    2016-01-01

    Exogenous androgenic steroids applied to pregnant sheep programmes a PCOS-like phenotype in female offspring. Via ultrasound guidance we applied steroids directly to ovine fetuses at d62 and d82 of gestation, and examined fetal (day 90 gestation) and postnatal (11 months old) pancreatic structure and function. Of three classes of steroid agonists applied (androgen - Testosterone propionate (TP), estrogen - Diethystilbesterol (DES) and glucocorticoid - Dexamethasone (DEX)), only androgens (TP) caused altered pancreatic development. Beta cell numbers were significantly elevated in prenatally androgenised female fetuses (P = 0.03) (to approximately the higher numbers found in male fetuses), whereas alpha cell counts were unaffected, precipitating decreased alpha:beta cell ratios in the developing fetal pancreas (P = 0.001), sustained into adolescence (P = 0.0004). In adolescence basal insulin secretion was significantly higher in female offspring from androgen-excess pregnancies (P = 0.045), and an exaggerated, hyperinsulinaemic response to glucose challenge (P = 0.0007) observed, whereas prenatal DES or DEX treatment had no effects upon insulin secretion. Postnatal insulin secretion correlated with beta cell numbers (P = 0.03). We conclude that the pancreas is a primary locus of androgenic stimulation during development, giving rise to postnatal offspring whose pancreas secreted excess insulin due to excess beta cells in the presence of a normal number of alpha cells. PMID:27265420

  2. Effects of 6-month eicosapentaenoic acid treatment on postprandial hyperglycemia, hyperlipidemia, insulin secretion ability, and concomitant endothelial dysfunction among newly-diagnosed impaired glucose metabolism patients with coronary artery disease. An open label, single blinded, prospective randomized controlled trial.

    PubMed

    Sawada, Takahiro; Tsubata, Hideo; Hashimoto, Naoko; Takabe, Michinori; Miyata, Taishi; Aoki, Kosuke; Yamashita, Soichiro; Oishi, Shogo; Osue, Tsuyoshi; Yokoi, Kiminobu; Tsukishiro, Yasue; Onishi, Tetsuari; Shimane, Akira; Taniguchi, Yasuyo; Yasaka, Yoshinori; Ohara, Takeshi; Kawai, Hiroya; Yokoyama, Mitsuhiro

    2016-08-26

    Recent experimental studies have revealed that n-3 fatty acids, such as eicosapentaenoic acid (EPA) regulate postprandial insulin secretion, and correct postprandial glucose and lipid abnormalities. However, the effects of 6-month EPA treatment on postprandial hyperglycemia and hyperlipidemia, insulin secretion, and concomitant endothelial dysfunction remain unknown in patients with impaired glucose metabolism (IGM) and coronary artery disease (CAD). We randomized 107 newly diagnosed IGM patients with CAD to receive either 1800 mg/day of EPA (EPA group, n = 53) or no EPA (n = 54). Cookie meal testing (carbohydrates: 75 g, fat: 28.5 g) and endothelial function testing using fasting-state flow-mediated dilatation (FMD) were performed before and after 6 months of treatment. The primary outcome of this study was changes in postprandial glycemic and triglyceridemic control and secondary outcomes were improvement of insulin secretion and endothelial dysfunction. After 6 months, the EPA group exhibited significant improvements in EPA/arachidonic acid, fasting triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C). The EPA group also exhibited significant decreases in the incremental TG peak, area under the curve (AUC) for postprandial TG, incremental glucose peak, AUC for postprandial glucose, and improvements in glycometabolism categorization. No significant changes were observed for hemoglobin A1c and fasting plasma glucose levels. The EPA group exhibited a significant increase in AUC-immune reactive insulin/AUC-plasma glucose ratio (which indicates postprandial insulin secretory ability) and significant improvements in FMD. Multiple regression analysis revealed that decreases in the TG/HDL-C ratio and incremental TG peak were independent predictors of FMD improvement in the EPA group. EPA corrected postprandial hypertriglyceridemia, hyperglycemia and insulin secretion ability. This amelioration of several metabolic abnormalities was accompanied by recovery of concomitant endothelial dysfunction in newly diagnosed IGM patients with CAD. Clinical Trial Registration UMIN Registry number: UMIN000011265 ( https://www.upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000013200&language=E ).

  3. [Mechanisms of spontaneous hypoglycaemia in the adult (author's transl)].

    PubMed

    Lubetzki, J; Duprey, J; Guillausseau, P J

    1979-06-01

    Hypoglycaemia increases hepatic glucose output; insulin release is suppressed and the secretion of counter regulatory hormones enhanced. Catecholamines and glucagon seem to play a major role. The brain energy content is initially preserved, but the neuronal activity exhibits a 40-60 % decrease. Neither cerebral blood flow, nor oxygen consumption are altered. In addition to glucose, other substrates are metabolized. Cerebral edema may occur. An insulin-storage defect seems to be the main abnormality in insulinoma beta cell function. The most accurate biological tests are the insulin/glucose ratio, stimulation tests and suppression tests such as fasting and insulin-induced hypoglycaemia. Ectopic release of ACTH, HCG, HLP, glucagon or gastrin, is observed in some malignant insulinomas. When inconclusive, classic localising procedures may be effected by selective venous-blood sampling. Hypoglycaemia of extra-pancreatic tumors results from glucose hyperconsumption and decreases in glucose hepatic output, lipolysis and ketogenesis, related to secretion of insulin-like peptides NSILAs or NSILAp. Rare cases of hypoglycaemia related to insulin auto-antibodies of unknown origin have been reported. Alcoholic hypoglycemia results from diminished hepatic glycogen content, alcohol dehydrogenase pathway blockade, reduction of gluconeogenesis defect in the alcohol catabolic catalase pathway and enhancement of peripheral glucose consumption.

  4. [Secretion of growth hormone in hyperthyroidism].

    PubMed

    Hervás, F; Morreale de Escobar, G; Escobar Del Rey, F; Pozuelo, V

    1976-01-01

    The authors studied growth hormone (GH) secretion in a group of adult controls and another group of hyperthyroid patients after stimulation with intravenous insulin-induced (0,1 IU/kg) hypoglycemia, aiming to clear out the problem of discrepancies in literature concerning GH secretion in hyperthyroidism. They concluded that in this syndrome, GH levels are significantly higher than those of controls. The GH releasing response is normal, though it could be expected to be decreased due to decreased pituitary GH contents as a result of permanent somatotrophic cell stimulation.

  5. The lipolysis/esterification cycle of hepatic triacylglycerol. Its role in the secretion of very-low-density lipoprotein and its response to hormones and sulphonylureas.

    PubMed Central

    Wiggins, D; Gibbons, G F

    1992-01-01

    In hepatocyte cultures maintained in the absence of extracellular fatty acids, at least 70% of the secreted very-low-density lipoprotein (VLDL) triacylglycerol was derived via lipolysis of intracellular triacylglycerol. This proportion was unchanged when the cells were exposed for 24 h to insulin or glucagon, hormones which decreased the overall secretion of intracellular triacylglycerol, or to chloroquine or tolbutamide, agents which inhibit lysosomal lipolysis. The rate of intracellular lipolysis was 2-3-fold greater than that required to maintain the observed rate of triacylglycerol secretion. Most of the fatty acids released were returned to the intracellular pool. Neither insulin nor glucagon had any significant effect on the overall lipolysis and re-esterification of intracellular triacylglycerol. In these cases a greater proportion of the released fatty acids re-entered the cellular pool, rather than being recruited for VLDL assembly. Tolbutamide inhibited intracellular lipolysis, but suppressed VLDL secretion to a greater extent. 3,5-Dimethylpyrazole did not affect lipolysis or VLDL secretion. The increased secretion of VLDL triacylglycerol observed after exposure of cells to insulin for 3 days was not accompanied by an increased rate of intracellular lipolysis. However, a larger proportion of the triacylglycerol secreted under these conditions may not have undergone prior lipolysis. PMID:1599431

  6. Pseudoislet formation enhances gene expression, insulin secretion and cytoprotective mechanisms of clonal human insulin-secreting 1.1B4 cells.

    PubMed

    Green, Alastair D; Vasu, Srividya; McClenaghan, Neville H; Flatt, Peter R

    2015-10-01

    We have studied the effects of cell communication on human beta cell function and resistance to cytotoxicity using the novel human insulin-secreting cell line 1.1B4 configured as monolayers and pseudoislets. Incubation with the incretin gut hormones GLP-1 and GIP caused dose-dependent stimulation of insulin secretion from 1.1B4 cell monolayers and pseudoislets. The secretory responses were 1.5-2.7-fold greater than monolayers. Cell viability (MTT), DNA damage (comet assay) and apoptosis (acridine orange/ethidium bromide staining) were investigated following 2-h exposure of 1.1B4 monolayers and pseudoislets to ninhydrin, H2O2, streptozotocin, glucose, palmitate or cocktails of proinflammatory cytokines. All agents tested decreased viability and increased DNA damage and apoptosis in both 1.1B4 monolayers and pseudoislets. However, pseudoislets exhibited significantly greater resistance to cytotoxicity (1.5-2.7-fold increases in LD50) and lower levels of DNA damage (1.3-3.4-fold differences in percentage tail DNA and olive tail moment) and apoptosis (1.3-1.5-fold difference) compared to monolayers. Measurement of gene expression by reverse-transcription, real-time PCR showed that genes involved with insulin secretion (INS, PDX1, PCSK1, PCSK2, GLP1R and GIPR), cell-cell communication (GJD2, GJA1 and CDH1) and antioxidant defence (SOD1, SOD2, GPX1 and CAT) were significantly upregulated in pseudoislets compared to monolayers, whilst the expression of proapoptotic genes (NOS2, MAPK8, MAPK10 and NFKB1) showed no significant differences. In summary, these data indicate cell-communication associated with three-dimensional islet architecture is important both for effective insulin secretion and for protection of human beta cells against cytotoxicity.

  7. Uncoupling protein-2 mediates the protective action of berberine against oxidative stress in rat insulinoma INS-1E cells and in diabetic mouse islets

    PubMed Central

    Liu, Limei; Liu, Jian; Gao, Yuansheng; Yu, Xiaoxing; Xu, Gang; Huang, Yu

    2014-01-01

    BACKGROUND AND PURPOSE Uncoupling protein-2 (UCP2) may regulate glucose-stimulated insulin secretion. The current study investigated the effects of berberine, an alkaloid found in many medicinal plants, on oxidative stress and insulin secretion through restoration of UCP2 expression in high glucose (HG)-treated INS-1E cells and rat islets or in db/db mouse islets. EXPERIMENTAL APPROACH Mouse and rat pancreatic islets were isolated. Nitrotyrosine, superoxide dismutase (SOD)-1 and UCP2 expression and AMPK phosphorylation were examined by Western blotting. Insulin secretion was measured by elisa. Mitochondrial reactive oxygen species (ROS) production was detected by confocal microscopy. KEY RESULTS Incubation of INS-1E cells and rat islets with HG (30 mmol·L−1; 8 h) elevated nitrotyrosine level, reduced SOD-1 and UCP2 expression and AMPK phosphorylation, and inhibited glucose-stimulated insulin secretion. HG also increased mitochondrial ROS in INS-1E cells. Co-treatment with berberine inhibited such effects. The AMPK inhibitor compound C, the UCP2 inhibitor genipin and adenovirus ucp2 shRNA inhibited these protective effects of berberine. Furthermore, compound C normalized berberine-stimulated UCP2 expression but genipin did not affect AMPK phosphorylation. Islets from db/db mice exhibited elevated nitrotyrosine levels, reduced expression of SOD-1 and UCP2 and AMPK phosphorylation, and decreased insulin secretion compared with those from db/m+ mice. Berberine also improved these defects in diabetic islets and genipin blocked the effects of berberine. CONCLUSIONS AND IMPLICATIONS Berberine inhibited oxidative stress and restored insulin secretion in HG-treated INS-IE cells and diabetic mouse islets by activating AMPK and UCP2. UCP2 is an important signalling molecule in mediating anti-diabetic effects of berberine. PMID:24588674

  8. Uncoupling protein-2 mediates the protective action of berberine against oxidative stress in rat insulinoma INS-1E cells and in diabetic mouse islets.

    PubMed

    Liu, Limei; Liu, Jian; Gao, Yuansheng; Yu, Xiaoxing; Xu, Gang; Huang, Yu

    2014-07-01

    Uncoupling protein-2 (UCP2) may regulate glucose-stimulated insulin secretion. The current study investigated the effects of berberine, an alkaloid found in many medicinal plants, on oxidative stress and insulin secretion through restoration of UCP2 expression in high glucose (HG)-treated INS-1E cells and rat islets or in db/db mouse islets. Mouse and rat pancreatic islets were isolated. Nitrotyrosine, superoxide dismutase (SOD)-1 and UCP2 expression and AMPK phosphorylation were examined by Western blotting. Insulin secretion was measured by ELISA. Mitochondrial reactive oxygen species (ROS) production was detected by confocal microscopy. Incubation of INS-1E cells and rat islets with HG (30 mmol·L(-1); 8 h) elevated nitrotyrosine level, reduced SOD-1 and UCP2 expression and AMPK phosphorylation, and inhibited glucose-stimulated insulin secretion. HG also increased mitochondrial ROS in INS-1E cells. Co-treatment with berberine inhibited such effects. The AMPK inhibitor compound C, the UCP2 inhibitor genipin and adenovirus ucp2 shRNA inhibited these protective effects of berberine. Furthermore, compound C normalized berberine-stimulated UCP2 expression but genipin did not affect AMPK phosphorylation. Islets from db/db mice exhibited elevated nitrotyrosine levels, reduced expression of SOD-1 and UCP2 and AMPK phosphorylation, and decreased insulin secretion compared with those from db/m(+) mice. Berberine also improved these defects in diabetic islets and genipin blocked the effects of berberine. Berberine inhibited oxidative stress and restored insulin secretion in HG-treated INS-IE cells and diabetic mouse islets by activating AMPK and UCP2. UCP2 is an important signalling molecule in mediating anti-diabetic effects of berberine. © 2014 The British Pharmacological Society.

  9. Insulin Is Required to Maintain Albumin Expression by Inhibiting Forkhead Box O1 Protein*

    PubMed Central

    Chen, Qing; Lu, Mingjian; Monks, Bobby R.; Birnbaum, Morris J.

    2016-01-01

    Diabetes is accompanied by dysregulation of glucose, lipid, and protein metabolism. In recent years, much effort has been spent on understanding how insulin regulates glucose and lipid metabolism, whereas the effect of insulin on protein metabolism has received less attention. In diabetes, hepatic production of serum albumin decreases, and it has been long established that insulin positively controls albumin gene expression. In this study, we used a genetic approach in mice to identify the mechanism by which insulin regulates albumin gene transcription. Albumin expression was decreased significantly in livers with insulin signaling disrupted by ablation of the insulin receptor or Akt. Concomitant deletion of Forkhead Box O1 (Foxo1) in these livers rescued the decreased albumin secretion. Furthermore, activation of Foxo1 in the liver is sufficient to suppress albumin expression. These results suggest that Foxo1 acts as a repressor of albumin expression. PMID:26668316

  10. Functionality and antidiabetic utility of β- and L-cell containing pseudoislets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Alastair D.; Vasu, Srividya, E-mail: s.vasu@ulster.ac.uk; Flatt, Peter R.

    Unavailability of tissue and poor engraftment remain significant obstacles to clinical islet transplantation. Here, the therapeutic potential of pseudoislets generated from the insulin and GLP-1 releasing cell-lines MIN6 and GLUTag was investigated. Glucose and other secretagogues evoked 1.3–5.7 fold increases in insulin secretion from both pseudoislet types. Secretion expressed in relation to basal values did not greatly differ between configurations. Exposure of both types of pseudoislets to ninhydrin, H{sub 2}O{sub 2}, streptozotocin or cytokine cocktails decreased viability and increased apoptosis. However, combined pseudoislets exhibited enhanced resistance (1.2–1.7 fold increased LD{sub 50,} 1.2–1.4 fold decreased apoptosis). Implantation of pseudoislets into streptozotocin-diabeticmore » SCID mice precipitated cell masses containing immunoreactive insulin and GLP-1. Implantation of both pseudoislet types was associated with significant reductions in blood glucose, increased plasma insulin, greater bodyweight, decreased polydipsia and improved glucose tolerance. These changes greatly exaggerated in MIN6 pseudoislet recipients, with mice becoming severely hypoglycaemic. In contract, combined pseudoislet recipients achieved tempered restoration of normoglycaemia and exhibited increased plasma GLP-1, decreased plasma and pancreatic glucagon, increased pancreatic insulin and enhancements in islet β:α cells and the ratio of Ki67: TUNEL positive β-cells. MIN6 pseudoislet implantation increased islet β:α cell ratio but did not affect β-cell proliferation or hormone content. Our observations highlight the potential of combining insulin and GLP-1 cell therapy using heterotypic pseudoislets.« less

  11. Desnutrin/ATGL Activates PPARδ to Promote Mitochondrial Function for Insulin Secretion in Islet β cells

    PubMed Central

    Tang, Tianyi; Abbott, Marcia J.; Ahmadian, Maryam; Lopes, Andressa B.; Wang, Yuhui; Sul, Hei Sook

    2013-01-01

    Excessive caloric intake leading to obesity is associated with insulin resistance and dysfuntion of islet β cells. High fat feeding decreases desnutrin (also called ATGL/PNPLA2) levels in islets. Here we show that desnutrin ablation via RIP-Cre (βKO) or RIP-CreER results in hyperglycemia with impaired glucose-stimulated insulin secretion (GSIS). Due to decreased lipolysis, islets have higher TAG content but lower free FA levels. βKO islets exhibit impaired mitochondrial respiration and lower production of ATP required for GSIS, along with decreased expression of PPARδ target genes involved in mitochondrial oxidation. Furthermore, synthetic PPARδ, but not PPARα, agonist restores GSIS and expression of mitochondrial oxidative genes in βKO mice, revealing desnutrin-catalyzed lipolysis generates PPARδ ligands. Finally, adenoviral expression of desnutrin in βKO islets restores all defects of βKO islet phenotype and function including GSIS and mitochondrial defects, demonstrating the critical role of the desnutrin-PPARδ-mitochondrial oxidation axis in regulating islet β cell GSIS. PMID:24268737

  12. Effects of the herbal medicine Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) on insulin secretion and glucose tolerance in type 2 diabetic Goto-Kakizaki rats.

    PubMed

    Hirotani, Y; Ikeda, K; Myotoku, M

    2010-04-01

    Hachimi-jio-gan (HJ) is a Chinese medicine that has been widely used for the treatment of nephrotic syndromes, hypertension, and diabetes mellitus. We reported that HJ lowers plasma glucose in type 1 diabetic rats. We investigated the effects of HJ on diabetic hyperglycemia and insulin secretion in type 2 diabetic Goto-Kakizaki (GK) rats. Eight-week-old diabetic GK rats were given free access to pellets containing 1% HJ extract powder for 14 weeks. HJ consumption increased the food intake and body weight of these rats in comparison to control rats. HJ may control the body weight loss observed in GK rats. HJ also reduced hyperglycemia in diabetic GK rats, and it significantly increased insulin secretion in non-fasting GK rats over the experimental period. In oral glucose tolerance tests, HJ significantly improved the insulin response at 30 min and reduced the plasma glucose level at 60 min after glucose administration (p < 0.05). Ten weeks after administration, the plasma leptin levels significantly increased in the HJ group rats. These results demonstrate that in diabetic GK rats, HJ decreased the level of postprandial glucose via enhanced insulin secretion coupled with the regulation of food intake by leptin.

  13. Quantitative visualization of synchronized insulin secretion from 3D-cultured cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Takahiro; Kanamori, Takao; Inouye, Satoshi

    Quantitative visualization of synchronized insulin secretion was performed in an isolated rat pancreatic islet and a spheroid of rat pancreatic beta cell line using a method of video-rate bioluminescence imaging. Video-rate images of insulin secretion from 3D-cultured cells were obtained by expressing the fusion protein of insulin and Gaussia luciferase (Insulin-GLase). A subclonal rat INS-1E cell line stably expressing Insulin-GLase, named iGL, was established and a cluster of iGL cells showed oscillatory insulin secretion that was completely synchronized in response to high glucose. Furthermore, we demonstrated the effect of an antidiabetic drug, glibenclamide, on synchronized insulin secretion from 2D- andmore » 3D-cultured iGL cells. The amount of secreted Insulin-GLase from iGL cells was also determined by a luminometer. Thus, our bioluminescence imaging method could generally be used for investigating protein secretion from living 3D-cultured cells. In addition, iGL cell line would be valuable for evaluating antidiabetic drugs. - Highlights: • An imaging method for protein secretion from 3D-cultured cells was established. • The fused protein of insulin to GLase, Insulin-GLase, was used as a reporter. • Synchronous insulin secretion was visualized in rat islets and spheroidal beta cells. • A rat beta cell line stably expressing Insulin-GLase, named iGL, was established. • Effect of an antidiabetic drug on insulin secretion was visualized in iGL cells.« less

  14. Investigation of intracellular signalling cascades mediating stimulatory effect of a Gymnema sylvestre extract on insulin secretion from isolated mouse and human islets of Langerhans.

    PubMed

    Al-Romaiyan, A; Liu, B; Docherty, R; Huang, G-C; Amiel, S; Persaud, S J; Jones, P M

    2012-12-01

    Traditional plant-based remedies such as Gymnema sylvestre (GS) extracts have been used to treat diabetes mellitus for many centuries. We have shown previously that a novel GS extract, OSA®, has a direct effect on insulin secretion but its mode of action has not been studied in detail Thus this study investigated the possible underlying mechanism(s) by which OSA® exerts its action. The effects of OSA® on [Ca(2+)]i and K(+) conductances were assessed by Ca(2+) microfluorimetry and electrophysiology in dispersed mouse islets and MIN6 β-cells, respectively. Isolated mouse (from 20 to 25 mice) and human (from 3 donors) islets, and MIN6 β-cells, were used to investigate whether the stimulatory effect of OSA® on insulin secretion was dependent on the presence of extracellular calcium and protein kinase activation. OSA ®-induced insulin secretion from mouse islets and MIN6 β-cells was inhibited by nifedipine, a voltage-gated Ca(2+) channel blocker, and by the removal of extracellular Ca(2+), respectively. OSA® did not affect the activities of KATP channels or voltage-dependent K(+) channels in MIN6 β-cells but it caused an increase in intracellular Ca(2+) ([Ca(2+)]i) concentrations in Fura-2-loaded mouse islet cells. The insulin secretagogue effect of OSA® was dependent, in part, on protein kinase activation since incubating mouse or human islets with staurosporine, a general protein kinase inhibitor, resulted in partial inhibition of OSA®-induced insulin secretion. Experiments using permeabilized, Ca(2+)-clamped MIN6 β-cells revealed a Ca(2+)-independent component action of OSA® at a late stage in the stimulus-response coupling pathway. OSA®-induced insulin secretion was unexpectedly associated with a decrease in intracellular cAMP levels. These data indicate that the GS isolate OSA® stimulates insulin secretion from mouse and human islets in vitro, at least in part as a consequence of Ca(2+) influx and protein kinase activation. © 2012 Blackwell Publishing Ltd.

  15. β-Cell Dysfunction Due to Increased ER Stress in a Stem Cell Model of Wolfram Syndrome

    PubMed Central

    Shang, Linshan; Hua, Haiqing; Foo, Kylie; Martinez, Hector; Watanabe, Kazuhisa; Zimmer, Matthew; Kahler, David J.; Freeby, Matthew; Chung, Wendy; LeDuc, Charles; Goland, Robin; Leibel, Rudolph L.; Egli, Dieter

    2014-01-01

    Wolfram syndrome is an autosomal recessive disorder caused by mutations in WFS1 and is characterized by insulin-dependent diabetes mellitus, optic atrophy, and deafness. To investigate the cause of β-cell failure, we used induced pluripotent stem cells to create insulin-producing cells from individuals with Wolfram syndrome. WFS1-deficient β-cells showed increased levels of endoplasmic reticulum (ER) stress molecules and decreased insulin content. Upon exposure to experimental ER stress, Wolfram β-cells showed impaired insulin processing and failed to increase insulin secretion in response to glucose and other secretagogues. Importantly, 4-phenyl butyric acid, a chemical protein folding and trafficking chaperone, restored normal insulin synthesis and the ability to upregulate insulin secretion. These studies show that ER stress plays a central role in β-cell failure in Wolfram syndrome and indicate that chemical chaperones might have therapeutic relevance under conditions of ER stress in Wolfram syndrome and other forms of diabetes. PMID:24227685

  16. Long-term effects of guar gum in subjects with non-insulin-dependent diabetes mellitus.

    PubMed

    Groop, P H; Aro, A; Stenman, S; Groop, L

    1993-10-01

    The effects of 15 g guar gum/d on glycemic control, lipids, and insulin secretion were studied in 15 (8 male, 7 female) diet-treated subjects with non-insulin-dependent diabetes mellitus for 48 wk. Mean age (+/- SD) was 60 +/- 2 y (range 45-70 y), body mass index (in kg/m2) 28.6 +/- 0.9 (range 21.6 +/- 39.2), and duration of diabetes 6 +/- 1 y (range 2-14 y). Guar gum was preceded and followed by 8-wk placebo periods. Guar gum improved long-term glycemic control, postprandial glucose tolerance and lipid concentrations. The C-peptide response to a test meal increased by time during guar gum treatment, whereas the insulin response remained unchanged. This indicates that insulin secretion is enhanced by guar gum as reflected by increased C-peptide. A decreased molar ratio of insulin to C-peptide suggests that guar gum may increase hepatic insulin extraction. In conclusion, guar gum has favorable long-term effects on glycemic control and lipid concentrations.

  17. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice.

    PubMed

    Ma, Xiaojun; Lin, Yuezhen; Lin, Ligen; Qin, Guijun; Pereira, Fred A; Haymond, Morey W; Butte, Nancy F; Sun, Yuxiang

    2012-08-01

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth hormone secretagogue receptor (GHS-R), and GHS-R antagonists are thought to be an effective strategy for treating diabetes. However, since some of ghrelin's effects are independent of GHS-R, we have utilized genetic approaches to determine whether ghrelin's effect on insulin secretion is mediated through GHS-R and whether GHS-R antagonism indeed inhibits insulin secretion. We investigated the effects of GHS-R on glucose homeostasis in Ghsr-ablated ob/ob mice (Ghsr(-/-):ob/ob). Ghsr ablation did not rescue the hyperphagia, obesity, or insulin resistance of ob/ob mice. Surprisingly, Ghsr ablation worsened the hyperglycemia, decreased insulin, and impaired glucose tolerance. Consistently, Ghsr ablation in ob/ob mice upregulated negative β-cell regulators (such as UCP-2, SREBP-1c, ChREBP, and MIF-1) and downregulated positive β-cell regulators (such as HIF-1α, FGF-21, and PDX-1) in whole pancreas; this suggests that Ghsr ablation impairs pancreatic β-cell function in leptin deficiency. Of note, Ghsr ablation in ob/ob mice did not affect the islet size; the average islet size of Ghsr(-/-):ob/ob mice is similar to that of ob/ob mice. In summary, because Ghsr ablation in leptin deficiency impairs insulin secretion and worsens hyperglycemia, this suggests that GHS-R antagonists may actually aggravate diabetes under certain conditions. The paradoxical effects of ghrelin ablation and Ghsr ablation in ob/ob mice highlight the complexity of the ghrelin-signaling pathway.

  18. L-cysteine reversibly inhibits glucose-induced biphasic insulin secretion and ATP production by inactivating PKM2.

    PubMed

    Nakatsu, Daiki; Horiuchi, Yuta; Kano, Fumi; Noguchi, Yoshiyuki; Sugawara, Taichi; Takamoto, Iseki; Kubota, Naoto; Kadowaki, Takashi; Murata, Masayuki

    2015-03-10

    Increase in the concentration of plasma L-cysteine is closely associated with defective insulin secretion from pancreatic β-cells, which results in type 2 diabetes (T2D). In this study, we investigated the effects of prolonged L-cysteine treatment on glucose-stimulated insulin secretion (GSIS) from mouse insulinoma 6 (MIN6) cells and from mouse pancreatic islets, and found that the treatment reversibly inhibited glucose-induced ATP production and resulting GSIS without affecting proinsulin and insulin synthesis. Comprehensive metabolic analyses using capillary electrophoresis time-of-flight mass spectrometry showed that prolonged L-cysteine treatment decreased the levels of pyruvate and its downstream metabolites. In addition, methyl pyruvate, a membrane-permeable form of pyruvate, rescued L-cysteine-induced inhibition of GSIS. Based on these results, we found that both in vitro and in MIN6 cells, L-cysteine specifically inhibited the activity of pyruvate kinase muscle isoform 2 (PKM2), an isoform of pyruvate kinases that catalyze the conversion of phosphoenolpyruvate to pyruvate. L-cysteine also induced PKM2 subunit dissociation (tetramers to dimers/monomers) in cells, which resulted in impaired glucose-induced ATP production for GSIS. DASA-10 (NCGC00181061, a substituted N,N'-diarylsulfonamide), a specific activator for PKM2, restored the tetramer formation and the activity of PKM2, glucose-induced ATP production, and biphasic insulin secretion in L-cysteine-treated cells. Collectively, our results demonstrate that impaired insulin secretion due to exposure to L-cysteine resulted from its direct binding and inactivation of PKM2 and suggest that PKM2 is a potential therapeutic target for T2D.

  19. Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle.

    PubMed Central

    Zhou, Y P; Grill, V E

    1994-01-01

    We tested effects of long-term exposure of pancreatic islets to free fatty acids (FFA) in vitro on B cell function. Islets isolated from male Sprague-Dawley rats were exposed to palmitate (0.125 or 0.25 mM), oleate (0.125 mM), or octanoate (2.0 mM) during culture. Insulin responses were subsequently tested in the absence of FFA. After a 48-h exposure to FFA, insulin secretion during basal glucose (3.3 mM) was several-fold increased. However, during stimulation with 27 mM glucose, secretion was inhibited by 30-50% and proinsulin biosynthesis by 30-40%. Total protein synthesis was similarly affected. Conversely, previous palmitate did not impair alpha-ketoisocaproic acid (5 mM)-induced insulin release. Induction and reversibility of the inhibitory effect on glucose-induced insulin secretion required between 6 and 24 h. Addition of the carnitine palmitoyltransferase I inhibitor etomoxir (1 microM) partially reversed (by > 50%) FFA-associated decrease in secretory as well as proinsulin biosynthetic responses to 27 mM glucose. The inhibitory effect of previous palmitate was similar when co-culture was performed with 5.5, 11, or 27 mM glucose. Exposure to palmitate or oleate reduced the production of 14CO2 from D-[U-14C]glucose, and of 14CO2 from D-[3,4-14C]-glucose, both effects being reversed by etomoxir. Conclusions: long-term exposure to FFA inhibits glucose-induced insulin secretion and biosynthesis probably through a glucose fatty acid cycle. PMID:8113418

  20. Insulin and Metformin Regulate Circulating and Adipose Tissue Chemerin

    PubMed Central

    Tan, Bee K.; Chen, Jing; Farhatullah, Syed; Adya, Raghu; Kaur, Jaspreet; Heutling, Dennis; Lewandowski, Krzysztof C.; O'Hare, J. Paul; Lehnert, Hendrik; Randeva, Harpal S.

    2009-01-01

    OBJECTIVE To assess chemerin levels and regulation in sera and adipose tissue from women with polycystic ovary syndrome (PCOS) and matched control subjects. RESEARCH DESIGN AND METHODS Real-time RT-PCR and Western blotting were used to assess mRNA and protein expression of chemerin. Serum chemerin was measured by enzyme-linked immunosorbent assay. We investigated the in vivo effects of insulin on serum chemerin levels via a prolonged insulin-glucose infusion. Ex vivo effects of insulin, metformin, and steroid hormones on adipose tissue chemerin protein production and secretion into conditioned media were assessed by Western blotting and enzyme-linked immunosorbent assay, respectively. RESULTS Serum chemerin, subcutaneous, and omental adipose tissue chemerin were significantly higher in women with PCOS (n = 14; P < 0.05, P < 0.01). Hyperinsulinemic induction in human subjects significantly increased serum chemerin levels (n = 6; P < 0.05, P < 0.01). In adipose tissue explants, insulin significantly increased (n = 6; P < 0.05, P < 0.01) whereas metformin significantly decreased (n = 6; P < 0.05, P < 0.01) chemerin protein production and secretion into conditioned media, respectively. After 6 months of metformin treatment, there was a significant decrease in serum chemerin (n = 21; P < 0.01). Importantly, changes in homeostasis model assessment–insulin resistance were predictive of changes in serum chemerin (P = 0.046). CONCLUSIONS Serum and adipose tissue chemerin levels are increased in women with PCOS and are upregulated by insulin. Metformin treatment decreases serum chemerin in these women. PMID:19502420

  1. Alpha-Mangostin Improves Insulin Secretion and Protects INS-1 Cells from Streptozotocin-Induced Damage.

    PubMed

    Lee, Dahae; Kim, Young-Mi; Jung, Kiwon; Chin, Young-Won; Kang, Ki Sung

    2018-05-16

    Alpha (α)-mangostin, a yellow crystalline powder with a xanthone core structure, is isolated from mangosteen ( Garcinia mangostana ), which is a tropical fruit of great nutritional value. The aim of the present study was to investigate the anti-diabetic effects of α-mangostin and to elucidate the molecular mechanisms underlying its effect on pancreatic beta (β)-cell dysfunction. To assess the effects of α-mangostin on insulin production, rat pancreatic INS-1 cells were treated with non-toxic doses of α-mangostin (1⁻10 μM) and its impact on insulin signaling was examined by Western blotting. In addition, the protective effect of α-mangostin against pancreatic β-cell apoptosis was verified by using the β-cell toxin streptozotocin (STZ). Our results showed that α-mangostin stimulated insulin secretion in INS-1 cells by activating insulin receptor (IR) and pancreatic and duodenal homeobox 1 (Pdx1) followed by phosphorylation of phospho-phosphatidylinositol-3 kinase (PI3K), Akt, and extracellular signal regulated kinase (ERK) signaling cascades, whereas it inhibited the phosphorylation of insulin receptor substrate (IRS-1) (Ser1101). Moreover, α-mangostin was found to restore the STZ-induced decrease in INS-1 cell viability in a dose-dependent manner. In addition, treatment of INS-1 cells with 50 μM STZ resulted in an increase in intracellular reactive oxygen species (ROS) levels, which was represented by the fluorescence intensity of 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). This oxidative stress was decreased by co-treatment with 5 μM α-mangostin. Similarly, marked increases in the phosphorylation of P38, c-Jun N-terminal kinase (JNK), and cleavage of caspase-3 by STZ were decreased significantly by co-treatment with 5 μM α-mangostin. These results suggest that α-mangostin is capable of improving insulin secretion in pancreatic β-cells and protecting cells from apoptotic damage.

  2. β-Cell–Specific Protein Kinase A Activation Enhances the Efficiency of Glucose Control by Increasing Acute-Phase Insulin Secretion

    PubMed Central

    Kaihara, Kelly A.; Dickson, Lorna M.; Jacobson, David A.; Tamarina, Natalia; Roe, Michael W.; Philipson, Louis H.; Wicksteed, Barton

    2013-01-01

    Acute insulin secretion determines the efficiency of glucose clearance. Moreover, impaired acute insulin release is characteristic of reduced glucose control in the prediabetic state. Incretin hormones, which increase β-cell cAMP, restore acute-phase insulin secretion and improve glucose control. To determine the physiological role of the cAMP-dependent protein kinase (PKA), a mouse model was developed to increase PKA activity specifically in the pancreatic β-cells. In response to sustained hyperglycemia, PKA activity potentiated both acute and sustained insulin release. In contrast, a glucose bolus enhanced acute-phase insulin secretion alone. Acute-phase insulin secretion was increased 3.5-fold, reducing circulating glucose to 58% of levels in controls. Exendin-4 increased acute-phase insulin release to a similar degree as PKA activation. However, incretins did not augment the effects of PKA on acute-phase insulin secretion, consistent with incretins acting primarily via PKA to potentiate acute-phase insulin secretion. Intracellular calcium signaling was unaffected by PKA activation, suggesting that the effects of PKA on acute-phase insulin secretion are mediated by the phosphorylation of proteins involved in β-cell exocytosis. Thus, β-cell PKA activity transduces the cAMP signal to dramatically increase acute-phase insulin secretion, thereby enhancing the efficiency of insulin to control circulating glucose. PMID:23349500

  3. Long-term consumption of fermented soybean-derived Chungkookjang enhances insulinotropic action unlike soybeans in 90% pancreatectomized diabetic rats.

    PubMed

    Kwon, Dae Young; Jang, Jin Sun; Hong, Sang Mee; Lee, Ji Eun; Sung, So Ra; Park, Hye Ryeo; Park, Sunmin

    2007-02-01

    We previously reported that Chungkookjang (CKJ), fermented unsalted soybeans, exhibited better anti-diabetic action than cooked soybeans (CSB) in vitro, but its effectiveness and mechanism have not been studied in vivo. We investigated whether CKJ modulated insulin resistance, insulin secretion, and pancreatic beta-cell growth and survival in 90% pancreatectomized (Px) diabetic rats. The Px rats weighing 201 +/- 12 g were divided into four groups and fed for 8 weeks with a CSB diet, a CKJ diet, a casein diet, or a casein diet plus rosiglitazone (20 mg/kg body weight/day). With the exception of protein sources and contents of isoflavonoid aglycones and glycosides, the composition of the diets was made identical by adding soybean oil and cellulose to a casein diet. At the end of the experimental periods, hyperglycemic clamp was performed in conscious, unstressed and overnight fasted Px rats to measure insulin secretion capacity. Insulin/IGF-1 signaling was measured by immunoblotting in isolated islets from the treated rats, and beta-cell mass, proliferation and apoptosis were also determined by immunohistochemistry. After 8-week administration, CSB did not modulate glucose-stimulated insulin secretion, but surprisingly, CKJ enhanced insulin secretion. In addition, CKJ potentiated insulin/IGF-1 signaling in islets via the induction of insulin receptor substrate-2 expression, leading to increasing pancreatic duodenal homeobox-1, insulin promoter transcription factor. In parallel with the enhancement of the signaling, CKJ elevated pancreatic beta-cell hyperplasia by increasing its proliferation and decreasing apoptosis, whereas CSB did not. Based on these results, the fermentation of soybeans predominantly with Bacillus subtilis generated isoflavonoid aglycones and small peptides, which improved insulinotropic action in islets of type 2 diabetic rats. Overall, the anti-diabetic action of CKJ was superior to CSB in type 2 diabetic rats.

  4. Palmitic acid acutely inhibits acetylcholine- but not GLP-1-stimulated insulin secretion in mouse pancreatic islets

    PubMed Central

    Qin, Wei; Vinogradov, Sergei A.; Wilson, David F.; Matschinsky, Franz M.

    2010-01-01

    Fatty acids, acetylcholine, and GLP-1 enhance insulin secretion in a glucose-dependent manner. However, the interplay between glucose, fatty acids, and the neuroendocrine regulators of insulin secretion is not well understood. Therefore, we studied the acute effects of PA (alone or in combination with glucose, acetylcholine, or GLP-1) on isolated cultured mouse islets. Two different sets of experiments were designed. In one, a fixed concentration of 0.5 mM of PA bound to 0.15 mM BSA was used; in the other, a PA ramp from 0 to 0.5 mM was applied at a fixed albumin concentration of 0.15 mM so that the molar PA/BSA ratio changed within the physiological range. At a fixed concentration of 0.5 mM, PA markedly inhibited acetylcholine-stimulated insulin release, the rise of intracellular Ca2+, and enhancement of cAMP production but did not influence the effects of GLP-1 on these parameters of islet cell function. 2-ADB, an IP3 receptor inhibitor, reduced the effect of acetylcholine on insulin secretion and reversed the effect of PA on acetylcholine-stimulated insulin release. Islet perfusion for 35–40 min with 0.5 mM PA significantly reduced the calcium storage capacity of ER measured by the thapsigargin-induced Ca2+ release. Oxygen consumption due to low but not high glucose was reduced by PA. When a PA ramp from 0 to 0.5 mM was applied in the presence of 8 mM glucose, PA at concentrations as low as 50 μM significantly augmented glucose-stimulated insulin release and markedly reduced acetylcholine's effects on hormone secretion. We thus demonstrate that PA acutely reduces the total oxygen consumption response to glucose, glucose-dependent acetylcholine stimulation of insulin release, Ca2+, and cAMP metabolism, whereas GLP-1's actions on these parameters remain unaffected or potentiated. We speculate that acute emptying of the ER calcium by PA results in decreased glucose stimulation of respiration and acetylcholine potentiation of insulin secretion. PMID:20606076

  5. Emerging roles for β-arrestin-1 in the control of the pancreatic β-cell function and mass: new therapeutic strategies and consequences for drug screening.

    PubMed

    Dalle, Stéphane; Ravier, Magalie A; Bertrand, Gyslaine

    2011-03-01

    Defective insulin secretion is a feature of type 2 diabetes that results from inadequate compensatory increase in β-cell mass, decreased β-cell survival and impaired glucose-dependent insulin release. Pancreatic β-cell proliferation, survival and secretion are thought to be regulated by signalling pathways linked to G-protein coupled receptors (GPCRs), such as the glucagon-like peptide-1 (GLP-1) and the pituitary adenylate cyclase-activating polypeptide (PACAP) receptors. β-arrestin-1 serves as a multifunctional adaptor protein that mediates receptor desensitization, receptor internalization, and links GPCRs to downstream pathways such as tyrosine kinase Src, ERK1/2 or Akt/PKB. Importantly, recent studies found that β-arrestin-1 mediates GLP-1 signalling to insulin secretion, GLP-1 antiapoptotic effect by phosphorylating the proapoptotic protein Bad through ERK1/2 activation, and PACAP potentiation of glucose-induced long-lasting ERK1/2 activation controlling IRS-2 expression. Together, these novel findings reveal an important functional role for β-arrestin-1 in the regulation of insulin secretion and β-cell survival by GPCRs. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. The antidiabetic action of camel milk in experimental type 2 diabetes mellitus: an overview on the changes in incretin hormones, insulin resistance, and inflammatory cytokines.

    PubMed

    Korish, A A

    2014-06-01

    Folk medicine stories accredited the aptitude of camel milk (CMK) as a hypoglycemic agent and recent studies have confirmed this in the diabetic patients and experimental animals. However, the mechanism(s) by which CMK influences glucose homeostasis is yet unclear. The current study investigated the changes in the glucose homeostatic parameters, the incretin hormones, and the inflammatory cytokines in the CMK-treated diabetic animals. A model of type 2 diabetes mellitus was induced in rats by intraperitoneal injection of streptozotocin 40 mg/kg/day for 4 repeated doses. Camel milk treatment was administered for 8 weeks. The changes in glucagon like peptide-1 (GLP-1), glucose dependent insulinotropic peptide (GIP), glucose tolerance, fasting and glucose-stimulated insulin secretion, insulin resistance (IR), TNF-α, TGF-β1, lipid profile, atherogenic index (AI), and body weight were investigated. The untreated diabetic animals showed hyperglycemia, increased HOMA-IR, hyperlipidemia, elevated AI, high serum incretins [GLP-1 and GIP], TNF-α, and TGF-β1 levels and weight loss as compared with the control group. Camel milk treatment to the diabetic animals resulted in significant lowered fasting glucose level, hypolipidemia, decreased HOMA-IR, recovery of insulin secretion, weight gain, and no mortality during the study. Additionally, CMK inhibits the diabetes-induced elevation in incretin hormones, TNF-α and TGF-β1 levels. The increase in glucose-stimulated insulin secretion, decreased HOMA-IR, modulation of the secretion and/or the action of incretins, and the anti-inflammatory effect are anticipated mechanisms to the antidiabetic effect of CMK and suggest it as a valuable adjuvant antidiabetic therapy. © Georg Thieme Verlag KG Stuttgart · New York.

  7. 1,5-anhydroglucitol is associated with early-phase insulin secretion in chinese patients with newly diagnosed type 2 diabetes mellitus.

    PubMed

    Ma, Xiaojing; Hao, Yaping; Hu, Xiang; Luo, Yuqi; Deng, Zixuan; Zhou, Jian; Bao, Yuqian; Jia, Weiping

    2015-05-01

    The goal of the present study was to explore the correlations of 1,5-anhydroglucitol (l,5-AG), glycated hemoglobin (HbA1c), and glycated albumin (GA) with insulin sensitivity and secretion. In total, 302 patients with newly diagnosed type 2 diabetes mellitus (166 men, 136 women) were enrolled in this study. The homeostasis model assessment for insulin resistance (HOMA-IR) and homeostasis model assessment for β-cell function (HOMA-β) were calculated to determine the basal insulin sensitivity and secretion. The insulinogenic index (IGI) was used to evaluate early-phase insulin secretion. 1,5-AG and GA were assayed via the enzymatic method, and HbA1c was detected by high-pressure liquid chromatography. Among all 302 subjects, the serum 1,5-AG level was 13.1±7.2 μg/mL, and the HbA1c and GA levels [median (interquartile range)] were 6.7% (6.2-7.3%) and 17.7% (16.0-19.5%), respectively. Increased 1,5-AG quartiles were accompanied by trends toward a decreased HOMA-IR and an increased HOMA-β and IGI (for all trends, P<0.001). 1,5-AG was negatively associated with HOMA-IR (r=-0.200, P<0.001) and positively associated with HOMA-β and IGI (r=0.210 and 0.413, respectively; both P<0.001). 1,5-AG was independently related to HOMA-IR and HOMA-β and exhibited an independent positive association with IGI (standardized β=0.242, P<0.001). Additionally, both HbA1c and GA were independently correlated with HOMA-IR and HOMA-β. 1,5-AG is not only correlated with basal insulin sensitivity and secretion, but also closely associated with early-phase insulin secretion in Chinese patients with newly diagnosed type 2 diabetes mellitus.

  8. Aerobic Exercise Training Attenuates Tumor Growth and Reduces Insulin Secretion in Walker 256 Tumor-Bearing Rats

    PubMed Central

    Moreira, Veridiana Mota; da Silva Franco, Claudinéia Conationi; Prates, Kelly Valério; Gomes, Rodrigo Mello; de Moraes, Ana Maria Praxedes; Ribeiro, Tatiane Aparecida; Martins, Isabela Peixoto; Previate, Carina; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Almeida, Douglas Lopes; Francisco, Flávio Andrade; Malta, Ananda; Tófolo, Laize Peron; da Silva Silveira, Sandra; Saavedra, Lucas Paulo Jacinto; Machado, Katia; da Silva, Paulo Henrique Olivieri; Fabrício, Gabriel S.; Palma-Rigo, Kesia; de Souza, Helenir Medri; de Fátima Silva, Flaviane; Biazi, Giuliana Regina; Pereira, Taís Susane; Vieira, Elaine; Miranda, Rosiane Aparecida; de Oliveira, Júlio Cezar; da Costa Lima, Luiz Delmar; Rinaldi, Wilson; Ravanelli, Maria Ida; de Freitas Mathias, Paulo Cezar

    2018-01-01

    Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55–65% VO2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training did not cause injury or trigger inflammatory processes prior to tumor cell inoculation. Taken together, the current study suggests that aerobic exercise training applied during adolescence may mitigate tumor growth and related disorders in Walker 256 tumor-bearing adult rats. Improved insulin sensibility, lower glucose and insulin levels and/or reduced insulin secretion stimulated by glucose may be implicated in this tumor attenuation.

  9. Aerobic Exercise Training Attenuates Tumor Growth and Reduces Insulin Secretion in Walker 256 Tumor-Bearing Rats.

    PubMed

    Moreira, Veridiana Mota; da Silva Franco, Claudinéia Conationi; Prates, Kelly Valério; Gomes, Rodrigo Mello; de Moraes, Ana Maria Praxedes; Ribeiro, Tatiane Aparecida; Martins, Isabela Peixoto; Previate, Carina; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Almeida, Douglas Lopes; Francisco, Flávio Andrade; Malta, Ananda; Tófolo, Laize Peron; da Silva Silveira, Sandra; Saavedra, Lucas Paulo Jacinto; Machado, Katia; da Silva, Paulo Henrique Olivieri; Fabrício, Gabriel S; Palma-Rigo, Kesia; de Souza, Helenir Medri; de Fátima Silva, Flaviane; Biazi, Giuliana Regina; Pereira, Taís Susane; Vieira, Elaine; Miranda, Rosiane Aparecida; de Oliveira, Júlio Cezar; da Costa Lima, Luiz Delmar; Rinaldi, Wilson; Ravanelli, Maria Ida; de Freitas Mathias, Paulo Cezar

    2018-01-01

    Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55-65% VO 2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO 2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training did not cause injury or trigger inflammatory processes prior to tumor cell inoculation. Taken together, the current study suggests that aerobic exercise training applied during adolescence may mitigate tumor growth and related disorders in Walker 256 tumor-bearing adult rats. Improved insulin sensibility, lower glucose and insulin levels and/or reduced insulin secretion stimulated by glucose may be implicated in this tumor attenuation.

  10. Dibutyl phthalate exposure aggravates type 2 diabetes by disrupting the insulin-mediated PI3K/AKT signaling pathway.

    PubMed

    Deng, Ting; Zhang, Yu; Wu, Yang; Ma, Ping; Duan, Jiufei; Qin, Wei; Yang, Xu; Chen, Mingqing

    2018-06-15

    Epidemiological studies suggest a positive relationship between phthalate exposure and diabetes. However, little is known about the impact of dibutyl phthalate (DBP) exposure on the development of diabetes. To determine the role of DBP exposure on the development of type 2 diabetes, mice were orally exposed to DBP dosages of 0.5, 5, 50 mg/kg/day for 7 weeks, combined with a high fat diet and injections of a low dose of streptozotocin (STZ). The results showed that exposure to 50 mg/kg/day DBP alone induced a marked decrease in insulin secretion and glucose intolerance, but had no influence on insulin resistance. However, combined with a high fat diet and STZ treatment, DBP exposure markedly aggravated glucose intolerance, insulin tolerance and insulin resistance and induced lesions in the pancreas and kidney. Investigation of the role of DBP on the insulin signaling pathway, we found that DBP exposure could disrupt the PI3K expression and AKT phosphorylation, and decrease the level of GLUT-2 in the pancreas. Administering demethylasterriquinone B1, significantly increased the level of PI3K, AKT phosphorylation and GLUT-2 expression, effectively inhibiting the aggravation of diabetes. Our results suggested that DBP aggravated type 2 diabetes by disrupting the insulin signaling pathway and impairing insulin secretion. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Incretin hormone receptors are required for normal beta cell development and function in female mice.

    PubMed

    Omar, Bilal; Ahlkvist, Linda; Yamada, Yuchiro; Seino, Yutaka; Ahrén, Bo

    2016-05-01

    The incretin hormones, glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), potentiate insulin secretion and are responsible for the majority of insulin secretion that occurs after a meal. They may also, however, have a fundamental role in pancreatic beta cell development and function, independently of their role in potentiating insulin secretion after a meal. This has led to observations that a loss of GIP or GLP-1 action affects normal beta cell function, however each one of the incretin hormones may compensate when the action of the other is lost and therefore the overall impact of the incretin hormones on beta cell function is not known. We therefore utilized a mouse line deficient in both the GLP-1 and GIP receptor genes, the double incretin receptor knockout (DIRKO), to determine the consequences of a lifelong, complete lack of incretin hormone action on beta cell function, in vivo, in intact animals. We found that DIRKO mice displayed impaired glucose tolerance and insulin secretion in response to both oral glucose and mixed meal tolerance tests compared to wild-type mice. Assessment of beta cell function using the hyperglycemic clamp technique revealed an 80% decrease in first phase insulin response in DIRKO mice, but a normal second phase insulin secretion. A similar decline was seen when wild-type mice were given acute intravenous injection of glucose together with the GLP-1 receptor antagonist Ex9-39. Ex vivo assessments of the pancreas revealed significantly fewer islets in the pancreata of DIRKO mice despite no differences in total pancreatic mass. Insulin secretion from isolated islets of DIRKO mice was impaired to a similar extent to that seen during the hyperglycemic clamp. Insulin secretion in wild-type islets was impaired by acute treatment with Ex9-39 to a similar extent as the in vivo intravenous glucose tolerance tests. In conclusion, a loss of the action of both incretin hormones results in direct impairment of beta cell function both in vivo and in vitro in a process that appears to be independent of the intestinally secreted incretin hormones. We therefore conclude that the incretin hormones together significantly impact both beta-cell function and beta-cell development. Copyright © 2016. Published by Elsevier Inc.

  12. Effect of Chlorogenic Acid Administration on Glycemic Control, Insulin Secretion, and Insulin Sensitivity in Patients with Impaired Glucose Tolerance.

    PubMed

    Zuñiga, Laura Y; Aceves-de la Mora, Martha C Aceves-de; González-Ortiz, Manuel; Ramos-Núñez, Julia L; Martínez-Abundis, Esperanza

    2018-05-01

    Chlorogenic acid has been described as a novel polyphenol with metabolic effects on glucose homeostasis. The aim of this study was to evaluate the effect of chlorogenic acid administration on glycemic control, insulin secretion, and insulin sensitivity in patients with impaired glucose tolerance (IGT). A randomized, double-blind, placebo-controlled clinical trial was performed in 30 patients with IGT; 15 patients randomly assigned to oral chlorogenic acid received 400 mg three times per day for 12 weeks, and the other 15 patients received placebo in the same way. Before and after the intervention, anthropometric and metabolic measurements, including fasting plasma glucose (FPG), glycated hemoglobin A1c, and a lipid profile, were performed. Area under the curve of glucose and insulin as well as the insulinogenic, Stumvoll, and Matsuda indices were calculated. Wilcoxon, Mann-Whitney U, and chi-square tests were performed, and P ≤ .05 was considered statistically significant. There were significant decreases in FPG (5.7 ± 0.4 vs. 5.5 ± 0.4 mmol/L, P = .002), insulinogenic index (0.71 ± 0.25 vs. 0.63 ± 0.25, P = .028), body weight, body mass index, waist circumference, triglycerides, total cholesterol, low-density lipoprotein cholesterol, and very low-density lipoprotein levels in the chlorogenic acid group, with an increment in the Matsuda index (1.98 ± 0.88 vs. 2.30 ± 1.23, P = .002). There were no significant differences in the placebo group. In conclusion, chlorogenic acid administration in patients with IGT decreased FPG and insulin secretion, while increasing insulin sensitivity and improving both anthropometric evaluations and the lipid profile.

  13. β-Cell lipotoxicity after an overnight intravenous lipid challenge and free fatty acid elevation in African American versus American white overweight/obese adolescents.

    PubMed

    Hughan, Kara S; Bonadonna, Riccardo C; Lee, SoJung; Michaliszyn, Sara F; Arslanian, Silva A

    2013-05-01

    Overweight/obese (OW/OB) African American (AA) adolescents have a more diabetogenic insulin secretion/sensitivity pattern compared with their American white (AW) peers. The present study investigated β-cell lipotoxicity to test whether increased free fatty acid (FFA) levels result in greater β-cell dysfunction in AA vs AW OW/OB adolescents. Glucose-stimulated insulin secretion was modeled, from glucose and C-peptide concentrations during a 2-hour hyperglycemic (225 mg/dL) clamp in 22 AA and 24 AW OW/OB adolescents, on 2 occasions after a 12-hour overnight infusion of either normal saline or intralipid (IL) in a random sequence. β-Cell function relative to insulin sensitivity, the disposition index (DI), was examined during normal saline and IL conditions. Substrate oxidation was evaluated with indirect calorimetry and body composition and abdominal adiposity with dual-energy X-ray absorptiometry and magnetic resonance imaging at L4-L5, respectively. Age, sex, body mass index, total and sc adiposity were similar between racial groups, but visceral adiposity was significantly lower in AAs. During IL infusion, FFAs and fat oxidation increased and insulin sensitivity decreased similarly in AAs and AWs. β-Cell glucose sensitivity of first- and second-phase insulin secretion did not change significantly during IL infusion in either group, but DI in each phase decreased significantly and similarly in AAs and AWs. Overweight/obese AA and AW adolescents respond to an overnight fat infusion with significant declines in insulin sensitivity, DI, and β-cell function relative to insulin sensitivity, suggestive of β-cell lipotoxicity. However, contrary to our hypothesis, there does not seem to be a race differential in β-cell lipotoxicity. Longer durations of FFA elevation may unravel such race-related contrasts.

  14. [The correlation between serum uric acid level and early-phase insulin secretion in subjects with normal glucose regulation].

    PubMed

    Lu, L; Zheng, F P; Li, H

    2016-05-01

    To investigate the correlation between serum uric acid (SUA) level and early-phase insulin secretion in subjects with normal glucose regulation (NGR). Totally 367 community NGR residents confirmed by a 75g oral glucose tolerance test were enrolled. The insulin resistance index (HOMA-IR) and the early-phase insulin secretion index after a glucose load (ΔI30/ΔG30) were used to estimate the insulin sensitivity and the early-phase insulin secretion, respectively. The subjects were divided into 4 groups according to the SUA level quartiles. Differences in early-phase insulin levels, ΔI30/ΔG30, and HOMA-IR were compared among the 4 groups. Age, BMI, waist circumference, systolic blood pressure, diastolic blood pressure, fasting insulin (FINS), 30 minutes postprandial insulin(30 minINS), 2 hours postprandial insulin(2hINS), HOMA-IR and TG levels increased across the rising categories of SUA levels, while the HDL-C was decreased across the SUA groups (P<0.01). The SUA level was positively correlated with age(r=0.157, P<0.01), BMI(r=0.262, P<0.01), waist circumference(r=0.372, P<0.01), systolic blood pressure(r=0.200, P<0.01), diastolic blood pressure(r=0.254, P<0.01), 30 minutes postprandial plasma glucose(r=0.118, P=0.023), FINS(r=0.249, P<0.01), 30minINS(r=0.189, P<0.01), 2hINS(r=0.206, P<0.01), glycosylated hemoglobin(HbA1c, r=0.106, P=0.042), HOMA-IR(r=0.244, P<0.01), TG(r=0.350, P<0.01), ΔI30/ΔG30(r=0.144, P<0.01), and negatively correlated with HDL-C level(r=-0.321, P<0.01). Multiple stepwise regression analysis showed that SUA(β=0.292, P<0.01) and HOMA-IR(β=29.821, P<0.01) were positively associated with ΔI30/ΔG30. SUA level is closely related with the early-phase insulin secretion in NGR subjects.

  15. High-fat diet-induced insulin resistance does not increase plasma anandamide levels or potentiate anandamide insulinotropic effect in isolated canine islets.

    PubMed

    Woolcott, Orison O; Richey, Joyce M; Kabir, Morvarid; Chow, Robert H; Iyer, Malini S; Kirkman, Erlinda L; Stefanovski, Darko; Lottati, Maya; Kim, Stella P; Harrison, L Nicole; Ionut, Viorica; Zheng, Dan; Hsu, Isabel R; Catalano, Karyn J; Chiu, Jenny D; Bradshaw, Heather; Wu, Qiang; Kolka, Cathryn M; Bergman, Richard N

    2015-01-01

    Obesity has been associated with elevated plasma anandamide levels. In addition, anandamide has been shown to stimulate insulin secretion in vitro, suggesting that anandamide might be linked to hyperinsulinemia. To determine whether high-fat diet-induced insulin resistance increases anandamide levels and potentiates the insulinotropic effect of anandamide in isolated pancreatic islets. Dogs were fed a high-fat diet (n = 9) for 22 weeks. Abdominal fat depot was quantified by MRI. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp. Fasting plasma endocannabinoid levels were analyzed by liquid chromatography-mass spectrometry. All metabolic assessments were performed before and after fat diet regimen. At the end of the study, pancreatic islets were isolated prior to euthanasia to test the in vitro effect of anandamide on islet hormones. mRNA expression of cannabinoid receptors was determined in intact islets. The findings in vitro were compared with those from animals fed a control diet (n = 7). Prolonged fat feeding increased abdominal fat content by 81.3±21.6% (mean±S.E.M, P<0.01). In vivo insulin sensitivity decreased by 31.3±12.1% (P<0.05), concomitant with a decrease in plasma 2-arachidonoyl glycerol (from 39.1±5.2 to 15.7±2.0 nmol/L) but not anandamide, oleoyl ethanolamide, linoleoyl ethanolamide, or palmitoyl ethanolamide. In control-diet animals (body weight: 28.8±1.0 kg), islets incubated with anandamide had a higher basal and glucose-stimulated insulin secretion as compared with no treatment. Islets from fat-fed animals (34.5±1.3 kg; P<0.05 versus control) did not exhibit further potentiation of anandamide-induced insulin secretion as compared with control-diet animals. Glucagon but not somatostatin secretion in vitro was also increased in response to anandamide, but there was no difference between groups (P = 0.705). No differences in gene expression of CB1R or CB2R between groups were found. In canines, high-fat diet-induced insulin resistance does not alter plasma anandamide levels or further potentiate the insulinotropic effect of anandamide in vitro.

  16. β-Cell-specific pyruvate dehydrogenase deficiency impairs glucose-stimulated insulin secretion

    PubMed Central

    Srinivasan, Malathi; Choi, Cheol S.; Ghoshal, Pushpankur; Pliss, Lioudmila; Pandya, Jignesh D.; Hill, David; Cline, Gary

    2010-01-01

    Glucose-stimulated insulin secretion (GSIS) by β-cells requires the generation of ATP from oxidation of pyruvate as well as generation of coupling factors involving three different pyruvate cycling shuttles. The roles of several key enzymes involved in pyruvate cycling in β-cells have been documented using isolated islets and β-cell clonal lines. To investigate the role of the pyruvate dehydrogenase (PDH) complex (PDC) in GSIS, a murine model of β-cell-specific PDH deficiency (β-PDHKO) was created. Pancreatic insulin content was decreased in 1-day-old β-PDHKO male pups and adult male mice. The plasma insulin levels were decreased and blood glucose levels increased in β-PDHKO male mice from neonatal life onward. GSIS was reduced in isolated islets from β-PDHKO male mice with about 50% reduction in PDC activity. Impairment in a glucose tolerance test and in vivo insulin secretion during hyperglycemic clamp was evident in β-PDHKO adults. No change in the number or size of islets was found in pancreata from 4-wk-old β-PDHKO male mice. However, an increase in the mean size of individual β-cells in islets of these mice was observed. These findings show a key role of PDC in GSIS by pyruvate oxidation. This β-PDHKO mouse model represents the first mouse model in which a mitochondrial oxidative enzyme deletion by gene knockout has been employed to demonstrate an altered GSIS by β-cells. PMID:20841503

  17. Studies on the mechanism of salicylate-induced increase of insulin secretion in man.

    PubMed

    Giugliano, D; Cozzolino, D; Ceriello, A; Cerciello, T; Varano, R; Saccomanno, F; Torella, R

    1988-01-01

    Salicylate compounds are known to increase basal and stimulated insulin secretion in man. In our studies, infusion of lysine acetylsalicylate (72 mg/min) increased basal insulin levels and amplified insulin responses to glucose (5 g i.v.), arginine (5 g i.v.) and tolbutamide (1 g i.v.). Verapamil, an organic calcium antagonist, did not modify LAS-induced increase of basal insulin levels, but reduced the effect of LAS on glucose-induced insulin secretion. Calcitonin and somatostatin, two agents that inhibit basal and glucose-stimulated insulin secretion, inhibited the insulin response to glucose in presence of LAS infusion. The ability of salicylate compounds to augment insulin secretion might be due to multiple sites of action in the Beta-cells.

  18. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    ERIC Educational Resources Information Center

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  19. A common variation of the PTEN gene is associated with peripheral insulin resistance.

    PubMed

    Grinder-Hansen, L; Ribel-Madsen, R; Wojtaszewski, J F P; Poulsen, P; Grunnet, L G; Vaag, A

    2016-09-01

    Phosphatase and tensin homologue (PTEN) reduces insulin sensitivity by inhibiting the phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue (Akt) pathway. This study investigated how a common single nucleotide polymorphism near PTEN, previously associated with fasting levels of plasma insulin and glucose, influences in vivo glucose metabolism and insulin signalling. The primary outcome measure was the gene variant's association with peripheral glucose disposal rate and, secondarily, whether this association was explained by altered activities of PTEN targets PI3K and Akt. A total of 183 normoglycaemic Danes, including 158 twins and 25 singletons, were genotyped for PTEN rs11202614, which is in complete linkage disequilibrium with rs2142136 and rs10788575, which have also been reported in association with glycaemic traits and type 2 diabetes (T2D). Hepatic and peripheral insulin sensitivity was measured using tracer and euglycaemic-hyperinsulinaemic clamp techniques; insulin secretion was assessed by intravenous glucose tolerance test; and muscle biopsies were taken during insulin infusion from 150 twins for measurement of PI3K and Akt activities. The minor G allele of PTEN rs11202614 was associated with elevated fasting plasma insulin levels and a decreased peripheral glucose disposal rate, but not with the hepatic insulin resistance index or insulin secretion measured as the first-phase insulin response and disposition index. The single nucleotide polymorphism was not associated with either PI3K or Akt activities. A common PTEN variation is associated with peripheral insulin resistance and subsequent risk of developing T2D. However, the association with insulin resistance is not explained by decreased proximal insulin signalling in skeletal muscle. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Use of First-phase Insulin Secretion in Early Diagnosis of Thyroid Diabetes and Type 2 Diabetes Mellitus

    PubMed Central

    Meng, Li-Heng; Huang, Yao; Zhou, Jia; Liang, Xing-Huan; Xian, Jing; Li, Li; Qin, Ying-Fen

    2017-01-01

    Background: A relationship between hyperthyroidism and insulin secretion in type 2 diabetes mellitus (T2DM) has been reported. Therefore, this study explored the use of first-phase insulin secretion in the differential diagnosis of thyroid diabetes (TDM) and T2DM. Methods: In total, 101 patients with hyperthyroidism were divided into hyperthyroidism with normal glucose tolerance (TNGT), hyperthyroidism with impaired glucose regulation (TIGR), and diabetes (TDM) groups. Furthermore, 96 patients without hyperthyroidism were recruited as control groups (normal glucose tolerance [NGT], impaired glucose regulation [IGR], and T2DM). The following parameters were evaluated: homeostasis model assessment (HOMA)-IR, HOMA-β, modified β-cell function index (MBCI), peak insulin/fasting insulin (IP/I0), AUCins-OGTT, and AUCins-OGTT/AUCglu-OGTT from the oral glucose tolerance test (OGTT) insulin release test were utilized to assess the second-phase insulin secretion, while the IP/I0, AIR0′~10′, and AUCins-IVGTT from the intravenous glucose tolerance test (IVGTT) insulin release test were used to assess the first-phase insulin secretion. Results: In the OGTT, the HOMA-β values of the TNGT and TDM groups were higher than those of the NGT and T2DM groups (all P < 0.05). In the hyperthyroidism groups, the MBCI of the TDM group was lower than that of the TNGT and TIGR groups (all P < 0.05). Among the control groups, the MBCI values of the IGR and T2DM groups were lower than that of the normal glucose tolerance (NGT) group (all P < 0.05). In the IVGTT, insulin secretion peaked for all groups at 2–4 min, except for the T2DM group, which showed a low plateau and no secretion peak. The IP values of the TNGT, TIGR, and TDM groups were higher than those of the NGT, IGR, and T2DM groups (all P < 0.05). The Ip/I0, AIR0′~10′, and AUCins-IVGTT values of the TDM group were higher than those of the T2DM group but were lower than those of the TNGT, TIGR, NGR, and IGR groups (all P < 0.05). Compared with the other five groups, the Ip/I0, AIR0′~10′, and AUCins-IVGTT values of the T2DM group were significantly decreased (all P < 0.05). The Ip/I0 and AUCins-IVGTT values of the TNGT group were higher than those of the NGT group (all P < 0.05). Conclusions: β-cell function in TDM patients is superior to that in T2DM patients. First-phase insulin secretion could be used as an early diagnostic marker to differentiate TDM and T2DM. PMID:28345543

  1. The effect of glucose on insulin release and ion movements in isolated pancreatic islets of rats in old age.

    PubMed Central

    Ammon, H P; Fahmy, A; Mark, M; Wahl, M A; Youssif, N

    1987-01-01

    1. The effect of glucose on 86Rb+ efflux, 45Ca2+ net uptake and insulin secretion of pancreatic islets from 3- and 24-month-old rats was studied. 2. Raising the glucose concentration from 3 to 5.6 and 16.7 mM had no effect on 86Rb+ efflux from islets of 24-month-old male rats whereas that from 24-month-old female rats was decreased. 3. At 16.7 mM-glucose, net uptake of 45Ca2+ was significantly diminished in islets of 24-month-old rats compared to islets of 3-month-old rats. 4. In the presence of 16.7 mM-glucose, islets of 24-month-old rats exhibited only 60-70% of the insulin release obtained with islets from 3-month-old rats. 5. Neither net uptake of 45Ca2+ nor insulin secretion appear to differ between the sexes. 6. These data suggest that the decreased insulin secretory response to glucose during old age is due, at least in part, to inadequate inhibition of K+ efflux and diminished net uptake of Ca2+. PMID:3309262

  2. Chronic Suppression of Acetyl-CoA Carboxylase 1 in β-Cells Impairs Insulin Secretion via Inhibition of Glucose Rather Than Lipid Metabolism*

    PubMed Central

    Ronnebaum, Sarah M.; Joseph, Jamie W.; Ilkayeva, Olga; Burgess, Shawn C.; Lu, Danhong; Becker, Thomas C.; Sherry, A. Dean; Newgard, Christopher B.

    2008-01-01

    Acetyl-CoA carboxylase 1 (ACC1) currently is being investigated as a target for treatment of obesity-associated dyslipidemia and insulin resistance. To investigate the effects of ACC1 inhibition on insulin secretion, three small interfering RNA (siRNA) duplexes targeting ACC1 (siACC1) were transfected into the INS-1-derived cell line, 832/13; the most efficacious duplex was also cloned into an adenovirus and used to transduce isolated rat islets. Delivery of the siACC1 duplexes decreased ACC1 mRNA by 60–80% in 832/13 cells and islets and enzyme activity by 46% compared with cells treated with a non-targeted siRNA. Delivery of siACC1 decreased glucose-stimulated insulin secretion (GSIS) by 70% in 832/13 cells and by 33% in islets. Surprisingly, siACC1 treatment decreased glucose oxidation by 49%, and the ATP:ADP ratio by 52%, accompanied by clear decreases in pyruvate cycling activity and tricarboxylic acid cycle intermediates. Exposure of siACC1-treated cells to the pyruvate cycling substrate dimethylmalate restored GSIS to normal without recovery of the depressed ATP:ADP ratio. In siACC1-treated cells, glucokinase protein levels were decreased by 25%, which correlated with a 36% decrease in glycogen synthesis and a 33% decrease in glycolytic flux. Furthermore, acute addition of the ACC1 inhibitor 5-(tetradecyloxy)-2-furoic acid (TOFA) to β-cells suppressed [14C]glucose incorporation into lipids but had no effect on GSIS, whereas chronic TOFA administration suppressed GSIS and glucose metabolism. In sum, chronic, but not acute, suppression of ACC1 activity impairs GSIS via inhibition of glucose rather than lipid metabolism. These findings raise concerns about the use of ACC inhibitors for diabetes therapy. PMID:18381287

  3. Chronic suppression of acetyl-CoA carboxylase 1 in beta-cells impairs insulin secretion via inhibition of glucose rather than lipid metabolism.

    PubMed

    Ronnebaum, Sarah M; Joseph, Jamie W; Ilkayeva, Olga; Burgess, Shawn C; Lu, Danhong; Becker, Thomas C; Sherry, A Dean; Newgard, Christopher B

    2008-05-23

    Acetyl-CoA carboxylase 1 (ACC1) currently is being investigated as a target for treatment of obesity-associated dyslipidemia and insulin resistance. To investigate the effects of ACC1 inhibition on insulin secretion, three small interfering RNA (siRNA) duplexes targeting ACC1 (siACC1) were transfected into the INS-1-derived cell line, 832/13; the most efficacious duplex was also cloned into an adenovirus and used to transduce isolated rat islets. Delivery of the siACC1 duplexes decreased ACC1 mRNA by 60-80% in 832/13 cells and islets and enzyme activity by 46% compared with cells treated with a non-targeted siRNA. Delivery of siACC1 decreased glucose-stimulated insulin secretion (GSIS) by 70% in 832/13 cells and by 33% in islets. Surprisingly, siACC1 treatment decreased glucose oxidation by 49%, and the ATP:ADP ratio by 52%, accompanied by clear decreases in pyruvate cycling activity and tricarboxylic acid cycle intermediates. Exposure of siACC1-treated cells to the pyruvate cycling substrate dimethylmalate restored GSIS to normal without recovery of the depressed ATP:ADP ratio. In siACC1-treated cells, glucokinase protein levels were decreased by 25%, which correlated with a 36% decrease in glycogen synthesis and a 33% decrease in glycolytic flux. Furthermore, acute addition of the ACC1 inhibitor 5-(tetradecyloxy)-2-furoic acid (TOFA) to beta-cells suppressed [(14)C]glucose incorporation into lipids but had no effect on GSIS, whereas chronic TOFA administration suppressed GSIS and glucose metabolism. In sum, chronic, but not acute, suppression of ACC1 activity impairs GSIS via inhibition of glucose rather than lipid metabolism. These findings raise concerns about the use of ACC inhibitors for diabetes therapy.

  4. Activin Signaling Targeted by Insulin/dFOXO Regulates Aging and Muscle Proteostasis in Drosophila

    PubMed Central

    Bai, Hua; Kang, Ping; Hernandez, Ana Maria; Tatar, Marc

    2013-01-01

    Reduced insulin/IGF signaling increases lifespan in many animals. To understand how insulin/IGF mediates lifespan in Drosophila, we performed chromatin immunoprecipitation-sequencing analysis with the insulin/IGF regulated transcription factor dFOXO in long-lived insulin/IGF signaling genotypes. Dawdle, an Activin ligand, is bound and repressed by dFOXO when reduced insulin/IGF extends lifespan. Reduced Activin signaling improves performance and protein homeostasis in muscles of aged flies. Activin signaling through the Smad binding element inhibits the transcription of Autophagy-specific gene 8a (Atg8a) within muscle, a factor controlling the rate of autophagy. Expression of Atg8a within muscle is sufficient to increase lifespan. These data reveal how insulin signaling can regulate aging through control of Activin signaling that in turn controls autophagy, representing a potentially conserved molecular basis for longevity assurance. While reduced Activin within muscle autonomously retards functional aging of this tissue, these effects in muscle also reduce secretion of insulin-like peptides at a distance from the brain. Reduced insulin secretion from the brain may subsequently reinforce longevity assurance through decreased systemic insulin/IGF signaling. PMID:24244197

  5. Apolipoprotein A-I interactions with insulin secretion and production.

    PubMed

    Rye, Kerry-Anne; Barter, Philip J; Cochran, Blake J

    2016-02-01

    Human population studies have established that an elevated plasma high-density lipoprotein cholesterol (HDL-C) level is associated with a decreased risk of developing cardiovascular disease. In addition to having several potentially cardioprotective functions, HDLs and apolipoprotein (apo)A-I, the main HDL apolipoprotein, also have antidiabetic properties. Interventions that elevate plasma HDL-C and apoA-I levels improve glycemic control in people with type 2 diabetes mellitus by enhancing pancreatic β-cell function and increasing insulin sensitivity. This review is concerned with recent advances in understanding the mechanisms by which HDLs and apoA-I improve pancreatic β-cell function. HDLs and apoA-I increase insulin synthesis and secretion in pancreatic β cells. The underlying mechanism of this effect is similar to what has been reported for intestinally derived incretins, such as glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, which both increase β-cell insulin secretion under high glucose conditions. This involves the activation of a heterotrimeric G protein Gαs subunit on the β-cell surface that leads to induction of a transmembrane adenylyl cyclase, increased intracellular cyclic adenosine monophosphate and Ca levels, and activation of protein kinase A. Protein kinase A increases insulin synthesis by excluding FoxO1 from the β-cell nucleus and derepressing transcription of the insulin gene.

  6. l-cysteine reversibly inhibits glucose-induced biphasic insulin secretion and ATP production by inactivating PKM2

    PubMed Central

    Nakatsu, Daiki; Horiuchi, Yuta; Kano, Fumi; Noguchi, Yoshiyuki; Sugawara, Taichi; Takamoto, Iseki; Kubota, Naoto; Kadowaki, Takashi; Murata, Masayuki

    2015-01-01

    Increase in the concentration of plasma l-cysteine is closely associated with defective insulin secretion from pancreatic β-cells, which results in type 2 diabetes (T2D). In this study, we investigated the effects of prolonged l-cysteine treatment on glucose-stimulated insulin secretion (GSIS) from mouse insulinoma 6 (MIN6) cells and from mouse pancreatic islets, and found that the treatment reversibly inhibited glucose-induced ATP production and resulting GSIS without affecting proinsulin and insulin synthesis. Comprehensive metabolic analyses using capillary electrophoresis time-of-flight mass spectrometry showed that prolonged l-cysteine treatment decreased the levels of pyruvate and its downstream metabolites. In addition, methyl pyruvate, a membrane-permeable form of pyruvate, rescued l-cysteine–induced inhibition of GSIS. Based on these results, we found that both in vitro and in MIN6 cells, l-cysteine specifically inhibited the activity of pyruvate kinase muscle isoform 2 (PKM2), an isoform of pyruvate kinases that catalyze the conversion of phosphoenolpyruvate to pyruvate. l-cysteine also induced PKM2 subunit dissociation (tetramers to dimers/monomers) in cells, which resulted in impaired glucose-induced ATP production for GSIS. DASA-10 (NCGC00181061, a substituted N,N′-diarylsulfonamide), a specific activator for PKM2, restored the tetramer formation and the activity of PKM2, glucose-induced ATP production, and biphasic insulin secretion in l-cysteine–treated cells. Collectively, our results demonstrate that impaired insulin secretion due to exposure to l-cysteine resulted from its direct binding and inactivation of PKM2 and suggest that PKM2 is a potential therapeutic target for T2D. PMID:25713368

  7. SLC30A3 Responds to Glucose- and Zinc Variations in ß-Cells and Is Critical for Insulin Production and In Vivo Glucose-Metabolism During ß-Cell Stress

    PubMed Central

    Smidt, Kamille; Jessen, Niels; Petersen, Andreas Brønden; Larsen, Agnete; Magnusson, Nils; Jeppesen, Johanne Bruun; Stoltenberg, Meredin; Culvenor, Janetta G.; Tsatsanis, Andrew; Brock, Birgitte; Schmitz, Ole; Wogensen, Lise; Bush, Ashley I.; Rungby, Jørgen

    2009-01-01

    Background Ion transporters of the Slc30A- (ZnT-) family regulate zinc fluxes into sub-cellular compartments. β-cells depend on zinc for both insulin crystallization and regulation of cell mass. Methodology/Principal Findings This study examined: the effect of glucose and zinc chelation on ZnT gene and protein levels and apoptosis in β-cells and pancreatic islets, the effects of ZnT-3 knock-down on insulin secretion in a β-cell line and ZnT-3 knock-out on glucose metabolism in mice during streptozotocin-induced β-cell stress. In INS-1E cells 2 mM glucose down-regulated ZnT-3 and up-regulated ZnT-5 expression relative to 5 mM. 16 mM glucose increased ZnT-3 and decreased ZnT-8 expression. Zinc chelation by DEDTC lowered INS-1E insulin content and insulin expression. Furthermore, zinc depletion increased ZnT-3- and decreased ZnT-8 gene expression whereas the amount of ZnT-3 protein in the cells was decreased. Zinc depletion and high glucose induced apoptosis and necrosis in INS-1E cells. The most responsive zinc transporter, ZnT-3, was investigated further; by immunohistochemistry and western blotting ZnT-3 was demonstrated in INS-1E cells. 44% knock-down of ZnT-3 by siRNA transfection in INS-1E cells decreased insulin expression and secretion. Streptozotocin-treated mice had higher glucose levels after ZnT-3 knock-out, particularly in overt diabetic animals. Conclusion/Significance Zinc transporting proteins in β-cells respond to variations in glucose and zinc levels. ZnT-3, which is pivotal in the development of cellular changes as also seen in type 2 diabetes (e.g. amyloidosis in Alzheimer's disease) but not previously described in β-cells, is present in this cell type, up-regulated by glucose in a concentration dependent manner and up-regulated by zinc depletion which by contrast decreased ZnT-3 protein levels. Knock-down of the ZnT-3 gene lowers insulin secretion in vitro and affects in vivo glucose metabolism after streptozotocin treatment. PMID:19492079

  8. Impaired glucose metabolism in subjects with the Williams-Beuren syndrome: A five-year follow-up cohort study

    PubMed Central

    Lunati, Maria Elena; Bedeschi, Maria Francesca; Resi, Veronica; Grancini, Valeria; Palmieri, Eva; Salera, Simona; Lalatta, Faustina; Pugliese, Giuseppe

    2017-01-01

    Objective The Williams-Beuren syndrome (WS) is associated with impaired glucose metabolism (IGM) early in adulthood. However, the pathophysiology of IGM remains poorly defined, due to the lack of longitudinal studies investigating the contribution of β-cell dysfunction and impaired insulin sensitivity. This study aimed at assessing incidence of IGM and the underlying mechanisms in WS adults. Methods This observational, longitudinal (5-year), cohort study enrolled thirty-one consecutive WS subjects attending a tertiary referral center. An oral glucose tolerance test (OGTT) was performed yearly and used to classify patients as normal or IGM, including impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) and diabetes mellitus (DM), and to calculate surrogate measures of insulin secretion and/or sensitivity. Results IGM patients were 18 (58.1%, three DM) at baseline and 19 (61.3%, five DM) at end-of-follow-up. However, 13 individuals changed category of glucose homeostasis in both directions during follow-up (8 progressors, 5 regressors) and 18 did not (8 non-progressors, 10 non-regressors). New cases of IGM and DM were 11.1 and 2.53 per 100 persons-year, respectively, and were treated non-pharmacologically. In the whole cohort and, to a higher extent, in progressors, indices of early-phase insulin secretion and insulin sensitivity decreased significantly from baseline to end-of-follow-up, with concurrent reduction of the oral disposition index and insulin secretion-sensitivity index-2 (ISSI-2), compensating insulin secretion for the level of insulin resistance. No baseline measure independently predicted progression, which correlated with change from baseline in ISSI-2. Compared with patients with normal glucose homeostasis, IGT subjects had impaired insulin sensitivity, whereas insulin secretion was reduced only in those with IFG+IGT or DM. Conclusions IGM incidence is high in young adults with WS, suggesting the need of early screening and timed intervention. As in classical type 2 diabetes, impaired insulin sensitivity and β-cell dysfunction contribute, in this sequence, to progression to IGM and DM. PMID:29053727

  9. Relationship between serum secreted frizzled-related protein 4 levels and the first-phase of glucose-stimulated insulin secretion in individuals with different glucose tolerance.

    PubMed

    Liu, Fang; Qu, Hua; Li, Yingjie; Tang, Qian; Yang, Zesong; Wang, Hang; Deng, Huacong

    2015-01-01

    Recent evidence suggests that serum secreted frizzled-related protein (SFRP) 4 may affect β-cell function. In a cross-sectional clinical study, 56 subjects with type 2 diabetes mellitus (T2DM), 52 subjects with impaired glucose tolerance (IGT) and 42 normal glucose tolerance (NGT) subjects were enrolled to investigate the relationship between SFRP4 levels and the first-phase of glucose-stimulated insulin secretion, glucose metabolism and inflammation. Intravenous glucose tolerance tests were conducted, and acute insulin response (AIR), the area under the curve of the first-phase (0-10 min) insulin secretion (AUC), and the glucose disposition index (GDI) were calculated. The serum levels of SFRP4, IL-1β, plasma glucose, serum lipid, and glycated hemoglobin (HbA1c) were measured. Levels of serum SFRP4 and IL-1β in the T2DM group and IGT group were significantly higher than those in the NGT group (P < 0.01). The AIR, AUC and GDI between the three groups showed a progressive decrease from the NGT to IGT groups with the lowest value in the T2DM groups (P < 0.01). The serum SFRP4 levels were negatively correlated with AIR, AUC, GDI and HOMA-β (P < 0.01) and were positively correlated with fasting plasma glucose, HbA1c, hs-CRP, and IL-1β (P < 0.01). Our study provides evidence that the concentrations of serum SFRP4 in T2DM and IGT subjects were increased and were correlated closely with glycose metabolic disorder, the first-phase of glucose-stimulated insulin secretion and chronic low-grade inflammation. SFRP4 may participate in the development of type 2 diabetes mellitus.

  10. Fractalkine (CX3CL1), a new factor protecting β-cells against TNFα.

    PubMed

    Rutti, Sabine; Arous, Caroline; Schvartz, Domitille; Timper, Katharina; Sanchez, Jean-Charles; Dermitzakis, Emmanouil; Donath, Marc Y; Halban, Philippe A; Bouzakri, Karim

    2014-10-01

    We have previously shown the existence of a muscle-pancreas intercommunication axis in which CX3CL1 (fractalkine), a CX3C chemokine produced by skeletal muscle cells, could be implicated. It has recently been shown that the fractalkine system modulates murine β-cell function. However, the impact of CX3CL1 on human islet cells especially regarding a protective role against cytokine-induced apoptosis remains to be investigated. Gene expression was determined using RNA sequencing in human islets, sorted β- and non-β-cells. Glucose-stimulated insulin secretion (GSIS) and glucagon secretion from human islets was measured following 24 h exposure to 1-50 ng/ml CX3CL1. GSIS and specific protein phosphorylation were measured in rat sorted β-cells exposed to CX3CL1 for 48 h alone or in the presence of TNFα (20 ng/ml). Rat and human β-cell apoptosis (TUNEL) and rat β-cell proliferation (BrdU incorporation) were assessed after 24 h treatment with increasing concentrations of CX3CL1. Both CX3CL1 and its receptor CX3CR1 are expressed in human islets. However, CX3CL1 is more expressed in non-β-cells than in β-cells while its receptor is more expressed in β-cells. CX3CL1 decreased human (but not rat) β-cell apoptosis. CX3CL1 inhibited human islet glucagon secretion stimulated by low glucose but did not impact human islet and rat sorted β-cell GSIS. However, CX3CL1 completely prevented the adverse effect of TNFα on GSIS and on molecular mechanisms involved in insulin granule trafficking by restoring the phosphorylation (Akt, AS160, paxillin) and expression (IRS2, ICAM-1, Sorcin, PCSK1) of key proteins involved in these processes. We demonstrate for the first time that human islets express and secrete CX3CL1 and CX3CL1 impacts them by decreasing glucagon secretion without affecting insulin secretion. Moreover, CX3CL1 decreases basal apoptosis of human β-cells. We further demonstrate that CX3CL1 protects β-cells from the adverse effects of TNFα on their function by restoring the expression and phosphorylation of key proteins of the insulin secretion pathway.

  11. Impaired Insulin Secretion and Enhanced Insulin Sensitivity in Cholecystokinin-Deficient Mice

    PubMed Central

    Lo, Chun-Min; Obici, Silvana; Dong, H. Henry; Haas, Michael; Lou, Dawnwen; Kim, Dae Hyun; Liu, Min; D’Alessio, David; Woods, Stephen C.; Tso, Patrick

    2011-01-01

    OBJECTIVE Cholecystokinin (CCK) is released in response to lipid intake and stimulates insulin secretion. We hypothesized that CCK deficiency would alter the regulation of insulin secretion and glucose homeostasis. RESEARCH DESIGN AND METHODS We used quantitative magnetic resonance imaging to determine body composition and studied plasma glucose and insulin secretion of CCK gene knockout (CCK-KO) mice and their wild-type controls using intraperitoneal glucose and arginine infusions. The area of anti-insulin staining in pancreatic islets was measured by immunohistochemistry. Insulin sensitivity was assessed with euglycemic-hyperinsulemic clamps. RESULTS CCK-KO mice fed a low-fat diet had a reduced acute insulin response to glucose but a normal response to arginine and normal glucose tolerance, associated with a trend toward greater insulin sensitivity. However, when fed a high-fat diet (HFD) for 10 weeks, CCK-KO mice developed glucose intolerance despite increased insulin sensitivity that was associated with low insulin secretion in response to both glucose and arginine. The deficiency of insulin secretion in CCK-KO mice was not associated with changes in β-cell or islet size. CONCLUSIONS CCK is involved in regulating insulin secretion and glucose tolerance in mice eating an HFD. The impaired insulin response to intraperitoneal stimuli that do not typically elicit CCK release suggests that this hormone has chronic effects on β-cell adaptation to diet in addition to acute incretin actions. PMID:21602512

  12. Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca2+ Sensitivity of Insulin Secretion Vesicles.

    PubMed

    Huang, Chen; Walker, Emily M; Dadi, Prasanna K; Hu, Ruiying; Xu, Yanwen; Zhang, Wenjian; Sanavia, Tiziana; Mun, Jisoo; Liu, Jennifer; Nair, Gopika G; Tan, Hwee Yim Angeline; Wang, Sui; Magnuson, Mark A; Stoeckert, Christian J; Hebrok, Matthias; Gannon, Maureen; Han, Weiping; Stein, Roland; Jacobson, David A; Gu, Guoqiang

    2018-05-07

    Islet β cells from newborn mammals exhibit high basal insulin secretion and poor glucose-stimulated insulin secretion (GSIS). Here we show that β cells of newborns secrete more insulin than adults in response to similar intracellular Ca 2+ concentrations, suggesting differences in the Ca 2+ sensitivity of insulin secretion. Synaptotagmin 4 (Syt4), a non-Ca 2+ binding paralog of the β cell Ca 2+ sensor Syt7, increased by ∼8-fold during β cell maturation. Syt4 ablation increased basal insulin secretion and compromised GSIS. Precocious Syt4 expression repressed basal insulin secretion but also impaired islet morphogenesis and GSIS. Syt4 was localized on insulin granules and Syt4 levels inversely related to the number of readily releasable vesicles. Thus, transcriptional regulation of Syt4 affects insulin secretion; Syt4 expression is regulated in part by Myt transcription factors, which repress Syt4 transcription. Finally, human SYT4 regulated GSIS in EndoC-βH1 cells, a human β cell line. These findings reveal the role that altered Ca 2+ sensing plays in regulating β cell maturation. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men.

    PubMed

    González-Ortiz, Manuel; Martínez-Abundis, Esperanza; Hernández-Corona, Diana M; Ramírez-Rodríguez, Alejandra M

    2017-10-01

    To evaluate the effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men without diabetes. A randomized, double-blind, placebo-controlled clinical trial was carried out in obese male patients between 30 and 50 years of age. Eighteen subjects were randomly assigned to two groups of nine patients each. During a 28-day period, subjects received 5 mg orally of tadalafil or placebo each night. Patients were evaluated before and after the intervention. Total insulin secretion and first phase of insulin secretion were calculated by insulinogenic index and Stumvoll index, respectively, and insulin sensitivity was calculated using the Matsuda index. Tolerability and compliance were evaluated permanently throughout the study. There were no significant differences after administration of tadalafil in total insulin secretion (0.82 ± 0.45 vs. 0.61 ± 0.27, p = 0.594), first phase of insulin secretion (1332 ± 487 vs. 1602 ± 800, p = 0.779) and insulin sensitivity (4.6 ± 1.2 vs. 4.9 ± 2.5, p = 0.779). No significant differences were shown in other measurements. Tadalafil administration for 28 days did not modify insulin secretion or insulin sensitivity in obese men.

  14. [Antagonistic action of prednisolone and buformin in the carbohydrate metabolism of healthy persons (author's transl)].

    PubMed

    Bottermann, P; Schweigart, U; Ermler, R

    1976-02-13

    Intravenous glucose tolerance tests were performed and changes of blood glucose and insulin concentration were measured to examine whether the diabetogenic effect of glucocorticoides can be compensated by biguanides. Seven standard weight volunteers with a healthy metabolism were given prednisolone and buformin as well as a combination of both. In spite of the reactively higher insulin secretion after treatment with prednisolone the glucose tolerance was reduced. In contrast, treatment with biguanide improved the glucose tolerance while decreasing the insulin secretion. It was nearly possible to compensate the negative effect of prednisolone on the carbohydrate metabolism by biguanides. We, therefore, consider a preventive administration of biguanides to be effective in long term or high dosage administration of glucocorticoides.

  15. Desnutrin/ATGL activates PPARδ to promote mitochondrial function for insulin secretion in islet β cells.

    PubMed

    Tang, Tianyi; Abbott, Marcia J; Ahmadian, Maryam; Lopes, Andressa B; Wang, Yuhui; Sul, Hei Sook

    2013-12-03

    Excessive caloric intake leading to obesity is associated with insulin resistance and dysfunction of islet β cells. High-fat feeding decreases desnutrin (also called ATGL/PNPLA2) levels in islets. Here we show that desnutrin ablation via RIP-Cre (βKO) or RIP-CreER results in hyperglycemia with impaired glucose-stimulated insulin secretion (GSIS). Due to decreased lipolysis, islets have higher TAG content but lower free FA levels. βKO islets exhibit impaired mitochondrial respiration and lower production of ATP required for GSIS, along with decreased expression of PPARδ target genes involved in mitochondrial oxidation. Furthermore, synthetic PPARδ, but not PPARα, agonist restores GSIS and expression of mitochondrial oxidative genes in βKO mice, revealing that desnutrin-catalyzed lipolysis generates PPARδ ligands. Finally, adenoviral expression of desnutrin in βKO islets restores all defects of βKO islet phenotype and function, including GSIS and mitochondrial defects, demonstrating the critical role of the desnutrin-PPARδ-mitochondrial oxidation axis in regulating islet β cell GSIS. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study.

    PubMed

    Tabák, Adam G; Jokela, Markus; Akbaraly, Tasnime N; Brunner, Eric J; Kivimäki, Mika; Witte, Daniel R

    2009-06-27

    Little is known about the timing of changes in glucose metabolism before occurrence of type 2 diabetes. We aimed to characterise trajectories of fasting and postload glucose, insulin sensitivity, and insulin secretion in individuals who develop type 2 diabetes. We analysed data from our prospective occupational cohort study (Whitehall II study) of 6538 (71% male and 91% white) British civil servants without diabetes mellitus at baseline. During a median follow-up period of 9.7 years, 505 diabetes cases were diagnosed (49.1% on the basis of oral glucose tolerance test). We assessed retrospective trajectories of fasting and 2-h postload glucose, homoeostasis model assessment (HOMA) insulin sensitivity, and HOMA beta-cell function from up to 13 years before diabetes diagnosis (diabetic group) or at the end of follow-up (non-diabetics). Multilevel models adjusted for age, sex, and ethnic origin confirmed that all metabolic measures followed linear trends in the group of non-diabetics (10,989 measurements), except for insulin secretion that did not change during follow-up. In the diabetic group (801 measurements), a linear increase in fasting glucose was followed by a steep quadratic increase (from 5.79 mmol/L to 7.40 mmol/L) starting 3 years before diagnosis of diabetes. 2-h postload glucose showed a rapid increase starting 3 years before diagnosis (from 7.60 mmol/L to 11.90 mmol/L), and HOMA insulin sensitivity decreased steeply during the 5 years before diagnosis (to 86.7%). HOMA beta-cell function increased between years 4 and 3 before diagnosis (from 85.0% to 92.6%) and then decreased until diagnosis (to 62.4%). In this study, we show changes in glucose concentrations, insulin sensitivity, and insulin secretion as much as 3-6 years before diagnosis of diabetes. The description of biomarker trajectories leading to diabetes diagnosis could contribute to more-accurate risk prediction models that use repeated measures available for patients through regular check-ups. Medical Research Council (UK); Economic and Social Research Council (UK); British Heart Foundation (UK); Health and Safety Executive (UK); Department of Health (UK); National Institute of Health (USA); Agency for Health Care Policy Research (USA); the John D and Catherine T MacArthur Foundation (USA); and Academy of Finland (Finland).

  17. Prediction of diabetes based on baseline metabolic characteristics in individuals at high risk.

    PubMed

    Defronzo, Ralph A; Tripathy, Devjit; Schwenke, Dawn C; Banerji, Maryann; Bray, George A; Buchanan, Thomas A; Clement, Stephen C; Henry, Robert R; Kitabchi, Abbas E; Mudaliar, Sunder; Ratner, Robert E; Stentz, Frankie B; Musi, Nicolas; Reaven, Peter D; Gastaldelli, Amalia

    2013-11-01

    Individuals with impaired glucose tolerance (IGT) are at high risk for developing type 2 diabetes mellitus (T2DM). We examined which characteristics at baseline predicted the development of T2DM versus maintenance of IGT or conversion to normal glucose tolerance. We studied 228 subjects at high risk with IGT who received treatment with placebo in ACT NOW and who underwent baseline anthropometric measures and oral glucose tolerance test (OGTT) at baseline and after a mean follow-up of 2.4 years. In a univariate analysis, 45 of 228 (19.7%) IGT individuals developed diabetes. After adjusting for age, sex, and center, increased fasting plasma glucose, 2-h plasma glucose, G0-120 during OGTT, HbA1c, adipocyte insulin resistance index, ln fasting plasma insulin, and ln I0-120, as well as family history of diabetes and presence of metabolic syndrome, were associated with increased risk of diabetes. At baseline, higher insulin secretion (ln [I0-120/G0-120]) during the OGTT was associated with decreased risk of diabetes. Higher β-cell function (insulin secretion/insulin resistance or disposition index; ln [I0-120/G0-120 × Matsuda index of insulin sensitivity]; odds ratio 0.11; P < 0.0001) was the variable most closely associated with reduced risk of diabetes. In a stepwise multiple-variable analysis, only HbA1c and β-cell function (ln insulin secretion/insulin resistance index) predicted the development of diabetes (r = 0.49; P < 0.0001).

  18. Patients With Long-QT Syndrome Caused by Impaired hERG-Encoded Kv11.1 Potassium Channel Have Exaggerated Endocrine Pancreatic and Incretin Function Associated With Reactive Hypoglycemia

    PubMed Central

    Hyltén-Cavallius, Louise; Iepsen, Eva W.; Wewer Albrechtsen, Nicolai J.; Svendstrup, Mathilde; Lubberding, Anniek F.; Hartmann, Bolette; Jespersen, Thomas; Linneberg, Allan; Christiansen, Michael; Vestergaard, Henrik; Pedersen, Oluf; Holst, Jens J.; Kanters, Jørgen K.

    2017-01-01

    Background: Loss-of-function mutations in hERG (encoding the Kv11.1 voltage-gated potassium channel) cause long-QT syndrome type 2 (LQT2) because of prolonged cardiac repolarization. However, Kv11.1 is also present in pancreatic α and β cells and intestinal L and K cells, secreting glucagon, insulin, and the incretins glucagon-like peptide-1 (GLP-1) and GIP (glucose-dependent insulinotropic polypeptide), respectively. These hormones are crucial for glucose regulation, and long-QT syndrome may cause disturbed glucose regulation. We measured secretion of these hormones and cardiac repolarization in response to glucose ingestion in LQT2 patients with functional mutations in hERG and matched healthy participants, testing the hypothesis that LQT2 patients have increased incretin and β-cell function and decreased α-cell function, and thus lower glucose levels. Methods: Eleven patients with LQT2 and 22 sex-, age-, and body mass index–matched control participants underwent a 6-hour 75-g oral glucose tolerance test with ECG recording and blood sampling for measurements of glucose, insulin, C-peptide, glucagon, GLP-1, and GIP. Results: In comparison with matched control participants, LQT2 patients had 56% to 78% increased serum insulin, serum C-peptide, plasma GLP-1, and plasma GIP responses (P=0.03–0.001) and decreased plasma glucose levels after glucose ingestion (P=0.02) with more symptoms of hypoglycemia (P=0.04). Sixty-three percent of LQT2 patients developed hypoglycemic plasma glucose levels (<70 mg/dL) versus 36% control participants (P=0.16), and 18% patients developed serious hypoglycemia (<50 mg/dL) versus none of the controls. LQT2 patients had defective glucagon responses to low glucose, P=0.008. β-Cell function (Insulin Secretion Sensitivity Index-2) was 2-fold higher in LQT2 patients than in controls (4398 [95% confidence interval, 2259–8562] versus 2156 [1961–3201], P=0.03). Pharmacological Kv11.1 blockade (dofetilide) in rats had similar effect, and small interfering RNA inhibition of hERG in β and L cells increased insulin and GLP-1 secretion up to 50%. Glucose ingestion caused cardiac repolarization disturbances with increased QTc intervals in both patients and controls, but with a 122% greater increase in QTcF interval in LQT2 patients (P=0.004). Conclusions: Besides a prolonged cardiac repolarization phase, LQT2 patients display increased GLP-1, GIP, and insulin secretion and defective glucagon secretion, causing decreased plasma glucose and thus increased risk of hypoglycemia. Furthermore, glucose ingestion increased QT interval and aggravated the cardiac repolarization disturbances in LQT2 patients. Clinical Trial Registration: URL: http://clinicaltrials.gov. Unique identifier: NCT02775513. PMID:28235848

  19. cAMP-secretion coupling is impaired in diabetic GK/Par rat β-cells: a defect counteracted by GLP-1.

    PubMed

    Dolz, Manuel; Movassat, Jamileh; Bailbé, Danielle; Le Stunff, Hervé; Giroix, Marie-Hélène; Fradet, Magali; Kergoat, Micheline; Portha, Bernard

    2011-11-01

    cAMP-raising agents with glucagon-like peptide-1 (GLP-1) as the first in class, exhibit multiple actions that are beneficial for the treatment of type 2 diabetic (T2D) patients, including improvement of glucose-induced insulin secretion (GIIS). To gain additional insight into the role of cAMP in the disturbed stimulus-secretion coupling within the diabetic β-cell, we examined more thoroughly the relationship between changes in islet cAMP concentration and insulin release in the GK/Par rat model of T2D. Basal cAMP content in GK/Par islets was significantly higher, whereas their basal insulin release was not significantly different from that of Wistar (W) islets. Even in the presence of IBMX or GLP-1, their insulin release did not significantly change despite further enhanced cAMP accumulation in both cases. The high basal cAMP level most likely reflects an increased cAMP generation in GK/Par compared with W islets since 1) forskolin dose-dependently induced an exaggerated cAMP accumulation; 2) adenylyl cyclase (AC)2, AC3, and G(s)α proteins were overexpressed; 3) IBMX-activated cAMP accumulation was less efficient and PDE-3B and PDE-1C mRNA were decreased. Moreover, the GK/Par insulin release apparatus appears less sensitive to cAMP, since GK/Par islets released less insulin at submaximal cAMP levels and required five times more cAMP to reach a maximal secretion rate no longer different from W. GLP-1 was able to reactivate GK/Par insulin secretion so that GIIS became indistinguishable from that of W. The exaggerated cAMP production is instrumental, since GLP-1-induced GIIS reactivation was lost in the presence the AC blocker 2',5'-dideoxyadenosine. This GLP-1 effect takes place in the absence of any improvement of the [Ca(2+)](i) response and correlates with activation of the cAMP-dependent PKA-dependent pathway.

  20. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance.

    PubMed

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol; Kim, Sung-Hoon

    2013-05-01

    The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance.

  1. Tributyltin exposure at noncytotoxic doses dysregulates pancreatic β-cell function in vitro and in vivo.

    PubMed

    Chen, Ya-Wen; Lan, Kuo-Cheng; Tsai, Jing-Ren; Weng, Te-I; Yang, Ching-Yao; Liu, Shing-Hwa

    2017-09-01

    Tributyltin (TBT) is an endocrine disruptor. TBT can be found in food and in human tissues and blood. Several animal studies revealed that organotins induced diabetes with decreased insulin secretion. The detailed effect and mechanism of TBT on pancreatic β-cell function still remain unclear. We investigated the effect and mechanism of TBT exposure at noncytotoxic doses relevant to human exposure on β-cell function in vitro and in vivo. The β-cell-derived RIN-m5F cells and pancreatic islets from mouse and human were treated with TBT (0.05-0.2 μM) for 0.5-4 h. Adult male mice were orally exposed to TBT (25 μg/kg/day) with or without antioxidant N-acetylcysteine (NAC) for 1-3 weeks. Assays for insulin secretion and glucose metabolism were carried out. Unlike previous studies, TBT at noncytotoxic concentrations significantly increased glucose-stimulated insulin secretion and intracellular Ca 2+ ([Ca 2+ ] i ) in β-cells. The reactive oxygen species (ROS) production and phosphorylation of protein kinase C (PKC-pan) and extracellular signal-regulated kinase (ERK)1/2 were also increased. These TBT-triggered effects could be reversed by antiestrogen ICI182780 and inhibitors of ROS, [Ca 2+ ] i , and PKC, but not ERK. Similarly, islets treated with TBT significantly increased glucose-stimulated insulin secretion, which could be reversed by ICI182780, NAC, and PKC inhibitor. Mice exposed to TBT for 3 weeks significantly increased blood glucose and plasma insulin and induced glucose intolerance and insulin resistance, which could be reversed by NAC. These findings suggest that low/noncytotoxic doses of TBT induce insulin dysregulation and disturb glucose homeostasis, which may be mediated through the estrogen receptor-regulated and/or oxidative stress-related signaling pathways.

  2. Autocrine effect of Zn²⁺ on the glucose-stimulated insulin secretion.

    PubMed

    Slepchenko, Kira G; Daniels, Nigel A; Guo, Aili; Li, Yang V

    2015-09-01

    It is well known that zinc (Zn(2+)) is required for the process of insulin biosynthesis and the maturation of insulin secretory granules in pancreatic beta (β)-cells, and that changes in Zn(2+) levels in the pancreas have been found to be associated with diabetes. Glucose-stimulation causes a rapid co-secretion of Zn(2+) and insulin with similar kinetics. However, we do not know whether Zn(2+) regulates insulin availability and secretion. Here we investigated the effect of Zn(2+) on glucose-stimulated insulin secretion (GSIS) in isolated mouse pancreatic islets. Whereas Zn(2+) alone (control) had no effect on the basal secretion of insulin, it significantly inhibited GSIS. The application of CaEDTA, by removing the secreted Zn(2+) from the extracellular milieu of the islets, resulted in significantly increased GSIS, suggesting an overall inhibitory role of secreted Zn(2+) on GSIS. The inhibitory action of Zn(2+) was mostly mediated through the activities of KATP/Ca(2+) channels. Furthermore, during brief paired-pulse glucose-stimulated Zn(2+) secretion (GSZS), Zn(2+) secretion following the second pulse was significantly attenuated, probably by the secreted endogenous Zn(2+) after the first pulse. Such an inhibition on Zn(2+) secretion following the second pulse was completely reversed by Zn(2+) chelation, suggesting a negative feedback mechanism, in which the initial glucose-stimulated Zn(2+) release inhibits subsequent Zn(2+) secretion, subsequently inhibiting insulin co-secretion as well. Taken together, these data suggest a negative feedback mechanism on GSZS and GSIS by Zn(2+) secreted from β-cells, and the co-secreted Zn(2+) may act as an autocrine inhibitory modulator.

  3. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    PubMed

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Gene Silencing of Phogrin Unveils Its Essential Role in Glucose-Responsive Pancreatic β-Cell Growth

    PubMed Central

    Torii, Seiji; Saito, Naoya; Kawano, Ayumi; Hou, Ni; Ueki, Kohjiro; Kulkarni, Rohit N.; Takeuchi, Toshiyuki

    2009-01-01

    OBJECTIVE—Phogrin and IA-2, autoantigens in insulin-dependent diabetes, have been shown to be involved in insulin secretion in pancreatic β-cells; however, implications at a molecular level are confusing from experiment to experiment. We analyzed biological functions of phogrin in β-cells by an RNA interference technique. RESEARCH DESIGN AND METHODS—Adenovirus-mediated expression of short hairpin RNA specific for phogrin (shPhogrin) was conducted using cultured β-cell lines and mouse islets. Both glucose-stimulated insulin secretion and cell proliferation rate were determined in the phogrin-knockdown cells. Furthermore, protein expression was profiled in these cells. To see the binding partner of phogrin in β-cells, coimmunoprecipitation analysis was carried out. RESULTS—Adenoviral expression of shPhogrin efficiently decreased its endogenous expression in pancreatic β-cells. Silencing of phogrin in β-cells abrogated the glucose-mediated mitogenic effect, which was accompanied by a reduction in the level of insulin receptor substrate 2 (IRS2) protein, without any changes in insulin secretion. Phogrin formed a complex with insulin receptor at the plasma membrane, and their interaction was promoted by high-glucose stimulation that in turn led to stabilization of IRS2 protein. Corroboratively, phogrin knockdown had no additional effect on the proliferation of β-cell line derived from the insulin receptor–knockout mouse. CONCLUSIONS—Phogrin is involved in β-cell growth via regulating stability of IRS2 protein by the molecular interaction with insulin receptor. We propose that phogrin and IA-2 function as an essential regulator of autocrine insulin action in pancreatic β-cells. PMID:19073770

  5. Effects of Ramadan fasting on glucose homeostasis and adiponectin levels in healthy adult males.

    PubMed

    Gnanou, Justin V; Caszo, Brinnell A; Khalil, Khalifah M; Abdullah, Shahidah L; Knight, Victor F; Bidin, Mohd Z

    2015-01-01

    Adiponectin is a hormone secreted by adipocytes during the fasting phase of the fast-fed cycle. Ramadan fasting involves prolonged fasting for up to twelve hours and thus could lead to increased secretion of adiponectin by adipocytes. However, studies on the role of adiponectin on glucose and body weight homeostasis during Ramadan fasting is still a matter of controversy. Thus the specific aim of this study was to assess the effect of fasting during Ramadan on the adiponectin levels, body weight and glucose homeostasis in healthy male Malaysian subjects. Twenty healthy male (19-23 years) Muslim subjects were followed up during the fasting month of Ramadan. Anthropometry and blood samples were taken one week before and during the fourth week of fasting. Plasma glucose, insulin and adiponectin were estimated and insulin sensitivity indices were estimated using the Homeostasis Model Assessment. Subjects experienced a significant decrease in body weight (2.4 %, p < 0.001) and body mass index (5.5 %, p < 0.01). There was also a significant decrease of 12.3 %, 52.8 % and 45.6 % of plasma glucose, insulin and adiponectin respectively (p < 0.01). The drop in adiponectin was positively correlated with the decrease in body weight (r = 0.45, p < 0.05). There was also a significant increase in insulin sensitivity and a decrease in insulin resistance (p < 0.01). These results indicate that Ramadan fasting in young healthy individuals has a positive impact on the maintenance of glucose homeostasis. It also shows that adiponectin levels dropped along with significant loss in weight. We feel caloric restriction during the Ramadan fasting is in itself sufficient to improve insulin sensitivity in healthy individuals.

  6. Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion.

    PubMed

    Houtz, Jessica; Borden, Philip; Ceasrine, Alexis; Minichiello, Liliana; Kuruvilla, Rejji

    2016-11-07

    Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet β cells. High glucose rapidly enhances NGF secretion and increases TrkA phosphorylation in mouse and human islets. Tissue-specific deletion of NGF or TrkA, or acute disruption of TrkA signaling, impairs glucose tolerance and insulin secretion in mice. We show that internalized TrkA receptors promote insulin granule exocytosis via F-actin reorganization. Furthermore, NGF treatment augments glucose-induced insulin secretion in human islets. These findings reveal a non-neuronal role for neurotrophins and identify a new regulatory pathway in insulin secretion that can be targeted to ameliorate β cell dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Low serum amylase and obesity, diabetes and metabolic syndrome: A novel interpretation

    PubMed Central

    Nakajima, Kei

    2016-01-01

    For the last decade, low serum amylase (hypoamylasemia) has been reported in certain common cardiometabolic conditions such as obesity, diabetes (regardless of type), and metabolic syndrome, all of which appear to have a common etiology of insufficient insulin action due to insulin resistance and/or diminished insulin secretion. Some clinical studies have shown that salivary amylase may be preferentially decreased in obese individuals, whereas others have revealed that pancreatic amylase may be preferentially decreased in diabetic subjects with insulin dependence. Despite this accumulated evidence, the clinical relevance of serum, salivary, and pancreatic amylase and the underlying mechanisms have not been fully elucidated. In recent years, copy number variations (CNVs) in the salivary amylase gene (AMY1), which range more broadly than the pancreatic amylase gene (AMY2A and AMY2B), have been shown to be well correlated with salivary and serum amylase levels. In addition, low CNV of AMY1, indicating low salivary amylase, was associated with insulin resistance, obesity, low taste perception/satiety, and postprandial hyperglycemia through impaired insulin secretion at early cephalic phase. In most populations, insulin-dependent diabetes is less prevalent (minor contribution) compared with insulin-independent diabetes, and obesity is highly prevalent compared with low body weight. Therefore, obesity as a condition that elicits cardiometabolic diseases relating to insulin resistance (major contribution) may be a common determinant for low serum amylase in a general population. In this review, the novel interpretation of low serum, salivary, and pancreas amylase is discussed in terms of major contributions of obesity, diabetes, and metabolic syndrome. PMID:27022442

  8. Role of estrogen receptors alpha, beta and GPER1/GPR30 in pancreatic beta-cells.

    PubMed

    Nadal, Angel; Alonso-Magdalena, Paloma; Soriano, Sergi; Ripoll, Cristina; Fuentes, Esther; Quesada, Ivan; Ropero, Ana Belen

    2011-01-01

    Estrogen receptors (ER) are emerging as important molecules involved in the adaptation of beta-cells to insulin resistance. The onset of type 2 diabetes is marked by insulin secretory dysfunction and decreased beta-cell mass. During pregnancy, puberty and obesity there is increased metabolic demand and insulin resistance is developed. This metabolic state increases the demand on beta-cells to augment insulin biosynthesis and release. In this respect, ERalpha is directly implicated in the E2-regulation of insulin content and secretion, while ERbeta is in the E2-potentiation of glucose-induced insulin release. Both receptors develop their actions within the physiological range of E2. In addition, the G protein-coupled estrogen receptor (GPER1/GPR30) seems to be implicated in the E2-regulation of stimulus-secretion coupling in the three cell types of the islet. The increased demand of insulin production for long time may lead to beta-cell stress and apoptosis. ERalpha, ERbeta and GPER1/GPR30 are involved in preventing beta-cell apoptosis, impeding the loss of critical beta-cell mass. Therefore, estrogen receptors may play an essential role in the adaptation of the pancreas to insulin resistant periods.

  9. Influence of High Aspect Ratio Vessel Cell Culture on TNF-Alpha, Insulin Secretion and Glucose Homeostasis in Pancreatic Islets of Langerhans from Wistar Furth Rats

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.a; Leeper-Woodford, Sandra K.

    1999-01-01

    The present studies were carried out to determine the influence of a ground based microgravity paradigm, utilizing the High Aspect Ratio Vessel (HARV) cell culture upon lipopolysaccharide (LPS) stimulated tumor necrosis factor alpha (TNF-alpha) production of pancreatic islets of Langerhans. An additional aim was to elucidate alterations in insulin secretion and glucose utilization using the HARV low shear, gravity averaged vector, cell culture technique. Islets were isolated (1726 +/- 117, 150 micron islet equivalent units) from Wistar Furth rats and assigned to four treatment groups: 1) HARV, 2) HARV plus LPS, 3) static culture, 4) static culture plus LPS. Following 48 hours of culture, insulin concentration was increased in both HARV and static cultures (p<0.05). Islet medium from HARV and static cultures were assayed for TNF-alpha (L929 cytotoxicity assay) and was measured at selected time points for 48 hours. TNF-alpha was significantly increased in LPS-induced HARV and static cultures, yet the increase was more pronounced in the static culture group (p<0.05). This is a novel observation and indicates that TNF producing cells are present in islets and that LPS stimulates TNF secretion in isolated islets. A decrease in insulin concentration was demonstrated in the islet medium of the LPS stimulated HARV culture (p<0.05). That TNF-alpha is associated with a decreased insulin secretion is intriguing, both as it relates to in-flight investigations, and as it may provide insight into the pathophysiology of Type I and Type 11 diabetes. Glucose concentration in islet medium was lesser throughout the experiment in static cultures, suggesting a decreased reliance upon glucose as a metabolic substrate in the islets cultured in HARVS. In conclusion, the present studies demonstrate alterations in LPS induced TNF-alpha production of pancreatic islets of Langerhans, favoring a lesser TNF production in the microgravity HARV paradigm. Additionally, alterations in fuel homeostasis may be promulgated by HARV culture. The clinical and physiological significance of these observations remains to be determined.

  10. Impact of scavenging hydrogen peroxide in the endoplasmic reticulum for β cell function.

    PubMed

    Lortz, S; Lenzen, S; Mehmeti, I

    2015-08-01

    Oxidative folding of nascent proteins in the endoplasmic reticulum (ER), catalysed by one or more members of the protein disulfide isomerase family and the sulfhydryl oxidase ER oxidoreductin 1 (ERO1), is accompanied by generation of hydrogen peroxide (H2O2). Because of the high rate of insulin biosynthesis and the low expression of H2O2-inactivating enzymes in pancreatic β cells, it has been proposed that the luminal H2O2 concentration might be very high. As the role of this H2O2 in ER stress and proinsulin processing is still unsolved, an ER-targeted and luminal-active catalase variant, ER-Catalase N244, was expressed in insulin-secreting INS-1E cells. In these cells, the influence of ER-specific H2O2 removal on cytokine-mediated cytotoxicity and ER stress, insulin gene expression, insulin content and secretion was analysed. The expression of ER-Catalase N244 reduced the toxicity of exogenously added H2O2 significantly with a threefold increase of the EC50 value for H2O2. However, the expression of cytokine-induced ER stress genes and viability after incubation with β cell toxic cytokines (IL1β alone or together with TNFα+IFNγ) was not affected by ER-Catalase N244. In control and ER-Catalase N244 expressing cells, insulin secretion and proinsulin content was identical, while removal of luminal H2O2 reduced insulin gene expression and insulin content in ER-Catalase N244 expressing cells. These data show that ER-Catalase N244 reduced H2O2 toxicity but did not provide protection against pro-inflammatory cytokine-mediated toxicity and ER stress. Insulin secretion was not affected by decreasing H2O2 in the ER in spite of a reduced insulin transcription and processing. © 2015 Society for Endocrinology.

  11. Biochemical consequences of alginate encapsulation: a NMR study of insulin-secreting cells.

    PubMed

    Simpson, Nicholas E; Grant, Samuel C; Gustavsson, Lenita; Peltonen, Vilje-Mia; Blackband, Stephen J; Constantinidis, Ioannis

    2006-04-01

    In this study we explore the biochemical consequences of alginate encapsulation on betaTC3 cells. (13)C NMR spectroscopy and isotopomer analysis were used to investigate the effects of encapsulation on several enzymatic processes associated with the TCA cycle. Our data show statistically significant differences in various enzymatic fluxes related to the TCA cycle and insulin secretion between monolayer and alginate-encapsulated cultures. The principal cause for these effects was the process of trypsinization. Embedding the trypsinized cells in alginate beads did not have a compounded effect on the enzymatic fluxes of entrapped cells. However, an additional small but statistically significant decrease in insulin secretion was measured in encapsulated cells. Finally, differences in either enzymatic fluxes or glucose consumption as a function of bead diameter were not observed. However, differences in T(2), assessed by (1)H NMR microimaging, were observed as a function of bead diameter, suggesting that smaller beads became more organized with time in culture, while larger beads displayed a looser organization.

  12. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro.

    PubMed

    Hafizur, Rahman M; Hameed, Abdul; Shukrana, Mishkat; Raza, Sayed Ali; Chishti, Sidra; Kabir, Nurul; Siddiqui, Rehan A

    2015-02-15

    Although the anti-diabetic activity of cinnamic acid, a pure compound from cinnamon, has been reported but its mechanism(s) is not yet clear. The present study was designed to explore the possible mechanism(s) of anti-diabetic activity of cinnamic acid in in vitro and in vivo non-obese type 2 diabetic rats. Non-obese type 2 diabetes was developed by injecting 90 mg/kg streptozotocin in 2-day-old Wistar pups. Cinnamic acid and cinnamaldehyde were administered orally to diabetic rats for assessing acute blood glucose lowering effect and improvement of glucose tolerance. Additionally, insulin secretory activity of cinnamic acid and cinnamaldehyde was evaluated in isolated mice islets. Cinnamic acid, but not cinnamaldehyde, decreased blood glucose levels in diabetic rats in a time- and dose-dependent manner. Oral administration of cinnamic acid with 5 and 10 mg/kg doses to diabetic rats improved glucose tolerance in a dose-dependent manner. The improvement by 10 mg/kg cinnamic acid was comparable to that of standard drug glibenclamide (5 mg/kg). Further in vitro studies showed that cinnamaldehyde has little or no effect on glucose-stimulated insulin secretion; however, cinnamic acid significantly enhanced glucose-stimulated insulin secretion in isolated islets. In conclusion, it can be said that cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and stimulating insulin secretion in vitro. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Insulin oversecretion in MSG-obese rats is related to alterations in cholinergic muscarinic receptor subtypes in pancreatic islets.

    PubMed

    Miranda, Rosiane A; Agostinho, Aryane R; Trevenzoli, Isis H; Barella, Luiz F; Franco, Claudinéia C S; Trombini, Amanda B; Malta, Ananda; Gravena, Clarice; Torrezan, Rosana; Mathias, Paulo C F; de Oliveira, Júlio C

    2014-01-01

    Impaired pancreatic beta cell function and insulin secretion/action are a link between obesity and type 2 diabetes, which are worldwide public health burdens. We aimed to characterize the muscarinic acetylcholine receptor (mAChR) M1-M4 subtypes in isolated pancreatic islets from pre-diabetic obese rats that had been treated neonatally with monosodium L-glutamate (MSG). At 90 days of age, both the MSG and the control groups underwent biometric and biochemical evaluation. Anti-muscarinic drugs were used to study mAChR function either in vivo or in vitro. The results demonstrated that atropine treatment reduced insulin secretion in the MSG-treated and control groups, whereas treatment with an M2mAChR-selective antagonist increased secretion. Moreover, the insulinostatic effect of an M3mAChR-selective antagonist was significantly higher in the MSG-treated group. M1mAChR and M3mAChR expression was increased in the MSG-obese group by 55% and 73%, respectively. In contrast, M2mAChR expression decreased by 25% in the MSG group, whereas M4mAChR expression was unchanged. Functional changes in and altered content of the mAChR (M1-M4) subtypes are pivotal to the demand for high pancreatic beta cell insulin secretion in MSG-obese rats, which is directly associated with vagal hyperactivity and peripheral insulin resistance. © 2014 S. Karger AG, Basel.

  14. Cinnamon water extracts increase glucose uptake but inhibit adiponectin secretion in 3T3-L1 adipose cells.

    PubMed

    Roffey, Benjamin; Atwal, Avtar; Kubow, Stan

    2006-08-01

    The effects of three concentrations (0.2, 0.3, and 0.4 mg/mL) of a cinnamon extract (CE) (Cinnamomum zeylanicum) on glucose uptake and adiponectin secretion in 3T3-L1 adipocytes were examined in the presence and absence of 0.5 nM and 50 nM insulin. In the absence of insulin, adipocytes exposed to 0.2 mg/mL CE showed an approximate two-fold increase in glucose uptake relative to controls although glucose uptake was unaffected by the two higher concentrations of CE. No effect of CE on glucose uptake was noted in the presence of 0.5 nM insulin whereas the two highest concentrations (0.3 and 0.4 mg/mL) of CE showed a significant dose-dependent decrease in glucose uptake in the presence of 50 nM insulin. Treatment of the adipocytes with 50 nM wortmannin, an irreversible inhibitor of the p110 isoform of phosphoinositide 3'-kinase, was associated with complete inhibition of the stimulated glucose uptake induced by 0.2 mg/mL CE. Treatment of the adipocytes with 0.2 mg/mL CE was associated with an inhibition of adiponectin secretion to levels that were nondetectable. The present study indicates that although 0.2 mg/mL CE has insulin-mimetic action in 3T3-adipocytes in terms of glucose uptake, secretion of the antidiabetic hormone adiponectin is adversely affected.

  15. Vascular Endothelial Growth Factor–Mediated Islet Hypervascularization and Inflammation Contribute to Progressive Reduction of β-Cell Mass

    PubMed Central

    Agudo, Judith; Ayuso, Eduard; Jimenez, Veronica; Casellas, Alba; Mallol, Cristina; Salavert, Ariana; Tafuro, Sabrina; Obach, Mercè; Ruzo, Albert; Moya, Marta; Pujol, Anna; Bosch, Fatima

    2012-01-01

    Type 2 diabetes (T2D) results from insulin resistance and inadequate insulin secretion. Insulin resistance initially causes compensatory islet hyperplasia that progresses to islet disorganization and altered vascularization, inflammation, and, finally, decreased functional β-cell mass and hyperglycemia. The precise mechanism(s) underlying β-cell failure remain to be elucidated. In this study, we show that in insulin-resistant high-fat diet-fed mice, the enhanced islet vascularization and inflammation was parallel to an increased expression of vascular endothelial growth factor A (VEGF). To elucidate the role of VEGF in these processes, we have genetically engineered β-cells to overexpress VEGF (in transgenic mice or after adeno-associated viral vector-mediated gene transfer). We found that sustained increases in β-cell VEGF levels led to disorganized, hypervascularized, and fibrotic islets, progressive macrophage infiltration, and proinflammatory cytokine production, including tumor necrosis factor-α and interleukin-1β. This resulted in impaired insulin secretion, decreased β-cell mass, and hyperglycemia with age. These results indicate that sustained VEGF upregulation may participate in the initiation of a process leading to β-cell failure and further suggest that compensatory islet hyperplasia and hypervascularization may contribute to progressive inflammation and β-cell mass loss during T2D. PMID:22961079

  16. Insulin secretion from isolated rat islets induced by the novel hypoglycemic agent A-4166, a derivative of D-phenylalanine.

    PubMed

    Tsukuda, K; Sakurada, M; Niki, I; Oka, Y; Kikuchi, M

    1998-01-01

    A derivative of D-phenylalanine, A-4166, reportedly evokes a more rapid and short-lived hypoglycemic action in vivo than any of the currently available sulfonylureas. This novel oral hypoglycemic agent is structurally different from sulfonylureas. Therefore, studies were designed to elucidate the mechanisms by which A-4166 stimulates insulin secretion. Insulin release from incubated or perifused rat islets was dose-dependently stimulated by 10 to 200 mumol/l A-4166, in the presence of 2.8 mmol/l glucose. Both A-4166 and tolbutamide evoke a prompt rise in insulin secretion followed by a sustained gradually decreasing release from perfused islets in the presence of low glucose, although A-4166 appeared to be more sensitive than tolbutamide to subthreshold glucose concentration. Diazoxide abolished the initial release and blunted sustained release. Removing calcium from the perifusate abolished insulin release within 15 minutes. A-4166 inhibited [3H]-glibenclamide binding to HIT cell membranes and 86Rb efflux from ATP-depleted or diazoxide-treated cells. These results suggest that the insulin release induced by A-4166 is relevant to this agent occupying the tolbutamide binding sites. Therefore, one possible mechanism accounting for the more rapid and short-lived hypoglycemic action of A-4166 in vivo, as compared with tolbutamide, may involve the reported differences in the bioavailability of A-4166.

  17. Rosuvastatin Treatment Affects Both Basal and Glucose-Induced Insulin Secretion in INS-1 832/13 Cells

    PubMed Central

    Salunkhe, Vishal A.; Elvstam, Olof; Eliasson, Lena; Wendt, Anna

    2016-01-01

    Rosuvastatin is a member of the statin family. Like the other statins it is prescribed to lower cholesterol levels and thereby reduce the risk of cardiovascular events. Rosuvastatin lowers the cholesterol levels by inhibiting the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) in the cholesterol producing mevalonate pathway. It has been recognized that apart from their beneficial lipid lowering effects, statins also exhibit diabetogenic properties. The molecular mechanisms behind these remain unresolved. To investigate the effects of rosuvastatin on insulin secretion, we treated INS-1 832/13 cells with varying doses (20 nM to 20 μM) of rosuvastatin for 48 h. At concentrations of 2 μM and above basal insulin secretion was significantly increased. Using diazoxide we could determine that rosuvastatin did not increase basal insulin secretion by corrupting the KATP channels. Glucose-induced insulin secretion on the other hand seemed to be affected differently at different rosuvastatin concentrations. Rosuvastatin treatment (20 μM) for 24–48 h inhibited voltage-gated Ca2+ channels, which lead to reduced depolarization-induced exocytosis of insulin-containing granules. At lower concentrations of rosuvastatin (≤ 2 μM) the stimulus-secretion coupling pathway was intact downstream of the KATP channels as assessed by the patch clamp technique. However, a reduction in glucose-induced insulin secretion could be observed with rosuvastatin concentrations as low as 200 nM. The inhibitory effects of rosuvastatin on glucose-induced insulin secretion could be reversed with mevalonate, but not squalene, indicating that rosuvastatin affects insulin secretion through its effects on the mevalonate pathway, but not through the reduction of cholesterol biosynthesis. Taken together, these data suggest that rosuvastatin has the potential to increase basal insulin secretion and reduce glucose-induced insulin secretion. The latter is possibly an unavoidable side effect of rosuvastatin treatment as it occurs through the same mechanisms as the lipid-lowering effects of the drug. PMID:26986474

  18. The relationship between insulin secretion, the insulin-like growth factor axis and growth in children with cystic fibrosis.

    PubMed

    Ripa, Paulus; Robertson, Ian; Cowley, David; Harris, Margaret; Masters, I Brent; Cotterill, Andrew M

    2002-03-01

    Cystic fibrosis-related diabetes mellitus (CFRD) is an increasingly common complication of cystic fibrosis. CFRD is preceded by a progressive decline in insulin secretion but there is no accepted definition of the prediabetic state in CFRD. This prediabetic state appears to have adverse effects on clinical status, nutrition and lung function, but there is no direct evidence that the impaired glucose homeostasis is the cause of these deteriorations. This study examined the prevalence of glucose intolerance and impaired insulin secretion in a population of children with CF without CFRD. Severe CF lung disease is often associated with poor weight gain and slower growth but the mechanism for this is still unclear. The relationships between the current state of glucose homeostasis, insulin secretion and the insulin-like growth factor axis, height velocity, nutrition status and lung function were therefore studied. Eighteen children with cystic fibrosis aged 9.5-15 years had oral glucose tolerance tests and 14 of these also had intravenous glucose tolerance tests (four refused). Blood samples were collected for insulin, C-peptide, glucose, HbA1c, insulin-like growth factor (IGF)-I, IGF-II, IGF-binding protein (IGFBP)-1 and IGFBP-3. Data on height, weight, puberty status, clinical score (Shwachman score) and lung function were recorded. Height velocity, height and weight standard deviation scores (SDS) were calculated using WHO/CDC data. The mean height SDS (-0.52 +/- 0.17) was less than the normal population (P = 0.007) and the mean height velocity was 4.6 +/- 0.5 cm/year, 39% with a height velocity less than the third percentile for age. The weight SDS and body mass index (BMI) were similar to the normal population. Four children had impaired glucose tolerance. The first-phase insulin response (FPIR) was below the first percentile of normal population values in nine (65%). Impaired FPIR or impaired glucose tolerance did not correlate with the Shwachman score, nutritional status or pulmonary function. There was a significant positive correlation between insulin secretion (area under the curve) and height velocity (P = 0.001) and serum IGFBP-3 levels (P = 0.001). Impaired glucose tolerance was present in 20% of children with cystic fibrosis. Impaired insulin secretion was common (65%) even in children with normal glucose tolerance. The mean height SDS for the group was low and the height velocity was abnormally slow in 39%, yet nutritional status as measured by BMI was appropriate for age. Relative insulin deficiency rather than nutritional deprivation or poor clinical status thus appears to be implicated in the poor linear growth of these children with relatively stable lung disease. This was a small study and firm conclusions on this chronic suppurative disease as to the cause of poor growth are not possible. The causes of poor growth are likely to be complex; nevertheless, the apparent decrease in insulin secretion combined with the expected increased demands on insulin production during pubertal growth raises the question as to whether insulin therapy should be considered in children with cystic fibrosis before the onset of cystic fibrosis-related diabetes mellitus.

  19. Improved insulin sensitivity and secretion in prediabetic patients with adrenal insufficiency on dual-release hydrocortisone treatment: a 36-month retrospective analysis.

    PubMed

    Guarnotta, Valentina; Ciresi, Alessandro; Pillitteri, Giuseppe; Giordano, Carla

    2018-05-01

    Dual-release hydrocortisone (DR-HC) provides physiological cortisol exposure, leading to an improvement of anthropometric and metabolic parameters. The aim of the study was to evaluate the effects of DR-HC on insulin secretion and sensitivity and cardiometabolic risk, indirectly expressed by the visceral adiposity index (VAI). Retrospective analysis of 49 patients, 13 with primary and 36 with secondary adrenal insufficiency (AI), respectively, on conventional glucocorticoid treatment at baseline and switched to DR-HC for 36 months. Overall, 24 patients had AI-pre-diabetes (impaired fasting glucose, impaired glucose tolerance and the combination), and 25 had AI-normal glucose tolerance (NGT). Clinical and metabolic parameters, including VAI, insulin secretion and sensitivity indexes (fasting insulinaemia, AUC 2 h insulinaemia , oral disposition index [Dio] and ISI-Matsuda), were evaluated. In patients with AI-NGT and AI-prediabetes, a significant decrease in BMI (P = .017 and P < .001), waist circumference (P = .008 and P < .001), HbA1c (P = .034 and P = .001) and a significant increase in HDL-C (P = .036 and P = .043) was, respectively, observed. In addition, in prediabetic patients, only we found a significant decrease in insulinaemia (P = .014), AUC 2 h insulinaemia (P = .038) and VAI (P = .001), in concomitance with a significant increase in DIo (P = .041) and ISI-Matsuda (P = .038). Long-term DR-HC therapy is associated with an improvement in insulin secretion and sensitivity in patients with prediabetes. However, all patients appear to benefit from the treatment in terms of improvement of metabolic and anthropometric parameters. Larger studies are required to confirm our preliminary data. © 2018 John Wiley & Sons Ltd.

  20. Nε-(carboxymethyl) lysine-induced mitochondrial fission and mitophagy cause decreased insulin secretion from β-cells.

    PubMed

    Lo, Mei-Chen; Chen, Ming-Hong; Lee, Wen-Sen; Lu, Chin-I; Chang, Chuang-Rung; Kao, Shu-Huei; Lee, Horng-Mo

    2015-11-15

    Nε-(carboxymethyl) lysine-conjugated bovine serum albumin (CML-BSA) is a major component of advanced glycation end products (AGEs). We hypothesised that AGEs reduce insulin secretion from pancreatic β-cells by damaging mitochondrial functions and inducing mitophagy. Mitochondrial morphology and the occurrence of autophagy were examined in pancreatic islets of diabetic db/db mice and in the cultured CML-BSA-treated insulinoma cell line RIN-m5F. In addition, the effects of α-lipoic acid (ALA) on mitochondria in AGE-damaged tissues were evaluated. The diabetic db/db mouse exhibited an increase in the number of autophagosomes in damaged mitochondria and receptor for AGEs (RAGE). Treatment of db/db mice with ALA for 12 wk increased the number of mitochondria with well-organized cristae and fewer autophagosomes. Treatment of RIN-m5F cells with CML-BSA increased the level of RAGE protein and autophagosome formation, caused mitochondrial dysfunction, and decreased insulin secretion. CML-BSA also reduced mitochondrial membrane potential and ATP production, increased ROS and lipid peroxide production, and caused mitochondrial DNA deletions. Elevated fission protein dynamin-related protein 1 (Drp1) level and mitochondrial fragmentation demonstrated the unbalance of mitochondrial fusion and fission in CML-BSA-treated cells. Additionally, increased levels of Parkin and PTEN-induced putative kinase 1 protein suggest that fragmented mitochondria were associated with increased mitophagic activity, and ALA attenuated the CML-BSA-induced mitophage formation. Our study demonstrated that CML-BSA induced mitochondrial dysfunction and mitophagy in pancreatic β-cells. The findings from this study suggest that increased concentration of AGEs may damage β-cells and reduce insulin secretion. Copyright © 2015 the American Physiological Society.

  1. Salivary factors in children and adolescents with insulin-dependent diabetes mellitus.

    PubMed

    Karjalainen, K M; Knuuttila, M L; Käär, M L

    1996-01-01

    To determine whether hyperglycemia in IDDM (insulin-dependent diabetes mellitus) could interfere with salivary secretion rates, salivary glucose levels, and salivary microbial counts, we studied salivary factors in two groups of children and adolescents with IDDM. One study group included 14 children with newly diagnosed IDDM )mean age 11 years, SD +/- 2.4 years). Samples of saliva were collected on admission to hospital and after 2 weeks on insulin treatment. The other study group were 50 IDDM children (mean age 14.4 years, SD +/- 1.7 years, mean duration of diabetes 6.2 years, SD +/- 1.4 years) visiting the outpatient diabetic clinic. Samples of saliva were collected during two visits, approximately 3 months apart. In the newly diagnosed IDDM cases, mean salivary glucose level decreased from 54.1 +/- 31.7 mg/l to 35.2 +/- 29.5 mg/l (P = 0.096) after beginning insulin treatment. During hyperglycemia, salivary glucose levels correlated with mean blood glucose levels for the day concerned (r = 0.65, P < 0.05). The results suggest that high blood glucose levels can increase salivary glucose levels. Stimulated saliva secretion increased significantly from 5.4 +/- 3.3 ml/5 min to 7.3 +/- 2.6 ml/5 min (P < 0.01) while glucose balance improved. In the long-term IDDM cases, salivary flow rates and salivary glucose levels were not significantly related to the glycosylated hemoglobin (HbA1) values. Salivary glucose levels and salivary secretion rates were inversely correlated (P < 0.05). In conclusion, hyperglycemia was observed to be associated with decreased salivary secretion and high salivary glucose levels. As a consequence, salivary lactobacilli and yeast counts tended to increase.

  2. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance

    PubMed Central

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol

    2013-01-01

    Background/Aims The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). Methods A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). Results The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Conclusions Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance. PMID:23682224

  3. Potential utility of combination therapy with nateglinide and telmisartan for metabolic derangements in Zucker Fatty rats.

    PubMed

    Kajioka, T; Miura, K; Kitahara, Y; Yamagishi, S

    2007-12-01

    The metabolic syndrome is strongly associated with insulin resistance and has been recognized as a cluster of risk factors for cardiovascular disease. Insulin resistance and/or impaired early-phase insulin secretion are major determinants of postprandial hyperglycemia. In this study, we investigated the potential utility of combination therapy with telmisartan, an angiotensin II receptor blocker and nateglinide, a rapid-onset/short-duration insulinotropic agent, for the treatment of postprandial hyperglycemia and metabolic derangements in Zucker Fatty (ZF) rats. ZF rats fed twice daily were given vehicle, 50 mg/kg of nateglinide, 5 mg/kg of telmisartan, or both for 6 weeks. Combination therapy with nateglinide and telmisartan for 2 weeks ameliorated postprandial hyperglycemia in ZF rats fed twice daily. Furthermore, 6-week treatment with nateglinide and telmisartan not only decreased fasting plasma insulin, triglycerides, and free fatty acid levels, but also improved the responses of blood glucose to insulin and subsequently reduced the decremental glucose areas under the curve in the ZF rats. Combination therapy also restored the decrease of plasma adiponectin levels in the ZF rats. Monotherapy with nateglinide or telmisartan alone didnot significantly improve these metabolic parameters. These observations demonstrate that combination therapy with nateglinide and telmisartan may improve the metabolic derangements by ameliorating early phase of insulin secretion as well as insulin resistance in ZF rats fed twice daily. Our present findings suggest that the combination therapy with nateglinide and telmisartan could be a promising therapeutic strategy for the treatment of the metabolic syndrome.

  4. Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet.

    PubMed

    Benninger, R K P; Head, W Steven; Zhang, Min; Satin, Leslie S; Piston, David W

    2011-11-15

    Cell-cell communication in the islet of Langerhans is important for the regulation of insulin secretion. Gap-junctions coordinate oscillations in intracellular free-calcium ([Ca(2+)](i)) and insulin secretion in the islet following elevated glucose. Gap-junctions can also ensure that oscillatory [Ca(2+)](i) ceases when glucose is at a basal levels. We determine the roles of gap-junctions and other cell-cell communication pathways in the suppression of insulin secretion under basal conditions. Metabolic, electrical and insulin secretion levels were measured from islets lacking gap-junction coupling following deletion of connexion36 (Cx36(-/-)), and these results were compared to those obtained using fully isolated β-cells. K(ATP) loss-of-function islets provide a further experimental model to specifically study gap-junction mediated suppression of electrical activity. In isolated β-cells or Cx36(-/-) islets, elevations in [Ca(2+)](i) persisted in a subset of cells even at basal glucose. Isolated β-cells showed elevated insulin secretion at basal glucose; however, insulin secretion from Cx36(-/-) islets was minimally altered. [Ca(2+)](i) was further elevated under basal conditions, but insulin release still suppressed in K(ATP) loss-of-function islets. Forced elevation of cAMP led to PKA-mediated increases in insulin secretion from islets lacking gap-junctions, but not from islets expressing Cx36 gap junctions. We conclude there is a redundancy in how cell-cell communication in the islet suppresses insulin release. Gap junctions suppress cellular heterogeneity and spontaneous [Ca(2+)](i) signals, while other juxtacrine mechanisms, regulated by PKA and glucose, suppress more distal steps in exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still suppress basal insulin secretion.

  5. β-Cell Lipotoxicity After an Overnight Intravenous Lipid Challenge and Free Fatty Acid Elevation in African American Versus American White Overweight/Obese Adolescents

    PubMed Central

    Hughan, Kara S.; Bonadonna, Riccardo C.; Lee, SoJung; Michaliszyn, Sara F.

    2013-01-01

    Objective: Overweight/obese (OW/OB) African American (AA) adolescents have a more diabetogenic insulin secretion/sensitivity pattern compared with their American white (AW) peers. The present study investigated β-cell lipotoxicity to test whether increased free fatty acid (FFA) levels result in greater β-cell dysfunction in AA vs AW OW/OB adolescents. Research Design and Methods: Glucose-stimulated insulin secretion was modeled, from glucose and C-peptide concentrations during a 2-hour hyperglycemic (225 mg/dL) clamp in 22 AA and 24 AW OW/OB adolescents, on 2 occasions after a 12-hour overnight infusion of either normal saline or intralipid (IL) in a random sequence. β-Cell function relative to insulin sensitivity, the disposition index (DI), was examined during normal saline and IL conditions. Substrate oxidation was evaluated with indirect calorimetry and body composition and abdominal adiposity with dual-energy X-ray absorptiometry and magnetic resonance imaging at L4-L5, respectively. Results: Age, sex, body mass index, total and sc adiposity were similar between racial groups, but visceral adiposity was significantly lower in AAs. During IL infusion, FFAs and fat oxidation increased and insulin sensitivity decreased similarly in AAs and AWs. β-Cell glucose sensitivity of first- and second-phase insulin secretion did not change significantly during IL infusion in either group, but DI in each phase decreased significantly and similarly in AAs and AWs. Conclusions: Overweight/obese AA and AW adolescents respond to an overnight fat infusion with significant declines in insulin sensitivity, DI, and β-cell function relative to insulin sensitivity, suggestive of β-cell lipotoxicity. However, contrary to our hypothesis, there does not seem to be a race differential in β-cell lipotoxicity. Longer durations of FFA elevation may unravel such race-related contrasts. PMID:23526462

  6. Basal measures of insulin sensitivity and insulin secretion and simplified glucose tolerance tests in dogs.

    PubMed

    Verkest, K R; Fleeman, L M; Rand, J S; Morton, J M

    2010-10-01

    There is need for simple, inexpensive measures of glucose tolerance, insulin sensitivity, and insulin secretion in dogs. The aim of this study was to estimate the closeness of correlation between fasting and dynamic measures of insulin sensitivity and insulin secretion, the precision of fasting measures, and the agreement between results of standard and simplified glucose tolerance tests in dogs. A retrospective descriptive study using 6 naturally occurring obese and 6 lean dogs was conducted. Data from frequently sampled intravenous glucose tolerance tests (FSIGTTs) in 6 obese and 6 lean client-owned dogs were used to calculate HOMA, QUICKI, fasting glucose and insulin concentrations. Fasting measures of insulin sensitivity and secretion were compared with MINMOD analysis of FSIGTTs using Pearson correlation coefficients, and they were evaluated for precision by the discriminant ratio. Simplified sampling protocols were compared with standard FSIGTTs using Lin's concordance correlation coefficients, limits of agreement, and Pearson correlation coefficients. All fasting measures except fasting plasma glucose concentration were moderately correlated with MINMOD-estimated insulin sensitivity (|r| = 0.62-0.80; P < 0.03), and those that combined fasting insulin and glucose were moderately closely correlated with MINMOD-estimated insulin secretion (r = 0.60-0.79; P < 0.04). HOMA calculated using the nonlinear formulae had the closest estimated correlation (r = 0.77 and 0.74) and the best discrimination for insulin sensitivity and insulin secretion (discriminant ratio 4.4 and 3.4, respectively). Simplified sampling protocols with half as many samples collected over 3 h had close agreement with the full sampling protocol. Fasting measures and simplified intravenous glucose tolerance tests reflect insulin sensitivity and insulin secretion derived from frequently sampled glucose tolerance tests with MINMOD analysis in dogs. Copyright 2010 Elsevier Inc. All rights reserved.

  7. E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet.

    PubMed

    Rogers, Gareth J; Hodgkin, Matthew N; Squires, Paul E

    2007-01-01

    The efficient secretion of insulin from beta-cells requires extensive intra-islet communication. The cell surface adhesion protein epithelial (E)-cadherin (ECAD) establishes and maintains epithelial tissues such as the islets of Langerhans. In this study, the role of ECAD in regulating insulin secretion from pseudoislets was investigated. The effect of an immuno-neutralising ECAD on gross morphology, cytosolic calcium signalling, direct cell-to-cell communication and insulin secretion was assessed by fura-2 microfluorimetry, Lucifer Yellow dye injection and insulin ELISA in an insulin-secreting model system. Antibody blockade of ECAD reduces glucose-evoked changes in [Ca(2+)](i) and insulin secretion. Neutralisation of ECAD causes a breakdown in the glucose-stimulated synchronicity of calcium oscillations between discrete regions within the pseudoislet, and the transfer of dye from an individual cell within a cell cluster is attenuated in the absence of ECAD ligation, demonstrating that gap junction communication is disrupted. The functional consequence of neutralising ECAD is a significant reduction in insulin secretion. Cell adhesion via ECAD has distinct roles in the regulation of intercellular communication between beta-cells within islets, with potential repercussions for insulin secretion.

  8. Dopamine Synthesis and D3 Receptor Activation in Pancreatic β-Cells Regulates Insulin Secretion and Intracellular [Ca2+] Oscillations

    PubMed Central

    Ustione, Alessandro

    2012-01-01

    Pancreatic islets are critical for glucose homeostasis via the regulated secretion of insulin and other hormones. We propose a novel mechanism that regulates insulin secretion from β-cells within mouse pancreatic islets: a dopaminergic negative feedback acting on insulin secretion. We show that islets are a site of dopamine synthesis and accumulation outside the central nervous system. We show that both dopamine and its precursor l-dopa inhibit glucose-stimulated insulin secretion, and this inhibition correlates with a reduction in frequency of the intracellular [Ca2+] oscillations. We further show that the effects of dopamine are abolished by a specific antagonist of the dopamine receptor D3. Because the dopamine transporter and dopamine receptors are expressed in the islets, we propose that cosecretion of dopamine with insulin activates receptors on the β-cell surface. D3 receptor activation results in changes in intracellular [Ca2+] dynamics, which, in turn, lead to lowered insulin secretion. Because blocking dopaminergic negative feedback increases insulin secretion, expanding the knowledge of this pathway in β-cells might offer a potential new target for the treatment of type 2 diabetes. PMID:22918877

  9. Impaired insulin secretion in the spontaneous diabetes rats.

    PubMed

    Kimura, K; Toyota, T; Kakizaki, M; Kudo, M; Takebe, K; Goto, Y

    1982-08-01

    Dynamics of insulin and glucagon secretion were investigated by using a new model of spontaneous diabetes rats produced by the repetition of selective breeding in our laboratories. The perfusion experiments of the pancreas showed that the early phase of insulin secretion to continuous stimulation with glucose was specifically impaired, although the response of the early phase to arginine was preserved. The glucose-induced insulin secretion in the nineth generation (F8) which had a more remarkably impaired glucose tolerance was more reduced than in the sixth generation (F5). No significant difference of glucagon secretion in response to arginine or norepinephrine was noted between the diabetes rats and control ones. The present data indicate that the defective insulin secretion is a primary derangement in a diabetic state of the spontaneous diabetes rat. This defect in the early phase of glucose-induced insulin secretion suggests the specific impairment of the recognition of glucose by the pancreatic beta-cells. The spontaneous diabetes rats are very useful as a model of disease for investigating pathophysiology of non-insulin dependent diabetes mellitus.

  10. The Rab11 Effector Protein FIP1 Regulates Adiponectin Trafficking and Secretion

    PubMed Central

    Moreno-Navarrete, Jose Maria; Fernandez-Real, Jose Manuel; Mora, Silvia

    2013-01-01

    Adiponectin is an adipokine secreted by white adipocytes involved in regulating insulin sensitivity in peripheral tissues. Secretion of adiponectin in adipocytes relies on the endosomal system, however, the intracellular machinery involved in mediating adiponectin release is unknown. We have previously reported that intracellular adiponectin partially compartmentalizes with rab 5 and rab11, markers for the early/sorting and recycling compartments respectively. Here we have examined the role of several rab11 downstream effector proteins (rab11 FIPs) in regulating adiponectin trafficking and secretion. Overexpression of wild type rab11 FIP1, FIP3 and FIP5 decreased the amount of secreted adiponectin expressed in HEK293 cells, whereas overexpression of rab11 FIP2 or FIP4 had no effect. Furthermore shRNA-mediated depletion of FIP1 enhanced adiponectin release whereas knock down of FIP5 decreased adiponectin secretion. Knock down of FIP3 had no effect. In 3T3L1 adipocytes, endogenous FIP1 co-distributed intracellularly with endogenous adiponectin and FIP1 depletion enhanced adiponectin release without altering insulin-mediated trafficking of the glucose transporter Glut4. While adiponectin receptors internalized with transferrin receptors, there were no differences in transferrin receptor recycling between wild type and FIP1 depleted adipocytes. Consistent with its inhibitory role, FIP1 expression was decreased during adipocyte differentiation, by treatment with thiazolidinediones, and with increased BMI in humans. In contrast, FIP1 expression increased upon exposure of adipocytes to TNFα. In all, our findings identify FIP1 as a novel protein involved in the regulation of adiponectin trafficking and release. PMID:24040321

  11. Influence of Flavonoids on Mechanism of Modulation of Insulin Secretion.

    PubMed

    Soares, Juliana Mikaelly Dias; Pereira Leal, Ana Ediléia Barbosa; Silva, Juliane Cabral; Almeida, Jackson R G S; de Oliveira, Helinando Pequeno

    2017-01-01

    The development of alternatives for insulin secretion control in vivo or in vitro represents an important aspect to be investigated. In this direction, natural products have been progressively explored with this aim. In particular, flavonoids are potential candidates to act as insulin secretagogue. To study the influence of flavonoid on overall modulation mechanisms of insulin secretion. The research was conducted in the following databases and platforms: PubMed, Scopus, ISI Web of Knowledge, SciELO, LILACS, and ScienceDirect, and the MeSH terms used for the search were flavonoids, flavones, islets of Langerhans, and insulin-secreting cells. Twelve articles were included and represent the basis of discussion on mechanisms of insulin secretion of flavonoids. Papers in ISI Web of Knowledge were in number of 1, Scopus 44, PubMed 264, ScienceDirect 511, and no papers from LILACS and SciELO databases. According to the literature, the majority of flavonoid subclasses can modulate insulin secretion through several pathways, in an indication that corresponding molecule is a potential candidate for active materials to be applied in the treatment of diabetes. The action of natural products on insulin secretion represents an important investigation topic due to their importance in the diabetes controlIn addition to their typical antioxidant properties, flavonoids contribute to the insulin secretionThe modulation of insulin secretion is induced by flavonoids according to different mechanisms. Abbreviations used: K ATP channels: ATP-sensitive K + channels, GLUT4: Glucose transporter 4, ERK1/2: Extracellular signal-regulated protein kinases 1 and 2, L-VDCCs: L-type voltage-dependent Ca +2 channels, GLUT1: Glucose transporter 1, AMPK: Adenosine monophosphate-activated protein kinase, PTP1B: Protein tyrosine phosphatase 1B, GLUT2: Glucose transporter 2, cAMP: Cyclic adenosine monophosphate, PKA: Protein kinase A, PTK: Protein tyrosine kinase, CaMK II: Ca 2+ /calmodulin-dependent protein kinase II, GSIS: Glucose-stimulated insulin secretion, Insig-1: Insulin-induced gene 1, IRS-2: Insulin receptor substrate 2, PDX-1: Pancreatic and duodenal homeobox 1, SREBP-1c: Sterol regulatory element binding protein-1c, DMC: Dihydroxy-6'-methoxy-3',5'-dimethylchalcone, GLP-1: Glucagon-like peptide-1, GLP-1R: Glucagon-like peptide 1 receptor.

  12. Role of proximal gut exclusion from food on glucose homeostasis in patients with Type 2 diabetes.

    PubMed

    Cohen, R; le Roux, C W; Papamargaritis, D; Salles, J E; Petry, T; Correa, J L; Pournaras, D J; Galvao Neto, M; Martins, B; Sakai, P; Schiavon, C A; Sorli, C

    2013-12-01

    To report Type 2 diabetes-related outcomes after the implantation of a duodenal-jejunal bypass liner device and to investigate the role of proximal gut exclusion from food in glucose homeostasis using the model of this device. Sixteen patients with Type 2 diabetes and BMI <36 kg/m(2) were evaluated before and 1, 12 and 52 weeks after duodenal-jejunal bypass liner implantation and 26 weeks after explantation. Mixed-meal tolerance tests were conducted over a period of 120 min and glucose, insulin and C-peptide levels were measured. The Matsuda index and the homeostatic model of assessment of insulin resistance were used for the estimation of insulin sensitivity and insulin resistance. The insulin secretion rate was calculated using deconvolution of C-peptide levels. Body weight decreased by 1.3 kg after 1 week and by 2.4 kg after 52 weeks (P < 0.001). One year after duodenal-jejunal bypass liner implantation, the mean (sem) HbA(1c) level decreased from 71.3 (2.4) mmol/mol (8.6[0.2]%) to 58.1 (4.4) mmol/mol (7.5 [0.4]%) and mean (sem) fasting glucose levels decreased from 203.3 (13.5) mg/dl to 155.1 (13.1) mg/dl (both P < 0.001). Insulin sensitivity improved by >50% as early as 1 week after implantation as measured by the Matsuda index and the homeostatic model of assessment of insulin resistance (P < 0.001), but there was a trend towards deterioration in all the above-mentioned variables 26 weeks after explantation. Fasting insulin levels, insulin area under the curve, fasting C-peptide, C-peptide area under the curve, fasting insulin and total insulin secretion rates did not change during the duodenal-jejunal bypass liner implantation period or after explantation. The duodenal-jejunal bypass liner improves glycaemia in overweight and obese patients with Type 2 diabetes by rapidly improving insulin sensitivity. A reduction in hepatic glucose output is the most likely explanation for this improvement. © 2013 The Authors. Diabetic Medicine © 2013 Diabetes UK.

  13. Increased VLDL-triglyceride secretion precedes impaired control of endogenous glucose production in obese, normoglycemic men.

    PubMed

    Sørensen, Lars P; Søndergaard, Esben; Nellemann, Birgitte; Christiansen, Jens S; Gormsen, Lars C; Nielsen, Søren

    2011-09-01

    To assess basal and insulin-mediated VLDL-triglyceride (TG) kinetics and the relationship between VLDL-TG secretion and hepatic insulin resistance assessed by endogenous glucose production (EGP) in obese and lean men. A total of 12 normoglycemic, obese (waist-to-hip ratio >0.9, BMI >30 kg/m(2)) and 12 lean (BMI 20-25 kg/m(2)) age-matched men were included. Ex vivo-labeled [1-(14)C]VLDL-TGs and [3-(3)H]glucose were infused postabsorptively and during a hyperinsulinemic-euglycemic clamp to determine VLDL-TG kinetics and EGP. Body composition was determined by dual X-ray absorptiometry and computed tomography scanning. Energy expenditure and substrate oxidation rates were measured by indirect calorimetry. Basal VLDL-TG secretion rates were increased in obese compared with lean men (1.25 ± 0.34 vs. 0.86 ± 0.34 μmol/kg fat-free mass [FFM]/min; P = 0.011), whereas there was no difference in clearance rates (150 ± 56 vs. 162 ± 77 mL/min; P = NS), resulting in greater VLDL-TG concentrations (0.74 ± 0.40 vs. 0.38 ± 0.20 mmol/L; P = 0.011). The absolute insulin-mediated suppression of VLDL-TG secretion was similar in the groups. However, the percentage reduction (-36 ± 18 vs. -54 ± 10%; P = 0.008) and achieved VLDL-TG secretion rates (0.76 ± 0.20 vs. 0.41 ± 0.19 μmol/kg FFM/min; P < 0.001) were impaired in obese men. Furthermore, clearance rates decreased significantly in obese men, but there was no significant change in lean men (-17 ± 18 vs. 7 ± 20%; P = 0.007), resulting in less percentage reduction of VLDL-TG concentrations in obese men (-22 ± 20 vs. -56 ± 11%; P < 0.001). Insulin-suppressed EGP was similar (0.4 [0.0-0.8] vs. 0.1 [0.0-1.2] mg/kg FFM/min (median [range]); P = NS), and the percentage reduction was equivalent (-80% [57-98] vs. -98% [49-100], P = NS). Insulin-mediated glucose disposal was significantly reduced in obese men. Basal VLDL-TG secretion rates are increased in normoglycemic but insulin-resistant, obese men, resulting in hypertriglyceridemia. Insulin-mediated suppression of EGP is preserved in obese men, whereas suppression of VLDL-TG secretion is less pronounced in obese men. Compared with EGP, the inability to achieve suppression of VLDL-TG secretions to a level similar to control subjects during hyperinsulinemia seems to be an early manifestation in male obesity.

  14. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion.

    PubMed

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-06-15

    Secretagogin (SCGN), a Ca(2+)-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca(2+)-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. © 2016 The Author(s).

  15. The lack of effect of insulin on luteinizing hormone pulsatility in healthy male volunteers provides evidence of a sexual dimorphism in the metabolic regulation of reproductive hormones.

    PubMed

    Pesant, Marie-Hélène; Dwyer, Andrew; Marques Vidal, Pedro; Schneiter, Philippe; Giusti, Vittorio; Tappy, Luc; Pralong, François P

    2012-08-01

    The activity of the neuroendocrine reproductive axis is closely related to nutritional status. This link is particularly important in healthy women, in whom insulin is a positive signal for the reproductive system. In contrast, very little is known regarding this relation in men. This study was designed to evaluate the effect of insulin on the reproductive axis of young male volunteers and to study the effect of short-term hypercaloric feeding on this modulation. The activity of the neuroendocrine reproductive axis was characterized by the pattern of endogenous luteinizing hormone (LH) secretion on the basis of frequent blood sampling protocols. The effect of insulin was tested by comparing the LH secretion pattern between a baseline study and a hyperinsulinemic euglycemic clamp. These studies were performed first in subjects fed a controlled isocaloric diet for 6 d (calculated as 1.5 times their resting metabolic rate) then in the same subjects fed a controlled hypercaloric diet in which 30% extra calories were provided as fat and fructose (3 g · kg(-1) · d(-1)) before undergoing identical protocols. Serum gonadotropins, sex steroids, glucose, insulin, ghrelin, and leptin concentrations were assessed, and the HOMA-IR was calculated. The LH secretion pattern was not affected by insulin or by hypercaloric feeding. Insulin decreased ghrelin and increased leptin concentrations but had no additional effect of hypercaloric feeding despite significantly lower HOMA-IR indexes. Our data indicate that neither insulin nor short-term hypercaloric feeding has any effect on the activity of the male reproductive axis. They also further support the association between ghrelin and insulin and glucose metabolism. This trial was registered at clinicaltrials.gov as NCT01058681.

  16. Valsartan Improves β-Cell Function and Insulin Sensitivity in Subjects With Impaired Glucose Metabolism

    PubMed Central

    van der Zijl, Nynke J.; Moors, Chantalle C.M.; Goossens, Gijs H.; Hermans, Marc M.H.; Blaak, Ellen E.; Diamant, Michaela

    2011-01-01

    OBJECTIVE Recently, the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research Trial demonstrated that treatment with the angiotensin receptor blocker (ARB) valsartan for 5 years resulted in a relative reduction of 14% in the incidence of type 2 diabetes in subjects with impaired glucose metabolism (IGM). We investigated whether improvements in β-cell function and/or insulin sensitivity underlie these preventive effects of the ARB valsartan in the onset of type 2 diabetes. RESEARCH DESIGN AND METHODS In this randomized controlled, double-blind, two-center study, the effects of 26 weeks of valsartan (320 mg daily; n = 40) or placebo (n = 39) on β-cell function and insulin sensitivity were assessed in subjects with impaired fasting glucose and/or impaired glucose tolerance, using a combined hyperinsulinemic-euglycemic and hyperglycemic clamp with subsequent arginine stimulation and a 2-h 75-g oral glucose tolerance test (OGTT). Treatment effects were analyzed using ANCOVA, adjusting for center, glucometabolic status, and sex. RESULTS Valsartan increased first-phase (P = 0.028) and second-phase (P = 0.002) glucose-stimulated insulin secretion compared with placebo, whereas the enhanced arginine-stimulated insulin secretion was comparable between groups (P = 0.25). In addition, valsartan increased the OGTT-derived insulinogenic index (representing first-phase insulin secretion after an oral glucose load; P = 0.027). Clamp-derived insulin sensitivity was significantly increased with valsartan compared with placebo (P = 0.049). Valsartan treatment significantly decreased systolic and diastolic blood pressure compared with placebo (P < 0.001). BMI remained unchanged in both treatment groups (P = 0.89). CONCLUSIONS Twenty-six weeks of valsartan treatment increased glucose-stimulated insulin release and insulin sensitivity in normotensive subjects with IGM. These findings may partly explain the beneficial effects of valsartan in the reduced incidence of type 2 diabetes. PMID:21330640

  17. The prolyl isomerase Pin1 increases β-cell proliferation and enhances insulin secretion.

    PubMed

    Nakatsu, Yusuke; Mori, Keiichi; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mitsuzaki-Miyoshi, Keiko; Sakoda, Hideyuki; Fujishiro, Midori; Yamaguchi, Suguru; Kushiyama, Akifumi; Ono, Hiraku; Ishihara, Hisamitsu; Asano, Tomoichiro

    2017-07-14

    The prolyl isomerase Pin1 binds to the phosphorylated Ser/Thr-Pro motif of target proteins and enhances their cis-trans conversion. This report is the first to show that Pin1 expression in pancreatic β cells is markedly elevated by high-fat diet feeding and in ob/ob mice. To elucidate the role of Pin1 in pancreatic β cells, we generated β-cell-specific Pin1 KO (βPin1 KO) mice. These mutant mice showed exacerbation of glucose intolerance but had normal insulin sensitivity. We identified two independent factors underlying impaired insulin secretion in the βPin1 KO mice. Pin1 enhanced pancreatic β-cell proliferation, as indicated by a reduced β-cell mass in βPin1 KO mice compared with control mice. Moreover, a diet high in fat and sucrose failed to increase pancreatic β-cell growth in the βPin1 KO mice, an observation to which up-regulation of the cell cycle protein cyclin D appeared to contribute. The other role of Pin1 was to activate the insulin-secretory step: Pin1 KO β cells showed impairments in glucose- and KCl-induced elevation of the intracellular Ca 2+ concentration and insulin secretion. We also identified salt-inducible kinase 2 (SIK2) as a Pin1-binding protein that affected the regulation of Ca 2+ influx and found Pin1 to enhance SIK2 kinase activity, resulting in a decrease in p35 protein, a negative regulator of Ca 2+ influx. Taken together, our observations demonstrate critical roles of Pin1 in pancreatic β cells and that Pin1 both promotes β-cell proliferation and activates insulin secretion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Characteristics of repaglinide effects on insulin secretion.

    PubMed

    Takahashi, Harumi; Hidaka, Shihomi; Seki, Chihiro; Yokoi, Norihide; Seino, Susumu

    2018-06-05

    The dynamics of insulin secretion stimulated by repaglinide, a glinide, and the combinatorial effects of repaglinide and incretin were investigated. At 4.4 mM glucose, repaglinide induced insulin secretion with a gradually increasing first phase, showing different dynamics from that induced by glimepiride, a sulfonylurea. In the presence of glucagon-like peptide-1 (GLP-1), insulin secretion by repaglinide was augmented significantly but to lesser extent and showed different dynamics from that by glimepiride. At 4.4 mM glucose, the intracellular Ca 2+ level was gradually increased by repaglinide alone or repaglinide plus GLP-1, which differs from the Ca 2+ dynamics by glimepiride alone or glimepiride plus GLP-1, suggesting that the difference in Ca 2+ dynamics contributes to the difference in the dynamics of insulin secretion. At a higher concentration (8.8 mM) of glucose, the dynamics of insulin secretion stimulated by repaglinide was similar to that by glimepiride. Combination of repaglinide and GLP-1 significantly augmented insulin secretion, the amount of which was comparable to that by the combination of glimepiride and GLP-1. The Ca 2+ dynamics was similar for repaglinide and glimepiride at 8.8 mM glucose. Our data indicate that repaglinide has characteristic properties in its effects on the dynamics of insulin secretion and intracellular Ca 2+ and that the combination of repaglinide and GLP-1 stimulates insulin secretion more effectively than the combination of glimepiride and GLP-1 at a high concentration of glucose, providing a basis for its use in clinical settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Standardized Mixed-Meal Tolerance and Arginine Stimulation Tests Provide Reproducible and Complementary Measures of β-Cell Function: Results From the Foundation for the National Institutes of Health Biomarkers Consortium Investigative Series

    PubMed Central

    Shankar, Sudha S.; Vella, Adrian; Raymond, Ralph H.; Staten, Myrlene A.; Calle, Roberto A.; Bergman, Richard N.; Cao, Charlie; Chen, Danny; Cobelli, Claudio; Dalla Man, Chiara; Deeg, Mark; Dong, Jennifer Q.; Lee, Douglas S.; Polidori, David; Robertson, R. Paul; Ruetten, Hartmut; Stefanovski, Darko; Vassileva, Maria T.; Weir, Gordon C.

    2016-01-01

    OBJECTIVE Standardized, reproducible, and feasible quantification of β-cell function (BCF) is necessary for the evaluation of interventions to improve insulin secretion and important for comparison across studies. We therefore characterized the responses to, and reproducibility of, standardized methods of in vivo BCF across different glucose tolerance states. RESEARCH DESIGN AND METHODS Participants classified as having normal glucose tolerance (NGT; n = 23), prediabetes (PDM; n = 17), and type 2 diabetes mellitus (T2DM; n = 22) underwent two standardized mixed-meal tolerance tests (MMTT) and two standardized arginine stimulation tests (AST) in a test-retest paradigm and one frequently sampled intravenous glucose tolerance test (FSIGT). RESULTS From the MMTT, insulin secretion in T2DM was >86% lower compared with NGT or PDM (P < 0.001). Insulin sensitivity (Si) decreased from NGT to PDM (∼50%) to T2DM (93% lower [P < 0.001]). In the AST, insulin secretory response to arginine at basal glucose and during hyperglycemia was lower in T2DM compared with NGT and PDM (>58%; all P < 0.001). FSIGT showed decreases in both insulin secretion and Si across populations (P < 0.001), although Si did not differ significantly between PDM and T2DM populations. Reproducibility was generally good for the MMTT, with intraclass correlation coefficients (ICCs) ranging from ∼0.3 to ∼0.8 depending on population and variable. Reproducibility for the AST was very good, with ICC values >0.8 across all variables and populations. CONCLUSIONS Standardized MMTT and AST provide reproducible and complementary measures of BCF with characteristics favorable for longitudinal interventional trials use. PMID:27407117

  20. Standardized Mixed-Meal Tolerance and Arginine Stimulation Tests Provide Reproducible and Complementary Measures of β-Cell Function: Results From the Foundation for the National Institutes of Health Biomarkers Consortium Investigative Series.

    PubMed

    Shankar, Sudha S; Vella, Adrian; Raymond, Ralph H; Staten, Myrlene A; Calle, Roberto A; Bergman, Richard N; Cao, Charlie; Chen, Danny; Cobelli, Claudio; Dalla Man, Chiara; Deeg, Mark; Dong, Jennifer Q; Lee, Douglas S; Polidori, David; Robertson, R Paul; Ruetten, Hartmut; Stefanovski, Darko; Vassileva, Maria T; Weir, Gordon C; Fryburg, David A

    2016-09-01

    Standardized, reproducible, and feasible quantification of β-cell function (BCF) is necessary for the evaluation of interventions to improve insulin secretion and important for comparison across studies. We therefore characterized the responses to, and reproducibility of, standardized methods of in vivo BCF across different glucose tolerance states. Participants classified as having normal glucose tolerance (NGT; n = 23), prediabetes (PDM; n = 17), and type 2 diabetes mellitus (T2DM; n = 22) underwent two standardized mixed-meal tolerance tests (MMTT) and two standardized arginine stimulation tests (AST) in a test-retest paradigm and one frequently sampled intravenous glucose tolerance test (FSIGT). From the MMTT, insulin secretion in T2DM was >86% lower compared with NGT or PDM (P < 0.001). Insulin sensitivity (Si) decreased from NGT to PDM (∼50%) to T2DM (93% lower [P < 0.001]). In the AST, insulin secretory response to arginine at basal glucose and during hyperglycemia was lower in T2DM compared with NGT and PDM (>58%; all P < 0.001). FSIGT showed decreases in both insulin secretion and Si across populations (P < 0.001), although Si did not differ significantly between PDM and T2DM populations. Reproducibility was generally good for the MMTT, with intraclass correlation coefficients (ICCs) ranging from ∼0.3 to ∼0.8 depending on population and variable. Reproducibility for the AST was very good, with ICC values >0.8 across all variables and populations. Standardized MMTT and AST provide reproducible and complementary measures of BCF with characteristics favorable for longitudinal interventional trials use. © 2016 by the American Diabetes Association.

  1. Effects of N-[(trans-4-isopropylcyclohexyl)-carbonyl]-D-phenylalanine (A-4166) on insulin and glucagon secretion in isolated perfused rat pancreas.

    PubMed

    Hirose, H; Maruyama, H; Ito, K; Seto, Y; Kido, K; Koyama, K; Dan, K; Saruta, T; Kato, R

    1994-04-01

    N-[(trans-4-isopropylcyclohexyl)-carbonyl]-D-phenylalanine (A-4166) has a structure which differs from those of other known blood glucose-lowering agents including sulfonylureas. It has been shown that oral administration of A-4166 exerts blood glucose-lowering effects in animal in vivo studies. In the present study, we investigated the effects of A-4166 on insulin and glucagon secretion at several glucose concentrations using isolated perfused rat pancreas preparations. Both 3.0 and 30 mumol/l A-4166 significantly stimulated insulin secretion as compared with basal levels at glucose concentrations of 8.0 and 11.0 mmol (p < 0.01 and p < 0.05, respectively). In contrast, glucagon secretion was not affected by administration of A-4166 up to 30 mumol/l at these glucose concentrations. At a glucose concentration of 5.6 mmol/l, neither 0.3 nor 3.0 mumol/l A-4166 produced significant changes in insulin and glucagon secretion. However, A-4166 at 30 mumol/l significantly stimulated insulin secretion and inhibited glucagon secretion as compared with basal levels (p < 0.01 and p < 0.01, respectively). We conclude that A-4166 at 3.0 and 30 mumol/l directly stimulates insulin secretion but has little effect on glucagon secretion in isolated perfused rat pancreas at glucose concentrations of 8.0 and 11.0 mmol/l. these results, taken together with previously published data, suggest that oral administration of A-4166 could be a useful strategy for stimulating endogenous insulin secretion in non-insulin-dependent diabetic patients.

  2. α-Synuclein binds the KATP channel at insulin-secretory granules and inhibits insulin secretion

    PubMed Central

    Geng, Xuehui; Lou, Haiyan; Wang, Jian; Li, Lehong; Swanson, Alexandra L.; Sun, Ming; Beers-Stolz, Donna; Watkins, Simon; Perez, Ruth G.

    2011-01-01

    α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic β-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in β-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and KATP channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type β-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within β-cells. Anti-α-synuclein antibodies colocalized with KATP channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with KATP channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the β-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with KATP channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases. PMID:20858756

  3. Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes

    PubMed Central

    Fu, Zhuo; Gilbert, Elizabeth R.; Liu, Dongmin

    2014-01-01

    Pancreatic β-cell dysfunction plays an important role in the pathogenesis of both type 1 and type 2 diabetes. Insulin, which is produced in β-cells, is a critical regulator of metabolism. Insulin is synthesized as preproinsulin and processed to proinsulin. Proinsulin is then converted to insulin and C-peptide and stored in secretary granules awaiting release on demand. Insulin synthesis is regulated at both the transcriptional and translational level. The cis-acting sequences within the 5′ flanking region and trans-activators including paired box gene 6 (PAX6), pancreatic and duodenal homeobox-1(PDX-1), MafA, and B-2/Neurogenic differentiation 1 (NeuroD1) regulate insulin transcription, while the stability of preproinsulin mRNA and its untranslated regions control protein translation. Insulin secretion involves a sequence of events in β-cells that lead to fusion of secretory granules with the plasma membrane. Insulin is secreted primarily in response to glucose, while other nutrients such as free fatty acids and amino acids can augment glucose-induced insulin secretion. In addition, various hormones, such as melatonin, estrogen, leptin, growth hormone, and glucagon like peptide-1 also regulate insulin secretion. Thus, the β-cell is a metabolic hub in the body, connecting nutrient metabolism and the endocrine system. Although an increase in intracellular [Ca2+] is the primary insulin secretary signal, cAMP signaling-dependent mechanisms are also critical in the regulation of insulin secretion. This article reviews current knowledge on how β-cells synthesize and secrete insulin. In addition, this review presents evidence that genetic and environmental factors can lead to hyperglycemia, dyslipidemia, inflammation, and autoimmunity, resulting in β-cell dysfunction, thereby triggering the pathogenesis of diabetes. PMID:22974359

  4. The Glucotoxicity Protecting Effect of Ezetimibe in Pancreatic Beta Cells via Inhibition of CD36.

    PubMed

    Yoon, Ji Sung; Moon, Jun Sung; Kim, Yong-Woon; Won, Kyu Chang; Lee, Hyoung Woo

    2016-04-01

    Inhibition of CD36, a fatty acid transporter, has been reported to prevent glucotoxicity and ameliorate high glucose induced beta cell dysfunction. Ezetimibe is a selective cholesterol absorption inhibitor that blocks Niemann Pick C1-like 1 protein, but may exert its effect through suppression of CD36. We attempted to clarify the beneficial effect of ezetimibe on insulin secreting cells and to determine whether this effect is related to change of CD36 expression. mRNA expression of insulin and CD36, intracellular peroxide level and glucose stimulated insulin secretion (GSIS) under normal (5.6 mM) or high glucose (30 mM) condition in INS-1 cells and primary rat islet cells were compared. Changes of the aforementioned factors with treatment with ezetimibe (20 μM) under normal or high glucose condition were also assessed. mRNA expression of insulin was decreased with high glucose, which was reversed by ezetimibe in both INS-1 cells and primary rat islets. CD36 mRNA expression was increased with high glucose, but decreased by ezetimibe in INS-1 cells and primary rat islets. Three-day treatment with high glucose resulted in an increase in intracellular peroxide level; however, it was decreased by treatment with ezetimibe. Decrease in GSIS by three-day treatment with high glucose was reversed by ezetimibe. Palmitate uptake following exposure to high glucose conditions for three days was significantly elevated, which was reversed by ezetimibe in INS-1 cells. Ezetimibe may prevent glucotoxicity in pancreatic β-cells through a decrease in fatty acid influx via inhibition of CD36.

  5. The Glucotoxicity Protecting Effect of Ezetimibe in Pancreatic Beta Cells via Inhibition of CD36

    PubMed Central

    2016-01-01

    Inhibition of CD36, a fatty acid transporter, has been reported to prevent glucotoxicity and ameliorate high glucose induced beta cell dysfunction. Ezetimibe is a selective cholesterol absorption inhibitor that blocks Niemann Pick C1-like 1 protein, but may exert its effect through suppression of CD36. We attempted to clarify the beneficial effect of ezetimibe on insulin secreting cells and to determine whether this effect is related to change of CD36 expression. mRNA expression of insulin and CD36, intracellular peroxide level and glucose stimulated insulin secretion (GSIS) under normal (5.6 mM) or high glucose (30 mM) condition in INS-1 cells and primary rat islet cells were compared. Changes of the aforementioned factors with treatment with ezetimibe (20 μM) under normal or high glucose condition were also assessed. mRNA expression of insulin was decreased with high glucose, which was reversed by ezetimibe in both INS-1 cells and primary rat islets. CD36 mRNA expression was increased with high glucose, but decreased by ezetimibe in INS-1 cells and primary rat islets. Three-day treatment with high glucose resulted in an increase in intracellular peroxide level; however, it was decreased by treatment with ezetimibe. Decrease in GSIS by three-day treatment with high glucose was reversed by ezetimibe. Palmitate uptake following exposure to high glucose conditions for three days was significantly elevated, which was reversed by ezetimibe in INS-1 cells. Ezetimibe may prevent glucotoxicity in pancreatic β-cells through a decrease in fatty acid influx via inhibition of CD36. PMID:27051238

  6. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagge, Annika; Clausen, Trine R.; Larsen, Sylvester

    Highlights: Black-Right-Pointing-Pointer MicroRNA-29a (miR-29a) levels are increased by glucose in human and rat islets and INS-1E cells. Black-Right-Pointing-Pointer miR-29a increases proliferation of INS-1E beta-cells. Black-Right-Pointing-Pointer Forced expression of miR-29a decreases glucose-stimulated insulin secretion (GSIS). Black-Right-Pointing-Pointer Depletion of beta-cell miR-29a improves GSIS. Black-Right-Pointing-Pointer miR-29a may be a mediator of glucose toxicity in beta-cells. -- Abstract: Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate the impact of glucose on miR-29a levels in INS-1E beta-cellsmore » and in human islets of Langerhans and furthermore to evaluate the impact of miR-29a on beta-cell function and proliferation. Increased glucose levels up-regulated miR-29a in beta-cells and human and rat islets of Langerhans. Glucose-stimulated insulin-secretion (GSIS) of INS-1E beta-cells was decreased by forced expression of miR-29a, while depletion of endogenous miR-29a improved GSIS. Over-expression of miR-29a increased INS-1E proliferation. Thus, miR-29a up-regulation is involved in glucose-induced proliferation of beta-cells. Furthermore, as depletion of miR-29a improves beta-cell function, miR-29a is a mediator of glucose-induced beta-cell dysfunction. Glucose-induced up-regulation of miR-29a in beta-cells could be implicated in progression from impaired glucose tolerance to type 2 diabetes.« less

  7. [Prostaglandins, insulin secretion and diabetes mellitus].

    PubMed

    Giugliano, D; Torella, R; Scheen, A J; Lefebvre, P J; D'Onofrio, F

    1988-12-01

    The islets of Langerhans have the enzymatic equipment permitting the synthesis of the metabolites of arachidonic acid: cyclo-oxygenase and lipo-oxygenase. Numerous studies have shown that cyclo-oxygenase derivatives, mainly PGE2, reduce the insulin response to glucose whereas lipo-oxygenase derivatives, mainly 15-HPETE, stimulate insulin secretion. So, for instance, drugs that increase prostaglandins synthesis as colchicine or furosemide inhibit insulin secretion while non steroid anti-inflammator drugs, mainly salicylates, which inhibit cyclo-oxygenase, enhance the insulin response to various stimuli. In type-2 (non insulin-dependent) diabetes, an increased sensitivity to endogenous prostaglandins has been proposed as a possible cause for the insulin secretion defect which characterizes this disease. Play in favor of this hypothesis the fact that the administration of PGE inhibits the insulin response to arginine in type-2 diabetics but not in normal subject and the fact that the administration of salicylates could improve the insulin response to glucose in some of these patients.

  8. Effect of naloxone on plasma insulin, insulin-like growth factor I, and its binding protein 1 in patients with polycystic ovarian disease.

    PubMed

    Laatikainen, T; Anttila, L; Suikkari, A M; Ruutiainen, K; Erkkola, R; Seppälä, M

    1990-09-01

    Insulin and insulin-like growth factors (IGFs) stimulate ovarian steroidogenesis, and hyperinsulinemia is often accompanied by hyperandrogenemia in women with polycystic ovarian disease (PCOD). Because opioid peptides are involved in the regulation of insulin secretion, we studied the effect of naloxone-induced opiate receptor blockade on the circulating levels of insulin, IGF-I, and IGF binding protein 1 (IGFBP-1) in 13 nonobese and 7 obese PCOD patients and in 6 healthy subjects. In obese PCOD patients, the mean basal insulin concentration was significantly higher and the IGFBP-1 concentration lower than in nonobese PCOD patients. Plasma IGF-I levels were elevated both in obese and nonobese PCOD patients. After an intravenous bolus of 10 mg naloxone, no significant changes were found in the circulating insulin or IGF-I levels, whereas IGFBP-1 levels decreased in nonobese PCOD patients and remained low in obese PCOD patients. No significant decrease was found in healthy subjects. These results suggest that, in addition to insulin, endogenous opioids are involved in the regulation of serum IGFBP-1 level.

  9. l-Cysteine supplementation increases insulin sensitivity mediated by upregulation of GSH and adiponectin in high glucose treated 3T3-L1 adipocytes.

    PubMed

    Achari, Arunkumar E; Jain, Sushil K

    2017-09-15

    Diabetic patients have lower blood levels of l-cysteine (LC) and glutathione (GSH). This study examined the hypothesis that LC supplementation positively up regulates the effects of insulin on GSH and glucose metabolism in 3T3-L1 adipocyte model. 3T3L1 adipocytes were treated with LC (250 μM, 2 h) and/or insulin (15 or 30 nM, 2 h), and high glucose (HG, 25 mM, 20 h). Results showed that HG caused significant increase (95%) in ROS and reduction in the protein levels of DsbA-L (43%), adiponectin (64%), GCLC (20%), GCLM (21%), GSH (50%), and GLUT-4 (23%) in adipocytes. Furthermore, HG caused a reduction in total (35%) and HMW adiponectin (30%) secretion. Treatment with insulin alone significantly (p < 0.05) reduced ROS levels as well as increased DsbA-L, adiponectin, GCLC, GCLM, GSH, and GLUT-4 protein levels, glucose utilization, and improved total and HMW adiponectin secretion in HG treated adipocytes compared to HG alone. Interestingly, LC supplementation along with insulin caused greater reduction in ROS levels and significantly (p < 0.05) boosted the DsbA-L (41% vs LC, 29% vs Insulin), adiponectin (92% Vs LC, 84% Vs insulin) protein levels and total (32% Vs LC, 22% Vs insulin) and HMW adiponectin (75% Vs LC, 39% Vs insulin) secretion compared with the either insulin or LC alone in HG-treated cells. In addition, LC supplementation along with insulin increased GCLC (21% Vs LC, 14% insulin), GCLM (28% Vs LC, 16% insulin) and GSH (25% Vs LC and insulin) levels compared with the either insulin or LC alone in HG-treated cells. Furthermore, LC and insulin increases GLUT-4 protein expression (65% Vs LC, 18% Vs Insulin), glucose utilization (57% Vs LC, 27% Vs insulin) compared with the either insulin or LC alone in HG-treated cells. Similarly, LC supplementation increased insulin action significantly in cells maintained in medium contained control glucose. To explore the beneficial effect of LC is mediated by the upregulation of GCLC, we knocked down GCLC using siRNA in adipoctyes. There was a significant decrease in DsbA-L and GLUT-4 mRNA levels and GSH levels in GCLC knockdown adipocytes and LC supplementation up regulates GCLC, DsbA-L and GLUT-4 mRNA expression and GSH levels in GCLC knockdown cells. These results demonstrated that LC along with insulin increases GSH levels thereby improving adiponectin secretion and glucose utilization in adipocytes. This suggests that LC supplementation can increase insulin sensitivity and can be used as an adjuvant therapy for diabetes. Copyright © 2017. Published by Elsevier Inc.

  10. Is exenatide improving the treatment of type 2 diabetes? Analysis of the individual clinical trials with exenatide.

    PubMed

    Doggrell, Sheila A

    2007-01-01

    The obesity epidemic in the developed and developing world is being followed by an epidemic of type 2 diabetes. In type 2 diabetes, subjects cannot manage glucose properly because they do not produce enough insulin, and the peripheral tissues have become resistant to insulin. Glucagon-like peptide 1 (GLP-1) is an intestinal peptide hormone that is secreted in response to food to regulate the postprandial blood glucose concentration. One of the actions of GLP-1 is to stimulate insulin secretion. In subjects with type 2 diabetes, intravenous or subcutaneous GLP-1 stimulated insulin production and decreased blood glucose levels. However, as GLP-1 is rapidly metabolised, it is not suitable for use in most subjects with type 2 diabetes. Exendin-4 is a 39-amino acid peptide that acts as an agonist at the GLP-1 receptor. After subcutaneous administration, synthetic exendin-4 (exenatide) decreased postprandial concentrations of glucose and insulin, and fasting glucose levels in subjects with type 2 diabetes, and the effects lasted several hours. Subsequently, exenatide was been trialled in subjects taking metformin only, a sulfonylurea only, or metformin and a sulfonylurea, and shown to improve glycemic control with few adverse events, initially over 30 weeks, and then extended to 82 weeks. Exenatide may also be as effective as insulin glargine in subjects with type 2 diabetes not adequately controlled with the oral agents. In conclusion, exenatide represents a new and beneficial addition to the medicines used to treat type 2 diabetes.

  11. High prevalence of abnormal glucose homeostasis secondary to decreased insulin secretion in individuals with hereditary haemochromatosis.

    PubMed

    McClain, D A; Abraham, D; Rogers, J; Brady, R; Gault, P; Ajioka, R; Kushner, J P

    2006-07-01

    The prevalence and mechanisms of diabetes in hereditary haemochromatosis are not known. We therefore measured glucose tolerance, insulin secretory capacity and insulin sensitivity in adults with haemochromatosis. Subjects recruited from referrals to a haemochromatosis clinic underwent OGTT and frequently sampled IVGTT. A chart review of former clinic patients was also performed. The prevalence of diabetes (23%) and IGT (30%) was increased in haemochromatosis compared with matched control subjects (0% diabetes and 14% IGT). Subjects with haemochromatosis and diabetes were overweight (14%) or obese (86%). The prevalence of diabetes, as determined by chart review of fasting glucose values, in subjects who had haemochromatosis and were in the 40-79 years age range was 26%. Overall, patients with haemochromatosis and control subjects had similar values for acute insulin response to glucose and insulin sensitivity. However, patients with haemochromatosis and IGT had a 68% decrease in acute insulin response to glucose (p<0.02) compared with those with NGT. They were not insulin-resistant, exhibiting instead a 62% increase in insulin sensitivity (NS). Haemochromatosis subjects with diabetes exhibited further declines in acute insulin response to glucose, insulin resistance, or both. Diabetes and IGT are common in haemochromatosis, justifying screening for diabetes and therapeutic phlebotomy. The major abnormality associated with IGT is decreased insulin secretory capacity. Diabetes is usually associated with obesity and concomitant insulin resistance.

  12. Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans

    PubMed Central

    Ingelsson, Erik; Langenberg, Claudia; Hivert, Marie-France; Prokopenko, Inga; Lyssenko, Valeriya; Dupuis, Josée; Mägi, Reedik; Sharp, Stephen; Jackson, Anne U.; Assimes, Themistocles L.; Shrader, Peter; Knowles, Joshua W.; Zethelius, Björn; Abbasi, Fahim A.; Bergman, Richard N.; Bergmann, Antje; Berne, Christian; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Buchanan, Thomas A.; Bumpstead, Suzannah J.; Böttcher, Yvonne; Chines, Peter; Collins, Francis S.; Cooper, Cyrus C.; Dennison, Elaine M.; Erdos, Michael R.; Ferrannini, Ele; Fox, Caroline S.; Graessler, Jürgen; Hao, Ke; Isomaa, Bo; Jameson, Karen A.; Kovacs, Peter; Kuusisto, Johanna; Laakso, Markku; Ladenvall, Claes; Mohlke, Karen L.; Morken, Mario A.; Narisu, Narisu; Nathan, David M.; Pascoe, Laura; Payne, Felicity; Petrie, John R.; Sayer, Avan A.; Schwarz, Peter E. H.; Scott, Laura J.; Stringham, Heather M.; Stumvoll, Michael; Swift, Amy J.; Syvänen, Ann-Christine; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Tönjes, Anke; Valle, Timo T.; Williams, Gordon H.; Lind, Lars; Barroso, Inês; Quertermous, Thomas; Walker, Mark; Wareham, Nicholas J.; Meigs, James B.; McCarthy, Mark I.; Groop, Leif; Watanabe, Richard M.; Florez, Jose C.

    2010-01-01

    OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 × 10−71). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. PMID:20185807

  13. Evaluation of beta-cell sensitivity to glucose and first-phase insulin secretion in obese dogs.

    PubMed

    Verkest, Kurt R; Fleeman, Linda M; Rand, Jacquie S; Morton, John M

    2011-03-01

    To compare beta-cell sensitivity to glucose, first-phase insulin secretion, and glucose tolerance between dogs with naturally occurring obesity of > 2 years' duration and lean dogs. 17 client-owned obese or lean dogs. Frequently sampled IV glucose tolerance tests were performed with minimal model analysis on 6 obese dogs and matched controls. Glucagon stimulation tests were performed on 5 obese dogs and matched controls. Obese dogs were half as sensitive to the effects of insulin as lean dogs. Plasma glucose concentrations after food withholding did not differ significantly between groups; plasma insulin concentrations were 3 to 4 times as great in obese as in lean dogs. Obese dogs had plasma insulin concentrations twice those of lean dogs after administration of glucose and 4 times as great after administration of glucagon. First-phase insulin secretion was greater in obese dogs. Obese dogs compensated for obesity-induced insulin resistance by secreting more insulin. First-phase insulin secretion and beta-cell glucose sensitivity were not lost despite years of obesity-induced insulin resistance and compensatory hyperinsulinemia. These findings help explain why dogs, unlike cats and humans, have not been documented to develop type 2 diabetes mellitus.

  14. Insulin and glucose sensitivity, insulin secretion and beta-cell distribution in endocrine pancreas of the fruit bat Artibeus lituratus.

    PubMed

    Protzek, A O P; Rafacho, A; Viscelli, B A; Bosqueiro, J R; Cappelli, A P; Paula, F M M; Boschero, A C; Pinheiro, E C

    2010-10-01

    The fruit bat Artibeus lituratus absorbs large amounts of glucose in short periods of time and maintains normoglycemia even after a prolonged starvation period. Based on these data, we aimed to investigate various aspects related with glucose homeostasis analyzing: blood glucose and insulin levels, intraperitoneal glucose and insulin tolerance tests (ipGTT and ipITT), glucose-stimulated insulin secretion (2.8, 5.6 or 8.3 mmol/L glucose) in pancreas fragments, cellular distribution of beta cells, and the amount of pAkt/Akt in the pectoral muscle and liver. Blood glucose levels were higher in fed bats (6.88+/-0.5 mmol/L) than fasted bats (4.0+/-0.8 mmol/L), whereas insulin levels were similar in both conditions. The values of the area-under-the curve obtained from ipGTT were significantly higher when bats received 2 (5.5-fold) or 3g/kg glucose (7.5-fold) b.w compared to control (saline). These bats also exhibited a significant decrease of blood glucose values after insulin administration during the ipITT. Insulin secretion from fragments of pancreas under physiological concentrations of glucose (5.6 or 8.3 mmol/L) was similar but higher than in 2.8 mmol/L glucose 1.8- and 2.0-fold, respectively. These bats showed a marked beta-cell distribution along the pancreas, and the pancreatic beta cells are not exclusively located at the central part of the islet. The insulin-induced Akt phosphorylation was more pronounced in the pectoral muscle, compared to liver. The high sensitivity to glucose and insulin, the proper insulin response to glucose, and the presence of an apparent large beta-cell population could represent benefits for the management of high influx of glucose from a carbohydrate-rich meal, which permits appropriate glucose utilization. 2010 Elsevier Inc. All rights reserved.

  15. Conjoint regulation of glucagon concentrations via plasma insulin and glucose in dairy cows.

    PubMed

    Zarrin, M; Wellnitz, O; Bruckmaier, R M

    2015-04-01

    Insulin and glucagon are glucoregulatory hormones that contribute to glucose homeostasis. Plasma insulin is elevated during normoglycemia or hyperglycemia and acts as a suppressor of glucagon secretion. We have investigated if and how insulin and glucose contribute to the regulation of glucagon secretion through long term (48 h) elevated insulin concentrations during simultaneous hypoglycemia or euglycemia in mid-lactating dairy cows. Nineteen Holstein dairy cows were randomly assigned to 3 treatment groups: an intravenous insulin infusion (HypoG, n = 5) to decrease plasma glucose concentrations (2.5 mmol/L), a hyperinsulinemic-euglycemic clamp to study effects of insulin at simultaneously normal glucose concentrations (EuG, n = 6) and a 0.9% saline infusion (NaCl, n = 8). Plasma glucose was measured at 5-min intervals, and insulin and glucose infusion rates were adjusted accordingly. Area under the curve of hourly glucose, insulin, and glucagon concentrations on day 2 of infusion was evaluated by analysis of variance with treatments as fixed effect. Insulin infusion caused an increase of plasma insulin area under the curve (AUC)/h in HypoG (41.9 ± 8.1 mU/L) and EuG (57.8 ± 7.8 mU/L) compared with NaCl (13.9 ± 1.1 mU/L; P < 0.01). Induced hyperinsulinemia caused a decline of plasma glucose AUC/h to 2.3 ± 0.1 mmol/L in HypoG (P < 0.01), whereas plasma glucose AUC/h remained unchanged in EuG (3.8 ± 0.2 mmol/L) and NaCl (4.1 ± 0.1 mmol/L). Plasma glucagon AUC/h was lower in EuG (84.0 ± 6.3 pg/mL; P < 0.05) and elevated in HypoG (129.0 ± 7.0 pg/mL; P < 0.01) as compared with NaCl (106.1 ± 5.4 pg/mL). The results show that intravenous insulin infusion induces elevated glucagon concentrations during hypoglycemia, although the same insulin infusion reduces glucagon concentrations at simultaneously normal glucose concentrations. Thus, insulin does not generally have an inhibitory effect on glucagon concentrations. If simultaneously glucose is low and insulin is high, glucagon is upregulated to increase glucose availability. Therefore, insulin and glucose are conjoint regulatory factors of glucagon concentrations in dairy cows, and the plasma glucose status is the key factor to decide if its concentrations are increased or decreased. This regulatory effect can be important for the maintenance of glucose homeostasis if insulin secretion is upregulated by other factors than high glucose such as high plasma lipid and protein concentrations at simultaneously low glucose. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A single-islet microplate assay to measure mouse and human islet insulin secretion.

    PubMed

    Truchan, Nathan A; Brar, Harpreet K; Gallagher, Shannon J; Neuman, Joshua C; Kimple, Michelle E

    2015-01-01

    One complication to comparing β-cell function among islet preparations, whether from genetically identical or diverse animals or human organ donors, is the number of islets required per assay. Islet numbers can be limiting, meaning that fewer conditions can be tested; other islet measurements must be excluded; or islets must be pooled from multiple animals/donors for each experiment. Furthermore, pooling islets negates the possibility of performing single-islet comparisons. Our aim was to validate a 96-well plate-based single islet insulin secretion assay that would be as robust as previously published methods to quantify glucose-stimulated insulin secretion from mouse and human islets. First, we tested our new assay using mouse islets, showing robust stimulation of insulin secretion 24 or 48 h after islet isolation. Next, we utilized the assay to quantify mouse islet function on an individual islet basis, measurements that would not be possible with the standard pooled islet assay methods. Next, we validated our new assay using human islets obtained from the Integrated Islet Distribution Program (IIDP). Human islets are known to have widely varying insulin secretion capacity, and using our new assay we reveal biologically relevant factors that are significantly correlated with human islet function, whether displayed as maximal insulin secretion response or fold-stimulation of insulin secretion. Overall, our results suggest this new microplate assay will be a useful tool for many laboratories, expert or not in islet techniques, to be able to precisely quantify islet insulin secretion from their models of interest.

  17. The effect of dietary fiber and other factors on insulin response: role in obesity.

    PubMed

    Ullrich, I H; Albrink, M J

    1985-07-01

    Epidemiologic evidence favors the hypothesis that obesity may result from the fiber-depleted diet of industrialized societies. Since hyperinsulinemia is a universal characteristic and perhaps causal of obesity, the possibility is considered that dietary factors causing excess insulin secretion might lead to obesity. Dietary glucose causes a slightly greater insulin rise than cooked starch containing an equal amount of carbohydrate, and high fiber starchy foods cause a much lesser insulin response than does glucose in solution. Doubling the dose of carbohydrate in a meal causes only a small increase in glucose response but a large increase in insulin response. Dietary fiber could act by displacing some of the carbohydrate that would normally be absorbable in the small intestine, or could translocate the carbohydrate to a point lower in the intestinal tract where less effect on insulin secretion would be observed. Evidence is presented that a higher fiber diet is associated with a higher concentration of fasting circulating free fatty acids, a lesser post-cibal decrease in circulating free fatty acids and triglycerides and less chronic increase in fasting triglycerides than a low fiber diet. These differences are associated with a lesser insulin response to high fiber meals. The extreme fluctuations between the fed and fasted states seen with low fiber diets are thus dampened by high fiber diets. The less complete inhibition of lipolysis during the fed state, and more intense lipolysis during fasting, suggested by the above data, might tend to prevent obesity. The mechanisms of the lesser insulin response to high rather than low fiber meals are not known, but the possibility that dietary fiber decreases the GIP response is considered.

  18. Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-γ expression in nonobese Type 2 diabetic rats.

    PubMed

    Park, Sunmin; Kim, Da Sol; Kang, Suna

    2016-01-01

    Human studies have provided relatively strong associations of poor vitamin D status with Type 2 diabetes but do not explain the nature of the association. Here, we explored the physiological pathways that may explain how vitamin D status modulates energy, lipid and glucose metabolisms in nonobese Type 2 diabetic rats. Goto-Kakizaki (GK) rats were fed high-fat diets containing 25 (VD-low), 1000 (VD-normal) or 10,000 (VD-high) cholecalciferol-IU/kg diet for 8 weeks. Energy expenditure, insulin resistance, insulin secretory capacity and lipid metabolism were measured. Serum 25-OH-D levels, an index of vitamin D status, increased dose dependently with dietary vitamin D. VD-low resulted in less fat oxidation without a significant difference in energy expenditure and less lean body mass in the abdomen and legs comparison to the VD-normal group. In comparison to VD-low, VD-normal had lower serum triglycerides and intracellular fat accumulation in the liver and skeletal muscles which was associated with down-regulation of the mRNA expressions of sterol regulatory element binding protein-1c and fatty acid synthase and up-regulation of gene expressions of peroxisome proliferator-activated receptors (PPAR)-α and carnitine palmitoyltransferase-1. In euglycemic hyperinsulinemic clamp, whole-body and hepatic insulin resistance was exacerbated in the VD-low group but not in the VD-normal group, possibly through decreasing hepatic insulin signaling and PPAR-γ expression in the adipocytes. In 3T3-L1 adipocytes 1,25-(OH)2-D (10 nM) increased triglyceride accumulation by elevating PPAR-γ expression and treatment with a PPAR-γ antagonist blocked the triglyceride deposition induced by 1,25-(OH)2-D treatment. VD-low impaired glucose-stimulated insulin secretion in hyperglycemic clamp and decreased β-cell mass by decreasing β-cell proliferation. In conclusion, vitamin D deficiency resulted in the dysregulation of glucose metabolism in GK rats by simultaneously increasing insulin resistance by decreasing adipose PPAR-γ expression and deteriorating β-cell function and mass. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Allyl isothiocyanate increases carbohydrate oxidation through enhancing insulin secretion by TRPV1.

    PubMed

    Mori, Noriyuki; Kurata, Manami; Yamazaki, Hanae; Matsumura, Shigenobu; Hashimoto, Takashi; Kanazawa, Kazuki; Nadamoto, Tomonori; Inoue, Kazuo; Fushiki, Tohru

    2018-04-01

    The transient receptor potential (TRP) V1 is a cation channel belonging to the TRP channel family and it has been reported to be involved in energy metabolism, especially glucose metabolism. While, we have previously shown that intragastric administration of allyl isothiocyanate (AITC) enhanced glucose metabolism via TRPV1, the underlying mechanism has not been elucidated. In this study, we examined the relationship between insulin secretion and the increase in carbohydrate oxidation due to AITC. Intragastric administration of AITC elevated blood insulin levels in mice and AITC directly enhanced insulin secretion from isolated islets. These observations were not reproduced in TRPV1 knockout mice. Furthermore, AITC did not increase carbohydrate oxidation in streptozotocin-treated mice. These results suggest that intragastric administration of AITC could induce insulin secretion from islets via TRPV1 and that enhancement of insulin secretion was related to the increased carbohydrate oxidation due to AITC.

  20. Insulin and Glucagon Secretion In Vitro

    NASA Technical Reports Server (NTRS)

    Rajan, Arun S.

    1998-01-01

    Long-duration space flight is associated with many physiological abnormalities in astronauts. In particular, altered regulation of the hormones insulin and glucagon may contribute to metabolic disturbances such as increased blood sugar levels, which if persistently elevated result in toxic effects. These changes are also observed in the highly prevalent disease diabetes, which affects 16 million Americans and consumes over $100 billion in annual healthcare costs. By mimicking the microgravity environment of space in the research laboratory using a NASA-developed bioreactor, one can study the physiology of insulin and glucagon secretion and determine if there are alterations in these cellular processes. The original specific objectives of the project included: (1) growing ('cell culture') of pancreatic islet beta and alpha cells that secrete insulin and glucagon respectively, in the NASA bioreactor; (2) examination of the effects of microgravity on insulin and glucagon secretion; and (3) study of molecular mechanisms of insulin and glucagon secretion if altered by microgravity.

  1. Effects of the beta-carbolines, harmane and pinoline, on insulin secretion from isolated human islets of Langerhans.

    PubMed

    Cooper, E Jane; Hudson, Alan L; Parker, Christine A; Morgan, Noel G

    2003-12-15

    It is well known that certain imidazoline compounds can stimulate insulin secretion and this has been attributed to the activation of imidazoline I(3) binding sites in the pancreatic beta-cell. Recently, it has been proposed that beta-carbolines may be endogenous ligands having activity at imidazoline sites and we have, therefore, studied the effects of beta-carbolines on insulin secretion. The beta-carbolines harmane, norharmane and pinoline increased insulin secretion two- to threefold from isolated human islets of Langerhans. The effects of harmane and pinoline were dose-dependent (EC(50): 5 and 25 microM, respectively) and these agents also blocked the inhibitory effects of the potassium channel agonist, diazoxide, on glucose-induced insulin release. Stimulation of insulin secretion by harmane was glucose-dependent but, unlike the imidazoline I(3) receptor agonist efaroxan, it increased the rate of insulin release beyond that elicited by 20 mM glucose (20 mM glucose alone: 253+/-34% vs. basal; 20 mM glucose plus 100 microM harmane: 327+/-15%; P<0.01). Stimulation of insulin secretion by harmane was attenuated by the imidazoline I(3) receptor antagonist KU14R (2 (2-ethyl 2,3-dihydro-2-benzofuranyl)-2-imidazole) and was reduced when islets were treated with efaroxan for 18 h, prior to the addition of harmane. The results reveal that beta-carbolines can potentiate the rate of insulin secretion from human islets and suggest that these agents may be useful prototypes for the development of novel insulin secretagogues.

  2. Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease

    PubMed Central

    Koppe, Laetitia; Nyam, Elsa; Vivot, Kevin; Manning Fox, Jocelyn E.; Dai, Xiao-Qing; Nguyen, Bich N.; Attané, Camille; Moullé, Valentine S.; MacDonald, Patrick E.; Ghislain, Julien

    2016-01-01

    Disorders of glucose homeostasis are common in chronic kidney disease (CKD) and are associated with increased mortality, but the mechanisms of impaired insulin secretion in this disease remain unclear. Here, we tested the hypothesis that defective insulin secretion in CKD is caused by a direct effect of urea on pancreatic β cells. In a murine model in which CKD is induced by 5/6 nephrectomy (CKD mice), we observed defects in glucose-stimulated insulin secretion in vivo and in isolated islets. Similarly, insulin secretion was impaired in normal mouse and human islets that were cultured with disease-relevant concentrations of urea and in islets from normal mice treated orally with urea for 3 weeks. In CKD mouse islets as well as urea-exposed normal islets, we observed an increase in oxidative stress and protein O-GlcNAcylation. Protein O-GlcNAcylation was also observed in pancreatic sections from CKD patients. Impairment of insulin secretion in both CKD mouse and urea-exposed islets was associated with reduced glucose utilization and activity of phosphofructokinase 1 (PFK-1), which could be reversed by inhibiting O-GlcNAcylation. Inhibition of O-GlcNAcylation also restored insulin secretion in both mouse models. These results suggest that insulin secretory defects associated with CKD arise from elevated circulating levels of urea that increase islet protein O-GlcNAcylation and impair glycolysis. PMID:27525435

  3. L-Cysteine supplementation increases adiponectin synthesis and secretion, and GLUT4 and glucose utilization by upregulating disulfide bond A-like protein expression mediated by MCP-1 inhibition in 3T3-L1 adipocytes exposed to high glucose.

    PubMed

    Achari, Arunkumar Elumalai; Jain, Sushil K

    2016-03-01

    Adiponectin is an anti-diabetic and anti-atherogenic adipokine; its plasma levels are decreased in obesity, insulin resistance, and type 2 diabetes. An adiponectin-interacting protein named disulfide bond A-like protein (DsbA-L) plays an important role in the assembly of adiponectin. This study examined the hypothesis that L-cysteine (LC) regulates glucose homeostasis through the DsbA-L upregulation and synthesis and secretion of adiponectin in diabetes. 3T3L1 adipocytes were treated with LC (250 and 500 µM, 2 h) and high glucose (HG, 25 mM, 20 h). Results showed that LC supplementation significantly (p < 0.05) upregulated the DsbA-L, adiponectin, and GLUT-4 protein expression and glucose utilization in HG-treated adipocytes. LC supplementation significantly (p < 0.05) promoted the secretion of total and HMW adiponectin secretion in HG-treated adipocytes. In addition, LC significantly (p < 0.05) decreased ROS production and MCP-1 secretion in HG-treated cells. We further investigated whether MCP-1 has any role of LC on DsbA-L expression and adiponectin levels in 3T3-L1 cells. Treatment with LC prevented the decrease in DsbA-L, adiponectin, and GLUT-4 expression in 3T3L1 adipocyte cells exposed to MCP-1. Thus, this study demonstrates that DsbA-L and adiponectin upregulation mediates the beneficial effects of LC on glucose utilization by inhibiting MCP-1 secretion in adipocytes and provides a novel mechanism by which LC supplementation can improve insulin sensitivity in diabetes.

  4. Mechanism of ipamorelin-evoked insulin release from the pancreas of normal and diabetic rats.

    PubMed

    Adeghate, Ernest; Ponery, Abdul Samad

    2004-12-01

    To examine the effect of ipamorelin (IPA), a novel pentapeptide with a strong growth hormone releasing potency, on insulin secretion from pancreatic tissue fragments of normal and diabetic rats. Diabetes mellitus was induced by streptozotocin (60 mg kg(-1)). Four weeks after the induction of diabetes, pancreatic tissue fragments of normal and diabetic rats were removed and incubated with different concentrations (10(-12) - 10(-6) M) of IPA. Insulin release from the pancreas was measured by radioimmunoassay. Ipamorelin evoked significant (p<0.04) increases in insulin secretion from the pancreas of normal and diabetic rats. Either diltiazem or yohimbine or propranolol or a combination of atropine, propranolol and yohimbine inhibited IPA-evoked insulin secretion significantly (p<0.03) from the pancreas of normal and diabetic rats. Atropine caused a significant (p<0.007) reduction in the IPA-induced insulin secretion in diabetic but not in normal rats. IPA stimulates insulin release through the calcium channel and the adrenergic receptor pathways. This is the first study to examine the effect of ipamorelin on insulin secretion in the pancreas.

  5. Attenuation of obesity-induced inflammation in mice orally administered with salmon cartilage proteoglycan, a prophylactic agent.

    PubMed

    Hirose, Shouhei; Asano, Krisana; Nakane, Akio

    2017-03-11

    Obesity is associated with chronic inflammation of adipose tissue and causes development of type 2 diabetes. M1 macrophage population was increased in adipose tissue of obese mouse. M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines. Our previous studies demonstrated that salmon cartilage proteoglycan (PG) suppresses excess inflammation in various mouse inflammatory diseases. In this study, we examined the effect of PG on type 2 diabetes using high-fat-diet (HFD) induced obese mouse model. Oral PG administration enhanced the population of small adipocytes (area less than 1000 μm 2 ) without body and tissue weight gain. In addition, PG administration suppressed mRNA expression of TNF-α, IL-6 and CXCL2 in adipose tissue. The proportion of M1 macrophages was decreased by PG administration. In addition, PG administration suppressed hyperglycemia after intraperitoneal glucose injection. Fasted serum insulin level was decreased in PG-administered mice. Moreover, insulin-stimulated phosphorylation of Akt was enhanced in the liver and gastrocnemius skeletal muscle of PG-administered mice. These data suggested that PG administration improves hyperglycemia and insulin sensitivity in obese mice by modulation of M1 macrophages which secrete proinflammatory cytokines in adipose tissue and activation of Akt in liver and skeletal muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Deficiency in Nrf2 transcription factor decreases adipose tissue mass and hepatic lipid accumulation in leptin-deficient mice.

    PubMed

    Xu, Jialin; Donepudi, Ajay C; More, Vijay R; Kulkarni, Supriya R; Li, Liya; Guo, Liangran; Yan, Bingfang; Chatterjee, Tapan; Weintraub, Neal; Slitt, Angela L

    2015-02-01

    To evaluate whether Nrf2 deficiency impacts insulin resistance and lipid accumulation in liver and white adipose tissue. Lep(ob/ob) mice (OB) with targeted Nrf2 deletion (OB-Nrf2KO) were generated. Pathogenesis of obesity and type 2 diabetes was measured in C57BL/6J, Nrf2KO, OB, and OB-Nrf2KO mice. Hepatic lipid content, lipid clearance, and very low-density lipoprotein (VLDL) secretion were determined between OB and OB-Nrf2KO mice. OB-Nrf2KO mice exhibited decreased white adipose tissue mass and decreased adipogenic and lipogenic gene expression compared with OB mice. Nrf2 deficiency prolonged hyperglycemia in response to glucose challenge, which was paralleled by reduced insulin-stimulated Akt phosphorylation. In OB mice, Nrf2 deficiency decreased hepatic lipid accumulation, decreased peroxisome proliferator-activated receptor γ expression and nicotinamide adenine dinucleotide phosphate (NADPH) content, and enhanced VLDL secretion. However, this observation was opposite in lean mice. Additionally, OB-Nrf2KO mice exhibited increased plasma triglyceride content, decreased HDL-cholesterol content, and enhanced apolipoprotein B expression, suggesting Nrf2 deficiency caused dyslipidemia in these mice. Nrf2 deficiency in Lep(ob/ob) mice reduced white adipose tissue mass and prevented hepatic lipid accumulation but induced insulin resistance and dyslipidemia. This study indicates a dual role of Nrf2 during metabolic dysregulation-increasing lipid accumulation in liver and white adipose tissue but preventing lipid accumulation in obese mice. © 2014 The Obesity Society.

  7. Fenugreek, A Potent Hypoglycaemic Herb Can Cause Central Hypothyroidism Via Leptin - A Threat To Diabetes Phytotherapy.

    PubMed

    Majumdar, Jayjeet; Chakraborty, Pratip; Mitra, Analava; Sarkar, Nirmal Kumar; Sarkar, Supriti

    2017-07-01

    Fenugreek ( Trigonella foenum graecum) , a medicinal herb with potent antihyperglycaemic and hypoglycaemic effects, is used to treat diabetes. This study is aimed to explore the interaction of fenugreek seed extract (FSE) and HPT (hypothalamic-pituitary-thyroid) axis in context of leptin secretion which have important role in normal and type-1 diabetic subjects. FSE (confirmed to contain trigonelline, diosgenin, 4 hydroxyisoleucine) was gavaged (0.25 gm/kg body weight/day) to normal and alloxan-induced type-1 diabetic rats for 4 weeks. Expression of hypothalamic prepro-TRH (Thyrotropin releasing hormone) mRNA, serum levels of TRH, TSH (Thyroid stimulating hormone), fT 3 , fT 4 , insulin, leptin, glucose; thyroperoxidase activity and growth of thyroid gland, food intake, adiposity index were also studied FSE significantly down regulated prepro-TRH mRNA expression; decreased serum TRH, TSH, fT 3 , fT 4 levels, and regressed thyroid gland in FSE-fed normal and diabetic rats than those observed in normal diet-fed control and diabetic rats. FSE decreased (p<0.005-0.001) adiposity index and leptin secretion, increased food intake and body weight in all FSE-fed rats. FSE improved insulin secretion, decreased glucose level but impaired HPT axis in diabetic rats, indicating insulin-independent central hypothyroidism. Results suggested that the dominant signal to hypothalamus suppressing HPT axis is the fall in leptin level which i resulted from decreased adiposity index following FSE feeding. Fenugreek simultaneously having hypoglycaemic and hypothyroidal actions raises questions whether it can be safely used to treat diabetes and/or hyperthyroidism as was suggested by many workers. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Polymorphism at the 5' end flanking region of the insulin gene is associated with reduced insulin secretion in healthy individuals.

    PubMed

    Cocozza, S; Riccardi, G; Monticelli, A; Capaldo, B; Genovese, S; Krogh, V; Celentano, E; Farinaro, E; Varrone, S; Avvedimento, V E

    1988-12-01

    Sixty-four unrelated healthy subjects were studied for the detection of a DNA polymorphism at the 5' end of the insulin gene. No significant difference between the groups was found in blood glucose values at fasting and after an oral glucose load. A significant association was found between fasting (P less than 0.05) and after load plasma C-peptide levels (P less than 0.01) and the presence of a 1.6 Kb insertion at the 5' end of the insulin gene. A gene dose-dependent effect was noted, class 3/3 individuals having the lowest after-load C-peptide concentration and class 1/3 an intermediate level (F for the linear trend: P = 0.007). This might suggest that insulin gene polymorphism affects insulin secretion in healthy individuals. In order to confirm this, a subgroup of six class 3/3 and eight class 1/1 individuals subsequently underwent a hyperglycaemic clamp. The tissue sensitivity to insulin was similar in the two groups but glucose-stimulated insulin secretion was markedly impaired in homozygotes for the class 3 allele. In this group, insulin secretion was, on average, only one-third of that in class 1/1 individuals (P less than 0.02). Similarly impaired in class 3/3 persons was the glucose + arginine-stimulated insulin secretion (P less than 0.05). We conclude that the polymorphism at the 5' end of the insulin gene is associated with variations in insulin secretion in healthy humans.

  9. Reactive oxygen species as a signal in glucose-stimulated insulin secretion.

    PubMed

    Pi, Jingbo; Bai, Yushi; Zhang, Qiang; Wong, Victoria; Floering, Lisa M; Daniel, Kiefer; Reece, Jeffrey M; Deeney, Jude T; Andersen, Melvin E; Corkey, Barbara E; Collins, Sheila

    2007-07-01

    One of the unique features of beta-cells is their relatively low expression of many antioxidant enzymes. This could render beta-cells susceptible to oxidative damage but may also provide a system that is sensitive to reactive oxygen species as signals. In isolated mouse islets and INS-1(832/13) cells, glucose increases intracellular accumulation of H2O2. In both models, insulin secretion could be stimulated by provision of either exogenous H2O2 or diethyl maleate, which raises intracellular H2O2 levels. Provision of exogenous H2O2 scavengers, including cell permeable catalase and N-acetyl-L-cysteine, inhibited glucose-stimulated H2O2 accumulation and insulin secretion (GSIS). In contrast, cell permeable superoxide dismutase, which metabolizes superoxide into H2O2, had no effect on GSIS. Because oxidative stress is an important risk factor for beta-cell dysfunction in diabetes, the relationship between glucose-induced H2O2 generation and GSIS was investigated under various oxidative stress conditions. Acute exposure of isolated mouse islets or INS-1(832/13) cells to oxidative stressors, including arsenite, 4-hydroxynonenal, and methylglyoxal, led to decreased GSIS. This impaired GSIS was associated with increases in a battery of endogenous antioxidant enzymes. Taken together, these findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function.

  10. Homogeneous Time-resolved Förster Resonance Energy Transfer-based Assay for Detection of Insulin Secretion.

    PubMed

    Aslanoglou, Despoina; George, Emily W; Freyberg, Zachary

    2018-05-10

    The detection of insulin secretion is critical for elucidating mechanisms of regulated secretion as well as in studies of metabolism. Though numerous insulin assays have existed for decades, the recent advent of homogeneous time-resolved Förster Resonance Energy Transfer (HTRF) technology has significantly simplified these measurements. This is a rapid, cost-effective, reproducible, and robust optical assay reliant upon antibodies conjugated to bright fluorophores with long lasting emission which facilitates time-resolved Förster Resonance Energy Transfer. Moreover, HTRF insulin detection is amenable for the development of high-throughput screening assays. Here we use HTRF to detect insulin secretion in INS-1E cells, a rat insulinoma-derived cell line. This allows us to estimate basal levels of insulin and their changes in response to glucose stimulation. In addition, we use this insulin detection system to confirm the role of dopamine as a negative regulator of glucose-stimulated insulin secretion (GSIS). In a similar manner, other dopamine D2-like receptor agonists, quinpirole, and bromocriptine, reduce GSIS in a concentration-dependent manner. Our results highlight the utility of the HTRF insulin assay format in determining the role of numerous drugs in GSIS and their pharmacological profiles.

  11. Increased CD19+CD24+CD27+ B regulatory cells are associated with insulin resistance in patients with type I Hashimoto's thyroiditis.

    PubMed

    Yang, Min; Du, Changji; Wang, Yinping; Liu, Jun

    2017-06-01

    Hashimoto's thyroiditis (HT) is characterized by dysregulated immune responses and is commonly associated with insulin resistance. However, the mechanism of insulin resistance in HT remains to be fully elucidated. The aim of the present study was to investigate the correlation between the percentage of B regulatory lymphocytes (Bregs) and insulin resistance in patients with HT but with normal thyroid function (type I). A total of 59 patients with type I HT and 38 healthy volunteers were enrolled in the study. An oral glucose tolerance test was performed to measure insulin secretion and assess β‑cell functions. Flow cytometry was performed to examine the percentages of lymphocyte populations. The patients with HT exhibited normal fasting and postprandial glucose and fasting insulin secretion, but increased secretion of early‑phase and total insulin. The patients with HT also had insufficient β‑cell compensation for insulin resistance, indicated by a reduced disposition index, in the fasting state. An elevation in the percentage of CD19+CD24+CD27+ Bregs was also observed, which correlated positively with insulin secretion and insulin resistance in the fasting state. The patients with type I HT had postprandial insulin resistance and insufficient β‑cell compensation for fasting insulin resistance. Therefore, the increase in CD19+CD24+CD27+ Bregs was closely associated with fasting insulin secretion. These results provide novel insight into the mechanism of insulin resistance in HT.

  12. Sirt1 Regulates Insulin Secretion by Repressing UCP2 in Pancreatic β Cells

    PubMed Central

    Bordone, Laura; Jhala, Ulupi S; Apfeld, Javier; McDonagh, Thomas; Lemieux, Madeleine; McBurney, Michael; Szilvasi, Akos; Easlon, Erin J; Lin, Su-Ju; Guarente, Leonard

    2006-01-01

    Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals. We show that Sirt1 positively regulates insulin secretion in pancreatic β cells. Sirt1 represses the uncoupling protein (UCP) gene UCP2 by binding directly to the UCP2 promoter. In β cell lines in which Sirt1 is reduced by SiRNA, UCP2 levels are elevated and insulin secretion is blunted. The up-regulation of UCP2 is associated with a failure of cells to increase ATP levels after glucose stimulation. Knockdown of UCP2 restores the ability to secrete insulin in cells with reduced Sirt1, showing that UCP2 causes the defect in glucose-stimulated insulin secretion. Food deprivation induces UCP2 in mouse pancreas, which may occur via a reduction in NAD (a derivative of niacin) levels in the pancreas and down-regulation of Sirt1. Sirt1 knockout mice display constitutively high UCP2 expression. Our findings show that Sirt1 regulates UCP2 in β cells to affect insulin secretion. PMID:16366736

  13. Role for the TRPV1 channel in insulin secretion from pancreatic beta cells.

    PubMed

    Diaz-Garcia, Carlos Manlio; Morales-Lázaro, Sara L; Sánchez-Soto, Carmen; Velasco, Myrian; Rosenbaum, Tamara; Hiriart, Marcia

    2014-06-01

    Transient receptor potential channels have been put forward as regulators of insulin secretion. A role for the TRPV1 ion channel in insulin secretion has been suggested in pancreatic beta cell lines. We explored whether TRPV1 is functionally expressed in RINm5F and primary beta cells from neonate and adult rats. We examined if capsaicin could activate cationic non-selective currents. Our results show that TRPV1 channels are not functional in insulin-secreting cells, since capsaicin did not produce current activation, not even under culture conditions known to induce the expression of other ion channels in these cells. Although TRPV1 channels seem to be irrelevant for the physiology of isolated beta cells, they may play a role in glucose homeostasis acting through the nerve fibers that regulate islet function. At the physiological level, we observed that Trpv1 (-/-) mice presented lower fasting insulin levels than their wild-type littermates, however, we did not find differences between these experimental groups nor in the glucose tolerance test or in the insulin secretion. However, we did find that the Trpv1 (-/-) mice exhibited a higher insulin sensitivity compared to their wild-type counterparts. Our results demonstrate that TRPV1 does not contribute to glucose-induced insulin secretion in beta cells as was previously thought, but it is possible that it may control insulin sensitivity.

  14. Blood Glucose and Insulin Concentrations after Octreotide Administration in Horses With Insulin Dysregulation.

    PubMed

    Frank, N; Hermida, P; Sanchez-Londoño, A; Singh, R; Gradil, C M; Uricchio, C K

    2017-07-01

    Octreotide is a somatostatin analog that suppresses insulin secretion. We hypothesized that octreotide would suppress insulin concentrations in horses and that normal (N) horses and those with insulin dysregulation (ID) would differ significantly in their plasma glucose and insulin responses to administration of octreotide. Twelve horses, N = 5, ID = 7. Prospective study. An oral sugar test was performed to assign horses to N and ID groups. Octreotide (1.0 μg/kg IV) was then administered, and blood was collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, 75, and 90 minute, and 2, 3, 4, 6, 8, 12, and 24 hour for measurement of glucose and insulin concentrations. Area under the curve (AUC) values were calculated. Mean AUC values for glucose and insulin did not differ between normal (n = 5) and ID (n = 7) groups after octreotide injection. Significant time (P < .001) effects were detected for glucose and insulin concentrations. A group × time interaction (P = .091) was detected for insulin concentrations after administration of octreotide, but the group (P = .33) effect was not significant. Octreotide suppresses insulin secretion, resulting in hyperglycemia, and then concentrations increase above baseline as glycemic control is restored. Our hypothesis that octreotide causes insulin concentrations to decrease in horses was supported, but differences between N and ID groups did not reach statistical significance when blood glucose and insulin responses were compared. The utility of an octreotide response test remains to be determined. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  15. Cinnamon extract inhibits the postprandial overproduction of apolipoprotein B48-containing lipoproteins in fructose-fed animals.

    PubMed

    Qin, Bolin; Polansky, Marilyn M; Sato, Yuzo; Adeli, Khosrow; Anderson, Richard A

    2009-11-01

    We have reported previously that a cinnamon extract (CE), high in type A polyphenols, prevents fructose feeding-induced decreases in insulin sensitivity and suggested that improvements of insulin sensitivity by CE were attributable, in part, to enhanced insulin signaling. In this study, we examined the effects of CE on postprandial apolipoprotein (apo) B-48 increase in fructose-fed rats, and the secretion of apoB48 in freshly isolated intestinal enterocytes of fructose-fed hamsters. In an olive oil loading study, a water-soluble CE (Cinnulin PF, 50 mg/kg body weight, orally) decreased serum triglyceride (TG) levels and the over production of total- and TG-rich lipoprotein-apoB48. In ex vivo (35)S labeling study, significant decreases were also observed in apoB48 secretion into the media in enterocytes isolated from fructose-fed hamsters. We also investigated the molecular mechanisms of the effects of CE on the expression of genes of the insulin signaling pathway [insulin receptor (IR), IR substrate (IRS)1, IRS2 and Akt1], and lipoprotein metabolism [microsomal TG transfer protein (MTP), sterol regulatory element-binding protein (SREBP1c) in isolated primary enterocytes of fructose-fed hamsters, using quantitative real-time polymerase chain reaction. The CE reversed the expression of the impaired IR, IRS1, IRS2 and Akt1 mRNA levels and inhibited the overexpression of MTP and SREBP1c mRNA levels of enterocytes. Taken together, our data suggest that the postprandial hypertriglycerides and the overproduction of apoB48 can be acutely inhibited by a CE by a mechanism involving improvements of insulin sensitivity of intestinal enterocytes and regulation of MTP and SREBP1c levels. We present both in vivo and ex vivo evidence that a CE improves the postprandial overproduction of intestinal apoB48-containing lipoproteins by ameliorating intestinal insulin resistance and may be beneficial in the control of lipid metabolism.

  16. Effect of oral contraceptives and/or metformin on GLP-1 secretion and reactive hypoglycaemia in polycystic ovary syndrome.

    PubMed

    Glintborg, Dorte; Mumm, Hanne; Holst, Jens Juul; Andersen, Marianne

    2017-05-01

    Insulin resistance in polycystic ovary syndrome (PCOS) may increase the risk of reactive hypoglycaemia (RH) and decrease glucagon-like peptide-1 (GLP-1) secretion. The possible effects of treatment with oral contraceptives (OCP) and/or metformin on GLP-1 secretion and risk of RH in PCOS is undetermined. Outpatient clinic. Randomized, controlled clinical trial. Ninety women with PCOS were randomized to 12-month treatment with OCP (150 mg desogestrel + 30 mg ethinylestradiol), metformin (2 g/day) or metformin + OCP. Five-hour oral glucose tolerance tests (5-h OGTT) measuring fasting and area under the curve (AUC) for GLP-1, glucose, insulin and C-peptide were performed before and after the intervention period. Sixty-five women completed the study and 34 weight-matched healthy women were included as controls. Changes in GLP-1, glucose, insulin and C-peptide during 5-h OGTT. Fasting GLP-1 levels increased during metformin + OCP vs OCP treatment, whereas AUC GLP-1 levels were unchanged during medical treatment. The prevalence of reactive hypoglycemia increased from 9/65 to 14/65 after intervention ( P  < 0.01) and was more common after treatment with metformin + OCP (increase from 3/23 to 6/23, P  = 0.01). Reactive hypoglycaemia was associated with higher insulin and C-peptide levels during 5-h OGTT, but was unassociated with BMI and AUC GLP-1. GLP-1 levels were comparable in PCOS vs controls. AUC GLP-1 levels were significantly lower in obese vs lean patients and were inversely associated with BMI. AUC GLP-1 levels were unchanged during treatment. Increased risk of hypoglycemia during metformin + OCP could be associated with increased insulin secretion. © 2017 The authors.

  17. Effects of Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) on hyperglycemia in streptozotocin-induced diabetic rats.

    PubMed

    Hirotani, Yoshihiko; Ikeda, Takuya; Yamamoto, Kaoru; Kurokawa, Nobuo

    2007-05-01

    The present study investigated the effects of Hachimi-jio-gan (HJ) on diabetic hyperglycemia in streptozotocin (STZ)-induced diabetic rats. After STZ administration, rats had free access to pellets containing 1% HJ extract powder for four weeks. HJ markedly suppressed hyperglycemia in STZ-induced diabetic rats at three and four weeks after the start of administration. There were also significant increases in serum and pancreatic immunoreactive insulin levels in STZ and HJ co-administering rats. However, in the present study, the number of beta cells in the pancreatic Langerhans' islets did not increase. Next, in order to investigate the action mechanism besides the glycemic control action of insulin, the expression of glucose transporter 2 (GLUT2) protein, which is involved in glucose uptake and release in the liver, was investigated. GLUT2 protein expression was increased by STZ administration but was normalized after four weeks of HJ administration. Therefore, irrespective of the structural changes in pancreatic beta-cells due to STZ, HJ increased insulin production and secretion by the pancreas and significantly suppressed GLUT2 synthesis in the liver. Amylase secretion from the pancreas was measured to assess pancreatic secretion. Amylase activity was decreased by STZ but was increased by HJ. Therefore, the effects of HJ on STZ-induced hyperglycemia in rats could be summarized as follows: besides increasing insulin synthesis and release, HJ normalizes GLUT2 protein expression in the liver to suppress hyperglycemia. Hence, the results of the present study suggest for the first time that HJ affects not only the production and secretion of insulin, but also the release of glucose from the liver.

  18. Non-alcoholic fatty liver disease and impaired proinsulin conversion as newly identified predictors of the long-term non-response to a lifestyle intervention for diabetes prevention: results from the TULIP study.

    PubMed

    Schmid, Vera; Wagner, Robert; Sailer, Corinna; Fritsche, Louise; Kantartzis, Konstantinos; Peter, Andreas; Heni, Martin; Häring, Hans-Ulrich; Stefan, Norbert; Fritsche, Andreas

    2017-12-01

    Lifestyle intervention is effective to prevent type 2 diabetes. However, a considerable long-term non-response occurs to a standard lifestyle intervention. We investigated which risk phenotypes at baseline and their changes during the lifestyle intervention predict long-term glycaemic non-response to the intervention. Of 300 participants at high risk for type 2 diabetes who participated in a 24 month lifestyle intervention with diet modification and increased physical activity, 190 participants could be re-examined after 8.7 ± 1.6 years. All individuals underwent a five-point 75 g OGTT and measurements of body fat compartments and liver fat content with MRI and spectroscopy at baseline, 9 and 24 months during the lifestyle intervention, and at long-term follow-up. Fasting proinsulin to insulin conversion (PI/I ratio) and insulin sensitivity and secretion were calculated from the OGTT. Non-response to lifestyle intervention was defined as no decrease in glycaemia, i.e. no decrease in AUC for glucose at 0-120 min during OGTT (AUCglucose 0-120 min ). Before the lifestyle intervention, 56% of participants had normal glucose regulation and 44% individuals had impaired fasting glucose and/or impaired glucose tolerance. At long-term follow-up, 11% had developed diabetes. Multivariable regression analysis with adjustment for age, sex, BMI and change in BMI during the lifestyle intervention revealed that baseline insulin secretion and insulin sensitivity, as well as change in insulin sensitivity during the lifestyle intervention, predicted long-term glycaemic control after 9 years. In addition, increased hepatic lipid content as well as impaired fasting proinsulin conversion at baseline were newly detected phenotypes that independently predicted long-term glycaemic control. Increased hepatic lipid content and impaired proinsulin conversion are new predictors, independent of change in body weight, for non-response to lifestyle intervention in addition to the confirmed factors, impaired insulin secretion and insulin sensitivity.

  19. Effect of oral glucose administration on rebound growth hormone release in normal and obese women: the role of adiposity, insulin sensitivity and ghrelin.

    PubMed

    Pena-Bello, Lara; Pertega-Diaz, Sonia; Outeiriño-Blanco, Elena; Garcia-Buela, Jesus; Tovar, Sulay; Sangiao-Alvarellos, Susana; Dieguez, Carlos; Cordido, Fernando

    2015-01-01

    Metabolic substrates and nutritional status play a major role in growth hormone (GH) secretion. Uncovering the mechanisms involved in GH secretion following oral glucose (OG) administration in normal and obese patients is a pending issue. The aim of this study was to investigate GH after OG in relation with adiposity, insulin secretion and action, and ghrelin secretion in obese and healthy women, to further elucidate the mechanism of GH secretion after OG and the altered GH secretion in obesity. We included 64 healthy and obese women. After an overnight fast, 75 g of OG were administered; GH, glucose, insulin and ghrelin were obtained during 300 minutes. Insulin secretion and action indices and the area under the curve (AUC) were calculated for GH, glucose, insulin and ghrelin. Univariate and multivariate linear regression analyses were employed. The AUC of GH (μg/L•min) was lower in obese (249.8±41.8) than in healthy women (490.4±74.6), P=0.001. The AUC of total ghrelin (pg/mL•min) was lower in obese (240995.5±11094.2) than in healthy women (340797.5±37757.5), P=0.042. There were significant correlations between GH secretion and the different adiposity, insulin secretion and action, and ghrelin secretion indices. After multivariate analysis only ghrelin AUC remained a significant predictor for fasting and peak GH.

  20. Effect of Oral Glucose Administration on Rebound Growth Hormone Release in Normal and Obese Women: The Role of Adiposity, Insulin Sensitivity and Ghrelin

    PubMed Central

    Pena-Bello, Lara; Pertega-Diaz, Sonia; Outeiriño-Blanco, Elena; Garcia-Buela, Jesus; Tovar, Sulay; Sangiao-Alvarellos, Susana; Dieguez, Carlos; Cordido, Fernando

    2015-01-01

    Context Metabolic substrates and nutritional status play a major role in growth hormone (GH) secretion. Uncovering the mechanisms involved in GH secretion following oral glucose (OG) administration in normal and obese patients is a pending issue. Objective The aim of this study was to investigate GH after OG in relation with adiposity, insulin secretion and action, and ghrelin secretion in obese and healthy women, to further elucidate the mechanism of GH secretion after OG and the altered GH secretion in obesity. Participants and Methods We included 64 healthy and obese women. After an overnight fast, 75 g of OG were administered; GH, glucose, insulin and ghrelin were obtained during 300 minutes. Insulin secretion and action indices and the area under the curve (AUC) were calculated for GH, glucose, insulin and ghrelin. Univariate and multivariate linear regression analyses were employed. Results The AUC of GH (μg/L•min) was lower in obese (249.8±41.8) than in healthy women (490.4±74.6), P=0.001. The AUC of total ghrelin (pg/mL•min) was lower in obese (240995.5±11094.2) than in healthy women (340797.5±37757.5), P=0.042. There were significant correlations between GH secretion and the different adiposity, insulin secretion and action, and ghrelin secretion indices. After multivariate analysis only ghrelin AUC remained a significant predictor for fasting and peak GH. PMID:25782001

  1. A new scaffold containing small intestinal submucosa and mesenchymal stem cells improves pancreatic islet function and survival in vitro and in vivo

    PubMed Central

    Wang, Dan; Ding, Xiaoming; Xue, Wujun; Zheng, Jin; Tian, Xiaohui; Li, Yang; Wang, Xiaohong; Song, Huanjin; Liu, Hua; Luo, Xiaohui

    2017-01-01

    It is unknown whether a scaffold containing both small intestinal submucosa (SIS) and mesenchymal stem cells (MSCs) for transplantation may improve pancreatic islet function and survival. In this study, we examined the effects of a SIS-MSC scaffold on islet function and survival in vitro and in vivo. MSCs and pancreatic islets were isolated from Sprague-Dawley rats, and SIS was isolated from Bamei pigs. The islets were apportioned among 3 experimental groups as follows: SIS-islets, SIS-MSC-islets and control-islets. In vitro, islet function was measured by a glucose-stimulated insulin secretion test; cytokines in cultured supernatants were assessed by enzyme-linked immunosorbent assay; and gene expression was analyzed by reverse transcription-quantitative PCR. In vivo, islet transplantation was performed in rats, and graft function and survival were monitored by measuring the blood glucose levels. In vitro, the SIS-MSC scaffold was associated with improved islet viability and enhanced insulin secretion compared with the controls, as well as with the increased the expression of insulin 1 (Ins1), pancreatic and duodenal homeobox 1 (Pdx1), platelet endothelial cell adhesion molecule 1 [Pecam1; also known as cluster of differentiation 31 (CD31)] and vascular endothelial growth factor A (Vegfa) in the islets, increased growth factor secretion, and decreased tumor necrosis factor (TNF) secretion. In vivo, the SIS-MSC scaffold was associated with improved islet function and graft survival compared with the SIS and control groups. On the whole, our findings demonstrate that the SIS-MSC scaffold significantly improved pancreatic islet function and survival in vitro and in vivo. This improvement may be associated with the upregulation of insulin expression, the improvement of islet microcirculation and the secretion of cytokines. PMID:27909715

  2. Important role of heparan sulfate in postnatal islet growth and insulin secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Iwao; Noguchi, Naoya; Nata, Koji

    2009-05-22

    Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet {beta}-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in {beta}-cells. These mice exhibited abnormal islet morphology with reduced {beta}-cell proliferation after 1 week of age and glucosemore » intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.« less

  3. Effects of D-phenylalanine-derivative hypoglycemic agent A-4166 on pancreatic alpha- and beta-cells: comparative study with glibenclamide.

    PubMed

    Hirose, H; Maruyama, H; Seto, Y; Ito, K; Fujita, T; Dan, K; Kanda, N; Saruta, T; Kato, R

    1995-03-01

    We have reported that N-[(trans-4-isopropyl-cyclohexyl)-carbonyl]-D-phenylalanine (A-4166) stimulates insulin secretion in animal studies. To further elucidate the mechanisms underlying the actions of this agent, we investigated the effects of A-4166 on insulin and glucagon secretion with or without diazoxide, an ATP-sensitive potassium channel opener, using isolated perfused rat pancreas preparations, and compared the results with those of glibenclamide. Both 30 mumol/l A-4166 and 3 mumol/l glibenclamide significantly stimulated insulin secretion and reduced glucagon secretion to similar levels at a glucose concentration of 5.6 mmol/l (p < 0.01 for both vs. basal levels). After infusion of A-4166 was stopped, insulin levels promptly returned to the basal values, while insulin levels increased further even after discontinuation of glibenclamide. Furthermore, 100 mumol/l diazoxide significantly inhibited the insulin-stimulatory effects of both 30 mumol/l A-4166 and 3 mumol/l glibenclamide (p < 0.05 and p < 0.01, respectively). However, the effects of diazoxide on glucagon secretion differed between the two groups; 30 mumol/l A-4166 produced a transient increase in glucagon secretion (p < 0.05 vs. basal levels) but 3 mumol/l glibenclamide suppressed glucagon secretion further (p < 0.01 vs. without diazoxide) with concomitant administration of 100 mumol/l diazoxide. These findings suggest that A-4166 directly stimulates insulin secretion, at least in part, through mechanisms resembling those of sulfonylurea, but exerts different effect on glucagon secretion in isolated perfused rat pancreas.

  4. Insulin secretion and GLUT-2 expression in undernourished neonate rats.

    PubMed

    Lopes Da Costa, Célia; Sampaio De Freitas, Marta; Sanchez Moura, Anibal

    2004-04-01

    In previous studies, we verified increased insulin sensitivity in adult male offspring of lactating rats readjusting to lack of insulin secretion reduction brought about by protein restriction during lactation. The present study aims to evaluate the effects of maternal protein undernutrition during lactation on glucose-induced insulin secretion and GLUT-2 expression in beta-cells of neonate male and female rats. Lactating Wistar rats were given a protein-free diet during the first 10 days and a normal diet (22% of protein) until weaning. The neonates were separated at birth by sex and diet and studied at 4, 8 and 21 days of lactation. Glucose-induced insulin secretion by pancreatic islets was analyzed by radioimmunoassay and GLUT-2 expression in beta-cells by Western blot. Glucose-induced insulin secretion of the undernourished groups was higher than in the control groups except among females. When comparing the male and female groups and the control and undernourished groups, female neonates showed significantly greater insulin secretion than the male group. Also it was noted that undernutrition induced greater GLUT-2 expression. For instance, comparing the undernourished male and female neonates there was an increase in female GLUT-2 expression on day 4. On the other hand, in undernourished male neonates a GLUT-2 expression increased later in lactation. In conclusion, during a short term, maternal undernutrition induces an increase of the glucose-induced insulin secretion only in male neonates and is associated with an increase in GLUT-2 expression in the beta-cell.

  5. Clinical characteristics and beta cell function in Chinese patients with newly diagnosed type 2 diabetes mellitus with different levels of serum triglyceride.

    PubMed

    Zheng, Shuang; Zhou, Huan; Han, Tingting; Li, Yangxue; Zhang, Yao; Liu, Wei; Hu, Yaomin

    2015-04-29

    To explore clinical characteristics and beta cell function in Chinese patients with newly diagnosed drug naive type 2 diabetes mellitus (T2DM) with different levels of serum triglyceride (TG). Patients with newly diagnosed T2DM (n = 624) were enrolled and divided into different groups according to levels of serum TG. All patients underwent oral glucose tolerance tests and insulin releasing tests. Demographic data, lipid profiles, glucose levels, and insulin profiles were compared between different groups. Basic insulin secretion function index (homeostasis model assessment for beta cell function index, HOMA-β), modified beta cell function index (MBCI), glucose disposition indices (DI), and early insulin secretion function index (insulinogenic index, IGI) were used to evaluate the beta cell function. Patients of newly diagnosed T2DM with hypertriglyceridemia were younger, fatter and had worse lipid profiles, glucose profiles, and high insulin levels than those with normal TG. There is no difference in early phase insulin secretion among groups of newly diagnosed T2DM patients with different TG levels. The basal beta cell function (HOMA-β and MBCI) initially increased along rising TG levels and then decreased as the TG levels rose further. The insulin sensitivity was relatively high in patients with a low level of TG and low with a high level of TG. Hypertriglyceridemia influences clinical characteristics and β cell function of Chinese patients with newly diagnosed T2DM. A better management of dyslipidemia may, to some extent, reduce the effect of lipotoxicity, thereby improving glucose homeostasis in patients with newly diagnosed T2DM.

  6. Mealtime glucose regulation with nateglinide in healthy volunteers: comparison with repaglinide and placebo.

    PubMed

    Kalbag, J B; Walter, Y H; Nedelman, J R; McLeod, J F

    2001-01-01

    This study was designed to compare the pharmacodynamic effects of single doses of nateglinide (A-4166), repaglinide, and placebo on mealtime insulin secretion and glycemic control in healthy subjects. Fifteen healthy volunteers participated in this open-label five-period crossover study. They received single 10-min preprandial doses of 120 mg nateglinide, 0.5 or 2 mg repaglinide, or placebo or 1 min preprandially of 2 mg repaglinide. Subjects received each dose only once, 48 h apart. Pharmacodynamic and pharmacokinetic assessments were performed from 0 to 12 h postdose. Nateglinide induced insulin secretion more rapidly than 2 and 0.5 mg repaglinide and placebo (10 min preprandial), with mean rates of insulin rise of 2.3, 1.3, 1.15, and 0.8 microU x ml(-1) x min(-1), respectively, over the 0- to 30-min postmeal interval. After peaking, insulin concentrations decreased rapidly in the nateglinide-treated group and were similar to placebo within 2 h postdose. After 2 mg repaglinide, peak insulin concentrations were delayed and returned to baseline more slowly than with nateglinide treatment. Nateglinide treatment produced lower average plasma glucose concentrations in the 0- to 2-h postdose interval than either dose of repaglinide and placebo (P < 0.05 vs. 0.5 mg repaglinide and placebo). Plasma glucose concentrations returned more rapidly to predose levels with nateglinide treatment than with either dose of repaglinide. Treatment with repaglinide produced a sustained hypoglycemic effect up to 6 h postdose. In this single-dose study in nondiabetic volunteers, nateglinide provided a more rapid and shorter-lived stimulation of insulin secretion than repaglinide, resulting in lower meal-related glucose excursions. If similar results are observed in diabetes, nateglinide may produce a more physiological insulin secretory response with the potential for a reduced risk of postabsorptive hypoglycemia.

  7. A low-protein diet combined with low-dose endotoxin leads to changes in glucose homeostasis in weanling rats.

    PubMed

    Bandsma, Robert H J; Ackerley, Cameron; Koulajian, Khajag; Zhang, Ling; van Zutphen, Tim; van Dijk, Theo H; Xiao, Changting; Giacca, Adria; Lewis, Gary F

    2015-09-01

    Severe malnutrition is a leading cause of global childhood mortality, and infection and hypoglycemia or hyperglycemia are commonly present. The etiology behind the changes in glucose homeostasis is poorly understood. Here, we generated an animal model of severe malnutrition with and without low-grade inflammation to investigate the effects on glucose homeostasis. Immediately after weaning, rats were fed diets containing 5 [low-protein diet (LP)] or 20% protein [control diet (CTRL)], with or without repeated low-dose intraperitoneal lipopolysaccharide (LPS; 2 mg/kg), to mimic inflammation resulting from infections. After 4 wk on the diets, hyperglycemic clamps or euglycemic hyperinsulinemic clamps were performed with infusion of [U-(13)C6]glucose and [2-(13)C]glycerol to assess insulin secretion, action, and hepatic glucose metabolism. In separate studies, pancreatic islets were isolated for further analyses of insulin secretion and islet morphometry. Glucose clearance was reduced significantly by LP feeding alone (16%) and by LP feeding with LPS administration (43.8%) compared with control during the hyperglycemic clamps. This was associated with a strongly reduced insulin secretion in LP-fed rats in vivo as well as ex vivo in islets but signficantly enhanced whole body insulin sensitivity. Gluconeogenesis rates were unaffected by LP feeding, but glycogenolysis was higher after LP feeding. A protein-deficient diet in young rats leads to a susceptibility to low-dose endotoxin-induced impairment in glucose clearance with a decrease in the islet insulin secretory pathway. A protein-deficient diet is associated with enhanced peripheral insulin sensitivity but impaired insulin-mediated suppression of hepatic glycogenolysis. Copyright © 2015 the American Physiological Society.

  8. Effects of phenylbutazone on glucose tolerance and on secretion of insulin in healthy geldings.

    PubMed

    Zicker, S C; Brumbaugh, G W

    1989-05-01

    The effect of phenylbutazone (4.4 mg/kg of body weight, IV, q 24 h, for 5 days) on glucose tolerance and on secretion of insulin in 6 healthy geldings was determined. Phenylbutazone significantly lowered fasting concentrations of glucose in plasma but did not significantly change the concentration of insulin in serum. There was no significant effect of phenylbutazone on glucose tolerance, on secretion of insulin, or on the area under the insulin/glucose ratio vs time curve in healthy geldings, as determined by paired t test analysis.

  9. A 70% Ethanol Extract of Mistletoe Rich in Betulin, Betulinic Acid, and Oleanolic Acid Potentiated β-Cell Function and Mass and Enhanced Hepatic Insulin Sensitivity

    PubMed Central

    Ko, Byoung-Seob; Kang, Suna; Moon, Bo Reum; Ryuk, Jin Ah; Park, Sunmin

    2016-01-01

    We investigated that the long-term consumption of the water (KME-W) and 70% ethanol (KME-E) mistletoe extracts had antidiabetic activities in partial pancreatectomized (Px) rats. Px rats were provided with a high-fat diet containing 0.6% KME-E, 0.6% KME-W, and 0.6% dextrin (control) for 8 weeks. As normal-control, Sham-operated rats were provided with 0.6% dextrin. In cell-based studies, the effects of its main terpenoids (betulin, betulinic acid, and oleanolic acid) on glucose metabolism were measured. Both KME-W and KME-E decreased epididymal fat mass by increasing fat oxidation in diabetic rats. KME-E but not KME-W exhibited greater potentiation of first-phase insulin secretion than the Px-control in a hyperglycemic clamp. KME-E also made β-cell mass greater than the control by increasing β-cell proliferation and decreasing its apoptosis. In a euglycemic-hyperinsulinemic clamp, whole-body glucose infusion rate and hepatic glucose output increased with potentiating hepatic insulin signaling in the following order: Px-control, KME-W, KME-E, and normal-control. Betulin potentiated insulin-stimulated glucose uptake via increased PPAR-γ activity and insulin signaling in 3T3-L1 adipocytes, whereas oleanolic acid enhanced glucose-stimulated insulin secretion and cell proliferation in insulinoma cells. In conclusion, KME-E prevented the deterioration of glucose metabolism in diabetic rats more effectively than KME-W and KME-E can be a better therapeutic agent for type 2 diabetes than KME-W. PMID:26884795

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, Gary W., E-mail: gary.cline@yale.edu; Department of Surgery, University of Minnesota-Twin Cities, Minneapolis, MN 55455; Pongratz, Rebecca L.

    Highlights: Black-Right-Pointing-Pointer We studied media effects on mechanisms of insulin secretion of INS-1 cells. Black-Right-Pointing-Pointer Insulin secretion was higher in DMEM than KRB despite identical ATP synthesis rates. Black-Right-Pointing-Pointer Insulin secretion rates correlated with rates of anaplerosis and TCA cycle. Black-Right-Pointing-Pointer Mitochondria metabolism and substrate cycles augment secretion signal of ATP. -- Abstract: Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as amore » surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with {sup 31}P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by {sup 13}C NMR isotopomer analysis of the fate of [U-{sup 13}C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15 mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM was found to be congruous with the correlation in KRB. Together, these results suggest that signaling mechanisms associated with both TCA cycle flux and with anaplerotic flux, but not ATP production, may be responsible for the enhanced rates of insulin secretion in more complex, and physiologically-relevant media.« less

  11. Low-fat versus low-carbohydrate weight reduction diets: effects on weight loss, insulin resistance, and cardiovascular risk: a randomized control trial.

    PubMed

    Bradley, Una; Spence, Michelle; Courtney, C Hamish; McKinley, Michelle C; Ennis, Cieran N; McCance, David R; McEneny, Jane; Bell, Patrick M; Young, Ian S; Hunter, Steven J

    2009-12-01

    Low-fat hypocaloric diets reduce insulin resistance and prevent type 2 diabetes in those at risk. Low-carbohydrate, high-fat diets are advocated as an alternative, but reciprocal increases in dietary fat may have detrimental effects on insulin resistance and offset the benefits of weight reduction. We investigated a low-fat (20% fat, 60% carbohydrate) versus a low-carbohydrate (60% fat, 20% carbohydrate) weight reduction diet in 24 overweight/obese subjects ([mean +/- SD] BMI 33.6 +/- 3.7 kg/m(2), aged 39 +/- 10 years) in an 8-week randomized controlled trial. All food was weighed and distributed, and intake was calculated to produce a 500 kcal/day energy deficit. Insulin action was assessed by the euglycemic clamp and insulin secretion by meal tolerance test. Body composition, adipokine levels, and vascular compliance by pulse-wave analysis were also measured. Significant weight loss occurred in both groups (P < 0.01), with no difference between groups (P = 0.40). Peripheral glucose uptake increased, but there was no difference between groups (P = 0.28), and suppression of endogenous glucose production was also similar between groups. Meal tolerance-related insulin secretion decreased with weight loss with no difference between groups (P = 0.71). The change in overall systemic arterial stiffness was, however, significantly different between diets (P = 0.04); this reflected a significant decrease in augmentation index following the low-fat diet, compared with a nonsignificant increase within the low-carbohydrate group. This study demonstrates comparable effects on insulin resistance of low-fat and low-carbohydrate diets independent of macronutrient content. The difference in augmentation index may imply a negative effect of low-carbohydrate diets on vascular risk.

  12. Novel therapy for insulin-dependent diabetes mellitus: infusion of in vitro-generated insulin-secreting cells.

    PubMed

    Dave, S D; Vanikar, A V; Trivedi, H L; Thakkar, U G; Gopal, S C; Chandra, T

    2015-02-01

    Insulin-dependent diabetes mellitus (IDDM) is a metabolic disease usually resulting from autoimmune-mediated β-cell destruction requiring lifetime exogenous insulin replacement. Mesenchymal stem cells (MSC) hold promising therapy. We present our experience of treating IDDM with co-infusion of in vitro autologous adipose tissue-derived MSC-differentiated insulin-secreting cells (ISC) with hematopoietic stem cells (HSC). This was an Institutional Review Board approved prospective non-randomized open-labeled clinical trial after informed consent from ten patients. ISC were differentiated from autologous adipose tissue-derived MSC and were infused with bone marrow-derived HSC in portal, thymic circulation by mini-laparotomy and in subcutaneous circulation. Patients were monitored for blood sugar levels, serum C-peptide levels, glycosylated hemoglobin (Hb1Ac) and glutamic acid decarboxylase (GAD) antibodies. Insulin administration was made on sliding scale with an objective of maintaining FBS < 150 mg/dL and PPBS around 200 mg/dL. Mean 3.34 mL cell inoculums with 5.25 × 10(4) cells/μL were infused. No untoward effects were observed. Over a mean follow-up of 31.71 months, mean serum C-peptide of 0.22 ng/mL before infusion had sustained rise of 0.92 ng/mL with decreased exogenous insulin requirement from 63.9 international units (IU)/day to 38.6 IU/day. Improvement in mean Hb1Ac was observed from 10.99 to 6.72%. Mean GAD antibodies were positive in all patients with mean of 331.10 IU/mL, which decreased to mean of 123 IU/mL. Co-infusion of autologous ISC with HSC represents a viable novel therapeutic option for IDDM.

  13. Modulation of insulin secretion by fatty acyl analogs.

    PubMed

    Las, Guy; Mayorek, Nina; Dickstein, Kobie; Bar-Tana, Jacob

    2006-12-01

    The secretagogue, the incretin-like, and the suppressive activities of long-chain fatty acids (LCFAs) in modulating insulin secretion in vivo and in cultured islets were simulated here by beta,beta'-tetramethyl-hexadecanedioic acid (M16) and alpha,alpha'-tetrachloro-tetradecanedioic acid (Cl-DICA). M16, but not Cl-DICA, serves as a substrate for ATP-dependent CoA thioesterification but is not further metabolized. M16, but not Cl-DICA, acted as a potent insulin secretagogue in islets cultured in basal but not high glucose. Short-term exposure to M16 or Cl-DICA resulted in activation of glucose- but not arginine-stimulated insulin secretion. Long-term exposure to M16, but not to Cl-DICA, resulted in suppression of glucose-, arginine-, and K(+)-stimulated insulin secretion; inhibition of glucose-induced proinsulin biosynthesis; and depletion of islets insulin. beta-Cell mass and islet ATP content remained unaffected. Hence, nonmetabolizable LCFA analogs may highlight discrete LCFA metabolites and pathways involved in modulating insulin secretion, which could be overlooked due to the rapid turnover of natural LCFA.

  14. Pulsatile insulin secretion, impaired glucose tolerance and type 2 diabetes

    PubMed Central

    Satin, Leslie S.; Butler, Peter C.; Ha, Joon; Sherman, Arthur S.

    2015-01-01

    Type 2 diabetes (T2DM) results when increases in beta cell function and/or mass cannot compensate for rising insulin resistance. Numerous studies have documented the longitudinal changes in metabolism that occur during the development of glucose intolerance and lead to T2DM. However, the role of changes in insulin secretion, both amount and temporal pattern has been understudied. Most of the insulin secreted from pancreatic beta cells of the pancreas is released in a pulsatile pattern, which is disrupted in T2DM. Here we review the evidence that changes in beta cell pulsatility occur during the progression from glucose intolerance to T2DM in humans, and contribute significantly to the etiology of the disease. We review the evidence that insulin pulsatility improves the efficacy of secreted insulin on its targets, particularly hepatic glucose production, but also examine evidence that pulsatility alters or is altered by changes in peripheral glucose uptake. Finally, we summarize our current understanding of the biophysical mechanisms responsible for oscillatory insulin secretion. Understanding how insulin pulsatility contributes to normal glucose homeostasis and is altered in metabolic disease states may help improve the treatment of T2DM. PMID:25637831

  15. Minireview: Dopaminergic Regulation of Insulin Secretion from the Pancreatic Islet

    PubMed Central

    Ustione, Alessandro

    2013-01-01

    Exogenous dopamine inhibits insulin secretion from pancreatic β-cells, but the lack of dopaminergic neurons in pancreatic islets has led to controversy regarding the importance of this effect. Recent data, however, suggest a plausible physiologic role for dopamine in the regulation of insulin secretion. We review the literature underlying our current understanding of dopaminergic signaling that can down-regulate glucose-stimulated insulin secretion from pancreatic islets. In this negative feedback loop, dopamine is synthesized in the β-cells from circulating l-dopa, serves as an autocrine signal that is cosecreted with insulin, and causes a tonic inhibition on glucose-stimulated insulin secretion. On the whole animal scale, l-dopa is produced by cells in the gastrointestinal tract, and its concentration in the blood plasma increases following a mixed meal. By reviewing the outcome of certain types of bariatric surgery that result in rapid amelioration of glucose tolerance, we hypothesize that dopamine serves as an “antiincretin” signal that counterbalances the stimulatory effect of glucagon-like peptide 1. PMID:23744894

  16. Novel actions of IGFBP-3 on intracellular signaling pathways of insulin-secreting cells

    PubMed Central

    Chen, Xiaoyan; Ferry, Robert J.

    2011-01-01

    Understanding mechanisms underlying apoptotic destruction of insulin-secreting cells is critical to validate therapeutic targets for type 1 diabetes mellitus. We recently reported insulin-like growth factor binding protein-3 (IGFBP-3) as a novel mediator of apoptosis in insulin-secreting cells. In light of emerging IGF-independent roles for IGFBP-3, we investigated the mechanisms underlying actions of the novel, recombinant human mutant G56G80G81-IGFBP-3, which lacks intrinsic IGF binding affinity. Using the rat insulinoma RINm5F cell line, we report the first studies in insulin-secreting cells that IGFBP-3 selectively suppresses multiple, key intracellular phosphorelays. By immunoblot, we demonstrate that G56G80G81-IGFBP-3 suppresses phosphorylation of c-raf-MEK-ERK pathway and p38 kinase in time-dependent and dose-dependent manners. SAPK/JNK signaling was unaffected. These data delineate several novel intracellular sites of action for IGFBP-3 in insulin-secreting cells. PMID:16275148

  17. Reproducible insulin secretion from isolated rat pancreas preparations using an organ bath.

    PubMed

    Morita, Asuka; Ouchi, Motoshi; Terada, Misao; Kon, Hiroe; Kishimoto, Satoko; Satoh, Keitaro; Otani, Naoyuki; Hayashi, Keitaro; Fujita, Tomoe; Inoue, Ken-Ichi; Anzai, Naohiko

    2018-02-09

    Diabetes mellitus is a lifestyle-related disease that is characterized by inappropriate or diminished insulin secretion. Ex vivo pharmacological studies of hypoglycemic agents are often conducted using perfused pancreatic preparations. Pancreas preparations for organ bath experiments do not require cannulation and are therefore less complex than isolated perfused pancreas preparations. However, previous research has generated almost no data on insulin secretion from pancreas preparations using organ bath preparations. The purpose of this study was to investigate the applicability of isolated rat pancreas preparations using the organ bath technique in the quantitative analysis of insulin secretion from β-cells. We found that insulin secretion significantly declined during incubation in the organ bath, whereas it was maintained in the presence of 1 µM GLP-1. Conversely, amylase secretion exhibited a modest increase during incubation and was not altered in the presence of GLP-1. These results demonstrate that the pancreatic organ bath preparation is a sensitive and reproducible method for the ex vivo assessment of the pharmacological properties of hypoglycemic agents.

  18. Placental insufficiency decreases pancreatic vascularity and disrupts hepatocyte growth factor signaling in the pancreatic islet endothelial cell in fetal sheep.

    PubMed

    Rozance, Paul J; Anderson, Miranda; Martinez, Marina; Fahy, Anna; Macko, Antoni R; Kailey, Jenai; Seedorf, Gregory J; Abman, Steven H; Hay, William W; Limesand, Sean W

    2015-02-01

    Hepatocyte growth factor (HGF) and vascular endothelial growth factor A (VEGFA) are paracrine hormones that mediate communication between pancreatic islet endothelial cells (ECs) and β-cells. Our objective was to determine the impact of intrauterine growth restriction (IUGR) on pancreatic vascularity and paracrine signaling between the EC and β-cell. Vessel density was less in IUGR pancreata than in controls. HGF concentrations were also lower in islet EC-conditioned media (ECCM) from IUGR, and islets incubated with control islet ECCM responded by increasing insulin content, which was absent with IUGR ECCM. The effect of ECCM on islet insulin content was blocked with an inhibitory anti-HGF antibody. The HGF receptor was not different between control and IUGR islets, but VEGFA was lower and the high-affinity VEGF receptor was higher in IUGR islets and ECs, respectively. These findings show that paracrine actions from ECs increase islet insulin content, and in IUGR ECs, secretion of HGF was diminished. Given the potential feed-forward regulation of β-cell VEGFA and islet EC HGF, these two growth factors are highly integrated in normal pancreatic islet development, and this regulation is decreased in IUGR fetuses, resulting in lower pancreatic islet insulin concentrations and insulin secretion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  19. Coffee and green tea consumption is associated with insulin resistance in Japanese adults.

    PubMed

    Pham, Ngoc Minh; Nanri, Akiko; Kochi, Takeshi; Kuwahara, Keisuke; Tsuruoka, Hiroko; Kurotani, Kayo; Akter, Shamima; Kabe, Isamu; Sato, Masao; Hayabuchi, Hitomi; Mizoue, Tetsuya

    2014-03-01

    Higher coffee and green tea consumption has been suggested to decrease risk of type 2 diabetes, but their roles in insulin resistance (IR) and insulin secretion remain unclear. This study examined the association between habitual consumption of these beverages and markers of glucose metabolism in a Japanese working population. Participants were 1440 Japanese employees (1151 men and 289 women) aged 18-69years. Consumption of coffee and green tea was ascertained via a validated brief diet history questionnaire. Multilevel linear regression was used to estimate means (95% confidence intervals) of fasting insulin, fasting plasma glucose, homeostatic model assessment of IR (HOMA-IR), homeostatic model assessment of β-cell function (HOMA-β) and glycated hemoglobin (HbA1c) with adjustment for potential confounding variables. Coffee consumption was significantly, inversely associated with HOMA-IR (P for trend=0.03), and the association appeared to be confined to overweight subjects (BMI≥25kg/m(2)) (P for trend=0.01, P for interaction=0.08). Unexpectedly, green tea consumption was positively associated with HOMA-IR (P for trend=0.02), though there was no dose-response relationship among daily consumers of green tea. Neither coffee nor green tea consumption was associated with HOMA-β and HbA1c. Our findings indicate that coffee consumption may be associated with decreased IR, but not with insulin secretion. The positive association between green tea consumption and IR warrants further investigation. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Proteins altered by elevated levels of palmitate or glucose implicated in impaired glucose-stimulated insulin secretion

    PubMed Central

    Sol, E-ri M; Hovsepyan, Meri; Bergsten, Peter

    2009-01-01

    Background Development of type 2 diabetes mellitus (T2DM) is characterized by aberrant insulin secretory patterns, where elevated insulin levels at non-stimulatory basal conditions and reduced hormonal levels at stimulatory conditions are major components. To delineate mechanisms responsible for these alterations we cultured INS-1E cells for 48 hours at 20 mM glucose in absence or presence of 0.5 mM palmitate, when stimulatory secretion of insulin was reduced or basal secretion was elevated, respectively. Results After culture, cells were protein profiled by SELDI-TOF-MS and 2D-PAGE. Differentially expressed proteins were discovered and identified by peptide mass fingerprinting. Complimentary protein profiles were obtained by the two approaches with SELDI-TOF-MS being more efficient in separating proteins in the low molecular range and 2D-PAGE in the high molecular range. Identified proteins included alpha glucosidase, calmodulin, gars, glucose-6-phosphate dehydrogenase, heterogenous nuclear ribonucleoprotein A3, lon peptidase, nicotineamide adenine dinucleotide hydrogen (NADH) dehydrogenase, phosphoglycerate kinase, proteasome p45, rab2, pyruvate kinase and t-complex protein. The observed glucose-induced differential protein expression pattern indicates enhanced glucose metabolism, defense against reactive oxygen species, enhanced protein translation, folding and degradation and decreased insulin granular formation and trafficking. Palmitate-induced changes could be related to altered exocytosis. Conclusion The identified altered proteins indicate mechanism important for altered β-cell function in T2DM. PMID:19607692

  1. Essential roles of insulin, AMPK signaling and lysyl and prolyl hydroxylases in the biosynthesis and multimerization of adiponectin.

    PubMed

    Zhang, Lin; Li, Ming-Ming; Corcoran, Marie; Zhang, Shaoping; Cooper, Garth J S

    2015-01-05

    Post-translational modifications (PTMs) of the adiponectin molecule are essential for its full bioactivity, and defects in PTMs leading to its defective production and multimerization have been linked to the mechanisms of insulin resistance, obesity, and type-2 diabetes. Here we observed that, in differentiated 3T3-L1 adipocytes, decreased insulin signaling caused by blocking of insulin receptors (InsR) with an anti-InsR blocking antibody, increased rates of adiponectin secretion, whereas concomitant elevations in insulin levels counteracted this effect. Adenosine monophosphate-activated protein kinase (AMPK) signaling regulated adiponectin production by modulating the expression of adiponectin receptors, the secretion of adiponectin, and eventually the expression of adiponectin itself. We found that lysyl hydroxylases (LHs) and prolyl hydroxylases (PHs) were expressed in white-adipose tissue of ob/ob mice, wherein LH3 levels were increased compared with controls. In differentiated 3T3-L1 adipocytes, both non-specific inhibition of LHs and PHs by dipyridyl, and specific inhibition of LHs by minoxidil and of P4H with ethyl-3,4-dihydroxybenzoate, caused significant suppression of adiponectin production, more particularly of the higher-order isoforms. Transient gene knock-down of LH3 (Plod3) caused a suppressive effect, especially on the high molecular-weight (HMW) isoforms. These data indicate that PHs and LHs are both required for physiological adiponectin production and in particular are essential for the formation/secretion of the HMW isoforms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells.

    PubMed

    Sharma, Geetanjali; Prossnitz, Eric R

    2011-08-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes.

  3. Developmental programming of aging of isolated pancreatic islet glucose-stimulated insulin secretion in female offspring of mothers fed low-protein diets in pregnancy and/or lactation.

    PubMed

    Morimoto, S; Sosa, T C; Calzada, L; Reyes-Castro, L A; Díaz-Díaz, E; Morales, A; Nathanielsz, P W; Zambrano, E

    2012-12-01

    Diabetes predisposition is determined by pancreatic islet insulin secretion and insulin resistance. We studied female rat offspring exposed to low-protein maternal diet (50% control protein diet) in pregnancy and/or lactation at postnatal days 36, 110 and 450. Rats were fed either control 20% casein diet (C) or restricted diet (R - 10% casein) during pregnancy. After delivery, mothers received either C or R diet until weaning to provide four offspring groups: CC, RR, CR and RC (first letter denoting maternal pregnancy diet and the second lactation diet). Serum glucose, insulin and homeostatic model assessment (HOMA) were measured. Pancreatic islets were isolated and in vitro insulin secretion quantified in low glucose (5 mM) and high glucose (11 mM). Serum glucose, insulin and HOMA were similar in all groups at 36 and 110 postnatal days. HOMA was only higher in RR at 450 postnatal days. Only CC demonstrated differences in glucose sensitivity of β-cells to high and low doses at the three ages studied. At 36 days, RR, CR and RC and at 450 days RR and RC groups did not show glucose-stimulated insulin secretion differences between low and high glucose. Aging-associated glucose-stimulated insulin secretion loss was affected by maternal dietary history, indicating that developmental programming must be considered a major factor in aging-related development of predisposition to later-life dysfunctional insulin metabolism. Female offspring islets' insulin secretion was higher than previously reported in males.

  4. Kir6.2 Variant E23K Increases ATP-Sensitive K+ Channel Activity and Is Associated With Impaired Insulin Release and Enhanced Insulin Sensitivity in Adults With Normal Glucose Tolerance

    PubMed Central

    Villareal, Dennis T.; Koster, Joseph C.; Robertson, Heather; Akrouh, Alejandro; Miyake, Kazuaki; Bell, Graeme I.; Patterson, Bruce W.; Nichols, Colin G.; Polonsky, Kenneth S.

    2009-01-01

    OBJECTIVE The E23K variant in the Kir6.2 subunit of the ATP-sensitive K+ channel (KATP channel) is associated with increased risk of type 2 diabetes. The present study was undertaken to increase our understanding of the mechanisms responsible. To avoid confounding effects of hyperglycemia, insulin secretion and action were studied in subjects with the variant who had normal glucose tolerance. RESEARCH DESIGN AND METHODS Nine subjects with the E23K genotype K/K and nine matched subjects with the E/E genotype underwent 5-h oral glucose tolerance tests (OGTTs), graded glucose infusion, and hyperinsulinemic-euglycemic clamp with stable-isotope–labeled tracer infusions to assess insulin secretion, action, and clearance. A total of 461 volunteers consecutively genotyped for the E23K variant also underwent OGTTs. Functional studies of the wild-type and E23K variant potassium channels were conducted. RESULTS Insulin secretory responses to oral and intravenous glucose were reduced by ∼40% in glucose-tolerant subjects homozygous for E23K. Normal glucose tolerance with reduced insulin secretion suggests a change in insulin sensitivity. The hyperinsulinemic-euglycemic clamp revealed that hepatic insulin sensitivity is ∼40% greater in subjects with the E23K variant, and these subjects demonstrate increased insulin sensitivity after oral glucose. The reconstituted E23K channels confirm reduced sensitivity to inhibitory ATP and increase in open probability, a direct molecular explanation for reduced insulin secretion. CONCLUSIONS The E23K variant leads to overactivity of the KATP channel, resulting in reduced insulin secretion. Initially, insulin sensitivity is enhanced, thereby maintaining normal glucose tolerance. Presumably, over time, as insulin secretion falls further or insulin resistance develops, glucose levels rise resulting in type 2 diabetes. PMID:19491206

  5. Repaglinide--prandial glucose regulator: a new class of oral antidiabetic drugs.

    PubMed

    Owens, D R

    1998-01-01

    The highest demand on insulin secretion occurs in connection with meals. In normal people, following a meal, the insulin secretion increases rapidly, reaching peak concentration in the blood within an hour. The mealtime insulin response in patients with Type 2 diabetes is blunted and delayed, whereas basal levels often remain within the normal range (albeit at elevated fasting glucose levels). Restoration of the insulin secretion pattern at mealtimes (prandial phase)--without stimulating insulin secretion in the 'postabsorptive' phase--is the rationale for the development of 'prandial glucose regulators', drugs that are characterized by a very rapid onset and short duration of action in stimulating insulin secretion. Repaglinide, a carbamoylmethyl benzoic acid (CMBA) derivative is the first such compound, which recently has become available for clinical use. Repaglinide is very rapidly absorbed (t(max) less than 1 hour) with a t1/2 of less than one hour. Furthermore, repaglinide is inactivated in the liver and more than 90% excreted via the bile. The implications of tailoring repaglinide treatment to meals were examined in a study where repaglinide was dosed either morning and evening, or with each main meal (i.e. breakfast, lunch, dinner), with the total daily dose of repaglinide being identical. The mealtime dosing caused a significant improvement in both fasting and 24-hour glucose profiles, as well as a significant decrease in HbA1c. In other studies, repaglinide caused a decrease of 5.8 mmol x l(-1) in peak postprandial glucose levels, and a decrease of 3.1 mmol x l(-1) in fasting levels with a reduction in HbA1c of 1.8% compared with placebo. In comparative studies with either sulphonylurea or metformin, repaglinide caused similar or improved control (i.e. HbA1c, mean glucose levels) and the drug was well tolerated (e.g. reported gastrointestinal side-effects were more than halved when patients were switched from metformin to repaglinide). A hallmark of repaglinide treatment is that this medication follows the eating pattern, and not vice versa. Hence the risk of developing severe hypoglycaemia (BG < or = 2.5 mmol x l(-1)) in connection with flexible lifestyles should be reduced. This concept was examined in a study in which patients well controlled on repaglinide skipped their lunch on one occasion. When a meal (i.e. lunch) was skipped--so was the repaglinide dose, whereas in the comparative group on glibenclamide the recommended morning and evening doses were taken. Twenty-four per cent of the patients in the glibenclamide group developed severe hypoglycaemia, whereas no hypoglycaemic events occurred in the group receiving repaglinide. However, in long-term studies the overall prevalence of hypoglycaemia was similar to that found with other insulin secretagogues. In summary, current evidence shows that the concept of prandial glucose regulation offers good long-term glycaemic control combined with a low risk of severe hypoglycaemia with missed meals. The concept should meet the needs of Type 2 diabetic patients, allowing flexibility in their lifestyle.

  6. Effect of Human Myotubes-Derived Media on Glucose-Stimulated Insulin Secretion.

    PubMed

    Mizgier, Maria L; Cataldo, Luis R; Gutierrez, Juan; Santos, José L; Casas, Mariana; Llanos, Paola; Contreras-Ferrat, Ariel E; Moro, Cedric; Bouzakri, Karim; Galgani, Jose E

    2017-01-01

    Fasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle) glucose supply is assured while hypo-/hyperglycemia are prevented. High muscle glucose disposal after meals is pivotal for adapting to increased glycemia and might drive insulin secretion through muscle-released factors (e.g., myokines). We hypothesized that insulin influences myokine secretion and then increases glucose-stimulated insulin secretion (GSIS). In conditioned media from human myotubes incubated with/without insulin (100 nmol/L) for 24 h, myokines were qualitatively and quantitatively characterized using an antibody-based array and ELISA-based technology, respectively. C57BL6/J mice islets and Wistar rat beta cells were incubated for 24 h with control and conditioned media from noninsulin- and insulin-treated myotubes prior to GSIS determination. Conditioned media from insulin-treated versus nontreated myotubes had higher RANTES but lower IL6, IL8, and MCP1 concentration. Qualitative analyses revealed that conditioned media from noninsulin- and insulin-treated myotubes expressed 32 and 23 out of 80 myokines, respectively. Islets incubated with conditioned media from noninsulin-treated myotubes had higher GSIS versus control islets ( p < 0.05). Meanwhile, conditioned media from insulin-treated myotubes did not influence GSIS. In beta cells, GSIS was similar across conditions. In conclusion, factors being present in noninsulin-stimulated muscle cell-derived media appear to influence GSIS in mice islets.

  7. Effect of Human Myotubes-Derived Media on Glucose-Stimulated Insulin Secretion

    PubMed Central

    Cataldo, Luis R.; Gutierrez, Juan; Santos, José L.; Casas, Mariana; Contreras-Ferrat, Ariel E.; Moro, Cedric; Bouzakri, Karim

    2017-01-01

    Fasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle) glucose supply is assured while hypo-/hyperglycemia are prevented. High muscle glucose disposal after meals is pivotal for adapting to increased glycemia and might drive insulin secretion through muscle-released factors (e.g., myokines). We hypothesized that insulin influences myokine secretion and then increases glucose-stimulated insulin secretion (GSIS). In conditioned media from human myotubes incubated with/without insulin (100 nmol/L) for 24 h, myokines were qualitatively and quantitatively characterized using an antibody-based array and ELISA-based technology, respectively. C57BL6/J mice islets and Wistar rat beta cells were incubated for 24 h with control and conditioned media from noninsulin- and insulin-treated myotubes prior to GSIS determination. Conditioned media from insulin-treated versus nontreated myotubes had higher RANTES but lower IL6, IL8, and MCP1 concentration. Qualitative analyses revealed that conditioned media from noninsulin- and insulin-treated myotubes expressed 32 and 23 out of 80 myokines, respectively. Islets incubated with conditioned media from noninsulin-treated myotubes had higher GSIS versus control islets (p < 0.05). Meanwhile, conditioned media from insulin-treated myotubes did not influence GSIS. In beta cells, GSIS was similar across conditions. In conclusion, factors being present in noninsulin-stimulated muscle cell-derived media appear to influence GSIS in mice islets. PMID:28286777

  8. Metabolic and steroidogenic alterations related to increased frequency of polycystic ovaries in women with a history of gestational diabetes.

    PubMed

    Koivunen, R M; Juutinen, J; Vauhkonen, I; Morin-Papunen, L C; Ruokonen, A; Tapanainen, J S

    2001-06-01

    The prevalence of polycystic ovaries (PCO) and clinical, endocrine, and metabolic features were investigated in women with previous gestational diabetes (GDM). Thirty-three women with a history of GDM and 48 controls were studied. Glucose and insulin secretion capacity was evaluated by means of the oral glucose tolerance test (OGTT), and insulin action was determined by means of a euglycemic insulin clamp. Compared with control women, women with previous GDM more often had significantly abnormal OGTT, a higher prevalence of PCO (39.4% vs. 16.7%; P = 0.03), higher serum concentrations of cortisol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate and a greater area under the glucose curve. Women with previous GDM showed a lowered early phase insulin response to glucose and impaired insulin sensitivity, which was accounted for mainly by decreased glucose nonoxidation. They also demonstrated a significantly lower fasting serum C peptide/insulin ratio than the controls, indicating that women with previous GDM have impaired hepatic insulin extraction, which tended to be more marked among women with PCO. This may explain why women with PCO and previous GDM were significantly more hyperinsulinemic than women with normal ovaries. In conclusion, our data demonstrate that women with previous GDM often have PCO and abnormal OGTT. They are insulin resistant as a result of lowered glucose nonoxidation and show inappropriately low insulin responses to glucose, reflecting impaired beta-cell function. They also have higher adrenal androgen secretion, which may be associated with abdominal obesity.

  9. Effectiveness of basal-supported oral therapy (BOT) using insulin glargine in patients with poorly controlled type 2 diabetes.

    PubMed

    Suzuki, Daisuke; Umezono, Tomoya; Miyauchi, Masaaki; Kimura, Moritsugu; Yamamoto, Naoyuki; Tanaka, Eitaro; Kuriyama, Yusuke; Sato, Hiroki; Miyatake, Han; Kondo, Masumi; Toyoda, Masao; Fukagawa, Masafumi

    2012-07-20

    To determine the clinical usefulness of basal-supported oral therapy (BOT) using insulin glargine in Japanese patients with type 2 diabetes. We compared HbA1c levels, body weight, and insulin doses before the introduction of BOT and in the final month of the observation period in 122 patients with type 2 diabetes who received BOT with insulin glargine between October 2007 and July 2009. To exclude the possible effects of seasonal changes in glycemic control, 57 of the 122 patients were followed-up for one year and examined for changes in HbA1c levels, body weight, and insulin dose. Examination of all cases (n=122) showed a significant decrease in HbA1c (before BOT: 8.7±1.8, after: 7.1±1.1%), but no significant change in body weight (before: 63.1±16.1, after: 63.8±17.0 kg). The mean observation period was 10.5±6.4 months. Insulin doses were significantly increased during the study. HbA1c levels improved significantly in patients on non-insulin-secreting drugs (biguanide, α-glucosidase inhibitor and thiazolidine derivatives) than those on insulin-secreting drugs (SU agents and glinides). BOT with insulin glargine is a useful strategy that can achieve good glycemic control in clinical practice without causing serious hypoglycemia. The introduction of BOT before exhaustion of pancreatic β cells may increase its effectiveness.

  10. Preserved circadian rhythm of serum insulin concentration at low plasma glucose during fasting in lean and overweight humans.

    PubMed

    Merl, Volker; Peters, Achim; Oltmanns, Kerstin M; Kern, Werner; Hubold, Christian; Hallschmid, Manfred; Born, Jan; Fehm, Horst L; Schultes, Bernd

    2004-11-01

    Circadian rhythms in glucose metabolism are well documented. Most studies, however, evaluated such variations under conditions of continuous glucose supply, either via food intake or glucose infusion. Here we assessed in 30 subjects circadian variations in concentrations of plasma glucose, serum insulin, and C-peptide during a 72-hour fasting period to evaluate rhythms independent from glucose supply. Furthermore we assessed differences in these parameters between normal-weight (n = 20) and overweight (n = 10) subjects. Blood was sampled every 4 hours. During fasting, plasma glucose, serum insulin, and C-peptide levels gradually decreased (all P < .001). While there was no circadian variation in plasma glucose levels after the first day of fasting, serum levels of insulin were constantly higher in the morning (8.00 h) than at night (0.00 h) (P < .001), although the extent of this morning-associated rise in insulin levels decreased with the time spent fasting (P = .001). Also, morning C-peptide concentrations were higher compared to the preceding night (P < .001). The C-peptide/insulin ratio (CIR) decreased during prolonged fasting (P = .030), suggesting a decrease in hepatic insulin clearance. Moreover, CIR was significantly lower in the morning than at the night of day 1 and day 2 of fasting (P = .010 and P = .004, respectively). Compared to normal-weight subjects, overweight subjects had higher plasma glucose, as well as serum insulin and C-peptide levels (all P < .03). Data indicate preserved circadian rhythms in insulin concentrations in the presence of substantially decreased glucose levels in normal-weight and overweight subjects. This finding suggests a central nervous system contribution to the regulation of insulin secretion independent of plasma glucose levels.

  11. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    PubMed

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue; Seah, Tingting; Xu, Jun; Radda, George K; Südhof, Thomas C; Han, Weiping

    2010-11-09

    Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  12. Genome-wide interaction with the insulin secretion locus MTNR1B reveals CMIP as a novel type 2 diabetes susceptibility gene in African Americans.

    PubMed

    Keaton, Jacob M; Gao, Chuan; Guan, Meijian; Hellwege, Jacklyn N; Palmer, Nicholette D; Pankow, James S; Fornage, Myriam; Wilson, James G; Correa, Adolfo; Rasmussen-Torvik, Laura J; Rotter, Jerome I; Chen, Yii-Der I; Taylor, Kent D; Rich, Stephen S; Wagenknecht, Lynne E; Freedman, Barry I; Ng, Maggie C Y; Bowden, Donald W

    2018-04-24

    Although type 2 diabetes (T2D) results from metabolic defects in insulin secretion and insulin sensitivity, most of the genetic risk loci identified to date relates to insulin secretion. We reported that T2D loci influencing insulin sensitivity may be identified through interactions with insulin secretion loci, thereby leading to T2D. Here, we hypothesize that joint testing of variant main effects and interaction effects with an insulin secretion locus increases power to identify genetic interactions leading to T2D. We tested this hypothesis with an intronic MTNR1B SNP, rs10830963, which is associated with acute insulin response to glucose, a dynamic measure of insulin secretion. rs10830963 was tested for interaction and joint (main + interaction) effects with genome-wide data in African Americans (2,452 cases and 3,772 controls) from five cohorts. Genome-wide genotype data (Affymetrix Human Genome 6.0 array) was imputed to a 1000 Genomes Project reference panel. T2D risk was modeled using logistic regression with rs10830963 dosage, age, sex, and principal component as predictors. Joint effects were captured using the Kraft two degrees of freedom test. Genome-wide significant (P < 5 × 10 -8 ) interaction with MTNR1B and joint effects were detected for CMIP intronic SNP rs17197883 (P interaction  = 1.43 × 10 -8 ; P joint  = 4.70 × 10 -8 ). CMIP variants have been nominally associated with T2D, fasting glucose, and adiponectin in individuals of East Asian ancestry, with high-density lipoprotein, and with waist-to-hip ratio adjusted for body mass index in Europeans. These data support the hypothesis that additional genetic factors contributing to T2D risk, including insulin sensitivity loci, can be identified through interactions with insulin secretion loci. © 2018 WILEY PERIODICALS, INC.

  13. Increased prandial insulin secretion after administration of a single preprandial oral dose of repaglinide in patients with type 2 diabetes.

    PubMed

    Owens, D R; Luzio, S D; Ismail, I; Bayer, T

    2000-04-01

    To examine the dose-related pharmacodynamics and pharmacokinetics of a single preprandial oral dose of repaglinide in patients with type 2 diabetes. A total of 16 Caucasian men with type 2 diabetes participated in two placebo-controlled double-blind randomized cross-over studies. Patients were randomized to receive a single oral dose of repaglinide (0.5, 1.0, and 2.0 mg in study 1 and 4.0 mg in study 2) or placebo (both studies) administered 15 min before the first of two sequential identical standard meals (breakfast and lunch) that were 4 h apart. During each of the study days, which were 1 week apart, blood samples were taken at frequent intervals over a period of approximately 8 h for measurement of plasma glucose, insulin, C-peptide, and repaglinide concentrations. During the first meal period (0-240 min), administration of repaglinide reduced significantly the area under the curve (AUC) for glucose concentration and significantly increased the AUC for insulin levels, C-peptide levels, and the insulin secretion rate. These results, compared with those of administering placebo, were dose dependent and log linear. The effect of repaglinide administration on insulin secretion was most pronounced in the early prandial period. Within 30 min, it caused a relative increase in insulin secretion of up to 150%. During the second meal period (240-480 min), there was no difference between repaglinide and placebo administration in the AUC for glucose concentration, C-peptide concentration, and the estimated insulin secretion rate. A single dose of repaglinide (0.5-4.0 mg) before breakfast improves insulin secretion and reduces prandial hyperglycemia dose-dependently Administration of repaglinide had no effect on insulin secretion with the second meal, which was consumed 4 h after breakfast.

  14. Identification of insulin as a novel retinoic acid receptor-related orphan receptor α target gene.

    PubMed

    Kuang, Jiangying; Hou, Xiaoming; Zhang, Jinlong; Chen, Yulong; Su, Zhiguang

    2014-03-18

    Insulin plays an important role in regulation of lipid and glucose metabolism. Retinoic acid receptor-related orphan receptor α (RORα) modulates physiopathological processes such as dyslipidemia and diabetes. In this study, we found overexpression of RORα in INS1 cells resulted in increased expression and secretion of insulin. Suppression of endogenous RORα caused a decrease of insulin expression. Luciferase and electrophoretic mobility shift assay (EMSA) assays demonstrated that RORα activated insulin transcription via direct binding to its promoter. RORα was also observed to regulate BETA2 expression, which is one of the insulin active transfactors. In vivo analyses showed that the insulin transcription is increased by the synthetic RORα agonist SR1078. These findings identify RORα as a transcriptional activator of insulin and suggest novel therapeutic opportunities for management of the disease. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Effects of thyrotrophin-releasing hormone, and methionine-enkephalin on gastric acid and pepsin secretion in the cat.

    PubMed

    Gascoigne, A D; Hirst, B H; Reed, J D; Shaw, B

    1980-07-01

    1 The effect of intravenous administration of thyrotrophin-releasing hormone (TRH) and methionine-enkephalin on gastric acid and pepsin secretions was investigated in conscious cats prepared with chronic gastric fistulae.2 TRH, 20 mug kg(-1) h(-1), did not influence unstimulated gastric acid secretion, nor gastric acid secretion stimulated by submaximal doses of pentagastrin or histamine. Pepsin secretion stimulated by pentagastrin was not influenced by TRH.3 TRH, 20 mug kg(-1) h(-1), significantly reduced the gastric acid and pepsin responses to intravenous infusion of insulin. TRH also significantly reduced the degree of hypoglycaemia seen in response to insulin. TRH, 20 mug kg(-1) h(-1), but not 5 mug kg(-1) h(-1), infused alone resulted in a significant hyperglycaemia.4 It is concluded that the reduction of insulin-stimulated gastric secretion by TRH is not dependent on the hyperglycaemic action of the peptide. The mechanism of action of TRH on insulin-stimulated secretion is discussed with respect to its site of action.5 Methionine-enkephalin or the potent analogue, D-Ala(2), Met-enkephalinamide were without effect on unstimulated gastric secretion, or secretion stimulated by pentagastrin, histamine, and insulin. The opiate receptor antagonist, naloxone, did not significantly alter the gastric acid or pepsin response to insulin.6 It is concluded that there is no evidence that opiates stimulate oxyntic glands directly, nor that the oxyntic cells may possess high affinity binding sites for opiates, nor that endogenous opiates are involved in the control of gastric secretion.

  16. Magnolol protects pancreatic β-cells against methylglyoxal-induced cellular dysfunction.

    PubMed

    Suh, Kwang Sik; Chon, Suk; Jung, Woon-Won; Choi, Eun Mi

    2017-11-01

    Chronic hyperglycemia aggravates insulin resistance, in part due to increased formation of advanced glycation end-products (AGEs). Methylglyoxal (MG), a major precursor of AGEs, accumulates abnormally in various tissues and organs and participates in oxidative damage. We investigated the insulinotropic benefits of magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, in pancreatic β-cells exposed to MG in vitro. When exposed to cytotoxic levels of MG for 48 h, RIN-m5F β-cells exhibited a significant loss of viability and impaired insulin secretion, whereas pretreatment with magnolol protected against MG-induced cell death and decreased insulin secretion. Moreover, magnolol increased the expression of genes involved in β-cell survival and function, including Ins2 and PDX1. Furthermore, magnolol increased the levels of AMPK phosphorylation, SIRT1, and PGC1α in RIN-5F β-cells. In addition, magnolol increased the activity of glyoxalase I and decreased the levels of MG-modified protein adducts, which suggests that magnolol protects against MG-induced protein glycation. Taken together, the results indicate the potential application of magnolol as an intervention against MG-induced hyperglycemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Insulin-dependent glucose metabolism in dairy cows with variable fat mobilization around calving.

    PubMed

    Weber, C; Schäff, C T; Kautzsch, U; Börner, S; Erdmann, S; Görs, S; Röntgen, M; Sauerwein, H; Bruckmaier, R M; Metges, C C; Kuhla, B; Hammon, H M

    2016-08-01

    Dairy cows undergo significant metabolic and endocrine changes during the transition from pregnancy to lactation, and impaired insulin action influences nutrient partitioning toward the fetus and the mammary gland. Because impaired insulin action during transition is thought to be related to elevated body condition and body fat mobilization, we hypothesized that over-conditioned cows with excessive body fat mobilization around calving may have impaired insulin metabolism compared with cows with low fat mobilization. Nineteen dairy cows were grouped according to their average concentration of total liver fat (LFC) after calving in low [LLFC; LFC <24% total fat/dry matter (DM); n=9] and high (HLFC; LFC >24.4% total fat/DM; n=10) fat-mobilizing cows. Blood samples were taken from wk 7 antepartum (ap) to wk 5 postpartum (pp) to determine plasma concentrations of glucose, insulin, glucagon, and adiponectin. We applied euglycemic-hyperinsulinemic (EGHIC) and hyperglycemic clamps (HGC) in wk 5 ap and wk 3 pp to measure insulin responsiveness in peripheral tissue and pancreatic insulin secretion during the transition period. Before and during the pp EGHIC, [(13)C6] glucose was infused to determine the rate of glucose appearance (GlucRa) and glucose oxidation (GOx). Body condition, back fat thickness, and energy-corrected milk were greater, but energy balance was lower in HLFC than in LLFC. Plasma concentrations of glucose, insulin, glucagon, and adiponectin decreased at calving, and this was followed by an immediate increase of glucagon and adiponectin after calving. Insulin concentrations ap were higher in HLFC than in LLFC cows, but the EGHIC indicated no differences in peripheral insulin responsiveness among cows ap and pp. However, GlucRa and GOx:GlucRa during the pp EGHIC were greater in HLFC than in LLFC cows. During HGC, pancreatic insulin secretion was lower, but the glucose infusion rate was higher pp than ap in both groups. Plasma concentrations of nonesterified fatty acids decreased during HGC and EGHIC, but in both clamps, pp nonesterified fatty acid concentrations did not reach the ap levels. The study demonstrated a minor influence of different degrees of body fat mobilization on insulin metabolism in cows during the transition period. The distinct decrease in the glucose-dependent release of insulin pp is the most striking finding that explains the impaired insulin action after calving, but does not explain differences in body fat mobilization between HLFC and LLFC cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Impact of morphine on the expression of insulin receptor and protein levels of insulin/IGFs in rat neural stem cells.

    PubMed

    Salarinasab, Sadegh; Nourazarian, AliReza; Nikanfar, Masoud; Abdyazdani, Nima; Kazemi, Masoumeh; Feizy, Navid; Rahbarghazi, Reza

    2017-11-01

    Alzheimer's disease is correlated with neuronal degeneration and loss of neuronal precursors in different parts of the brain. It has been found disturbance in the homeostasis neural stem cells (NSCs) can cause neurodegeneration. Morphine, an analgesic agent, can disrupt the dynamic and normal state of NSCs. However, more investigations are required to clearly address underlying mechanisms. The current experiment aimed to investigate the effects of morphine on the cell distribution of insulin factor and receptor and insulin-like growth factors (IGF1, IGF2) in NSCs. NSCs were isolated from rats and stemness feature confirmed by antibodies against nestin and Sox2. The cells were exposed to 100μM morphine, 50μM naloxone and combination of these two drugs for 72h. The neural cell growth, changes in levels of insulin and insulin-like growth factors secreted by NSCs as well as the insulin-receptor-gene expression were assessed by flow cytometry, ELlSA, and real-time PCR, respectively. Cell cycle assay revealed the exposure of cells to morphine for 72h increased cell apoptosis and decreased neural stem cell growth. The biosynthesis of insulin, insulin-like growth factors, and insulin receptor were reduced (p<0.05) after NSCs exposure to morphine at the concentration of 100μM for 24, 48 and 72h. Naloxone is a competitive antagonist which binds MOR where morphine (and endogenous opioids) bind, and reversed the detrimental effects of morphine. It can be concluded that morphine initiated irregularity in NSCs kinetics and activity by reducing the secretion of insulin and insulin-like growth factors and down-regulation of insulin receptor. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Role of ERβ and GPR30 in the endocrine pancreas: A matter of estrogen dose.

    PubMed

    Ropero, Ana B; Pang, Yefei; Alonso-Magdalena, Paloma; Thomas, Peter; Nadal, Angel

    2012-08-01

    The endocrine pancreas has emerged as a target for estrogens. The functions of pancreatic α-, β- and δ-cells are modulated by the endogenous hormone, 17β-estradiol (E2). Low physiological concentrations (100pM-1nM) of E2 rapidly decrease the activity of the ATP-sensitive potassium channel (K(ATP)) and enhance glucose-induced insulin release in β-cells in an estrogen receptor β (ERβ)-dependent manner. In addition to the insulinotropic action of ERβ, the newly described estrogen receptor, GPR30, is involved in the insulinotropic effects of high doses of E2 (100nM-5μM). The specific GPR30 agonist G1 also increases insulin secretion in β-cells. Low glucose-induced calcium oscillations and glucagon secretion are suppressed by E2. The effects on glucagon secretion may be mediated by GPR30. Somatostatin release is also decreased by E2 and G1. In this review we summarize all the data published up to date on the rapid insulinotropic effects of estrogens in the endocrine pancreas and propose a model to integrate the estrogen actions mediated through both receptors. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation.

    PubMed

    Kasai, Kazuo; Ohara-Imaizumi, Mica; Takahashi, Noriko; Mizutani, Shin; Zhao, Shengli; Kikuta, Toshiteru; Kasai, Haruo; Nagamatsu, Shinya; Gomi, Hiroshi; Izumi, Tetsuro

    2005-02-01

    The monomeric small GTPase Rab27a is specifically localized on both secretory granules and lysosome-related organelles. Although natural mutations of the Rab27a gene in human Griscelli syndrome and in ashen mice cause partial albinism and immunodeficiency reflecting the dysfunction of lysosome-related organelles, phenotypes resulting from the defective exocytosis of secretory granules have not been reported. To explore the roles of Rab27a in secretory granules, we analyzed insulin secretion profiles in ashen mice. Ashen mice showed glucose intolerance after a glucose load without signs of insulin resistance in peripheral tissues or insulin deficiency in the pancreas. Insulin secretion from isolated islets was decreased specifically in response to high glucose concentrations but not other nonphysiological secretagogues such as high K+ concentrations, forskolin, or phorbol ester. Neither the intracellular Ca2+ concentration nor the dynamics of fusion pore opening after glucose stimulation were altered. There were, however, marked reductions in the exocytosis from insulin granules predocked on the plasma membrane and in the replenishment of docked granules during glucose stimulation. These results provide the first genetic evidence to our knowledge for the role of Rab27a in the exocytosis of secretory granules and suggest that the Rab27a/effector system mediates glucose-specific signals for the exocytosis of insulin granules in pancreatic beta cells.

  1. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLXmore » increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.« less

  2. Engineered Commensal Bacteria Reprogram Intestinal Cells Into Glucose-Responsive Insulin-Secreting Cells for the Treatment of Diabetes

    PubMed Central

    Duan, Franklin F.; Liu, Joy H.

    2015-01-01

    The inactive full-length form of GLP-1(1-37) stimulates conversion of both rat and human intestinal epithelial cells into insulin-secreting cells. We investigated whether oral administration of human commensal bacteria engineered to secrete GLP-1(1-37) could ameliorate hyperglycemia in a rat model of diabetes by reprogramming intestinal cells into glucose-responsive insulin-secreting cells. Diabetic rats were fed daily with human lactobacilli engineered to secrete GLP-1(1-37). Diabetic rats fed GLP-1–secreting bacteria showed significant increases in insulin levels and, additionally, were significantly more glucose tolerant than those fed the parent bacterial strain. These rats developed insulin-producing cells within the upper intestine in numbers sufficient to replace ∼25–33% of the insulin capacity of nondiabetic healthy rats. Intestinal tissues in rats with reprogrammed cells expressed MafA, PDX-1, and FoxA2. HNF-6 expression was observed only in crypt epithelia expressing insulin and not in epithelia located higher on the villous axis. Staining for other cell markers in rats treated with GLP-1(1-37)–secreting bacteria suggested that normal function was not inhibited by the close physical proximity of reprogrammed cells. These results provide evidence of the potential for a safe and effective nonabsorbed oral treatment for diabetes and support the concept of engineered commensal bacterial signaling to mediate enteric cell function in vivo. PMID:25626737

  3. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion.

    PubMed

    Patterson, Jessica N; Cousteils, Katelyn; Lou, Jennifer W; Manning Fox, Jocelyn E; MacDonald, Patrick E; Joseph, Jamie W

    2014-05-09

    It is well known that mitochondrial metabolism of pyruvate is critical for insulin secretion; however, we know little about how pyruvate is transported into mitochondria in β-cells. Part of the reason for this lack of knowledge is that the carrier gene was only discovered in 2012. In the current study, we assess the role of the recently identified carrier in the regulation of insulin secretion. Our studies show that β-cells express both mitochondrial pyruvate carriers (Mpc1 and Mpc2). Using both pharmacological inhibitors and siRNA-mediated knockdown of the MPCs we show that this carrier plays a key role in regulating insulin secretion in clonal 832/13 β-cells as well as rat and human islets. We also show that the MPC is an essential regulator of both the ATP-regulated potassium (KATP) channel-dependent and -independent pathways of insulin secretion. Inhibition of the MPC blocks the glucose-stimulated increase in two key signaling molecules involved in regulating insulin secretion, the ATP/ADP ratio and NADPH/NADP(+) ratio. The MPC also plays a role in in vivo glucose homeostasis as inhibition of MPC by the pharmacological inhibitor α-cyano-β-(1-phenylindol-3-yl)-acrylate (UK5099) resulted in impaired glucose tolerance. These studies clearly show that the newly identified mitochondrial pyruvate carrier sits at an important branching point in nutrient metabolism and that it is an essential regulator of insulin secretion.

  4. Insulin secretion and its association with physical activity, fitness and screen time in children.

    PubMed

    Henderson, M; Gray-Donald, K; Rabasa-Lhoret, R; Bastard, J-P; Barnett, T A; Benedetti, A; Chaput, J-P; Tremblay, A; Lambert, M

    2014-02-01

    To determine the independent associations of moderate to vigorous physical activity (MVPA), fitness, screen time, and adiposity with insulin secretion in children. Caucasian youth (n = 423/630), 8-10 years old, with at least one obese biological parent, were studied (QUALITY cohort). Insulin secretion was measured using HOMA2-%B, area under the curve (AUC) of insulin to glucose over the first 30 minutes (AUC I/G(t30min)) of the OGTT and AUC I/G(t120min) over 2 hours. Fitness was measured by VO₂peak ; percent fat mass (PFM) by DXA; 7-day MVPA by accelerometry; self-reported screen time included television, video game, or computer use. Models were adjusted for age, sex, season, puberty, PFM, and insulin sensitivity [IS] (HOMA2-IS, Matsuda-ISI). PFM was strongly associated with insulin secretion, even after adjustment for IS: for every 1% increase in PFM, insulin secretion increased from 0.3% to 0.8% across indices. MVPA was negatively associated with HOMA2-%B (P < 0.05), but not with OGTT-derived measures. Fitness was negatively associated with AUC I/G(t120min) (P < 0.05). Screen time showed a trend toward higher HOMA2-%B in girls (P = 0.060). In children with an obese parent, lower insulin secretion is associated with lower adiposity, higher MVPA, better fitness, and possibly reduced screen time. Copyright © 2013 The Obesity Society.

  5. Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse.

    PubMed

    Head, W Steven; Orseth, Meredith L; Nunemaker, Craig S; Satin, Leslie S; Piston, David W; Benninger, Richard K P

    2012-07-01

    Insulin is secreted from the islets of Langerhans in coordinated pulses. These pulses are thought to lead to plasma insulin oscillations, which are putatively more effective in lowering blood glucose than continuous levels of insulin. Gap-junction coupling of β-cells by connexin-36 coordinates intracellular free calcium oscillations and pulsatile insulin release in isolated islets, however a role in vivo has not been shown. We test whether loss of gap-junction coupling disrupts plasma insulin oscillations and whether this impacts glucose tolerance. We characterized the connexin-36 knockout (Cx36(-/-)) mouse phenotype and performed hyperglycemic clamps with rapid sampling of insulin in Cx36(-/-) and control mice. Our results show that Cx36(-/-) mice are glucose intolerant, despite normal plasma insulin levels and insulin sensitivity. However, Cx36(-/-) mice exhibit reduced insulin pulse amplitudes and a reduction in first-phase insulin secretion. These changes are similarly found in isolated Cx36(-/-) islets. We conclude that Cx36 gap junctions regulate the in vivo dynamics of insulin secretion, which in turn is important for glucose homeostasis. Coordinated pulsatility of individual islets enhances the first-phase elevation and second-phase pulses of insulin. Because these dynamics are disrupted in the early stages of type 2 diabetes, dysregulation of gap-junction coupling could be an important factor in the development of this disease.

  6. Exocyst sec5 regulates exocytosis of newcomer insulin granules underlying biphasic insulin secretion.

    PubMed

    Xie, Li; Zhu, Dan; Kang, Youhou; Liang, Tao; He, Yu; Gaisano, Herbert Y

    2013-01-01

    The exocyst complex subunit Sec5 is a downstream effector of RalA-GTPase which promotes RalA-exocyst interactions and exocyst assembly, serving to tether secretory granules to docking sites on the plasma membrane. We recently reported that RalA regulates biphasic insulin secretion in pancreatic islet β cells in part by tethering insulin secretory granules to Ca(2+) channels to assist excitosome assembly. Here, we assessed β cell exocytosis by patch clamp membrane capacitance measurement and total internal reflection fluorescence microscopy to investigate the role of Sec5 in regulating insulin secretion. Sec5 is present in human and rodent islet β cells, localized to insulin granules. Sec5 protein depletion in rat INS-1 cells inhibited depolarization-induced release of primed insulin granules from both readily-releasable pool and mobilization from the reserve pool. This reduction in insulin exocytosis was attributed mainly to reduction in recruitment and exocytosis of newcomer insulin granules that undergo minimal docking time at the plasma membrane, but which encompassed a larger portion of biphasic glucose stimulated insulin secretion. Sec5 protein knockdown had little effect on predocked granules, unless vigorously stimulated by KCl depolarization. Taken together, newcomer insulin granules in β cells are more sensitive than predocked granules to Sec5 regulation.

  7. α/β-Hydrolase domain-6 and saturated long chain monoacylglycerol regulate insulin secretion promoted by both fuel and non-fuel stimuli

    PubMed Central

    Zhao, Shangang; Poursharifi, Pegah; Mugabo, Yves; Levens, Emily J.; Vivot, Kevin; Attane, Camille; Iglesias, Jose; Peyot, Marie-line; Joly, Erik; Madiraju, S.R. Murthy; Prentki, Marc

    2015-01-01

    Objective α/β-Hydrolase domain-6 (ABHD6) is a newly identified monoacylglycerol (MAG) lipase. We recently reported that it negatively regulates glucose stimulated insulin secretion (GSIS) in the β cells by hydrolyzing lipolysis-derived MAG that acts as a metabolic coupling factor and signaling molecule via exocytotic regulator Munc13-1. Whether ABHD6 and MAG play a role in response to all classes of insulin secretagogues, in particular various fuel and non-fuel stimuli, is unknown. Methods Insulin secretion in response to various classes of secretagogues, exogenous MAG and pharmacological agents was measured in islets of mice deficient in ABHD6 specifically in the β cell (BKO). Islet perifusion experiments and determinations of glucose and fatty acid metabolism, cytosolic Ca2+ and MAG species levels were carried out. Results Deletion of ABHD6 potentiated insulin secretion in response to the fuels glutamine plus leucine and α-ketoisocaproate and to the non-fuel stimuli glucagon-like peptide 1, carbamylcholine and elevated KCl. Fatty acids amplified GSIS in control and BKO mice to the same extent. Exogenous 1-MAG amplified insulin secretion in response to fuel and non-fuel stimuli. MAG hydrolysis activity was greatly reduced in BKO islets without changes in total diacylglycerol and triacylglycerol lipase activity. ABHD6 deletion induced insulin secretion independently from KATP channels and did not alter the glucose induced rise in intracellular Ca2+. Perifusion studies showed elevated insulin secretion during second phase of GSIS in BKO islets that was not due to altered cytosolic Ca2+ signaling or because of changes in glucose and fatty acid metabolism. Glucose increased islet saturated long chain 1-MAG species and ABHD6 deletion caused accumulation of these 1-MAG species at both low and elevated glucose. Conclusion ABHD6 regulates insulin secretion in response to fuel stimuli at large and some non-fuel stimuli by controlling long chain saturated 1-MAG levels that synergize with other signaling pathways for secretion. PMID:26909310

  8. Effects of phenylalanine, histidine, and leucine on basal and GHRH-stimulated GH secretion and on PRL, insulin, and glucose levels in short children. Comparison with the effects of arginine.

    PubMed

    Bellone, J; Valetto, M R; Aimaretti, G; Segni, M; Volta, C; Cardimale, G; Baffoni, C; Pasquino, A M; Bernasconi, S; Bartolotta, E; Mucci, M; Ghigo, E

    1996-01-01

    Of the amino acids arginine is the most potent GH secretagogue in man. It potentiates the GH response to GHRH, exerts a weaker PRL-releasing effect, stimulates insulin and glucagon and induces a biphasic glucose variation. The potency and effects of other amino acids on pituitary and pancreatic hormones need to be clarified. In 43 children with normal short stature (5.3-14.0 yr; 30 M and 13 F) the effects of the infusion of phenylalanine (Phe, 0.08 g/kg), histidine (His, 0.1 g/kg), and leucine (Leu, 0.08 g/kg) on basal and GHRH-stimulated GH secretion and on PRL, insulin and glucose levels were studied and compared with those of arginine at high (hArg, 0.5 g/kg) or low dose (lArg, 0.2 g/kg). Phe increased basal (p < 0.05) but not GHRH-stimulated GH levels, induced PRL and insulin rises (p < 0.03 and p < 0.03), and did not change glycemia. Though a trend toward an increase in basal GH levels was found after His, His and Leu did not significantly modify either basal or GHRH-induced GH secretion nor basal PRL, insulin and glucose levels. Both hArg and lArg increased basal (p < 0.0001 and p < 0.05, respectively) and GHRH-stimulated GH levels (p < 0.006 and p < 0.006). hArg increased both PRL (p < 0.002) and insulin levels (p < 0.005) more (p < 0.0005 and p < 0.004) than lArg (p < 0.005 and p < 0.005), while glucose levels showed a similar increase followed by a similar decrease. We conclude that in childhood: a) Phe significantly increases GH secretion but, differently from Arg, does not potentiate the response to GHRH, suggesting different mechanisms of action of these amino acids; b) differently from His and Leu, Phe is a PRL and insulin secretagogue but is less potent than Arg; c) Arg has the highest stimulatory effect on pituitary and pancreatic hormones.

  9. [Effects of triterpenoid from Psidium guajava leaves ursolic acid on proliferation, differentiation of 3T3-L1 preadipocyte and insulin resistance].

    PubMed

    Lin, Juan-Na; Kuang, Qiao-Ting; Ye, Kai-He; Ye, Chun-Ling; Huang, Yi; Zhang, Xiao-Qi; Ye, Wen-Cai

    2013-08-01

    To investigate the influences of triterpenoid from Psidium guajava Leaves (ursolic acid) on the proliferation, differentiation of 3T3-L1 preadipocyte, and its possible mechanism treat for insulin resistance. 3T3-L1 preadipocyte was cultured in vitro. After adding ursolic acid to the culture medium for 48h, the cell viability was tested by MTT assay. Induced for 6 days, the lipid accumulation of adipocyte was measured by Oil Red O staining. The insulin resistant cell model was established with Dexamethasone. Cellular glucose uptake was determined with GOD-POD assays and FFA concentration was determined at the time of 48h. Secreted adiponectin were measured by ELISA. The protein levels of PPARgamma and PTP1B in insulin resistant adipocyte were measured by Western Blotting. Compared with medium control group, 30, 100 micromol/L ursolic acid could increase its proliferation and differentiation significantly (P < 0.05 or P < 0.01). Compared with the model group, ursolic acid at 100 micromol/L could enhance cellular glucose uptake of insulin resistant adipocyte significantly both in basic and insulin stimulation state (P < 0.01), while ursolic acid at 30 micromol/L could already enhance its glucose uptake significantly (P < 0.05), and could already decrease its FFA production significantly (P < 0.05). Ursolic acid at 30 micromol/L could increase the secretion of adiponectin on insulin resistant adipocyte significantly (P < 0.05), up-regulate the expression of PPARgamma protein (P < 0.05), but showed no effect on the PTP1B protein expression (P > 0.05). Ursolic acid can improve the proliferation and differentiation of 3T3-L1 preadipocyte, enhance cellular glucose uptake, inhibit the production of FFA, promote the secretion of adiponectin insulin resistant adipocyte, its mechanism may be related to upregulating the expression of PPARgamma protein.

  10. Free triiodothyronine plasma concentrations are positively associated with insulin secretion in euthyroid individuals

    PubMed Central

    Ortega, Emilio; Koska, Juraj; Pannacciulli, Nicola; Bunt, Joy C; Krakoff, Jonathan

    2008-01-01

    Background Thyroid hormones (TH) may influence glucose metabolism. Hyperthyroid subjects have higher insulin secretion rates when compared with euthyroid individuals. Objective To evaluate the association between TH concentrations and insulin secretion in euthyroid, healthy Pima Indian adults (n=55, 29±7 years, females/males 36/19) with normal glucose tolerance (NGT) admitted to a Clinical Research Unit. Methods TSH, free thyroxine (FT4), 3,5,3′-L-tri-iodothyronine (FT3), and fasting plasma insulin (FPI) concentrations were measured in fasting plasma samples, percentage of body fat (%BF) by dual energy x-ray absorptiometry (DXA), acute insulin response (AIR), and incremental area under the curve (AUC) of insulin in response to a 25 g intravenous glucose tolerance test (IVGTT) and 75 g oral glucose tolerance test (OGTT) respectively and insulin action (M) during an euglycemic clamp. Results FT3 concentrations were associated with FPI, AIR, and insulin AUC both before (r=0.33, P=0.01; r=0.29, P=0.03; and r=0.35, P=0.008 respectively) and after adjustment for age, sex, %BF, glucose (fasting concentrations or glucose AUC), and M (β=0.09, P=0.01; β=0.16, P=0.03; and β=0.24, P=0.0007 respectively). No associations were found for TSH or FT4. Conclusion FT3 was associated with several measurements of insulin secretion in euthyroid individuals with NGT. T3 concentrations may play a role in the regulation of insulin secretion. PMID:18230829

  11. Effects of two forms of combined oral contraceptives on carbohydrate metabolism in adolescents with polycystic ovary syndrome.

    PubMed

    Mastorakos, George; Koliopoulos, Carolina; Deligeoroglou, Efthymios; Diamanti-Kandarakis, Evanthia; Creatsas, George

    2006-02-01

    To compare the effects of combined oral contraceptives (OCs) containing cyproterone acetate or desogestrel on insulin sensitivity in adolescents with polycystic ovary syndrome (PCOS). A prospective randomized clinical trial. Outpatient gynecological clinic of Aretaieion University Hospital. Thirty-six adolescent girls with hyperandrogenism and six or less menses in the preceding 12 months. Patients were separated in two groups: group A (n = 18) received 0.15 mg of desogestrel plus 0.030 mg of ethinyl E2 daily; and group B (n = 18) received 2 mg of cyproterone acetate plus 0.035 mg of ethinyl E2 daily, for 21 days followed by a 7-day rest, for 12 months. Hirsutism score, lipid, androgen, and sex hormone-binding globulin (SHBG) levels were evaluated at baseline. An oral glucose tolerance test (OGTT) was performed and metabolism indices, based on previously studied mathematical formulas, were assessed at baseline and at 12 months. After 12 months of treatment, the homeostasis model assessment index of insulin resistance increased significantly in both groups. The fasting glucose-to-insulin ratio and predicted insulin sensitivity index decreased in group B. The delta of the area under the OGTT curve for insulin and predicted first and second phase insulin secretion indices increased significantly only in group B. We conclude that treatment of adolescent girls with PCOS with the two combined OCs administered, results in unfavorable changes of insulin sensitivity. In addition, cyproterone acetate is associated with an increase of insulin secretion and hyperinsulinemia.

  12. Effect of the Glucagon-like Peptide-1 Analogue Exenatide Extended Release in Cats with Newly Diagnosed Diabetes Mellitus.

    PubMed

    Riederer, A; Zini, E; Salesov, E; Fracassi, F; Padrutt, I; Macha, K; Stöckle, T M; Lutz, T A; Reusch, C E

    2016-01-01

    Exenatide extended release (ER) is a glucagon-like peptide-1 analogue that increases insulin secretion, inhibits glucagon secretion and induces satiation in humans with type 2 diabetes mellitus. The use of exenatide ER is safe and stimulates insulin secretion in healthy cats. The objective of this study is to assess the safety of exenatide ER and its effect on body weight, remission and metabolic control in newly diagnosed diabetic cats receiving insulin and a low-carbohydrate diet. Thirty client-owned cats. Prospective placebo-controlled clinical trial. Cats were treated with exenatide ER or 0.9% saline, administered SC, once weekly. Both groups received insulin glargine and a low-carbohydrate diet. Exenatide ER was administered for 16 weeks, or in cats that achieved remission it was given for 4 weeks after discontinuing insulin treatment. Nonparametric tests were used for statistical analysis. Cats in the exenatide ER and placebo groups had transient adverse signs including decreased appetite (60% vs. 20%, respectively, P = .06) and vomiting (53% vs. 40%, respectively, P = .715). Body weight increased significantly in the placebo group (P = .002), but not in cats receiving exenatide ER. Cats on exenatide ER achieved remission or good metabolic control in 40% or 89%, respectively, whereas in control cats percentages were 20% or 58% (P = .427 and P = .178, respectively). Exenatide ER is safe in diabetic cats and does not result in weight gain. Our pilot study suggests that, should there be an additional clinically relevant beneficial effect of exenatide ER in insulin-treated cats on rate of remission and good metabolic control, it would likely approximate 20% and 30%, respectively. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  13. miR-124a expression contributes to the monophasic pattern of insulin secretion in islets from pregnant rats submitted to a low-protein diet.

    PubMed

    de Siqueira, Kariny Cassia; de Lima, Faena Moura; Lima, Fernanda Souza; Taki, Marina Satie; da Cunha, Clarissa Felfili; de Lima Reis, Sílvia Regina; Camargo, Rafael Ludemann; Batista, Thiago Martins; Vanzela, Emerielle Cristine; Nardelli, Tarlliza Romanna; Carneiro, Everardo Magalhães; Bordin, Silvana; Ignácio-Souza, Letícia Martins; Latorraca, Márcia Queiroz

    2018-06-01

    To evaluate the role of miR-124a in the regulation of genes involved in insulin exocytosis and its effects on the kinetics of insulin secretion in pancreatic islets from pregnant rats submitted to a low-protein diet. Adult control non-pregnant (CNP) and control pregnant (CP) rats were fed a normal protein diet (17%), whereas low-protein non-pregnant (LPNP) and low-protein pregnant (LPP) rats were fed a low-protein diet (6%) from days 1 to 15 of pregnancy. Kinetics of the glucose-induced insulin release and measurement of [Ca 2+ ] i in pancreatic islets were assessed by standard protocols. The miR-124a expression and gene transcriptions from pancreatic islets were determined by real-time polymerase chain reaction. In islets from LPP rats, the first phase of insulin release was abrogated. The AUC [Ca 2+ ] i from the LPP group was lower compared with the other groups. miR-124a expression was reduced by a low-protein diet. SNAP-25 mRNA, protein expression, and Rab3A protein content were lower in the LPP rats than in CP rats. Syntaxin 1A and Kir6.2 mRNA levels were decreased in islets from low-protein rats compared with control rats, whereas their protein content was reduced in islets from pregnant rats. Loss of biphasic insulin secretion in islets from LPP rats appears to have resulted from reduced [Ca 2+ ] i due, at least in part, to Kir6.2 underexpression and from the changes in exocytotic elements that are influenced either directly or indirectly by miR-124a.

  14. Physical exercise introduced after weaning enhances pancreatic islet responsiveness to glucose and potentiating agents in adult MSG-obese rats.

    PubMed

    Ribeiro, R A; Bonfleur, M L; Vanzela, E C; Zotti, A I; Scomparin, D X; Boschero, A C; Balbo, S L

    2014-08-01

    Physical exercise represents an alternative way to prevent and/or ameliorate chronic metabolic diseases. Disruption of sympathetic nervous system (SNS) activity contributes to adiposity in obese subjects. Here, we verified the preventive effect of swimming training upon adiposity, adrenal catecholamine storage, and pancreatic islet function in obese monosodium glutamate (MSG)-treated rats. Male neonatal Wistar rats received MSG (4 mg/g body weight) during the first 5 days of life and, at weaning, half of the rats were submitted to swimming training, 30 min/day, 3 days a week, until 90 days of age (exercised rats: MSGex). Half of the rats were used as controls (sedentary group, MSGsd). Exercise training (ET) decreased insulinemia and fat deposition in MSGex, and increased adrenal catecholamine content, compared with MSGsd rats. Insulinemia during the ivGTT was lower in MSGex rats, despite a lack of difference in glycemia. Swimming training enhanced insulin release in islets challenged by 2.8-8.3 mmol/l glucose, whereas, at supraphysiological glucose concentrations (11.1-16.7 mmol/l), MSGex islets secreted less insulin than MSGsd. No differences in insulin secretion were observed following l-arginine (Arg) or K(+) stimuli. In contrast, islets from MSGex rats secreted more insulin when exposed to carbachol (100 μmol/l), forskolin (10 μmol/l), or IBMX (1 mmol/l) at 8.3 mmol/l glucose. Additionally, MSGex islets presented a better epinephrine inhibition upon insulin release. These results demonstrate that ET prevented the onset of obesity in MSG rats, probably by enhancing adrenal catecholamine levels. ET ameliorates islet responsiveness to several compounds, as well as insulin peripheral action. © Georg Thieme Verlag KG Stuttgart · New York.

  15. The Relationship between 25-hydroxyvitamin D Levels, Insulin Sensitivity and Insulin Secretion in Women 3 Years after Delivery.

    PubMed

    Tänczer, Tímea; Magenheim, Rita; Fürst, Ágnes; Domján, Beatrix; Janicsek, Zsófia; Szabó, Eszter; Ferencz, Viktória; Tabák, Ádám G

    2017-12-01

    There is a direct correlation between 25-hydroxyvitamin D (25[OH]D) levels and insulin sensitivity. Furthermore, women with gestational diabetes (GDM) may have lower levels of 25(OH)D compared to controls. The present study intended to investigate 25(OH)D levels and their association with insulin sensitivity and insulin secretion in women with prior GDM and in controls 3.2 years after delivery. A total of 87 patients with prior GDM and 45 randomly selected controls (age range, 22 to 44 years) with normal glucose tolerance during pregnancy nested within a cohort of all deliveries at Saint Margit Hospital, Budapest, between January 1 2005, and December 31 2006, were examined. Their 25(OH) D levels were measured by radioimmunoassay. Insulin sensitivity and fasting insulin secretion were estimated using the homeostasis model asssessment (HOMA) calculator and early insulin secretion by the insulinogenic index based on a 75 g oral glucose tolerance test. There was no significant difference in 25(OH)D levels between cases and controls (27.2±13.1 [±SD] vs. 26.9±9.8 ng/L). There was a positive association between HOMA insulin sensitivity and 25(OH)D levels (beta = 0.017; 95% CI 0.001 to 0.034/1 ng/mL) that was robust to adjustment for age and body mass index. There was a nonsignificant association between HOMA insulin secretion and 25(OH)D (p=0.099), while no association was found with the insulinogenic index. Prior GDM status was not associated with 25(OH)D levels; however, 25(OH) D levels were associated with HOMA insulin sensitivity. It is hypothesized that the association between HOMA insulin secretion and 25(OH)D levels is related to the autoregulation of fasting glucose levels because no association between 25(OH)D and insulinogenic index was found. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  16. Low-Fat Versus Low-Carbohydrate Weight Reduction Diets

    PubMed Central

    Bradley, Una; Spence, Michelle; Courtney, C. Hamish; McKinley, Michelle C.; Ennis, Cieran N.; McCance, David R.; McEneny, Jane; Bell, Patrick M.; Young, Ian S.; Hunter, Steven J.

    2009-01-01

    OBJECTIVE Low-fat hypocaloric diets reduce insulin resistance and prevent type 2 diabetes in those at risk. Low-carbohydrate, high-fat diets are advocated as an alternative, but reciprocal increases in dietary fat may have detrimental effects on insulin resistance and offset the benefits of weight reduction. RESEARCH DESIGN AND METHODS We investigated a low-fat (20% fat, 60% carbohydrate) versus a low-carbohydrate (60% fat, 20% carbohydrate) weight reduction diet in 24 overweight/obese subjects ([mean ± SD] BMI 33.6 ± 3.7 kg/m2, aged 39 ± 10 years) in an 8-week randomized controlled trial. All food was weighed and distributed, and intake was calculated to produce a 500 kcal/day energy deficit. Insulin action was assessed by the euglycemic clamp and insulin secretion by meal tolerance test. Body composition, adipokine levels, and vascular compliance by pulse-wave analysis were also measured. RESULTS Significant weight loss occurred in both groups (P < 0.01), with no difference between groups (P = 0.40). Peripheral glucose uptake increased, but there was no difference between groups (P = 0.28), and suppression of endogenous glucose production was also similar between groups. Meal tolerance–related insulin secretion decreased with weight loss with no difference between groups (P = 0.71). The change in overall systemic arterial stiffness was, however, significantly different between diets (P = 0.04); this reflected a significant decrease in augmentation index following the low-fat diet, compared with a nonsignificant increase within the low-carbohydrate group. CONCLUSIONS This study demonstrates comparable effects on insulin resistance of low-fat and low-carbohydrate diets independent of macronutrient content. The difference in augmentation index may imply a negative effect of low-carbohydrate diets on vascular risk. PMID:19720791

  17. Aldosterone induces clonal β-cell failure through glucocorticoid receptor

    PubMed Central

    Chen, Fang; Liu, Jia; Wang, Yanyang; Wu, Tijun; Shan, Wei; Zhu, Yunxia; Han, Xiao

    2015-01-01

    Aldosterone excess causes insulin resistance in peripheral tissues and directly impairs the function of clonal β-cell. The aim of this study was to investigate the molecular mechanisms involved in the aldosterone-induced impairment of clonal β-cells. As expected, aldosterone induced apoptosis and β-cell dysfunction, including impairment of insulin synthesis and secretion, which were reversed by Glucocorticoid receptor (GR) antagonists or GR-specific siRNA. However, mineralocorticoid receptor (MR) antagonists or MR-specific siRNA had no effect on impairment of clonal β-cells induced by aldosterone. Besides, aldosterone significantly decreased expression and activity of MafA, while activated JNK and p38 MAPK in a GR-dependent manner. In addition, JNK inhibitors (SP600125) and/or p38 inhibitors (SB203580) could abolish the effect of aldosterone on MafA expression and activity. Importantly, overexpression of JNK1 or p38 reversed the protective effect of a GR antagonist on the decrease of MafA expression and activity. Furthermore, aldosterone inhibits MafA expression at the transcriptional and post-transcriptional level through activation of JNK and p38, respectively. Consequently, overexpression of MafA increased synthesis and secretion of insulin, and decreased apoptosis in clonal β-cells exposed to aldosterone. These findings identified aldosterone as an inducer of clonal β-cell failure that operates through the GR-MAPK-MafA signaling pathway. PMID:26287126

  18. Glucose Homeostasis, Pancreatic Endocrine Function, and Outcomes in Advanced Heart Failure.

    PubMed

    Melenovsky, Vojtech; Benes, Jan; Franekova, Janka; Kovar, Jan; Borlaug, Barry A; Segetova, Marketa; Tura, Andrea; Pelikanova, Tereza

    2017-08-07

    The mechanisms and relevance of impaired glucose homeostasis in advanced heart failure (HF) are poorly understood. The study goals were to examine glucose regulation, pancreatic endocrine function, and metabolic factors related to prognosis in patients with nondiabetic advanced HF. In total, 140 advanced HF patients without known diabetes mellitus and 21 sex-, age-, and body mass index-matched controls underwent body composition assessment, oral glucose tolerance testing, and measurement of glucose-regulating hormones to model pancreatic β-cell secretory response. Compared with controls, HF patients had similar fasting glucose and insulin levels but higher levels after oral glucose tolerance testing. Insulin secretion was not impaired, but with increasing HF severity, there was a reduction in glucose, insulin, and insulin/glucagon ratio-a signature of starvation. The insulin/C-peptide ratio was decreased in HF, indicating enhanced insulin clearance, and this was correlated with lower cardiac output, hepatic insufficiency, right ventricular dysfunction, and body wasting. After a median of 449 days, 41% of patients experienced an adverse event (death, urgent transplant, or assist device). Increased glucagon and, paradoxically, low fasting plasma glucose displayed the strongest relations to outcome ( P =0.01). Patients in the lowest quartile of fasting plasma glucose (3.8-5.1 mmol·L -1 , 68-101 mg·dL -1 ) had 3-times higher event risk than in the top quartile (6.0-7.9 mmol·L -1 , 108-142 mg·dL -1 ; relative risk: 3.05 [95% confidence interval, 1.46-6.77]; P =0.002). Low fasting plasma glucose and increased glucagon are robust metabolic predictors of adverse events in advanced HF. Pancreatic insulin secretion is preserved in advanced HF, but levels decrease with increasing HF severity due to enhanced insulin clearance that is coupled with right heart failure and cardiac cachexia. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  19. Effect of resistance exercise under conditions of reduced blood insulin on AMPKα Ser485/491 inhibitory phosphorylation and AMPK pathway activation.

    PubMed

    Kido, Kohei; Yokokawa, Takumi; Ato, Satoru; Sato, Koji; Fujita, Satoshi

    2017-08-01

    Insulin stimulates skeletal muscle glucose uptake via activation of the protein kinase B/Akt (Akt) pathway. Recent studies suggest that insulin downregulates AMP-activated protein kinase (AMPK) activity via Ser485/491 phosphorylation of the AMPK α-subunit. Thus lower blood insulin concentrations may induce AMPK signal activation. Acute exercise is one method to stimulate AMPK activation; however, no study has examined the relationship between blood insulin levels and acute resistance exercise-induced AMPK pathway activation. Based on previous findings, we hypothesized that the acute resistance exercise-induced AMPK pathway activation would be augmented by disruptions in insulin secretion through a decrease in AMPKα Ser485/491 inhibitory phosphorylation. To test the hypothesis, 10-wk-old male Sprague-Dawley rats were administered the toxin streptozotocin (STZ; 55 mg/kg) to destroy the insulin secreting β-cells. Three days postinjection, the right gastrocnemius muscle from STZ and control rats was subjected to resistance exercise by percutaneous electrical stimulation. Animals were killed 0, 1, or 3 h later; activation of the Akt/AMPK and downstream pathways in the muscle tissue was analyzed by Western blotting and real-time PCR. Notably, STZ rats showed a significant decrease in basal Akt and AMPKα Ser485/491 phosphorylation, but substantial exercise-induced increases in both AMPKα Thr172 and acetyl-CoA carboxylase (ACC) Ser79 phosphorylation were observed. Although no significant impact on resistance exercise-induced Akt pathway activation or glucose uptake was found, resistance exercise-induced peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 α (PGC-1α) gene expression was augmented by STZ treatment. Collectively, these data suggest that circulating insulin levels may regulate acute resistance exercise-induced AMPK pathway activation and AMPK-dependent gene expression relating to basal AMPKα Ser485/491 phosphorylation. Copyright © 2017 the American Physiological Society.

  20. Prolactin-secreting pituitary adenoma in a man with gigantism: a case report.

    PubMed

    Peillon, F; Philippon, J; Brandi, A M; Fohanno, D; Laplane, D; Dubois, M P; Decourt, J

    1979-12-01

    A prolactin-secreting pituitary adenoma was removed trans-sphenoidally from a 37 years old man with gigantism (218 cm). Serum levels of prolactin (PRL) were elevated pre-operatively and decreased after administration of L-Dopa with no increase after TRH as is usually observed in PRL-secreting adenomas. Growth hormone (GH) and somatomedin serum levels were normal with no modification of GH after insulin hypoglycemia, oral glucose loading or L-Dopa. Morphological examination of the tumour demonstrated the presence of lactotrophs by light and electron microscopy and by immunofluorescense staining. No somatotrophs were found. In this unique case, the relationship between a PRL-secreting adenoma and gigantism is discussed.

  1. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance

    PubMed Central

    Olmstead, Keedrian I.; La Frano, Michael R.; Fahrmann, Johannes; Grapov, Dmitry; Viscarra, Jose A.; Newman, John W.; Fiehn, Oliver; Crocker, Daniel E.; Filipp, Fabian V.; Ortiz, Rudy M.

    2017-01-01

    Introduction Prolonged fasting in northern elephant seals (NES) is characterized by a reliance on lipid metabolism, conservation of protein, and reduced plasma insulin. During early fasting, glucose infusion previously reduced plasma free fatty acids (FFA); however, during late-fasting, it induced an atypical elevation in FFA despite comparable increases in insulin during both periods suggestive of a dynamic shift in tissue responsiveness to glucose-stimulated insulin secretion. Objective To better assess the contribution of insulin to this fasting-associated shift in substrate metabolism. Methods We compared the responses of plasma metabolites (amino acids (AA), FFA, endocannabinoids (EC), and primary carbon metabolites (PCM)) to an insulin infusion (65 mU/kg) in early- and late-fasted NES pups (n = 5/group). Plasma samples were collected prior to infusion (T0) and at 10, 30, 60, and 120 min post-infusion, and underwent untargeted and targeted metabolomics analyses utilizing a variety of GC-MS and LC-MS technologies. Results In early fasting, the majority (72%) of metabolite trajectories return to baseline levels within 2 h, but not in late fasting indicative of an increase in tissue sensitivity to insulin. In late-fasting, increases in FFA and ketone pools, coupled with decreases in AA and PCM, indicate a shift toward lipolysis, beta-oxidation, ketone metabolism, and decreased protein catabolism. Conversely, insulin increased PCM AUC in late fasting suggesting that gluconeogenic pathways are activated. Insulin also decreased FFA AUC between early and late fasting suggesting that insulin suppresses triglyceride hydrolysis. Conclusion Naturally adapted tolerance to prolonged fasting in these mammals is likely accomplished by suppressing insulin levels and activity, providing novel insight on the evolution of insulin during a condition of temporary, reversible insulin resistance. PMID:28757815

  2. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance.

    PubMed

    Olmstead, Keedrian I; La Frano, Michael R; Fahrmann, Johannes; Grapov, Dmitry; Viscarra, Jose A; Newman, John W; Fiehn, Oliver; Crocker, Daniel E; Filipp, Fabian V; Ortiz, Rudy M

    2017-05-01

    Prolonged fasting in northern elephant seals (NES) is characterized by a reliance on lipid metabolism, conservation of protein, and reduced plasma insulin. During early fasting, glucose infusion previously reduced plasma free fatty acids (FFA); however, during late-fasting, it induced an atypical elevation in FFA despite comparable increases in insulin during both periods suggestive of a dynamic shift in tissue responsiveness to glucose-stimulated insulin secretion. To better assess the contribution of insulin to this fasting-associated shift in substrate metabolism. We compared the responses of plasma metabolites (amino acids (AA), FFA, endocannabinoids (EC), and primary carbon metabolites (PCM)) to an insulin infusion (65 mU/kg) in early- and late-fasted NES pups (n = 5/group). Plasma samples were collected prior to infusion (T0) and at 10, 30, 60, and 120 min post-infusion, and underwent untargeted and targeted metabolomics analyses utilizing a variety of GC-MS and LC-MS technologies. In early fasting, the majority (72%) of metabolite trajectories return to baseline levels within 2 h, but not in late fasting indicative of an increase in tissue sensitivity to insulin. In late-fasting, increases in FFA and ketone pools, coupled with decreases in AA and PCM, indicate a shift toward lipolysis, beta-oxidation, ketone metabolism, and decreased protein catabolism. Conversely, insulin increased PCM AUC in late fasting suggesting that gluconeogenic pathways are activated. Insulin also decreased FFA AUC between early and late fasting suggesting that insulin suppresses triglyceride hydrolysis. Naturally adapted tolerance to prolonged fasting in these mammals is likely accomplished by suppressing insulin levels and activity, providing novel insight on the evolution of insulin during a condition of temporary, reversible insulin resistance.

  3. IGF-1 and insulin exert opposite actions on ClC-K2 activity in the cortical collecting ducts

    PubMed Central

    Zaika, Oleg; Mamenko, Mykola; Boukelmoune, Nabila

    2014-01-01

    Despite similar stimulatory actions on the epithelial sodium channel (ENaC)-mediated sodium reabsorption in the distal tubule, insulin promotes kaliuresis, whereas insulin-like growth factor-1 (IGF-1) causes a reduction in urinary potassium levels. The factors contributing to this phenomenon remain elusive. Electrogenic distal nephron ENaC-mediated Na+ transport establishes driving force for Cl− reabsorption and K+ secretion. Using patch-clamp electrophysiology, we document that a Cl− channel is highly abundant on the basolateral plasma membrane of intercalated cells in freshly isolated mouse cortical collecting duct (CCD) cells. The channel has characteristics attributable to the ClC-K2: slow gating kinetics, conductance ∼10 pS, voltage independence, Cl−>NO3− anion selectivity, and inhibition/activation by low/high pH, respectively. IGF-1 (100 and 500 nM) acutely stimulates ClC-K2 activity in a reversible manner. Inhibition of PI3-kinase (PI3-K) with LY294002 (20 μM) abrogates activation of ClC-K2 by IGF-1. Interestingly, insulin (100 nM) reversibly decreases ClC-K2 activity in CCD cells. This inhibitory action is independent of PI3-K and is mediated by stimulation of a mitogen-activated protein kinase-dependent cascade. We propose that IGF-1, by stimulating ClC-K2 channels, promotes net Na+ and Cl− reabsorption, thus reducing driving force for potassium secretion by the CCD. In contrast, inhibition of ClC-K2 by insulin favors coupling of Na+ reabsorption with K+ secretion at the apical membrane contributing to kaliuresis. PMID:25339702

  4. Fenugreek lactone attenuates palmitate-induced apoptosis and dysfunction in pancreatic β-cells

    PubMed Central

    Gong, Jing; Dong, Hui; Jiang, Shu-Jun; Wang, Ding-Kun; Fang, Ke; Yang, De-Sen; Zou, Xin; Xu, Li-Jun; Wang, Kai-Fu; Lu, Fu-Er

    2015-01-01

    AIM: To investigate the effect of fenugreek lactone (FL) on palmitate (PA)-induced apoptosis and dysfunction in insulin secretion in pancreatic NIT-1 β-cells. METHODS: Cells were cultured in the presence or absence of FL and PA (0.25 mmol/L) for 48 h. Then, lipid droplets in NIT-1 cells were observed by oil red O staining, and the intracellular triglyceride content was measured by colorimetric assay. The insulin content in the supernatant was determined using an insulin radio-immunoassay. Oxidative stress-associated parameters, including total superoxide dismutase, glutathione peroxidase and catalase activity and malondialdehyde levels in the suspensions were also examined. The expression of upstream regulators of oxidative stress, such as protein kinase C-α (PKC-α), phospho-PKC-α and P47phox, were determined by Western blot analysis and real-time PCR. In addition, apoptosis was evaluated in NIT-1 cells by flow cytometry assays and caspase-3 viability assays. RESULTS: Our results indicated that compared to the control group, PA induced an increase in lipid accumulation and apoptosis and a decrease in insulin secretion in NIT-1 cells. Oxidative stress in NIT-1 cells was activated after 48 h of exposure to PA. However, FL reversed the above changes. These effects were accompanied by the inhibition of PKC-α, phospho-PKC-α and P47phox expression and the activation of caspase-3. CONCLUSION: FL attenuates PA-induced apoptosis and insulin secretion dysfunction in NIT-1 pancreatic β-cells. The mechanism for this action may be associated with improvements in levels of oxidative stress. PMID:26730156

  5. Indian culinary plants enhance glucose-induced insulin secretion and glucose consumption in INS-1 β-cells and 3T3-L1 adipocytes.

    PubMed

    Kaur, Lovedeep; Han, Kyoung-Sik; Bains, Kiran; Singh, Harjinder

    2011-12-01

    Six Indian plants, commonly used as culinary plants, herbs or spices (kikar; jamun; neem; harad; fenugreek; bitter gourd), were screened and compared for their antidiabetic potential in vitro. Aqueous plant extracts were prepared and assessed for their effect on the insulin secretion activity of rat pancreatic INS-1 β-cells and glucose consumption in mouse 3T3-L1 adipocytes in order to study their specific mechanisms of action. The effect of the plant extract concentration (25-1000μg/ml) on insulin release and glucose consumption was also studied. All the extracts had a significant stimulatory effect on the insulin secretion of INS-1 cells. In the presence of kikar extract (100μg/ml), an increase of 228% in insulin release was recorded compared to the control (5.6mM glucose) whereas that was 270% and 367% in the presence of kikar and jamun extracts (500μg/ml), respectively. 3T3-L1 cells treated with jamun extract (100μg/ml) exhibited the highest increase in glucose consumption by the cells (94%, compared with the control) followed by harad (53%) and fenugreek (50%) extracts. A significant inhibitory effect of the fenugreek, kikar and jamun extracts on glucose diffusion across a dialysis membrane suggested that these extracts could partly act by decreasing glucose absorption in the small intestine. The results showed that a combination of these plants in diet could help in the management of both type 1 and type 2 diabetes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Advanced glycation end products impair glucose-induced insulin secretion from rat pancreatic β-cells.

    PubMed

    Hachiya, Hiroyuki; Miura, Yoshikazu; Inoue, Ken-Ichi; Park, Kyung Hwa; Takeuchi, Masayoshi; Kubota, Keiichi

    2014-02-01

    Advanced glycation end products (AGEs) are derivative compounds generated from non-enzymatic glycosylation and oxidation. In comparison with glucose-derived AGEs (Glu-AGEs), glyceraldehyde-derived AGEs (Glycer-AGEs) have stronger toxicity to living systems. In this study, we compared the effects of Glu-AGE and Glycer-AGE on insulin secretion. Rat pancreatic islets were isolated by collagenase digestion and primary-cultured in the presence of 0.1 mg/ml bovine serum albumin (BSA) or 0.1 mg/ml Glu-AGE or Glycer-AGE-albumin. After 48 h of culture, we performed an insulin secretion test and identified the defects by a battery of rescue experiments [corrected]. Also, mRNA expression of genes associated with insulin secretion was measured. Insulin secretion induced by a high glucose concentration was 164.1 ± 6.0, 124.4 ± 4.4 (P < 0.05) and 119.8 ± 7.1 (P < 0.05) μU/3 islets/h in the presence of BSA, Glu-AGE, and Glycer-AGE, respectively. Inhibition of insulin secretion by Glu-AGE or Glycer-AGE was rescued by a high extracellular potassium concentration, tolbutamide and α-ketoisocaproic acid, but not by glyceraldehyde, dihydroxacetone, methylpyruvate, glucagon-like peptide-1 and acetylcholine. Glu-AGE or Glycer-AGE reduced the expression of the malate dehydrogenase (Mdh1/2) gene, which plays a critical role in the nicotinamide adenine dinucleotide (NADH) shuttle. Despite its reported cytotoxicity, the effects of Glycer-AGE on insulin secretion are similar to those of Glu-AGE. © 2013 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  7. Leucine Stimulates Insulin Secretion via Down-regulation of Surface Expression of Adrenergic α2A Receptor through the mTOR (Mammalian Target of Rapamycin) Pathway

    PubMed Central

    Yang, Jun; Dolinger, Michael; Ritaccio, Gabrielle; Mazurkiewicz, Joseph; Conti, David; Zhu, Xinjun; Huang, Yunfei

    2012-01-01

    The amino acid leucine is a potent secretagogue, capable of inducing insulin secretion. It also plays an important role in the regulation of mTOR activity, therefore, providing impetus to investigate if a leucine-sensing mechanism in the mTOR pathway is involved in insulin secretion. We found that leucine-induced insulin secretion was inhibited by both the mTOR inhibitor rapamycin as well as the adrenergic α2 receptor agonist clonidine. We also demonstrated that leucine down-regulated the surface expression of adrenergic α2A receptor via activation of the mTOR pathway. The leucine stimulatory effect on insulin secretion was attenuated in diabetic Goto-Kakizaki rats that overexpress adrenergic α2A receptors, confirming the role of leucine in insulin secretion. Thus, our data demonstrate that leucine regulates insulin secretion by modulating adrenergic α2 receptors through the mTOR pathway. The role of the mTOR pathway in metabolic homeostasis led us to a second important finding in this study; retrospective analysis of clinical data showed that co-administration of rapamycin and clonidine was associated with an increased incidence of new-onset diabetes in renal transplantation patients over those receiving rapamycin alone. We believe that inhibition of mTOR by rapamycin along with activation of adrenergic α2 receptors by clonidine represents a double-hit to pancreatic islets that synergistically disturbs glucose homeostasis. This new insight may have important implications for the clinical management of renal transplant patients. PMID:22645144

  8. Nuclear hormone retinoid X receptor (RXR) negatively regulates the glucose-stimulated insulin secretion of pancreatic ß-cells.

    PubMed

    Miyazaki, Satsuki; Taniguchi, Hidenori; Moritoh, Yusuke; Tashiro, Fumi; Yamamoto, Tsunehiko; Yamato, Eiji; Ikegami, Hiroshi; Ozato, Keiko; Miyazaki, Jun-ichi

    2010-11-01

    Retinoid X receptors (RXRs) are members of the nuclear hormone receptor superfamily and are thought to be key regulators in differentiation, cellular growth, and gene expression. Although several experiments using pancreatic β-cell lines have shown that the ligands of nuclear hormone receptors modulate insulin secretion, it is not clear whether RXRs have any role in insulin secretion. To elucidate the function of RXRs in pancreatic β-cells, we generated a double-transgenic mouse in which a dominant-negative form of RXRβ was inducibly expressed in pancreatic β-cells using the Tet-On system. We also established a pancreatic β-cell line from an insulinoma caused by the β-cell-specific expression of simian virus 40 T antigen in the above transgenic mouse. In the transgenic mouse, expression of the dominant-negative RXR enhanced the insulin secretion with high glucose stimulation. In the pancreatic β-cell line, the suppression of RXRs also enhanced glucose-stimulated insulin secretion at a high glucose concentration, while 9-cis-retinoic acid, an RXR agonist, repressed it. High-density oligonucleotide microarray analysis showed that expression of the dominant-negative RXR affected the expression levels of a number of genes, some of which have been implicated in the function and/or differentiation of β-cells. These results suggest that endogenous RXR negatively regulates the glucose-stimulated insulin secretion. Given these findings, we propose that the modulation of endogenous RXR in β-cells may be a new therapeutic approach for improving impaired insulin secretion in type 2 diabetes.

  9. Pancreatic beta cell function following liraglutide-augmented weight loss in individuals with prediabetes: analysis of a randomised, placebo-controlled study

    PubMed Central

    Liu, Alice; Ariel, Danit; Abbasi, Fahim; Lamendola, Cindy; Grove, Kaylene; Tomasso, Vanessa; Reaven, Gerald

    2016-01-01

    Aims/hypothesis Liraglutide can modulate insulin secretion by directly stimulating beta cells or indirectly through weight loss and enhanced insulin sensitivity. Recently, we showed that liraglutide treatment in overweight individuals with prediabetes (impaired fasting glucose and/or impaired glucose tolerance) led to greater weight loss (−7.7% vs −3.9%) and improvement in insulin resistance compared with placebo. The current study evaluates the effects on beta cell function of weight loss augmented by liraglutide compared with weight loss alone. Methods This was a parallel, randomised study conducted in a single academic centre. Both participants and study administrators were blinded to treatment assignment. Individuals who were 40–70 years old, overweight (BMI 27–40 kg/m2) and with prediabetes were randomised (via a computerised system) to receive liraglutide (n = 35) or matching placebo (n = 33), and 49 participants were analysed. All were instructed to follow an energy-restricted diet. Primary outcome was insulin secretory function, which was evaluated in response to graded infusions of glucose and day-long mixed meals. Results Liraglutide treatment (n = 24) significantly (p ≤0.03) increased the insulin secretion rate (% mean change [95% CI]; 21% [12, 31] vs −4% [−11, 3]) and pancreatic beta cell sensitivity to intravenous glucose (229% [161, 276] vs −0.5% (−15, 14]), and decreased insulin clearance rate (−3.5% [−11, 4] vs 8.2 [0.2, 16]) as compared with placebo (n = 25). The liraglutide-treated group also had significantly (p ≤0.03) lower day-long glucose (−8.2% [−11, −6] vs −0.1 [−3, 2]) and NEFA concentrations (−14 [−20, −8] vs −2.1 [−10, 6]) following mixed meals, whereas day-long insulin concentrations did not significantly differ as compared with placebo. In a multivariate regression analysis, weight loss was associated with a decrease in insulin secretion rate and day-long glucose and insulin concentrations in the placebo group (p ≤0.05), but there was no association with weight loss in the liraglutide group. The most common side effect of liraglutide was nausea. Conclusions/interpretation A direct stimulatory effect on beta cell function was the predominant change in liraglutide-augmented weight loss. These changes appear to be independent of weight loss. Trial registration ClinicalTrials.gov NCT01784965 PMID:24326527

  10. Mechanisms of Estradiol-Induced Insulin Secretion by the G Protein-Coupled Estrogen Receptor GPR30/GPER in Pancreatic β-Cells

    PubMed Central

    Sharma, Geetanjali

    2011-01-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes. PMID:21673097

  11. Rates of insulin secretion in INS-1 cells are enhanced by coupling to anaplerosis and Kreb's cycle flux independent of ATP synthesis.

    PubMed

    Cline, Gary W; Pongratz, Rebecca L; Zhao, Xiaojian; Papas, Klearchos K

    2011-11-11

    Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as a surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with (31)P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by (13)C NMR isotopomer analysis of the fate of [U-(13)C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM was found to be congruous with the correlation in KRB. Together, these results suggest that signaling mechanisms associated with both TCA cycle flux and with anaplerotic flux, but not ATP production, may be responsible for the enhanced rates of insulin secretion in more complex, and physiologically-relevant media. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Physiological concentrations of interleukin-6 directly promote insulin secretion, signal transduction, nitric oxide release, and redox status in a clonal pancreatic β-cell line and mouse islets.

    PubMed

    da Silva Krause, Mauricio; Bittencourt, Aline; Homem de Bittencourt, Paulo Ivo; McClenaghan, Neville H; Flatt, Peter R; Murphy, Colin; Newsholme, Philip

    2012-09-01

    Interleukin-6 (IL6) has recently been reported to promote insulin secretion in a glucagon-like peptide-1-dependent manner. Herein, the direct effects of IL6 (at various concentrations from 0 to 1000 pg/ml) on pancreatic β-cell metabolism, AMP-activated protein kinase (AMPK) signaling, insulin secretion, nitrite release, and redox status in a rat clonal β-cell line and mouse islets are reported. Chronic insulin secretion (in μg/mg protein per 24  h) was increased from 128·7±7·3 (no IL6) to 178·4±7·7 (at 100  pg/ml IL6) in clonal β-cells and increased significantly in islets incubated in the presence of 5·5  mM glucose for 2  h, from 0·148 to 0·167±0·003  ng/islet. Pretreatment with IL6 also induced a twofold increase in basal and nutrient-stimulated insulin secretion in subsequent 20 min static incubations. IL6 enhanced both glutathione (GSH) and glutathione disulphide (GSSG) by nearly 20% without changing intracellular redox status (GSSG/GSH). IL6 dramatically increased iNOS expression (by ca. 100-fold) with an accompanying tenfold rise in nitrite release in clonal β-cells. Phosphorylated AMPK levels were elevated approximately twofold in clonal β-cells and mouse islet cells. Calmodulin-dependent protein kinase kinase levels (CaMKK), an upstream kinase activator of AMPK, were also increased by 50% after IL6 exposure (in β-cells and islets). Our data have demonstrated that IL6 can stimulate β-cell-dependent insulin secretion via direct cell-based mechanisms. AMPK, CaMKK (an upstream kinase activator of AMPK), and the synthesis of nitric oxide appear to alter cell metabolism to benefit insulin secretion. In summary, IL6 exerts positive effects on β-cell signaling, metabolism, antioxidant status, and insulin secretion.

  13. Fetal adaptations in insulin secretion result from high catecholamines during placental insufficiency.

    PubMed

    Limesand, Sean W; Rozance, Paul J

    2017-08-01

    Placental insufficiency and intrauterine growth restriction (IUGR) of the fetus affects approximately 8% of all pregnancies and is associated with short- and long-term disturbances in metabolism. In pregnant sheep, experimental models with a small, defective placenta that restricts delivery of nutrients and oxygen to the fetus result in IUGR. Low blood oxygen concentrations increase fetal plasma catecholamine concentrations, which lower fetal insulin concentrations. All of these observations in sheep models with placental insufficiency are consistent with cases of human IUGR. We propose that sustained high catecholamine concentrations observed in the IUGR fetus produce developmental adaptations in pancreatic β-cells that impair fetal insulin secretion. Experimental evidence supporting this hypothesis shows that chronic elevation in circulating catecholamines in IUGR fetuses persistently inhibits insulin concentrations and secretion. Elevated catecholamines also allow for maintenance of a normal fetal basal metabolic rate despite low fetal insulin and glucose concentrations while suppressing fetal growth. Importantly, a compensatory augmentation in insulin secretion occurs following inhibition or cessation of catecholamine signalling in IUGR fetuses. This finding has been replicated in normally grown sheep fetuses following a 7-day noradrenaline (norepinephrine) infusion. Together, these programmed effects will potentially create an imbalance between insulin secretion and insulin-stimulated glucose utilization in the neonate which probably explains the transient hyperinsulinism and hypoglycaemia in some IUGR infants. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  14. VAMP-2 and cellubrevin are expressed in pancreatic beta-cells and are essential for Ca(2+)-but not for GTP gamma S-induced insulin secretion.

    PubMed Central

    Regazzi, R; Wollheim, C B; Lang, J; Theler, J M; Rossetto, O; Montecucco, C; Sadoul, K; Weller, U; Palmer, M; Thorens, B

    1995-01-01

    VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion. Images PMID:7796801

  15. Acute intraperitoneal administration of taurine decreases the glycemia and reduces food intake in type 1 diabetic rats.

    PubMed

    Gomez, Rosane; Caletti, Greice; Arbo, Bruno Dutra; Hoefel, Ana Lúcia; Schneider, Ricardo; Hansen, Alana Witt; Pulcinelli, Rianne Remus; Freese, Luana; Bandiera, Solange; Kucharski, Luiz Carlos; Barros, Helena Maria Tanhauser

    2018-07-01

    Taurine, an amino acid with antioxidant and osmoregulatory properties, has been studied for its possible antidiabetic properties in type 1 and type 2 diabetic animals. In type 2 diabetic mice, taurine decreases blood glucose through increased insulin secretion and insulin receptor sensitization. However, insulin is absent in type 1 diabetic individuals. The aim of this study was to evaluate the effects of taurine on parameters related to the energy balance that could explain the metabolic action of this amino acid in type 1 diabetic rats. Control and streptozotocin-induced diabetic rats received saline or taurine (100 mg/kg/day), intraperitoneally, for 30 days. Parameters such as palatable food intake, gastrointestinal transit rate, serum glucose, insulin, leptin, and glucagon levels were measured 60 min after the last taurine administration. Liver, kidneys, heart, and retroperitoneal fat were dissected and weighted. Glycogen levels were measured in the liver and soleus muscle. Our results showed that acute taurine administration decreased glycemia. It also decreased food intake in diabetic rats, without affecting other metabolic parameters. Altogether, our results suggest that in type 1 diabetic rats, taurine decreases blood glucose by a non-insulin-dependent mechanism. Due to the safety profile of taurine, and its effect on glycemia, this amino acid may help to design new drugs to add benefit to insulin therapy in type 1 diabetic individuals. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Dose- and Glucose-Dependent Effects of Amino Acids on Insulin Secretion from Isolated Mouse Islets and Clonal INS-1E Beta-Cells

    PubMed Central

    Liu, Zhenping; Jeppesen, Per B.; Gregersen, Søren; Chen, Xiaoping; Hermansen, Kjeld

    2008-01-01

    BACKGROUND: The influence of glucose and fatty acids on beta-cell function is well established whereas little is known about the role of amino acids (AAs). METHODS: Islets isolated from NMRI mice were incubated overnight. After preincubation, isolated islets as well as clonal INS-1E beta-cells were incubated for 60 min in a modified Krebs Ringer buffer containing glucose and AAs. RESULTS: At 16.7 mmol/l (mM) glucose, L-arginine, L-lysine, L-alanine, L-proline, L-leucine, and L-glutamine potentiated glucose-stimulated insulin secretion dose-dependently, while DL-homocysteine inhibited insulin secretion. Maximal insulin stimulation was obtained at 20 mM L-proline, L-lysine, L-alanine, L-arginine (islets: 2.5 to 6.7 fold increase; INS-1E cells: 1.6 to 2.2 fold increase). L-glutamine and L-leucine only increased glucose-stimulated (16.7 mM) insulin secretion (INS-1E cells: 1.5 and 1.3 fold, respectively) at an AA concentration of 20 mM. Homocysteine inhibited insulin secretion both at 5.6 mM and 16.7 mM glucose. At glucose levels ranging from 1.1 to 25 mM, the equimolar concentration of 10 mM, L-proline, L-lysine, L-arginine increased insulin secretion from mouse islets and INS-1E cells at all glucose levels applied, with a maximal effect obtained at 25 mM glucose. At a concentration of 10 mM, L-arginine and L-lysine had the highest insulinotropic potency among the AAs investigated. CONCLUSION: L-arginine, L-lysine, L-alanine, L-proline, L-leucine and L-glutamine acutely stimulate insulin secretion from mouse islets and INS-1E cells in a dose- and glucose-dependent manner, whereas DL-homocysteine inhibits insulin release. PMID:19290384

  17. Ex vivo generation of glucose sensitive insulin secreting mesenchymal stem cells derived from human adipose tissue.

    PubMed

    Dave, Shruti D; Vanikar, Aruna V; Trivedi, Hargovind L

    2012-03-01

    Diabetics are incapable of producing insulin/have autoimmune mechanisms making it ineffective to control glucose secretion. We present a prospective study of glucose-sensitive insulin-secreting mesenchymal stem cells (IS-MSC) generated from human adipose tissue (h-AD) sans xenogenic material. Ten grams h-AD from donor anterior abdominal wall was collected in proliferation medium composed of α-Minimum Essential Media (α-MEM), albumin, fibroblast-growth factor and antibiotics, minced, incubated in collagenase-I at 37°C with shaker and centrifuged. Supernatant and pellets were separately cultured in proliferation medium on cell+ plates at 37°C with 5% CO(2) for 10 days. Cells were harvested by trypsinization, checked for viability, sterility, counts, flow-cytometry (CD45(-)/90(+)/73(+)), and differentiated into insulin-expressing cells using medium composed of DMEM, gene expressing up-regulators and antibiotics for 3 days. They were studied for transcriptional factors Pax-6, Isl-1, pdx-1 (immunofluorescence). C-peptide and insulin were measured by chemiluminescence. In vitro glucose sensitivity assay was carried out by measuring levels of insulin and C-peptide secretion in absence of glucose followed by 2 hours incubation after glucose addition. Mean IS-AD-MSC quantum was 3.21 ml, cell count, 1.5 ×10(3) cells/μl), CD45(-)/90(+)/73(+) cells were 44.37% /25.52%. All of them showed presence of pax-6, pdx-1, and Isl-1. Mean C-Peptide and insulin levels were 0.36 ng/ml and 234 μU/ml, respectively, pre-glucose and 0.87 ng/ml and 618.3 μU/ml post-glucose additions. The mean rise in secretion levels was 2.42 and 2.65 fold, respectively. Insulin-secreting h-AD-MSC can be generated safely and effectively showing in vitro glucose responsive alteration in insulin and C-peptide secretion levels.

  18. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling.

    PubMed

    Nolan, C J; Leahy, J L; Delghingaro-Augusto, V; Moibi, J; Soni, K; Peyot, M-L; Fortier, M; Guay, C; Lamontagne, J; Barbeau, A; Przybytkowski, E; Joly, E; Masiello, P; Wang, S; Mitchell, G A; Prentki, M

    2006-09-01

    The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes. NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats. Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5-8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride-fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent. The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride-fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity.

  19. Insulin-secreting non-islet cells are resistant to autoimmune destruction.

    PubMed Central

    Lipes, M A; Cooper, E M; Skelly, R; Rhodes, C J; Boschetti, E; Weir, G C; Davalli, A M

    1996-01-01

    Transgenic nonobese diabetic mice were created in which insulin expression was targeted to proopiomelanocortin-expressing pituitary cells. Proopiomelanocortin-expressing intermediate lobe pituitary cells efficiently secrete fully processed, mature insulin via a regulated secretory pathway, similar to islet beta cells. However, in contrast to the insulin-producing islet beta cells, the insulin-producing intermediate lobe pituitaries are not targeted or destroyed by cells of the immune system. Transplantation of the transgenic intermediate lobe tissues into diabetic nonobese diabetic mice resulted in the restoration of near-normoglycemia and the reversal of diabetic symptoms. The absence of autoimmunity in intermediate lobe pituitary cells engineered to secrete bona fide insulin raises the potential of these cell types for beta-cell replacement therapy for the treatment of insulin-dependent diabetes mellitus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8710916

  20. Zinc Up-Regulates Insulin Secretion from β Cell-Like Cells Derived from Stem Cells from Human Exfoliated Deciduous Tooth (SHED).

    PubMed

    Kim, Gyuyoup; Shin, Ki-Hyuk; Pae, Eung-Kwon

    2016-12-13

    Stem cells from human exfoliated deciduous tooth (SHED) offer several advantages over other stem cell sources. Using SHED, we examined the roles of zinc and the zinc uptake transporter ZIP8 (Zrt- and irt-like protein 8) while inducing SHED into insulin secreting β cell-like stem cells (i.e., SHED-β cells). We observed that ZIP8 expression increased as SHED differentiated into SHED-β cells, and that zinc supplementation at day 10 increased the levels of most pancreatic β cell markers-particularly Insulin and glucose transporter 2 (GLUT2). We confirmed that SHED-β cells produce insulin successfully. In addition, we note that zinc supplementation significantly increases insulin secretion with a significant elevation of ZIP8 transporters in SHED-β cells. We conclude that SHED can be converted into insulin-secreting β cell-like cells as zinc concentration in the cytosol is elevated. Insulin production by SHED-β cells can be regulated via modulation of zinc concentration in the media as ZIP8 expression in the SHED-β cells increases.

  1. Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity

    PubMed Central

    Wu, Lindsay E.; Samocha-Bonet, Dorit; Whitworth, P. Tess; Fazakerley, Daniel J.; Turner, Nigel; Biden, Trevor J.; James, David E.; Cantley, James

    2014-01-01

    A critical feature of obesity is enhanced insulin secretion from pancreatic β-cells, enabling the majority of individuals to maintain glycaemic control despite adiposity and insulin resistance. Surprisingly, the factors coordinating this adaptive β-cell response with adiposity have not been delineated. Here we show that fatty acid binding protein 4 (FABP4/aP2) is an adipokine released from adipocytes under obesogenic conditions, such as hypoxia, to augment insulin secretion. The insulinotropic action of FABP4 was identified using an in vitro system that recapitulates adipocyte to β-cell endocrine signalling, with glucose-stimulated insulin secretion (GSIS) as a functional readout, coupled with quantitative proteomics. Exogenous FABP4 potentiated GSIS in vitro and in vivo, and circulating FABP4 levels correlated with GSIS in humans. Insulin inhibited FABP4 release from adipocytes in vitro, in mice and in humans, consistent with feedback regulation. These data suggest that FABP4 and insulin form an endocrine loop coordinating the β-cell response to obesity. PMID:24944906

  2. Trajectories of glycaemia, insulin sensitivity and insulin secretion in South Asian and white individuals before diagnosis of type 2 diabetes: a longitudinal analysis from the Whitehall II cohort study.

    PubMed

    Hulman, Adam; Simmons, Rebecca K; Brunner, Eric J; Witte, Daniel R; Færch, Kristine; Vistisen, Dorte; Ikehara, Satoyo; Kivimaki, Mika; Tabák, Adam G

    2017-07-01

    South Asian individuals have reduced insulin sensitivity and increased risk of type 2 diabetes compared with white individuals. Temporal changes in glycaemic traits during middle age suggest that impaired insulin secretion is a particular feature of diabetes development among South Asians. We therefore aimed to examine ethnic differences in early changes in glucose metabolism prior to incident type 2 diabetes. In a prospective British occupational cohort, subject to 5 yearly clinical examinations, we examined ethnic differences in trajectories of fasting plasma glucose (FPG), 2 h post-load plasma glucose (2hPG), fasting serum insulin (FSI), 2 h post-load serum insulin (2hSI), HOMA of insulin sensitivity (HOMA2-S) and secretion (HOMA2-B), and the Gutt insulin sensitivity index (ISI 0,120 ) among 120 South Asian and 867 white participants who developed diabetes during follow-up (1991-2013). We fitted cubic mixed-effects models to longitudinal data with adjustment for a wide range of covariates. Compared with white individuals, South Asians had a faster increase in FPG before diagnosis (slope difference 0.22 mmol/l per decade; 95% CI 0.02, 0.42; p = 0.03) and a higher FPG level at diagnosis (0.27 mmol/l; 95% CI 0.06, 0.48; p = 0.01). They also had higher FSI and 2hSI levels before and at diabetes diagnosis. South Asians had a faster decline and lower HOMA2-S (log e -transformed) at diagnosis compared with white individuals (0.33; 95% CI 0.21, 0.46; p < 0.001). HOMA2-B increased in both ethnic groups until 7 years before diagnosis and then declined; the initial increase was faster in white individuals. ISI 0,120 declined steeply in both groups before diagnosis; levels were lower among South Asians before and at diagnosis. There were no ethnic differences in 2hPG trajectories. We observed different trajectories of plasma glucose, insulin sensitivity and secretion prior to diabetes diagnosis in South Asian and white individuals. This might be due to ethnic differences in the natural history of diabetes. South Asian individuals experienced a more rapid decrease in insulin sensitivity and faster increases in FPG compared with white individuals. These findings suggest more marked disturbance in beta cell compensation prior to diabetes diagnosis in South Asian individuals.

  3. Effects of a low-glycemic load vs low-fat diet in obese young adults: a randomized trial.

    PubMed

    Ebbeling, Cara B; Leidig, Michael M; Feldman, Henry A; Lovesky, Margaret M; Ludwig, David S

    2007-05-16

    The results of clinical trials involving diet in the treatment of obesity have been inconsistent, possibly due to inherent physiological differences among study participants. To determine whether insulin secretion affects weight loss with 2 popular diets. Randomized trial of obese young adults (aged 18-35 years; n = 73) conducted from September 2004 to December 2006 in Boston, Mass, and consisting of a 6-month intensive intervention period and a 12-month follow-up period. Serum insulin concentration at 30 minutes after a 75-g dose of oral glucose was determined at baseline as a measure of insulin secretion. Outcomes were assessed at 6, 12, and 18 months. Missing data were imputed conservatively. A low-glycemic load (40% carbohydrate and 35% fat) vs low-fat (55% carbohydrate and 20% fat) diet. Body weight, body fat percentage determined by dual-energy x-ray absorptiometry, and cardiovascular disease risk factors. Change in body weight and body fat percentage did not differ between the diet groups overall. However, insulin concentration at 30 minutes after a dose of oral glucose was an effect modifier (group x time x insulin concentration at 30 minutes: P = .02 for body weight and P = .01 for body fat percentage). For those with insulin concentration at 30 minutes above the median (57.5 microIU/mL; n = 28), the low-glycemic load diet produced a greater decrease in weight (-5.8 vs -1.2 kg; P = .004) and body fat percentage (-2.6% vs -0.9%; P = .03) than the low-fat diet at 18 months. There were no significant differences in these end points between diet groups for those with insulin concentration at 30 minutes below the median level (n = 28). Insulin concentration at 30 minutes after a dose of oral glucose was not a significant effect modifier for cardiovascular disease risk factors. In the full cohort, plasma high-density lipoprotein cholesterol and triglyceride concentrations improved more on the low-glycemic load diet, whereas low-density lipoprotein cholesterol concentration improved more on the low-fat diet. Variability in dietary weight loss trials may be partially attributable to differences in hormonal response. Reducing glycemic load may be especially important to achieve weight loss among individuals with high insulin secretion. Regardless of insulin secretion, a low-glycemic load diet has beneficial effects on high-density lipoprotein cholesterol and triglyceride concentrations but not on low-density lipoprotein cholesterol concentration. clinicaltrials.gov Identifier: NCT00130299.

  4. Insulin-like and IGF-like peptides in the silkmoth Bombyx mori: discovery, structure, secretion, and function

    PubMed Central

    Mizoguchi, Akira; Okamoto, Naoki

    2013-01-01

    A quarter of a century has passed since bombyxin, the first insulin-like peptide identified in insects, was discovered in the silkmoth Bombyx mori. During these years, bombyxin has been studied for its structure, genes, distribution, hemolymph titers, secretion control, as well as physiological functions, thereby stimulating a wide range of studies on insulin-like peptides in other insects. Moreover, recent studies have identified a new class of insulin family peptides, IGF-like peptides, in B. mori and Drosophila melanogaster, broadening the base of the research area of the insulin-related peptides in insects. In this review, we describe the achievements of the studies on insulin-like and IGF-like peptides mainly in B. mori with short histories of their discovery. Our emphasis is that bombyxins, secreted by the brain neurosecretory cells, regulate nutrient-dependent growth and metabolism, whereas the IGF-like peptides, secreted by the fat body and other peripheral tissues, regulate stage-dependent growth of tissues. PMID:23966952

  5. Pancreatic β-Cell Electrical Activity and Insulin Secretion: of Mice and Men

    PubMed Central

    Rorsman, Patrik; Ashcroft, Frances M

    2018-01-01

    The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycaemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM. PMID:29212789

  6. Hyperthyroidism impairs pancreatic beta cell adaptations to late pregnancy and maternal liporegulation in the rat.

    PubMed

    Holness, M J; Greenwood, G K; Smith, N D; Sugden, M C

    2005-11-01

    Hyperthyroidism modifies lipid dynamics (increased oxidation), impairs insulin action and can suppress insulin secretion. We therefore examined the impact of hyperthyroidism on the relationship between glucose-stimulated insulin secretion (GSIS) and insulin action, using late pregnancy as a model of physiological insulin resistance that is associated with compensatory insulin hypersecretion to maintain glucose tolerance. Our aim was to examine whether hyperthyroidism compromises the regulation of insulin secretion and the ability of insulin to modulate circulating lipid concentrations in late pregnancy. Hyperthyroidism was induced by tri-iodothyronine (T(3)) administration from day 17 to 19 of pregnancy. GSIS was assessed during an IVGTT and during hyperglycaemic clamps in vivo and in vitro, using step-up and -down islet perifusions. Hyperthyroidism in pregnancy elevated the glucose threshold for GSIS and impaired GSIS at low and high glucose concentrations in islet perifusions. In the intact animal, insulin secretion (after bolus glucose) was more rapidly curtailed following removal of the glucose stimulus to secretion. In contrast, GSIS was maintained during protracted hyperglycaemia (hyperglycaemic clamps) in the hyperthyroid pregnant state in vivo. Hyperthyroidism in vivo during late pregnancy blunts GSIS in subsequently isolated and perifused islets at low and high glucose concentrations. It also adversely affects GSIS under conditions of an acute glucose challenge in vivo. In contrast, GSIS is maintained during sustained hyperglycaemia in vivo, suggesting that in vivo factors can rescue GSIS. The ability of insulin to suppress systemic lipid levels during hyperglycaemic clamps was impaired. We therefore suggest that higher circulating lipids may preserve GSIS under conditions of sustained hyperglycaemia in the hyperthyroid pregnancy.

  7. Evaluation of insulin secretion and action in New World camelids.

    PubMed

    Firshman, Anna M; Cebra, Christopher K; Schanbacher, Barbara J; Seaquist, Elizabeth R

    2013-01-01

    To measure and compare insulin secretion and sensitivity in healthy alpacas and llamas via glucose clamping techniques. 8 llamas and 8 alpacas. Hyperinsulinemic euglycemic clamping (HEC) and hyperglycemic clamping (HGC) were performed on each camelid in a crossover design with a minimum 48-hour washout period between clamping procedures. The HEC technique was performed to measure insulin sensitivity. Insulin was infused IV at 6 mU/min/kg for 4 hours, and an IV infusion of glucose was adjusted to maintain blood glucose concentration at 150 mg/dL. Concentrations of blood glucose and plasma insulin were determined throughout. The HGC technique was performed to assess insulin secretion in response to exogenous glucose infusion. An IV infusion of glucose was administered to maintain blood glucose concentration at 320 mg/dL for 3 hours, and concentrations of blood glucose and plasma insulin were determined throughout. Alpacas and llamas were not significantly different with respect to whole-body insulin sensitivity during HEC or in pancreatic β-cell response during HGC. Alpacas and llamas had markedly lower insulin sensitivity during HEC and markedly lower pancreatic β-cell response during HGC, in comparison with many other species. New World camelids had lower glucose-induced insulin secretion and marked insulin resistance in comparison with other species. This likely contributes to the disorders of fat and glucose metabolism that are common to camelids.

  8. Effect of rosuvastatin on hepatic production of apolipoprotein B-containing lipoproteins in an animal model of insulin resistance and metabolic dyslipidemia.

    PubMed

    Chong, Taryne; Naples, Mark; Federico, Lisa; Taylor, Denise; Smith, Graham J; Cheung, Raphael C; Adeli, Khosrow

    2006-03-01

    A novel animal model of insulin resistance, the fructose-fed Syrian golden hamster, was employed to investigate the efficacy and mechanisms of action of rosuvastatin, a HMG-CoA reductase inhibitor, in ameliorating metabolic dyslipidemia in insulin-resistant states. Fructose feeding for a 2-week period induced insulin resistance and a significant increase in hepatic secretion of VLDL. This was followed by a fructose-enriched diet with or without 10 mg/kg rosuvastatin for 14 days. Fructose feeding in the first 2 weeks caused a significant increase in plasma total cholesterol and triglyceride in both groups (n=6, p<0.001). However, there was a significant decline (30%, n=8, p<0.05) in plasma triglyceride levels following rosuvastatin feeding (10 mg/kg). A significant decrease (n=6, p<0.05) was also observed in VLDL-apoB production in hepatocytes isolated from drug-treated hamsters, together with an increased apoB degradation (n=6, p<0.05). Similar results were obtained in parallel cell culture experiments in which primary hepatocytes were first isolated from chow-fed hamsters, and then treated in vitro with 15 microM rosuvastatin for 18 h. Rosuvastatin at 5 microM caused a substantial reduction in synthesis of unesterified cholesterol and cholesterol ester (98 and 25%, n=9, p<0.01 or p<0.05) and secretion of newly synthesized unesterified cholesterol, cholesterol ester, and triglyceride (95, 42, and 60% reduction, respectively, n=9, p<0.01 or p<0.05). This concentration of rosuvastatin also caused a significant reduction (75% decrease, n=4, p<0.01) in the extracellular secretion of VLDL-apoB100, accompanied by a significant increase in the intracellular degradation of apoB100. There was a 12% reduction (not significant, p>0.05) in hepatic MTP and no changes in ER-60 (a chaperone involved in apoB degradation) protein levels. Taken together, these data suggest that the assembly and secretion of VLDL particles in hamster hepatocytes can be acutely inhibited by rosuvastatin in a process involving enhanced apoB degradation. This appears to lead to a significant amelioration of hepatic VLDL-apoB overproduction observed in the fructose-fed, insulin-resistant hamster model.

  9. Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz-Villasenor, Andrea; Burns, Anna L.; Facultad de Medicina, Universidad Nacional Autonoma de Mexico

    2007-12-01

    Chronic exposure to high concentrations of arsenic in drinking water is associated with an increased risk for developing type 2 diabetes. The present revision focuses on the effect of arsenic on tissues that participate directly in glucose homeostasis, integrating the most important published information about the impairment of the expression of genes related to type 2 diabetes by arsenic as one of the possible mechanisms by which it leads to the disease. Many factors are involved in the manner in which arsenic contributes to the occurrence of diabetes. The reviewed studies suggest that arsenic might increase the risk for typemore » 2 diabetes via multiple mechanisms, affecting a cluster of regulated events, which in conjunction trigger the disease. Arsenic affects insulin sensitivity in peripheral tissue by modifying the expression of genes involved in insulin resistance and shifting away cells from differentiation to the proliferation pathway. In the liver arsenic disturbs glucose production, whereas in pancreatic beta-cells arsenic decreases insulin synthesis and secretion and reduces the expression of antioxidant enzymes. The consequences of these changes in gene expression include the reduction of insulin secretion, induction of oxidative stress in the pancreas, alteration of gluconeogenesis, abnormal proliferation and differentiation pattern of muscle and adipocytes as well as peripheral insulin resistance.« less

  10. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus

    PubMed Central

    Tangvarasittichai, Surapon

    2015-01-01

    Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356

  11. Liver-specific expression of carboxylesterase 1g/esterase-x reduces hepatic steatosis, counteracts dyslipidemia and improves insulin signaling.

    PubMed

    Bahitham, Wesam; Watts, Russell; Nelson, Randal; Lian, Jihong; Lehner, Richard

    2016-05-01

    Ces1g/Es-x deficiency in mice results in weight gain, insulin resistance, fatty liver and hyperlipidemia through upregulation of de novo lipogenesis and oversecretion of triacylglycerol (TG)-rich lipoproteins. Here, we show that restoration of Ces1g/Es-x expression only in the liver significantly reduced hepatic TG concentration accompanied by decreased size of lipid droplets, reduced secretion of very low-density lipoproteins and improved insulin-mediated signal transduction in the liver. Collectively, these results demonstrate that hepatic Ces1g/Es-x plays a critical role in limiting hepatic steatosis, very low-density lipoprotein assembly and in augmenting insulin sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Antidiabetic effect of Cinnamomum cassia and Cinnamomum zeylanicum in vivo and in vitro.

    PubMed

    Verspohl, Eugen J; Bauer, Katrin; Neddermann, Eckhard

    2005-03-01

    Rats were given Cinnamomum cassia bark or extracts from Cinnamomum cassia and zeylanicum to evaluate blood glucose and plasma insulin levels in rats under various conditions. The cassia extract was superior to the zeylanicum extract. The cassia extract was slightly more efficacious than the equivalent amount of Cassia bark. A decrease in blood glucose levels was observed in a glucose tolerance test (GTT), whereas it was not obvious in rats that were not challenged by a glucose load. The elevation in plasma insulin was direct since a stimulatory in vitro effect of insulin release from INS-1 cells (an insulin secreting cell line) was observed. Thus the cassia extract has a direct antidiabetic potency. Copyright 2005 John Wiley & Sons, Ltd.

  13. Calcium Channels in Postnatal Development of Rat Pancreatic Beta Cells and Their Role in Insulin Secretion

    PubMed Central

    García-Delgado, Neivys; Velasco, Myrian; Sánchez-Soto, Carmen; Díaz-García, Carlos Manlio; Hiriart, Marcia

    2018-01-01

    Pancreatic beta cells during the first month of development acquire functional maturity, allowing them to respond to variations in extracellular glucose concentration by secreting insulin. Changes in ionic channel activity are important for this maturation. Within the voltage-gated calcium channels (VGCC), the most studied channels are high-voltage-activated (HVA), principally L-type; while low-voltage-activated (LVA) channels have been poorly studied in native beta cells. We analyzed the changes in the expression and activity of VGCC during the postnatal development in rat beta cells. We observed that the percentage of detection of T-type current increased with the stage of development. T-type calcium current density in adult cells was higher than in neonatal and P20 beta cells. Mean HVA current density also increased with age. Calcium current behavior in P20 beta cells was heterogeneous; almost half of the cells had HVA current densities higher than the adult cells, and this was independent of the presence of T-type current. We detected the presence of α1G, α1H, and α1I subunits of LVA channels at all ages. The Cav 3.1 subunit (α1G) was the most expressed. T-type channel blockers mibefradil and TTA-A2 significantly inhibited insulin secretion at 5.6 mM glucose, which suggests a physiological role for T-type channels at basal glucose conditions. Both, nifedipine and TTA-A2, drastically decreased the beta-cell subpopulation that secretes more insulin, in both basal and stimulating glucose conditions. We conclude that changes in expression and activity of VGCC during the development play an important role in physiological maturation of beta cells. PMID:29556214

  14. Phenolic Compounds from Fermented Berry Beverages Modulated Gene and Protein Expression To Increase Insulin Secretion from Pancreatic β-Cells in Vitro.

    PubMed

    Johnson, Michelle H; de Mejia, Elvira Gonzalez

    2016-03-30

    Berries are a rich source of bioactive phenolic compounds that are able to bind and inhibit the enzyme dipeptidyl peptidase-IV (DPP-IV), a current target for type-2 diabetes therapy. The objectives were to determine the role of berry phenolic compounds to modulate incretin-cleaving DPP-IV and its substrate glucagon-like peptide-1 (GLP-1), insulin secretion from pancreatic β-cells, and genes and proteins involved in the insulin secretion pathway using cell culture. Anthocyanins (ANC) from 50% blueberry-50% blackberry (Blu-Bla) and 100% blackberry (Bla) fermented beverages at 50 μM cyanidin-3-glucoside equivalents increased (p < 0.05) glucose-stimulated insulin secretion from pancreatic β-cells (iNS-1E) both when applied directly and following simulated absorption through Caco-2 cells (by 233 and 100 μIU insulin/mL, respectively). ANC 50%Blu-Bla and ANC 100%Bla upregulated the gene for incretin hormone GLP-1 (fold-change 3.0 ± 1.4 and 2.0 ± 0.3, respectively) and genes in the insulin secretory pathway including insulin-like growth factor 1 receptor (iGF1R, 2.3 ± 0.6 and 1.6 ± 0.3, respectively), and increased (p < 0.05) the protein expression of insulin-like growth factor 2 (IGF-II), insulin-like growth factor binding proteins (IGFBP-2 and 3), and vascular endothelial growth factor (VEGF) in iNS-1E cells. Taken together, anthocyanins, predominantly delphinidin-3-arabinoside, from fermented berry beverages have the potential to modulate DPP-IV and its substrate GLP-1, to increase insulin secretion, and to upregulate expression of mRNA of insulin-receptor associated genes and proteins in pancreatic β-cells.

  15. Sleep duration and insulin resistance in individuals without type 2 diabetes: the PPP-Botnia study.

    PubMed

    Pyykkönen, Antti-Jussi; Isomaa, Bo; Pesonen, Anu-Katriina; Eriksson, Johan G; Groop, Leif; Tuomi, Tiinamaija; Räikkönen, Katri

    2014-08-01

    Both short and long sleep duration may increase risk of type 2 diabetes (diabetes). We studied if short and long sleep durations were associated with insulin resistance (IR) and insulin secretion in individuals without diabetes, and if the associations remained after we excluded individuals who reported more frequent and severe complaints of sleep apnea and insomnia. An oral glucose tolerance test (OGTT) was performed for 722 adults without diabetes. Indices of IR and insulin secretion were calculated. Sleep duration and complaints of sleep apnea and insomnia were self-reported. In comparison to average sleepers (6-9 h/night), short sleepers (< 6 h/night) had higher 120-min insulin and AUC glucose, and long sleepers (≥ 9 h/night) had higher fasting and 120-min insulin, 120-min glucose, and HOMAIR and lower Insulin Sensitivity Index. After adjusting for confounders and after excluding individuals who reported more frequent and severe complaints of sleep apnea and insomnia, long sleep duration remained significantly associated with IR and insulin secretion. Long but not short sleep duration is associated with IR and insulin secretion in individuals without diabetes whether or not accompanied by sleep complaints. Long sleepers may benefit from targeted preventions and interventions that aim at reducing risk of future diabetes.

  16. [Vitamin D and endocrine diseases].

    PubMed

    Schuch, Natielen Jacques; Garcia, Vivian Cristina; Martini, Ligia Araújo

    2009-07-01

    Vitamin D insufficiency/deficiency has been worldwide reported in all age groups in recent years. It has been considered a Public Health matter since decreased levels of vitamin D has been related to several chronic diseases, as type 2 diabetes mellitus (T2DM), obesity and hypertension. Glucose intolerance and insulin secretion has been observed during vitamin D deficiency, both in animals and humans resulting in T2DM. The supposed mechanism underlying these findings is presence of vitamin D receptor in several tissues and cells, including pancreatic beta-cells, adipocyte and muscle cells. In obese individuals, the impaired vitamin D endocrine system, characterized by high levels of PTH and 1,25(OH)(2)D(3) could induce a negative feedback for the hepatic synthesis of 25(OH)D and also contribute to a higher intracellular calcium, which in turn secrete less insulin and deteriorate insulin sensitivity. In hypertension, vitamin D could act on renin-angiotensin system and also in vascular function. Administration of 1,25(OH)(2)D(3) could decreases renin gene expression and inhibit vascular smooth muscle cell proliferation. However, prospective and intervention human studies that clearly demonstrates the benefits of vitamin D status adequacy in the prevention and treatment of endocrine metabolic diseases are lacking. Further research still necessary to assure the maximum benefit of vitamin D in such situations.

  17. Chromium supplementation improved post-stroke brain infarction and hyperglycemia.

    PubMed

    Chen, Wen-Ying; Mao, Frank Chiahung; Liu, Chia-Hsin; Kuan, Yu-Hsiang; Lai, Nai-Wei; Wu, Chih-Cheng; Chen, Chun-Jung

    2016-04-01

    Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia.

  18. Strong parent-of-origin effects in the association of KCNQ1 variants with type 2 diabetes in American Indians.

    PubMed

    Hanson, Robert L; Guo, Tingwei; Muller, Yunhua L; Fleming, Jamie; Knowler, William C; Kobes, Sayuko; Bogardus, Clifton; Baier, Leslie J

    2013-08-01

    Parent-of-origin effects were observed in an Icelandic population for several genetic variants associated with type 2 diabetes, including those in KLF14 (rs4731702), MOB2 (rs2334499), and KCNQ1 (rs2237892, rs231362). We analyzed parent-of-origin effects for these variants, along with two others in KCNQ1 identified in previous genome-wide association studies (rs2237895, rs2299620), in 7,351 Pima Indians from 4,549 nuclear families; 34% of participants had diabetes. In a subset of 287 normoglycemic individuals, acute insulin secretion was measured by an intravenous glucose tolerance test. Statistically significant (P < 0.05) parent-of-origin effects were seen for association with type 2 diabetes for all variants. The strongest effect was seen at rs2299620 in KCNQ1; the C allele was associated with increased diabetes when maternally derived (odds ratio [OR], 1.92; P = 4.1 × 10(-12)), but not when paternally derived (OR, 0.93; P = 0.47; P = 9.9 × 10(-6) for difference in maternal and paternal effects). A maternally derived C allele also was associated with a 28% decrease in insulin secretion (P = 0.002). This study confirms parent-of-origin effects in the association with type 2 diabetes for variants in KLF14, MOB2, and KCNQ1. In Pima Indians, the effect of maternally derived KCNQ1 variants appears to be mediated through decreased insulin secretion and is particularly strong, accounting for 4% of the variance in liability to diabetes.

  19. Effects of 12 weeks' treatment with a proton pump inhibitor on insulin secretion, glucose metabolism and markers of cardiovascular risk in patients with type 2 diabetes: a randomised double-blind prospective placebo-controlled study.

    PubMed

    Hove, K D; Brøns, C; Færch, K; Lund, S S; Petersen, J S; Karlsen, A E; Rossing, P; Rehfeld, J F; Vaag, A

    2013-01-01

    Recent studies suggest that proton pump inhibitor treatment may increase insulin secretion and improve glucose metabolism in type 2 diabetes. In a randomised double-blind prospective placebo-controlled 2 × 2 factorial study, we examined the effect of esomeprazole on insulin secretion, HbA(1c) and cardiovascular risk factors in type 2 diabetes. Forty-one patients with type 2 diabetes using dietary control or oral glucose-lowering treatment were randomised to receive add-on esomeprazole 40 mg (n = 20) or placebo (n = 21) for 12 weeks. Randomisation was carried out prior to inclusion on the basis of a computer-generated random-number list. The allocation sequence was concealed in sealed envelopes from the researcher enrolling and assessing participants. The study was undertaken at Steno Diabetes Center, Gentofte, Denmark. The primary outcome was change in AUC for insulin levels during a meal test. Secondary outcomes were the levels of HbA(1c) and biochemical markers of cardiovascular risk, including lipids, coagulation factors, inflammation markers, markers of endothelial function and 24 h ambulatory BP measurements. Forty-one participants were analysed. In the esomeprazole-treated group the AUC for insulin did not change (before vs after treatment: 28,049 ± 17,659 vs 27,270 ± 32,004 pmol/l × min (p = 0.838). In the placebo group AUC for insulin decreased from 27,392 ± 14,348 pmol/l × min to 22,938 ± 11,936 pmol/l × min (p = 0.002). Esomeprazole treatment (n = 20) caused a ninefold increase in the AUC for gastrin. HbA(1c) increased from 7.0 ± 0.6% (53 ± 5 mmol/mol) to 7.3 ± 0.8% (56 ± 6 mmol/mol) in the esomeprazole-treated group and from 7.0 ± 0.6% (53 ± 5 mmol/mol) to 7.4 ± 0.8% (57 ± 6 mmol/mol) in the placebo group (n = 21) (p for difference in change >0.05). Except for BP, there were no differences between the groups in the markers of cardiovascular risk (p > 0.05). Monitoring of 24 h ambulatory BP showed a significant decrease in daytime systolic BP, daytime diastolic BP and 24 h diastolic BP in the placebo group (p < 0.05). No change in BP was seen in the patients treated with esomeprazole. Treatment with esomeprazole over 12 weeks did not improve insulin secretion, glycaemic control or cardiovascular disease biomarkers in patients with type 2 diabetes.

  20. Physical and mathematical aspects of blood-glucose- and insulin-level kinetics in patients with coronary heart disease and high risk of its development

    NASA Astrophysics Data System (ADS)

    Denisova, Tatyana P.; Malinova, Lidia I.; Malinov, Igor A.

    2001-05-01

    The intravenous glucose tolerance test was performed to estimate the kinetics of blood glucose and insulin levels. Glucose was injected in individual standardized dose (0.5 g. per 1 kg of body weight). Three groups of patients were checked up: 1) patients with coronary heart disease verified by cicatricial alterations in myocardium found by electrocardiographic and echocardiographic methods; 2) children of patients with transmural myocardial infarction practically healthy at the moment of study; 3) persons practically healthy at the moment of study without any indications on cardiovascular diseases and non-insulin dependent diabetes mellitus among all ancestors and relatives who frequently were long-livers. Last groups didn't differ by age and sex. Peripheral blood glucose level, immunoreactive and free insulin (tested by muscular tissue) were studied just before glucose injection (on an empty stomach) and 4 times after it. The received discrete data were approximated by high degree polynomials, the estimation of blood glucose and insulin time functions symmetric was performed. The deceleration of degradation of insulin circulating in peripheral blood and the time decrease of second phase of insulin secretion were analytically established. This fact proves the complicated mechanism of insulin alterations in atherosclerosis, consisting not only of insulin resistance of peripheral tissues but of decrease of plastic processes in insulin- generating cells.

  1. mRNA destabilization improves glycemic responsiveness of transcriptionally regulated hepatic insulin gene therapy in vitro and in vivo.

    PubMed

    Thulé, Peter M; Lin, Yulin; Jia, Dingwu; Olson, Darin E; Tang, Shiue-Cheng; Sambanis, Athanassios

    2017-03-01

    Hepatic insulin gene therapy (HIGT) employing a glucose and insulin sensitive promoter to direct insulin transcription can lower blood sugars within 2 h of an intraperitoneal glucose challenge. However, post-challenge blood sugars frequently decline to below baseline. We hypothesize that this 'over-shoot' hypoglycemia results from sustained translation of long-lived transgene message, and that reducing pro-insulin message half-life will ameliorate post-challenge hypoglycemia. We compared pro-insulin message content and insulin secretion from primary rat hepatocytes expressing insulin from either a standard construct (2xfur), or a construct producing a destabilized pro-insulin message (InsTail), following exposure to stimulating or inhibitory conditions. Hepatocytes transduced with a 2xfur construct accumulated pro-insulin message, and exhibited increased insulin secretion, under conditions that both inhibit or stimulate transcription. By contrast, pro-insulin message content remained stable in InsTail expressing cells, and insulin secretion increased less than 2xfur during prolonged stimulation. During transitions from stimulatory to inhibitory conditions, or vice versa, amounts of pro-insulin message changed more rapidly in InsTail expressing cells than 2xfur expressing cells. Importantly, insulin secretion increased during the transition from stimulation to inhibition in 2xfur expressing cells, although it remained unchanged in InsTail expressing cells. Use of the InsTail destabilized insulin message tended to more rapidly reduce glucose induced glycemic excursions, and limit post-load hypoglycemia in STZ-diabetic mice in vivo. The data obtained in the present study suggest that combining transcriptional and post-transcriptional regulatory strategies may reduce undesirable glycemic excursion in models of HIGT. Copyright © 2017 John Wiley & Sons, Ltd.

  2. HNF1α defect influences post-prandial lipid regulation

    PubMed Central

    St-Jean, Matthieu; Boudreau, François; Carpentier, André C.

    2017-01-01

    Purpose Hepatocyte nuclear factor 1 alpha (HNF1α) defects cause Mature Onset Diabetes of the Young type 3 (MODY3), characterized by defects in beta-cell insulin secretion. However, HNF1α is involved in many other metabolic pathways with relevance for monogenic or polygenic type 2 diabetes. We aimed to investigate gut hormones, lipids, and insulin regulation in response to a meal test in HNF1α defect carriers (MODY3) compared to non-diabetic subjects (controls) and type 2 diabetes (T2D). Methods We administered a standardized liquid meal to each participant. Over 6 hours, we measured post-meal responses of insulin regulation (blood glucose, c-peptide, insulin), gut hormones (ghrelin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide-1) and lipids (non-esterified fatty acids [NEFA] and triglycerides). Results We found that MODY3 participants had lower insulin secretion indices than controls and T2D participants, showing the expected β-cell defect. MODY3 had similar glycated hemoglobin levels (HbA1c median [IQR]: 6.5 [5.6–7.6]%) compared to T2D (median: 6.6 [6.2–6.9]%; P<0.05). MODY3 had greater insulin sensitivity (Matsuda index: 71.9 [29.6; 125.5]) than T2D (3.2 [4.0; 6.0]; P<0.05). MODY3 experienced a larger decrease in the ratio of NEFA to insulin (NEFA 30–0 / insulin 30–0: -39 [-78; -30] x104) in the early post-prandial period (0–30 minutes) compared to controls and to T2D (-2.0 [-0.6; -6.4] x104; P<0.05). MODY3 had lower fasting (0.66 [0.46; 1.2] mM) and post-meal triglycerides levels compared to T2D (fasting: 2.3 [1.7; 2.7] mM; P<0.05). We did not detect significant post-meal differences in ghrelin and incretins between MODY3 and other groups. Conclusion In response to a standard meal test, MODY3 showed greater early post-prandial NEFA diminution in response to relatively low early insulin secretion, and they maintained very low post-prandial triglycerides levels. PMID:28493909

  3. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    PubMed

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Characterization of Erg K+ Channels in α- and β-Cells of Mouse and Human Islets*

    PubMed Central

    Hardy, Alexandre B.; Fox, Jocelyn E. Manning; Giglou, Pejman Raeisi; Wijesekara, Nadeeja; Bhattacharjee, Alpana; Sultan, Sobia; Gyulkhandanyan, Armen V.; Gaisano, Herbert Y.; MacDonald, Patrick E.; Wheeler, Michael B.

    2009-01-01

    Voltage-gated eag-related gene (Erg) K+ channels regulate the electrical activity of many cell types. Data regarding Erg channel expression and function in electrically excitable glucagon and insulin producing cells of the pancreas is limited. In the present study Erg1 mRNA and protein were shown to be highly expressed in human and mouse islets and in α-TC6 and Min6 cells α- and β-cell lines, respectively. Whole cell patch clamp recordings demonstrated the functional expression of Erg1 in α- and β-cells, with rBeKm1, an Erg1 antagonist, blocking inward tail currents elicited by a double pulse protocol. Additionally, a small interference RNA approach targeting the kcnh2 gene (Erg1) induced a significant decrease of Erg1 inward tail current in Min6 cells. To investigate further the role of Erg channels in mouse and human islets, ratiometric Fura-2 AM Ca2+-imaging experiments were performed on isolated α- and β-cells. Blocking Erg channels with rBeKm1 induced a transient cytoplasmic Ca2+ increase in both α- and β-cells. This resulted in an increased glucose-dependent insulin secretion, but conversely impaired glucagon secretion under low glucose conditions. Together, these data present Erg1 channels as new mediators of α- and β-cell repolarization. However, antagonism of Erg1 has divergent effects in these cells; to augment glucose-dependent insulin secretion and inhibit low glucose stimulated glucagon secretion. PMID:19690348

  5. The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation.

    PubMed Central

    Stein, D T; Stevenson, B E; Chester, M W; Basit, M; Daniels, M B; Turley, S D; McGarry, J D

    1997-01-01

    Lowering of the elevated plasma FFA concentration in 18- 24-h fasted rats with nicotinic acid (NA) caused complete ablation of subsequent glucose-stimulated insulin secretion (GSIS). Although the effect of NA was reversed when the fasting level of total FFA was maintained by coinfusion of soybean oil or lard oil (plus heparin), the more saturated animal fat proved to be far more potent in enhancing GSIS. We therefore examined the influence of individual fatty acids on insulin secretion in the perfused rat pancreas. When present in the perfusion fluid at 0.5 mM (in the context of 1% albumin), the fold stimulation of insulin release from the fasted pancreas in response to 12.5 mM glucose was as follows: octanoate (C8:0), 3.4; linoleate (C18:2 cis/cis), 5.3; oleate (C18:1 cis), 9.4; palmitate (C16:0), 16. 2; and stearate (C18:0), 21.0. The equivalent value for palmitoleate (C16:1 cis) was 3.1. A cis--> trans switch of the double bond in the C16:1 and C18:1 fatty acids had only a modest, if any, impact on their potency. A similar profile emerged with regard to basal insulin secretion (3 mM glucose). When a subset of these fatty acids was tested in pancreases from fed animals, the same rank order of effectiveness at both basal and stimulatory levels of glucose was seen. The findings reaffirm the essentiality of an elevated plasma FFA concentration for GSIS in the fasted rat. They also show, however, that the insulinotropic effect of individual fatty acids spans a remarkably broad range, increasing and decreasing dramatically with chain length and degree of unsaturation, respectively. Thus, for any given level of glucose, insulin secretion will be influenced greatly not only by the combined concentration of all circulating (unbound) FFA, but also by the makeup of this FFA pool. Both factors will likely be important considerations in understanding the complex interplay between the nature of dietary fat and whole body insulin, glucose, and lipid dynamics. PMID:9218517

  6. Fuel-induced amplification of insulin secretion in mouse pancreatic islets exposed to a high sulfonylurea concentration: role of the NADPH/NADP+ ratio.

    PubMed

    Panten, U; Rustenbeck, I

    2008-01-01

    The aim of this study was to examine whether the cytosolic NADPH/NADP+ ratio of beta cells serves as an amplifying signal in fuel-induced insulin secretion and whether such a function is mediated by cytosolic alpha-ketoglutarate. Pancreatic islets and islet cells were isolated from albino mice by collagenase digestion. Insulin secretion of incubated or perifused islets was measured by ELISA. The NADPH and NADP+ content of incubated islets was determined by enzymatic cycling. The cytosolic Ca2+ concentration ([Ca2+]c) in islets was measured by microfluorimetry and the activity of ATP-sensitive K+ channels in islet cells by patch-clamping. Both 30 mmol/l glucose and 10 mmol/l alpha-ketoisocaproate stimulated insulin secretion and elevated the NADPH/NADP+ ratio of islets preincubated in the absence of fuel. The increase in the NADPH/NADP+ ratio was abolished in the presence of 2.7 micromol/l glipizide (closing all ATP-sensitive K+ channels). However, alpha-ketoisocaproate, but not glucose, still stimulated insulin secretion. That glipizide did not inhibit alpha-ketoisocaproate-induced insulin secretion was not the result of elevated [Ca2+]c, as glucose caused a more marked [Ca2+]c increase. Insulin release triggered by glipizide alone was moderately amplified by dimethyl alpha-ketoglutarate (which is cleaved to produce cytosolic alpha-ketoglutarate), but there was no indication of a signal function of cytosolic alpha-ketoglutarate. The results strongly suggest that the NADPH/NADP+ ratio in the beta cell cytosol does not serve as an amplifying signal in fuel-induced insulin release. The study supports the view that amplification results from the intramitochondrial production of citrate by citrate synthase and from the associated export of citrate into the cytosol.

  7. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: role of NADH and consequences for insulin secretion

    PubMed Central

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J. S.; Gray, Joshua P.

    2011-01-01

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4-7 mM) to stimulatory (8-16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H2O2), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H2O2 inhibit insulin secretion. Menadione, which produces H2O2 via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H2O2 production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1-10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H2O2 formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H2O2 and menadione on insulin secretion. PMID:22115979

  8. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: role of NADH and consequences for insulin secretion.

    PubMed

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J S; Gray, Joshua P

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4-7mM) to stimulatory (8-16mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H(2)O(2)), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H(2)O(2) inhibit insulin secretion. Menadione, which produces H(2)O(2) via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H(2)O(2) production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1-10μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H(2)O(2) formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H(2)O(2) and menadione on insulin secretion. Published by Elsevier Inc.

  9. The origins of western obesity: a role for animal protein?

    PubMed

    McCarty, M F

    2000-03-01

    A reduced propensity to oxidize fat, as indicated by a relatively high fasting respiratory quotient, is a major risk factor for weight gain. Increased insulin secretion works in various ways to impede fat oxidation and promote fat storage. The substantial 'spontaneous' weight loss often seen with very-low-fat dietary regimens may reflect not only a reduced rate of fat ingestion, but also an improved insulin sensitivity of skeletal muscle that down-regulates insulin secretion. Reduction of diurnal insulin secretion may also play a role in the fat loss often achieved with exercise training, low-glycemic-index diets, supplementation with soluble fiber or chromium, low-carbohydrate regimens, and biguanide therapy. The exceptional leanness of vegan cultures may reflect an additional factor - the absence of animal protein. Although dietary protein by itself provokes relatively little insulin release, it can markedly potentiate the insulin response to co-ingested carbohydrate; Western meals typically unite starchy foods with an animal protein-based main course. Thus, postprandial insulin secretion may be reduced by either avoiding animal protein, or segregating it in low-carbohydrate meals; the latter practice is a feature of fad diets stressing 'food combining'. Vegan diets tend to be relatively low in protein, legume protein may be slowly absorbed, and, as compared to animal protein, isolated soy protein provokes a greater release of glucagon, an enhancer of fat oxidation. The low insulin response to rice may mirror its low protein content. Minimizing diurnal insulin secretion in the context of a low fat intake may represent an effective strategy for achieving and maintaining leanness. Copyright 2000 Harcourt Publishers Ltd.

  10. Characterisation of insulin-producing cells differentiated from tonsil derived mesenchymal stem cells.

    PubMed

    Kim, So-Yeon; Kim, Ye-Ryung; Park, Woo-Jae; Kim, Han Su; Jung, Sung-Chul; Woo, So-Youn; Jo, Inho; Ryu, Kyung-Ha; Park, Joo-Won

    2015-01-01

    Tonsil-derived (T-) mesenchymal stem cells (MSCs) display mutilineage differentiation potential and self-renewal capacity and have potential as a banking source. Diabetes mellitus is a prevalent disease in modern society, and the transplantation of pancreatic progenitor cells or various stem cell-derived insulin-secreting cells has been suggested as a novel therapy for diabetes. The potential of T-MSCs to trans-differentiate into pancreatic progenitor cells or insulin-secreting cells has not yet been investigated. We examined the potential of human T-MSCs to trans-differentiate into pancreatic islet cells using two different methods based on β-mercaptoethanol and insulin-transferin-selenium, respectively. First, we compared the efficacy of the two methods for inducing differentiation into insulin-producing cells. We demonstrated that the insulin-transferin-selenium method is more efficient for inducing differentiation into insulin-secreting cells regardless of the source of the MSCs. Second, we compared the differentiation potential of two different MSC types: T-MSCs and adipose-derived MSCs (A-MSCs). T-MSCs had a differentiation capacity similar to that of A-MSCs and were capable of secreting insulin in response to glucose concentration. Islet-like clusters differentiated from T-MSCs had lower synaptotagmin-3, -5, -7, and -8 levels, and consequently lower secreted insulin levels than cells differentiated from A-MSCs. These results imply that T-MSCs can differentiate into functional pancreatic islet-like cells and could provide a novel, alternative cell therapy for diabetes mellitus. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagino, Ko; Yokozawa, Junji; Sasaki, Yu

    Highlights: Black-Right-Pointing-Pointer Insulin secretion was increased during the OGTT or IVGTT in mesenteric lymph duct-ligated rats. Black-Right-Pointing-Pointer Proliferation of islet {beta}-cells was upregulated in lymph duct-ligated rats. Black-Right-Pointing-Pointer Mesenteric lymph duct flow has a role in glucose metabolism. -- Abstract: Background and aims: It has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet {beta}-cells in rats. Methods: Male Sprague-Dawley rats (10 weeks old) were divided into two groups: one underwent ligationmore » of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of {beta}-cells was assessed immunohistochemically using antibodies against insulin and Ki-67. Results: During the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2 min (more than 1.4-fold; p < 0.05). Immunohistochemistry showed that the ratios of {beta}-cell area/acinar cell area and {beta}-cell area/islet area, and also {beta}-cell proliferation, were significantly higher in the ligation group than in the sham group (p < 0.05, p < 0.01 and p < 0.01, respectively). The insulin content per unit wet weight of pancreas was also significantly increased in the ligation group (p < 0.05). Conclusions: In rats with ligation of the mesenteric lymph duct, insulin secretion during the OGTT or IVGTT was higher, and the insulin content and {beta}-cell proliferation in the pancreas were also increased. Our data show that mesenteric lymph duct flow has a role in glucose metabolism.« less

  12. Subjective sleep complaints are associated with insulin resistance in individuals without diabetes: the PPP-Botnia Study.

    PubMed

    Pyykkönen, Antti-Jussi; Isomaa, Bo; Pesonen, Anu-Katriina; Eriksson, Johan G; Groop, Leif; Tuomi, Tiinamaija; Räikkönen, Katri

    2012-11-01

    Sleep disorders and subjective sleep complaints have been associated with increased risk of type 2 diabetes. The evidence with respect to insulin resistance (IR) and insulin secretion in individuals without type 2 diabetes has been scarce and elusive. We examined if subjective sleep complaints and their co-occurrence were associated with IR and insulin secretion in adult women and men without diabetes. Women (n = 442) and men (n = 354) 18-75 years of age without type 2 diabetes underwent an oral glucose tolerance test (OGTT), with insulin and glucose measured at fasting and at 30 and 120 min. Complaints related to sleep apnea, insomnia, and daytime sleepiness were self-rated with the Basic Nordic Sleep Questionnaire. In comparison with individuals with no or minor sleep complaints, those with more frequent complaints of sleep apnea, insomnia, and daytime sleepiness were more insulin resistant, as evidenced by higher fasting insulin concentrations and insulin and glucose responses to OGTT, and more frequently had high homeostasis model assessment of IR and low insulin sensitivity index values. The likelihood of being insulin resistant increased significantly and linearly according to the accumulation of co-occurring sleep complaints. These associations changed only a little when adjusted for mediating and confounding factors and for depressive symptoms. Sleep complaints were not associated with indices of deficiency in insulin secretion. Subjective sleep complaints were associated with IR. The likelihood of being insulin resistant increased according to accumulation of co-occurring sleep complaints. Sleep complaints were not associated with deficiency in insulin secretion.

  13. Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men.

    PubMed

    Brøns, Charlotte; Jensen, Christine B; Storgaard, Heidi; Hiscock, Natalie J; White, Andrew; Appel, Julie S; Jacobsen, Stine; Nilsson, Emma; Larsen, Claus M; Astrup, Arne; Quistorff, Bjørn; Vaag, Allan

    2009-05-15

    A high-fat, high-calorie diet is associated with obesity and type 2 diabetes. However, the relative contribution of metabolic defects to the development of hyperglycaemia and type 2 diabetes is controversial. Accumulation of excess fat in muscle and adipose tissue in insulin resistance and type 2 diabetes may be linked with defective mitochondrial oxidative phosphorylation. The aim of the current study was to investigate acute effects of short-term fat overfeeding on glucose and insulin metabolism in young men. We studied the effects of 5 days' high-fat (60% energy) overfeeding (+50%) versus a control diet on hepatic and peripheral insulin action by a hyperinsulinaemic euglycaemic clamp, muscle mitochondrial function by (31)P magnetic resonance spectroscopy, and gene expression by qrt-PCR and microarray in 26 young men. Hepatic glucose production and fasting glucose levels increased significantly in response to overfeeding. However, peripheral insulin action, muscle mitochondrial function, and general and specific oxidative phosphorylation gene expression were unaffected by high-fat feeding. Insulin secretion increased appropriately to compensate for hepatic, and not for peripheral, insulin resistance. High-fat feeding increased fasting levels of plasma adiponectin, leptin and gastric inhibitory peptide (GIP). High-fat overfeeding increases fasting glucose levels due to increased hepatic glucose production. The increased insulin secretion may compensate for hepatic insulin resistance possibly mediated by elevated GIP secretion. Increased insulin secretion precedes the development of peripheral insulin resistance, mitochondrial dysfunction and obesity in response to overfeeding, suggesting a role for insulin per se as well GIP, in the development of peripheral insulin resistance and obesity.

  14. Insulin/phosphoinositide 3-kinase pathway accelerates the glucose-induced first-phase insulin secretion through TrpV2 recruitment in pancreatic β-cells.

    PubMed

    Aoyagi, Kyota; Ohara-Imaizumi, Mica; Nishiwaki, Chiyono; Nakamichi, Yoko; Nagamatsu, Shinya

    2010-12-01

    Functional insulin receptor and its downstream effector PI3K (phosphoinositide 3-kinase) have been identified in pancreatic β-cells, but their involvement in the regulation of insulin secretion from β-cells remains unclear. In the present study, we investigated the physiological role of insulin and PI3K in glucose-induced biphasic insulin exocytosis in primary cultured β-cells and insulinoma Min6 cells using total internal reflection fluorescent microscopy. The pretreatment of β-cells with insulin induced the rapid increase in intracellular Ca2+ levels and accelerated the exocytotic response without affecting the second-phase insulin secretion. The inhibition of PI3K not only abolished the insulin-induced rapid development of the exocytotic response, but also potentiated the second-phase insulin secretion. The rapid development of Ca2+ and accelerated exocytotic response induced by insulin were accompanied by the translocation of the Ca2+-permeable channel TrpV2 (transient receptor potential V2) in a PI3K-dependent manner. Inhibition of TrpV2 by the selective blocker tranilast, or the expression of shRNA (short-hairpin RNA) against TrpV2 suppressed the effect of insulin in the first phase, but the second phase was not affected. Thus our results demonstrate that insulin treatment induced the acceleration of the exocytotic response during the glucose-induced first-phase response by the insertion of TrpV2 into the plasma membrane in a PI3K-dependent manner.

  15. Comparison of the physiological relevance of systemic vs. portal insulin delivery to evaluate whole body glucose flux during an insulin clamp

    PubMed Central

    Farmer, Tiffany D.; Jenkins, Erin C.; O'Brien, Tracy P.; McCoy, Gregory A.; Havlik, Allison E.; Nass, Erik R.; Nicholson, Wendell E.; Printz, Richard L.

    2014-01-01

    To understand the underlying pathology of metabolic diseases, such as diabetes, an accurate determination of whole body glucose flux needs to be made by a method that maintains key physiological features. One such feature is a positive differential in insulin concentration between the portal venous and systemic arterial circulation (P/S-IG). P/S-IG during the determination of the relative contribution of liver and extra-liver tissues/organs to whole body glucose flux during an insulin clamp with either systemic (SID) or portal (PID) insulin delivery was examined with insulin infusion rates of 1, 2, and 5 mU·kg−1·min−1 under either euglycemic or hyperglycemic conditions in 6-h-fasted conscious normal rats. A P/S-IG was initially determined with endogenous insulin secretion to exist with a value of 2.07. During an insulin clamp, while inhibiting endogenous insulin secretion by somatostatin, P/S-IG remained at 2.2 with PID, whereas, P/S-IG disappeared completely with SID, which exhibited higher arterial and lower portal insulin levels compared with PID. Consequently, glucose disappearance rates and muscle glycogen synthetic rates were higher, but suppression of endogenous glucose production and liver glycogen synthetic rates were lower with SID compared with PID. When the insulin clamp was performed with SID at 2 and 5 mU·kg−1·min−1 without managing endogenous insulin secretion under euglycemic but not hyperglycemic conditions, endogenous insulin secretion was completely suppressed with SID, and the P/S-IG disappeared. Thus, compared with PID, an insulin clamp with SID underestimates the contribution of liver in response to insulin to whole body glucose flux. PMID:25516552

  16. Effect of bombesin on gastric secretion and motility in the cat.

    PubMed

    Vagne, M; Gelin, M L; McDonald, T J; Chayvialle, J A; Minaire, Y

    1982-01-01

    The effect of bombesin on acid and pepsin secretion and antral motility was compared to that of pentagastrin in conscious cats. Bombesin stimulated acid secretion to 65% of the maximal response to pentagastrin but induced a stronger pepsin secretion than any dose of pentagastrin. As to antral motility, bombesin first induced an effect comparable to that of pentagastrin, with an increase of low-amplitude and a decrease of high-amplitude contractions. After about 30 min of continuous infusion, the effect of bombesin changed with a return to basal frequency for the low-amplitude contractions and an increase of high-amplitude contractions. This effect was not observed with pentagastrin nor cholecystokinin and was not explained by the variations of plasma insulin concentration.

  17. Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells

    PubMed Central

    Bardy, G; Virsolvy, A; Quignard, J F; Ravier, M A; Bertrand, G; Dalle, S; Cros, G; Magous, R; Richard, S; Oiry, C

    2013-01-01

    Background and Purpose Quercetin is a natural polyphenolic flavonoid that displays anti-diabetic properties in vivo. Its mechanism of action on insulin-secreting beta cells is poorly documented. In this work, we have analysed the effects of quercetin both on insulin secretion and on the intracellular calcium concentration ([Ca2+]i) in beta cells, in the absence of any co-stimulating factor. Experimental Approach Experiments were performed on both INS-1 cell line and rat isolated pancreatic islets. Insulin release was quantified by the homogeneous time-resolved fluorescence method. Variations in [Ca2+]i were measured using the ratiometric fluorescent Ca2+ indicator Fura-2. Ca2+ channel currents were recorded with the whole-cell patch-clamp technique. Key Results Quercetin concentration-dependently increased insulin secretion and elevated [Ca2+]i. These effects were not modified by the SERCA inhibitor thapsigargin (1 μmol·L−1), but were nearly abolished by the L-type Ca2+ channel antagonist nifedipine (1 μmol·L−1). Similar to the L-type Ca2+ channel agonist Bay K 8644, quercetin enhanced the L-type Ca2+ current by shifting its voltage-dependent activation towards negative potentials, leading to the increase in [Ca2+]i and insulin secretion. The effects of quercetin were not inhibited in the presence of a maximally active concentration of Bay K 8644 (1 μmol·L−1), with the two drugs having cumulative effects on [Ca2+]i. Conclusions and Implications Taken together, our results show that quercetin stimulates insulin secretion by increasing Ca2+ influx through an interaction with L-type Ca2+ channels at a site different from that of Bay K 8644. These data contribute to a better understanding of quercetin's mechanism of action on insulin secretion. PMID:23530660

  18. Enhancement of glucose uptake in skeletal muscle L6 cells and insulin secretion in pancreatic hamster-insulinoma-transfected cells by application of non-thermal plasma jet

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Kaushik, Nagendra K.; Park, Gyungsoon; Choi, Eun H.; Uhm, Han S.

    2013-11-01

    Type-II diabetes Mellitus is characterized by defects in insulin action on peripheral tissues, such as skeletal muscle, adipose tissue, and liver and pancreatic beta cells. Since the skeletal muscle accounts for approximately 75% of insulin-stimulated glucose-uptake in our body, impaired insulin secretion from defected beta cell plays a major role in the afflicted glucose homoeostasis. It was shown that the intracellular reactive oxygen species and nitric oxide level was increased by non-thermal-plasma treatment in ambient air. These increased intracellular reactive species may enhance glucose uptake and insulin secretion through the activation of intracellular calcium (Ca+) and cAMP production.

  19. The H+/K+ ATPase Inhibitor SCH-28080 Inhibits Insulin Secretion and Induces Cell Death in INS-1E Rat Insulinoma Cells.

    PubMed

    Jakab, Martin; Ketterl, Nina; Fürst, Johannes; Beyreis, Marlena; Kittl, Michael; Kiesslich, Tobias; Hauser-Kronberger, Cornelia; Gaisberger, Martin; Ritter, Markus

    2017-01-01

    Glucose-stimulated insulin secretion (GSIS) of pancreatic β-cells involves glucose uptake and metabolism, closure of KATP channels and depolarization of the cell membrane potential (Vmem), activation of voltage-activated Ca2+ currents (ICav) and influx of Ca2+, which eventually triggers hormone exocytosis. Beside this classical pathway, KATP-independent mechanisms such as changes in intracellular pH (pHi) or cell volume, which also affect β-cell viability, can elicit or modify insulin release. In β-cells the regulation of pHi is mainly accomplished by Na+/H+ exchangers (NHEs). To investigate if other proton extrusion mechanisms than NHEs are involved in pH regulation, we tested for the presence of the non-gastric H+/K+ ATPase in rat insulinoma cells and assessed effects of the H+/K+ ATPase inhibitor SCH-28080 on insulin secretion, cell viability and apoptosis. In INS-1E cell cultures, H+/K+ ATPase gene and protein expression was analyzed by reverse transcription PCR and Western blotting. Intracellular pH (pHi) recovery after acute acidic load was measured by NH4Cl prepulsing using BCECF. Insulin secretion was determined by ELISA from the cell culture supernatant. Vmem, K+ and Ca2+ currents were recorded using patch clamp. Overall cell responses were determined using resazurin (viability) and cytotoxicity assays. The mean cell volume (MCV), cell granularity (side-scatter; SSC), phosphatidylserine (PS) exposure, cell membrane integrity, caspase activity and the mitochondrial membrane potential (ΔΨm) were measured by flow cytometry. We found that the α-subunit of the non-gastric H+/K+ ATPase (HKα2) is expressed on mRNA and protein level. However, compared to rat colon tissue, in INS-1E cells mRNA abundance was very low. In NH4Cl prepulsing experiments no K+-dependent pHi recovery was observed under Na+-free extracellular conditions. Nonetheless within 1 h, 20 µM SCH-28080 inhibited GSIS by ∼50%, while basal release was unaffected. The L-type ICav blocker nifedipine caused a full inhibition of GSIS at 10 and 20 µM. At 20 µM, SCH-28080 inhibited ICav comparable to 20 µM nifedipine and in addition augmented IKATP recorded at -60 mV and hyperpolarized Vmem by ∼15 mV. Cell viability 2 and 24 h post treatment with SCH-28080 was dose-dependently inhibited with IC50 values of 22.9 µM and 15.3 µM, respectively. At 20 µM the percentages of Annexin-V+, caspase+ and propidium iodide+ cells were significantly increased after 24 and 48 h. Concurrently, the MCV was significantly decreased (apoptotic volume decrease, AVD) and the SSC signal was increased. At concentrations >40-50 µM, SCH-28080 became progressively cytotoxic causing a steep increase in necrotic cells already 2 h post treatment and a breakdown of ΔΨm within 4 h under 50 and 100 µM while 10 and 20 µM had no effect on ΔΨm within 24 h. We demonstrate expression of HKα2 in rat INS-1E cells. However, the pump is apparently non-functional under the given conditions. Nonetheless the H+/K+ ATPase blocker SCH-28080 inhibits insulin secretion and induces cell death. Importantly, we show that SCH-28080 inhibits ICav - and activates KATP channels identifying them as novel "off-targets" of the inhibitor, causing hyperpolarization of Vmem and inhibition of insulin secretion. © 2017 The Author(s). Published by S. Karger AG, Basel.

  20. Review of methods for measuring β-cell function: Design considerations from the Restoring Insulin Secretion (RISE) Consortium.

    PubMed

    Hannon, Tamara S; Kahn, Steven E; Utzschneider, Kristina M; Buchanan, Thomas A; Nadeau, Kristen J; Zeitler, Philip S; Ehrmann, David A; Arslanian, Silva A; Caprio, Sonia; Edelstein, Sharon L; Savage, Peter J; Mather, Kieren J

    2018-01-01

    The Restoring Insulin Secretion (RISE) study was initiated to evaluate interventions to slow or reverse the progression of β-cell failure in type 2 diabetes (T2D). To design the RISE study, we undertook an evaluation of methods for measurement of β-cell function and changes in β-cell function in response to interventions. In the present paper, we review approaches for measurement of β-cell function, focusing on methodologic and feasibility considerations. Methodologic considerations included: (1) the utility of each technique for evaluating key aspects of β-cell function (first- and second-phase insulin secretion, maximum insulin secretion, glucose sensitivity, incretin effects) and (2) tactics for incorporating a measurement of insulin sensitivity in order to adjust insulin secretion measures for insulin sensitivity appropriately. Of particular concern were the capacity to measure β-cell function accurately in those with poor function, as is seen in established T2D, and the capacity of each method for demonstrating treatment-induced changes in β-cell function. Feasibility considerations included: staff burden, including time and required methodological expertise; participant burden, including time and number of study visits; and ease of standardizing methods across a multicentre consortium. After this evaluation, we selected a 2-day measurement procedure, combining a 3-hour 75-g oral glucose tolerance test and a 2-stage hyperglycaemic clamp procedure, augmented with arginine. © 2017 John Wiley & Sons Ltd.

  1. Three-component homeostasis control

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Hong, Hyunsuk; Jo, Junghyo

    2014-03-01

    Two reciprocal components seem to be sufficient to maintain a control variable constant. However, pancreatic islets adapt three components to control glucose homeostasis. They are α (secreting glucagon), β (insulin), and δ (somatostatin) cells. Glucagon and insulin are the reciprocal hormones for increasing and decreasing blood glucose levels, while the role of somatostatin is unknown. However, it has been known how each hormone affects other cell types. Based on the pulsatile hormone secretion and the cellular interactions, this system can be described as coupled oscillators. In particular, we used the Landau-Stuart model to consider both amplitudes and phases of hormone oscillations. We found that the presence of the third component, δ cell, was effective to resist under glucose perturbations, and to quickly return to the normal glucose level once perturbed. Our analysis suggested that three components are necessary for advanced homeostasis control.

  2. Enhanced insulin secretion responsiveness and islet adrenergic desensitization after chronic norepinephrine suppression is discontinued in fetal sheep

    PubMed Central

    Chen, Xiaochuan; Green, Alice S.; Macko, Antoni R.; Yates, Dustin T.; Kelly, Amy C.

    2013-01-01

    Intrauterine growth-restricted (IUGR) fetuses experience prolonged hypoxemia, hypoglycemia, and elevated norepinephrine (NE) concentrations, resulting in hypoinsulinemia and β-cell dysfunction. Previously, we showed that acute adrenergic blockade revealed enhanced insulin secretion responsiveness in the IUGR fetus. To determine whether chronic exposure to NE alone enhances β-cell responsiveness afterward, we continuously infused NE into fetal sheep for 7 days and, after terminating the infusion, evaluated glucose-stimulated insulin secretion (GSIS) and glucose-potentiated arginine-induced insulin secretion (GPAIS). During treatment, NE-infused fetuses had greater (P < 0.05) plasma NE concentrations and exhibited hyperglycemia (P < 0.01) and hypoinsulinemia (P < 0.01) compared with controls. GSIS during the NE infusion was also reduced (P < 0.05) compared with pretreatment values. GSIS and GPAIS were approximately fourfold greater (P < 0.01) in NE fetuses 3 h after the 7 days that NE infusion was discontinued compared with age-matched controls or pretreatment GSIS and GPAIS values of NE fetuses. In isolated pancreatic islets from NE fetuses, mRNA concentrations of adrenergic receptor isoforms (α1D, α2A, α2C, and β1), G protein subunit-αi-2, and uncoupling protein 2 were lower (P < 0.05) compared with controls, but β-cell regulatory genes were not different. Our findings indicate that chronic exposure to elevated NE persistently suppresses insulin secretion. After removal, NE fetuses demonstrated a compensatory enhancement in insulin secretion that was associated with adrenergic desensitization and greater stimulus-secretion coupling in pancreatic islets. PMID:24253046

  3. Insulin Dynamics in Young Women with Polycystic Ovary Syndrome and Normal Glucose Tolerance across Categories of Body Mass Index

    PubMed Central

    Manco, Melania; Castagneto-Gissey, Lidia; Arrighi, Eugenio; Carnicelli, Annamaria; Brufani, Claudia; Luciano, Rosa; Mingrone, Geltrude

    2014-01-01

    Background Evidence favours insulin resistance and compensatory hyperinsulinemia as the predominant, perhaps primary, defects in polycystic ovary syndrome (PCOS). The aim of the present study was to evaluate insulin metabolism in young women with PCOS but normal glucose tolerance as compared with age, body mass index and insulin resistance-matched controls to answer the question whether women with PCOS hypersecrete insulin in comparison to appropriately insulin resistance-matched controls. Research Design and Methods Sixty-nine cases were divided according to their body mass index (BMI) in normal-weight (N = 29), overweight (N = 24) and obese patients (N = 16). Controls were 479 healthy women (age 16–49 y). Whole body Insulin Sensitivity (WBISI), fasting, and total insulin secretion were estimated following an oral glucose tolerance test (C-peptide deconvolution method). Results Across classes of BMI, PCOS patients had greater insulin resistance than matched controls (p<0.0001 for all the comparisons), but they showed higher fasting and total insulin secretion than their age, BMI and insulin resistance-matched peers (p<0.0001 for all the comparisons). Conclusion Women with PCOS show higher insulin resistance but also larger insulin secretion to maintain normal glucose homeostasis than age-, BMI- and insulin resistance-matched controls. PMID:24705280

  4. IGF-1 and insulin exert opposite actions on ClC-K2 activity in the cortical collecting ducts.

    PubMed

    Zaika, Oleg; Mamenko, Mykola; Boukelmoune, Nabila; Pochynyuk, Oleh

    2015-01-01

    Despite similar stimulatory actions on the epithelial sodium channel (ENaC)-mediated sodium reabsorption in the distal tubule, insulin promotes kaliuresis, whereas insulin-like growth factor-1 (IGF-1) causes a reduction in urinary potassium levels. The factors contributing to this phenomenon remain elusive. Electrogenic distal nephron ENaC-mediated Na(+) transport establishes driving force for Cl(-) reabsorption and K(+) secretion. Using patch-clamp electrophysiology, we document that a Cl(-) channel is highly abundant on the basolateral plasma membrane of intercalated cells in freshly isolated mouse cortical collecting duct (CCD) cells. The channel has characteristics attributable to the ClC-K2: slow gating kinetics, conductance ∼10 pS, voltage independence, Cl(-)>NO3 (-) anion selectivity, and inhibition/activation by low/high pH, respectively. IGF-1 (100 and 500 nM) acutely stimulates ClC-K2 activity in a reversible manner. Inhibition of PI3-kinase (PI3-K) with LY294002 (20 μM) abrogates activation of ClC-K2 by IGF-1. Interestingly, insulin (100 nM) reversibly decreases ClC-K2 activity in CCD cells. This inhibitory action is independent of PI3-K and is mediated by stimulation of a mitogen-activated protein kinase-dependent cascade. We propose that IGF-1, by stimulating ClC-K2 channels, promotes net Na(+) and Cl(-) reabsorption, thus reducing driving force for potassium secretion by the CCD. In contrast, inhibition of ClC-K2 by insulin favors coupling of Na(+) reabsorption with K(+) secretion at the apical membrane contributing to kaliuresis. Copyright © 2015 the American Physiological Society.

  5. Physical activity, sedentary behaviors, and estimated insulin sensitivity and secretion in pregnant and non-pregnant women

    PubMed Central

    2011-01-01

    Background Overweight and obesity during pregnancy raise the risk of gestational diabetes and birth complications. Lifestyle factors like physical activity may decrease these risks through beneficial effects on glucose homeostasis. Here we examined physical activity patterns and their relationships with measures of glucose homeostasis in late pregnancy compared to non-pregnant women. Methods Normal weight and overweight women without diabetes (N = 108; aged 25-35 years) were studied; 35 were pregnant (in gestational weeks 28-32) and 73 were non-pregnant. Insulin sensitivity and β-cell response were estimated from an oral glucose tolerance test. Physical activity was measured during 10-days of free-living using a combined heart rate sensor and accelerometer. Total (TEE), resting (REE), and physical activity (PAEE) energy expenditure were measured using doubly-labeled water and expired gas indirect calorimetry. Results Total activity was associated with reduced first-phase insulin response in both pregnant (Regression r2 = 0.11; Spearman r = -0.47; p = 0.007) and non-pregnant women (Regression r2 = 0.11 Spearman; r = -0.36; p = 0.002). Relative to non-pregnant women, pregnant women were estimated to have secreted 67% more insulin and had 10% lower fasting glucose than non-pregnant women. Pregnant women spent 13% more time sedentary, 71% less time in moderate-to-vigorous intensity activity, had 44% lower objectively measured total activity, and 12% lower PAEE than non-pregnant women. Correlations did not differ significantly for any comparison between physical activity subcomponents and measures of insulin sensitivity or secretion. Conclusions Our findings suggest that physical activity conveys similar benefits on glucose homeostasis in pregnant and non-pregnant women, despite differences in subcomponents of physical activity. PMID:21679399

  6. Overexpression of angiotensin II type 2 receptor promotes apoptosis and impairs insulin secretion in rat insulinoma cells.

    PubMed

    Liu, Min; Jing, Danqing; Wang, Yan; Liu, Yu; Yin, Shinan

    2015-02-01

    Angiotensin II (Ang II), the major effector hormone of renin-angiotensin system, acts as a promoter of insulin resistance and diabetes mellitus type 2 pathogenesis. Activation of Ang II type 2 receptor (AT2R) has been examined as a potential therapeutic strategy. However, there are conflicting findings regarding the role of AT2R. In the current study, we evaluated the effects of overexpressing AT2R by viral vector transduction on the apoptosis and function of pancreatic β-islet cells. The rat insulinoma cell line, INS-1, was transduced with a recombinant adenoviral vector expressing AT2R (Ad-G-AT2R-EGFP). AT2R overexpression resulted in significantly reduced cell viability and subsequently impaired glucose-stimulated insulin secretion (GSIS) function in INS-1 cells. Down-regulated expressions of GSIS pathway components, insulin, glucose transporter 2, and glucokinase were associated with AT2R overexpression. Further analysis determined that overexpression of AT2R induced G1-phase cell cycle arrest and Ang II-independent apoptotic cell death as indicated by increased Annexin V staining. To understand the apoptosis signaling triggered by AT2R overexpression, levels of caspase proteins were measured. Overexpression of AT2R significantly induced caspase-8, caspase-9, and caspase-3 cleavage, and decreased Bcl-2, pAkt, and pERK expression levels. AT2R-induced cell apoptosis was successfully blocked by the caspase inhibitor Z-VAD-FMK. Our findings suggested that AT2R overexpression triggers the apoptosis of INS-1 cells and dysfunction in insulin secretion. In conclusion, more careful design and consideration are required when applying AT2R-related therapies in treating diabetes.

  7. The comprehensive electrophysiological study of curcuminoids on delayed-rectifier K+ currents in insulin-secreting cells.

    PubMed

    Kuo, Ping-Chung; Yang, Chia-Jung; Lee, Yu-Chi; Chen, Pei-Chun; Liu, Yen-Chin; Wu, Sheng-Nan

    2018-01-15

    Curcumin (CUR) has been demonstrated to induce insulin release from pancreatic β-cells; however, how curcuminoids (including demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC)) exert any possible effects on membrane ion currents inherently in insulin-secreting cells remains largely unclear. The effects of CUR and other structurally similar curcuminoids on ion currents in rat insulin-secreting (INS-1) insulinoma cells were therefore investigated in this study. The effects of these compounds on ionic currents and membrane potential were studied by patch-clamp technique. CUR suppressed the amplitude of delayed-rectifier K + current (I K(DR) ) in a time-, state- and concentration-dependent manner in these cells and the inhibition was not reversed by diazoxide, nicorandil or chlorotoxin. The value of dissociation constant for CUR-induced suppression of I K(DR) in INS-1 cells was 1.26μM. Despite the inability of CUR to alter the activation rate of I K(DR) , it accelerated current inactivation elicited by membrane depolarization. Increasing CUR concentrations shifted the inactivation curve of I K(DR) to hyperpolarized potential and slowed the recovery of I K(DR) inactivation. CUR, DMC, and BDMC all exerted depressant actions on I K(DR) amplitude to a similar magnitude, although DMC and BDMC did not increase current inactivation clearly. CUR slightly suppressed the peak amplitude of voltage-gated Na + current. CUR, DMC and BDMC depolarized the resting potential and increased firing frequency of action potentials. The CUR-mediated decrease of I K(DR) and the increase of current inactivation also occurred in βTC-6 INS-1 cells. Taken these results together, these effects may be one of the possible mechanisms contributing their insulin-releasing effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mechanisms Regulating Insulin Response to Intragastric Glucose in Lean and Non-Diabetic Obese Subjects: A Randomized, Double-Blind, Parallel-Group Trial

    PubMed Central

    Meyer-Gerspach, Anne Christin; Cajacob, Lucian; Riva, Daniele; Herzog, Raphael; Drewe, Juergen; Beglinger, Christoph; Wölnerhanssen, Bettina K.

    2016-01-01

    Background/Objectives The changes in blood glucose concentrations that result from an oral glucose challenge are dependent on the rate of gastric emptying, the rate of glucose absorption and the rate of insulin-driven metabolism that include the incretins, glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1). The rate of insulin-driven metabolism is clearly altered in obese subjects, but it is controversial which of these factors is predominant. We aimed to quantify gastric emptying, plasma insulin, C-peptide, glucagon and glucose responses, as well as incretin hormone secretions in obese subjects and healthy controls during increasing glucose loads. Subjects/Methods The study was conducted as a randomized, double-blind, parallel-group trial in a hospital research unit. A total of 12 normal weight (6 men and 6 women) and 12 non-diabetic obese (BMI > 30, 6 men and 6 women) participants took part in the study. Subjects received intragastric loads of 10 g, 25 g and 75 g glucose dissolved in 300 ml tap water. Results Main outcome measures were plasma GLP-1 and GIP, plasma glucagon, glucose, insulin, C-peptide and gastric emptying. The primary findings are: i) insulin resistance (P < 0.001) and hyperinsulinemia (P < 0.001); ii) decreased insulin disposal (P < 0.001); iii) trend for reduced GLP-1 responses at 75 g glucose; and iv) increased fasting glucagon levels (P < 0.001) in obese subjects. Conclusions It seems that, rather than changes in incretin secretion, fasting hyperglucagonemia and consequent hyperglycemia play a role in reduced disposal of insulin, contributing to hyperinsulinemia and insulin resistance. Trial Registration ClinicalTrials.gov NCT01875575 PMID:26942445

  9. EDTA improves stability of whole blood C-peptide and insulin to over 24 hours at room temperature.

    PubMed

    McDonald, Timothy J; Perry, Mandy H; Peake, Roy W A; Pullan, Nicola J; O'Connor, John; Shields, Beverley M; Knight, Beatrice A; Hattersley, Andrew T

    2012-01-01

    C-peptide and insulin measurements in blood provide useful information regarding endogenous insulin secretion. Conflicting evidence on sample stability and handling procedures continue to limit the widespread clinical use of these tests. We assessed the factors that altered the stability of insulin and C-peptide in blood. We investigated the impact of preservative type, time to centrifugation, storage conditions and duration of storage on the stability of C-peptide and insulin on three different analytical platforms. C-peptide was stable for at least 24 hours at room temperature in both centrifuged and whole blood collected in K(+)-EDTA and serum gel tubes, with the exception of whole blood serum gel, which decreased to 78% of baseline at 24 hours, (p = 0.008). Insulin was stable at room temperature for 24 hours in both centrifuged and whole blood collected in K(+)-EDTA tubes. In contrast insulin levels decreased in serum gel tubes both centrifuged and whole blood (66% of baseline, p = 0.01 and 76% of baseline p = 0.01, by 24 hours respectively). C-peptide and insulin remained stable after 6 freeze-thaw cycles. The stability of C-peptide and insulin in whole blood K(+)-EDTA tubes negates the need to conform to strict sample handling procedures for these assays, greatly increasing their clinical utility.

  10. Acylcarnitines: potential implications for skeletal muscle insulin resistance.

    PubMed

    Aguer, Céline; McCoin, Colin S; Knotts, Trina A; Thrush, A Brianne; Ono-Moore, Kikumi; McPherson, Ruth; Dent, Robert; Hwang, Daniel H; Adams, Sean H; Harper, Mary-Ellen

    2015-01-01

    Insulin resistance may be linked to incomplete fatty acid β-oxidation and the subsequent increase in acylcarnitine species in different tissues including skeletal muscle. It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aims of this study were to determine whether acylcarnitines can elicit muscle insulin resistance and to better understand the link between incomplete muscle fatty acid β-oxidation, oxidative stress, inflammation, and insulin-resistance development. Differentiated C2C12, primary mouse, and human myotubes were treated with acylcarnitines (C4:0, C14:0, C16:0) or with palmitate with or without carnitine acyltransferase inhibition by mildronate. Treatment with C4:0, C14:0, and C16:0 acylcarnitines resulted in 20-30% decrease in insulin response at the level of Akt phosphorylation and/or glucose uptake. Mildronate reversed palmitate-induced insulin resistance concomitant with an ∼25% decrease in short-chain acylcarnitine and acetylcarnitine secretion. Although proinflammatory cytokines were not affected under these conditions, oxidative stress was increased by 2-3 times by short- or long-chain acylcarnitines. Acylcarnitine-induced oxidative stress and insulin resistance were reversed by treatment with antioxidants. Results are consistent with the conclusion that incomplete muscle fatty acid β-oxidation causes acylcarnitine accumulation and associated oxidative stress, raising the possibility that these metabolites play a role in muscle insulin resistance. © FASEB.

  11. Beyond the morphology of the glucose curve following an oral glucose tolerance test in obese youth.

    PubMed

    Nolfe, Giuseppe; Spreghini, Maria Rita; Sforza, Rita Wietrzycowska; Morino, Giuseppe; Manco, Melania

    2012-01-01

    To describe the morphology of glucose curve during the oral glucose tolerance test (OGTT) and any association with glucose tolerance, insulin action and secretion in obese youth. Cross-sectional. OGTT data of 553 patients were analysed. Subjects were divided in groups based on the morphology (i.e. monophasic, biphasic, triphasic and upward monotonous) of glucose curve. Insulin action was estimated by the homeostasis model assessment of insulin resistance, the insulin sensitivity, the muscle insulin sensitivity and the hepatic insulin resistance indexes (HIRI), and the oral glucose insulin sensitivity (OGIS). Insulin secretion was estimated by the insulinogenic index (IGI). Disposition index, including the insulin secretion-sensitivity index-2, and areas under glucose (AUC(G)) and insulin (AUC(I)) curves were computed. In patients with normal glucose tolerance (n=522), prevalent morphology of the glucose curve was monophasic (n=285, 54%). Monophasic morphology was associated with the highest concentration of 1 h plasma glucose (P<0.0001) and AUC(G) (P<0.0001); biphasic morphology with better insulin sensitivity as estimated by OGIS (P<0.03) and lower AUC(I) (P<0.0001); triphasic morphology with the highest values of HIRI (P<0.02) and IGI (P<0.007). By combining morphologies of glucose and insulin curves or time of the glucose peak, a deeper characterisation of different phenotypes of glucose metabolism emerged. Morphologies of the glucose curve seem reflecting different metabolic phenotypes of insulin action and secretion, particularly when combined with morphologies of insulin curve or time of glucose peak. Such findings may deserve validation in cohort study, in which glucose metabolism would be estimated by using gold standard techniques.

  12. Children with classic congenital adrenal hyperplasia have elevated serum leptin concentrations and insulin resistance: potential clinical implications.

    PubMed

    Charmandari, Evangelia; Weise, Martina; Bornstein, Stefan R; Eisenhofer, Graeme; Keil, Margaret F; Chrousos, George P; Merke, Deborah P

    2002-05-01

    Leptin is secreted by the white adipose tissue and modulates energy homeostasis. Nutritional, neural, neuroendocrine, paracrine, and autocrine factors, including the sympathetic nervous system and the adrenal medulla, have been implicated in the regulation of leptin secretion. Classic congenital adrenal hyperplasia (CAH) is characterized by a defect in cortisol and aldosterone secretion, impaired development and function of the adrenal medulla, and adrenal hyperandrogenism. To examine leptin secretion in patients with classic CAH in relation to their adrenomedullary function and insulin and androgen secretion, we studied 18 children with classic CAH (12 boys and 6 girls; age range 2-12 yr) and 28 normal children (16 boys and 12 girls; age range 5-12 yr) matched for body mass index (BMI). Serum leptin concentrations were significantly higher in patients with CAH than in control subjects (8.1 +/- 2.0 vs. 2.5 +/- 0.6 ng/ml, P = 0.01), and this difference persisted when leptin values were corrected for BMI. When compared with their normal counterparts, children with CAH had significantly lower plasma epinephrine (7.1 +/- 1.3 vs. 50.0 +/- 4.2, P < 0.001) and free metanephrine concentrations (18.4 +/- 2.4 vs. 46.5 +/- 4.0, P < 0.001) and higher fasting serum insulin (10.6 +/- 1.4 vs. 3.2 +/- 0.2 microU/ml, P < 0.001) and testosterone (23.7 +/- 5.3 vs. 4.6 +/- 0.5 ng/dl, P = 0.003) concentrations. Insulin resistance determined by the homeostasis model assessment method was significantly greater in children with classic CAH than in normal children (2.2 +/- 0.3 vs. 0.7 +/- 0.04, P < 0.001). Leptin concentrations were significantly and negatively correlated with epinephrine (r = -0.50, P = 0.001) and free metanephrine (r = -0.48, P = 0.002) concentrations. Stepwise multiple linear regression analysis indicated that serum leptin concentrations were best predicted by BMI in both patients and controls. Gender predicted serum leptin concentrations in controls but not in patients with classic CAH. No association was found between the dose of hydrocortisone and serum leptin (r = -0.17, P = 0.5) or insulin (r = 0.24, P = 0.3) concentrations in children with CAH. Our findings indicate that children with classic CAH have elevated fasting serum leptin and insulin concentrations, and insulin resistance. These most likely reflect differences in long-term adrenomedullary hypofunction and glucocorticoid therapy. Elevated leptin and insulin concentrations in patients with CAH may further enhance adrenal and ovarian androgen production, decrease the therapeutic efficacy of glucocorticoids, and contribute to later development of polycystic ovary syndrome and/or the metabolic syndrome and their complications.

  13. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro

    PubMed Central

    Keller, Amy C.; Ma, Jun; Kavalier, Adam; He, Kan; Brillantes, Anne-Marie B.; Kennelly, Edward J.

    2012-01-01

    The antidiabetic activity of Momordica charantia (L.), Cucurbitaceae, a widely-used treatment for diabetes in a number of traditional medicine systems, was investigated in vitro. Antidiabetic activity has been reported for certain saponins isolated from M. charantia. In this study insulin secretion was measured in MIN6 β-cells incubated with an ethanol extract, saponin-rich fraction, and five purified saponins and cucurbitane triterpenoids from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (1), momordicine I (2), momordicine II (3), 3-hydroxycucurbita-5,24-dien-19-al-7,23-di-O-β-glucopyranoside (4), and kuguaglycoside G (5). Treatments were compared to incubation with high glucose (27 mM) and the insulin secretagogue, glipizide (50 μM). At 125 μg/ml, an LC-ToF-MS characterized saponin-rich fraction stimulated insulin secretion significantly more than the DMSO vehicle, p=0.02. At concentrations 10 and 25 μg/ml, compounds 3 and 5 also significantly stimulated insulin secretion as compared to the vehicle, p≤0.007, and p= 0.002, respectively. This is the first report of a saponin-rich fraction, and isolated compounds from M. charantia, stimulating insulin secretion in an in vitro, static incubation assay. PMID:22133295

  14. Role of the M3 muscarinic acetylcholine receptor in beta-cell function and glucose homeostasis.

    PubMed

    Gautam, D; Han, S-J; Duttaroy, A; Mears, D; Hamdan, F F; Li, J H; Cui, Y; Jeon, J; Wess, J

    2007-11-01

    The release of insufficient amounts of insulin in the presence of elevated blood glucose levels is one of the key features of type 2 diabetes. Various lines of evidence indicate that acetylcholine (ACh), the major neurotransmitter of the parasympathetic nervous system, can enhance glucose-stimulated insulin secretion from pancreatic beta-cells. Studies with isolated islets prepared from whole body M(3) muscarinic ACh receptor knockout mice showed that cholinergic amplification of glucose-dependent insulin secretion is exclusively mediated by the M(3) muscarinic receptor subtype. To investigate the physiological relevance of this muscarinic pathway, we used Cre/loxP technology to generate mutant mice that lack M(3) receptors only in pancreatic beta-cells. These mutant mice displayed impaired glucose tolerance and significantly reduced insulin secretion. In contrast, transgenic mice overexpressing M(3) receptors in pancreatic beta-cells showed a pronounced increase in glucose tolerance and insulin secretion and were resistant to diet-induced glucose intolerance and hyperglycaemia. These findings indicate that beta-cell M(3) muscarinic receptors are essential for maintaining proper insulin secretion and glucose homeostasis. Moreover, our data suggest that enhancing signalling through beta-cell M(3) muscarinic receptors may represent a new avenue in the treatment of glucose intolerance and type 2 diabetes.

  15. Effect of Ezetimibe on Insulin Secretion in db/db Diabetic Mice

    PubMed Central

    Zhong, Yong; Wang, Jun; Gu, Ping; Shao, Jiaqing; Lu, Bin; Jiang, Shisen

    2012-01-01

    Objective. To investigate the effect of ezetimibe on the insulin secretion in db/db mice. Methods. The db/db diabetic mice aged 8 weeks were randomly assigned into 2 groups and intragastrically treated with ezetimibe or placebo for 6 weeks. The age matched db/m mice served as controls. At the end of experiment, glucose tolerance test was performed and then the pancreas was collected for immunohistochemistry. In addition, in vitro perfusion of pancreatic islets was employed for the detection of insulin secretion in the first phase. Results. In the ezetimibe group, the fasting blood glucose was markedly reduced, and the total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly lowered when compared with those in the control group (P < 0.05). At 120 min after glucose tolerance test, the area under curve in the ezetimibe group was significantly smaller than that in the control group (P < 0.05), but the AUCINS0−30 was markedly higher. In vitro perfusion of pancreatic islets revealed the first phase insulin secretion was improved. In addition, the insulin expression in the pancreas in the ezetimibe group was significantly increased as compared to the control group. Conclusion. Ezetimibe can improve glucose tolerance, recover the first phase insulin secretion, and protect the function of β cells in mice. PMID:23118741

  16. Switching from high-fat to low-fat diet normalizes glucose metabolism and improves glucose-stimulated insulin secretion and insulin sensitivity but not body weight in C57BL/6J mice.

    PubMed

    Agardh, Carl-David; Ahrén, Bo

    2012-03-01

    Environmental factors such as a high-fat diet contribute to type 2 diabetes and obesity. This study examined glycemia, insulin sensitivity, and β-cell function after switching from a high-fat diet to a low-fat diet in mice. C57BL/6J mice were fed a high-fat diet or low-fat diet for 18 months, after which mice on the high-fat diet either maintained this diet or switched to a low-fat diet for 4 weeks. Body weight and glucose and insulin responses to intraperitoneal glucose were determined. Insulin secretion (insulinogenic index: the 10-minute insulin response divided by the 10-minute glucose level) and insulin sensitivity (1 divided by basal insulin) were determined. After 18 months on a high-fat diet, mice had glucose intolerance, marked hyperinsulinemia, and increased body weight compared to mice on a low-fat diet (P < 0.001). Switching from a high-fat diet to low-fat diet normalized glucose tolerance, reduced but not normalized body weight (P < 0.001), increased insulin secretion (248 ± 39 vs 141 ± 46 pmol/mmol; P = 0.028) and improved but not normalized insulin sensitivity (3.2 ± 0.1 vs 1.0 ± 0.1 [pmol/L]; P = 0.012). Switching from a high-fat diet to low-fat diet normalizes glucose tolerance and improves but not normalizes insulin secretion and insulin sensitivity. These effects are more pronounced than the reduced body weight.

  17. Butanol fraction of Parkia biglobosa (Jacq.) G. Don leaves enhance pancreatic β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats.

    PubMed

    Ibrahim, Mohammed Auwal; Habila, James Dama; Koorbanally, Neil Anthony; Islam, Md Shahidul

    2016-05-13

    Ethnopharmacological surveys have reported that Parkia biglobosa (Jacq.) G. Don (Leguminosae) is among the plants commonly used in the traditional management of diabetes mellitus in Nigeria and Togo. This study investigated the anti-diabetic activity of the butanol fraction of P. biglobosa leaves (PBBF) in a type 2 diabetes (T2D) model of rats and a possible bioactive compound in the fraction. T2D was induced by feeding rats with a 10% fructose solution ad libitum for two weeks followed by an intraperitoneal injection of 40mg/kg body weight streptozotocin and the animals were orally treated with 150 and 300mg/kg BW of the PBBF for five days in a week. Another group of rats was non-diabetic but similarly administered with 300mg/kg BW of the PBBF. Food and fluid intakes, body weight changes and blood glucose levels were monitored during the experiment while other relevant diabetes-associated parameters were measured at the end of the experiment. The PBBF treatments significantly (P<0.05) decreased the blood glucose levels and improved the glucose tolerance ability compared to untreated diabetic rats. Furthermore, the treatments were found to improve pancreatic β cell function (HOMA-β), stimulate insulin secretions, decrease insulin resistance (HOMA-IR), restore liver glycogen, ameliorate serum dyslipidaemia and prevent hepatic and renal damages compared to untreated diabetic rats. Phytochemical analysis of the fraction led to the isolation of lupeol which inhibited α-glucosidase and α-amylase in non-competitive and uncompetitive inhibition patterns respectively. It was concluded that PBBF possessed remarkable anti-T2D activity which is mediated through modulation of β-cell function and stimulation of insulin secretion and the lower dose (150mg/kg BW) was found optimum for anti-T2D activity compared to the high dose (300mg/kg BW) in this study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalgaard, Louise T., E-mail: ltd@ruc.dk; Department of Science, Systems and Models, Roskilde University

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. Black-Right-Pointing-Pointer UCP2 mRNA up-regulation by glucose is dependent on glucokinase. Black-Right-Pointing-Pointer Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. Black-Right-Pointing-Pointer This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic {beta}-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was tomore » examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.« less

  19. Insulin and glucose excursion following premeal insulin lispro or repaglinide in cystic fibrosis-related diabetes.

    PubMed

    Moran, A; Phillips, J; Milla, C

    2001-10-01

    Insulin and glucose levels in response to premeal insulin lispro or repaglinide were evaluated in adult patients with cystic fibrosis-related diabetes (CFRD) without fasting hyperglycemia. Seven patients with CFRD were fed 1,000-kcal liquid mixed meals. Three study conditions were administered in random order on separate mornings: 1) no premeal diabetes medication, 2) insulin lispro, 0.1 unit/kg body wt premeal and 3) repaglinide 1 mg premeal. Glucose and insulin levels were measured every 20 min for 5 h. Fasting insulin and glucose levels were normal in patients with CFRD, but the peak glucose level was elevated. Insulin lispro significantly decreased the peak glucose level (P = 0.0004) and the 2-h (P = 0.001) and 5-h (P < 0.0001) glucose area under the curve (AUC). Repaglinide significantly decreased the 5-h glucose AUC (P = 0.03). Neither drug completely normalized cystic fibrosis glucose excursion at the doses used for this study. Insulin lispro significantly increased the 5-h insulin AUC (P = 0.04). In response to subcutaneous insulin lispro, postprandial glucose excursion was significantly diminished and insulin secretion was enhanced compared with a control meal in which no medication was given to patients with CFRD. The oral agent repaglinide resulted in lesser corrections in these parameters. Neither drug completely normalized glucose or insulin levels, suggesting that the doses chosen for this study were suboptimal. Placebo-controlled longitudinal studies comparing the effectiveness of repaglinide and insulin on glucose metabolic control as well as overall nutrition and body weight are needed to help determine optimal medical treatment of CFRD.

  20. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douillet, Christelle; Currier, Jenna; Saunders, Jesse

    Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAs{sup III}) or its methylated trivalent metabolites, methylarsonite (MAs{sup III}) and dimethylarsinite (DMAs{sup III}), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAs{sup III}, MAs{sup III} ormore » DMAs{sup III} inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAs{sup III} and DMAs{sup III} were more potent than iAs{sup III} as GSIS inhibitors with estimated IC{sub 50} ≤ 0.1 μM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAs{sup III}, MAs{sup III} or DMAs{sup III} could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic β-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes. - Highlights: ► Trivalent arsenicals inhibit glucose stimulated insulin secretion by pancreatic islets. ► MAs{sup III} and DMAs{sup III} are more potent inhibitors than arsenite with IC{sub 50} ∼ 0.1 μM. ► The arsenicals have little or no effects on insulin expression in pancreatic islets. ► The inhibition of insulin secretion by arsenite, MAs{sup III} or DMAs{sup III} is reversible. ► Thus, pancreatic β-cells may be primary targets for chronic exposure to arsenic.« less

  1. Biotin enhances ATP synthesis in pancreatic islets of the rat, resulting in reinforcement of glucose-induced insulin secretion.

    PubMed

    Sone, Hideyuki; Sasaki, Yuka; Komai, Michio; Toyomizu, Masaaki; Kagawa, Yasuo; Furukawa, Yuji

    2004-02-13

    Previous studies showed that biotin enhanced glucose-induced insulin secretion. Changes in the cytosolic ATP/ADP ratio in the pancreatic islets participate in the regulation of insulin secretion by glucose. In the present study we investigated whether biotin regulates the cytosolic ATP/ADP ratio in glucose-stimulated islets. When islets were stimulated with glucose plus biotin, the ATP/ADP ratio increased to approximately 160% of the ATP/ADP ratio in islets stimulated with glucose alone. The rate of glucose oxidation, assessed by CO(2) production, was also about 2-fold higher in islets treated with biotin. These increasing effects of biotin were proportional to the effects seen in insulin secretion. There are no previous reports of vitamins, such as biotin, directly affecting ATP synthesis. Our data indicate that biotin enhances ATP synthesis in islets following the increased rate of substrate oxidation in mitochondria and that, as a consequence of these events, glucose-induced insulin release is reinforced by biotin.

  2. The GLP-1 mimetic exenatide potentiates insulin secretion in healthy cats.

    PubMed

    Gilor, C; Graves, T K; Gilor, S; Ridge, T K; Rick, M

    2011-07-01

    The glucagon-like peptide-1 mimetic exenatide has a glucose-dependent insulinotropic effect, and it is effective in controlling blood glucose (BG) with minimal side effects in people with type 2 diabetes. Exenatide also delays gastric emptying, increases satiety, and improves β-cell function. We studied the effect of exenatide on insulin secretion during euglycemia and hyperglycemia in cats. Nine young, healthy, neutered, purpose-bred cats were used in a randomized, cross-over design. BG concentrations during an oral glucose tolerance test were determined in these cats previously. Two isoglycemic glucose clamps (mimicking the BG concentration during the oral glucose tolerance test) were performed in each cat on separate days, one without prior treatment (IGC) and the second with exenatide (1 μg/kg) injected subcutaneously 2 h before (ExIGC). BG, insulin, and exenatide concentrations were measured, and glucose infusion rates were recorded and compared in paired tests between the two experiments. After exenatide injection, insulin serum concentrations increased significantly (2.4-fold; range 1.0- to 9.2-fold; P = 0.004) within 15 min. This was followed by a mild decrease in BG concentration and a return of insulin concentration to baseline despite a continuous increase in serum exenatide concentrations. Insulin area under the curve (AUC) during ExIGC was significantly higher than insulin AUC during IGC (AUC ratio, 2.0 ± 0.4; P = 0.03). Total glucose infused was not significantly different between IGC and ExIGC. Exenatide was detectable in plasma at 15 min after injection. The mean exenatide concentration peaked at 45 min and then returned to baseline by 75 min. Exenatide was still detectable in the serum of three of five cats 8 h after injection. No adverse reactions to exenatide were observed. In conclusion, exenatide affects insulin secretion in cats in a glucose-dependent manner, similar to its effect in other species. Although this effect was not accompanied by a greater ability to dispose of an intravenous glucose infusion, other potentially beneficial effects of exenatide on pancreatic β cells, mainly increasing their proliferation and survival, should be investigated in cats. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Reciprocal regulation of insulin and plasma 5'-AMP in glucose homeostasis in mice.

    PubMed

    Xia, Lin; Wang, Zhongqiu; Zhang, Ying; Yang, Xiao; Zhan, Yibei; Cheng, Rui; Wang, Shiming; Zhang, Jianfa

    2015-03-01

    A previous investigation has demonstrated that plasma 5'-AMP (pAMP) exacerbates and causes hyperglycemia in diabetic mice. However, the crosstalk between pAMP and insulin signaling to regulate glucose homeostasis has not been investigated in depth. In this study, we showed that the blood glucose level was more dependent on the ratio of insulin to pAMP than on the absolute level of these two factors. Administration of 5'-AMP significantly attenuated the insulin-stimulated insulin receptor (IR) autophosphorylation in the liver and muscle tissues, resulting in the inhibition of downstream AKT phosphorylation. A docking analysis indicated that adenosine was a potential inhibitor of IR tyrosine kinase. Moreover, the 5'-AMP treatment elevated the ATP level in the pancreas and in the isolated islets, stimulating insulin secretion and increasing the plasma level of insulin. The insulin administration decreased the 5'-AMP-induced hyper-adenosine level by the up-regulation of adenosine kinase activities. Our results indicate that blood glucose homeostasis is reciprocally regulated by pAMP and insulin. © 2015 Society for Endocrinology.

  4. Antibodies against glutamic acid decarboxylase and indices of insulin resistance and insulin secretion in nondiabetic adults: a cross-sectional study

    PubMed Central

    Mendivil, Carlos O; Toloza, Freddy JK; Ricardo-Silgado, Maria L; Morales-Álvarez, Martha C; Mantilla-Rivas, Jose O; Pinzón-Cortés, Jairo A; Lemus, Hernán N

    2017-01-01

    Background Autoimmunity against insulin-producing beta cells from pancreatic islets is a common phenomenon in type 1 diabetes and latent autoimmune diabetes in adults. Some reports have also related beta-cell autoimmunity to insulin resistance (IR) in type 2 diabetes. However, the extent to which autoimmunity against components of beta cells is present and relates to IR and insulin secretion in nondiabetic adults is uncertain. Aim To explore the association between antibodies against glutamic acid decarboxylase (GADA), a major antigen from beta cells, and indices of whole-body IR and beta-cell capacity/insulin secretion in adults who do not have diabetes. Methods We studied 81 adults of both sexes aged 30–70, without known diabetes or any autoimmune disease. Participants underwent an oral glucose tolerance test (OGTT) with determination of plasma glucose and insulin at 0, 30, 60, 90, and 120 minutes. From these results we calculated indices of insulin resistance (homeostasis model assessment of insulin resistance [HOMA-IR] and incremental area under the insulin curve [iAUCins]) and insulin secretion (corrected insulin response at 30 minutes and HOMA beta-cell%). GADAs were measured in fasting plasma using immunoenzymatic methods. Results We found an overall prevalence of GADA positivity of 21.3%, without differences by sex and no correlation with age. GADA titers did not change monotonically across quartiles of any of the IR or insulin secretion indices studies. GADA did not correlate linearly with fasting IR expressed as HOMA-IR (Spearman’s r=−0.18, p=0.10) or postabsorptive IR expressed as iAUCins (r=−0.15, p=0.18), but did show a trend toward a negative correlation with insulin secretory capacity expressed by the HOMA-beta cell% index (r=−0.20, p=0.07). Hemoglobin A1c, body mass index, and waist circumference were not associated with GADA titers. Conclusion GADA positivity is frequent and likely related to impaired beta-cell function among adults without known diabetes. PMID:28507444

  5. A factorial design to identify process parameters affecting whole mechanically disrupted rat pancreata in a perfusion bioreactor.

    PubMed

    Sharp, Jamie; Spitters, Tim Wgm; Vermette, Patrick

    2018-03-01

    Few studies report whole pancreatic tissue culture, as it is a difficult task using traditional culture methods. Here, a factorial design was used to investigate the singular and combinational effects of flow, dissolved oxygen concentration (D.O.) and pulsation on whole mechanically disrupted rat pancreata in a perfusion bioreactor. Whole rat pancreata were cultured for 72 h under defined bioreactor process conditions. Secreted insulin was measured and histological (haematoxylin and eosin (H&E)) as well as immunofluorescent insulin staining were performed and quantified. The combination of flow and D.O. had the most significant effect on secreted insulin at 5 h and 24 h. The D.O. had the biggest effect on tissue histological quality, and pulsation had the biggest effect on the number of insulin-positive structures. Based on the factorial design analysis, bioreactor conditions using high flow, low D.O., and pulsation were selected to further study glucose-stimulated insulin secretion. Here, mechanically disrupted rat pancreata were cultured for 24 h under these bioreactor conditions and were then challenged with high glucose concentration for 6 h and high glucose + IBMX (an insulin secretagogue) for a further 6 h. These cultures secreted insulin in response to high glucose concentration in the first 6 h, however stimulated-insulin secretion was markedly weaker in response to high glucose concentration + IBMX thereafter. After this bioreactor culture period, higher tissue metabolic activity was found compared to that of non-bioreacted static controls. More insulin- and glucagon-positive structures, and extensive intact endothelial structures were observed compared to non-bioreacted static cultures. H&E staining revealed more intact tissue compared to static cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:432-444, 2018. © 2017 American Institute of Chemical Engineers.

  6. Topologically heterogeneous beta cell adaptation in response to high-fat diet in mice.

    PubMed

    Ellenbroek, Johanne H; Töns, Hendrica A; de Graaf, Natascha; Loomans, Cindy J; Engelse, Marten A; Vrolijk, Hans; Voshol, Peter J; Rabelink, Ton J; Carlotti, Françoise; de Koning, Eelco J

    2013-01-01

    Beta cells adapt to an increased insulin demand by enhancing insulin secretion via increased beta cell function and/or increased beta cell number. While morphological and functional heterogeneity between individual islets exists, it is unknown whether regional differences in beta cell adaptation occur. Therefore we investigated beta cell adaptation throughout the pancreas in a model of high-fat diet (HFD)-induced insulin resistance in mice. C57BL/6J mice were fed a HFD to induce insulin resistance, or control diet for 6 weeks. The pancreas was divided in a duodenal (DR), gastric (GR) and splenic (SR) region and taken for either histology or islet isolation. The capacity of untreated islets from the three regions to adapt in an extrapancreatic location was assessed by transplantation under the kidney capsule of streptozotocin-treated mice. SR islets showed 70% increased beta cell proliferation after HFD, whereas no significant increase was found in DR and GR islets. Furthermore, isolated SR islets showed twofold enhanced glucose-induced insulin secretion after HFD, as compared with DR and GR islets. In contrast, transplantation of islets isolated from the three regions to an extrapancreatic location in diabetic mice led to a similar decrease in hyperglycemia and no difference in beta cell proliferation. HFD-induced insulin resistance leads to topologically heterogeneous beta cell adaptation and is most prominent in the splenic region of the pancreas. This topological heterogeneity in beta cell adaptation appears to result from extrinsic factors present in the islet microenvironment.

  7. Treatments for diabetes mellitus type II: New perspectives regarding the possible role of calcium and cAMP interaction.

    PubMed

    Carvalho, Diego Soares; de Almeida, Alexandre Aparecido; Borges, Aurélio Ferreira; Campos, Vannucci

    2018-07-05

    Diabetes mellitus (DM) is among the top ten causes of death worldwide. It is considered to be one of the major global epidemics of the 21st century, with a significant impact on public health budgets. DM is a metabolic disorder with multiple etiologies. Its pathophysiology is marked by dysfunction of pancreatic β-cells which compromises the synthesis and secretion of insulin along with resistance to insulin action in peripheral tissues (muscle and adipose). Subjects presenting insulin resistance in DM type 2 often also exhibit increased insulin secretion and hyperinsulinemia. Insulin secretion is controlled by several factors such as nutrients, hormones, and neural factors. Exocytosis of insulin granules has, as its main stimulus, increased intracellular calcium ([Ca +2 ]i) and it is further amplified by cyclic AMP (cAMP). In the event of this hyperfunction, it is very common for β-cells to go into exhaustion leading to failure or death. Several animal studies have demonstrated pleiotropic effects of L-type Ca 2+ channel blockers (CCBs). In animal models of obesity and diabetes, treatment with CCBs promoted restoration of insulin secretion, glycemic control, and reduction of pancreatic β-cell apoptosis. In addition, hypertensive individuals treated with CCBs presented a lower incidence of DM when compared with other antihypertensive agents. In this review, we propose that pharmacological manipulation of the Ca 2+ /cAMP interaction system could lead to important targets for pharmacological improvement of insulin secretion in DM type 2. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puddu, A., E-mail: alep100@hotmail.com; Storace, D.; Odetti, P.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation preventsmore » FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.« less

  9. Activation of AMPK improves inflammation and insulin resistance in adipose tissue and skeletal muscle from pregnant women.

    PubMed

    Liong, Stella; Lappas, Martha

    2015-12-01

    Gestational diabetes mellitus (GDM) is characterised by maternal peripheral insulin resistance and inflammation. Sterile inflammation and bacterial infection are key mediators of this enhanced inflammatory response. Adenosine monophosphate (AMP)-activated kinase (AMPK), which is decreased in insulin resistant states, possesses potent pro-inflammatory actions. There are, however, no studies on the role of AMPK in pregnancies complicated by GDM. Thus, the aims of this study were (i) to compare the expression of AMPK in adipose tissue and skeletal muscle from women with GDM and normal glucose-tolerant (NGT) pregnant women; and (ii) to investigate the effect of AMPK activation on inflammation and insulin resistance induced by the bacterial endotoxin lipopolysaccharide (LPS) and the pro-inflammatory cytokine IL-1β. When compared to NGT pregnant women, AMPKα activity was significantly lower in women with GDM as evidenced by a decrease in threonine phosphorylation of AMPKα. Activation of AMPK, using two pharmacologically distinct compounds, AICAR or phenformin, significantly suppressed LPS- or IL-1β-induced gene expression and secretion of pro-inflammatory cytokine IL-6, the chemokines IL-8 and MCP-1, and COX-2 and subsequent prostaglandin release from adipose tissue and skeletal muscle. In addition, activators of AMPK decreased skeletal muscle insulin resistance induced by LPS or IL-1β as evidenced by increased insulin-stimulated phosphorylation of IRS-1, GLUT-4 expression and glucose uptake. These findings suggest that AMPK may play an important role in inflammation and insulin resistance.

  10. Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT-T15 cells and pancreatic islets.

    PubMed Central

    Li, G; Rungger-Brändle, E; Just, I; Jonas, J C; Aktories, K; Wollheim, C B

    1994-01-01

    To examine their role in insulin secretion, actin filaments (AFs) were disrupted by Clostridium botulinum C2 toxin that ADP-ribosylates G-actin. Ribosylation also prevents polymerization of G-actin to F-actin and inhibits AF assembly by capping the fast-growing end of F-actin. Pretreatment of HIT-T15 cells with the toxin inhibited stimulated insulin secretion in a time- and dose-dependent manner. The toxin did not affect cellular insulin content or nonstimulated secretion. In static incubation, toxin treatment caused 45-50% inhibition of secretion induced by nutrients alone (10 mM glucose + 5 mM glutamine + 5 mM leucine) or combined with bombesin (phospholipase C-activator) and 20% reduction of that potentiated by forskolin (stimulator of adenylyl cyclase). In perifusion, the stimulated secretion during the first phase was marginally diminished, whereas the second phase was inhibited by approximately 80%. Pretreatment of HIT cells with wartmannin, a myosin light chain kinase inhibitor, caused a similar pattern of inhibition of the biphasic insulin release as C2 toxin. Nutrient metabolism and bombesin-evoked rise in cytosolic free Ca2+ were not affected by C2 toxin, indicating that nutrient recognition and the coupling between receptor activation and second messenger generation was not changed. In the toxin-treated cells, the AF web beneath the plasma membrane and the diffuse cytoplasmic F-actin fibers disappeared, as shown both by staining with an antibody against G- and F-actin and by staining F-actin with fluorescent phallacidin. C2 toxin dose-dependently reduced cellular F-actin content. Stimulation of insulin secretion was not associated with changes in F-actin content and organization. Treatment of cells with cytochalasin E and B, which shorten AFs, inhibited the stimulated insulin release by 30-50% although differing in their effects on F-actin content. In contrast to HIT-T15 cells, insulin secretion was potentiated in isolated rat islets after disruption of microfilaments with C2 toxin, most notably during the first phase. This effect was, however, diminished, and the second phase became slightly inhibited when the islets were degranulated. These results indicate an important role for AFs in insulin secretion. In the poorly granulated HIT-T15 cells actin-myosin interactions may participate in the recruitment of secretory granules to the releasable pool. In native islet beta-cells the predominant function of AFs appears to be the limitation of the access of granules to the plasma membrane. Images PMID:7865885

  11. Targeting inflammation in diabetes: Newer therapeutic options

    PubMed Central

    Agrawal, Neeraj Kumar; Kant, Saket

    2014-01-01

    Inflammation has been recognised to both decrease beta cell insulin secretion and increase insulin resistance. Circulating cytokines can affect beta cell function directly leading to secretory dysfunction and increased apoptosis. These cytokines can also indirectly affect beta cell function by increasing adipocyte inflammation.The resulting glucotoxicity and lipotoxicity further enhance the inflammatory process resulting in a vicious cycle. Weight reduction and drugs such as metformin have been shown to decrease the levels of C-Reactive Protein by 31% and 13%, respectively. Pioglitazone, insulin and statins have anti-inflammatory effects. Interleukin 1 and tumor necrosis factor-α antagonists are in trials and NSAIDs such as salsalate have shown an improvement in insulin sensitivity. Inhibition of 12-lipo-oxygenase, histone de-acetylases, and activation of sirtuin-1 are upcoming molecular targets to reduce inflammation. These therapies have also been shown to decrease the conversion of pre-diabetes state to diabetes. Drugs like glicazide, troglitazone, N-acetylcysteine and selective COX-2 inhibitors have shown benefit in diabetic neuropathy by decreasing inflammatory markers. Retinopathy drugs are used to target vascular endothelial growth factor, angiopoietin-2, various proteinases and chemokines. Drugs targeting the proteinases and various chemokines are pentoxifylline, inhibitors of nuclear factor-kappa B and mammalian target of rapamycin and are in clinical trials for diabetic nephropathy. Commonly used drugs such as insulin, metformin, peroxisome proliferator-activated receptors, glucagon like peptide-1 agonists and dipeptidyl peptidase-4 inhibitors also decrease inflammation. Anti-inflammatory therapies represent a potential approach for the therapy of diabetes and its complications. PMID:25317247

  12. Indices of insulin secretion during a liquid mixed-meal test in obese youth with diabetes

    USDA-ARS?s Scientific Manuscript database

    To compare indices of insulin secretion, insulin sensitivity (IS),and oral disposition index (oDI) during the liquid mixed-meal test in obese youth with clinically diagnosed type 2 diabetes mellitus (T2DM) and negative autoantibodies (Ab-) versus those with T2DM and positive autoantibodies (Ab+) to ...

  13. Activation of PPAR{delta} up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic {beta}-cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Jun; Jiang, Li; Lue, Qingguo

    2010-01-15

    Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor {delta} (PPAR{delta}) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic {beta}-cells. After HIT-T15 cells (a {beta}-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPAR{delta}), we found that administration of GW increased the expression of PPAR{delta} mRNA. GW-induced activation of PPAR{delta} up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4more » (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPAR{delta} plays an important role in protecting pancreatic {beta}-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.« less

  14. Hydrogel Microencapsulated Insulin-Secreting Cells Increase Keratinocyte Migration, Epidermal Thickness, Collagen Fiber Density, and Wound Closure in a Diabetic Mouse Model of Wound Healing.

    PubMed

    Aijaz, Ayesha; Faulknor, Renea; Berthiaume, François; Olabisi, Ronke M

    2015-11-01

    Wound healing is a hierarchical process of intracellular and intercellular signaling. Insulin is a potent chemoattractant and mitogen for cells involved in wound healing. Insulin's potential to promote keratinocyte growth and stimulate collagen synthesis in fibroblasts is well described. However, there currently lacks an appropriate delivery mechanism capable of consistently supplying a wound environment with insulin; current approaches require repeated applications of insulin, which increase the chances of infecting the wound. In this study, we present a novel cell-based therapy that delivers insulin to the wound area in a constant or glucose-dependent manner by encapsulating insulin-secreting cells in nonimmunogenic poly(ethylene glycol) diacrylate (PEGDA) hydrogel microspheres. We evaluated cell viability and insulin secretory characteristics of microencapsulated cells. Glucose stimulation studies verified free diffusion of glucose and insulin through the microspheres, while no statistical difference in insulin secretion was observed between cells in microspheres and cells in monolayers. Scratch assays demonstrated accelerated keratinocyte migration in vitro when treated with microencapsulated cells. In excisional wounds on the dorsa of diabetic mice, microencapsulated RIN-m cells accelerated wound closure by postoperative day 7; a statistically significant increase over AtT-20ins-treated and control groups. Histological results indicated significantly greater epidermal thickness in both microencapsulated RIN-m and AtT-20ins-treated wounds. The results suggest that microencapsulation enables insulin-secreting cells to persist long enough at the wound site for a therapeutic effect and thereby functions as an effective delivery vehicle to accelerate wound healing.

  15. Comparisons of the efficacy of alpha glucosidase inhibitors on type 2 diabetes patients between Asian and Caucasian.

    PubMed

    Cai, Xiaoling; Han, Xueyao; Luo, Yingying; Ji, Linong

    2013-01-01

    To compare the efficacy of glycemic control and insulin secretion of alpha glucosidase inhibitors (AGI) on type 2 diabetes patients between Asian and Caucasian. The MEDLINE®, EMBASE®, CENTRAL were searched and qualified studies in Asian and Caucasian population comparing AGI treatment with placebo or other oral anti-diabetic drugs in type 2 diabetic patients were included. Totally 58 qualified studies were included. When AGI treatment was compared with placebo, a significant difference in HbA1c decline from baseline favoring AGI treatment was found in Asian (weighted mean difference (WMD), -0.50%; 95% CI, -0.66% to -0.34%) and in Caucasian a significant difference in HbA1c decline favoring AGI treatment was also found (WMD, -0.68%; 95% CI, -0.76% to -0.60%). In Asian, fasting plasma glucose was reduced with AGI treatment compared with placebo (WMD, -0.53 mmol/L; 95% CI, -0.91 to -0.14 mmol/L) and in Caucasian there was also a significant difference in FPG changes favoring AGI therapy (WMD, -0.88 mmol/L; 95% CI, -1.00 to -0.77 mmol/L). Studies in Asian showed a significant difference in fasting insulin changes favoring AGI treatment (WMD, -0.78 uU/ml; 95% CI, -0.96 to -0.59 uU/ml). While in Caucasian fasting insulin was decreased without significance with AGI treatment (WMD-1.24 uU/ml; 95% CI, -2.51 to 0.04 uU/ml). Body weight was decreased with AGI treatment in Asian (WMD, -1.00 kg; 95% CI, -1.69 to -0.31 kg) and was also decreased with AGI treatment in Caucasian (WMD, -0.73 kg; 95% CI, -1.13 to -0.33 kg). According to results from this meta-analysis, the efficacy in glucose lowering, body weight reduction and insulin secretion decreasing of AGI treatment in Asian were comparable with those in Caucasian.

  16. Glutathionylation state of uncoupling protein-2 and the control of glucose-stimulated insulin secretion.

    PubMed

    Mailloux, Ryan J; Fu, Accalia; Robson-Doucette, Christine; Allister, Emma M; Wheeler, Michael B; Screaton, Robert; Harper, Mary-Ellen

    2012-11-16

    The role of reactive oxygen species (ROS) in glucose-stimulated insulin release remains controversial because ROS have been shown to both amplify and impede insulin release. In regard to preventing insulin release, ROS activates uncoupling protein-2 (UCP2), a mitochondrial inner membrane protein that negatively regulates glucose-stimulated insulin secretion (GSIS) by uncoupling oxidative phosphorylation. With our recent discovery that the UCP2-mediated proton leak is modulated by reversible glutathionylation, a process responsive to small changes in ROS levels, we resolved to determine whether glutathionylation is required for UCP2 regulation of GSIS. Using Min6 cells and pancreatic islets, we demonstrate that induction of glutathionylation not only deactivates UCP2-mediated proton leak but also enhances GSIS. Conversely, an increase in mitochondrial matrix ROS was found to deglutathionylate and activate UCP2 leak and impede GSIS. Glucose metabolism also decreased the total amount of cellular glutathionylated proteins and increased the cellular glutathione redox ratio (GSH/GSSG). Intriguingly, the provision of extracellular ROS (H(2)O(2), 10 μM) amplified GSIS and also activated UCP2. Collectively, our findings indicate that the glutathionylation status of UCP2 contributes to the regulation of GSIS, and different cellular sites and inducers of ROS can have opposing effects on GSIS, perhaps explaining some of the controversy surrounding the role of ROS in GSIS.

  17. Glutathionylation State of Uncoupling Protein-2 and the Control of Glucose-stimulated Insulin Secretion*

    PubMed Central

    Mailloux, Ryan J.; Fu, Accalia; Robson-Doucette, Christine; Allister, Emma M.; Wheeler, Michael B.; Screaton, Robert; Harper, Mary-Ellen

    2012-01-01

    The role of reactive oxygen species (ROS) in glucose-stimulated insulin release remains controversial because ROS have been shown to both amplify and impede insulin release. In regard to preventing insulin release, ROS activates uncoupling protein-2 (UCP2), a mitochondrial inner membrane protein that negatively regulates glucose-stimulated insulin secretion (GSIS) by uncoupling oxidative phosphorylation. With our recent discovery that the UCP2-mediated proton leak is modulated by reversible glutathionylation, a process responsive to small changes in ROS levels, we resolved to determine whether glutathionylation is required for UCP2 regulation of GSIS. Using Min6 cells and pancreatic islets, we demonstrate that induction of glutathionylation not only deactivates UCP2-mediated proton leak but also enhances GSIS. Conversely, an increase in mitochondrial matrix ROS was found to deglutathionylate and activate UCP2 leak and impede GSIS. Glucose metabolism also decreased the total amount of cellular glutathionylated proteins and increased the cellular glutathione redox ratio (GSH/GSSG). Intriguingly, the provision of extracellular ROS (H2O2, 10 μm) amplified GSIS and also activated UCP2. Collectively, our findings indicate that the glutathionylation status of UCP2 contributes to the regulation of GSIS, and different cellular sites and inducers of ROS can have opposing effects on GSIS, perhaps explaining some of the controversy surrounding the role of ROS in GSIS. PMID:23035124

  18. Induction of pancreatic duct cells of neonatal rats into insulin-producing cells with fetal bovine serum: A natural protocol and its use for patch clamp experiments

    PubMed Central

    Leng, San-Hua; Lu, Fu-Er

    2005-01-01

    AIM: To induce the pancreatic duct cells into endocrine cells with a new natural protocol for electrophysiological study. METHODS: The pancreatic duct cells of neonatal rats were isolated, cultured and induced into endocrine cells with 15% fetal bovine serum for a period of 20 d. During this period, insulin secretion, MTT value, and morphological change of neonatal and adult pancreatic islet cells were comparatively investigated. Pancreatic β-cells were identified by morphological and electrophysiological characteristics, while ATP sensitive potassium channels (KATP), voltage-dependent potassium channels (KV), and voltage-dependent calcium channels (KCA) in β-cells were identified by patch clamp technique. RESULTS: After incubation with fetal bovine serum, the neonatal duct cells budded out, changed from duct-like cells into islet clusters. In the first 4 d, MTT value and insulin secretion increased slowly (MTT value from 0.024±0.003 to 0.028±0.003, insulin secretion from 2.6±0.6 to 3.1±0.8 mIU/L). Then MTT value and insulin secretion increased quickly from d 5 to d 10 (MTT value from 0.028±0.003 to 0.052±0.008, insulin secretion from 3.1±0.8 to 18.3±2.6 mIU/L), then reached high plateau (MTT value >0.052±0.008, insulin secretion >18.3±2.6 mIU/L). In contrast, for the isolated adult pancreatic islet cells, both insulin release and MTT value were stable in the first 4 d (MTT value from 0.029±0.01 to 0.031±0.011, insulin secretion from 13.9±3.1 to 14.3±3.3 mIU/L), but afterwards they reduced gradually (MTT value <0.031±0.011, insulin secretion <8.2±1.5 mIU/L), and the pancreatic islet cells became dispersed, broken or atrophied correspondingly. The differentiated neonatal cells were identified as pancreatic islet cells by dithizone staining method, and pancreatic β-cells were further identified by both morphological features and electrophysiological characteristics, i.e. the existence of recording currents from KATP, KV, and KCA. CONCLUSION: Islet cells differentiated from neonatal pancreatic duct cells with the new natural protocol are more advantageous in performing patch clamp study over the isolated adult pancreatic islet cells. PMID:16437601

  19. Tocotrienols Stimulate Insulin Secretion of Rat Pancreatic Isolated Islets in a Dynamic Culture.

    PubMed

    Chia, Ling L; Jantan, Ibrahim; Chua, Kien H

    2017-01-01

    Tocotrienols (T3) are the naturally occurring vitamin E derivatives that possess antioxidant properties and therapeutic potential in diabetic complications. The bioactivities of the derivatives are determined by the number and arrangement of methyl substitution on the structure. The objective of this study was to determine the effects of T3 derivatives, σ-T3, γ-T3 and α-T3 on insulin secretion of rat pancreatic islets in a dynamic culture. Pancreatic islets isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation that provided a stable cell culture environment. Glucose (2.8 mM and 16.7 mM, as basal and stimulant, respectively) and potassium chloride (KCl) (30 mM) were added to the treatment in calcium free medium. The supernatant was collected for insulin measurements. Short-term exposure (1 h) of σ-T3 to β cells in the stimulant glucose condition significantly potentiated insulin secretion in a dose-dependent manner. γ-T3 and α-T3 also displayed dosedependent effect but were less effective in the activation of insulin secretion. Essentially, KCl, a pancreatic β cell membrane depolarizing agent, added into the treatment further enhanced the insulin secretion of σ-T3, γ-T3 and α-T3 with ED50 values of 504, 511 and 588 µM, respectively. The findings suggest the potential of σ-T3 in regulating glucose-stimulated insulin secretion (GSIS) in response to the intracellular calcium especially in the presence of KCl. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Regulation of insulin secretion from islets of Langerhans rendered permeable by electric discharge

    PubMed Central

    Yaseen, M. Adel; Pedley, Kevin C.; Howell, Simon L.

    1982-01-01

    1. High-voltage electric discharge has been used to increase the permeability of B-cells of isolated islets of Langerhans to facilitate studies of the effects of normally impermeable substances on insulin secretion. 2. The application of an intense electric field increased the [14C]sucrose space of the islets from 37.8±3.1% to 86.2±5.2% of their total volume as assessed by 3H2O content. The cells remained permeable for at least 40min. 3. Ultrastructural studies showed no deleterious changes in the structure of the B-cells after discharge. 4. Insulin secretion from normal islets was unaffected by increasing the medium [Ca2+] from 10nm to 10μm. In the islets that had been rendered permeable by discharge, insulin secretion was significantly increased under these conditions, without any alteration in the release of lactate dehydrogenase, a cytoplasmic marker enzyme. 5. Studies of the dynamics of insulin release during perifusion showed that the response to increased (10μm) Ca2+ concentration was rapid and sustained over a period of at least 13min. 6. Secretion responses to Ca2+ in perifusion established that maximum release in permeabilized islets occurs at approx. 1μm-Ca2+ and half-maximum release occurs at approx. 0.6μm-Ca2+. 7. The study of the effect of agents that interfere with the microtubular microfilamentous system in B-cells using a perifusion system revealed that cytochalasin B caused a considerable increase, whereas vinblastine sulphate caused a significant inhibition, in insulin release in response to 1μm-Ca2+. 8. This technique should facilitate the study of the role of normally impermeable ions and metabolic intermediates in the regulation of insulin secretion. ImagesPLATE 1 PMID:6751326

  1. Larval hemolymph of rhinoceros beetle, Allomyrina dichotoma, enhances insulin secretion through ATF3 gene expression in INS-1 pancreatic β-cells.

    PubMed

    Kim, Seung-Whan; Suh, Hyun-Woo; Yoo, Bo-Kyung; Kwon, Kisang; Yu, Kweon; Choi, Ji-Young; Kwon, O-Yu

    2018-05-22

    In this study, we show that INS-1 pancreatic β-cells treated for 2 h with hemolymph of larvae of rhinoceros beetle, Allomyrina dichotoma, secreted about twice as much insulin compared to control cells without such treatment. Activating transcription factor 3 (ATF3) was the highest upregulated gene in DNA chip analysis. The A. dichotoma hemolymph dose-dependently induced increased expression levels of genes encoding ATF3 and insulin. Conversely, treatment with ATF3 siRNA inhibited expression levels of both genes and curbed insulin secretion. These results suggest that the A. dichotoma hemolymph has potential for treating and preventing diabetes or diabetes-related complications.

  2. Effects of acute and chronic psychological stress on isolated islets' insulin release

    PubMed Central

    Zardooz, Homeira; Zahediasl, Saleh; Rostamkhani, Fatemeh; Farrokhi, Babak; Nasiraei, Shiva; Kazeminezhad, Behrang; Gholampour, Roohollah

    2012-01-01

    This study investigated the effects of acute and chronic psychological stress on glucose-stimulated insulin secretion from isolated pancreatic islets. Male Wistar rats were divided into two control and stressed groups; each further was allocated into fed and fasted groups. Stress was induced by communication box for one (acute), fifteen and thirty (chronic) days. After islet isolation, their number, size and insulin output were assessed. Plasma corticosterone level was determined. In fasted animals, acute stress increased basal and post stress plasma corticosterone level, while 30 days stress decreased it compared to day 1. In fed rats, acute stress increased only post stress plasma corticosterone concentration, however, after 15 days stress, it was decreased compared to day 1. Acute stress did not change insulin output; however, the insulin output was higher in the fed acutely stressed rats at 8.3 and 16.7 mM glucose than fasted ones. Chronic stress increased insulin output on day 15 in the fasted animals but decreased it on day 30 in the fed animals at 8.3 and 16.7 mM glucose. In the fasted control rats insulin output was lower than fed ones. In the chronic stressed rats insulin output at 8.3 and 16.7 mM glucose was higher in the fasted than fed rats. The number of islets increased in the fasted rats following 15 days stress. This study indicated that the response of the isolated islets from acute and chronically stressed rats are different and depends on the feeding status. PMID:27385956

  3. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    PubMed

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Effects of Exenatide Plus Rosiglitazone on β-Cell Function and Insulin Sensitivity in Subjects With Type 2 Diabetes on Metformin

    PubMed Central

    DeFronzo, Ralph A.; Triplitt, Curtis; Qu, Yongming; Lewis, Michelle S.; Maggs, David; Glass, Leonard C.

    2010-01-01

    OBJECTIVE Study the effects of exenatide (EXE) plus rosiglitazone (ROSI) on β-cell function and insulin sensitivity using hyperglycemic and euglycemic insulin clamp techniques in participants with type 2 diabetes on metformin. RESEARCH DESIGN AND METHODS In this 20-week, randomized, open-label, multicenter study, participants (mean age, 56 ± 10 years; weight, 93 ± 16 kg; A1C, 7.8 ± 0.7%) continued their metformin regimen and received either EXE 10 μg b.i.d. (n = 45), ROSI 4 mg b.i.d. (n = 45), or EXE 10 μg b.i.d. + ROSI 4 mg b.i.d. (n = 47). Seventy-three participants underwent clamp procedures to quantitate insulin secretion and insulin sensitivity. RESULTS A1C declined in all groups (P < 0.05), but decreased most with EXE+ROSI (EXE+ROSI, −1.3 ± 0.1%; ROSI, −1.0 ± 0.1%, EXE, −0.9 ± 0.1%; EXE+ROSI vs. EXE or ROSI, P < 0.05). ROSI resulted in weight gain, while EXE and EXE+ROSI resulted in weight loss (EXE, −2.8 ± 0.5 kg; EXE+ROSI, −1.2 ± 0.5 kg; ROSI, + 1.5 ± 0.5 kg; P < 0.05 between and within all groups). At week 20, 1st and 2nd phase insulin secretion was significantly higher in EXE and EXE+ROSI versus ROSI (both P < 0.05). Insulin sensitivity (M value) was significantly higher in EXE+ROSI versus EXE (P = 0.014). CONCLUSIONS Therapy with EXE+ROSI offset the weight gain observed with ROSI and elicited an additive effect on glycemic control with significant improvements in β-cell function and insulin sensitivity. PMID:20107105

  5. Role of the Transcription Factor Sox4 in Insulin Secretion and Impaired Glucose Tolerance

    PubMed Central

    Goldsworthy, Michelle; Hugill, Alison; Freeman, Helen; Horner, Emma; Shimomura, Kenju; Bogani, Debora; Pieles, Guido; Mijat, Vesna; Arkell, Ruth; Bhattacharya, Shoumo; Ashcroft, Frances M.; Cox, Roger D.

    2008-01-01

    OBJECTIVES— To identify, map, clone, and functionally validate a novel mouse model for impaired glucose tolerance and insulin secretion. RESEARCH DESIGN AND METHODS— Haploinsufficiency of the insulin receptor and associated mild insulin resistance has been used to sensitize an N-ethyl-N-nitrosourea (ENU) screen to identify novel mutations resulting in impaired glucose tolerance and diabetes. The new impaired glucose tolerance 4 (IGT4) model was selected using an intraperitoneal glucose tolerance test and inheritance of the phenotype confirmed by generation of backcross progeny. Segregation of the phenotype was correlated with genotype information to map the location of the gene and candidates sequenced for mutations. The function of the SRY-related high mobility group (HMG)-box 4 (Sox4) gene in insulin secretion was tested using another ENU allele and by small interfering RNA silencing in insulinoma cells. RESULTS— We describe two allelic autosomal dominant mutations in the highly conserved HMG box of the transcription factor Sox4. Previously associated with pancreas development, Sox4 mutations in the adult mouse result in an insulin secretory defect, which exhibits impaired glucose tolerance in association with insulin receptor+/−–induced insulin resistance. Elimination of the Sox4 transcript in INS1 and Min6 cells resulted in the abolition of glucose-stimulated insulin release similar to that observed for silencing of the key metabolic enzyme glucokinase. Intracellular calcium measurements in treated cells indicate that this defect lies downstream of the ATP-sensitive K+ channel (KATP channel) and calcium influx. CONCLUSIONS— IGT4 represents a novel digenic model of insulin resistance coupled with an insulin secretory defect. The Sox4 gene has a role in insulin secretion in the adult β-cell downstream of the KATP channel. PMID:18477811

  6. Serum fatty acid-binding protein 4 (FABP4) concentration is associated with insulin resistance in peripheral tissues, A clinical study.

    PubMed

    Nakamura, Risa; Okura, Tsuyoshi; Fujioka, Yohei; Sumi, Keisuke; Matsuzawa, Kazuhiko; Izawa, Shoichiro; Ueta, Etsuko; Kato, Masahiko; Taniguchi, Shin-Ichi; Yamamoto, Kazuhiro

    2017-01-01

    Type 2 diabetes mellitus (T2DM) is caused by insulin resistance and β cell dysfunction. In recent studies reported that several markers associated with insulin sensitivity in skeletal muscle, Adiponectin and other parameters, such as fatty acid-binding protein (FABP4), have been reported to regulate insulin resistance, but it remains unclear which factor mostly affects insulin resistance in T2DM. In this cross-sectional study, we evaluated the relationships between several kinds of biomarkers and insulin resistance, and insulin secretion in T2DM and healthy controls. We recruited 30 participants (12 T2DM and 18 non-diabetic healthy controls). Participants underwent a meal tolerance test during which plasma glucose, insulin and serum C-peptide immunoreactivity were measured. We performed a hyperinsulinemic-euglycemic clamp and measured the glucose-disposal rate (GDR). The fasting serum levels of adiponectin, insulin-like growth factor-1, irisin, autotaxin, FABP4 and interleukin-6 were measured by ELISA. We found a strong negative correlation between FABP4 concentration and GDR in T2DM (r = -0.657, p = 0.020). FABP4 also was positively correlated with insulin secretion during the meal tolerance test in T2DM (IRI (120): r = 0.604, p = 0.038) and was positively related to the insulinogenic index in non-DM subjects (r = 0.536, p = 0.022). Autotaxin was also related to GDR. However, there was no relationship with insulin secretion. We found that serum FABP4 concentration were associated with insulin resistance and secretion in T2DM. This suggests that FABP4 may play an important role in glucose homeostasis.

  7. Serum fatty acid-binding protein 4 (FABP4) concentration is associated with insulin resistance in peripheral tissues, A clinical study

    PubMed Central

    Nakamura, Risa; Okura, Tsuyoshi; Fujioka, Yohei; Sumi, Keisuke; Matsuzawa, Kazuhiko; Izawa, Shoichiro; Ueta, Etsuko; Kato, Masahiko; Taniguchi, Shin-ichi; Yamamoto, Kazuhiro

    2017-01-01

    Type 2 diabetes mellitus (T2DM) is caused by insulin resistance and β cell dysfunction. In recent studies reported that several markers associated with insulin sensitivity in skeletal muscle, Adiponectin and other parameters, such as fatty acid-binding protein (FABP4), have been reported to regulate insulin resistance, but it remains unclear which factor mostly affects insulin resistance in T2DM. In this cross-sectional study, we evaluated the relationships between several kinds of biomarkers and insulin resistance, and insulin secretion in T2DM and healthy controls. We recruited 30 participants (12 T2DM and 18 non-diabetic healthy controls). Participants underwent a meal tolerance test during which plasma glucose, insulin and serum C-peptide immunoreactivity were measured. We performed a hyperinsulinemic-euglycemic clamp and measured the glucose-disposal rate (GDR). The fasting serum levels of adiponectin, insulin-like growth factor-1, irisin, autotaxin, FABP4 and interleukin-6 were measured by ELISA. We found a strong negative correlation between FABP4 concentration and GDR in T2DM (r = -0.657, p = 0.020). FABP4 also was positively correlated with insulin secretion during the meal tolerance test in T2DM (IRI (120): r = 0.604, p = 0.038) and was positively related to the insulinogenic index in non-DM subjects (r = 0.536, p = 0.022). Autotaxin was also related to GDR. However, there was no relationship with insulin secretion. We found that serum FABP4 concentration were associated with insulin resistance and secretion in T2DM. This suggests that FABP4 may play an important role in glucose homeostasis. PMID:28654680

  8. Inadequate vitamin D status: does it contribute to the disorders comprising syndrome 'X'?

    PubMed

    Boucher, B J

    1998-04-01

    Environmental factors are important in the aetiology of glucose intolerance, type II diabetes and IHD. The lack of vitamin D, which is necessary for adequate insulin secretion, relates demographically to increased risk of myocardial infarction. These disorders are connected, degenerative vascular disease increasing with glucose intolerance and diabetes and, with its risk factors, comprising syndrome 'X'. Evidence is presented suggesting that vitamin D deficiency may be an avoidable risk factor for syndrome 'X', adding another preventative measure to current recommendations which are aimed at reducing the worldwide epidemic of these disorders. Experimentally, vitamin D deficiency progressively reduces insulin secretion; glucose intolerance follows and becomes irreversible. Relationships between vitamin D status, glucose tolerance and 30 min insulin secretion during oral glucose tolerance tests are reported in British Asians; insulin secretion, but not glycaemia, improving with short-term supplementation. Studies showing reduction in blood pressure and in risk of heart attack and diabetes with exercise (usually outdoor), rarely consider the role of vitamin D status. Glycaemia and insulin secretion in elderly European men, however, relate to vitamin D status, independent of season or physical activity. Prolonged supplementation can improve glycaemia. Hypertension improves with vitamin D treatment with or without initial deficiency. Vitamin D status and climate are reviewed as risk factors for myocardial infarction; the risk reducing with altitude despite increasing cold. Glycaemia and fibrinogenaemia improve with insulin secretion increases in summer. Variation in vitamin D requirements could arise from genetic differences in vitamin D processing since bone density can vary with vitamin D-receptor genotype. Vitamin D receptors are present in islet beta cells and we report insulin secretion in healthy Asians differing profoundly with the Apa I genotype, being independent of vitamin D status. Those at risk of vitamin D deficiency include the elderly, those living indoors or having a covered-up style of dress, especially dark-skinned immigrants, and pregnant women, and these are groups recognized as being at increased risk of diabetes.

  9. Insulin treatment partially prevents cognitive and hippocampal alterations as well as glucocorticoid dysregulation in early-onset insulin-deficient diabetic rats.

    PubMed

    Marissal-Arvy, Nathalie; Campas, Marie-Neige; Semont, Audrey; Ducroix-Crepy, Céline; Beauvieux, Marie-Christine; Brossaud, Julie; Corcuff, Jean-Benoit; Helbling, Jean-Christophe; Vancassel, Sylvie; Bouzier-Sore, Anne-Karine; Touyarot, Katia; Ferreira, Guillaume; Barat, Pascal; Moisan, Marie-Pierre

    2018-04-17

    The diagnosis of Type 1 Diabetes (T1D) in ever younger children led us to question the impact of insulin deficiency or chronic hyperglycemia on cerebral development and memory performances. Here, we sought abnormalities in these traits in a model of streptozotocin-induced diabetes in juvenile rats treated or not by insulin. We made the assumption that such alterations would be related, at least in part, to excessive glucocorticoid exposition in hippocampal neurons. We have compared 3 groups of juvenile rats: controls, untreated diabetics and insulin-treated diabetics. Diabetes was induced by streptozotocin (65 mg/kg IP/day, 2 consecutive days), at postnatal days 21 and 22 and a subcutaneous pellet delivering 2 U of insulin/day was implanted in treated diabetic rats 3 days later. Three weeks after diabetes induction, cognitive performances (Y maze, object location and recognition tests), in vivo brain structure (brain volume and water diffusion by structural magnetic resonance imaging), and hippocampal neurogenesis (immunohistochemical labeling) measurements were undertaken. Corticosterone levels were evaluated in plasma under basal and stress conditions, and within hippocampus together with 11β-dehydrocorticosterone to assess 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity. The comparison of the three experimental groups revealed that, compared to controls, untreated diabetic rats showed decreased cognitive performances in Y-maze and object location test (p < 0.05), decreased brain and hippocampal microstructure (p < 0.05), and decreased maturation and survival of hippocampal newborn neurons (p < 0.05). These alterations were associated with increased plasma corticosterone at the baseline nadir of its secretion (p < 0.001) and during the recovery phase following a restraint stress (p < 0.001), as well as increased hippocampal corticosterone levels (p < 0.01) and 11β-HSD1 activity (p < 0.05). As untreated diabetic rats, insulin-treated diabetic rats displayed decreased brain volume and water diffusion (p < 0.05 compared to controls) and intermediate memory performances and hippocampal neurogenesis (p value not significant compared to either controls or untreated diabetics). Moreover, they were similar to controls for basal plasma and hippocampal corticosterone and 11β-HSD1 activity but show increased plasma corticosterone during the recovery phase following a restraint stress similar to untreated diabetics (p < 0.001 compared to controls). Thus, insulin did not completely prevent several hippocampal-dependent behavioral and structural alterations induced by diabetes in juvenile rats which may relate to the higher cognitive difficulties encountered in T1D children compared to non-diabetic controls. Although insulin restored basal corticosterone and 11β-HSD1 activity (in hippocampus and plasma), the negative feedback regulation of corticosterone secretion after stress was still impaired in insulin-treated diabetic rats. Further characterization of insulin control on glucocorticoid regulation and availability within hippocampus is awaited. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. New twist on neuronal insulin receptor signaling in health, disease, and therapeutics.

    PubMed

    Wada, Akihiko; Yokoo, Hiroki; Yanagita, Toshihiko; Kobayashi, Hideyuki

    2005-10-01

    Long after the pioneering studies documenting the existence of insulin (year 1967) and insulin receptor (year 1978) in brain, the last decade has witnessed extraordinary progress in the understanding of brain region-specific multiple roles of insulin receptor signalings in health and disease. In the hypothalamus, insulin regulates food intake, body weight, peripheral fat deposition, hepatic gluconeogenesis, reproductive endocrine axis, and compensatory secretion of counter-regulatory hormones to hypoglycemia. In the hippocampus, insulin promotes learning and memory, independent of the glucoregulatory effect of insulin. Defective insulin receptor signalings are associated with the dementia in normal aging and patients with age-related neurodegenerative diseases (e.g., Alzheimer's disease); the cognitive impairment can be reversed with systemic administration of insulin in the euglycemic condition. Intranasal administration of insulin enhances memory and mood and decreases body weight in healthy humans, without causing hypoglycemia. In the hypothalamus, insulin-induced activation of the phosphoinositide 3-kinase pathway followed by opening of ATP-sensitive K+ channel has been shown to be related to multiple effects of insulin. However, the precise molecular mechanisms of insulin's pleiotropic effects still remain obscure. More importantly, much remains unknown about the quality control mechanisms ensuring correct conformational maturation of the insulin receptor, and the cellular mechanisms regulating density of cell surface functional insulin receptors.

  11. Critical role for GLP-1 in symptomatic post-bariatric hypoglycaemia.

    PubMed

    Craig, Colleen M; Liu, Li-Fen; Deacon, Carolyn F; Holst, Jens J; McLaughlin, Tracey L

    2017-03-01

    Post-bariatric hypoglycaemia (PBH) is a rare, but severe, metabolic disorder arising months to years after bariatric surgery. It is characterised by symptomatic postprandial hypoglycaemia, with inappropriately elevated insulin concentrations. The relative contribution of exaggerated incretin hormone signalling to dysregulated insulin secretion and symptomatic hypoglycaemia is a subject of ongoing inquiry. This study was designed to test the hypothesis that PBH and associated symptoms are primarily mediated by glucagon-like peptide-1 (GLP-1). We conducted a double-blinded crossover study wherein eight participants with confirmed PBH were assigned in random order to intravenous infusion of the GLP-1 receptor (GLP-1r) antagonist. Exendin (9-39) (Ex-9), or placebo during an OGTT on two separate days at the Stanford University Clinical and Translational Research Unit. Metabolic, symptomatic and pharmacokinetic variables were evaluated. Results were compared with a cohort of BMI- and glucose-matched non-surgical controls (NSCs). Infusion of Ex-9 decreased the time to peak glucose and rate of glucose decline during OGTT, and raised the postprandial nadir by over 70%, normalising it relative to NSCs and preventing hypoglycaemia in all PBH participants. Insulin AUC and secretion rate decreased by 57% and 71% respectively, and peak postprandial insulin was normalised relative to NSCs. Autonomic and neuroglycopenic symptoms were significantly reduced during Ex-9 infusion. GLP-1r blockade prevented hypoglycaemia in 100% of individuals, normalised beta cell function and reversed neuroglycopenic symptoms, supporting the conclusion that GLP-1 plays a primary role in mediating hyperinsulinaemic hypoglycaemia in PBH. Competitive antagonism at the GLP-1r merits consideration as a therapeutic strategy. ClinicalTrials.gov NCT02550145.

  12. Over-expression of ZnT7 increases insulin synthesis and secretion in pancreatic beta-cells by promoting insulin gene transcription

    USDA-ARS?s Scientific Manuscript database

    The mechanism by which zinc regulates insulin synthesis and secretion in pancreatic beta-cells is still unclear. Cellular zinc homeostasis is largely maintained by zinc transporters and intracellular zinc binding proteins. In this study, we demonstrated that zinc transporter 7 (ZnT7, Slc30a7) was co...

  13. Leptin as a Marker of Body Fat and Hyperinsulinemia in College Students

    ERIC Educational Resources Information Center

    Kempf, Angela M.; Strother, Myra L.; Li, Chaoyang; Kaur, Harsohena; Huang, Terry T-K.

    2006-01-01

    Little is known about obesity and insulin resistance in college students. Leptin is a hormone secreted by fat cells and has been shown to strongly correlate with both obesity and insulin resistance in children and adults. We investigated associations of leptin with insulin secretion and action in 119 normal-weight students aged 18-24 years. Leptin…

  14. Heterogeneous Contribution of Insulin Sensitivity and Secretion Defects to Gestational Diabetes Mellitus

    PubMed Central

    Powe, Camille E.; Allard, Catherine; Battista, Marie-Claude; Doyon, Myriam; Bouchard, Luigi; Ecker, Jeffrey L.; Perron, Patrice; Florez, Jose C.; Thadhani, Ravi

    2016-01-01

    OBJECTIVE To characterize physiologic subtypes of gestational diabetes mellitus (GDM). RESEARCH DESIGN AND METHODS Insulin sensitivity and secretion were estimated in 809 women at 24–30 weeks' gestation, using oral glucose tolerance test–based indices. In women with GDM (8.3%), defects in insulin sensitivity or secretion were defined below the 25th percentile in women with normal glucose tolerance (NGT). GDM subtypes were defined based on the defect(s) present. RESULTS Relative to women with NGT, women with predominant insulin sensitivity defects (51% of GDM) had higher BMI and fasting glucose, larger infants (birth weight z score 0.57 [−0.01 to 1.37] vs. 0.03 [−0.53 to 0.52], P = 0.001), and greater risk of GDM-associated adverse outcomes (57.6 vs. 28.2%, P = 0.003); differences were independent of BMI. Women with predominant insulin secretion defects (30% of GDM) had BMI, fasting glucose, infant birth weights, and risk of adverse outcomes similar to those in women with NGT. CONCLUSIONS Heterogeneity of physiologic processes underlying hyperglycemia exists among women with GDM. GDM with impaired insulin sensitivity confers a greater risk of adverse outcomes. PMID:27208340

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heart, Emma; Palo, Meridith; Womack, Trayce

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H{sub 2}O{sub 2}), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H{sub 2}O{sub 2} inhibit insulin secretion. Menadione, which produces H{sub 2}O{sub 2} via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cellmore » line, and primary rodent islets. Menadione-dependent redox cycling and resulting H{sub 2}O{sub 2} production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H{sub 2}O{sub 2} formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H{sub 2}O{sub 2} and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H{sub 2}O{sub 2} production is proportional to applied glucose levels. ► Quinone-mediated redox cycling is dependent on glycolysis.« less

  16. Visualizing pancreatic β-cell mass with [11C]DTBZ

    PubMed Central

    Simpson, Norman Ray; Souza, Fabiola; Witkowski, Piotr; Maffei, Antonella; Raffo, Anthony; Herron, Alan; Kilbourn, Michael; Jurewicz, Agata; Herold, Kevan; Liu, Eric; Hardy, Mark Adam; Van Heertum, Ronald; Harris, Paul Emerson

    2013-01-01

    β-Cell mass (BCM) influences the total amount of insulin secreted, varies by individual and by the degree of insulin resistance, and is affected by physiologic and pathologic conditions. The islets of Langerhans, however, appear to have a reserve capacity of insulin secretion and, overall, assessments of insulin and blood glucose levels remain poor measures of BCM, β-cell function and progression of diabetes. Thus, novel noninvasive determinations of BCM are needed to provide a quantitative endpoint for novel therapies of diabetes, islet regeneration and transplantation. Built on previous gene expression studies, we tested the hypothesis that the targeting of vesicular monoamine transporter 2 (VMAT2), which is expressed by β cells, with [11C]dihydrotetrabenazine ([11C]DTBZ), a radioligand specific for VMAT2, and the use of positron emission tomography (PET) can provide a measure of BCM. In this report, we demonstrate decreased radioligand uptake within the pancreas of Lewis rats with streptozotocin-induced diabetes relative to their euglycemic historical controls. These studies suggest that quantitation of VMAT2 expression in β cells with the use of [11C]DTBZ and PET represents a method for noninvasive longitudinal estimates of changes in BCM that may be useful in the study and treatment of diabetes. PMID:17045165

  17. Role of endogenously released cholecystokinin in determining postprandial insulin levels in man: effects of loxiglumide, a specific cholecystokinin receptor antagonist.

    PubMed

    Baum, F; Nauck, M A; Ebert, R; Cantor, P; Hoffmann, G; Choudhury, A R; Schmidt, W E; Creutzfeldt, W

    1992-01-01

    To estimate the contribution of postprandial cholecystokinin (CCK) responses to circulating insulin concentrations and insulin secretion, a specific CCK receptor antagonist (loxiglumide; 10 mg/kg body weight/h) or saline were infused intravenously in normal volunteers, beginning 90 min before insulin secretion was stimulated on separate occasions by the intraduodenal administrations of glucose, glucose and protein, and glucose plus protein with the admixture of pancreatin. The release of CCK (radioimmunoassay) was stimulated by the protein component of the nutrients from basal 2.4 +/- 0.4 to 8.0 +/- 1.2 pmol/l. CCK plasma levels were significantly higher with loxiglumide (p < 0.05). Glucose-dependent insulinotropic polypeptide (GIP) was also released by all nutrient mixtures. Loxiglumide significantly inhibited the amount of bilirubin and pancreatic enzymes recovered from duodenal aspirates. In contrast, in none of the experiments, C-peptide increments and hence insulin secretion rates were altered by loxiglumide. With glucose and protein as intraduodenal stimulus (no pancreatin added), the plasma amino acids rose significantly less (by approximately 50% of the control experiment) and the increment in insulin (but not C-peptide) concentrations was significantly reduced by loxiglumide. This is most likely explained by a change in insulin metabolic clearance. This effect cannot be a primary action of CCK because there was no similar effect of loxiglumide with the same intraduodenal stimulus plus added pancreatin. Pancreatic enzymes reduced maldigestion secondary to loxiglumide effects on pancreatic exocrine secretion: The increment in circulating amino acid concentrations was similar with and without loxiglumide. In conclusion, CCK does not alter insulin secretion and, therefore, is not an incretin hormone in man. Blocking CCK actions on the exocrine pancreas by loxiglumide, however, can secondarily cause reductions in postprandial insulin profiles by altering insulin clearance. These changes are possibly related to reductions in circulating amino acid concentrations.

  18. Perilipin 5 Regulates Islet Lipid Metabolism and Insulin Secretion in a cAMP-Dependent Manner: Implication of Its Role in the Postprandial Insulin Secretion

    PubMed Central

    Trevino, Michelle B.; Machida, Yui; Hallinger, Daniel R.; Garcia, Eden; Christensen, Aaron; Dutta, Sucharita; Peake, David A.; Ikeda, Yasuhiro

    2015-01-01

    Elevation of circulating fatty acids (FA) during fasting supports postprandial (PP) insulin secretion that is critical for glucose homeostasis and is impaired in diabetes. We tested our hypothesis that lipid droplet (LD) protein perilipin 5 (PLIN5) in β-cells aids PP insulin secretion by regulating intracellular lipid metabolism. We demonstrated that PLIN5 serves as an LD protein in human islets. In vivo, Plin5 and triglycerides were increased by fasting in mouse islets. MIN6 cells expressing PLIN5 (adenovirus [Ad]-PLIN5) and those expressing perilipin 2 (PLIN2) (Ad-PLIN2) had higher [3H]FA incorporation into triglycerides than Ad-GFP control, which support their roles as LD proteins. However, Ad-PLIN5 cells had higher lipolysis than Ad-PLIN2 cells, which increased further by 8-Br-cAMP, indicating that PLIN5 facilitates FA mobilization upon cAMP stimulation as seen postprandially. Ad-PLIN5 in islets enhanced the augmentation of glucose-stimulated insulin secretion by FA and 8-Br-cAMP in G-protein–coupled receptor 40 (GPR40)- and cAMP-activated protein kinase–dependent manners, respectively. When PLIN5 was increased in mouse β-cells in vivo, glucose tolerance after an acute exenatide challenge was improved. Therefore, the elevation of islet PLIN5 during fasting allows partitioning of FA into LD that is released upon refeeding to support PP insulin secretion in cAMP- and GPR40-dependent manners. PMID:25392244

  19. Phorbol ester impairs electrical excitation of rat pancreatic beta-cells through PKC-independent activation of KATP channels.

    PubMed

    Suga, S; Wu, J; Ogawa, Y; Takeo, T; Kanno, T; Wakui, M

    2001-01-01

    Phorbol 12-myristate 13-acetate (PMA) is often used as an activating phorbol ester of protein kinase C (PKC) to investigate the roles of the kinase in cellular functions. Accumulating lines of evidence indicate that in addition to activating PKC, PMA also produces some regulatory effects in a PKC-independent manner. In this study, we investigated the non-PKC effects of PMA on electrical excitability of rat pancreatic beta-cells by using patch-clamp techniques. In current-clamp recording, PMA (80 nM) reversibly inhibited 15 mM glucose-induced action potential spikes superimposed on a slow membrane depolarization and this inhibition can not be prevented by pre-treatment of the cell with a specific PKC inhibitor, bisindolylmaleimide (BIM, 1 microM). In the presence of a subthreshold concentration (5.5 mM) of glucose, PMA hyperpolarized beta-cells in a concentration-dependent manner (0.8-240 nM), even in the presence of BIM. Based on cell-attached single channel recordings, PMA increased ATP-sensitive K+ channel (KATP) activity. Based on inside-out patch-clamp recordings, PMA had little effect on KATP activity if no ATP was in the bath, while PMA restored KATP activity that was suppressed by 10 microM ATP in the bath. In voltage-clamp recording, PMA enhanced tolbutamide-sensitive membrane currents elicited by repetitive ramp pulses from -90 to -50 mV in a concentration-dependent manner, and this potentiation could not be prevented by pre-treatment of cell with BIM. 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, mimicked the effect of PMA on both current-clamp and voltage-clamp recording configurations. With either 5.5 or 16.6 mM glucose in the extracellular solution, PMA (80 nM) increased insulin secretion from rat islets. However, in islets pretreated with BIM (1 microM), PMA did not increase, but rather reduced insulin secretion. In rat pancreatic beta-cells, PMA modulates insulin secretion through a mixed mechanism: increases insulin secretion by activation of PKC, and meanwhile decrease insulin secretion by impairing beta-cell excitability in a PKC-independent manner. The enhancement of KATP activity by reducing sensitivity of KATP to ATP seems to underlie the PMA-induced impairment of beta-cells electrical excitation in response to glucose stimulation.

  20. Glucose Acutely Reduces Cytosolic and Mitochondrial H2O2 in Rat Pancreatic Beta Cells.

    PubMed

    Deglasse, Jean-Philippe; Roma, Leticia Prates; Pastor-Flores, Daniel; Gilon, Patrick; Dick, Tobias P; Jonas, Jean-Christophe

    2018-06-14

    Whether H 2 O 2 contributes to the glucose-dependent stimulation of insulin secretion (GSIS) by pancreatic β cells is highly controversial. We used two H 2 O 2 -sensitive probes, roGFP2-Orp1 (reduction/oxidation-sensitive enhanced green fluorescent protein fused to oxidant receptor peroxidase 1) and HyPer (hydrogen peroxide sensor) with its pH-control SypHer, to test the acute effects of glucose, monomethyl succinate, leucine with glutamine, and α-ketoisocaproate on β cell cytosolic and mitochondrial H 2 O 2 concentrations. We then tested the effects of low H 2 O 2 and menadione concentrations on insulin secretion. RoGFP2-Orp1 was more sensitive than HyPer to H 2 O 2 (response at 2-5 vs. 10 μM) and less pH-sensitive. Under control conditions, stimulation with glucose reduced mitochondrial roGFP2-Orp1 oxidation without affecting cytosolic roGFP2-Orp1 and HyPer fluorescence ratios, except for the pH-dependent effects on HyPer. However, stimulation with glucose decreased the oxidation of both cytosolic probes by 15 μM exogenous H 2 O 2 . The glucose effects were not affected by overexpression of catalase, mitochondrial catalase, or superoxide dismutase 1 and 2. They followed the increase in NAD(P)H autofluorescence, were maximal at 5 mM glucose in the cytosol and 10 mM glucose in the mitochondria, and were partly mimicked by the other nutrients. Exogenous H 2 O 2 (1-15 μM) did not affect insulin secretion. By contrast, menadione (1-5 μM) did not increase basal insulin secretion but reduced the stimulation of insulin secretion by 20 mM glucose. Subcellular changes in β cell H 2 O 2 levels are better monitored with roGFP2-Orp1 than HyPer/SypHer. Nutrients acutely lower mitochondrial H 2 O 2 levels in β cells and promote degradation of exogenously supplied H 2 O 2 in both cytosolic and mitochondrial compartments. The GSIS occurs independently of a detectable increase in β cell cytosolic or mitochondrial H 2 O 2 levels. Antioxid. Redox Signal. 00, 000-000.

  1. The Ia-2β intronic miRNA, miR-153, is a negative regulator of insulin and dopamine secretion through its effect on the Cacna1c gene in mice.

    PubMed

    Xu, Huanyu; Abuhatzira, Liron; Carmona, Gilberto N; Vadrevu, Suryakiran; Satin, Leslie S; Notkins, Abner L

    2015-10-01

    miR-153 is an intronic miRNA embedded in the genes that encode IA-2 (also known as PTPRN) and IA-2β (also known as PTPRN2). Islet antigen (IA)-2 and IA-2β are major autoantigens in type 1 diabetes and are important transmembrane proteins in dense core and synaptic vesicles. miR-153 and its host genes are co-regulated in pancreas and brain. The present experiments were initiated to decipher the regulatory network between miR-153 and its host gene Ia-2β (also known as Ptprn2). Insulin secretion was determined by ELISA. Identification of miRNA targets was assessed using luciferase assays and by quantitative real-time PCR and western blots in vitro and in vivo. Target protector was also employed to evaluate miRNA target function. Functional studies revealed that miR-153 mimic suppresses both glucose- and potassium-induced insulin secretion (GSIS and PSIS, respectively), whereas miR-153 inhibitor enhances both GSIS and PSIS. A similar effect on dopamine secretion also was observed. Using miRNA target prediction software, we found that miR-153 is predicted to target the 3'UTR region of the calcium channel gene, Cacna1c. Further studies confirmed that Cacna1c mRNA and protein are downregulated by miR-153 mimics and upregulated by miR-153 inhibitors in insulin-secreting freshly isolated mouse islets, in the insulin-secreting mouse cell line MIN6 and in the dopamine-secreting cell line PC12. miR-153 is a negative regulator of both insulin and dopamine secretion through its effect on Cacna1c expression, which suggests that IA-2β and miR-153 have opposite functional effects on the secretory pathway.

  2. MiRNAs in β-Cell Development, Identity, and Disease

    PubMed Central

    Martinez-Sanchez, Aida; Rutter, Guy A.; Latreille, Mathieu

    2017-01-01

    Pancreatic β-cells regulate glucose metabolism by secreting insulin, which in turn stimulates the utilization or storage of the sugar by peripheral tissues. Insulin insufficiency and a prolonged period of insulin resistance are usually the core components of type 2 diabetes (T2D). Although, decreased insulin levels in T2D have long been attributed to a decrease in β-cell function and/or mass, this model has recently been refined with the recognition that a loss of β-cell “identity” and dedifferentiation also contribute to the decline in insulin production. MicroRNAs (miRNAs) are key regulatory molecules that display tissue-specific expression patterns and maintain the differentiated state of somatic cells. During the past few years, great strides have been made in understanding how miRNA circuits impact β-cell identity. Here, we review current knowledge on the role of miRNAs in regulating the acquisition of the β-cell fate during development and in maintaining mature β-cell identity and function during stress situations such as obesity, pregnancy, aging, or diabetes. We also discuss how miRNA function could be harnessed to improve our ability to generate β-cells for replacement therapy for T2D. PMID:28123396

  3. Repaglinide acutely amplifies pulsatile insulin secretion by augmentation of burst mass with no effect on burst frequency.

    PubMed

    Juhl, C B; Pørksen, N; Hollingdal, M; Sturis, J; Pincus, S; Veldhuis, J D; Dejgaard, A; Schmitz, O

    2000-05-01

    Repaglinide is a new oral hypoglycemic agent that acts as a prandial glucose regulator proposed for the treatment of type 2 diabetes by stimulating insulin secretion. The aim of this study was to explore actions of repaglinide on the rapid pulsatile insulin release by high-frequency insulin sampling and analysis of insulin-concentration time series. We examined 8 healthy lean male subjects in a single-dose double-blind placebo-controlled crossover design. After the subjects underwent an overnight fast, blood sampling was initiated and continued every minute for 120 min. After 40 min, a single dose (0.5 mg) of repaglinide or placebo was given. Serum insulin-concentration time series were assessed by deconvolution analyses and the regularity statistic by approximate entropy (ApEn). Average insulin concentration was increased after repaglinide administration (basal vs. stimulated period, P values are placebo vs. repaglinide) (25.1 +/- 3.6 vs. 33.5 +/- 4.1 pmol/l, P < 0.001). Insulin secretory burst mass (15.8 +/- 2.2 vs. 19.6 +/- 2.8 pmol x l(-1) x pulse(-1), P = 0.02) and amplitude (6.1 +/- 0.9 vs. 7.7 +/- 1.2 pmol x l(-1) x min(-1), P = 0.008) were augmented after repaglinide administration. A concomitant trend toward an increase in basal insulin secretion was observed (2.5 +/- 0.3 vs. 3.2 +/- 0.4 pmol x l(-1) x min(-1), p = 0.06), while the interpulse interval was unaltered (6.8 +/- 1.0 vs. 5.4 +/- 0.4 min/pulse, P = 0.38). ApEn increased significantly after repaglinide administration (0.623 +/- 0.045 vs. 0.670 +/- 0.034, P = 0.04), suggesting less orderly oscillatory patterns of insulin release. In conclusion, a single dose of repaglinide amplifies insulin secretory burst mass (and basal secretion) with no change in burst frequency. The possible importance of these mechanisms in the treatment of type 2 diabetes characterized by disrupted pulsatile insulin secretion remains to be clarified.

  4. Early-phase prandial insulin secretion: its role in the pathogenesis of type 2 diabetes mellitus and its modulation by repaglinide.

    PubMed

    Owens, D R; Cozma, L S; Luzio, S D

    2002-12-01

    The major contributory factor to increasing hyperglycaemia in established Type 2 diabetes mellitus (T2DM) appears to be the progressive delay and attenuation of the prandial insulin response. An important consequence of this derangement is that hepatic glucose production is no longer suppressed during times of prandial glucose intake. Together with a relative impairment in the rate of peripheral glucose disposal, this leads to supra-physiological plasma glucose excursions, which may damage the vasculature. An obvious therapeutic strategy, therefore, would be to increase insulin availability when most needed--in the early prandial phase. In experiments with exogenous insulin interventions, peak post-prandial blood glucose increments were curtailed without undue increases in total insulin exposure. However, available evidence suggests that the sulphonylurea glibenclamide does not effectively alter early-phase prandial insulin release but predominately increases late-phase and basal insulin output, thus incurring the risk of hypoglycaemia. The novel insulin secretagogue repaglinide, by contrast, augments early-phase prandial insulin secretion when taken before meals, as shown by studies in non-diabetic people and patients with newly diagnosed, previously untreated T2DM. Repaglinide exerts its greatest effect on the insulin secretion rate during the first 30 min after a meal is started, thereby going some way to restoring the early insulin secretion curve seen after a meal in non-diabetic people. No residual secretagogue activity is seen 4 hr after taking a single dose of up to 2 mg. Prandial glucose regulation with repaglinide could be associated with lower post-prandial glucose excursions and less risk of post-prandial hypoglycaemia than glibenclamide.

  5. Vegan proteins may reduce risk of cancer, obesity, and cardiovascular disease by promoting increased glucagon activity.

    PubMed

    McCarty, M F

    1999-12-01

    Amino acids modulate the secretion of both insulin and glucagon; the composition of dietary protein therefore has the potential to influence the balance of glucagon and insulin activity. Soy protein, as well as many other vegan proteins, are higher in non-essential amino acids than most animal-derived food proteins, and as a result should preferentially favor glucagon production. Acting on hepatocytes, glucagon promotes (and insulin inhibits) cAMP-dependent mechanisms that down-regulate lipogenic enzymes and cholesterol synthesis, while up-regulating hepatic LDL receptors and production of the IGF-I antagonist IGFBP-1. The insulin-sensitizing properties of many vegan diets--high in fiber, low in saturated fat--should amplify these effects by down-regulating insulin secretion. Additionally, the relatively low essential amino acid content of some vegan diets may decrease hepatic IGF-I synthesis. Thus, diets featuring vegan proteins can be expected to lower elevated serum lipid levels, promote weight loss, and decrease circulating IGF-I activity. The latter effect should impede cancer induction (as is seen in animal studies with soy protein), lessen neutrophil-mediated inflammatory damage, and slow growth and maturation in children. In fact, vegans tend to have low serum lipids, lean physiques, shorter stature, later puberty, and decreased risk for certain prominent 'Western' cancers; a vegan diet has documented clinical efficacy in rheumatoid arthritis. Low-fat vegan diets may be especially protective in regard to cancers linked to insulin resistance--namely, breast and colon cancer--as well as prostate cancer; conversely, the high IGF-I activity associated with heavy ingestion of animal products may be largely responsible for the epidemic of 'Western' cancers in wealthy societies. Increased phytochemical intake is also likely to contribute to the reduction of cancer risk in vegans. Regression of coronary stenoses has been documented during low-fat vegan diets coupled with exercise training; such regimens also tend to markedly improve diabetic control and lower elevated blood pressure. Risk of many other degenerative disorders may be decreased in vegans, although reduced growth factor activity may be responsible for an increased risk of hemorrhagic stroke. By altering the glucagon/insulin balance, it is conceivable that supplemental intakes of key non-essential amino acids could enable omnivores to enjoy some of the health advantages of a vegan diet. An unnecessarily high intake of essential amino acids--either in the absolute sense or relative to total dietary protein--may prove to be as grave a risk factor for 'Western' degenerative diseases as is excessive fat intake.

  6. Insulin Secretion Improves in Cystic Fibrosis Following Ivacaftor Correction of CFTR: A Small Pilot Study

    PubMed Central

    Bellin, Melena D.; Laguna, Theresa; Leschyshyn, Janice; Regelmann, Warren; Dunitz, Jordan; Billings, JoAnne; Moran, Antoinette

    2013-01-01

    Objective To determine whether the cystic fibrosis transmembrane conductance regulator (CFTR) is involved in human insulin secretion by assessing the metabolic impact of the new CFTR corrector, ivacaftor. Methods This open-label pilot study was conducted in CF patients with the G551D mutation given new prescriptions for ivacaftor. At baseline and 4 weeks after daily ivacaftor therapy, intravenous (IVGTT) and oral glucose (OGTT) tolerance tests were performed. Results Five patients age 6–52 were studied. After 1 month on ivacaftor, the insulin response to oral glucose improved by 66–178% in all subjects except one with long-standing diabetes. OGTT glucose levels were not lower in the two individuals with diabetes or the two with normal glucose tolerance (NGT), but the glucose tolerance category in the subject with impaired glucose tolerance (IGT) improved to NGT after treatment. In response to intravenous glucose, the only patient whose acute insulin secretion did not improve had newly diagnosed, untreated CFRD. The others improved by 51–346%. Acute insulin secretion was partially restored in two subjects with no measurable acute insulin response at baseline, including the one with IGT and the one with long-standing diabetes. Conclusions This small pilot study suggests there is a direct role of CFTR in human insulin secretion. Larger, long-term longitudinal studies are necessary to determine whether early initiation of CFTR correction, particularly in young children with CF who have not yet lost considerable beta-cell mass, will delay or prevent development of diabetes in this high risk population. PMID:23952705

  7. Vitamin D supplementation for the prevention of type 2 diabetes in overweight adults: study protocol for a randomized controlled trial.

    PubMed

    de Courten, Barbora; Mousa, Aya; Naderpoor, Negar; Teede, Helena; de Courten, Maximilian P J; Scragg, Robert

    2015-08-07

    Despite Australia's sunny climate, low vitamin D levels are increasingly prevalent. Sun exposure is limited by long working hours, an increase in time spent indoors, and sun protection practices, and there is limited dietary vitamin D fortification. While the importance of vitamin D for bone mineralization is well known, its role as a protective agent against chronic diseases, such as type 2 diabetes and cardiovascular disease, is less understood. Observational and limited intervention studies suggest that vitamin D might improve insulin sensitivity and secretion, mainly via its anti-inflammatory properties, thereby decreasing the risk of development and progression of type 2 diabetes. The primary aim of this trial is to investigate whether improved plasma concentrations of 25-hydroxyvitamin D (25(OH)D), obtained through vitamin D supplementation, will increase insulin sensitivity and insulin secretion. A secondary aim is to determine whether these relationships are mediated by a reduction in underlying subclinical inflammation associated with obesity. Fifty overweight but otherwise healthy nondiabetic adults between 18 and 60 years old, with low vitamin D levels (25(OH)D < 50 nmol/l), will be randomly assigned to intervention or placebo. At baseline, participants will undergo a medical review and anthropometric measurements, including dual X-ray absorptiometry, an intravenous glucose tolerance test, muscle and fat biopsies, a hyperinsulinemic euglycemic clamp, and questionnaires assessing diet, physical activity, sun exposure, back and knee pain, and depression. The intervention group will receive a first dose of 100,000 IU followed by 4,000 IU vitamin D (cholecalciferol) daily, while the placebo group will receive apparently identical capsules, both for a period of 16 weeks. All measurements will be repeated at follow-up, with the primary outcome measure expressed as a change from baseline in insulin sensitivity and secretion for the intervention group compared with the placebo group. Secondary outcome measures will compare changes in anthropometry, cardiovascular risk factors, and inflammatory markers. The trial will provide much needed clinical evidence on the impact of vitamin D supplementation on insulin resistance and secretion and its underlying mechanisms, which are relevant for the prevention and management of type 2 diabetes. Clinicaltrials.gov ID: NCT02112721 .

  8. Interleukin-33-Activated Islet-Resident Innate Lymphoid Cells Promote Insulin Secretion through Myeloid Cell Retinoic Acid Production.

    PubMed

    Dalmas, Elise; Lehmann, Frank M; Dror, Erez; Wueest, Stephan; Thienel, Constanze; Borsigova, Marcela; Stawiski, Marc; Traunecker, Emmanuel; Lucchini, Fabrizio C; Dapito, Dianne H; Kallert, Sandra M; Guigas, Bruno; Pattou, Francois; Kerr-Conte, Julie; Maechler, Pierre; Girard, Jean-Philippe; Konrad, Daniel; Wolfrum, Christian; Böni-Schnetzler, Marianne; Finke, Daniela; Donath, Marc Y

    2017-11-21

    Pancreatic-islet inflammation contributes to the failure of β cell insulin secretion during obesity and type 2 diabetes. However, little is known about the nature and function of resident immune cells in this context or in homeostasis. Here we show that interleukin (IL)-33 was produced by islet mesenchymal cells and enhanced by a diabetes milieu (glucose, IL-1β, and palmitate). IL-33 promoted β cell function through islet-resident group 2 innate lymphoid cells (ILC2s) that elicited retinoic acid (RA)-producing capacities in macrophages and dendritic cells via the secretion of IL-13 and colony-stimulating factor 2. In turn, local RA signaled to the β cells to increase insulin secretion. This IL-33-ILC2 axis was activated after acute β cell stress but was defective during chronic obesity. Accordingly, IL-33 injections rescued islet function in obese mice. Our findings provide evidence that an immunometabolic crosstalk between islet-derived IL-33, ILC2s, and myeloid cells fosters insulin secretion. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Polyphenol-rich diets improve glucose metabolism in people at high cardiometabolic risk: a controlled randomised intervention trial.

    PubMed

    Bozzetto, Lutgarda; Annuzzi, Giovanni; Pacini, Giovanni; Costabile, Giuseppina; Vetrani, Claudia; Vitale, Marilena; Griffo, Ettore; Giacco, Angela; De Natale, Claudia; Cocozza, Sara; Della Pepa, Giuseppe; Tura, Andrea; Riccardi, Gabriele; Rivellese, Angela A

    2015-07-01

    Dietary polyphenols and long chain n-3 polyunsaturated fatty acids (LCn3) are associated with lower cardiovascular risk. This may relate to their influence on glucose metabolism and diabetes risk. We evaluated the effects of diets naturally rich in polyphenols and/or LCn3 of marine origin on glucose metabolism in people at high cardiometabolic risk. According to a 2 × 2 factorial design, individuals with high waist circumference and at least one more component of the metabolic syndrome were recruited at the obesity outpatient clinic. Eighty-six participants were randomly assigned by MINIM software to an isoenergetic diet: (1) control, low in LCn3 and polyphenol (analysed n = 20); (2) rich in LCn3 (n = 19); (3) rich in polyphenols (n = 19); or (4) rich in LCn3 and polyphenols (n = 19). The assigned diets were known for the participants and blinded for people doing measurements. Before and after the 8 week intervention, participants underwent a 3 h OGTT and a test meal with a similar composition as the assigned diet for the evaluation of plasma glucose, insulin and glucagon-like peptide 1 (GLP-1) concentrations, and indices of insulin sensitivity and beta cell function. During OGTT, polyphenols significantly reduced plasma glucose total AUC (p = 0.038) and increased early insulin secretion (p = 0.048), while LCn3 significantly reduced beta cell function (p = 0.031) (two-factor ANOVA). Moreover, polyphenols improved post-challenge oral glucose insulin sensitivity (OGIS; p = 0.05 vs control diet by post hoc ANOVA). At test meal, LCn3 significantly reduced GLP-1 total postprandial AUC (p < 0.001; two-factor ANOVA). Diets naturally rich in polyphenols reduce blood glucose response, likely by increasing early insulin secretion and insulin sensitivity. These effects may favourably influence diabetes and cardiovascular risk. The implications of the decrease in insulin secretion and postprandial GLP-1 observed with diets rich in marine LCn3 need further clarification. ClinicalTrials.gov NCT01154478. The trial was funded by European Community's Seventh Framework Programme FP7/2009-2012 under grant agreement FP7-KBBE-222639, Etherpaths Project and 'Ministero Istruzione Università e Ricerca' PRIN 2010-2011 - 2010JCWWKM.

  10. [The effect of a single inhalation of mineral water on the blood hormonal status in healthy volunteers].

    PubMed

    Khinchagov, B P; Polushina, N D; Frolkov, V K

    1998-01-01

    Concentrations of ACTH, TTH, STH, LH, PSH, hydrocortisone, insulin, glucagone, triiodthyronine, thyroxine, aldosterone, glucose and unesterified fatty acids (NEFA) were measured in the blood of 23 healthy male volunteers aged 18 to 35 years 15, 30 and 60 min after a single nose inhalation and oral intake of mineral water Essentuki No. 17. Inhalation of Essentuki No. 17 stimulated secretion of the hormones and some parameters of metabolic reactions: the levels of glucose, NEFA, hydrocortisone, aldosterone, TTH, PSH and LH rose while those of insulin and growth hormone decreased. Oral intake of this water brought about the same changes in the hormone status except blood insulin the levels of which went up.

  11. TRPM channels phosphorylation as a potential bridge between old signals and novel regulatory mechanisms of insulin secretion.

    PubMed

    Diaz-Garcia, Carlos Manlio; Sanchez-Soto, Carmen; Hiriart, Marcia

    2013-03-01

    Transient receptor potential channels, especially the members of the melastatin family (TRPM), participate in insulin secretion. Some of them are substrates for protein kinases, which are involved in several neurotransmitter, incretin and hormonal signaling cascades in β cells. The functional relationships between protein kinases and TRPM channels in systems of heterologous expression and native tissues rise issues about novel regulation pathways of pancreatic β-cell excitability. The aim of the present work is to review the evidences about phosphorylation of TRPM channels in β cells and to discuss the perspectives on insulin secretion.

  12. Design and clinical pilot testing of the model-based dynamic insulin sensitivity and secretion test (DISST).

    PubMed

    Lotz, Thomas F; Chase, J Geoffrey; McAuley, Kirsten A; Shaw, Geoffrey M; Docherty, Paul D; Berkeley, Juliet E; Williams, Sheila M; Hann, Christopher E; Mann, Jim I

    2010-11-01

    Insulin resistance is a significant risk factor in the pathogenesis of type 2 diabetes. This article presents pilot study results of the dynamic insulin sensitivity and secretion test (DISST), a high-resolution, low-intensity test to diagnose insulin sensitivity (IS) and characterize pancreatic insulin secretion in response to a (small) glucose challenge. This pilot study examines the effect of glucose and insulin dose on the DISST, and tests its repeatability. DISST tests were performed on 16 subjects randomly allocated to low (5 g glucose, 0.5 U insulin), medium (10 g glucose, 1 U insulin) and high dose (20 g glucose, 2 U insulin) protocols. Two or three tests were performed on each subject a few days apart. Average variability in IS between low and medium dose was 10.3% (p=.50) and between medium and high dose 6.0% (p=.87). Geometric mean variability between tests was 6.0% (multiplicative standard deviation (MSD) 4.9%). Geometric mean variability in first phase endogenous insulin response was 6.8% (MSD 2.2%). Results were most consistent in subjects with low IS. These findings suggest that DISST may be an easily performed dynamic test to quantify IS with high resolution, especially among those with reduced IS. © 2010 Diabetes Technology Society.

  13. The interplay between noncoding RNAs and insulin in diabetes.

    PubMed

    Tian, Yan; Xu, Jia; Du, Xiao; Fu, Xianghui

    2018-04-10

    Noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs and circular RNAs, regulate various biological processes and are involved in the initiation and progression of human diseases. Insulin, a predominant hormone secreted from pancreatic β cells, is an essential factor in regulation of systemic metabolism through multifunctional insulin signaling. Insulin production and action are tightly controlled. Dysregulations of insulin production and action can impair metabolic homeostasis, and eventually lead to the development of multiple metabolic diseases, especially diabetes. Accumulating data indicates that ncRNAs modulate β cell mass, insulin synthesis, secretion and signaling, and their role in diabetes is dramatically emerging. This review summarizes our current knowledge of ncRNAs as regulators of insulin, with particular emphasis on the implications of this interplay in the development of diabetes. We outline the role of ncRNAs in pancreatic β cell mass and function, which is critical for insulin production and secretion. We also highlight the involvement of ncRNAs in insulin signaling in peripheral tissues including liver, muscle and adipose, and discuss ncRNA-mediated inter-organ crosstalk under diabetic conditions. A more in-depth understanding of the interplay between ncRNAs and insulin may afford valuable insights and novel therapeutic strategies for treatment of diabetes, as well as other human diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Lower adiponectin levels at first trimester of pregnancy are associated with increased insulin resistance and higher risk of developing gestational diabetes mellitus.

    PubMed

    Lacroix, Marilyn; Battista, Marie-Claude; Doyon, Myriam; Ménard, Julie; Ardilouze, Jean-Luc; Perron, Patrice; Hivert, Marie-France

    2013-06-01

    To evaluate the associations between adiponectin levels and 1) the risk of developing gestational diabetes mellitus (GDM), and 2) insulin resistance/sensitivity, β-cell function, and compensation indices in a prospective cohort representative of the general population of pregnant women. We performed anthropometric measurements and collected blood samples at 1st (6-13 weeks) and 2nd (24-28 weeks) trimesters. Diagnosis of GDM was made at 2nd trimester based on a 75-g oral glucose tolerance test (International Association of the Diabetes and Pregnancy Study Groups criteria). Insulin was measured (ELISA; Luminex) to estimate homeostasis model assessment of insulin resistance (HOMA-IR), β-cell function (HOMA-B), insulin sensitivity (Matsuda index), insulin secretion (AUC(insulin/glucose)), and β-cell compensation (insulin secretion sensitivity index-2). Adiponectin was measured by radioimmunoassay. Among the 445 participants included in this study, 38 women developed GDM. Women who developed GDM had lower 1st-trimester adiponectin levels (9.67 ± 3.84 vs. 11.92 ± 4.59 µg/mL in women with normal glucose tolerance). Lower adiponectin levels were associated with higher risk of developing GDM (OR, 1.12 per 1 µg/mL decrease of adiponectin levels; P = 0.02, adjusted for BMI and HbA1c at 1st trimester). Adiponectin levels at 1st and 2nd trimesters were associated with HOMA-IR (both: r = -0.22, P < 0.0001) and Matsuda index (r = 0.28, P < 0.0001, and r = 0.29, P < 0.0001). After adjustment for confounding factors, we found no significant association with HOMA-B and AUC(insulin/glucose). Pregnant women with lower adiponectin levels at 1st trimester have higher levels of insulin resistance and are more likely to develop GDM independently of adiposity or glycemic measurements.

  15. Insulin-producing cells could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells

    PubMed Central

    2013-01-01

    Objective The aim of this study was to compare the difference between insulin-producing cells (IPCs) and normal human pancreatic beta cells both in physiological function and morphological features in cellular level. Methods The levels of insulin secretion were measured by enzyme-linked immunosorbent assay. The insulin gene expression was determined by real-time quantitative polymerase chain reaction. The morphological features were detected by atomic force microscopy (AFM) and laser confocal scanning microscopy. Results IPCs and normal human pancreatic beta cells were similar to each other under the observation in AFM with the porous structure features in the cytoplasm. Both number of membrane particle size and average roughness of normal human beta cells were higher than those of IPCs. Conclusions Our results firstly revealed that the cellular ultrastructure of IPCs was closer to that of normal human pancreatic beta cells, but they still could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. PMID:23421382

  16. The glucagon-miniglucagon interplay: a new level in the metabolic regulation.

    PubMed

    Bataille, Dominique; Fontés, Ghislaine; Costes, Safia; Longuet, Christine; Dalle, Stéphane

    2006-07-01

    Miniglucagon (glucagon 19-29) is the ultimate processing product of proglucagon, present in the glucagon-secreting granules of the alpha cells, at a close vicinity of the insulin-secreting beta cells. Co-released with glucagon and thanks to its original mode of action and its huge potency, it suppresses, inside the islet of Langerhans, the detrimental effect of glucagon on insulin secretion, while it leaves untouched the beneficial effect of glucagon on glucose competence of the beta cell. At the periphery, miniglucagon is processed at the surface of glucagon- and insulin-sensitive cells from circulating glucagon. At that level, it acts via a cellular pathway which uses initial molecular steps distinct from that of insulin which, when impaired, are involved in insulin resistence. This bypass allows miniglucagon to act as an insulin-like component, a characteristic which makes this peptide of particular interest from a pathophysiological and pharmacological point of views in understanding and treating metabolic diseases, such as the type 2 diabetes.

  17. Growth-Blocking Peptides As Nutrition-Sensitive Signals for Insulin Secretion and Body Size Regulation

    PubMed Central

    Koyama, Takashi; Mirth, Christen K.

    2016-01-01

    In Drosophila, the fat body, functionally equivalent to the mammalian liver and adipocytes, plays a central role in regulating systemic growth in response to nutrition. The fat body senses intracellular amino acids through Target of Rapamycin (TOR) signaling, and produces an unidentified humoral factor(s) to regulate insulin-like peptide (ILP) synthesis and/or secretion in the insulin-producing cells. Here, we find that two peptides, Growth-Blocking Peptide (GBP1) and CG11395 (GBP2), are produced in the fat body in response to amino acids and TOR signaling. Reducing the expression of GBP1 and GBP2 (GBPs) specifically in the fat body results in smaller body size due to reduced growth rate. In addition, we found that GBPs stimulate ILP secretion from the insulin-producing cells, either directly or indirectly, thereby increasing insulin and insulin-like growth factor signaling activity throughout the body. Our findings fill an important gap in our understanding of how the fat body transmits nutritional information to the insulin producing cells to control body size. PMID:26928023

  18. Mechanisms of β-cell functional adaptation to changes in workload

    PubMed Central

    Wortham, Matthew; Sander, Maike

    2016-01-01

    Insulin secretion must be tightly coupled to nutritional state to maintain blood glucose homeostasis. To this end, pancreatic β-cells sense and respond to changes in metabolic conditions, thereby anticipating insulin demands for a given physiological context. This is achieved in part through adjustments of nutrient metabolism, which is controlled at several levels including allosteric regulation, posttranslational modifications, and altered expression of metabolic enzymes. In this review, we discuss mechanisms of β-cell metabolic and functional adaptation in the context of two physiological states that alter glucose-stimulated insulin secretion: fasting and insulin resistance. We review current knowledge of metabolic changes that occur in the β-cell during adaptation and specifically discuss transcriptional mechanisms that underlie β-cell adaptation. A more comprehensive understanding of how β-cells adapt to changes in nutrient state could identify mechanisms to be co-opted for therapeutically modulating insulin secretion in metabolic disease. PMID:27615135

  19. What couples glycolysis to mitochondrial signal generation in glucose-stimulated insulin secretion?

    PubMed

    Ishihara, H; Wollheim, C B

    2000-05-01

    Pancreatic islet beta-cells are poised to generate metabolic messengers in the mitochondria that link glucose metabolism to insulin exocytosis. This is accomplished through the tight coupling of glycolysis to mitochondrial activation. The messenger molecules ATP and glutamate are produced after the metabolism of glycolysis-derived pyruvate in the mitochondria. The entry of monocarboxylates such as pyruvate into the beta cell is limited, explaining why overexpression of monocarboxylate transporters unravels pyruvate-stimulated insulin secretion. NADH generated by glycolysis is efficiently reoxidized by highly active mitochondrial shuttles rather than by lactate dehydrogenase. Overexpression of this enzyme does not alter glucose-stimulated insulin secretion, suggesting that NADH availability restricts the conversion of pyruvate to lactate in the beta cell. These metabolic features permit the fuel function of glucose to be extended to the generation of signaling molecules, which increases cytosolic Ca2+ and promotes insulin exocytosis.

  20. Chronic Glucose Exposure Systematically Shifts the Oscillatory Threshold of Mouse Islets: Experimental Evidence for an Early Intrinsic Mechanism of Compensation for Hyperglycemia

    PubMed Central

    Glynn, Eric; Thompson, Benjamin; Vadrevu, Suryakiran; Lu, Shusheng; Kennedy, Robert T.; Ha, Joon; Sherman, Arthur

    2016-01-01

    Mouse islets exhibit glucose-dependent oscillations in electrical activity, intracellular Ca2+ and insulin secretion. We developed a mathematical model in which a left shift in glucose threshold helps compensate for insulin resistance. To test this experimentally, we exposed isolated mouse islets to varying glucose concentrations overnight and monitored their glucose sensitivity the next day by measuring intracellular Ca2+, electrical activity, and insulin secretion. Glucose sensitivity of all oscillation modes was increased when overnight glucose was greater than 2.8mM. To determine whether threshold shifts were a direct effect of glucose or involved secreted insulin, the KATP opener diazoxide (Dz) was coapplied with glucose to inhibit insulin secretion. The addition of Dz or the insulin receptor antagonist s961 increased islet glucose sensitivity, whereas the KATP blocker tolbutamide tended to reduce it. This suggests insulin and glucose have opposing actions on the islet glucose threshold. To test the hypothesis that the threshold shifts were due to changes in plasma membrane KATP channels, we measured cell KATP conductance, which was confirmed to be reduced by high glucose pretreatment and further reduced by Dz. Finally, treatment of INS-1 cells with glucose and Dz overnight reduced high affinity sulfonylurea receptor (SUR1) trafficking to the plasma membrane vs glucose alone, consistent with insulin increasing KATP conductance by altering channel number. The results support a role for metabolically regulated KATP channels in the maintenance of glucose homeostasis. PMID:26697721

  1. Obesity-induced diabetes in mouse strains treated with gold thioglucose: a novel animal model for studying β-cell dysfunction.

    PubMed

    Karasawa, Hiroshi; Takaishi, Kiyosumi; Kumagae, Yoshihiro

    2011-03-01

    An obesity-induced diabetes model using genetically normal mouse strains would be invaluable but remains to be established. One reason is that several normal mouse strains are resistant to high-fat diet-induced obesity. In the present study, we show the effectiveness of gold thioglucose (GTG) in inducing hyperphagia and severe obesity in mice, and demonstrate the development of obesity-induced diabetes in genetically normal mouse strains. GTG treated DBA/2, C57BLKs, and BDF1 mice gained weight rapidly and exhibited significant increases in nonfasting plasma glucose levels 8-12 weeks after GTG treatment. These mice showed significantly impaired insulin secretion, particularly in the early phase after glucose load, and reduced insulin content in pancreatic islets. Interestingly, GTG treated C57BL/6 mice did not become diabetic and retained normal early insulin secretion and islet insulin content despite being as severely obese and insulin resistant as the other mice. These results suggest that the pathogenesis of obesity-induced diabetes in GTG-treated mice is attributable to the inability of their pancreatic β-cells to secrete enough insulin to compensate for insulin resistance. Mice developing obesity-induced diabetes after GTG treatment might be a valuable tool for investigating obesity-induced diabetes. Furthermore, comparing the genetic backgrounds of mice with different susceptibilities to diabetes may lead to the identification of novel genetic factors influencing the ability of pancreatic β-cells to secrete insulin.

  2. Insulin secretion and sensitivity in space flight: diabetogenic effects

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  3. Hyperinsulinemia and Insulin Resistance in Dopamine β-Hydroxylase Deficiency

    PubMed Central

    Arnold, Amy C.; Garland, Emily M.; Celedonio, Jorge E.; Raj, Satish R.; Abumrad, Naji N.; Biaggioni, Italo; Robertson, David; Luther, James M.

    2017-01-01

    Context: Dopamine β-hydroxylase (DBH) deficiency is a rare genetic disorder characterized by failure to convert dopamine to norepinephrine. DBH-deficient patients lack sympathetic adrenergic function and are therefore predisposed to orthostatic hypotension. DBH-deficient mice exhibit hyperinsulinemia, lower plasma glucose levels, and insulin resistance due to loss of tonic sympathetic inhibition of insulin secretion. The impact of DBH deficiency on glucose homeostasis in humans is unknown. Case Description: We describe the metabolic profile of an adolescent female DBH-deficient patient. The patient underwent genetic testing, cardiovascular autonomic function testing, and evaluation of insulin secretion and sensitivity with hyperglycemic clamp under treatment-naive conditions. All procedures were repeated after 1 year of treatment with the norepinephrine prodrug droxidopa (300 mg, 3 times a day). Genetic testing showed a homozygous mutation in the DBH gene (rs74853476). Under treatment-naive conditions, she had undetectable plasma epinephrine and norepinephrine levels, resulting in sympathetic noradrenergic failure and orthostatic hypotension (−32 mm Hg supine to seated). She had high adiposity (41%) and fasting plasma insulin levels (25 μU/mL), with normal glucose (91 mg/dL). Hyperglycemic clamp revealed increased glucose-stimulated insulin secretion and insulin resistance. Droxidopa restored plasma norepinephrine and improved orthostatic tolerance, with modest effects on glucose homeostasis. Conclusions: We provide evidence for impairment in cardiovascular autonomic regulation, hyperinsulinemia, enhanced glucose-stimulated insulin secretion, and insulin resistance in a DBH-deficient patient. These metabolic derangements were not corrected by chronic droxidopa treatment. These findings provide insight into the pathophysiology and treatment of DBH deficiency and into the importance of catecholaminergic mechanisms to resting metabolism. PMID:27778639

  4. Hyperinsulinemia and Insulin Resistance in Dopamine β-Hydroxylase Deficiency.

    PubMed

    Arnold, Amy C; Garland, Emily M; Celedonio, Jorge E; Raj, Satish R; Abumrad, Naji N; Biaggioni, Italo; Robertson, David; Luther, James M; Shibao, Cyndya A

    2017-01-01

    Dopamine β-hydroxylase (DBH) deficiency is a rare genetic disorder characterized by failure to convert dopamine to norepinephrine. DBH-deficient patients lack sympathetic adrenergic function and are therefore predisposed to orthostatic hypotension. DBH-deficient mice exhibit hyperinsulinemia, lower plasma glucose levels, and insulin resistance due to loss of tonic sympathetic inhibition of insulin secretion. The impact of DBH deficiency on glucose homeostasis in humans is unknown. We describe the metabolic profile of an adolescent female DBH-deficient patient. The patient underwent genetic testing, cardiovascular autonomic function testing, and evaluation of insulin secretion and sensitivity with hyperglycemic clamp under treatment-naive conditions. All procedures were repeated after 1 year of treatment with the norepinephrine prodrug droxidopa (300 mg, 3 times a day). Genetic testing showed a homozygous mutation in the DBH gene (rs74853476). Under treatment-naive conditions, she had undetectable plasma epinephrine and norepinephrine levels, resulting in sympathetic noradrenergic failure and orthostatic hypotension (-32 mm Hg supine to seated). She had high adiposity (41%) and fasting plasma insulin levels (25 μU/mL), with normal glucose (91 mg/dL). Hyperglycemic clamp revealed increased glucose-stimulated insulin secretion and insulin resistance. Droxidopa restored plasma norepinephrine and improved orthostatic tolerance, with modest effects on glucose homeostasis. We provide evidence for impairment in cardiovascular autonomic regulation, hyperinsulinemia, enhanced glucose-stimulated insulin secretion, and insulin resistance in a DBH-deficient patient. These metabolic derangements were not corrected by chronic droxidopa treatment. These findings provide insight into the pathophysiology and treatment of DBH deficiency and into the importance of catecholaminergic mechanisms to resting metabolism. Copyright © 2017 by the Endocrine Society

  5. The effect of growth hormone treatment on metabolic and cardiovascular risk factors is similar in preterm and term short, small for gestational age children.

    PubMed

    de Kort, Sandra W K; Willemsen, Ruben H; van der Kaay, Danielle C M; Hokken-Koelega, Anita C S

    2009-07-01

    We previously reported that short, small for gestational age (SGA) children who were born preterm have a lower body fat percentage and a higher blood pressure, insulin secretion and disposition index than short SGA children born at term. Whether preterm birth also influences these parameters during GH treatment is unknown. To compare blood pressure, insulin sensitivity, beta-cell function and body composition during 4 years of GH treatment, between preterm and term short SGA children. A total of 404 prepubertal non-GH-deficient short SGA children were divided into 143 preterm (< 36 weeks) and 261 term children. Height, blood pressure (n = 404), body composition measured by dual energy X-ray absorptiometry (DXA) (n = 138) and insulin sensitivity and beta-cell function calculated from a frequent sampling intravenous glucose tolerance test (FSIGT) with tolbutamide (n = 74) or from the homeostasis model assessment of insulin resistance (HOMA-IR) (n = 204). In preterm and term children, GH treatment resulted in a similar decrease in systolic and diastolic blood pressure, body fat percentage, limb fat/total fat ratio and insulin sensitivity, and a similar increase in insulin secretion and disposition index. Lean body mass (LBM) corrected for gender and height increased in term children and did not change in preterm children. Multiple regression analysis revealed that this difference in GH effect on LBM was not associated with gestational age. The effect of GH treatment on metabolic and cardiovascular risk factors is similar in preterm and term short, SGA children.

  6. [Role of growth hormone in the pathogenesis of dawn phenomenon in IDDM].

    PubMed

    Mimura, A; Kageyama, S; Itoh, K; Miura, J; Kurata, H; Yokoyama, J; Ikeda, Y

    1992-06-20

    The early morning hyperglycemia of diabetic patients has been commonly referred to as the "dawn phenomenon". Recently the nocturnal surges of growth hormone (GH) have been suggested as an important factor in the pathogenesis of the dawn phenomenon. In order to reassess the role of the nocturnal GH secretion in the dawn phenomenon, seven C-peptide negative diabetic patients were studied during 48hr-feedback control using a closed-loop insulin infusion device (Biostator). They received oral sleeping medication only on the first night (control) and sleeping medication with anticholinergic agent (pirenzepine 75mg) on the second night, and blood glucose, insulin requirements, GH and cortisol concentrations during 0000hr and 0700hr were measured. The peak of sleep-induced GH secretions was markedly suppressed by pirenzepine in comparison with the control night (19.8 +/- 3.7 vs. 3.0 +/- 1.2ng/ml; p less than 0.05). Insulin requirements during 0500hr and 0700hr were suppressed significantly by pirenzepine (3.0 +/- 0.2 vs. 2.0 +/- 0.2U/2hr; p less than 0.05). Insulin infusion ratio, i.e. insulin requirements during 0500hr and 0700hr divided by those during 0000hr and 0200hr, was decreased by pirenzepine (2.2 +/- 0.3 vs. 1.5 +/- 0.2; p less than 0.05). There were no significant differences in blood glucose and cortisol concentrations whether or not the anticholinergic agent was given. In conclusion, these results have shown that an anticholinergic agent may be useful in the management of insulin-treated patients with marked dawn phenomenon.

  7. Mechanisms of Action of GLP-1 in the Pancreas

    PubMed Central

    Doyle, Máire E.; Egan, Josephine M.

    2007-01-01

    Glucagon-like peptide-1 is a hormone that is encoded in the proglucagon gene. It is mainly produced in enteroendocrine L cells of the gut and is secreted into the blood stream when food containing fat, protein hydrolysate and/or glucose enters the duodenum. Its particular effects on insulin and glucagon secretion have generated a flurry of research activity over the past twenty years culminating in a naturally occurring GLP-1 receptor agonist, exendin-4, now being used to treat type 2 diabetes. GLP-1 engages a specific G-protein coupled receptor that is present in tissues other than the pancreas (brain, kidney, lung, heart, major blood vessels). The most widely studied cell activated by GLP-1 is the insulin-secreting beta cell where its defining action is augmentation of glucose-induced insulin secretion. Upon GLP-1 receptor activation, adenylyl cyclase is activated and cAMP generated, leading, in turn, to cAMP-dependent activation of second messenger pathways, such as the PKA and Epac pathways. As well as short-term effects of enhancing glucose-induced insulin secretion, continuous GLP-1 receptor activation also increases insulin synthesis, and beta cell proliferation and neogenesis. Although these latter effects cannot be currently monitored in humans, there are substantial improvements in glucose tolerance and increases in both first phase and plateau phase insulin secretory responses in type 2 diabetic patients treated with exendin-4. This review we will focus on the effects resulting from GLP-1 receptor activation in islets of Langerhans PMID:17306374

  8. Genetic markers of insulin sensitivity and insulin secretion are associated with spontaneous postnatal growth and response to growth hormone treatment in short SGA children: the North European SGA Study (NESGAS).

    PubMed

    Jensen, Rikke Beck; Thankamony, Ajay; Day, Felix; Scott, Robert A; Langenberg, Claudia; Kirk, Jeremy; Donaldson, Malcolm; Ivarsson, Sten-A; Söder, Olle; Roche, Edna; Hoey, Hilary; Juul, Anders; Ong, Ken K; Dunger, David B

    2015-03-01

    The wide heterogeneity in the early growth and metabolism of children born small for gestational age (SGA), both before and during GH therapy, may reflect common genetic variations related to insulin secretion or sensitivity. Combined multiallele single nucleotide polymorphism scores with known associations with insulin sensitivity or insulin secretion were analyzed for their relationships with spontaneous postnatal growth and first-year responses to GH therapy in 96 short SGA children. The insulin sensitivity allele score (GS-InSens) was positively associated with spontaneous postnatal weight gain (regression coefficient [B]: 0.12 SD scores per allele; 95% confidence interval [CI], 0.01-0.23; P = .03) and also in response to GH therapy with first-year height velocity (B: 0.18 cm/y per allele; 95% CI, 0.02-0.35; P = .03) and change in IGF-1 (B: 0.17 SD scores per allele; 95% CI, 0.00-0.32; P = .03). The association with first-year height velocity was independent of reported predictors of response to GH therapy (adjusted P = .04). The insulin secretion allele score (GS-InSec) was positively associated with spontaneous postnatal height gain (B: 0.15; 95% CI, 0.01-0.30; P = .03) and disposition index both before (B: 0.02; 95% CI, 0.00-0.04; P = .04) and after 1 year of GH therapy (B: 0.03; 95% CI, 0.01-0.05; P = .002), but not with growth and IGF-1 responses to GH therapy. Neither of the allele scores was associated with size at birth. Genetic allele scores indicative of insulin sensitivity and insulin secretion were associated with spontaneous postnatal growth and responses to GH therapy in short SGA children. Further pharmacogenetic studies may support the rationale for adjuvant therapies by informing the mechanisms of treatment response.

  9. Addition of n-3 fatty acids to a 4-hour lipid infusion does not affect insulin sensitivity, insulin secretion, or markers of oxidative stress in subjects with type 2 diabetes mellitus.

    PubMed

    Mostad, Ingrid L; Bjerve, Kristian S; Basu, Samar; Sutton, Pauline; Frayn, Keith N; Grill, Valdemar

    2009-12-01

    Fatty acids (FA) can impair glucose metabolism to a varying degree depending on time of exposure and also of type of FA. Here we tested for acute effects of marine n-3 FA on insulin sensitivity, insulin secretion, energy metabolism, and oxidative stress. This was a randomized, double-blind, crossover study in 11 subjects with type 2 diabetes mellitus. A 4-hour lipid infusion (Intralipid [Fresenius Kabi, Halden, Norway], total of 384 mL) was compared with a similar lipid infusion partly replaced by Omegaven (Fresenius Kabi) that contributed a median of 0.1 g fish oil per kilogram body weight, amounting to 0.04 g/kg of marine n-3 FA. Insulin sensitivity was assessed by isoglycemic hyperinsulinemic clamps; insulin secretion (measured after the clamps), by C-peptide glucagon tests; and energy metabolism, by indirect calorimetry. Infusion of Omegaven increased the proportion of n-3 FA in plasma nonesterified fatty acids (NEFA) compared with Intralipid alone (20:5n-3: median, 1.5% [interquartile range, 0.6%] vs -0.2% [0.2%], P = .001; 22:6n-3: 0.8% [0.4%] vs -0.7% [0.2%], P = .001). However, glucose utilization was not affected; neither was insulin secretion or total energy production (P = .966, .210, and .423, respectively, for the differences between the lipid clamps). Omegaven tended to lower oxidation of fat (P = .062) compared with Intralipid only, correlating with the rise in individual n-3 NEFA (r = 0.627, P = .039). The effects of clamping on phospholipid FA composition, leptin, adiponectin, or F(2)-isoprostane concentrations were not affected by Omegaven. Enrichment of NEFA with n-3 FA during a 4-hour infusion of Intralipid failed to affect insulin sensitivity, insulin secretion, or markers of oxidative stress in subjects with type 2 diabetes mellitus.

  10. Insulin Resistance and Mitochondrial Dysfunction.

    PubMed

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  11. Mathematical model of the glucose-insulin regulatory system: From the bursting electrical activity in pancreatic β-cells to the glucose dynamics in the whole body

    NASA Astrophysics Data System (ADS)

    Han, Kyungreem; Kang, Hyuk; Choi, M. Y.; Kim, Jinwoong; Lee, Myung-Shik

    2012-10-01

    A theoretical approach to the glucose-insulin regulatory system is presented. By means of integrated mathematical modeling and extensive numerical simulations, we probe the cell-level dynamics of the membrane potential, intracellular Ca2+ concentration, and insulin secretion in pancreatic β-cells, together with the whole-body level glucose-insulin dynamics in the liver, brain, muscle, and adipose tissues. In particular, the three oscillatory modes of insulin secretion are reproduced successfully. Such comprehensive mathematical modeling may provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination.

  12. Impact of incretin on early-phase insulin secretion and glucose excursion.

    PubMed

    Shen, Jie; Chen, Zhi; Chen, Chaofeng; Zhu, Xiao; Han, Yajuan

    2013-10-01

    This study investigated the impact of incretin on early-phase insulin secretion and glucose excursion. The normal glucose tolerance (NGT), impaired glucose tolerance (IGT), and type 2 diabetes mellitus (T2DM) groups included 16, 8, and 19 subjects, respectively. Subjects underwent continuous glucose monitoring for 3 days, followed by an oral glucose tolerance test. Plasma glucose, insulin, glucagon, total glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide-l (GLP-1) levels were measured at 30-min increments for 2 h after glucose intake. Differences with P < 0.05 were considered statistically significant. The area under the curve (AUC) of total GIP (120-min GIP-AUC) of the T2DM group was significantly lower than those of the NGT and IGT groups. The 120-min GLP-1-AUC of the NGT group was significantly larger than those of the T2DM and IGT groups. The early-phase insulin secretion index (ΔI30/ΔG30) of the T2DM group was significantly lower than those of the NGT and IGT groups. Mean amplitudes of glycemic excursions (MAGEs) went in the order of NGT < IGT < T2DM (P < 0.01, IGT vs. NGT; P < 0.001, T2DM vs. IGT). The 120-min GIP-AUC was negatively correlated with MAGE (r = -0.464), but uncorrelated with ΔI30/ΔG30. The 120-min GLP-1-AUC was positively correlated with ΔI30/ΔG30 (r = 0.580), but negatively correlated with MAGE (r = -0.606). Incretin may ameliorate glucose excursions, and GLP-1 may exert them by promoting early-phase insulin secretion. No correlation was observed between GIP secretion and early-phase insulin secretion.

  13. Novel Small Molecule Glucagon-Like Peptide-1 Receptor Agonist Stimulates Insulin Secretion in Rodents and From Human Islets

    PubMed Central

    Sloop, Kyle W.; Willard, Francis S.; Brenner, Martin B.; Ficorilli, James; Valasek, Kathleen; Showalter, Aaron D.; Farb, Thomas B.; Cao, Julia X.C.; Cox, Amy L.; Michael, M. Dodson; Gutierrez Sanfeliciano, Sonia Maria; Tebbe, Mark J.; Coghlan, Michael J.

    2010-01-01

    OBJECTIVE The clinical effectiveness of parenterally-administered glucagon-like peptide-1 (GLP-1) mimetics to improve glucose control in patients suffering from type 2 diabetes strongly supports discovery pursuits aimed at identifying and developing orally active, small molecule GLP-1 receptor agonists. The purpose of these studies was to identify and characterize novel nonpeptide agonists of the GLP-1 receptor. RESEARCH DESIGN AND METHODS Screening using cells expressing the GLP-1 receptor and insulin secretion assays with rodent and human islets were used to identify novel molecules. The intravenous glucose tolerance test (IVGTT) and hyperglycemic clamp characterized the insulinotropic effects of compounds in vivo. RESULTS Novel low molecular weight pyrimidine-based compounds that activate the GLP-1 receptor and stimulate glucose-dependent insulin secretion are described. These molecules induce GLP-1 receptor-mediated cAMP signaling in HEK293 cells expressing the GLP-1 receptor and increase insulin secretion from rodent islets in a dose-dependent manner. The compounds activate GLP-1 receptor signaling, both alone or in an additive fashion when combined with the endogenous GLP-1 peptide; however, these agonists do not compete with radiolabeled GLP-1 in receptor-binding assays. In vivo studies using the IVGTT and the hyperglycemic clamp in Sprague Dawley rats demonstrate increased insulin secretion in compound-treated animals. Further, perifusion assays with human islets isolated from a donor with type 2 diabetes show near-normalization of insulin secretion upon compound treatment. CONCLUSIONS These studies characterize the insulinotropic effects of an early-stage, small molecule GLP-1 receptor agonist and provide compelling evidence to support pharmaceutical optimization. PMID:20823098

  14. The effect of oral and intravenous dextrose on C-peptide secretion in ponies.

    PubMed

    de Laat, M A; van Haeften, J J; Sillence, M N

    2016-02-01

    Managing equine hyperinsulinemia is crucial for preventing laminitis, but our understanding of the mechanisms involved in insulin dysregulation in this species is incomplete. C-peptide is co-secreted with insulin but is resistant to hepatic metabolism and can be used to study insulin dysregulation. This study examined C-peptide secretion in serial blood samples collected after oral and i.v. dextrose (0.75 g/kg) administration to 9 ponies (BCS, 7.1 ± 0.5). The ponies were designated as hyperinsulinemic (HI) or normoinsulinemic (NI) responders before the study, using oral glucose tests and fasted glucose-to-insulin ratios, and responses were compared between the 2 groups. C-peptide concentrations increased ( < 0.01) rapidly from fasted levels after both oral and i.v. dextrose, with similar area under the concentration-time curve (AUC) for both tests and a significant correlation with AUC. The AUC was similar in HI and NI ponies after i.v. dextrose, indicating similar pancreatic capacity for both groups. However, for oral dextrose, the AUC and the AUC were markedly higher ( < 0.05) in the HI ponies, indicating a greater secretion rate of these peptides. Slower insulin clearance might have also contributed to the larger AUC in HI ponies, but this hypothesis requires further investigation with specific measures of hepatic insulin clearance.

  15. The potent insulin secretagogue effect of betulinic acid is mediated by potassium and chloride channels.

    PubMed

    Gomes Castro, Allisson Jhonatan; Cazarolli, Luisa Helena; Bretanha, Lizandra C; Sulis, Paola Miranda; Rey Padilla, Diana Patricia; Aragón Novoa, Diana Marcela; Dambrós, Betina Fernanda; Pizzolatti, Moacir G; Mena Barreto Silva, Fátima Regina

    2018-06-15

    Betulinic acid (BA) has been described as an insulin secretagogue which may explain its potent antihyperglycemic effect; however, the exact role of BA as an insulinogenic agent is not clear. The aim of this study was to investigate the mechanism of BA on calcium influx and static insulin secretion in pancreatic islets isolated from euglycemic rats. We found that BA triggers calcium influx by a mechanism dependent on ATP-dependent potassium channels and L-type voltage-dependent calcium channels. Additionally, the voltage-dependent and calcium-dependent chloride channels are also involved in the mechanism of BA, probably due to an indirect stimulation of calcium entry and increased intracellular calcium. Additionally, the downstream activation of PKC, which is necessary for the effect of BA on calcium influx, is involved in the full stimulatory response of the triterpene. BA stimulated the static secretion of insulin in pancreatic islets, indicating that the abrupt calcium influx may be a key step in its secretagogue effect. As such, BA stimulates insulin secretion through the activation of electrophysiological mechanisms, such as the closure of potassium channels and opening of calcium and chloride channels, inducing cellular depolarization associated with metabolic-biochemical effects, in turn activating PKC and ensuring the secretion of insulin. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. TCF7L2 is a master regulator of insulin production and processing.

    PubMed

    Zhou, Yuedan; Park, Soo-Young; Su, Jing; Bailey, Kathleen; Ottosson-Laakso, Emilia; Shcherbina, Liliya; Oskolkov, Nikolay; Zhang, Enming; Thevenin, Thomas; Fadista, João; Bennet, Hedvig; Vikman, Petter; Wierup, Nils; Fex, Malin; Rung, Johan; Wollheim, Claes; Nobrega, Marcelo; Renström, Erik; Groop, Leif; Hansson, Ola

    2014-12-15

    Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors', we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of proinsulin is regulated by TCF7L2 but also processing and possibly clearance of proinsulin and insulin. These multiple targets in key pathways may explain why TCF7L2 has emerged as the gene showing one of the strongest associations with T2D. © The Author 2014. Published by Oxford University Press.

  17. In vivo and in vitro evaluation of the effects of Urtica dioica and swimming activity on diabetic factors and pancreatic beta cells.

    PubMed

    Ranjbari, Abbas; Azarbayjani, Mohammad Ali; Yusof, Ashril; Halim Mokhtar, Abdul; Akbarzadeh, Samad; Ibrahim, Mohamed Yousif; Tarverdizadeh, Bahman; Farzadinia, Parviz; Hajiaghaee, Reza; Dehghan, Firouzeh

    2016-03-15

    Urtica dioica (UD) has been identified as a traditional herbal medicine. This study aimed to investigate the effect of UD extract and swimming activity on diabetic parameters through in vivo and in vitro experiments. Adult WKY male rats were randomly distributed in nine groups: intact control, diabetic control, diabetic + 625 mg/kg, 1.25 g/kg UD, diabetic + 100 mg/kg Metformin, diabetic + swimming, diabetic + swimming 625 mg/kg, 1.25 g/kg UD, and diabetic +100 mg/kg Metformin + swimming. The hearts of the animals were punctured, and blood samples were collected for biochemical analysis. The entire pancreas was exposed for histologic examination. The effect of UD on insulin secretion by RIN-5F cells in 6.25 or 12.5 mM glucose dose was examined. Glucose uptake by cultured L6 myotubes was determined. The serum glucose concentration decreased, the insulin resistance and insulin sensitivity significantly increased in treated groups. These changes were more pronounced in the group that received UD extract and swimming training. Regeneration and less beta cell damage of Langerhans islets were observed in the treated groups. UD treatment increased insulin secretion in the RIN-5F cells and glucose uptake in the L6 myotubes cells. Swimming exercises accompanied by consuming UD aqueous extracts effectively improved diabetic parameters, repaired pancreatic tissues in streptozotocin-induced diabetics in vivo, and increased glucose uptake or insulin in UD-treated cells in vitro.

  18. Sodium-Glucose Cotransporter 2 Inhibitors Reduce Prandial Insulin Doses in Type 2 Diabetic Patients Treated With the Intensive Insulin Therapy.

    PubMed

    Hakoshima, Mariko; Yanai, Hidekatsu; Kakuta, Kouki; Adachi, Hiroki

    2018-06-01

    Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are anti-diabetic drugs which improve blood glucose control by blocking reabsorption of glucose from the proximal tubule of kidney. Anti-atherosclerotic properties and cardiovascular protective effects of SGLT2i have been demonstrated by recent studies; however, the efficacy and safety of addition of SGLT2i to the intensive insulin therapy remain largely unknown. We retrospectively picked up patients hospitalized for treatment of type 2 diabetes, who had been treated by the intensive insulin therapy and whose treatment using by SGLT2i started during their hospitalization. Such patients were picked up between June 2014 and May 2017 based on medical charts. We found 12 eligible patients. Observation period was 10.2 ± 4.7 days, and SGLT2i was started at 12.2 ± 12.9 days after the admission. During observation period, nobody developed hypoglycemia. In spite of showing decrease of blood glucose (non-significant) before each meal, the addition of SGLT2i significantly reduced daily prandial insulin doses by approximately 4.6 units/day (-66%). The SGLT2i addition also decreased body weight by approximately 1.3 kg. Present study demonstrated that the addition of SGLT2i to intensive insulin therapy reduced prandial insulin doses and body weight, without the development of hypoglycemia. This result may be due to SGLT2i-mediated improvement of postprandial hyperglycemia by increasing urinary glucose excretion not via insulin secretion.

  19. A distinct adipose tissue gene expression response to caloric restriction predicts 6-mo weight maintenance in obese subjects.

    PubMed

    Mutch, David M; Pers, Tune H; Temanni, M Ramzi; Pelloux, Veronique; Marquez-Quiñones, Adriana; Holst, Claus; Martinez, J Alfredo; Babalis, Dimitris; van Baak, Marleen A; Handjieva-Darlenska, Teodora; Walker, Celia G; Astrup, Arne; Saris, Wim H M; Langin, Dominique; Viguerie, Nathalie; Zucker, Jean-Daniel; Clément, Karine

    2011-12-01

    Weight loss has been shown to reduce risk factors associated with cardiovascular disease and diabetes; however, successful maintenance of weight loss continues to pose a challenge. The present study was designed to assess whether changes in subcutaneous adipose tissue (scAT) gene expression during a low-calorie diet (LCD) could be used to differentiate and predict subjects who experience successful short-term weight maintenance from subjects who experience weight regain. Forty white women followed a dietary protocol consisting of an 8-wk LCD phase followed by a 6-mo weight-maintenance phase. Participants were classified as weight maintainers (WMs; 0-10% weight regain) and weight regainers (WRs; 50-100% weight regain) by considering changes in body weight during the 2 phases. Anthropometric measurements, bioclinical variables, and scAT gene expression were studied in all individuals before and after the LCD. Energy intake was estimated by using 3-d dietary records. No differences in body weight and fasting insulin were observed between WMs and WRs at baseline or after the LCD period. The LCD resulted in significant decreases in body weight and in several plasma variables in both groups. WMs experienced a significant reduction in insulin secretion in response to an oral-glucose-tolerance test after the LCD; in contrast, no changes in insulin secretion were observed in WRs after the LCD. An ANOVA of scAT gene expression showed that genes regulating fatty acid metabolism, citric acid cycle, oxidative phosphorylation, and apoptosis were regulated differently by the LCD in WM and WR subjects. This study suggests that LCD-induced changes in insulin secretion and scAT gene expression may have the potential to predict successful short-term weight maintenance. This trial was registered at clinicaltrials.gov as NCT00390637.

  20. Delivery of two-step transcription amplification exendin-4 plasmid system with arginine-grafted bioreducible polymer in type 2 diabetes animal model

    PubMed Central

    Kim, Pyung-Hwan; Lee, Minhyung; Kim, Sung Wan

    2012-01-01

    Exendin-4, glucagon-like peptide 1 (GLP-1) receptor agonist, is an exocrine hormone, which has potent insulinotropic actions similar to GLP-1 such as stimulating insulin biosynthesis, facilitating glucose-concentration dependent insulin secretion, slowing gastric emptying, reducing food intake and stimulating β-cell proliferation. Exendin-4, also, has a longer half-life than GLP-1, due to itsresistance to degradation by dipeptidyl peptidase IV (DPP-IV). In spite of its many advantages as a therapeutic agent for diabetes, its clinical application is still restricted. Thus, to improve the activity of exendin-4 in vivo, gene therapy system was developed as an alternative method. An exendin-4 expression system was constructed using the two-step transcription amplification (TSTA) system, which is composed of pβ-Gal4-p65 and pUAS-SP-exendin-4 with combining the advantages of signal peptide (SP) in order to facilitate its secretion in ectopic cells or tissue. Arginine-grafted cyctaminebisacrylamide-diaminohexane polymer (ABP) was used as a gene carrier. Increased expression of exendin-4, glucose dependent insulin secretion in NIT-1 insulinoma cells, and high insulin expression in the presence of DPP-IV were evaluated in vitro after delivery of ABP/TSTA-SP-exendin-4. Blood glucose levels in diabetic mice were decreased dramatically from the third day for experimental period after single intravenous administration with ABP/TSTA-SP-exendin-4. The highest insulinotropic effect of exendin-4 was also observed in the ABP/TSTA/SP-exendin-4-treated mice groups, compared with the others groups from the 3rd day after injection. TSTA exendin-4 expression system with SP and ABP polymer has a potential gene therapy for the treatment of type 2 diabetes. PMID:22705459

  1. Low-energy diets differing in fibre, red meat and coffee intake equally improve insulin sensitivity in type 2 diabetes: a randomised feasibility trial.

    PubMed

    Nowotny, Bettina; Zahiragic, Lejla; Bierwagen, Alessandra; Kabisch, Stefan; Groener, Jan B; Nowotny, Peter J; Fleitmann, Ann Kristin; Herder, Christian; Pacini, Giovanni; Erlund, Iris; Landberg, Rikard; Haering, Hans-Ulrich; Pfeiffer, Andreas F H; Nawroth, Peter P; Roden, Michael

    2015-02-01

    Epidemiological studies have found that a diet high in fibre and coffee, but low in red meat, reduces the risk for type 2 diabetes. We tested the hypothesis that these nutritional modifications differentially improve whole-body insulin sensitivity (primary outcome) and secretion. Inclusion criteria were: age 18-69 years, BMI ≥ 30 kg/m(2), type 2 diabetes treated with diet, metformin or acarbose and known disease duration of ≤ 5 years. Exclusion criteria were: HbA1c >75 mmol/mol (9.0%), type 1 or secondary diabetes types and acute or chronic diseases including cancer. Patients taking any medication affecting the immune system or insulin sensitivity, other than metformin, were also excluded. Of 59 patients (randomised using randomisation blocks [four or six patients] with consecutive numbers), 37 (54% female) obese type 2 diabetic patients completed this controlled parallel-group 8-week low-energy dietary intervention. The participants consumed either a diet high in cereal fibre (whole grain wheat/rye: 30-50 g/day) and coffee (≥ 5 cups/day), and free of red meat (L-RISK, n = 17) or a diet low in fibre (≤ 10 g/day), coffee-free and high in red meat (≥ 150 g/day) diet (H-RISK, n = 20). Insulin sensitivity and secretion were assessed by hyperinsulinaemic-euglycaemic clamp and intravenous glucose tolerance tests with isotope dilution. Whole-body and organ fat contents were measured by magnetic resonance imaging and spectroscopy. Whole-body insulin sensitivity increased in both groups (mean [95% CI]) (H-RISK vs L-RISK: 0.8 [0.2, 1.4] vs 1.0 [0.4, 1.7]mg kg(-1) min(-1), p = 0.59), while body weight decreased (-4.8% [-6.1%, -3.5%] vs -4.6% [-6.0%, -3.3%], respectively). Hepatic insulin sensitivity remained unchanged, whereas hepatocellular lipid content fell in both groups (-7.0% [-9.6%, -4.5%] vs -6.7% [-9.5%, -3.9%]). Subcutaneous fat mass (-1,553 [-2,767, -340] cm(3) vs -751 [-2,047; 546] cm(3), respectively) visceral fat mass (-206 [-783, 371] cm(3) vs -241 [-856, 373] cm(3), respectively) and muscle fat content (-0.09% [-0.16%, -0.02%] vs -0.02% [-0.10%, 0.05%], respectively) decreased similarly. Insulin secretion remained unchanged, while the proinflammatory marker IL-18 decreased only after the L-RISK diet. No evidence of a difference between both low-energy diets was identified. Thus, energy restriction per se seems to be key for improving insulin action in phases of active weight loss in obese type 2 diabetic patients, with a potential improvement of subclinical inflammation with the L-RISK diet. Clinicaltrials.gov NCT01409330. This study was supported by the Ministry of Science and Research of the State of North Rhine-Westphalia (MIWF NRW), the German Federal Ministry of Health (BMG), the Federal Ministry for Research (BMBF) to the Center for Diabetes Research (DZD e.V.) and the Helmholtz Alliance Imaging and Curing Environmental Metabolic Diseases (ICEMED).

  2. Recent Advances in Obesity-Induced Inflammation and Insulin Resistance

    PubMed Central

    Tateya, Sanshiro; Kim, Francis; Tamori, Yoshikazu

    2013-01-01

    It has been demonstrated in rodents and humans that chronic inflammation characterized by macrophage infiltration occurs mainly in adipose tissue or liver during obesity, in which activation of immune cells is closely associated with insulin sensitivity. Macrophages can be classified as classically activated (M1) macrophages that support microbicidal activity or alternatively activated (M2) macrophages that support allergic and antiparasitic responses. In the context of insulin action, M2 macrophages sustain insulin sensitivity by secreting IL-4 and IL-10, while M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines, such as TNFα. Polarization of M1/M2 is controlled by various dynamic functions of other immune cells. It has been demonstrated that, in a lean state, TH2 cells, Treg cells, natural killer T cells, or eosinophils contribute to the M2 activation of macrophages by secreting IL-4 or IL-10. In contrast, obesity causes alteration of the constituent immune cells, in which TH1 cells, B cells, neutrophils, or mast cells induce M1 activation of macrophages by the elevated secretion of TNFα and IFNγ. Increased secretion of TNFα and free fatty acids from hypertrophied adipocytes also contributes to the M1 activation of macrophages. Since obesity-induced insulin resistance is established by macrophage infiltration and the activation of immune cells inside tissues, identification of the factors that regulate accumulation and the intracellular signaling cascades that define polarization of M1/M2 would be indispensable. Regulation of these factors would lead to the pharmacological inhibition of obesity-induced insulin resistance. In this review, we introduce molecular mechanisms relevant to the pathophysiology and review the most recent studies of clinical applications targeting chronic inflammation. PMID:23964268

  3. Combination of Peptide YY3–36 with GLP-17–36 amide Causes an Increase in First-Phase Insulin Secretion after IV Glucose

    PubMed Central

    Tan, Tricia M.; Salem, Victoria; Troke, Rachel C.; Alsafi, Ali; Field, Benjamin C. T.; De Silva, Akila; Misra, Shivani; Baynes, Kevin C. R.; Donaldson, Mandy; Minnion, James; Ghatei, Mohammad A.; Godsland, Ian F.

    2014-01-01

    Context: The combination of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) has been proposed as a potential treatment for diabetes and obesity. However, the combined effects of these hormones, PYY3–36 and GLP-17–36 amide, on glucose homeostasis are unknown. Objective: This study sought to investigate the acute effects of PYY3–36 and GLP-17–36 amide, individually and in combination, on insulin secretion and sensitivity. Setting and Design: Using a frequently sampled iv glucose tolerance test (FSIVGTT) and minimal modeling, this study measured the effects of PYY3–36 alone, GLP-17–36 amide alone, and a combination of PYY3–36 and GLP-17–36 amide on acute insulin response to glucose (AIRg) and insulin sensitivity index (SI) in 14 overweight human volunteers, studied in a clinical research facility. Results: PYY3–36 alone caused a small but nonsignificant increase in AIRg. GLP-17–36 amide alone and the combination of PYY3–36 and GLP-17–36 amide did increase AIRg significantly. No significant differences in SI were observed with any intervention. Conclusions: PYY3–36 lacks any significant acute effects on first-phase insulin secretion or SI when tested using an FSIVGTT. Both GLP-17–36 amide alone and the combination of PYY3–36 and GLP-17–36 amide increase first-phase insulin secretion. There does not seem to be any additive or synergistic effect between PYY3–36 and GLP-17–36 amide on first-phase insulin secretion. Neither hormone alone nor the combination had any significant effects on SI. PMID:25144632

  4. Repaglinide is more efficient than glimepiride on insulin secretion and post-prandial glucose excursions in patients with type 2 diabetes. A short term study.

    PubMed

    Rizzo, M R; Barbieri, M; Grella, R; Passariello, N; Barone, M; Paolisso, G

    2004-02-01

    To compare the effect of Repaglinide vs Glimepiride on glucose- and meal-induced insulin secretion and on meal-test induced postprandial glucose excursions. After 2 weeks washout period, a 3-Month randomised, cross-over parallel group trial of R (1 mg x 2/die) vs G (2 mg/die) in 14 patients with type 2 diabetes "naive" in diet treatment was made. Both R and G significantly but similarly lowered fasting glucose levels and improved fasting plasma insulin levels vs baseline. Hyperglycemic clamp showed that both 1st (129.15 +/- 23.6 vs 106.90 +/- 18.6 pmol/L; p=0.01) and 2nd phase (189.42 +/- 34.4 vs 144.21 +/- 37.3 pmol/L; p=0.003) B-cell response to glucose as well as area under the curve (52.07 +/- 10.86 vs 39.54 +/- 10.27 micromol/L x 120'; p=0.005) were greater in R than G groups. Insulin action (4.0 +/- 1.1 vs 3.2 +/- 0.9 mg x Kg x 60'/microU/mL; p=0.046) was also improved by R than G administration. In the meal test, R therapy produced a more rapId induction of insulin secretion during the first part. In fact, the mean rise in insulin secretion peaked at 45 min in R (p=0.001 vs G) and at 60 min in G (p=0.001 vs R). Consequently, glucose spike at 60 min was higher in G group compared to glucose spike at 45 min in R group (p=0.002). Our study demonstrates that R is more efficient that G on improving glucose- and meal- induced insulin secretion as well as on controlling for postprandial glucose excursion.

  5. Comparison of β-Cell Function Between Overweight/Obese Adults and Adolescents Across the Spectrum of Glycemia.

    PubMed

    Chen, Melinda E; Chandramouli, Aaditya G; Considine, Robert V; Hannon, Tamara S; Mather, Kieren J

    2018-02-01

    Type 2 diabetes is a growing health problem among both adults and adolescents. To better understand the differences in the pathogenesis of diabetes between these groups, we examined differences in β-cell function along the spectrum of glucose tolerance. We evaluated 89 adults and 50 adolescents with normal glucose tolerance (NGT), dysglycemia, or type 2 diabetes. Oral glucose tolerance test results were used for C-peptide and insulin/glucose minimal modeling. Model-derived and direct measures of insulin secretion and insulin sensitivity were compared across glycemic stages and between age-groups at each stage. In adolescents with dysglycemia, there was marked insulin resistance (insulin sensitivity index: adolescents, median [interquartile range] 1.8 [1.1-2.4] × 10 -4 ; adults, 5.0 [2.3-9.9]; P = 0.01). The nature of β-cell dysfunction across stages of dysglycemia differed between the groups. We observed higher levels of secretion among adolescents than adults (total insulin secretion: NGT, 143 [103-284] × 10 -9 /min adolescent vs. 106 [71-127], P = 0.001); adults showed stepwise impairments in static insulin secretion (NGT, 7.5 [4.0-10.3] × 10 -9 /min; dysglycemia, 5.0 [2.3-9.9]; type 2 diabetes, 0.7 [0.1-2.45]; P = 0.003), whereas adolescents showed diabetes-related impairment in dynamic secretion (NGT, 1,905 [1,630-3,913] × 10 -9 ; dysglycemia, 2,703 [1,323-3,637]; type 2 diabetes, 1,189 [269-1,410]; P = 0.001). Adults and adolescents differ in the underlying defects leading to dysglycemia, and in the nature of β-cell dysfunction across stages of dysglycemia. These results may suggest different approaches to diabetes prevention in youths versus adults. © 2017 by the American Diabetes Association.

  6. Quantifying Insulin Sensitivity and Entero-Insular Responsiveness to Hyper- and Hypoglycemia in Ferrets

    PubMed Central

    Sui, Hongshu; Yi, Yaling; Yao, Jianrong; Liang, Bo; Sun, Xingshen; Hu, Shanming; Uc, Aliye; Nelson, Deborah J.; Ode, Katie Larson; Philipson, Louis H.; Engelhardt, John F.; Norris, Andrew W.

    2014-01-01

    Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes. We therefore sought to develop techniques for glycemic clamps in ferrets. To assess insulin sensitivity, we performed euglycemic hyperinsulinemic clamps in 5–6 week old ferrets in the anesthetized and conscious states. To assess insulin secretion, we performed hyperglycemic clamps in conscious ferrets. To evaluate responsiveness of ferret islet and entero-insular hormones to low glucose, a portion of the hyperglycemic clamps were followed by a hypoglycemic clamp. The euglycemic hyperinsulinemic clamps demonstrated insulin responsiveness in ferrets similar to that previously observed in humans and rats. The anesthetic isoflurane induced marked insulin resistance, whereas lipid emulsion induced mild insulin resistance. In conscious ferrets, glucose appearance was largely suppressed at 4 mU/kg/min insulin infusion, whereas glucose disposal was progressively increased at 4 and 20 mU/kg/min insulin. Hyperglycemic clamp induced first phase insulin secretion. Hypoglycemia induced a rapid diminishment of insulin, as well as a rise in glucagon and pancreatic polypeptide levels. The incretins GLP-1 and GIP were affected minimally by hyperglycemic and hypoglycemic clamp. These techniques will prove useful in better defining the pathophysiology in ferrets with cystic fibrosis related diabetes. PMID:24594704

  7. Quantifying insulin sensitivity and entero-insular responsiveness to hyper- and hypoglycemia in ferrets.

    PubMed

    Sui, Hongshu; Yi, Yaling; Yao, Jianrong; Liang, Bo; Sun, Xingshen; Hu, Shanming; Uc, Aliye; Nelson, Deborah J; Ode, Katie Larson; Philipson, Louis H; Engelhardt, John F; Norris, Andrew W

    2014-01-01

    Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes. We therefore sought to develop techniques for glycemic clamps in ferrets. To assess insulin sensitivity, we performed euglycemic hyperinsulinemic clamps in 5-6 week old ferrets in the anesthetized and conscious states. To assess insulin secretion, we performed hyperglycemic clamps in conscious ferrets. To evaluate responsiveness of ferret islet and entero-insular hormones to low glucose, a portion of the hyperglycemic clamps were followed by a hypoglycemic clamp. The euglycemic hyperinsulinemic clamps demonstrated insulin responsiveness in ferrets similar to that previously observed in humans and rats. The anesthetic isoflurane induced marked insulin resistance, whereas lipid emulsion induced mild insulin resistance. In conscious ferrets, glucose appearance was largely suppressed at 4 mU/kg/min insulin infusion, whereas glucose disposal was progressively increased at 4 and 20 mU/kg/min insulin. Hyperglycemic clamp induced first phase insulin secretion. Hypoglycemia induced a rapid diminishment of insulin, as well as a rise in glucagon and pancreatic polypeptide levels. The incretins GLP-1 and GIP were affected minimally by hyperglycemic and hypoglycemic clamp. These techniques will prove useful in better defining the pathophysiology in ferrets with cystic fibrosis related diabetes.

  8. Effect of somatostatin infusion on intermediary metabolism and entero-insular hormone release in infants with hyperinsulinaemic hypoglycaemia.

    PubMed

    Aynsley-Green, A; Barnes, N D; Adrian, T E; Kingston, J; Boyes, S; Bloom, S R

    1981-11-01

    The hypoglycaemia of infantile hyperinsulinism is often exceedingly difficult to control. The use of somatostatin has been advocated recently in such infants because of its effect on inhibiting insulin release, but nothing is known of the wider effects of this potent hormone in the young child. Two infants presenting at 9 weeks and 5 days of age with severe hyperinsulinaemic hypoglycaemia were studied during an infusion of somatostatin. In both infants normoglycaemia was restored with suppression of insulin secretion. An increase in blood ketone bodies occurred, but no change was seen in blood pyruvate, lactate or alanine concentrations. The plasma concentrations of glucagon, cortisol, growth hormone, motilin, pancreatic polypeptide, gastric inhibitory of polypeptide, neurotensin, gastrin and vasoactive intestinal peptide decreased markedly during the somatostatin infusion. No consistent change occurred in plasma enteroglucagon or secretin values. We conclude that somatostatin effectively suppresses abnormal insulin secretion in infants, but it has profound effects on the release of nine other hormones. Further studies are needed to define the consequences of suppressing the release of these hormones before somatostatin can be used routinely in the management of infantile hyperinsulinism.

  9. Regulation of leptin production in humans.

    PubMed

    Fried, S K; Ricci, M R; Russell, C D; Laferrère, B

    2000-12-01

    Serum levels of the adipocyte hormone leptin are increased in proportion to body fat stores as a result of increased production in enlarged fat cells from obese subjects. In vitro studies indicate that insulin and glucocorticoids work directly on adipose tissue to upregulate in a synergistic manner leptin mRNA levels and rates of leptin secretion in human adipose tissue over the long term. Thus, the increased leptin expression observed in obesity could result from the chronic hyperinsulinemia and increased cortisol turnover. Superimposed upon the long-term regulation, nutritional status can influence serum leptin over the short term, independent of adiposity. Fasting leads to a gradual decline in serum leptin that is probably attributable to the decline in insulin and the ability of catecholamines to decrease leptin expression, as observed in both in vivo and in vitro studies. In addition, increases in serum leptin occur approximately 4-7 h after meals. Increasing evidence indicates that insulin, in concert with permissive effects of cortisol, can increase serum leptin over this time frame and likely contributes to meal-induced increases in serum leptin. Further research is required to elucidate the cellular and molecular mechanisms underlying short- and long-term nutritional and hormonal regulation of leptin production and secretion.

  10. HPA axis and vagus nervous function are involved in impaired insulin secretion of MSG-obese rats.

    PubMed

    Miranda, Rosiane A; Torrezan, Rosana; de Oliveira, Júlio C; Barella, Luiz F; da Silva Franco, Claudinéia C; Lisboa, Patrícia C; Moura, Egberto G; Mathias, Paulo C F

    2016-07-01

    Neuroendocrine dysfunctions such as the hyperactivity of the vagus nerve and hypothalamus-pituitary-adrenal (HPA) axis greatly contribute to obesity and hyperinsulinemia; however, little is known about these dysfunctions in the pancreatic β-cells of obese individuals. We used a hypothalamic-obesity model obtained by neonatal treatment with monosodium l-glutamate (MSG) to induce obesity. To assess the role of the HPA axis and vagal tonus in the genesis of hypercorticosteronemia and hyperinsulinemia in an adult MSG-obese rat model, bilateral adrenalectomy (ADX) and subdiaphragmatic vagotomy (VAG) alone or combined surgeries (ADX-VAG) were performed. To study glucose-induced insulin secretion (GIIS) and the cholinergic insulinotropic process, pancreatic islets were incubated with different glucose concentrations with or without oxotremorine-M, a selective agonist of the M3 muscarinic acetylcholine receptor (M3AChR) subtype. Protein expression of M3AChR in pancreatic islets, corticosteronemia, and vagus nerve activity was also evaluated. Surgeries reduced 80% of the body weight gain. Fasting glucose and insulin were reduced both by ADX and ADX-VAG, whereas VAG was only associated with hyperglycemia. The serum insulin post-glucose stimulation was lower in all animals that underwent an operation. Vagal activity was decreased by 50% in ADX rats. In the highest glucose concentration, both surgeries reduced GIIS by 50%, whereas ADX-VAG decreased by 70%. Additionally, M3AChR activity was recovered by the individual surgeries. M3AChR protein expression was reduced by ADX. Both the adrenal gland and vagus nerve contribute to the hyperinsulinemia in the MSG model, although adrenal is more crucial as it appears to modulate parasympathetic activity and M3AChR expression in obesity. © 2016 Society for Endocrinology.

  11. Rapamycin impairs metabolism-secretion coupling in rat pancreatic islets by suppressing carbohydrate metabolism.

    PubMed

    Shimodahira, Makiko; Fujimoto, Shimpei; Mukai, Eri; Nakamura, Yasuhiko; Nishi, Yuichi; Sasaki, Mayumi; Sato, Yuichi; Sato, Hiroki; Hosokawa, Masaya; Nagashima, Kazuaki; Seino, Yutaka; Inagaki, Nobuya

    2010-01-01

    Rapamycin, an immunosuppressant used in human transplantation, impairs beta-cell function, but the mechanism is unclear. Chronic (24 h) exposure to rapamycin concentration dependently suppressed 16.7 mM glucose-induced insulin release from islets (1.65+/-0.06, 30 nM rapamycin versus 2.35+/-0.11 ng/islet per 30 min, control, n=30, P<0.01) without affecting insulin and DNA contents. Rapamycin also decreased alpha-ketoisocaproate-induced insulin release, suggesting reduced mitochondrial carbohydrate metabolism. ATP content in the presence of 16.7 mM glucose was significantly reduced in rapamycin-treated islets (13.42+/-0.47, rapamycin versus 16.04+/-0.46 pmol/islet, control, n=30, P<0.01). Glucose oxidation, which indicates the velocity of metabolism in the Krebs cycle, was decreased by rapamycin in the presence of 16.7 mM glucose (30.1+/-2.7, rapamycin versus 42.2+/-3.3 pmol/islet per 90 min, control, n=9, P<0.01). Immunoblotting revealed that the expression of complex I, III, IV, and V was not affected by rapamycin. Mitochondrial ATP production indicated that the respiratory chain downstream of complex II was not affected, but that carbohydrate metabolism in the Krebs cycle was reduced by rapamycin. Analysis of enzymes in the Krebs cycle revealed that activity of alpha-ketoglutarate dehydrogenase (KGDH), which catalyzes one of the slowest reactions in the Krebs cycle, was reduced by rapamycin (10.08+/-0.82, rapamycin versus 13.82+/-0.84 nmol/mg mitochondrial protein per min, control, n=5, P<0.01). Considered together, these findings indicate that rapamycin suppresses high glucose-induced insulin secretion from pancreatic islets by reducing mitochondrial ATP production through suppression of carbohydrate metabolism in the Krebs cycle, together with reduced KGDH activity.

  12. [Free-radical reactions in diabetes mellitus].

    PubMed

    Mrowicka, Małgorzata

    2005-10-01

    Type 2 diabetes mellitus (DM), characterized by decreased insulin secretion, hypoinsulinemia and/or insulin resistance, accounts for 90% of all cases of DM. Oxidative stress is considered as an essential prerequisite for the pathogenesis of this disease. On one hand, current theory of oxidative stress is associated with autooxidation of glucose, which leads to the reactive ketoaldehydes formation, on the other hand it intensifies non-enzymatic glycation of proteins. The increase in reactive oxygen species (ROS) production and a decline in the activity of antioxidants is not only a result of hyperglycemia, but also of hyperinsulinemia and decreased tissue sensitivity to insulin. Because of a significant role of (ROS) in the pathogenesis of chronic diabetic complications, efforts should be made to diminish their toxic effects. Scientific research revealed that the best method for the prevention and treatment of diabetic complications was a long-term compensation of diabetes. To obtain optimal glycemia is crucial, since hyperglycemia is the main source of oxidative stress in patients with diabetes mellitus.

  13. Prevention of type 2 Diabetes Mellitus: Potential of pharmacological agents.

    PubMed

    Samson, Susan L; Garber, Alan J

    2016-06-01

    People with impaired glucose tolerance or impaired fasting glucose, or "pre-diabetes", are at high risk for progression to type 2 diabetes, as are those with metabolic syndrome or a history of gestational diabetes. Both glucose-lowering and anti-obesity pharmacotherapies have been studied to determine if the onset of type 2 diabetes can be delayed or prevented. Here we review the available data in the field. The most common theme is the reduction in insulin resistance, such as with weight loss, decreasing demands on the beta cell to improve insulin secretion and prolong its function. Overall, therapies which decrease diabetes incidence in high-risk populations delay the onset of diabetes but do not correct the underlying beta cell defect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. ATP synthase β-subunit abnormality in pancreas islets of rats with polycystic ovary syndrome and type 2 diabetes mellitus.

    PubMed

    Li, Wei; Li, Sai-Jiao; Yin, Tai-Lang; Yang, Jing; Cheng, Yan

    2017-04-01

    This study investigated the abnormal expression of ATP synthase β-subunit (ATPsyn-β) in pancreas islets of rat model of polycystic ovary syndrome (PCOS) with type 2 diabetes mellitus (T2DM), and the secretion function changes after up-regulation of ATP5b. Sixty female SD rats were divided into three groups randomly and equally. The rat model of PCOS with T2DM was established by free access to the high-carbohydrate/high-fat diet, subcutaneous injections of DHEA, and a single injection of streptozotocin. The pancreas was removed for the detection of the ATPsyn-β expression by immunohistochemical staining, Western blotting and reverse transcription-PCR (RT-PCR). The pancreas islets of the rats were cultured, isolated with collagenase V and purified by gradient centrifugation, and the insulin secretion after treatment with different glucose concentrations was tested. Lentivirus ATP5b was successfully constructed with the vector of GV208 and transfected into the pancreas islets for the over-expression of ATPsyn-β. The insulin secretion and intracellular ATP content were determined after transfection of the PCOS-T2DM pancreas islets with Lenti-ATP5b. The results showed that the expression of ATPsyn-β protein and mRNA was significantly decreased in the pancreas of PCOS-T2DM rats. The ATP content in the pancreas islets was greatly increased and the insulin secretion was improved after the up-regulation of ATPsyn-β in the pancreas islets transfected with lenti-ATP5b. These results indicated that for PCOS, the ATPsyn-β might be one of the key factors for the attack of T2DM.

  15. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    PubMed

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  16. Insulin secretion enhancing activity of roselle calyx extract in normal and streptozotocin-induced diabetic rats

    PubMed Central

    Wisetmuen, Eamruthai; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Yutanawiboonchai, Wiboonchai; Itharat, Arunporn

    2013-01-01

    Background and Objective: Our recent study revealed the antihyperglycemic activity of an ethanolic extract of roselle calyxes (Hibiscus sabdariffa) in diabetic rats. The present study had, therefore, an objective to investigate the mechanism underlying this activity. Materials and Methods: Male Sprague Dawley rats were induced to be diabetes by intraperitoneal injection of 45 mg/kg streptozotocin (STZ). Normal rats as well as diabetic rats were administered with the ethanolic extract of H. sabdariffa calyxes (HS-EE) at 0.1 and 1.0 g/kg/day, respectively, for 6 weeks. Then, blood glucose and insulin levels, at basal and glucose-stimulated secretions, were measured. The pancreas was dissected to examine histologically. Results: HS-EE 1.0 g/kg/day significantly decreased the blood glucose level by 38 ± 12% in diabetic rats but not in normal rats. In normal rats, treatment with 1.0 g/kg HS-EE increased the basal insulin level significantly as compared with control normal rats (1.28 ± 0.25 and 0.55 ± 0.05 ng/ml, respectively). Interestingly, diabetic rats treated with 1.0 g/kg HS-EE also showed a significant increase in basal insulin level as compared with the control diabetic rats (0.30 ± 0.05 and 0.15 ± 0.01 ng/ml, respectively). Concerning microscopic histological examination, HS-EE 1.0 g/kg significantly increased the number of islets of Langerhans in both normal rats (1.2 ± 0.1 and 2.0 ± 0.1 islet number/10 low-power fields (LPF) for control and HS-EE treated group, respectively) and diabetic rats (1.0 ± 0.3 and 3.9 ± 0.6 islet number/10 LPF for control and HS-EE treated group, respectively). Conclusion: The antidiabetic activity of HS-EE may be partially mediated via the stimulating effect on insulin secretion. PMID:23798879

  17. The Gly972Arg polymorphism in insulin receptor substrate-1 is associated with decreased birth weight in a population-based sample of Brazilian newborns.

    PubMed

    Bezerra, Rosângela M N; de Castro, Vagner; Sales, Teresa; Passini, Renato; Marba, Sergio T M; Saad, Sara T O; Saad, Mario J A

    2002-03-01

    We studied the association between the Gly972Arg polymorphism in insulin receptor substrate-1 (IRS-1) and birth weight in a population-based sample of Brazilian newborns. We studied 194 newborn children with adequate gestational age to identify the association between the Gly972Arg polymorphism and birth weight using PCR-restriction fragment length polymorphism analysis. The data showed that the birth weight was lower in the newborns with the Gly972Arg polymorphism in IRS-1 compared with control subjects (3,141 +/- 31.8 vs. 3,373 +/- 80.3 g, P < 0.008). The results also showed that the frequency of this polymorphism was increased in newborns with a birth weight <3,000 g (P=0.041). These results suggest that the genotype Gly972Arg may influence birth weight, reinforcing the hypothesis that genetically determined insulin resistance and/or reduced insulin secretion can result in impaired insulin-mediated growth in the fetus.

  18. Characterization of beta cell and incretin function in patients with MODY1 (HNF4A MODY) and MODY3 (HNF1A MODY) in a Swedish patient collection.

    PubMed

    Ekholm, E; Shaat, N; Holst, J J

    2012-10-01

    The aim of this study was to evaluate the beta cell and incretin function in patients with HNF4A and HNF1A MODY during a test meal. Clinical characteristics and biochemical data (glucose, proinsulin, insulin, C-peptide, GLP-1 and GIP) during a test meal were compared between MODY patients from eight different families. BMI-matched T2D and healthy subjects were used as two separate control groups. The early phase of insulin secretion was attenuated in HNF4A, HNF1A MODY and T2D (AUC0-30 controls: 558.2 ± 101.2, HNF4A MODY: 93.8 ± 57.0, HNF1A MODY: 170.2 ± 64.5, T2D: 211.2 ± 65.3, P < 0.01). Markedly reduced levels of proinsulin were found in HNF4A MODY compared to T2D and that tended to be so also in HNF1A MODY (HNF4A MODY: 3.7 ± 1.2, HNF1A MODY: 8.3 ± 3.8 vs. T2D: 26.6 ± 14.3). Patients with HNF4A MODY had similar total GLP-1 and GIP responses as controls (GLP-1 AUC: (control: 823.9 ± 703.8, T2D: 556.4 ± 698.2, HNF4A MODY: 1,257.0 ± 999.3, HNF1A MODY: 697.1 ± 818.4) but with a different secretion pattern. The AUC insulin during the test meal was strongly correlated with the GIP secretion (Correlation coefficient 1.0, P < 0.001). No such correlation was seen for insulin and GLP-1. Patients with HNF4A and HNF1A MODY showed an attenuated early phase of insulin secretion similar to T2Ds. AUC insulin during the test meal was strongly correlated with GIP secretion, whereas no such correlation was seen for insulin and GLP-1. Thus, GIP may be a more important factor for insulin secretion than GLP-1 in MODY patients.

  19. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans.

    PubMed

    MacDonald, Patrick E; De Marinis, Yang Zhang; Ramracheya, Reshma; Salehi, Albert; Ma, Xiaosong; Johnson, Paul R V; Cox, Roger; Eliasson, Lena; Rorsman, Patrik

    2007-06-01

    Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+) signalling was blocked, but was reversed by low concentrations (1-20 muM) of the ATP-sensitive K(+) (KATP) channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM). Higher diazoxide concentrations (>/=30 muM) decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+) responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 muM) stimulated glucagon secretion, whereas high concentrations (>10 muM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+) (TTX) and N-type Ca(2+) channels (omega-conotoxin), but not L-type Ca(2+) channels (nifedipine), prevented glucagon secretion. Both the N-type Ca(2+) channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.

  20. Kyolic and Pycnogenol increase human growth hormone secretion in genetically-engineered keratinocytes.

    PubMed

    Buz'Zard, Amber R; Peng, Qiaoling; Lau, Benjamin H S

    2002-02-01

    The amount of human growth hormone (HGH) decreases significantly after the age of 30. This decrease has been implicated as one of the major causes in the signs of aging, such as thinning of the skin and bones, a decrease in lean muscle mass and an increase in adipose tissue. Supplementing the body's dwindling supply with recombinant human growth hormone (rHGH) has been shown to reverse the signs and symptoms of aging. However, drawbacks in rHGH replacement therapy include prohibitively high cost, the need for repeated injection and side effects such as carpel tunnel syndrome, gynecomastia and insulin resistance. The purpose of this study was to establish an in vitro model using genetically-engineered keratinocytes to screen natural compounds for the ability to stimulate HGH secretion. We now report that a combination of equal amounts of L-arginine and L-lysine, aged garlic extract (Kyolic), S-allyl cysteine and Pycnogenol significantly increased secretion of HGH in this in vitro model. The data indicate that this in vitro model may be used to screen for other secretagogues.

  1. The relationship between salivary insulin-like growth factor I and quantitative cervical maturational stages of skeletal maturity.

    PubMed

    Nayak, Subash; Bhad Patil, Wasundhara A; Doshi, Umal Hiralal

    2014-09-01

    Insulin-like growth factor (IGF-I) has been used as an indicator of growth hormone levels and hence can also be used as a marker of growth. The main objective of the study was to quantify salivary IGF-I levels and its secretion rate at different quantitative cervical maturation (QCVM) stages and evaluate a possible role for salivary IGF-I in evaluating skeletal growth. Forty-five subjects (24 female, 21 male) between the ages of 7 and 23 years were included in the study. Each subject had personal information, a lateral cephalogram, and a parotid saliva sample collected on the same day. Salivary IGF-I levels and salivary secretion rates were lowest at QCVM skeletal stages previously associated with the acceleration phase of mandibular growth. Highest levels were found at the high velocity stage. After this there was gradual drop in salivary IGF-I levels and secretion rate at deceleration and completing velocity stages. Relatively high levels in the decelerating velocity stage may be an indication of residual skeletal growth. There was a negative correlation between patient age and levels of IGF-I and its secretion rate, once growth velocity decreased. Salivary IGF-I levels or its secretion rate can be used as an indicator of skeletal growth but longitudinal data are necessary to confirm salivary IGF-I as a marker for skeletal growth prediction and residual mandibular growth. © 2014 British Orthodontic Society.

  2. Insulin and GLP-1 infusions demonstrate the onset of adipose-specific insulin resistance in a large fasting mammal: potential glucogenic role for GLP-1.

    PubMed

    Viscarra, Jose A; Rodriguez, Ruben; Vazquez-Medina, Jose Pablo; Lee, Andrew; Tift, Michael S; Tavoni, Stephen K; Crocker, Daniel E; Ortiz, Rudy M

    2013-08-01

    Prolonged food deprivation increases lipid oxidation and utilization, which may contribute to the onset of the insulin resistance associated with fasting. Because insulin resistance promotes the preservation of glucose and oxidation of fat, it has been suggested to be an adaptive response to food deprivation. However, fasting mammals exhibit hypoinsulinemia, suggesting that the insulin resistance-like conditions they experience may actually result from reduced pancreatic sensitivity to glucose/capacity to secrete insulin. To determine whether fasting results in insulin resistance or in pancreatic dysfunction, we infused early- and late-fasted seals (naturally adapted to prolonged fasting) with insulin (0.065 U/kg), and a separate group of late-fasted seals with low (10 pM/kg) or high (100 pM/kg) dosages of glucagon-like peptide-1 (GLP-1) immediately following a glucose bolus (0.5g/kg), and measured the systemic and cellular responses. Because GLP-1 facilitates glucose-stimulated insulin secretion, these infusions provide a method to assess pancreatic insulin-secreting capacity. Insulin infusions increased the phosphorylation of insulin receptor and Akt in adipose and muscle of early and late fasted seals; however the timing of the signaling response was blunted in adipose of late fasted seals. Despite the dose-dependent increases in insulin and increased glucose clearance (high dose), both GLP-1 dosages produced increases in plasma cortisol and glucagon, which may have contributed to the glucogenic role of GLP-1. Results suggest that fasting induces adipose-specific insulin resistance in elephant seal pups, while maintaining skeletal muscle insulin sensitivity, and therefore suggests that the onset of insulin resistance in fasting mammals is an evolved response to cope with prolonged food deprivation.

  3. Effects of Combined Calcium and Vitamin D Supplementation on Insulin Secretion, Insulin Sensitivity and β-Cell Function in Multi-Ethnic Vitamin D-Deficient Adults at Risk for Type 2 Diabetes: A Pilot Randomized, Placebo-Controlled Trial

    PubMed Central

    Gagnon, Claudia; Daly, Robin M.; Carpentier, André; Lu, Zhong X.; Shore-Lorenti, Catherine; Sikaris, Ken; Jean, Sonia; Ebeling, Peter R.

    2014-01-01

    Objectives To examine whether combined vitamin D and calcium supplementation improves insulin sensitivity, insulin secretion, β-cell function, inflammation and metabolic markers. Design 6-month randomized, placebo-controlled trial. Participants Ninety-five adults with serum 25-hydroxyvitamin D [25(OH)D] ≤55 nmol/L at risk of type 2 diabetes (with prediabetes or an AUSDRISK score ≥15) were randomized. Analyses included participants who completed the baseline and final visits (treatment n = 35; placebo n = 45). Intervention Daily calcium carbonate (1,200 mg) and cholecalciferol [2,000–6,000 IU to target 25(OH)D >75 nmol/L] or matching placebos for 6 months. Measurements Insulin sensitivity (HOMA2%S, Matsuda index), insulin secretion (insulinogenic index, area under the curve (AUC) for C-peptide) and β-cell function (Matsuda index x AUC for C-peptide) derived from a 75 g 2-h OGTT; anthropometry; blood pressure; lipid profile; hs-CRP; TNF-α; IL-6; adiponectin; total and undercarboxylated osteocalcin. Results Participants were middle-aged adults (mean age 54 years; 69% Europid) at risk of type 2 diabetes (48% with prediabetes). Compliance was >80% for calcium and vitamin D. Mean serum 25(OH)D concentration increased from 48 to 95 nmol/L in the treatment group (91% achieved >75 nmol/L), but remained unchanged in controls. There were no significant changes in insulin sensitivity, insulin secretion and β-cell function, or in inflammatory and metabolic markers between or within the groups, before or after adjustment for potential confounders including waist circumference and season of recruitment. In a post hoc analysis restricted to participants with prediabetes, a significant beneficial effect of vitamin D and calcium supplementation on insulin sensitivity (HOMA%S and Matsuda) was observed. Conclusions Daily vitamin D and calcium supplementation for 6 months may not change OGTT-derived measures of insulin sensitivity, insulin secretion and β-cell function in multi-ethnic adults with low vitamin D status at risk of type 2 diabetes. However, in participants with prediabetes, supplementation with vitamin D and calcium may improve insulin sensitivity. Trial Registration Australian New Zealand Clinical Trials Registry ACTRN12609000043235 PMID:25299668

  4. Insulin analogs with improved pharmacokinetic profiles.

    PubMed

    Brange; Vølund

    1999-02-01

    The aim of insulin replacement therapy is to normalize blood glucose in order to reduce the complications of diabetes. The pharmacokinetics of the traditional insulin preparations, however, do not match the profiles of physiological insulin secretion. The introduction of the rDNA technology 20 years ago opened new ways to create insulin analogs with altered properties. Fast-acting analogs are based on the idea that an insulin with less tendency to self-association than human insulin would be more readily absorbed into the systemic circulation. Protracted-acting analogs have been created to mimic the slow, steady rate of insulin secretion in the fasting state. The present paper provides a historical review of the efforts to change the physicochemical and pharmacological properties of insulin in order to improve insulin therapy. The available clinical studies of the new insulins are surveyed and show, together with modeling results, that new strategies for optimal basal-bolus treatment are required for utilization of the new fast-acting analogs.

  5. [Endocrinology 1999-2000].

    PubMed

    Schreiber, V

    2001-02-15

    Long-lasting problem on the differentiation of adenohypophyseal cell, which prepares them for their specific tasks (somatotropic, lactotropic ect.), becomes elucidated after recognition of the differentiational effect of transcription factor Pit-1. Expression of that factor in somatotrops results in STH secretion, contrary to lactotrops producing prolactin. Subclinical hypothyreosis (increased TSH with normal T3 and T4) endangers vessel not because of hypercholesterolemia, but because of changes in the dynamics of the blood flow. The idea of cardiotropic effect of thyroidal hormones is supported by the finding that administration of trijodthyronine to children after the surgical correction of heart malformations (cardiopulmonary bypass) improves myocardial function--it elevates cardiac output and decreases requirements on the intensive care. Receptors for hormones in tissues are flexible, they can be "heterooligomers" for dopamine and somatostatin. Mutations of mineralocorticoid receptor may cause hypertension in pregnancy and progesterone receptors have several isoforms. Receptors can be also activated by short exposition to a hormone. Glucocorticoids have probably also membrane receptors. Diabetes mellitus "type I" needn't to be immunogenic and DM type II not only results from down-regulation of receptors and subsequent insulin resistance, but it can be also caused by defects in insulin secretion. Insulin has receptors in the brain and participates in the appetite regulation. The attempt to use "desensibilisation" by peroraly administered insulin in patients with immunogenic DM had no effect. Stress affects memory mechanisms, heavy emotional stress during gravidity can bring congenital malformations. The decrease of mental functions in aged women depends on the level of free estradiol (the fraction, which is not bound to plasma proteins). Activation of dopaminergic neurons can be achieved by neurotropic growth factors. Nesiritide is a recombinant brain natriuretic hormone successfully tested in heart failure. The role of leptin in the appetite regulation in man is still not clear, other signalling molecules may have also an effect, e.g., ghrelin, which primarily stimulates STH secretion and brings about weight gain. Sildenafil influences nitrergic neurons elsewhere than in penis, for example it has positive effects in patients with oesophageal achalasia.

  6. Decrement of postprandial insulin secretion determines the progressive nature of type-2 diabetes.

    PubMed

    Shim, Wan Sub; Kim, Soo Kyung; Kim, Hae Jin; Kang, Eun Seok; Ahn, Chul Woo; Lim, Sung Kil; Lee, Hyun Chul; Cha, Bong Soo

    2006-10-01

    Type-2 diabetes is a progressive disease. However, little is known about whether decreased fasting or postprandial pancreatic beta-cell responsiveness is more prominent with increased duration of diabetes. The aim of this study was to evaluate the relationship between insulin secretion both during fasting and 2 h postprandial, and the duration of diabetes in type-2 diabetic patients. Cross-sectional clinical investigation. We conducted a meal tolerance test in 1466 type-2 diabetic patients and calculated fasting (M0) and postprandial (M1) beta-cell responsiveness. The fasting C-peptide, postprandial C-peptide, M0, and M1 values were lower, but HbA1c values were higher, in patients with diabetes duration > 10 years than those in other groups. There was no difference in the HbA1c levels according to the tertiles of their fasting C-peptide level. However, in a group of patients with highest postprandial C-peptide tertile, the HbA1c values were significantly lower than those in other groups. After adjustment of age, sex, and body mass index (BMI), the duration of diabetes was found to be negatively correlated with fasting C-peptide (gamma = -0.102), postprandial C-peptide (gamma = -0.356), M0 (gamma = -0.263), and M1 (gamma = -0.315; P < 0.01 respectively). After adjustment of age, sex, and BMI, HbA1c was found to be negatively correlated with postprandial C-peptide (gamma = -0.264), M(0) (gamma = -0.379), and M1 (gamma = -0.522), however, positively correlated with fasting C-peptide (gamma = 0.105; P < 0.01 respectively). In stepwise multiple regression analysis, M0, M1, and homeostasis model assessment for insulin resistance (HOMA-IR) emerged as predictors of HbAlc after adjustment for age, sex, and BMI (R2 = 0.272, 0.080, and 0.056 respectively). With increasing duration of diabetes, the decrease of postprandial insulin secretion is becoming more prominent, and postprandial beta-cell responsiveness may be a more important determinant for glycemic control than fasting beta-cell responsiveness.

  7. Variation of glucose tolerance in adult patients with cystic fibrosis: What is the potential contribution of insulin sensitivity?

    PubMed

    Boudreau, Valérie; Coriati, Adèle; Hammana, Imane; Ziai, Sophie; Desjardins, Katherine; Berthiaume, Yves; Rabasa-Lhoret, Rémi

    2016-11-01

    Reduced insulin secretion is a key factor to explain high prevalence of glucose intolerance in patients with cystic fibrosis (CF). However, the role of insulin sensitivity remains unclear. The aim of this study is to investigate the association of insulin secretion and sensitivity with the evolution of glucose tolerance. A total of 152 patients without known diabetes from the Montreal CF cohort underwent two 2-h oral glucose tolerance tests (OGTT) at baseline and again after 21.2±5.5months. Pulmonary function and anthropometric measurements were also collected at each visit. At both visits, based on their OGTT results, patients were categorized in glucose tolerance groups (normal glucose tolerance, impaired glucose tolerance or CF-related diabetes) and stratified in 3 groups according to the variation of their glucose tolerance: stable, improved or deteriorated. At baseline, patients in the deteriorated group had a better sensitivity to insulin than those in the improved group (P=0.029). At follow-up glucose tolerance remained stable in 55.3%, improved in 14.5% and deteriorated in 30.3% of patients. During follow-up, insulin secretion remained stable in all 3 groups. While insulin sensitivity remained stable in patients without changes in glucose tolerance it worsened in patients who deteriorated glucose tolerance (P<0.001) and improved in patients who improved their glucose tolerance (P=0.003). In a context of significantly reduced insulin secretion, variations of insulin sensitivity are associated with variations of glucose tolerance in adult patients with CF. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  8. A review of nateglinide in the management of patients with type 2 diabetes

    PubMed Central

    Tentolouris, Nicholas; Voulgari, Christina; Katsilambros, Nicholas

    2007-01-01

    Impaired insulin secretion occurs early in the pathogenesis of type 2 diabetes mellitus (T2DM) and is chronic and progressive, resulting initially in impaired glucose tolerance (IGT) and eventually in T2DM. As most patients with T2DM have both insulin resistance and insulin deficiency, therapy for T2DM should aim to control not only fasting, but also postprandial plasma glucose levels. While oral glucose-lowering treatment with metformin and thiazolidinediones corrects fasting plasma glucose, these agents do not address the problem of mealtime glucose spikes that have been shown to trigger atherogenic processes. Nateglinide is a derivative of the amino acid D-phenylalanine, which acts directly on the pancreatic β-cells to stimulate insulin secretion. Nateglinide monotherapy controls significantly mealtime hyperglycemia and results in improved overall glycemic control in patients with T2DM by reducing glycosylated hemoglobin (HbA1c) levels. The combination of nateglinide with insulin-sensitising agents, such as metformin and thiazolidinediones, targets both insulin deficiency and insulin resistance and results in reductions in HbA1c that could not be achieved by monotherapy with other antidiabetic agents. In prediabetic subjects with IGT, nateglinide restores early insulin secretion and reduces postprandial hyperglycemia. Nateglinide has an excellent safety and tolerability profile and provides a lifetime flexibility that other antidiabetic agents could not accomplish. The aim of this review is to identify nateglinide as an effective “gate-keeper” in T2DM, since it restores early-phase insulin secretion and prevents mealtime glucose spikes throughout the day and to evaluate the results of ongoing research into its potential role in delaying the progression to overt diabetes and reducing its complications and mortality. PMID:18200800

  9. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant

    PubMed Central

    Piston, David W.

    2015-01-01

    Traditional therapies for type 1 diabetes (T1D) involve insulin replacement or islet/pancreas transplantation and have numerous limitations. Our previous work demonstrated the ability of embryonic brown adipose tissue (BAT) transplants to establish normoglycemia without insulin in chemically induced models of insulin-deficient diabetes. The current study sought to extend the technique to an autoimmune-mediated T1D model and document the underlying mechanisms. In nonobese diabetic (NOD) mice, BAT transplants result in complete reversal of T1D associated with rapid and long-lasting euglycemia. In addition, BAT transplants placed prior to the onset of diabetes on NOD mice can prevent or significantly delay the onset of diabetes. As with streptozotocin (STZ)-diabetic models, euglycemia is independent of insulin and strongly correlates with decrease of inflammation and increase of adipokines. Plasma insulin-like growth factor-I (IGF-I) is the first hormone to increase following BAT transplants. Adipose tissue of transplant recipients consistently express IGF-I compared with little or no expression in controls, and plasma IGF-I levels show a direct negative correlation with glucose, glucagon, and inflammatory cytokines. Adipogenic and anti-inflammatory properties of IGF-I may stimulate regeneration of new healthy white adipose tissue, which in turn secretes hypoglycemic adipokines that substitute for insulin. IGF-I can also directly decrease blood glucose through activating insulin receptor. These data demonstrate the potential for insulin-independent reversal of autoimmune-induced T1D with BAT transplants and implicate IGF-I as a likely mediator in the resulting equilibrium. PMID:25898954

  10. The Investigation of ADAMTS16 in Insulin-Induced Human Chondrosarcoma Cells.

    PubMed

    Cakmak, Ozlem; Comertoglu, Ismail; Firat, Ridvan; Erdemli, Haci Kemal; Kursunlu, S Fatih; Akyol, Sumeyya; Ugurcu, Veli; Altuntas, Aynur; Adam, Bahattin; Demircan, Kadir

    2015-08-01

    A disintegrin-like metalloproteinase with thrombospondin motifs (ADAMTS) is a group of proteins that have enzymatic activity secreted by cells to the outside extracellular matrix. Insulin induces proteoglycan biosynthesis in chondrosarcoma chondrocytes. The purpose of the present in vitro study is to assess the time course effects of insulin on ADAMTS16 expression in OUMS-27 (human chondrosarcoma) cell line to examine whether insulin regulates ADAMTS16 expression as well as proteoglycan biosynthesis with multifaceted properties or not. Chondrosarcoma cells were cultured in Dulbecco's modified Eagle's medium having either 10 μg/mL insulin or not. While the experiment was going on, the medium containing insulin had been changed every other day. Cells were harvested at 1st, 3rd, 7th, and 11th days; subsequently, RNA and proteins were isolated in every experimental group according to their time interval. RNA expression of ADAMTS was estimated by quantitative real-time polymerase chain reaction (qRT-PCR) by using primers. Immunoreactive protein levels were encountered by the western blot protein detection technique by using proper anti-ADAMTS16 antibodies. ADAMTS16 mRNA expression level of chondrosarcoma cells was found to be insignificantly decreased in chondrosarcoma cells induced by insulin detected by the qRT-PCR instrument. On the other hand, there was a gradual decrease in immune-reactant ADAMTS16 protein amount by the time course in insulin-treated cell groups when compared with control cells. It has been suggested that insulin might possibly regulate ADAMTS16 levels/activities in OUMS-27 chondrosarcoma cells taking a role in extracellular matrix turnover.

  11. The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates.

    PubMed

    Tsonkova, Violeta Georgieva; Sand, Fredrik Wolfhagen; Wolf, Xenia Asbæk; Grunnet, Lars Groth; Kirstine Ringgaard, Anna; Ingvorsen, Camilla; Winkel, Louise; Kalisz, Mark; Dalgaard, Kevin; Bruun, Christine; Fels, Johannes Josef; Helgstrand, Charlotte; Hastrup, Sven; Öberg, Fredrik Kryh; Vernet, Erik; Sandrini, Michael Paolo Bastner; Shaw, Allan Christian; Jessen, Carsten; Grønborg, Mads; Hald, Jacob; Willenbrock, Hanni; Madsen, Dennis; Wernersson, Rasmus; Hansson, Lena; Jensen, Jan Nygaard; Plesner, Annette; Alanentalo, Tomas; Petersen, Maja Borup Kjær; Grapin-Botton, Anne; Honoré, Christian; Ahnfelt-Rønne, Jonas; Hecksher-Sørensen, Jacob; Ravassard, Philippe; Madsen, Ole D; Rescan, Claude; Frogne, Thomas

    2018-02-01

    To characterize the EndoC-βH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates. EndoC-βH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice. Cytokine induced apoptosis, glucolipotoxicity, and ER stress responses were assessed. Beta cell relevant mRNA and protein expression were investigated by qPCR and antibody staining. Hundreds of proteins or peptides were tested for their effect on insulin secretion and proliferation. Transplantation of EndoC-βH1 cells restored normoglycemia in streptozotocin induced diabetic mice. Both in vitro and in vivo, we observed a clear insulin response to glucose, and, in vitro, we found a significant increase in insulin secretion from EndoC-βH1 pseudoislets compared to monolayer cultures for both glucose and incretins. Apoptosis and ER stress were inducible in the cells and caspase 3/7 activity was elevated in response to cytokines, but not affected by the saturated fatty acid palmitate. By screening of various proteins and peptides, we found Bombesin (BB) receptor agonists and Pituitary Adenylate Cyclase-Activating Polypeptides (PACAP) to significantly induce insulin secretion and the proteins SerpinA6, STC1, and APOH to significantly stimulate proliferation. ER stress was readily induced by Tunicamycin and resulted in a reduction of insulin mRNA. Somatostatin (SST) was found to be expressed by 1% of the cells and manipulation of the SST receptors was found to significantly affect insulin secretion. Overall, the EndoC-βH1 cells strongly resemble human islet beta cells in terms of glucose and incretin stimulated insulin secretion capabilities. The cell line has an active cytokine induced caspase 3/7 apoptotic pathway and is responsive to ER stress initiation factors. The cells' ability to proliferate can be further increased by already known compounds as well as by novel peptides and proteins. Based on its robust performance during the functionality assessment assays, the EndoC-βH1 cell line was successfully used as a screening platform for identification of novel anti-diabetic drug candidates. Copyright © 2017 Novo Nordisk A/S. Published by Elsevier GmbH.. All rights reserved.

  12. Regulation of Protein Secretion Through Controlled Aggregation in the Endoplasmic Reticulum

    NASA Astrophysics Data System (ADS)

    Rivera, Victor M.; Wang, Xiurong; Wardwell, Scott; Courage, Nancy L.; Volchuk, Allen; Keenan, Terence; Holt, Dennis A.; Gilman, Michael; Orci, Lelio; Cerasoli, Frank; Rothman, James E.; Clackson, Tim

    2000-02-01

    A system for direct pharmacologic control of protein secretion was developed to allow rapid and pulsatile delivery of therapeutic proteins. A protein was engineered so that it accumulated as aggregates in the endoplasmic reticulum. Secretion was then stimulated by a synthetic small-molecule drug that induces protein disaggregation. Rapid and transient secretion of growth hormone and insulin was achieved in vitro and in vivo. A regulated pulse of insulin secretion resulted in a transient correction of serum glucose concentrations in a mouse model of hyperglycemia. This approach may make gene therapy a viable method for delivery of polypeptides that require rapid and regulated delivery.

  13. Ectopic expression of syncollin in INS-1 beta-cells sorts it into granules and impairs regulated secretion.

    PubMed

    Li, Jingsong; Luo, Ruihua; Hooi, Shing Chuan; Ruga, Pilar; Zhang, Jiping; Meda, Paolo; Li, GuoDong

    2005-03-22

    Syncollin was first demonstrated to be a protein capable of affecting granule fusion in a cell-free system, but later studies revealed its luminal localization in zymogen granules. To determine its possible role in exocytosis in the intact cell, syncollin and a truncated form of the protein (lacking the N-terminal hydrophobic domain) were stably transfected in insulin-secreting INS-1 cells since these well-studied exocytotic cells appear not to express the protein per se. Studies by subcellular fractionation analysis, double immunofluorescence staining, and electron microscopy examination revealed that transfection of syncollin produced strong signals in the insulin secretory granules, whereas the product from transfecting the truncated syncollin was predominantly associated with the Golgi apparatus and to a lesser degree with the endoplasmic reticulum. The expressed products were associated with membranes and not the soluble fractions in either cytoplasm or the lumens of organelles. Importantly, insulin release stimulated by various secretagogues was severely impaired in cells expressing syncollin, but not affected by expressing truncated syncollin. Transfection of syncollin appeared not to impede insulin biosynthesis and processing, since cellular contents of proinsulin and insulin and the number of secretory granules were not altered. In addition, the early signals (membrane depolarization and Ca(2+) responses) for regulated insulin secretion were unaffected. These findings indicate that syncollin may be targeted to insulin secretory granules specifically and impair regulated secretion at a distal stage.

  14. Circulating 25-hydroxyvitamin D and insulin resistance in older adults: The Cardiovascular Health Study

    PubMed Central

    Danziger, John; Biggs, Mary L.; Niemi, Matt; Ix, Joachim H.; Kizer, Jorge R.; Djoussé, Luc; de Boer, Ian H.; Siscovick, David S.; Kestenbaum, Bryan; Mukamal, Kenneth J.

    2014-01-01

    Background Despite extensive study, the role of vitamin D in insulin resistance and secretion remains unclear. Objective To examine the cross-sectional and longitudinal relationships between 25-hydroxyvitamin D (25(OH)D) concentrations and indices of insulin resistance and secretion in older adults. Methods and Results Among 2134 participants of the Cardiovascular Health Study who were free from cardiovascular disease, we measured serum 25(OH)D concentrations in samples collected in 1992–1993. We examined insulin resistance and secretion using Homeostasis Model Assessment (HOMA) estimates cross-sectionally and among 1469 participants who had repeated HOMA measures four years later (1996–1997). In cross-sectional analysis, each 10 ng/mL increment in 25(OH)D concentration was associated with a 0.09 lower adjusted HOMA-IR [95%CI (−0.17, −0.02), p=0.01]. However, baseline 25(OH)D concentrations were not associated with change in HOMA-IR over 4 years of follow up (p=0.48). 25(OH)D concentrations were not associated with insulin secretion, as determined by HOMA-β, in either cross-sectional or longitudinal analysis. Conclusions Circulating 25(OH)D concentrations are associated with lower insulin resistance in cross-sectional but not longitudinal analyses. Whether this reflects residual confounding in cross-sectional analyses or the short-term nature of the relationship between vitamin D and insulin sensitivity will require trials with repeated measures of these factors. PMID:23987236

  15. Effect of Insulin Resistance on Monounsaturated Fatty Acid Levels: A Multi-cohort Non-targeted Metabolomics and Mendelian Randomization Study

    PubMed Central

    Ganna, Andrea; Brandmaier, Stefan; Broeckling, Corey D.; Prenni, Jessica E.; Wang-Sattler, Rui; Peters, Annette; Strauch, Konstantin; Meitinger, Thomas; Giedraitis, Vilmantas; Ärnlöv, Johan; Berne, Christian; Gieger, Christian; Ripatti, Samuli; Lind, Lars; Sundström, Johan; Ingelsson, Erik

    2016-01-01

    Insulin resistance (IR) and impaired insulin secretion contribute to type 2 diabetes and cardiovascular disease. Both are associated with changes in the circulating metabolome, but causal directions have been difficult to disentangle. We combined untargeted plasma metabolomics by liquid chromatography/mass spectrometry in three non-diabetic cohorts with Mendelian Randomization (MR) analysis to obtain new insights into early metabolic alterations in IR and impaired insulin secretion. In up to 910 elderly men we found associations of 52 metabolites with hyperinsulinemic-euglycemic clamp-measured IR and/or β-cell responsiveness (disposition index) during an oral glucose tolerance test. These implicated bile acid, glycerophospholipid and caffeine metabolism for IR and fatty acid biosynthesis for impaired insulin secretion. In MR analysis in two separate cohorts (n = 2,613) followed by replication in three independent studies profiled on different metabolomics platforms (n = 7,824 / 8,961 / 8,330), we discovered and replicated causal effects of IR on lower levels of palmitoleic acid and oleic acid. A trend for a causal effect of IR on higher levels of tyrosine reached significance only in meta-analysis. In one of the largest studies combining “gold standard” measures for insulin responsiveness with non-targeted metabolomics, we found distinct metabolic profiles related to IR or impaired insulin secretion. We speculate that the causal effects on monounsaturated fatty acid levels could explain parts of the raised cardiovascular disease risk in IR that is independent of diabetes development. PMID:27768686

  16. Characterisation of the insulinotropic activity of an aqueous extract of Gymnema sylvestre in mouse beta-cells and human islets of Langerhans.

    PubMed

    Liu, Bo; Asare-Anane, Henry; Al-Romaiyan, Altaf; Huang, Guocai; Amiel, Stephanie A; Jones, Peter M; Persaud, Shanta J

    2009-01-01

    Leaves of the Gymnema sylvestre (GS) plant have been used to treat diabetes mellitus for millennia, but the previously documented insulin secretagogue effects of GS extracts in vitro may be non-physiological through damage to the beta-cells. We have now examined the effects of a novel GS extract (termed OSA) on insulin secretion from the MIN6 beta-cell line and isolated human islets of Langerhans. Insulin secretion from MIN6 cells was stimulated by OSA in a concentration-dependent manner, with low concentrations (0.06-0.25 mg/ml) having no deleterious effects on MIN6 cell viability, while higher concentrations (> or = 0.5 mg/ml) caused increased Trypan blue uptake. OSA increased beta-cell Ca2+ levels, an effect that was mediated by Ca2+ influx through voltage-operated calcium channels. OSA also reversibly stimulated insulin secretion from isolated human islets and its insulin secretagogue effects in MIN6 cells and human islets were partially dependent on the presence of extracellular Ca2+. These data indicate that low concentrations of the GS isolate OSA stimulate insulin secretion in vitro, at least in part as a consequence of Ca2+ influx, without compromising beta-cell viability. Identification of the component of the OSA extract that stimulates regulated insulin exocytosis, and further investigation of its mode(s) of action, may provide promising lead targets for Type 2 diabetes therapy. 2009 S. Karger AG, Basel.

  17. Liraglutide suppresses non-esterified free fatty acids and soluble vascular cell adhesion molecule-1 compared with metformin in patients with recent-onset type 2 diabetes.

    PubMed

    Chen, Xiao-Min; Zhang, Wen-Qiang; Tian, Yuan; Wang, Li-Fen; Chen, Chan-Chan; Qiu, Chuan-Mei

    2018-04-10

    It has been suggested that liraglutide could have an impact on glucose and lipid metabolism disorder and adhesion molecule activation, which may play important roles in the vascular damage of diabetes. In this study, we examined the effects of liraglutide versus metformin on non-esterified free fatty acids, beta-cell insulin secretion, and adhesion molecule levels in patients with recent-onset type 2 diabetes mellitus. In this study, 60 patients newly diagnosed with type 2 diabetes mellitus (mean age 33.97 ± 5.67 years) were randomly assigned to receive once-daily subcutaneous liraglutide or oral metformin. Before the study and after the 8-week treatment period, a 75 g oral glucose tolerance test was performed. Plasma glucose, lipids and lipoprotein, plasma insulin, glycaemic and insulin responses, non-esterified free fatty acids (NEFA), and soluble vascular cell adhesion molecule-1 (sVCAM-1) levels were evaluated. After 8 weeks, 120 min of NEFA (155 ± 125 vs 99 ± 73 µmol/L, P = 0.026) and the levels of sVCAM-1 (465 ± 136 vs 382 ± 131 ng/ml, P = 0.013) significantly decreased, while the early phase insulin secretion index (24.94 [7.78, 38.89] vs. 31.13 [17.67, 59.09], P = 0.031), fasting plasma insulin (104 [51, 123] vs 113 [54, 171] mIU/L, P = 0.015), 60 min plasma insulin (326 [165, 441] vs 471 [334, 717] mIU/L, P = 0.005), 120 min plasma insulin (401 [193, 560] vs 500 [367, 960] mIU/L, P = 0.047), and insulin area under the curve (AUCins) (648 [321, 742] vs 738 [451, 1118] mIU/L, P = 0.005) remarkably increased for patients in the liraglutide treatment group. The levels of sVCAM-1 dramatically decreased after 8 weeks of liraglutide treatment (503 ± 182 vs 382 ± 131 ng/ml, P = 0.046) compared to that of the metformin treatment group. At the same time, the differences before and after liraglutide treatment in 120 min of NEFA (- 32 [- 96, - 5] vs 5 [- 35, 38] µmol/L, P = 0.033) and AUCins (738 [451, 1118] vs 594 [357, 1216] mIU/L, P = 0.014) were remarkably enhanced compared to that of the metformin therapy. Nevertheless, there were no significant differences in fasting NEFA after liraglutide or metformin treatment. The reduction of 120 min NEFA (ΔNEFA) was positively correlated with the decrease of sVCAM-1 (ΔsVCAM-1) after 8 weeks of liraglutide treatment (r = 0.523, P = 0.003). Our results demonstrate that liraglutide administration is more effective than metformin in reducing 120 min NEFA and suppressing sVCAM-1 levels for recent-onset type 2 diabetes mellitus. We suggest that this outcome may be because liraglutide is associated with potentiating insulin secretion capacity, inhibiting vascular inflammatory cytokines, and antagonizing atherosclerosis.

  18. Angelica dahurica Extracts Improve Glucose Tolerance through the Activation of GPR119

    PubMed Central

    Kim, Mi-Hwi; Choung, Jin-Seung; Oh, Yoon-Sin; Moon, Hong-Sub; Jun, Hee-Sook

    2016-01-01

    G protein-coupled receptor (GPR) 119 is expressed in pancreatic β-cells and intestinal L cells, and is involved in glucose-stimulated insulin secretion and glucagon-like peptide-1 (GLP-1) release, respectively. Therefore, the development of GPR119 agonists is a potential treatment for type 2 diabetes. We screened 1500 natural plant extracts for GPR119 agonistic actions and investigated the most promising extract, that from Angelica dahurica (AD), for hypoglycemic actions in vitro and in vivo. Human GPR119 activation was measured in GeneBLAzer T-Rex GPR119-CRE-bla CHO-K1 cells; intracellular cAMP levels and insulin secretion were measured in INS-1 cells; and GLP-1 release was measured in GLUTag cells. Glucose tolerance tests and serum plasma insulin levels were measured in normal C57BL6 mice and diabetic db/db mice. AD extract-treated cells showed significant increases in GPR119 activation, intracellular cAMP levels, GLP-1 levels and glucose-stimulated insulin secretion as compared with controls. In normal mice, a single treatment with AD extract improved glucose tolerance and increased insulin secretion. Treatment with multiple doses of AD extract or n-hexane fraction improved glucose tolerance in diabetic db/db mice. Imperatorin, phellopterin and isoimperatorin were identified in the active fraction of AD extract. Among these, phellopterin activated GPR119 and increased active GLP-1 and insulin secretion in vitro and enhanced glucose tolerance in normal and db/db mice. We suggest that phellopterin might have a therapeutic potential for the treatment of type 2 diabetes. PMID:27391814

  19. BAG3 regulates formation of the SNARE complex and insulin secretion

    PubMed Central

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  20. Effects of a westernized lifestyle on the association between fasting serum nonesterified fatty acids and insulin secretion in Japanese men.

    PubMed

    Kamei, Nozomu; Yamane, Kiminori; Nakanishi, Shuhei; Ishida, Kazufumi; Ohtaki, Megu; Okubo, Masamichi; Kohno, Nobuoki

    2005-06-01

    The effects of the prolonged elevation of nonesterified fatty acid (NEFA) levels on insulin secretion have been controversial and thought to be sex-specific. To investigate the association between a westernized lifestyle and the effects of NEFA on insulin secretion in Japanese men, we examined 67 nondiabetic Japanese-American men and 220 nondiabetic native Japanese men who underwent a 75-g oral glucose tolerance test (OGTT). Most Japanese Americans we surveyed are genetically identical to Japanese living in Japan, but their lifestyle is more westernized. Sets of multiple regression analyses were performed to evaluate the relationship between the sum of the immunoreactive insulin (IRI) levels during the OGTT ((Sigma)IRI) and clinical parameters. Japanese Americans had higher levels of fasting IRI, (Sigma)IRI, and a higher insulin resistance index (homeostasis model assessment for insulin resistance [HOMA-IR]) than native Japanese, whereas there were no significant differences in fasting NEFA and triglyceride levels. A multiple regression analysis adjusted for age, fasting triglycerides, and body mass index (BMI) demonstrated that the fasting NEFA level was an independent determinant of the (Sigma)IRI only in Japanese-American men ( P = .001), but not in native Japanese men ( P = .054). Even when HOMA-IR was included in models instead of BMI, the NEFA level was a significant variable of (Sigma)IRI only in Japanese Americans ( P < .001), and not in native Japanese ( P = .098). In addition, a multiple regression analysis adjusted for age, fasting triglycerides, and BMI demonstrated that the fasting NEFA level was the only independent determinant of (Sigma)C-peptide in Japanese-American men ( P = .041). In conclusion, NEFA seems to be associated with insulin secretion independent of obesity or HOMA-IR. A westernized lifestyle may increase the effects of serum fasting NEFA levels on total insulin secretion after a glucose load in Japanese men.

Top