Patel, Kunal S.; Kazam, Jacob; Tsiouris, Apostolos J.; Anand, Vijay K.; Schwartz, Theodore H.
2014-01-01
Objective Controversy exists over the utility of early post-operative magnetic resonance imaging (MRI) after transsphenoidal pituitary surgery for macroadenomas. We investigate whether valuable information can be derived from current higher resolution scans. Methods Volumetric MRI scans were obtained in the early (<10 days) and late (>30 days) post-operative periods in a series of patients undergoing transsphenoidal pituitary surgery. The volume of the residual tumor, resection cavity, and corresponding visual field tests were recorded at each time point. Statistical analyses of changes in tumor volume and cavity size were calculated using the late MRI as the gold standard. Results 40 patients met the inclusion criteria. Pre-operative tumor volume averaged 8.8 cm3. Early postoperative assessment of average residual tumor volume (1.18 cm3) was quite accurate and did not differ statistically from late post-operative volume (1.23 cm3, p=.64), indicating the utility of early scans to measure residual tumor. Early scans were 100% sensitive and 91% specific for predicting ≥ 98% resection (p<.001, Fisher’s exact test). The average percent decrease in cavity volume from pre-operative MRI (tumor volume) to early post-operative imaging was 45% with decreases in all but 3 patients. There was no correlation between the size of the early cavity and the visual outcome. Conclusions Early high resolution volumetric MRI is valuable in determining the presence or absence of residual tumor. Cavity volume almost always decreases after surgery and a lack of decrease should alert the surgeon to possible persistent compression of the optic apparatus that may warrant re-operation. PMID:25045791
Svolos, P; Reddick, W E; Edwards, A; Sykes, A; Li, Y; Glass, J O; Patay, Z
2017-06-01
Assessing the response to treatment in infiltrative brain tumors by using lesion volume-based response criteria is challenging. We hypothesized that in such tumors, volume measurements alone may not accurately capture changes in actual tumor burden during treatment. We longitudinally evaluated volume changes in both normal-appearing supratentorial white matter and the brain stem lesions in patients treated for diffuse intrinsic pontine glioma to determine to what extent adjuvant systemic therapies may skew the accuracy of tumor response assessments based on volumetric analysis. The anatomic MR imaging and diffusion tensor imaging data of 26 patients with diffuse intrinsic pontine glioma were retrospectively analyzed. Treatment included conformal radiation therapy in conjunction with vandetanib and dexamethasone. Volumetric and diffusion data were analyzed with time, and differences between time points were evaluated statistically. Normalized brain stem lesion volume decreased during combined treatment (slope = -0.222, P < .001) and increased shortly after completion of radiation therapy (slope = 0.422, P < .001). Supratentorial white matter volume steadily and significantly decreased with time (slope = -0.057, P < .001). Longitudinal changes in brain stem lesion volume are robust; less pronounced but measurable changes occur in the supratentorial white matter. Volume changes in nonirradiated supratentorial white matter during the disease course reflect the effects of systemic medication on the water homeostasis of normal parenchyma. Our data suggest that adjuvant nontumor-targeted therapies may have a more substantial effect on lesion volume changes than previously thought; hence, an apparent volume decrease in infiltrative tumors receiving combined therapies may lead to overestimation of the actual response and tumor control. © 2017 by American Journal of Neuroradiology.
Muldoon, Leslie L.; Gahramanov, Seymur; Li, Xin; Marshall, Deborah J.; Kraemer, Dale F.; Neuwelt, Edward A.
2011-01-01
We used dynamic MRI to evaluate the effects of monoclonal antibodies targeting brain tumor vasculature. Female athymic rats with intracerebral human tumor xenografts were untreated or treated with intetumumab, targeting αV-integrins, or bevacizumab, targeting vascular endothelial growth factor (n = 4–6 per group). Prior to treatment and at 1, 3, and 7 days after treatment, we performed standard MRI to assess tumor volume, dynamic susceptibility-contrast MRI with the blood-pool iron oxide nanoparticle ferumoxytol to evaluate relative cerebral blood volume (rCBV), and dynamic contrast-enhanced MRI to assess tumor vascular permeability. Tumor rCBV increased by 27 ± 13% over 7 days in untreated rats; intetumumab increased tumor rCBV by 65 ± 10%, whereas bevacizumab reduced tumor rCBV by 31 ± 10% at 7 days (P < .001 for group and day). Similarly, intetumumab increased brain tumor vascular permeability compared with controls at 3 and 7 days after treatment, whereas bevacizumab decreased tumor permeability within 24 hours (P = .0004 for group, P = .0081 for day). All tumors grew over the 7-day assessment period, but bevacizumab slowed the increase in tumor volume on MRI. We conclude that the vascular targeting agents intetumumab and bevacizumab had diametrically opposite effects on dynamic MRI of tumor vasculature in rat brain tumor models. Targeting αV-integrins increased tumor vascular permeability and blood volume, whereas bevacizumab decreased both measures. These findings have implications for chemotherapy delivery and antitumor efficacy. PMID:21123368
Yu, Yi-Lin; Yang, Yun-Ju; Lin, Chin; Hsieh, Chih-Chuan; Li, Chiao-Zhu; Feng, Shao-Wei; Tang, Chi-Tun; Chung, Tzu-Tsao; Ma, Hsin-I; Chen, Yuan-Hao; Ju, Da-Tong; Hueng, Dueng-Yuan
2017-01-01
Tumor control rates of pituitary adenomas (PAs) receiving adjuvant CyberKnife stereotactic radiosurgery (CK SRS) are high. However, there is currently no uniform way to estimate the time course of the disease. The aim of this study was to analyze the volumetric responses of PAs after CK SRS and investigate the application of an exponential decay model in calculating an accurate time course and estimation of the eventual outcome.A retrospective review of 34 patients with PAs who received adjuvant CK SRS between 2006 and 2013 was performed. Tumor volume was calculated using the planimetric method. The percent change in tumor volume and tumor volume rate of change were compared at median 4-, 10-, 20-, and 36-month intervals. Tumor responses were classified as: progression for >15% volume increase, regression for ≤15% decrease, and stabilization for ±15% of the baseline volume at the time of last follow-up. For each patient, the volumetric change versus time was fitted with an exponential model.The overall tumor control rate was 94.1% in the 36-month (range 18-87 months) follow-up period (mean volume change of -43.3%). Volume regression (mean decrease of -50.5%) was demonstrated in 27 (79%) patients, tumor stabilization (mean change of -3.7%) in 5 (15%) patients, and tumor progression (mean increase of 28.1%) in 2 (6%) patients (P = 0.001). Tumors that eventually regressed or stabilized had a temporary volume increase of 1.07% and 41.5% at 4 months after CK SRS, respectively (P = 0.017). The tumor volume estimated using the exponential fitting equation demonstrated high positive correlation with the actual volume calculated by magnetic resonance imaging (MRI) as tested by Pearson correlation coefficient (0.9).Transient progression of PAs post-CK SRS was seen in 62.5% of the patients receiving CK SRS, and it was not predictive of eventual volume regression or progression. A three-point exponential model is of potential predictive value according to relative distribution. An exponential decay model can be used to calculate the time course of tumors that are ultimately controlled.
Optimization of antitumor treatment conditions for transcutaneous CO2 application: An in vivo study.
Ueha, Takeshi; Kawamoto, Teruya; Onishi, Yasuo; Harada, Risa; Minoda, Masaya; Toda, Mitsunori; Hara, Hitomi; Fukase, Naomasa; Kurosaka, Masahiro; Kuroda, Ryosuke; Akisue, Toshihiro; Sakai, Yoshitada
2017-06-01
Carbon dioxide (CO2) therapy can be applied to treat a variety of disorders. We previously found that transcutaneous application of CO2 with a hydrogel decreased the tumor volume of several types of tumors and induced apoptosis via the mitochondrial pathway. However, only one condition of treatment intensity has been tested. For widespread application in clinical antitumor therapy, the conditions must be optimized. In the present study, we investigated the relationship between the duration, frequency, and treatment interval of transcutaneous CO2 application and antitumor effects in murine xenograft models. Murine xenograft models of three types of human tumors (breast cancer, osteosarcoma, and malignant fibrous histiocytoma/undifferentiated pleomorphic sarcoma) were used to assess the antitumor effects of transcutaneous CO2 application of varying durations, frequencies, and treatment intervals. In all human tumor xenografts, apoptosis was significantly induced by CO2 treatment for ≥10 min, and a significant decrease in tumor volume was observed with CO2 treatments of >5 min. The effect on tumor volume was not dependent on the frequency of CO2 application, i.e., twice or five times per week. However, treatment using 3- and 4-day intervals was more effective at decreasing tumor volume than treatment using 2- and 5-day intervals. The optimal conditions of transcutaneous CO2 application to obtain the best antitumor effect in various tumors were as follows: greater than 10 min per application, twice per week, with 3- and 4-day intervals, and application to the site of the tumor. The results suggest that this novel transcutaneous CO2 application might be useful to treat primary tumors, while mitigating some side effects, and therefore could be safe for clinical trials.
Yu, Yi-Lin; Yang, Yun-Ju; Lin, Chin; Hsieh, Chih-Chuan; Li, Chiao-Zhu; Feng, Shao-Wei; Tang, Chi-Tun; Chung, Tzu-Tsao; Ma, Hsin-I; Chen, Yuan-Hao; Ju, Da-Tong; Hueng, Dueng-Yuan
2017-01-01
Abstract Tumor control rates of pituitary adenomas (PAs) receiving adjuvant CyberKnife stereotactic radiosurgery (CK SRS) are high. However, there is currently no uniform way to estimate the time course of the disease. The aim of this study was to analyze the volumetric responses of PAs after CK SRS and investigate the application of an exponential decay model in calculating an accurate time course and estimation of the eventual outcome. A retrospective review of 34 patients with PAs who received adjuvant CK SRS between 2006 and 2013 was performed. Tumor volume was calculated using the planimetric method. The percent change in tumor volume and tumor volume rate of change were compared at median 4-, 10-, 20-, and 36-month intervals. Tumor responses were classified as: progression for >15% volume increase, regression for ≤15% decrease, and stabilization for ±15% of the baseline volume at the time of last follow-up. For each patient, the volumetric change versus time was fitted with an exponential model. The overall tumor control rate was 94.1% in the 36-month (range 18–87 months) follow-up period (mean volume change of −43.3%). Volume regression (mean decrease of −50.5%) was demonstrated in 27 (79%) patients, tumor stabilization (mean change of −3.7%) in 5 (15%) patients, and tumor progression (mean increase of 28.1%) in 2 (6%) patients (P = 0.001). Tumors that eventually regressed or stabilized had a temporary volume increase of 1.07% and 41.5% at 4 months after CK SRS, respectively (P = 0.017). The tumor volume estimated using the exponential fitting equation demonstrated high positive correlation with the actual volume calculated by magnetic resonance imaging (MRI) as tested by Pearson correlation coefficient (0.9). Transient progression of PAs post-CK SRS was seen in 62.5% of the patients receiving CK SRS, and it was not predictive of eventual volume regression or progression. A three-point exponential model is of potential predictive value according to relative distribution. An exponential decay model can be used to calculate the time course of tumors that are ultimately controlled. PMID:28121913
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Saradwata; Johnson, Timothy D.; Ma, Bing
2012-07-01
Purpose: Assuming that early tumor volume change is a biomarker for response to therapy, accurate quantification of early volume changes could aid in adapting an individual patient's therapy and lead to shorter clinical trials. We investigated an image registration-based approach for tumor volume change quantification that may more reliably detect smaller changes that occur in shorter intervals than can be detected by existing algorithms. Methods and Materials: Variance and bias of the registration-based approach were evaluated using retrospective, in vivo, very-short-interval diffusion magnetic resonance imaging scans where true zero tumor volume change is unequivocally known and synthetic data, respectively. Themore » interval scans were nonlinearly registered using two similarity measures: mutual information (MI) and normalized cross-correlation (NCC). Results: The 95% confidence interval of the percentage volume change error was (-8.93% to 10.49%) for MI-based and (-7.69%, 8.83%) for NCC-based registrations. Linear mixed-effects models demonstrated that error in measuring volume change increased with increase in tumor volume and decreased with the increase in the tumor's normalized mutual information, even when NCC was the similarity measure being optimized during registration. The 95% confidence interval of the relative volume change error for the synthetic examinations with known changes over {+-}80% of reference tumor volume was (-3.02% to 3.86%). Statistically significant bias was not demonstrated. Conclusion: A low-noise, low-bias tumor volume change measurement algorithm using nonlinear registration is described. Errors in change measurement were a function of tumor volume and the normalized mutual information content of the tumor.« less
Korkut, E; Bokser, L; Comaru-Schally, A M; Groot, K; Schally, A V
1991-01-01
Inhibitory effects of the sustained delivery systems (microcapsules and microgranules) of a potent antagonist of luteinizing hormone-releasing hormone N-Ac-[3-(2-naphthyl)-D-alanine1, 4-chloro-D-phenylalanine2, 3-(3-pyridyl)-D-alanine3, D-citrulline6, D-alanine10]LH-RH (SB-75) on the growth of experimental prostate cancers were investigated. In the first experiment, three doses of a microcapsule preparation releasing 23.8, 47.6, and 71.4 micrograms of antagonist SB-75 per day were compared with microcapsules of agonist [D-Trp6]LH-RH liberating 25 micrograms/day in rats bearing Dunning R3327H transplantable prostate carcinoma. During 8 weeks of treatment, tumor growth was decreased by [D-Trp6]LH-RH and all three doses of SB-75 as compared to untreated controls. The highest dose of SB-75 (71.4 micrograms/day) caused a greater inhibition of prostate cancer growth than [D-Trp6]LH-RH as based on measurement of tumor volume and percentage change in tumor volume. Doses of 23.8 and 47.6 micrograms of SB-75 per day induced a partial and submaximal decrease, respectively, in tumor weight and volume. Tumor doubling time was the longest (50 days) with the high dose of SB-75 vs. 15 days for controls. The body weights were unchanged. The weights of testes, seminal vesicles, and ventral prostate were greatly reduced in all three groups that received SB-75, and testosterone levels were decreased to nondetectable values in the case of the two higher doses of SB-75. LH levels were also diminished. Similar results were obtained in the second experiment, in which the animals were treated for a period of 8 weeks with microgranules of SB-75. Therapy with microgranules of SB-75 significantly decreased tumor growth as measured by the final tumor volume, the percentage change from the initial tumor volume, and the reduction in tumor weight. The results indicate that antagonist SB-75, released from sustained delivery systems, can produce a state of chemical castration and effectively inhibit the growth of experimental prostate cancers. The efficacy of the antagonist SB-75 in inhibiting androgen-dependent Dunning prostatic carcinoma and the absence of side effects suggest its possible usefulness for the treatment of hormone-sensitive tumors. PMID:1992476
Korkut, E; Bokser, L; Comaru-Schally, A M; Groot, K; Schally, A V
1991-02-01
Inhibitory effects of the sustained delivery systems (microcapsules and microgranules) of a potent antagonist of luteinizing hormone-releasing hormone N-Ac-[3-(2-naphthyl)-D-alanine1, 4-chloro-D-phenylalanine2, 3-(3-pyridyl)-D-alanine3, D-citrulline6, D-alanine10]LH-RH (SB-75) on the growth of experimental prostate cancers were investigated. In the first experiment, three doses of a microcapsule preparation releasing 23.8, 47.6, and 71.4 micrograms of antagonist SB-75 per day were compared with microcapsules of agonist [D-Trp6]LH-RH liberating 25 micrograms/day in rats bearing Dunning R3327H transplantable prostate carcinoma. During 8 weeks of treatment, tumor growth was decreased by [D-Trp6]LH-RH and all three doses of SB-75 as compared to untreated controls. The highest dose of SB-75 (71.4 micrograms/day) caused a greater inhibition of prostate cancer growth than [D-Trp6]LH-RH as based on measurement of tumor volume and percentage change in tumor volume. Doses of 23.8 and 47.6 micrograms of SB-75 per day induced a partial and submaximal decrease, respectively, in tumor weight and volume. Tumor doubling time was the longest (50 days) with the high dose of SB-75 vs. 15 days for controls. The body weights were unchanged. The weights of testes, seminal vesicles, and ventral prostate were greatly reduced in all three groups that received SB-75, and testosterone levels were decreased to nondetectable values in the case of the two higher doses of SB-75. LH levels were also diminished. Similar results were obtained in the second experiment, in which the animals were treated for a period of 8 weeks with microgranules of SB-75. Therapy with microgranules of SB-75 significantly decreased tumor growth as measured by the final tumor volume, the percentage change from the initial tumor volume, and the reduction in tumor weight. The results indicate that antagonist SB-75, released from sustained delivery systems, can produce a state of chemical castration and effectively inhibit the growth of experimental prostate cancers. The efficacy of the antagonist SB-75 in inhibiting androgen-dependent Dunning prostatic carcinoma and the absence of side effects suggest its possible usefulness for the treatment of hormone-sensitive tumors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin Zhixiong; Mechalakos, James; Nehmeh, Sadek
2008-03-15
Purpose: To evaluate how changes in tumor hypoxia, according to serial fluorine-18-labeled fluoro-misonidazole ({sup 18}F-FMISO) positron emission tomography (PET) imaging, affect the efficacy of intensity-modulated radiotherapy (IMRT) dose painting. Methods and Materials: Seven patients with head and neck cancers were imaged twice with FMISO PET, separated by 3 days, before radiotherapy. Intensity-modulated radiotherapy plans were designed, on the basis of the first FMISO scan, to deliver a boost dose of 14 Gy to the hypoxic volume, in addition to the 70-Gy prescription dose. The same plans were then applied to hypoxic volumes from the second FMISO scan, and the efficacymore » of dose painting evaluated by assessing coverage of the hypoxic volumes using D{sub max}, D{sub min}, D{sub mean}, D{sub 95}, and equivalent uniform dose (EUD). Results: Similar hypoxic volumes were observed in the serial scans for 3 patients but dissimilar ones for the other 4. There was reduced coverage of hypoxic volumes of the second FMISO scan relative to that of the first scan (e.g., the average EUD decreased from 87 Gy to 80 Gy). The decrease was dependent on the similarity of the hypoxic volumes of the two scans (e.g., the average EUD decrease was approximately 4 Gy for patients with similar hypoxic volumes and approximately 12 Gy for patients with dissimilar ones). Conclusions: The changes in spatial distribution of tumor hypoxia, as detected in serial FMISO PET imaging, compromised the coverage of hypoxic tumor volumes achievable by dose-painting IMRT. However, dose painting always increased the EUD of the hypoxic volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hepel, Jaroslaw T.; Department of Radiation Oncology, Brown University, Rhode Island Hospital, Providence, RI; Evans, Suzanne B.
2009-06-01
Purpose: To evaluate the accuracy of two clinical techniques for electron boost planning compared with computed tomography (CT)-based planning. Additionally, we evaluated the tumor bed characteristics at whole breast planning and boost planning. Methods and Materials: A total of 30 women underwent tumor bed boost planning within 2 weeks of completing whole breast radiotherapy using three planning techniques: scar-based planning, palpation/clinical-based planning, and CT-based planning. The plans were analyzed for dosimetric coverage of the CT-delineated tumor bed. The cavity visualization score was used to define the CT-delineated tumor bed as well or poorly defined. Results: Scar-based planning resulted in inferiormore » tumor bed coverage compared with CT-based planning, with the minimal dose received by 90% of the target volume >90% in 53% and a geographic miss in 53%. The results of palpation/clinical-based planning were significantly better: 87% and 10% for the minimal dose received by 90% of the target volume >90% and geographic miss, respectively. Of the 30 tumor beds, 16 were poorly defined by the cavity visualization score. Of these 16, 8 were well demarcated by the surgical clips. The evaluation of the 22 well-defined tumor beds revealed similar results. A comparison of the tumor bed volume from the initial planning CT scan to the boost planning CT scan revealed a decrease in size in 77% of cases. The mean decrease in volume was 52%. Conclusion: The results of our study have shown that CT-based planning allows for optimal tumor bed coverage compared with clinical and scar-based approaches. However, in the setting of a poorly visualized cavity on CT without surgical clips, palpation/clinical-based planning can help delineate the appropriate target volumes and is superior to scar-based planning. CT simulation at boost planning could allow for a reduction in the boost volumes.« less
Hallasch, Sandra; Frick, Sindy; Jung, Maximilian; Hilger, Ingrid
2017-07-31
The outcome of tumor treatment via hyperthermia in the clinic has been reported to be heterogeneous. Here, we assessed how the presence of gastrin-releasing peptide receptor (GRPR) and α v β 3 integrin together with the morphology of the vascularization reflects the growth behavior of tumors after hyperthermia treatment. MDA-MB-231 tumor bearing mice were treated either with high (46 °C) or low dose (42 °C) water hyperthermia for 60 min. Changes of GRPR and α v β 3 integrin expression were assessed via multiplexed optical imaging. Vascularization was reconstructed and quantified by µCT imaging after contrast agent injection. We found that high dose hyperthermia is capable of increasing the expression of GRPR, α v β 3 integrin, CD31, and Ki67 in tumors. Also the morphology of tumor vasculature changed (increased relative blood volume and small-diameter vessel density, decreased expression of α-SMA). Low dose hyperthermia induced comparatively moderate effects on the investigated protein expression pattern and vascular remodeling. We conclude that under defined circumstances, specific temperature doses affect the reorganization of tumor regrowth, which is triggered by residual "dormant" cells even though tumor volumes are transiently decreasing. Further on, GRPR, α v β 3 integrin expression are versatile tools to surveil potential tumor regrow during therapy, beyond the conventional determination of tumor volumes.
Cheung, Patrick C F; Sixel, Katharina E; Tirona, Romeo; Ung, Yee C
2003-12-01
The active breathing control (ABC) device allows for temporary immobilization of respiratory motion by implementing a breath hold at a predefined relative lung volume and air flow direction. The purpose of this study was to quantitatively evaluate the ability of the ABC device to immobilize peripheral lung tumors at a reproducible position, increase total lung volume, and thereby reduce lung mass within the planning target volume (PTV). Ten patients with peripheral non-small-cell lung cancer tumors undergoing radiotherapy had CT scans of their thorax with and without ABC inspiration breath hold during the first 5 days of treatment. Total lung volumes were determined from the CT data sets. Each peripheral lung tumor was contoured by one physician on all CT scans to generate gross tumor volumes (GTVs). The lung density and mass contained within a 1.5-cm PTV margin around each peripheral tumor was calculated using CT numbers. Using the center of the GTV from the Day 1 ABC scan as the reference, the displacement of subsequent GTV centers on Days 2 to 5 for each patient with ABC applied was calculated in three dimensions. With the use of ABC inspiration breath hold, total lung volumes increased by an average of 42%. This resulted in an average decrease in lung mass of 18% within a standard 1.5-cm PTV margin around the GTV. The average (+/- standard deviation) displacement of GTV centers with ABC breath hold applied was 0.3 mm (+/- 1.8 mm), 1.2 mm (+/- 2.3 mm), and 1.1 mm (+/- 3.5 mm) in the lateral direction, anterior-posterior direction, and superior-inferior direction, respectively. Results from this study indicate that there remains some inter-breath hold variability in peripheral lung tumor position with the use of ABC inspiration breath hold, which prevents significant PTV margin reduction. However, lung volumes can significantly increase, thereby decreasing the mass of lung within a standard PTV.
Kitahara, Takahiro; Tsuji, Yoshihito; Shirase, Tomoyuki; Yukawa, Hiroyuki; Takeichi, Yasuhiro; Yamazoe, Naohiro
2016-04-01
Immature teratoma (IMT) is the most frequent histological subtype of infantile intracranial teratoma, the most common congenital brain tumor. IMT contains incompletely differentiated components resembling fetal tissues. Infantile intracranial IMT has a dismal prognosis, because it is often inoperable due to its massive size and high vascularity. Neoadjuvant chemotherapy has been shown to be effective in decreasing tumor volume and vascularity to facilitate surgical resection in other types of infantile brain tumors. However, only one recent case report described the effectiveness of neoadjuvant chemotherapy for infantile intracranial IMT in the literature, even though it is common entity with a poor prognosis in infants. Here, we describe the case of a 2-month-old male infant with a very large intracranial IMT. Maximal surgical resection was first attempted but was unsuccessful because of severe intraoperative hemorrhage. Neoadjuvant carboplatin and etoposide (CARE) chemotherapy was then administered with the aim of shrinking and devascularizing the tumor. After neoadjuvant chemotherapy, tumor size did not decrease, but intraoperative blood loss significantly decreased and near-total resection was achieved by the second and third surgery. The patient underwent adjuvant CARE chemotherapy and has been alive for 3 years after surgery without tumor regrowth. Even when neoadjuvant chemotherapy does not decrease tumor volume of infantile intracranial IMT, surgical resection should be tried because chemotherapy can facilitate surgical resection and improve clinical outcome by reducing tumor vascularity.
Hamamoto, Shinichi; Okuma, Tomohisa; Yamamoto, Akira; Kageyama, Ken; Takeshita, Toru; Sakai, Yukimasa; Nishida, Norifumi; Matsuoka, Toshiyuki; Miki, Yukio
2013-05-01
To evaluate whether antitumor immunity is enhanced systemically by combining radiofrequency ablation (RFA) and local injection of an immunostimulant, OK-432. Experiments were approved by the institutional animal care committee. Experimental Japanese rabbits inoculated with VX2 tumors in the lung and the auricle were randomized into four groups of eight: control (supportive care), RFA (RFA of lung tumor), OK-432 (direct injection of OK-432 into lung tumor), and combination therapy (lung RFA and direct OK-432 injection into lung tumor). All procedures were performed 1 week after implantation of VX2 tumors (week 1). In addition, a VX2 tumor rechallenge test was performed in the RFA and combination therapy groups. Survival time was evaluated by means of the Kaplan-Meier method and by using the log-rank test for intergroup comparison. Mean auricle tumor volumes were calculated every week. Specific growth rates (SGRs) were calculated and compared by using the Mann-Whitney test. The median survival times of the control, RFA, OK-432, and combination therapy groups were 23, 36.5, 46.5, and 105 days, respectively. Survival was significantly prolonged in the combination therapy group when compared with the other three groups (P <.05). The mean auricle tumor volume decreased only in the combination therapy group. The mean auricle tumor volumes of the combination therapy group from week 1 to week 7 were 205, 339, 264, 227, 143, 127, and 115 mm(3). SGR in the combination therapy group became significantly smaller than those in the other three groups (P < .05). In the rechallenge test, the volume of all reimplanted tumors decreased. Combining RFA with local injection of immunostimulant OK-432 may lead to indirectly activation of systemic antitumor immunity. © RSNA, 2013.
Seguin, Johanne; Mignet, Nathalie; Latorre Ossa, Heldmuth; Tanter, Mickaël; Gennisson, Jean-Luc
2017-10-01
A recent ultrasound imaging technique-shear wave elastography-showed its ability to image and quantify the mechanical properties of biological tissues, such as prostate or liver tissues. In the present study this technique was used to evaluate the relationship among tumor growth, stiffness and reduction of treatment with combretastatin (CA4 P) in allografted colon tumor CT26 in mice. During 12 d, CT26 tumor growth (n = 52) was imaged by ultrasound, and shear modulus was quantified, showing a good correlation between tumor volume and stiffness (r = 0.59). The treatment was initiated at d 12 and monitored every d during 4 d. Following the treatment, the tumor volume had decreased, while the elasticity of the tumor volume remained steady throughout the treatment. After segmentation using the shear modulus map, a detailed analysis showed a decrease in the stiffness after treatment. This reduction in the mechanical properties was shown to correlate with tissue reorganization, particularly, fibrosis and necrosis, assessed by histology. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Maintaining oncologic integrity with minimally invasive resection of pediatric embryonal tumors.
Phelps, Hannah M; Ayers, Gregory D; Ndolo, Josephine M; Dietrich, Hannah L; Watson, Katherine D; Hilmes, Melissa A; Lovvorn, Harold N
2018-05-08
Embryonal tumors arise typically in infants and young children and are often massive at presentation. Operative resection is a cornerstone in the multimodal treatment of embryonal tumors but potentially disrupts therapeutic timelines. When used appropriately, minimally invasive surgery can minimize treatment delays. The oncologic integrity and safety attainable with minimally invasive resection of embryonal tumors, however, remains controversial. Query of the Vanderbilt Cancer Registry identified all children treated for intracavitary, embryonal tumors during a 15-year period. Tumors were assessed radiographically to measure volume (mL) and image-defined risk factors (neuroblastic tumors only) at time of diagnosis, and at preresection and postresection. Patient and tumor characteristics, perioperative details, and oncologic outcomes were compared between minimally invasive surgery and open resection of tumors of comparable size. A total of 202 patients were treated for 206 intracavitary embryonal tumors, of which 178 were resected either open (n = 152, 85%) or with minimally invasive surgery (n = 26, 15%). The 5-year, relapse-free, and overall survival were not significantly different after minimally invasive surgery or open resection of tumors having a volume less than 100 mL, corresponding to the largest resected with minimally invasive surgery (P = .249 and P = .124, respectively). No difference in margin status or lymph node sampling between the 2 operative approaches was detected (p = .333 and p = .070, respectively). Advantages associated with minimally invasive surgery were decreased blood loss (P < .001), decreased operating time (P = .002), and shorter hospital stay (P < .001). Characteristically, minimally invasive surgery was used for smaller volume and earlier stage neuroblastic tumors without image-defined risk factors. When selected appropriately, minimally invasive resection of pediatric embryonal tumors, particularly neuroblastic tumors, provides acceptable oncologic integrity. Large tumor volume, small patient size, and image-defined risk factors may limit the broader applicability of minimally invasive surgery. Copyright © 2018 Elsevier Inc. All rights reserved.
Portal Vein Embolization: Impact of Chemotherapy and Genetic Mutations.
Deipolyi, Amy R; Zhang, Yu Shrike; Khademhosseini, Ali; Naidu, Sailendra; Borad, Mitesh; Sahin, Burcu; Mathur, Amit K; Oklu, Rahmi
2017-03-01
We characterized the effect of systemic therapy given after portal vein embolization (PVE) and before hepatectomy on hepatic tumor and functional liver remnant (FLR) volumes. All 76 patients who underwent right PVE from 2002-2016 were retrospectively studied. Etiologies included colorectal cancer ( n = 44), hepatocellular carcinoma ( n = 17), cholangiocarcinoma ( n = 10), and other metastases ( n = 5). Imaging before and after PVE was assessed. Chart review revealed systemic therapy administration, SNaPshot genetic profiling, and comorbidities. Nine patients received systemic therapy; 67 did not. Tumor volume increased 28% in patients who did not receive and decreased -24% in patients who did receive systemic therapy ( p = 0.026), with no difference in FLR growth (28% vs. 34%; p = 0.645). Among 30 patients with genetic profiling, 15 were wild type and 15 had mutations. Mutations were an independent predictor of tumor growth ( p = 0.049), but did not impact FLR growth (32% vs. 28%; p = 0.93). Neither cirrhosis, hepatic steatosis, nor diabetes impacted changes in tumor or FLR volume ( p > 0.20). Systemic therapy administered after PVE before hepatic lobectomy had no effect on FLR growth; however, it was associated with decreasing tumor volumes. Continuing systemic therapy until hepatectomy may be warranted, particularly in patients with genetic mutations.
SU-E-J-267: Change in Mean CT Intensity of Lung Tumors During Radiation Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahon, R; Tennyson, N; Weiss, E
2015-06-15
Purpose: To evaluate CT intensity change of lung tumors during radiation therapy. Methods: Repeated 4D CT images were acquired on a CT simulator during the course of therapy for 27 lung cancer patients on IRB approved protocols. All subjects received definitive radiation treatment ± chemotherapy. CT scans were completed prior to treatment, and 2–7 times during the treatment course. Primary tumor was delineated by an experienced Radiation Oncologist. Contours were thresholded between −100 HU and 200 HU to remove airways and bone. Correlations between the change in the mean tumor intensity and initial tumor intensity, SUVmax, and tumor volume changemore » rate were investigated. Reproducibility was assessed by evaluating the variation in mean intensity over all phases in 4DCT, for a subgroup of 19 subjects. Results: Reproducibility of tumor intensity between phases as characterized by the root mean square of standard deviation across 19 subjects was 1.8 HU. Subjects had a mean initial tumor intensity of 16.5 ± 11.6 HU and an overall reduction in HU by 10.3 ± 8.5 HU. Evaluation of the changes in tumor intensity during treatment showed a decrease of 0.3 ± 0.3 HU/day for all subjects, except three. No significant correlation was found between change in HU/day and initial HU intensity (p=0.53), initial PET SUVmax (p=0.69), or initial tumor volume (p=0.70). The rate of tumor volume change was weakly correlated (R{sup 2}=0.05) with HU change (p=0.01). Conclusion: Most lung cancer subjects showed a marked trend of decreasing mean tumor CT intensity throughout radiotherapy, including early in the treatment course. Change in HU/day is not correlated with other potential early predictors for response, such as SUV and tumor volume change. This Result supports future studies to evaluate change in tumor intensity on CT as an early predictor of response.« less
Quantitative Assessment of Heterogeneity in Tumor Metabolism Using FDG-PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vriens, Dennis, E-mail: d.vriens@nucmed.umcn.nl; Disselhorst, Jonathan A.; Oyen, Wim J.G.
2012-04-01
Purpose: [{sup 18}F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) images are usually quantitatively analyzed in 'whole-tumor' volumes of interest. Also parameters determined with dynamic PET acquisitions, such as the Patlak glucose metabolic rate (MR{sub glc}) and pharmacokinetic rate constants of two-tissue compartment modeling, are most often derived per lesion. We propose segmentation of tumors to determine tumor heterogeneity, potentially useful for dose-painting in radiotherapy and elucidating mechanisms of FDG uptake. Methods and Materials: In 41 patients with 104 lesions, dynamic FDG-PET was performed. On MR{sub glc} images, tumors were segmented in quartiles of background subtracted maximum MR{sub glc} (0%-25%, 25%-50%, 50%-75%, and 75%-100%).more » Pharmacokinetic analysis was performed using an irreversible two-tissue compartment model in the three segments with highest MR{sub glc} to determine the rate constants of FDG metabolism. Results: From the highest to the lowest quartile, significant decreases of uptake (K{sub 1}), washout (k{sub 2}), and phosphorylation (k{sub 3}) rate constants were seen with significant increases in tissue blood volume fraction (V{sub b}). Conclusions: Tumor regions with highest MR{sub glc} are characterized by high cellular uptake and phosphorylation rate constants with relatively low blood volume fractions. In regions with less metabolic activity, the blood volume fraction increases and cellular uptake, washout, and phosphorylation rate constants decrease. These results support the hypothesis that regional tumor glucose phosphorylation rate is not dependent on the transport of nutrients (i.e., FDG) to the tumor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C; Lee, C
2015-06-15
Purpose: Delineation of gross tumor volumes (GTVs) is important for stereotactic body radiotherapy (SBRT). However, tumor volume changes during treatment response. Here, we have investigated tumor volume changes and movement during SBRT for lung cancer, as a means of examining the need for adaptive radiation therapy (ART). Methods: Fifteen tumors in 15 patients with lung cancer were treated with SBRT (total dose: 60 Gy in 4 fractions). GTVs were obtained from cone-beam computed tomography scans (CBCT1–4) taken before each of the 4 fractions was administered. GTVs were delineated and measured by radiation oncologists using a treatment planning system. Variance inmore » the tumor position was assessed between the planning CT and the CBCT images. To investigate the dosimetric effects of tumor volume changes, planning CT and CBCT4 treatment plans were compared using the conformity index (CI), homogeneity index (HI), and Paddick’s index (PCI). Results: The GTV on CBCT1 was employed as a baseline for comparisons. GTV had decreased by a mean of 20.4% (range: 0.7% to 47.2%) on CBCT4. Most patients had smaller GTVs on CBCT4 than on CBCT1. The interfractional shifts of the tumor position between the planning CT and CBCT1–4 were as follows: right-left, −0.4 to 1.3 mm; anterior-posterior, −0.8 to 0.5 mm; and superiorinferior, −0.9 to 1.1 mm. Indices for plans from the planning CT and CBCT4 were as follows: CI = 0.94±0.02 and 1.11±0.03; HI= 1.1±0.02 and 1.10±0.03; and PCI = 1.35±0.16 and 1.11±0.02, respectively. Conclusion: CI, HI, and PCI did not differ between the planning CT and CBCTs. However, daily CBCT revealed a significant decrease in the GTV during lung SBRT. Furthermore, there was an obvious interfractional shift in tumor position. Using ART could potentially lead to a reduced GTV margin and improved regional tumor control for lung cancer patients with significantly decreased GTV.« less
Upfront chemotherapy and subsequent resection for molecularly defined gliomas.
Sasaki, Hikaru; Hirose, Yuichi; Yazaki, Takahito; Kitamura, Yohei; Katayama, Makoto; Kimura, Tokuhiro; Fujiwara, Hirokazu; Toda, Masahiro; Ohira, Takayuki; Yoshida, Kazunari
2015-08-01
Functional preservation is critical in glioma surgery, and the extent of resection influences survival outcome. Neoadjuvant chemotherapy is a promising option because of its potential to facilitate tumor shrinkage and maximum tumor resection. The object of this study was to assess the utility of the neoadjuvant strategy in a prospective series of gliomas with favorable molecular status. Twenty-six consecutive cases of diffuse gliomas of WHO grade II or III with either 1p19q codeletion or MGMT methylation were treated with upfront chemotherapy following maximal safe removal. In cases of incomplete initial surgery, second-look resection was intended after tumor volume decrease by chemotherapy. Among 22 evaluable cases, chemotherapy led to a median change in the sum of the product of perpendicular diameters of -35 %, and 14 out of the 22 cases (64 %) showed objective response. Second-look resection after tumor volume decrease was performed in 12 out of 19 cases of incomplete initial surgery (GTR/STR 9, removal of residual methionine PET uptake 3). The median progression-free survival among the 22 patients with grade II tumors was 57 months, with some cases showing durable progression-free survival after second-look resection. MIB-1 indices of the second-look resected tumors were lower than those of the initial tumors, and the methylation status of the MGMT gene was unchanged. Neoadjuvant chemotherapy based on molecular guidance often produces significant volume decrease of incompletely resected gliomas. Radical second-look resection is an optional advantage of upfront chemotherapy for chemosensitive gliomas compared with initial radiotherapy.
Quantitative assessment of whole-body tumor burden in adult patients with neurofibromatosis.
Plotkin, Scott R; Bredella, Miriam A; Cai, Wenli; Kassarjian, Ara; Harris, Gordon J; Esparza, Sonia; Merker, Vanessa L; Munn, Lance L; Muzikansky, Alona; Askenazi, Manor; Nguyen, Rosa; Wenzel, Ralph; Mautner, Victor F
2012-01-01
Patients with neurofibromatosis 1 (NF1), NF2, and schwannomatosis are at risk for multiple nerve sheath tumors and premature mortality. Traditional magnetic resonance imaging (MRI) has limited ability to assess disease burden accurately. The aim of this study was to establish an international cohort of patients with quantified whole-body internal tumor burden and to correlate tumor burden with clinical features of disease. We determined the number, volume, and distribution of internal nerve sheath tumors in patients using whole-body MRI (WBMRI) and three-dimensional computerized volumetry. We quantified the distribution of tumor volume across body regions and used unsupervised cluster analysis to group patients based on tumor distribution. We correlated the presence and volume of internal tumors with disease-related and demographic factors. WBMRI identified 1286 tumors in 145/247 patients (59%). Schwannomatosis patients had the highest prevalence of tumors (P = 0.03), but NF1 patients had the highest median tumor volume (P = 0.02). Tumor volume was unevenly distributed across body regions with overrepresentation of the head/neck and pelvis. Risk factors for internal nerve sheath tumors included decreasing numbers of café-au-lait macules in NF1 patients (P = 0.003) and history of skeletal abnormalities in NF2 patients (P = 0.09). Risk factors for higher tumor volume included female gender (P = 0.05) and increasing subcutaneous neurofibromas (P = 0.03) in NF1 patients, absence of cutaneous schwannomas in NF2 patients (P = 0.06), and increasing age in schwannomatosis patients (p = 0.10). WBMRI provides a comprehensive phenotype of neurofibromatosis patients, identifies distinct anatomic subgroups, and provides the basis for investigating molecular biomarkers that correlate with unique disease manifestations.
Quantitative Assessment of Whole-Body Tumor Burden in Adult Patients with Neurofibromatosis
Plotkin, Scott R.; Bredella, Miriam A.; Cai, Wenli; Kassarjian, Ara; Harris, Gordon J.; Esparza, Sonia; Merker, Vanessa L.; Munn, Lance L.; Muzikansky, Alona; Askenazi, Manor; Nguyen, Rosa; Wenzel, Ralph; Mautner, Victor F.
2012-01-01
Purpose Patients with neurofibromatosis 1 (NF1), NF2, and schwannomatosis are at risk for multiple nerve sheath tumors and premature mortality. Traditional magnetic resonance imaging (MRI) has limited ability to assess disease burden accurately. The aim of this study was to establish an international cohort of patients with quantified whole-body internal tumor burden and to correlate tumor burden with clinical features of disease. Methods We determined the number, volume, and distribution of internal nerve sheath tumors in patients using whole-body MRI (WBMRI) and three-dimensional computerized volumetry. We quantified the distribution of tumor volume across body regions and used unsupervised cluster analysis to group patients based on tumor distribution. We correlated the presence and volume of internal tumors with disease-related and demographic factors. Results WBMRI identified 1286 tumors in 145/247 patients (59%). Schwannomatosis patients had the highest prevalence of tumors (P = 0.03), but NF1 patients had the highest median tumor volume (P = 0.02). Tumor volume was unevenly distributed across body regions with overrepresentation of the head/neck and pelvis. Risk factors for internal nerve sheath tumors included decreasing numbers of café-au-lait macules in NF1 patients (P = 0.003) and history of skeletal abnormalities in NF2 patients (P = 0.09). Risk factors for higher tumor volume included female gender (P = 0.05) and increasing subcutaneous neurofibromas (P = 0.03) in NF1 patients, absence of cutaneous schwannomas in NF2 patients (P = 0.06), and increasing age in schwannomatosis patients (p = 0.10). Conclusion WBMRI provides a comprehensive phenotype of neurofibromatosis patients, identifies distinct anatomic subgroups, and provides the basis for investigating molecular biomarkers that correlate with unique disease manifestations. PMID:22558206
Liszka, G; Thalacker, U; Somogyi, A; Németh, G
1997-08-01
This work is engaged with the volume change of neck lymph node metastasis of malignant tumors in the head-neck region during radiotherapy. In 54 patients with head and neck tumors, the volume of neck lymph nodes before and after radiation was measured. The volumetry was done with CT planimetry. The total dose was 66 Gy (2 Gy/d) telecobalt from 2 lateral opponated fields. The time of volume change could be defined with measuring of the half-time and the doubling-time by the help of Schwartz formula. After 10 Gy the volume diminution was about 20% and half-time 24 to 26 days. Afterwards the time of volume diminution picked up speed and finally achieved 60 to 72%. Meanwhile the half-time decreased to the half value. The result was independent of the site of primary tumor, the patient's sex and age. In our opinion the effectivity of radiotherapy can best be judged with defining of the volume change of lymph nodes of the neck.
Percutaneous Microwave Ablation of Renal Angiomyolipomas.
Cristescu, Mircea; Abel, E Jason; Wells, Shane; Ziemlewicz, Timothy J; Hedican, Sean P; Lubner, Megan G; Hinshaw, J Louis; Brace, Christopher L; Lee, Fred T
2016-03-01
To evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML). From January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4-4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits. All ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60-70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3-8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8% (3.4-3.3 cm) and 1.7% (27.5-26.3 cm(3)), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9-47) demonstrated mean tumor diameter and volume decreases of 29% (3.4-2.4 cm) and 47% (27.5-12.1 cm(3)), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation. Our early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.
Checkley, L. Allyson; Rudolph, Michael C.; Wellberg, Elizabeth A.; Giles, Erin D.; Wahdan-Alaswad, Reema S.; Houck, Julie A.; Edgerton, Susan M.; Thor, Ann D.; Schedin, Pepper; Anderson, Steven M.; MacLean, Paul S.
2017-01-01
Several epidemiological studies have associated metformin treatment with a reduction in breast cancer incidence in pre-diabetic and type II diabetic populations. Uncertainty exists regarding which patient populations and/or tumor subtypes will benefit from metformin treatment, and most preclinical in vivo studies have given little attention to the cellular pharmacology of intratumoral metformin uptake. Epidemiological reports consistently link western-style high fat diets, which drive overweight and obesity, with increased risk of breast cancer. We used a rat model of high fat diet (HFD) induced overweight and mammary carcinogenesis to define intratumoral factors that confer metformin sensitivity. Mammary tumors were initiated with N-methyl-N-nitrosourea (MNU), and rats were randomized into metformin-treated (2 mg/ml drinking water) or control groups (water only) for 8 weeks. Two-thirds of existing mammary tumors responded to metformin treatment with decreased tumor volumes (p<0.05), reduced proliferative index (p<0.01), and activated AMPK (p<0.05). Highly responsive tumors accumulated 3-fold greater metformin amounts (p<0.05) that were positively correlated with organic cation transporter-2 (OCT2) protein expression (r=0.57, P=0.038). Importantly, intratumoral metformin concentration negatively associated with tumor volume (P=0.03), and each 10 pmol increase in intratumoral metformin predicted >0.11 cm3 reduction in tumor volume. Metformin treatment also decreased proinflammatory arachidonic acid >1.5 fold in responsive tumors (P=0.023). Collectively, these preclinical data provide evidence for a direct effect of metformin in vivo and suggest that OCT2 expression may predict metformin uptake and tumor response. PMID:28154203
Silencing Intersectin 1 Slows Orthotopic Neuroblastoma Growth in Mice.
Harris, Jamie; Herrero-Garcia, Erika; Russo, Angela; Kajdacsy-Balla, Andre; O'Bryan, John P; Chiu, Bill
2017-11-01
Neuroblastoma accounts for 15% of all pediatric cancer deaths. Intersectin 1 (ITSN1), a scaffold protein involved in phosphoinositide 3-kinase (PI3K) signaling, regulates neuroblastoma cells independent of MYCN status. We hypothesize that by silencing ITSN1 in neuroblastoma cells, tumor growth will be decreased in an orthotopic mouse tumor model. SK-N-AS neuroblastoma cells transfected with empty vector (pSR), vectors expressing scrambled shRNA (pSCR), or shRNAs targeting ITSN1 (sh#1 and sh#2) were used to create orthotopic neuroblastoma tumors in mice. Volume was monitored weekly with ultrasound. End-point was tumor volume >1000 mm. Tumor cell lysates were analyzed with anti-ITSN1 antibody by Western blot. Orthotopic tumors were created in all cell lines. Twenty-five days post injection, pSR tumor size was 917.6±247.7 mm, pSCR was 1180±159.9 mm, sh#1 was 526.3±212.8 mm, and sh#2 was 589.2±74.91 mm. sh#1-tumors and sh#2-tumors were smaller than pSCR (P=0.02), no difference between sh#1 and sh#2. Survival was superior in sh#2-tumors (P=0.02), trended towards improved survival in sh#1-tumors (P=0.09), compared with pSCR-tumors, no difference in pSR tumors. Western blot showed decreased ITSN1 expression in sh#1 and sh#2 compared with pSR and pSCR. Silencing ITSN1 in neuroblastoma cells led to decreased tumor growth in an orthotopic mouse model. Orthotopic animal models can provide insight into the role of ITSN1 pathways in neuroblastoma tumorigenesis.
Knaup, Courtney; Mavroidis, Panayiotis; Stathakis, Sotirios; Smith, Mark; Swanson, Gregory; Papanikolaou, Niko
2011-09-01
This study evaluates low dose-rate brachytherapy (LDR) prostate plans to determine the biological effect of dose degradation due to prostate volume changes. In this study, 39 patients were evaluated. Pre-implant prostate volume was determined using ultrasound. These images were used with the treatment planning system (Nucletron Spot Pro 3.1(®)) to create treatment plans using (103)Pd seeds. Following the implant, patients were imaged using CT for post-implant dosimetry. From the pre and post-implant DVHs, the biologically equivalent dose and the tumor control probability (TCP) were determined using the biologically effective uniform dose. The model used RBE = 1.75 and α/β = 2 Gy. The prostate volume changed between pre and post implant image sets ranged from -8% to 110%. TCP and the mean dose were reduced up to 21% and 56%, respectively. TCP is observed to decrease as the mean dose decreases to the prostate. The post-implant tumor dose was generally observed to decrease, compared to the planned dose. A critical uniform dose of 130 Gy was established. Below this dose, TCP begins to fall-off. It was also determined that patients with a small prostates were more likely to suffer TCP decrease. The biological effect of post operative prostate growth due to operative trauma in LDR was evaluated using the concept. The post-implant dose was lower than the planned dose due to an increase of prostate volume post-implant. A critical uniform dose of 130 Gy was determined, below which TCP begun to decline.
Nambiar, Dhanya; Prajapati, Vandana; Agarwal, Rajesh; Singh, Rana P
2013-06-28
Silibinin suppresses the growth of many cancers; however, its efficacy against pancreatic cancer has not been evaluated in established preclinical models. Here, we investigated in vitro and in vivo effects of silibinin against lower and advanced stages of human pancreatic carcinoma cells. Silibinin (25-100μM) treatment for 24-72h caused a dose- and time-dependent cell growth inhibition of 27-77% (P<0.05-0.001) in BxPC-3 cells, and 22-45% (P<0.01-0.001) in PANC-1 cells. Silibinin showed a strong dose-dependent G1 arrest in BxPC-3 cells (upto 72% versus 45% in control; P<0.001), but a moderate response in advanced PANC-1 cells. Cell death observed in cell growth assay, was accompanied by up to 3-fold increase (P<0.001) in apoptosis in BxPC-3 cells, and showed only slight effect on PANC-1 cells. Dietary feeding of silibinin (0.5%, w/w in AIN-93M diet for 7weeks) inhibited BxPC-3 and PANC-1 tumor xenografts growth in nude mice without any apparent change in body weight gain and diet consumption. Tumor volume and weight were decreased by 47% and 34% (P⩽0.001) in BxPC-3 xenograft, respectively. PANC-1 xenograft showed slower growth kinetics and silibinin decreased tumor volume by 34% (P<0.001) by 7weeks. Another 4weeks of silibinin treatment to PANC-1 xenograft showed 28% and 33% decrease in tumor volume and weight, respectively. Silibinin-fed group of BxPC-3 tumors showed decreased cell proliferation and angiogenesis and an increased apoptosis, however, considerable inhibitory effect was observed only for angiogenesis in PANC-1 tumors. Overall, these findings show both in vitro as well as in vivo anticancer efficacy of silibinin against pancreatic cancer that could involve inhibition of cell proliferation, cell cycle arrest, apoptosis induction and/or decrease in tumor angiogenesis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Effect of curcumin on Bcl-2 and Bax expression in nude mice prostate cancer.
Yang, Jiayi; Ning, Jianping; Peng, Linlin; He, Dan
2015-01-01
Prostate cancer is a common malignant tumor in urinary system. Curcumin has curative effect on many kinds of cancers and can inhibit prostate cancer (PC)-3 cells proliferation. This study aimed to explore the curcumin induced prostate cancer cell apoptosis and apoptosis related proteins Bcl-2 and Bax expression. PC-3 cells were injected subcutaneously to the nude mice to establish the tumor model. The nude mice were randomly divided into group C (normal saline), group B (6% polyethylene glycol and 6% anhydrous ethanol), group H, M, L (100 mg/kg, 50 mg/kg, and 25 mg/kg curcumin). The tumor volume was measured every 6 days to draw the tumor growth curve. The mice were killed at the 30(th) day after injection to weight the tumor. TUNEL assay was applied to determine cell apoptosis. Immunohistochemistry was used to detect Bcl-2 and Bax expression. The tumor volume and weight in group H, M, L were significantly lower than the control group (C, B) (P<0.05), and the inhibitory rate increased following the curcumin dose increase. Compared with the control group, Bcl-2 expression in group H, M, L gradually decreased, while Bax protein expression increased (P<0.05). The cell apoptosis rate showed no statistical difference between group B and C, while it increased in curcumin group H, M, and L (P<0.05). Curcumin could inhibit PC-3 growth, decrease tumor volume, reduce tumor weight, and induce cell apoptosis under the skin of nude mice by up-regulating Bax and down-regulating Bcl-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
2015-06-15
Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using amore » constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors.« less
Pallud, Johan; Llitjos, Jean-François; Dhermain, Frédéric; Varlet, Pascale; Dezamis, Edouard; Devaux, Bertrand; Souillard-Scémama, Raphaëlle; Sanai, Nader; Koziak, Maria; Page, Philippe; Schlienger, Michel; Daumas-Duport, Catherine; Meder, Jean-François; Oppenheim, Catherine; Roux, François-Xavier
2012-04-01
Quantitative imaging assessment of radiation therapy (RT) for diffuse low-grade gliomas (DLGG) by measuring the velocity of diametric expansion (VDE) over time has never been studied. We assessed the VDE changes following RT and determined whether this parameter can serve as a prognostic factor. We reviewed a consecutive series of 33 adults with supratentorial DLGG treated with first-line RT with available imaging follow-up (median follow-up, 103 months). Before RT, all patients presented with a spontaneous tumor volume increase (positive VDE, mean 5.9 mm/year). After RT, all patients demonstrated a tumor volume decrease (negative VDE, mean, -16.7 mm/year) during a mean 49-month duration. In univariate analysis, initial tumor volume (>100 cm(3)), lack of IDH1 expression, p53 expression, high proliferation index, and fast post-RT tumor volume decrease (VDE at -10 mm/year or faster, fast responders) were associated with a significantly shorter overall survival (OS). The median OS was significantly longer (120.8 months) for slow responders (post-RT VDE slower than -10.0 mm/year) than for fast responders (47.9 months). In multivariate analysis, fast responders, larger initial tumor volume, lack of IDH1 expression, and p53 expression were independent poor prognostic factors for OS. A high proliferation index was significantly more frequent in the fast responder subgroup than in the slow responder subgroup. We conclude that the pattern of post-RT VDE changes is an independent prognostic factor for DLGG and offers a quantitative parameter to predict long-term outcomes. We propose to monitor individually the post-RT VDE changes using MRI follow-up, with particular attention to fast responders.
Pallud, Johan; Llitjos, Jean-François; Dhermain, Frédéric; Varlet, Pascale; Dezamis, Edouard; Devaux, Bertrand; Souillard-Scémama, Raphaëlle; Sanai, Nader; Koziak, Maria; Page, Philippe; Schlienger, Michel; Daumas-Duport, Catherine; Meder, Jean-François; Oppenheim, Catherine; Roux, François-Xavier
2012-01-01
Quantitative imaging assessment of radiation therapy (RT) for diffuse low-grade gliomas (DLGG) by measuring the velocity of diametric expansion (VDE) over time has never been studied. We assessed the VDE changes following RT and determined whether this parameter can serve as a prognostic factor. We reviewed a consecutive series of 33 adults with supratentorial DLGG treated with first-line RT with available imaging follow-up (median follow-up, 103 months). Before RT, all patients presented with a spontaneous tumor volume increase (positive VDE, mean 5.9 mm/year). After RT, all patients demonstrated a tumor volume decrease (negative VDE, mean, −16.7 mm/year) during a mean 49-month duration. In univariate analysis, initial tumor volume (>100 cm3), lack of IDH1 expression, p53 expression, high proliferation index, and fast post-RT tumor volume decrease (VDE at −10 mm/year or faster, fast responders) were associated with a significantly shorter overall survival (OS). The median OS was significantly longer (120.8 months) for slow responders (post-RT VDE slower than −10.0 mm/year) than for fast responders (47.9 months). In multivariate analysis, fast responders, larger initial tumor volume, lack of IDH1 expression, and p53 expression were independent poor prognostic factors for OS. A high proliferation index was significantly more frequent in the fast responder subgroup than in the slow responder subgroup. We conclude that the pattern of post-RT VDE changes is an independent prognostic factor for DLGG and offers a quantitative parameter to predict long-term outcomes. We propose to monitor individually the post-RT VDE changes using MRI follow-up, with particular attention to fast responders. PMID:22416109
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cristescu, Mircea, E-mail: mcristescu@uwhealth.org; Abel, E. Jason, E-mail: abel@urology.wisc.edu; Wells, Shane, E-mail: swells@uwhealth.org
PurposeTo evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML).Materials and MethodsFrom January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4–4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits.ResultsAll ablations were technically successful and no major complicationsmore » were encountered. Mean ablation parameters were ablation power of 65 W (range 60–70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3–8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8 % (3.4–3.3 cm) and 1.7 % (27.5–26.3 cm{sup 3}), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9–47) demonstrated mean tumor diameter and volume decreases of 29 % (3.4–2.4 cm) and 47 % (27.5–12.1 cm{sup 3}), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation.ConclusionOur early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.« less
Park, Min Jung; Kim, Young-sun; Rhim, Hyunchul; Lim, Hyo Keun
2014-02-01
To evaluate the safety and therapeutic efficacy of magnetic resonance (MR) imaging-guided high-intensity focused ultrasound (US) ablation of symptomatic uterine fibroid tumors with an immediate nonperfused volume (NPV) ratio of 80% or more. A total of 79 women with 117 uterine tumors were treated with MR-guided high-intensity focused US ablation. Immediate NPV, complications, and therapeutic efficacy (tumor volume reduction ratio and symptom severity score [SSS] decrease at 3-mo follow-up) were retrospectively assessed. Statistical comparisons of the frequency of complications and therapeutic efficacy were performed between patients with NPV ratios of at least 80% and less than 80%. Technical success was achieved in 93.7% of cases (n = 74) of cases, and the immediate NPV ratio was 62.7% ± 25.5. Twenty-four patients exhibited an NPV ratio of at least 80% (89.7% ± 5.8), and 50 patients showed an NPV ratio of less than 80% (49.8% ± 20.7). All complications were minor in severity, and the incidences were not significantly different between groups (P > .05). The 3-month volume reduction ratio was significantly greater in patients with an NPV ratio of at least 80% (0.43 ± 0.17) than in those with an NPV ratio of less than 80% (0.20 ± 0.26; P = .002), although the decreases in SSS were not significantly different (20.9 ± 19.6 vs 12.1 ± 10.1; P = .097). In MR-guided high-intensity focused US ablation of symptomatic uterine fibroid tumors, achievement of an immediate NPV ratio of at least 80% is safe, with greater tumor volume shrinkage compared with cases with a lower NPV ratio. © 2014 SIR Published by SIR All rights reserved.
Perfusion MDCT enables early detection of therapeutic response to antiangiogenic therapy.
Sabir, Adeel; Schor-Bardach, Rachel; Wilcox, Carol J; Rahmanuddin, Syed; Atkins, Michael B; Kruskal, Jonathan B; Signoretti, Sabina; Raptopoulos, Vassilios D; Goldberg, S Nahum
2008-07-01
The objective of our study was to determine whether perfusion CT can be used to detect early changes in therapeutic response to antiangiogenic therapy in an animal tumor model. Twenty-five rats implanted with R3230 mammary adenocarcinoma (diameter, 1.2-2.0 cm) randomly received 7.5 or 30 mg/kg of an antiangiogenic agent, sorafenib, by daily gavage for 4 (n = 4), 9 (n = 9), or 14 (n = 5) days. Seven untreated animals served as a control group. Perfusion MDCT was performed at days 0, 4, 9, and 14 with 0.4 mL of ioversol (350 mg/mL) and included four 5-mm slices covering the entire tumor volume. Changes in tumor growth were determined by volumetric analysis of CT data. Serial changes in tumor volume and blood flow were assessed and correlated with pathology findings. All control tumors grew larger (from 2.0 +/- 0.7 cm(3) at day 0 to 5.9 +/- 1.0 cm(3) at day 14), whereas all treated tumors shrank (from 2.5 +/- 1.1 to 2.1 +/- 1.0 cm(3)), with a statistically significant rate of growth or shrinkage in both groups (p < 0.05). Although perfusion in the control tumors changed little from day 0 to day 14 (day 0, 18.1 +/- 9.2 mL/min/100 g; day 4, 15.8 +/- 5.6; day 9, 21.7 +/- 12.2; day 14, 27.7 +/- 34), in the sorafenib group, the mean blood flow was significantly lower at day 4 (5.2 +/- 3.2 mL/min/100 g, 77% decrease), day 9 (6.4 +/- 4.0 mL/min/100 g, 66% decrease), and day 14 (6.3 +/- 5.2 mL/min/100 g, 83% decrease) compared with day 0 (23.8 +/- 11.6 mL/min/100 g) (p < 0.05). Poor correlation was seen between changes in blood flow and tumor volume for days 0-9 (r(2) = 0.34), 4-9 (r(2) = 0.0004), and 9-14 (r(2) = 0.16). However, when comparing day 4 images with days 9 and 14 images, seven of 14 (50%) sorafenib-treated tumors had focal areas of new perfusion that correlated with areas of histopathologic viability despite the fact that these tumors were shrinking in size from day 4 onward (day 4, 2.18 +/- 0.8 cm(3); day 9, 1.98 +/- 0.8 cm(3)). Perfusion MDCT can detect focal blood flow changes even when the tumor is shrinking, possibly indicating early reversal of tumor responsiveness to antiangiogenic therapy. Given that changes in tumor volume after antiangiogenic therapy do not necessarily correlate with true treatment response, physiologic imaging of tumor perfusion may be necessary.
Bjondahl, K; Grönroos, M; Klemi, P; Möttönen, M
1980-01-01
The effect of a combination treatment with vincristine sulphate and cyclophosphamide to endometrioid ovarian carcinoma grown in nude mice hosts was studied by histopathological, ultrastructural and biochemical methods. The first course of treatment had little or no effect. After the second and third courses, however, the growth of the tumors was suppressed as evidenced by increased necrosis and decreased weight of tumors. The total volume of the mitochondria decreased but there was no change in the nucleo-cytoplasmic ratio and other ultrastructural features. In the DNA and RNA contents a decreasing trend was found. No complete remission was observed during the treatment. However, in two treated animals, kept for a longer observation period, the tumors regressed completely and no new tumor growths were found. In the control animals, the tumors grew progressively and the histology was identical to that in the patient. However, the frequency of mitoses was slightly higher in the transplanted tumor than in the primary tumor.
Anti-tumor activities of decursinol angelate and decursin from Angelica gigas.
Lee, Sanghyun; Lee, Yeon Sil; Jung, Sang Hoon; Shin, Kuk Hyun; Kim, Bak-Kwang; Kang, Sam Sik
2003-09-01
The in vivo anti-tumor activities of decursinol angelate (1) and decursin (2) isolated from the roots of Angelica gigas were investigated. These two compounds, when administered consecutively for 9 days at 50 and 100 mg/kg i.p. in mice, caused a significant increase in the life span and a significant decrease in the tumor weight and volume of mice inoculated with Sarcoma-180 tumor cells. These results suggest that decursinol angelate (1) and decursin (2) from A. gigas have anti-tumor activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jani, Ashish; Shaikh, Fauzia; Barton, Sunjay
Purpose: To characterize the effects of high-dose radiation therapy (HDRT) on neuroblastoma tumor vasculature, including the endothelial cell (EC)–pericyte interaction as a potential target for combined treatment with antiangiogenic agents. Methods and Materials: The vascular effects of radiation therapy were examined in a xenograft model of high-risk neuroblastoma. In vivo 3-dimensional contrast-enhanced ultrasonography (3D-CEUS) imaging and immunohistochemistry (IHC) were performed. Results: HDRT significantly reduced tumor blood volume 6 hours after irradiation compared with the lower doses used in conventionally fractionated radiation. There was a 63% decrease in tumor blood volume after 12-Gy radiation compared with a 24% decrease after 2 Gy. Analysis ofmore » tumor vasculature by lectin angiography showed a significant loss of small vessel ends at 6 hours. IHC revealed a significant loss of ECs at 6 and 72 hours after HDRT, with an accompanying loss of immature and mature pericytes at 72 hours. Conclusions: HDRT affects tumor vasculature in a manner not observed at lower doses. The main observation was an early reduction in tumor perfusion resulting from a reduction of small vessel ends with a corresponding loss of endothelial cells and pericytes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A; Schwartz, J; Mayr, N
2014-06-01
Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
Cerebral edema, mass effects, and regional blood volume in man.
Penn, R D; Kurtz, D
1977-03-01
The authors conducted quantitative analysis of computerized tomography (CT) scans to measure tumor size, cerebral edema, and regional blood volume in man. Mass lesions without edema caused a local reduction in blood volume. Cerebral edema also reduced blood volume in proportion to its severity. Consideration of the electrolyte changes and water shifts in white-matter edema suggested that the decrease in absorption coefficient seen in CT scans was due to the increase in water content. Thus, in cerebral edema separation of blood vessels as well as increased interstitial pressure decrease blood volume, and the regional differences in turn reflect pressure gradients within the brain.
P13.11USAGE OF CYBER KNIFE HYPOFRACTIONATED RADIOSURGERY IN HIGH GRADE GLIOMAS COMPLEX TREATMENT
Glavatskyi, O.; Buryk, V.M.; Kardash, K.A.; Pylypas, O.P.; Chebotaryova, T.I.
2014-01-01
INTRODUCTION: A complex approach to the treatment of malignant brain tumors includes maximum surgical resection, radiotherapy and chemotherapy. The purpose of the current study is to review retrospectively the ability of Cyber Knife (“Accuray Incorporated”, Sunnyvale, CA, USA) radiosurgery to provide local tumor control of newly diagnosed or recurrent malignant brain tumors. MATERIAL AND METHOD: 26 patients with malignant brain tumors (glioblastoma multiform (GBM) - 14 patients, anaplastic astrocytoma (AA) - 12 patients) were treated in 2012-2013 with Cyber Knife stereotactic radiosurgery. Before radiosurgery 8 patients had complete removal of the tumor, 9 patients had subtotal resection and 9 patients had biopsy. 17 patients received adjuvant chemotherapy with temozolomide according to the different treatment protocols. 9 patients who were previously irradiated received re-irradiation. In all patients CT, MRI, PET (native, enhanced, CT-perfusion, MRI-diffusion (DWI) studies) before and after treatment were performed with (3, 6, 12, 18 month follow up). The volume of tumors ranged from 10-12 cm3 to 101,1 cm3. The maximum mean dose of irradiation applied was 36.99 Gy (ranged from 21,3 Gy to 48,8 Gy). 3-6 fractions of hypofractionated treatment were used. RESULTS: At this stage of the study, we assessed the absence of complications after stereotactic hypofractionated radiosurgery. Objective survival evaluation has being performed in 12-24 months after radiosurgical treatment. A significant decrease in the number and severity of seizures was seen in 7 patients out of 21 (33 %). 18 patients (64%) had regression of limb weakness. In case of biopsy 7 of 9 tumors (78 %) showed a decrease in volume. In patients with clinical deterioration (3 patients) repeated surgical treatment was performed. All of them had signs of post-irradiation necrosis and pathomorphosis in tumor tissue. Median overall survival and progression free survival were 17 months and 11 months respectively. CONCLUSIONS: Hypofractionated stereotactic radiosurgery is one of possible treatment options for high-grade gliomas which leads to a decrease in tumor volume and improves clinical status of patients even in cases of re-irradiation. Surgical treatment after radiosurgery doesn't worsen median overall survival and progression free survival prognosis.
Magdoom, Kulam Najmudeen; Pishko, Gregory L.; Rice, Lori; Pampo, Chris; Siemann, Dietmar W.; Sarntinoranont, Malisa
2014-01-01
Systemic drug delivery to solid tumors involving macromolecular therapeutic agents is challenging for many reasons. Amongst them is their chaotic microvasculature which often leads to inadequate and uneven uptake of the drug. Localized drug delivery can circumvent such obstacles and convection-enhanced delivery (CED) - controlled infusion of the drug directly into the tissue - has emerged as a promising delivery method for distributing macromolecules over larger tissue volumes. In this study, a three-dimensional MR image-based computational porous media transport model accounting for realistic anatomical geometry and tumor leakiness was developed for predicting the interstitial flow field and distribution of albumin tracer following CED into the hind-limb tumor (KHT sarcoma) in a mouse. Sensitivity of the model to changes in infusion flow rate, catheter placement and tissue hydraulic conductivity were investigated. The model predictions suggest that 1) tracer distribution is asymmetric due to heterogeneous porosity; 2) tracer distribution volume varies linearly with infusion volume within the whole leg, and exponentially within the tumor reaching a maximum steady-state value; 3) infusion at the center of the tumor with high flow rates leads to maximum tracer coverage in the tumor with minimal leakage outside; and 4) increasing the tissue hydraulic conductivity lowers the tumor interstitial fluid pressure and decreases the tracer distribution volume within the whole leg and tumor. The model thus predicts that the interstitial fluid flow and drug transport is sensitive to porosity and changes in extracellular space. This image-based model thus serves as a potential tool for exploring the effects of transport heterogeneity in tumors. PMID:24619021
Reichardt, Wilfried; Hu-Lowe, Dana; Torres, Denise; Weissleder, Ralph; Bogdanov, Alexei
2005-01-01
Abstract Small molecule vascular endothelial growth factor (VEGF) receptor tyrosinase kinase inhibitors (VEGFR-TKIs) show great promise in inducing antiangiogenic responses in tumors. We investigated whether antiangiogenic tumor responses induced by an experimental VEGFR-TKI (AG013925; Pfizer Global Research and Development) could be reported by magnetic resonance imaging (MRI) during the initial phase of treatment. We used MRI and superparamagnetic nanoparticles for measuring relative vascular volume fraction (rVVF) in a drug-resistant colon carcinoma model. Athymic mice harboring MV522 xenografts were treated with VEGFR-TKI (25 mg/kg, p.o., with a 12-hour interval in between treatments) and were imaged after three consecutive treatments. Relative tumor blood volume fractions were calculated using ΔR2* maps that were scaled by the known VVF value of an in-plane skeletal muscle (1.9%). There was a pronounced and statistically significant (P < .001) decrease of tumor rVVF in treated animals (0.95 ± 0.24%; mean ± SEM, n = 66 slices, eight mice) compared to mice that received a placebo (2.91 ± 0.24%; mean ± SEM, n = 66 slices, nine mice). Tumor histology confirmed a three-fold decrease of vascular density and a concomitant increase of apoptotic cell index. Hence, we demonstrated that: 1) the VEGFR-TKI resulted in antiangiogenic effects that were manifested by a decrease or rVVF; and 2) iron oxide nanoparticles and steady-state MRI enable an early detection of tumor response to antiangiogenic therapies. PMID:16229807
Canine spontaneous glioma: A translational model system for convection-enhanced delivery
Dickinson, Peter J.; LeCouteur, Richard A.; Higgins, Robert J.; Bringas, John R.; Larson, Richard F.; Yamashita, Yoji; Krauze, Michal T.; Forsayeth, John; Noble, Charles O.; Drummond, Daryl C.; Kirpotin, Dmitri B.; Park, John W.; Berger, Mitchel S.; Bankiewicz, Krystof S.
2010-01-01
Canine spontaneous intracranial tumors bear striking similarities to their human tumor counterparts and have the potential to provide a large animal model system for more realistic validation of novel therapies typically developed in small rodent models. We used spontaneously occurring canine gliomas to investigate the use of convection-enhanced delivery (CED) of liposomal nanoparticles, containing topoisomerase inhibitor CPT-11. To facilitate visualization of intratumoral infusions by real-time magnetic resonance imaging (MRI), we included identically formulated liposomes loaded with Gadoteridol. Real-time MRI defined distribution of infusate within both tumor and normal brain tissues. The most important limiting factor for volume of distribution within tumor tissue was the leakage of infusate into ventricular or subarachnoid spaces. Decreased tumor volume, tumor necrosis, and modulation of tumor phenotype correlated with volume of distribution of infusate (Vd), infusion location, and leakage as determined by real-time MRI and histopathology. This study demonstrates the potential for canine spontaneous gliomas as a model system for the validation and development of novel therapeutic strategies for human brain tumors. Data obtained from infusions monitored in real time in a large, spontaneous tumor may provide information, allowing more accurate prediction and optimization of infusion parameters. Variability in Vd between tumors strongly suggests that real-time imaging should be an essential component of CED therapeutic trials to allow minimization of inappropriate infusions and accurate assessment of clinical outcomes. PMID:20488958
Nagata, Koichi; Pethel, Timothy D
2017-07-01
Although anisotropic analytical algorithm (AAA) and Acuros XB (AXB) are both radiation dose calculation algorithms that take into account the heterogeneity within the radiation field, Acuros XB is inherently more accurate. The purpose of this retrospective method comparison study was to compare them and evaluate the dose discrepancy within the planning target volume (PTV). Radiation therapy (RT) plans of 11 dogs with intranasal tumors treated by radiation therapy at the University of Georgia were evaluated. All dogs were planned for intensity-modulated radiation therapy using nine coplanar X-ray beams that were equally spaced, then dose calculated with anisotropic analytical algorithm. The same plan with the same monitor units was then recalculated using Acuros XB for comparisons. Each dog's planning target volume was separated into air, bone, and tissue and evaluated. The mean dose to the planning target volume estimated by Acuros XB was 1.3% lower. It was 1.4% higher for air, 3.7% lower for bone, and 0.9% lower for tissue. The volume of planning target volume covered by the prescribed dose decreased by 21% when Acuros XB was used due to increased dose heterogeneity within the planning target volume. Anisotropic analytical algorithm relatively underestimates the dose heterogeneity and relatively overestimates the dose to the bone and tissue within the planning target volume for the radiation therapy planning of canine intranasal tumors. This can be clinically significant especially if the tumor cells are present within the bone, because it may result in relative underdosing of the tumor. © 2017 American College of Veterinary Radiology.
Barbee, David L; Flynn, Ryan T; Holden, James E; Nickles, Robert J; Jeraj, Robert
2010-01-01
Tumor heterogeneities observed in positron emission tomography (PET) imaging are frequently compromised of partial volume effects which may affect treatment prognosis, assessment, or future implementations such as biologically optimized treatment planning (dose painting). This paper presents a method for partial volume correction of PET-imaged heterogeneous tumors. A point source was scanned on a GE Discover LS at positions of increasing radii from the scanner’s center to obtain the spatially varying point spread function (PSF). PSF images were fit in three dimensions to Gaussian distributions using least squares optimization. Continuous expressions were devised for each Gaussian width as a function of radial distance, allowing for generation of the system PSF at any position in space. A spatially varying partial volume correction (SV-PVC) technique was developed using expectation maximization (EM) and a stopping criterion based on the method’s correction matrix generated for each iteration. The SV-PVC was validated using a standard tumor phantom and a tumor heterogeneity phantom, and was applied to a heterogeneous patient tumor. SV-PVC results were compared to results obtained from spatially invariant partial volume correction (SINV-PVC), which used directionally uniform three dimensional kernels. SV-PVC of the standard tumor phantom increased the maximum observed sphere activity by 55 and 40% for 10 and 13 mm diameter spheres, respectively. Tumor heterogeneity phantom results demonstrated that as net changes in the EM correction matrix decreased below 35%, further iterations improved overall quantitative accuracy by less than 1%. SV-PVC of clinically observed tumors frequently exhibited changes of ±30% in regions of heterogeneity. The SV-PVC method implemented spatially varying kernel widths and automatically determined the number of iterations for optimal restoration, parameters which are arbitrarily chosen in SINV-PVC. Comparing SV-PVC to SINV-PVC demonstrated that similar results could be reached using both methods, but large differences result for the arbitrary selection of SINV-PVC parameters. The presented SV-PVC method was performed without user intervention, requiring only a tumor mask as input. Research involving PET-imaged tumor heterogeneity should include correcting for partial volume effects to improve the quantitative accuracy of results. PMID:20009194
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guang, E-mail: lig2@mskcc.org; Schmidtlein, C. Ross; Humm, John L.
Purpose: To assess and account for the impact of respiratory motion on the variability of activity and volume determination of liver tumor in positron emission tomography (PET) through a comparison between free-breathing (FB) and respiration-suspended (RS) PET images. Methods: As part of a PET/computed tomography (CT) guided percutaneous liver ablation procedure performed on a PET/CT scanner, a patient's breathing is suspended on a ventilator, allowing the acquisition of a near-motionless PET and CT reference images of the liver. In this study, baseline RS and FB PET/CT images of 20 patients undergoing thermal ablation were acquired. The RS PET provides near-motionlessmore » reference in a human study, and thereby allows a quantitative evaluation of the effect of respiratory motion on PET images obtained under FB conditions. Two methods were applied to calculate tumor activity and volume: (1) threshold-based segmentation (TBS), estimating the total lesion glycolysis (TLG) and the segmented volume and (2) histogram-based estimation (HBE), yielding the background-subtracted lesion (BSL) activity and associated volume. The TBS method employs 50% of the maximum standardized uptake value (SUV{sub max}) as the threshold for tumors with SUV{sub max} ≥ 2× SUV{sub liver-bkg}, and tumor activity above this threshold yields TLG{sub 50%}. The HBE method determines local PET background based on a Gaussian fit of the low SUV peak in a SUV-volume histogram, which is generated within a user-defined and optimized volume of interest containing both local background and lesion uptakes. Voxels with PET intensity above the fitted background were considered to have originated from the tumor and used to calculate the BSL activity and its associated lesion volume. Results: Respiratory motion caused SUV{sub max} to decrease from RS to FB by −15% ± 11% (p = 0.01). Using TBS method, there was also a decrease in SUV{sub mean} (−18% ± 9%, p = 0.01), but an increase in TLG{sub 50%} (18% ± 36%) and in the segmented volume (47% ± 52%, p = 0.01) from RS to FB PET images. The background uptake in normal liver was stable, 1% ± 9%. In contrast, using the HBE method, the differences in both BSL activity and BSL volume from RS to FB were −8% ± 10% (p = 0.005) and 0% ± 16% (p = 0.94), respectively. Conclusions: This is the first time that almost motion-free PET images of the human liver were acquired and compared to free-breathing PET. The BSL method's results are more consistent, for the calculation of both tumor activity and volume in RS and FB PET images, than those using conventional TBS. This suggests that the BSL method might be less sensitive to motion blurring and provides an improved estimation of tumor activity and volume in the presence of respiratory motion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, Thomas J.; University of Florida Proton Therapy Institute, Jacksonville, FL; Indelicato, Daniel J., E-mail: dindelicato@floridaproton.org
Purpose: Second tumors are an uncommon complication of multimodality treatment of childhood cancer. The present analysis attempted to correlate the dose received as a component of primary treatment and the site of the eventual development of a second tumor. Methods and Materials: We retrospectively identified 16 patients who had received radiotherapy to sites in the craniospinal axis and subsequently developed a second tumor. We compared the historical fields and port films of the primary treatment with the modern imaging of the second tumor locations. We classified the location of the second tumors as follows: in the boost field; marginal tomore » the boost field, but in a whole-brain field; in a whole-brain field; marginal to the whole brain/primary treatment field; and distant to the field. We divided the dose received into 3 broad categories: high dose (>45 Gy), moderate dose (20-36 Gy), and low dose (<20 Gy). Results: The most common location of the second tumor was in the whole brain field (57%) and in the moderate-dose range (81%). Conclusions: Our data contradict previous publications that suggested that most second tumors develop in tissues that receive a low radiation dose. Almost all the second tumors in our series occurred in tissue within a target volume in the cranium that had received a moderate dose (20-36 Gy). These findings suggest that a major decrease in the brain volume that receives a moderate radiation dose is the only way to substantially decrease the second tumor rate after central nervous system radiotherapy.« less
Kumar, Manoj; Arlauckas, Sean P.; Saksena, Sona; Verma, Gaurav; Ittyerah, Ranjit; Pickup, Stephen; Popov, Anatoliy V.; Delikatny, Edward J.; Poptani, Harish
2015-01-01
Abnormal choline metabolism is a hallmark of cancer and is associated with oncogenesis and tumor progression. Increased choline is consistently observed in both pre-clinical tumor models and in human brain tumors by proton magnetic resonance spectroscopy (MRS). Thus, inhibition of choline metabolism using specific choline kinase inhibitors such as MN58b may be a promising new strategy for treatment of brain tumors. We demonstrate the efficacy of MN58b in suppressing phosphocholine production in three brain tumor cell lines. In vivo MRS studies of rats with intra-cranial F98-derived brain tumors showed a significant decrease in tumor total choline concentration after treatment with MN58b. High resolution MRS of tissue extracts confirmed that this decrease was due to a significant reduction in phosphocholine. Concomitantly, a significant increase in poly-unsaturated lipid resonances was also observed in treated tumors, indicating apoptotic cell death. Magnetic resonance imaging (MRI) based volume measurements demonstrated a significant growth arrest in the MN58b-treated tumors in comparison to saline-treated controls. Histologically, MN58b-treated tumors showed decreased cell density, as well as increased apoptotic cells. These results suggest that inhibition of choline kinase can be used as an adjuvant to chemotherapy in the treatment of brain tumors and that decreases in total choline observed by MRS can be used as an effective phamacodynamic biomarker of treatment response. PMID:25657334
Interactions Between IGFBP-3 and Nuclear Receptors in Prostate Cancer Apoptosis
2010-01-01
flavonoid found in grapes, green vegetables, and onions, induced apoptosis of PC-3 cells (240). This was accompanied with a decrease in IGF-1 and -2 and...stabilized integrin receptor complexes (27). In vivo. GROWTH INHIBITION. Mice bearing human prostate 22RV1 tumor xenografts were fed apigenin, a flavonoid ...the active component of flavonoid antioxidant silymarin (milk thistle extract) significantly inhib- ited tumor volume in DU145 tumor xenograft nude
Ono, Tomohiro; Nakamura, Mitsuhiro; Hirose, Yoshinori; Kitsuda, Kenji; Ono, Yuka; Ishigaki, Takashi; Hiraoka, Masahiro
2017-09-01
To estimate the lung tumor position from multiple anatomical features on four-dimensional computed tomography (4D-CT) data sets using single regression analysis (SRA) and multiple regression analysis (MRA) approach and evaluate an impact of the approach on internal target volume (ITV) for stereotactic body radiotherapy (SBRT) of the lung. Eleven consecutive lung cancer patients (12 cases) underwent 4D-CT scanning. The three-dimensional (3D) lung tumor motion exceeded 5 mm. The 3D tumor position and anatomical features, including lung volume, diaphragm, abdominal wall, and chest wall positions, were measured on 4D-CT images. The tumor position was estimated by SRA using each anatomical feature and MRA using all anatomical features. The difference between the actual and estimated tumor positions was defined as the root-mean-square error (RMSE). A standard partial regression coefficient for the MRA was evaluated. The 3D lung tumor position showed a high correlation with the lung volume (R = 0.92 ± 0.10). Additionally, ITVs derived from SRA and MRA approaches were compared with ITV derived from contouring gross tumor volumes on all 10 phases of the 4D-CT (conventional ITV). The RMSE of the SRA was within 3.7 mm in all directions. Also, the RMSE of the MRA was within 1.6 mm in all directions. The standard partial regression coefficient for the lung volume was the largest and had the most influence on the estimated tumor position. Compared with conventional ITV, average percentage decrease of ITV were 31.9% and 38.3% using SRA and MRA approaches, respectively. The estimation accuracy of lung tumor position was improved by the MRA approach, which provided smaller ITV than conventional ITV. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Biggerstaff, J; Amirkhosravi, A; Francis, J L
1997-10-01
Fibrin forms part of the stroma essential for growth of solid tumors. Anticoagulants reduce primary tumor growth and tumor metastasis in murine and some human tumors. These effects may be partly mediated by reduction of intra-tumor fibrin, although there are no quantitative data to support this hypothesis. We therefore evaluated the effect of warfarin on fibrin deposition in a subcutaneously (s.c.) implanted murine tumor using confocal laser scanning microscopy (CLSM). AJ mice received no treatment (n = 6) or sodium warfarin (3.5 mg/L in drinking water, n = 5). All animals received 2 x 10(6) syngeneic Neuro2a neuroblastoma cells s.c. After 14 days, primary tumors were excised and placed in liquid nitrogen. Warfarin treatment resulted in a small, but significant (P < 0.05), decrease in wet tumor weight. Frozen sections (20 microns) were incubated with goat anti-mouse fibrin(ogen) or normal goat serum (isotypic control) and stained with FITC-conjugated rabbit anti-goat antibody. Using a Multiprobe 2001 CLSM (Molecular Dynamics, Sunnyvale, CA), 20 serial optical sections were taken from five, randomly chosen, high power fields (60x objective) for each slide. A threshold excluded all fluorescence except that from structural components within the tumor stroma (fibrin). The volume of fibrin in each section series was determined, and the percentage of tumor volume occupied by fibrin calculated. Intra- and inter-assay variation were assessed on serial frozen tumor sections from an untreated animal. The percentage fibrin volume was not significantly different among or within experiments, indicating that the procedure was reproducible. In controls, the median (range) volume occupied by fibrin was 8.1% (2.4-22.3%), whereas in anticoagulated animals, this was reduced to 3.7% (0.4-14.0%; P < 0.001). This is the first quantitative demonstration that warfarin reduces fibrin deposition in solid tumors. We conclude that three-dimensional CLSM is useful for the quantitation of tissue antigens and that the technique may have clinical value.
Hoe, Yeon; Choi, Young Jae; Kim, Jeong Hoon; Kwon, Do Hoon; Kim, Chang Jin; Cho, Young Hyun
2015-10-01
To investigate the risks and pattern of evolution of peritumoral brain edema (PTE) after stereotactic radiosurgery (SRS) for asymptomatic intracranial meningiomas. A retrospective study was conducted on 320 patients (median age 56 years, range 24-87 years) who underwent primary Gamma Knife radiosurgery for asymptomatic meningiomas between 1998 and 2012. The median tumor volume was 2.7 cc (range 0.2-10.5 cc) and the median follow-up was 48 months (range 24-168 months). Volumetric data sets for tumors and PTE on serial MRIs were analyzed. The edema index (EI) was defined as the ratio of the volume of PTE including tumor to the tumor volume, and the relative edema indices (rEIs) were calculated from serial EIs normalized against the baseline EI. Risk factors for PTE were analyzed using logistic regression. Newly developed or increased PTE was noted in 49 patients (15.3%), among whom it was symptomatic in 28 patients (8.8%). Tumor volume larger than 4.2 cc (p<0.001), hemispheric tumor location (p=0.005), and pre-treatment PTE (p<0.001) were associated with an increased risk of PTE. rEI reached its maximum value at 11 months after SRS and decreased thereafter, and symptoms resolved within 24 months in most patients (85.7%). Caution should be exercised in decision-making on SRS for asymptomatic meningiomas of large volume (>4.2 cc), of hemispheric location, or with pre-treatment PTE. PTE usually develops within months, reaches its maximum degree until a year, and resolves within 2 years after SRS.
Mehta, Shahil; Gajjar, Shefali R; Padgett, Kyle R; Asher, David; Stoyanova, Radka; Ford, John C; Mellon, Eric A
2018-03-19
Radiation therapy (RT) plays a critical role in the treatment of glioblastoma. Studies of brain imaging during RT for glioblastoma have demonstrated changes in the brain during RT. However, frequent or daily utilization of standalone magnetic resonance imaging (MRI) scans during RT have limited feasibility. The recent release of the tri-cobalt-60 MRI-guided RT (MR-IGRT) device (ViewRay MRIdian, Cleveland, OH) allows for daily brain MRI for the RT setup. Daily MRI of three postoperative patients undergoing RT and temozolomide for glioblastoma over a six-week course allowed for the identification of changes to the cavity, edema, and visible tumor on a daily basis. The volumes and dimensions of the resection cavities, edema, and T2-hyperintense tumor were measured. A general trend of daily decreases in cavity measurements was observed in all patients. For the one patient with edema, a trend of daily increases followed by a trend of daily decreases were observed. These results suggest that daily MRI could be used for onboard resimulation and adaptive RT for future fluctuations in the sizes of brain tumors, cavities, or cystic components. This could improve tumor targeting and reduce RT of healthy brain tissue.
Mehta, Shahil; Gajjar, Shefali R; Padgett, Kyle R; Asher, David; Stoyanova, Radka; Ford, John C
2018-01-01
Radiation therapy (RT) plays a critical role in the treatment of glioblastoma. Studies of brain imaging during RT for glioblastoma have demonstrated changes in the brain during RT. However, frequent or daily utilization of standalone magnetic resonance imaging (MRI) scans during RT have limited feasibility. The recent release of the tri-cobalt-60 MRI-guided RT (MR-IGRT) device (ViewRay MRIdian, Cleveland, OH) allows for daily brain MRI for the RT setup. Daily MRI of three postoperative patients undergoing RT and temozolomide for glioblastoma over a six-week course allowed for the identification of changes to the cavity, edema, and visible tumor on a daily basis. The volumes and dimensions of the resection cavities, edema, and T2-hyperintense tumor were measured. A general trend of daily decreases in cavity measurements was observed in all patients. For the one patient with edema, a trend of daily increases followed by a trend of daily decreases were observed. These results suggest that daily MRI could be used for onboard resimulation and adaptive RT for future fluctuations in the sizes of brain tumors, cavities, or cystic components. This could improve tumor targeting and reduce RT of healthy brain tissue. PMID:29796358
Potentiation of ALA-PDT antitumor activity in mice using topical DMXAA
NASA Astrophysics Data System (ADS)
Marrero, Allison; Sunar, Ulas; Sands, Theresa; Oseroff, Allan; Bellnier, David
2009-06-01
Photodynamic treatment of subcutaneously implanted Colon 26 tumors in BALB/c mice using the aminolevulinic acid (ALA)-induced photosensitizer protoporphyrin IX (PpIX) was shown to be enhanced by the addition of the vascular disrupting agent 5,6-Dimethylxanthenone-4-acetic-acid (DMXAA; Novartis ASA404). DMXAA increases vascular permeability and decreases blood flow in both murine and human tumors. Sufficiently high parenteral DMXAA doses can lead to tumor collapse and necrosis. We have previously reported marked enhancement of antitumor activity when PDT, using either Photofrin or HPPH, is combined with low-dose intraperitoneal DMXAA. We now describe the first attempt to combine topically-applied DMXAA with PDT. For this, DMXAA was applied two hours before PpIX-activating light delivery. PDT with ALA-PDT alone (ALA 20%; 80 J/cm2 delivered at 75 mW/cm2) caused a 39% decrease in tumor volume compared to unirradiated controls. Addition of topical DMXAA to ALA-PDT resulted in a 74% reduction in tumor volume. Diffuse correlation spectroscopy (DCS), a non-invasive blood flow imaging method, is being used to understand the mechanism of this effect and to aid in the proper design of the therapy. For instance, our most recent DCS data suggests that the 2-hour interval between the DMXAA and light applications may not be optimum. This preliminary study suggests a potential role for topical DMXAA in combination with PDT for dermatologic tumors.
Reduction of peritoneal carcinomatosis by intraperitoneal administration of phospholipids in rats
Otto, Jens; Jansen, Petra Lynen; Lucas, Stefan; Schumpelick, Volker; Jansen, Marc
2007-01-01
Background Intraperitoneal tumor cell attachment after resection of gastrointestinal cancer may lead to a developing of peritoneal carcinosis. Intraabdominal application of phospholipids shows a significant decrease of adhesion formation even in case of rising tumor cell concentration. Methods In experiment A 2*106 colonic tumor cells (DHD/K12/Trb) were injected intraperitonely in female BD-IX-rats. A total of 30 rats were divided into three groups with treatments of phospholipids at 6% or 9% and the control group. In experiment B a total of 100 rats were divided into ten groups with treatments of phospholipids at 9% and the control group. A rising concentration of tumor cells (10,000, 50,000, 100,000, 250,000 and 500,000) were injected intraperitonely in female BD-IX-rats of the different groups. After 30 days, the extent of peritoneal carcinosis was determined by measuring the tumor volume, the area of attachment and the Peritoneal Cancer Index (PCI). Results In experiment A, we found a significant reduction (control group: tumor volume: 12.0 ± 4.9 ml; area of tumor adhesion: 2434.4 ± 766 mm2; PCI 28.5 ± 10.0) of peritoneal dissemination according to all evaluation methods after treatment with phospholipids 6% (tumor volume: 5.2 ± 2.2 ml; area of tumor adhesion: 1106.8 ± 689 mm2; PCI 19.0 ± 5.0) and phospholipids 9% (tumor volume: 4.0 ± 3.5 ml; area of tumor adhesion: 362.7 ± 339 mm2; PCI 13.8 ± 5.1). In experiment B we found a significant reduction of tumor volume in all different groups of rising tumor cell concentration compared to the control. As detected by the area of attachment we found a significant reduction in the subgroups 1*104, 25*104 and 50*104. The reduction in the other subgroups shows no significance. The PCI could be reduced significantly in all subgroups apart from 5*104. Conclusion In this animal study intraperitoneal application of phospholipids resulted in reduction of the extent of peritoneal carcinomatosis after intraperitoneal administration of free tumor cells. This effect was exceptionally noticed when the amount of intraperitoneal tumor cells was limited. Consequently, intraperitoneal administration of phospholipids might be effective in reducing peritoneal carcinomatosis after surgery of gastrointestinal tumors in humans. PMID:17584925
Verma, Aparajita; Rich, Laurie J; Vincent-Chong, Vui King; Seshadri, Mukund
2018-05-01
The antidiabetic drug metformin (Met) is believed to inhibit tumor proliferation by altering the metabolism of cancer cells. In this study, we examined the effects of Met on tumor oxygenation, metabolism, and growth in head and neck squamous cell carcinoma (HNSCC) using non-invasive multimodal imaging. Severe combined immunodeficient (SCID) mice bearing orthotopic FaDu HNSCC xenografts were treated with Met (200 mg/kg, ip) once daily for 5 days. Tumor oxygen saturation (%sO 2 ) and hemoglobin concentration (HbT) were measured using photoacoustic imaging (PAI). Fluorescence imaging was employed to measure intratumoral uptake of 2-deoxyglucosone (2-DG) following Met treatment while magnetic resonance imaging (MRI) was utilized to measure tumor volume. Correlative immunostaining of tumor sections for markers of proliferation (Ki67) and vascularity (CD31) was also performed. At 5 days post-Met treatment, PAI revealed a significant increase (P < .05) in %sO 2 and HbT levels in treated tumors compared to untreated controls. Fluorescence imaging at this time point revealed a 46% decrease in mean 2-DG uptake compared to controls. No changes in hemodynamic parameters were observed in mouse salivary gland tissue. A significant decrease in Ki-67 staining (P < .001) and MR-based tumor volume was also observed in Met-treated tumors compared to controls with no change in CD31 + vessel count following Met therapy. Our results provide, for the first time, direct in vivo evidence of Met-induced changes in tumor microenvironmental parameters in HNSCC xenografts. Our findings highlight the utility of multimodal functional imaging for non-invasive mapping of the effects of Met in HNSCC. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Taheri, Azade; Dinarvand, Rassoul; Nouri, Faranak Salman; Khorramizadeh, Mohammad Reza; Borougeni, Atefeh Taheri; Mansoori, Pooria; Atyabi, Fatemeh
2011-01-01
Biotin molecules could be used as suitable targeting moieties in targeted drug delivery systems against tumors. To develop a biotin targeted drug delivery system, we employed human serum albumin (HSA) as a carrier. Methotrexate (MTX) molecules were conjugated to HSA. MTX-HSA nanoparticles (MTX-HSA NPs) were prepared from these conjugates by cross-linking the HSA molecules. Biotin molecules were then conjugated on the surface of MTX-HSA NPs. The anticancer efficacy of biotin targeted MTX-HSA NPs was evaluated in mice bearing 4T1 breast carcinoma. A single dose of biotin targeted MTX-HSA NPs showed stronger in vivo antitumor activity than non-targeted MTX-HSA NPs and free MTX. By 7 days after treatment, average tumor volume in the biotin targeted MTX-HSA NPs-treated group decreased to 17.6% of the initial tumor volume when the number of attached biotin molecules on MTX-HSA-NPs was the highest. Average tumor volume in non-targeted MTX-HSA NPs-treated mice grew rapidly and reached 250.7% of the initial tumor volume. Biotin targeted MTX-HSA NPs increased the survival of tumor-bearing mice to 47.5 ± 0.71 days and increased their life span up to 216.7%. Mice treated with biotin targeted MTX-HSA NPs showed slight body weight loss (8%) 21 days after treatment, whereas non-targeted MTX-HSA NPs treatment at the same dose caused a body weight loss of 27.05% ± 3.1%. PMID:21931482
Repeat Gamma Knife surgery for vestibular schwannomas
Lonneville, Sarah; Delbrouck, Carine; Renier, Cécile; Devriendt, Daniel; Massager, Nicolas
2015-01-01
Background: Gamma Knife (GK) surgery is a recognized treatment option for the management of small to medium-sized vestibular schwannoma (VS) associated with high-tumor control and low morbidity. When a radiosurgical treatment fails to stop tumor growth, repeat GK surgery can be proposed in selected cases. Methods: A series of 27 GK retreatments was performed in 25 patients with VS; 2 patients underwent three procedures. The median time interval between GK treatments was 45 months. The median margin dose used for the first, second, and third GK treatments was 12 Gy, 12 Gy, and 14 Gy, respectively. Six patients (4 patients for the second irradiation and 2 patients for the third irradiation) with partial tumor regrowth were treated only on the growing part of the tumor using a median margin dose of 13 Gy. The median tumor volume was 0.9, 2.3, and 0.7 cc for the first, second, and third treatments, respectively. Stereotactic positron emission tomography (PET) guidance was used for dose planning in 6 cases. Results: Mean follow-up duration was 46 months (range 24–110). At the last follow-up, 85% of schwannomas were controlled. The tumor volume decreased, remained unchanged, or increased after retreatment in 15, 8, and 4 cases, respectively. Four patients had PET during follow-up, and all showed a significant metabolic decrease of the tumor. Hearing was not preserved after retreatment in any patients. New facial or trigeminal palsy did not occur after retreatment. Conclusions: Our results support the long-term efficacy and low morbidity of repeat GK treatment for selected patients with tumor growth after initial treatment. PMID:26500799
Iskandar, Anita R; Liu, Chun; Smith, Donald E; Hu, Kang-Quan; Choi, Sang-Woon; Ausman, Lynne M; Wang, Xiang-Dong
2013-04-01
Nicotine, a large constituent of cigarette smoke, is associated with an increased risk of lung cancer, but the data supporting this relationship are inconsistent. Here, we found that nicotine treatment not only induced emphysema but also increased both lung tumor multiplicity and volume in 4-nitrosamino-1-(3-pyridyl)-1-butanone (NNK)-initiated lung cancer in A/J mice. This tumor-promoting effect of nicotine was accompanied by significant reductions in survival probability and lung Sirtuin 1 (SIRT1) expression, which has been proposed as a tumor suppressor. The decreased level of SIRT1 was associated with increased levels of AKT phosphorylation and interleukin (il)-6 mRNA but decreased tumor suppressor p53 and retinoic acid receptor (RAR)-β mRNA levels in the lungs. Using this mouse model, we then determined whether β-cryptoxanthin (BCX), a xanthophyll that is strongly associated with a reduced risk of lung cancer in several cohort studies, can inhibit nicotine-induced emphysema and lung tumorigenesis. We found that BCX supplementation at two different doses was associated with reductions of the nicotine-promoted lung tumor multiplicity and volume, as well as emphysema in mice treated with both NNK and nicotine. Moreover, BCX supplementation restored the nicotine-suppressed expression of lung SIRT1, p53, and RAR-β to that of the control group, increased survival probability, and decreased the levels of lung il-6 mRNA and phosphorylation of AKT. The present study indicates that BCX is a preventive agent against emphysema and lung cancer with SIRT1 as a potential target. In addition, our study establishes a relevant animal lung cancer model for studying tumor growth within emphysematous microenvironments.
Piper betle extracts exhibit antitumor activity by augmenting antioxidant potential
ALAM, BADRUL; MAJUMDER, RAJIB; AKTER, SHAHINA; LEE, SANG-HAN
2015-01-01
The present study was conducted to evaluate the methanolic extract of Piper betle leaves (MPBL) and its organic fractions with regard to antitumor activity against Ehrlich ascites carcinoma (EAC) in Swiss albino mice and to confirm their antioxidant activities. At 24 h post-intraperitoneal inoculation of tumor cells into mice, extracts were administered at 25, 50 and 100 mg/kg body weight for nine consecutive days. The antitumor effects of the extracts were then assessed according to tumor volume, packed cell count, viable and non-viable tumor cell count, median survival time and increase in life span of EAC-bearing mice. Next, hematological profiles and serum biochemical parameters were calculated, and antioxidant properties were assessed by estimating lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels. MPBL and the ethylacetate fraction (EPBL) at a dose of 100 mg/kg induced a significant decrease in tumor volume, packed cell volume and viable cell count and increased the life span of the EAC-bearing mice (P<0.05). Hematological and serum biochemical profiles were restored to normal levels in the extract-treated mice compared with the EAC control mice. MPBL and EPBL treatment significantly decreased lipid peroxidation (P<0.05) and restored GSH, SOD and CAT levels towards normal compared with the EAC control. Taken together, the results of the present study demonstrated that Piper betle extracts exhibit significant antitumor activity, which may be attributed to the augmentation of endogenous antioxidant potential. PMID:25624910
Piper betle extracts exhibit antitumor activity by augmenting antioxidant potential.
Alam, Badrul; Majumder, Rajib; Akter, Shahina; Lee, Sang-Han
2015-02-01
The present study was conducted to evaluate the methanolic extract of Piper betle leaves (MPBL) and its organic fractions with regard to antitumor activity against Ehrlich ascites carcinoma (EAC) in Swiss albino mice and to confirm their antioxidant activities. At 24 h post-intraperitoneal inoculation of tumor cells into mice, extracts were administered at 25, 50 and 100 mg/kg body weight for nine consecutive days. The antitumor effects of the extracts were then assessed according to tumor volume, packed cell count, viable and non-viable tumor cell count, median survival time and increase in life span of EAC-bearing mice. Next, hematological profiles and serum biochemical parameters were calculated, and antioxidant properties were assessed by estimating lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels. MPBL and the ethylacetate fraction (EPBL) at a dose of 100 mg/kg induced a significant decrease in tumor volume, packed cell volume and viable cell count and increased the life span of the EAC-bearing mice (P<0.05). Hematological and serum biochemical profiles were restored to normal levels in the extract-treated mice compared with the EAC control mice. MPBL and EPBL treatment significantly decreased lipid peroxidation (P<0.05) and restored GSH, SOD and CAT levels towards normal compared with the EAC control. Taken together, the results of the present study demonstrated that Piper betle extracts exhibit significant antitumor activity, which may be attributed to the augmentation of endogenous antioxidant potential.
Sorafenib and triptolide as combination therapy for hepatocellular carcinoma.
Alsaied, Osama A; Sangwan, Veena; Banerjee, Sulagna; Krosch, Tara C; Chugh, Rohit; Saluja, Ashok; Vickers, Selwyn M; Jensen, Eric H
2014-08-01
Sorafenib is the only drug approved by the Food and Drug Administration for metastatic hepatocellular carcinoma (HCC). Triptolide, a diterpene triepoxide, exhibits antineoplastic properties in multiple tumor cell types. In this study, we examined the effects of these agents and their combination on HCC in vitro and in vivo models. HuH-7 and PLC/PRF/5 cells were treated with triptolide (50 nM), sorafenib (1.25 or 2.5 μM), or a combination of both. Cell viability assay (CCK-8), caspase 3&7 activation, and nuclear factor κB assays were performed. For in vivo studies, 40 mice were implanted with subcutaneous HuH7 tumors and divided into four treatment groups (n = 10); saline control, sorafenib 10 mg/kg PO daily (S), Minnelide (a prodrug of triptolide) 0.21 mg/kg intraperitoneally7 daily (M), and combination of both (C). Tumor volumes were assessed weekly. The combination of triptolide and sorafenib was superior to either drug alone in inducing apoptosis and decreasing viability, whereas triptolide alone was sufficient to decrease nuclear factor κB activity. After 2 weeks of treatment, tumor growth inhibition rates were S = 59%, M = 84%, and C = 93%, whereas tumor volumes in control animals increased by 9-fold. When crossed over to combination treatment, control mice tumor growth volumes plateaued over the following 4 weeks. The combination of sorafenib and triptolide is superior to single drug treatment in increasing cell death and apoptosis in vitro. Combining sorafenib with Minnelide inhibited tumor growth with greater efficacy than single-agent treatments. Importantly, in vivo combination treatment allowed for using a lesser dose of sorafenib (10 mg/kg), which is less than 10% of currently prescribed dose for HCC patients. Therefore, combination treatment could have translational potential in the management of HCC. Copyright © 2014 Mosby, Inc. All rights reserved.
Hattingen, Elke; Jurcoane, Alina; Daneshvar, Keivan; Pilatus, Ulrich; Mittelbronn, Michel; Steinbach, Joachim P.; Bähr, Oliver
2013-01-01
Background Anti-angiogenic treatment in recurrent glioblastoma patients suppresses contrast enhancement and reduces vasogenic edema while non-enhancing tumor progression is common. Thus, the importance of T2-weighted imaging is increasing. We therefore quantified T2 relaxation times, which are the basis for the image contrast on T2-weighted images. Methods Conventional and quantitative MRI procedures were performed on 18 patients with recurrent glioblastoma before treatment with bevacizumab and every 8 weeks thereafter until further tumor progression. We segmented the tumor on conventional MRI into 3 subvolumes: enhancing tumor, non-enhancing tumor, and edema. Using coregistered quantitative maps, we followed changes in T2 relaxation time in each subvolume. Moreover, we generated differential T2 maps by a voxelwise subtraction using the first T2 map under bevacizumab as reference. Results Visually segmented areas of tumor and edema did not differ in T2 relaxation times. Non-enhancing tumor volume did not decrease after commencement of bevacizumab treatment but strikingly increased at progression. Differential T2 maps clearly showed non-enhancing tumor progression in previously normal brain. T2 relaxation times decreased under bevacizumab without re-increasing at tumor progression. A decrease of <26 ms in the enhancing tumor following exposure to bevacizumab was associated with longer overall survival. Conclusions Combining quantitative MRI and tumor segmentation improves monitoring of glioblastoma patients under bevacizumab. The degree of change in T2 relaxation time under bevacizumab may be an early response parameter predictive of overall survival. The sustained decrease in T2 relaxation times toward values of healthy tissue masks progressive tumor on conventional T2-weighted images. Therefore, quantitative T2 relaxation times may detect non-enhancing progression better than conventional T2-weighted imaging. PMID:23925453
Bauman, Tyler M; Ewald, Jonathan A; Huang, Wei; Ricke, William A
2015-07-25
CD147 is an MMP-inducing protein often implicated in cancer progression. The purpose of this study was to investigate the expression of CD147 in prostate cancer (PCa) progression and the prognostic ability of CD147 in predicting biochemical recurrence after prostatectomy. Plasma membrane-localized CD147 protein expression was quantified in patient samples using immunohistochemistry and multispectral imaging, and expression was compared to clinico-pathological features (pathologic stage, Gleason score, tumor volume, preoperative PSA, lymph node status, surgical margins, biochemical recurrence status). CD147 specificity and expression were confirmed with immunoblotting of prostate cell lines, and CD147 mRNA expression was evaluated in public expression microarray datasets of patient prostate tumors. Expression of CD147 protein was significantly decreased in localized tumors (pT2; p = 0.02) and aggressive PCa (≥pT3; p = 0.004), and metastases (p = 0.001) compared to benign prostatic tissue. Decreased CD147 was associated with advanced pathologic stage (p = 0.009) and high Gleason score (p = 0.02), and low CD147 expression predicted biochemical recurrence (HR 0.55; 95 % CI 0.31-0.97; p = 0.04) independent of clinico-pathologic features. Immunoblot bands were detected at 44 kDa and 66 kDa, representing non-glycosylated and glycosylated forms of CD147 protein, and CD147 expression was lower in tumorigenic T10 cells than non-tumorigenic BPH-1 cells (p = 0.02). Decreased CD147 mRNA expression was associated with increased Gleason score and pathologic stage in patient tumors but is not associated with recurrence status. Membrane-associated CD147 expression is significantly decreased in PCa compared to non-malignant prostate tissue and is associated with tumor progression, and low CD147 expression predicts biochemical recurrence after prostatectomy independent of pathologic stage, Gleason score, lymph node status, surgical margins, and tumor volume in multivariable analysis.
Farsaci, Benedetto; Donahue, Renee N.; Coplin, Michael A.; Grenga, Italia; Lepone, Lauren M.; Molinolo, Alfredo A.; Hodge, James W.
2014-01-01
This study investigated the effects on the tumor microenvironment of combining antiangiogenic tyrosine kinase inhibitors (TKI) with therapeutic vaccines, and in particular, how vascular changes affect tumor-infiltrating immune cells. We conducted studies using a TKI (sunitinib or sorafenib) in combination with recombinant vaccines in 2 murine tumor models: colon carcinoma (MC38-CEA) and breast cancer (4T1). Tumor vasculature was measured by immunohistochemistry using 3 endothelial cell markers: CD31 (mature), CD105 (immature/proliferating), and CD11b (monocytic). We assessed oxygenation, tight junctions, compactness, and pressure within tumors, along with the frequency and phenotype of tumor-infiltrating T lymphocytes (TIL), myeloid-derived suppressor cells (MDSC), and tumor-associated macrophages (TAM) following treatment with antiangiogenic TKIs alone, vaccine alone, or the combination of a TKI with vaccine. The combined regimen decreased tumor vasculature, compactness, tight junctions, and pressure, leading to vascular normalization and increased tumor oxygenation. This combination therapy also increased TILs, including tumor antigen-specific CD8 T cells, and elevated the expression of activation markers FAS-L, CXCL-9, CD31, and CD105 in MDSCs and TAMs, leading to reduced tumor volumes and an increase in the number of tumor-free animals. The improved antitumor activity induced by combining antiangiogenic TKIs with vaccine may be the result of activated lymphoid and myeloid cells in the tumor microenvironment, resulting from vascular normalization, decreased tumor-cell density, and the consequent improvement in vascular perfusion and oxygenation. Therapies that alter tumor architecture can thus have a dramatic impact on the effectiveness of cancer immunotherapy. PMID:25092771
Kerner, Gerald S M A; Bollineni, Vikram R; Hiltermann, Thijo J N; Sijtsema, Nanna M; Fischer, Alexander; Bongaerts, Alphons H H; Pruim, Jan; Groen, Harry J M
2016-12-01
Hypoxia is associated with resistance to chemotherapy and radiotherapy and is randomly distributed within malignancies. Characterization of changes in intratumoral hypoxic regions is possible with specially developed PET tracers such as (18)F-fluoroazomycin arabinoside ((18)F-FAZA) while tumor metabolism can be measured with 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG). The purpose of this study was to study the effects of chemotherapy on (18)F-FAZA and (18)F-FDG uptake simultaneously in non-small-cell lung cancer (NSCLC) patients At baseline and after the second chemotherapy cycle, both PET/CT with (18)F-FDG and (18)F-FAZA was performed in seven patients with metastasized NSCLC. (18)F-FAZA and (18)F-FDG scans were aligned with deformable image registration using Mirada DBx. The primary tumors were contoured, and on the (18)F-FDG scan, volumes of interest (VOI) were drawn using a 41 % adaptive threshold technique. Subsequently, the resulting VOI was transferred to the (18)F-FAZA scan. (18)F-FAZA maximum tumor-to-background (T/Bgmax) ratio and the fractional hypoxic volume (FHV) were assessed. Measurements were corrected for partial volume effects. Finally, a voxel-by-voxel analysis of the primary tumor was performed to assess regional uptake differences. In the primary tumor of all seven patients, median (18)F-FDG standard uptake value (SUVmax) decreased significantly (p = 0.03). There was no significant decrease in (18)F-FAZA uptake as measured with T/Bgmax (p = 0.24) or the FHV (p = 0.35). Additionally, volumetric voxel-by-voxel analysis showed that low hypoxic tumors did not significantly change in hypoxic status between baseline and two cycles of chemotherapy, whereas highly hypoxic tumors did. Individualized volumetric voxel-by-voxel analysis revealed that hypoxia and metabolism were not associated before and after 2 cycles of chemotherapy. Tumor hypoxia and metabolism are independent dynamic events as measured by (18)F-FAZA PET and (18)F-FDG PET, both prior to and after treatment with chemotherapy in NSCLC patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Y; Dahlman, E; Leder, K
Purpose: To develop and study a kinetic model of tumor growth and its response to stereotactic radiosurgery (SRS) by assuming that the cells in irradiated tumor volume were made of three types. Methods: A set of ordinary differential equations (ODEs) were derived for three types of cells and a tumor growth rate. It is assumed that the cells were composed of actively proliferating cells, lethally damaged-dividing cells, and non-dividing cells. We modeled the tumor volume growth with a time-dependent growth rate to simulate the saturation of growth. After SRS, the proliferating cells were permanently damaged and converted to the lethallymore » damaged cells. The amount of damaged cells were estimated by the LQ-model. The damaged cells gradually stopped dividing/proliferating and died with a constant rate. The dead cells were cleared from their original location with a constant rate. The total tumor volume was the sum of the three components. The ODEs were numerically solved with appropriate initial conditions for a given dosage. The proposed model was used to model an animal experiment, for which the temporal change of a rhabdomyosarcoma tumor volume grown in a rat was measured with time resolution sufficient to test the model. Results: To fit the model to the experimental data, the following characteristics were needed with the model parameters. The α-value in the LQ-model was smaller than the commonly used value; furthermore, it decreased with increasing dose. At the same time, the tumor growth rate after SRS had to increase. Conclusions: The new 3-component model of tumor could simulate the experimental data very well. The current study suggested that the radiation sensitivity and the growth rate of the proliferating tumor cells may change after irradiation and it depended on the dosage used for SRS. These preliminary observations must be confirmed by future animal experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonzi, Roberto, E-mail: robertoalonzi@btinternet.com; Padhani, Anwar R.; Taylor, N. Jane
2011-07-01
Purpose: The antivascular effects of androgen deprivation have been investigated in animal models; however, there has been minimal investigation in human prostate cancer. This study tested the hypothesis that androgen deprivation causes significant reductions in human prostate tumor blood flow and the induction of hypoxia at a magnitude and in a time scale relevant to the neoadjuvant setting before radiotherapy. Methods and Materials: Twenty patients were examined, each with five multi-parameter magnetic resonance imaging scans: two scans before the commencement of androgen suppression, one scan after 1 month of hormone treatment, and two further scans after 3 months of therapy.more » Quantitative parametric maps of the prostate informing on relative blood flow (rBF), relative blood volume (rBV), vascular permeability (transfer constant [K{sup trans}]), leakage space (v{sub e}) and blood oxygenation (intrinsic relaxivity [R{sub 2}*]) were calculated. Results: Tumor blood volume and blood flow decreased by 83% and 79%, respectively, in the first month (p < 0.0001), with 74% of patients showing significant changes. The proportion of individual patients who achieved significant changes in T1 kinetic parameter values after 3 months of androgen deprivation for tumor measurements was 68% for K{sup trans} and 53% for v{sub e} By 3 months, significant increases in R{sub 2}* had occurred in prostate tumor, with a rise of 41.1% (p < 0.0001). Conclusions: Androgen deprivation induces profound vascular collapse within 1 month of starting treatment. Increased R{sub 2}* in regions of prostate cancer and a decrease in blood volume suggest a reduction in tumor oxygenation.« less
Histopathology of normal skin and melanomas after nanosecond pulsed electric field treatment.
Chen, Xinhua; James Swanson, R; Kolb, Juergen F; Nuccitelli, Richard; Schoenbach, Karl H
2009-12-01
Nanosecond pulsed electric fields (nsPEFs) can affect the intracellular structures of cells in vitro. This study shows the direct effects of nsPEFs on tumor growth, tumor volume, and histological characteristics of normal skin and B16-F10 melanoma in SKH-1 mice. A melanoma model was set up by injecting B16-F10 into female SKH-1 mice. After a 100-pulse treatment with an nsPEF (40-kV/cm field strength; 300-ns duration; 30-ns rise time; 2-Hz repetition rate), tumor growth and histology were studied using transillumination, light microscopy with hematoxylin and eosin stain and transmission electron microscopy. Melanin and iron within the melanoma tumor were also detected with specific stains. After nsPEF treatment, tumor development was inhibited with decreased volumes post-nsPEF treatment compared with control tumors (P<0.05). The nsPEF-treated tumor volume was reduced significantly compared with the control group (P<0.01). Hematoxylin and eosin stain and transmission electron microscopy showed morphological changes and nuclear shrinkage in the tumor. Fontana-Masson stain indicates that nsPEF can externalize the melanin. Iron stain suggested nsPEF caused slight hemorrhage in the treated tissue. Histology confirmed that repeated applications of nsPEF disrupted the vascular network. nsPEF treatment can significantly disrupt the vasculature, reduce subcutaneous murine melanoma development, and produce tumor cell contraction and nuclear shrinkage while concurrently, but not permanently, damaging peripheral healthy skin tissue in the treated area, which we attribute to the highly localized electric fields surrounding the needle electrodes.
Wu, Chih-Chun; Guo, Wan-Yuo; Chung, Wen-Yuh; Wu, Hisu-Mei; Lin, Chung-Jung; Lee, Cheng-Chia; Liu, Kang-Du; Yang, Huai-Che
2017-12-01
OBJECTIVE Gamma Knife surgery (GKS) is a promising treatment modality for patients with vestibular schwannomas (VSs), but a small percentage of patients have persistent postradiosurgical tumor growth. The aim of this study was to determine the clinical and quantitative MRI features of VS as predictors of long-term tumor control after GKS. METHODS The authors performed a retrospective study of all patients with VS treated with GKS using the Leksell Gamma Knife Unit between 2005 and 2013 at their institution. A total of 187 patients who had a minimum of 24 months of clinical and radiological assessment after radiosurgery were included in this study. Those who underwent a craniotomy with tumor removal before and after GKS were excluded. Study patients comprised 85 (45.5%) males and 102 (54.5%) females, with a median age of 52.2 years (range 20.4-82.3 years). Tumor volumes, enhancing patterns, and apparent diffusion coefficient (ADC) values were measured by region of interest (ROI) analysis of the whole tumor by serial MRI before and after GKS. RESULTS The median follow-up period was 60.8 months (range 24-128.9 months), and the median treated tumor volume was 3.54 cm 3 (0.1-16.2 cm 3 ). At last follow-up, imaging studies indicated that 150 tumors (80.2%) showed decreased tumor volume, 20 (10.7%) had stabilized, and 17 (9.1%) continued to grow following radiosurgery. The postradiosurgical outcome was not significantly correlated with pretreatment volumes or postradiosurgical enhancing patterns. Tumors that showed regression within the initial 12 months following radiosurgery were more likely to have a larger volume reduction ratio at last follow-up than those that did not (volume reduction ratio 55% vs 23.6%, respectively; p < 0.001). Compared with solid VSs, cystic VSs were more likely to regress or stabilize in the initial postradiosurgical 6-12-month period and during extended follow-up. Cystic VSs exhibited a greater volume reduction ratio at last follow-up (cystic vs solid: 67.6% ± 24.1% vs 31.8% ± 51.9%; p < 0.001). The mean preradiosurgical maximum ADC (ADC max ) values of all VSs were significantly higher for those with tumor regression or stabilization at last follow-up compared with those with progression (2.391 vs 1.826 × 10 -3 mm 2 /sec; p = 0.010). CONCLUSIONS Loss of central enhancement after radiosurgery was a common phenomenon, but it did not correlate with tumor volume outcome. Preradiosurgical MRI features including cystic components and ADC max values can be helpful as predictors of treatment outcome.
Automated lung tumor segmentation for whole body PET volume based on novel downhill region growing
NASA Astrophysics Data System (ADS)
Ballangan, Cherry; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Feng, Dagan
2010-03-01
We propose an automated lung tumor segmentation method for whole body PET images based on a novel downhill region growing (DRG) technique, which regards homogeneous tumor hotspots as 3D monotonically decreasing functions. The method has three major steps: thoracic slice extraction with K-means clustering of the slice features; hotspot segmentation with DRG; and decision tree analysis based hotspot classification. To overcome the common problem of leakage into adjacent hotspots in automated lung tumor segmentation, DRG employs the tumors' SUV monotonicity features. DRG also uses gradient magnitude of tumors' SUV to improve tumor boundary definition. We used 14 PET volumes from patients with primary NSCLC for validation. The thoracic region extraction step achieved good and consistent results for all patients despite marked differences in size and shape of the lungs and the presence of large tumors. The DRG technique was able to avoid the problem of leakage into adjacent hotspots and produced a volumetric overlap fraction of 0.61 +/- 0.13 which outperformed four other methods where the overlap fraction varied from 0.40 +/- 0.24 to 0.59 +/- 0.14. Of the 18 tumors in 14 NSCLC studies, 15 lesions were classified correctly, 2 were false negative and 15 were false positive.
Siker, Malika L; Tomé, Wolfgang A; Mehta, Minesh P
2006-09-01
Adaptive radiotherapy allows treatment plan modification based on data obtained during treatment. Assessing volume changes during treatment is now possible with intratreatment imaging capabilities on radiotherapy devices. This study assesses non-small-cell lung cancer (NSCLC) volume changes during treatment with conformal intensity-modulated radiotherapy by evaluating serial megavoltage computed tomography (MVCT) scans, with a specific emphasis on the frequency, reliability, and meaningfulness of these changes. Megavoltage CTs were retrospectively reviewed for 25 patients treated with the TomoTherapy Hi-Art system at the University of Wisconsin. Twenty-one patients received definitive radiotherapy, 4 with extracranial stereotactic radioablation (60 Gy in five fractions) and 17 on a dose-per-fraction escalation protocol (57-80.5 Gy in 25 fractions). Four patients were treated palliatively (22-30 Gy in 8 to 10 fractions). Gross tumor volumes were contoured on serial MVCTs at weekly intervals. Each patient had 4 to 25 scans, including at least one at the beginning, midway, and one at the end of treatment. At completion of treatment, no patient demonstrated a complete response. Partial response occurred in 3 (12%) and marginal response was noted in 5 (20%). The remaining 17 patients (68%) showed stable disease. The minimum "scorable threshold" for volume discrepancy between scans to account for interscan assessment variability was set at >25% volume change; 10 patients (40%) had >25% tumor regression. None of the patients treated ablatively or palliatively showed tumor regression during treatment. Although gross tumor regression during treatment may be objectively measured using MVCTs, substantial volumetric decrease occurs only in a minority. The clinical significance of this regression is questionable, because there is no way to document histologic tumor clearance, and therefore field reductions during radiotherapy cannot be recommended.
Imai, Kenji; Takai, Koji; Watanabe, Satoshi; Hanai, Tatsunori; Suetsugu, Atsushi; Shiraki, Makoto; Shimizu, Masahito
2017-09-22
Sarcopenia impairs survival in patients with hepatocellular carcinoma (HCC). This study aimed to clarify the factors that contribute to decreased skeletal muscle volume in patients with HCC. The third lumbar vertebra skeletal muscle index (L3 SMI) in 351 consecutive patients with HCC was calculated to identify sarcopenia. Sarcopenia was defined as an L3 SMI value ≤ 29.0 cm²/m² for women and ≤ 36.0 cm²/m² for men. The factors affecting L3 SMI were analyzed by multiple linear regression analysis and tree-based models. Of the 351 HCC patients, 33 were diagnosed as having sarcopenia and showed poor prognosis compared with non-sarcopenia patients ( p = 0.007). However, this significant difference disappeared after the adjustments for age, sex, Child-Pugh score, maximum tumor size, tumor number, and the degree of portal vein invasion by propensity score matching analysis. Multiple linear regression analysis showed that age ( p = 0.015) and sex ( p < 0.0001) were significantly correlated with a decrease in L3 SMI. Tree-based models revealed that sex (female) is the most significant factor that affects L3 SMI. In male patients, L3 SMI was decreased by aging, increased Child-Pugh score (≥56 years), and enlarged tumor size (<56 years). Maintaining liver functional reserve and early diagnosis and therapy for HCC are vital to prevent skeletal muscle depletion and improve the prognosis of patients with HCC.
Bagheri, Seyyed Majid; Abdian-Asl, Amir; Moghadam, Mahin Taheri; Yadegari, Maryam; Mirjalili, Aghdas; Zare-Mohazabieh, Fatemeh; Momeni, Haniyeh
Ferula assa foetida commonly consumed as a healthy beverage has been demonstrated to have various biological activities, including antioxidation, anti-obesity and anti-cancer. Our study aims to investigate the antitumor effect of asafoetida in vivo using mouse mammary carcinoma 4T1 cells. In the study, female BALB/c mice were divided into two groups (n = 6), which were control (untreated) and other group of mice with breast cancer treated with 100 mg/kg of asafoetida, respectively, by oral gavage. All mice were injected into the mammary fat pad with 4T1 cells (1 × 10 5 4T1 cells/0.1 ml of phosphate buffer solution). Asafoetida was administered on day 15 after the tumor had developed for 3 weeks. At end of experiment, tumor weight, tumor volume and tumor burden were measured and lung, liver, kidney and tumor were harvested and sections were prepared for histopathological analysis. Lipoxygenase inhibitory and antioxidant activity of asafoetida was also determined. Our results showed that treatment with asafoetida was effective in decreasing the tumor weight and tumor volume in treated mice. Body weight significantly increased in female BALB/c mice against control. Apart from the antitumor effect, asafoetida decreased lung, liver and kidney metastasis and also increased areas of necrosis in the tumor tissue respectively. The present study demonstrated that asafoetida has potent antitumor and antimetastasis effects on breast cancer and is a potential source of natural antitumor products. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.
Milovanovic, S R; Radulovic, S; Groot, K; Schally, A V
1992-01-01
The effects of treatment with a bombesin receptor antagonist [D-Tpi6, Leu13 psi (CH2NH) Leu14]BN(6-14)(RC-3095) and the combination of an agonist of luteinizing hormone-releasing hormone [D-Trp6]-LH-RH and somatostatin analog D-Phe-Cys-Tyr-D-Trp-Lys-Val- Cys-Trp-NH2 (RC-160) were studied in nude mice bearing xenografts of the hormone-dependent human prostate tumor PC-82. During the 5 weeks of treatment, tumor growth was decreased in all treated groups compared with controls. Bombesin antagonist RC-3095 and the combination of [D-Trp6]-LH-RH and RC-160 caused a greater inhibition of tumor growth than [D-Trp6]-LH-RH or RC-160 alone as based on measurement of tumor volume and percentage change in tumor volume. The largest decrease in tumor weight was also seen in the groups treated with the bombesin antagonist and with the combination of RC-160 and [D-Trp6]-LH-RH. Serum prostatic-specific antigen levels were greatly decreased, and insulin-like growth factor I (IGF-I) as well as growth hormone levels were reduced in all treated groups. Specific binding sites for [D-Trp6]-LH-RH, epidermal growth factor (EGF), IGF-I, and somatostatin (SS-14) were found in the tumor membranes. Receptors for EGF were significantly down-regulated by treatment with the bombesin antagonist or RC-160. Combination of LH-RH agonists with somatostatin analog RC-160 might be considered for improvement of hormonal therapy for prostate cancer. The finding that bombesin antagonist RC-3095 inhibits the growth of PC-82 prostate cancer suggests the merit of further studies to evaluate the possible usefulness of antagonists of bombesin in the management of prostatic carcinoma.
Lee, Yeon Sil; Yang, Hyun Ok; Shin, Kuk Hyun; Choi, Hyung Seok; Jung, Sang Hoon; Kim, Yong Man; Oh, Deok Kun; Linhardt, Robert J; Kim, Yeong Shik
2003-03-28
Acharan sulfate is a new type of glycosaminoglycan from the giant African snail, Achatina fulica. Acharan sulfate, which has a primary repeating disaccharide structure of alpha-D-N-acetylglucosaminyl-2-O-sulfo-alpha-L-iduronic acid, was studied as a potential antitumor agent in both in vivo and in vitro assays. The antiangiogenic activity of acharan sulfate was evaluated in the chorioallantoic membrane assay and by measuring its effect on the proliferation of calf pulmonary artery endothelial cells. In vivo, a matrigel plug assay showed that acharan sulfate suppressed basic fibroblast growth factor (bFGF)-stimulated angiogenesis and lowered the hemoglobin (Hb) content inside the plug. Acharan sulfate was administered s.c. at two doses for 15 days to C57BL/6 mice implanted with murine Lewis lung carcinoma in the back. It was also administered i.p. to ICR mice bearing sarcoma 180 at a dose of 30 mg/kg. Subcutaneous injection of acharan sulfate at doses of 10 and 30 mg/kg decreased tumor weight and tumor volume by 40% without toxicity or resistance. Intraperitoneal injection of acharan sulfate also decreased tumor weight and volume by 40% in sarcoma 180-bearing mice. These results suggest that the antitumor activity of acharan sulfate may be related to the inhibition of angiogenesis.
Notch3 as a novel therapeutic target in metastatic medullary thyroid cancer.
Lou, Irene; Odorico, Scott; Yu, Xiao-Min; Harrison, April; Jaskula-Sztul, Renata; Chen, Herbert
2018-01-01
Medullary thyroid cancer portends poor survival once liver metastasis occurs. We hypothesize that Notch3 overexpression in medullary thyroid cancer liver metastasis will decrease proliferation and growth of the tumor. TT cells were modified genetically to overexpress Notch3 in the presence of doxycycline, creating the TT-Notch3 cell line. Mice were injected intrasplenically with either TT-Notch3 or control vector TT-TRE cells. Each cell line had 3 treatment groups: control with 12 weeks of standard chow, early DOX with doxycycline chow at day 0 and for 70 days thereafter, and late DOX with doxycycline chow at 8 weeks. Each animal underwent micro-computed tomography to evaluate for tumor formation and tumor quantification was performed. Animals were killed at 12 weeks, and the harvested liver was stained with Ki-67, hematoxylin and eosin, and Notch3. Induction of Notch3 did not prevent formation of medullary thyroid cancer liver metastases as all mice in the early DOX group developed tumors. However, induction of Notch after medullary thyroid cancer liver tumor formation decreased tumor size, as seen on micro-computed tomography scans (late DOX group). This translated to a 37-fold decrease in tumor volume (P = .001). Notch3 overexpression also resulted in decreased Ki-67 index (P = .038). Moreover, Notch3 induction led to increased areas of neutrophil infiltration and necrosis on hematoxylin and eosin staining of the tumors CONCLUSION: Notch3 overexpression demonstrates an antiproliferative effect on established metastatic medullary thyroid cancer liver tumors and is a potential therapeutic target in treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Feng, Y.; Clayton, E. H.; Okamoto, R. J.; Engelbach, J.; Bayly, P. V.; Garbow, J. R.
2016-08-01
An accurate and noninvasive method for assessing treatment response following radiotherapy is needed for both treatment monitoring and planning. Measurement of solid tumor volume alone is not sufficient for reliable early detection of therapeutic response, since changes in physiological and/or biomechanical properties can precede tumor volume change following therapy. In this study, we use magnetic resonance elastography to evaluate the treatment effect after radiotherapy in a murine brain tumor model. Shear modulus was calculated and compared between the delineated tumor region of interest (ROI) and its contralateral, mirrored counterpart. We also compared the shear modulus from both the irradiated and non-irradiated tumor and mirror ROIs longitudinally, sampling four time points spanning 9-19 d post tumor implant. Results showed that the tumor ROI had a lower shear modulus than that of the mirror ROI, independent of radiation. The shear modulus of the tumor ROI decreased over time for both the treated and untreated groups. By contrast, the shear modulus of the mirror ROI appeared to be relatively constant for the treated group, while an increasing trend was observed for the untreated group. The results provide insights into the tumor properties after radiation treatment and demonstrate the potential of using the mechanical properties of the tumor as a biomarker. In future studies, more closely spaced time points will be employed for detailed analysis of the radiation effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakagawa, H.; Groothuis, D.R.; Owens, E.S.
1987-12-01
A total of 72 RG-2 transplanted gliomas were studied in 58 rats at three time points (1, 30, 240 min) after intravenous injection of (/sup 125/I)radioiodinated serum albumin ((/sup 125/I)RISA). The animals were divided into two groups: a control group that received no treatment and a second group that was treated with five doses of 1.5 mg/kg of dexamethasone over 2.5 days. Local tissue concentrations of (/sup 125/I)RISA were measured with quantitative autoradiography based on morphological features of the tumors and used to calculate the tissue distribution space. Two models were used to analyze the data. A two compartment modelmore » yielded estimates of local blood-to-tissue influx constants (K1), lower limit extracellular volumes (Ve), and plasma vascular volumes (Vp) in different tumor regions. Treatment with dexamethasone consistently reduced the RISA distribution space in the RG-2 tumors; the reduction in Ve was statistically significant in almost all tumor regions: whole tumor Ve (mean +/- SE) was reduced from 0.14 +/- 0.02 ml g-1 in control animals to 0.08 +/- 0.01 ml g-1 in dexamethasone treated animals. K1 and Vp were also decreased in all tumor regions after treatment with dexamethasone (whole tumor K1 decreased from 2.36 +/- 0.89 to 0.83 +/- 0.29 microliter g-1 min-1 and Vp decreased slightly from 0.016 +/- 0.013 to 0.010 +/- 0.005 ml g-1 after dexamethasone treatment), but these changes were not statistically significant. A comparison of the tumor influx constants in control animals and the aqueous diffusion constants of two different size molecules (RISA and aminoisobutyric acid) suggests that the ''pores'' across RG-2 capillaries are large and may not restrict the free diffusion of RISA (estimated minimum pore diameter greater than 36 nm) and that the total pore area is approximately 6.2 X 10(-5) cm2 g-1 in RG-2 tumor tissue.« less
Zhu, Liangsong; Wu, Guangyu; Huang, Jiwei; Wang, Jianfeng; Zhang, Ruiyun; Kong, Wen; Xue, Wei; Huang, Yiran; Chen, Yonghui; Zhang, Jin
2017-05-01
To compare the renal function preservation between laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy. Data were analyzed from 246 patients who underwent laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy for solitary cT1a renal cell carcinoma from January 2013 to July 2015. To reduce the intergroup difference, we used a 1:1 propensity matching analysis. The functional renal parenchyma volume preservation were measured preoperative and 12 months after surgery. The total renal function recovery and spilt GFR was compared. Multivariable logistic analysis was used for predictive factors for renal function decline. After 1:1 propensity matching, each group including 100 patients. Patients in the laparoscopic radio frequency ablation assisted tumor enucleation had a smaller decrease in estimate glomerular filtration rate at 1 day (-7.88 vs -20.01%, p < 0.001), 3 months (-2.31 vs -10.39%, p < 0.001), 6 months (-2.16 vs -7.99%, p = 0.015), 12 months (-3.26 vs -8.03%, p = 0.012) and latest test (-3.24 vs -8.02%, p = 0.040), also had better functional renal parenchyma volume preservation (89.19 vs 84.27%, p < 0.001), lower decrease of the spilt glomerular filtration rate (-9.41 vs -17.13%, p < 0.001) at 12 months. The functional renal parenchyma volume preservation, warm ischemia time and baseline renal function were the important independent factors in determining long-term functional recovery. The laparoscopic radio frequency ablation assisted tumor enucleation technology has unique advantage and potential in preserving renal parenchyma without ischemia damage compared to conventional laparoscopic partial nephrectomy, and had a better outcome, thus we recommend this technique in selected T1a patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, Jeffrey D.; Lawrence, Yaacov R.; Sackler School of Medicine, Tel Aviv University, Tel Aviv
Objective: To determine the effect of continuous positive airway pressure (CPAP) on tumor motion, lung volume, and dose to critical organs in patients receiving stereotactic body radiation therapy (SBRT) for lung tumors. Methods and Materials: After institutional review board approval in December 2013, patients with primary or secondary lung tumors referred for SBRT underwent 4-dimensional computed tomographic simulation twice: with free breathing and with CPAP. Tumor excursion was calculated by subtracting the vector of the greatest dimension of the gross tumor volume (GTV) from the internal target volume (ITV). Volumetric and dosimetric determinations were compared with the Wilcoxon signed-rank test.more » CPAP was used during treatment if judged beneficial. Results: CPAP was tolerated well in 10 of the 11 patients enrolled. Ten patients with 18 lesions were evaluated. The use of CPAP decreased tumor excursion by 0.5 ± 0.8 cm, 0.4 ± 0.7 cm, and 0.6 ± 0.8 cm in the superior–inferior, right–left, and anterior–posterior planes, respectively (P≤.02). Relative to free breathing, the mean ITV reduction was 27% (95% confidence interval [CI] 16%-39%, P<.001). CPAP significantly augmented lung volume, with a mean absolute increase of 915 ± 432 cm{sup 3} and a relative increase of 32% (95% CI 21%-42%, P=.003), contributing to a 22% relative reduction (95% CI 13%-32%, P=.001) in mean lung dose. The use of CPAP was also associated with a relative reduction in mean heart dose by 29% (95% CI 23%-36%, P=.001). Conclusion: In this pilot study, CPAP significantly reduced lung tumor motion compared with free breathing. The smaller ITV, the planning target volume (PTV), and the increase in total lung volume associated with CPAP contributed to a reduction in lung and heart dose. CPAP was well tolerated, reproducible, and simple to implement in the treatment room and should be evaluated further as a novel strategy for motion management in radiation therapy.« less
Su, Jen-Min; Huang, Yu-Fang; Chen, Helen H W; Cheng, Ya-Min; Chou, Cheng-Yang
2006-05-01
To date, this is the first report to monitor changes of intratumor vascularization and the response to radiation and Cyberknife therapy in a patient with recurrent primary papillary serous carcinoma of the peritoneum by three dimensional (3D) power Doppler ultrasonography (PDUS). Transvaginal 3D PDUS detected a recurrent presacral tumor with abundant intratumor vascularity. Serial examinations of the tumor volume and serum CA-125 level were studied before, during, and 6 mo after therapy. Meanwhile, the intratumor blood flow was measured and expressed as vascularity indices. All of the tumor volume, intratumor vascularity indices and serum CA-125 level decreased progressively following therapy. A remaining lesion with nearly absent intratumor power Doppler signals suggested a scarring lesion posttreatment. Indeed, CT-guided tissue biopsy confirmed fibrotic change. 3D PDUS is useful to monitor the response to treatments and to differentiate residual tumors from lesions of scarring change posttreatment. It provides more accurate posttreatment information than pelvic computed tomography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monsky, Wayne L., E-mail: wayne.monsky@ucdmc.ucdavis.edu; Garza, Armando S.; Kim, Isaac
Purpose: The primary purpose of this study was to demonstrate intraobserver/interobserver reproducibility for novel semiautomated measurements of hepatic volume used for Yttrium-90 dose calculations as well as whole-liver and necrotic-liver (hypodense/nonenhancing) tumor volume after radioembolization. The secondary aim was to provide initial comparisons of tumor volumetric measurements with linear measurements, as defined by Response Evaluation Criteria in Solid Tumors criteria, and survival outcomes. Methods: Between 2006 and 2009, 23 consecutive radioembolization procedures were performed for 14 cases of hepatocellular carcinoma and 9 cases of hepatic metastases. Baseline and follow-up computed tomography obtained 1 month after treatment were retrospectively analyzed. Threemore » observers measured liver, whole-tumor, and tumor-necrosis volumes twice using semiautomated software. Results: Good intraobserver/interobserver reproducibility was demonstrated (intraclass correlation [ICC] > 0.9) for tumor and liver volumes. Semiautomated measurements of liver volumes were statistically similar to those obtained with manual tracing (ICC = 0.868), but they required significantly less time to perform (p < 0.0001, ICC = 0.088). There was a positive association between change in linear tumor measurements and whole-tumor volume (p < 0.0001). However, linear measurements did not correlate with volume of necrosis (p > 0.05). Dose, change in tumor diameters, tumor volume, and necrotic volume did not correlate with survival (p > 0.05 in all instances). However, Kaplan-Meier curves suggest that a >10% increase in necrotic volume correlated with survival (p = 0.0472). Conclusion: Semiautomated volumetric analysis of liver, whole-tumor, and tumor-necrosis volume can be performed with good intraobserver/interobserver reproducibility. In this small retrospective study, measurements of tumor necrosis were suggested to correlate with survival.« less
Irinotecan delivery by microbubble-assisted ultrasound - A pilot preclinical study
NASA Astrophysics Data System (ADS)
Escoffre, Jean-Michel; Novell, Anthony; Serrière, Sophie; Bouakaz, Ayache
2012-11-01
Irinotecan is conventionally used for the treatment of colorectal cancer. However, its administration is associated with severe side effects. Targeted drug delivery using ultrasound (US) combined with microbubbles offers new opportunities to increase the therapeutic effectiveness of antitumor treatment and to reduce toxic exposure to healthy tissues. The objective of this study is to investigate the safety and efficacy of in-vivo delivery of irinotecan by microbubble-assisted US in human glioblastoma model (U-87 MG). In order to validate the potential of this new method in-vivo, subcutaneous tumors were implanted in the flank of nude mouse and treated when they reached a volume of 100 mm3. In the first study, the measured volumes with caliper and anatomic ultrasound imaging were compared for the monitoring and the quantification of tumor growth during 27 days. Ultrasound imaging measurements were positively correlated to caliper measurements. The tumor treatment consisted of an i.v. injection of irinotecan (20 mg/kg) followed one hour later by i.v. administration of MM1 microbubble and an US insonation using a single-element transducer operating at 1MHz (400 kPa, 10 kHz PRF 40% DC, 3 min). The therapeutic efficacy was evaluated for 39 days by measuring the tumor volume before and after treatment using a caliper and based on ultrasound images using an 18 MHz probe (Vevo 2100). Our results showed that anatomical ultrasound imaging was as efficient as caliper for the monitoring and the quantification of tumor growth. Moreover, irinotecan delivery by sonoporation induced a significant decrease of glioblastoma tumor volume and an increase of tumor-doubling time compared to the tumor treated by irinotecan alone. In conclusion, this novel therapeutic approach has promising features since it can be used to reduce the injected drug dose and to achieve a better therapeutic efficacy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amin, Neha P., E-mail: npamin@gmail.com; Miften, Moyed; Thornton, Dale
2013-10-01
Patients with bulky non–small cell lung cancer (NSCLC) may be at a high risk for radiation pneumonitis (RP) if treated with up-front concurrent chemoradiation. There is limited information about the effect of induction chemotherapy on the volume of normal lung subsequently irradiated. This study aims to estimate the reduction in risk of RP in patients with NSCLC after receiving induction chemotherapy. Between 2004 and 2009, 25 patients with Stage IV NSCLC were treated with chemotherapy alone (no surgery or radiation therapy [RT]) and had computed tomography (CT) scans before and after 2 cycles of chemotherapy. Simulated RT plans were createdmore » for the prechemotherapy and postchemotherapy scans so as to deliver 60 Gy to the thoracic disease in patients who had either a >20% volumetric increase or decrease in gross tumor volume (GTV) from chemotherapy. The prechemotherapy and postchemotherapy scans were analyzed to compare the percentage of lung volume receiving≥20 Gy (V20), mean lung dose (MLD), and normal tissue complication probability (NTCP). Eight patients (32%) had a GTV reduction >20%, 2 (8%) had GTV increase >20%, and 15 (60%) had stable GTV. In the 8 responders, there was an absolute median GTV decrease of 88.1 cc (7.3 to 351.6 cc) or a 48% (20% to 62%) relative reduction in tumor burden. One had >20% tumor progression during chemotherapy, yet had an improvement in dosimetric parameters postchemotherapy. Among these 9 patients, the median decrease in V20, MLD, and NTCP was 2.6% (p<0.01), 2.1 Gy (p<0.01), and 5.6% (p<0.01), respectively. Less than one-third of patients with NSCLC obtain >20% volumetric tumor reduction from chemotherapy alone. Even with that amount of volumetric reduction, the 5% reduced risk of RP was only modest and did not convert previously ineligible patients to safely receive definitive thoracic RT.« less
A new anti-glioma therapy, AG119: pre-clinical assessment in a mouse GL261 glioma model.
Towner, Rheal A; Ihnat, Michael; Saunders, Debra; Bastian, Anja; Smith, Nataliya; Pavana, Roheeth Kumar; Gangjee, Aleem
2015-07-17
High grade gliomas (HGGs; grades III and IV) are the most common primary brain tumors in adults, and their malignant nature ranks them fourth in incidence of cancer death. Standard treatment for glioblastomas (GBM), involving surgical resection followed by radiation and chemotherapy with temozolomide (TMZ) and the anti-angiogenic therapy bevacizumab, have not substantially improved overall survival. New therapeutic agents are desperately needed for this devastating disease. Here we study the potential therapeutic agent AG119 in a pre-clinical model for gliomas. AG119 possesses both anti-angiogenic (RTK inhibition) and antimicrotubule cytotoxic activity in a single molecule. GL261 glioma-bearing mice were either treated with AG119, anti-VEGF (vascular endothelial growth factor) antibody, anti c-Met antibody or TMZ, and compared to untreated tumor-bearing mice. Animal survival was assessed, and tumor volumes and vascular alterations were monitored with morphological magnetic resonance imaging (MRI) and perfusion-weighted imaging, respectively. Percent survival of GL261 HGG-bearing mice treated with AG119 was significantly higher (p < 0.001) compared to untreated tumors. Tumor volumes (21-31 days following intracerebral implantation of GL261 cells) were found to be significantly lower for AG119 (p < 0.001), anti-VEGF (p < 0.05) and anti-c-Met (p < 0.001) antibody treatments, and TMZ-treated (p < 0.05) mice, compared to untreated controls. Perfusion data indicated that both AG119 and TMZ were able to reduce the effect of decreasing perfusion rates significantly (p < 0.05 for both), when compared to untreated tumors. It was also found that IC50 values for AG119 were much lower than those for TMZ in T98G and U251 cells. These data support further exploration of the anticancer activity AG119 in HGG, as this compound was able to increase animal survival and decrease tumor volumes in a mouse GL261 glioma model, and that AG119 is also not subject to methyl guanine transferase (MGMT) mediated resistance, as is the case with TMZ, indicating that AG119 may be potentially useful in treating resistant gliomas.
Ju, Julia A.; Baek, Jin Hyen; Yalamanoglu, Ayla; Buehler, Paul W.; Gilkes, Daniele M.; Palmer, Andre F.
2018-01-01
A major constraint in the treatment of cancer is inadequate oxygenation of the tumor mass, which can reduce chemotherapeutic efficacy. We hypothesize that polymerized human hemoglobin (PolyhHb) can be transfused into the systemic circulation to increase solid tumor oxygenation, and improve chemotherapeutic outcomes. By locking PolyhHb in the relaxed (R) quaternary state, oxygen (O2) offloading at low O2 tensions (<20 mm Hg) may be increased, while O2 offloading at high O2 tensions (>20 mm Hg) is facilitated with tense (T) state PolyhHb. Therefore, R-state PolyhHb may deliver significantly more O2 to hypoxic tissues. Biophysical parameters of T and R-state PolyhHb were used to populate a modified Krogh tissue cylinder model to assess O2 transport in a tumor. In general, we found that increasing the volume of transfused PolyhHb decreased the apparent viscosity of blood in the arteriole. In addition, we found that PolyhHb transfusion decreased the wall shear stress at large arteriole diameters (>20 μm), but increased wall shear stress for small arteriole diameters (<10 μm). Therefore, transfusion of PolyhHb may lead to elevated O2 delivery at low pO2. In addition, transfusion of R-state PolyhHb may be more effective than T-state PolyhHb for O2 delivery at similar transfusion volumes. Reduction in the apparent viscosity resulting from PolyhHb transfusion may result in significant changes in flow distributions throughout the tumor microcirculatory network. The difference in wall shear stress implies that PolyhHb may have a more significant effect in capillary beds through mechano-transduction. Periodic top-load transfusions of PolyhHb into mice bearing breast tumors confirmed the oxygenation potential of both PolyhHbs via reduced hypoxic volume, vascular density, tumor growth, and increased expression of hypoxia inducible genes. Tissue section analysis demonstrated primary PolyhHb clearance occurred in the liver and spleen indicating a minimal risk for renal damage. PMID:29414985
SU-F-207-06: CT-Based Assessment of Tumor Volume in Malignant Pleural Mesothelioma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qayyum, F; Armato, S; Straus, C
Purpose: To determine the potential utility of computed tomography (CT) scans in the assessment of physical tumor bulk in malignant pleural mesothelioma patients. Methods: Twenty-eight patients with malignant pleural mesothelioma were used for this study. A CT scan was acquired for each patient prior to surgical resection of the tumor (median time between scan and surgery: 27 days). After surgery, the ex-vivo tumor volume was measured by a pathologist using a water displacement method. Separately, a radiologist identified and outlined the tumor boundary on each CT section that demonstrated tumor. These outlines then were analyzed to determine the total volumemore » of disease present, the number of sections with outlines, and the mean volume of disease per outlined section. Subsets of the initial patient cohort were defined based on these parameters, i.e. cases with at least 30 sections of disease with a mean disease volume of at least 3mL per section. For each subset, the R- squared correlation between CT-based tumor volume and physical ex-vivo tumor volume was calculated. Results: The full cohort of 28 patients yielded a modest correlation between CT-based tumor volume and the ex-vivo tumor volume with an R-squared value of 0.66. In general, as the mean tumor volume per section increased, the correlation of CT-based volume with the physical tumor volume improved substantially. For example, when cases with at least 40 CT sections presenting a mean of at least 2mL of disease per section were evaluated (n=20) the R-squared correlation increased to 0.79. Conclusion: While image-based volumetry for mesothelioma may not generally capture physical tumor volume as accurately as one might expect, there exists a set of conditions in which CT-based volume is highly correlated with the physical tumor volume. SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology.« less
Dosimetric benefit of adaptive re-planning in pancreatic cancer stereotactic body radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongbao; Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA; Department of Radiation Oncology, University of California San Diego, La Jolla, CA
Stereotactic body radiotherapy (SBRT) shows promise in unresectable pancreatic cancer, though this treatment modality has high rates of normal tissue toxicity. This study explores the dosimetric utility of daily adaptive re-planning with pancreas SBRT. We used a previously developed supercomputing online re-planning environment (SCORE) to re-plan 10 patients with pancreas SBRT. Tumor and normal tissue contours were deformed from treatment planning computed tomographies (CTs) and transferred to daily cone-beam CT (CBCT) scans before re-optimizing each daily treatment plan. We compared the intended radiation dose, the actual radiation dose, and the optimized radiation dose for the pancreas tumor planning target volumemore » (PTV) and the duodenum. Treatment re-optimization improved coverage of the PTV and reduced dose to the duodenum. Within the PTV, the actual hot spot (volume receiving 110% of the prescription dose) decreased from 4.5% to 0.5% after daily adaptive re-planning. Within the duodenum, the volume receiving the prescription dose decreased from 0.9% to 0.3% after re-planning. It is noteworthy that variation in the amount of air within a patient's stomach substantially changed dose to the PTV. Adaptive re-planning with pancreas SBRT has the ability to improve dose to the tumor and decrease dose to the nearby duodenum, thereby reducing the risk of toxicity.« less
Rengarajan, Thamaraiselvan; Nandakumar, Natarajan; Rajendran, Peramaiyan; Ganesh, Mohanraj Karthik; Balasubramanian, Maruthaiveeran Periyasamy; Nishigaki, Ikuo
2015-06-01
Breast cancer is the most prevalent malignant neoplasm in the world, and chemoprevention through dietary intervention strategy is an emerging option to reduce the incidence. D-pinitol (DP), a major component of soya bean, possesses attractive biological actions. We have investigated whether D-pinitol have an effect on tumor growth in vivo against 7,12-dimethylbenz(a)anthracene (DMBA)-initiated rat mammary carcinogenesis and investigated its mechanism of action. Tumors were induced in Sprague-Dawley (SD) rats by a gastric dose of 20 mg/kg DMBA, and after 13 weeks of induction period, the rats were orally administered with D-pinitol for 45 days. At the end of the assay, animals in carcinogen control group prompted a tumor incidence of 100 % and developed a tumor volume of 8.35 ± 0.56, which was significantly reduced to 5.74 ± 0.32 for the animals treated with D-pinitol. The D-pinitol treatment not only decreased the tumor volume but also further examination revealed that tumors from animals that received D-pinitol reduced nuclear factor kappa B (NF-κB) activation which in turn results in modulation of its downstreaming p53 and proteins of caspase-3 family. Bcl-2 expression and caspase-3 activation were also decreased after D-pinitol supplementation leading to induction of apoptosis and finally cell death. Furthermore, the status of the inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-2, IL-6, and tumor markers, lipid profile, and hormones was also significantly declined up on D-pinitol administration. Thus, it reveals the collective involvement of the above-mentioned parameters along with NF-κB signaling through which D-pinitol induces apoptosis and subsequently suppresses breast cancer during DMBA-induced rat breast carcinogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souris, K; University of Pennsylvania, Philadelphia, PA; Glick, A
Purpose: To study if abdominal compression can reduce breathing motion and mitigate interplay effect in pencil beam scanning proton therapy (PBSPT) treatment of liver tumors in order to better spare healthy liver volumes compared with photon therapy. Methods: Ten patients, six having large tumors initially treated with IMRT and four having small tumors treated with SBRT, were replanned for PBSPT. ITV and beam-specific PTVs based on 4D-CT were used to ensure target coverage in PBSPT. The use of an abdominal compression belt and volumetric repainting was investigated to mitigate the interplay effect between breathing motion and PBSPT dynamic delivery. Anmore » in-house Matlab script has been developed to simulate this interplay effect. The dose is computed on each phase individually by sorting all spots according to their simulated delivery timing. The final dose distribution is then obtained by accumulating all dose maps to a reference phase. Results: For equivalent target coverage PBSPT reduced average healthy liver dose by 9.5% of the prescription dose compared with IMRT/SBRT. Abdominal compression of 113.2±42.2 mmHg was effective for all 10 patients and reduced average motion by 2.25 mm. As a result, the average ITV volume decreased from 128.2% to 123.1% of CTV volume. Similarly, the average beam-specific PTV volume decreased from 193.2% to 183.3%. For 8 of the 10 patients, the average motion was reduced below 5 mm, and up to 3 repainting were sufficient to mitigate interplay. For the other two patients with larger residual motion, 4–5 repainting were needed. Conclusion: We recommend evaluation of the 4DCT motion histogram following simulation and the interplay effect following treatment planning in order to personalize the use of compression and volumetric repainting for each patient. Abdominal compression enables safe and more effective PBS treatment of liver tumors by reduction of motion and interplay effect. Kevin Souris is supported by IBA and Televie Grant from F.R.S.-FNRS. Liyong Lin is partially supported by Varian.« less
Mizukawa, N; Hino, A; Imahori, Y; Tenjin, H; Yano, I; Yoshino, E; Hirakawa, K; Yamashita, M; Oki, F; Nakahashi, H
1989-03-01
Blood flow and glucose metabolism of the tumors and perifocal edematous tissues were evaluated using positron emission tomography (PET). Thirty-one brain tumor cases were investigated 12 non glial tumors (9 meningiomas and 3 metastatic tumors) and 19 gliomas (these were classified in 5 astrocytomas, 7 anaplastic astrocytomas and 7 glioblastomas, according to the malignancy). The diagnosis were confirmed pathologically in 30 cases. Cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood volume (CBV) were measured by O-15 labeled gases inhalation methods. Cerebral metabolic rate for glucose (CMFglu) were measured by F-18 Deoxyglucose intravenous injection method and calculated by Hutchins's formula. The rate constant (ks) and lumped constant (LC) used in this study were the same as those published by Phelps et al. in 1979. The blood flow and glucose metabolic rates of tumors were measured by the same methods. The results were as follows: 1) Meningiomas showed very high blood flow and blood volume with a wide range. The OEF and metabolic rate for glucose (MRglu) values were very low. 2) Metastatic tumors showed the low values of blood flow, metabolic rate for oxygen (MRO2) and OEF. 3) The blood flow and MRglu values on gliomas were varied with no significant differences between the three subgroups. On the other hands, as the malignancy of the glioma increased, a statistically significant increase in blood volume and a decrease in OEF were noted. 4) The OEF values from the various types of tumors studied were significantly lower than those obtained from the normal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Markwardt, Niklas; Götz, Marcus; Haj-Hosseini, Neda; Hollnburger, Bastian; Sroka, Ronald; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian
2016-04-01
5-aminolevulinic-acid-(5-ALA)-induced protoporphyrin IX (PpIX) fluorescence may be used to improve stereotactic brain tumor biopsies. In this study, the sensitivity of PpIX-based tumor detection has been investigated for two potential excitation wavelengths (405 nm, 633 nm). Using a 200 μm fiber in contact with semi-infinite optical phantoms containing ink and Lipovenös, PpIX detection limits of 4.0 nM and 200 nM (relating to 1 mW excitation power) were determined for 405 nm and 633 nm excitation, respectively. Hence, typical PpIX concentrations in glioblastomas of a few μM should be well detectable with both wavelengths. Additionally, blood layers of selected thicknesses were placed between fiber and phantom. Red excitation was shown to be considerably less affected by blood interference: A 50 μm blood layer, for instance, blocked the 405- nm-excited fluorescence completely, but reduced the 633-nm-excited signal by less than 50%. Ray tracing simulations demonstrated that - without blood layer - the sensitivity advantage of 405 nm rises for decreasing fluorescent volume from 50-fold to a maximum of 100-fold. However, at a tumor volume of 1 mm3, which is a typical biopsy sample size, the 633-nm-excited fluorescence signal is only reduced by about 10%. Further simulations revealed that with increasing fiber-tumor distance, the signal drops faster for 405 nm. This reduces the risk of detecting tumor tissue outside the needle's coverage, but diminishes the overlap between optically and mechanically sampled volumes. While 405 nm generally offers a higher sensitivity, 633 nm is more sensitive to distant tumors and considerably superior in case of blood-covered tumor tissue.
Guo, Gang; Cai, Wei; Zhang, Xu
2016-11-01
The aim of the present study was to investigate a method of laparoscopic nephron-sparing surgery (LNSS) for renal cell carcinoma (RCC) based on the precise anatomy of the nephron, and to decrease the incidence of hemorrhage and urinary leakage. Between January 2012 and December 2013, 31 patients who presented to the General Hospital of the People's Liberation Army (Beijing, China) were treated for RCC. The mean tumor size was 3.4±0.7 cm in diameter (range, 1.2-6.0 cm). During surgery, the renal artery was blocked, and subsequently, an incision in the renal capsule and renal cortex was performed, at 3-5 mm from the tumor edge. Subsequent to the incision of the renal parenchyma, scissors with blunt and sharp edge were used to separate the base of the tumor from the normal renal medulla, in the direction of the ray medullary in the renal pyramids. The basal blood vessels were incised following the hemostasis of the region using bipolar coagulation. The minor renal calyces were stripped carefully and the wound was closed with an absorbable sutures. The arterial occlusion time, duration of surgery, intraoperative bleeding volume, post-operative drainage volume, pathological results and complications were recorded. The surgery was successful for all patients. The estimated average intraoperative bleeding volume was 55.7 ml, the average surgical duration was 95.5 min, the average arterial occlusion time was 21.2 min, the average post-operative drainage volume was 92.3 ml and the average post-operative length of hospital stay was 6.1 days. No hemorrhage or urinary leakage was observed in the patients following the surgery. LNSS for RCC based on the precise anatomy of the nephron was concluded to be effective and feasible. The surgery is useful for the complete removal of tumors and guarantees a negative margin, which may also decrease the incidence of hemorrhage and urinary leakage following surgery.
Carlesso, Fernanda N; Araújo, Raquel S; Fuscaldi, Leonardo L; Mendes Miranda, Sued E; Rubello, Domenico; Teixeira, Cláudia S; Dos Reis, Diego C; Leite, Elaine A; Silveira, Josianne N; Fernandes, Simone O A; Cassali, Geovanni D; de Oliveira, Mônica C; Colletti, Patrick M; de Barros, André L B; Cardoso, Valbert N
2016-07-01
Pancreatic cancer is the fourth most common cause of cancer-related death in the USA. This is mainly because of the chemoresistance of this type of tumor; thus, the development of novel therapeutic modalities is needed. Long-circulating and pH-sensitive liposomes containing cisplatin (SpHL-CDDP) were administered systemically into pancreatic tumor-bearing mice for a period of 14 days. The antitumor efficacy and toxicity of this new treatment method on the basis of cisplatin-loaded liposomes was compared with the classical free-CDDP method. Tc-HYNIC-βAla-bombesin(7-14) tumor uptake and histopathologic findings were used to monitor and compare the two treatment modalities. The antitumor activity of SpHL-CDDP treatment was shown by (a) decrease in tumor volume, (b) development of tumor necrotic areas, and (c) decrease in Tc-HYNIC-βAla-bombesin(7-14) tumor uptake. Toxicity was evaluated by the development of inflammation and necrotic areas in the kidneys, liver, spleen, and intestine: toxic effects were greater with free-CDDP than SpHL-CDDP. SpHL-CDDP showed significant antitumor activity in pancreatic cancer-bearing mice, with lower toxicity in comparison with free-CDDP.
Photoimmunotherapy of Gastric Cancer Peritoneal Carcinomatosis in a Mouse Model
Sato, Kazuhide; Choyke, Peter L.; Kobayashi, Hisataka
2014-01-01
Photoimmunotherapy (PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. We performed PIT in a model of disseminated gastric cancer peritoneal carcinomatosis and monitored efficacy with in vivo GFP fluorescence imaging. In vitro and in vivo experiments were conducted with a HER2-expressing, GFP-expressing, gastric cancer cell line (N87-GFP). A conjugate comprised of a photosensitizer, IR-700, conjugated to trastuzumab (tra-IR700), followed by NIR light was used for PIT. In vitro PIT was evaluated by measuring cytotoxicity with dead staining and a decrease in GFP fluorescence. In vivo PIT was evaluated in a disseminated peritoneal carcinomatosis model and a flank xenograft using tumor volume measurements and GFP fluorescence intensity. In vivo anti-tumor effects of PIT were confirmed by significant reductions in tumor volume (at day 15, p<0.0001 vs. control) and GFP fluorescence intensity (flank model: at day 3, PIT treated vs. control p<0.01 and peritoneal disseminated model: at day 3 PIT treated vs. control, p<0.05). Cytotoxic effects in vitro were shown to be dependent on the light dose and caused necrotic cell rupture leading to GFP release and a decrease in fluorescence intensity in vitro. Thus, loss of GFP fluorescence served as a useful biomarker of cell necrosis after PIT. PMID:25401794
Awad, Joseph; Owrangi, Amir; Villemaire, Lauren; O'Riordan, Elaine; Parraga, Grace; Fenster, Aaron
2012-02-01
Manual segmentation of lung tumors is observer dependent and time-consuming but an important component of radiology and radiation oncology workflow. The objective of this study was to generate an automated lung tumor measurement tool for segmentation of pulmonary metastatic tumors from x-ray computed tomography (CT) images to improve reproducibility and decrease the time required to segment tumor boundaries. The authors developed an automated lung tumor segmentation algorithm for volumetric image analysis of chest CT images using shape constrained Otsu multithresholding (SCOMT) and sparse field active surface (SFAS) algorithms. The observer was required to select the tumor center and the SCOMT algorithm subsequently created an initial surface that was deformed using level set SFAS to minimize the total energy consisting of mean separation, edge, partial volume, rolling, distribution, background, shape, volume, smoothness, and curvature energies. The proposed segmentation algorithm was compared to manual segmentation whereby 21 tumors were evaluated using one-dimensional (1D) response evaluation criteria in solid tumors (RECIST), two-dimensional (2D) World Health Organization (WHO), and 3D volume measurements. Linear regression goodness-of-fit measures (r(2) = 0.63, p < 0.0001; r(2) = 0.87, p < 0.0001; and r(2) = 0.96, p < 0.0001), and Pearson correlation coefficients (r = 0.79, p < 0.0001; r = 0.93, p < 0.0001; and r = 0.98, p < 0.0001) for 1D, 2D, and 3D measurements, respectively, showed significant correlations between manual and algorithm results. Intra-observer intraclass correlation coefficients (ICC) demonstrated high reproducibility for algorithm (0.989-0.995, 0.996-0.997, and 0.999-0.999) and manual measurements (0.975-0.993, 0.985-0.993, and 0.980-0.992) for 1D, 2D, and 3D measurements, respectively. The intra-observer coefficient of variation (CV%) was low for algorithm (3.09%-4.67%, 4.85%-5.84%, and 5.65%-5.88%) and manual observers (4.20%-6.61%, 8.14%-9.57%, and 14.57%-21.61%) for 1D, 2D, and 3D measurements, respectively. The authors developed an automated segmentation algorithm requiring only that the operator select the tumor to measure pulmonary metastatic tumors in 1D, 2D, and 3D. Algorithm and manual measurements were significantly correlated. Since the algorithm segmentation involves selection of a single seed point, it resulted in reduced intra-observer variability and decreased time, for making the measurements.
Kageyama, Ken; Yamamoto, Akira; Okuma, Tomohisa; Hamamoto, Shinichi; Takeshita, Toru; Sakai, Yukimasa; Nishida, Norifumi; Matsuoka, Toshiyuki; Miki, Yukio
2013-10-01
To evaluate survival and distant tumor growth after radiofrequency ablation (RFA) and local OK-432 injection at a single tumor site in a rabbit model with intra- and extrahepatic VX2 tumors and to examine the effect of this combination therapy, which we termed immuno-radiofrequency ablation (immunoRFA), on systemic antitumor immunity in a rechallenge test. Our institutional animal care committee approved all experiments. VX2 tumors were implanted to three sites: two in the liver and one in the left ear. Rabbits were randomized into four groups of seven to receive control, RFA alone, OK-432 alone, and immunoRFA treatments at a single liver tumor at 1 week after implantation. Untreated liver and ear tumor volumes were measured after the treatment. As the rechallenge test, tumors were reimplanted into the right ear of rabbits, which survived the 35 weeks and were followed up without additional treatment. Statistical significance was examined by log-rank test for survival and Student's t test for tumor volume. Survival was significantly prolonged in the immunoRFA group compared to the other three groups (P < 0.05). Untreated liver and ear tumor sizes became significantly smaller after immunoRFA compared to controls (P < 0.05). In the rechallenge test, the reimplanted tumors regressed without further therapy compared to the ear tumors of the control group (P < 0.05). ImmunoRFA led to improved survival and suppression of distant untreated tumor growth. Decreases in size of the distant untreated tumors and reimplanted tumors suggested that systemic antitumor immunity was enhanced by immunoRFA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kageyama, Ken, E-mail: kageyamaken0112@gmail.com; Yamamoto, Akira, E-mail: loveakirayamamoto@gmail.com; Okuma, Tomohisa, E-mail: o-kuma@msic.med.osaka-cu.ac.jp
Purpose: To evaluate survival and distant tumor growth after radiofrequency ablation (RFA) and local OK-432 injection at a single tumor site in a rabbit model with intra- and extrahepatic VX2 tumors and to examine the effect of this combination therapy, which we termed immuno-radiofrequency ablation (immunoRFA), on systemic antitumor immunity in a rechallenge test. Methods: Our institutional animal care committee approved all experiments. VX2 tumors were implanted to three sites: two in the liver and one in the left ear. Rabbits were randomized into four groups of seven to receive control, RFA alone, OK-432 alone, and immunoRFA treatments at amore » single liver tumor at 1 week after implantation. Untreated liver and ear tumor volumes were measured after the treatment. As the rechallenge test, tumors were reimplanted into the right ear of rabbits, which survived the 35 weeks and were followed up without additional treatment. Statistical significance was examined by log-rank test for survival and Student's t test for tumor volume. Results: Survival was significantly prolonged in the immunoRFA group compared to the other three groups (P < 0.05). Untreated liver and ear tumor sizes became significantly smaller after immunoRFA compared to controls (P < 0.05). In the rechallenge test, the reimplanted tumors regressed without further therapy compared to the ear tumors of the control group (P < 0.05). Conclusion: ImmunoRFA led to improved survival and suppression of distant untreated tumor growth. Decreases in size of the distant untreated tumors and reimplanted tumors suggested that systemic antitumor immunity was enhanced by immunoRFA.« less
Nguyen, T B; Cron, G O; Bezzina, K; Perdrizet, K; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Thornhill, R E; Zanette, B; Cameron, I G
2016-12-01
Tumor CBV is a prognostic and predictive marker for patients with gliomas. Tumor CBV can be measured noninvasively with different MR imaging techniques; however, it is not clear which of these techniques most closely reflects histologically-measured tumor CBV. Our aim was to investigate the correlations between dynamic contrast-enhanced and DSC-MR imaging parameters and immunohistochemistry in patients with gliomas. Forty-three patients with a new diagnosis of glioma underwent a preoperative MR imaging examination with dynamic contrast-enhanced and DSC sequences. Unnormalized and normalized cerebral blood volume was obtained from DSC MR imaging. Two sets of plasma volume and volume transfer constant maps were obtained from dynamic contrast-enhanced MR imaging. Plasma volume obtained from the phase-derived vascular input function and bookend T1 mapping (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function and bookend T1 mapping (K trans _Φ) were determined. Plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K trans _SI) were acquired, without T1 mapping. Using CD34 staining, we measured microvessel density and microvessel area within 3 representative areas of the resected tumor specimen. The Mann-Whitney U test was used to test for differences according to grade and degree of enhancement. The Spearman correlation was performed to determine the relationship between dynamic contrast-enhanced and DSC parameters and histopathologic measurements. Microvessel area, microvessel density, dynamic contrast-enhanced, and DSC-MR imaging parameters varied according to the grade and degree of enhancement (P < .05). A strong correlation was found between microvessel area and Vp_Φ and between microvessel area and unnormalized blood volume (r s ≥ 0.61). A moderate correlation was found between microvessel area and normalized blood volume, microvessel area and Vp_SI, microvessel area and K trans _Φ, microvessel area and K trans _SI, microvessel density and Vp_Φ, microvessel density and unnormalized blood volume, and microvessel density and normalized blood volume (0.44 ≤ r s ≤ 0.57). A weaker correlation was found between microvessel density and K trans _Φ and between microvessel density and K trans _SI (r s ≤ 0.41). With dynamic contrast-enhanced MR imaging, use of a phase-derived vascular input function and bookend T1 mapping improves the correlation between immunohistochemistry and plasma volume, but not between immunohistochemistry and the volume transfer constant. With DSC-MR imaging, normalization of tumor CBV could decrease the correlation with microvessel area. © 2016 by American Journal of Neuroradiology.
Failure Patterns in Patients with Esophageal Cancer Treated with Definitive Chemoradiation
Welsh, James; Settle, Stephen H.; Amini, Arya; Xiao, Lianchun; Suzuki, Akihiro; Hayashi, Yuki; Hofstetter, Wayne; Komaki, Ritsuko; Liao, Zhongxing; Ajani, Jaffer A.
2012-01-01
Purpose Local failure after definitive chemoradiation therapy for unresectable esophageal cancer remains problematic. Little is known about the failure pattern based on modern day radiation treatment volumes. We hypothesized that most local failures would be within the gross tumor volume (GTV), where the bulk of the tumor burden resides. Methods and Materials We reviewed treatment volumes for 239 patients who underwent definitive chemoradiation therapy and compared this information with failure patterns on follow-up positron emission (PET). Failures were categorized as within the GTV, the larger clinical target volume (CTV, which encompasses microscopic disease), or the still larger planning target volume (PTV, which encompasses setup variability) or outside the radiation field. Results At a median follow-up time of 52.6 months (95% CI: 46.1 – 56.7 months), 119 patients (50%) had experienced local failure, 114 (48%) had distant failure, and 74 (31%) had no evidence of failure. Of all local failures, 107 (90%) were in the GTV, 27 (23%) in the CTV; and 14 (12%) in the PTV. In multivariate analysis, GTV failure was associated with tumor status (T3/T4 vs. T1/T2: OR=6.35, p value =0.002), change in standardized uptake value on PET before and after treatment (decrease >52%: OR=0.368, p value = 0.003) and tumor length (>8 cm: 4.08, p value = 0.009). Conclusions Most local failures after definitive chemoradiation for unresectable esophageal cancer occur in the GTV. Future therapeutic strategies should focus on enhancing local control. PMID:22565611
Guan, Xiao-Bing; Sun, Zheng; Chen, Xiao-Xin; Wu, Hong-Ru; Zhang, Xin-Yan
2012-01-01
Zengshengping (ZSP) tablets had inhibitory effects on oral precancerous lesions by reducing the incidence of oral cancer. However, the severe liver toxicity caused by systemic administration of ZSP limits the long-term use of this anti-cancer drug. The purpose of this study was to evaluate the tumor inhibitory effects due to the topical application of extracts from ZSP, a Chinese herbal drug, on 7, 12-dimethlbenz(a)anthracene (DMBA) induced oral tumors in hamsters. The study also investigated the anti-cancer mechanisms of the ZSP extracts on oral carcinogenesis. DMBA (0.5%) was applied topically to the buccal pouches of Syrian golden hamsters (6 - 8 weeks old) three times per week for six weeks in order to induce the development of oral tumors. Different fractions of ZSP were either applied topically to the oral tumor lesions or fed orally at varying dosages to animals with oral tumors for 18 weeks. Tumor volume was measured by histopathological examination. Tumor cell proliferation was evaluated by counting BrdU labeled cells and by Western blotting for mitogen-activated protein kinase (MAPK) protein levels. The protein levels of apoptosis marker Caspase-3 and regulator Bcl-2 protein were also measured by Western blotting. Topical application of DMBA to the left pouch of hamsters induced oral tumor formation. Animals treated with DMBA showed a loss in body weight while animals treated with ZSP maintained normal body weights. Both the ZSP n-butanol fraction and water fraction significantly reduced tumor volume by 32.6% (P < 0.01) and 22.9% (P < 0.01) respectively. Topical application of ZSP also markedly decreased the BrdU-positive cell numbers in oral tumor lesions and reduced the expression level of MAPK. In addition, ZSP promoted tumor cell apoptosis by increasing Caspase-3 expression but decreasing Bcl-2 protein production. The n-butanol and water fractions of ZSP are effective at inhibiting tumor cell proliferation and stimulating apoptosis in oral cancer suggesting that these fractions have chemopreventive effects on DMBA induced oral carcinogenesis.
Boockvar, John A; Tsiouris, Apostolos J; Hofstetter, Christoph P; Kovanlikaya, Ilhami; Fralin, Sherese; Kesavabhotla, Kartik; Seedial, Stephen M; Pannullo, Susan C; Schwartz, Theodore H; Stieg, Philip; Zimmerman, Robert D; Knopman, Jared; Scheff, Ronald J; Christos, Paul; Vallabhajosula, Shankar; Riina, Howard A
2011-03-01
The authors assessed the safety and maximum tolerated dose of superselective intraarterial cerebral infusion (SIACI) of bevacizumab after osmotic disruption of the blood-brain barrier (BBB) with mannitol in patients with recurrent malignant glioma. A total of 30 patients with recurrent malignant glioma were included in the current study. The authors report no dose-limiting toxicity from a single dose of SIACI of bevacizumab up to 15 mg/kg after osmotic BBB disruption with mannitol. Two groups of patients were studied; those without prior bevacizumab exposure (naïve patients; Group I) and those who had received previous intravenous bevacizumab (exposed patients; Group II). Radiographic changes demonstrated on MR imaging were assessed at 1 month postprocedure. In Group I patients, MR imaging at 1 month showed a median reduction in the area of tumor enhancement of 34.7%, a median reduction in the volume of tumor enhancement of 46.9%, a median MR perfusion (MRP) reduction of 32.14%, and a T2-weighted/FLAIR signal decrease in 9 (47.4%) of 19 patients. In Group II patients, MR imaging at 1 month showed a median reduction in the area of tumor enhancement of 15.2%, a median volume reduction of 8.3%, a median MRP reduction of 25.5%, and a T2-weighted FLAIR decrease in 0 (0%) of 11 patients. The authors conclude that SIACI of mannitol followed by bevacizumab (up to 15 mg/kg) for recurrent malignant glioma is safe and well tolerated. Magnetic resonance imaging shows that SIACI treatment with bevacizumab can lead to reduction in tumor area, volume, perfusion, and T2-weighted/FLAIR signal.
Doloff, J.C.; Khan, N.; Ma, J.; Demidenko, E.; Swartz, H.M.; Jounaidi, Y.
2010-01-01
Metronomic cyclophosphamide treatment is associated with anti-angiogenic activity and is anticipated to generate exploitable hypoxia using hypoxia-activated prodrugs. Weekly administration of tirapazamine (TPZ; 5 mg/kg body weight i.p.) failed to inhibit the growth of 9L gliosarcoma tumors grown s.c. in scid mice. However, the anti-tumor effect of weekly cyclophosphamide (CPA) treatment (140 mg/kg BW i.p.) was substantially enhanced by weekly TPZ administration. An extended tumor free period and increased frequency of tumor eradication without overt toxicity were observed when TPZ was given 3, 4 or 5 days after each weekly CPA treatment. Following the 2nd CPA injection, Electron Paramagnetic Resonance (EPR) Oximetry indicated significant increases in tumor pO2, starting at 48 hr, which further increased after the 3rd CPA injection. pO2 levels were, however, stable in growing untreated tumors. A strong negative correlation (−0.81) between tumor pO2 and tumor volume during 21 days of weekly CPA chemotherapy was observed, indicating increasing tumor pO2 with decreasing tumor volume. Furthermore, CPA treatment resulted in increased tumor uptake of activated CPA. CPA induced increases in VEGF RNA, which reached a maximum on day 1, and in PLGF RNA which was sustained throughout the treatment, while anti-angiogenic host thrombospondin-1 increased dramatically through day 7 post-CPA treatment. Weekly cyclophosphamide treatment was anticipated to generate exploitable hypoxia. However, our findings suggest that weekly CPA treatment induces a functional improvement of tumor vasculature, which is characterized by increased tumor oxygenation and drug uptake in tumors, thus counter-intuitively, benefiting intratumoral activation of TPZ and perhaps other bioreductive drugs. PMID:19754361
Kosovec, Juliann E; Zaidi, Ali H; Omstead, Ashten N; Matsui, Daisuke; Biedka, Mark J; Cox, Erin J; Campbell, Patrick T; Biederman, Robert W W; Kelly, Ronan J; Jobe, Blair A
2017-11-21
Esophageal adenocarcinoma (EAC) is a deadly disease with limited therapeutic options. In the present study, we determined the preclinical efficacy of CDK4/6 inhibitor abemaciclib for treatment of EAC. In vitro , apoptosis, proliferation, and pathway regulation were evaluated in OE19, OE33, and FLO1 EAC cell lines. In vivo , esophagojejunostomy was performed on rats to induce EAC. At 36 weeks post-surgery, MRI and endoscopic biopsy established baseline tumor volume and molecular correlates, respectively. Next, the study animals were randomized to 26mg/kg intraperitoneal abemaciclib treatment or vehicle control for 28 days. Pre and post treatment MRIs, histopathology, and qRT-PCR were utilized to determine response. Our results demonstrated treatment with abemaciclib lead to increased apoptosis, and decreased proliferation in OE19 (p=0.185), OE33 (p=0.048), and FLO1 (p=0.043) with anticipated downstream molecular inhibition. In vivo , 78.9% of treatment animals demonstrated >20% tumor volume decrease (placebo 0%). Mean tumor volume changed in the treatment arm by -65.5% (placebo +133.5%) (p<0.01), and prevalence changed by -37.5% (placebo +16.7%) (p<0.01). Pre vs post treatment qRT-PCR demonstrated significant inhibition of all downstream molecular correlates. Overall our findings suggest potent antitumor efficacy of abemaciclib against EAC with evident molecular pathway inhibition and reasonable safety, establishing the rationale for future clinical development.
Zaidi, Ali H; Kosovec, Juliann E; Matsui, Daisuke; Omstead, Ashten N; Raj, Moses; Rao, Rohit R; Biederman, Robert W W; Finley, Gene G; Landreneau, Rodney J; Kelly, Ronan J; Jobe, Blair A
2017-07-01
The purpose of the current study is to determine the efficacy of a PI3K/mTOR dual inhibitor, LY3023414, on established EAC in an in vivo model. Esophageal adenocarcinoma (EAC) is a highly lethal cancer with limited treatment options. The PI3K/mTOR pathway is upregulated in EAC and may be a target for novel therapies. Esophagojejunostomy was performed on Sprague-Dawley rats to induce carcinogenesis, and LY3023414 was cyclically administered intraperitoneally between 32 and 40 weeks postsurgery to treatment animals. Magnetic resonance imaging (MRI) and histology were used to determine clinical response. Immunohistochemistry, immunofluorescence, and Western blot were used to validate apoptosis by cleaved caspase-3, proliferation by Ki67, and pathway inhibition, respectively. Mean MRI tumor volume increased by 109.2% in controls (n = 32) and decreased by 56.8% in treatment animals (n=17) (P < 0.01). Treatment with LY3023414 demonstrated tumor volume increase in 0% (control = 46.4%) (P < 0.01), decrease in 58.8% (control = 7.1%) (P < 0.01), and stable volume in 41.2% (control = 46.4%) (P = 0.77). EAC prevalence in controls increased by 25%; whereas, prevalence in treatment animals decreased by 29.4% (P < 0.01). Approximately, 75% of treatment animals presenting with residual masses on MRI had a histological response >50%. Increased apoptosis by cleaved caspase-3 (P = 0.03) and decreased proliferation by Ki67 (P < 0.01) were demonstrated in the treatment arm, when compared with the control arm. On Western blot analysis of pathway checkpoints, p-mTOR (p=0.03) and PI3K-α (P = 0.04) were downregulated in treatment responsive residual tumors, when compared with controls. LY3023414 demonstrates efficacy against EAC in a preclinical model, establishing the rationale for clinical testing.
Aquino, Domenico; Cuppini, Lucia; Anghileri, Elena; Finocchiaro, Gaetano; Bruzzone, Maria Grazia; Eoli, Marica
2014-01-01
Background Perfusion weighted imaging (PWI) can be used to measure key aspects of tumor vascularity in vivo and recent studies suggest that perfusion imaging may be useful in the early assessment of response to angiogenesis inhibitors. Aim of this work is to compare Parametric Response Maps (PRMs) with the Region Of Interest (ROI) approach in the analysis of tumor changes induced by bevacizumab and irinotecan in recurrent glioblastomas (rGBM), and to evaluate if changes in tumor blood volume measured by perfusion MRI may predict clinical outcome. Methods 42 rGBM patients with KPS ≥50 were treated until progression, as defined by MRI with RANO criteria. Relative cerebral blood volume (rCBV) variation after 8 weeks of treatment was calculated through semi-automatic ROI placement in the same anatomic region as in baseline. Alternatively, rCBV variations with respect to baseline were calculated into the evolving tumor region using a voxel-by-voxel difference. PRMs were created showing where rCBV significantly increased, decreased or remained unchanged. Results An increased blood volume in PRM (PRMCBV+) higher than 18% (first quartile) after 8 weeks of treatment was associated with increased progression free survival (PFS; 24 versus 13 weeks, p = 0.045) and overall survival (OS; 38 versus 25 weeks, p = 0.016). After 8 weeks of treatment ROI analysis showed that mean rCBV remained elevated in non responsive patients (4.8±0.9 versus 5.1±1.2, p = 0.38), whereas decreased in responsive patients (4.2±1.3 versus 3.8±1.6 p = 0.04), and re-increased progressively when patients approached tumor progression. Conclusions Our data suggest that PRMs can provide an early marker of response to antiangiogenic treatment and warrant further confirmation in a larger cohort of GBM patients. PMID:24675671
Sadik, Zjiwar H A; Lie, Suan Te; Leenstra, Sieger; Hanssens, Patrick E J
2018-01-26
OBJECTIVE Petroclival meningiomas (PCMs) can cause devastating clinical symptoms due to mass effect on cranial nerves (CNs); thus, patients harboring these tumors need treatment. Many neurosurgeons advocate for microsurgery because removal of the tumor can provide relief or result in symptom disappearance. Gamma Knife radiosurgery (GKRS) is often an alternative for surgery because it can cause tumor shrinkage with improvement of symptoms. This study evaluates qualitative volumetric changes of PCM after primary GKRS and its impact on clinical symptoms. METHODS The authors performed a retrospective study of patients with PCM who underwent primary GKRS between 2003 and 2015 at the Gamma Knife Center of the Elisabeth-Tweesteden Hospital in Tilburg, the Netherlands. This study yields 53 patients. In this study the authors concentrate on qualitative volumetric tumor changes, local tumor control rate, and the effect of the treatment on trigeminal neuralgia (TN). RESULTS Local tumor control was 98% at 5 years and 93% at 7 years (Kaplan-Meier estimates). More than 90% of the tumors showed regression in volume during the first 5 years. The mean volumetric tumor decrease was 21.2%, 27.1%, and 31% at 1, 3, and 6 years of follow-up, respectively. Improvement in TN was achieved in 61%, 67%, and 70% of the cases at 1, 2, and 3 years of follow-up, respectively. This was associated with a mean volumetric tumor decrease of 25% at the 1-year follow-up to 32% at the 3-year follow-up. CONCLUSIONS GKRS for PCMs yields a high tumor control rate with a low incidence of neurological deficits. Many patients with TN due to PCM experienced improvement in TN after radiosurgery. GKRS achieves significant volumetric tumor decrease in the first years of follow-up and thereafter.
Roh, Tae Hoon; Sung, Kyoung Su; Kang, Seok-Gu; Moon, Ju Hyung; Kim, Eui Hyun; Kim, Sun Ho; Chang, Jong Hee
2017-10-01
Resection of tumors close to the corticospinal tract (CST) carries a high risk of damage to the CST. For cystic tumors, aspirating the cyst before resection may reduce the risk of damage to vital structures. This study evaluated the effectiveness of cyst aspiration, by comparing the results before and after aspiration of diffusion tensor image (DTI) tractography. This study enrolled 23 patients with large cystic brain tumors (>20 cm 3 ) between 2012 and 2016. All underwent magnetic resonance imaging (MRI), including DTI tractography, followed by navigation-guided aspiration of the cyst and subsequent tumor resection via craniotomy. Distances between the tumor margin and CST before and after cyst aspiration, volume reduction, and postoperative outcomes were assessed. Median tumor volume decreased from 88 cm 3 (range, 25-153) to 29 cm 3 (range, 20-80) and distances between tumor margins and the CST increased from 5.7 mm (range, 0.6-22.0) to 14.8 mm (range, 0.6-41.4) after aspiration. Neurological symptoms of patients immediately improved after cyst aspiration. All patients, except for one with a secondary glioblastoma, underwent gross total resection of the tumor. No neurological deterioration was observed after tumor resection. Navigation-guided cyst aspiration followed by resection is a useful and safe procedure for brain tumors with large cystic components. Cyst aspiration resulted in expansion of the compressed brain tissue between the tumor margins and vital structures, making maximal safe resection possible.
Trans sodium crocetinate: functional neuroimaging studies in a hypoxic brain tumor.
Sheehan, Jason P; Popp, Britney; Monteith, Stephen; Toulmin, Sushila; Tomlinson, Jennifer; Martin, Jessica; Cifarelli, Christopher P; Lee, Dae-Hee; Park, Deric M
2011-10-01
Intratumoral hypoxia is believed to be exhibited in high-grade gliomas. Trans sodium crocetinate (TSC) has been shown to increase oxygen diffusion to hypoxic tissues. In this research, the authors use oxygen-sensitive PET studies to evaluate the extent of hypoxia in vivo in a glioblastoma model and the effect of TSC on the baseline oxygenation of the tumor. The C6 glioma cells were stereotactically implanted in the right frontal region of rat brains. Formation of intracranial tumors was confirmed on MR imaging. Animals were injected with Copper(II) diacetyl-di(N4-methylthiosemicarbazone) (Cu-ATSM) and then either TSC or saline (6 rats each). Positron emission tomography imaging was performed, and relative uptake values were computed to determine oxygenation within the tumor and normal brain parenchyma. Additionally, TSC or saline was infused into the animals, and carbonic anhydrase 9 (CA9) and hypoxia-inducing factor-1α (HIF-1α) protein expression were measured 1 day afterward. On PET imaging, all glioblastoma tumors demonstrated a statistically significant decrease in uptake of Cu-ATSM compared with the contralateral cerebral hemisphere (p = 0.000002). The mean relative uptake value of the tumor was 3900 (range 2203-6836), and that of the contralateral brain tissue was 1017 (range 488-2304). The mean relative hypoxic tumor volume for the saline group and TSC group (6 rats each) was 1.01 ± 0.063 and 0.69 ± 0.062, respectively (mean ± SEM, p = 0.002). Infusion of TSC resulted in a 31% decrease in hypoxic volume. Immunoblot analysis revealed expression of HIF-1α and CA9 in all tumor specimens. Some glioblastomas exhibit hypoxia that is demonstrable on oxygen-specific PET imaging. It appears that TSC lessens intratumoral hypoxia on functional imaging. Further studies should explore relative hypoxia in glioblastoma and the potential therapeutic gains that can be achieved by lessening hypoxia during delivery of adjuvant treatment.
Molanouri Shamsi, M; Chekachak, S; Soudi, S; Quinn, L S; Ranjbar, K; Chenari, J; Yazdi, M H; Mahdavi, M
2017-02-01
Cancer cachexia is characterized by inflammation, loss of skeletal muscle and adipose tissue mass, and functional impairment. Oxidative stress and inflammation are believed to regulate pathways controlling skeletal muscle wasting. The aim of this study was to determine the effects of aerobic interval training and the purported antioxidant treatment, selenium nanoparticle supplementation, on expression of IL-15 and inflammatory cytokines in 4T1 breast cancer-bearing mice with cachexia. Selenium nanoparticle supplementation accelerated cachexia symptoms in tumor-bearing mice, while exercise training prevented muscle wasting in tumor-bearing mice. Also, aerobic interval training enhanced the anti-inflammatory indices IL-10/TNF-α ratio and IL-15 expression in skeletal muscle in tumor-bearing mice. However, combining exercise training and antioxidant supplementation prevented cachexia and muscle wasting and additionally decreased tumor volume in 4T1 breast cancer mice. These finding suggested that combining exercise training and antioxidant supplementation could be a strategy for managing tumor volume and preventing cachexia in breast cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moding, Everett J.; Clark, Darin P.; Qi, Yi
2013-04-01
Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at daymore » 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P<.05). There was a positive correlation between CT measurement of tumor FBV on day 1 and extravasated iodine on day 4 with microvascular density (MVD) on day 4 (R{sup 2}=0.53) and dextran accumulation (R{sup 2}=0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment.« less
Effects of Charged Particles on Human Tumor Cells
Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa
2016-01-01
The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502
Lloyd, J C; Masko, E M; Wu, C; Keenan, M M; Pilla, D M; Aronson, W J; Chi, J-Ta; Freedland, S J
2013-12-01
Previous mouse studies suggest that decreasing dietary fat content can slow prostate cancer (PCa) growth. To our knowledge, no study has yet compared the effect of multiple different fats on PCa progression. We sought to systematically compare the effect of fish oil, olive oil, corn oil and animal fat on PCa progression. A total of 96 male severe combined immunodeficient mice were injected with LAPC-4 human PCa cells. Two weeks following injection, mice were randomized to a Western diet based on fish oil, olive oil, corn oil or animal fat (35% kilocalories from fat). Animals were euthanized when tumor volumes reached 1000 mm(3). Serum was collected at death and assayed for PSA, insulin, insulin-like growth factor-1 (IGF-1), IGF-1-binding protein-3 and prostaglandin E-2 (PGE-2) levels. Tumors were also assayed for PGE-2 and cyclooxygenase-2 levels, and global gene expression was analyzed using Affymetrix microarrays. Mice weights and tumor volumes were equivalent across groups at randomization. Overall, fish oil consumption was associated with improved survival relative to other dietary groups (P=0.014). On gene expression analyses, the fish oil group had decreased signal in pathways related to mitochondrial physiology and insulin synthesis/secretion. In this xenograft model, we found that consuming a diet in which fish oil was the only fat source slowed tumor growth and improved survival compared with that in mice consuming diets composed of olive oil, corn oil or animal fat. Although prior studies showed that the amount of fat is important for PCa growth, this study suggests that the type of dietary fat consumed may also be important.
Xu, Yan; Zhu, Lijing; Ru, Tong; Wang, Huanhuan; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng
2017-09-01
Background Three-dimensional power Doppler ultrasound (3D-PDU) imaging has been widely applied to the differentiation of benign and malignant cervical lesions; however, its potential value for predicting response to chemo-radiotherapy has not been fully explored. Purpose To investigate the feasibility of 3D-PDU imaging in predicting treatment response in patients receiving concurrent chemo-radiotherapy (CCRT) for advanced cervical cancer. Material and Methods Fifty-two patients with advanced cervical cancer who received CCRT underwent 3D-PDU examinations at four timepoints: pre-therapy (baseline), 1 week and 2 weeks during, as well as immediately post CCRT. Final tumor response was determined by change in tumor size using magnetic resonance imaging (MRI). Cervical tumor volumes and vascular indices were calculated and compared with the clinical outcome. Results Of the 52 patients, 32 patients who completed all four examinations were included in the analyses: 21 were classified as complete response (CR) and 11 as partial response (PR). During the treatment, the CR group showed that 3D vascular indices (VI and VFI) significantly increased at 1 week ( P = 0.028, P = 0.017, respectively) then decreased at 2 weeks and obviously decreased at therapy completion (both P < 0.001), whereas tumors significantly decreased in volume at 2 weeks after therapy initiation ( P < 0.05). However, no significant differences in 3D vascular indices values were seen in the PR group during the treatment course (all P > 0.05). Conclusion Prospective longitudinal 3D-PDU imaging may have potentials in monitoring early therapeutic response to CCRT in patients with cervical cancer.
Simón, Marina; Melander, Fredrik; Kristensen, Lotte K.; Bendix, Pól M.; Andresen, Thomas L.; Oddershede, Lene B.; Kjaer, Andreas
2017-01-01
Within the field of nanoparticle-assisted photothermal cancer therapy, focus has mostly been on developing novel heat-generating nanoparticles with the right optical and dimensional properties. Comparison and evaluation of their performance in tumor-bearing animals are commonly assessed by changes in tumor volume; however, this is usually a late-occurring event. This study implements 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging to perform early evaluation of the treatment outcome of photothermal therapy. Silica-gold nanoshells (NS) are administered intravenously to nude mice bearing human neuroendocrine tumor xenografts and the tumors are irradiated by a near-infrared laser. The animals are positron emission tomography scanned with 2-deoxy-2-[F-18]fluoro-D-glucose one day before and one day after treatment. Using this setup, a significant decrease in tumor uptake of 2-deoxy-2-[F-18]fluoro-D-glucose is found already one day after therapy in the group receiving NS and laser treatment compared to control animals. At this time point no change in tumor volume can be detected. Moreover, the change in tumor uptake, is used to stratify the animals into responders and non-responders, where the responding group matched improved survival. Overall, these findings support the use of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for preclinical and clinical evaluation and optimization of photothermal therapy. PMID:28542311
Norregaard, Kamilla; Jørgensen, Jesper T; Simón, Marina; Melander, Fredrik; Kristensen, Lotte K; Bendix, Pól M; Andresen, Thomas L; Oddershede, Lene B; Kjaer, Andreas
2017-01-01
Within the field of nanoparticle-assisted photothermal cancer therapy, focus has mostly been on developing novel heat-generating nanoparticles with the right optical and dimensional properties. Comparison and evaluation of their performance in tumor-bearing animals are commonly assessed by changes in tumor volume; however, this is usually a late-occurring event. This study implements 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging to perform early evaluation of the treatment outcome of photothermal therapy. Silica-gold nanoshells (NS) are administered intravenously to nude mice bearing human neuroendocrine tumor xenografts and the tumors are irradiated by a near-infrared laser. The animals are positron emission tomography scanned with 2-deoxy-2-[F-18]fluoro-D-glucose one day before and one day after treatment. Using this setup, a significant decrease in tumor uptake of 2-deoxy-2-[F-18]fluoro-D-glucose is found already one day after therapy in the group receiving NS and laser treatment compared to control animals. At this time point no change in tumor volume can be detected. Moreover, the change in tumor uptake, is used to stratify the animals into responders and non-responders, where the responding group matched improved survival. Overall, these findings support the use of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for preclinical and clinical evaluation and optimization of photothermal therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeo, Seung-Gu; Department of Radiation Oncology, Soonchunhyang University College of Medicine, Cheonan; Kim, Dae Yong, E-mail: radiopiakim@hanmail.net
2012-02-01
Purpose: To investigate the prognostic significance of tumor volume reduction rate (TVRR) after preoperative chemoradiotherapy (CRT) in locally advanced rectal cancer (LARC). Methods and Materials: In total, 430 primary LARC (cT3-4) patients who were treated with preoperative CRT and curative radical surgery between May 2002 and March 2008 were analyzed retrospectively. Pre- and post-CRT tumor volumes were measured using three-dimensional region-of-interest MR volumetry. Tumor volume reduction rate was determined using the equation TVRR (%) = (pre-CRT tumor volume - post-CRT tumor volume) Multiplication-Sign 100/pre-CRT tumor volume. The median follow-up period was 64 months (range, 27-99 months) for survivors. Endpoints weremore » disease-free survival (DFS) and overall survival (OS). Results: The median TVRR was 70.2% (mean, 64.7% {+-} 22.6%; range, 0-100%). Downstaging (ypT0-2N0M0) occurred in 183 patients (42.6%). The 5-year DFS and OS rates were 77.7% and 86.3%, respectively. In the analysis that included pre-CRT and post-CRT tumor volumes and TVRR as continuous variables, only TVRR was an independent prognostic factor. Tumor volume reduction rate was categorized according to a cutoff value of 45% and included with clinicopathologic factors in the multivariate analysis; ypN status, circumferential resection margin, and TVRR were significant prognostic factors for both DFS and OS. Conclusions: Tumor volume reduction rate was a significant prognostic factor in LARC patients receiving preoperative CRT. Tumor volume reduction rate data may be useful for tailoring surgery and postoperative adjuvant therapy after preoperative CRT.« less
Wang, Rui; Guo, Qian; Chen, Yi Ni; Hu, Bing; Jiang, Li Xin
2017-01-01
We evaluated the efficacy of contrast-enhanced ultrasound for assessing tumors after irradiation with sub-threshold focused ultrasound (FUS) ablation in pancreatic cancer xenografts in nude mice. Thirty tumor-bearing nude mice were divided into three groups: Group A received sham irradiation, Group B received a moderate-acoustic energy dose (sub-threshold), and Group C received a high-acoustic energy dose. In Group B, B-mode ultrasound (US), color Doppler US, and dynamic contrast-enhanced ultrasound (DCE-US) studies were conducted before and after irradiation. After irradiation, tumor growth was inhibited in Group B, and the tumors shrank in Group C. In Group A, the tumor sizes were unchanged. In Group B, contrast-enhanced ultrasound (CEUS) images showed a rapid rush of contrast agent into and out of tumors before irradiation. After irradiation, CEUS revealed contrast agent perfusion only at the tumor periphery and irregular, un-perfused volumes of contrast agent within the tumors. DCE-US perfusion parameters, including peak intensity (PI) and area under the curve (AUC), had decreased 24 hours after irradiation. PI and AUC were increased 48 hours and 2weeks after irradiation. Time to peak (TP) and sharpness were increased 24 hours after irradiation. TP decreased at 48 hours and 2 weeks after irradiation. CEUS is thus an effective method for early evaluation after irradiation with sub-threshold FUS. PMID:28402267
Sun, Amy; Hou, Lewis; Prugpichailers, Tiffany; Dunkel, Jason; Kalani, Maziyar A; Chen, Xiaoyuan; Kalani, M Yashar S; Tse, Victor
2010-04-01
Bioluminescence imaging (BLI) is emerging as a cost-effective, high-throughput, noninvasive, and sensitive imaging modality to monitor cell growth and trafficking. We describe the use of dynamic BLI as a noninvasive method of assessing vessel permeability during brain tumor growth. With the use of stereotactic technique, 10 firefly luciferase-transfected GL26 mouse glioblastoma multiforme cells were injected into the brains of C57BL/6 mice (n = 80). After intraperitoneal injection of D-luciferin (150 mg/kg), serial dynamic BLI was performed at 1-minute intervals (30 seconds exposure) every 2 to 3 days until death of the animals. The maximum intensity was used as an indirect measurement of tumor growth. The adjusted slope of initial intensity (I90/Im) was used as a proxy to monitor the flow rate of blood into the vascular tree. Using a modified Evans blue perfusion protocol, we calculated the relative permeability of the vascular tree at various time points. Daily maximum intensity correlated strongly with tumor volume. At postinjection day 23, histology and BLI demonstrated an exponential growth of the tumor mass. Slopes were calculated to reflect the flow in the vessels feeding the tumor (adjusted slope = I90/Im). The increase in BLI intensity was correlated with a decrease in adjusted slope, reflecting a decrease in the rate of blood flow as tumor volume increased (y = 93.8e-0.49, R2 = 0.63). Examination of calculated slopes revealed a peak in permeability around postinjection day 20 (n = 42, P < .02 by 1-way analysis of variance) and showed a downward trend in relation to both postinjection day and maximum intensity observed; as angiogenesis progressed, tumor vessel caliber increased dramatically, resulting in sluggish but increased flow. This trend was correlated with Evans blue histology, revealing an increase in Evans blue dye uptake into the tumor, as slope calculated by BLI increases. Dynamic BLI is a practical, noninvasive technique that can semiquantitatively monitor changes in vascular permeability and therefore facilitate the study of tumor angiogenesis in animal models of disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, B; Miften, M
2014-06-15
Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed a method using these projections to determine the trajectory and dose of highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, where the trajectory mimicked a lung tumor with high amplitude (2.4 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each projection. A Gaussian probability density function for tumor position was calculated which best fit the observed trajectory ofmore » the BB in the imager geometry. Two methods to improve the accuracy of tumor track reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation, and second, using the Monte Carlo method to sample the estimated Gaussian tumor position distribution. 15 clinically-drawn abdominal/lung CTV volumes were used to evaluate the accuracy of the proposed methods by comparing the known and calculated BB trajectories. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square (RMS) trajectory errors were lower than 5% of marker amplitude. Use of respiratory phase information decreased RMS errors by 30%, and decreased the fraction of large errors (>3 mm) by half. Mean dose to the clinical volumes was calculated with an average error of 0.1% and average absolute error of 0.3%. Dosimetric parameters D90/D95 were determined within 0.5% of maximum dose. Monte-Carlo sampling increased RMS trajectory and dosimetric errors slightly, but prevented over-estimation of dose in trajectories with high noise. Conclusions: Tumor trajectory and dose-of-the-day were accurately calculated using CBCT projections. This technique provides a widely-available method to evaluate highly-mobile tumors, and could facilitate better strategies to mitigate or compensate for motion during SBRT.« less
Begum, Nusrat J; Thieme, Anne; Eberhardt, Nina; Tauber, Robert; D'Alessandria, Calogero; Beer, Ambros J; Glatting, Gerhard; Eiber, Matthias; Kletting, Peter
2018-06-01
The aim of this work was to simulate the effect of prostate-specific membrane antigen (PSMA)-positive total tumor volume (TTV) on the biologically effective doses (BEDs) to tumors and organs at risk in patients with metastatic castration-resistant prostate cancer who are undergoing 177 Lu-PSMA radioligand therapy. Methods: A physiologically based pharmacokinetic model was fitted to the data of 13 patients treated with 177 Lu-PSMA I&T (a PSMA inhibitor for imaging and therapy). The tumor, kidney, and salivary gland BEDs were simulated for TTVs of 0.1-10 L. The activity and peptide amounts leading to an optimal tumor-to-kidneys BED ratio were also investigated. Results: When the TTV was increased from 0.3 to 3 L, the simulated BEDs to tumors, kidneys, parotid glands, and submandibular glands decreased from 22 ± 15 to 11.0 ± 6.0 Gy 1.49 , 6.5 ± 2.3 to 3.7 ± 1.4 Gy 2.5 , 11.0 ± 2.7 to 6.4 ± 1.9 Gy 4.5 , and 10.9 ± 2.7 to 6.3 ± 1.9 Gy 4.5 , respectively (where the subscripts denote that an α/β of 1.49, 2.5, or 4.5 Gy was used to calculate the BED). The BED to the red marrow increased from 0.17 ± 0.05 to 0.32 ± 0.11 Gy 15 For patients with a TTV of more than 0.3 L, the optimal amount of peptide was 273 ± 136 nmol and the optimal activity was 10.4 ± 4.4 GBq. Conclusion: This simulation study suggests that in patients with large PSMA-positive tumor volumes, higher activities and peptide amounts can be safely administered to maximize tumor BEDs without exceeding the tolerable BED to the organs at risk. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayer, Christine; Liebhardt, Michael E.; Schmid, Thomas E.
2014-03-01
Purpose: Tumor cells, in contrast to normal cells, frequently overexpress heat shock protein 70 (Hsp70) in the cytosol, present it on their cell surface, and actively release it. Therefore, soluble Hsp70 (sHsp70) was investigated as a potential tumor biomarker for monitoring the outcome of radiation therapy. Methods and Materials: Plasma from mice bearing membrane Hsp70 (mHsp70)-positive FaDu human squamous cell carcinoma of the head and neck and spontaneous pancreatic ductal adenocarcinoma (PDAC) was investigated. A cohort of mice with FaDu tumors (0.32 cm{sup 3}) was irradiated with 30 Gy, and plasma was collected 24 hours after irradiation, after the tumors had shrunk tomore » 50% of their starting volume and after complete remission. sHsp70 levels in the plasma were quantified by enzyme-linked immunosorbent assay. Results: sHsp70 levels were significantly higher in the blood of tumor-bearing mice than that of control animals. A correlation between increasing sHsp70 plasma levels and tumor volume in the range of 0.01 cm{sup 3} to 0.66 cm{sup 3} was observed. Radiation-induced regression of the tumors was associated with significantly decreased sHsp70 levels, which returned to the level of control animals after complete remission. Conclusion: We propose sHsp70 as an innovative biomarker for detecting tumors and for monitoring the clinical outcome of radiation therapy in cancer patients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodford, Curtis; Yartsev, Slav; Dar, A. Rashid
2007-11-15
Purpose: To evaluate gross tumor volume (GTV) changes for patients with non-small-cell lung cancer by using daily megavoltage (MV) computed tomography (CT) studies acquired before each treatment fraction on helical tomotherapy and to relate the potential benefit of adaptive image-guided radiotherapy to changes in GTV. Methods and Materials: Seventeen patients were prescribed 30 fractions of radiotherapy on helical tomotherapy for non-small-cell lung cancer at London Regional Cancer Program from Dec 2005 to March 2007. The GTV was contoured on the daily MVCT studies of each patient. Adapted plans were created using merged MVCT-kilovoltage CT image sets to investigate the advantagesmore » of replanning for patients with differing GTV regression characteristics. Results: Average GTV change observed over 30 fractions was -38%, ranging from -12 to -87%. No significant correlation was observed between GTV change and patient's physical or tumor features. Patterns of GTV changes in the 17 patients could be divided broadly into three groups with distinctive potential for benefit from adaptive planning. Conclusions: Changes in GTV are difficult to predict quantitatively based on patient or tumor characteristics. If changes occur, there are points in time during the treatment course when it may be appropriate to adapt the plan to improve sparing of normal tissues. If GTV decreases by greater than 30% at any point in the first 20 fractions of treatment, adaptive planning is appropriate to further improve the therapeutic ratio.« less
Yock, Adam D; Rao, Arvind; Dong, Lei; Beadle, Beth M; Garden, Adam S; Kudchadker, Rajat J; Court, Laurence E
2014-05-01
The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: -11.6%-23.8%) and 14.6% (range: -7.3%-27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: -6.8%-40.3%) and 13.1% (range: -1.5%-52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: -11.1%-20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography images and facilitate improved treatment management.
ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komaragiri, Shravan Kumar; Bostanthirige, Dhanushka H.; Morton, Derrick J.
Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, wemore » examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function. - Highlights: • ID4 expression induces AR expression in PC3 cells, which generally lack AR. • ID4 expression increased apoptosis and decreased cell proliferation and invasion. • Overexpression of ID4 reduces tumor growth of subcutaneous xenografts in vivo. • ID4 induces p21 and FKBP51 expression- co-factors of AR tumor suppressor activity.« less
Progesterone is essential for maintenance and growth of uterine leiomyoma.
Ishikawa, Hiroshi; Ishi, Kazutomo; Serna, Vanida Ann; Kakazu, Rafael; Bulun, Serdar E; Kurita, Takeshi
2010-06-01
Uterine leiomyomata (ULs) represent the most common tumor in women and can cause abnormal uterine bleeding, large pelvic masses, and recurrent pregnancy loss. Although the dependency of UL growth on ovarian steroids is well established, the relative contributions of 17beta-estradiol and progesterone are yet to be clarified. Conventionally, estradiol has been considered the primary stimulus for UL growth, and studies with cell culture and animal models support this concept. In contrast, no research model has clearly demonstrated a requirement of progesterone in UL growth despite accumulating clinical evidence for the essential role of progesterone in this tumor. To elucidate the functions of ovarian steroids in UL, we established a xenograft model reflecting characteristics of these tumors by grafting human UL tissue beneath the renal capsule of immunodeficient mice. Leiomyoma xenografts increased in size in response to estradiol plus progesterone through cell proliferation and volume increase in cellular and extracellular components. The xenograft growth induced by estradiol plus progesterone was blocked by the antiprogestin RU486. Furthermore, the volume of established UL xenografts decreased significantly after progesterone withdrawal. Surprisingly, treatment with estradiol alone neither increased nor maintained the tumor size. Although not mitogenic by itself, estradiol induced expression of progesterone receptor and supported progesterone action on leiomyoma xenografts. Taken together, our findings define that volume maintenance and growth of human UL are progesterone dependent.
Wang, Ming; Liu, Gang; Shan, Guo-Ping; Wang, Bing-Bing
2017-08-01
The study investigated the ability of ataxia-telangiectasia mutated (ATM)/Rad3-related (ATR) signaling pathway to influence the proliferation, apoptosis, and radiosensitivity of nasopharyngeal carcinoma (NPC) cells. NPC tissues and corresponding adjacent normal tissues were collected from 143 NPC patients. The NPC CNE2 cells were assigned into a control group, X-ray group, CGK-733 group, and X-ray+CGK-733 group. The mRNA levels of ATM and ATR were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and the protein levels of ATM and ATR using western blotting. The positive expression of ATM and ATR in tissues and nude mouse tumor tissues was determined by immunohistochemistry. Cell proliferation, migration, invasion, and apoptosis rates were analyzed by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, scratch test, transwell assay, and flow cytometry, respectively. A nude mouse model of NPC was established to observe tumor volume and growth. The mRNA levels of ATR and ATM and the expression of ATR and ATM protein in NPC tissues were significantly higher than those in adjacent normal tissues. The colony formation assay showed that the colony-forming rate decreased, showing radiation dose-dependent and CGK-733 concentration-dependent manners. Expression of ATM, ATR, Chk1, and Chk2 was evidently increased in the X-ray, CGK-733, and X-ray+CGK-733groups compared with the control group, and the aforementioned expression was highest in the X-ray+CGK-733 group among the four groups. The cell proliferation, invasion, and migration were decreased, tumor volume decreased and cell apoptosis increased in the X-ray, CGK-733, and X-ray+CGK-733 groups compared with the control group; the X-ray+CGK-733 group exhibited lowest cell proliferation, invasion and migration, smallest tumor volume, and highest cell apoptosis among the four groups. Inhibition of ATM/ATR signaling pathway reduces proliferation and enhances apoptosis and radiosensitivity of NPC cells.
Inter- and intra-observer variation in soft-tissue sarcoma target definition.
Roberge, D; Skamene, T; Turcotte, R E; Powell, T; Saran, N; Freeman, C
2011-08-01
To evaluate inter- and intra-observer variability in gross tumor volume definition for adult limb/trunk soft tissue sarcomas. Imaging studies of 15 patients previously treated with preoperative radiation were used in this study. Five physicians (radiation oncologists, orthopedic surgeons and a musculoskeletal radiologist) were asked to contour each of the 15 tumors on T1-weighted, gadolinium-enhanced magnetic resonance images. These contours were drawn twice by each physician. The volume and center of mass coordinates for each gross tumor volume were extracted and a Boolean analysis was performed to measure the degree of volume overlap. The median standard deviation in gross tumor volumes across observers was 6.1% of the average volume (range: 1.8%-24.9%). There was remarkably little variation in the 3D position of the gross tumor volume center of mass. For the 15 patients, the standard deviation of the 3D distance between centers of mass ranged from 0.06 mm to 1.7 mm (median 0.1mm). Boolean analysis demonstrated that 53% to 90% of the gross tumor volume was common to all observers (median overlap: 79%). The standard deviation in gross tumor volumes on repeat contouring was 4.8% (range: 0.1-14.4%) with a standard deviation change in the position of the center of mass of 0.4mm (range: 0mm-2.6mm) and a median overlap of 93% (range: 73%-98%). Although significant inter-observer differences were seen in gross tumor volume definition of adult soft-tissue sarcoma, the center of mass of these volumes was remarkably consistent. Variations in volume definition did not correlate with tumor size. Radiation oncologists should not hesitate to review their contours with a colleague (surgeon, radiologist or fellow radiation oncologist) to ensure that they are not outliers in sarcoma gross tumor volume definition. Protocols should take into account variations in volume definition when considering tighter clinical target volumes. Copyright © 2011 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Henning, Susanne M.; Wang, Piwen; Said, Jonathan; Magyar, Clara; Castor, Brandon; Doan, Ngan; Tosity, Carmen; Moro, Aune; Gao, Kun; Li, Luyi; Heber, David
2011-01-01
It has been demonstrated in various animal models that the oral administration of green tea (GT) extracts in drinking water can inhibit tumor growth, but the effects of brewed GT on factors promoting tumor growth, including oxidant damage of DNA and protein, angiogenesis, and DNA methylation, have not been tested in an animal model. To explore these potential mechanisms, brewed GT was administered instead of drinking water to male severe combined immunodeficiency (SCID) mice with androgen-dependent human LAPC4 prostate cancer cell subcutaneous xenografts. Tumor volume was decreased significantly in mice consuming GT, and tumor size was significantly correlated with GT polyphenol (GTP) content in tumor tissue. There was a significant reduction in hypoxia-inducible factor 1-alpha and vascular endothelial growth factor protein expression. GT consumption significantly reduced oxidative DNA and protein damage in tumor tissue as determined by 8-hydroxydeoxyguanosine/deoxyguanosine ratio and protein carbonyl assay, respectively. Methylation is known to inhibit antioxidative enzymes such as glutathione S-transferase pi (GSTp1) to permit reactive oxygen species promotion of tumor growth. GT inhibited tumor 5-cytosine DNA methyltransferase 1 (DNMT1) mRNA and protein expression significantly, which may contribute to the inhibition of tumor growth by reactivation of antioxidative enzymes. This study advances our understanding of tumor growth inhibition by brewed GT in an animal model by demonstrating tissue localization of GTPs in correlation with inhibition of tumor growth. Our results suggest that the inhibition of tumor growth is due to GTP-mediated inhibition of oxidative stress and angiogenesis in the LAPC4 xenograft prostate tumor in SCID mice. PMID:22405694
The effect of near-infrared fluorescence conjugation on the anti-cancer potential of cetuximab.
Yun, Ji Young; Hyun, Byung-Hwa; Nam, Sang Yoon; Yun, Young Won; Lee, Hu-Jang; Lee, Beom-Jun
2018-03-01
This study investigated the anti-cancer potential of a near-infrared fluorescence (NIRF) molecule conjugated with Cetuximab (Cetuximab-NIRF) in six-week-old female BALB/c athymic (nu+/nu+) nude mice. A431 cells were cultured and injected into the animals to induce solid tumors. Paclitaxel (30 mg/kg body weight (BW)), Cetuximab (1 mg/kg BW), and Cetuximab-NIRF (0.25, 0.5 and 1.0 mg/kg BW) were intraperitoneally injected twice a week into the A431 cell xenografts of the nude mice. Changes in BW, tumor volume and weight, fat and lean mass, and diameter of the peri-tumoral blood vessel were determined after two weeks. Tumor volumes and weights were significantly decreased in the Cetuximab-NIRF (1 mg/kg BW) group compared with the control group ( P <0.001). Lean mass and total body water content were also conspicuously reduced in the Cetuximab-NIRF (1 mg/kg BW) group compared with the vehicle control group. Peri-tumoral blood vessel diameters were very thin in the Cetuximab-NIRF groups compared with those of the paclitaxel group. These results indicate that the conjugation of Cetuximab with NIRF does not affect the anti-cancer potential of Cetuximab and NIRF can be used for molecular imaging in cancer treatments.
2010-01-01
Background Sigma-2 receptors are over-expressed in proliferating cancer cells, making an attractive target for the targeted treatment of pancreatic cancer. In this study, we investigated the role of the novel sigma-2 receptor ligand SW43 to induce apoptosis and augment standard chemotherapy. Results The binding affinity for sigma-2 ligands is high in pancreas cancer, and they induce apoptosis with a rank order of SV119 < SW43 < SRM in vitro. Combining these compounds with gemcitabine further increased apoptosis and decreased viability. Our in vivo model showed that sigma-2 ligand treatment decreased tumor volume to the same extent as gemcitabine. However, SW43 combination treatment with gemcitabine was superior to the other compounds and resulted in stabilization of tumor volume during treatment, with minimal toxicities. Conclusions This study shows that the sigma-2 ligand SW43 has the greatest capacity to augment gemcitabine in a pre-clinical model of pancreas cancer and has provided us with the rationale to move this compound forward with clinical investigations for patients with pancreatic cancer. PMID:21092190
Photochemoprevention of UVB-induced skin carcinogenesis in SKH-1 mice by brown algae polyphenols.
Hwang, Hyejeong; Chen, Tong; Nines, Ronald G; Shin, Hyeon-Cheol; Stoner, Gary D
2006-12-15
Chronic exposure of the skin to ultraviolet B (UVB) radiation induces oxidative stress, which plays a crucial role in the induction of skin cancer. In this study, the effect of dietary feeding and topical application of brown algae polyphenols on UVB radiation-induced skin carcinogenesis in SKH-1 mice was investigated. SKH-1 hairless mice were randomly divided into 9 groups, including control, UVB control and treatment groups. They were treated orally (0.1% and 0.5% with AIN-76 diet, w/w) and topically (3 and 6 mg/0.2 ml of vehicle) with brown algae polyphenols and irradiated with UVB for 26 weeks. Dietary feeding (0.1% and 0.5%) of brown algae polyphenols significantly reduced tumor multiplicity (45% and 56%) and tumor volume (54% and 65%), and topical administration (3 and 6 mg) significantly decreased tumor multiplicity (60% and 46%) and tumor volume (66% and 57%), respectively, per tumor-bearing mouse. Dietary feeding and topical administration of the polyphenols also inhibited tumor incidence by 6% and 21%, respectively, but the results were not significant. Dietary and topical administration of the polyphenols markedly inhibited cyclooxygenase-2 activity and cell proliferation. These observations show that brown algae polyphenols have an antiphotocarcinogenic effect which may be associated with the prevention of UVB-induced oxidative stress, inflammation, and cell proliferation in the skin. Copyright 2006 Wiley-Liss, Inc.
Mansouri, Sheila; Singh, Sanjay; Alamsahebpour, Amir; Burrell, Kelly; Li, Mira; Karabork, Merve; Ekinci, Can; Koch, Elizabeth; Solaroglu, Ihsan; Chang, Jeffery T; Wouters, Bradly; Aldape, Kenneth; Zadeh, Gelareh
2016-08-30
The RNAse III endonuclease DICER is a key regulator of microRNA (miRNA) biogenesis and is frequently decreased in a variety of malignancies. We characterized the role of DICER in glioblastoma (GB), specifically demonstrating its effects on the ability of glioma stem-like cells (GSCs) to form tumors in a mouse model of GB. DICER silencing in GSCs reduced their stem cell characteristics, while tumors arising from these cells were more aggressive, larger in volume, and displayed a higher proliferation index and lineage differentiation. The resulting tumors, however, were more sensitive to radiation treatment. Our results demonstrate that DICER silencing enhances the tumorigenic potential of GSCs, providing a platform for analysis of specific relevant miRNAs and development of potentially novel therapies against GB.
Ren, Juan; Yuan, Wei; Wang, Ruihua; Wang, Qiuping; Li, Yi; Xue, Chaofan; Yan, Yanli; Ma, Xiaowei; Tan, Li; Liu, Zi
2016-01-01
Objective The purpose of this study was to comprehensively compare the 3-dimensional (3D) magnetic resonance imaging (MRI)-guided and conventional 2-dimensional (2D) point A-based intracavitary brachytherapy (BT) planning for cervical cancer with regard to target dose coverage and dosages to adjacent organs-at risk (OARs). Methods A total of 79 patients with cervical cancer were enrolled to receive 2D point A-based BT planning and then immediately to receive 3D planning between October 2011 and April 2013 at the First Hospital Affiliated to Xi’an Jiao Tong University (Xi’an, China). The dose-volume histogram (DVH) parameters for gross tumor volume (GTV), high-risk clinical target volume (HR-CTV), intermediate-risk clinical target volume (IR-CTV) and OARs were compared between the 2D and 3D planning. Results In small tumors, there was no significant difference in most of the DVHs between 2D and 3D planning (all p>0.05). While in big tumors, 3D BT planning significantly increased the DVHs for most of the GTV, HR-CTV and IR-CTV, and some OARs compared with 2D planning (all P<0.05). In 3D planning, DVHs for GTV, HR-CTV, IR-CTV and some OARs were significantly higher in big tumors than in small tumors (all p<0.05). In contrast, in 2D planning, DVHs for almost all of the HR-CTV and IR-CTV were significantly lower in big tumors (all p<0.05). In eccentric tumors, 3D planning significantly increased dose coverage but decreased dosages to OARs compared with 2D planning (p<0.05). In tumors invading adjacent tissues, the target dose coverage in 3D planning was generally significantly higher than in 2D planning (P<0.05); the dosages to the adjacent rectum and bladder were significantly higher but those to sigmoid colon were lower in 3D planning (all P<0.05). Conclusions 3D MRI image-guided BT planning exhibits advantages over 2D planning in a complex way, generally showing advantages for the treatment of cervical cancer except small tumors. PMID:27611853
Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer.
Bradley, Jeffrey; Thorstad, Wade L; Mutic, Sasa; Miller, Tom R; Dehdashti, Farrokh; Siegel, Barry A; Bosch, Walter; Bertrand, Rudi J
2004-05-01
Locoregional failure remains a significant problem for patients receiving definitive radiation therapy alone or combined with chemotherapy for non-small-cell lung cancer (NSCLC). Positron emission tomography (PET) with [(18)F]fluoro-2-deoxy-d-glucose (FDG) has proven to be a valuable diagnostic and staging tool for NSCLC. This prospective study was performed to determine the impact of treatment simulation with FDG-PET and CT on radiation therapy target volume definition and toxicity profiles by comparison to simulation with computed tomography (CT) scanning alone. Twenty-six patients with Stages I-III NSCLC were studied. Each patient underwent sequential CT and FDG-PET simulation on the same day. Immobilization devices used for both simulations included an alpha cradle, a flat tabletop, 6 external fiducial markers, and a laser positioning system. A radiation therapist participated in both simulations to reproduce the treatment setup. Both the CT and fused PET/CT image data sets were transferred to the radiation treatment planning workstation for contouring. Each FDG-PET study was reviewed with the interpreting nuclear radiologist before tumor volumes were contoured. The fused PET/CT images were used to develop the three-dimensional conformal radiation therapy (3DCRT) plan. A second physician, blinded to the results of PET, contoured the gross tumor volumes (GTV) and planning target volumes (PTV) from the CT data sets, and these volumes were used to generate mock 3DCRT plans. The PTV was defined by a 10-mm margin around the GTV. The two 3DCRT plans for each patient were compared with respect to the GTV, PTV, mean lung dose, volume of normal lung receiving > or =20 Gy (V20), and mean esophageal dose. The FDG-PET findings altered the AJCC TNM stage in 8 of 26 (31%) patients; 2 patients were diagnosed with metastatic disease based on FDG-PET and received palliative radiation therapy. Of the 24 patients who were planned with 3DCRT, PET clearly altered the radiation therapy volume in 14 (58%), as follows. PET helped to distinguish tumor from atelectasis in all 3 patients with atelectasis. Unsuspected nodal disease was detected by PET in 10 patients, and 1 patient had a separate tumor focus detected within the same lobe of the lung. Increases in the target volumes led to increases in the mean lung dose, V20, and mean esophageal dose. Decreases in the target volumes in the patients with atelectasis led to decreases in these normal-tissue toxicity parameters. Radiation targeting with fused FDG-PET and CT images resulted in alterations in radiation therapy planning in over 50% of patients by comparison with CT targeting. The increasing availability of integrated PET/CT units will facilitate the use of this technology for radiation treatment planning. A confirmatory multicenter, cooperative group trial is planned within the Radiation Therapy Oncology Group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deniaud-Alexandre, Elisabeth; Touboul, Emmanuel; Lerouge, Delphine
2005-12-01
Purpose: To report a retrospective study concerning the impact of fused {sup 18}F-fluoro-deoxy-D-glucose (FDG)-hybrid positron emission tomography (PET) and CT images on three-dimensional conformal radiotherapy planning for patients with non-small-cell lung cancer. Methods and Materials: A total of 101 patients consecutively treated for Stage I-III non-small-cell lung cancer were studied. Each patient underwent CT and FDG-hybrid PET for simulation treatment in the same treatment position. Images were coregistered using five fiducial markers. Target volume delineation was initially performed on the CT images, and the corresponding FDG-PET data were subsequently used as an overlay to the CT data to define themore » target volume. Results: {sup 18}F-fluoro-deoxy-D-glucose-PET identified previously undetected distant metastatic disease in 8 patients, making them ineligible for curative conformal radiotherapy (1 patient presented with some positive uptake corresponding to concomitant pulmonary tuberculosis). Another patient was ineligible for curative treatment because the fused PET-CT images demonstrated excessively extensive intrathoracic disease. The gross tumor volume (GTV) was decreased by CT-PET image fusion in 21 patients (23%) and was increased in 24 patients (26%). The GTV reduction was {>=}25% in 7 patients because CT-PET image fusion reduced the pulmonary GTV in 6 patients (3 patients with atelectasis) and the mediastinal nodal GTV in 1 patient. The GTV increase was {>=}25% in 14 patients owing to an increase in the pulmonary GTV in 11 patients (4 patients with atelectasis) and detection of occult mediastinal lymph node involvement in 3 patients. Of 81 patients receiving a total dose of {>=}60 Gy at the International Commission on Radiation Units and Measurements point, after CT-PET image fusion, the percentage of total lung volume receiving >20 Gy increased in 15 cases and decreased in 22. The percentage of total heart volume receiving >36 Gy increased in 8 patients and decreased in 14. The spinal cord volume receiving at least 45 Gy (2 patients) decreased. Multivariate analysis showed that tumor with atelectasis was the single independent factor that resulted in a significant effect on the modification of the size of the GTV by FDG-PET: tumor with atelectasis (with vs. without atelectasis, p = 0.0001). Conclusion: The results of our study have confirmed that integrated hybrid PET/CT in the treatment position and coregistered images have an impact on treatment planning and management of non-small-cell lung cancer. However, FDG images using dedicated PET scanners and respiration-gated acquisition protocols could improve the PET-CT image coregistration. Furthermore, the impact on treatment outcome remains to be demonstrated.« less
NASA Astrophysics Data System (ADS)
Li, Xiaobing; Qiu, Tianshuang; Lebonvallet, Stephane; Ruan, Su
2010-02-01
This paper presents a brain tumor segmentation method which automatically segments tumors from human brain MRI image volume. The presented model is based on the symmetry of human brain and level set method. Firstly, the midsagittal plane of an MRI volume is searched, the slices with potential tumor of the volume are checked out according to their symmetries, and an initial boundary of the tumor in the slice, in which the tumor is in the largest size, is determined meanwhile by watershed and morphological algorithms; Secondly, the level set method is applied to the initial boundary to drive the curve evolving and stopping to the appropriate tumor boundary; Lastly, the tumor boundary is projected one by one to its adjacent slices as initial boundaries through the volume for the whole tumor. The experiment results are compared with hand tracking of the expert and show relatively good accordance between both.
van den Bosch, Sven; Vogel, Wouter V; Raaijmakers, Cornelis P; Dijkema, Tim; Terhaard, Chris H J; Al-Mamgani, Abrahim; Kaanders, Johannes H A M
2018-05-03
Diagnostic imaging continues to evolve, and now has unprecedented accuracy for detecting small nodal metastasis. This influences the tumor load in elective target volumes and subsequently has consequences for the radiotherapy dose required to control disease in these volumes. Small metastases that used to remain subclinical and were included in elective volumes, will nowadays be detected and included in high-dose volumes. Consequentially, high-dose volumes will more often contain low-volume disease. These target volume transformations lead to changes in the tumor burden in elective and "gross" tumor volumes with implications for the radiotherapy dose prescribed to these volumes. For head and neck tumors, nodal staging has evolved from mere palpation to combinations of high-resolution imaging modalities. A traditional nodal gross tumor volume in the neck typically had a minimum diameter of 10-15 mm, while nowadays much smaller tumor deposits are detected in lymph nodes. However, the current dose levels for elective nodal irradiation were empirically determined in the 1950s, and have not changed since. In this report the radiobiological consequences of target volume transformation caused by modern imaging of the neck are evaluated, and theoretically derived reductions of dose in radiotherapy for head and neck cancer are proposed. The concept of target volume transformation and subsequent strategies for dose adaptation applies to many other tumor types as well. Awareness of this concept may result in new strategies for target definition and selection of dose levels with the aim to provide optimal tumor control with less toxicity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
λ-Carrageenan improves the antitumor effect of dendritic cellbased vaccine.
Li, Jinyao; Aipire, Adila; Li, Jinyu; Zhu, Hongge; Wang, Yanping; Guo, Wenjia; Li, Xiaoqin; Yang, Jia; Liu, Chunling
2017-05-02
In this study, we investigated the effect of λ-carrageenan on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We found that λ-carrageenan dose-dependently decreased the endocytosis of DCs, promoted DC maturation and increased cytokine production through TLR4 mediated signaling pathway. λ-carrageenan treatment also enhanced the ability of DCs in the stimulating allogenic splenocyte proliferation. In TC-1 tumor mouse model, HPV peptides pulsed λ-carrageenan-DC (HPV-CGN-DC) significantly inhibited tumor growth compared with control group. The frequencies of CD4+ and CD8+ T cells in spleens of tumor mice and their activation status were significantly increased in HPV-CGN-DC group, but the frequencies of natural regulatory T cells and CD11b+Gr-1+ cells were significantly decreased. Further, HPV-CGN-DC induced strong CD8+ T cell responses, which are negatively correlated with tumor volumes. The results suggested that λ-carrageenan promoted DC maturation through TLR4 signaling pathway and could be used as the adjuvant in DC-based vaccines.
Nomura, Alice; Majumder, Kaustav; Giri, Bhuwan; Dauer, Patricia; Dudeja, Vikas; Roy, Sabita; Banerjee, Sulagna; Saluja, Ashok K
2016-12-01
NF-κB has an essential role in the initiation and progression of pancreatic cancer and specifically mediates the induction of epithelial-mesenchymal transition and invasiveness. In this study, we demonstrate the importance of activated NF-κB signaling in EMT induction, lymphovascular metastasis, and neural invasion. Modulation of NF-κB activity was accomplished through the specific NF-κB inhibitor (BAY 11-7085), triptolide, and Minnelide treatment, as well as overexpression of IKBα repressor and IKK activator plasmids. In the classical lymphovascular metastatic cascade, inhibition of NF-κB decreased the expression of several EMT transcription factors (SNAI1, SNAI2, and ZEB1) and mesenchymal markers (VIM and CDH2) and decreased in vitro invasion, which was rescued by IKK activation. This was further demonstrated in vivo via BAY 11-7085 treatment in a orthotopic model of pancreatic cancer. In vivo NF-κB inhibition decreased tumor volume; decreased tumor EMT gene expression, while restoring cell-cell junctions; and decreasing overall metastasis. Furthermore, we demonstrate the importance of active NF-κB signaling in neural invasion. Triptolide treatment inhibits Nerve Growth Factor (NGF) mediated, neural-tumor co-culture in vitro invasion, and dorsal root ganglia (DRG) neural outgrowth through a disruption in tumor-neural cross talk. In vivo, Minnelide treatment decreased neurotrophin expression, nerve density, and sciatic nerve invasion. Taken together, this study demonstrates the importance of NF-κB signaling in the progression of pancreatic cancer through the modulation of EMT induction, lymphovascular invasion, and neural invasion.
Brain tumor locating in 3D MR volume using symmetry
NASA Astrophysics Data System (ADS)
Dvorak, Pavel; Bartusek, Karel
2014-03-01
This work deals with the automatic determination of a brain tumor location in 3D magnetic resonance volumes. The aim of this work is not the precise segmentation of the tumor and its parts but only the detection of its location. This work is the first step in the tumor segmentation process, an important topic in neuro-image processing. The algorithm expects 3D magnetic resonance volumes of brain containing a tumor. The detection is based on locating the area that breaks the left-right symmetry of the brain. This is done by multi-resolution comparing of corresponding regions in left and right hemisphere. The output of the computation is the probabilistic map of the tumor location. The created algorithm was tested on 80 volumes from publicly available BRATS databases containing 3D brain volumes afflicted by a brain tumor. These pathological structures had various sizes and shapes and were located in various parts of the brain. The locating performance of the algorithm was 85% for T1-weighted volumes, 91% for T1-weighted contrast enhanced volumes, 96% for FLAIR and T2-wieghted volumes and 95% for their combinations.
Rasheed, Abdullah; Jabbour, Salma K; Rosenberg, Stephen; Patel, Ajay; Goyal, Sharad; Haffty, Bruce G; Yue, Ning J; Khan, Alvin
2016-01-01
Lung tumors move during respiration, complicating radiation therapy. The abdominal compression plate (ACP) is thought to reduce respiratory motion. This study quantifies ACP efficacy on respiratory-induced motion by using 4-dimensional computed tomography to evaluate volume and displacement changes of the heart, lungs, and tumor with and without ACP. Lung cancer patients (n = 17) received 4-dimensional computed tomography simulations (10 computed tomography scans from 0% to 90% breathing phases) with and without ACP under maximally tolerated diaphragmatic pressure. Gross tumor volume (GTV), heart, and lungs were contoured in treatment planning software for each phase. Structures were exported for analysis. For each phase, with and without ACP, tumor and organ absolute centroid range of motion and volume were calculated. ACP did not significantly affect GTV, heart, or lung motion on the sample as a whole, but instead demonstrated patient-specific results. ACP reduced GTV motion in 3 (17.6%; 3 upper lobe tumors) by 2.9 mm (P < .01), increased motion in 5 (29.4%; 3 upper lobe tumors, 1 middle lobe, 1 lower lobe) by 1.9 mm (P < .03), and did not significantly change 9. Of the 3 patients exhibiting significantly decreased GTV motion, GTV, heart, and lung range of motion was 7.4 mm, 11.8 mm, and 11.9 mm, respectively, without compression and 4.5 mm, 8.4 mm, and 10.9 mm, respectively, with compression. Averaged across the sample, ACP did not exhibit any axis-specific effect. ACP efficacy was patient-specific, possibly because of pre-existing factors including chronic obstructive pulmonary disease severity, chest wall elasticity, tumor location, and patient comfort. Tumor lobe location does not predetermine compression efficacy; therefore, patients should be simulated with and without ACP, regardless of tumor location. GTV motion seems most important in determining suitability for compression. Alternative motion control should be considered in patients not benefited by compression. In patients who benefited, ACP may enhance tumor coverage while minimizing toxicity. Larger scale studies are necessary for definitive treatment recommendations. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
SU-E-J-153: Reconstructing 4D Cone Beam CT Images for Clinical QA of Lung SABR Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudry, J; Bergman, A; British Columbia Cancer Agency, Vancouver, BC
Purpose: To verify that the planned Primary Target Volume (PTV) and Internal Gross Tumor Volume (IGTV) fully enclose a moving lung tumor volume as visualized on a pre-SABR treatment verification 4D Cone Beam CT. Methods: Daily 3DCBCT image sets were acquired immediately prior to treatment for 10 SABR lung patients using the on-board imaging system integrated into a Varian TrueBeam (v1.6: no 4DCBCT module available). Respiratory information was acquired during the scan using the Varian RPM system. The CBCT projections were sorted into 8 bins offline, both by breathing phase and amplitude, using in-house software. An iterative algorithm based onmore » total variation minimization, implemented in the open source reconstruction toolkit (RTK), was used to reconstruct the binned projections into 4DCBCT images. The relative tumor motion was quantified by tracking the centroid of the tumor volume from each 4DCBCT image. Following CT-CBCT registration, the planning CT volumes were compared to the location of the CBCT tumor volume as it moves along its breathing trajectory. An overlap metric quantified the ability of the planned PTV and IGTV to contain the tumor volume at treatment. Results: The 4DCBCT reconstructed images visibly show the tumor motion. The mean overlap between the planned PTV (IGTV) and the 4DCBCT tumor volumes was 100% (94%), with an uncertainty of 5% from the 4DCBCT tumor volume contours. Examination of the tumor motion and overlap metric verify that the IGTV drawn at the planning stage is a good representation of the tumor location at treatment. Conclusion: It is difficult to compare GTV volumes from a 4DCBCT and a planning CT due to image quality differences. However, it was possible to conclude the GTV remained within the PTV 100% of the time thus giving the treatment staff confidence that SABR lung treatements are being delivered accurately.« less
Mitsuda, Minoru; Yamaguchi, Masayuki; Furuta, Toshihiro; Nabetani, Akira; Hirayama, Akira; Nozaki, Atsushi; Niitsu, Mamoru; Fujii, Hirofumi
2011-01-01
Multiple small-animal magnetic resonance (MR) imaging to measure tumor volume may increase the throughput of preclinical cancer research assessing tumor response to novel therapies. We used a clinical scanner and multi-channel coil to evaluate the usefulness of this imaging to assess experimental tumor volume in mice. We performed a phantom study to assess 2-dimensional (2D) geometric distortion using 9-cm spherical and 32-cell (8×4 one-cm(2) grids) phantoms using a 3-tesla clinical MR scanner and dedicated multi-channel coil composed of 16 5-cm circular coils. Employing the multi-channel coil, we simultaneously scanned 6 or 8 mice bearing sarcoma 180 tumors. We estimated tumor volume from the sum of the product of tumor area and slice thickness on 2D spin-echo images (repetition time/echo time, 3500/16 ms; in-plane resolution, 0.195×0.195×1 mm(3)). After MR acquisition, we excised and weighed tumors, calculated reference tumor volumes from actual tumor weight assuming a density of 1.05 g/cm(3), and assessed the correlation between the estimated and reference volumes using Pearson's test. Two-dimensional geometric distortion was acceptable below 5% in the 9-cm spherical phantom and in every cell in the 32-cell phantom. We scanned up to 8 mice simultaneously using the multi-channel coil and found 11 tumors larger than 0.1 g in 12 mice. Tumor volumes were 1.04±0.73 estimated by MR imaging and 1.04±0.80 cm(3) by reference volume (average±standard deviation) and highly correlated (correlation coefficient, 0.995; P<0.01, Pearson's test). Use of multiple small-animal MR imaging employing a clinical scanner and multi-channel coil enabled accurate assessment of experimental tumor volume in a large number of mice and may facilitate high throughput monitoring of tumor response to therapy in preclinical research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y; Diwanji, T; Zhang, B
2015-06-15
Purpose: To determine the ability of pharmacokinetic parameters derived from dynamic contrast-enhanced MRI (DCE- MRI) acquired before and during concurrent chemotherapy and radiation therapy to predict clinical response in patients with head and neck cancer. Methods: Eleven patients underwent a DCE-MRI scan at three time points: 1–2 weeks before treatment, 4–5 weeks after treatment initiation, and 3–4 months after treatment completion. Post-processing of MRI data included correction to reduce motion artifacts. The arterial input function was obtained by measuring the dynamic tracer concentration in the jugular veins. The volume transfer constant (Ktrans), extracellular extravascular volume fraction (ve), rate constant (Kep;more » Kep = Ktrans/ve), and plasma volume fraction (vp) were computed for primary tumors and cervical nodal masses. Patients were categorized into two groups based on response to therapy at 3–4 months: responders (no evidence of disease) and partial responders (regression of disease). Responses of the primary tumor and nodes were evaluated separately. A linear classifier and receiver operating characteristic curve analyses were used to determine the best model for discrimination of responders from partial responders. Results: When the above pharmacokinetic parameters of the primary tumor measured before and during treatment were incorporated into the linear classifier, a discriminative accuracy of 88.9%, with sensitivity =100% and specificity = 66.7%, was observed between responders (n=6) and partial responders (n=3) for the primary tumor with the corresponding accuracy = 44.4%, sensitivity = 66.7%, and specificity of 0% for nodal masses. When only pre-treatment parameters were used, the accuracy decreased to 66.7%, with sensitivity = 66.7% and specificity = 66.7% for the primary tumor and decreased to 33.3%, sensitivity of 50%, and specificity of 0% for nodal masses. Conclusion: Higher accuracy, sensitivity, and specificity were obtained using DCE-MRI-derived pharmacokinetic parameters acquired before and during treatment as compared with those derived from the pre-treatment time-point, exclusively.« less
NASA Astrophysics Data System (ADS)
Samkoe, Kimberley S.; Bates, Brent D.; Tselepidakis, Niki N.; DSouza, Alisha V.; Gunn, Jason R.; Ramkumar, Dipak B.; Paulsen, Keith D.; Pogue, Brian W.; Henderson, Eric R.
2017-12-01
Wide local excision (WLE) of tumors with negative margins remains a challenge because surgeons cannot directly visualize the mass. Fluorescence-guided surgery (FGS) may improve surgical accuracy; however, conventional methods with direct surface tumor visualization are not immediately applicable, and properties of tissues surrounding the cancer must be considered. We developed a phantom model for sarcoma resection with the near-infrared fluorophore IRDye 800CW and used it to iteratively define the properties of connective tissues that typically surround sarcoma tumors. We then tested the ability of a blinded surgeon to resect fluorescent tumor-simulating inclusions with ˜1-cm margins using predetermined target fluorescence intensities and a Solaris open-air fluorescence imaging system. In connective tissue-simulating phantoms, fluorescence intensity decreased with increasing blood concentration and increased with increasing intralipid concentrations. Fluorescent inclusions could be resolved at ≥1-cm depth in all inclusion concentrations and sizes tested. When inclusion depth was held constant, fluorescence intensity decreased with decreasing volume. Using targeted fluorescence intensities, a blinded surgeon was able to successfully excise inclusions with ˜1-cm margins from fat- and muscle-simulating phantoms with inclusion-to-background contrast ratios as low as 2∶1. Indirect, subsurface FGS is a promising tool for surgical resection of cancers requiring WLE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
Purpose: The purpose of this work was to determine the dosimetric benefit to normal tissues by tracking liver tumor dose in four dimensional radiation therapy (4DRT) on ten phases of four dimensional computer tomagraphy(4DCT) images. Methods: Target tracking each phase with the beam aperture for ten liver cancer patients were converted to cumulative plan and compared to the 3D plan with a merged target volume based on 4DCT image in radiation treatment planning system (TPS). The change in normal tissue dose was evaluated in the plan by using the parameters V5, V10, V15, V20,V25, V30, V35 and V40 (volumes receivingmore » 5, 10, 15, 20, 25, 30, 35 and 40Gy, respectively) in the dose-volume histogram for the liver; mean dose for the following structures: liver, left kidney and right kidney; and maximum dose for the following structures: bowel, duodenum, esophagus, stomach and heart. Results: There was significant difference between 4D PTV(average 115.71cm3 )and ITV(169.86 cm3). When the planning objective is 95% volume of PTV covered by the prescription dose, the mean dose for the liver, left kidney and right kidney have an average decrease 23.13%, 49.51%, and 54.38%, respectively. The maximum dose for bowel, duodenum,esophagus, stomach and heart have an average decrease 16.77%, 28.07%, 24.28%, 4.89%, and 4.45%, respectively. Compared to 3D RT, radiation volume for the liver V5, V10, V15, V20, V25, V30, V35 and V40 by using the 4D plans have a significant decrease(P≤0.05). Conclusion: The 4D plan method creates plans that permit better sparing of the normal structures than the commonly used ITV method, which delivers the same dosimetric effects to the target.« less
ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells.
Komaragiri, Shravan Kumar; Bostanthirige, Dhanushka H; Morton, Derrick J; Patel, Divya; Joshi, Jugal; Upadhyay, Sunil; Chaudhary, Jaideep
2016-09-09
Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, we examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function. Copyright © 2016 Elsevier Inc. All rights reserved.
Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi
2015-07-01
Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor. Copyright © 2015 Elsevier Inc. All rights reserved.
Sahin, Hilal; Sarioglu, Fatma Ceren; Bagci, Mustafa; Karadeniz, Tugba; Uluer, Hatice; Sanci, Muzaffer
2018-05-01
The aim of this retrospective single-center study was to evaluate the relationship between maximum tumor size, tumor volume, tumor volume ratio (TVR) based on preoperative magnetic resonance (MR) volumetry, and negative histological prognostic parameters (deep myometrial invasion [MI], lymphovascular space invasion, tumor histological grade, and subtype) in International Federation of Gynecology and Obstetrics stage I endometrial cancer. Preoperative pelvic MR imaging studies of 68 women with surgical-pathologic diagnosis of International Federation of Gynecology and Obstetrics stage I endometrial cancer were reviewed for assessment of MR volumetry and qualitative assessment of MI. Volume of the tumor and uterus was measured with manual tracing of each section on sagittal T2-weighted images. Tumor volume ratio was calculated according to the following formula: TVR = (total tumor volume/total uterine volume) × 100. Receiver operating characteristics curve was performed to investigate a threshold for TVR associated with MI. The Mann-Whitney U test, Kruskal-Wallis test, and linear regression analysis were applied to evaluate possible differences between tumor size, tumor volume, TVR, and negative prognostic parameters. Receiver operating characteristics curve analysis of TVR for prediction of deep MI was statistically significant (P = 0.013). An optimal TVR threshold of 7.3% predicted deep myometrial invasion with 85.7% sensitivity, 46.8% specificity, 41.9% positive predictive value, and 88.0% negative predictive value. Receiver operating characteristics curve analyses of TVR, tumor size, and tumor volume for prediction of tumor histological grade or lymphovascular space invasion were not significant. The concordance between radiologic and pathologic assessment for MI was almost excellent (κ value, 0.799; P < 0.001). Addition of TVR to standard radiologic assessment of deep MI increased the sensitivity from 90.5% to 95.2%. Tumor volume ratio, based on preoperative MR volumetry, seems to predict deep MI independently in stage I endometrial cancer with insufficient sensitivity and specificity. Its value in clinical practice for risk stratification models in endometrial cancer has to be studied in larger cohort of patients.
Early diagnostic role of PSA combined miR-155 detection in prostate cancer.
Guo, T; Wang, X-X; Fu, H; Tang, Y-C; Meng, B-Q; Chen, C-H
2018-03-01
As a kind of malignant tumor in the male genitourinary system, prostate cancer exhibits significantly increased occurrence. Prostate-specific antigen (PSA) expression can be seen in the prostate cancer, prostatitis, and other diseases, therefore, lack of diagnostic specificity. The miR-155 expression is abnormally increased in the tumors. Therefore, this study aims to explore the clinical significance of PSA combined miR-155 detection in the early diagnosis of prostate cancer. A total of 86 patients diagnosed with prostate cancer were enrolled in this study. PSA and miR-155 gene expression in tumor tissue were detected by using Real-time PCR. The serum levels of PSA were measured by using enzyme-linked immunosorbent assay (ELISA). The correlation of PSA and miR-155 expression with age, body mass index (BMI), tumor volume, tumor-node-metastasis (TNM) stage, lymph node metastasis (LNM), and other clinicopathological features were analyzed, respectively. Serum PSA expression and PSA gene in tumor tissue were significantly higher compared to that in adjacent tissues (p<0.05). PSA gene and protein increased significantly with the clinical stage of TNM and decreased following the increase of grade (p<0.05). The miR-155 level was significantly elevated in the tumor tissue compared with para-carcinoma tissue (p<0.05). PSA and miR-155 expressions were positively correlated with TNM stage, tumor volume, and LNM, and negatively correlated with grade (p<0.05). PSA and miR-155 were closely related to the clinicopathological features of prostate cancer. Combined detection is helpful for the early diagnosis of prostate cancer.
Rodeberg, David A.; Stoner, Julie A.; Garcia-Henriquez, Norbert; Randall, R. Lor; Spunt, Sheri L.; Arndt, Carola A.; Kao, Simon; Paidas, Charles N.; Million, Lynn; Hawkins, Douglas S.
2010-01-01
Background To compare tumor volume and patient weight vs. traditional factors of tumor diameter and patient age, to determine which parameters best discriminates outcome among intermediate risk RMS patients. Methods Complete patient information for non-metastatic RMS patients enrolled in the Children’s Oncology Group (COG) intermediate risk study D9803 (1999–2005) was available for 370 patients. The Kaplan-Meier method was used to estimate survival distributions. A recursive partitioning model was used to identify prognostic factors associated with event-free survival (EFS). Cox-proportional hazards regression models were used to estimate the association between patient characteristics and the risk of failure or death. Results For all intermediate risk patients with RMS, a recursive partitioning algorithm for EFS suggests that prognostic groups should optimally be defined by tumor volume (transition point 20 cm3), weight (transition point 50 kg), and embryonal histology. Tumor volume and patient weight added significant outcome information to the standard prognostic factors including tumor diameter and age (p=0.02). The ability to resect the tumor completely was not significantly associated with the size of the patient, and patient weight did not significantly modify the association between tumor volume and EFS after adjustment for standard risk factors (p=0.2). Conclusion The factors most strongly associated with EFS were tumor volume, patient weight, and histology. Based on regression modeling, volume and weight are superior predictors of outcome compared to tumor diameter and patient age in children with intermediate risk RMS. Prognostic performance of tumor volume and patient weight should be assessed in an independent prospective study. PMID:24048802
Grading of vestibular schwannomas and corresponding tumor volumes: ramifications for radiosurgery.
Mindermann, T; Schlegel, I
2013-01-01
Patients with vestibular schwannomas (VS) are either assigned to watchful waiting, microsurgical resection, or radiosurgery. Decision making on how to proceed is based on parameters such as age, tumor growth, loss of hearing, and the tumor's Koos grading. In order to correlate Koos grading with tumor volume, patient records of 235 patients with VS who underwent Gamma Knife radiosurgery (GKRS) were retrospectively reviewed. From 1994 to 2009, 235 consecutive patients underwent GKRS for sporadic VS at the Zurich Gamma Knife Center. Median follow up was 62.8 ± 33.0 months. Of the 235 tumors, 32 (13.6 %) were graded Koos I with a volume of 0.25 ± 0.3 cc; 71 (30.2 %) were graded Koos II with a volume of 0.57 ± 0.54 cc; 70 (29.8 %) were graded Koos III with a volume of 1.82 ± 1.88 cc; and 62 (26.4 %) were graded Koos IV with a volume of 4.17 ± 2.75 cc. Tumor progression was defined as a volume increase > 20 % at 2 years or later following GKRS. Overall tumor progression occurred in 21/235 (8.9 %) patients at 3.4 ± 0.9 years. Tumor progression did not differ statistically significantly in the various Koos grades: 1/32 (3.1 %) patients with VS Koos Grade I, 7/71 (9.8 %) patients with VS Koos Grade II, 6/70 (8.6 %) patients with VS Koos Grade III, and 7/62 (11.3 %) patients with VS Koos Grade IV. To our knowledge, this is the first work correlating the various Koos grades of VS to their respective tumor volumes. In our patients, tumor volumes of VS Koos Grade IV were limited because all of our patients were eligible for radiosurgery. In our series, the outcome following GKRS for patients with VS Koos Grade IV tumors did not differ from patients with VS Koos Grades I-III. We therefore suggest to limit Koos Grade IV VS to tumor volumes < 6 cc that may be eligible for radiosurgery, and introduce an additional VS Grade V for large VS with tumor volumes of > 6 cc that may not be eligible for radiosurgery.
Physiological Imaging-Defined, Response-Driven Subvolumes of a Tumor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farjam, Reza; Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Tsien, Christina I.
2013-04-01
Purpose: To develop an image analysis framework to delineate the physiological imaging-defined subvolumes of a tumor in relating to treatment response and outcome. Methods and Materials: Our proposed approach delineates the subvolumes of a tumor based on its heterogeneous distributions of physiological imaging parameters. The method assigns each voxel a probabilistic membership function belonging to the physiological parameter classes defined in a sample of tumors, and then calculates the related subvolumes in each tumor. We applied our approach to regional cerebral blood volume (rCBV) and Gd-DTPA transfer constant (K{sup trans}) images of patients who had brain metastases and were treatedmore » by whole-brain radiation therapy (WBRT). A total of 45 lesions were included in the analysis. Changes in the rCBV (or K{sup trans})–defined subvolumes of the tumors from pre-RT to 2 weeks after the start of WBRT (2W) were evaluated for differentiation of responsive, stable, and progressive tumors using the Mann-Whitney U test. Performance of the newly developed metrics for predicting tumor response to WBRT was evaluated by receiver operating characteristic (ROC) curve analysis. Results: The percentage decrease in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was significantly greater in the group of responsive tumors than in the group of stable and progressive tumors (P<.007). The change in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was a predictor for post-RT response significantly better than change in the gross tumor volume observed during the same time interval (P=.012), suggesting that the physiological change occurs before the volumetric change. Also, K{sup trans} did not add significant discriminatory information for assessing response with respect to rCBV. Conclusion: The physiological imaging-defined subvolumes of the tumors delineated by our method could be candidates for boost target, for which further development and evaluation is warranted.« less
Tarasewicz, Elizabeth; Rivas, Lisbi; Hamdan, Randala; Dokic, Danijela; Parimi, Vamsi; Bernabe, Beatriz Penalver; Thomas, Alexandra; Shea, Lonnie D; Jeruss, Jacqueline S
2014-01-01
Breast cancer onset and disease progression have been linked to members of the TGFβ superfamily and their downstream signaling components, the Smads. Alterations in Smad3 signaling are associated with the dichotomous role of TGFβ in malignancy, mediating both tumor suppressant and pro-metastatic behaviors. Overexpression of cell cycle regulators, cyclins D and E, renders cyclin-dependent kinases (CDKs) 4/2 hyperactive. Noncanonical phosphorylation of Smad3 by CDK4/2 inhibits tumor suppressant actions of Smad3. We hypothesized that CDK inhibition (CDKi) would restore Smad3 action and help promote cancer cell regression. Treatment of triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-436, Hs578T) with CDK2i or CDK4i resulted in increased Smad3 activity and decreased cell migration. Transfection with a 5M Smad3 construct containing inhibitory mutations in 5 CDK phosphorylation sites also resulted in decreased TNBC cell migration and invasion. MDA-MB-231 cells treated with CDK2i or CDK4i resulted in decreased Smad3 protein phosphorylation at the CDK phosphorylation T179 site, decreased MMP2 and c-myc expression, and increased p15 and p21 expression. Using a novel transfected cell array, we found that CDK2i treatment decreased activity of the epithelial-to-mesenchymal transition related transcription factors Snail and Twist. In vivo studies in an MDA-MB-231 tumor model showed that individual and combination treatment with paclitaxel and CDK2i resulted in decreased tumor volume and Ki67 staining. Collectively, these data support further investigation of targeted CDK inhibitors as a promising therapeutic strategy for TNBC, a breast cancer subtype with limited treatment options. PMID:25485498
SU-E-J-188: Theoretical Estimation of Margin Necessary for Markerless Motion Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, R; Block, A; Harkenrider, M
2015-06-15
Purpose: To estimate the margin necessary to adequately cover the target using markerless motion tracking (MMT) of lung lesions given the uncertainty in tracking and the size of the target. Methods: Simulations were developed in Matlab to determine the effect of tumor size and tracking uncertainty on the margin necessary to achieve adequate coverage of the target. For simplicity, the lung tumor was approximated by a circle on a 2D radiograph. The tumor was varied in size from a diameter of 0.1 − 30 mm in increments of 0.1 mm. From our previous studies using dual energy markerless motion tracking,more » we estimated tracking uncertainties in x and y to have a standard deviation of 2 mm. A Gaussian was used to simulate the deviation between the tracked location and true target location. For each size tumor, 100,000 deviations were randomly generated, the margin necessary to achieve at least 95% coverage 95% of the time was recorded. Additional simulations were run for varying uncertainties to demonstrate the effect of the tracking accuracy on the margin size. Results: The simulations showed an inverse relationship between tumor size and margin necessary to achieve 95% coverage 95% of the time using the MMT technique. The margin decreased exponentially with target size. An increase in tracking accuracy expectedly showed a decrease in margin size as well. Conclusion: In our clinic a 5 mm expansion of the internal target volume (ITV) is used to define the planning target volume (PTV). These simulations show that for tracking accuracies in x and y better than 2 mm, the margin required is less than 5 mm. This simple simulation can provide physicians with a guideline estimation for the margin necessary for use of MMT clinically based on the accuracy of their tracking and the size of the tumor.« less
Tumor volume in insignificant prostate cancer: increasing threshold gains increasing risk.
Schiffmann, Jonas; Connan, Judith; Salomon, Georg; Boehm, Katharina; Beyer, Burkhard; Schlomm, Thorsten; Tennstedt, Pierre; Sauter, Guido; Karakiewicz, Pierre I; Graefen, Markus; Huland, Hartwig
2015-01-01
An increased tumor volume threshold (<2.5 ml) is suggested to define insignificant prostate cancer (iPCa). We hypothesize that an increasing tumor volume within iPCa patients increases the risk of biochemical recurrence (BCR) after radical prostatectomy (RP). We relied on RP patients treated between 1992 and 2008. Multivariable Cox regression analyses predicting BCR within patients harboring favorable pathological characteristics (≤pT2, pN0/Nx, Gleason 3 + 3). Kaplan-Meier analysis was performed for BCR-free survival within iPCa patients (≤pT2, pN0/Nx, Gleason 3 + 3, tumor volume: <0.5 vs. 0.5-2.49 ml). From 1,829 patients, 141 (7.7%) and 310 (16.9%) harbored iPCa (tumor volume: <0.5 vs. 0.5-2.49 ml), respectively. Of those, 21 (14.9%) versus 31 (10.0%) had PSA >10 ng/ml. Tumor volume achieved independent predictor status for BCR. Specifically, iPCa patients with increasing tumor volume (0.5-2.49 ml) were at higher risk of BCR after RP than those with tumor volume <0.5 ml (HR: 8.8, 95% CI: 1.2-65.9, P = 0.04). Kaplan-Meier analysis recorded superior BCR-free survival in iPCa patients with lower tumor volume (<0.5 ml) (log-rank P = 0.009). The 10-year cancer-specific death rate was 0 versus 0.5%. Contemporary iPCa definition incorporates intermediate and high-risk patients (PSA: 10-20 and >20 ng/ml). Despite most favorable pathological characteristics, iPCa patients are not devoid of BCR after RP. Moreover, iPCa patients were at higher risk of BCR, when increasing tumor volume up to 2.49 ml was at play. Taken together the contemporary concept of iPCa is suboptimal. Especially, an increased tumor volume threshold for defining iPCa cannot be recommended according to our data. Clinicians might take these considerations into account during decision-making process. © 2014 Wiley Periodicals, Inc.
Physiologic Effect of Stent Therapy for Inferior Vena Cava Obstruction Due to Malignant Liver Tumor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishi, Kazushi; Sonomura, Tetsuo; Fujimoto, Hisashi
Purpose. To understand systemic the influence of stent therapy for inferior vena cava (IVC) obstruction due to advanced liver tumor. Methods. Seven patients with symptomatic IVC obstruction due to advanced primary (n 4) or secondary (n = 3) liver tumor were subjected to stent therapy. Enrollment criteria included high IVC pressure over 15 mmHg and the presence of edema and ascites. Z-stents were deployed using coaxial sheath technique via femoral venous puncture. Physiologic and hematobiochemical parameters were analyzed. Results. All procedures were successful, and the stents remained patent until patient death. Promptly after stent placement, the IVC flow recovered, andmore » the venous blood pressure in the IVC below the obstruction level showed a significant decrease from 20.8 {+-} 1.2 mmHg (mean {+-} SE) to 10.7 {+-} 0.7 mmHg (p < 0.01). Transient mild increase of right atrial pressure was observed in 1 patient. During the following week prominent diuresis was observed in all patients. Mean urine output volume in the 3 days before the stent therapy was 0.81 {+-} 0.09 l/day compared with 2.1 {+-} 0.2 l/day (p < 0.01) in the 3 days after. The edema and ascites decreased in all patients. The caval pressure change correlated well (r > 0.6) with the urine volume increase, and with the decreased volume of edema and ascites. The urine volume increase correlated well with the decrement of edema, but not with that of ascites. Improvements for various durations in the levels of blood urea nitrogen, serum creatinine, lactate dehydrogenase, fibrinogen, and platelet count were found (p < 0.05). These hematobiochemical changes were well correlated with each other and with the decrement of ascites. Two patients showed a low blood sodium level of 128.5 mEq/l after intensive natriuresis, and one of them died on day 21 with hepatic failure, which was interpreted as maladaptation aggravation. The mean survival time was 94.1 {+-} 34.1 days (mean {+-} SD), ranging from 21 to 140 days after stent treatment. Conclusion. The stent therapy for IVC obstruction due to malignant liver tumors was followed by a series of physiologic and hematobiochemical consequences, most of them favorable but some possibly unfavorable. Rational interpretations and predictions of sequelae based on physiologic science including cardiology, hepatology, and nephrology would facilitate the best management of stent therapy for malignant IVC obstruction.« less
Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma.
Keunen, Olivier; Johansson, Mikael; Oudin, Anaïs; Sanzey, Morgane; Rahim, Siti A Abdul; Fack, Fred; Thorsen, Frits; Taxt, Torfinn; Bartos, Michal; Jirik, Radovan; Miletic, Hrvoje; Wang, Jian; Stieber, Daniel; Stuhr, Linda; Moen, Ingrid; Rygh, Cecilie Brekke; Bjerkvig, Rolf; Niclou, Simone P
2011-03-01
Bevacizumab, an antibody against vascular endothelial growth factor (VEGF), is a promising, yet controversial, drug in human glioblastoma treatment (GBM). Its effects on tumor burden, recurrence, and vascular physiology are unclear. We therefore determined the tumor response to bevacizumab at the phenotypic, physiological, and molecular level in a clinically relevant intracranial GBM xenograft model derived from patient tumor spheroids. Using anatomical and physiological magnetic resonance imaging (MRI), we show that bevacizumab causes a strong decrease in contrast enhancement while having only a marginal effect on tumor growth. Interestingly, dynamic contrast-enhanced MRI revealed a significant reduction of the vascular supply, as evidenced by a decrease in intratumoral blood flow and volume and, at the morphological level, by a strong reduction of large- and medium-sized blood vessels. Electron microscopy revealed fewer mitochondria in the treated tumor cells. Importantly, this was accompanied by a 68% increase in infiltrating tumor cells in the brain parenchyma. At the molecular level we observed an increase in lactate and alanine metabolites, together with an induction of hypoxia-inducible factor 1α and an activation of the phosphatidyl-inositol-3-kinase pathway. These data strongly suggest that vascular remodeling induced by anti-VEGF treatment leads to a more hypoxic tumor microenvironment. This favors a metabolic change in the tumor cells toward glycolysis, which leads to enhanced tumor cell invasion into the normal brain. The present work underlines the need to combine anti-angiogenic treatment in GBMs with drugs targeting specific signaling or metabolic pathways linked to the glycolytic phenotype.
Ursodeoxycholic acid induces apoptosis in hepatocellular carcinoma xenografts in mice.
Liu, Hui; Xu, Hong-Wei; Zhang, Yu-Zhen; Huang, Ya; Han, Guo-Qing; Liang, Tie-Jun; Wei, Li-Li; Qin, Cheng-Yong; Qin, Cheng-Kun
2015-09-28
To evaluate the efficacy of ursodeoxycholic acid (UDCA) as a chemotherapeutic agent for the treatment of hepatocellular carcinoma (HCC). BALB/c nude mice were randomized into four groups 24 h before subcutaneous injection of hepatocarcinoma BEL7402 cells suspended in phosphate buffered saline (PBS) into the right flank. The control group (n = 10) was fed a standard diet while treatment groups (n = 10 each) were fed a standard daily diet supplemented with different concentrations of UDCA (30, 50 and 70 mg/kg per day) for 21 d. Tumor growth was measured once each week, and tumor volume (V) was calculated with the following equation: V = (L × W(2)) × 0.52, where L is the length and W is the width of the xenograft. After 21 d, mice were killed under ether anesthesia, and tumors were excised and weighed. Apoptosis was evaluated through detection of DNA fragmentation with gel electrophoresis and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Western blot analysis was performed to determine the expression of apoptosis-related proteins BAX, BCL2, APAF1, cleaved caspase-9, and cleaved caspase-3. UDCA suppressed tumor growth relative to controls. The mean tumor volumes were the following: control, 1090 ± 89 mm(3); 30 mg/kg per day, 612 ± 46 mm(3); 50 mg/kg per day, 563 ± 38 mm(3); and 70 mg/kg per day, 221 ± 26 mm(3). Decreased tumor volumes reached statistical significance relative to control xenografts (30 mg/kg per day, P < 0.05; 50 mg/kg per day, P < 0.05; 70 mg/kg per day, P < 0.01). Increasing concentrations of UDCA led to increased DNA fragmentation observed on gel electrophoresis and in the TUNEL assay (control, 1.6% ± 0.3%; 30 mg/kg per day, 2.9% ± 0.5%; 50 mg/kg per day, 3.15% ± 0.7%, and 70 mg/kg per day, 4.86% ± 0.9%). Western blot analysis revealed increased expression of BAX, APAF1, cleaved-caspase-9 and cleaved-caspase-3 proteins, which induce apoptosis, but decreased expression of BCL2 protein, which is an inhibitor of apoptosis, following administration of UDCA. UDCA suppresses growth of BEL7402 hepatocellular carcinoma cells in vivo, in part through apoptosis induction, and is thus a candidate for therapeutic treatment of HCC.
Automatic segmentation of tumor-laden lung volumes from the LIDC database
NASA Astrophysics Data System (ADS)
O'Dell, Walter G.
2012-03-01
The segmentation of the lung parenchyma is often a critical pre-processing step prior to application of computer-aided detection of lung nodules. Segmentation of the lung volume can dramatically decrease computation time and reduce the number of false positive detections by excluding from consideration extra-pulmonary tissue. However, while many algorithms are capable of adequately segmenting the healthy lung, none have been demonstrated to work reliably well on tumor-laden lungs. Of particular challenge is to preserve tumorous masses attached to the chest wall, mediastinum or major vessels. In this role, lung volume segmentation comprises an important computational step that can adversely affect the performance of the overall CAD algorithm. An automated lung volume segmentation algorithm has been developed with the goals to maximally exclude extra-pulmonary tissue while retaining all true nodules. The algorithm comprises a series of tasks including intensity thresholding, 2-D and 3-D morphological operations, 2-D and 3-D floodfilling, and snake-based clipping of nodules attached to the chest wall. It features the ability to (1) exclude trachea and bowels, (2) snip large attached nodules using snakes, (3) snip small attached nodules using dilation, (4) preserve large masses fully internal to lung volume, (5) account for basal aspects of the lung where in a 2-D slice the lower sections appear to be disconnected from main lung, and (6) achieve separation of the right and left hemi-lungs. The algorithm was developed and trained to on the first 100 datasets of the LIDC image database.
Tüzün, Ali; Keskin, Onur; Yakut, Mustafa; Kalkan, Cagdas; Soykan, Irfan
2014-01-01
Autoimmune gastritis is an autoimmune and inflammatory condition that may predispose to gastric carcinoid tumors or adenocarcinomas. The early diagnosis of these tumors is important in order to decrease morbidity and mortality. Platelet indices such as mean platelet volume and plateletcrit levels increase in inflammatory, infectious and malign conditions. The primary aim of this study was to explore wheter platelet indices and red cell distribution width have any predictive role in the discrimination of autoimmune gastritis patients with and without gastric carcinoid tumors. Also secondary aim of this study was to investigate whether any changes exist betwenn autoimmune gastritis and functional dyspepsia patients by means of platelet indices. Plateletcrit (0.22 ± 0.06 vs. 0.20 ± 0.03%, p < 0.001) and red cell distribution width (16.11 ± 3.04 vs. 13.41 ± 0.95%, p < 0.001) were significantly higher in autoimmune gastritis patients compared to control group. Receiver operating curve analysis suggested that optimum plateletcrit cut-off point was 0.20% (AUC: 0.646), and 13.95% as the cut off value for red cell distribution width (AUC: 0.860). Although plateletcrit (0.22 ± 0.06 vs. 0.21 ± 0.04%, p = 0.220) and mean platelet volume (8.94 ± 1.44 vs. 8.68 ± 0.89 fl, p = 0.265) were higher in autoimmune gastritis patients without carcinoid tumor compared to patients with carcinoid tumors, these parameters were not statistically significant. Changes in plateletcrit and red cell distribution width values may be used as a marker in the discrimination of autoimmune gastritis and fucntional dyspepsia patients but not useful in patients with gastric carcinoid tumor type I.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glide-Hurst, Carri K.; Gopan, Ellen; Department of Radiation Oncology Wayne State University, Detroit, MI
2010-07-01
Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroidmore » position was <2.0 mm. Interfraction population variability was 3.6-6.7 mm (systematic) and 3.1-3.9 mm (random) for the GTV centroid and 1.0-3.3 mm (systematic) and 1.5-2.6 mm (random) for the lungs. Tumor volume regressed 44.6% {+-} 23.2%. Gross tumor volume border variability was patient specific and demonstrated anisotropic shape change in some subjects. Interfraction GTV positional variability was associated with tumor volume regression and contralateral lung volume (p < 0.05). Inter-breath-hold reproducibility was unaffected by time point in the treatment course (p > 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.« less
Takahashi, Wataru; Mori, Shinichiro; Nakajima, Mio; Yamamoto, Naoyoshi; Inaniwa, Taku; Furukawa, Takuji; Shirai, Toshiyuki; Noda, Koji; Nakagawa, Keiichi; Kamada, Tadashi
2014-11-11
To moving lung tumors, we applied a respiratory-gated strategy to carbon-ion pencil beam scanning with multiple phase-controlled rescanning (PCR). In this simulation study, we quantitatively evaluated dose distributions based on 4-dimensional CT (4DCT) treatment planning. Volumetric 4DCTs were acquired for 14 patients with lung tumors. Gross tumor volume, clinical target volume (CTV) and organs at risk (OARs) were delineated. Field-specific target volumes (FTVs) were calculated, and 48Gy(RBE) in a single fraction was prescribed to the FTVs delivered from four beam angles. The dose assessment metrics were quantified by changing the number of PCR and the results for the ungated and gated scenarios were then compared. For the ungated strategy, the mean dose delivered to 95% of the volume of the CTV (CTV-D95) was in average 45.3 ± 0.9 Gy(RBE) even with a single rescanning (1 × PCR). Using 4 × PCR or more achieved adequate target coverage (CTV-D95 = 46.6 ± 0.3 Gy(RBE) for ungated 4 × PCR) and excellent dose homogeneity (homogeneity index =1.0 ± 0.2% for ungated 4 × PCR). Applying respiratory gating, percentage of lung receiving at least 20 Gy(RBE) (lung-V20) and heart maximal dose, averaged over all patients, significantly decreased by 12% (p < 0.05) and 13% (p < 0.05), respectively. Four or more PCR during PBS-CIRT improved dose conformation to moving lung tumors without gating. The use of a respiratory-gated strategy in combination with PCR reduced excessive doses to OARs.
Chvetsov, Alexei V; Dong, Lei; Palta, Jantinder R; Amdur, Robert J
2009-10-01
To develop a fast computational radiobiologic model for quantitative analysis of tumor volume during fractionated radiotherapy. The tumor-volume model can be useful for optimizing image-guidance protocols and four-dimensional treatment simulations in proton therapy that is highly sensitive to physiologic changes. The analysis is performed using two approximations: (1) tumor volume is a linear function of total cell number and (2) tumor-cell population is separated into four subpopulations: oxygenated viable cells, oxygenated lethally damaged cells, hypoxic viable cells, and hypoxic lethally damaged cells. An exponential decay model is used for disintegration and removal of oxygenated lethally damaged cells from the tumor. We tested our model on daily volumetric imaging data available for 14 head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system. A simulation based on the averaged values of radiobiologic parameters was able to describe eight cases during the entire treatment and four cases partially (50% of treatment time) with a maximum 20% error. The largest discrepancies between the model and clinical data were obtained for small tumors, which may be explained by larger errors in the manual tumor volume delineation procedure. Our results indicate that the change in gross tumor volume for head-and-neck cancer can be adequately described by a relatively simple radiobiologic model. In future research, we propose to study the variation of model parameters by fitting to clinical data for a cohort of patients with head-and-neck cancer and other tumors. The potential impact of other processes, like concurrent chemotherapy, on tumor volume should be evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glauert, Howard P.; Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506; Tharappel, Job C.
Polychlorinated biphenyls (PCBs) are persistent and ubiquitous environmental chemicals that bioaccumulate and have hepatic tumor promoting activity in rodents. The present study examined the effect of deleting the p50 subunit of NF-{kappa}B on the hepatic tumor promoting activity of 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153) in mice. Both wild-type and p50-/- male mice were injected i.p. with diethylnitrosamine (DEN, 90 mg/kg) and then subsequently injected biweekly with 20 i.p. injections of PCB-153 (300 {mu}mol/kg/injection). p50 deletion decreased the tumor incidence in both PCB- and vehicle-treated mice, whereas PCB-153 slightly (P = 0.09) increased the tumor incidence in wild-type and p50-/- mice. PCB-153 increased themore » total tumor volume in both wild-type and p50-/- mice, but the total tumor volume was not affected by p50 deletion in either PCB- or vehicle-treated mice. The volume of tumors that were positive for glutamine synthetase (GS), which is indicative of mutations in the beta-catenin gene, was increased in both wild-type and p50-/- mice administered PCB-153 compared to vehicle controls, and inhibited in p50-/- mice compared to wild-type mice (in both PCB- and vehicle-treated mice). The volume of tumors that were negative for GS was increased in p50-/- mice compared to wild-type mice but was not affected by PCB-153. PCB-153 increased cell proliferation in normal hepatocytes in wild-type but not p50-/- mice; this increase was inhibited in p50-/- mice. In hepatic tumors, the rate of cell proliferation was much higher than in normal hepatocytes, but was not affected by PCB treatment or p50 deletion. The rate of apoptosis, as measured by the TUNEL assay, was not affected by PCB-153 or p50 deletion in normal hepatocytes. In hepatic tumors, the rate of apoptosis was lower than in normal hepatocytes; PCB-153 slightly (P = 0.10) increased apoptosis in p50-/- but not wild-type mice; p50 deletion had no effect. Taken together, these data indicate that the absence of the NF-{kappa}B p50 subunit inhibits the promoting activity of PCB-153 and alters the proliferative and apoptotic changes in mouse liver in the response to PCBs.« less
Quantification of Tumor Vascular Permeability and Blood Volume by Positron Emission Tomography
Chen, Haojun; Tong, Xiao; Lang, Lixin; Jacobson, Orit; Yung, Bryant C.; Yang, Xiangyu; Bai, Ruiliang; Kiesewetter, Dale O.; Ma, Ying; Wu, Hua; Niu, Gang; Chen, Xiaoyuan
2017-01-01
Purpose: Evans Blue (EB) is an azo dye that binds quantitatively with serum albumin. With an albumin binding, NOTA conjugated truncated Evan's blue (NEB) dye derived PET tracer, we aimed to establish a strategy for evaluating vascular permeability in malignant tumors via non-invasive PET. Experimental design: Sixty-minute dynamic PET using [18F]FAl-NEB was performed in three xenograft tumor models including INS-1 rat insulinoma, UM-SCC-22B human head and neck carcinoma and U-87 MG human glioblastoma. Tumor vascular permeability was quantified by the difference of the slopes between tumor and blood time-activity curve (TACs, expressed as Ps). The method was further substantiated by EB extraction and colorimetric assay and correlates with that calculated from dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). The changes in tumor vasculature at different time points were assessed with NEB PET in U-87 MG and UM-SCC-22B tumor models after treatment with bevacizumab or doxorubicin. Result: The Ps values calculated from tumor and blood TACs from multiple time-point static images are consistent with those from dynamic images. Moreover, the Ps showed a positive and significant correlation with extracted EB concentration and KPS-MRI generated from DCE-MRI, which further confirmed the soundness of this methodology. The antiangiogenic effect of bevacizumab could be revealed by NEB PET in U-87 MG tumors as early as 8 hrs after therapy, demonstrated by a substantial decrease of Ps. On the contrary, there was no significant change of Ps in bevacizumab treated UM-SCC-22B tumors, compared with control group. However, the significant changes of Pswere overestimated in doxorubicin treated UM-SCC-22B tumors. Conclusions: We successfully developed a relatively convenient and novel strategy to evaluate vascular permeability and blood volume using NEB PET. This method will be advantageous in evaluating vascular permeability, promoting drug delivery, and monitoring tumor response to therapeutics that affect tumor angiogenesis. PMID:28744320
Rahimi, Homaira; Dieudonne, Gregory; Kheyfits, Valeriy; Bouta, Echoe M; Wood, Ronald W; Barrett, Rick; Moorehead, Sharon; Schwarz, Edward M; Ritchlin, Christopher T
2016-01-01
The mechanisms that trigger flare in rheumatoid arthritis (RA) are unknown. In murine arthritis models, dysfunctional lymph node (LN) drainage is associated with joint flare. To examine if LN alterations are associated with RA flare, we analyzed the change in LN volume via contrast-enhanced magnetic resonance imaging (CE-MRI) in patients with active joint flare at baseline and 16 weeks after certolizumab pegol (CZP) therapy. We also assessed the changes in popliteal or epitrochlear LN volumes versus the Rheumatoid and Arthritis Outcome Score (RAOS) (knee), or the Michigan Hand Questionnaire (MHQ; wrist/hand), and Disease Activity Score 28 (DAS28), at baseline and 16 weeks. Total LN volume in 7 of 10 patients with measurable LN on CE-MRI significantly decreased 16 weeks after CZP therapy (mean decrease 37%; P = 0.0019). Improvement in knee pain measured by the RAOS ( P = 0.03) inversely correlated with a decrease in total popliteal LN volume ( R 2 = 0.94). All patients demonstrated significant improvement in DAS28 (mean decrease 1.48; P = 0.0002). For flare in the hand, significant improvement in activities of daily living (ADL) as measured by the MHQ was observed (left hand mean improvement 20%; P = 0.02; right hand mean improvement 37%; P = 0.03). RA patients with the smallest change in LN volume during anti-tumor necrosis factor (anti-TNF) therapy experienced the greatest pain relief in symptomatic knee joints. Moreover, the remarkably linear inverse correlation between LN volume and joint pain observed in this small clinical pilot provides initial evidence to support the concept that dynamic changes in draining LN volume are a biomarker of clinical response to therapy in RA.
Guo, Lu; Wang, Gang; Feng, Yuanming; Yu, Tonggang; Guo, Yu; Bai, Xu; Ye, Zhaoxiang
2016-09-21
Accurate target volume delineation is crucial for the radiotherapy of tumors. Diffusion and perfusion magnetic resonance imaging (MRI) can provide functional information about brain tumors, and they are able to detect tumor volume and physiological changes beyond the lesions shown on conventional MRI. This review examines recent studies that utilized diffusion and perfusion MRI for tumor volume definition in radiotherapy of brain tumors, and it presents the opportunities and challenges in the integration of multimodal functional MRI into clinical practice. The results indicate that specialized and robust post-processing algorithms and tools are needed for the precise alignment of targets on the images, and comprehensive validations with more clinical data are important for the improvement of the correlation between histopathologic results and MRI parameter images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J; Zhao, B; Ajlouni, M
2015-06-15
Purpose: To quantitatively compare patient internal target volume (ITV)-based plans with retrospectively generated gated plans to evaluate potential dosimetric improvements in lung toxicity from gated radiotherapy. Methods: Evaluation was conducted for 150 stereotactic body radiation therapy (SBRT) treatment plans for 128 early-stage (T1–T3, <5cm) NSCLC patients. PTV margins were: ITV+5 mm (ITV-plan) and GTV+5 mm (Gated-plan). ITV-based and gated treatment plans were compared on the same free-breathing CT. ITV-based plan constraints were used to re-optimize and recalculate new gated plans. Plans were generated for 3 fractionation regimens: 3×18Gy, 4×12Gy (original), and 5×10Gy. Physical dose was converted to equivalent dose inmore » 2Gy fractions (EQD2), which was used to determine mean lung dose (MLD) and percent volume of lung receiving ≥20Gy (V20). MLD and V20 differences between gating and ITV-based plans were analyzed as a function of both three-dimensional (3D) motion and tumor volume. The low dose region, V5, was also evaluated. Results: MLD and V20 differences between gated and ITV-based plans were larger for lower (1.48±1.32Gy and 1.44±1.29%) than for upper lobe tumors (0.89±0.74Gy and 0.92±0.71%) due to smaller tumor motion (2.9±3.4mm) compared to lower lobe tumors (8.1±6.1mm). Average differences of <1–2% were noted in V5 between ITV and gated plans. Dosimetric differences between gating and ITV-based methods increased with increasing tumor motion and decreasing tumor volume. Overall, average MLD (8.04±3.92Gy) and V20 (8.29±4.33%) values for ITV-based plans were already well below clinical guidelines, even for the 3×18Gy dose scheme, for which largest differences were noted relative to gated plans. Similar results were obtained for 5×10Gy and 4×12Gy regimens. Conclusion: Clinically relevant improvement in pulmonary toxicity, based on predictors of radiation pneumonitis (MLD and V20) was not generally observed, though improvement for tumors with 3D motion >15 mm, mainly concentrated in peripheral lower lobe tumors, may be considered clinically relevant. Work supported in part by a grant from Varian Medical systems, Palo Alto, CA.« less
Tumor Volume Is a Prognostic Factor in Non-Small-Cell Lung Cancer Treated With Chemoradiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Brian M.; Othus, Megan; Caglar, Hale B.
2011-04-01
Purpose: To investigate whether primary tumor and nodal volumes defined on radiotherapy planning scans are correlated with outcome (survival and recurrence) after combined-modality treatment. Methods and Materials: A retrospective review of patients with Stage III non-small-cell lung cancer treated with chemoradiation at Brigham and Women's Hospital/Dana-Farber Cancer Institute from 2000 to 2006 was performed. Tumor and nodal volume measurements, as computed by Eclipse (Varian, Palo Alto, CA), were used as independent variables, along with existing clinical factors, in univariate and multivariate analyses for association with outcomes. Results: For patients treated with definitive chemoradiotherapy, both nodal volume (hazard ratio [HR], 1.09;more » p < 0.01) and tumor volume (HR, 1.03; p < 0.01) were associated with overall survival on multivariate analysis. Both nodal volume (HR, 1.10; p < 0.01) and tumor volume (HR, 1.04; p < 0.01) were also associated with local control but not distant metastases. Conclusions: In addition to traditional surgical staging variables, disease burden, measured by primary tumor and nodal metastases volume, provides information that may be helpful in determining prognosis and identifying groups of patients for which more aggressive local therapy is warranted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina
2014-06-15
Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancermore » with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractionsS{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
Chvetsov, Alexei V; Yartsev, Slav; Schwartz, Jeffrey L; Mayr, Nina
2014-06-01
In our previous work, the authors showed that a distribution of cell surviving fractions S2 in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractions S2 and clearance half-lives of lethally damaged cells T(1/2) have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S2 for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S2 reconstructed from tumor volume variation agree with the PDF measured in vitro. The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractions S2 can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.
Wang, S; Martinez-Lage, M; Sakai, Y; Chawla, S; Kim, S G; Alonso-Basanta, M; Lustig, R A; Brem, S; Mohan, S; Wolf, R L; Desai, A; Poptani, H
2016-01-01
Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from nonpseudoprogression (true progression and mixed) with an area under the curve of 0.807. DTI and DSC perfusion imaging can improve accuracy in assessing treatment response and may aid in individualized treatment of patients with glioblastomas. © 2016 by American Journal of Neuroradiology.
Ibrahim-Hashim, Arig; Wojtkowiak, Jonathan W.; Hart, Charles P.; Zhang, Xiaomeng; Leos, Rafael; Martinez, Gary V.; Baker, Amanda F.; Gillies, Robert J.
2014-01-01
Pancreatic ductal adenocarcinomas are desmoplastic and hypoxic, both of which are associated with poor prognosis. Hypoxia-activated prodrugs (HAPs) are specifically activated in hypoxic environments to release cytotoxic or cytostatic effectors. TH-302 is a HAP that is currently being evaluated in a Phase III clinical trial in pancreatic cancer. Using animal models, we show that tumor hypoxia can be exacerbated using a vasodilator, hydralazine, improving TH-302 efficacy. Hydralazine reduces tumor blood flow through the “steal” phenomenon, in which atonal immature tumor vasculature fails to dilate in coordination with normal vasculature. We show that MIA PaCa-2 tumors exhibit a “steal” effect in response to hydralazine, resulting in decreased tumor blood flow and subsequent tumor pH reduction. The effect is not observed in SU.86.86 tumors with mature tumor vasculature, as measured by CD31 and smooth muscle actin (SMA) immunohistochemistry staining. Combination therapy of hydralazine and TH-302 resulted in a reduction in MIA PaCa-2 tumor volume growth after 18 days of treatment. These studies support a combination mechanism of action for TH-302 with a vasodilator that transiently increases tumor hypoxia. PMID:25532146
Wang, Jian-Ming; Xiao, Bao-Lai; Zheng, Jian-Wei; Chen, Hai-Bing; Zou, Sheng-Quan
2007-01-01
AIM: To investigate the anti-tumor effect and mechanisms of magnetic nanoparticles targeting hepatocellular carcinoma. METHODS: Human hepatocellular carcinoma was induced in nude mice, and the mice were randomly divided into group A receiving normal saline, group B receiving magnetic nanoparticles containing 5-fluorouracil (5-FU), group C receiving 5-FU, and group D receiving magnetic nanoparticles containing 5-FU with a magnetic field built in tumor tissues. The tumor volume was measured on the day before treatment and 1, 4, 7, 10 and 13 d after treatment. Tumor tissues were isolated for examination of the expression of bcl-2, bax and caspase 3 by immunohistochemical method, reverse transcription polymerase chain reaction and Western blotting. RESULTS: The tumor volume was markedly lower in groups C and D than in groups A and B (group C or D vs group A or B, P < 0.01). The volume was markedly lower in group D than in group C (P < 0.05). The expression of protein and mRNA of bcl-2 was markedly lower in groups C and D than in groups A and B (group C or D vs group A or B, P < 0.01), and was markedly lower in group D than in group C (P < 0.01). The expression of bax and caspase 3 in groups C and D was significantly increased, compared with that in groups A and B (P < 0.01). CONCLUSION: The targeted magnetic nanoparticles containing 5-FU can improve the chemotherapeutic effect of 5-FU against hepatocellular carcinoma by decreasing the expression of bcl-2 gene, and increasing the expression of bax and caspase 3 genes. PMID:17589894
Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model.
Hong, Xiaohua; Liu, Li; Wang, Meiyun; Ding, Kai; Fan, Ying; Ma, Bo; Lal, Bachchu; Tyler, Betty; Mangraviti, Antonella; Wang, Silun; Wong, John; Laterra, John; Zhou, Jinyuan
2014-06-01
The inability of structural MRI to accurately measure tumor response to therapy complicates care management for patients with gliomas. The purpose of this study was to assess the potential of several noninvasive functional and molecular MRI biomarkers for the assessment of glioma response to radiotherapy. Fourteen U87 tumor-bearing rats were irradiated using a small-animal radiation research platform (40 or 20 Gy), and 6 rats were used as controls. MRI was performed on a 4.7 T animal scanner, preradiation treatment, as well as at 3, 6, 9, and 14 days postradiation. Image features of the tumors, as well as tumor volumes and animal survival, were quantitatively compared. Structural MRI showed that all irradiated tumors still grew in size during the initial days postradiation. The apparent diffusion coefficient (ADC) values of tumors increased significantly postradiation (40 and 20 Gy), except at day 3 postradiation, compared with preradiation. The tumor blood flow decreased significantly postradiation (40 and 20 Gy), but the relative blood flow (tumor vs contralateral) did not show a significant change at most time points postradiation. The amide proton transfer weighted (APTw) signals of the tumor decreased significantly at all time points postradiation (40 Gy), and also at day 9 postradiation (20 Gy). The blood flow and APTw maps demonstrated tumor features that were similar to those seen on gadolinium-enhanced T1-weighted images. Tumor ADC, blood flow, and APTw were all useful imaging biomarkers by which to predict glioma response to radiotherapy. The APTw signal was most promising for early response assessment in this model. © The Author(s) 2013. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Image-guided radiation therapy for liver tumors: gastrointestinal histology matters.
Katsoulakis, Evangelia; Riaz, Nadeem; Cannon, Donald M; Goodman, Karyn; Spratt, Daniel E; Lovelock, Michael; Yamada, Yoshiya
2014-12-01
To describe the safety and efficacy of single-fraction and hypofractionated image-guided radiotherapy techniques for the treatment of large liver tumors. Forty-six patients, with 50 tumors (10 primary liver tumors, 40 liver metastases) from March 2004 to March 2011 were reviewed. The maximal tumor diameter ranged from 1.2 to 11.3 cm (median, 4.2 cm). Eighty-seven percent of patients received prior systemic chemotherapy. Fifty-nine percent had prior invasive local therapy including surgery, ablation, or embolization. Twenty-five lesions were treated with hypofractionated therapy (24 to 30 Gy in 3 to 5 fractions), whereas 19 received a single fraction (18 or 24 Gy). Local control (LC) was calculated using competing risk analysis. Overall survival was calculated by the Kaplan-Meier method. Median follow-up for all patients was 29.8 months (range, 3 to 46 mo). The median survival was 15.4 months. The 1- and 2-year LC rates were 78% and 75%, respectively. Dose and tumor size had no significant effect on tumor progression. The local progression at 1 and 2 years was 29% and 32% for gastrointestinal (GI) histologies versus 0% for non-GI histologies (P=0.02). Tumor volumes larger than 112 cm correlated with decreased survival (P=0.05). Three patients developed late grade 3 GI stricture or ulceration. Image-guided radiotherapy for liver tumors achieves good rates of LC with minimal toxicity at 1 and 2 years even in patients with large or recurrent disease that has been heavily pretreated. GI histology demonstrated decreased LC rates. Further management strategies should be considered in these patients.
CD133+ tumor initiating cells in a syngenic murine model of pancreatic cancer respond to Minnelide.
Banerjee, Sulagna; Nomura, Alice; Sangwan, Veena; Chugh, Rohit; Dudeja, Vikas; Vickers, Selwyn M; Saluja, Ashok
2014-05-01
Pancreatic adenocarcinoma is the fourth leading cause for cancer-related mortality with a survival rate of less than 5%. Late diagnosis and lack of effective chemotherapeutic regimen contribute to these grim survival statistics. Relapse of any tumor is largely attributed to the presence of tumor-initiating cells (TIC) or cancer stem cells (CSC). These cells are considered as hurdles to cancer therapy as no known chemotherapeutic compound is reported to target them. Thus, there is an urgent need to develop a TIC-targeted therapy for pancreatic cancer. We isolated CD133(+) cells from a spontaneous pancreatic ductal adenocarcinoma mouse model and studied both surface expression, molecular markers of pancreatic TICs. We also studied tumor initiation properties by implanting low numbers of CD133(+) cells in immune competent mice. Effect of Minnelide, a drug currently under phase I clinical trial, was studied on the tumors derived from the CD133(+) cells. Our study showed for the first time that CD133(+) population demonstrated all the molecular markers for pancreatic TIC. These cells initiated tumors in immunocompetent mouse models and showed increased expression of prosurvival and proinvasive proteins compared to the CD133(-) non-TIC population. Our study further showed that Minnelide was very efficient in downregulating both CD133(-) and CD133(+) population in the tumors, resulting in a 60% decrease in tumor volume compared with the untreated ones. As Minnelide is currently under phase I clinical trial, its evaluation in reducing tumor burden by decreasing TIC as well as non-TIC population suggests its potential as an effective therapy. ©2014 AACR.
Pancreatic cancer planning: Complex conformal vs modulated therapies.
Chapman, Katherine L; Witek, Matthew E; Chen, Hongyu; Showalter, Timothy N; Bar-Ad, Voichita; Harrison, Amy S
2016-01-01
To compare the roles of intensity-modulated radiation therapy (IMRT) and volumetric- modulated arc therapy (VMAT) therapy as compared to simple and complex 3-dimensional chemoradiotherpy (3DCRT) planning for resectable and borderline resectable pancreatic cancer. In all, 12 patients who received postoperative radiotherapy (8) or neoadjuvant concurrent chemoradiotherapy (4) were evaluated retrospectively. Radiotherapy planning was performed for 4 treatment techniques: simple 4-field box, complex 5-field 3DCRT, 5 to 6-field IMRT, and single-arc VMAT. All volumes were approved by a single observer in accordance with Radiation Therapy Oncology Group (RTOG) Pancreas Contouring Atlas. Plans included tumor/tumor bed and regional lymph nodes to 45Gy; with tumor/tumor bed boosted to 50.4Gy, at least 95% of planning target volume (PTV) received the prescription dose. Dose-volume histograms (DVH) for multiple end points, treatment planning, and delivery time were assessed. Complex 3DCRT, IMRT, and VMAT plans significantly (p < 0.05) decreased mean kidney dose, mean liver dose, liver (V30, V35), stomach (D10%), stomach (V45), mean right kidney dose, and right kidney (V15) as compared with the simple 4-field plans that are most commonly reported in the literature. IMRT plans resulted in decreased mean liver dose, liver (V35), and left kidney (V15, V18, V20). VMAT plans decreased small bowel (D10%, D15%), small bowel (V35, V45), stomach (D10%, D15%), stomach (V35, V45), mean liver dose, liver (V35), left kidney (V15, V18, V20), and right kidney (V18, V20). VMAT plans significantly decreased small bowel (D10%, D15%), left kidney (V20), and stomach (V45) as compared with IMRT plans. Treatment planning and delivery times were most efficient for simple 4-field box and VMAT. Excluding patient setup and imaging, average treatment delivery was within 10minutes for simple and complex 3DCRT, IMRT, and VMAT treatments. This article shows significant improvements in 3D plan performance with complex planning over the more frequently compared 3- or 4-field simple 3D planning techniques. VMAT plans continue to demonstrate potential for the most organ sparing. However, further studies are required to identify if dosimetric benefits associated with inverse optimized planning can be translated into clinical benefits and if these treatment techniques are value-added therapies for this group of patients with cancer. Published by Elsevier Inc.
Mavroidis, Panayiotis; Giantsoudis, Drosoula; Awan, Musaddiq J; Nijkamp, Jasper; Rasch, Coen R N; Duppen, Joop C; Thomas, Charles R; Okunieff, Paul; Jones, William E; Kachnic, Lisa A; Papanikolaou, Niko; Fuller, Clifton D
2014-09-01
The aim of this study is to ascertain the subsequent radiobiological impact of using a consensus guideline target volume delineation atlas. Using a representative case and target volume delineation instructions derived from a proposed IMRT rectal cancer clinical trial, gross tumor volume (GTV) and clinical/planning target volumes (CTV/PTV) were contoured by 13 physician observers (Phase 1). The observers were then randomly assigned to follow (atlas) or not-follow (control) a consensus guideline/atlas for anorectal cancers, and instructed to re-contour the same case (Phase 2). The atlas group was found to have increased tumor control probability (TCP) after the atlas intervention for both the CTV (p<0.0001) and PTV1 (p=0.0011) with decreasing normal tissue complication probability (NTCP) for small intestine, while the control group did not. Additionally, the atlas group had reduced variance in TCP for all target volumes and reduced variance in NTCP for the bowel. In Phase 2, the atlas group had increased TCP relative to the control for CTV (p=0.03). Visual atlas and consensus treatment guideline usage in the development of rectal cancer IMRT treatment plans reduced the inter-observer radiobiological variation, with clinically relevant TCP alteration for CTV and PTV volumes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jabbour, Salma K., E-mail: jabbousk@cinj.rutgers.edu; Kim, Sinae; Department of Biostatistics, School of Public Health, Rutgers University, New Brunswick, New Jersey
2015-07-01
Purpose: We sought to evaluate whether tumor response using cone beam computed tomography (CBCT) performed as part of the routine care during chemoradiation therapy (CRT) could forecast the outcome of unresectable, locally advanced, non-small cell lung cancer (NSCLC). Methods and Materials: We manually delineated primary tumor volumes (TV) of patients with NSCLC who were treated with radical CRT on days 1, 8, 15, 22, 29, 36, and 43 on CBCTs obtained as part of the standard radiation treatment course. Percentage reductions in TV were calculated and then correlated to survival and pattern of recurrence using Cox proportional hazard models. Clinicalmore » information including histologic subtype was also considered in the study of such associations. Results: We evaluated 38 patients with a median follow-up time of 23.4 months. The median TV reduction was 39.3% (range, 7.3%-69.3%) from day 1 (D1) to day 43 (D43) CBCTs. Overall survival was associated with TV reduction from D1 to D43 (hazard ratio [HR] 0.557, 95% CI 0.39-0.79, P=.0009). For every 10% decrease in TV from D1 to D43, the risk of death decreased by 44.3%. For patients whose TV decreased ≥39.3 or <39.3%, log-rank test demonstrated a separation in survival (P=.02), with median survivals of 31 months versus 10 months, respectively. Neither local recurrence (HR 0.791, 95% CI 0.51-1.23, P=.29), nor distant recurrence (HR 0.78, 95% CI 0.57-1.08, P=.137) correlated with TV decrease from D1 to D43. Histologic subtype showed no impact on our findings. Conclusions: TV reduction as determined by CBCT during CRT as part of routine care predicts post-CRT survival. Such knowledge may justify intensification of RT or application of additional therapies. Assessment of genomic characteristics of these tumors may permit a better understanding of behavior or prediction of therapeutic outcomes.« less
Esener, Obb; Balkan, B M; Armutak, E I; Uvez, A; Yildiz, G; Hafizoglu, M; Yilmazer, N; Gurel-Gurevin, E
2018-04-12
Donkey milk and donkey milk kefir exhibit antiproliferative, antimutagenic and antibacterial effects. We investigated the effects of donkey milk and donkey milk kefir on oxidative stress, apoptosis and proliferation in Ehrlich ascites carcinoma (EAC) in mice. Thirty-four adult male Swiss albino mice were divided into four groups as follows: group 1, administered 0.5 ml water; group 2, administered 0.5 ml water + EAC cells; group 3, administered 0.5 ml donkey milk + EAC cells; group 4, administered 0.5 ml donkey milk kefir + EAC cells. We introduced 2.5 x 10 6 EAC cells into each animal by subcutaneous injection. Tap water, donkey milk and donkey milk kefir were administered by gavage for 10 days. Animals were sacrificed on day 11. After measuring the short and long diameters of the tumors, tissues were processed for histology. To determine oxidative stress, cell death and proliferation iNOS and eNOS, active caspase-3 and proliferating cell nuclear antigen were assessed using immunohistochemistry. A TUNEL assay also was used to detect apoptosis. Tumor volume decreased in the donkey milk kefir group compared to the control and donkey milk groups. Tumor volume increased in the donkey milk group compared to the control group. Proliferating cell nuclear antigen levels were higher in the donkey milk kefir group compared to the control and donkey milk groups. The number of apoptotic cells was less in the donkey milk group, compared to the control, whereas it was highest in the donkey milk kefir group. Donkey milk administration increased eNOS levels and decreased iNOS levels, compared to the control group. In the donkey milk kefir group, iNOS levels were significantly lower than those of the control and donkey milk groups, while eNOS levels were similar to the control group. Donkey milk kefir induced apoptosis, suppressed proliferation and decreased co-expression of iNOS and eNOS. Donkey milk promoted development of the tumors. Therefore, donkey milk kefir appears to be more beneficial for treating breast cancer than donkey milk.
Sexual function and fecundity after treatment for testicular tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bracken, R.B.; Johnson, D.E.
Questionnaires were mailed to patients who had undergone either radiotherapy, lymphadenectomy, or a combination of both as treatment for malignant disease of the testis in an attempt to define the effects of their therapy on sexual function, ejaculation, and fecundity. The forms returned by 29 patients with seminoma treated with irradiation alone indicated that little change had occurred in their sexual performance or sex drive. Diminished semen volume was reported by 10 patients but was severe in only 1. Two of 3 patients who desired children after therapy were successful. In patients with nonseminomatous testis tumor treated surgically, 42 ofmore » 50 reported a significant decrease in semen volume, but 7 of 12 who desired children following therapy were successful. The physiology of ejaculation is reviewed, and comments are offered on the means by which retroperitoneal lymphadenectomy may disrupt normal ejaculation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, B; He, W; Cvetkovic, D
Purpose: The purpose of the study is to compare the volume measurement of subcutaneous tumors in mice with different imaging platforms, namely a GE MRI and a Sofie-Biosciences small animal CT scanner. Methods: A549 human lung carcinoma cells and FaDu human head and neck squamous cell carcinoma cells were implanted subcutaneously into flanks of nude mice. Three FaDu tumors and three A549 tumors were included in this study. The MRI scans were done with a GE Signa 1.5 Tesla MR scanner using a fast T2-weighted sequence (70mm FOV and 1.2mm slice thickness), while the CT scans were done with themore » CT scanner on a Sofie-Biosciences G8 PET/CT platform dedicated for small animal studies (48mm FOV and 0.2mm slice thickness). Imaging contrast agent was not used in this study. Based on the DICOM images from MRI and CT scans, the tumors were contoured with Philips DICOM Viewer and the tumor volumes were obtained by summing up the contoured area and multiplied by the slice thickness. Results: The volume measurements based on the CT scans agree reasonably with that obtained with MR images for the subcutaneous tumors. The mean difference in the absolute tumor volumes between MRI- and CT-based measurements was found to be −6.2% ± 1.0%, with the difference defined as (VMR – VCT)*100%/VMR. Furthermore, we evaluated the normalized tumor volumes, which were defined for each tumor as V/V{sub 0} where V{sub 0} stands for the volume from the first MR or CT scan. The mean difference in the normalized tumor volumes was found to be 0.10% ± 0.96%. Conclusion: Despite the fact that the difference between normal and abnormal tissues is often less clear on small animal CT images than on MR images, one can still obtain reasonable tumor volume information with the small animal CT scans for subcutaneous murine xenograft models.« less
Volumetric analysis of tumors in rodents using the variable resolution x-ray (VRX) CT-scanner
NASA Astrophysics Data System (ADS)
Gaber, M. Waleed; Wilson, Christy M.; Duntsch, Christopher D.; Shukla, Hemant; Zawaski, Janice A.; Jordan, Lawrence M.; Rendon, David A.; Vangalaa, Sravanthi; Keyes, Gary S.; DiBianca, Frank A.
2005-04-01
The Variable Resolution X-ray (VRX) CT system, developed at the UTHSC, Memphis, has the potential for use in animal imaging. Animal models of tumor progression and pharmacological impact are becoming increasingly important in understanding the molecular and mechanistic basis of tumor development. In general, CT-imaging offers several advantages in animal research: a fast throughput of seconds to minutes reducing the physiological stress animals are exposed to, and it is an inexpensive modality affordable to many animal laboratories. We are developing the VRX CT scanner as a non-invasive imaging modality to measure tumor volume, progression, and metastasis. From the axial images taken by the VRX CT-scanner, tumor area was measured and the tumor volume was calculated. Animals were also imaged using an optical liquid nitrogen-cooled CCD camera to detect tumor fluorescence. A simple image fusion with a planner x-ray image was used to ascertain the position of the tumors, animals were then sacrificed the tumors excised, and the tumor volume calculated by physical measurements. Furthermore, using a specially designed phantom with three spheres of different volumes, we demonstrated that our system allowed us to estimate the volume with up to 10% accuracy; we expect this to increase dramatically in the next few months.
Morton, Derrick; Sharma, Pankaj; Gorantla, Yamini; Joshi, Jugal; Nagappan, Perri; Pallaniappan, Ravi; Chaudhary, Jaideep
2016-01-01
ID4, a helix loop helix transcriptional regulator has emerged as a tumor suppressor in prostate cancer. Epigenetic silencing of ID4 promotes prostate cancer whereas ectopic expression in prostate cancer cell lines blocks cancer phenotype. To directly investigate the anti-tumor property, full length human recombinant ID4 encapsulated in biodegradable Polycaprolactone/Maltodextrin (PCL-MD) nano-carrier was delivered to LNCaP cells in which the native ID4 was stably silenced (LNCaP(-)ID4). The cellular uptake of ID4 resulted in increased apoptosis, decreased proliferation and colony formation. Intratumoral delivery of PCL-MD ID4 into growing LNCaP(-)ID4 tumors in SCID mice significantly reduced the tumor volume compared to the tumors treated with chemotherapeutic Docetaxel. The study supports the feasibility of using nano-carrier encapsulated ID4 protein as a therapeutic. Mechanistically, ID4 may assimilate multiple regulatory pathways for example epigenetic re-programming, integration of multiple AR co-regulators or signaling pathways resulting in tumor suppressor activity of ID4. PMID:27487149
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Kweon-Ho; Christensen, Douglas A.; Rapoport, Natalya
2009-04-14
Acoustic and therapeutic properties of Doxorubicin (DOX) and paclitaxel (PTX)-loaded perfluorocarbon nanoemulsions have been investigated in a mouse model of ovarian cancer. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers that differed in the structure of the hydrophobic block. Acoustic droplet vaporization (ADV) and cavitation parameters were measured as a function of ultrasound frequency, pressure, duty cycles, and temperature. The optimal parameters that induced ADV and inertial cavitation of the formed microbubbles were used in vivo in the experiments on the ultrasound-mediated chemotherapy of ovarian cancer. A combination tumor treatment by intravenous injections of drug-loaded perfluoropentane nanoemulsions andmore » tumor-directed 1-MHz ultrasound resulted in a dramatic decrease of ovarian or breast carcinoma tumor volume and sometimes complete tumor resolution. However, tumors often recurred three to six weeks after the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more aggressive and resistant to the repeated therapy than initial tumors suggesting selection for the resistant cells during the first treatment.« less
Demirci, Emre; Ahmed, Rafay; Ocak, Meltem; ...
2017-01-10
Here, we investigated 2-(5-fluoro-pentyl)-2-methyl-malonic acid ( 18F-ML-10) positron emission tomography (PET) imaging of apoptosis posttherapy to determine optimal timing for predicting chemotherapy response in a mouse head/neck xenograft cancer model. BALB/c nude mice (4-8 weeks old) were implanted with UM-SCC-22B tumors. The treatment group received 2 doses of doxorubicin (10 mg/kg, days 0, 2). Small animal 18F-ML-10 PET/computed tomography was performed before and on days 1, 3, and 7 postchemotherapy. Using regions of interest around tumors, 18F-ML-10 uptake change was measured as %ID/g and uptake relative to liver. Terminal Uridine Nick-End Labeling (TUNEL) immunohistochemistry assay was performed using tumor samplesmore » of baseline and on days 1, 3, and 7 posttreatment. As a result, treated mice demonstrated increased 18F-ML-10 uptake compared to baseline and controls, and 10 of 13 mice showed tumor volume decreases. All control mice showed tumor volume increases. Tumor-to-liver (T/L) ratios from the control group mice did not show significant change from baseline ( P > .05); however, T/L ratios of the treatment group showed significant 18F-ML-10 uptake differences from baseline compared to days 3 and 7 posttreatment ( P < .05), but no significant difference at 1 day posttreatment. In conclusion, 2-(5-Fluoro-pentyl)-2-methyl-malonic acid PET imaging has the potential for early assessment of treatment-induced apoptosis. Timing and image analysis strategies may require optimization, depending on the type of tumor and cancer treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demirci, Emre; Ahmed, Rafay; Ocak, Meltem
Here, we investigated 2-(5-fluoro-pentyl)-2-methyl-malonic acid ( 18F-ML-10) positron emission tomography (PET) imaging of apoptosis posttherapy to determine optimal timing for predicting chemotherapy response in a mouse head/neck xenograft cancer model. BALB/c nude mice (4-8 weeks old) were implanted with UM-SCC-22B tumors. The treatment group received 2 doses of doxorubicin (10 mg/kg, days 0, 2). Small animal 18F-ML-10 PET/computed tomography was performed before and on days 1, 3, and 7 postchemotherapy. Using regions of interest around tumors, 18F-ML-10 uptake change was measured as %ID/g and uptake relative to liver. Terminal Uridine Nick-End Labeling (TUNEL) immunohistochemistry assay was performed using tumor samplesmore » of baseline and on days 1, 3, and 7 posttreatment. As a result, treated mice demonstrated increased 18F-ML-10 uptake compared to baseline and controls, and 10 of 13 mice showed tumor volume decreases. All control mice showed tumor volume increases. Tumor-to-liver (T/L) ratios from the control group mice did not show significant change from baseline ( P > .05); however, T/L ratios of the treatment group showed significant 18F-ML-10 uptake differences from baseline compared to days 3 and 7 posttreatment ( P < .05), but no significant difference at 1 day posttreatment. In conclusion, 2-(5-Fluoro-pentyl)-2-methyl-malonic acid PET imaging has the potential for early assessment of treatment-induced apoptosis. Timing and image analysis strategies may require optimization, depending on the type of tumor and cancer treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelada, O; Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg; Decker, R
2014-06-15
Purpose: Tumor hypoxia is correlated with treatment failure. To date, there are no published studies investigating hypoxia in non-small cell lung cancer (NSCLC) patients undergoing SBRT. We aim to use 18F-fluoromisonidazole (18F-FMISO) positron emission tomography (PET) imaging to non-invasively quantify the tumor hypoxic volume (HV), to elucidate potential roles of reoxygenation and tumor vascular response at high doses, and to identify an optimal prognostic imaging time-point. Methods: SBRT-eligible patients with NSCLC tumors >1cm were prospectively enrolled in an IRB-approved study. Computed Tomography and dynamic PET images (0–120min, 150–180min, and 210–240min post-injection) were acquired using a Siemens BiographmCT PET/CT scanner. 18F-FMISOmore » PET was performed on a single patient at 3 different time points around a single SBRT delivery of 18 Gy and HVs were compared using a tumor-to-blood ratio (TBR)>1.2 and rate of influx (Ki)>0.0015 (Patlak). Results: Results from our first patient showed substantial temporal changes in HV following SBRT. Using a TBR threshold >1.2 and summed images 210–240min, the HVs were 19%, 31% and 13% of total tumor volume on day 0, 2 (48 hours post-SBRT), and 4 (96 hours post-SBRT). The absolute volume of hypoxia increased by nearly a factor of 2 after 18 Gy and then decreased almost to baseline 96 hours later. Selected imaging timepoints resulted in temporal changes in HV quantification obtained with TBR. Ki, calculated using 4-hour dynamic data, evaluated HVs as 22%, 75% and 21%, respectively. Conclusions: ith the results of only one patient, this novel pilot study highlights the potential benefit of 18F-FMISO PET imaging as results indicate substantial temporal changes in tumor HV post-SBRT. Analysis suggests that TBR is not a robust parameter for accurate HV quantification and heavily influenced by imaging timepoint selection. Kinetic modeling parameters are more sensitive and may aid in future treatment individualization based on patient-specific biological information.« less
Bradshaw, Tyler J; Bowen, Stephen R; Deveau, Michael A; Kubicek, Lyndsay; White, Pamela; Bentzen, Søren M; Chappell, Richard J; Forrest, Lisa J; Jeraj, Robert
2015-03-15
Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV(max); SUV(mean)) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R(2). The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV(mean) (P=.018), and midtreatment FLT SUV(max) (P=.006). Large decreases in FLT SUV(mean) from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV(max) (P=.022) in combination with large FLT response from pretreatment to midtreatment (P=.041). In addition to tumor volume, pronounced tumor proliferative response quantified using FLT PET, especially when associated with high residual FLT PET at midtreatment, is a negative prognostic biomarker of outcome in canine tumors following radiation therapy. Neither FDG PET nor Cu-ATSM PET were predictive of outcome. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto
2011-03-01
Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.
Samkoe, Kimberley S; Bates, Brent D; Tselepidakis, Niki N; DSouza, Alisha V; Gunn, Jason R; Ramkumar, Dipak B; Paulsen, Keith D; Pogue, Brian W; Henderson, Eric R
2017-12-01
Wide local excision (WLE) of tumors with negative margins remains a challenge because surgeons cannot directly visualize the mass. Fluorescence-guided surgery (FGS) may improve surgical accuracy; however, conventional methods with direct surface tumor visualization are not immediately applicable, and properties of tissues surrounding the cancer must be considered. We developed a phantom model for sarcoma resection with the near-infrared fluorophore IRDye 800CW and used it to iteratively define the properties of connective tissues that typically surround sarcoma tumors. We then tested the ability of a blinded surgeon to resect fluorescent tumor-simulating inclusions with ∼1-cm margins using predetermined target fluorescence intensities and a Solaris open-air fluorescence imaging system. In connective tissue-simulating phantoms, fluorescence intensity decreased with increasing blood concentration and increased with increasing intralipid concentrations. Fluorescent inclusions could be resolved at ≥1-cm depth in all inclusion concentrations and sizes tested. When inclusion depth was held constant, fluorescence intensity decreased with decreasing volume. Using targeted fluorescence intensities, a blinded surgeon was able to successfully excise inclusions with ∼1-cm margins from fat- and muscle-simulating phantoms with inclusion-to-background contrast ratios as low as 2∶1. Indirect, subsurface FGS is a promising tool for surgical resection of cancers requiring WLE. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Molecular mechanism and therapeutic implications of selinexor (KPT-330) in liposarcoma
Mayakonda, Anand; Said, Jonathan W; Doan, Ngan B; Chien, Wenwen; Ganesan, Trivadi S; Huey, Linda Shyue Chuang; Venkatachalam, Nachiyappan; Baloglu, Erkan; Shacham, Sharon; Kauffman, Michael; Koeffler, H. Phillip
2017-01-01
Exportin-1 mediates nuclear export of multiple tumor suppressor and growth regulatory proteins. Aberrant expression of exportin-1 is noted in human malignancies, resulting in cytoplasmic mislocalization of its target proteins. We investigated the efficacy of selinexor against liposarcoma cells both in vitro and in vivo. Exportin-1 was highly expressed in liposarcoma samples and cell lines as determined by immunohistochemistry, western blot, and immunofluorescence assay. Knockdown of endogenous exportin-1 inhibited proliferation of liposarcoma cells. Selinexor also significantly decreased cell proliferation as well as induced cell cycle arrest and apoptosis of liposarcoma cells. The drug also significantly decreased tumor volumes and weights of liposarcoma xenografts. Importantly, selinexor inhibited insulin-like growth factor 1 (IGF1) activation of IGF-1R/AKT pathway through upregulation of insulin-like growth factor binding protein 5 (IGFBP5). Further, overexpression and knockdown experiments showed that IGFBP5 acts as a tumor suppressor and its expression was restored upon selinexor treatment of liposarcoma cells. Selinexor decreased aurora kinase A and B levels in these cells and inhibitors of these kinases suppressed the growth of the liposarcoma cells. Overall, our study showed that selinexor treatment restored tumor suppressive function of IGFBP5 and inhibited aurora kinase A and B in liposarcoma cells supporting the usefulness of selinexor as a potential therapeutic strategy for the treatment of this cancer. PMID:27893412
Multi-Modal Glioblastoma Segmentation: Man versus Machine
Pica, Alessia; Schucht, Philippe; Beck, Jürgen; Verma, Rajeev Kumar; Slotboom, Johannes; Reyes, Mauricio; Wiest, Roland
2014-01-01
Background and Purpose Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations. Methods We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error. Results Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman's rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation. Conclusions In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity. PMID:24804720
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y; Fullerton, G; Goins, B
Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group;more » 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement errors during the animal study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leter, Edward M.; Cademartiri, Filippo; Levendag, Peter C.
2005-07-01
Purpose: We used four-dimensional multislice spiral computed tomography (MSCT) to determine respiratory lung-tumor motion and compared this strategy to common clinical practice in conformal radiotherapy treatment-planning imaging. Methods and Materials: The entire lung volume of 10 consecutive patients with 14 lung metastases were scanned by a 16-slice MSCT. During the scans, patients were instructed to breathe through a spirometer that was connected to a laptop computer. For each patient, 10 stacks of 1.5-mm slices, equally distributed throughout the respiratory cycle, were reconstructed from the acquired MSCT data. The lung tumors were manually contoured in each data set. For each patient,more » the tumor-volume contours of all data sets were copied to 1 data set, which allowed determination of the volume that encompassed all 10 lung-tumor positions (i.e., the tumor-traversed volume [TTV]) during the respiratory cycle. The TTV was compared with the 10 tumor volumes contoured for each patient, to which an empiric respiratory-motion margin was added. The latter target volumes were designated internal-motion included tumor volume (IMITV). Results: The TTV measurements were significantly smaller than the reference IMITV measurements (5.2 {+-} 10.2 cm{sup 3} and 10.1 {+-} 13.7 cm{sup 3}, respectively). All 10 IMITVs for 2 of the 4 tumors in 1 subject completely encompassed the TTV. All 10 IMITVs for 3 tumors in 2 patients did not show overlap with up to 35% of the corresponding TTV. The 10 IMITVs for the remaining tumors either completely encompassed the corresponding TTV or did not show overlap with up to 26% of the corresponding TTV. Conclusions: We found that individualized determination of respiratory lung-tumor motion by four-dimensional respiratory-gated MSCT represents a better and simple strategy to incorporate periodic physiologic motion compared with a generalized approach. The former strategy can, therefore, improve common and state-of-the-art clinical practice in conformal radiotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milker-Zabel, Stefanie; Zabel, Angelika; Schulz-Ertner, Daniela
Purpose: To analyze our long-term experience and prognostic factors after fractionated stereotactic radiotherapy (FSRT) in patients with benign or atypical intracranial meningioma. Methods and materials: Between January 1985 and December 2001, 317 patients with a median age of 55.7 years were treated with FSRT for intracranial meningioma. The tumor distribution was World Health Organization (WHO) Grade 1 in 48.3%, WHO Grade 2 in 8.2%, and unknown in 43.5%. Of the 317 patients, 97 underwent RT as their primary treatment, 79 underwent postoperative RT (subtotal resection in 38 and biopsy only in 41), and 141 were treated for recurrent disease. Themore » median target volume was 33.6 cm{sup 3} (range, 1.0-412.6 cm{sup 3}). The median total dose was 57.6 Gy at 1.8 Gy/fraction five times weekly. Results: The median follow-up was 5.7 years (range, 1.2-14.3 years). The overall local tumor control rate was 93.1% (295 of 317). Of the 317 patients, 72 had a partial response on CT/MRI and 223 (70.4%) remained stable. At a median of 4.5 years after FSRT, 22 patients (6.9%) had local tumor progression on MRI. Local tumor failure was significantly greater in patients with WHO Grade 2 meningioma (p < 0.002) than in patients with WHO Grade 1 or unknown histologic features. Patients treated for recurrent meningioma showed a trend toward decreased progression-free survival compared with patients treated with primary therapy, after biopsy, or after subtotal resection (p < 0.06). Patients with a tumor volume >60 cm{sup 3} had a recurrence rate of 15.5% vs. 4.3% for those with a tumor volume of {<=}60 cm{sup 3} (p < 0.001). In 42.9% of the patients, preexisting neurologic deficits improved. Worsening of preexisting neurologic symptoms occurred in 8.2%. Eight patients developed new clinical symptoms, such as reduced vision, trigeminal neuralgia, and intermittent tinnitus located at the side of the irradiated meningioma after FSRT. Conclusion: These data have demonstrated that FSRT is an effective and safe treatment modality for local control of meningioma with a low risk of significant late toxicity. We identified the tumor volume, indication for FSRT, and histologic features of the meningioma as statistically significant prognostic factors.« less
Barba, Carmen; Specchio, Nicola; Guerrini, Renzo; Tassi, Laura; De Masi, Salvatore; Cardinale, Francesco; Pellacani, Simona; De Palma, Luca; Battaglia, Domenica; Tamburrini, Gianpiero; Didato, Giuseppe; Freri, Elena; Consales, Alessandro; Nozza, Paolo; Zamponi, Nelia; Cesaroni, Elisabetta; Di Gennaro, Giancarlo; Esposito, Vincenzo; Giulioni, Marco; Tinuper, Paolo; Colicchio, Gabriella; Rocchi, Raffaele; Rubboli, Guido; Giordano, Flavio; Lo Russo, Giorgio; Marras, Carlo Efisio; Cossu, Massimo
2017-10-01
The objective of the study was to assess common practice in pediatric epilepsy surgery in Italy between 2008 and 2014. A survey was conducted among nine Italian epilepsy surgery centers to collect information on presurgical and postsurgical evaluation protocols, volumes and types of surgical interventions, and etiologies and seizure outcomes in pediatric epilepsy surgery between 2008 and 2014. Retrospective data on 527 surgical procedures were collected. The most frequent surgical approaches were temporal lobe resections and disconnections (133, 25.2%) and extratemporal lesionectomies (128, 24.3%); the most frequent etiologies were FCD II (107, 20.3%) and glioneuronal tumors (105, 19.9%). Volumes of surgeries increased over time independently from the age at surgery and the epilepsy surgery center. Engel class I was achieved in 73.6% of patients (range: 54.8 to 91.7%), with no significant changes between 2008 and 2014. Univariate analyses showed a decrease in the proportion of temporal resections and tumors and an increase in the proportion of FCDII, while multivariate analyses revealed an increase in the proportion of extratemporal surgeries over time. A higher proportion of temporal surgeries and tumors and a lower proportion of extratemporal and multilobar surgeries and of FCD were observed in low (<50surgeries/year) versus high-volume centers. There was a high variability across centers concerning pre- and postsurgical evaluation protocols, depending on local expertise and facilities. This survey reveals an increase in volume and complexity of pediatric epilepsy surgery in Italy between 2008 and 2014, associated with a stable seizure outcome. Copyright © 2017 Elsevier Inc. All rights reserved.
Yoshida, Yoshio; Kurokawa, Tetsuji; Kawahara, Kazumi; Yagihara, Akira; Tsuchida, Tatsuro; Okazawa, Hidehiko; Fujibayashi, Yasuhisa; Yonekura, Yoshiharu; Kotsuji, Fumikazu
2004-12-01
The aim of this report is to describe the potential clinical utility of tracer [F-18]-Fluorodeoxyglucose (FDG) uptake, quantitated as a standardized uptake value (SUV) by positron emission tomography (PET), to evaluate treatment response to neoadjuvant chemotherapy (NAC) in advanced uterine cervical cancer. We briefly describe the clinical courses of three women with advanced cervical cancer who were treated with neoadjuvant chemotherapy (NAC) prior to radical hysterectomy and who were analyzed for correlation with the decrease in tumor volume by magnetic resonance imaging (MRI), in SUV by FDG-PET, and by histologic response. In these individuals, tumor volume and SUV were decreased by NAC. The decrease in SUV by FDG-PET was better correlated to histologic response for NAC than MRI was in advanced cervical cancer. Measurement of SUV by FDG-PET has clinical utility in evaluating treatment response for NAC in advanced cervical cancer. Although work in this field is still in the early stages, this report demonstrates that SUV by FDG-PET has the potential to become the new standard for monitoring the treatment response of NAC in cervical cancer. This monitoring approach must be proven in a larger number of patients for both primary and secondary lesions and should be further explored in another gynecologic cancer.
Wang, Yue; Zheng, Yuanyuan; Tu, Zuoyu; Dai, Yongguo; Xu, Hong; Lv, Li; Wang, Jihong
2017-02-01
Recombinant Lampetra japonica RGD peptide (rLj-RGD3) is a soluble toxin protein with three RGD (Arg-Gly-Asp) motifs and a molecular weight of 13.5kDa. The aim of this study was to investigate the effects and mechanisms of rLj-RGD3 on tumor growth and survival in pancreatic carcinoma Panc-1 cell-bearing mice. A Panc-1 human pancreatic carcinoma-bearing nude mouse model was successfully generated, and the animals were treated with different doses of rLj-RGD3 for 3 weeks. The volume and weight of the subcutaneous tumors, the survival of the nude mice, histopathological changes, the intratumoral MVD, the number of apoptotic Panc-1 cells, and apoptosis-related proteins and gene expressions were determined. rLj-RGD3 significantly decreased the tumor volumes and weights, and the maximum tumor volume and weight IR values were 53.2% (p<0.001) and 55.9% (p<0.001), respectively. The life expectancy of Panc-1-bearing nude mice treated with rLj-RGD3 was increased by 56.3% (p<0.001). Meanwhile, rLj-RGD3 promoted the expression of Bax, caspase-3, and caspase-9 and inhibited Bcl-2 and VEGF expression. In addition, rLj-RGD3 did not change FAK, PI3K and Akt expression, but p-FAK, p-PI3K and p-Akt, levels were down-regulated. These results show that rLj-RGD3 induced potent anti-tumor activity in vivo and suppressed the growth of transplanted Panc-1 cells in a nude mouse model, implying that rLj-RGD3 may serve as a potent clinical therapeutic agent for human pancreatic carcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohatt, D; Malhotra, H
Purpose: Conventional treatment plans for lung radiotherapy are created using either the free breathing (FB) scheme which represents the tumor at an arbitrary breathing phase of the patient’s respiratory cycle, or the average computed tomography (ACT) intensity projection over 10-binned phases. Neither method is entirely accurate because of the absence of time dependence of tumor movement. In the present “Hybrid” method, the HU of tumor in 3D space is determined by relative weighting of the HU of the tumor and lung in proportion to the time they spend at that location during the entire breathing cycle. Methods: A Quasar respiratorymore » motion phantom was employed to simulate lung tumor movement. Utilizing 4DCT image scans, volumetric modulated arc therapy (VMAT) plans were generated for three treatment planning scenarios which included conventional FB and ACT schemes, along with a third alternative Hybrid approach. Our internal target volume (ITV) hybrid structure was created using Boolean operation in Eclipse (ver. 11) treatment planning system, where independent sub-regions created by the gross tumor volume (GTV) overlap from the 10 motion phases were each assigned a time weighted CT value. The dose-volume-histograms (DVH) for each scheme were compared and analyzed. Results: Using our hybrid technique, we have demonstrated a reduction of 1.9% – 3.4% in total monitor units with respect to conventional treatment planning strategies, along with a 6 fold improvement in high dose spillage over the FB plan. The higher density ACT and Hybrid schemes also produced a slight enhancement in target conformity and reduction in low dose spillage. Conclusion: All treatment plans created in this study exceeded RTOG protocol criteria. Our results determine the free breathing approach yields an inaccurate account of the target treatment density. A significant decrease in unnecessary lung irradiation can be achieved by implementing Hybrid HU method with ACT method second best.« less
Pal'a, Andrej; Knoll, Andreas; Brand, Christine; Etzrodt-Walter, Gwendolin; Coburger, Jan; Wirtz, Christian Rainer; Hlaváč, Michal
2017-06-01
The routine use of intraoperative magnetic resonance imaging (iMRI) helps to achieve gross total resection in transsphenoidal pituitary surgery. We compared the added value of iMRI for extent of resection in endoscopic versus microsurgical transsphenoidal adenomectomy. A total of 96 patients with pituitary adenoma were included. Twenty-eight consecutive patients underwent endoscopic transsphenoidal tumor resection. For comparison, we used a historic cohort of 68 consecutive patients treated microsurgically. We evaluated the additional resection after conducting iMRI using intraoperative and late postoperative volumetric tumor analysis 3 months after surgery. Demographic data, clinical symptoms, and complications as well as pituitary function were evaluated. We found significantly fewer additional resections after conducting iMRI in the endoscopic group (P = 0.042). The difference was even more profound in Knosp grade 0-2 adenomas (P = 0.029). There was no significant difference in Knosp grade 3-4 adenomas (P = 0.520). The endoscopic approach was associated with smaller intraoperative tumor volume (P = 0.023). No significant difference was found between both techniques in postoperative tumor volume (P = 0.228). Satisfactory results of pituitary function were significantly more often associated with an endoscopic approach in the multiple regression analysis (P = 0.007; odds ratio, 17.614; confidence interval 95%, 2.164-143.396). With the endoscopic approach, significantly more tumor volume reduction was achieved before conducting iMRI, decreasing the need for further resection. This finding was even more pronounced in adenomas graded Knosp 0-2. In the case of extensive and invasive adenomas with infiltration of cavernous sinus and suprasellar or parasellar extension, additional tumor resection and increase in the extent of resection was achieved with iMRI in both groups. The endoscopic approach seems to result in better endocrine outcomes, especially in Knosp grade 0-2 pituitary adenomas. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deman, Pierre; Universite Joseph Fourier, Institut des Neurosciences, Grenoble; European Synchrotron Radiation Facility, Grenoble
Purpose: The purpose of this study was to evaluate high-dose single fraction delivered with monochromatic X-rays minibeams for the radiotherapy of primary brain tumors in rats. Methods and Materials: Two groups of healthy rats were irradiated with one anteroposterior minibeam incidence (four minibeams, 123 Gy prescribed dose at 1 cm depth in the brain) or two interleaved incidences (54 Gy prescribed dose in a 5 Multiplication-Sign 5 Multiplication-Sign 4.8 mm{sup 3} volume centered in the right hemisphere), respectively. Magnetic resonance imaging (MRI) follow-up was performed over 1 year. T2-weighted (T2w) images, apparent diffusion coefficient (ADC), and blood vessel permeability mapsmore » were acquired. F98 tumor bearing rats were also irradiated with interleaved minibeams to achieve a homogeneous dose of 54 Gy delivered to an 8 Multiplication-Sign 8 Multiplication-Sign 7.8 mm{sup 3} volume centered on the tumor. Anatomic and functional MRI follow-up was performed every 10 days after irradiation. T2w images, ADC, and perfusion maps were acquired. Results: All healthy rats were euthanized 1 year after irradiation without any clinical alteration visible by simple examination. T2w and ADC measurements remain stable for the single incidence irradiation group. Localized Gd-DOTA permeability, however, was observed 9 months after irradiation for the interleaved incidences group. The survival time of irradiated glioma bearing rats was significantly longer than that of untreated animals (49 {+-} 12.5 days versus 23.3 {+-} 2 days, p < 0.001). The tumoral cerebral blood flow and blood volume tend to decrease after irradiation. Conclusions: This study demonstrates the sparing effect of minibeams on healthy tissue. The increased life span achieved for irradiated glioma bearing rats was similar to the one obtained with other radiotherapy techniques. This experimental tumor therapy study shows the feasibility of using X-ray minibeams with high doses in brain tumor radiotherapy.« less
Wu, Rongli; Watanabe, Yoshiyuki; Arisawa, Atsuko; Takahashi, Hiroto; Tanaka, Hisashi; Fujimoto, Yasunori; Watabe, Tadashi; Isohashi, Kayako; Hatazawa, Jun; Tomiyama, Noriyuki
2017-10-01
This study aimed to compare the tumor volume definition using conventional magnetic resonance (MR) and 11C-methionine positron emission tomography (MET/PET) images in the differentiation of the pre-operative glioma grade by using whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) maps. Thirty-four patients with histopathologically proven primary brain low-grade gliomas (n = 15) and high-grade gliomas (n = 19) underwent pre-operative or pre-biopsy MET/PET, fluid-attenuated inversion recovery, dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging, and contrast-enhanced T1-weighted at 3.0 T. The histogram distribution derived from the nCBV maps was obtained by co-registering the whole tumor volume delineated on conventional MR or MET/PET images, and eight histogram parameters were assessed. The mean nCBV value had the highest AUC value (0.906) based on MET/PET images. Diagnostic accuracy significantly improved when the tumor volume was measured from MET/PET images compared with conventional MR images for the parameters of mean, 50th, and 75th percentile nCBV value (p = 0.0246, 0.0223, and 0.0150, respectively). Whole-tumor histogram analysis of CBV map provides more valuable histogram parameters and increases diagnostic accuracy in the differentiation of pre-operative cerebral gliomas when the tumor volume is derived from MET/PET images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fokas, Emmanouil, E-mail: emmanouil.fokas@yahoo.d; Haenze, Joerg; Kamlah, Florentine
2010-08-01
Purpose: Hypoxia is a major determinant of tumor radiosensitivity, and microenvironmental changes in response to ionizing radiation (IR) are often heterogenous. We analyzed IR-dependent changes in hypoxia and perfusion in A549 human lung adenocarcinoma xenografts. Materials and Methods: Immunohistological analysis of two exogenously added chemical hypoxic markers, pimonidazole and CCI-103F, and of the endogenous marker Glut-1 was performed time dependently after IR. Tumor vessels and apoptosis were analyzed using CD31 and caspase-3 antibodies. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and fluorescent beads (Hoechst 33342) were used to monitor vascular perfusion. Results: CCI-103F signals measuring the fraction of hypoxic areas aftermore » IR were significantly decreased by approximately 50% when compared with pimonidazole signals, representing the fraction of hypoxic areas from the same tumors before IR. Interestingly, Glut-1 signals were significantly decreased at early time point (6.5 h) after IR returning to the initial levels at 30.5 h. Vascular density showed no difference between irradiated and control groups, whereas apoptosis was significantly induced at 10.5 h post-IR. DCE-MRI indicated increased perfusion 1 h post-IR. Conclusions: The discrepancy between the hypoxic fractions of CCI-103F and Glut-1 forces us to consider the possibility that both markers reflect different metabolic alterations of tumor microenvironment. The reliability of endogenous markers such as Glut-1 to measure reoxygenation in irradiated tumors needs further consideration. Monitoring tumor microvascular response to IR by DCE-MRI and measuring tumor volume alterations should be encouraged.« less
SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A
2014-06-01
Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method wheremore » the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S{sub 2}=0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S{sub 2}=0.7 and then approached zero as S{sub 2} is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S{sub 2} is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S{sub 2} are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation.« less
Besemer, Abigail E; Titz, Benjamin; Grudzinski, Joseph J; Weichert, Jamey P; Kuo, John S; Robins, H Ian; Hall, Lance T; Bednarz, Bryan P
2017-07-06
Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124 I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131 I-CLR1404 voxel-level dose distribution was calculated from the 124 I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average ± standard deviation (range) was 0.19 ± 0.13 (0.01-0.51), 0.30 ± 0.17 (0.03-0.67), and 0.75 ± 0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131 I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq -1 (0.07-0.37 Gy GBq -1 ). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.
NASA Astrophysics Data System (ADS)
Besemer, Abigail E.; Titz, Benjamin; Grudzinski, Joseph J.; Weichert, Jamey P.; Kuo, John S.; Robins, H. Ian; Hall, Lance T.; Bednarz, Bryan P.
2017-08-01
Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131I-CLR1404 voxel-level dose distribution was calculated from the 124I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average ± standard deviation (range) was 0.19 ± 0.13 (0.01-0.51), 0.30 ± 0.17 (0.03-0.67), and 0.75 ± 0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq-1 (0.07-0.37 Gy GBq-1). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.
Tumor Volume Estimation and Quasi-Continuous Administration for Most Effective Bevacizumab Therapy
Sápi, Johanna; Kovács, Levente; Drexler, Dániel András; Kocsis, Pál; Gajári, Dávid; Sápi, Zoltán
2015-01-01
Background Bevacizumab is an exogenous inhibitor which inhibits the biological activity of human VEGF. Several studies have investigated the effectiveness of bevacizumab therapy according to different cancer types but these days there is an intense debate on its utility. We have investigated different methods to find the best tumor volume estimation since it creates the possibility for precise and effective drug administration with a much lower dose than in the protocol. Materials and Methods We have examined C38 mouse colon adenocarcinoma and HT-29 human colorectal adenocarcinoma. In both cases, three groups were compared in the experiments. The first group did not receive therapy, the second group received one 200 μg bevacizumab dose for a treatment period (protocol-based therapy), and the third group received 1.1 μg bevacizumab every day (quasi-continuous therapy). Tumor volume measurement was performed by digital caliper and small animal MRI. The mathematical relationship between MRI-measured tumor volume and mass was investigated to estimate accurate tumor volume using caliper-measured data. A two-dimensional mathematical model was applied for tumor volume evaluation, and tumor- and therapy-specific constants were calculated for the three different groups. The effectiveness of bevacizumab administration was examined by statistical analysis. Results In the case of C38 adenocarcinoma, protocol-based treatment did not result in significantly smaller tumor volume compared to the no treatment group; however, there was a significant difference between untreated mice and mice who received quasi-continuous therapy (p = 0.002). In the case of HT-29 adenocarcinoma, the daily treatment with one-twelfth total dose resulted in significantly smaller tumors than the protocol-based treatment (p = 0.038). When the tumor has a symmetrical, solid closed shape (typically without treatment), volume can be evaluated accurately from caliper-measured data with the applied two-dimensional mathematical model. Conclusion Our results provide a theoretical background for a much more effective bevacizumab treatment using optimized administration. PMID:26540189
Tumor Volume Estimation and Quasi-Continuous Administration for Most Effective Bevacizumab Therapy.
Sápi, Johanna; Kovács, Levente; Drexler, Dániel András; Kocsis, Pál; Gajári, Dávid; Sápi, Zoltán
2015-01-01
Bevacizumab is an exogenous inhibitor which inhibits the biological activity of human VEGF. Several studies have investigated the effectiveness of bevacizumab therapy according to different cancer types but these days there is an intense debate on its utility. We have investigated different methods to find the best tumor volume estimation since it creates the possibility for precise and effective drug administration with a much lower dose than in the protocol. We have examined C38 mouse colon adenocarcinoma and HT-29 human colorectal adenocarcinoma. In both cases, three groups were compared in the experiments. The first group did not receive therapy, the second group received one 200 μg bevacizumab dose for a treatment period (protocol-based therapy), and the third group received 1.1 μg bevacizumab every day (quasi-continuous therapy). Tumor volume measurement was performed by digital caliper and small animal MRI. The mathematical relationship between MRI-measured tumor volume and mass was investigated to estimate accurate tumor volume using caliper-measured data. A two-dimensional mathematical model was applied for tumor volume evaluation, and tumor- and therapy-specific constants were calculated for the three different groups. The effectiveness of bevacizumab administration was examined by statistical analysis. In the case of C38 adenocarcinoma, protocol-based treatment did not result in significantly smaller tumor volume compared to the no treatment group; however, there was a significant difference between untreated mice and mice who received quasi-continuous therapy (p = 0.002). In the case of HT-29 adenocarcinoma, the daily treatment with one-twelfth total dose resulted in significantly smaller tumors than the protocol-based treatment (p = 0.038). When the tumor has a symmetrical, solid closed shape (typically without treatment), volume can be evaluated accurately from caliper-measured data with the applied two-dimensional mathematical model. Our results provide a theoretical background for a much more effective bevacizumab treatment using optimized administration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuuring, Janneke; Department of Neurology, Groene Hart Hospital, Gouda; Bussink, Johan
Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, whenmore » combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone.« less
Mahmoudzadeh, Aziz; Mohammadpour, Hemn
2016-07-01
Tumor cells naturally live in three-dimensional (3D) microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D) plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen-chitosan scaffold compared with 2D plate cultures. Collagen-chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen-chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Liang, Xiaoping; Zhang, Qizhi; Staal, Stephen; Grobmyer, Stephen; Jiang, Huabei
2009-02-01
Multispectral and phase-contrast diffuse optical tomography are used to track treatment progress in a patient with locally advanced invasive carcinoma of the breast cancer during neoadjuvant chemotherapy. Two types of chemotherapy treatment including four cycles of Adriamycin/Cytoxin (AC cycles) and twelve cycles of Taxol/Herceptin (TH cycles) were applied to patient. A total of eight optical exams were performed before and within the chemotherapy. Images of tissue refractive index, and absorption and scattering coefficients, as well as oxy-hemoglobin and deoxy-hemoglobin concentrations along with scattering particle volume fraction and mean diameter of cellular components were all obtained. The tumor was identified through absorption and scattering images. Tumor shrinkage was observed during the course of chemotherapy from all the optical images. Our results show that oxy-hemoglobin, deoxy-hemoglobin and total hemoglobin in tumor decreased after chemotherapy compared to that of before chemotherapy. Significant changes in tumor refractive index along with tumor cellular morphology during the entire chemotherapy are also observed.
Hatt, Mathieu; Cheze-le Rest, Catherine; van Baardwijk, Angela; Lambin, Philippe; Pradier, Olivier; Visvikis, Dimitris
2011-11-01
The objectives of this study were to investigate the relationship between CT- and (18)F-FDG PET-based tumor volumes in non-small cell lung cancer (NSCLC) and the impact of tumor size and uptake heterogeneity on various approaches to delineating uptake on PET images. Twenty-five NSCLC cancer patients with (18)F-FDG PET/CT were considered. Seventeen underwent surgical resection of their tumor, and the maximum diameter was measured. Two observers manually delineated the tumors on the CT images and the tumor uptake on the corresponding PET images, using a fixed threshold at 50% of the maximum (T(50)), an adaptive threshold methodology, and the fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum diameters of the delineated volumes were compared with the histopathology reference when available. The volumes of the tumors were compared, and correlations between the anatomic volume and PET uptake heterogeneity and the differences between delineations were investigated. All maximum diameters measured on PET and CT images significantly correlated with the histopathology reference (r > 0.89, P < 0.0001). Significant differences were observed among the approaches: CT delineation resulted in large overestimation (+32% ± 37%), whereas all delineations on PET images resulted in underestimation (from -15% ± 17% for T(50) to -4% ± 8% for FLAB) except manual delineation (+8% ± 17%). Overall, CT volumes were significantly larger than PET volumes (55 ± 74 cm(3) for CT vs. from 18 ± 25 to 47 ± 76 cm(3) for PET). A significant correlation was found between anatomic tumor size and heterogeneity (larger lesions were more heterogeneous). Finally, the more heterogeneous the tumor uptake, the larger was the underestimation of PET volumes by threshold-based techniques. Volumes based on CT images were larger than those based on PET images. Tumor size and tracer uptake heterogeneity have an impact on threshold-based methods, which should not be used for the delineation of cases of large heterogeneous NSCLC, as these methods tend to largely underestimate the spatial extent of the functional tumor in such cases. For an accurate delineation of PET volumes in NSCLC, advanced image segmentation algorithms able to deal with tracer uptake heterogeneity should be preferred.
Pei, Shimin; Yang, Xu; Wang, Huanan; Zhang, Hong; Zhou, Bin; Zhang, Di; Lin, Degui
2015-12-16
Metastasis is the major cause of death in breast cancers. MMPs play a key role in tumor microenvironment that facilitates metastasis. The existing researches suggest that the high expression of gelatinase A and B (MMP2 and MMP9) promote the metastasis of breast cancer. Therefore, gelatinase inhibitor can effectively suppress tumor metastasis. However, at present, there is no dramatically effective gelatinase inhibitor against breast cancer. We screened gelatinase inhibitor among Chinese herbal medicine by molecular docking technology; investigated the proliferation, migration and invasion of MDA-MB-231 human breast cancer cell line and 4T1 mouse breast cancer cell line in response to the treatment with the screened inhibitor by wound assay, invasion assay and gelatin zymography; then further examined the effects of inhibitor on allograft mammary tumors of mice by immunohistochemistry. We successfully screened an Chinese herbal medicine-Plantamajoside(PMS)-which can reduce the gelatinase activity of MMP9 and MMP2. In vitro, PMS can inhibit the proliferation, migration and invasion of MDA-MB-231 human breast cancer cell line and 4T1 mouse breast cancer cell line by decreasing MMP9 and MMP2 activity. In vivo, oral administration of PMS to the mice bearing 4T1 cells induced tumors resulted in significant reduction in allograft tumor volume and weights, significant decrease in microvascular density and significant lower lung metastasis rate. Our results indicate that as a promising anti-cancer agent, PMS may inhibit growth and metastasis of breast cancer by inhibiting the activity of MMP9 and MMP2.
Time-dependent cell disintegration kinetics in lung tumors after irradiation
NASA Astrophysics Data System (ADS)
Chvetsov, Alexei V.; Palta, Jatinder J.; Nagata, Yasushi
2008-05-01
We study the time-dependent disintegration kinetics of tumor cells that did not survive radiotherapy treatment. To evaluate the cell disintegration rate after irradiation, we studied the volume changes of solitary lung tumors after stereotactic radiotherapy. The analysis is performed using two approximations: (1) tumor volume is a linear function of the total cell number in the tumor and (2) the cell disintegration rate is governed by the exponential decay with constant risk, which is defined by the initial cell number and a half-life T1/2. The half-life T1/2 is determined using the least-squares fit to the clinical data on lung tumor size variation with time after stereotactic radiotherapy. We show that the tumor volume variation after stereotactic radiotherapy of solitary lung tumors can be approximated by an exponential function. A small constant component in the volume variation does not change with time; however, this component may be the residual irregular density due to radiation fibrosis and was, therefore, subtracted from the total volume variation in our computations. Using computerized fitting of the exponent function to the clinical data for selected patients, we have determined that the average half-life T1/2 of cell disintegration is 28.2 days for squamous cell carcinoma and 72.4 days for adenocarcinoma. This model is needed for simulating the tumor volume variation during radiotherapy, which may be important for time-dependent treatment planning of proton therapy that is sensitive to density variations.
Wasik, M. A.; Sioutos, N.; Tuttle, M.; Butmarc, J. R.; Kaplan, W. D.; Kadin, M. E.
1994-01-01
Increased serum concentration of soluble alpha-chain receptor for interleukin-2 (sIL-2R) has been noted in patients with a variety of inflammatory conditions and lymphoid malignancies including T cell leukemia and lymphoma. Elevated sIL-2R serum levels seen in lymphoid malignancies appear to correlate with the clinical stage of disease. However, because sIL-2R is produced by normal activated lymphocytes, it has been uncertain whether serum sIL-2R in such conditions is derived from tumor cells or normal immune cells responding to the tumor. To address this question, we used a model of human (CD30+) anaplastic, large T cell lymphoma transplanted into immunodeficient SCID mice. Reverse transcription polymerase chain reaction of tumor RNA showed that the tumor, designated mJB6, contains mRNA for alpha-chain of human IL-2R. Furthermore, 15 to 25% of tumor cells stained with anti-human IL-2R alpha-chain mAb. Solid phase ELISA analysis of serum samples from mice bearing mJB6 lymphoma showed high concentrations of human sIL-2R. None of the control mice without lymphoma or with human nonlymphoid tumors (prostatic carcinoma, ovarian carcinoma, and glioblastoma multiforme) showed detectable human sIL-2R. The sIL-2R serum titers of mJB6-bearing mice correlated strongly with tumor volume (P < 0.0001). Tumors as small as 0.4 to 0.8 mm3 could be detected by this method. The sensitivity of sIL-2R ELISA exceeded at least 150 times the sensitivity of conventional radioisotopic tumor detection. Total resection of mJB6 tumors resulted in complete clearance of sIL-2R from the murine serum within 48 hours with a half-life of 6 hours. Accordingly, partial resection led to a significant decrease in sIL-2R followed by gradual increase with tumor regrowth. sIL-2R was also detected in the urine of mJB6-transplanted mice. As in serum, urine concentrations of sIL-2R were proportional to tumor mass (P < 0.02). Based on these findings we postulate that malignant cells are a major source of serum sIL-2R in patients with lymphoid tumors. In addition, our data further support monitoring sIL-2R concentration in body fluids as a sensitive method to detect change in tumor volume in such patients. Images Figure 1 Figure 2 PMID:8178932
NASA Astrophysics Data System (ADS)
Lee, Songhyun; Jeong, Hyeryun; Seong, Myeongsu; Kim, Jae Gwan
2017-12-01
Breast cancer is one of the most common cancers in females. To monitor chemotherapeutic efficacy for breast cancer, medical imaging systems such as x-ray mammography, computed tomography, magnetic resonance imaging, and ultrasound imaging have been used. Currently, it can take up to 3 to 6 weeks to see the tumor response from chemotherapy by monitoring tumor volume changes. We used near-infrared spectroscopy (NIRS) to predict breast cancer treatment efficacy earlier than tumor volume changes by monitoring tumor vascular reactivity during inhalational gas interventions. The results show that the amplitude of oxy-hemoglobin changes (vascular reactivity) during hyperoxic gas inhalation is well correlated with tumor growth and responded one day earlier than tumor volume changes after chemotherapy. These results may imply that NIRS with respiratory challenges can be useful in early detection of tumor and in the prediction of tumor response to chemotherapy.
Kang, Shin J.; Zhang, Qing; Patel, Samirkumar R.; Berezovsky, Damian; Yang, Hua; Wang, Yanggan; Grossniklaus, Hans E.
2013-01-01
Purpose To evaluate the utility of in vivo imaging of rabbit model of choroidal melanoma utilizing high-frequency contrast-enhanced ultrasound (HF-CE-US) with 2-or 3-dimensional modes, and to correlate the sonographic findings with histopathologic characteristics. Methods Five New Zealand white rabbits which were immunosuppressed with daily cyclosporin A were inoculated into their right eyes with aliquots of 1.5×106 / 50 µL of 92.1 human uveal melanoma cells cultured in RPMI. At week 4, the tumor-bearing eyes were imaged using high-frequency ultrasound with microbubble contrast agent to determine the 2-dimensional tumor size and relative blood volume and by 3-dimensional mode to determine tumor volume. Histologic tumor burden was quantified in enucleated eyes by ImageJ software, and microvascular density (MVD) was determined by counting vascular channels in PAS without hematoxylin sections. Results Utilizing HF-CE-US, melanomas were visualized as relatively hyperechoic regions in the images. The correlation coefficients of sonographic size or volume compared with histologic area were 0.72 and 0.70, respectively. The sonographic tumor relative blood volume correlated with the histologic tumor vascularity (R2=0.92, P=0.04) Conclusions There is a positive correlation between in vivo sonographic tumor volume/size and histologic tumor size in our rabbit choroidal melanoma model. HF-CE-US corresponds to microvascular density and blood volume. PMID:23645822
Brain invasion and the risk of seizures in patients with meningioma.
Hess, Katharina; Spille, Dorothee Cäcilia; Adeli, Alborz; Sporns, Peter B; Brokinkel, Caroline; Grauer, Oliver; Mawrin, Christian; Stummer, Walter; Paulus, Werner; Brokinkel, Benjamin
2018-04-27
OBJECTIVE Identification of risk factors for perioperative epilepsy remains crucial in the care of patients with meningioma. Moreover, associations of brain invasion with clinical and radiological variables have been largely unexplored. The authors hypothesized that invasion of the cortex and subsequent increased edema facilitate seizures, and they compared radiological data and perioperative seizures in patients with brain-invasive or noninvasive meningioma. METHODS Correlations of brain invasion with tumor and edema volumes and preoperative and postoperative seizures were analyzed in univariate and multivariate analyses. RESULTS Totals of 108 (61%) females and 68 (39%) males with a median age of 60 years and harboring totals of 92 (52%) grade I, 79 (45%) grade II, and 5 (3%) grade III tumors were included. Brain invasion was found in 38 (22%) patients and was absent in 138 (78%) patients. The tumors were located at the convexity in 72 (41%) patients, at the falx cerebri in 26 (15%), at the skull base in 69 (39%), in the posterior fossa in 7 (4%), and in the ventricle in 2 (1%); the median tumor and edema volumes were 13.73 cm 3 (range 0.81-162.22 cm 3 ) and 1.38 cm 3 (range 0.00-355.80 cm 3 ), respectively. As expected, edema volume increased with rising tumor volume (p < 0.001). Brain invasion was independent of tumor volume (p = 0.176) but strongly correlated with edema volume (p < 0.001). The mean edema volume in noninvasive tumors was 33.0 cm 3 , but in invasive tumors, it was 130.7 cm 3 (p = 0.008). The frequency of preoperative seizures was independent of the patients' age, sex, and tumor location; however, the frequency was 32% (n = 12) in patients with invasive meningioma and 15% (n = 21) in those with noninvasive meningioma (p = 0.033). In contrast, the probability of detecting brain invasion microscopically was increased more than 2-fold in patients with a history of preoperative seizures (OR 2.57, 95% CI 1.13-5.88; p = 0.025). In univariate analyses, the rate of preoperative seizures correlated slightly with tumor volume (p = 0.049) but strongly with edema volume (p = 0.014), whereas seizure semiology was found to be independent of brain invasion (p = 0.211). In multivariate analyses adjusted for age, sex, tumor location, tumor and edema volumes, and WHO grade, rising tumor volume (OR 1.02, 95% CI 1.00-1.03; p = 0.042) and especially brain invasion (OR 5.26, 95% CI 1.52-18.15; p = 0.009) were identified as independent predictors of preoperative seizures. Nine (5%) patients developed new seizures within a median follow-up time of 15 months after surgery. Development of postoperative epilepsy was independent of all clinical variables, including Simpson grade (p = 0.133), tumor location (p = 0.936), brain invasion (p = 0.408), and preoperative edema volume (p = 0.081), but was correlated with increasing preoperative tumor volume (p = 0.004). Postoperative seizure-free rates were similar among patients with invasive and those with noninvasive meningioma (p = 0.372). CONCLUSIONS Brain invasion was identified as a new and strong predictor for preoperative, but not postoperative, seizures. Although also associated with increased peritumoral edema, seizures in patients with invasive meningioma might be facilitated substantially by cortical invasion itself. Consideration of seizures in consultations between the neurosurgeon and neuropathologist can improve the microscopic detection of brain invasion.
Chandra, V; Fatima, I; Saxena, R; Hussain, M K; Hajela, K; Sankhwar, P; Roy, B G; Chandna, S; Dwivedi, A
2013-05-01
The aim of the present study was to investigate the effect of non-steroidal, pure antiestrogenic benzopyran derivative i.e., 2-[piperidinoethoxyphenyl]-3-[4-hydroxyphenyl]-2H-benzo(b)pyran (K-1) on the growth of human endometrial cancer cells in vivo and in vitro and to elucidate its mechanism of action. Cell proliferation was assayed by measuring the incorporation of 5'-bromo-2'-deoxyuridine in Ishikawa and primary endometrial cancer cells. The expression of proliferation and apoptotic markers was analyzed by immunoblotting. The effect of K-1 on GPR30-regulated proteins was analyzed by ELISA and by immunoblotting. Nude mice bearing subcutaneous implanted-Ishikawa tumors, were treated for 14days with K-1 (200μg/kg body weight/day/orally). The proliferation markers, GPR30-regulated proteins and apoptotic markers were analyzed by immunoblotting in tumor xenograft. The apoptotic effect of compound K-1 was determined by TUNEL assay. Compound K-1 inhibited proliferation of endometrial adenocarcinoma cells and decreased the expression of proliferation markers. It caused apoptosis by increasing the expression of apoptotic markers (NOXA, PUMAα) and reducing the expression of p-CREB and BclxL. Compound interfered with GPR30-regulated-EGFR activation, decreased p-ERK, p-c-jun, c-fos, cyclinD1 and c-myc expression. Treatment of tumor-bearing mice with K-1 resulted in a significant decrease in tumor volume and weight. Decreased expression of p-ERK and its downstream molecules and increased expression of apoptotic markers were observed in tumor in K-1 treated animals. Findings suggest the potent inhibitory effect of compound K-1 on endometrial cancer cellular growth (in-vitro) and on tumor size (in-vivo) which is mediated at least, in part, by interference with GPR30-signaling. Copyright © 2013 Elsevier Inc. All rights reserved.
Shao, Guoqiang; Wu, Jianping; Cui, Can; Zang, Shimin; Qiu, Fan
2018-01-01
Objective To synthesize 68Ga-Glu-urea-Lys(Ahx)-HBED-CC (68Ga-PSMA-11) with a synthesis module and investigate PET-CT imaging to monitor PSMA expression during prostate cancer (PCa) progression and tumor growth in mice bearing subcutaneous PCa xenografts. Method The radiochemical purity and stability of 68Ga-PSMA-11 were determined via radio-HPLC. The PCa cell lines of different PSMA expression levels (PC3, VCAP±, CWR22RV1+, and LNCaP++) were selected to mimic the PCa progression. 68Ga-PSMA-11 biodistribution was studied by dissection method and in vivo imaging with micro PET-CT. The expression levels of PSMA in tumor cells and tissues were analyzed by immunofluorescence, flow cytometry, and western blot. The correlation between PSMA expression and radio-uptake was also evaluated. 2-PMPA preadministration served as a block group. Results The radiochemical purity of 68Ga-PSMA-11 was 99.6 ± 0.1% and stable in vitro for 2 h. The equilibrium binding constant (Kd) of 68Ga-PSMA-11 to LNCaP, CWR22Rv1, PC-3, and VCAP cells was 4.3 ± 0.8 nM, 16.4 ± 1.3 nM, 225.3 ± 20.8 nM, and 125.6 ± 13.1 nM, respectively. Results of tumor uptake (% ID and % ID/g or % ID/cm3) of 68Ga-PSMA-11 in biodistribution and micro PET imaging were LNCaP > CWR22RV1 > PC-3 and VCAP due to different PSMA expression levels. It was confirmed by flow cytometry, western blot, and immunofluorescence. Tumor uptake (% ID/cm3) of 68Ga-PSMA-11 increased with the tumor anatomical volume in quadratic polynomial fashion and reached the peak (when tumor volume was 0.5 cm3) earlier than tumor uptake (% ID). Tumor uptake (% ID/cm3) of 68Ga-PSMA-11 based on functional volume correlated well with the PSMA expression in a linear manner (y = 9.35x + 2.59, R2 = 0.8924, and p < 0.0001); however, low dose 2-PMPA causes rapid renal clearance of increased tumor/kidney uptake of 68Ga-PSMA-11. Conclusions The 68Ga-PSMA-11 PET-CT imaging could invasively evaluate PSMA expression during PCa progression and tumor growth with % ID/cm3 (based on functional volume) as an important index. Low dose 2-PMPA preadministration might be a choice to decrease kidney uptake of 68Ga-PSMA-11. PMID:29853810
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brink, Carsten, E-mail: carsten.brink@rsyd.dk; Laboratory of Radiation Physics, Odense University Hospital; Bernchou, Uffe
2014-07-15
Purpose: Large interindividual variations in volume regression of non-small cell lung cancer (NSCLC) are observable on standard cone beam computed tomography (CBCT) during fractionated radiation therapy. Here, a method for automated assessment of tumor volume regression is presented and its potential use in response adapted personalized radiation therapy is evaluated empirically. Methods and Materials: Automated deformable registration with calculation of the Jacobian determinant was applied to serial CBCT scans in a series of 99 patients with NSCLC. Tumor volume at the end of treatment was estimated on the basis of the first one third and two thirds of the scans.more » The concordance between estimated and actual relative volume at the end of radiation therapy was quantified by Pearson's correlation coefficient. On the basis of the estimated relative volume, the patients were stratified into 2 groups having volume regressions below or above the population median value. Kaplan-Meier plots of locoregional disease-free rate and overall survival in the 2 groups were used to evaluate the predictive value of tumor regression during treatment. Cox proportional hazards model was used to adjust for other clinical characteristics. Results: Automatic measurement of the tumor regression from standard CBCT images was feasible. Pearson's correlation coefficient between manual and automatic measurement was 0.86 in a sample of 9 patients. Most patients experienced tumor volume regression, and this could be quantified early into the treatment course. Interestingly, patients with pronounced volume regression had worse locoregional tumor control and overall survival. This was significant on patient with non-adenocarcinoma histology. Conclusions: Evaluation of routinely acquired CBCT images during radiation therapy provides biological information on the specific tumor. This could potentially form the basis for personalized response adaptive therapy.« less
Christian, Nicolas; Deheneffe, Stéphanie; Bol, Anne; De Bast, Marc; Labar, Daniel; Lee, John A; Grégoire, Vincent
2010-11-01
Fluorodeoxyglucose (FDG) has been reported as a surrogate tracer to measure tumor hypoxia with positron emission tomography (PET). The hypothesis is that there is an increased uptake of FDG under hypoxic conditions secondary to enhanced glycolysis, compensating the hypoxia-induced loss of cellular energy production. Several studies have already addressed this issue, some with conflicting results. This study aimed to compare the tracers (14)C-EF3 and (18)F-FDG to detect hypoxia in mouse tumor models. C3H, tumor-bearing mice (FSAII and SCCVII tumors) were injected iv with (14)C-EF3, and 1h later with (18)F-FDG. Using a specifically designed immobilization device with fiducial markers, PET (Mosaic®, Philips) images were acquired 1h after the FDG injection. After imaging, the device containing mouse was frozen, transversally sliced and imaged with autoradiography (AR) (FLA-5100, Fujifilm) to obtain high resolution images of the (18)F-FDG distribution within the tumor area. After a 48-h delay allowing for (18)F decay a second AR was performed to image (14)C-EF3 distribution. AR images were aligned to reconstruct the full 3D tumor volume, and were compared with the PET images. Image segmentation with threshold-based methods was applied on both AR and PET images to derive various tracer activity volumes. The matching index DSI (dice similarity index) was then computed. The comparison was performed under normoxic (ambient air, FSAII: n=4, SCCVII, n=5) and under hypoxic conditions (10% O(2) breathing, SCCVII: n=4). On AR, under both ambient air and hypoxic conditions, there was a decreasing similarity between (14)C-EF3 and FDG with higher activity sub-volumes. Under normoxic conditions, when comparing the 10% of tumor voxels with the highest (18)F-FDG or (14)C-EF3 activity, a DSI of 0.24 and 0.20 was found for FSAII and SCCVII, respectively. Under hypoxic conditions, a DSI of 0.36 was observed for SCCVII tumors. When comparing the (14)C-EF3 distribution in AR with the corresponding (18)F-FDG-PET images, the DSI reached values of 0.26, 0.22 and 0.21 for FSAII and SCCVII under normoxia and SCCVII under hypoxia, respectively. This study showed that FDG is not a good surrogate tracer for tumor hypoxia under either ambient or hypoxic conditions. Only specific hypoxia tracers should be used to measure tumor hypoxia. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Lee, Choong-Gu; Kwon, Ho-Keun; Ryu, Jae Ha; Kang, Sung Jin; Im, Chang-Rok; Ii Kim, Jae; Im, Sin-Hyeog
2010-10-20
Abalone has long been used as a valuable food source in East Asian countries. Although the nutritional importance of abalone has been reported through in vitro and in vivo studies, there is little evidence about the potential anti-tumor effects of abalone visceral extract. The aim of the present study is to examine anti-tumor efficacy of abalone visceral extract and to elucidate its working mechanism. In the present study, we used breast cancer model using BALB/c mouse-derived 4T1 mammary carcinoma and investigated the effect of abalone visceral extract on tumor development. Inhibitory effect against tumor metastasis was assessed by histopathology of lungs. Cox-2 productions by primary and secondary tumor were measured by real-time RT-PCR and immunoblotting (IB). Proliferation assay based on [3H]-thymidine incorporation and measurement of cytokines and effector molecules by RT-PCR were used to confirm tumor suppression efficacy of abalone visceral extract by modulating cytolytic CD8+ T cells. The cytotoxicity of CD8+ T cell was compared by JAM test. Oral administration of abalone visceral extract reduced tumor growth (tumor volume and weight) and showed reduced metastasis as confirmed by decreased level of splenomegaly (spleen size and weight) and histological analysis of the lung metastasis (gross analysis and histological staining). Reduced expression of Cox-2 (mRNA and protein) from primary tumor and metastasized lung was also detected. In addition, treatment of abalone visceral extract increased anti-tumor activities of CD8+ T cells by increasing the proliferation capacity and their cytolytic activity. Our results suggest that abalone visceral extract has anti-tumor effects by suppressing tumor growth and lung metastasis through decreasing Cox-2 expression level as well as promoting proliferation and cytolytic function of CD8+ T cells.
2010-01-01
Background Abalone has long been used as a valuable food source in East Asian countries. Although the nutritional importance of abalone has been reported through in vitro and in vivo studies, there is little evidence about the potential anti-tumor effects of abalone visceral extract. The aim of the present study is to examine anti-tumor efficacy of abalone visceral extract and to elucidate its working mechanism. Methods In the present study, we used breast cancer model using BALB/c mouse-derived 4T1 mammary carcinoma and investigated the effect of abalone visceral extract on tumor development. Inhibitory effect against tumor metastasis was assessed by histopathology of lungs. Cox-2 productions by primary and secondary tumor were measured by real-time RT-PCR and immunoblotting (IB). Proliferation assay based on [3H]-thymidine incorporation and measurement of cytokines and effector molecules by RT-PCR were used to confirm tumor suppression efficacy of abalone visceral extract by modulating cytolytic CD8+ T cells. The cytotoxicity of CD8+ T cell was compared by JAM test. Results Oral administration of abalone visceral extract reduced tumor growth (tumor volume and weight) and showed reduced metastasis as confirmed by decreased level of splenomegaly (spleen size and weight) and histological analysis of the lung metastasis (gross analysis and histological staining). Reduced expression of Cox-2 (mRNA and protein) from primary tumor and metastasized lung was also detected. In addition, treatment of abalone visceral extract increased anti-tumor activities of CD8+ T cells by increasing the proliferation capacity and their cytolytic activity. Conclusions Our results suggest that abalone visceral extract has anti-tumor effects by suppressing tumor growth and lung metastasis through decreasing Cox-2 expression level as well as promoting proliferation and cytolytic function of CD8+ T cells. PMID:20961430
Supratentorial Neurometabolic Alterations in Pediatric Survivors of Posterior Fossa Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueckriegel, Stefan M., E-mail: rueckriegel.s@nch.uni-wuerzburg.de; Driever, Pablo Hernaiz; Bruhn, Harald
2012-03-01
Purpose: Therapy and tumor-related effects such as hypoperfusion, internal hydrocephalus, chemotherapy, and irradiation lead to significant motor and cognitive sequelae in pediatric posterior fossa tumor survivors. A distinct proportion of those factors related to the resulting late effects is hitherto poorly understood. This study aimed at separating the effects of neurotoxic factors on central nervous system metabolism by using H-1 MR spectroscopy to quantify cerebral metabolite concentrations in these patients in comparison to those in age-matched healthy peers. Methods and Materials: Fifteen patients with World Health Organization (WHO) I pilocytic astrocytoma (PA) treated by resection only, 24 patients with WHOmore » IV medulloblastoma (MB), who additionally received chemotherapy and craniospinal irradiation, and 43 healthy peers were investigated using single-volume H-1 MR spectroscopy of parietal white matter and gray matter. Results: Concentrations of N-acetylaspartate (NAA) were significantly decreased in white matter (p < 0.0001) and gray matter (p < 0.0001) of MB patients and in gray matter (p = 0.005) of PA patients, compared to healthy peers. Decreased creatine concentrations in parietal gray matter correlated significantly with older age at diagnosis in both patient groups (MB patients, p = 0.009, r = 0.52; PA patients, p = 0.006, r = 0.7). Longer time periods since diagnosis were associated with lower NAA levels in white matter of PA patients (p = 0.008, r = 0.66). Conclusions: Differently decreased NAA concentrations were observed in both PA and MB groups of posterior fossa tumor patients. We conclude that this reflects a disturbance of the neurometabolic steady state of normal-appearing brain tissue due to the tumor itself and to the impact of surgery in both patient groups. Further incremental decreases of metabolite concentrations in MB patients may point to additional harm caused by irradiation and chemotherapy. The stronger decrease of NAA in MB patients may correspond to the additional damage of combined irradiation and chemotherapy on neuroaxonal cell viability and number.« less
Yock, Adam D.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Kudchadker, Rajat J.; Court, Laurence E.
2014-01-01
Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear, and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models includes the characterization of patient-specific response with implications for treatment management and research study design. PMID:25086518
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yock, Adam D.; Kudchadker, Rajat J.; Rao, Arvind
2014-08-15
Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear,more » and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models includes the characterization of patient-specific response with implications for treatment management and research study design.« less
Arrieta, Oscar; Garcia-Perez, Francisco O; Michel-Tello, David; Ramírez-Tirado, Laura-Alejandra; Pitalua-Cortes, Quetzali; Cruz-Rico, Graciela; Macedo-Pérez, Eleazar-Omar; Cardona, Andrés F; Garza-Salazar, Jaime de la
2018-03-01
Nintedanib is an oral angiokinase inhibitor used as second-line treatment for non-small cell lung cancer. New radiotracers, such as 68 Ga-DOTA-E-[c(RGDfK)] 2 , that target α v β 3 integrin might have an impact as a noninvasive method for assessing angiogenesis inhibitors. Methods: From July 2011 through October 2015, 38 patients received second-line nintedanib plus docetaxel. All patients underwent PET/CT with 68 Ga-DOTA-E-[c(RGDfK)] 2 radiotracer and blood-sample tests to quantify angiogenesis factors (fibroblast growth factor, vascular endothelial growth factor, and platelet-derived growth factor AB) before and after completing 2 therapy cycles. Results: Of the 38 patients, 31 had available baseline and follow-up PET/CT. Baseline lung tumor volume addressed with 68 Ga-DOTA-E-[c(RGDfK)] 2 PET/CT correlated with serum vascular endothelial growth factor levels, whereas baseline lung/liver SUV max index correlated with platelet-derived growth factor AB. After treatment, the overall response rate and disease control rate were 7.9% and 47.3%, respectively. A greater decrease in lung tumor volume (-37.2% vs. -27.6%) was associated with a better disease control rate in patients ( P = 0.005). Median progression-free survival was 3.7 mo. Nonsmokers and patients with a higher baseline lung tumor volume were more likely to have a higher progression-free survival (6.4 vs. 3.74 [ P = 0.023] and 6.4 vs. 2.1 [ P = 0.003], respectively). Overall survival was not reached. Patients with a greater decrease in lung SUV max (not reached vs. 7.1 mo; P = 0.016) and a greater decrease in the lung/spleen SUV max index (not reached vs. 7.1; P = 0.043) were more likely to have a longer overall survival. Conclusion: 68 Ga-DOTA-E-[c(RGDfK)] 2 PET/CT is a potentially useful tool for assessing responses to angiogenesis inhibitors. Further analysis and novel studies are warranted to identify patients who might benefit from this therapy. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Leksell Gamma Knife radiosurgery of the jugulotympanic glomus tumor: long-term results.
Liscak, Roman; Urgosik, Dusan; Chytka, Tomas; Simonova, Gabriela; Novotny, Josef; Vymazal, Josef; Guseynova, Khumar; Vladyka, Vilibald
2014-12-01
Glomus tumors usually display indolent behavior, and the effectiveness of radiation in stopping their growth can be assessed after long-term follow-up. Currently only midterm results of radiosurgery are available, so the authors included patients treated by Gamma Knife at least 10 years ago in this study to obtain a perspective of long-term results. During the period from 1992 to 2003, the Gamma Knife was used to treat 46 patients with glomus tumors. The age of the patients ranged from 21 to 79 years (median 56 years). Gamma Knife radiosurgery was the primary treatment in 17 patients (37%). Open surgery preceded radiosurgery in 46% of cases, embolization in 17%, and fractionated radiotherapy in 4%. The volume of the tumor ranged from 0.2 to 24.3 cm(3) (median 3.6 cm(3)). The minimal dose to the tumor margin ranged between 10 and 30 Gy (median 20 Gy). One patient was lost for follow-up after radiosurgery. Clinical follow-up was available in 45 patients and 44 patients were followed with MRI in a follow-up period that ranged from 12 to 217 months (median 118 months). Neurological deficits improved in 19 (42%) of 45 patients and deteriorated in 2 patients (4%). Tumor size decreased in 34 (77%) of 44 patients with imaging follow-up, while an increase in volume was observed in 1 patient (2%) 182 months after radiosurgery and Gamma Knife treatment was repeated. One patient underwent another Gamma Knife treatment for secondary induced meningioma close to the glomus tumor 98 months after initial radiosurgical treatment. Seven patients died 22-96 months after radiosurgery (median 48 months), all for unrelated reasons. Radiosurgery has proved to be a safe treatment with a low morbidity rate and a reliable long-term antiproliferative effect.
Temozolomide combined with PD-1 Antibody therapy for mouse orthotopic glioma model.
Dai, Bailing; Qi, Na; Li, Junchao; Zhang, Guilong
2018-07-02
Temozolomide (TMZ) is the most frequent adjuvant chemotherapy drug in gliomas. PDL1 expresses on various tumors, including gliomas, and anti-PD-1 antibodies have been approved for treating some tumors by FDA. This study was to evaluate the therapeutical potential of combined TMZ with anti-PD-1 antibody therapy for mouse orthotopic glioma model. We performed C57BL/6 mouse orthotopic glioma model by stereotactic intracranial implantation of glioma cell line GL261, mice were randomly divided into four groups: (1) control group; (2) TMZ group; (3) anti-PD-1 antibody group; (4) TMZ combined with anti-PD-1 antibody group. Then the volume or size of tumor was assessed by 7.0 T MRI and immunohistochemistry, and the number of CD4 and CD8 infiltrating cells in brain tumor and spleen was evaluated by immunohistochemistry. Western blot was used to evaluate the expression of PDL1. Furthermore, Overall survival of each group mice was also evaluated. Overall survival was significantly improved in combined group compared to other groups (χ2 = 32.043, p < 0.01). The volume or size of tumor was significantly decreased in combined group compared with other groups (F = 42.771, P < 0.01). And the number of CD4 and CD8 infiltrating cells in brain tumor was also obviously increased in combined group (CD4 F = 45.67, P < 0.01; CD8 F = 53.75, P < 0.01). Anti-PD1 antibody combined with TMZ therapy for orthotopic mouse glioma model could significantly improve the survival time of tumor-bear mice. Thus, this study provides the effective preclinical evidence for support clinical chemotherapy combined with immunotherapy for glioma patients. Copyright © 2018 Elsevier Inc. All rights reserved.
Chinese Red Yeast Rice Inhibition of Prostate Tumor Growth in SCID mice
Hong, Mee Young; Henning, Susanne; Moro, Aune; Seeram, Navindra P.; Zhang, Yanjun; Heber, David
2011-01-01
Prostate cancer is a slowly developing but very common cancer in males that may be amenable to preventive strategies that are not toxic. Chinese red yeast rice (RYR), a food herb made by fermenting Monascus purpureus Went yeast on white rice, contains a mixture of eight different monacolins that inhibit cholesterogenesis in addition to red pigments with antioxidant properties. Monacolin K is identical to lovastatin (LV), but lovastatin unlike RYR can be used in individuals intolerant to statins due to muscle pain. Both LV and RYR inhibit de novo cholesterogenesis, which is critical to the growth of tumor cells. Long-term use of statin drugs has been associated with a reduced risk of prostate cancer. We have previously shown that RYR inhibited androgen-dependent and AR-overexpressing androgen-independent prostate cancer cell proliferation in vitro. The present study was designed to determine whether RYR and LV inhibit prostate tumor growth in SCID mice. RYR significantly reduced tumor volumes of androgen-dependent and androgen-independent prostate xenograft tumors compared to animals receiving vehicle alone (P<0.05). Inhibition by RYR was greater than that observed with LV at the dose found in RYR demonstrating that other compounds in RYR contributed to the antiproliferative effect. There was a significant correlation of tumor volume to serum cholesterol (P<0.001). RYR decreased gene expression of androgen synthesizing enzymes (HSD3B2, AKR1C3 and SRD5A1) in both type of tumors (P<0.05). Clinical studies of RYR for prostate cancer prevention in the increasing population of men undergoing active surveillance should be considered. PMID:21278313
Ursodeoxycholic acid induces apoptosis in hepatocellular carcinoma xenografts in mice
Liu, Hui; Xu, Hong-Wei; Zhang, Yu-Zhen; Huang, Ya; Han, Guo-Qing; Liang, Tie-Jun; Wei, Li-Li; Qin, Cheng-Yong; Qin, Cheng-Kun
2015-01-01
AIM: To evaluate the efficacy of ursodeoxycholic acid (UDCA) as a chemotherapeutic agent for the treatment of hepatocellular carcinoma (HCC). METHODS: BALB/c nude mice were randomized into four groups 24 h before subcutaneous injection of hepatocarcinoma BEL7402 cells suspended in phosphate buffered saline (PBS) into the right flank. The control group (n = 10) was fed a standard diet while treatment groups (n = 10 each) were fed a standard daily diet supplemented with different concentrations of UDCA (30, 50 and 70 mg/kg per day) for 21 d. Tumor growth was measured once each week, and tumor volume (V) was calculated with the following equation: V = (L × W2) × 0.52, where L is the length and W is the width of the xenograft. After 21 d, mice were killed under ether anesthesia, and tumors were excised and weighed. Apoptosis was evaluated through detection of DNA fragmentation with gel electrophoresis and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Western blot analysis was performed to determine the expression of apoptosis-related proteins BAX, BCL2, APAF1, cleaved caspase-9, and cleaved caspase-3. RESULTS: UDCA suppressed tumor growth relative to controls. The mean tumor volumes were the following: control, 1090 ± 89 mm3; 30 mg/kg per day, 612 ± 46 mm3; 50 mg/kg per day, 563 ± 38 mm3; and 70 mg/kg per day, 221 ± 26 mm3. Decreased tumor volumes reached statistical significance relative to control xenografts (30 mg/kg per day, P < 0.05; 50 mg/kg per day, P < 0.05; 70 mg/kg per day, P < 0.01). Increasing concentrations of UDCA led to increased DNA fragmentation observed on gel electrophoresis and in the TUNEL assay (control, 1.6% ± 0.3%; 30 mg/kg per day, 2.9% ± 0.5%; 50 mg/kg per day, 3.15% ± 0.7%, and 70 mg/kg per day, 4.86% ± 0.9%). Western blot analysis revealed increased expression of BAX, APAF1, cleaved-caspase-9 and cleaved-caspase-3 proteins, which induce apoptosis, but decreased expression of BCL2 protein, which is an inhibitor of apoptosis, following administration of UDCA. CONCLUSION: UDCA suppresses growth of BEL7402 hepatocellular carcinoma cells in vivo, in part through apoptosis induction, and is thus a candidate for therapeutic treatment of HCC. PMID:26420963
Subtle volume differences in brain parenchyma of children surviving medulloblastoma
NASA Astrophysics Data System (ADS)
Reddick, Wilburn E.; Mulhern, Raymond K.; Elkin, T. David; Glass, John O.; Langston, James W.
1998-07-01
The overriding incentive for accurate quantification of the functional status of children treated for brain tumors emerges from the clinician's desire to balance the efficacy and chronic toxicity of therapies used for the developing child. A hybrid combination of the Kohonen self-organizing map (SOM) for segmentation and a multilayer backpropagation (MLBP) neural network for classification removes observer variances to yield a reproducible and accurate identification of tissues. A group of 17 volunteers and 77 patients from a larger ongoing study of pediatric patients with brain tumors were used to investigate the sensitivity of segmented volumes to determine atrophy as measured by two radiologists. The atrophy study revealed a significant relationship for brain parenchyma, CSF and white matter volumes with atrophy while gray matter had no significant relationship. Brain parenchyma and subsequently white matter were found to be inversely proportional to increasing grades of atrophy. An additional study compared fifteen age-matched patients treated with irradiation and surgery with patients treated with surgery alone. The age-matched study of patients demonstrated that brain volumes in the irradiated patients were significantly decreased compared to those treated with surgery alone. Further investigation of this difference revealed that white matter was significantly reduced while gray matter was relatively unchanged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradshaw, Tyler J.; Bowen, Stephen R.; Deveau, Michael A.
Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Methods and Materials: Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapymore » and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV{sub max}; SUV{sub mean}) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R{sup 2}. Results: The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV{sub mean} (P=.018), and midtreatment FLT SUV{sub max} (P=.006). Large decreases in FLT SUV{sub mean} from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV{sub max} (P=.022) in combination with large FLT response from pretreatment to midtreatment (P=.041). Conclusions: In addition to tumor volume, pronounced tumor proliferative response quantified using FLT PET, especially when associated with high residual FLT PET at midtreatment, is a negative prognostic biomarker of outcome in canine tumors following radiation therapy. Neither FDG PET nor Cu-ATSM PET were predictive of outcome.« less
Williams, Ross; Hudson, John M; Lloyd, Brendan A; Sureshkumar, Ahthavan R; Lueck, Gordon; Milot, Laurent; Atri, Mostafa; Bjarnason, Georg A; Burns, Peter N
2011-08-01
To develop and implement an evidence-based protocol for characterizing vascular response of renal cell carcinoma (RCC) to targeted therapy by using dynamic contrast material-enhanced (DCE) ultrasonography (US). The study was approved by the institutional research ethics board; written informed consent was obtained from all patients. Seventeen patients (four women; median age, 58 years; range, 42-72 years; 13 men, median age, 62 years; range, 45-81 years) with metastatic RCC were examined by using DCE US before and after 2 weeks of treatment with sunitinib (May 2007 to October 2009). Two contrast agent techniques--bolus injection and disruption-replenishment infusion of microbubbles--were compared. Changes in tumor blood velocity and fractional blood volume were measured with both methods, together with reproducibility and effect of compensation for respiratory motion. Tumor changes were assessed with computed tomography, by using the best response with the Response Evaluation Criteria in Solid Tumors (RECIST) and progression-free survival (PFS). Follow-up RECIST measurements were performed at 6-week intervals until progressive disease was detected. In response to treatment, median tumor fractional blood volume measured with the disruption-replenishment infusion method decreased by 73.2% (interquartile range, 46%-87%) (P < .002), with repeated-measure reproducibility of 9%-15%. Significant decreases were also seen with the bolus method, but with poor correlation of changes in bolus peak (r = 0.46, P = .066) and area under the curve (r = 0.47, P = .058), compared with infusion measurements. Changes in DCE US parameters over 2 weeks did not correlate with PFS and could not be used to predict long-term assessment of best response by using RECIST. Follow-up times ranged 28-501 days; the median was 164 days. DCE US provides reproducible and sensitive assessment of vascular changes in response to antiangiogenic therapy. The disruption-replenishment infusion protocol is a flexible method suitable for many tumor types, but further studies are needed to assess whether this protocol may be predictive of patient outcome. © RSNA, 2011.
Revert Ventura, A J; Sanz Requena, R; Martí-Bonmatí, L; Pallardó, Y; Jornet, J; Gaspar, C
2014-01-01
To study whether the histograms of quantitative parameters of perfusion in MRI obtained from tumor volume and peritumor volume make it possible to grade astrocytomas in vivo. We included 61 patients with histological diagnoses of grade II, III, or IV astrocytomas who underwent T2*-weighted perfusion MRI after intravenous contrast agent injection. We manually selected the tumor volume and peritumor volume and quantified the following perfusion parameters on a voxel-by-voxel basis: blood volume (BV), blood flow (BF), mean transit time (TTM), transfer constant (K(trans)), washout coefficient, interstitial volume, and vascular volume. For each volume, we obtained the corresponding histogram with its mean, standard deviation, and kurtosis (using the standard deviation and kurtosis as measures of heterogeneity) and we compared the differences in each parameter between different grades of tumor. We also calculated the mean and standard deviation of the highest 10% of values. Finally, we performed a multiparametric discriminant analysis to improve the classification. For tumor volume, we found statistically significant differences among the three grades of tumor for the means and standard deviations of BV, BF, and K(trans), both for the entire distribution and for the highest 10% of values. For the peritumor volume, we found no significant differences for any parameters. The discriminant analysis improved the classification slightly. The quantification of the volume parameters of the entire region of the tumor with BV, BF, and K(trans) is useful for grading astrocytomas. The heterogeneity represented by the standard deviation of BF is the most reliable diagnostic parameter for distinguishing between low grade and high grade lesions. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.
Machado, Camila Maria Longo; Andrade, Luciana Nogueira Sousa; Teixeira, Verônica Rodrigues; Costa, Fabrício Falconi; Melo, Camila Morais; dos Santos, Sofia Nascimento; Nonogaki, Suely; Liu, Fu-Tong; Bernardes, Emerson Soares; Camargo, Anamaria Aranha; Chammas, Roger
2014-04-01
In order to study the role of galectin-3 in tumor angiogenesis associated with tumor-associated macrophages (TAM) and tumor parenchyma, the galectin-3 expression was reconstituted in Tm1 melanoma cell line that lacks this protein. Galectin-3-expressing cells (Tm1G3) and mock-vector transfected cells (Tm1N3) were injected into wild-type (WT) and galectin-3 knockout (KO) C57Bl/6 mice. Tumors originated from Tm1G3 were larger in tumor volume with enlarged functional vessels, decreased necrotic areas, and increased vascular endothelial growth factor (VEGF) protein levels. Galectin-3-nonexpressing-cells injected into WT and KO showed increased levels of transforming growth factor beta 1 (TGFβ1) and, in WT animals this feature was also accompanied by increased VEGFR2 expression and its phosphorylation. In KO animals, tumors derived from galectin-3-expressing cells were infiltrated by CD68(+)-cells, whereas in tumors derived from galectin-3-nonexpressing-cells, CD68(+) cells failed to infiltrate tumors and accumulated in the periphery of the tumor mass. In vitro studies showed that Tm1G3 secreted more VEGF than Tm1N3 cells. In the latter case, TGFβ1 induced VEGF production. Basal secretion of VEGF was higher in WT-bone marrow-derived macrophages (BMDM) than in KO-BMDM. TGFβ1 induced secretion of VEGF only in WT-BMDM. Tm1G3-induced tumors had the Arginase I mRNA increased, which upregulated alternative macrophage (M2)/TAM induction. M2 stimuli, such as interleukin-4 (IL4) and TGFβ1, increased Arginase I protein levels and galectin-3 expression in WT- BMDM, but not in cells from KO mice. Hence, we report that galectin-3 disruption in tumor stroma and parenchyma decreases angiogenesis through interfering with the responses of macrophages to the interdependent VEGF and TGFβ1 signaling pathways. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Meuten, D J; Segre, G V; Capen, C C; Kociba, G J; Voelkel, E F; Levine, L; Tashjian, A H; Chew, D J; Nagode, L A
1983-04-01
Hypercalcemia, hypercalciuria, and hyperphosphaturia were present in female dogs with adenocarcinomas derived from apocrine glands of the anal sac (CA). Remission of hypercalcemia accompanied tumor excision in all six dogs undergoing surgery, whereas tumor recurrence or growth of metastases was associated with a return of hypercalcemia. Preoperatively, the plasma concentrations of immunoreactive parathyroid hormone in all dogs were undetectable or in the low normal range. Plasma concentrations of 13,14-dihydro-15-keto-prostaglandin E2 (PGE2M) and serum 1,25-dihydroxyvitamin D were not significantly different from control dogs. Urinary cyclic AMP and hydroxyproline were increased in dogs with CA. No immunoreactive parathyroid hormone was detected in extracts from tumor tissue, and parathyroid glands from dogs with CA had ultrastructural characteristics of secretory inactivity. Lumbar vertebrae from hypercalcemic dogs had decreased trabecular bone volume and increased osteoclastic bone resorption compared with age-matched control dogs. After tumor excision, serum total calcium returned to the normal range, whereas immunoreactive parathyroid hormone increased 2- to 20-fold and 1,25-dihydroxyvitamin D decreased 2- to 8-fold. Postoperative hypocalcemia was not observed. These results indicate that CA produces a hypercalcemic factor other than immunoreactive parathyroid hormone or prostaglandin E2 that increases osteoclastic osteolysis distant from the tumor and results in hypercalcemia, hypercalciuria, and hyperphosphaturia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanick, Cameron W.; Castle, Katherine O.; Vedam, Sastry
Purpose: We prospectively compared computed tomography (CT)– and magnetic resonance imaging (MRI)–based high-risk clinical target volume (HR-CTV) contours at the time of brachytherapy for cervical cancer in an effort to identify patients who might benefit most from MRI-based planning. Methods and Materials: Thirty-seven patients who had undergone a pretreatment diagnostic MRI scan were included in the analysis. We delineated the HR-CTV on the brachytherapy CT and brachytherapy MRI scans independently for each patient. We then calculated the absolute volumes for each HR-CTV and the Dice coefficient of similarity (DC, a measure of spatial agreement) for the HR-CTV contours. We identifiedmore » the clinical and tumor factors associated with (1) a discrepancy in volume between the CT HR-CTV and MRI HR-CTV contours; and (2) DC. The mean values were compared using 1-way analysis of variance or paired or unpaired t tests, as appropriate. Simple and multivariable linear regression analyses were used to model the effects of covariates on the outcomes. Results: Patients with International Federation of Gynecology and Obstetrics stage IB to IVA cervical cancer were treated with intracavitary brachytherapy using tandem and ovoid (n=33) or tandem and cylinder (n=4) applicators. The mean CT HR-CTV volume (44.1 cm{sup 3}) was larger than the mean MRI HR-CTV volume (35.1 cm{sup 3}; P<.0001, paired t test). On multivariable analysis, a higher body mass index (BMI) and tumor size ≥5 cm with parametrial invasion on the MRI scan at diagnosis were associated with an increased discrepancy in volume between the HR-CTV contours (P<.02 for both). In addition, the spatial agreement (as measured by DC) between the HR-CTV contours decreased with an increasing BMI (P=.013). Conclusions: We recommend MRI-based brachytherapy planning for patients with tumors >5 cm and parametrial invasion on MRI at diagnosis and for those with a high BMI.« less
Ichihara, Hideaki; Kuwabara, Keiji; Matsumoto, Yoko
2017-11-01
Previous evidence demonstrates that trehalose liposomes (DMTreC14) composed of L-α-dimyristoylphosphatidylcholine (DMPC) and α-D-glycopyranosyl-α-D-glucopyranoside monomyristate (TreC14) inhibit proliferation and invasion on lung carcinoma (A549 cells) in vitro. Here, we aimed to investigate suppressive effects of DMTreC14 on the growth of tumor on human lung carcinoma bearing mice. DMTreC14 composed of 30 mol% DMPC and 70 mol% TreC14 were prepared by the sonication method. Anti-tumor activities of DMTreC14 using the subcutaneous and orthotopic graft-bearing mice of A549 cells were investigated in vivo. The remarkable reduction of volume and weight in subcutaneous tumors on subcutaneous lung carcinoma-bearing mice topically administrated with DMTreC14 were obtained. Apoptotic-positive cells in the subcutaneous tumor slice of subcutaneous lung carcinoma-bearing mice topically administrated with DMTreC14 were observed using TUNEL staining. Lung weights on the orthotopic graft-bearing mice of lung carcinoma intravenously administrated with DMTreC14 were markedly decreased compared to those of the control group. Remarkable decrease in dimensions of tumor area of lung on the orthotopic graft-bearing mice of lung carcinoma intravenously administrated with DMTreC14 was obtained in histological analysis using the hematoxylin and eosin staining. Remarkably high anti-tumor activities of DMTreC14 for the subcutaneous and orthotopic graft-bearing mice of lung carcinoma accompanied with apoptosis were revealed for the first time in vivo. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
El-Naa, Mona Mohamed; Othman, Mohamed; Younes, Sheren
2016-01-01
Sildenafil is the first phosphodiesterase-5 inhibitor used for the treatment of erectile dysfunction. However, recent studies have been suggesting an antitumor effect of sildenafil. The current study assessed the aforementioned activity of sildenafil in vivo and in vitro in solid-tumor-bearing mice and in a human cell line MCF-7, respectively. Moreover, we investigated the impact of sildenafil on cisplatin antitumor activity. The solid tumor was induced by inoculation of Ehrlich ascites carcinoma cells in female mice. The tumor-bearing mice were assigned randomly to control (saline), sildenafil (sildenafil 5 mg/kg/d, PO daily for 15 days), cisplatin (cisplatin 7.5 mg/kg, IP once on the 12th day of Ehrlich ascites carcinoma inoculation), and combination therapy (cisplatin and sildenafil) groups. The tumor volume was measured at the end of the treatment period along with the following parameters: angiogenin, vascular endothelial growth factor, tumor necrosis factor-α, Ki-67, caspase-3, DNA-flow cytometry analysis, and histopathological examination. The study results showed that sildenafil has significantly decreased the tumor volume by 30.4%, angiogenin and tumor necrosis factor-α contents, as well as vascular endothelial growth factor expression. Additionally, caspase-3 level significantly increased with sildenafil treatment, whereas Ki-67 expression failed to show any significant changes. Furthermore, the cell cycle analysis revealed that sildenafil was capable of improving the category of tumor activity from moderate to low proliferative. Sildenafil induced necrosis in the tumor. Moreover, the drug of interest showed cytotoxic activity against MCF-7 in vitro as well as potentiated cisplatin antitumor activity in vivo and in vitro. These findings shed light on the antitumor activity of sildenafil and its possible impact on potentiating the antitumor effect of conventional chemotherapeutic agents such as cisplatin. These effects might be related to antiangiogenic, antiproliferative, and apoptotic activities of sildenafil. PMID:27895461
El-Naa, Mona Mohamed; Othman, Mohamed; Younes, Sheren
2016-01-01
Sildenafil is the first phosphodiesterase-5 inhibitor used for the treatment of erectile dysfunction. However, recent studies have been suggesting an antitumor effect of sildenafil. The current study assessed the aforementioned activity of sildenafil in vivo and in vitro in solid-tumor-bearing mice and in a human cell line MCF-7, respectively. Moreover, we investigated the impact of sildenafil on cisplatin antitumor activity. The solid tumor was induced by inoculation of Ehrlich ascites carcinoma cells in female mice. The tumor-bearing mice were assigned randomly to control (saline), sildenafil (sildenafil 5 mg/kg/d, PO daily for 15 days), cisplatin (cisplatin 7.5 mg/kg, IP once on the 12th day of Ehrlich ascites carcinoma inoculation), and combination therapy (cisplatin and sildenafil) groups. The tumor volume was measured at the end of the treatment period along with the following parameters: angiogenin, vascular endothelial growth factor, tumor necrosis factor-α, Ki-67, caspase-3, DNA-flow cytometry analysis, and histopathological examination. The study results showed that sildenafil has significantly decreased the tumor volume by 30.4%, angiogenin and tumor necrosis factor-α contents, as well as vascular endothelial growth factor expression. Additionally, caspase-3 level significantly increased with sildenafil treatment, whereas Ki-67 expression failed to show any significant changes. Furthermore, the cell cycle analysis revealed that sildenafil was capable of improving the category of tumor activity from moderate to low proliferative. Sildenafil induced necrosis in the tumor. Moreover, the drug of interest showed cytotoxic activity against MCF-7 in vitro as well as potentiated cisplatin antitumor activity in vivo and in vitro. These findings shed light on the antitumor activity of sildenafil and its possible impact on potentiating the antitumor effect of conventional chemotherapeutic agents such as cisplatin. These effects might be related to antiangiogenic, antiproliferative, and apoptotic activities of sildenafil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plataniotis, George A.; Dale, Roger G.
2008-12-01
Purpose: To express the magnitude of the contribution of chemotherapy to local tumor control in chemoradiotherapy cervical cancer trials in terms of the concept of the biologically effective dose. Methods and Materials: The local control rates of both arms of each study (radiotherapy vs. radiotherapy plus chemotherapy) reported from randomized controlled trials of concurrent chemoradiotherapy for cervical cancer were reviewed and expressed using the Poisson model for tumor control probability (TCP) as TCP = exp(-exp E), where E is the logarithm of cell kill. By combining the two TCP values from each study, we calculated the chemotherapy-related log cell killmore » as Ec = ln[(lnTCP{sub Radiotherapy})/(lnTCP{sub Chemoradiotherapy})]. Assuming a range of radiosensitivities ({alpha} = 0.1-0.5 Gy{sup -1}) and taking the calculated log cell kill, we calculated the chemotherapy-BED, and using the linear quadratic model, the number of 2-Gy fractions corresponding to each BED. The effect of a range of tumor volumes and radiosensitivities ({alpha} Gy{sup -1}) on the TCP was also explored. Results: The chemotherapy-equivalent number of 2-Gy fractions range was 0.2-4 and was greater in tumors with lower radiosensitivity. In those tumors with intermediate radiosensitivity ({alpha} = 0.3 Gy{sup -1}), the equivalent number of 2-Gy fractions was 0.6-1.3, corresponding to 120-260 cGy of extra dose. The opportunities for clinically detectable improvement are only available in tumors with intermediate radiosensitivity with {alpha} = 0.22-0.28 Gy{sup -1}. The dependence of TCP on the tumor volume decreases as the radiosensitivity increases. Conclusion: The results of our study have shown that the contribution of chemotherapy to the TCP in cervical cancer is expected to be clinically detectable in larger and less-radiosensitive tumors.« less
Kim, Hyunki; Morgan, Desiree E.; Buchsbaum, Donald J.; Zeng, Huadong; Grizzle, William E.; Warram, Jason M.; Stockard, Cecil R.; McNally, Lacey R.; Long, Joshua W.; Sellers, Jeffrey C.; Forero, Andres; Zinn, Kurt R.
2008-01-01
Early therapeutic efficacy of anti-DR5 antibody (TRA-8) combined with gemcitabine was measured using diffusion-weighted magnetic resonance imaging (DWI) in an orthotopic pancreatic tumor model. Groups 1–4 of SCID mice (n=5–7/group) bearing orthotopically implanted, luciferase-positive human pancreatic tumors (MIA PaCa-2) were subsequently (4–5 weeks thereafter) injected with saline (control), gemcitabine (120mg/kg), TRA-8 (200μg), or TRA-8 combined with gemcitabine, respectively, on day 0. DWI, anatomical MRI, and bioluminescence imaging were performed on days 0, 1, 2, and 3 after treatment. Three tumors from each group were collected randomly on day 3 after imaging, and TUNEL staining was performed to quantify apoptotic cellularity. At just 1 day after starting therapy, the changes of apparent diffusion coefficient (ADC) in tumor regions for groups 3 (TRA-8) and 4 (TRA-8/Gem) were 21±9% (mean±SE) and 27±3%, respectively, significantly higher (p <0.05) than those of groups 1 (−1±5%) and 2 (−2±4%). There was no statistical difference in tumor volumes for the groups at this time. The mean ADC values of groups 2–4 gradually increased over 3 days, which were concurrent with tumor-volume regressions and bioluminescence-signal decreases. Apoptotic-cell densities of tumors in groups 1–4 were 0.7±0.4%, 0.6±0.2%, 3.1±0.9%, and 4.7±1.0%, respectively, linearly proportional to the ADC changes on day 1. Further, the ADC changes were highly correlated with the previously reported mean survival times of animals treated with the same agents and doses. This study supports the clinical use of DWI for pancreatic tumor patients for early assessment of drug efficacy. PMID:18922909
Huang, Jinhong; Yang, Jicheng; Ling, Chunhua; Zhao, Daguo; Xie, Yufeng; You, Zhenhua
2014-02-01
The inhibitor of growth 4 (ING4) is an important tumor suppressive gene.It has been proven that ING4 could inhibite the proliferation of many tumors. e aim of this study is to investigate the inhibitory effect and anti-cancer mechanism of adenovirus-mediated ING4 gene on SPC-A1 human lung adenocarcinoma in nude mice. A human lung adenocarcinoma xenograft model was established with SPC-A1 cells in nude mice. A total of 15 tumor-bearing nude mice were randomly divided into three groups, namely, PBS, Ad-GFP, and Ad-ING4. e mice in the three groups were intratumorally injected every other day. Their tumor volumes were continually recorded. The treatment tumors were then removed from the mice and weighed. Tumor inhibition rates were calculated. Cell apoptosis was examined by TUNEL method. Caspase-3, COX-2, Fas, and FasL expressions were investigated by immunohistochemistry SP assay. Both tumor weight and volume in the Ad-ING4 group were significantly decreased. The tumor inhibition rate of the mice in the Ad-ING4 group (33.17% ± 5.24%) was statistically different from that of the mice in the Ad-GFP group (1.31% ± 0.31%; P<0.05). The apoptotic index of the mice in the Ad-ING4 group (69.23% ± 6.53%) was also significantly different from those in PBS (17.04% ± 1.10%) and Ad-GFP groups (18.81% ± 1.93%; P<0.05). Based on immunohistochemistry SP assay, the results showed that Ad-ING4 may not only upregulate the expressions of caspase-3, Fas, and FasL but also downregulate the expression of COX-2. ING4 gene elicited a remarkable growth inhibitory e-ect on human lung adenocarcinoma xenografts in nude mice. e mechanism is possibly related to an increase in tumor cell apoptosis.
French, J. Tyler; Goins, Beth; Saenz, Marcela; Li, Shihong; Garcia-Rojas, Xavier; Phillips, William T.; Otto, Randal A.; Bao, Ande
2010-01-01
Purpose Minimally invasive interventional cancer therapy of drug-carrying lipid nanoparticles (liposomes) via convection enhanced delivery generally applied by the use of an infusion pump can increase intratumoral drug concentration and retention while facilitating broad distribution throughout solid tumors. We investigated the utility of liposome-carrying β-emitting radionuclides to treat head and neck cancer in nude rats by direct intratumoral infusion. Methods Four groups of nude rats were subcutaneously inoculated with human tongue cancer cells. After tumors reached an average size of 1.6 cm3, the treatment group received an intratumoral infusion of liposomal rhenium-186 (186Re) (185 MBq (5 mCi)/cm3 tumor). Three control groups were intratumorally infused with either, 1) unlabeled liposomes, 2) unencapsulated 186Re-perrhenate, or 3) unencapsulated intermediate 186Re-compound (186Re-BMEDA). In vivo distribution of 186Re-activity was measured by planar gamma camera imaging. Tumor therapy and toxicity were assessed by measurements of tumor size, body weight, and hematology. Results Average tumor volume of the 186Re-liposome group on post-treatment day-14 decreased to 87.7±20.1%, while tumor volumes increased to 395.0% - 514.4% on average in other three groups (P<0.001 vs 186Re-liposome group). 186Re-liposomes provided much higher intratumoral retention of 186Re-activity, resulting in an average tumor radiation absorbed dose of 526.3±93.3 Gy, whereas 186Re-perrhenate and 186Re-BMEDA groups had only 3.3±1.2 and 13.4±9.2 Gy tumor doses respectively. No systemic toxicity was observed. Conclusion Liposomal 186Re effectively treated the head and neck cancer with minimal side effects after convection enhanced interventional delivery. These results suggest the potential of liposomal 186Re for clinical application in interventional therapy of cancer. PMID:20478719
Association between vestibular schwannomas and mobile phone use.
Moon, In Seok; Kim, Bo Gyung; Kim, Jinna; Lee, Jong Dae; Lee, Won-Sang
2014-01-01
Vestibular schwannomas (VSs) grow in the region where the energy from mobile phone use is absorbed. We examined the associations of VSs with mobile phone use. This study included 119 patients who had undergone surgical tumor removal. We used two approaches in this investigation. First, a case-control study for the association of mobile phone use and incidence of VSs was conducted. Both cases and controls were investigated with questions based on INTERPHONE guidelines. Amount of mobile phone use according to duration, daily amount, and cumulative hours were compared between two groups. We also conducted a case-case study. The location and volume of the tumors were investigated by MRI. Associations between the estimated amount of mobile phone use and tumor volume and between the laterality of phone use and tumor location were analyzed. In a case-control study, the odds ratio (OR) of tumor incidence according to mobile phone use was 0.956. In the case-case study, tumor volume and estimated cumulative hours showed a strong correlation (r(2) = 0.144, p = 0.002), and regular mobile phone users showed tumors of a markedly larger volume than those of non-regular users (p < 0.001). When the analysis was limited to regular users who had serviceable hearing, laterality showed a strong correlation with tumor side (OR = 4.5). We found that tumors may coincide with the more frequently used ear of mobile phones and tumor volume that showed strong correlation with amount of mobile phone use, thus there is a possibility that mobile phone use may affect tumor growth.
Monitoring and quantitative assessment of tumor burden using in vivo bioluminescence imaging
NASA Astrophysics Data System (ADS)
Chen, Chia-Chi; Hwang, Jeng-Jong; Ting, Gann; Tseng, Yun-Long; Wang, Shyh-Jen; Whang-Peng, Jaqueline
2007-02-01
In vivo bioluminescence imaging (BLI) is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating tumor growth. In this study, the kinetic of tumor growth has been assessed in C26 colon carcinoma bearing BALB/c mouse model. The ability of BLI to noninvasively quantitate the growth of subcutaneous tumors transplanted with C26 cells genetically engineered to stably express firefly luciferase and herpes simplex virus type-1 thymidine kinase (C26/ tk-luc). A good correlation ( R2=0.998) of photon emission to the cell number was found in vitro. Tumor burden and tumor volume were monitored in vivo over time by quantitation of photon emission using Xenogen IVIS 50 and standard external caliper measurement, respectively. At various time intervals, tumor-bearing mice were imaged to determine the correlation of in vivo BLI to tumor volume. However, a correlation of BLI to tumor volume was observed when tumor volume was smaller than 1000 mm 3 ( R2=0.907). γ Scintigraphy combined with [ 131I]FIAU was another imaging modality used for verifying the previous results. In conclusion, this study showed that bioluminescence imaging is a powerful and quantitative tool for the direct assay to monitor tumor growth in vivo. The dual reporter genes transfected tumor-bearing animal model can be applied in the evaluation of the efficacy of new developed anti-cancer drugs.
An accurate segmentation method for volumetry of brain tumor in 3D MRI
NASA Astrophysics Data System (ADS)
Wang, Jiahui; Li, Qiang; Hirai, Toshinori; Katsuragawa, Shigehiko; Li, Feng; Doi, Kunio
2008-03-01
Accurate volumetry of brain tumors in magnetic resonance imaging (MRI) is important for evaluating the interval changes in tumor volumes during and after treatment, and also for planning of radiation therapy. In this study, an automated volumetry method for brain tumors in MRI was developed by use of a new three-dimensional (3-D) image segmentation technique. First, the central location of a tumor was identified by a radiologist, and then a volume of interest (VOI) was determined automatically. To substantially simplify tumor segmentation, we transformed the 3-D image of the tumor into a two-dimensional (2-D) image by use of a "spiral-scanning" technique, in which a radial line originating from the center of the tumor scanned the 3-D image spirally from the "north pole" to the "south pole". The voxels scanned by the radial line provided a transformed 2-D image. We employed dynamic programming to delineate an "optimal" outline of the tumor in the transformed 2-D image. We then transformed the optimal outline back into 3-D image space to determine the volume of the tumor. The volumetry method was trained and evaluated by use of 16 cases with 35 brain tumors. The agreement between tumor volumes provided by computer and a radiologist was employed as a performance metric. Our method provided relatively accurate results with a mean agreement value of 88%.
Simone, Brittany A; Dan, Tu; Palagani, Ajay; Jin, Lianjin; Han, Sunny Y; Wright, Christopher; Savage, Jason E; Gitman, Robert; Lim, Meng Kieng; Palazzo, Juan; Mehta, Minesh P; Simone, Nicole L
2016-09-01
Metastatic breast cancer is devastating and triple negative breast cancers (TNBC) have a higher propensity for metastasis. Improved local control upfront in this aggressive cancer could potentially decrease its propensity toward metastasis. We sought to determine if using caloric restriction (CR) as a systemic therapy, combined with radiation therapy (IR) to the primary tumor, may impact metastatic disease. An orthotopic mouse model using a highly metastatic, luciferase-tagged TNBC cell line (4T1), was used to generate palpable tumors. Mice were then treated with CR, IR, and a combination of the two. In vivo imaging was performed for metastatic evaluation. Molecular evaluation of the tumors was performed, generating a mechanistic hypothesis for CR, which was then tested with pertinent pathway inhibition in the model. CR significantly increased the time to developing metastases, decreased the overall number and volume of lung metastases, and increased survival. CR decreased proliferation, increased apoptosis and globally downregulated the IGF-1R signaling pathway. Adding an IGF-1R/INSR inhibitor to local IR in vivo accomplished a decrease in metastases similar to CR plus IR, demonstrating the importance of the IGF-1R signaling pathway, and underscoring it as a possible mechanism for CR. CR decreased metastatic burden and therefore may complement cytotoxic therapies being used in the clinical setting for metastatic disease. Downregulation of the IGF-1R pathway, is in part responsible for this response and modulating IGF-1R directly resulted in similar improved progression-free survival. The novel use of CR has the potential to enhance clinical outcomes for patients with metastatic breast cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y; Lee, CG; Chan, TCY
2014-06-15
Purpose: To develop mathematical models of tumor geometry changes under radiotherapy that may support future adaptive paradigms. Methods: A total of 29 cervical patients were scanned using MRI, once for planning and weekly thereafter for treatment monitoring. Using the tumor volumes contoured by a radiologist, three mathematical models were investigated based on the assumption of a stochastic process of tumor evolution. The “weekly MRI” model predicts tumor geometry for the following week from the last two consecutive MRI scans, based on the voxel transition probability. The other two models use only the first pair of consecutive MRI scans, and themore » transition probabilities were estimated via tumor type classified from the entire data set. The classification is based on either measuring the tumor volume (the “weekly volume” model), or implementing an auxiliary “Markov chain” model. These models were compared to a constant volume approach that represents the current clinical practice, using various model parameters; e.g., the threshold probability β converts the probability map into a tumor shape (larger threshold implies smaller tumor). Model performance was measured using volume conformity index (VCI), i.e., the union of the actual target and modeled target volume squared divided by product of these two volumes. Results: The “weekly MRI” model outperforms the constant volume model by 26% on average, and by 103% for the worst 10% of cases in terms of VCI under a wide range of β. The “weekly volume” and “Markov chain” models outperform the constant volume model by 20% and 16% on average, respectively. They also perform better than the “weekly MRI” model when β is large. Conclusion: It has been demonstrated that mathematical models can be developed to predict tumor geometry changes for cervical cancer undergoing radiotherapy. The models can potentially support adaptive radiotherapy paradigm by reducing normal tissue dose. This research was supported in part by the Ontario Consortium for Adaptive Interventions in Radiation Oncology (OCAIRO) funded by the Ontario Research Fund (ORF) and the MITACS Accelerate Internship Program.« less
NASA Astrophysics Data System (ADS)
Sharick, Joe T.; Cook, Rebecca S.; Skala, Melissa C.
2017-02-01
Previous work has shown that cellular-level Optical Metabolic Imaging (OMI) of organoids derived from human breast cancer cell-line xenografts accurately and rapidly predicts in vivo response to therapy. To validate OMI as a predictive measure of treatment response in an immune-competent model, we used the polyomavirus middle-T (PyVmT) transgenic mouse breast cancer model. The PyVmT model includes intra-tumoral heterogeneity and a complex tumor microenvironment that can influence treatment responses. Three-dimensional organoids generated from primary PyVmT tumor tissue were treated with a chemotherapy (paclitaxel) and a PI3K inhibitor (XL147), each alone or in combination. Cellular subpopulations of response were measured using the OMI Index, a composite endpoint of metabolic response comprised of the optical redox ratio (ratio of the fluorescence intensities of metabolic co-enzymes NAD(P)H to FAD) as well as the fluorescence lifetimes of NAD(P)H and FAD. Combination treatment significantly decreased the OMI Index of PyVmT tumor organoids (p<0.0001) and in vivo tumors (p<0.0001) versus controls. Subpopulation analyses revealed a homogeneous response to combined therapy in both cultured organoids and in vivo tumors, while single agent treatment with XL147 alone or paclitaxel alone elicited heterogeneous responses in organoids. Tumor volume decreased with combination treatment through treatment day 30. These results indicate that OMI of organoids generated from PyVmT tumors can accurately reflect drug response in heterogeneous allografts with both innate and adaptive immunity. Thus, this method is promising for use in humans to predict long-term treatment responses accurately and rapidly, and could aid in clinical treatment planning.
Protective effect of genistein on radiation-induced intestinal injury in tumor bearing mice
2013-01-01
Background Radiation therapy is the most widely used treatment for cancer, but it causes the side effect of mucositis due to intestinal damage. We examined the protective effect of genistein in tumor-bearing mice after abdominal irradiation by evaluation of apoptosis and intestinal morphological changes. Methods Mouse colon cancer CT26 cells were subcutaneously injected at the flank of BALB/c mice to generate tumors. The tumor-bearing mice were treated with abdominal radiation at 5 and 10 Gy, and with genistein at 200 mg/kg body weight per day for 1 d before radiation. The changes in intestinal histology were evaluated 12 h and 3.5 d after irradiation. To assess the effect of the combination treatment on the cancer growth, the tumor volume was determined at sacrifice before tumor overgrowth occurred. Results Genistein significantly decreased the number of apoptotic nuclei compared with that in the irradiation group 12 h after 5 Gy irradiation. Evaluation of histological changes showed that genistein ameliorated intestinal morphological changes such as decreased crypt survival, villus shortening, and increased length of the basal lamina 3.5 d after 10 Gy irradiation. Moreover, the genistein-treated group exhibited more Ki-67-positive proliferating cells in the jejunum than the irradiated control group, and crypt depths were greater in the genistein-treated group than in the irradiated control group. The mean weight of the CT26 tumors was reduced in the group treated with genistein and radiation compared with the control group. Conclusion Genistein had a protective effect on intestinal damage induced by irradiation and delayed tumor growth. These results suggest that genistein is a useful candidate for preventing radiotherapy-induced intestinal damage in cancer patients. PMID:23672582
Pancreatic cancer planning: Complex conformal vs modulated therapies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Katherine L.; Witek, Matthew E.; Chen, Hongyu
To compare the roles of intensity-modulated radiation therapy (IMRT) and volumetric- modulated arc therapy (VMAT) therapy as compared to simple and complex 3-dimensional chemoradiotherpy (3DCRT) planning for resectable and borderline resectable pancreatic cancer. In all, 12 patients who received postoperative radiotherapy (8) or neoadjuvant concurrent chemoradiotherapy (4) were evaluated retrospectively. Radiotherapy planning was performed for 4 treatment techniques: simple 4-field box, complex 5-field 3DCRT, 5 to 6-field IMRT, and single-arc VMAT. All volumes were approved by a single observer in accordance with Radiation Therapy Oncology Group (RTOG) Pancreas Contouring Atlas. Plans included tumor/tumor bed and regional lymph nodes to 45more » Gy; with tumor/tumor bed boosted to 50.4 Gy, at least 95% of planning target volume (PTV) received the prescription dose. Dose-volume histograms (DVH) for multiple end points, treatment planning, and delivery time were assessed. Complex 3DCRT, IMRT, and VMAT plans significantly (p < 0.05) decreased mean kidney dose, mean liver dose, liver (V{sub 30}, V{sub 35}), stomach (D{sub 10}%), stomach (V{sub 45}), mean right kidney dose, and right kidney (V{sub 15}) as compared with the simple 4-field plans that are most commonly reported in the literature. IMRT plans resulted in decreased mean liver dose, liver (V{sub 35}), and left kidney (V{sub 15}, V{sub 18}, V{sub 20}). VMAT plans decreased small bowel (D{sub 10}%, D{sub 15}%), small bowel (V{sub 35}, V{sub 45}), stomach (D{sub 10}%, D{sub 15}%), stomach (V{sub 35}, V{sub 45}), mean liver dose, liver (V{sub 35}), left kidney (V{sub 15}, V{sub 18}, V{sub 20}), and right kidney (V{sub 18}, V{sub 20}). VMAT plans significantly decreased small bowel (D{sub 10}%, D{sub 15}%), left kidney (V{sub 20}), and stomach (V{sub 45}) as compared with IMRT plans. Treatment planning and delivery times were most efficient for simple 4-field box and VMAT. Excluding patient setup and imaging, average treatment delivery was within 10 minutes for simple and complex 3DCRT, IMRT, and VMAT treatments. This article shows significant improvements in 3D plan performance with complex planning over the more frequently compared 3- or 4-field simple 3D planning techniques. VMAT plans continue to demonstrate potential for the most organ sparing. However, further studies are required to identify if dosimetric benefits associated with inverse optimized planning can be translated into clinical benefits and if these treatment techniques are value-added therapies for this group of patients with cancer.« less
Im, Hyung-Jun; Bradshaw, Tyler; Solaiyappan, Meiyappan; Cho, Steve Y
2018-02-01
Numerous methods to segment tumors using 18 F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers to the metabolically active volume of the tumor segmented using FDG PET, and has been shown to be useful in predicting patient outcome and in assessing treatment response. Also, tumor segmentation using FDG PET has useful applications in radiotherapy treatment planning. Despite extensive research on MTV showing promising results, MTV is not used in standard clinical practice yet, mainly because there is no consensus on the optimal method to segment tumors in FDG PET images. In this review, we discuss currently available methods to measure MTV using FDG PET, and assess the advantages and disadvantages of the methods.
Lovvorn, Harold N.; Ayers, Dan; Zhao, Zhiguo; Hilmes, Melissa; Prasad, Pinki; Shinall, Myrick C.; Berch, Barry; Neblett, Wallace W.; O'Neill, James A.
2010-01-01
Purpose Hepatoblastoma is commonly unresectable at presentation, necessitating induction chemotherapy before definitive resection. To refine the paradigm for timing of resection, we questioned whether a plateau in hepatoblastoma responsiveness to neoadjuvant therapy could be detected by calculating tumor volume (TV) and serum α-fetoprotein (sAFP) kinetics. Methods To calculate TV and sAFP as measures of treatment responsiveness over time, infants having initially unresectable epithelial-type hepatoblastomas were identified at a single institution (1996-2008). Effects of therapy type, therapy duration, and lobe of liver involvement on TV, sAFP, margin status, and toxicity were analyzed. Results Of 24 infants treated for epithelial-type hepatoblastoma during this interval, 5 were resected primarily, and 15 had complete digital films for kinetics analysis. Both TV and sAFP decreased dramatically over time (p<0.0001). No statistically significant difference in mean TV or sAFP was detected after chemotherapy cycle 2. Left lobe tumors had greater presenting levels of and significantly slower decay in sAFP compared to right lobe tumors (p=0.005), although no statistically significant differences in TV existed between liver lobes. Resection margins did not change with therapy duration. Conclusions Measuring TV and sAFP kinetics accurately reflects hepatoblastoma responsiveness to induction therapy. Treatment toxicities may be reduced by earlier resection and tailoring of chemotherapeutic regimens. PMID:20105591
Koyama, Kazuya; Mitsumoto, Takuya; Shiraishi, Takahiro; Tsuda, Keisuke; Nishiyama, Atsushi; Inoue, Kazumasa; Yoshikawa, Kyosan; Hatano, Kazuo; Kubota, Kazuo; Fukushi, Masahiro
2017-09-01
We aimed to determine the difference in tumor volume associated with the reconstruction model in positron-emission tomography (PET). To reduce the influence of the reconstruction model, we suggested a method to measure the tumor volume using the relative threshold method with a fixed threshold based on peak standardized uptake value (SUV peak ). The efficacy of our method was verified using 18 F-2-fluoro-2-deoxy-D-glucose PET/computed tomography images of 20 patients with lung cancer. The tumor volume was determined using the relative threshold method with a fixed threshold based on the SUV peak . The PET data were reconstructed using the ordered-subset expectation maximization (OSEM) model, the OSEM + time-of-flight (TOF) model, and the OSEM + TOF + point-spread function (PSF) model. The volume differences associated with the reconstruction algorithm (%VD) were compared. For comparison, the tumor volume was measured using the relative threshold method based on the maximum SUV (SUV max ). For the OSEM and TOF models, the mean %VD values were -0.06 ± 8.07 and -2.04 ± 4.23% for the fixed 40% threshold according to the SUV max and the SUV peak, respectively. The effect of our method in this case seemed to be minor. For the OSEM and PSF models, the mean %VD values were -20.41 ± 14.47 and -13.87 ± 6.59% for the fixed 40% threshold according to the SUV max and SUV peak , respectively. Our new method enabled the measurement of tumor volume with a fixed threshold and reduced the influence of the changes in tumor volume associated with the reconstruction model.
Intermittent androgen suppression in the LuCaP 23.12 prostate cancer xenograft model.
Buhler, K R; Santucci, R A; Royai, R A; Whitney, S C; Vessella, R L; Lange, P H; Ellis, W J
2000-04-01
Intermittent androgen suppression (IAS) has been proposed as a method of delaying the onset of androgen-independent growth in prostate cancer. While several pilot studies have demonstrated the feasibility of such a treatment, no study to date has defined the effect of IAS on survival. We developed an IAS protocol for mice bearing the LuCaP 23.12 human prostate cancer xenograft, with each cycle consisting of 1 week of androgen replacement with a testosterone pellet followed by 3 weeks of androgen withdrawal. Mice that responded to castration with a 40% or greater decrease in serum prostate-specific antigen (PSA) were randomized to treatment with either continuous androgen suppression (CAS) or IAS. Serum PSA, tumor volume, and overall survival were monitored. A total of 75 mice met the randomization criteria. There was no significant difference of survival between animals treated with CAS or IAS (185 vs. 239 days, P = 0.1835). Serum PSA showed evidence of cycling with hormonal manipulation. No cycling was noted in tumor volume. IAS is not associated with a decrease in survival compared to CAS, yet in patients may offer quality-of-life improvements. Further studies of IAS in the setting of Institutional Review Board (IRB) approved clinical trials should be encouraged. Prostate 43:63-70, 2000. Published 2000 Wiley-Liss, Inc.
3D tumor measurement in cone-beam CT breast imaging
NASA Astrophysics Data System (ADS)
Chen, Zikuan; Ning, Ruola
2004-05-01
Cone-beam CT breast imaging provides a digital volume representation of a breast. With a digital breast volume, the immediate task is to extract the breast tissue information, especially for suspicious tumors, preferably in an automatic manner or with minimal user interaction. This paper reports a program for three-dimensional breast tissue analysis. It consists of volumetric segmentation (by globally thresholding), subsegmentation (connection-based separation), and volumetric component measurement (volume, surface, shape, and other geometrical specifications). A combination scheme of multi-thresholding and binary volume morphology is proposed to fast determine the surface gradients, which may be interpreted as the surface evolution (outward growth or inward shrinkage) for a tumor volume. This scheme is also used to optimize the volumetric segmentation. With a binary volume, we decompose the foreground into components according to spatial connectedness. Since this decomposition procedure is performed after volumetric segmentation, it is called subsegmentation. The subsegmentation brings the convenience for component visualization and measurement, in the whole support space, without interference from others. Upon the tumor component identification, we measure the following specifications: volume, surface area, roundness, elongation, aspect, star-shapedness, and location (centroid). A 3D morphological operation is used to extract the cluster shell and, by delineating the corresponding volume from the grayscale volume, to measure the shell stiffness. This 3D tissue measurement is demonstrated with a tumor-borne breast specimen (a surgical part).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlad, Roxana M.; Kolios, Michael C.; Moseley, Joanne L.
Purpose: High frequency ultrasound imaging, 10-30 MHz, has the capability to assess tumor response to radiotherapy in mouse tumors as early as 24 h after treatment administration. The advantage of this technique is that the image contrast is generated by changes in the physical properties of dying cells. Therefore, a subject can be imaged before and multiple times during the treatment without the requirement of injecting specialized contrast agents. This study is motivated by a need to provide metrics of comparison between the volume and localization of cell death, assessed from histology, with the volume and localization of cell deathmore » surrogate, assessed as regions with increased echogeneity from ultrasound images. Methods: The mice were exposed to radiation doses of 2, 4, and 8 Gy. Ultrasound images were collected from each tumor before and 24 h after exposure to radiation using a broadband 25 MHz center frequency transducer. After radiotherapy, tumors exhibited hyperechoic regions in ultrasound images that corresponded to areas of cell death in histology. The ultrasound and histological images were rigidly registered. The tumors and regions of cell death were manually outlined on histological images. Similarly, the tumors and hyperechoic regions were outlined on the ultrasound images. Each set of contours was converted to a volumetric mesh in order to compare the volumes and the localization of cell death in histological and ultrasound images. Results: A shrinkage factor of 17{+-}2% was calculated from the difference in the tumor volumes evaluated from histological and ultrasound images. This was used to correct the tumor and cell death volumes assessed from histology. After this correction, the average absolute difference between the volume of cell death assessed from ultrasound and histological images was 11{+-}14% and the volume overlap was 70{+-}12%. Conclusions: The method provided metrics of comparison between the volume of cell death assessed from histology and that assessed from ultrasound images. It was applied here to evaluate the capability of ultrasound imaging to assess early tumor response to radiotherapy in mouse tumors. Similarly, it can be applied in the future to evaluate the capability of ultrasound imaging to assess early tumor response to other modalities of cancer treatment. The study contributes to an understanding of the capabilities and limitation of ultrasound imaging at noninvasively detecting cell death. This provides a foundation for future developments regarding the use of ultrasound in preclinical and clinical applications to adapt treatments based on tumor response to cancer therapy.« less
Shang, Dongping; Yue, Jinbo; Li, Jianbin; Duan, Jinghao; Yin, Yong; Yu, Jinming
2017-01-01
To explore the impact of different width detector on the volume and geometric position of gross tumor volume (GTV) of the solitary pulmonary lesion (SPL), as well as the impact on scanning time and radiation dose during the simulation. Twenty-three patients with SPL underwent three-dimensional computed tomography (3DCT) simulation using different width detector, followed by four-dimensional computed tomography (4DCT) scans. GTV16 and GTV4 derived from different width detectors were compared with internal gross tumor volume (IGTV) generated from 4DCT on the volume and geometric position. Fourteen patients with lesions located in the upper lobe were defined as Group A and nine patients in the middle or lower lobe were defined as Group B. The scanning time and radiation dose during the simulation with the different width detector were compared as well. The volumes of IGTV, GTV16, and GTV4 in Group A were 13.86 ± 14.42 cm3, 11.88 ± 11.93 cm3, and 11.64 ± 12.88 cm3, respectively, and the corresponding volumes in Group B were 12.84 ± 11.48 cm3, 6.90 ± 6.63 cm3, and 7.22 ± 7.15 cm3, respectively. No difference was found between GTV16 and GTV4 in Groups A and B (PA = 0.11, PB = 0.86). Either GTV16 or GTV4 was smaller than IGTV (P16 = 0.001, P4 = 0.000). The comparison of the centroidal positions in x, y, and z directions for GTV16, GTV4, and IGTV showed no significant difference both in Groups A and B (Group A: Px = 0.19, Py = 0.14, Pz = 0.47. Group B: Px = 0.09, Py = 0.90, Pz = 0.90). The scanning time was shorter and radiation dose patient received was lower using 16 × 1.5 mm detector combination than 4 × 1.5 mm detector (P = 0.000). Different width detector had no impact on the volume and geometric position of GTV of SPL during 3DCT simulation. Using wide detector would save time and decrease radiation dose compared with the narrow one. 3DCT simulation using either 16 × 1.5 mm detector or 4 × 1.5 mm detector could not cover all tumor motion information that 4DCT offered under free breathing conditions.
NASA Astrophysics Data System (ADS)
Valassis, Doug; Dodde, Robert; Eshpuniyani, Brijesh; Fowlkes, J. Brian; Bull, Joseph
2008-11-01
The behavior of long gas bubbles suspended in liquid flowing through successive bifurcations was investigated experimentally and theoretically as a model of cardiovascular bubble transport in gas embolotherapy. In this developmental cancer therapy, perflurocarbon droplets are vaporized in the vasculature and travel through a bifurcating network of vessels before lodging. The homogeneity of tumor necrosis is directly correlated with the transport and lodging of the emboli. An experimental model was used to explore the effects of flow pulsatility, frequency, gravity, and bifurcation roll angle on bubble splitting and lodging. At a bifurcation roll angle of 45-degrees, the most distinct difference in splitting ratios between three physiologic frequencies (1, 1.5, 2 Hz) was observed. As roll angle increased, lodged bubble volume in the first generation channel increased while bubble volume beyond the second bifurcation proportionately decreased. A corresponding time-dependent one-dimensional theoretical model was also developed. The results elucidate the effects of pulsatile flow and suggest the potential of gas embolotherapy to occlude blood flow to tumors.
Surucu, Murat; Shah, Karan K; Mescioglu, Ibrahim; Roeske, John C; Small, William; Choi, Mehee; Emami, Bahman
2016-02-01
To develop decision trees predicting for tumor volume reduction in patients with head and neck (H&N) cancer using pretreatment clinical and pathological parameters. Forty-eight patients treated with definitive concurrent chemoradiotherapy for squamous cell carcinoma of the nasopharynx, oropharynx, oral cavity, or hypopharynx were retrospectively analyzed. These patients were rescanned at a median dose of 37.8 Gy and replanned to account for anatomical changes. The percentages of gross tumor volume (GTV) change from initial to rescan computed tomography (CT; %GTVΔ) were calculated. Two decision trees were generated to correlate %GTVΔ in primary and nodal volumes with 14 characteristics including age, gender, Karnofsky performance status (KPS), site, human papilloma virus (HPV) status, tumor grade, primary tumor growth pattern (endophytic/exophytic), tumor/nodal/group stages, chemotherapy regimen, and primary, nodal, and total GTV volumes in the initial CT scan. The C4.5 Decision Tree induction algorithm was implemented. The median %GTVΔ for primary, nodal, and total GTVs was 26.8%, 43.0%, and 31.2%, respectively. Type of chemotherapy, age, primary tumor growth pattern, site, KPS, and HPV status were the most predictive parameters for primary %GTVΔ decision tree, whereas for nodal %GTVΔ, KPS, site, age, primary tumor growth pattern, initial primary GTV, and total GTV volumes were predictive. Both decision trees had an accuracy of 88%. There can be significant changes in primary and nodal tumor volumes during the course of H&N chemoradiotherapy. Considering the proposed decision trees, radiation oncologists can select patients predicted to have high %GTVΔ, who would theoretically gain the most benefit from adaptive radiotherapy, in order to better use limited clinical resources. © The Author(s) 2015.
Non-invasive thermal IR detection of breast tumor development in vivo
NASA Astrophysics Data System (ADS)
Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.
2015-03-01
Lumpectomy coupled with radiation therapy and/or chemotherapy comprises the treatment of breast cancer for many patients. We are developing an enhanced thermal IR imaging technique that can be used in real-time to guide tissue excision during a lumpectomy. This novel enhanced thermal imaging method is a combination of IR imaging (8- 10 μm) and selective heating of blood (~0.5 °C) relative to surrounding water-rich tissue using LED sources at low powers. Post-acquisition processing of these images highlights temporal changes in temperature and is sensitive to the presence of vascular structures. In this study, fluorescent and enhanced thermal imaging modalities were used to estimate breast cancer tumor volumes as a function of time in 19 murine subjects over a 30-day study period. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after Day 22. The tumor volumes estimated from enhanced thermal imaging show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging and the enhanced IR images, indicating that enhanced thermal imaging is capable monitoring tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses. This novel IR technique could be used to estimate tumor margins in real-time during surgical procedures.
Reinholz, Monica M; Zinnen, Shawn P; Dueck, Amylou C; Dingli, David; Reinholz, Gregory G; Jonart, Leslie A; Kitzmann, Kathleen A; Bruzek, Amy K; Negron, Vivian; Abdalla, Abdalla K; Arendt, Bonnie K; Croatt, Anthony J; Sanchez-Perez, Luis; Sebesta, David P; Lönnberg, Harri; Yoneda, Toshiyuki; Nath, Karl A; Jelinek, Diane F; Russell, Stephen J; Ingle, James N; Spelsberg, Thomas C; Dixon, Henry B F Hal; Karpeisky, Alexander; Lingle, Wilma L
2010-07-01
Despite palliative treatments, tumor-induced bone disease (TIBD) remains highly debilitating for many cancer patients and progression typically results in death within two years. Therefore, more effective therapies with enhanced anti-resorptive and cytotoxic characteristics are needed. We developed bisphosphonate-chemotherapeutic conjugates designed to bind bone and hydrolyze, releasing both compounds, thereby targeting both osteoclasts and tumor cells. This study examined the effects of our lead compound, MBC-11 (the anhydride formed between arabinocytidine (AraC)-5'-phosphate and etidronate), on bone tumor burden, bone volume, femur bone mineral density (BMD), and overall survival using two distinct mouse models of TIBD, the 4T1/luc breast cancer and the KAS-6/1-MIP1alpha multiple myeloma models. In mice orthotopically inoculated with 4T1/luc mouse mammary cells, MBC-11 (0.04 microg/day; s.c.) reduced the incidence of bone metastases to 40% (4/10), compared to 90% (9/10; p=0.057) and 100% (5/5; p=0.04) of PBS- or similarly-dosed, zoledronate-treated mice, respectively. MBC-11 also significantly decreased bone tumor burden compared to PBS- or zoledronate-treated mice (p=0.021, p=0.017, respectively). MBC-11 and zoledronate (0.04 microg/day) significantly increased bone volume by two- and four-fold, respectively, compared to PBS-treated mice (p=0.005, p<0.001, respectively). In mice systemically injected with human multiple myeloma KAS-6/1-MIP1alpha cells, 0.04 and 4.0 microg/day MBC-11 improved femur BMD by 13% and 16%, respectively, compared to PBS (p=0.025, p=0.017, respectively) at 10 weeks post-tumor cell injection and increased mean survival to 95 days compared to 77 days in mice treated with PBS (p=0.047). Similar doses of zoledronate also improved femur BMD (p< or =0.01 vs PBS) and increased mean survival to 86 days, but this was not significantly different than in PBS-treated mice (p=0.53). These results demonstrate that MBC-11 decreases bone tumor burden, maintains bone structure, and may increase overall survival, warranting further investigation as a treatment for TIBD. 2010 Elsevier Inc. All rights reserved.
Kerschbaumer, Johannes; Bauer, Marlies; Popovscaia, Marina; Grams, Astrid E; Thomé, Claudius; Freyschlag, Christian F
2017-02-01
Surgical resection in combination with radiotherapy in selected cases remains the best option for patients with cerebral metastases. Postoperative relapse of brain metastases occurs frequently and can be reduced by postoperative whole-brain radiotherapy (WBRT). Continuous spread of tumor cells from the primary lesions is debated as a cause of recurrence. It is well known that in gliomas, infiltration takes place within the surrounding edema. Obviously, most brain metastases are usually associated with peritumoral edema, which may act as an indicator of infiltration and more aggressive tumor biology. Therefore, we aimed to investigate the correlation of tumor and edema volumes with overall survival in patients with cerebral metastases. A total of 143 patients diagnosed with brain metastasis (male:female=1.1:1) who underwent surgical resection were included retrospectively in this analysis. Clinical data were retrieved from electronic patient files. The volumes of tumor and edema calculated by manual delineation. The ratio of edema to tumor volume was calculated, leading to dichotomization of the patients. The median tumor volume was 20.1 cc (range=0.8-90.8 cc) and the median volume of edema 49.5 cc (range=0-179.9 cc). The volume of metastases did not significantly correlate with overall survival. The ratio of edema to tumor volume was also not a prognostic factor in terms of overall survival. Only surgical resection, preoperative recursive partitioning analysis class, and postoperative addition of WBRT, as well as female sex, demonstrated beneficial effects. The extent of edema surrounding cerebral metastases does not appear to influence overall survival in patients suffering from brain metastases, although it seems to be responsible for most of the patients' symptoms. The hypothesis that the extent of edema was disadvantageous concerning survival was supported by our data. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martens, Milou H., E-mail: mh.martens@hotmail.com; Department of Surgery, Maastricht University Medical Center, Maastricht; GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht
2015-12-01
Purpose: To review the available literature on tumor size/volume measurements on magnetic resonance imaging for response assessment after chemoradiotherapy, and validate these cut-offs in an independent multicenter patient cohort. Methods and Materials: The study included 2 parts. (1) Review of the literature: articles were included that assessed the accuracy of tumor size/volume measurements on magnetic resonance imaging for tumor response assessment. Size/volume cut-offs were extracted; (2) Multicenter validation: extracted cut-offs from the literature were tested in a multicenter cohort (n=146). Accuracies were calculated and compared with reported results from the literature. Results: The review included 14 articles, in which 3more » different measurement methods were assessed: (1) tumor length; (2) 3-dimensonial tumor size; and (3) whole volume. Study outcomes consisted of (1) complete response (ypT0) versus residual tumor; (2) tumor regression grade 1 to 2 versus 3 to 5; and (3) T-downstaging (ypT« less
The effect of NACHRI children's hospital designation on outcome in pediatric malignant brain tumors.
Donoho, Daniel A; Wen, Timothy; Liu, Jonathan; Zarabi, Hosniya; Christian, Eisha; Cen, Steven; Zada, Gabriel; McComb, J Gordon; Krieger, Mark D; Mack, William J; Attenello, Frank J
2017-08-01
OBJECTIVE Although current pediatric neurosurgery guidelines encourage the treatment of pediatric malignant brain tumors at specialized centers such as pediatric hospitals, there are limited data in support of this recommendation. Previous studies suggest that children treated by higher-volume surgeons and higher-volume hospitals may have better outcomes, but the effect of treatment at dedicated children's hospitals has not been investigated. METHODS The authors analyzed the Healthcare Cost and Utilization Project Kids' Inpatient Database (KID) from 2000-2009 and included all patients undergoing a craniotomy for malignant pediatric brain tumors based on ICD-9-CM codes. They investigated the effects of patient demographics, tumor location, admission type, and hospital factors on rates of routine discharge and mortality. RESULTS From 2000 through 2009, 83.6% of patients had routine discharges, and the in-hospital mortality rate was 1.3%. In multivariate analysis, compared with children treated at an institution designated as a pediatric hospital by NACHRI (National Association of Children's Hospitals and Related Institutions), children receiving treatment at a pediatric unit within an adult hospital (OR 0.5, p < 0.01) or a general hospital without a designated pediatric unit (OR 0.4, p < 0.01) were less likely to have routine discharges. Treatment at a large hospital (> 400 beds; OR 1.8, p = 0.02) and treatment at a teaching hospital (OR 1.7, p = 0.02) were independently associated with greater likelihood of routine discharge. However, patients transferred between facilities had a significantly decreased likelihood of routine discharge (OR 0.5, p < 0.01) and an increased likelihood of mortality (OR 5.0, p < 0.01). Procedural volume was not associated with rate of routine discharge or mortality. CONCLUSIONS These findings may have implications for planning systems of care for pediatric patients with malignant brain tumors. The authors hope to motivate future research into the specific factors that may lead to improved outcomes at designated pediatric hospitals.
RT-06GAMMA KNIFE SURGERY AFTER NAVIGATION-GUIDED ASPIRATION FOR CYSTIC METASTATIC BRAIN TUMORS
Chiba, Yasuyoshi; Mori, Kanji; Toyota, Shingo; Kumagai, Tetsuya; Yamamoto, Shota; Sugano, Hirofumi; Taki, Takuyu
2014-01-01
Metastatic brain tumors over 3 cm in diameter (volume of 14.1ml) are generally considered poor candidates for Gamma Knife surgery (GKS). We retrospectively assessed the method and efficacy of GKS for large cystic metastatic brain tumors after navigation-guided aspiration under local anesthesia. From September 2007 to April 2014, 38 cystic metastatic brain tumors in 32 patients (12 males, 20 females; mean age, 63.2 years) were treated at Kansai Rosai Hospital. The patients were performed navigation-guided cyst aspiration under local anesthesia, then at the day or the next day, were performed GKS and usually discharged on the day. The methods for preventing of leptomeningeal dissemination are following: 1) puncture from the place whose cerebral thickness is 1 cm or more; 2) avoidance of Ommaya reservoir implantation; and 3) placement of absorbable gelatin sponge to the tap tract. Tumor volume, including the cystic component, decreased from 25.4 ml (range 8.7-84.7 ml) to 11.4 ml (range 2.9-36.7 ml) following aspiration; the volume reduction was approximately 51.6%. Follow-up periods in the study population ranged from 0 to 24 months (median 3.5 months). The overall median survival was 6.7 months. There was no leptomeningeal dissemination related to the aspiration. One patient experienced radiation necrosis after GKS, one patient experienced re-aspiration by failure of aspiration, and two patients experienced surgical resections and one patient experienced re-aspiration by cyst regrowth after GKS. Long-term hospitalization is not desirable for the patients with brain metastases. In japan, Long-term hospitalization is required for surgical resection or whole brain radiation therapy, but only two days hospitalization is required for GKS after navigation-guided aspiration at our hospital. This GKS after navigation-guided aspiration is more effective and less invasive than surgical resection or whole brain radiation therapy.
Skeate, Joseph G.; Da Silva, Diane M.; Chavez-Juan, Elena; Anand, Snjezana; Nuccitelli, Richard; Kast, W. Martin
2018-01-01
Nano-Pulse Stimulation (NPS) is a non-thermal pulsed electric field modality that has been shown to have cancer therapeutic effects. Here we applied NPS treatment to the human papillomavirus type 16 (HPV 16)-transformed C3.43 mouse tumor cell model and showed that it is effective at eliminating primary tumors through the induction of immunogenic cell death while subsequently increasing the number of tumor-infiltrating lymphocytes within the tumor microenvironment. In vitro NPS treatment of C3.43 cells resulted in a doubling of activated caspase 3/7 along with the translocation of phosphatidylserine (PS) to the outer leaflet of the plasma membrane, indicating programmed cell death activity. Tumor-bearing mice receiving standard NPS treatment showed an initial decrease in tumor volume followed by clearing of tumors in most mice, and a significant increase in overall survival. Intra-tumor analysis of mice that were unable to clear tumors showed an inverse correlation between the number of tumor infiltrating lymphocytes and the size of the tumor. Approximately half of the mice that cleared established tumors were protected against tumor re-challenge on the opposite flank. Selective depletion of CD8+ T cells eliminated this protection, suggesting that NPS treatment induces an adaptive immune response generating CD8+ T cells that recognize tumor antigen(s) associated with the C3.43 tumor model. This method may be utilized in the future to not only ablate primary tumors, but also to induce an anti-tumor response driven by effector CD8+ T cells capable of protecting individuals from disease recurrence. PMID:29324830
Skeate, Joseph G; Da Silva, Diane M; Chavez-Juan, Elena; Anand, Snjezana; Nuccitelli, Richard; Kast, W Martin
2018-01-01
Nano-Pulse Stimulation (NPS) is a non-thermal pulsed electric field modality that has been shown to have cancer therapeutic effects. Here we applied NPS treatment to the human papillomavirus type 16 (HPV 16)-transformed C3.43 mouse tumor cell model and showed that it is effective at eliminating primary tumors through the induction of immunogenic cell death while subsequently increasing the number of tumor-infiltrating lymphocytes within the tumor microenvironment. In vitro NPS treatment of C3.43 cells resulted in a doubling of activated caspase 3/7 along with the translocation of phosphatidylserine (PS) to the outer leaflet of the plasma membrane, indicating programmed cell death activity. Tumor-bearing mice receiving standard NPS treatment showed an initial decrease in tumor volume followed by clearing of tumors in most mice, and a significant increase in overall survival. Intra-tumor analysis of mice that were unable to clear tumors showed an inverse correlation between the number of tumor infiltrating lymphocytes and the size of the tumor. Approximately half of the mice that cleared established tumors were protected against tumor re-challenge on the opposite flank. Selective depletion of CD8+ T cells eliminated this protection, suggesting that NPS treatment induces an adaptive immune response generating CD8+ T cells that recognize tumor antigen(s) associated with the C3.43 tumor model. This method may be utilized in the future to not only ablate primary tumors, but also to induce an anti-tumor response driven by effector CD8+ T cells capable of protecting individuals from disease recurrence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirsch, David G., E-mail: david.kirsch@duke.ed; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Departments of Radiation Oncology and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
Purpose: To image a genetically engineered mouse model of non-small-cell lung cancer with micro-computed tomography (micro-CT) to measure tumor response to radiation therapy. Methods and Materials: The Cre-loxP system was used to generate primary lung cancers in mice with mutation in K-ras alone or in combination with p53 mutation. Mice were serially imaged by micro-CT, and tumor volumes were determined. A comparison of tumor volume by micro-CT and tumor histology was performed. Tumor response to radiation therapy (15.5 Gy) was assessed with micro-CT. Results: The tumor volume measured with free-breathing micro-CT scans was greater than the volume calculated by histology.more » Nevertheless, this imaging approach demonstrated that lung cancers with mutant p53 grew more rapidly than lung tumors with wild-type p53 and also showed that radiation therapy increased the doubling time of p53 mutant lung cancers fivefold. Conclusions: Micro-CT is an effective tool to noninvasively measure the growth of primary lung cancers in genetically engineered mice and assess tumor response to radiation therapy. This imaging approach will be useful to study the radiation biology of lung cancer.« less
Noninvasive enhanced mid-IR imaging of breast cancer development in vivo
NASA Astrophysics Data System (ADS)
Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.
2015-11-01
Lumpectomy coupled with radiation therapy and/or chemotherapy is commonly used to treat breast cancer patients. We are developing an enhanced thermal IR imaging technique that has the potential to provide real-time imaging to guide tissue excision during a lumpectomy by delineating tumor margins. This enhanced thermal imaging method is a combination of IR imaging (8 to 10 μm) and selective heating of blood (˜0.5°C) relative to surrounding water-rich tissue using LED sources at low powers. Postacquisition processing of these images highlights temporal changes in temperature and the presence of vascular structures. In this study, fluorescent, standard thermal, and enhanced thermal imaging modalities, as well as physical caliper measurements, were used to monitor breast cancer tumor volumes over a 30-day study period in 19 mice implanted with 4T1-RFP tumor cells. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after day 22. The tumor volumes estimated from enhanced thermal imaging, standard thermal imaging, and caliper measurements all show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging, standard IR imaging, and caliper measurements with enhanced thermal imaging, indicating that enhanced thermal imaging monitors tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses associated with the tumor margin. In the future, this IR technique might be used to estimate tumor margins in real time during surgical procedures.
Karava, Konstantina; Ehrbar, Stefanie; Riesterer, Oliver; Roesch, Johannes; Glatz, Stefan; Klöck, Stephan; Guckenberger, Matthias; Tanadini-Lang, Stephanie
2017-11-09
Radiotherapy for pancreatic cancer has two major challenges: (I) the tumor is adjacent to several critical organs and, (II) the mobility of both, the tumor and its surrounding organs at risk (OARs). A treatment planning study simulating stereotactic body radiation therapy (SBRT) for pancreatic tumors with both the internal target volume (ITV) concept and the tumor tracking approach was performed. The two respiratory motion-management techniques were compared in terms of doses to the target volume and organs at risk. Two volumetric-modulated arc therapy (VMAT) treatment plans (5 × 5 Gy) were created for each of the 12 previously treated pancreatic cancer patients, one using the ITV concept and one the tumor tracking approach. To better evaluate the overall dose delivered to the moving tumor volume, 4D dose calculations were performed on four-dimensional computed tomography (4DCT) scans. The resulting planning target volume (PTV) size for each technique was analyzed. Target and OAR dose parameters were reported and analyzed for both 3D and 4D dose calculation. Tumor motion ranged from 1.3 to 11.2 mm. Tracking led to a reduction of PTV size (max. 39.2%) accompanied with significant better tumor coverage (p<0.05, paired Wilcoxon signed rank test) both in 3D and 4D dose calculations and improved organ at risk sparing. Especially for duodenum, stomach and liver, the mean dose was significantly reduced (p<0.05) with tracking for 3D and 4D dose calculations. By using an adaptive tumor tracking approach for respiratory-induced pancreatic motion management, a significant reduction in PTV size can be achieved, which subsequently facilitates treatment planning, and improves organ dose sparing. The dosimetric benefit of tumor tracking is organ and patient-specific.
Adenovirus-mediated p53 gene delivery inhibits 9L glioma growth in rats.
Badie, B; Drazan, K E; Kramar, M H; Shaked, A; Black, K L
1995-06-01
Adenoviral vectors have recently been shown to effectively deliver genes into a variety of tissues. Since these vectors have some advantages over the more extensively investigated retroviruses, we studied the effect of two replication-defective adenovectors bearing human wild type tumor suppressor gene p53 (Adp53) and Escherichia coli beta-galactosidase gene (AdLacZ) on 9L glioma cells. Successful in vitro gene transfer was shown by DNA polymerase chain reaction (PCR), and expression was confirmed by reverse transcriptase RNA PCR and Western blot analyses. Transduction of 9L cells with the Adp53 inhibited cell growth and induced phenotypic changes consistent with cell death at low titers, while AdLacZ caused cytopathic changes only at high titers. Stereotactic injection of AdLacZ (10(7) plaque forming units) into tumor bed stained 25 to 30% of tumor cells at the site of vector delivery. Injection of Adp53 (10(7) plaque forming units), but not AdLacZ (controls), into established 4-day old 9L glioma brain tumors decreased tumor volume by 40% after 14 days. As a step toward gene therapy of brain tumors using replication-defective adenoviruses, these data support the use of tumor suppressor gene transfer for in vivo treatment of whole animal brain tumor models.
Zeng, Xiaozheng Jenny; Li, Jian; McGough, Robert J
2010-01-01
A waveform-diversity-based approach for 3-D tumor heating is compared to spot scanning for hyperthermia applications. The waveform diversity method determines the excitation signals applied to the phased array elements and produces a beam pattern that closely matches the desired power distribution. The optimization algorithm solves the covariance matrix of the excitation signals through semidefinite programming subject to a series of quadratic cost functions and constraints on the control points. A numerical example simulates a 1444-element spherical-section phased array that delivers heat to a 3-cm-diameter spherical tumor located 12 cm from the array aperture, and the results show that waveform diversity combined with mode scanning increases the heated volume within the tumor while simultaneously decreasing normal tissue heating. Whereas standard single focus and multiple focus methods are often associated with unwanted intervening tissue heating, the waveform diversity method combined with mode scanning shifts energy away from intervening tissues where hotspots otherwise accumulate to improve temperature localization in deep-seated tumors.
Schwarz, Bettina; Paprottka, Philipp M.; Sourbron, Steven; von Einem, Jobst C.; Dietrich, Olaf; Hinkel, Rabea; Clevert, Dirk A.; Bruns, Christiane J.; Reiser, Maximilian F.; Nikolaou, Konstantin; Wintersperger, Bernd J.
2013-01-01
Abstract Purpose: To investigate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with macromolecular contrast media (MMCM) to monitor the effects of the multikinase inhibitor sorafenib on subcutaneous prostate carcinomas in rats with immunohistochemical validation. Materials and methods: Copenhagen rats, implanted with prostate carcinoma allografts, were randomized to the treatment group (n = 8) or the control group (n = 8). DCE-MRI with albumin-(Gd-DTPA)35 was performed at baseline and after 1 week using a clinical 3-Tesla system. The treatment group received sorafenib, 10 mg/kg body weight daily. Kinetic analysis yielded quantitative parameters of tumor endothelial permeability–surface area product (PS; ml/100 ml/min) and fractional blood volume (Vb, %). Tumors were harvested on day 7 for immunohistochemical analysis. Results: In sorafenib-treated tumors, PS (0.62 ± 0.20 vs 0.08 ± 0.09 ml/100 ml/min; P < 0.01) and Vb (5.1 ± 1.0 vs 0.56 ± 0.48%; P < 0.01) decreased significantly from day 0 to day 7. PS showed a highly significant inverse correlation with tumor cell apoptosis (TUNEL; r = −0.85, P < 0.001). Good, significant correlations of PS were also observed with tumor cell proliferation (Ki-67; r = 0.67, P < 0.01) and tumor vascularity (RECA-1; r = 0.72, P < 0.01). MRI-assayed fractional blood volume Vb showed a highly significant correlation with tumor vascularity (RECA-1; r = 0.87, P < 0.001) and tumor cell proliferation (Ki-67; r = 0.82, P < 0.01). Conclusion: Results of DCE-MRI with MMCM demonstrated good, significant correlations with the immunohistochemically assessed antiangiogenic, antiproliferative, and proapoptotic effects of a 1-week, daily treatment course of sorafenib on experimental prostate carcinoma allografts. PMID:24380871
Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models
2005-02-01
40 E 250° U0 200- 0 150- 50- 01 Treament group (tumor volume in cm3 at time of randomization) Figure 2: a) Mean percent change in LNCaP tumor volume...40- S30- . 20- 10 CAA F T T+F c 350- 300- OM P 250- 2! ." Q. 0 200- 0 150- ~.100 ** ’ 50 Treament group (tumor volume in cm 3 at time of randomization
Liu, Xiaojun; Ranganathan, Raghuveer; Jiang, Shuguang; Fang, Chongyun; Sun, Jing; Kim, Soyeon; Newick, Kheng; Lo, Albert; June, Carl H.; Zhao, Yangbing; Moon, Edmund K.
2015-01-01
Chimeric antigen receptor (CAR)-modified adoptive T-cell therapy (ATC) has been successfully applied to the treatment of hematologic malignancies, but faces many challenges in solid tumors. One major obstacle is the immune-suppressive effects induced in both naturally-occurring and genetically-modified tumor infiltrating lymphocytes (TILs) by inhibitory receptors (IRs), namely PD1. We hypothesized that interfering with PD1 signaling would augment CAR T cell activity against solid tumors. To address this possibility, we introduced a genetically-engineered switch receptor construct, comprising the truncated extracellular domain of PD1 and the transmembrane and cytoplasmic signaling domains of CD28, into CAR T-cells. We tested the effect of this supplement, “PD1CD28”, on human CAR T-cells targeting aggressive models of human solid tumors expressing relevant tumor antigens. Treatment of mice bearing large, established solid tumors with PD1CD28 CAR T-cells led to significant regression in tumor volume due to enhanced CAR TIL infiltrate, decreased susceptibility to tumor-induced hypofunction, and attenuation of IR expression compared to treatments with CAR T-cells alone or PD1 antibodies. Taken together, our findings suggest that the application of PD1CD28 to boost CAR T-cell activity is efficacious against solid tumors via a variety of mechanisms, prompting clinical investigation of this potentially promising treatment modality. PMID:26979791
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Nan-Jie; Wong, Chun-Sing, E-mail: drcswong@gmail.com; Chu, Yiu-Ching
2013-10-01
Purpose: To improve the accuracy of volume and apparent diffusion coefficient (ADC) measurements in diffusion-weighted magnetic resonance imaging (MRI), we proposed a method based on thresholding both the b0 images and the ADC maps. Methods and Materials: In 21 heterogeneous lesions from patients with metastatic gastrointestinal stromal tumors (GIST), gross lesion were manually contoured, and corresponding volumes and ADCs were denoted as gross tumor volume (GTV) and gross ADC (ADC{sub g}), respectively. Using a k-means clustering algorithm, the probable high-cellularity tumor tissues were selected based on b0 images and ADC maps. ADC and volume of the tissues selected using themore » proposed method were denoted as thresholded ADC (ADC{sub thr}) and high-cellularity tumor volume (HCTV), respectively. The metabolic tumor volume (MTV) in positron emission tomography (PET)/computed tomography (CT) was measured using 40% maximum standard uptake value (SUV{sub max}) as the lower threshold, and corresponding mean SUV (SUV{sub mean}) was also measured. Results: HCTV had excellent concordance with MTV according to Pearson's correlation (r=0.984, P<.001) and linear regression (slope = 1.085, intercept = −4.731). In contrast, GTV overestimated the volume and differed significantly from MTV (P=.005). ADC{sub thr} correlated significantly and strongly with SUV{sub mean} (r=−0.807, P<.001) and SUV{sub max} (r=−0.843, P<.001); both were stronger than those of ADC{sub g}. Conclusions: The proposed lesion-adaptive semiautomatic method can help segment high-cellularity tissues that match hypermetabolic tissues in PET/CT and enables more accurate volume and ADC delineation on diffusion-weighted MR images of GIST.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriya, S; National Cancer Center, Kashiwa, Chiba; Tachibana, H
Purpose: Daily CT-based three-dimensional image-guided and adaptive (CTIGRT-ART) proton therapy system was designed and developed. We also evaluated the effectiveness of the CTIGRT-ART. Methods: Retrospective analysis was performed in three lung cancer patients: Proton treatment planning was performed using CT image datasets acquired by Toshiba Aquilion ONE. Planning target volume and surrounding organs were contoured by a well-trained radiation oncologist. Dose distribution was optimized using 180-deg. and 270-deg. two fields in passive scattering proton therapy. Well commissioned Simplified Monte Carlo algorithm was used as dose calculation engine. Daily consecutive CT image datasets was acquired by an in-room CT (Toshiba Aquilionmore » LB). In our in-house program, two image registrations for bone and tumor were performed to shift the isocenter using treatment CT image dataset. Subsequently, dose recalculation was performed after the shift of the isocenter. When the dose distribution after the tumor registration exhibits change of dosimetric parameter of CTV D90% compared to the initial plan, an additional process of was performed that the range shifter thickness was optimized. Dose distribution with CTV D90% for the bone registration, the tumor registration only and adaptive plan with the tumor registration was compared to the initial plan. Results: In the bone registration, tumor dose coverage was decreased by 16% on average (Maximum: 56%). The tumor registration shows better coverage than the bone registration, however the coverage was also decreased by 9% (Maximum: 22%) The adaptive plan shows similar dose coverage of the tumor (Average: 2%, Maximum: 7%). Conclusion: There is a high possibility that only image registration for bone and tumor may reduce tumor coverage. Thus, our proposed methodology of image guidance and adaptive planning using the range adaptation after tumor registration would be effective for proton therapy. This research is partially supported by Japan Agency for Medical Research and Development (AMED).« less
Badr, Gamal; Al-Sadoon, Mohamed K; Rabah, Danny M
2013-12-01
The treatment of drug-resistant cancer is a clinical challenge, and thus screening for novel anticancer drugs is critically important. We recently demonstrated a strong enhancement of the antitumor activity of snake (Walterinnesia aegyptia) venom (WEV) in vitro in breast carcinoma, prostate cancer, and multiple myeloma cell lines but not in normal cells when the venom was combined with silica nanoparticles (WEV+NP). In the present study, we investigated the in vivo therapeutic efficacy of WEV+NP in breast cancer- and prostate cancer-bearing experimental mouse models. Xenograft breast and prostate tumor mice models were randomized into 4 groups for each cancer model (10 mice per group) and were treated with vehicle (control), NP, WEV, or WEV+NP daily for 28 days post tumor inoculation. The tumor volumes were monitored throughout the experiment. On Day 28 post tumor inoculation, breast and prostate tumor cells were collected and either directly cultured for flow cytometry analysis or lysed for Western blot and ELISA analysis. Treatment with WEV+NP or WEV alone significantly reduced both breast and prostate tumor volumes compared to treatment with NP or vehicle alone. Compared to treatment with WEV alone, treatment of breast and prostate cancer cells with WEV+NP induced marked elevations in the levels of reactive oxygen species (ROS), hydroperoxides, and nitric oxide; robust reductions in the levels of the chemokines CXCL9, CXCL10, CXCL12, CXCL13, and CXCL16 and decreased surface expression of their cognate chemokine receptors CXCR3, CXCR4, CXCR5, and CXCR6; and subsequent reductions in the chemokine-dependent migration of both breast and prostate cancer cells. Furthermore, we found that WEV+NP strongly inhibited insulin-like growth factor 1 (IGF-1)- and epidermal growth factor (EGF)-mediated proliferation of breast and prostate cancer cells, respectively, and enhanced the induction of apoptosis by increasing the activity of caspase-3,-8, and -9 in both breast and prostate cancer cells. In addition, treatment of breast and prostate cancer cells with WEV+NP or WEV alone revealed that the combination of WEV with NP robustly decreased the phosphorylation of AKT, ERK, and IκBα; decreased the expression of cyclin D1, surviving, and the antiapoptotic Bcl-2 family members Bcl-2, Bcl-XL, and Mcl-1; markedly increased the expression of cyclin B1 and the proapoptotic Bcl-2 family members Bak, Bax, and Bim; altered the mitochondrial membrane potential; and subsequently sensitized tumor cells to growth arrest. Our data reveal the therapeutic potential of the nanoparticle-sustained delivery of snake venom against different cancer cell types. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Liu, Qian; Liu, Yinhua; Xu, Ling; Duan, Xuening; Li, Ting; Qin, Naishan; Kang, Hua; Jiang, Hongchuan; Yang, Deqi; Qu, Xiang; Jiang, Zefei; Yu, Chengze
2014-01-01
This multicenter prospective study aimed to assess the utility of dynamic enhanced magnetic resonance imaging (MRI) prior to breast-conserving surgery for breast cancer. The research subjects were drawn from patients with primary early resectable breast cancer treated in the breast disease centers of six three-level hospitals in Beijing from 1 January 2010 to 31 December 2012. The participants were allocated to a breast-conserving surgery group (breast-conserving group) or a total mastectomy group (total mastectomy group). Enhanced MRI was used to measure breast volume, longest diameter of tumor and tumor volume. The correlations between these measurements and those derived from histopathologic findings were assessed. The relationships between the success rate of breast-conserving surgery and MRI- and pathology-based measurement results were statistically analyzed in the breast-conserving group. The study included 461 cases in the total mastectomy group and 195 in the breast-conserving group. Allocation to these groups was based on clinical indications and patient preferences. The cut-off for concurrence between MRI- and pathology-based measurements of the longest diameter of tumor was set at 0.3 cm. In the total mastectomy group, the confidence interval for 95% concurrence of these measurements was 35.41%-44.63%. Correlation coefficients for MRI and histopathology-based measurements of breast volume, tumor volume and tumor volume/breast volume ratio were r = 0.861, 0.569, and 0.600, respectively (all P < 0.001). In the breast-conserving group, with 0.30 cm taken as the cut-off for concurrence, the 95% confidence interval for MRI and pathology-based measurements of the longest diameter of tumor was 29.98%-44.01%. The subjective and objective success rates for breast-conserving surgery were 100% and 88.54%, respectively. There were significant correlations between dynamic enhanced MRI- and histopathology-based measurements of the longest diameter of breast lesions, breast and tumor volumes, and breast volume/tumor volume ratios. Preoperative MRI examination improves the success rate of breast-conserving surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Simon Chun Ho, E-mail: simonyu@cuhk.edu.hk; Lau, Tiffany Wing Wa; Tang, Peggy
PurposeTo evaluate the microvascular distribution of lipiodol–ethanol, the histological change of the tumor lesion, and the status of tumor involution over time in hepatocellular carcinoma (HCC) following transarterial ethanol ablation (TEA), in lesions that showed CT evidence of complete tumor response.Materials and methodsPatients with unresectable HCC were treated (183 patients, 242 lesions) with TEA using lipiodol–ethanol mixture (LEM) mixed in 2:1 ratio by volume and followed with CT at 3-month intervals for a median of 14.1 months. Liver tumors (n = 131) that showed CT evidence of complete tumor response, defined as the absence of any enhancing tumor throughout the follow-up period, weremore » included. The surgical specimens of five patients who subsequently received partial hepatectomy were available for histological assessment. The microvascular distribution of LEM and the degree of tumor necrosis were analyzed. Tumor involution over time was assessed with CT in lesions that showed complete response.ResultsLipid stain revealed lipiodol infiltration throughout arterioles, intratumoral sinusoidal spaces, tumor capsule, and peritumoral portal venules. Complete tumor necrosis (100 %) occurred in all 5 surgical specimens. The median (IQR) percentage tumor volume compared to baseline volumes at 12, 36, and 60 months was 32 % (23.5–52.5 %), 22 % (8–31 %), and 13.5 % (6–21.5 %), respectively.ConclusionIntrahepatic HCC lesion that showed CT evidence of complete tumor response following TEA is associated with histological evidence of LEM infiltration throughout the intratumoral and peritumoral vasculature and complete tumor necrosis, as well as sustained reduction in tumor volume over time.« less
Wahl, Michael; Chang, Susan M; Phillips, Joanna J; Molinaro, Annette M; Costello, Joseph F; Mazor, Tali; Alexandrescu, Sanda; Lupo, Janine M; Nelson, Sarah J; Berger, Mitchel; Prados, Michael; Taylor, Jennie W; Butowski, Nicholas; Clarke, Jennifer L; Haas-Kogan, Daphne
2017-12-01
Activation of the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway is common in patients with low-grade gliomas (LGGs), but agents that inhibit this pathway, including mTOR inhibitors, have not been studied in this population. Fifty-eight patients with pathologic evidence of recurrence after they had initially been diagnosed with World Health Organization (WHO) grade II gliomas were enrolled into a prospective phase 2 clinical trial and received daily everolimus (RAD001) for 1 year or until progression. Tissue at the time of enrollment was analyzed for markers of PI3K/mTOR pathway activation. Thirty-eight patients underwent serial multiparametric magnetic resonance imaging, with the tumor volume and the perfusion metrics (the fractional blood volume [fBV] for capillary density and the transfer coefficient [K ps ] for vascular permeability) measured during treatment. The primary endpoint was progression-free survival at 6 months (PFS-6) in patients with WHO II disease at enrollment. For patients with WHO II gliomas at enrollment, the PFS-6 rate was 84%, and this met the primary endpoint (P < .001 for an improvement from the historical rate of 17%). Evidence of PI3K/mTOR activation by immunohistochemistry for phosphorylated ribosomal S6 Ser240/244 (p-S6 Ser240/244 ) was associated with worse progression-free survival (PFS; hazard ratio [HR], 3.03; P = .004) and overall survival (HR, 12.7; P = .01). Tumor perfusion decreased after 6 months (median decrease in fBV, 15%; P = .03; median decrease in K ps , 12%; P = .09), with greater decreases associated with improved PFS (HR for each 10% fBV decrease, 0.71; P = .01; HR for each 10% K ps decrease, 0.82; P = .04). Patients with recurrent LGGs demonstrated a high degree of disease stability during treatment with everolimus. PI3K/mTOR activation, as measured by immunohistochemistry for p-S6, was associated with a worse prognosis. Tumor vascular changes were observed that were consistent with the antiangiogenic effects of mTOR inhibitors. These results support further study of everolimus for LGGs. Cancer 2017;123:4631-4639. © 2017 American Cancer Society. © 2017 American Cancer Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishibuchi, Ikuno; Department of Radiation Oncology, Hiroshima Prefectural Hospital, Hiroshima; Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp
2014-08-01
Purpose: To consider nonuniform tumor motion within the internal target volume (ITV) by defining time-adjusted ITV (TTV), a volume designed to include heterogeneity of tumor existence on the basis of 4-dimensional computed tomography (4D-CT). Methods and Materials: We evaluated 30 lung cancer patients. Breath-hold CT (BH-CT) and free-breathing 4D-CT scans were acquired for each patient. The tumors were manually delineated using a lung CT window setting (window, 1600 HU; level, −300 HU). Tumor in BH-CT images was defined as gross tumor volume (GTV), and the sum of tumors in 4D-CT images was defined as ITV-4D. The TTV images were generatedmore » from the 4D-CT datasets, and the tumor existence probability within ITV-4D was calculated. We calculated the TTV{sub 80} value, which is the percentage of the volume with a tumor existence probability that exceeded 80% on ITV-4D. Several factors that affected the TTV{sub 80} value, such as the ITV-4D/GTV ratio or tumor centroid deviation, were evaluated. Results: Time-adjusted ITV images were acquired for all patients, and tumor respiratory motion heterogeneity was visualized. The median (range) ITV-4D/GTV ratio and median tumor centroid deviation were 1.6 (1.0-4.1) and 6.3 mm (0.1-30.3 mm), respectively. The median TTV{sub 80} value was 43.3% (2.9-98.7%). Strong correlations were observed between the TTV{sub 80} value and the ITV-4D/GTV ratio (R=−0.71) and tumor centroid deviation (R=−0.72). The TTV images revealed the tumor motion pattern features within ITV. Conclusions: The TTV images reflected nonuniform tumor motion, and they revealed the tumor motion pattern features, suggesting that the TTV concept may facilitate various aspects of radiation therapy planning of lung cancer while incorporating respiratory motion in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allibhai, Zishan; Taremi, Mojgan; Bezjak, Andrea
2013-12-01
Purpose: Stereotactic body radiation therapy for medically inoperable early-stage non-small cell lung cancer (NSCLC) offers excellent control rates. Most published series deal mainly with small (usually <4 cm), peripheral, solitary tumors. Larger tumors are associated with poorer outcomes (ie, lower control rates, higher toxicity) when treated with conventional RT. It is unclear whether SBRT is sufficiently potent to control these larger tumors. We therefore evaluated and examined the influence of tumor size on treatment outcomes after SBRT. Methods and Materials: Between October 2004 and October 2010, 185 medically inoperable patients with early (T1-T2N0M0) NSCLC were treated on a prospective researchmore » ethics board-approved single-institution protocol. Prescription doses were risk-adapted based on tumor size and location. Follow-up included prospective assessment of toxicity (as per Common Terminology Criteria for Adverse Events, version 3.0) and serial computed tomography scans. Patterns of failure, toxicity, and survival outcomes were calculated using Kaplan-Meier method, and the significance of tumor size (diameter, volume) with respect to patient, treatment, and tumor factors was tested. Results: Median follow-up was 15.2 months. Tumor size was not associated with local failure but was associated with regional failure (P=.011) and distant failure (P=.021). Poorer overall survival (P=.001), disease-free survival (P=.001), and cause-specific survival (P=.005) were also significantly associated with tumor size (with tumor volume more significant than diameter). Gross tumor volume and planning target volume were significantly associated with grade 2 or worse radiation pneumonitis. However, overall rates of grade ≥3 pneumonitis were low and not significantly affected by tumor or target size. Conclusions: Currently employed stereotactic body radiation therapy dose regimens can provide safe effective local therapy even for larger solitary NSCLC tumors (up to 5.7 cm in tumor diameter or 100 cm{sup 3} in tumor volume) but are associated with more nonlocal failures as well as poorer survival. These observations suggest these patients may benefit from more extensive staging or consideration of adjuvant therapy.« less
Reinhold, Caroline; Alsharif, Shaza S.; Addley, Helen; Arceneau, Jocelyne; Molinari, Nicolas; Guiu, Boris; Sala, Evis
2015-01-01
Purpose To investigate magnetic resonance (MR) volumetry of endometrial tumors and its association with deep myometrial invasion, tumor grade, and lymphovascular invasion and to assess the value of apparent diffusion coefficient (ADC) histographic analysis of the whole tumor volume for prediction of tumor grade and lymphovascular invasion. Materials and Methods The institutional review board approved this retrospective study; patient consent was not required. Between May 2010 and May 2012, 70 women (mean age, 64 years; range, 24–91 years) with endometrial cancer underwent preoperative MR imaging, including axial oblique and sagittal T2-weighted, dynamic contrast material–enhanced, and diffusion-weighted imaging. Volumetry of the tumor and uterus was performed during the six sequences, with manual tracing of each section, and the tumor volume ratio (TVR) was calculated. ADC histograms were generated from pixel ADCs from the whole tumor volume. The threshold of TVR associated with myometrial invasion was assessed by using receiver operating characteristic curves. An independent sample Mann Whitney U test was used to compare differences in ADCs, skewness, and kurtosis between tumor grade and the presence of lymphovascular invasion. Results No significant difference in tumor volume and TVR was found among the six MR imaging sequences (P = .95 and .86, respectively). A TVR greater than or equal to 25% allowed prediction of deep myometrial invasion with sensitivity of 100% and specificity of 93% (area under the curve, 0.96; 95% confidence interval: 0.86, 0.99) at axial oblique diffusion-weighted imaging. A TVR of greater than or equal to 25% was associated with grade 3 tumors (P = .0007) and with lymphovascular invasion (P < .0001). There was no significant difference in the ADCs between grades 1 and 2 tumors (P > .05). The minimum, 10th, 25th, 50th, 75th, and 90th percentile ADCs were significantly lower in grade 3 tumors than in grades 1 and 2 tumors (P < .02). Conclusion The combination of whole tumor volume and ADC can be used for prediction of tumor grade, lymphovascular invasion, and depth of myometrial invasion. © RSNA, 2015 PMID:25928157
Swanson, Gregory P; Epstein, Jonathan I; Ha, Chul S; Kryvenko, Oleksandr N
2015-03-01
Surveillance and focal therapy are increasingly considered for low risk prostate cancer (PC). We describe pathological characteristics of low risk PC at radical prostatectomy in contemporary patients. Five-hundred-fifty-two men from 2008 to 2012 with low risk (stage T1c/T2a, PSA ≤ 10 ng/ml, Gleason score ≤6) PC underwent radical prostatectomy. Slides were re-reviewed to grade and stage the tumor, map separate tumor nodules, and calculate their volumes. Ninety-three (16.9%) men had prostatectomy Gleason score 3 + 4 = 7 or higher and were excluded. Five (0.9%) men had no residual carcinoma. Remaining 454 patients composed the study cohort. The median age was 57 years (36-73) and median PSA 4.4 ng/ml (0.4-9.9). Racial distribution was 77.5% Caucasian, 15.5% African American, and 7% other. The median total tumor volume was 0.38 cm(3) (0.003-7.22). Seventy percent of the patients had bilateral tumor and 34% had a tumor nodule >0.5 cm(3) . The index lesion represented 89% (median) of the total tumor volume. Extraprostatic extension and positive margin were present in 5.7% and 9% of cases, respectively. The tumor nodules measuring >0.5 cm(3) were located almost equally between the anterior (53%) and peripheral (47%) gland. The relationship between PSA and total tumor volume was weak (r = 0.13, P = 0.005). The relationship between PSA density and total tumor volume was slightly better (r = 0.26, P < 0.001). Low risk prostate cancer is generally a low volume disease. Gleason score upgrade is seen in 16.9% of cases at radical prostatectomy. While the index lesion accounts for the bulk of the disease, the cancer is usually multifocal and bilateral. Neither PSA nor PSA density correlates well with the total tumor volume. Prostate size has a significant contribution to PSA level. These factors need to be considered in treatment planning for low risk prostate cancer. © 2014 Wiley Periodicals, Inc.
Yang, Xiaoliang; Saito, Ryuta; Nakamura, Taigen; Zhang, Rong; Sonoda, Yukihiko; Kumabe, Toshihiro; Forsayeth, John; Bankiewicz, Krystof; Tominaga, Teiji
2016-01-01
In cases of malignant brain tumors, infiltrating tumor cells that exist at the tumor-surrounding brain tissue always escape from cytoreductive surgery and, protected by blood-brain barrier (BBB), survive the adjuvant chemoradiotherapy, eventually leading to tumor recurrence. Local interstitial delivery of chemotherapeutic agents is a promising strategy to target these cells. During our effort to develop effective drug delivery methods by intra-tumoral infusion of chemotherapeutic agents, we found consistent pattern of leakage from the tumor. Here we describe our findings and propose promising strategy to cover the brain tissue surrounding the tumor with therapeutic agents by means of convection-enhanced delivery. First, the intracranial tumor isograft model was used to define patterns of leakage from tumor mass after intra-tumoral infusion of the chemotherapeutic agents. Liposomal doxorubicin, although first distributed inside the tumor, distributed diffusely into the surrounding normal brain once the leakage happen. Trypan blue dye was used to evaluate the distribution pattern of peri-tumoral infusions. When infused intra- or peri-tumorally, infusates distributed robustly into the tumor border. Subsequently, volume of distributions with different infusion scheduling; including intra-tumoral infusion, peri-tumoral infusion after tumor resection, peri-tumoral infusion without tumor removal with or without systemic infusion of steroids, were compared with Evans-blue dye. Peri-tumoral infusion without tumor removal resulted in maximum volume of distribution. Prior use of steroids further increased the volume of distribution. Local interstitial drug delivery targeting tumor surrounding brain tissue before tumor removal should be more effective when targeting the invading cells.
SU-F-T-335: Piecewise Uniform Dose Prescription and Optimization Based On PET/CT Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, G; Liu, J
Purpose: In intensity modulated radiation therapy (IMRT), the tumor target volume is given a uniform dose prescription, which does not consider the heterogeneous characteristics of tumor such as hypoxia, clonogen density, radiosensitivity, tumor proliferation rate and so on. Our goal is to develop a nonuniform target dose prescription method which can spare organs at risk (OARs) better and does not decrease the tumor control probability (TCP). Methods: We propose a piecewise uniform dose prescription (PUDP) based on PET/CT images of tumor. First, we propose to delineate biological target volumes (BTV) and sub-biological target volumes (sub-BTVs) by our Hierarchical Mumford-Shah Vectormore » Model based on PET/CT images of tumor. Then, in order to spare OARs better, we make the BTV mean dose minimized while restrict the TCP to a constant. So, we can get a general formula for determining an optimal dose prescription based on a linearquadratic model (LQ). However, this dose prescription is high heterogeneous, it is very difficult to deliver by IMRT. Therefore we propose to use the equivalent uniform dose (EUD) in each sub-BTV as its final dose prescription, which makes a PUDP for the BTV. Results: We have evaluated the IMRT planning of a patient with nasopharyngeal carcinoma respectively using PUDP and UDP. The results show that the highest and mean doses inside brain stem are 48.425Gy and 19.151Gy respectively when the PUDP is used for IMRT planning, while they are 52.975Gy and 20.0776Gy respectively when the UDP is used. Both of the resulting TCPs(0.9245, 0.9674) are higher than the theoretical TCP(0.8739), when 70Gy is delivered to the BTV. Conclusion: Comparing with the UDP, the PUDP can spare the OARs better while the resulting TCP by PUDP is not significantly lower than by UDP. This work was supported in part by National Natural Science Foundation of China undergrant no.61271382 and by the foundation for construction of scientific project platform forthe cancer hospital of Hunan province.« less
Zheng, Yuanda; Sun, Xiaojiang; Wang, Jian; Zhang, Lingnan; DI, Xiaoyun; Xu, Yaping
2014-04-01
18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has the potential to improve the staging and radiation treatment (RT) planning of various tumor sites. However, from a clinical standpoint, questions remain with regard to what extent PET/CT changes the target volume and whether PET/CT reduces interobserver variability in target volume delineation. The present study analyzed the use of FDG-PET/CT images for staging and evaluated the impact of FDG-PET/CT on the radiotherapy volume delineation compared with CT in patients with non-small cell lung cancer (NSCLC) who were candidates for radiotherapy. Intraobserver variation in delineating tumor volumes was also observed. In total, 23 patients with stage I-III NSCLC were enrolled and treated with fractionated RT-based therapy with or without chemotherapy. FDG-PET/CT scans were acquired within two weeks prior to RT. PET and CT data sets were sent to the treatment planning system, Pinnacle, through compact discs. The CT and PET images were subsequently fused by means of a dedicated RT planning system. Gross tumor volume (GTV) was contoured by four radiation oncologists on CT (GTV-CT) and PET/CT images (GTV-PET/CT). The resulting volumes were analyzed and compared. For the first phase, two radiation oncologists outlined the contours together, achieving a final consensus. Based on PET/CT, changes in tumor-node-metastasis categories occurred in 8/23 cases (35%). Radiation targeting with fused FDG-PET and CT images resulted in alterations in radiation therapy planning in 12/20 patients (60%) in comparison with CT targeting. The most prominent changes in GTV were observed in cases with atelectasis. For the second phase, the variation in delineating tumor volumes was assessed by four observers. The mean ratio of largest to smallest CT-based GTV was 2.31 (range, 1.01-5.96). The addition of the PET results reduced the mean ratio to 1.46 (range, 1.02-2.27). PET/CT fusion images may have a potential impact on tumor staging and treatment planning. Implementing matched PET/CT results reduced observer variation in delineating tumor volumes significantly with respect to CT only.
Ren, Shurong; Wang, Qiubo; Zhang, Yanli; Lu, Cuixiu; Li, Ping; Li, Yumei
2017-02-01
Objective To investigate the therapeutic effect of Toll-like receptor 7 (TLR7) agonist imiquimod combined with dendritic cell (DC)-based tumor vaccine on melanoma in mice and the potential mechanism. Methods Melanoma-bearing mouse models were established by subcutanous injection of B16-OVA cells into C57BL/6 mice. DCs were isolated from mouse bone marrow and propagated in culture medium with recombinant mouse granulocyte-macrophage colony-stimulating factor (rmGM-CSF) and recombinant mouse interleukin-4 (rmIL-4). DC vaccine (OVA-DC) was prepared by overnight incubation of DCs added with chicken ovalbumin. C57BL/6 mice were separated into four groups which were treated with PBS, topical imiquimod application, OVA-DC intradermal injection and imiquimod plus OVA-DC, respectively. The tumor size was calculated by digital vernier caliper. Peripheral blood CD4 + FOXP3 + Tregs of the tumor-bearing mice was detected by flow cytometry. The cytotoxicity of splenic lymphocyte against B16-OVA was assessed in vitro by CCK-8 assay. Results Compared with the other three groups, B16-OVA-bearing mice treated with imiquimod plus DC vaccine had the smallest tumor volume. The percentage of CD4 + FOXP3 + Tregs decreased significantly in the combined treated mice. The combined treatment enhanced significantly cytotoxicity of splenic lymphocytes against B16-OVA cells. Conclusion Imiquimod combined with antigen-pulsed-DC vaccine could reduce CD4 + FOXP3 + Treg proportion and promote anti-tumor effect in mice with melanoma.
Stereotactic Radiotherapy for Intracranial Nonacoustic Schwannomas Including Facial Nerve Schwannoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishioka, Kentaro; Abo, Daisuke; Aoyama, Hidefumi
2009-12-01
Purpose: Although the effectiveness of stereotactic radiosurgery for nonacoustic schwannomas is currently being assessed, there have been few studies on the efficacy of stereotactic radiotherapy (SRT) for these tumors. We investigated the long-term outcome of SRT for nonacoustic intracranial nerve schwannomas. Methods and Materials: Seventeen patients were treated between July 1994 and December 2006. Of these patients, 7 had schwannomas located in the jugular foramen, 5 in the trigeminal nerve, 4 in the facial nerve, and 1 in the oculomotor nerve. Radiotherapy was used as an initial treatment without surgery in 10 patients (59%) and after initial subtotal resection inmore » the remaining patients. The tumor volume ranged from 0.3 to 31.3 mL (mean, 8.2 mL). The treatment dose was 40 to 54 Gy in 20 to 26 fractions. The median follow-up period was 59.5 months (range, 7.4-122.6 months). Local control was defined as stable or decreased tumor size on follow-up magnetic resonance imaging. Results: Tumor size was decreased in 3 patients, stable in 13, and increased in 1 after SRT. Regarding neurologic symptoms, 8 patients (47%) had improvement and 9 patients were unchanged. One patient had an increase in tumor size and received microsurgical resection at 32 months after irradiation. No patient had worsening of pre-existing neurologic symptoms or development of new cranial nerve deficits at the last follow-up. Conclusions: SRT is an effective alternative to surgical resection for patients with nonacoustic intracranial nerve schwannomas with respect to not only long-term local tumor control but also neuro-functional preservation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollock, Bruce E., E-mail: pollock.bruce@mayo.edu; Department of Radiation Oncology, Mayo Clinic College of Medicine, Rochester, MN; Stafford, Scott L.
Purpose: To define the rate of tumor control and factors associated with radiation-related complications after single-fraction radiosurgery (SRS) for patients with imaging defined intracranial meningiomas. Materials and Methods: Retrospective review of 251 patients (192 women, 59 men) having SRS for imaging-defined intracranial meningiomas between 1990 and 2008. Excluded were patients with radiation-induced tumors, meningiomatosis, or neurofibromatosis. The mean patient age was 58.6 {+-} 13.4 years. The majority of tumors involved the skull base/tentorium (n = 210, 83.7%). The mean treatment volume was 7.7 {+-} 6.2 cm{sup 3}; the mean tumor margin dose was 15.8 {+-} 2.0 Gy. Follow-up (mean, 62.9more » {+-} 43.9 months) was censored at last evaluation (n = 224), death (n = 22), or tumor resection (n = 5). Results: No patient died from tumor progression or radiation-related complications. Tumor size decreased in 181 patients (72.1%) and was unchanged in 67 patients (26.7%). Three patients (1.2%) had in-field tumor progression noted at 28, 145, and 150 months, respectively. No patient had a marginal tumor progression. The 3- and 10-year local control rate was 99.4%. One patient had distant tumor progression at 105 months and underwent repeat SRS. Thirty-one patients (12.4%) had either temporary (n = 8, 3.2%) or permanent (n = 23, 9.2%) symptomatic radiation-related complications including cranial nerve deficits (n = 14), headaches (n = 5), hemiparesis (n = 5), new/worsened seizure (n = 4), cyst-formation (n = 1), hemifacial spasm (n = 1), and stroke (n = 1). The 1- and 5-year complication rates were 8.3% and 11.5%, respectively. Radiation-related complications were associated with convexity/falx tumors (HR = 2.8, 95% CI 1.3-6.1, p = 0.009) and increasing tumor volume (HR = 1.05, 95% CI 1.0-1.1, p = 0.04) on multivariate analysis. No patient developed a radiation-induced tumor. Conclusions: Single-fraction SRS at the used dose range provides a high rate of tumor control for patients with imaging defined intracranial meningiomas. However, treatment failures were noted after 10 years emphasizing the need for long-term imaging follow-up after meningioma SRS.« less
Isbert, Christoph; Ritz, Jörg-Peter; Roggan, André; Schuppan, Detlef; Ajubi, Navid; Buhr, Heinz Johannes; Hohenberger, Werner; Germer, Christoph-Thomas
2007-01-01
Proliferation and synthesis of hepatocellular tissue after tissue damage are promoted by specific growth factors such as hepatic tissue growth factor (HGF) and connective growth factor (CTGF). Laser-induced thermotherapy (LITT) for the treatment of liver metastases is deemed to be a parenchyma-saving procedure compared to hepatic resection. The aim of this study was to compare the impact of LITT and hepatic resection on intrahepatic residual tumor tissue and expression levels of mRNA HGF/CTGF within liver and tumor tissue. Two independent adenocarcinomas (CC531) were implanted into 75 WAG rats, one in the right (untreated tumor) and one in the left liver lobe (treated tumor). The left lobe tumor was treated either by LITT or partial hepatectomy. The control tumor was submitted to in-situ hybridization of HGF and CTGF 24-96 hours and 14 days after intervention. Volumes of the untreated tumors prior to intervention were 38+/-8 mm(3) in group I (laser), 39 +/- 7 mm(3) in group II (resection), and 42 +/- 12 mm(3) in group III (control) and did not differ significantly (P > 0.05). Fourteen days after the intervention the mean tumor+/-SEM volume of untreated tumor in group I (laser) [223 +/- 36] was smaller than in group II (resection) [1233.28 +/- 181.52; P < 0.001], and in group III (control) [978.92 +/- 87.57; P < 0.003]. Forty-eight hours after the intervention intrahepatic mRNA expression level of HGF in group II (resection) was almost twofold higher than in group I (laser) [7.2 +/- 1.0 c/mf vs. 3.9 +/- 0.4 c/mf; P<0.01]. Fourteen days after the intervention intrahepatic mRNA expression level of CTGF in group I (laser) was higher than in group II (resection) [13.89 +/- 0.77 c/mf vs. 9.09 +/- 0.78 c/mf; P < 0.003]. LITT leads to a decrease of residual tumor growth in comparison to hepatic resection. Accelerated tumor growth after hepatic resection is associated with higher mRNA level of HGF and reduced tumor growth after LITT with higher mRNA level of CTGF. The increased CTGF-mediated regulation of ECM may cause reduced residual tumor growth after LITT. (c) 2006 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, J; Ma, L
2015-06-15
Purpose: To develop a treatment delivery and planning strategy by increasing the number of beams to minimize dose to brain tissue surrounding a target, while maximizing dose coverage to the target. Methods: We analyzed 14 different treatment plans via Leksell PFX and 4C. For standardization, single tumor cases were chosen. Original treatment plans were compared with two optimized plans. The number of beams was increased in treatment plans by varying tilt angles of the patient head, while maintaining original isocenter and the beam positions in the x-, y- and z-axes, collimator size, and beam blocking. PFX optimized plans increased beammore » numbers with three pre-set tilt angles, 70, 90, 110, and 4C optimized plans increased beam numbers with tilt angles increasing arbitrarily from range of 30 to 150 degrees. Optimized treatment plans were compared dosimetrically with original treatment plans. Results: Comparing total normal tissue isodose volumes between original and optimized plans, the low-level percentage isodose volumes decreased in all plans. Despite the addition of multiple beams up to a factor of 25, beam-on times for 1 tilt angle versus 3 or more tilt angles were comparable (<1 min.). In 64% (9/14) of the studied cases, the volume percentage decrease by >5%, with the highest value reaching 19%. The addition of more tilt angles correlates to a greater decrease in normal brain irradiated volume. Selectivity and coverage for original and optimized plans remained comparable. Conclusion: Adding large number of additional focused beams with variable patient head tilt shows improvement for dose fall-off for brain radiosurgery. The study demonstrates technical feasibility of adding beams to decrease target volume.« less
Liu, Yao; Ni, Xiao Yan; Chen, Rui Ling; Li, Juan; Gao, Feng Guang
2018-06-01
Tumor necrosis factor α‑induced protein 8 (TIPE) is highly expressed in many types of malignancies. Apoptosis is the process of programmed cell death which maintains the balance of cell survival and death. TIPE is involved in the carcinogenesis of many tumor types, yet the exact role of TIPE in defective apoptosis‑associated carcinogenesis remains uncertain. In the present study, TIPE‑overexpressing Raw264.7 and EL4 cells and vector control cells were treated with 4 mJ/cm2 ultraviolet radiation or 2 µg/ml cisplatin. Following ultraviolet irradiation, TIPE overexpression decreased the percentage of apoptotic cells as detected by flow cytometric and reversed the cisplatin‑mediated decrease in mitochondrial membrane potential by JC‑1 assay. Western blot analyses also revealed that TIPE overexpression inhibited cisplatin‑induced activation of caspase‑3 and ‑9 and PARP. Secondly, TIPE overexpression increased the levels of phosphorylated JNK, MEK and p38. Moreover, inhibition of JNK and p38, but not MEK, efficiently abolished the cell pro‑survival effect of TIPE. Most importantly, an in vivo tumor implantation model revealed that TIPE overexpression augmented the volume and weight of the implanted tumors, indicating that TIPE facilitated tumor formation. We found that TIPE exhibited an anti‑apoptotic effect via JNK and p38 activation, which ultimately promoted tumor. Hence, the present study revealed that activation of JNK and p38 kinases contribute to the TIPE‑mediated anti‑apoptotic effect, indicating that JNK and p38 may be potential therapeutic molecules for TIPE overexpression‑associated diseases.
Zamanian-Daryoush, Maryam; Lindner, Daniel J.; DiDonato, Joseph A.; Wagner, Matthew; Buffa, Jennifer; Rayman, Patricia; Parks, John S.; Westerterp, Marit; Tall, Alan R.; Hazen, Stanley L.
2017-01-01
Increased circulating levels of apolipoprotein A-I (apoA-I), the major protein of high-density lipoprotein (HDL), by genetic manipulation or infusion, protects against melanoma growth and metastasis. Herein, we explored potential roles in melanoma tumorigenesis for host scavenger receptor class B, type 1 (SR-B1), and ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1), all mediators of apoA-I and HDL sterol and lipid transport function. In a syngeneic murine melanoma tumor model, B16F10, mice with global deletion of SR-B1 expression exhibited increased plasma HDL cholesterol (HDLc) levels and decreased tumor volume, indicating host SR-B1 does not directly contribute to HDL-associated anti-tumor activity. In mice with myeloid-specific loss of ABCA1 (Abca1−M/−M; A1−M/−M), tumor growth was inhibited by ∼4.8-fold relative to wild type (WT) animals. Abcg1−M/−M (G1−M/−M) animals were also protected by 2.5-fold relative to WT, with no further inhibition of tumor growth in Abca1/Abcg1 myeloid-specific double knockout animals (DKO). Analyses of tumor-infiltrating immune cells revealed a correlation between tumor protection and decreased presence of the immune suppressive myeloid-derived suppressor cell (MDSC) subsets, Ly-6G+Ly-6CLo and Ly-6GnegLy-6CHi cells. The growth of the syngeneic MB49 murine bladder cancer cells was also inhibited in A1−M/−M mice. Collectively, our studies provide further evidence for an immune modulatory role for cholesterol homeostasis pathways in cancer. PMID:29069761
Caicedo-Granados, Emiro; Lin, Rui; Fujisawa, Caitlin; Yueh, Bevan; Sangwan, Veena; Saluja, Ashok
2014-12-01
The incidence of high-risk human papillomavirus (HR-HPV) head and neck squamous cell carcinoma (HNSCC) continues to increase, particularly oropharyngeal squamous cell carcinoma (OPSCC) cases. The inactivation of the p53 tumor suppressor gene promotes a chain of molecular events, including cell cycle progression and apoptosis resistance. Reactivation of wild-type p53 function is an intriguing therapeutic strategy. The aim of this study was to investigate whether a novel compound derived from diterpene triepoxide (Minnelide™) can reactivate wild-type p53 function in HPV-positive HNSCC. For all of our in vitro experiments, we used 2 HPV-positive HNSCC cell lines, University of Michigan squamous cell carcinoma (UM-SCC) 47 and 93-VU-147, and 2 HPV-positive human cervical cancer cell lines, SiHa and CaSki. Cells were treated with different concentrations of triptolide and analyzed for p53 activation. Mice bearing UM-SCC 47 subcutaneous xenografts and HPV-positive patient-derived tumor xenografts were treated with Minnelide and evaluated for tumor growth and p53 activation. In HPV-positive HNSCC, Minnelide reactivated p53 by suppressing E6 oncoprotein. Activation of apoptosis followed, both in vitro and in vivo. In 2 preclinical HNSCC animal models (a subcutaneous xenograft model and a patient-derived tumor xenograft model), Minnelide reactivated p53 function and significantly decreased tumor progression and tumor volume. Triptolide and Minnelide caused cell death in vitro and in vivo in HPV-positive HNSCC by reactivating wild-type p53 and thus inducing apoptosis. In addition, in 2 HPV-positive HNSCC animal models, Minnelide decreased tumor progression and induced apoptosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chinea, Felix M; Lyapichev, Kirill; Epstein, Jonathan I; Kwon, Deukwoo; Smith, Paul Taylor; Pollack, Alan; Cote, Richard J; Kryvenko, Oleksandr N
2017-03-28
To address health disparities in risk stratification of U.S. Hispanic/Latino men by characterizing influences of prostate weight, body mass index, and race/ethnicity on the correlation of PSA derivatives with Gleason score 6 (Grade Group 1) tumor volume in a diverse cohort. Using published PSA density and PSA mass density cutoff values, men with higher body mass indices and prostate weights were less likely to have a tumor volume <0.5 cm3. Variability across race/ethnicity was found in the univariable analysis for all PSA derivatives when predicting for tumor volume. In receiver operator characteristic analysis, area under the curve values for all PSA derivatives varied across race/ethnicity with lower optimal cutoff values for Hispanic/Latino (PSA=2.79, PSA density=0.06, PSA mass=0.37, PSA mass density=0.011) and Non-Hispanic Black (PSA=3.75, PSA density=0.07, PSA mass=0.46, PSA mass density=0.008) compared to Non-Hispanic White men (PSA=4.20, PSA density=0.11 PSA mass=0.53, PSA mass density=0.014). We retrospectively analyzed 589 patients with low-risk prostate cancer at radical prostatectomy. Pre-operative PSA, patient height, body weight, and prostate weight were used to calculate all PSA derivatives. Receiver operating characteristic curves were constructed for each PSA derivative per racial/ethnic group to establish optimal cutoff values predicting for tumor volume ≥0.5 cm3. Increasing prostate weight and body mass index negatively influence PSA derivatives for predicting tumor volume. PSA derivatives' ability to predict tumor volume varies significantly across race/ethnicity. Hispanic/Latino and Non-Hispanic Black men have lower optimal cutoff values for all PSA derivatives, which may impact risk assessment for prostate cancer.
Recommendations for imaging tumor response in neurofibromatosis clinical trials
Ardern-Holmes, Simone L.; Babovic-Vuksanovic, Dusica; Barker, Fred G.; Connor, Steve; Evans, D. Gareth; Fisher, Michael J.; Goutagny, Stephane; Harris, Gordon J.; Jaramillo, Diego; Karajannis, Matthias A.; Korf, Bruce R.; Mautner, Victor; Plotkin, Scott R.; Poussaint, Tina Y.; Robertson, Kent; Shih, Chie-Schin; Widemann, Brigitte C.
2013-01-01
Objective: Neurofibromatosis (NF)-related benign tumors such as plexiform neurofibromas (PN) and vestibular schwannomas (VS) can cause substantial morbidity. Clinical trials directed at these tumors have become available. Due to differences in disease manifestations and the natural history of NF-related tumors, response criteria used for solid cancers (1-dimensional/RECIST [Response Evaluation Criteria in Solid Tumors] and bidimensional/World Health Organization) have limited applicability. No standardized response criteria for benign NF tumors exist. The goal of the Tumor Measurement Working Group of the REiNS (Response Evaluation in Neurofibromatosis and Schwannomatosis) committee is to propose consensus guidelines for the evaluation of imaging response in clinical trials for NF tumors. Methods: Currently used imaging endpoints, designs of NF clinical trials, and knowledge of the natural history of NF-related tumors, in particular PN and VS, were reviewed. Consensus recommendations for response evaluation for future studies were developed based on this review and the expertise of group members. Results: MRI with volumetric analysis is recommended to sensitively and reproducibly evaluate changes in tumor size in clinical trials. Volumetric analysis requires adherence to specific imaging recommendations. A 20% volume change was chosen to indicate a decrease or increase in tumor size. Use of these criteria in future trials will enable meaningful comparison of results across studies. Conclusions: The proposed imaging response evaluation guidelines, along with validated clinical outcome measures, will maximize the ability to identify potentially active agents for patients with NF and benign tumors. PMID:24249804
Recommendations for imaging tumor response in neurofibromatosis clinical trials.
Dombi, Eva; Ardern-Holmes, Simone L; Babovic-Vuksanovic, Dusica; Barker, Fred G; Connor, Steve; Evans, D Gareth; Fisher, Michael J; Goutagny, Stephane; Harris, Gordon J; Jaramillo, Diego; Karajannis, Matthias A; Korf, Bruce R; Mautner, Victor; Plotkin, Scott R; Poussaint, Tina Y; Robertson, Kent; Shih, Chie-Schin; Widemann, Brigitte C
2013-11-19
Neurofibromatosis (NF)-related benign tumors such as plexiform neurofibromas (PN) and vestibular schwannomas (VS) can cause substantial morbidity. Clinical trials directed at these tumors have become available. Due to differences in disease manifestations and the natural history of NF-related tumors, response criteria used for solid cancers (1-dimensional/RECIST [Response Evaluation Criteria in Solid Tumors] and bidimensional/World Health Organization) have limited applicability. No standardized response criteria for benign NF tumors exist. The goal of the Tumor Measurement Working Group of the REiNS (Response Evaluation in Neurofibromatosis and Schwannomatosis) committee is to propose consensus guidelines for the evaluation of imaging response in clinical trials for NF tumors. Currently used imaging endpoints, designs of NF clinical trials, and knowledge of the natural history of NF-related tumors, in particular PN and VS, were reviewed. Consensus recommendations for response evaluation for future studies were developed based on this review and the expertise of group members. MRI with volumetric analysis is recommended to sensitively and reproducibly evaluate changes in tumor size in clinical trials. Volumetric analysis requires adherence to specific imaging recommendations. A 20% volume change was chosen to indicate a decrease or increase in tumor size. Use of these criteria in future trials will enable meaningful comparison of results across studies. The proposed imaging response evaluation guidelines, along with validated clinical outcome measures, will maximize the ability to identify potentially active agents for patients with NF and benign tumors.
Vijayakumar, S; Chen, G T
1995-12-01
To briefly review scientific rationale of 3D conformal radiation therapy (3DCRT) and discuss the prospects, opportunities, and challenges in the implementation of 3DCRT. Some of these ideas were discussed during a workshop on "Implementation of Three-Dimensional Conformal Radiation Therapy" in April 1994 at Bethesda, MD, and others have been discussed elsewhere in the literature. Local-regional control of cancer is an important component in the overall treatment strategy in any patient with cancer. It has been shown that failure to achieve local-regional control can lead to (a) an increase in chances of distant metastases, and (b) a decrease in the survival. In many disease sites, the doses delivered currently are inadequate to achieve satisfactory local tumor control rates; this is because in many sites, only limited doses of radiotherapy can be delivered due to the proximity of cancer to radiosensitive normal tissues. By conforming the radiotherapy beams to the tumor, doses to the tumors can be enhanced and doses to the normal tissues can be reduced. With the advances in 3DCRT, such conformation is possible now and is the rationale for using 3DCRT. However, a number of questions do remain that are not limited to the following: (a) What are the implications in terms of target volume definitions when implementing 3DCRT? (b) Are there some sites where research efforts can be focused to document the efficacy and cost effectiveness of 3DCRT? (c) How do we implement day-to-day 3DCRT treatment efficiently? (d) How do we transfer the technology from the university centers to the community without compromising quality? (e) What are all the quality assurance/quality improvement questions that need to be addressed and how do we ascertain quality assurance of 3DCRT? (f) Have we looked at cost-benefit ratios and quality of life (QOL) issues closely? There is a need for defining multiple target volumes: gross tumor volume, clinical target volume(s), and planning target volume(s). Such definitions should make implementation of 3DCRT more complex, yet will make high-dose delivery a possibility. There are many sites in which single and multiinstitutional studies are ongoing that include prostate, lung, head and neck, and brain. In other areas, cooperative group trials are required because of the inability of single institutions to accrue enough patients to answer clinically relevant questions with statistical validity. Although implementation of 3DCRT will require multiple steps, these multiple steps can be brought into clinical practice gradually and one does not have to wait until all steps required for implementation of 3DCRT are available. In this respect, "3DCRT" should be used in a very broad sense, from beam's eye view blocking, use of multibeam dose distribution, use of dose-volume histograms in choosing alternative plans, noncoplanar beam arrangements, intensity modulation, inverse planning, to totally automated implementation of 3DCRT. To transfer the 3DCRT capabilities to the community from the University Centers, there is a necessity to develop quality assurance programs. RTOG and the Three-Dimensional Oncology Group are spearheading these efforts. Three-dimensional conformal radiation therapy has potential not only to improve local control and decrease toxicity, but also to improve the cost benefit ratio in the use of radiotherapy as well as in improving quality of life in patients with cancer. Achieving many potential benefits of 3DCRT (improvement in local control, decreasing toxicity, organs-function preservation, improvement in cost effectiveness) will require further physics-related and clinical research in carefully conceived and successfully completed future clinical trials.
Rockall, Andrea G; Avril, Norbert; Lam, Raymond; Iannone, Robert; Mozley, P David; Parkinson, Christine; Bergstrom, Donald; Sala, Evis; Sarker, Shah-Jalal; McNeish, Iain A; Brenton, James D
2014-05-15
Repeatability of baseline FDG-PET/CT measurements has not been tested in ovarian cancer. This dual-center, prospective study assessed variation in tumor 2[18F]fluoro-2-deoxy-D-glucose (FDG) uptake, tumor diameter, and tumor volume from sequential FDG-PET/CT and contrast-enhanced computed tomography (CECT) in patients with recurrent platinum-sensitive ovarian cancer. Patients underwent two pretreatment baseline FDG-PET/CT (n = 21) and CECT (n = 20) at two clinical sites with different PET/CT instruments. Patients were included if they had at least one target lesion in the abdomen with a standardized uptake value (SUV) maximum (SUVmax) of ≥ 2.5 and a long axis diameter of ≥ 15 mm. Two independent reading methods were used to evaluate repeatability of tumor diameter and SUV uptake: on site and at an imaging clinical research organization (CRO). Tumor volume reads were only performed by CRO. In each reading set, target lesions were independently measured on sequential imaging. Median time between FDG-PET/CT was two days (range 1-7). For site reads, concordance correlation coefficients (CCC) for SUVmean, SUVmax, and tumor diameter were 0.95, 0.94, and 0.99, respectively. Repeatability coefficients were 16.3%, 17.3%, and 8.8% for SUVmean, SUVmax, and tumor diameter, respectively. Similar results were observed for CRO reads. Tumor volume CCC was 0.99 with a repeatability coefficient of 28.1%. There was excellent test-retest repeatability for FDG-PET/CT quantitative measurements across two sites and two independent reading methods. Cutoff values for determining change in SUVmean, SUVmax, and tumor volume establish limits to determine metabolic and/or volumetric response to treatment in platinum-sensitive relapsed ovarian cancer. ©2014 American Association for Cancer Research.
Detecting both melanoma depth and volume in vivo with a handheld photoacoustic probe
NASA Astrophysics Data System (ADS)
Zhou, Yong; Li, Guo; Zhu, Liren; Li, Chiye; Cornelius, Lynn A.; Wang, Lihong V.
2016-03-01
We applied a linear-array-based photoacoustic probe to detect the tumor depth and volume of melanin-containing melanoma in nude mice in vivo. We demonstrated the ability of this linear-array-based system to measure both the depth and volume of melanoma through phantom, ex vivo, and in vivo experiments. The volume detection ability also enables us to accurately calculate the rate of growth of the tumor, which is important in quantifying tumor activity. Our results show that this system can be used for clinical melanoma diagnosis and treatment at the bedside.
Perry, Kyle A; Enestvedt, C Kristian; Hosack, Luke W; Pham, Thai H; Diggs, Brian S; Teh, Swee; Orloff, Susan; Winn, Shelly; Hunter, John G; Sheppard, Brett C
2010-05-01
Vascular endothelial growth factor (VEGF) is overexpressed in hepatocellular carcinoma (HCC), and findings have shown that its upregulation in these tumors has an impact on tumor growth. The authors hypothesized that compared with open liver resection, laparoscopic hepatectomy would result in a decreased local angiogenic response in residual tumor cells. Right- and left-lobe hepatomas were induced in Buffalo rats via laparoscopically guided subcapsular injection of Morris hepatoma cells. After 1 week, the animals were randomized to laparoscopic or open left lateral hepatectomy. In 14 days after resection, the rats were killed, the residual right lobe tumors were measured, and tissue was procured for RNA extraction. Transcript levels of VEGF messenger RNA (mRNA) were quantified with reverse transcriptase-polymerase chain reaction (RT-PCR), and VEGF serum levels were measured by enzyme-linked immunoassay (ELISA) both before resection and at the time of tissue harvest. None of the animals had development satellite liver lesions or distant metastases in the abdomen or thorax. The median residual tumor volume was 320 mm(3) in the open group compared with 180 mm(3) in the laparoscopic group (p = 0.164). The animals that underwent open resection had a 1.3-fold increase in VEGF mRNA transcript levels compared with the laparoscopic resection group (p = 0.008). The serum VEGF levels were not significantly different between the laparoscopic and open groups at baseline (open tumor resection [OR], 23.7 +/- 12.0 pg/ml; laparoscopic tumor resection [LR], 30.7 +/- 15.5 pg/ml; p = 0.334) nor at the time of tissue harvest (OR, 19.9 +/- 19.6 pg/ml; LR, 26.9 +/- 34.5 pg/ml; p = 0.549). Laparoscopic hepatic resection produces decreased VEGF mRNA expression in residual hepatoma cells compared with open resection. Decreased stimulation of angiogenesis promoters in the tumor microenvironment after minimally invasive liver resection may contribute to a lower residual disease burden and ultimately lead to a lower recurrence rate.
Wanna, George B; Sweeney, Alex D; Carlson, Matthew L; Latuska, Richard F; Rivas, Alejandro; Bennett, Marc L; Netterville, James L; Haynes, David S
2014-12-01
To evaluate tumor control following subtotal resection of advanced jugular paragangliomas in patients with functional lower cranial nerves and to investigate the utility of salvage radiotherapy for residual progressive disease. Case series with planned chart review. Tertiary academic referral center. Patients who presented with advanced jugular paragangliomas and functional lower cranial nerves were analyzed. Primary outcome measures included extent of resection, long-term tumor control, need for additional treatment, and postoperative lower cranial nerve function. Twelve patients (mean age, 46.2 years; 7 women, 58.3%) who met inclusion criteria were evaluated between 1999 and 2013. The mean postoperative residual tumor volume was 27.7% (range, 3.5%-75.0%) of the preoperative volume. When the residual tumor volume was less than 20% of the preoperative volume, no tumor growth occurred over an average of 44.6 months of follow-up (P < .01). Four tumors (33.3%) demonstrated serial growth at a mean of 23.5 months following resection, 2 of which were treated with salvage stereotactic radiotherapy providing control through the last recorded follow-up. No patient experienced permanent postoperative lower cranial neuropathy as a result of surgery. Subtotal resection of jugular paragangliomas with preservation of the lower cranial nerves is a viable management strategy. If more than 80% of the preoperative tumor volume is resected, the residual tumor seems less likely to grow. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasoji, S; Rivera, J; Dayton, P
Purpose: Currently, we cannot predict an individual patient’s response to a given radiotherapy which normally is not detected for weeks to months post-treatment. As a result, precious time is wasted for patients with unresponsive tumors who could have switched to an alternative treatment much earlier. Presently, no early treatment response detection method exists that is effective, low-cost, non-invasive, and safe. We hypothesize that changes in tumor microvasculature predict tumor response to radiotherapy earlier than tumor volume changes. Recent radiobiology research suggests tumors undergo vascular remodeling in response to radiation well before manifesting changes in tumor volume. We propose monitoring tumormore » microvasculature post-radiation using Acoustic Angiography (AA), a novel ultrasound imaging modality developed and patented in-house. In this study, we investigate whether changes in tumor microvasculature, measured using AA, can be an early indicator of high-dose radiotherapy success, compared to changes in tumor volume. Methods: Fibrosarcoma xenograft tumor tissue was subcutaneously implanted into rodent flanks (N=10). Animal tumors (N=8) were irradiated with a single treatment of 15Gy using a clinical LINAC at 100SSD and 2×2cm field size. Two untreated rats were left as tumor controls. AA imaging was performed immediately posttreatment and every third day thereafter for 30 days, or until tumors disappeared. Tumor volumes and vascular densities were measured from anatomical b-mode ultrasound and AA images, respectively. Results: Statistical differences in vascular density between treatment responders and non-responders were observed on Day 10 (p=0.005), whereas statistical differences in tumor volume were not observed until Day 19 (p=0.02). Conclusions: Tumor vascularity differences may be observed substantially earlier than differences in tumor size. In addition, significant early increases in vascular density were observed in non-responding tumors. This data is consistent with a similar study we completed using the same tumor and animal models (N=10) at 20Gy. The project described was supported by the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through Grant Award Number UL1TR001111. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chuanben; Fei, Zhaodong; Chen, Lisha
This study aimed to quantify dosimetric effects of weight loss for nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Overall, 25 patients with NPC treated with IMRT were enrolled. We simulated weight loss during IMRT on the computer. Weight loss model was based on the planning computed tomography (CT) images. The original external contour of head and neck was labeled plan 0, and its volume was regarded as pretreatment normal weight. We shrank the external contour with different margins (2, 3, and 5 mm) and generated new external contours of head and neck. The volumes of reconstructed external contoursmore » were regarded as weight during radiotherapy. After recontouring outlines, the initial treatment plan was mapped to the redefined CT scans with the same beam configurations, yielding new plans. The computer model represented a theoretical proportional weight loss of 3.4% to 13.7% during the course of IMRT. The dose delivered to the planning target volume (PTV) of primary gross tumor volume and clinical target volume significantly increased by 1.9% to 2.9% and 1.8% to 2.9% because of weight loss, respectively. The dose to the PTV of gross tumor volume of lymph nodes fluctuated from −2.0% to 1.0%. The dose to the brain stem and the spinal cord was increased (p < 0.001), whereas the dose to the parotid gland was decreased (p < 0.001). Weight loss may lead to significant dosimetric change during IMRT. Repeated scanning and replanning for patients with NPC with an obvious weight loss may be necessary.« less
Kamalapuram, Sishir K; Kanwar, Rupinder K; Roy, Kislay; Chaudhary, Rajneesh; Sehgal, Rakesh; Kanwar, Jagat R
2016-01-01
The present study successfully developed orally deliverable multimodular zinc (Zn) iron oxide (Fe3O4)-saturated bovine lactoferrin (bLf)-loaded polymeric nanocapsules (NCs), and evaluated their theranostic potential (antitumor efficacy, magnetophotothermal efficacy and imaging capability) in an in vivo human xenograft CpG-island methylator phenotype (CIMP)-1+/CIMP2−/chromosome instability-positive colonic adenocarcinoma (Caco2) and claudin-low, triple-negative (ER−/PR−/HER2−; MDA-MB-231) breast cancer model. Mice fed orally on the Zn-Fe-bLf NC diet showed downregulation in tumor volume and complete regression in tumor volume after 45 days of feeding. In human xenograft colon cancer, vehicle-control NC diet-group (n=5) mice showed a tumor volume of 52.28±11.55 mm3, and Zn-Fe-bLf NC diet (n=5)-treated mice had a tumor-volume of 0.10±0.073 mm3. In the human xenograft breast cancer model, Zn-Fe-bLf NC diet (n=5)-treated mice showed a tumor volume of 0.051±0.062 mm3 within 40 days of feeding. Live mouse imaging conducted by near-infrared fluorescence imaging of Zn-Fe-bLf NCs showed tumor site-specific localization and regression of colon and breast tumor volume. Ex vivo fluorescence-imaging analysis of the vital organs of mice exhibited sparse localization patterns of Zn-Fe-bLf NCs and also confirmed tumor-specific selective localization patterns of Zn-Fe-bLf NCs. Dual imaging using magnetic resonance imaging and computerized tomography scans revealed an unprecedented theranostic ability of the Zn-Fe-bLf NCs. These observations warrant consideration of multimodular Zn-Fe-bLf NCs for real-time cancer imaging and simultaneous cancer-targeted therapy. PMID:27099495
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopp, Christine, E-mail: Christine.Kopp@lrz.tu-muenchen.de; Theodorou, Marilena; Poullos, Nektarios
2012-03-01
Purpose: To evaluate tumor control and side effects associated with fractionated stereotactic radiotherapy (FSRT) in the management of residual or recurrent nonfunctioning pituitary adenomas (NFPAs). Methods and Materials: We assessed exact tumor volume shrinkage in 16 patients with NFPA after FSRT. All patients had previously undergone surgery. Gross tumor volume (GTV) was outlined on contrast-enhanced magnetic resonance imaging (MRI) before and median 63 months (range, 28-100 months) after FSRT. MRI was performed as an axial three-dimensional gradient echo T1-weighted sequence at 1.6-mm slice thickness without gap (3D MRI). Results: Mean tumor size of all 16 pituitary adenomas before treatment wasmore » 7.4 mL (3.3-18.9 mL). We found shrinkage of the treated pituitary adenoma in all patients. Within a median follow-up of 63 months (28-100 months) an absolute mean volume reduction of 3.8 mL (0.9-12.4 mL) was seen. The mean relative size reduction compared with the volume before radiotherapy was 51% (22%-95%). Shrinkage measured by 3D MRI was greater at longer time intervals after radiotherapy. A strong negative correlation between the initial tumor volume and the absolute volume reduction after FSRT was found. There was no correlation between tumor size reduction and patient age, sex, or number of previous surgeries. Conclusions: By using 3D MRI in all patients undergoing FSRT of an NFPA, tumor shrinkage is detected. Our data demonstrate that volumetric assessment based on 3D MRI adds additional information to routinely used radiological response measurements. After FSRT a mean relative size reduction of 51% can be expected within 5 years.« less
Quantitative Multi-Parametric Magnetic Resonance Imaging of Tumor Response to Photodynamic Therapy.
Schreurs, Tom J L; Hectors, Stefanie J; Jacobs, Igor; Grüll, Holger; Nicolay, Klaas; Strijkers, Gustav J
2016-01-01
The aim of this study was to characterize response to photodynamic therapy (PDT) in a mouse cancer model using a multi-parametric quantitative MRI protocol and to identify MR parameters as potential biomarkers for early assessment of treatment outcome. CT26.WT colon carcinoma tumors were grown subcutaneously in the hind limb of BALB/c mice. Therapy consisted of intravenous injection of the photosensitizer Bremachlorin, followed by 10 min laser illumination (200 mW/cm2) of the tumor 6 h post injection. MRI at 7 T was performed at baseline, directly after PDT, as well as at 24 h, and 72 h. Tumor relaxation time constants (T1 and T2) and apparent diffusion coefficient (ADC) were quantified at each time point. Additionally, Gd-DOTA dynamic contrast-enhanced (DCE) MRI was performed to estimate transfer constants (Ktrans) and volume fractions of the extravascular extracellular space (ve) using standard Tofts-Kermode tracer kinetic modeling. At the end of the experiment, tumor viability was characterized by histology using NADH-diaphorase staining. The therapy induced extensive cell death in the tumor and resulted in significant reduction in tumor growth, as compared to untreated controls. Tumor T1 and T2 relaxation times remained unchanged up to 24 h, but decreased at 72 h after treatment. Tumor ADC values significantly increased at 24 h and 72 h. DCE-MRI derived tracer kinetic parameters displayed an early response to the treatment. Directly after PDT complete vascular shutdown was observed in large parts of the tumors and reduced uptake (decreased Ktrans) in remaining tumor tissue. At 24 h, contrast uptake in most tumors was essentially absent. Out of 5 animals that were monitored for 2 weeks after treatment, 3 had tumor recurrence, in locations that showed strong contrast uptake at 72 h. DCE-MRI is an effective tool for visualization of vascular effects directly after PDT. Endogenous contrast parameters T1, T2, and ADC, measured at 24 to 72 h after PDT, are also potential biomarkers for evaluation of therapy outcome.
Solorzano, C C; Baker, C H; Tsan, R; Traxler, P; Cohen, P; Buchdunger, E; Killion, J J; Fidler, I J
2001-08-01
We determined the optimal administration schedule of a novel epidermal growth factor receptor (EGFR) protein tyrosine kinase inhibitor (PKI), PKI 166 (4-(R)-phenethylamino-6-(hydroxyl)phenyl-7H-pyrrolo[2.3-d]-pyrimidine), alone or in combination with gemcitabine (administered i.p.) for therapy of L3.6pl human pancreatic carcinoma growing in the pancreas of nude mice. Seven days after orthotopic implantation of L3.6pl cells, the mice received daily oral doses of PKI 166. PKI 166 therapy significantly inhibited phosphorylation of the EGFR without affecting EGFR expression. EGFR phosphorylation was restored 72 h after cessation of therapy. Seven days after orthotopic injection of L3.6pl cells, groups of mice received daily or thrice weekly oral doses of PKI 166 alone or in combination with gemcitabine. Treatment with PKI 166 (daily), PKI 166 (3 times/week), or gemcitabine alone produced a 72%, 69%, or 70% reduction in the volume of pancreatic tumors in mice, respectively. Daily oral PKI 166 or thrice weekly oral PKI 166 in combination with injected gemcitabine produced 97% and 95% decreases in volume of pancreatic cancers and significant inhibition of lymph node and liver metastasis. Daily oral PKI 166 produced a 20% decrease in body weight, whereas treatment 3 times/week did not. Decreased microvessel density, decreased proliferating cell nuclear antigen staining, and increased tumor cell and endothelial cell apoptosis correlated with therapeutic success. Collectively, our results demonstrate that three weekly oral administrations of an EGFR tyrosine kinase inhibitor in combination with gemcitabine are sufficient to significantly inhibit primary and metastatic human pancreatic carcinoma.
Simone, Brittany A.; Dan, Tu; Palagani, Ajay; Jin, Lianjin; Han, Sunny Y.; Wright, Christopher; Savage, Jason E.; Gitman, Robert; Lim, Meng Kieng; Palazzo, Juan; Mehta, Minesh P.; Simone, Nicole L.
2016-01-01
ABSTRACT Purpose: Metastatic breast cancer is devastating and triple negative breast cancers (TNBC) have a higher propensity for metastasis. Improved local control upfront in this aggressive cancer could potentially decrease its propensity toward metastasis. We sought to determine if using caloric restriction (CR) as a systemic therapy, combined with radiation therapy (IR) to the primary tumor, may impact metastatic disease. Methods: An orthotopic mouse model using a highly metastatic, luciferase-tagged TNBC cell line (4T1), was used to generate palpable tumors. Mice were then treated with CR, IR, and a combination of the two. In vivo imaging was performed for metastatic evaluation. Molecular evaluation of the tumors was performed, generating a mechanistic hypothesis for CR, which was then tested with pertinent pathway inhibition in the model. Results: CR significantly increased the time to developing metastases, decreased the overall number and volume of lung metastases, and increased survival. CR decreased proliferation, increased apoptosis and globally downregulated the IGF-1R signaling pathway. Adding an IGF-1R/INSR inhibitor to local IR in vivo accomplished a decrease in metastases similar to CR plus IR, demonstrating the importance of the IGF-1R signaling pathway, and underscoring it as a possible mechanism for CR. Conclusions: CR decreased metastatic burden and therefore may complement cytotoxic therapies being used in the clinical setting for metastatic disease. Downregulation of the IGF-1R pathway, is in part responsible for this response and modulating IGF-1R directly resulted in similar improved progression-free survival. The novel use of CR has the potential to enhance clinical outcomes for patients with metastatic breast cancer. PMID:27027731
Kim, Moinay; Cheok, Stephanie; Chung, Lawrance K.; Ung, Nolan; Thill, Kimberly; Voth, Brittany; Kwon, Do Hoon; Kim, Jeong Hoon; Kim, Chang Jin; Tenn, Stephen; Lee, Percy
2015-01-01
Brain metastasis represents one of the most common causes of intracranial tumors in adults, and the incidence of brain metastasis continues to rise due to the increasing survival of cancer patients. Yet, the development of cystic brain metastasis remains a relatively rare occurrence. In this review, we describe the characteristics of cystic brain metastasis and evaluate the combined use of stereotactic aspiration and radiosurgery in treating large cystic brain metastasis. The results of several studies show that stereotactic radiosurgery produces comparable local tumor control and survival rates as other surgery protocols. When the size of the tumor interferes with radiosurgery, stereotactic aspiration of the metastasis should be considered to reduce the target volume as well as decreasing the chance of radiation induced necrosis and providing symptomatic relief from mass effect. The combined use of stereotactic aspiration and radiosurgery has strong implications in improving patient outcomes. PMID:25977901
Lambregts, Doenja M J; Rao, Sheng-Xiang; Sassen, Sander; Martens, Milou H; Heijnen, Luc A; Buijsen, Jeroen; Sosef, Meindert; Beets, Geerard L; Vliegen, Roy A; Beets-Tan, Regina G H
2015-12-01
Retrospective single-center studies have shown that diffusion-weighted magnetic resonance imaging (DWI) is promising for identification of patients with rectal cancer with a complete tumor response after neoadjuvant chemoradiotherapy (CRT), using certain volumetric thresholds. This study aims to validate the diagnostic value of these volume thresholds in a larger, independent, and bi-institutional patient cohort. A total of 112 patients with locally advanced rectal cancer (2 centers) treated with a long course of CRT were enrolled. Patients underwent standard T2W-magnetic resonance imaging and DWI, both pre- and post-CRT. Two experienced readers independently determined pre-CRT and post-CRT tumor volumes (cm) on T2W-magnetic resonance image and diffusion-weighted magnetic resonance image by means of freehand tumor delineation. Tumor volume reduction rates (Δvolume) were calculated. Previously determined T2W and DWI threshold values for prevolume, postvolume, and Δvolume were tested to "prospectively" assess their respective diagnostic value in discriminating patients with a complete tumor response from patients with residual tumor. Twenty patients had a complete response. Using the average measurements between the 2 readers, areas under the curve for the pre-/post-/Δvolumes was 0.73/0.82/0.78 for T2W-magnetic resonance imaging and 0.77/0.92/0.86 for DWI, respectively. For T2W-volumetry, sensitivity and specificity using the predefined volume thresholds were 55% and 74% for pre-, 60% and 89% for post-, and 60% and 86% for Δvolume. For DWI volumetry, sensitivity and specificity were 65% and 76% for pre-, 70% and 98% for post-, and 70% and 93% for Δvolume. Previously established DWI volume thresholds can be reproduced with good results. Post-CRT DWI volumetry offers the best results for the detection of patients with a complete response after CRT with an area under the curve of 0.92, sensitivity of 70%, and specificity of 98%.
Xia, Wei; Yan, Zhuangzhi; Gao, Xin
2017-10-01
To find early predictors of histologic response in soft tissue sarcoma through volume transfer constant (K trans ) analysis based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). 11 Patients with soft tissue sarcoma of the lower extremity that underwent preoperative chemoradiotherapy followed by limb salvage surgery were included in this retrospective study. For each patient, DCE-MRI data sets were collected before and two weeks after therapy initiation, and histologic tumor cell necrosis rate (TCNR) was reported at surgery. The DCE-MRI volumes were aligned by registration. Then, the aligned volumes were used to obtain the K trans variation map. Accordingly, three sub-volumes (with increased, decreased or unchanged K trans ) were defined and identified, and fractions of the sub-volumes, denoted as F + , F - and F 0 , respectively, were calculated. The predictive ability of volume fractions was determined by using area under a receiver operating characteristic curve (AUC). Linear regression analysis was performed to investigate the relationship between TCNR and volume fractions. In addition, the K trans values of the sub-volumes were compared. The AUC for F - (0.896) and F 0 (0.833) were larger than that for change of tumor longest diameter ΔD (0.625) and the change of mean K trans ΔK trans ¯ (0.792). Moreover, the regression results indicated that TCNR was directly proportional to F 0 (R 2 =0.75, P=0.0003), while it was inversely proportional to F - (R 2 =0.77, P=0.0002). However, TCNR had relatively weak linear relationship with ΔK trans ¯ (R 2 =0.64, P=0.0018). Additionally, TCNR did not have linear relationship with DD (R 2 =0.16, P=0.1246). The volume fraction F - and F 0 have potential as early predictors of soft tissue sarcoma histologic response. Copyright © 2017 Elsevier B.V. All rights reserved.
Sheppard, John P; Lagman, Carlito; Prashant, Giyarpuram N; Alkhalid, Yasmine; Nguyen, Thien; Duong, Courtney; Udawatta, Methma; Gaonkar, Bilwaj; Tenn, Stephen E; Bloch, Orin; Yang, Isaac
2018-06-01
To retrospectively compare ideal radiosurgical target volumes defined by a manual method (surgeon) to those determined by Adaptive Hybrid Surgery (AHS) operative planning software in 7 patients with vestibular schwannoma (VS). Four attending surgeons (3 neurosurgeons and 1 ear, nose, and throat surgeon) manually contoured planned residual tumors volumes for 7 consecutive patients with VS. Next, the AHS software determined the ideal radiosurgical target volumes based on a specified radiotherapy plan. Our primary measure was the difference between the average planned residual tumor volumes and the ideal radiosurgical target volumes defined by AHS (dRV AHS-planned ). We included 7 consecutive patients with VS in this study. The planned residual tumor volumes were smaller than the ideal radiosurgical target volumes defined by AHS (1.6 vs. 4.5 cm 3 , P = 0.004). On average, the actual post-operative residual tumor volumes were smaller than the ideal radiosurgical target volumes defined by AHS (2.2 cm 3 vs. 4.5 cm 3 ; P = 0.02). The average difference between the ideal radiosurgical target volume defined by AHS and the planned residual tumor volume (dRV AHS-planned ) was 2.9 ± 1.7 cm 3 , and we observed a trend toward larger dRV AHS-planned in patients who lost serviceable facial nerve function compared with patients who maintained serviceable facial nerve function (4.7 cm 3 vs. 1.9 cm 3 ; P = 0.06). Planned subtotal resection of VS diverges from the ideal radiosurgical target defined by AHS, but whether that influences clinical outcomes is unclear. Copyright © 2018 Elsevier Inc. All rights reserved.
Phase II Study of Neoadjuvant Bevacizumab and Radiotherapy for Resectable Soft Tissue Sarcomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Sam S., E-mail: syoon@partners.org; Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA; Duda, Dan G.
Purpose: Numerous preclinical studies have demonstrated that angiogenesis inhibitors can increase the efficacy of radiotherapy (RT). We sought to examine the safety and efficacy of bevacizumab (BV) and RT in soft tissue sarcomas and explore biomarkers to help determine the treatment response. Methods and Materials: Patients with {>=}5 cm, intermediate- or high-grade soft tissue sarcomas at significant risk of local recurrence received neoadjuvant BV alone followed by BV plus RT before surgical resection. Correlative science studies included analysis of the serial blood and tumor samples and serial perfusion computed tomography scans. Results: The 20 patients had a median tumor sizemore » of 8.25 cm, with 13 extremity, 1 trunk, and 6 retroperitoneal/pelvis tumors. The neoadjuvant treatment was well tolerated, with only 4 patients having Grade 3 toxicities (hypertension, liver function test elevation). BV plus RT resulted in {>=}80% pathologic necrosis in 9 (45%) of 20 tumors, more than double the historical rate seen with RT alone. Three patients had a complete pathologic response. The median microvessel density decreased 53% after BV alone (p <.05). After combination therapy, the median tumor cell proliferation decreased by 73%, apoptosis increased 10.4-fold, and the blood flow, blood volume, and permeability surface area decreased by 62-72% (p <.05). Analysis of gene expression microarrays of untreated tumors identified a 24-gene signature for treatment response. The microvessel density and circulating progenitor cells at baseline and the reduction in microvessel density and plasma soluble c-KIT with BV therapy also correlated with a good pathologic response (p <.05). After a median follow-up of 20 months, only 1 patient had developed local recurrence. Conclusions: The results from the present exploratory study indicated that BV increases the efficacy of RT against soft tissue sarcomas and might reduce the incidence of local recurrence. Thus, this regimen warrants additional investigation. Gene expression profiles and other tissue and circulating biomarkers showed promising correlations with treatment response.« less
Nguyen, T B; Cron, G O; Mercier, J F; Foottit, C; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Caudrelier, J M; Sinclair, J; Hogan, M J; Thornhill, R E; Cameron, I G
2015-01-01
The prognostic value of dynamic contrast-enhanced MR imaging-derived plasma volume obtained in tumor and the contrast transfer coefficient has not been well-established in patients with gliomas. We determined whether plasma volume and contrast transfer coefficient in tumor correlated with survival in patients with gliomas in addition to other factors such as age, type of surgery, preoperative Karnofsky score, contrast enhancement, and histopathologic grade. This prospective study included 46 patients with a new pathologically confirmed diagnosis of glioma. The contrast transfer coefficient and plasma volume obtained in tumor maps were calculated directly from the signal-intensity curve without T1 measurements, and values were obtained from multiple small ROIs placed within tumors. Survival curve analysis was performed by dichotomizing patients into groups of high and low contrast transfer coefficient and plasma volume. Univariate analysis was performed by using dynamic contrast-enhanced parameters and clinical factors. Factors that were significant on univariate analysis were entered into multivariate analysis. For all patients with gliomas, survival was worse for groups of patients with high contrast transfer coefficient and plasma volume obtained in tumor (P < .05). In subgroups of high- and low-grade gliomas, survival was worse for groups of patients with high contrast transfer coefficient and plasma volume obtained in tumor (P < .05). Univariate analysis showed that factors associated with lower survival were age older than 50 years, low Karnofsky score, biopsy-only versus resection, marked contrast enhancement versus no/mild enhancement, high contrast transfer coefficient, and high plasma volume obtained in tumor (P < .05). In multivariate analysis, a low Karnofsky score, biopsy versus resection in combination with marked contrast enhancement, and a high contrast transfer coefficient were associated with lower survival rates (P < .05). In patients with glioma, those with a high contrast transfer coefficient have lower survival than those with low parameters. © 2015 by American Journal of Neuroradiology.
Huang, Hai-wen; Chen, Ping; Li, Bing-zong; Fu, Jin-xiang; Li, Jun; Zhang, Xiao-hui; Liu, Rui; Fan, Yin-yin; Zhang, Hong; Chow, Howard C H; Leung, Anska Y H; Liang, Raymond
2012-09-01
To observe the effect of rosiglitazone (RGZ) and all-trans-retinoic acid (ATRA) on the growth of myeloma xenograft in nude mice and to explore the influence of RGZ and ATRA on VEGF expression and angiogenesis in the tumor. VEGF gene expression in myeloma cell line U266 cells was analyzed by semi-quantitative RT-PCR after incubation with RGZ, ATRA, or RGZ + ATRA for 24 h. Myeloma xenograft was established by subcutaneous injection of 10(7) U266 cells in the scapula area of 4-week old nude mice. 7 days later, the nude mice were administered with RGZ, ATRA or RGZ + ATRA, respectively, by intraperitoneal injection once every day for 21 days. The control mice were given equal volume of normal saline instead of the drug. On the 21(st) day of treatment, the mice were sacrificed and the tumors were taken off, and the tumor volume and weight were measured. The tumors were examined by histopathology with HE staining, and microvessel density (MVD), CD34 and VEGF expression in the tumors were analyzed by immunohistochemical staining. VEGF mRNA was highly expressed in U266 cells and was decreased in a dose-dependent manner after incubation with RGZ. The VEGF mRNA level was further more decreased after RGZ + ATRA treatment. Xenografts of U266 cells were developed in all nude mice. The volume and weight of xenografts in the RGZ group were (785 ± 262) mm(3) and (1748 ± 365) mg, respectively, significantly lower than those of the control group (both P < 0.01). More significant inhibition was in the RGZ + ATRA group, (154 ± 89) mm(3) and (626 ± 102) mg, respectively, both were P < 0.05 vs. the RGZ group. RGZ inhibited the angiogenesis in U266 xenografts and immunohistochemical staining showed that the tumor MVD and VEGF expression were significantly decreased by RGZ treatment, and further more inhibited in the RGZ + ATRA group. VEGF protein was expressed in all xenografts in the nude mice. Its immunohistochemical staining intensity was 2.20 ± 0.40 in the control group, significantly higher than that of 1.48 ± 0.37 in the RGZ group (P < 0.01), and that of RGZ + ATRA group was 0.58 ± 0.26, further significantly lower than that of the RGZ group (P < 0.01). CD34 was expressed in all xenografts, most highly in the control group and lowest in the RGZ + ATRA group. The microvessel density (MVD) was highest in the control group (56.4 ± 15.2), significantly lower in the RGZ group (44.6 ± 11.2) (P < 0.05), and lowest in the RGZ + ATRA group (21.5 ± 8.6, P < 0.01). The growth of myeloma cells can also be inhibited by RGZ and ATRA in nude mice in vivo. In addition to differentiation and apoptosis induction, RGZ can inhibit the formation of myeloma xenograft probably also through the downregulation of VEGF expression and subsequent angiogenesis.
Kuwahara, Yoshikazu; Mori, Miyuki; Kitahara, Shuji; Fukumoto, Motoi; Ezaki, Taichi; Mori, Shiro; Echigo, Seishi; Ohkubo, Yasuhito; Fukumoto, Manabu
2014-01-01
Radiotherapy is widely used to treat cancer because it has the advantage of physically and functionally conserving the affected organ. To improve radiotherapy and investigate the molecular mechanisms of cellular radioresistance, we established a clinically relevant radioresistant (CRR) cell line, SAS-R, from SAS cells. SAS-R cells continue to proliferate when exposed to fractionated radiation (FR) of 2 Gy/day for more than 30 days in vitro. A xenograft tumor model of SAS-R was also resistant to 2 Gy/day of X-rays for 30 days. The density of blood vessels in SAS-R tumors was higher than in SAS tumors. Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, sensitized microvascular endothelial cells to radiation, but failed to radiosensitize SAS and SAS-R cells in vitro. Everolimus with FR markedly reduced SAS and SAS-R tumor volumes. Additionally, the apoptosis of endothelial cells (ECs) increased in SAS-R tumor tissues when both Everolimus and radiation were administered. Both CD34-positive and tomato lectin-positive blood vessel densities in SAS-R tumor tissues decreased remarkably after the Everolimus and radiation treatment. Everolimus-induced apoptosis of vascular ECs in response to radiation was also followed by thrombus formation that leads to tumor necrosis. We conclude that FR combined with Everolimus may be an effective modality to overcome radioresistant tumors via targeting tumor ECs. PMID:24464839
Majumder, Kaustav; Arora, Nivedita; Modi, Shrey; Chugh, Rohit; Nomura, Alice; Giri, Bhuwan; Dawra, Rajinder; Ramakrishnan, Sundaram; Banerjee, Sulagna; Saluja, Ashok; Dudeja, Vikas
2017-01-01
A valid preclinical tumor model should recapitulate the tumor microenvironment. Immune and stromal components are absent in immunodeficient models of pancreatic cancer. While these components are present in genetically engineered models such as KrasG12D; Trp53R172H; Pdx-1Cre (KPC), immense variability in development of invasive disease makes them unsuitable for evaluation of novel therapies. We have generated a novel mouse model of pancreatic cancer by implanting tumor fragments from KPC mice into the pancreas of wild type mice. Three-millimeter tumor pieces from KPC mice were implanted into the pancreas of C57BL/6J mice. Four to eight weeks later, tumors were harvested, and stromal and immune components were evaluated. The efficacy of Minnelide, a novel compound which has been shown to be effective against pancreatic cancer in a number of preclinical murine models, was evaluated. In our model, consistent tumor growth and metastases were observed. Tumors demonstrated intense desmoplasia and leukocytic infiltration which was comparable to that in the genetically engineered KPC model and significantly more than that observed in KPC tumor-derived cell line implantation model. Minnelide treatment resulted in a significant decrease in the tumor weight and volume. This novel model demonstrates a consistent growth rate and tumor-associated mortality and recapitulates the tumor microenvironment. This convenient model is a valuable tool to evaluate novel therapies. PMID:26582596
Stapf, Marcus; Teichgräber, Ulf; Hilger, Ingrid
2017-01-01
Heat-based approaches have been considered as promising tools due to their ability to directly eradicate tumor cells and/or increase the sensitivity of tumors to radiation- or chemotherapy. In particular, the heating of magnetic nanoparticles (MNPs) via an alternating magnetic field can provide a handy alternative for a localized tumor treatment. To amplify the efficacy of magnetically induced thermal treatments, we elucidated the superior tumor-destructive effect of methotrexate-coupled MNPs (MTX/MNPs) in combination with magnetic heating (nanochemothermia) over the thermal treatment alone. Our studies in a murine bladder xenograft model revealed the enormous potential of nanochemothermia for a localized and relapse-free destruction of tumors which was superior to the thermal treatment alone. Nanochemothermia remarkably fostered the reduction of tumor volume. It impaired proapoptotic signaling (eg, p-p53), cell survival (eg, p-ERK1/2), and cell cycle (cyclins) pathways. Additionally, heat shock proteins (eg, HSP70) were remarkably affected. Moreover, nanochemothermia impaired the induction of angiogenic signaling by decreasing, for example, the levels of VEGF-R1 and MMP9, although an increasing tumor hypoxia was indicated by elevated Hif-1α levels. In contrast, tumor cells were able to recover after the thermal treatments alone. In conclusion, nanochemothermia on the basis of MTX/MNPs was superior to the thermal treatment due to a modification of cellular pathways, particularly those associated with the cellular survival and tumor vasculature. This allowed very efficient and relapse-free destruction of tumors. PMID:28435259
Stapf, Marcus; Teichgräber, Ulf; Hilger, Ingrid
2017-01-01
Heat-based approaches have been considered as promising tools due to their ability to directly eradicate tumor cells and/or increase the sensitivity of tumors to radiation- or chemotherapy. In particular, the heating of magnetic nanoparticles (MNPs) via an alternating magnetic field can provide a handy alternative for a localized tumor treatment. To amplify the efficacy of magnetically induced thermal treatments, we elucidated the superior tumor-destructive effect of methotrexate-coupled MNPs (MTX/MNPs) in combination with magnetic heating (nanochemothermia) over the thermal treatment alone. Our studies in a murine bladder xenograft model revealed the enormous potential of nanochemothermia for a localized and relapse-free destruction of tumors which was superior to the thermal treatment alone. Nanochemothermia remarkably fostered the reduction of tumor volume. It impaired proapoptotic signaling (eg, p-p53), cell survival (eg, p-ERK1/2), and cell cycle (cyclins) pathways. Additionally, heat shock proteins (eg, HSP70) were remarkably affected. Moreover, nanochemothermia impaired the induction of angiogenic signaling by decreasing, for example, the levels of VEGF-R1 and MMP9, although an increasing tumor hypoxia was indicated by elevated Hif-1α levels. In contrast, tumor cells were able to recover after the thermal treatments alone. In conclusion, nanochemothermia on the basis of MTX/MNPs was superior to the thermal treatment due to a modification of cellular pathways, particularly those associated with the cellular survival and tumor vasculature. This allowed very efficient and relapse-free destruction of tumors.
He, Yixuan; Kodali, Anita; Wallace, Dorothy I
2018-06-14
Neuroblastoma is the leading cause of cancer death in young children. Although treatment for neuroblastoma has improved, the 5-year survival rate of patients still remains less than half. Recent studies have indicated that bevacizumab, an anti-VEGF drug used in treatment of several other cancer types, may be effective for treating neuroblastoma as well. However, its effect on neuroblastoma has not been well characterized. While traditional experiments are costly and time-consuming, mathematical models are capable of simulating complex systems quickly and inexpensively. In this study, we present a model of vascular tumor growth of neuroblastoma IMR-32 that is complex enough to replicate experimental data across a range of tumor cell properties measured in a suite of in vitro and in vivo experiments. The model provides quantitative insight into tumor vasculature, predicting a linear relationship between vasculature and tumor volume. The tumor growth model was coupled with known pharmacokinetics and pharmacodynamics of the VEGF blocker bevacizumab to study its effect on neuroblastoma growth dynamics. The results of our model suggest that total administered bevacizumab concentration per week, as opposed to dosage regimen, is the major determining factor in tumor suppression. Our model also establishes an exponentially decreasing relationship between administered bevacizumab concentration and tumor growth rate.
Loi, Monica; Di Paolo, Daniela; Soster, Marco; Brignole, Chiara; Bartolini, Alice; Emionite, Laura; Sun, Jessica; Becherini, Pamela; Curnis, Flavio; Petretto, Andrea; Sani, Monica; Gori, Alessandro; Milanese, Marco; Gambini, Claudio; Longhi, Renato; Cilli, Michele; Allen, Theresa M; Bussolino, Federico; Arap, Wadih; Pasqualini, Renata; Corti, Angelo; Ponzoni, Mirco; Marchiò, Serena; Pastorino, Fabio
2013-09-10
Molecular targeting of drug delivery nanocarriers is expected to improve their therapeutic index while decreasing their toxicity. Here we report the identification and characterization of novel peptide ligands specific for cells present in high-risk neuroblastoma (NB), a childhood tumor mostly refractory to current therapies. To isolate such targeting moieties, we performed combined in vitro/ex-vivo phage display screenings on NB cell lines and on tumors derived from orthotopic mouse models of human NB. By designing proper subtractive protocols, we identified phage clones specific either for the primary tumor, its metastases, or for their respective stromal components. Globally, we isolated 121 phage-displayed NB-binding peptides: 26 bound the primary tumor, 15 the metastatic mass, 57 and 23 their respective microenvironments. Of these, five phage clones were further validated for their specific binding ex-vivo to biopsies from stage IV NB patients and to NB tumors derived from mice. All five clones also targeted tumor cells and vasculature in vivo when injected into NB-bearing mice. Coupling of the corresponding targeting peptides with doxorubicin-loaded liposomes led to a significant inhibition in tumor volume and enhanced survival in preclinical NB models, thereby paving the way to their clinical development. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Neoadjuvant chemotherapy for atypical teratoid rhabdoid tumors: case report.
Thatikunta, Meena; Mutchnick, Ian; Elster, Jennifer; Thompson, Matthew P; Huang, Michael A; Spalding, Aaron C; Moriarty, Thomas
2017-05-01
Atypical teratoid rhabdoid tumors (ATRTs) are a rare pediatric brain tumor with high mortality rate. Several large series have reported achieving gross-total resection (GTR) in less than 50% of patients due to the lesions' large size, vascularity, and limited blood volume in young patients. While neoadjuvant chemotherapy for choroid plexus carcinomas in pediatric patients has become widely accepted, it has not been used as widely for other pediatric brain tumors. To the best of the authors' knowledge, there are only 3 published cases of neoadjuvant chemotherapy for ATRTs. In the present report, the authors present a fourth case of neoadjuvant chemotherapy for ATRT and review the available literature on this strategy. A 17-month-old child presented with a left ventricular ATRT for which imaging raised concern for a highly vascularized tumor. The authors undertook neoadjuvant chemotherapy with 2 cycles of Head Start II therapy, which reduced the size of the ventricular tumor by 35% and decreased the vascularity of the lesion on imaging. The estimated blood loss during resection was 425 ml and GTR was achieved. The patient continued with postoperative chemotherapy but suffered an on-therapy recurrence. While higher-quality data are necessary, available evidence suggests that neoadjuvant chemotherapy can reduce the size and vascularity of ATRTs and facilitate a surgical avenue for large or "inoperable" tumors.
SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chetty, Chandramu; Dontula, Ranadheer; Ganji, Purnachandra Nagaraju
2012-01-13
Highlights: Black-Right-Pointing-Pointer Ectopic expression of SPARC impaired cell proliferation in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression induces STAT3 mediated cell cycle arrest in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression significantly inhibited pre-established tumor growth in nude-mice. -- Abstract: Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reductionmore » in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the effects of SPARC on medulloblastoma tumor cell proliferation.« less
Targeting glycolysis by 3-bromopyruvate improves tamoxifen cytotoxicity of breast cancer cell lines.
Attia, Yasmin M; El-Abhar, Hanan S; Al Marzabani, Mahmoud M; Shouman, Samia A
2015-11-03
Tamoxifen is the standard endocrine therapy for ER+ breast cancer; however, many women still relapse after long-term therapy. 3-Bromopyruvate, a glycolytic inhibitor, has shown high selective anti-tumor activity in vitro, and in vivo. The aim of this study was to evaluate the possible augmentation of the effect of tamoxifen via reprograming cancer cell metabolism using 3-bromopyruvate. An in vitro screening of antitumor activity as well as the apoptotic, anti-metastatic, and anti-angiogenic potentials of the combination therapy were carried out using different techniques on breast cancer cell lines MCF7and T47D. In addition the antitumor effect of the combined therapy was done on mice bearing tumor. Our results showed modulation in apoptosis, angiogenesis and metastatic potential by either drug alone; however, their combination has surpassed that of the individual one. Combination regimen enhanced activated caspases-3, 7 and 9, as well as oxidative stress, signified by increased malondialdehyde and decreased glutathione level. Additionally, the angiogenesis and metastasis markers, including hypoxia inducing factor-1α, vascular endothelia growth factor, and metaloproteinases-2 and 9 were decreased after using the combination regimen. These results were further confirmed by the in vivo study, which depicted a decrease in the tumor volume and angiogenesis and an increase in oxidative stress as well. 3-bromopyruvate could be a valuable compound when added with tamoxifen in breast cancer treatment.
Song, Lin; Zhou, Xin; Jia, Hong-Jun; Du, Mei; Zhang, Jin-Ling; Li, Liang
2016-08-01
To study the effect of hGC-MSCs from human gastric cancer tissue on cell proliferation, invasion and epithelial-mesenchymal transition in tumor tissue of gastric cancer tumor-bearing mice. BABL/c nude mice were selected as experimental animals and gastric cancer tumor-bearing mice model were established by subcutaneous injection of gastric cancer cells, randomly divided into different intervention groups. hGC-MSCs group were given different amounts of gastric cancer cells for subcutaneous injection, PBS group was given equal volume of PBS for subcutaneous injection. Then tumor tissue volume were determined, tumor-bearing mice were killed and tumor tissues were collected, mRNA expression of proliferation, invasion, EMT-related molecules were determined. 4, 8, 12, 16, 20 d after intervention, tumor tissue volume of hGC-MSCs group were significantly higher than those of PBS group and the more the number of hGC-MSCs, the higher the tumor tissue volume; mRNA contents of Ki-67, PCNA, Bcl-2, MMP-2, MMP-7, MMP-9, MMP-14, N-cadherin, vimentin, Snail and Twist in tumor tissue of hGC-MSCs group were higher than those of PBS group, and mRNA contents of Bax, TIMP1, TIMP2 and E-cadherin were lower than those of PBS group. hGC-MSCs from human gastric cancer tissue can promote the tumor growth in gastric cancer tumor-bearing mice, and the molecular mechanism includes promoting cell proliferation, invasion and epithelial-mesenchymal transition. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
Automated geometric optimization for robotic HIFU treatment of liver tumors.
Williamson, Tom; Everitt, Scott; Chauhan, Sunita
2018-05-01
High intensity focused ultrasound (HIFU) represents a non-invasive method for the destruction of cancerous tissue within the body. Heating of targeted tissue by focused ultrasound transducers results in the creation of ellipsoidal lesions at the target site, the locations of which can have a significant impact on treatment outcomes. Towards this end, this work describes a method for the optimization of lesion positions within arbitrary tumors, with specific anatomical constraints. A force-based optimization framework was extended to the case of arbitrary tumor position and constrained orientation. Analysis of the approximate reachable treatment volume for the specific case of treatment of liver tumors was performed based on four transducer configurations and constraint conditions derived. Evaluation was completed utilizing simplified spherical and ellipsoidal tumor models and randomly generated tumor volumes. The total volume treated, lesion overlap and healthy tissue ablated was evaluated. Two evaluation scenarios were defined and optimized treatment plans assessed. The optimization framework resulted in improvements of up to 10% in tumor volume treated, and reductions of up to 20% in healthy tissue ablated as compared to the standard lesion rastering approach. Generation of optimized plans proved feasible for both sub- and intercostally located tumors. This work describes an optimized method for the planning of lesion positions during HIFU treatment of liver tumors. The approach allows the determination of optimal lesion locations and orientations, and can be applied to arbitrary tumor shapes and sizes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Caivano, R; Fiorentino, A; Pedicini, P; Califano, G; Fusco, V
2014-05-01
To evaluate radiotherapy treatment planning accuracy by varying computed tomography (CT) slice thickness and tumor size. CT datasets from patients with primary brain disease and metastatic brain disease were selected. Tumor volumes ranging from about 2.5 to 100 cc and CT scan at different slice thicknesses (1, 2, 4, 6 and 10 mm) were used to perform treatment planning (1-, 2-, 4-, 6- and 10-CT, respectively). For any slice thickness, a conformity index (CI) referring to 100, 98, 95 and 90 % isodoses and tumor size was computed. All the CI and volumes obtained were compared to evaluate the impact of CT slice thickness on treatment plans. The smallest volumes reduce significantly if defined on 1-CT with respect to 4- and 6-CT, while the CT slice thickness does not affect target definition for the largest volumes. The mean CI for all the considered isodoses and CT slice thickness shows no statistical differences when 1-CT is compared to 2-CT. Comparing the mean CI of 1- with 4-CT and 1- with 6-CT, statistical differences appear only for the smallest volumes with respect to 100, 98 and 95 % isodoses-the CI for 90 % isodose being not statistically significant for all the considered PTVs. The accuracy of radiotherapy tumor volume definition depends on CT slice thickness. To achieve a better tumor definition and dose coverage, 1- and 2-CT would be suitable for small targets, while 4- and 6-CT are suitable for the other volumes.
Li, Xia; Dawant, Benoit M.; Welch, E. Brian; Chakravarthy, A. Bapsi; Xu, Lei; Mayer, Ingrid; Kelley, Mark; Meszoely, Ingrid; Means-Powell, Julie; Gore, John C.; Yankeelov, Thomas E.
2010-01-01
Purpose: The authors present a method to validate coregistration of breast magnetic resonance images obtained at multiple time points during the course of treatment. In performing sequential registration of breast images, the effects of patient repositioning, as well as possible changes in tumor shape and volume, must be considered. The authors accomplish this by extending the adaptive bases algorithm (ABA) to include a tumor-volume preserving constraint in the cost function. In this study, the authors evaluate this approach using a novel validation method that simulates not only the bulk deformation associated with breast MR images obtained at different time points, but also the reduction in tumor volume typically observed as a response to neoadjuvant chemotherapy. Methods: For each of the six patients, high-resolution 3D contrast enhanced T1-weighted images were obtained before treatment, after one cycle of chemotherapy and at the conclusion of chemotherapy. To evaluate the effects of decreasing tumor size during the course of therapy, simulations were run in which the tumor in the original images was contracted by 25%, 50%, 75%, and 95%, respectively. The contracted area was then filled using texture from local healthy appearing tissue. Next, to simulate the post-treatment data, the simulated (i.e., contracted tumor) images were coregistered to the experimentally measured post-treatment images using a surface registration. By comparing the deformations generated by the constrained and unconstrained version of ABA, the authors assessed the accuracy of the registration algorithms. The authors also applied the two algorithms on experimental data to study the tumor volume changes, the value of the constraint, and the smoothness of transformations. Results: For the six patient data sets, the average voxel shift error (mean±standard deviation) for the ABA with constraint was 0.45±0.37, 0.97±0.83, 1.43±0.96, and 1.80±1.17 mm for the 25%, 50%, 75%, and 95% contraction simulations, respectively. In comparison, the average voxel shift error for the unconstrained ABA was 0.46±0.29, 1.13±1.17, 2.40±2.04, and 3.53±2.89 mm, respectively. These voxel shift errors translate into compression of the tumor volume: The ABA with constraint returned volumetric errors of 2.70±4.08%, 7.31±4.52%, 9.28±5.55%, and 13.19±6.73% for the 25%, 50%, 75%, and 95% contraction simulations, respectively, whereas the unconstrained ABA returned volumetric errors of 4.00±4.46%, 9.93±4.83%, 19.78±5.657%, and 29.75±15.18%. The ABA with constraint yields a smaller mean shift error, as well as a smaller volume error (p=0.031 25 for the 75% and 95% contractions), than the unconstrained ABA for the simulated sets. Visual and quantitative assessments on experimental data also indicate a good performance of the proposed algorithm. Conclusions: The ABA with constraint can successfully register breast MR images acquired at different time points with reasonable error. To the best of the authors’ knowledge, this is the first report of an attempt to quantitatively assess in both phantoms and a set of patients the accuracy of a registration algorithm for this purpose. PMID:20632566
Zhang, Qing; Yang, Hua; Kang, Shin J.; Wang, Yanggan; Wang, Geoffrey D.; Coulthard, Tonya
2011-01-01
Purpose. To evaluate the usefulness of in vivo imaging of uveal melanoma in mice using high-frequency contrast-enhanced ultrasound (HF-CE-US) with 2D or 3D modes and to correlate the sonographic findings with histopathologic characteristics. Methods. Fourteen 12-week-old C57BL6 mice were inoculated into their right eyes with aliquots of 5 × 105/2.5 μL B16LS9 melanoma cells and were randomly assigned to either of two groups. At 7 days after inoculation, tumor-bearing eyes in group 1 (n = 8) were imaged using HF-CE-US to determine the 2D tumor size and relative blood volume; eyes in group 2 (n = 6) were imaged by 3D microbubble contrast-enhanced ultrasound, and the tumor volume was determined. Histologic tumor burden was quantified in enucleated eyes by image processing software, and microvascular density was determined by counting von Willebrand factor-positive vascular channels. Ultrasound images were evaluated and compared with histopathologic findings. Results. Using HF-CE-US, melanomas were visualized as relatively hyperechoic regions. The intraobserver variability of sonographic measurements was 9.65% ± 7.89%, and the coefficient of variation for multiple measurements was 7.33% ± 5.71%. The correlation coefficient of sonographic volume or size and histologic area was 0.71 (P = 0.11) and 0.79 (P = 0.32). The relative blood volume within the tumor demonstrated sonographically correlated significantly with histologic tumor vascularity (r = 0.83; P < 0.001). Conclusions. There was a positive linear correlation between sonographic tumor measurements and histologic tumor burden in the mouse ocular melanoma model. Contrast-enhanced intensity corresponded with microvascular density and blood volume. HF-CE-US is a real-time, noninvasive, reliable method for in vivo evaluation of experimental intraocular melanoma tumor area and relative blood volume. PMID:21245408
2013-01-01
Introduction Glycolytic activity and hypoxia are associated with poor prognosis and radiation resistance. Including both the tumor uptake of 2-deoxy-2-[18 F]-fluorodeoxyglucose (FDG) and the proposed hypoxia tracer copper(II)diacetyl-bis(N4)-methylsemithio-carbazone (Cu-ATSM) in targeted therapy planning may therefore lead to improved tumor control. In this study we analyzed the overlap between sub-volumes of FDG and hypoxia assessed by the uptake of 64Cu-ATSM in canine solid tumors, and evaluated the possibilities for dose redistribution within the gross tumor volume (GTV). Materials and methods Positron emission tomography/computed tomography (PET/CT) scans of five spontaneous canine solid tumors were included. FDG-PET/CT was obtained at day 1, 64Cu-ATSM at day 2 and 3 (3 and 24 h pi.). GTV was delineated and CT images were co-registered. Sub-volumes for 3 h and 24 h 64Cu-ATSM (Cu3 and Cu24) were defined by a threshold based method. FDG sub-volumes were delineated at 40% (FDG40) and 50% (FDG50) of SUVmax. The size of sub-volumes, intersection and biological target volume (BTV) were measured in a treatment planning software. By varying the average dose prescription to the tumor from 66 to 85 Gy, the possible dose boost (D B ) was calculated for the three scenarios that the optimal target for the boost was one, the union or the intersection of the FDG and 64Cu-ATSM sub-volumes. Results The potential boost volumes represented a fairly large fraction of the total GTV: Cu3 49.8% (26.8-72.5%), Cu24 28.1% (2.4-54.3%), FDG40 45.2% (10.1-75.2%), and FDG50 32.5% (2.6-68.1%). A BTV including the union (∪) of Cu3 and FDG would involve boosting to a larger fraction of the GTV, in the case of Cu3∪FDG40 63.5% (51.8-83.8) and Cu3∪FDG50 48.1% (43.7-80.8). The union allowed only a very limited D B whereas the intersection allowed a substantial dose escalation. Conclusions FDG and 64Cu-ATSM sub-volumes were only partly overlapping, suggesting that the tracers offer complementing information on tumor physiology. Targeting the combined PET positive volume (BTV) for dose escalation within the GTV results in a limited D B . This suggests a more refined dose redistribution based on a weighted combination of the PET tracers in order to obtain an improved tumor control. PMID:24199939
Singh, Ranjodh; Zhou, Zhiping; Tisnado, Jamie; Haque, Sofia; Peck, Kyung K; Young, Robert J; Tsiouris, Apostolos John; Thakur, Sunitha B; Souweidane, Mark M
2016-11-01
OBJECTIVE Accurately determining diffuse intrinsic pontine glioma (DIPG) tumor volume is clinically important. The aims of the current study were to 1) measure DIPG volumes using methods that require different degrees of subjective judgment; and 2) evaluate interobserver agreement of measurements made using these methods. METHODS Eight patients from a Phase I clinical trial testing convection-enhanced delivery (CED) of a therapeutic antibody were included in the study. Pre-CED, post-radiation therapy axial T2-weighted images were analyzed using 2 methods requiring high degrees of subjective judgment (picture archiving and communication system [PACS] polygon and Volume Viewer auto-contour methods) and 1 method requiring a low degree of subjective judgment (k-means clustering segmentation) to determine tumor volumes. Lin's concordance correlation coefficients (CCCs) were calculated to assess interobserver agreement. RESULTS The CCCs of measurements made by 2 observers with the PACS polygon and the Volume Viewer auto-contour methods were 0.9465 (lower 1-sided 95% confidence limit 0.8472) and 0.7514 (lower 1-sided 95% confidence limit 0.3143), respectively. Both were considered poor agreement. The CCC of measurements made using k-means clustering segmentation was 0.9938 (lower 1-sided 95% confidence limit 0.9772), which was considered substantial strength of agreement. CONCLUSIONS The poor interobserver agreement of PACS polygon and Volume Viewer auto-contour methods highlighted the difficulty in consistently measuring DIPG tumor volumes using methods requiring high degrees of subjective judgment. k-means clustering segmentation, which requires a low degree of subjective judgment, showed better interobserver agreement and produced tumor volumes with delineated borders.
Effects of soy oil on murine salivary tumorigenesis.
Actis, Adriana B; Cremonezzi, David C; King, Irena B; Joekes, Silvia; Eynard, Aldo R; Valentich, Mirta A
2005-03-01
Dietary fat influences dimethylbenzanthracene (DMBA)-induced tumorigenesis of several organs, including the salivary glands. There is not enough evidence to suggest that soy oil could also affect growth of salivary tumors. The main purpose of this work therefore was to study the effects of dietary soy oil on macroscopic parameters of chemically induced murine salivary gland tumors. Eighty BALB/c male mice were assigned to four groups: soy oil (SO), corn oil (CO, control), fish oil (FO) and olein (O). Two weeks later, tumors were induced by 9,10-dimethyl-1,2-benzanthracene (DMBA). At the 13th post-injection week, the animals were sacrificed. In vivo tumor diameter, gland volume (total resected mass), tumor volume (microscopically measured), tumor remission and tumor histopathology were analyzed. The initial in vivo tumor diameter, gland and tumor volume were significantly greater in soy oil than in fish oil group. 26.7% of animals on the soy oil diet showed tumor remission. Sarcomas were more often found in the SO group, carcinomas in FO and the mixed-type tumors both in SO and CO groups. This study shows that the soy oil treatment resulted in larger tumors, some of which later became undetectable. It is necessary to further investigate these divergent results.
Carvalho, Heloisa de Andrade; Mendez, Lucas Castro; Stuart, Silvia Radwanski; Guimarães, Roger Guilherme Rodrigues; Ramos, Clarissa Cerchi Angotti; de Paula, Lucas Assad; de Sales, Camila Pessoa; Chen, André Tsin Chih; Blasbalg, Roberto; Baroni, Ronaldo Hueb
2016-08-01
To evaluate tumor shrinking kinetics in order to implement image-guided brachytherapy (IGBT) for the treatment of patients with cervix cancer. This study has prospectively evaluated tumor shrinking kinetics of thirteen patients with uterine cervix cancer treated with combined chemoradiation. Four high dose rate brachytherapy fractions were delivered during the course of pelvic external beam radiation therapy (EBRT). Magnetic resonance imaging (MRI) exams were acquired at diagnosis (D), first (B1), and third (B3) brachytherapy fractions. Target volumes (GTV and HR-CTV) were calculated by both the ellipsoid formula (VE) and MRI contouring (VC), which were defined by a consensus between at least two radiation oncologists and a pelvic expert radiologist. Most enrolled patients had squamous cell carcinoma and FIGO stage IIB disease, and initiated brachytherapy after the third week of pelvic external beam radiation. Gross tumor volume volume reduction from diagnostic MRI to B1 represented 61.9% and 75.2% of the initial volume, when measured by VE and VC, respectively. Only a modest volume reduction (15-20%) was observed from B1 to B3. The most expressive tumor shrinking occurred in the first three weeks of oncological treatment and was in accordance with gynecological examination. These findings may help in IGBT implementation.
Yu, Jun; Ma, Yan; Drisko, Jeanne; Chen, Qi
2013-12-01
Tumor resistance to platinum-based drugs has been an obstacle to the treatment of ovarian cancer. Extract of the plant Rauwolfia vomitoria has long been used by cancer patients. However, there have not been systematic studies of its anticancer activity. In an effort to enhance the effectiveness of platinum-based drugs, we investigated the anticancer effect of a Rauwolfia vomitoria extract (Rau), both alone and in combination with carboplatin (Cp). In vitro cytotoxicity and colony formation were evaluated in several ovarian cancer cell lines. In vivo effects were evaluated in an intraperitoneal ovarian cancer mouse model. The combination of Rau and Cp was assessed using Chou-Talalay's constant ratio design and median effect analysis based on the isobologram principle to determine the combination index values. Rau decreased cell growth in all 3 tested ovarian cancer cell lines dose dependently and completely inhibited formation of colonies in soft agar. Apoptosis was induced in a time- and dose-dependent manner and was the predominant form of Rau-induced cell death. Synergy of Rau with Cp was detected, with combination index values <1 and dose reduction index values for Cp ranging from 1.7- to 7-fold. Tumor growth in mice was significantly suppressed by 36% or 66% with Rau treatment alone at a low (20 mg/kg) or a high dose (50 mg/kg), respectively, an effect comparable to that of Cp alone. The volume of ascitic fluid and the number of nonblood cells in ascites were also significantly decreased. Combining Rau with Cp remarkably enhanced the effect of Cp and reduced tumor burden by 87% to 90% and ascites volume by 89% to 97%. Rau has potent antitumor activity and in combination significantly enhances the effect of Cp against ovarian cancer.
Collery, Philippe; Mohsen, Ahmed; Kermagoret, Anthony; D'Angelo, Jean; Morgant, Georges; Desmaele, Didier; Tomas, Alain; Collery, Thomas; Wei, Ming; Badawi, Abdelfattah
2012-07-01
Platinum is well known for its anticancer activity, firstly used as cis-diaminedichloroplatinum (II) (CDDP), with a wide range of activity. Its main mechanism of action involves its binding to DNA. Gallium, another metal, has also demonstrated apoptotic effects on malignant cells, but through interaction with targets other than DNA, such as the membrane, cytoskeleton and proteasome, and on enzyme activities. An antitumor synergism between CDDP and both gallium and rhenium compounds has been demonstrated. For these reasons, we proposed to combine these three metals and to determine at which doses each compound could be administered without major toxicity. CDDP, tetrakis(1-octanol) tris(5-aminosalicylate)gallium(III), and a diseleno-ether rhenium(I) complex were used in this experimental study in breast cancer MCF-7 tumor-bearing mice. CDDP was administered intraperitoneally (i.p.) twice a week at the dose of 3 mg/kg. Tetrakis(1-octanol) tris(5-aminosalicylate) gallium (III) and rhenium(I) diseleno-ether complexes were administered orally, daily, five days a week for three weeks, at doses ranging from 20 to 100 mg/kg for the gallium compound and from 10 to 50 mg/kg for the rhenium compound. Doses of 10 mg/kg of rhenium(I) diseleno-ether, and 100 mg/kg of the salicylate gallium compound, in combination with CDDP induced a significant decrease of 50% of the tumor volume, by comparison with the control group. In contrast, the decrease of the tumor volume in mice treated by CDDP alone was less than 25%. Changes in the sequence of administration of the three metals will be discussed to improve the therapeutic index.
Nemec, Matthew J; Kim, Hyemee; Marciante, Alexandria B; Barnes, Ryan C; Hendrick, Erik D; Bisson, William H; Talcott, Stephen T; Mertens-Talcott, Susanne U
2017-03-01
The objective of this study was to assess the underlying mechanisms of mango polyphenol decreased cell proliferation and tumor volume in ductal carcinoma in situ breast cancer. We hypothesized that mango polyphenols suppress signaling along the AKT/mTOR axis while up-regulating AMPK. To test this hypothesis, mango polyphenols (0.8 mg gallic acid equivalents per day) and pyrogallol (0.2 mg/day) were administered for 4 weeks to mice xenografted with MCF10DCIS.com cells subcutaneously (n=10 per group). Tumor volumes were significantly decreased, both mango and pyrogallol groups displayed greater than 50% decreased volume compared to control. There was a significant reduction of phosphorylated protein levels of IR, IRS1, IGF-1R, and mTOR by mango; while pyrogallol significantly reduced the phosphorylation levels of IR, IRS1, IGF-1R, p70S6K, and ERK. The protein levels of Sestrin2, which is involved in AMPK-signaling, were significantly elevated in both groups. Also, mango significantly elevated AMPK phosphorylation and pyrogallol significantly elevated LKB1 protein levels. In an in vitro model, mango and pyrogallol increased reactive oxygen species (ROS) generation and arrested cells in S phase. In silico modeling indicates that pyrogallol has the potential to bind directly to the allosteric binding site of AMPK, inducing activation. When AMPK expression was down-regulated using siRNA in vitro, pyrogallol reversed the reduced expression of AMPK. This indicates that pyrogallol not only activates AMPK, but also increases constitutive protein expression. These results suggest that mango polyphenols and their major microbial metabolite, pyrogallol, inhibit proliferation of breast cancer cells through ROS-dependent up-regulation of AMPK and down-regulation of the AKT/mTOR pathway. Copyright © 2016 Elsevier Inc. All rights reserved.
Modeling and predicting tumor response in radioligand therapy.
Kletting, Peter; Thieme, Anne; Eberhardt, Nina; Rinscheid, Andreas; D'Alessandria, Calogero; Allmann, Jakob; Wester, Hans-Jürgen; Tauber, Robert; Beer, Ambros J; Glatting, Gerhard; Eiber, Matthias
2018-05-10
The aim of this work was to develop a theranostic method that allows predicting PSMA-positive tumor volume after radioligand therapy (RLT) based on a pre-therapeutic PET/CT measurement and physiologically based pharmacokinetic/dynamic (PBPK/PD) modeling at the example of RLT using 177 Lu-labeled PSMA for imaging and therapy (PSMA I&T). Methods: A recently developed PBPK model for 177 Lu PSMA I&T RLT was extended to account for tumor (exponential) growth and reduction due to irradiation (linear quadratic model). Data of 13 patients with metastatic castration-resistant prostate cancer (mCRPC) were retrospectively analyzed. Pharmacokinetic/dynamic parameters were simultaneously fitted in a Bayesian framework to PET/CT activity concentrations, planar scintigraphy data and tumor volumes prior and post (6 weeks) therapy. The method was validated using the leave-one-out Jackknife method. The tumor volume post therapy was predicted based on pre-therapy PET/CT imaging and PBPK/PD modeling. Results: The relative deviation of the predicted and measured tumor volume for PSMA-positive tumor cells (6 weeks post therapy) was 1±40% excluding one patient (PSA negative) from the population. The radiosensitivity for the PSA positive patients was determined to be 0.0172±0.0084 Gy-1. Conclusion: The proposed method is the first attempt to solely use PET/CT and modeling methods to predict the PSMA-positive tumor volume after radioligand therapy. Internal validation shows that this is feasible with an acceptable accuracy. Improvement of the method and external validation of the model is ongoing. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Low-Dose Radiation Potentiates the Therapeutic Efficacy of Folate Receptor-Targeted Hapten Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sega, Emanuela I.; Lu Yingjuan; Ringor, Michael
2008-06-01
Purpose: Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm{sup 3} before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapymore » with low-dose radiotherapy. Methods and Materials: Mice bearing 300-mm{sup 3} subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon {alpha}) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Results: Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm{sup 3}. More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. Conclusions: These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.« less
Low-dose radiation potentiates the therapeutic efficacy of folate receptor-targeted hapten therapy.
Sega, Emanuela I; Lu, Yingjuan; Ringor, Michael; Leamon, Christopher P; Low, Philip S
2008-06-01
Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm(3) before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapy with low-dose radiotherapy. Mice bearing 300-mm(3) subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon alpha) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm(3). More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.
Gamma Knife radiosurgery in pituitary adenomas: Why, who, and how to treat?
Castinetti, Frederic; Brue, Thierry
2010-08-01
Pituitary adenomas are benign tumors that can be either secreting (acromegaly, Cushing's disease, prolactinomas) or non-secreting. Transsphenoidal neurosurgery is the gold standard treatment; however, it is not always effective. Gamma Knife radiosurgery is a specific modality of stereotactic radiosurgery, a precise radiation technique. Several studies reported the efficacy and low risk of adverse effects induced by this technique: in secreting pituitary adenomas, hypersecretion is controlled in about 50% of cases and tumor volume is stabilized or decreased in 80-90% of cases, making Gamma Knife a valuable adjunctive or first-line treatment. As hormone levels decrease progressively, the main drawback is the longer time to remission (12-60 months), requiring an additional treatment during this period. Hypopituitarism is the main side effect, observed in 20-40% cases. Gamma Knife is thus useful in the therapeutic algorithms of pituitary adenomas in well-defined indications, mainly low secreting small lesions well identified on magnetic resonance imaging (MRI).
Modified model of VX2 tumor overexpressing vascular endothelial growth factor.
Pascale, Florentina; Ghegediban, Saida-Homayra; Bonneau, Michel; Bedouet, Laurent; Namur, Julien; Verret, Valentin; Schwartz-Cornil, Isabelle; Wassef, Michel; Laurent, Alexandre
2012-06-01
To determine whether upregulated expression of vascular endothelial growth factor (VEGF) in VX2 cells can increase vessel density (VD) and reduce tumor necrosis. The VX2 cell line was transfected with expression vectors containing cDNA for rabbit VEGF. Stable clones producing rabbit VEGF (VEGF-VX2) were selected. VEGF-VX2 cells (n = 5 rabbits) or nontransfected VX2 cells (controls; n = 5 rabbits) were implanted into leg muscle of 10 rabbits. The animals were sacrificed at day 21. Tumor volume, percentage of necrosis, VD, and VEGF concentration in tumor protein extract were quantified. Overexpression of VEGF by VX2 cells augmented tumor implantation efficiency 100% and favored cyst formation. The tumor volume was significantly larger for VEGF-VX2 transfected tumors versus controls (P = .0143). Overexpression of VEGF in VX2 cells significantly increased the VD of the tumors (P = .0138). The percentage of necrosis was reduced in VEGF-VX2 tumors versus controls (19.5% vs 38.5 %; P = .002). VEGF concentration in VEGF-VX2 tumors was significantly higher than in control tumors (P = .041) and was correlated with tumor volume (ρ = .883, P = .012). The overexpression of VEGF increased tumor growth and vascularization, favored cyst formation, and reduced tumor necrosis. This new phenotype of the VX2 tumor may offer some advantages over classic models of VX2 tumor for evaluating anticancer therapies. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.
The prognostic role of tumor size in early breast cancer in the era of molecular biology.
Kasangian, Anaid Anna; Gherardi, Giorgio; Biagioli, Elena; Torri, Valter; Moretti, Anna; Bernardin, Elena; Cordovana, Andrea; Farina, Gabriella; Bramati, Annalisa; Piva, Sheila; Dazzani, Maria Chiara; Paternò, Emanuela; La Verde, Nicla Maria
2017-01-01
The prognosis of early breast cancer (EBC) depends on patient and tumor characteristics. The association between tumor size, the largest diameter in TNM staging, and prognosis is well recognized. According to TNM, tumors classified as T2, could have very different volumes; e.g. a tumor of 2.1 cm has a volume of 4500 mm3, while a tumor of 4.9 cm has a volume of 60.000 mm3 even belonging to the same class. The aim of the study is to establish if the prognostic role of tumor size, expressed as diameter and volume, has been overshadowed by other factors. The primary objective is to evaluate the association between tumor dimensions and overall survival (OS) / disease free survival (DFS), in our institution from January 1st 2005 to September 30th 2013 in a surgical T1-T2 population. Volume was evaluated with the measurement of three half-diameters of the tumor (a, b and c), and calculated using the following formula: 4/3π x a x b x c. 341 patients with T1-T2 EBC were included. 86.5% were treated with conservative surgery. 85.1% had a Luminal subtype, 9.1% were Triple negative and 7.4% were HER2 positive. Median volume was 942 mm3 (range 0.52-31.651.2). 44 patients (12.9%) relapsed and 23 patients died. With a median follow-up of 6.5 years, the univariate analysis for DFS showed an association between age, tumor size, volume, histological grading and molecular subtype. The multivariate analysis confirmed the statistically significant association only for molecular subtype (p 0.005), with a worse prognosis for Triple negative and HER2 positive subtypes compared with Luminal (HR: 2.65; 95%CI: 1.34-5.22). Likewise for OS, an association was shown by the multivariate analysis solely for molecular subtype (HER2 and Triple negative vs. Luminal. HR: 2.83; 95% CI:1.46-5.49; p 0.002). In our study, the only parameter that strongly influences survival is molecular subtype. These findings encourage clinicians to choose adjuvant treatment not based on dimensional criteria but on biological features.
You, Weon-Kyoo; Bonaldo, Paolo; Stallcup, William B.
2012-01-01
To investigate the importance of the vascular basal lamina in tumor blood vessel morphogenesis and function, we compared vessel development, vessel function, and progression of B16F10 melanoma tumors in the brains of wild-type and collagen VI-null mice. In 7-day tumors in the absence of collagen VI, the width of the vascular basal lamina was reduced twofold. Although the ablation of collagen VI did not alter the abundance of blood vessels, a detailed analysis of the number of either pericytes or endothelial cells (or pericyte coverage of endothelial cells) showed that collagen VI-dependent defects during the assembly of the basal lamina have negative effects on both pericyte maturation and the sprouting and survival of endothelial cells. As a result of these deficits, vessel patency was reduced by 25%, and vessel leakiness was increased threefold, resulting in a 10-fold increase in tumor hypoxia along with a fourfold increase in hypoxia-inducible factor-1α expression. In 12-day collagen VI-null tumors, vascular endothelial growth factor expression was increased throughout the tumor stroma, in contrast to the predominantly vascular pattern of vascular endothelial growth factor expression in wild-type tumors. Vessel size was correspondingly reduced in 12-day collagen VI-null tumors. Overall, these vascular deficits produced a twofold decrease in tumor volume in collagen VI-null mice, confirming that collagen VI-dependent basal lamina assembly is a critical aspect of vessel development. PMID:22200614
Haedicke, Katja; Kozlova, Diana; Gräfe, Susanna; Teichgräber, Ulf; Epple, Matthias; Hilger, Ingrid
2015-03-01
Photodynamic therapy (PDT) of tumors causes skin photosensitivity as a result of unspecific accumulation behavior of the photosensitizers. PDT of tumors was improved by calcium phosphate nanoparticles conjugated with (i) Temoporfin as a photosensitizer, (ii) the RGDfK peptide for favored tumor targeting and (iii) the fluorescent dye molecule DY682-NHS for enabling near-infrared fluorescence (NIRF) optical imaging in vivo. The nanoparticles were characterized with regard to size, spectroscopic properties and uptake into CAL-27 cells. The nanoparticles had a hydrodynamic diameter of approximately 200 nm and a zeta potential of around +22mV. Their biodistribution at 24h after injection was investigated via NIRF optical imaging. After treating tumor-bearing CAL-27 mice with nanoparticle-PDT, the therapeutic efficacy was assessed by a fluorescent DY-734-annexin V probe at 2 days and 2 weeks after treatment to detect apoptosis. Additionally, the contrast agent IRDye® 800CW RGD was used to assess tumor vascularization (up to 4 weeks after PDT). After nanoparticle-PDT in mice, apoptosis in the tumor was detected after 2 days. Decreases in tumor vascularization and tumor volume were detected in the next few days. Calcium phosphate nanoparticles can be used as multifunctional tools for NIRF optical imaging, PDT and tumor targeting as they exhibited a high therapeutic efficacy, being capable of inducing apoptosis and destroying tumor vascularization. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
[Dinitrosyl iron complexes with glutathione recover rats with experimental endometriosis].
Adamian, L V; Burgova, E N; Tkachev, N A; Mikoian, V D; Stepanian, A A; Sonova, M M; Vanin, A F
2013-01-01
The effect of binuclear dinitrosyl iron complexes (DNIC) with glutathione on endometrioid tumors in rats with experimental endometriosis has been studied. The latter was induced by an autotransplantation model, where two fragments of endometrium with myometrium (2 x 2 mm) from the left uterine horn was grafted to the inner surface of the anterior abdominal wall. The test animals received intraperitoneal injections of 0.5 ml DNIC-glutathione at the dose of 12.5 micromole per kg daily for 12 days 28 days after operation. The injections resulted in more than a 2-fold decrease in the total volume of both large tumors formed from grafts and small additive tumors formed nearby grafts. The disappearance of the additive tumors was also observed in test animals. The EPR signal with g(av) = 2.03 characteristic of protein bound DNIC with thiol-containing ligands was recorded in livers, graft and additive tumors of test and control animals pointing out intensive generation of nitric oxide in rats with experimental endometriosis. Ribonucleotide reductase activation discovered by doublet the EPR signal at g = 2.0 with 2.3 mT hyperfine structure splitting was found in small tumors. The cytotoxic effect of DNIC-glutathione on endometrioid tumors was suggested to be due to DNIC degradation nearby the tumors induced by iron chelating compounds released from the tumors. The degradation resulted in release of a high amount of nitric oxide molecules and nitrosonium ions from DNICs affecting the tumors by way of the cytotoxic effect.
Bette, Stefanie; Barz, Melanie; Huber, Thomas; Straube, Christoph; Schmidt-Graf, Friederike; Combs, Stephanie E; Delbridge, Claire; Gerhardt, Julia; Zimmer, Claus; Meyer, Bernhard; Kirschke, Jan S; Boeckh-Behrens, Tobias; Wiestler, Benedikt; Gempt, Jens
2018-03-14
Recent studies suggested that postoperative hypoxia might trigger invasive tumor growth, resulting in diffuse/multifocal recurrence patterns. Aim of this study was to analyze distinct recurrence patterns and their association to postoperative infarct volume and outcome. 526 consecutive glioblastoma patients were analyzed, of which 129 met our inclusion criteria: initial tumor diagnosis, surgery, postoperative diffusion-weighted imaging and tumor recurrence during follow-up. Distinct patterns of contrast-enhancement at initial diagnosis and at first tumor recurrence (multifocal growth/progression, contact to dura/ventricle, ependymal spread, local/distant recurrence) were recorded by two blinded neuroradiologists. The association of radiological patterns to survival and postoperative infarct volume was analyzed by uni-/multivariate survival analyses and binary logistic regression analysis. With increasing postoperative infarct volume, patients were significantly more likely to develop multifocal recurrence, recurrence with contact to ventricle and contact to dura. Patients with multifocal recurrence (Hazard Ratio (HR) 1.99, P = 0.010) had significantly shorter OS, patients with recurrent tumor with contact to ventricle (HR 1.85, P = 0.036), ependymal spread (HR 2.97, P = 0.004) and distant recurrence (HR 1.75, P = 0.019) significantly shorter post-progression survival in multivariate analyses including well-established prognostic factors like age, Karnofsky Performance Score (KPS), therapy, extent of resection and patterns of primary tumors. Postoperative infarct volume might initiate hypoxia-mediated aggressive tumor growth resulting in multifocal and diffuse recurrence patterns and impaired survival.
Epidemiologic evidence on mobile phones and tumor risk: a review.
Ahlbom, Anders; Feychting, Maria; Green, Adele; Kheifets, Leeka; Savitz, David A; Swerdlow, Anthony J
2009-09-01
This review summarizes and interprets epidemiologic evidence bearing on a possible causal relation between radiofrequency field exposure from mobile phone use and tumor risk. In the last few years, epidemiologic evidence on mobile phone use and the risk of brain and other tumors of the head in adults has grown in volume, geographic diversity of study settings, and the amount of data on longer-term users. However, some key methodologic problems remain, particularly with regard to selective nonresponse and inaccuracy and bias in recall of phone use. Most studies of glioma show small increased or decreased risks among users, although a subset of studies show appreciably elevated risks. We considered methodologic features that might explain the deviant results, but found no clear explanation. Overall the studies published to date do not demonstrate an increased risk within approximately 10 years of use for any tumor of the brain or any other head tumor. Despite the methodologic shortcomings and the limited data on long latency and long-term use, the available data do not suggest a causal association between mobile phone use and fast-growing tumors such as malignant glioma in adults (at least for tumors with short induction periods). For slow-growing tumors such as meningioma and acoustic neuroma, as well as for glioma among long-term users, the absence of association reported thus far is less conclusive because the observation period has been too short.
SU-E-J-12: A New Stereological Method for Tumor Volume Evaluation for Esophageal Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Y; Tianjin Medical University Cancer Institute and Hospital; East Carolina University
2014-06-01
Purpose: Stereological method used to obtain three dimensional quantitative information from two dimensional images is a widely used tool in the study of cells and pathology. But the feasibility of the method for quantitative evaluation of volumes with 3D image data sets for radiotherapy clinical application has not been explored. On the other hand, a quick, easy-to-use and reliable method is highly desired in image-guided-radiotherapy(IGRT) for tumor volume measurement for the assessment of response to treatment. To meet this need, a stereological method for evaluating tumor volumes for esophageal cancer is presented in this abstract. Methods: The stereology method wasmore » optimized by selecting the appropriate grid point distances and sample types. 7 patients with esophageal cancer were selected retrospectively for this study, each having pre and post treatment computed tomography (CT) scans. Stereological measurements were performed for evaluating the gross tumor volume (GTV) changes after radiotherapy and the results was compared with the ones by planimetric measurements. Two independent observers evaluated the reproducibility for volume measurement using the new stereological technique. Results: The intraobserver variation in the GTV volume estimation was 3.42±1.68cm3 (the Wilcoxon matched-pairs test Resultwas Z=−1.726,P=0.084>0.05); the interobserver variation in the GTV volume estimation was 22.40±7.23 cm3 (Z=−3.296,P=0.083>0.05), which showed the consistency in GTV volume calculation with the new method for the same and different users. The agreement level between the results from the two techniques was also evaluated. Difference between the measured GTVs was 20.10±5.35 cm3 (Z=−3.101,P=0.089>0.05). Variation of the measurement results using the two techniques was low and clinically acceptable. Conclusion: The good agreement between stereological and planimetric techniques proves the reliability of the stereological tumor volume estimations. The optimized stereological technique described in this abstract may provide a quick, unbiased and reproducible tool for tumor volume estimation for treatment response assessment. Supported by NSFC (#81041107, #81171342 and #31000784)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Wen-Jia; Wu, Xiao; Xue, Ren-Liang
Purpose: To more accurately define clinical target volume for cervical cancer radiation treatment planning by evaluating tumor microscopic extension toward the uterus body (METU) in International Federation of Gynecology and Obstetrics stage Ib-IIa squamous cell carcinoma of the cervix (SCCC). Patients and Methods: In this multicenter study, surgical resection specimens from 318 cases of stage Ib-IIa SCCC that underwent radical hysterectomy were included. Patients who had undergone preoperative chemotherapy, radiation, or both were excluded from this study. Microscopic extension of primary tumor toward the uterus body was measured. The association between other pathologic factors and METU was analyzed. Results: Microscopicmore » extension toward the uterus body was not common, with only 12.3% of patients (39 of 318) demonstrating METU. The mean (±SD) distance of METU was 0.32 ± 1.079 mm (range, 0-10 mm). Lymphovascular space invasion was associated with METU distance and occurrence rate. A margin of 5 mm added to gross tumor would adequately cover 99.4% and 99% of the METU in the whole group and in patients with lymphovascular space invasion, respectively. Conclusion: According to our analysis of 318 SCCC specimens for METU, using a 5-mm gross tumor volume to clinical target volume margin in the direction of the uterus should be adequate for International Federation of Gynecology and Obstetrics stage Ib-IIa SCCC. Considering the discrepancy between imaging and pathologic methods in determining gross tumor volume extent, we recommend a safer 10-mm margin in the uterine direction as the standard for clinical practice when using MRI for contouring tumor volume.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunavoelgyi, Roman; Dieckmann, Karin, E-mail: karin.dieckmann@meduniwien.ac.at; Gleiss, Andreas
2011-09-01
Purpose: To evaluate long-term local tumor control, visual acuity, and survival after hypofractionated linear accelerator-based stereotactic photon radiotherapy in patients with choroidal melanoma. Methods and Materials: Between 1997 and 2007, 212 patients with choroidal melanoma unsuitable for ruthenium-106 brachytherapy or local resection were treated stereotactically at a linear accelerator with 6-MV photon beams at the Medical University of Vienna in five fractions over 7 days. Twenty-four patients received a total dose of 70 Gy (five fractions of 14 Gy), 158 a total dose of 60 Gy (five fractions of 12 Gy) and 30 patients a total dose of 50 Gymore » (five fractions of 10 Gy) applied on the 80% isodose. Ophthalmologic examinations were performed at baseline and every 3 months in the first 2 years, every 6 months until 5 years, and once a year thereafter until 10 years after radiotherapy. Assessment of visual acuity, routine ophthalmologic examinations, and measurement of tumor base dimension and height using standardized A-scan and B-scan echography were done at each visit. Funduscopy and fluorescein angiography were done when necessary to document tumor response. Results: Median tumor height and volume decreased from 4.8 mm and 270.7 mm{sup 3} at baseline to 2.6 mm and 86.6 mm{sup 3} at the last individual follow-up, respectively (p < 0.001, p < 0.001). Median visual acuity decreased from 0.55 at baseline to hand motion at the last individual follow-up (p < 0.001). Local tumor control was 95.9% after 5 years and 92.6% after 10 years. Thirty-two patients developed metastatic disease, and 22 of these patients died during the follow-up period. Conclusion: Hypofractionated stereotactic photon radiotherapy with 70 to 50 Gy delivered in five fractions in 7 days is sufficient to achieve excellent local tumor control in patients with malignant melanoma of the choroid. Disease outcome and vision are comparable to those achieved with proton beam radiotherapy. Decreasing the total dose below 60 Gy seems to be possible.« less
Wu, S; He, Z; Guo, J; Li, F; Lin, Q; Guan, X
2014-01-01
To assess the heart and lung dosimetry results associated with accelerated partial breast irradiation intensity-modulated radiotherapy (APBI-IMRT) and whole breast field-in-field intensity-modulated radiotherapy (WBI-FIF-IMRT). A total of 29 patients with early-stage breast cancer after lumpectomy were included in this study. APBI-IMRT and WBI-FIF-IMRT plans were generated for each patient. The dosimetric parameters of ipsilateral lung and heart in both plans were then compared with and without radiobiological correction. With and without radiobiological correction, the volume of ipsilateral lung showed a substantially lower radiation exposure in APBI-IMRT with moderate to high doses (P < 0.05) but non-significant increases in volume of ipsilateral lung in 2.5 Gy than WBI-FIF-IMRT (P > 0.905).There was no significant difference in volume of ipsilateral lung receiving 1, 2.5, and 5 Gy between APBI-IMRT and WBI (P > 0.05) in patients with medial tumor location, although APBI-IMRT exposed more lung to 2.5 and 5 Gy. APBI-IMRT significantly decreases the volume of heart receiving low to high doses in left-sided breast cancer (P < 0.05). APBI-IMRT can significantly spare the volume of heart and ipsilateral lung receiving moderate and high dose. Non-significant increases in volume of the ipsilateral lung exposed to low doses of radiation were observed for APBI-IMRT in comparison to WBI-FIF-IMRT, particularly in patients with medial tumor location. With the increasing interest in APBI-IMRT, our data may help clinicians individualize patient treatment decisions.
Sasi, Sharath P.; Bae, Sanggyu; Song, Jin; Perepletchikov, Aleksandr; Schneider, Douglas; Carrozza, Joseph; Yan, Xinhua; Kishore, Raj; Enderling, Heiko; Goukassian, David A.
2014-01-01
Tumor necrosis factor-alpha (TNF) binds to two receptors: TNFR1/p55-cytotoxic and TNFR2/p75-pro-survival. We have shown that tumor growth in p75 knockout (KO) mice was decreased more than 2-fold in Lewis lung carcinoma (LLCs). We hypothesized that selective blocking of TNFR2/p75 LLCs may sensitize them to TNF-induced apoptosis and affect the tumor growth. We implanted intact and p75 knockdown (KD)-LLCs (>90%, using shRNA) into wild type (WT) mice flanks. On day 8 post-inoculation, recombinant murine (rm) TNF-α (12.5 ng/gr of body weight) or saline was injected twice daily for 6 days. Tumor volumes (tV) were measured daily and tumor weights (tW) on day 15, when study was terminated due to large tumors in LLC+TNF group. Tubular bones, spleens and peripheral blood (PB) were examined to determine possible TNF toxicity. There was no significant difference in tV or tW between LLC minus (-) TNF and p75KD/LLC-TNF tumors. Compared to 3 control groups, p75KD/LLC+TNF showed >2-5-fold decreases in tV (p<0.001) and tW (p<0.0001). There was no difference in tV or tW end of study vs. before injections in p75KD/LLC+TNF group. In 3 other groups tV and tW were increased 2.7-4.5-fold (p<0.01, p<0.0002 and p<0.0001). Pathological examination revealed that 1/3 of p75KD/LLC+rmTNF tumors were 100% necrotic, the remaining revealed 40-60% necrosis. No toxicity was detected in bone marrow, spleen and peripheral blood. We concluded that blocking TNFR2/p75 in LLCs combined with intra-tumoral rmTNF injections inhibit LLC tumor growth. This could represent a novel and effective therapy against lung neoplasms and a new paradigm in cancer therapeutics. PMID:24664144
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horst, A van der; Houweling, A C; Bijveld, M M C
2015-06-15
Purpose: Pancreatic tumors show large interfractional position variations. In addition, changes in gastrointestinal air volume and body contour take place during treatment. We aim to investigate the robustness of the clinical treatment plans by quantifying the dosimetric effects of these anatomical changes. Methods: Calculations were performed for up to now 3 pancreatic cancer patients who had intratumoral fiducials for daily CBCT-based positioning during their 3-week treatment. For each patient, deformable image registration of the planning CT was used to assign Hounsfield Units to each of the 13—15 CBCTs; air volumes and body contour were copied from CBCT. The clinical treatmentmore » plan was used (CTV-PTV margin = 10 mm; 36Gy; 10MV; 1 arc VMAT). Fraction dose distributions were calculated and accumulated. The V95% of the clinical target volume (CTV) and planning target volume (PTV) were analyzed, as well as the dose to stomach, duodenum and liver. Dose accumulation was done for patient positioning based on the fiducials (as clinically used) as well as for positioning based on bony anatomy. Results: For all three patients, the V95% of the CTV remained 100%, for both fiducial- and bony anatomy-based positioning. For fiducial-based positioning, dose to duodenum en stomach showed no discernable differences with planned dose. For bony anatomy-based positioning, the PTV V95% of the patient with the largest systematic difference in tumor position (patient 1) decreased to 85%; the liver Dmax increased from 33.5Gy (planned) to 35.5Gy. Conclusion: When using intratumoral fiducials, CTV dose coverage was only mildly affected by the daily anatomical changes. When using bony anatomy for patient positioning, we found a decline in PTV dose coverage due to the interfractional tumor position variations. Photon irradiation treatment plans for pancreatic tumors are robust to variations in body contour and gastrointestinal gas, but the use of fiducial-based daily position verification is imperative. This work was supported by the foundation Bergh in het Zadel through the Dutch Cancer Society (KWF Kankerbestrijding) project No. UVA 2011-5271.« less
Ren, Yanyan; Zhang, Haijun; Chen, Baoan; Cheng, Jian; Cai, Xiaohui; Liu, Ran; Xia, Guohua; Wu, Weiwei; Wang, Shuai; Ding, Jiahua; Gao, Chong; Wang, Jun; Bao, Wen; Wang, Lei; Tian, Liang; Song, Huihui; Wang, Xuemei
2012-01-01
Background Multidrug resistance in cancer is a major obstacle for clinical therapeutics, and is the reason for 90% of treatment failures. This study investigated the efficiency of novel multifunctional Fe3O4 magnetic nanoparticles (Fe3O4-MNP) combined with chemotherapy and hyperthermia for overcoming multidrug resistance in an in vivo model of leukemia. Methods Nude mice with tumor xenografts were randomly divided into a control group, and the treatment groups were allocated to receive daunorubicin, 5-bromotetrandrine (5-BrTet) and daunorubicin, Fe3O4-MNP, and Fe3O4-MNP coloaded with daunorubicin and 5-bromotetrandrine (Fe3O4-MNP-DNR-5-BrTet), with hyperthermia in an alternating magnetic field. We investigated tumor volume and pathology, as well as P-glycoprotein, Bcl-2, Bax, and caspase-3 protein expression to elucidate the effect of multimodal treatment on overcoming multidrug resistance. Results Fe3O4-MNP played a role in increasing tumor temperature during hyperthermia. Tumors became significantly smaller, and apoptosis of cells was observed in both the Fe3O4-MNP and Fe3O4-MNP-DNR-5-BrTet groups, especially in the Fe3O4-MNP-DNR-5-BrTet group, while tumor volumes in the other groups had increased after treatment for 12 days. Furthermore, Fe3O4-MNP-DNR-5-BrTet with hyperthermia noticeably decreased P-glycoprotein and Bcl-2 expression, and markedly increased Bax and caspase-3 expression. Conclusion Fe3O4-MNP-DNR-5-BrTet with hyperthermia may be a potential approach for reversal of multidrug resistance in the treatment of leukemia. PMID:22619560
Preclinical Pharmacological Evaluation of Letrozole as a Novel Treatment for Gliomas
Dave, Nimita; Chow, Lionel M.L.; Gudelsky, Gary A.; LaSance, Kathleen; Qi, Xiaoyang; Desai, Pankaj B.
2015-01-01
We present data that letrozole, an extensively used aromatase inhibitor in the treatment of estrogen receptor-positive breast tumors in postmenopausal women, may be potentially used in the treatment of glioblastomas. First, we measured the in vitro cytotoxicity of letrozole and aromatase (CYP19A1) expression and activity in human LN229, T98G, U373MG, U251MG, and U87MG, and rat C6 glioma cell lines. Estrogen receptor (ER)positive MCF-7 and ER-negative MDA-MB-231 cells served as controls. Cytotoxicity was determined employing the MTT assay, and aromatase activity using an immunoassay that measures the conversion of testosterone to estrogen. Second, in vivo activity of letrozole was assessed in Sprague-Dawley rats orthotopically implanted with C6 gliomas. The changes in tumor volume with letrozole treatment (4 mg/kg/day) were assessed employing μPET/CT imaging, employing [18F]-fluorodeoxyglucose (F18-FDG) as the radiotracer. Brain tissues were collected for histologic evaluations. All glioma cell lines included here expressed CYP19A1 and letrozole exerted considerable cytotoxicity and decrease in aromatase activity against these cells (IC50, 0.1–3.5 μmol/L). Imaging analysis employing F18-FDG μPET/CT demonstrated a marked reduction of active tumor volume (>75%) after 8 days of letrozole treatment. Immunohistochemical analysis revealed marked reduction in aromatase expression in tumoral regions of the brain after letrozole treatment. Thus, employing multifaceted tools, we demonstrate that aromatase may be a novel target for the treatment of gliomas and that letrozole, an FDA-approved drug with an outstanding record of safety may be repurposed for the treatment of such primary brain tumors, which currently have few therapeutic options. PMID:25695958
Preclinical pharmacological evaluation of letrozole as a novel treatment for gliomas.
Dave, Nimita; Chow, Lionel M L; Gudelsky, Gary A; LaSance, Kathleen; Qi, Xiaoyang; Desai, Pankaj B
2015-04-01
We present data that letrozole, an extensively used aromatase inhibitor in the treatment of estrogen receptor-positive breast tumors in postmenopausal women, may be potentially used in the treatment of glioblastomas. First, we measured the in vitro cytotoxicity of letrozole and aromatase (CYP19A1) expression and activity in human LN229, T98G, U373MG, U251MG, and U87MG, and rat C6 glioma cell lines. Estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 cells served as controls. Cytotoxicity was determined employing the MTT assay, and aromatase activity using an immunoassay that measures the conversion of testosterone to estrogen. Second, in vivo activity of letrozole was assessed in Sprague-Dawley rats orthotopically implanted with C6 gliomas. The changes in tumor volume with letrozole treatment (4 mg/kg/day) were assessed employing μPET/CT imaging, employing [(18)F]-fluorodeoxyglucose (F18-FDG) as the radiotracer. Brain tissues were collected for histologic evaluations. All glioma cell lines included here expressed CYP19A1 and letrozole exerted considerable cytotoxicity and decrease in aromatase activity against these cells (IC50, 0.1-3.5 μmol/L). Imaging analysis employing F18-FDG μPET/CT demonstrated a marked reduction of active tumor volume (>75%) after 8 days of letrozole treatment. Immunohistochemical analysis revealed marked reduction in aromatase expression in tumoral regions of the brain after letrozole treatment. Thus, employing multifaceted tools, we demonstrate that aromatase may be a novel target for the treatment of gliomas and that letrozole, an FDA-approved drug with an outstanding record of safety may be repurposed for the treatment of such primary brain tumors, which currently have few therapeutic options. ©2015 American Association for Cancer Research.
Ren, Yanyan; Zhang, Haijun; Chen, Baoan; Cheng, Jian; Cai, Xiaohui; Liu, Ran; Xia, Guohua; Wu, Weiwei; Wang, Shuai; Ding, Jiahua; Gao, Chong; Wang, Jun; Bao, Wen; Wang, Lei; Tian, Liang; Song, Huihui; Wang, Xuemei
2012-01-01
Multidrug resistance in cancer is a major obstacle for clinical therapeutics, and is the reason for 90% of treatment failures. This study investigated the efficiency of novel multifunctional Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4)-MNP) combined with chemotherapy and hyperthermia for overcoming multidrug resistance in an in vivo model of leukemia. Nude mice with tumor xenografts were randomly divided into a control group, and the treatment groups were allocated to receive daunorubicin, 5-bromotetrandrine (5-BrTet) and daunorubicin, Fe(3)O(4)-MNP, and Fe(3)O(4)-MNP coloaded with daunorubicin and 5-bromotetrandrine (Fe(3)O(4)-MNP-DNR-5-BrTet), with hyperthermia in an alternating magnetic field. We investigated tumor volume and pathology, as well as P-glycoprotein, Bcl-2, Bax, and caspase-3 protein expression to elucidate the effect of multimodal treatment on overcoming multidrug resistance. Fe(3)O(4)-MNP played a role in increasing tumor temperature during hyperthermia. Tumors became significantly smaller, and apoptosis of cells was observed in both the Fe(3)O(4)-MNP and Fe(3)O(4)-MNP-DNR-5-BrTet groups, especially in the Fe(3)O(4)-MNP-DNR-5-BrTet group, while tumor volumes in the other groups had increased after treatment for 12 days. Furthermore, Fe(3)O(4)-MNP-DNR-5-BrTet with hyperthermia noticeably decreased P-glycoprotein and Bcl-2 expression, and markedly increased Bax and caspase-3 expression. Fe(3)O(4)-MNP-DNR-5-BrTet with hyperthermia may be a potential approach for reversal of multidrug resistance in the treatment of leukemia.
Radiofrequency ablation of neuroendocrine liver metastases: the Middlesex experience.
Gillams, A; Cassoni, A; Conway, G; Lees, W
2005-01-01
Current treatment options for neuroendocrine liver metastases are not widely applicable or not that effective. Image-guided thermal ablation offers the possibility of a minimally invasive, albeit palliative, treatment that decreases tumor volume, preserves most of the normal liver, and can be repeated several times. We report our experience with image-guided thermal ablation in 25 patients with unresectable liver metastases. Since 1990 we have treated 189 tumors at 66 treatment sessions in 25 patients (12 female, 13 male; median age, 56 years; age range, 26--78 years). Thirty treatments were performed with a solid-state laser, and 36 treatments were performed with radiofrequency ablation. All but one treatment was performed percutaneously under image guidance. Sixteen patients had metastases from carcinoid primaries, three from gastrinoma, two from insulinoma, and four from miscellaneous causes. Fourteen of 25 had symptoms from hormone secretion. Imaging follow-up was available in 19 patients at a median of 21 months (range, 4--75 months). There was a complete response in six patients, a partial response in seven, and stable disease in one; hence, tumor load was controlled in 14 of 19 patients (74%). Relief of hormone-related symptoms was achieved in nine of 14 patients (69%). The median survival period from the diagnosis of liver metastases was 53 months. One patient with end-stage cardiac disease died after a carcinoid crisis. There were eight (12%) complications: five local and three distant, four major and four minor. As a minimally invasive, readily repeatable procedure that can be used to ablate small tumors, preferably before patients become severely symptomatic, radiofrequency ablation can provide effective control of liver tumor volume in most patients over many years.
Impact of removed tumor volume and location on patient outcome in glioblastoma.
Awad, Al-Wala; Karsy, Michael; Sanai, Nader; Spetzler, Robert; Zhang, Yue; Xu, Yizhe; Mahan, Mark A
2017-10-01
Glioblastoma is an aggressive primary brain tumor with devastatingly poor prognosis. Multiple studies have shown the benefit of wider extent of resection (EOR) on patient overall survival (OS) and worsened survival with larger preoperative tumor volumes. However, the concomitant impact of postoperative tumor volume and eloquent location on OS has yet to be fully evaluated. We performed a retrospective chart review of adult patients treated for glioblastoma from January 2006 through December 2011. Adherence to standardized postoperative chemoradiation protocols was used as an inclusion criterion. Detailed volumetric and location analysis was performed on immediate preoperative and immediate postoperative magnetic resonance imaging. Cox proportional hazard modeling approach was employed to explore the modifying effects of EOR and eloquent location after adjusting for various confounders and associated characteristics, such as preoperative tumor volume and demographics. Of the 471 screened patients, 141 were excluded because they did not meet all inclusion criteria. The mean (±SD) age of the remaining 330 patients (60.6% male) was 58.9 ± 12.9 years; the mean preoperative and postoperative Karnofsky performance scores (KPSs) were 76.2 ± 10.3 and 80.0 ± 16.6, respectively. Preoperative tumor volume averaged 33.2 ± 29.0 ml, postoperative residual was 4.0 ± 8.1 ml, and average EOR was 88.6 ± 17.6%. The observed average follow-up was 17.6 ± 15.7 months, and mean OS was 16.7 ± 14.4 months. Survival analysis showed significantly shorter survival for patients with lesions in periventricular (16.8 ± 1.7 vs. 21.5 ± 1.4 mo, p = 0.03), deep nuclei/basal ganglia (11.6 ± 1.7 vs. 20.6 ± 1.2, p = 0.002), and multifocal (12.0 ± 1.4 vs. 21.3 ± 1.3 months, p = 0.0001) locations, but no significant influence on survival was seen for eloquent cortex sites (p = 0.14, range 0.07-0.9 for all individual locations). OS significantly improved with EOR in univariate analysis, averaging 22.3, 19.7, and 13.2 months for >90, 80-90, and 70-80% resection, respectively. Survival was 22.8, 19.0, and 12.7 months for 0, 0-5, and 5-10 ml postoperative residual, respectively. A hazard model showed that larger preoperative tumor volume [hazard ratio (HR) 1.05, 95% CI 1.02-1.07], greater age (HR 1.02, 95% CI 1.01-1.03), multifocality (HR 1.44, 95% CI 1.01-2.04), and deep nuclei/basal ganglia (HR 2.05, CI 1.27-3.3) were the most predictive of poor survival after adjusting for KPS and tumor location. There was a negligible but significant interaction between EOR and preoperative tumor volume (HR 0.9995, 95% CI 0.9993-0.9998), but EOR alone did not correlate with OS after adjusting for other factors. The interaction between EOR and preoperative tumor volume represented tumor volume removed during surgery. In conclusion, EOR alone was not an important predictor of outcome during GBM treatment once preoperative tumor volume, age, and deep nuclei/basal ganglia location were factored. Instead, the interaction between EOR and preoperative volume, representing reduced disease burden, was an important predictor of reducing OS. Removal of tumor from eloquent cortex did not impact postoperative KPS. These results suggest aggressive surgical treatment to reduce postoperative residual while maintaining postoperative KPS may aid patient survival outcomes for a given tumor size and location.
Deng, Jie; Virmani, Sumeet; Young, Joseph; Harris, Kathleen; Yang, Guang-Yu; Rademaker, Alfred; Woloschak, Gayle; Omary, Reed A.; Larson, Andrew C.
2010-01-01
Purpose To test the hypothesis that diffusion-weighted (DW)-PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) MRI provides more accurate liver tumor necrotic fraction (NF) and viable tumor volume (VTV) measurements than conventional DW-SE-EPI (spin echo echo-planar imaging) methods. Materials and Methods Our institutional Animal Care and Use Committee approved all experiments. In six rabbits implanted with 10 VX2 liver tumors, DW-PROPELLER and DW-SE-EPI scans were performed at contiguous axial slice positions covering each tumor volume. Apparent diffusion coefficient maps of each tumor were used to generate spatially resolved tumor viability maps for NF and VTV measurements. We compared NF, whole tumor volume (WTV), and VTV measurements to corresponding reference standard histological measurements based on correlation and concordance coefficients and the Bland–Altman analysis. Results DW-PROPELLER generally improved image quality with less distortion compared to DW-SE-EPI. DW-PROPELLER NF, WTV, and VTV measurements were strongly correlated and satisfactorily concordant with histological measurements. DW-SE-EPI NF measurements were weakly correlated and poorly concordant with histological measurements. Bland–Altman analysis demonstrated that DWPROPELLER WTV and VTV measurements were less biased from histological measurements than the corresponding DW-SE-EPI measurements. Conclusion DW-PROPELLER MRI can provide spatially resolved liver tumor viability maps for accurate NF and VTV measurements, superior to DW-SE-EPI approaches. DWPROPELLER measurements may serve as a noninvasive surrogate for pathology, offering the potential for more accurate assessments of therapy response than conventional anatomic size measurements. PMID:18407540
Klerkx, Wenche M; Geldof, Albert A; Heintz, A Peter; van Diest, Paul J; Visser, Fredy; Mali, Willem P; Veldhuis, Wouter B
2011-05-01
To perform a longitudinal analysis of changes in lymph node volume and apparent diffusion coefficient (ADC) in healthy, metastatic, and hyperplastic lymph nodes. Three groups of four female Copenhagen rats were studied. Metastasis was induced by injecting cells with a high metastatic potential in their left hind footpad. Reactive nodes were induced by injecting Complete Freund Adjuvant (CFA). Imaging was performed at baseline and at 2, 5, 8, 11, and 14 days after tumor cell injection. Finally, lymph nodes were examined histopathologically. The model was highly efficient in inducing lymphadenopathy: subcutaneous cell or CFA inoculation resulted in ipsilateral metastatic or reactive popliteal lymph nodes in all rats. Metastatic nodal volumes increased exponentially from 5-7 mm(3) at baseline to 25 mm(3) at day 14, while the control node remained 5 mm(3). The hyperplastic nodes showed a rapid volume increase reaching a plateau at day 6. The ADC of metastatic nodes significantly decreased (range 13%-32%), but this decrease was also seen in reactive nodes. Metastatic and hyperplastic lymph nodes differed in terms of enlargement patterns and ADC changes. Enlarged reactive or malignant nodes could not be differentiated based on their ADC values. Copyright © 2011 Wiley-Liss, Inc.
Luo, Ke-Wang; Yue, Grace Gar-Lee; Ko, Chun-Hay; Lee, Julia Kin-Ming; Gao, Si; Li, Long-Fei; Li, Gang; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara Bik-San
2014-01-01
Coriolus versicolor (CV), a medicinal mushroom widely consumed in Asian countries, has been demonstrated to be effective in stimulation of immune system and inhibition of tumor growth. The present study aimed to investigate the anti-tumor and anti-metastasis effects of CV aqueous extract in mouse mammary carcinoma 4T1 cells and in 4T1-tumor bearing mouse model. Our results showed that CV aqueous extract (0.125-2 mg/ml) did not inhibit 4T1 cell proliferation while the non-cytotoxic dose of CV extract (1-2 mg/ml) significantly inhibited cell migration and invasion (p<0.05). Besides, the enzyme activities and protein levels of MMP-9 were suppressed by CV extract significantly. Animal studies showed that CV aqueous extract (1 g/kg, orally-fed daily for 4 weeks) was effective in decreasing the tumor weight by 36%, and decreased the lung metastasis by 70.8% against untreated control. Besides, micro-CT analysis of the tumor-bearing mice tibias indicated that CV extract was effective in bone protection against breast cancer-induced bone destruction as the bone volume was significantly increased. On the other hand, CV aqueous extract treatments resulted in remarkable immunomodulatory effects, which was reflected by the augmentation of IL-2, 6, 12, TNF-α and IFN-γ productions from the spleen lymphocytes of CV-treated tumor-bearing mice. In conclusion, our results demonstrated for the first time that the CV aqueous extract exhibited anti-tumor, anti-metastasis and immunomodulation effects in metastatic breast cancer mouse model, and could protect the bone from breast cancer-induced bone destruction. These findings provided scientific evidences for the clinical application of CV aqueous extract in breast cancer patients. Copyright © 2014 Elsevier GmbH. All rights reserved.
Chinea, Felix M; Lyapichev, Kirill; Epstein, Jonathan I; Kwon, Deukwoo; Smith, Paul Taylor; Pollack, Alan; Cote, Richard J; Kryvenko, Oleksandr N
2017-01-01
Objectives To address health disparities in risk stratification of U.S. Hispanic/Latino men by characterizing influences of prostate weight, body mass index, and race/ethnicity on the correlation of PSA derivatives with Gleason score 6 (Grade Group 1) tumor volume in a diverse cohort. Results Using published PSA density and PSA mass density cutoff values, men with higher body mass indices and prostate weights were less likely to have a tumor volume <0.5 cm3. Variability across race/ethnicity was found in the univariable analysis for all PSA derivatives when predicting for tumor volume. In receiver operator characteristic analysis, area under the curve values for all PSA derivatives varied across race/ethnicity with lower optimal cutoff values for Hispanic/Latino (PSA=2.79, PSA density=0.06, PSA mass=0.37, PSA mass density=0.011) and Non-Hispanic Black (PSA=3.75, PSA density=0.07, PSA mass=0.46, PSA mass density=0.008) compared to Non-Hispanic White men (PSA=4.20, PSA density=0.11 PSA mass=0.53, PSA mass density=0.014). Materials and Methods We retrospectively analyzed 589 patients with low-risk prostate cancer at radical prostatectomy. Pre-operative PSA, patient height, body weight, and prostate weight were used to calculate all PSA derivatives. Receiver operating characteristic curves were constructed for each PSA derivative per racial/ethnic group to establish optimal cutoff values predicting for tumor volume ≥0.5 cm3. Conclusions Increasing prostate weight and body mass index negatively influence PSA derivatives for predicting tumor volume. PSA derivatives’ ability to predict tumor volume varies significantly across race/ethnicity. Hispanic/Latino and Non-Hispanic Black men have lower optimal cutoff values for all PSA derivatives, which may impact risk assessment for prostate cancer. PMID:28160549
Kumar, Manoj; Liu, Zheng-Ren; Thapa, Laxmi; Wang, Da-Yu; Tian, Rui; Qin, Ren-Yi
2004-08-01
Several studies reported that somatostatin receptor subtypes, especially subtype 2 (SSTR2), exerted their cytostatic and/or cytotoxic effects on various types of tumors. The aim of this study was to investigate the antitumor effect of SSTR2 gene transfer to the pancreatic cancer cell line PC-3 and the mechanisms involved in this effect. The full-length human SSTR2 cDNA was introduced into pancreatic cancer cell line PC-3 by lipofectamine-mediated transfection; positive clones were screened by G418, and stable expression of SSTR2 was detected by the immunohistochemical SABC method and RT-PCR. Athymic mice were separately xenografted with SSTR2-expressing cells (experimental group), vector control, and mock control cells. TUNEL assay was used to determine the apoptotic index (AI) in the tumors of these groups. The immunohistochemical SP method was used to determine expression of apoptosis-regulating genes Bcl-2 and Bax and re-expression of SSTR2 and to assess intratumoral microvessel density (MVD). Moreover, tumor volume and weight were compared among these 3 groups. Restoration of SSTR2 was observed in the experimental group both in vitro and in vivo. The AI was significantly higher in the experimental group (3.39 +/- 0.84%) compared with that in the vector control (0.69 +/- 0.08%) and mock control (0.68 +/- 0.09%) (P < 0.05). MVD was significantly lower in the experimental group (6.30 +/- 1.71) than that in the vector control (12.64 +/- 1.69) and mock control (13.50 +/- 1.86) (P < 0.05). Furthermore, a significant decrease in Bcl-2 and increase in Bax protein expression were detected in the experimental group compared with the vector control and mock control (P < 0.05). A significant negative correlation of protein expression between Bcl-2/Bax ratio and SSTR2 was observed in these tumors (P < 0.05). Tumor volume and weight were significantly decreased in the experimental group compared with the vector control and mock control (P < 0.05) groups. However, no significant differences were observed between the vector control and mock control (P > 0.05). Re-expression of the SSTR2 gene, the expression of which is frequently lost in human pancreatic adenocarcinoma, induces apoptosis, which may be mediated via down-regulation of Bcl-2 and up-regulation of Bax (alteration of Bcl-2/Bax ratio) and inhibits tumor angiogenesis in pancreatic carcinoma, resulting in inhibition of tumor growth.
Singh, Ranjodh; Zhou, Zhiping; Tisnado, Jamie; Haque, Sofia; Peck, Kyung K.; Young, Robert J.; Tsiouris, Apostolos John; Thakur, Sunitha B.; Souweidane, Mark M.
2017-01-01
OBJECTIVE Accurately determining diffuse intrinsic pontine glioma (DIPG) tumor volume is clinically important. The aims of the current study were to 1) measure DIPG volumes using methods that require different degrees of subjective judgment; and 2) evaluate interobserver agreement of measurements made using these methods. METHODS Eight patients from a Phase I clinical trial testing convection-enhanced delivery (CED) of a therapeutic antibody were included in the study. Pre-CED, post–radiation therapy axial T2-weighted images were analyzed using 2 methods requiring high degrees of subjective judgment (picture archiving and communication system [PACS] polygon and Volume Viewer auto-contour methods) and 1 method requiring a low degree of subjective judgment (k-means clustering segmentation) to determine tumor volumes. Lin’s concordance correlation coefficients (CCCs) were calculated to assess interobserver agreement. RESULTS The CCCs of measurements made by 2 observers with the PACS polygon and the Volume Viewer auto-contour methods were 0.9465 (lower 1-sided 95% confidence limit 0.8472) and 0.7514 (lower 1-sided 95% confidence limit 0.3143), respectively. Both were considered poor agreement. The CCC of measurements made using k-means clustering segmentation was 0.9938 (lower 1-sided 95% confidence limit 0.9772), which was considered substantial strength of agreement. CONCLUSIONS The poor interobserver agreement of PACS polygon and Volume Viewer auto-contour methods high-lighted the difficulty in consistently measuring DIPG tumor volumes using methods requiring high degrees of subjective judgment. k-means clustering segmentation, which requires a low degree of subjective judgment, showed better interob-server agreement and produced tumor volumes with delineated borders. PMID:27391980
Ierardi, Anna Maria; Petrillo, Mario; Xhepa, Genti; Laganà, Domenico; Piacentino, Filippo; Floridi, Chiara; Duka, Ejona; Fugazzola, Carlo; Carrafiello, Gianpaolo
2016-02-01
Recently different software with the ability to plan ablation volumes have been developed in order to minimize the number of attempts of positioning electrodes and to improve a safe overall tumor coverage. To assess the feasibility of three-dimensional cone beam computed tomography (3D CBCT) fusion imaging with "virtual probe" positioning, to predict ablation volume in lung tumors treated percutaneously. Pre-procedural computed tomography contrast-enhanced scans (CECT) were merged with a CBCT volume obtained to plan the ablation. An offline tumor segmentation was performed to determine the number of antennae and their positioning within the tumor. The volume of ablation obtained, evaluated on CECT performed after 1 month, was compared with the pre-procedural predicted one. Feasibility was assessed on the basis of accuracy evaluation (visual evaluation [VE] and quantitative evaluation [QE]), technical success (TS), and technical effectiveness (TE). Seven of the patients with lung tumor treated by percutaneous thermal ablation were selected and treated on the basis of the 3D CBCT fusion imaging. In all cases the volume of ablation predicted was in accordance with that obtained. The difference in volume between predicted ablation volumes and obtained ones on CECT at 1 month was 1.8 cm(3) (SD ± 2, min. 0.4, max. 0.9) for MW and 0.9 cm(3) (SD ± 1.1, min. 0.1, max. 0.7) for RF. Use of pre-procedural 3D CBCT fusion imaging could be useful to define expected ablation volumes. However, more patients are needed to ensure stronger evidence. © The Foundation Acta Radiologica 2015.
Re-188 Enhances the Inhibitory Effect of Bevacizumab in Non-Small-Cell Lung Cancer.
Xiao, Jie; Xu, Xiaobo; Li, Xiao; Li, Yanli; Liu, Guobing; Tan, Hui; Shen, Hua; Shi, Hongcheng; Cheng, Dengfeng
2016-09-30
The malignant behaviors of solid tumors such as growth, infiltration and metastasis are mainly nourished by tumor neovascularization. Thus, anti-angiogenic therapy is key to controlling tumor progression. Bevacizumab, a humanized anti-vascular endothelial growth factor (VEGF) antibody, plus chemotherapy or biological therapy can prolong survival for cancer patients, but treatment-related mortality is a concern. To improve inhibitory effect and decrease side-effects on non-small-cell lung cancer (NSCLC), we used Re-188, which is a β emitting radionuclide, directly labeled with bevacizumab for radioimmunotherapy in a human A549 tumor model. Cytotoxic assay data showed that, after 188 ReO₄ - or 188 Re-bevacizumab at different concentration for 4 and 24 h, a time- and radioactivity does-dependent reduction in cell viability occurred. Also, an apoptosis assay conformed great apoptosis in the 188 Re-bevacizumab group compared with controls and other treatment groups. In vivo, tumor volumes in the 188 Re-bevacizumab (11.1 MBq/mice) group were not reduced but growth was delayed compared with other groups. Thus, 188 Re-bevacizumab enhanced the therapeutic effect of bevacizumab, suggesting a potential therapeutic strategy for NSCLC treatment.
Gamma Knife Radiosurgery for Uveal Metastases: Report of Three Cases and a Review of the Literature.
Ares, William J; Tonetti, Daniel; Yu, Jenny Y; Monaco, Edward A; Flickinger, John C; Lunsford, L Dade
2017-02-01
Uveal metastases are ophthalmologic tumors that have historically been treated by fractionated external beam radiation therapy or invasive brachytherapy. The need for rapid response and less invasive management options led the authors to explore the use of Gamma Knife stereotactic radiosurgery (SRS) for this common problem. Interventional case series. To prevent eye movement during the procedure, all 3 patients underwent a retrobulbar anesthetic block followed by magnetic resonance imaging to detect the target. All tumors were treated in a single procedure using the 4C or Perfexion Gamma Knife. The tumors received a minimal tumor dose of 14-20 Gy. Two patients also underwent SRS for additional intracranial metastases. At follow-up, performed between 4 and 15 months after SRS, all 3 patients demonstrated a reduction in uveal tumor volumes. One patient developed decreased visual acuity secondary to radiation retinopathy. In this early experience, SRS was found to be an effective management option for uveal metastases associated with systemic cancer. Patients can be screened and treated effectively early after diagnosis using a joint approach between ophthalmologists and neurosurgeons. Systemic oncologic care can continue without interruption. Copyright © 2016 Elsevier Inc. All rights reserved.
Schwarzenböck, Sarah M; Knieling, Anna; Souvatzoglou, Michael; Kurth, Jens; Steiger, Katja; Eiber, Matthias; Esposito, Irene; Retz, Margitta; Kübler, Hubert; Gschwend, Jürgen E; Schwaiger, Markus; Krause, Bernd J; Thalgott, Mark
2016-09-27
Recent studies have shown promising results of neoadjuvant therapy in prostate cancer (PC). The aim of this study was to evaluate the potential of [11C]Choline PET/CT in therapy response monitoring after combined neoadjuvant docetaxel chemotherapy and complete androgen blockade in locally advanced and high risk PC patients. In [11C]Choline PET/CT there was a significant decrease of SUVmax and SUVmean (p = 0.004, each), prostate volume (p = 0.005) and PSA value (p = 0.003) after combined neoadjuvant therapy. MRI showed a significant prostate and tumor volume reduction (p = 0.003 and 0.005, respectively). Number of apoptotic cells was significantly higher in prostatectomy specimens of the therapy group compared to pretherapeutic biopsies and the control group (p = 0.02 and 0.003, respectively). 11 patients received two [11C]Choline PET/CT and MRI scans before and after combined neoadjuvant therapy followed by radical prostatectomy and pelvic lymph node dissection. [11C]Choline uptake, prostate and tumor volume, PSA value (before/after neoadjuvant therapy) and apoptosis (of pretherapeutic biopsy/posttherapeutic prostatectomy specimens of the therapy group and prostatectomy specimens of a matched control group without neoadjuvant therapy) were assessed and tested for differences and correlation using SPSS. The results showing a decrease in choline uptake after combined neoadjuvant therapy (paralleled by regressive and apoptotic changes in histopathology) confirm the potential of [11C]Choline PET/CT to monitor effects of neoadjuvant therapy in locally advanced and high risk PC patients. Further studies are recommended to evaluate its use during the course of neoadjuvant therapy for early response assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
Purpose: To explore 18F-FDG uptake heterogeneity of primary tumor and lymphoma tumor by texture features of PET image and quantify the heterogeneity difference between primary tumor and lymphoma tumor. Methods: 18 patients with primary tumor and lymphoma tumor in lung cancer were enrolled. All patients underwent whole-body 18F-FDG PET/CT scans before treatment. Texture features, based on Gray-level Co-occurrence Matrix, second and high order matrices are extracted from code using MATLAB software to quantify 18F-FDG uptake heterogeneity. The relationships of volume between energy, entropy, correlation, homogeneity and contrast were analyzed. Results: For different cases, tumor heterogeneity was not the same. Texturemore » parameters (contrast, entropy, and correlation) of lymphoma were lower than primary tumor. On the contrast, the texture parameters (energy, homogeneity and inverse different moment) of lymphoma were higher than primary tumor. Significantly, correlations were observed between volume and energy (primary, r=−0.194, p=0.441; lymphoma, r=−0.339, p=0.582), homogeneity (primary, r=−0.146, p=0.382; lymphoma, r=−0.193, p=0.44), inverse difference moment (primary, r=−0.14, p=0.374; lymphoma, r=−0.172, p=0.414) and a positive correlation between volume and entropy (primary, r=0.233, p=0.483; lymphoma, r=0.462, p=0.680), contrast (primary, r=0.159, p=0.399; lymphoma, r=0.341, p=0.584), correlation (primary, r=0.027, p=0.165; lymphoma, r=0.046, p=0.215). For the same patient, energy for primary and lymphoma tumor is equal. The volume of lymphoma is smaller than primary tumor, but the homogeneity were higher than primary tumor. Conclusion: This study showed that there were effective heterogeneity differences between primary and lymphoma tumor by FDG-PET image texture analysis.« less
Semi-automated brain tumor and edema segmentation using MRI.
Xie, Kai; Yang, Jie; Zhang, Z G; Zhu, Y M
2005-10-01
Manual segmentation of brain tumors from magnetic resonance images is a challenging and time-consuming task. A semi-automated method has been developed for brain tumor and edema segmentation that will provide objective, reproducible segmentations that are close to the manual results. Additionally, the method segments non-enhancing brain tumor and edema from healthy tissues in magnetic resonance images. In this study, a semi-automated method was developed for brain tumor and edema segmentation and volume measurement using magnetic resonance imaging (MRI). Some novel algorithms for tumor segmentation from MRI were integrated in this medical diagnosis system. We exploit a hybrid level set (HLS) segmentation method driven by region and boundary information simultaneously, region information serves as a propagation force which is robust and boundary information serves as a stopping functional which is accurate. Ten different patients with brain tumors of different size, shape and location were selected, a total of 246 axial tumor-containing slices obtained from 10 patients were used to evaluate the effectiveness of segmentation methods. This method was applied to 10 non-enhancing brain tumors and satisfactory results were achieved. Two quantitative measures for tumor segmentation quality estimation, namely, correspondence ratio (CR) and percent matching (PM), were performed. For the segmentation of brain tumor, the volume total PM varies from 79.12 to 93.25% with the mean of 85.67+/-4.38% while the volume total CR varies from 0.74 to 0.91 with the mean of 0.84+/-0.07. For the segmentation of edema, the volume total PM varies from 72.86 to 87.29% with the mean of 79.54+/-4.18% while the volume total CR varies from 0.69 to 0.85 with the mean of 0.79+/-0.08. The HLS segmentation method perform better than the classical level sets (LS) segmentation method in PM and CR. The results of this research may have potential applications, both as a staging procedure and a method of evaluating tumor response during treatment, this method can be used as a clinical image analysis tool for doctors or radiologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shih-Neng; Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Liao, Chih-Ying
2011-03-15
Purpose: To investigate the prognostic value of the volume reduction rate (VRR) in patients with head-and-neck cancer treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Seventy-six patients with oropharyngeal cancer (OPC) and another 76 with hypopharyngeal cancer (HPC) were enrolled in volumetric analysis. All patients received allocated radiotherapy courses. Adaptive computed tomography was done 4 to 5 weeks after the start of IMRT. Primary tumor volume measurement was derived using separate images for the pretreatment gross tumor volume (pGTV) and the interval gross tumor volume. Results: In the OPC group, the pGTV ranged from 6.6 to 242.6 mL (mean, 49.9more » mL), whereas the value of the VRR ranged from 0.014 to 0.74 (mean, 0.43). In HPC patients, the pGTV ranged from 4.1 to 152.4 mL (mean, 35.6 mL), whereas the VRR ranged from -1.15 to 0.79 (mean, 0.33). Multivariate analysis of the primary tumor relapse-free survival for OPC revealed three prognostic factors: T4 tumor (p = 0.0001, hazard ratio 7.38), pGTV {>=}20 mL (p = 0.01, hazard ratio 10.61), and VRR <0.5 (p = 0.001, hazard ratio 6.49). Multivariate analysis of the primary tumor relapse-free survival for HPC showed two prognostic factors: pGTV {>=}30 mL (p = 0.001, hazard ratio 2.87) and VRR <0.5 (p = 0.03, hazard ratio 2.25). Conclusion: The VRR is an outcome predictor for local control in OPC and HPC patients treated with IMRT. Those with large tumor volumes or a VRR <0.5 should be considered for a salvage operation or a dose-escalation scheme.« less
Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma
Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.
2016-01-01
Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187
Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC
Amato, Katherine R.; Wang, Shan; Hastings, Andrew K.; Youngblood, Victoria M.; Santapuram, Pranav R.; Chen, Haiying; Cates, Justin M.; Colvin, Daniel C.; Ye, Fei; Brantley-Sieders, Dana M.; Cook, Rebecca S.; Tan, Li; Gray, Nathanael S.; Chen, Jin
2014-01-01
Genome-wide analyses determined previously that the receptor tyrosine kinase (RTK) EPHA2 is commonly overexpressed in non–small cell lung cancers (NSCLCs). EPHA2 overexpression is associated with poor clinical outcomes; therefore, EPHA2 may represent a promising therapeutic target for patients with NSCLC. In support of this hypothesis, here we have shown that targeted disruption of EphA2 in a murine model of aggressive Kras-mutant NSCLC impairs tumor growth. Knockdown of EPHA2 in human NSCLC cell lines reduced cell growth and viability, confirming the epithelial cell autonomous requirements for EPHA2 in NSCLCs. Targeting EPHA2 in NSCLCs decreased S6K1-mediated phosphorylation of cell death agonist BAD and induced apoptosis. Induction of EPHA2 knockdown within established NSCLC tumors in a subcutaneous murine model reduced tumor volume and induced tumor cell death. Furthermore, an ATP-competitive EPHA2 RTK inhibitor, ALW-II-41-27, reduced the number of viable NSCLC cells in a time-dependent and dose-dependent manner in vitro and induced tumor regression in human NSCLC xenografts in vivo. Collectively, these data demonstrate a role for EPHA2 in the maintenance and progression of NSCLCs and provide evidence that ALW-II-41-27 effectively inhibits EPHA2-mediated tumor growth in preclinical models of NSCLC. PMID:24713656
Ultrasound image-guided therapy enhances antitumor effect of cisplatin.
Sasaki, Noboru; Kudo, Nobuki; Nakamura, Kensuke; Lim, Sue Yee; Murakami, Masahiro; Kumara, W R Bandula; Tamura, Yu; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi
2014-01-01
The aim of this study was to clarify whether ultrasound image-guided cisplatin delivery with an intratumor microbubble injection enhances the antitumor effect in a xenograft mouse model. Canine thyroid adenocarcinoma cells were used for all experiments. Before in vivo experiments, the cisplatin and microbubble concentration and ultrasound exposure time were optimized in vitro. For in vivo experiments, cells were implanted into the back of nude mice. Observed by a diagnostic ultrasound machine, a mixture of cisplatin and ultrasound contrast agent, Sonazoid, microbubbles was injected directly into tumors. The amount of injected cisplatin and microbubbles was 1 μg/tumor and 1.2 × 10(7) microbubbles/tumor, respectively, with a total injected volume of 20 μl. Using the same diagnostic machine, tumors were exposed to ultrasound for 15 s. The treatment was repeated four times. The combination of cisplatin, microbubbles, and ultrasound significantly delayed tumor growth as compared with no treatment (after 18 days, 157 ± 55 vs. 398 ± 49 mm(3), P = 0.049). Neither cisplatin alone nor the combination of cisplatin and ultrasound delayed tumor growth. The treatment did not decrease the body weight of mice. Ultrasound image-guided anticancer drug delivery may enhance the antitumor effects of drugs without obvious side effects.
Li, D; Yee, J A; Thompson, L U; Yan, L
1999-07-19
We investigated the effect of dietary supplementation with secoisolariciresinol diglycoside (SDG), a lignan precursor isolated from flaxseed, on experimental metastasis of B16BL6 murine melanoma cells in C57BL/6 mice. Four diets were compared: a basal diet (control group) and the basal diet supplemented with SDG at 73, 147 or 293 micromol/kg (equivalent to SDG provided in the 2.5, 5 or 10% flaxseed diet). Mice were fed the diet for 2 weeks before and after an intravenous injection of 0.6 x 10(5) tumor cells. At necropsy, the number and size of tumors that formed in the lungs were determined. The median number of tumors in the control group was 62, and those in the SDG-supplemented groups were 38, 36 and 29, respectively. The last was significantly different from the control (P < 0.01). Dietary supplementation with SDG at 73, 147 and 293 micromol/kg also decreased tumor size (tumor cross-sectional area and volume) in a dose-dependent manner compared with the control values. These results show that SDG reduced pulmonary metastasis of melanoma cells and inhibited the growth of metastatic tumors that formed in the lungs. It is concluded that dietary supplementation with SDG reduces experimental metastasis of melanoma cells in mice.
Mendez, Lucas Castro; Stuart, Silvia Radwanski; Guimarães, Roger Guilherme Rodrigues; Ramos, Clarissa Cerchi Angotti; de Paula, Lucas Assad; de Sales, Camila Pessoa; Chen, André Tsin Chih; Blasbalg, Roberto; Baroni, Ronaldo Hueb
2016-01-01
Purpose To evaluate tumor shrinking kinetics in order to implement image-guided brachytherapy (IGBT) for the treatment of patients with cervix cancer. Material and methods This study has prospectively evaluated tumor shrinking kinetics of thirteen patients with uterine cervix cancer treated with combined chemoradiation. Four high dose rate brachytherapy fractions were delivered during the course of pelvic external beam radiation therapy (EBRT). Magnetic resonance imaging (MRI) exams were acquired at diagnosis (D), first (B1), and third (B3) brachytherapy fractions. Target volumes (GTV and HR-CTV) were calculated by both the ellipsoid formula (VE) and MRI contouring (VC), which were defined by a consensus between at least two radiation oncologists and a pelvic expert radiologist. Results Most enrolled patients had squamous cell carcinoma and FIGO stage IIB disease, and initiated brachytherapy after the third week of pelvic external beam radiation. Gross tumor volume volume reduction from diagnostic MRI to B1 represented 61.9% and 75.2% of the initial volume, when measured by VE and VC, respectively. Only a modest volume reduction (15-20%) was observed from B1 to B3. Conclusions The most expressive tumor shrinking occurred in the first three weeks of oncological treatment and was in accordance with gynecological examination. These findings may help in IGBT implementation. PMID:27648083
Forghani, Parvin; Khorramizadeh, Mohammad R; Waller, Edmund K
2014-04-01
Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b(+) Gr-1(+) MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b(+) Gr-1(+) MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Forghani, Parvin; Khorramizadeh, Mohammad R; Waller, Edmund K
2014-01-01
Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b+ Gr-1+ MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b+Gr-1+ MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs. PMID:24574320
Gamma knife radiosurgery for cerebellopontine angle epidermoid tumors.
El-Shehaby, Amr M N; Reda, Wael A; Abdel Karim, Khaled M; Emad Eldin, Reem M; Nabeel, Ahmed M
2017-01-01
Intracranial epidermoid tumors are commonly found in the cerebellopontine angle where they usually present with either trigeminal neuralgia or hemifacial spasm. Radiosurgery for these tumors has rarely been reported. The purpose of this study is to assess the safety and clinical outcome of the treatment of cerebellopontine epidermoid tumors with gamma knife radiosurgery. This is a retrospective study involving 12 patients harboring cerebellopontine angle epidermoid tumors who underwent 15 sessions of gamma knife radiosurgery. Trigeminal pain was present in 8 patients and hemifacial spasm in 3 patients. All cases with trigeminal pain were receiving medication and still uncontrolled. One patient with hemifacial spasm was medically controlled before gamma knife and the other two were not. Two patients had undergone surgical resection prior to gamma knife treatment. The median prescription dose was 11 Gy (10-11 Gy). The tumor volumes ranged from 3.7 to 23.9 cc (median 10.5 cc). The median radiological follow up was 2 years (1-5 years). All tumors were controlled and one tumor shrank. The median clinical follow-up was 5 years. The trigeminal pain improved or disappeared in 5 patients, and of these, 4 cases stopped their medication and one decreased it. The hemifacial spasm resolved in 2 patients who were able to stop their medication. Facial palsy developed in 1 patient and improved with conservative treatment. Transient diplopia was also reported in 2 cases. Gamma knife radiosurgery provides good clinical control for cerebellopontine angle epidermoid tumors.
Gamma knife radiosurgery for cerebellopontine angle epidermoid tumors
El-Shehaby, Amr M. N.; Reda, Wael A.; Abdel Karim, Khaled M.; Emad Eldin, Reem M.; Nabeel, Ahmed M.
2017-01-01
Background: Intracranial epidermoid tumors are commonly found in the cerebellopontine angle where they usually present with either trigeminal neuralgia or hemifacial spasm. Radiosurgery for these tumors has rarely been reported. The purpose of this study is to assess the safety and clinical outcome of the treatment of cerebellopontine epidermoid tumors with gamma knife radiosurgery. Methods: This is a retrospective study involving 12 patients harboring cerebellopontine angle epidermoid tumors who underwent 15 sessions of gamma knife radiosurgery. Trigeminal pain was present in 8 patients and hemifacial spasm in 3 patients. All cases with trigeminal pain were receiving medication and still uncontrolled. One patient with hemifacial spasm was medically controlled before gamma knife and the other two were not. Two patients had undergone surgical resection prior to gamma knife treatment. The median prescription dose was 11 Gy (10–11 Gy). The tumor volumes ranged from 3.7 to 23.9 cc (median 10.5 cc). Results: The median radiological follow up was 2 years (1–5 years). All tumors were controlled and one tumor shrank. The median clinical follow-up was 5 years. The trigeminal pain improved or disappeared in 5 patients, and of these, 4 cases stopped their medication and one decreased it. The hemifacial spasm resolved in 2 patients who were able to stop their medication. Facial palsy developed in 1 patient and improved with conservative treatment. Transient diplopia was also reported in 2 cases. Conclusion: Gamma knife radiosurgery provides good clinical control for cerebellopontine angle epidermoid tumors. PMID:29184709
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guthier, C; University Medical Center Mannheim, Mannheim; Harvard Medical School, Boston, MA
Purpose: Inverse treatment planning (ITP) for interstitial HDR brachytherapy of gynecologic cancers seeks to maximize coverage of the clinical target volumes (tumor and vagina) while respecting dose-volume-histogram related dosimetric measures (DMs) for organs at risk (OARs). Commercially available ITP tools do not support DM-based planning because it is computationally too expensive to solve. In this study we present a novel approach that allows fast ITP for gynecologic cancers based on DMs for the first time. Methods: This novel strategy is an optimization model based on a smooth DM-based objective function. The smooth approximation is achieved by utilizing a logistic functionmore » for the evaluation of DMs. The resulting nonconvex and constrained optimization problem is then optimized with a BFGS algorithm. The model was evaluated using the implant geometry extracted from 20 patient treatment plans under an IRB-approved retrospective study. For each plan, the final DMs were evaluated and compared to the original clinical plans. The CTVs were the contoured tumor volume and the contoured surface of the vagina. Statistical significance was evaluated with a one-sided paired Wilcoxon signed-rank test. Results: As did the clinical plans, all generated plans fulfilled the defined DMs for OARs. The proposed strategy showed a statistically significant improvement (p<0.001) in coverage of the tumor and vagina, with absolute improvements of related DMs of (6.9 +/− 7.9)% and (28.2 +/− 12.0)%, respectively. This was achieved with a statistically significant (p<0.01) decrease of the high-dose-related DM for the tumor. The runtime of the optimization was (2.3 +/− 2.0) seconds. Conclusion: We demonstrated using clinical data that our novel approach allows rapid DM-based optimization with improved coverage of CTVs with fewer hot spots. Being up to three orders of magnitude faster than the current clinical practice, the method dramatically shortens planning time.« less
Feasibility of Proton Beam Therapy for Ocular Melanoma Using a Novel 3D Treatment Planning Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartsell, William F., E-mail: whartsell@chicagocancer.org; Kapur, Rashmi; Hartsell, Siobhan O'Connor
Purpose: We evaluated sparing of normal structures using 3-dimensional (3D) treatment planning for proton therapy of ocular melanomas. Methods and Materials: We evaluated 26 consecutive patients with choroidal melanomas on a prospective registry. Ophthalmologic work-up included fundoscopic photographs, fluorescein angiography, ultrasonographic evaluation of tumor dimensions, and magnetic resonance imaging of orbits. Three tantalum clips were placed as fiducial markers to confirm eye position for treatment. Macula, fovea, optic disc, optic nerve, ciliary body, lacrimal gland, lens, and gross tumor volume were contoured on treatment planning compute tomography scans. 3D treatment planning was performed using noncoplanar field arrangements. Patients were typicallymore » treated with 3 fields, with at least 95% of planning target volume receiving 50 GyRBE in 5 fractions. Results: Tumor stage was T1a in 10 patients, T2a in 10 patients, T2b in 1 patient, T3a in 2 patients, T3b in 1 patient, and T4a in 2 patients. Acute toxicity was mild. All patients completed treatment as planned. Mean optic nerve dose was 10.1 Gy relative biological effectiveness (RBE). Ciliary body doses were higher for nasal (mean: 11.4 GyRBE) than temporal tumors (5.8 GyRBE). Median follow-up was 31 months (range: 18-40 months). Six patients developed changes which required intraocular bevacizumab or corticosteroid therapy, but only 1 patient developed neovascular glaucoma. Five patients have since died: 1 from metastatic disease and 4 from other causes. Two patients have since required enucleation: 1 due to tumor and 1 due to neovascular glaucoma. Conclusions: 3D treatment planning can be used to obtain appropriate coverage of choroidal melanomas. This technique is feasible with relatively low doses to anterior structures, and appears to have acceptable rates of local control with low risk of enucleation. Further evaluation and follow-up is needed to determine optimal dose-volume relationships for organs at risk to decrease complications rates.« less
Expression of Ki-67 and P16 INK4a in chemically-induced perioral squamous cell carcinomas in mice.
Alves, Ângela Valéria Farias; Ribeiro, Danielle Rodrigues; Lima, Sonia Oliveira; Reis, Francisco Prado; Soares, Andréa Ferreira; Gomes, Margarete Zanardo; Albuquerque, Ricardo Luiz Cavalcanti de
2016-01-01
to evaluate the influence of Ki-67 and P16INK4a proteins immunohistochemical expressions on the clinical and morphological parameters of perioral squamous cell carcinoma induced with 9,10-dimethyl-1,2-benzanthracene (DMBA) in mice. we topically induced the lesions in the oral commissure of ten Swiss mice for 20 weeks, determining the time to tumors onset and the average tumor volume up to 26 weeks. In histopathological analysis, the variables studied were histological malignancy grade and the immunohistochemical expression of Ki-67 and P16INK4a proteins. The correlation between variables was determined by application of the Spearman correlation test. the mean time to onset of perioral lesions was 21.1 ± 2.13 weeks; mean tumor volume was 555.91 ± 205.52 mm3. Of the induced tumors, 80% were classified as low score and 20% high score. There was diffuse positivity for Ki-67 in 100% of lesions - Proliferation Index (PI) of 50.1 ± 18.0. There was a strong direct correlation between Ki-67 immunoreactivity and tumor volume (R = 0.702) and a low correlation with the malignancy score (R = 0.486). The P16INK4a protein expression was heterogeneous, showing a weak correlation with tumor volume (R = 0.334). There was no correlation between the immunohistochemical expression of the two proteins studied. in an experimental model of DMBA-induced perioral carcinogenesis, tumor progression was associated with the tumor proliferative fraction (Ki-67 positive cells) and with tumor histological grading, but not with P16INK4a expression. avaliar a influência da expressão imuno-histoquímica das proteínas Ki-67 e p16INK4a sobre parâmetros clínico-morfológicos em carcinomas espinocelulares periorais quimicamente induzidos com 9,10-dimetil-1,2-benzantraceno (DMBA) em modelo murino. as lesões foram induzidas topicamente na comissura labial de dez camundongos Swiss durante 20 semanas, sendo determinado o momento de surgimento dos tumores e volume tumoral médio até 26 semanas. Na análise histopatológica, as variáveis estudadas foram gradação histológica de malignidade tumoral e expressão imuno-histoquímica das proteínas Ki-67 e p16INK4a. A correlação entre as variáveis estudadas foi determinada pela aplicação do teste de correlação de Spearman. o tempo médio de surgimento das lesões periorais foi 21,1±2,13 semanas. Volume tumoral médio foi de 555,91±205,52mm3. Dos tumores produzidos, 80% foram classificados como de baixo escore e 20%, alto escore. Evidenciou-se positividade difusa para Ki-67 em 100% das lesões - índice de marcação (PI) de 50,1±18,0. Verificou-se correlação direta forte entre a imunoexpressão do Ki-67 e o volume tumoral (R=0,702) e fraca correlação com o escore de malignidade (R=0,486). A expressão da proteína p16INK4a foi heterogênea, mostrando fraca correlação com o volume tumoral (R=0,334). Não houve correlação entre a expressão imuno-histoquímica das duas proteínas estudadas. Em modelo experimental de carcinogênese perioral DMBA-induzida, a progressão tumoral está associada à fração proliferativa do tumor (células ki-67 positivas) e com a gradação histológica tumoral, porém não com a expressão da p16INK4a.
Daft, Paul G; Yang, Yang; Napierala, Dobrawa; Zayzafoon, Majd
2015-01-01
Osteosarcoma (OS) is a hyperproliferative malignant tumor that requires a high vascular density to maintain its large volume. Vascular Endothelial Growth Factor (VEGF) plays a crucial role in angiogenesis and acts as a paracrine and autocrine agent affecting both endothelial and tumor cells. The alpha-Ca2+/Calmodulin kinase two (α-CaMKII) protein is an important regulator of OS growth. Here, we investigate the role of α-CaMKII-induced VEGF in the growth and tumorigenicity of OS. We show that the pharmacologic and genetic inhibition of α-CaMKII results in decreases in VEGF gene expression (50%) and protein secretion (55%), while α- CaMKII overexpression increases VEGF gene expression (250%) and protein secretion (1,200%). We show that aggressive OS cells (143B) express high levels of VEGF receptor 2 (VEGFR-2) and respond to exogenous VEGF (100nm) by increasing intracellular calcium (30%). This response is ameliorated by the VEGFR inhibitor CBO-P11, suggesting that secreted VEGF results in autocrine stimulated α-CaMKII activation. Furthermore, we show that VEGF and α-CaMKII inhibition decreases the transactivation of the HIF-1α and AP-1 reporter constructs. Additionally, chromatin immunoprecipitation assay shows significantly decreased binding of HIF-1α and AP-1 to their responsive elements in the VEGF promoter. These data suggest that α-CaMKII regulates VEGF transcription by controlling HIF-1α and AP-1 transcriptional activities. Finally, CBO-P11, KN-93 (CaMKII inhibitor) and combination therapy significantly reduced tumor burden in vivo. Our results suggest that VEGF-induced OS tumor growth is controlled by CaMKII and dual therapy by CaMKII and VEGF inhibitors could be a promising therapy against this devastating adolescent disease.
Daft, Paul G.; Yang, Yang; Napierala, Dobrawa; Zayzafoon, Majd
2015-01-01
Osteosarcoma (OS) is a hyperproliferative malignant tumor that requires a high vascular density to maintain its large volume. Vascular Endothelial Growth Factor (VEGF) plays a crucial role in angiogenesis and acts as a paracrine and autocrine agent affecting both endothelial and tumor cells. The alpha-Ca2+/Calmodulin kinase two (α-CaMKII) protein is an important regulator of OS growth. Here, we investigate the role of α-CaMKII-induced VEGF in the growth and tumorigenicity of OS. We show that the pharmacologic and genetic inhibition of α-CaMKII results in decreases in VEGF gene expression (50%) and protein secretion (55%), while α- CaMKII overexpression increases VEGF gene expression (250%) and protein secretion (1,200%). We show that aggressive OS cells (143B) express high levels of VEGF receptor 2 (VEGFR-2) and respond to exogenous VEGF (100nm) by increasing intracellular calcium (30%). This response is ameliorated by the VEGFR inhibitor CBO-P11, suggesting that secreted VEGF results in autocrine stimulated α-CaMKII activation. Furthermore, we show that VEGF and α-CaMKII inhibition decreases the transactivation of the HIF-1α and AP-1 reporter constructs. Additionally, chromatin immunoprecipitation assay shows significantly decreased binding of HIF-1α and AP-1 to their responsive elements in the VEGF promoter. These data suggest that α-CaMKII regulates VEGF transcription by controlling HIF-1α and AP-1 transcriptional activities. Finally, CBO-P11, KN-93 (CaMKII inhibitor) and combination therapy significantly reduced tumor burden in vivo. Our results suggest that VEGF-induced OS tumor growth is controlled by CaMKII and dual therapy by CaMKII and VEGF inhibitors could be a promising therapy against this devastating adolescent disease. PMID:25860662
Lloyd, Jessica C.; Masko, Elizabeth M.; Wu, Chenwei; Keenan, Melissa M.; Pilla, Danielle M.; Aronson, William J.; Chi, Jen-Tsan A.; Freedland, Stephen J.
2013-01-01
Background Previous mouse studies suggest that decreasing dietary fat content can slow prostate cancer (PCa) growth. To our knowledge, no study has yet compared the effect of multiple different fats on PCa progression. We sought to systematically compare the effect of fish oil, olive oil, corn oil, and animal fat on PCa progression. Methods A total of 96 male SCID mice were injected with LAPC-4 human PCa cells. Two weeks following injection, mice were randomized to a fish oil, olive oil, corn oil, or animal fat-based Western diet (35% kcals from fat). Animals were euthanized when tumors reached 1,000mm3. Serum was collected at sacrifice and assayed for PSA, insulin, IGF-1, IGFBP-3, and PGE-2 levels. Tumors were also assayed for PGE-2 and COX-2 levels and global gene expression analyzed using Affymetrix microarrays. Results Mice weights and tumor volumes were equivalent across groups at randomization. Overall, fish oil consumption was associated with improved survival, relative to other dietary groups (p=0.014). On gene expression analyses, the fish oil group had decreased signal in pathways related to mitochondrial physiology and insulin synthesis/secretion. Conclusions In this xenograft model, we found that consuming a diet in which fish oil was the only fat source slowed tumor growth and improved survival, compared to mice consuming diets composed of olive oil, corn oil, or animal fat. While prior studies showed that the amount of fat is important for PCa growth, the current study suggests that type of dietary fat consumed may also be important. PMID:23877027
Zhang, J; Zuo, P L; Cheng, K B; Yu, A H; Cheng, X G
2016-04-18
To investigate the feasibility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters in differentiating musculoskeletal tumors with different behaviours of pathological findings before therapy. A total of 34 subjects of musculoskeletal tumors were involved in this retrospective analysis. DCE-MRI was performed using a fat-saturated 3D VIBE (volumetric interpolated breath-hold exam) imaging sequence with following parameters: FA, 10 degree; TR/TE, 5.6/2.4 ms; slice thickness, 4.0 mm with no intersection gap; field of view, 310 mm×213 mm; matrix, 256×178; voxel size, 1.2 mm×1.2 mm×4.0 mm; parallel imaging acceleration factor. The actuation time for the DCE-MRI sequence was 255 s with a temporal resolution of 5 s and 40 image volumes. Using pathological results as a gold standard, tumors were divided into benign, borderline and malignant tumors. Toft's model was used for calculation of K(trans) (volume transfer constant), Ve (extravascular extracellular space distribute volume per unit tissue volume) and Kep (microvascular permeability reflux constant). Those parameters were compared between the lesions and the control tissues using paired t tests. The one-way analysis of variance was used to assess the difference among benign, borderline and malignant tumors. P values <0.05 difference was statistically significant. Based on the WHO Classification of Tumours of Soft Tissue and Bone(2012) criteria, 34 patients were divided into three groups: 11 for benign tumors, 12 for borderline tumors, and 11 for malignancies. Compared with control tissues, K(trans) and Kep showed no difference, but Ve was increased in benign tumors, Kep showed no difference, but K(trans) and Ve were increased in borderline tumors,K(trans), Kep and Ve were increased in malignant tumors. K(trans) (P<0.001) and Kep (P<0.01) were significantly higher in malignant tumors than in benign and borderline tumors, but did not show any difference between benign tumors and borderline tumors. Ve was significantly higher in malignant tumors than in benign (P<0.05), but did not show any difference between malignant and borderline tumors, benign tumors and borderline tumors (P>0.05). DCE-MRI technique is useful to evaluate the pathological behaviour of musculoskeletal tumors. The quantitative analysis of DCE parameters in conjunction with conventional MR images can improve the accuracy of musculoskeletal tumor qualitative analysis.
Soylu Karapinar, Oya; Pinar, Neslihan; Özgür, Tümay; Özcan, Oğuzhan; Bayraktar, H Suphi; Kurt, Raziye Keskin; Nural, Orhan
2017-02-01
Dexpanthenol (Dxp), antioxidant and anti-inflammatory agent, plays an important role in the repair systems against oxidative stress and inflammatory response. The objective of this study is to determine the effect of Dxp on experimental endometriosis model. A prospective experimental study was conducted in Experimental Animal Laboratory of Mustafa Kemal University, Hatay. Twenty nonpregnant female Wistar albino rats, in which experimental model of endometriosis was surgically induced, were randomly divided into 2 groups. Group 1 was administered 500 mg/kg/d Dxp intraperitoneally for 14 days, and group 2 was given the same amount of saline solution. After 2 weeks of medication, the rats were killed and implant volumes, histopathologic scores; and levels of serum total antioxidant status, total oxidant status (TOS), and oxidative stress index (OSI) were evaluated. Plasma and peritoneal fluid levels of tumor necrosis factor α (TNF-α) were analyzed. The endometriotic implant volumes, histopathologic scores, and serum TOS and OSI values were significantly decreased ( P < .05) in the Dxp group compared to the control group. Plasma and peritoneal fluid TNF-α levels were significantly decreased ( P < .05) in the Dxp group compared to the control group. Dexpanthenol has free radical scavenger effects, and antioxidant properties has significantly regressed endometriotic implant volumes, histopathologic scores, and serum TOS and OSI values. Serum and peritoneal fluid TNF-α levels were significantly decreased in the Dxp group. So Dxp decreased oxidative stress.
Park, Hee Sun; Jae, Hwan Jun; Kim, Young Il; Son, Kyu Ri; Lee, Min Jong; Park, Jae Hyung; Kang, Won Jun; Yoon, Jung Hwan; Chung, Hesson; Lee, Kichang
2007-01-01
Objective We wanted to investigate the feasibility of using FDG-PET for evaluating the antitumor effect of intraarterial administration of a hexokinase II inhibitor, 3-bromopyruvate (3-BrPA), in a rabbit VX2 liver tumor model. Materials and Methods VX2 carcinoma was grown in the livers of ten rabbits. Two weeks later, liver CT was performed to confirm appropriate tumor growth for the experiment. After tumor volume-matched grouping of the rabbits, transcatheter intraarterial administration of 3-BrPA was performed (1 mM and 5 mM in five animals each, respectively). FDG-PET scan was performed the day before, immediately after and a week after 3-BrPA administration. FDG uptake was semiquantified by measuring the standardized uptake value (SUV). A week after treatment, the experimental animals were sacrificed and the necrosis rates of the tumors were calculated based on the histopathology. Results The SUV of the VX2 tumors before treatment (3.87 ±1.51 [mean ±SD]) was significantly higher than that of nontumorous liver parenchyma (1.72 ±0.34) (p < 0.0001, Mann-Whitney U test). The SUV was significantly decreased immediately after 3-BrPA administration (2.05 ±1.21) (p = 0.002, Wilcoxon signed rank test). On the one-week follow up PET scan, the FDG uptake remained significantly lower (SUV 1.41 ±0.73) than that before treatment (p = 0.002), although three out of ten animals showed a slightly increasing tendency for the FDG uptake. The tumor necrosis rate ranged from 50.00% to 99.90% (85.48% ±15.87). There was no significant correlation between the SUV or the SUV decrease rate and the tumor necrosis rate in that range. Conclusion Even though FDG-PET cannot exactly reflect the tumor necrosis rate, FDG-PET is a useful modality for the early assessment of the antitumor effect of intraarterial administration of 3-BrPA in VX2 liver tumor. PMID:17554189
Arterial Perfusion Imaging–Defined Subvolume of Intrahepatic Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hesheng, E-mail: hesheng@umich.edu; Farjam, Reza; Feng, Mary
2014-05-01
Purpose: To assess whether an increase in a subvolume of intrahepatic tumor with elevated arterial perfusion during radiation therapy (RT) predicts tumor progression after RT. Methods and Materials: Twenty patients with unresectable intrahepatic cancers undergoing RT were enrolled in a prospective, institutional review board–approved study. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was performed before RT (pre-RT), after delivering ∼60% of the planned dose (mid-RT) and 1 month after completion of RT to quantify hepatic arterial perfusion. The arterial perfusions of the tumors at pre-RT were clustered into low-normal and elevated perfusion by a fuzzy clustering-based method, and the tumor subvolumesmore » with elevated arterial perfusion were extracted from the hepatic arterial perfusion images. The percentage changes in the tumor subvolumes and means of arterial perfusion over the tumors from pre-RT to mid-RT were evaluated for predicting tumor progression post-RT. Results: Of the 24 tumors, 6 tumors in 5 patients progressed 5 to 21 months after RT completion. Neither tumor volumes nor means of tumor arterial perfusion at pre-RT were predictive of treatment outcome. The mean arterial perfusion over the tumors increased significantly at mid-RT in progressive tumors compared with the responsive tumors (P=.006). From pre-RT to mid-RT, the responsive tumors had a decrease in the tumor subvolumes with elevated arterial perfusion (median, −14%; range, −75% to 65%), whereas the progressive tumors had an increase of the subvolumes (median, 57%; range, −7% to 165%) (P=.003). Receiver operating characteristic analysis of the percentage change in the subvolume for predicting tumor progression post-RT had an area under the curve of 0.90. Conclusion: The increase in the subvolume of the intrahepatic tumor with elevated arterial perfusion during RT has the potential to be a predictor for tumor progression post-RT. The tumor subvolume could be a radiation boost candidate for response-driven adaptive RT.« less
Localization of liver tumors in freehand 3D laparoscopic ultrasound
NASA Astrophysics Data System (ADS)
Shahin, O.; Martens, V.; Besirevic, A.; Kleemann, M.; Schlaefer, A.
2012-02-01
The aim of minimally invasive laparoscopic liver interventions is to completely resect or ablate tumors while minimizing the trauma caused by the operation. However, restrictions such as limited field of view and reduced depth perception can hinder the surgeon's capabilities to precisely localize the tumor. Typically, preoperative data is acquired to find the tumor(s) and plan the surgery. Nevertheless, determining the precise position of the tumor is required, not only before but also during the operation. The standard use of ultrasound in hepatic surgery is to explore the liver and identify tumors. Meanwhile, the surgeon mentally builds a 3D context to localize tumors. This work aims to upgrade the use of ultrasound in laparoscopic liver surgery. We propose an approach to segment and localize tumors intra-operatively in 3D ultrasound. We reconstruct a 3D laparoscopic ultrasound volume containing a tumor. The 3D image is then preprocessed and semi-automatically segmented using a level set algorithm. During the surgery, for each subsequent reconstructed volume, a fast update of the tumor position is accomplished via registration using the previously segmented and localized tumor as a prior knowledge. The approach was tested on a liver phantom with artificial tumors. The tumors were localized in approximately two seconds with a mean error of less than 0.5 mm. The strengths of this technique are that it can be performed intra-operatively, it helps the surgeon to accurately determine the location, shape and volume of the tumor, and it is repeatable throughout the operation.
NASA Astrophysics Data System (ADS)
Agn, Mikael; Law, Ian; Munck af Rosenschöld, Per; Van Leemput, Koen
2016-03-01
We present a fully automated generative method for simultaneous brain tumor and organs-at-risk segmentation in multi-modal magnetic resonance images. The method combines an existing whole-brain segmentation technique with a spatial tumor prior, which uses convolutional restricted Boltzmann machines to model tumor shape. The method is not tuned to any specific imaging protocol and can simultaneously segment the gross tumor volume, peritumoral edema and healthy tissue structures relevant for radiotherapy planning. We validate the method on a manually delineated clinical data set of glioblastoma patients by comparing segmentations of gross tumor volume, brainstem and hippocampus. The preliminary results demonstrate the feasibility of the method.
Osteoclast inhibition impairs chondrosarcoma growth and bone destruction.
Otero, Jesse E; Stevens, Jeff W; Malandra, Allison E; Fredericks, Douglas C; Odgren, Paul R; Buckwalter, Joseph A; Morcuende, Jose
2014-12-01
Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
A new therapeutic proposal for inoperable osteosarcoma: Photodynamic therapy.
de Miguel, Guilherme Chohfi; Abrantes, Ana Margarida; Laranjo, Mafalda; Grizotto, Ana Yoshie Kitagawa; Camporeze, Bruno; Pereira, José Aires; Brites, Gonçalo; Serra, Arménio; Pineiro, Marta; Rocha-Gonsalves, António; Botelho, Maria Filomena; Priolli, Denise Gonçalves
2018-03-01
Osteosarcoma, a malignant tumor characterized by bone or osteoid formation, is the second most common primary bone neoplasm. Clinical symptoms include local and surrounding pain, unrelieved by rest or anesthesia. Osteosarcoma has a poor chemotherapeutic response with prognosis dependent on complete tumor excision. Therefore, for inoperable osteosarcoma new therapeutic strategies are needed. The present study aimed to develop murine models of cranial and vertebral osteosarcoma that facilitate simple clinical monitoring and real-time imaging to evaluate the outcome of photodynamic therapy based on a previously developed photosensitizer. Balb/c nude mice were divided into two groups: the cranial and vertebral osteosarcoma groups. Each group was further subdivided into the photodynamic therapy-treated and untreated groups. Images were obtained by scintigraphy with 99m Tc-MIBI and radiography. Tumor growth, necrotic area, osteoid matrix area, and inflammatory infiltration were analyzed. Cranial and vertebral tumors could be macroscopically observed and measured. Radiographic and scintigraphic images showed tumor cells present at the inoculation sites. After photodynamic therapy, scintigraphy showed lower tumoral radiopharmaceutical uptake, which correlated histologically with increased necrosis. Osteoid matrix volume increased, and tumor size decreased in all photodynamic therapy-treated animals. Cranial and vertebral osteosarcoma models in athymic mice are feasible and facilitate in vivo monitoring for the development of new therapies. Photodynamic therapy is a potential antitumoral treatment for surgically inoperable osteosarcoma. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Yongshun; Li, Xiaohong; Guo, Leiming; Wu, Xiaoyuan; He, Chunyu; Zhang, Song; Xiao, Yanjing; Yang, Yuanyuan; Hao, Daxuan
2015-08-01
Radiotherapy is an effective treatment for esophageal cancer; however, tumor resistance to radiation remains a major biological problem. The present study aimed to investigate whether inhibition of autophagy may decrease overall tumor resistance to radiation. The effects of the autophagy inhibitor 3-methyladenine (3-MA) on radiosensitivity were tested in the EC9706 human esophageal squamous cell carcinoma cell line by colony formation assay. Furthermore, the synergistic cytotoxic effects of 3-MA and radiation were assessed in a tumor xenograft model in nude mice. Mechanistic studies were performed using flow cytometry, immunohistochemistry and western blot analysis. The results of the present study demonstrated that radiation induced an accumulation of autophagosomes and 3-MA effectively inhibited radiation-induced autophagy. Inhibition of autophagy was shown to significantly increase the radiosensitivity of the tumors in vitro and in vivo. The enhancement ratio of sensitization in EC9706 cells was 1.76 when the cells were treated with 10 mM 3-MA, alongside ionizing radiation. In addition, autophagy inhibition increased apoptosis and reduced tumor cell proliferation. The combination of radiation and autophagy inhibition resulted in a significant reduction in tumor volume and vasculature in the murine model. The present study demonstrated in vitro and in vivo that radiation-induced autophagy has a protective effect against cell death, and inhibition of autophagy is able to enhance the radiosensitivity of esophageal squamous cell carcinoma.
CHEN, YONGSHUN; LI, XIAOHONG; GUO, LEIMING; WU, XIAOYUAN; HE, CHUNYU; ZHANG, SONG; XIAO, YANJING; YANG, YUANYUAN; HAO, DAXUAN
2015-01-01
Radiotherapy is an effective treatment for esophageal cancer; however, tumor resistance to radiation remains a major biological problem. The present study aimed to investigate whether inhibition of autophagy may decrease overall tumor resistance to radiation. The effects of the autophagy inhibitor 3-methyladenine (3-MA) on radiosensitivity were tested in the EC9706 human esophageal squamous cell carcinoma cell line by colony formation assay. Furthermore, the synergistic cytotoxic effects of 3-MA and radiation were assessed in a tumor xenograft model in nude mice. Mechanistic studies were performed using flow cytometry, immunohistochemistry and western blot analysis. The results of the present study demonstrated that radiation induced an accumulation of autophagosomes and 3-MA effectively inhibited radiation-induced autophagy. Inhibition of autophagy was shown to significantly increase the radiosensitivity of the tumors in vitro and in vivo. The enhancement ratio of sensitization in EC9706 cells was 1.76 when the cells were treated with 10 mM 3-MA, alongside ionizing radiation. In addition, autophagy inhibition increased apoptosis and reduced tumor cell proliferation. The combination of radiation and autophagy inhibition resulted in a significant reduction in tumor volume and vasculature in the murine model. The present study demonstrated in vitro and in vivo that radiation-induced autophagy has a protective effect against cell death, and inhibition of autophagy is able to enhance the radiosensitivity of esophageal squamous cell carcinoma. PMID:25891159
Kannan, Narayanan; Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekaran
2015-01-01
Cancer is a leading cause of death worldwide. Due to the toxic side effects of the commonly used chemotherapeutic drug cyclophosphamide (CTX), the use of herbal medicines with fewer side effects but having potential use as inducing anti-cancer outcomes in situ has become increasingly popular. The present study sought to investigate the effects of a methanolic extract of Bauhinia tomentosa against Dalton's ascites lymphoma (DAL) induced ascites as well as solid tumors in BALB/c mice. Specifically, B. tomentosa extract was administered intraperitonealy (IP) at 10 mg/kg. BW body weight starting just after tumor cell implantation and thereafter for 10 consecutive days. In the ascites tumor model hosts, administration of extract resulted in a 52% increase in the life span. In solid tumor models, co-administration of extract and CTX significantly reduced tumor volume (relative to in untreated hosts) by 73% compared to just by 52% when the extract alone was provided. Co-administration of the extract also mitigated CTX-induced toxicity, including decreases in WBC count, and in bone marrow cellularity and α-esterase activity. Extract treatment also attenuated any increases in serum levels of TNFα, iNOS, IL-1β, IL-6, GM-CSF, and VEGF seen in tumor-bearing hosts. This study confirmed that, the potent antitumor activity of B.tomentosa extract may be associated with immune modulatory effects by regulating anti-oxidants and cytokine levels.
Rios Piedra, Edgar A; Taira, Ricky K; El-Saden, Suzie; Ellingson, Benjamin M; Bui, Alex A T; Hsu, William
2016-02-01
Brain tumor analysis is moving towards volumetric assessment of magnetic resonance imaging (MRI), providing a more precise description of disease progression to better inform clinical decision-making and treatment planning. While a multitude of segmentation approaches exist, inherent variability in the results of these algorithms may incorrectly indicate changes in tumor volume. In this work, we present a systematic approach to characterize variability in tumor boundaries that utilizes equivalence tests as a means to determine whether a tumor volume has significantly changed over time. To demonstrate these concepts, 32 MRI studies from 8 patients were segmented using four different approaches (statistical classifier, region-based, edge-based, knowledge-based) to generate different regions of interest representing tumor extent. We showed that across all studies, the average Dice coefficient for the superset of the different methods was 0.754 (95% confidence interval 0.701-0.808) when compared to a reference standard. We illustrate how variability obtained by different segmentations can be used to identify significant changes in tumor volume between sequential time points. Our study demonstrates that variability is an inherent part of interpreting tumor segmentation results and should be considered as part of the interpretation process.
A PDE approach for quantifying and visualizing tumor progression and regression
NASA Astrophysics Data System (ADS)
Sintay, Benjamin J.; Bourland, J. Daniel
2009-02-01
Quantification of changes in tumor shape and size allows physicians the ability to determine the effectiveness of various treatment options, adapt treatment, predict outcome, and map potential problem sites. Conventional methods are often based on metrics such as volume, diameter, or maximum cross sectional area. This work seeks to improve the visualization and analysis of tumor changes by simultaneously analyzing changes in the entire tumor volume. This method utilizes an elliptic partial differential equation (PDE) to provide a roadmap of boundary displacement that does not suffer from the discontinuities associated with other measures such as Euclidean distance. Streamline pathways defined by Laplace's equation (a commonly used PDE) are used to track tumor progression and regression at the tumor boundary. Laplace's equation is particularly useful because it provides a smooth, continuous solution that can be evaluated with sub-pixel precision on variable grid sizes. Several metrics are demonstrated including maximum, average, and total regression and progression. This method provides many advantages over conventional means of quantifying change in tumor shape because it is observer independent, stable for highly unusual geometries, and provides an analysis of the entire three-dimensional tumor volume.
Effect of tumor shape, size, and tissue transport properties on drug delivery to solid tumors
2014-01-01
Background The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, drug extravasation from microvessels or to lymphatic vessels. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to investigate the effect of tumor shape and size on drug delivery to solid tumor. Methods The advanced mathematical model used in our previous work is further developed by adding solute transport equation to the governing equations. After applying appropriate boundary and initial conditions on tumor and surrounding tissue geometry, the element-based finite volume method is used for solving governing equations of drug delivery in solid tumor. Also, the effects of size and shape of tumor and some of tissue transport parameters such as effective pressure and hydraulic conductivity on interstitial fluid flow and drug delivery are investigated. Results Sensitivity analysis shows that drug delivery in prolate shape is significantly better than other tumor shapes. Considering size effect, increasing tumor size decreases drug concentration in interstitial fluid. This study shows that dependency of drug concentration in interstitial fluid to osmotic and intravascular pressure is negligible. Conclusions This study shows that among diffusion and convection mechanisms of drug transport, diffusion is dominant in most different tumor shapes and sizes. In tumors in which the convection has considerable effect, the drug concentration is larger than that of other tumors at the same time post injection. PMID:24987457
Role of Smac in Lung Carcinogenesis and Therapy
2017-07-01
tumor regression mediated by TNF-α as shown below. Debio 1143 enhances the efficacy of anti-PD1and increases tumor- infiltrating lymphocytes...agents in both tumor models, as measured by tumor volumes. Tumor infiltrating lymphocytes (TILs) were significantly increased in tumors treated with
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massager, Nicolas; Nissim, Ouzi; Delbrouck, Carine
2006-04-01
Purpose: To analyze the relationship between hearing preservation after gamma knife radiosurgery (GKR) for vestibular schwannoma (VS) and some volumetric and dosimetric parameters of the intracanalicular components of VS. Methods and Materials: This study included 82 patients with a VS treated by GKR; all patients had no NF2 disease, a Gardner-Robertson hearing class 1-4 before treatment, a marginal dose of 12 Gy, and a radiologic and audiologic follow-up {>=}1 year post-GKR. The volume of both the entire tumor and the intracanalicular part of the tumor and the mean and integrated dose of these two volumes were correlated to the auditorymore » outcomes of patients. Results: At last hearing follow-up, 52 patients had no hearing worsening, and 30 patients had an increase of {>=}1 class on Gardner-Robertson classification. We found that hearing preservation after GKR is significantly correlated with the intracanalicular tumor volume, as well as with the integrated dose delivered to the intracanalicular tumor volume. Conclusions: Some volumetric and dosimetric parameters of the intracanalicular part of the tumor influence hearing preservation after GKR of VS. Consequently, we advise the direct treatment of patients with preserved functional hearing and a VS including a small intracanalicular volume.« less
MRI Brain Tumor Segmentation and Necrosis Detection Using Adaptive Sobolev Snakes.
Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen
2014-03-21
Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at different points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D diffusion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.
MRI brain tumor segmentation and necrosis detection using adaptive Sobolev snakes
NASA Astrophysics Data System (ADS)
Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen
2014-03-01
Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at di erent points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D di usion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.
Farace, Paolo; Merigo, Flavia; Fiorini, Silvia; Nicolato, Elena; Tambalo, Stefano; Daducci, Alessandro; Degrassi, Anna; Sbarbati, Andrea; Rubello, Domenico; Marzola, Pasquina
2011-04-01
To compare DCE-MRI experiments performed using a standard small-molecular (Gd-DTPA) and an albumin-binding (MS-325) contrast agent in two carcinoma models with different stromal content. DU-145 or BXPC-3 cancer cells were subcutaneously injected into nude mice. DCE-MRI was performed by a bolus injection of Gd-DTPA or MS-325 about 2 weeks after inoculation. For quantitative analysis a volume of interest was manually drawn over each tumor. To address the heterogeneous enhancement, each tumor volume was then divided into the 20% most-enhancing and the remaining 80% least-enhancing fractions. Mean tumor enhancement was calculated over these selected tumor volumes and compared between tumor groups and contrast agents. Maps of differential enhancement, peak enhancement and time-to-peak were used for visual evaluation. CD31 and VEGF immunohistochemistry were performed in excised tumors. In the 80% least-enhancing volume, at late time points of the dynamic scan, the mean enhancement elicited by MS-325 was higher in BXPC-3 than in DU-145 tumors. In the 20% most-enhancing volume, using either contrast agents, significant difference between the two tumors types were observed only early, while at later time points of the dynamic scan the difference were obscured by the faster washout observed in the BXPC-3 tumors. Enhancement maps confirmed that BXPC-3 tumors were characterized by marked washout rate using either contrast agent, particularly in the higher enhancing peripheral rim. With MS-325 this washout pattern appeared to be specific to the BXPC-3 carcinomas, since it was not observed in the DU-145 tumors. Finally, in both tumor types, MS-325 produced significantly higher enhancement than Gd-DTPA in the late phase of the dynamic scan. Ex vivo analysis confirmed the marked presence of aberrant infiltrative stroma in BXPC-3 tumors, in which tumor vessels were embedded. In all tumors the central portion was less viable and less infiltrated by stromal tissue then the peripheral areas. Contrast distribution proved to be related to stromal content, which presumably produced the higher enhancement and faster washout observed in the BXPC-3 tumors. In particular, 'early' contrast-enhanced MRI, appeared as the most sensitive technique to detect the tumor portions characterized by a high stromal content, i.e. the peripheral rim of the BXPC-3 tumors. Since the same tumor models were recently investigated using FDG-PET imaging, showing inverse relationship between FDG uptake and stromal content, contrast-enhanced MRI and FDG-PET could provide complementary and comprehensive sensitivity in the assessment of carcinomas. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
Reynaud, Olivier; Winters, Kerryanne Veronica; Hoang, Dung Minh; Wadghiri, Youssef Zaim; Novikov, Dmitry S; Kim, Sungheon Gene
2015-01-01
Purpose To disentangle the free diffusivity (D0) and cellular membrane restrictions, via their surface-to-volume ratio (S/V), using the frequency-dependence of the diffusion coefficient D(ω), measured in brain tumors in the short diffusion-time regime using oscillating gradients (OGSE). Methods In vivo and ex vivo OGSE experiments were performed on mice bearing the GL261 murine glioma model (n=10) to identify the relevant time/frequency (t/ω) domain where D(ω) linearly decreases with ω−1/2. Parametric maps (S/V, D0) are compared to conventional DWI metrics. The impact of frequency range and temperature (20°C vs. 37°C) on S/V and D0 is investigated ex vivo. Results The validity of the short diffusion-time regime is demonstrated in vivo and ex vivo. Ex vivo measurements confirm that the purely geometric restrictions embodied in S/V are independent from temperature and frequency range, while the temperature dependence of the free diffusivity D0 is similar to that of pure water. Conclusion Our results suggest that D(ω) in the short diffusion-time regime can be used to uncouple the purely geometric restriction effect, such as S/V, from the intrinsic medium diffusivity properties, and provides a non-empirical and objective way to interpret frequency/time-dependent diffusion changes in tumors in terms of objective biophysical tissue parameters. PMID:26207354
A link between premenopausal iron deficiency and breast cancer malignancy
2013-01-01
Background Young breast cancer (BC) patients less than 45 years old are at higher risk of dying from the disease when compared to their older counterparts. However, specific risk factors leading to this poorer outcome have not been identified. Methods One candidate is iron deficiency, as this is common in young women and a clinical feature of young age. In the present study, we used immuno-competent and immuno-deficient mouse xenograft models as well as hemoglobin as a marker of iron status in young BC patients to demonstrate whether host iron deficiency plays a pro-metastatic role. Results We showed that mice fed an iron-deficient diet had significantly higher tumor volumes and lung metastasis compared to those fed normal iron diets. Iron deficiency mainly altered Notch but not TGF-β and Wnt signaling in the primary tumor, leading to the activation of epithelial mesenchymal transition (EMT). This was revealed by increased expression of Snai1 and decreased expression of E-cadherin. Importantly, correcting iron deficiency by iron therapy reduced primary tumor volume, lung metastasis, and reversed EMT markers in mice. Furthermore, we found that mild iron deficiency was significantly associated with lymph node invasion in young BC patients (p<0.002). Conclusions Together, our finding indicates that host iron deficiency could be a contributor of poor prognosis in young BC patients. PMID:23800380
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Y; Aileen, C; Kozono, D
Purpose: Quantification of volume changes on CBCT during SBRT for NSCLC may provide a useful radiological marker for radiation response and adaptive treatment planning, but the reproducibility of CBCT volume delineation is a concern. This study is to quantify inter-scan/inter-observer variability in tumor volume delineation on CBCT. Methods: Twenty earlystage (stage I and II) NSCLC patients were included in this analysis. All patients were treated with SBRT with a median dose of 54 Gy in 3 to 5 fractions. Two physicians independently manually contoured the primary gross tumor volume on CBCTs taken immediately before SBRT treatment (Pre) and after themore » same SBRT treatment (Post). Absolute volume differences (AVD) were calculated between the Pre and Post CBCTs for a given treatment to quantify inter-scan variability, and then between the two observers for a given CBCT to quantify inter-observer variability. AVD was also normalized with respect to average volume to obtain relative volume differences (RVD). Bland-Altman approach was used to evaluate variability. All statistics were calculated with SAS version 9.4. Results: The 95% limit of agreement (mean ± 2SD) on AVD and RVD measurements between Pre and Post scans were −0.32cc to 0.32cc and −0.5% to 0.5% versus −1.9 cc to 1.8 cc and −15.9% to 15.3% for the two observers respectively. The 95% limit of agreement of AVD and RVD between the two observers were −3.3 cc to 2.3 cc and −42.4% to 28.2% respectively. The greatest variability in inter-scan RVD was observed with very small tumors (< 5 cc). Conclusion: Inter-scan variability in RVD is greatest with small tumors. Inter-observer variability was larger than inter-scan variability. The 95% limit of agreement for inter-observer and inter-scan variability (∼15–30%) helps define a threshold for clinically meaningful change in tumor volume to assess SBRT response, with larger thresholds needed for very small tumors. Part of the work was funded by a Kaye award; Disclosure/Conflict of interest: Raymond H. Mak: Stock ownership: Celgene, Inc. Consulting: Boehringer-Ingelheim, Inc.« less
Kirzinger, Lukas; Boy, Sandra; Marienhagen, Jörg; Schuierer, Gerhard; Neu, Reiner; Ried, Michael; Hofmann, Hans-Stefan; Wiebe, Karsten; Ströbel, Philipp; May, Christoph; Kleylein-Sohn, Julia; Baierlein, Claudia; Bogdahn, Ulrich; Marx, Alexander; Schalke, Berthold
2016-01-01
Therapeutic options to cure advanced, recurrent, and unresectable thymomas are limited. The most important factor for long-term survival of thymoma patients is complete resection (R0) of the tumor. We therefore evaluated the response to and the induction of resectability of primarily or locally recurrent unresectable thymomas and thymic carcinomas by octreotide Long-Acting Release (LAR) plus prednisone therapy in patients with positive octreotide scans. In this open label, single-arm phase II study, 17 patients with thymomas considered unresectable or locally recurrent thymoma (n = 15) and thymic carcinoma (n = 2) at Masaoka stage III were enrolled. Octreotide LAR (30 mg once every 2 weeks) was administered in combination with prednisone (0.6 mg/kg per day) for a maximum of 24 weeks (study design according to Fleming´s one sample multiple testing procedure for phase II clinical trials). Tumor size was evaluated by volumetric CT measurements, and a decrease in tumor volume of at least 20% at week 12 compared to baseline was considered as a response. We found that octreotide LAR plus prednisone elicited response in 15 of 17 patients (88%). Median reduction of tumor volume after 12 weeks of treatment was 51% (range 20%–86%). Subsequently, complete surgical resection was achieved in five (29%) and four patients (23%) after 12 and 24 weeks, respectively. Octreotide LAR plus prednisone treatment was discontinued in two patients before week 12 due to unsatisfactory therapeutic effects or adverse events. The most frequent adverse events were gastrointestinal (71%), infectious (65%), and hematological (41%) complications. In conclusion, octreotide LAR plus prednisone is efficacious in patients with primary or recurrent unresectable thymoma with respect to tumor regression. Octreotide LAR plus prednisone was well tolerated and adverse events were in line with the known safety profile of both agents. PMID:27992479
2013-01-01
Background Radiologic response of brain tumors is traditionally assessed according to the Macdonald criteria 10 weeks from the start of therapy. Because glioblastoma (GB) responds in days rather than weeks after boron neutron capture therapy (BNCT) that is a form of tumor-selective particle radiation, it is inconvenient to use the Macdonald criteria to assess the therapeutic efficacy of BNCT by gadolinium-magnetic resonance imaging (Gd-MRI). Our study assessed the utility of functional diffusion map (fDM) for evaluating response patterns in GB treated by BNCT. Methods The fDM is an image assessment using time-dependent changes of apparent diffusion coefficient (ADC) in tumors on a voxel-by-voxel approach. Other than time-dependent changes of ADC, fDM can automatically assess minimum/maximum ADC, Response Evaluation Criteria In Solid Tumors (RECIST), and the volume of enhanced lesions on Gd-MRI over time. We assessed 17 GB patients treated by BNCT using fDM. Additionally, in order to verify our results, we performed a histopathological examination using F98 rat glioma models. Results Only the volume of tumor with decreased ADC by fDM at 2 days after BNCT was a good predictor for GB patients treated by BNCT (P value = 0.022 by log-rank test and 0.033 by wilcoxon test). In a histopathological examination, brain sections of F98 rat glioma models treated by BNCT showed cell swelling of both the nuclei and the cytoplasm compared with untreated rat glioma models. Conclusions The fDM could identify response patterns in BNCT-treated GB earlier than a standard radiographic assessment. Early detection of treatment failure can allow a change or supplementation before tumor progression and might lead to an improvement of GB patients’ prognosis. PMID:23915330
Ladner, Travis R; He, Lucy; Lakomkin, Nikita; Davis, Brandon J; Cheng, Joseph S; Devin, Clinton J; Mocco, J
2016-02-01
Intraoperative bleeding is a significant risk in surgery for highly vascular spinal tumors, but preoperative embolization can safely decrease intraoperative blood loss in extrinsic spine tumors. Onyx, widely used for cerebrovascular embolization, has been increasingly used as an embolic agent for preoperative spinal tumor embolization. The Scepter catheter, a dual-lumen balloon catheter, may improve tumor parenchymal penetration without the danger and limitations of significant embolic reflux. This may reduce bleeding risk during spinal surgery. Eleven consecutive cases of preoperative Onyx embolization of extrinsic spinal tumors were identified, all of whom had subsequent spinal surgery. Demographic data and clinical variables were collected. Patients were divided into Scepter (n=6) and non-Scepter (n=5) groups. The Mann-Whitney U test was used to compare continuous outcome variables and the Fisher exact test was used to compare categorical variables. Estimated blood loss in the Scepter group was significantly lower than in the non-Scepter group (584±124 vs 2400±738 mL, p=0.004). The volume of intraoperative transfusion was also significantly lower (1.2±0.4 vs 5.8±1.7 units, p=0.004). There was no significant difference in the number of vessels embolized, vials of Onyx used, use of coiling adjunct, contrast load, radiation dose, or fluoroscopy time per pedicle (p>0.05). The addition of the Scepter catheter to preoperative Onyx embolization is safe and feasible. In this small series, the Scepter catheter was associated with a reduction of intraoperative bleeding by 76% and a 79% lower transfusion volume. This was not accompanied by any unwanted increase in vials of Onyx used, contrast load, radiation dose, or fluoroscopy time. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Urick, M E; Giles, J R; Johnson, P A
2008-09-01
We aimed to determine the expression of vascular endothelial growth factor (VEGF) and the effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on the proliferation of cells isolated from ascites in the hen model of ovarian cancer. Ovarian tumor and normal ovary were collected from hens and ascites cells were isolated from hens with ovarian cancer. Quantitative real-time PCR was used to quantify mRNA expression. Immunohistochemical and/or Western blot analyses were used to localize protein expression in ovarian tumors, normal ovaries, and ascites cells. Cells were treated with a nonspecific, COX-1-specific, or COX-2-specific NSAID and proliferation was determined. VEGF mRNA was increased in ascites cells and there was a trend for a correlation between VEGF mRNA in ascites cells and ascites volume. VEGF protein was localized to theca cells of normal ovaries, in glandular areas of tumors, and to the cytoplasm of ascites cells. Aspirin and a COX-1-specific inhibitor decreased the proliferation of ascites cells, whereas a COX-2-specific inhibitor did not. VEGF may play a role in ovarian cancer progression in the hen and the proliferation of ascites cells can be decreased by targeting the COX-1 but not COX-2 pathway.
Cárdenas-Rodríguez, Julio; Li, Yuguo; Galons, Jean-Philippe; Cornnell, Heather; Gillies, Robert J; Pagel, Mark D; Baker, Amanda F
2012-09-01
TH-302, a hypoxia-activated anticancer prodrug, was evaluated for antitumor activity and changes in dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) magnetic resonance imaging (MRI) in a mouse model of pancreatic cancer. TH-302 monotherapy resulted in a significant delay in tumor growth compared to vehicle-treated controls. TH-302 treatment was also associated with a significant decrease in the volume transfer constant (K(trans)) compared to vehicle-treated controls 1 day following the first dose measured using DCE-MRI. This early decrease in K(trans) following the first dose as measured is consistent with selective killing of the hypoxic fraction of cells which are associated with enhanced expression of hypoxia inducible transcription factor-1 alpha that regulates expression of permeability and perfusion factors including vascular endothelial growth factor-A. No changes were observed in DW-MRI following treatment with TH-302, which may indicate that this technique is not sensitive enough to detect changes in small hypoxic fractions of the tumor targeted by TH-302. These results suggest that changes in tumor permeability and/or perfusion may be an early imaging biomarker for response to TH-302 therapy. Copyright © 2012 Elsevier Inc. All rights reserved.
Luo, Huanli; Wang, Ying; Li, Fang; Ling, Yun; Yang, Dingyi; Jin, Fu
2015-07-01
To evaluate the accuracy of the latest BladderScan BVI9400 on measuring bladder volume. Two bladder phantoms were selected for investigating the accuracy of BVI9400. 341 patients with the iU22 ultrasound examinations were followed by BVI 9400. The difference and correlation between BVI9400 and iU22 were contrastively analyzed. The relative difference between results from BVI9400 and phantom volume was 2.5% and 1.36%. There was a strong correlation for patients between BVI9400 and iU22 (R = 0.96, P < 0.001). The relative difference between BVI9400 and iU22 decreased with the increasing of bladder volume and had no significant difference with patient's gender (P > 0.1). BladderScan BVI9400 had the ability of high accuracy and good stability of measured data. In view of quick and conveniences, BVI9400 could be as auxiliary equipment on pelvic tumor to evaluate whether the bladder volume during fractional radiotherapy was consistency with that during CT positioning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X; Kong, L; Wang, J
2015-06-15
Purpose: To quantify the target volume and organ at risk of nasopharyngeal carcinoma (NPC) patients with preradiation chemotherapy based on CT scanned during intensity-modulated radiotherapy (IMRT), and recalculate the dose distribution. Methods: Seven patients with NPC and preradiation chemotherapy, treated with IMRT (35 to 37 fractions) were reviewed. Repeat CT scanning was required to all of the patients during the radiotherapy, and the number of repeat CTs varies from 2 to 6. The plan CT and repeat CT were generated by different CT scanner. To ensure crespectively on the same IMPT plan. The real dose distribution was calculated by deformablemore » registration and weighted method in Raystation (v 4.5.1). The fraction of each dose is based on radiotherapy record. The volumetric and dose differences among these images were calculated for nascIpharyngeal tumor and retro-pharyngeal lymph nodes (GTV-NX), neck lymph nodes(GTV-ND), and parotid glands. Results: The volume variation in GTV-NX from CT1 to CT2 was 1.15±3.79%, and in GTV-LN −0.23±4.93%. The volume variation in left parotid from CT1 to CT2 was −6.79±11.91%, and in right parotid −3.92±8.80%. In patient 2, the left parotid volume were decreased remarkably, as a Result, the V30 and V40 of it were increased as well. Conclusion: The target volume of patients with NPC varied lightly during IMRT. It shows that preradiation chemotherapy can control the target volume variation and perform a good dose repeatability. Also, the decreasing volume of parotid in some patient might increase the dose of it, which might course potential complications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda
2010-10-01
Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV)more » = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving {>=}25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p < 10{sup -7} for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.« less
Lee, Chan Ho; Park, Young Joo; Ku, Ja Yoon; Ha, Hong Koo
2017-06-01
To evaluate the clinical application of computed tomography-based measurement of renal cortical volume and split renal volume as a single tool to assess the anatomy and renal function in patients with renal tumors before and after partial nephrectomy, and to compare the findings with technetium-99m dimercaptosuccinic acid renal scan. The data of 51 patients with a unilateral renal tumor managed by partial nephrectomy were retrospectively analyzed. The renal cortical volume of tumor-bearing and contralateral kidneys was measured using ImageJ software. Split estimated glomerular filtration rate and split renal volume calculated using this renal cortical volume were compared with the split renal function measured with technetium-99m dimercaptosuccinic acid renal scan. A strong correlation between split renal function and split renal volume of the tumor-bearing kidney was observed before and after surgery (r = 0.89, P < 0.001 and r = 0.94, P < 0.001). The preoperative and postoperative split estimated glomerular filtration rate of the operated kidney showed a moderate correlation with split renal function (r = 0.39, P = 0.004 and r = 0.49, P < 0.001). The correlation between reductions in split renal function and split renal volume of the operated kidney (r = 0.87, P < 0.001) was stronger than that between split renal function and percent reduction in split estimated glomerular filtration rate (r = 0.64, P < 0.001). The split renal volume calculated using computed tomography-based renal volumetry had a strong correlation with the split renal function measured using technetium-99m dimercaptosuccinic acid renal scan. Computed tomography-based split renal volume measurement before and after partial nephrectomy can be used as a single modality for anatomical and functional assessment of the tumor-bearing kidney. © 2017 The Japanese Urological Association.
Struss, Werner J; Tan, Zheng; Zachkani, Payam; Moskalev, Igor; Jackson, John K; Shademani, Ali; D'Costa, Ninadh M; Raven, Peter A; Frees, Sebastian; Chavez-Munoz, Claudia; Chiao, Mu; So, Alan I
2017-05-01
The vast majority of prostate cancer presents clinically localized to the prostate without evidence of metastasis. Currently, there are several modalities available to treat this particular disease. Despite radical prostatectomy demonstrating a modest prostate cancer specific mortality benefit in the PIVOT trial, several novel modalities have emerged to treat localized prostate cancer in patients that are either not eligible for surgery or that prefer an alternative approach. Athymic nude mice were subcutaneously inoculated with prostate cancer cells. The mice were divided into four cohorts, one cohort untreated, two cohorts received docetaxel (10 mg/kg) either subcutaneously (SC) or intravenously (IV) and the fourth cohort was treated using the magnetically-actuated docetaxel delivery device (MADDD), dispensing 1.5 μg of docetaxel per 30 min treatment session. Treatment in all three therapeutic arms (SC, IV, and MADDD) was administered once weekly for 6 weeks. Treatment efficacy was measured once a week according to tumor volume using ultrasound. In addition, calipers were used to assess tumor volume. Animals implanted with the device demonstrated no signs of distress or discomfort, neither local nor systemic symptoms of inflammation and infection. Using an independent sample t-test, the tumor growth rate of the treated tumors was significant when compared to the control. Post hoc Tukey HSD test results showed that the mean tumor growth rate of our device cohort was significantly lower than SC and control cohorts. Moreover, IV cohort showed slight reduction in mean tumor growth rates than the ones from the device cohort, however, there was no statistical significance in tumor growth rate between these two cohorts. Furthermore, immunohistochemistry demonstrated an increased cellular apoptosis in the MADDD treated tumors and a decreased proliferation when compared to the other cohorts. In addition, IV cohort showed increased treatment side effects (weight loss) when compared to the device cohort. Finally, MADDD showed minimal expression of CD45 comparable to the control cohort, suggesting no signs of chronic inflammation. In conclusion, this study showed for the first time that MADDD, clearly suppressed tumor growth in local prostate cancer tumors. This could potentially be a novel clinical treatment approach for localized prostate cancer. © 2017 Wiley Periodicals, Inc.
Impact of case volume on survival of septic shock in patients with malignancies.
Zuber, Benjamin; Tran, Thi-Chien; Aegerter, Philippe; Grimaldi, David; Charpentier, Julien; Guidet, Bertrand; Mira, Jean-Paul; Pène, Frédéric
2012-01-01
Septic shock is a frequent and severe complication in the course of malignancies. In a large multicenter cohort of septic shock patients with hematologic malignancies and solid tumors, we assessed the temporal trend in survival and the prognostic factors, with particular emphasis on case volume. A 12-yr multicenter retrospective cohort study of prospectively collected data. Cancer patients with septic shock were selected over a 12-yr period (1997-2008) from a French regional database (CUB-Réa). The following variables were extracted: demographic characteristics, type of malignancy, characteristics of infection, severity-of-illness score (Simplified Acute Physiology Score II), organ failure supports, and vital status. For each unit, a running mean annual volume of admissions was calculated for the purpose of categorization into volume tertiles. Prognostic factors were analyzed by a conditional multivariate logistic model after matching on a propensity score of being admitted to a high-volume unit and on the year of admission. None. A total of 3,437 patients were included in the study. The intensive care unit mortality rate dramatically dropped over time (from 70.4% in 1997 to 52.5% in 2008, relative decrease 25.4%, p < .001). Participating units were distributed into low-volume (< five patients per year), medium-volume (five to 12 patients per year), and high-volume (≥ 13 patients per year) tertiles. A medical cause for intensive care unit admission, Simplified Acute Physiology Score II, invasive mechanical ventilation, renal replacement therapy, fungal infections, and unknown microorganism were identified as poor prognostic factors. Case volume demonstrated a strong influence on survival, admission in a high-volume unit being associated with a marked decrease in mortality as compared to low-volume units (adjusted odds ratio 0.63; 95% confidence interval [0.46-0.87], p = .002). Survival of septic shock patients with malignancies markedly increased over the recent years. Furthermore, we identified case volume as a major prognostic factor in this setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shusharina, Nadya, E-mail: nshusharina@partners.org; Cho, Joseph; Sharp, Gregory C.
2014-05-01
Purpose: To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose positron emission tomography ({sup 18}F-FDG PET) before and after therapy in recurrent lung cancer. Methods and Materials: We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial {sup 18}F-FDG PET examinations aftermore » therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUV{sub max}) (≥50% of SUV{sub max}) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUV{sub max}. The VOI of pretherapy and posttherapy {sup 18}F-FDG PET images were correlated for the extent of overlap. Results: The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. Conclusions: VOI defined by the SUV{sub max}-≥50% isocontour may be a biological target volume for escalated radiation dose.« less
Impact of 2-staged stereotactic radiosurgery for treatment of brain metastases ≥ 2 cm.
Angelov, Lilyana; Mohammadi, Alireza M; Bennett, Elizabeth E; Abbassy, Mahmoud; Elson, Paul; Chao, Samuel T; Montgomery, Joshua S; Habboub, Ghaith; Vogelbaum, Michael A; Suh, John H; Murphy, Erin S; Ahluwalia, Manmeet S; Nagel, Sean J; Barnett, Gene H
2017-09-22
OBJECTIVE Stereotactic radiosurgery (SRS) is the primary modality for treating brain metastases. However, effective radiosurgical control of brain metastases ≥ 2 cm in maximum diameter remains challenging and is associated with suboptimal local control (LC) rates of 37%-62% and an increased risk of treatment-related toxicity. To enhance LC while limiting adverse effects (AEs) of radiation in these patients, a dose-dense treatment regimen using 2-staged SRS (2-SSRS) was used. The objective of this study was to evaluate the efficacy and toxicity of this treatment strategy. METHODS Fifty-four patients (with 63 brain metastases ≥ 2 cm) treated with 2-SSRS were evaluated as part of an institutional review board-approved retrospective review. Volumetric measurements at first-stage stereotactic radiosurgery (first SSRS) and second-stage SRS (second SSRS) treatments and on follow-up imaging studies were determined. In addition to patient demographic data and tumor characteristics, the study evaluated 3 primary outcomes: 1) response at first follow-up MRI, 2) time to local progression (TTP), and 3) overall survival (OS) with 2-SSRS. Response was analyzed using methods for binary data, TTP was analyzed using competing-risks methods to account for patients who died without disease progression, and OS was analyzed using conventional time-to-event methods. When needed, analyses accounted for multiple lesions in the same patient. RESULTS Among 54 patients, 46 (85%) had 1 brain metastasis treated with 2-SSRS, 7 patients (13%) had 2 brain metastases concurrently treated with 2-SSRS, and 1 patient underwent 2-SSRS for 3 concurrent brain metastases ≥ 2 cm. The median age was 63 years (range 23-83 years), 23 patients (43%) had non-small cell lung cancer, and 14 patients (26%) had radioresistant tumors (renal or melanoma). The median doses at first and second SSRS were 15 Gy (range 12-18 Gy) and 15 Gy (range 12-15 Gy), respectively. The median duration between stages was 34 days, and median tumor volumes at the first and second SSRS were 10.5 cm 3 (range 2.4-31.3 cm 3 ) and 7.0 cm 3 (range 1.0-29.7 cm 3 ). Three-month follow-up imaging results were available for 43 lesions; the median volume was 4.0 cm 3 (range 0.1-23.1 cm 3 ). The median change in volume compared with baseline was a decrease of 54.9% (range -98.2% to 66.1%; p < 0.001). Overall, 9 lesions (14.3%) demonstrated local progression, with a median of 5.2 months (range 1.3-7.4 months), and 7 (11.1%) demonstrated AEs (6.4% Grade 1 and 2 toxicity; 4.8% Grade 3). The estimated cumulative incidence of local progression at 6 months was 12% ± 4%, corresponding to an LC rate of 88%. Shorter TTP was associated with greater tumor volume at baseline (p = 0.01) and smaller absolute (p = 0.006) and relative (p = 0.05) decreases in tumor volume from baseline to second SSRS. Estimated OS rates at 6 and 12 months were 65% ± 7% and 49% ± 8%, respectively. CONCLUSIONS 2-SSRS is an effective treatment modality that resulted in significant reduction of brain metastases ≥ 2 cm, with excellent 3-month (95%) and 6-month (88%) LC rates and an overall AE rate of 11%. Prospective studies with larger cohorts and longer follow-up are necessary to assess the durability and toxicities of 2-SSRS.
NASA Astrophysics Data System (ADS)
Koybasi, Ozhan; Mishra, Pankaj; St. James, Sara; Lewis, John H.; Seco, Joao
2014-02-01
For the radiation treatment of lung cancer patients, four-dimensional computed tomography (4D-CT) is a common practice used clinically to image tumor motion and subsequently determine the internal target volume (ITV) from the maximum intensity projection (MIP) images. ITV, which is derived from short pre-treatment 4D-CT scan (<6 s per couch position), may not adequately cover the extent of tumor motion during the treatment, particularly for patients that exhibit a large respiratory variability. Inaccurate tumor localization may result in under-dosage of the tumor or over-dosage of the surrounding tissues. The purpose of this study is therefore to assess the degree of tumor under-dosage in case of regular and irregular breathing for proton radiotherapy using ITV-based treatment planning. We place a spherical lesion into a modified XCAT phantom that is also capable of producing 4D images based on irregular breathing, and move the tumor according to real tumor motion data, which is acquired over multiple days by tracking gold fiducial markers implanted into the lung tumors of patients. We derive ITVs by taking the union of all tumor positions during 6 s of tumor motion in the phantom using the first day patient tumor tracking data. This is equivalent to ITVs generated clinically from cine-mode 4D-CT MIP images. The treatment plans created for different ITVs are then implemented on dynamic phantoms with tumor motion governed by real tumor tracking data from consecutive days. By comparing gross tumor volume dose distribution on days of ‘treatment’ with the ITV dose distribution, we evaluate the deviation of the actually delivered dose from the predicted dose. Our results have shown that the proton treatment planning on ITV derived from pre-treatment cine-mode 4D-CT can result in under-dosage (dose covering 95% of volume) of the tumor by up to 25.7% over 3 min of treatment for the patient with irregular respiratory motion. Tumor under-dosage is less significant for the patient with relatively regular breathing. We have demonstrated that proton therapy using the pre-treatment 4D-CT based ITV method can lead to significant under-dosage of the tumor, highlighting the need for daily customization to generate a target volume that represents tumor positions during the treatment more accurately.
Brem, S. S.; Zagzag, D.; Tsanaclis, A. M.; Gately, S.; Elkouby, M. P.; Brien, S. E.
1990-01-01
Microvascular proliferation, a hallmark of malignant brain tumors, represents an attractive target of anticancer research, especially because of the quiescent nonproliferative endothelium of the normal brain. Cerebral neoplasms sequester copper, a trace metal that modulates angiogenesis. Using a rabbit brain tumor model, normocupremic animals developed large vascularized VX2 carcinomas. By contrast, small, circumscribed, relatively avascular tumors were found in the brains of rabbits copper-depleted by diet and penicillamine treatment (CDPT). The CDPT rabbits showed a significant decrease in serum copper, copper staining of tumor cell nuclei, microvascular density, the tumor volume, endothelial cell turnover, and an increase in the vascular permeability (breakdown of the blood-brain barrier), as well as peritumoral brain edema. In non-tumor-bearing animals, CDPT did not alter the vascular permeability or the brain water content. CDPT also inhibited the intracerebral growth of the 9L gliosarcoma in F-344 rats, with a similar increase of the peritumoral vascular permeability and the brain water content. CDPT failed to inhibit tumor growth and the vascularization of the VX2 carcinoma in the thigh muscle or the metastases to the lung, findings that may reflect regional differences in the responsiveness of the endothelium, the distribution of copper, or the activity of cuproenzymes. Metabolic and pharmacologic withdrawal of copper suppresses intracerebral tumor angiogenesis; angiosuppression is a novel biologic response modifier for the in situ control of tumor growth in the brain. Images Figure 2 Figure 4 Figure 5 Figure 6 Figure 8 Figure 10 Figure 12 Figure 15 Figure 16 PMID:1700617
Electrochemotherapy of Spinal Metastases Using Transpedicular Approach—A Numerical Feasibility Study
Cindrič, Helena; Tedesco, Giuseppe; Cadossi, Matteo; Gasbarrini, Alessandro; Miklavčič, Damijan
2018-01-01
Vertebral column is the most frequent site for bone metastases. It has been demonstrated in previous studies that bone metastases can be efficiently treated by electrochemotherapy. We developed a novel approach to treat spinal metastases, that is, transpedicular approach that combines electrochemotherapy with already established technologies for insertion of fixation screws in spinal surgery. In the transpedicular approach, needle electrodes are inserted into the vertebral body through pedicles and placed around the tumor. The main goal of our study was to numerically investigate the feasibility of the proposed treatment approach. Three clinical cases were used in this study—1 with a tumor completely contained within the vertebral body and 2 with tumors spread also to the pedicles and spinal canal. Anatomically accurate numerical models were built for all 3 cases, and numerical computations of electric field distribution in tumor and surrounding tissue were performed to determine the treatment outcome. Complete coverage of tumor volume with sufficiently high electric field is a prerequisite for successful electrochemotherapy. Close to 100% tumor coverage was obtained in all 3 cases studied. Two cases exhibited tumor coverage of >99%, while the coverage in the third case was 98.88%. Tumor tissue that remained untreated was positioned on the margin of the tumor volume. We also evaluated hypothetical damage to spinal cord and nerves. Only 1 case, which featured a tumor grown into the spinal canal, exhibited potential risk of neural damage. Our study shows that the proposed transpedicular approach to treat spinal metastases is feasible and safe if the majority of tumor volume is contained within the vertebral body. In cases where the spinal cord and nerves are contained within the margin of the tumor volume, a successful and safe treatment is still possible, but special attention needs to be given to evaluation of potential neural damage. PMID:29759043
Schmidt, Adam T; Martin, Rebecca B; Ozturk, Arzu; Kates, Wendy R; Wharam, Moody D; Mahone, E Mark; Horska, Alena
2010-02-01
Intracranial tumors are the most common neoplasms of childhood, accounting for approximately 20% of all pediatric malignancies. Radiation therapy has led directly to significant increases in survival of children with certain types of intracranial tumors; however, given the aggressive nature of this therapy, children are at risk for exhibiting changes in brain structure, neuronal biochemistry, and neurocognitive functioning. In this case report, we present neuropsychological, magnetic resonance imaging, proton magnetic resonance spectroscopic imaging, and diffusion tensor imaging data for two adolescents (one patient with ependymal spinal cord tumor with intracranial metastases, and one healthy, typically developing control) from three time points as defined by the patient's radiation schedule (baseline before the patient's radiation therapy, 6 months following completion of the patient's radiation, and 27 months following the patient's radiation). In the patient, there were progressive decreases in gray and white matter volumes as well as early decreases in mean N-acetyl aspartate/choline (NAA/Cho) ratios and fractional anisotropy (FA) in regions with normal appearance on conventional MRI. At the last follow-up, NAA/Cho and FA tended to change in the direction to normal values in selected regions. At the same time, the patient had initial reduction in language and motor skills, followed by return to baseline, but later onset delay in visuospatial and visual perceptual skills. Results are discussed in terms of sensitivity of the four techniques to early and late effects of treatment, and avenues for future investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaofei; Zhu, Yanshuang; He, Huabin
Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTTmore » assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis.« less
Rhee, Daniel; Pockaj, Barbara; Wasif, Nabil; Stucky, Chee-Chee; Pizzitola, Victor; Giurescu, Marina; Patel, Bhavika; McCarthy, Janice; Gray, Richard
2018-01-01
In-operating room specimen radiography (ORSR) has not been studied among women undergoing radioactive seed localization (RSL) for breast cancer surgery and had the potential to decrease operative time and perhaps improve intraoperative margin management. One hundred consecutive RSL segmental mastectomies among 98 patients using ORSR were compared to 100 consecutive segmental mastectomies among 98 patients utilizing conventional radiography (CSR) prior to the initiation of ORSR from December 2013 to January 2015 after radioactive seed localization. Final pathologic margins were considered to be 10 mm for all cases of no residual disease after biopsy or neoadjuvant therapy, but such patients were excluded from analyses involving tumor size. All patients' specimens were subjected to intraoperative pathologic consultation in addition to ORSR or CSR. The median age of the cohort was 65 years (range 36-97), and the median tumor size was 1 cm. There were no differences between the ORSR and CSR groups in age, tumor size, percentage of cases with only DCIS, and percentage of cases with microcalcifications. The ORSR group had a statistically significant lower BMI. Mean operative time from cut-to-close was not significantly different (ORSR 77 min, SD 24.8 vs CSR 76 min, SD 24.8, p = 0.75). There was no statistical difference in mean closest final pathologic margin (4.99 mm, SD 3.3 vs 4.88 mm, SD 3.5, p = 0.9). The percentage undergoing intraoperative margin re-excision (ORSR 40%, CR 47%, p = 0.31) and the mean total number of margins excised intraoperatively (ORSR 0.9, CR 1.0 p = 0.65) were similar. The rate of any margin <2 mm was 14% vs 12% for ORSR and CR, respectively (p = 0.64). The mean specimen volume for ORSR was 76cm3 (SD 101.8) vs 90cm3 (SD 61.2) for CSR; this difference was not statistically significant (p = 0.25). The mean ratio of segmental mastectomy volume to maximum tumor diameter was less for ORSR (82.7cm2 vs 139.4cm2, p = 0.014). ORSR for RSL breast surgery, in the setting of routine intraoperative pathology consultation, does not significantly impact operative time, the rate or number of additional intraoperative margins excised, the number of reoperations for margins, or the width of final pathological margins. ORSR was associated with a decrease in the volume of segmental mastectomies relative to the tumor diameter. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Sprinberg, G; Piriz, G
Purpose: To optimize the dose in bladder and rectum and show the different shapes of the isodose volumes in Co60-HDR brachytherapy, considering different utero and vaginal sources dwell ratio times (TU:TV). Methods: Besides Ir192-HDR, new Co60-HDR sources are being incorporated. We considered different TU:TV times and computed the dosis in bladder, rectum and at the reference points of the Manchester system. Also, we calculated the isodose volume and shape in each case. We used a EZAG-BEBIG Co0.A86 model with TPS HDRplus3.0.4. and LCT42-7, LCT42-2(R,L) applicators. A reference dose RA= 1.00 Gy was given to the A-right point. We considered themore » TU:TV dwell time ratios 1:0.25, 1:0.33, 1:0.5, 1:1, 1:2, 1:3, and 1:4. Given TU:TV, the stop time at each dwell position is fixed for each applicator. Results: Increasing TU:TV systematically results in a decreasing of the dose in bladder and rectum, e.g. 9% and 27% reduction were found in 1:0.25 with respect to 1:1, while 12% and 34% increase were found in 1:4 with respect to 1:1. Also, the isodose volume parameters height (h), width (w), thickness (t) and volume (hwt) increased from the 1:0.25 case to the 1:4 value: hwt is 25% lower and 31% higher than the 1:1 reference volume in these cases. Also w decreased for higher TU:TV and may compromise the tumoral volume coverage, decreasing 17% in the 1:0.25 case compared to the 1:1 case. The shape of the isodose volume was obtained for the different TU:TV considered. Conclusion: We obtained the shape of isodose volumes for different TU:TV values in gynecological Co60-HDR. We studied the dose reduction in bladder and rectum for different TU:TV ratios. The volume parameters and hwt are strongly dependent on this ratio. This information is useful for a quantitative check of the TPS and as a starting point towards optimization.« less
SU-E-T-402: Y-90 Microspheres (SIR Spheres) for Treatment of Liver Metastasis : Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, M
2014-06-01
Purpose: The purpose of this presentation is to discuss the radiation safety and dosimetric technique used for the therapeutic procedure using Y-90 microspheres through intra -arterial administration on patients with liver metastasis Methods: The radiation dosimetry, technique and safety aspects of 14 patients with primary and metastatic liver cancer, treated with Y-90 microsphere (SIR spheres) are discussed. The liver and tumor volumes were determined using the CT and MR scans . The images were imported into the treatment planning system and the liver and tumor volumes and the volume of the liver affected were outlined and the volume calculation wasmore » performed using the software. The lung shunt fraction (LSF) and tumor to liver uptake ratio (TLR) were determined using the nuclear medicine SPECT imaging with Tc-99m MAA. The absorbed dose to the target volume in liver was calculated using the following equation:Dose ? (Gy) = C x E? x 5.92 x 10-6 (Gy/s) x T(1/2)(days) x 1.44 x 8.64 x 104 (s) The distribution of activity in the tumor bed was confirmed by post Y-90 administration imaging using the Bremsstrahlung peak at 30% window. The patient and the procedure room were surveyed and radiation safety instructions were given to the patient Results: The tumor volume ranged from 77 cc to 700 cc, tumor to liver uptake ranged from 3 to 12. The lung shunt fraction varied from 1.08% to 9.0%. The activity administered ranged from 1.0GBq to 2.5 GBq, . The radiation survey in contact with the patient ranged from 1.8 mR/hr to 2.5 mR/hr and reading at 1 meter was less than 0.2 mR/hr Conclusion: The technique for radiation dosimetry and radiation safety for Y-90 microsphere therapy is established. The post treatment imaging helped to confirm the distribution of Y-90 microspheres inside the tumor bed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woelfelschneider, J; Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE; Seregni, M
2015-06-15
Purpose: Tumor tracking is an advanced technique to treat intra-fractionally moving tumors. The aim of this study is to validate a surrogate-driven model based on four-dimensional computed tomography (4DCT) that is able to predict CT volumes corresponding to arbitrary respiratory states. Further, the comparison of three different driving surrogates is evaluated. Methods: This study is based on multiple 4DCTs of two patients treated for bronchial carcinoma and metastasis. Analyses for 18 additional patients are currently ongoing. The motion model was estimated from the planning 4DCT through deformable image registration. To predict a certain phase of a follow-up 4DCT, the modelmore » considers for inter-fractional variations (baseline correction) and intra-fractional respiratory parameters (amplitude and phase) derived from surrogates. In this evaluation, three different approaches were used to extract the motion surrogate: for each 4DCT phase, the 3D thoraco-abdominal surface motion, the body volume and the anterior-posterior motion of a virtual single external marker defined on the sternum were investigated. The estimated volumes resulting from the model were compared to the ground-truth clinical 4DCTs using absolute HU differences in the lung volume and landmarks localized using the Scale Invariant Feature Transform (SIFT). Results: The results show absolute HU differences between estimated and ground-truth images with median values limited to 55 HU and inter-quartile ranges (IQR) lower than 100 HU. Median 3D distances between about 1500 matching landmarks are below 2 mm for 3D surface motion and body volume methods. The single marker surrogates Result in increased median distances up to 0.6 mm. Analyses for the extended database incl. 20 patients are currently in progress. Conclusion: The results depend mainly on the image quality of the initial 4DCTs and the deformable image registration. All investigated surrogates can be used to estimate follow-up 4DCT phases, however uncertainties decrease for three-dimensional approaches. This work was funded in parts by the German Research Council (DFG) - KFO 214/2.« less
Cosgrove, Casey M; Cohn, David E; Hampel, Heather; Frankel, Wendy L; Jones, Dan; McElroy, Joseph P; Suarez, Adrian A; Zhao, Weiqiang; Chen, Wei; Salani, Ritu; Copeland, Larry J; O'Malley, David M; Fowler, Jeffrey M; Yilmaz, Ahmet; Chassen, Alexis S; Pearlman, Rachel; Goodfellow, Paul J; Backes, Floor J
2017-09-01
To determine the relationship between mismatch repair (MMR) classification and clinicopathologic features including tumor volume, and explore outcomes by MMR class in a contemporary cohort. Single institution cohort evaluating MMR classification for endometrial cancers (EC). MMR immunohistochemistry (IHC)±microsatellite instability (MSI) testing and reflex MLH1 methylation testing was performed. Tumors with MMR abnormalities by IHC or MSI and MLH1 methylation were classified as epigenetic MMR deficiency while those without MLH1 methylation were classified as probable MMR mutations. Clinicopathologic characteristics were analyzed. 466 endometrial cancers were classified; 75% as MMR proficient, 20% epigenetic MMR defects, and 5% as probable MMR mutations. Epigenetic MMR defects were associated with advanced stage, higher grade, presence of lymphovascular space invasion, and older age. MMR class was significantly associated with tumor volume, an association not previously reported. The epigenetic MMR defect tumors median volume was 10,220mm 3 compared to 3321mm 3 and 2,846mm 3 , for MMR proficient and probable MMR mutations respectively (P<0.0001). Higher tumor volume was associated with lymph node involvement. Endometrioid EC cases with epigenetic MMR defects had significantly reduced recurrence-free survival (RFS). Among advanced stage (III/IV) endometrioid EC the epigenetic MMR defect group was more likely to recur compared to the MMR proficient group (47.7% vs 3.4%) despite receiving similar adjuvant therapy. In contrast, there was no difference in the number of early stage recurrences for the different MMR classes. MMR testing that includes MLH1 methylation analysis defines a subset of tumors that have worse prognostic features and reduced RFS. Copyright © 2017 Elsevier Inc. All rights reserved.
Target coverage in image-guided stereotactic body radiotherapy of liver tumors.
Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M
2007-05-01
To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (< or = 2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging.
Panebianco, Concetta; Adamberg, Kaarel; Adamberg, Signe; Saracino, Chiara; Jaagura, Madis; Kolk, Kaia; Di Chio, Anna Grazia; Graziano, Paolo; Vilu, Raivo; Pazienza, Valerio
2017-03-27
Pancreatic cancer (PC) is ranked as the fourth leading cause of cancer-related deaths worldwide. Despite recent advances in treatment options, a modest impact on the outcome of the disease is observed so far. We have previously demonstrated that short-term fasting cycles have the potential to improve the efficacy of chemotherapy against PC. The aim of this study was to assess the effect of an engineered resistant-starch (ERS) mimicking diet on the growth of cancer cell lines in vitro, on the composition of fecal microbiota, and on tumor growth in an in vivo pancreatic cancer mouse xenograft model. BxPC-3, MIA PaCa-2 and PANC-1 cells were cultured in the control, and in the ERS-mimicking diet culturing condition, to evaluate tumor growth and proliferation pathways. Pancreatic cancer xenograft mice were subjected to an ERS diet to assess tumor volume and weight as compared to mice fed with a control diet. The composition and activity of fecal microbiota were further analyzed in growth experiments by isothermal microcalorimetry. Pancreatic cancer cells cultured in an ERS diet-mimicking medium showed decreased levels of phospho-ERK1/2 (extracellular signal-regulated kinase proteins) and phospho-mTOR (mammalian target of rapamycin) levels, as compared to those cultured in standard medium. Consistently, xenograft pancreatic cancer mice subjected to an ERS diet displayed significant retardation in tumor growth. In in vitro growth experiments, the fecal microbial cultures from mice fed with an ERS diet showed enhanced growth on residual substrates, higher production of formate and lactate, and decreased amounts of propionate, compared to fecal microbiota from mice fed with the control diet. A positive effect of the ERS diet on composition and metabolism of mouse fecal microbiota shown in vitro is associated with the decrease of tumor progression in the in vivo PC xenograft mouse model. These results suggest that engineered dietary interventions could be supportive as a synergistic approach to enhance the efficacy of existing cancer treatments in pancreatic cancer patients.
Panebianco, Concetta; Adamberg, Kaarel; Adamberg, Signe; Saracino, Chiara; Jaagura, Madis; Kolk, Kaia; Di Chio, Anna Grazia; Graziano, Paolo; Vilu, Raivo; Pazienza, Valerio
2017-01-01
Background/aims: Pancreatic cancer (PC) is ranked as the fourth leading cause of cancer-related deaths worldwide. Despite recent advances in treatment options, a modest impact on the outcome of the disease is observed so far. We have previously demonstrated that short-term fasting cycles have the potential to improve the efficacy of chemotherapy against PC. The aim of this study was to assess the effect of an engineered resistant-starch (ERS) mimicking diet on the growth of cancer cell lines in vitro, on the composition of fecal microbiota, and on tumor growth in an in vivo pancreatic cancer mouse xenograft model. Materials and Methods: BxPC-3, MIA PaCa-2 and PANC-1 cells were cultured in the control, and in the ERS-mimicking diet culturing condition, to evaluate tumor growth and proliferation pathways. Pancreatic cancer xenograft mice were subjected to an ERS diet to assess tumor volume and weight as compared to mice fed with a control diet. The composition and activity of fecal microbiota were further analyzed in growth experiments by isothermal microcalorimetry. Results: Pancreatic cancer cells cultured in an ERS diet-mimicking medium showed decreased levels of phospho-ERK1/2 (extracellular signal-regulated kinase proteins) and phospho-mTOR (mammalian target of rapamycin) levels, as compared to those cultured in standard medium. Consistently, xenograft pancreatic cancer mice subjected to an ERS diet displayed significant retardation in tumor growth. In in vitro growth experiments, the fecal microbial cultures from mice fed with an ERS diet showed enhanced growth on residual substrates, higher production of formate and lactate, and decreased amounts of propionate, compared to fecal microbiota from mice fed with the control diet. Conclusion: A positive effect of the ERS diet on composition and metabolism of mouse fecal microbiota shown in vitro is associated with the decrease of tumor progression in the in vivo PC xenograft mouse model. These results suggest that engineered dietary interventions could be supportive as a synergistic approach to enhance the efficacy of existing cancer treatments in pancreatic cancer patients. PMID:28346394
NASA Astrophysics Data System (ADS)
Mille, Matthew M.
Positron emission tomography (PET) with 2-[18F]fluoro-2-deoxy-D-glucose (FDG) is being increasingly recognized as an important tool for quantitative assessment of tumor response because of its ability to capture functional information about the tumor's metabolism. However, despite many advances in PET technology, measurements of tumor radiopharmaceutical uptake in PET are still challenged by issues of accuracy and consistency, thereby compromising the use of PET as a surrogate endpoint in clinical trials. One limiting component of the overall uncertainty in PET is the relatively poor spatial resolution of the images which directly affects the accuracy of the tumor radioactivity measurements. These spatial resolution effects, colloquially known as the partial volume effect (PVE), are a function of the characteristics of the scanner as well as the tumor being imaged. Previous efforts have shown that the PVE depends strongly on the tumor volume and the background-to-tumor activity concentration ratio. The PVE is also suspected to be a function of tumor shape, although to date no systematic study of this effect has been performed. This dissertation seeks to help fill the gap in the current knowledge about the shape-dependence of the PVE by attempting to quantify, through both theoretical calculation and experimental measurement, the magnitude of the shape effect for ellipsoidal tumors. An experimental investigation of the tumor shape effect necessarily requires tumor phantoms of multiple shapes. Hence, a prerequisite for this research was the design and fabrication of hollow tumor phantoms which could be filled uniformly with radioactivity and imaged on a PET scanner. The phantom fabrication was achieved with the aid of stereolithography and included prolate ellipsoids of various axis ratios. The primary experimental method involved filling the tumor phantoms with solutions of 18F whose activity concentrations were known and traceable to primary radioactivity standards held by the National Institute of Standards and Technology (NIST). The tumor phantoms were then placed inside a Jaszczak cylinder (representing the human body) and imaged on a PET scanner located at NIST. This experimental approach allowed for the testing of: (1) The relative difference between tumors phantoms of different shapes, but same volume; (2) The overall accuracy of the PET measurements in terms of a ground truth reference value. Theoretical calculations of the tumor shape effect were also performed by mathematically convolving the phantom shapes with a 3D Gaussian point-spread function, and the results of the calculations were compared with the experimental data. The data show that the shape effect in PET tumor imaging can be as large as 15% for ellipsoid phantoms with axis ratios of 2:1, volume of 1.15 cm 3, and tumor-to-background activity concentration ratio of 9:1. This is explained by a greater loss of counts along the minor axis direction in the ellipsoid tumors compared to that of spheres of the same volume. The results of this PhD research confirm the existence of a tumor shape effect PET imaging. However, except in the case of ellipsoids with major-to-minor axis ratio greater than 2:1, a correction for the effect using recovery coefficients is expected to be challenging because its magnitude is comparable to the repeatability of the PET measurements.
Ashton, Jeffrey R.; Clark, Darin P.; Moding, Everett J.; Ghaghada, Ketan; Kirsch, David G.; West, Jennifer L.; Badea, Cristian T.
2014-01-01
Purpose To provide additional functional information for tumor characterization, we investigated the use of dual-energy computed tomography for imaging murine lung tumors. Tumor blood volume and vascular permeability were quantified using gold and iodine nanoparticles. This approach was compared with a single contrast agent/single-energy CT method. Ex vivo validation studies were performed to demonstrate the accuracy of in vivo contrast agent quantification by CT. Methods Primary lung tumors were generated in LSL-KrasG12D; p53FL/FL mice. Gold nanoparticles were injected, followed by iodine nanoparticles two days later. The gold accumulated in tumors, while the iodine provided intravascular contrast. Three dual-energy CT scans were performed–two for the single contrast agent method and one for the dual contrast agent method. Gold and iodine concentrations in each scan were calculated using a dual-energy decomposition. For each method, the tumor fractional blood volume was calculated based on iodine concentration, and tumor vascular permeability was estimated based on accumulated gold concentration. For validation, the CT-derived measurements were compared with histology and inductively-coupled plasma optical emission spectroscopy measurements of gold concentrations in tissues. Results Dual-energy CT enabled in vivo separation of gold and iodine contrast agents and showed uptake of gold nanoparticles in the spleen, liver, and tumors. The tumor fractional blood volume measurements determined from the two imaging methods were in agreement, and a high correlation (R2 = 0.81) was found between measured fractional blood volume and histology-derived microvascular density. Vascular permeability measurements obtained from the two imaging methods agreed well with ex vivo measurements. Conclusions Dual-energy CT using two types of nanoparticles is equivalent to the single nanoparticle method, but allows for measurement of fractional blood volume and permeability with a single scan. As confirmed by ex vivo methods, CT-derived nanoparticle concentrations are accurate. This method could play an important role in lung tumor characterization by CT. PMID:24520351
Rios Velazquez, Emmanuel; Aerts, Hugo J W L; Gu, Yuhua; Goldgof, Dmitry B; De Ruysscher, Dirk; Dekker, Andre; Korn, René; Gillies, Robert J; Lambin, Philippe
2012-11-01
To assess the clinical relevance of a semiautomatic CT-based ensemble segmentation method, by comparing it to pathology and to CT/PET manual delineations by five independent radiation oncologists in non-small cell lung cancer (NSCLC). For 20 NSCLC patients (stages Ib-IIIb) the primary tumor was delineated manually on CT/PET scans by five independent radiation oncologists and segmented using a CT based semi-automatic tool. Tumor volume and overlap fractions between manual and semiautomatic-segmented volumes were compared. All measurements were correlated with the maximal diameter on macroscopic examination of the surgical specimen. Imaging data are available on www.cancerdata.org. High overlap fractions were observed between the semi-automatically segmented volumes and the intersection (92.5±9.0, mean±SD) and union (94.2±6.8) of the manual delineations. No statistically significant differences in tumor volume were observed between the semiautomatic segmentation (71.4±83.2 cm(3), mean±SD) and manual delineations (81.9±94.1 cm(3); p=0.57). The maximal tumor diameter of the semiautomatic-segmented tumor correlated strongly with the macroscopic diameter of the primary tumor (r=0.96). Semiautomatic segmentation of the primary tumor on CT demonstrated high agreement with CT/PET manual delineations and strongly correlated with the macroscopic diameter considered as the "gold standard". This method may be used routinely in clinical practice and could be employed as a starting point for treatment planning, target definition in multi-center clinical trials or for high throughput data mining research. This method is particularly suitable for peripherally located tumors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, Wenli; Yoshida, Hiroyuki; Harris, Gordon J.
2007-03-01
Measurement of the volume of focal liver tumors, called liver tumor volumetry, is indispensable for assessing the growth of tumors and for monitoring the response of tumors to oncology treatments. Traditional edge models, such as the maximum gradient and zero-crossing methods, often fail to detect the accurate boundary of a fuzzy object such as a liver tumor. As a result, the computerized volumetry based on these edge models tends to differ from manual segmentation results performed by physicians. In this study, we developed a novel computerized volumetry method for fuzzy objects, called dynamic-thresholding level set (DT level set). An optimal threshold value computed from a histogram tends to shift, relative to the theoretical threshold value obtained from a normal distribution model, toward a smaller region in the histogram. We thus designed a mobile shell structure, called a propagating shell, which is a thick region encompassing the level set front. The optimal threshold calculated from the histogram of the shell drives the level set front toward the boundary of a liver tumor. When the volume ratio between the object and the background in the shell approaches one, the optimal threshold value best fits the theoretical threshold value and the shell stops propagating. Application of the DT level set to 26 hepatic CT cases with 63 biopsy-confirmed hepatocellular carcinomas (HCCs) and metastases showed that the computer measured volumes were highly correlated with those of tumors measured manually by physicians. Our preliminary results showed that DT level set was effective and accurate in estimating the volumes of liver tumors detected in hepatic CT images.
Schulz-Wendtland, Rüdiger; Harz, Markus; Meier-Meitinger, Martina; Brehm, Barbara; Wacker, Till; Hahn, Horst K; Wagner, Florian; Wittenberg, Thomas; Beckmann, Matthias W; Uder, Michael; Fasching, Peter A; Emons, Julius
2017-03-01
Three-dimensional (3D) printing has become widely available, and a few cases of its use in clinical practice have been described. The aim of this study was to explore facilities for the semi-automated delineation of breast cancer tumors and to assess the feasibility of 3D printing of breast cancer tumors. In a case series of five patients, different 3D imaging methods-magnetic resonance imaging (MRI), digital breast tomosynthesis (DBT), and 3D ultrasound-were used to capture 3D data for breast cancer tumors. The volumes of the breast tumors were calculated to assess the comparability of the breast tumor models, and the MRI information was used to render models on a commercially available 3D printer to materialize the tumors. The tumor volumes calculated from the different 3D methods appeared to be comparable. Tumor models with volumes between 325 mm 3 and 7,770 mm 3 were printed and compared with the models rendered from MRI. The materialization of the tumors reflected the computer models of them. 3D printing (rapid prototyping) appears to be feasible. Scenarios for the clinical use of the technology might include presenting the model to the surgeon to provide a better understanding of the tumor's spatial characteristics in the breast, in order to improve decision-making in relation to neoadjuvant chemotherapy or surgical approaches. J. Surg. Oncol. 2017;115:238-242. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Cardarelli, Gene A.
The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance of valid physical dose modeling prior to the use of biological modeling. The success of using biological function data, such as hypoxia, in clinical IMRT planning will greatly benefit from the results of this study.
Soussan, Michael; Cyrta, Joanna; Pouliquen, Christelle; Chouahnia, Kader; Orlhac, Fanny; Martinod, Emmanuel; Eder, Véronique; Morère, Jean-François; Buvat, Irène
2014-09-01
To study whether volume-based indices of fluorine 18 fluorodeoxyglucose positron emission tomographic (PET)/computed tomographic (CT) imaging is an accurate tool to predict the amount of residual viable tumor after induction chemotherapy in patients with locally advanced non-small cell lung cancer (NSCLC). This study was approved by institutional review board with waivers of informed consent. Twenty-two patients with locally advanced NSCLC underwent surgery after induction chemotherapy. All had pre- and posttreatment FDG PET/CT scans. CT largest diameter, CT volume, maximum standardized uptake value (SUVmax), mean SUV (SUVmean), metabolic tumor volume (TV), and total lesion glycolysis of primary tumor were calculated. Changes in tumor measurements were determined by dividing follow-up by baseline measurement (ratio index). Amounts of residual viable tumor, necrosis, fibrous tissue, inflammatory infiltrate, and Ki-67 proliferative index were estimated on resected tumor. Correlations between imaging indices and histologic parameters were estimated by using Spearman correlation coefficients or Mann-Whitney tests. No baseline or posttreatment indices correlated with percentage of residual viable tumor. TV ratio was the only index that correlated with percentage of residual viable tumor (r = 0.61 [95% confidence interval: 0.24, 0.81]; P = .003). Conversely, SUVmax and SUVmean ratios were only indices correlated with Ki-67 (r = 0.62 [95% confidence interval: 0.24, 0.82]; P = .003; and r = 0.60 [95% confidence interval: 0.21, 0.81]; P = .004, respectively). Total lesion glycolysis ratio was moderately correlated with residual viable tumor (r = 0.53 [95% confidence interval: 0.13, 0.78]; P = .01) and with Ki-67 (r = 0.57 [95% confidence interval: 0.18, 0.80]; P = .006). No ratios were correlated with presence of inflammatory infiltrate or foamy macrophages. TV and total lesion glycolysis ratios were the only indices correlated with residual viable tumor after induction chemotherapy in locally advanced NSCLC.
Guo, Y; Duan, H; Cheng, J; Zhang, Y
2017-08-01
This study was to investigate the clinical efficacy of a gonadotrophin-releasing hormone agonist (GnRH-a) combined with high-intensity focused ultrasound (HIFU) ablation treatment for adenomyosis. A non-randomized prospective study. Gynaecological Minimally Invasive Centre in a single hospital. Patients with adenomyosis. Seventy-nine patients with adenomyosis were enrolled, including 55 patients in the control group treated with only HIFU and 24 patients in the study group treated with GnRH-a combined with HIFU. All the patients follow up 6 months after the HIFU procedure. The related parameters in the two groups were assessed before and 3 months as well as 6 months after treatment including serum levels of tumor marker and cytokine, volumes of uterine, adenomyotic lesion, and menstrual blood, as well as dysmenorrheal scores. Differences between the group treated with HIFU alone and the group treated with GnRH-a combined with HIFU. Before HIFU treatment, no significant difference was observed in serum levels of CA125, CA19-9, and interleukin-6 (IL-6), the volumes of uterine, adenomyotic lesion, and menstrual blood, as well as dysmenorrhea scores between the two groups. (P > 0.05). The serum CA125 levels significantly decreased in both groups after HIFU, but the serum CA125 levels in the study group were still significantly lower than those in the control group (P < 0.05). The volume of uterine and adenomyotic lesion significantly decreased in both groups after HIFU procedure, and decreased even more in the study group 3 and 6 months after treatment (P < 0.05). Dysmenorrhea scores and menstruation volumes significantly decreased in both groups after HIFU treatment. Moreover in the study group were significantly lower than those in the control group after 3 and 6 months (P < 0.05). No significant difference was observed in the rate of adverse effects between the two groups. The short-term follow-up results indicate that the combination of GnRH-a and HIFU treatment significantly decreased serum CA125 levels, volumes of uterine, adenomyotic lesion and menstrual blood, as well as dysmenorrhea scores, and improved the clinical outcomes compared with the HIFU ablation alone in patients with adenomyosis. However, the further follow-up is needed to explore the long-term effects. A combination of GnRH-a with HIFU in the treatment of adenomyosis significantly decreased serum CA125 levels, uterine and adenomyotic lesion volumes, dysmenorrhea scores, and menstrual blood volumes. © 2017 Royal College of Obstetricians and Gynaecologists.
Li, Qiaoya; Li, Hongyang; He, Chengjun; Jing, Zhouhong; Liu, Changan; Xie, Juan; Ma, Wenwen; Deng, Huisheng
2017-11-21
This study aimed to investigate the therapeutic effects of 5-fluorouracil (5-FU)-loaded nanobubbles irradiated with low-intensity, low-frequency ultrasound in nude mice with hepatocellular carcinoma (HCC). A transplanted tumor model of HCC in nude mice was established in 40 mice, which were then randomly divided equally into four groups: group A (saline), group B (5-FU-loaded nanobubbles), group C (5-FU-loaded nanobubbles with non-low-frequency ultrasound), and group D (5-FU-loaded nanobubbles with low-frequency ultrasound). The tumor size in each mouse was observed via ultrasound before and after the treatments. Inhibition of the tumor growth in each group was compared, and survival curves were generated. Tumor tissues were removed to determine the apoptotic index using the TUNEL method and quantitative analysis. Tumor tissues with CD34-positive microvessels were observed by immunohistochemistry, and the tumor microvessel densities were calculated. The growth rate of the tumor volumes in group D was significantly slower than that in the other groups, while the tumor inhibition rates and apoptotic index in group D were significantly higher than those of the other groups. The number of microvessels staining positive for CD34 was decreased in group D. Therefore, group D presented the most significant inhibitory effects. Therefore, 5-FU-loaded nanobubbles subjected to irradiation with low-frequency ultrasound could further improve drug targeting and effectively inhibit the growth of transplanted tumors, which is expected to become an ideal drug carrier and targeted drug delivery system for the treatment of HCC in the future.
Kandil, Eman I; El-Sonbaty, Sawsan M; Moawed, Fatma Sm; Khedr, Ola Ms
2018-03-01
Guided treatments with nanoparticles and radiotherapy are a new approach in cancer therapy. This study evaluated the beneficial antitumor effects of γ-radiation together with gallium nanoparticles against solid Ehrlich carcinoma in female mice. Gallium nanoparticles were biologically synthesized using Lactobacillus helveticus cells. Transmission electron microscopy showed gallium nanoparticles with size range of 8-20 nm. In vitro study of gallium nanoparticles on MCF-7 revealed IC 50 of 8.0 μg. Gallium nanoparticles (0.1 mg/kg body weight) were injected intraperitoneally daily on the seventh day of Ehrlich carcinoma cells inoculation. Whole-body γ-radiation was carried out at a single dose of 0.25 Gy on eighth day after tumor inoculation. Biochemical analysis showed that solid Ehrlich carcinoma induced a significant increase in alanine aminotransferase activity and creatinine level in serum, calcium, and iron concentrations in liver tissue compared to normal control. Treatment of Ehrlich carcinoma-bearing mice with gallium nanoparticles and/or low dose of γ-radiation exposure significantly reduced tumor volume, decreased alanine aminotransferase and creatinine levels in serum, increased lipid peroxidation, and decreased glutathione content as well as calcium and iron concentrations in liver and tumor tissues with intense DNA fragmentation accompanied compared to untreated tumor cells. Moreover, mitochondria in the treated groups displayed a significant increase in Na+/K+-ATPase, complexes II and III with significant reduction in CYP450 gene expression, which may indicate a synergistic effect of gallium nanoparticles and/or low dose of γ-radiation combination against Ehrlich carcinoma injury, and this results were well appreciated with the histopathological findings in the tumor tissue. We conclude that combined treatment of gallium nanoparticles and low dose of gamma-radiation resulted in suppressive induction of cytotoxic effects on cancer cells.
Lux, Cassie N; Culp, William T N; Johnson, Lynelle R; Kent, Michael; Mayhew, Philipp; Daniaux, Lise A; Carr, Alaina; Puchalski, Sarah
2017-05-01
Identification of nasal neoplasia extension and tumor staging in dogs is most commonly performed using computed tomography (CT), however magnetic resonance imaging (MRI) is routinely used in human medicine. A prospective pilot study enrolling six dogs with nasal neoplasia was performed with CT and MRI studies acquired under the same anesthetic episode. Interobserver comparison and comparison between the two imaging modalities with regard to bidimensional measurements of the nasal tumors, tumor staging using historical schemes, and assignment of an ordinal scale of tumor margin clarity at the tumor-soft tissue interface were performed. The hypotheses included that MRI would have greater tumor measurements, result in higher tumor staging, and more clearly define the tumor soft tissue interface when compared to CT. Evaluation of bone involvement of the nasal cavity and head showed a high level of agreement between CT and MRI. Estimation of tumor volume using bidimensional measurements was higher on MRI imaging in 5/6 dogs, and resulted in a median tumor volume which was 18.4% higher than CT imaging. Disagreement between CT and MRI was noted with meningeal enhancement, in which two dogs were positive for meningeal enhancement on MRI and negative on CT. One of six dogs had a higher tumor stage on MRI compared to CT, while the remaining five agreed. Magnetic resonance imaging resulted in larger bidimensional measurements and tumor volume estimates, along with a higher likelihood of identifying meningeal enhancement when compared to CT imaging. Magnetic resonance imaging may provide integral information for tumor staging, prognosis, and treatment planning. © 2017 American College of Veterinary Radiology.
Moreira, Daniel M; Nickel, J Curtis; Andriole, Gerald L; Castro-Santamaria, Ramiro; Freedland, Stephen J
2015-09-01
To evaluate whether baseline acute and chronic prostate inflammation among men with initial negative biopsy for prostate cancer (PC) is associated with PC volume at the 2-year repeat prostate biopsy in a clinical trial with systematic biopsies. Retrospective analysis of 886 men with negative baseline prostate biopsy and positive 2-year repeat biopsy in the Reduction by Dutasteride of PC Events (REDUCE) study. Acute and chronic inflammation and tumor volume were determined by central pathology. The association of baseline inflammation with 2-year repeat biopsy cancer volume was evaluated with linear and Poisson regressions controlling for demographics and laboratory variables. Chronic, acute inflammation, and both were detected in 531 (60%), 12 (1%), and 84 (9%) baseline biopsies, respectively. Acute and chronic inflammation were significantly associated with each other (P < 0.001). Chronic inflammation was associated with larger prostate (P < 0.001) and lower pre-repeat biopsy PSA (P = 0.01). At 2-year biopsy, baseline chronic inflammation was associated with lower mean tumor volume (2.07 µl vs. 3.15 µl; P = 0.001), number of biopsy cores involved (1.78 vs. 2.19; P < 0.001), percent of cores involved (17.8% vs. 22.8%; P < 0.001), core involvement (0.21 µl vs. 0.31 µl; P < 0.001), and overall percent tumor involvement (1.40% vs. 2.01%; P < 0.001). Results were unchanged in multivariable analysis. Baseline acute inflammation was not associated with any tumor volume measurement. In a cohort of men with 2-year repeat prostate biopsy positive for PC after a negative baseline biopsy, baseline chronic inflammation was associated with lower PC volume. © 2015 Wiley Periodicals, Inc.
2013-01-01
Background Secondary lymphoid tissue chemokine (SLC) is a key CC chemokine for chemotaxis of immune cells and has been an attractive candidate for anti-tumor treatments. However, among the immune cells recruited by SLC to tumors, the CD25+ Foxp3+ regulatory T cells (Tregs) compromise the anti-tumor effects. In this study, we proposed the combination therapy of intratumoral co-administration of SLC and anti-CD25 monoclonal antibodies (mAbs). We hypothesized that the intratumoral injections of SLC and depletion of Tregs would have stronger inhibition effects on the progression of hepatocellular carcinoma (HCC) in mice. Methods C57BL/6 mice were inoculated subcutaneously with the murine HCC cell line, and mice with visible tumors were treated intratumorally with SLC, SLC plus anti-CD25 mAbs or the control antibodies. The percentages of Tregs, effector CD8+ T cells and CD4+ T cells were checked in the tumors, lymph nodes, spleen and liver at regular intervals. The levels of intratumoral IL-12, IFN-γ, IL-10 and TGF-β1 were evaluated. The final anti-tumor effects were measured by the tumor volume and weight as well as the intratumoral activity of MMP2 and MMP9. Bone-marrow-derived dendritic cells were used to explore the mechanisms of maturation induced by SLC in vitro. Results Our experiments showed the combination therapy significantly decreased the frequency of Tregs, and increased CD8+ T cells and CD4+ T cells at tumor sites. These alterations were accompanied by an increased level of IL-12 and IFN-γ, and decreased level of IL-10 and TGF-β1. Unexpectedly, we observed a significantly decreased percentage of Tregs, and increased CD8+ T cells and CD4+ T cells in the lymph nodes, spleen and liver after the combination therapy. The growth and invasiveness of HCC was also maximally inhibited in the combination therapy compared with the SLC alone. Furthermore, we confirmed SLC induced the maturation of DCs via NF-κB p65 and this maturation would benefit the combination therapy. Conclusions Our data demonstrated that intratumoral co-administration of SLC and anti-CD25 mAbs was an effective treatment for HCC, which was correlated with the altered tumor microenvironment and systemically optimized percentages of Tregs, CD8+ T cells and CD4+ T cells in peripheral immune organs. PMID:24304581
NASA Astrophysics Data System (ADS)
Adams, Matthew; Scott, Serena; Salgaonkar, Vasant; Sommer, Graham; Diederich, Chris
2017-03-01
An image-guided endoluminal ultrasound applicator has been proposed for palliative and potential curative thermal therapy of pancreatic tumors. By considering a directional transducer array of planar, tubular, or curvilinear transducers, this design offers the potential for fast volumetric therapy and 3D spatial control over the energy deposition profile. Treatment of pancreatic tumor tissue would be performed in a minimally invasive fashion with the applicator positioned in the gastrointestinal (GI) lumen, and sparing of the luminal wall would be achieved with a water-cooled balloon surrounding the transducers. A theoretical evaluation of this design was performed by developing a 3D acoustic and bioheat transfer model, with temperature and thermal dose solutions obtained using a FEM solver (COMSOL Multiphysics). Parametric studies were performed on a generalized anatomical model of the pancreas, tumor, and adjacent luminal wall to determine preferred transducer configurations and frequencies for maximizing lesion volume and penetration while sparing the luminal wall. Patient-specific models of pancreatic tumors were generated from CT studies and used to assess the feasibility of performing thermal ablation or hyperthermia on small (˜2 cm diameter) pancreatic head tumors with an endoluminal applicator positioned within the duodenum. Simulation results indicate lower transducer operating frequencies (1-3 MHz) are necessary to mitigate damage to the luminal wall, and a tradeoff between penetration depth and lesion volume emerges as the degree of focusing increases. For patient-specific ablation modeling of tumors within 30 mm of the luminal wall, approximately 95% of the volume could be ablated within 15 min using a planar or lightly focused transducer configuration without duodenal damage. Over 90% of the volume could be elevated above 40°C at steady state for hyperthermia applications (e.g., radiation sensitization, drug delivery) using a tubular transducer. For tumors extending deeper into the pancreas (˜35 mm), strongly focused curvilinear transducers could ablate over 80% of the tumor volume within 15 min while minimizing damage to nearby sensitive structures.
Gordetsky, Jennifer B; Schultz, Luciana; Porter, Kristin K; Nix, Jeffrey W; Thomas, John V; Del Carmen Rodriguez Pena, Maria; Rais-Bahrami, Soroush
2018-06-01
Magnetic resonance (MR)/ultrasound fusion-targeted biopsy (TB) routinely samples multiple cores from each MR lesion of interest. Pathologists can evaluate the extent of cancer involvement and grade using an individual core (IC) or aggregate (AG) method, which could potentially lead to differences in reporting. We reviewed patients who underwent TB followed by radical prostatectomy (RP). TB cores were evaluated for grade and tumor extent by 2 methods. In the IC method, the grade for each TB lesion was based on the core with the highest Gleason score. Tumor extent for each TB was based on the core with the highest percent of tumor involvement. In the AG method, the tumor from all cores within each TB lesion was aggregated to determine the final composite grade and percentage of tumor involvement. Each method was compared with MR lesional volume, MR lesional density (lesion volume/prostate volume), and RP. Fifty-five patients underwent TB followed by RP. Extent of tumor by the AG method showed a better correlation with target lesion volume (r= 0.27,P= .022) and lesional density (r = 0.32, P = .008) than did the IC method (r= 0.19 [P = .103] andr= 0.22 [P = .062]), respectively. Extent of tumor on TB was associated with extraprostatic extension on RP by the AG method (P= .04), but not by the IC method. This association was significantly higher in patients with a grade group (GG) of 3 or higher (P= .03). A change in cancer grade occurred in 3 patients when comparing methods (2 downgraded GG3 to GG2, 1 downgraded GG4 to GG3 by the AG method). For multiple cores obtained via TB, the AG method better correlates with target lesion volume, lesional density, and extraprostatic extension. Copyright © 2018 Elsevier Inc. All rights reserved.
Follow-up segmentation of lung tumors in PET and CT data
NASA Astrophysics Data System (ADS)
Opfer, Roland; Kabus, Sven; Schneider, Torben; Carlsen, Ingwer C.; Renisch, Steffen; Sabczynski, Jörg
2009-02-01
Early response assessment of cancer therapy is a crucial component towards a more effective and patient individualized cancer therapy. Integrated PET/CT systems provide the opportunity to combine morphologic with functional information. We have developed algorithms which allow the user to track both tumor volume and standardized uptake value (SUV) measurements during the therapy from series of CT and PET images, respectively. To prepare for tumor volume estimation we have developed a new technique for a fast, flexible, and intuitive 3D definition of meshes. This initial surface is then automatically adapted by means of a model-based segmentation algorithm and propagated to each follow-up scan. If necessary, manual corrections can be added by the user. To determine SUV measurements a prioritized region growing algorithm is employed. For an improved workflow all algorithms are embedded in a PET/CT therapy monitoring software suite giving the clinician a unified and immediate access to all data sets. Whenever the user clicks on a tumor in a base-line scan, the courses of segmented tumor volumes and SUV measurements are automatically identified and displayed to the user as a graph plot. According to each course, the therapy progress can be classified as complete or partial response or as progressive or stable disease. We have tested our methods with series of PET/CT data from 9 lung cancer patients acquired at Princess Margaret Hospital in Toronto. Each patient underwent three PET/CT scans during a radiation therapy. Our results indicate that a combination of mean metabolic activity in the tumor with the PET-based tumor volume can lead to an earlier response detection than a purely volume based (CT diameter) or purely functional based (e.g. SUV max or SUV mean) response measures. The new software seems applicable for easy, faster, and reproducible quantification to routinely monitor tumor therapy.
Sine, Jessica; Urban, Cordula; Thayer, Derek; Charron, Heather; Valim, Niksa; Tata, Darrell B; Schiff, Rachel; Blumenthal, Robert; Joshi, Amit; Puri, Anu
2015-01-01
We recently reported laser-triggered release of photosensitive compounds from liposomes containing dipalmitoylphosphatidylcholine (DPPC) and 1,2 bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC(8,9)PC). We hypothesized that the permeation of photoactivated compounds occurs through domains of enhanced fluidity in the liposome membrane and have thus called them "Pocket" liposomes. In this study we have encapsulated the red light activatable anticancer photodynamic therapy drug 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) (Ex/Em410/670 nm) together with calcein (Ex/Em490/517 nm) as a marker for drug release in Pocket liposomes. A mole ratio of 7.6:1 lipid:HPPH was found to be optimal, with >80% of HPPH being included in the liposomes. Exposure of liposomes with a cw-diode 660 nm laser (90 mW, 0-5 minutes) resulted in calcein release only when HPPH was included in the liposomes. Further analysis of the quenching ratios of liposome-entrapped calcein in the laser treated samples indicated that the laser-triggered release occurred via the graded mechanism. In vitro studies with MDA-MB-231-LM2 breast cancer cell line showed significant cell killing upon treatment of cell-liposome suspensions with the laser. To assess in vivo efficacy, we implanted MDA-MB-231-LM2 cells containing the luciferase gene along the mammary fat pads on the ribcage of mice. For biodistribution experiments, trace amounts of a near infrared lipid probe DiR (Ex/Em745/840 nm) were included in the liposomes. Liposomes were injected intravenously and laser treatments (90 mW, 0.9 cm diameter, for an exposure duration ranging from 5-8 minutes) were done 4 hours postinjection (only one tumor per mouse was treated, keeping the second flank tumor as control). Calcein release occurred as indicated by an increase in calcein fluorescence from laser treated tumors only. The animals were observed for up to 15 days postinjection and tumor volume and luciferase expression was measured. A significant decrease in luciferase expression and reduction in tumor volume was observed only in laser treated animal groups injected with liposomes containing HPPH. Histopathological examination of tumor tissues indicated tumor necrosis resulting from laser treatment of the HPPH-encapsulated liposomes that were taken up into the tumor area.
Zhao, Jinyan; Chen, Xuzheng; Lin, Wei; Wu, Guangwen; Zhuang, Qunchuan; Zhong, Xiaoyong; Hong, Zhenfeng; Peng, Jun
2013-03-01
The aim of this study was to evaluate the therapeutic efficacy of Rubus aleaefolius Poir total alkaloids (TARAP) against hepatocellular carcinoma growth in vivo and in vitro, and to investigate the possible molecular mechanisms mediating its biological activity. Nude mice were implanted with HepG2 human hepatocellular carcinoma cells and fed with vehicle (physiological saline) or 3 g/kg/d dose of TARAP, 5 days per week, for 21 days. The in vivo efficacy of TARAP against tumor growth was investigated by evaluating its effect on tumor volume and tumor weight in mice with HCC xenografts and its adverse effect was determined by measuring the body weight gain. The in vitro effect of TARAP on the viability of HepG2 cells was determined by MTT assay. HepG2 cell morphology was observed via phase-contrast microscopy. Apoptosis in tumor tissues or in HepG2 cells was analyzed by TUNEL assay or FACS analysis with Annexin V/PI, respectively. The loss of mitochondrial membrane potential in HepG2 cells was determined via JC-1 staining followed by FACS analysis. Activation of caspase-9 and -3 in HepG2 cells was examined by a colorimetric assay. The mRNA and protein expression of Bcl-2 and Bax in tumor tissues were measured by RT-PCR and immunohistochemistry. TARAP reduced tumor volume and tumor weight, but had no effect on the body weight gain in HCC mice. TARAP decreased the viability of HepG2 cells and induced cell morphological changes in vitro in a dose- and time-dependent manner. In addition, TARAP induced apoptosis both in tumor tissues and in HepG2 cells. Moreover, TARAP treatment resulted in the collapse of mitochondrial membrane potential in HepG2 cells, as well as the activation of caspase-9 and -3. Furthermore, administration of TARAP increased the pro-apoptotic Bax/Bcl-2 ratio in HCC mouse tumors, at both transcriptional and translational levels. TARAP inhibits hepatocellular carcinoma growth both in vivo and in vitro probably through the activation of mitochondrial-dependent apoptosis, which may, in part, explain its anticancer activity. These results suggest that total alkaloids in Rubus aleaefolius Poir may be a potential novel therapeutic agent for the treatment of hepatocellular carcinoma and other cancers.
Apoptosis and injuries of heavy ion beam and x-ray radiation on malignant melanoma cell.
Qin, Jin; Li, Sha; Zhang, Chao; Gao, Dong-Wei; Li, Qiang; Zhang, Hong; Jin, Xiao-Dong; Liu, Yang
2017-05-01
This study aims to investigate the influence of high linear energy transfer (LET) heavy ion ( 12 C 6+ ) and low LET X-ray radiation on apoptosis and related proteins of malignant melanoma on tumor-bearing mice under the same physical dosage. C57BL/6 J mice were burdened by tumors and randomized into three groups. These mice received heavy ion ( 12 C 6+ ) and X-ray radiation under the same physical dosage, respectively; their weight and tumor volumes were measured every three days post-radiation. After 30 days, these mice were sacrificed. Then, median survival time was calculated and tumors on mice were proliferated. In addition, immunohistochemistry was carried out for apoptosis-related proteins to reflect the expression level. After tumor-bearing mice were radiated to heavy ion, median survival time improved and tumor volume significantly decreased in conjunction with the upregulated expression of pro-apoptosis factors, Bax and cytochrome C, and the downregulated expression of apoptosis-profilin (Bcl-2, Survivin) and proliferation-related proteins (proliferating cell nuclear antigen). The results indicated that radiation can promote the apoptosis of malignant melanoma cells and inhibit their proliferation. This case was more suitable for heavy ion ( 12 C 6+ ). High LET heavy ion ( 12 C 6+ ) radiation could significantly improve the killing ability for malignant melanoma cells by inducing apoptosis in tumor cells and inhibiting their proliferation. These results demonstrated that heavy ion ( 12 C 6+ ) presented special advantages in terms of treating malignant melanoma. Impact statement Malignant melanoma is a malignant skin tumor derived from melanin cells, which has a high malignant degree and high fatality rate. In this study, proliferating cell nuclear antigen (PCNA) can induce the apoptosis of malignant melanoma cells and inhibit its proliferation, and its induction effect on apoptosis is significantly higher than low LET X-ray; hence, it is expected to overcome its lower sensitivity to radiation. This study can provide theoretical basis for clinical trials, in which malignant melanoma is treated by heavy ion ( 12 C 6+ ), in order to accurately determine the clinical efficacy of heavy ion therapy. Clinical applications has revealed that local tumor control rate is high when heavy ion is used to treat malignant melanoma, indicating that heavy ion is an important direction in treating melanoma in the future.
Sine, Jessica; Urban, Cordula; Thayer, Derek; Charron, Heather; Valim, Niksa; Tata, Darrell B; Schiff, Rachel; Blumenthal, Robert; Joshi, Amit; Puri, Anu
2015-01-01
We recently reported laser-triggered release of photosensitive compounds from liposomes containing dipalmitoylphosphatidylcholine (DPPC) and 1,2 bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC). We hypothesized that the permeation of photoactivated compounds occurs through domains of enhanced fluidity in the liposome membrane and have thus called them “Pocket” liposomes. In this study we have encapsulated the red light activatable anticancer photodynamic therapy drug 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) (Ex/Em410/670 nm) together with calcein (Ex/Em490/517 nm) as a marker for drug release in Pocket liposomes. A mole ratio of 7.6:1 lipid:HPPH was found to be optimal, with >80% of HPPH being included in the liposomes. Exposure of liposomes with a cw-diode 660 nm laser (90 mW, 0–5 minutes) resulted in calcein release only when HPPH was included in the liposomes. Further analysis of the quenching ratios of liposome-entrapped calcein in the laser treated samples indicated that the laser-triggered release occurred via the graded mechanism. In vitro studies with MDA-MB-231-LM2 breast cancer cell line showed significant cell killing upon treatment of cell-liposome suspensions with the laser. To assess in vivo efficacy, we implanted MDA-MB-231-LM2 cells containing the luciferase gene along the mammary fat pads on the ribcage of mice. For biodistribution experiments, trace amounts of a near infrared lipid probe DiR (Ex/Em745/840 nm) were included in the liposomes. Liposomes were injected intravenously and laser treatments (90 mW, 0.9 cm diameter, for an exposure duration ranging from 5–8 minutes) were done 4 hours postinjection (only one tumor per mouse was treated, keeping the second flank tumor as control). Calcein release occurred as indicated by an increase in calcein fluorescence from laser treated tumors only. The animals were observed for up to 15 days postinjection and tumor volume and luciferase expression was measured. A significant decrease in luciferase expression and reduction in tumor volume was observed only in laser treated animal groups injected with liposomes containing HPPH. Histopathological examination of tumor tissues indicated tumor necrosis resulting from laser treatment of the HPPH-encapsulated liposomes that were taken up into the tumor area. PMID:25565809
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binkley, Michael S.; Shrager, Joseph B.; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
2014-09-01
Purpose: Lung volume reduction surgery (LVRS) improves dyspnea and other outcomes in selected patients with severe emphysema, but many have excessive surgical risk for LVRS. We analyzed the dose-volume relationship for lobar volume reduction after stereotactic ablative radiation therapy (SABR) of lung tumors, hypothesizing that SABR could achieve therapeutic volume reduction if applied in emphysema. Methods and Materials: We retrospectively identified patients treated from 2007 to 2011 who had SABR for 1 lung tumor, pre-SABR pulmonary function testing, and ≥6 months computed tomographic (CT) imaging follow-up. We contoured the treated lobe and untreated adjacent lobe(s) on CT before and after SABRmore » and calculated their volume changes relative to the contoured total (bilateral) lung volume (TLV). We correlated lobar volume reduction with the volume receiving high biologically effective doses (BED, α/β = 3). Results: 27 patients met the inclusion criteria, with a median CT follow-up time of 14 months. There was no grade ≥3 toxicity. The median volume reduction of the treated lobe was 4.4% of TLV (range, −0.4%-10.8%); the median expansion of the untreated adjacent lobe was 2.6% of TLV (range, −3.9%-11.6%). The volume reduction of the treated lobe was positively correlated with the volume receiving BED ≥60 Gy (r{sup 2}=0.45, P=.0001). This persisted in subgroups determined by high versus low pre-SABR forced expiratory volume in 1 second, treated lobe CT emphysema score, number of fractions, follow-up CT time, central versus peripheral location, and upper versus lower lobe location, with no significant differences in effect size between subgroups. Volume expansion of the untreated adjacent lobe(s) was positively correlated with volume reduction of the treated lobe (r{sup 2}=0.47, P<.0001). Conclusions: We identified a dose-volume response for treated lobe volume reduction and adjacent lobe compensatory expansion after lung tumor SABR, consistent across multiple clinical parameters. These data serve to inform our ongoing prospective trial of stereotactic ablative volume reduction (SAVR) for severe emphysema in poor candidates for LVRS.« less
Leite, Elaine A; Souza, Cristina M; Carvalho-Júnior, Alvaro D; Coelho, Luiz G V; Lana, Angela M Q; Cassali, Geovanni D; Oliveira, Mônica C
2012-01-01
Cisplatin (CDDP) is one of the most effective and potent anticancer drugs used as first-line chemotherapy against several solid tumors. However, the severe side effects and its tendency to provoke chemoresistance often limit CDDP therapy. To avoid these inconveniences, the present study's research group developed long-circulating and pH-sensitive liposomes containing CDDP (SpHL-CDDP). The present study aimed to evaluate the antitumor effect and toxicity of SpHL-CDDP, as compared with that of free CDDP, and long-circulating and non- pH-sensitive liposomes containing CDDP (NSpHL-CDDP), after their intravenous administration in solid Ehrlich tumor-bearing mice. Antitumor activity was evaluated by analysis of tumor volume and growth inhibition ratio, serum vascular endothelial growth factor (VEGF) levels, and histomorphometric and immunohistochemical studies. Body weight variation and the histological examination of bone marrow and kidneys were used as toxicity indicators. A significant reduction in the tumor volume and a higher tumor growth inhibition ratio was observed after SpHL-CDDP treatment, compared with free CDDP and NSpHL-CDDP treatments. In addition, complete remission of the tumor was detected in 18.2% of the mice treated with SpHL- CDDP (16 mg/kg). As such, the administration of SpHL-CDDP, as compared with free CDDP and NSpHL-CDDP, led to a decrease in the area of necrosis and in the percentage of positive CDC 47 tumor cells. A significant reduction in the VEGF serum level was also observed after SpHL-CDDP treatment, as compared with free-CDDP treatment. SpHL-CDDP administered in a two-fold higher dose than that of free CDDP presented a loss in body weight and changes in the hematopoietic tissue morphology, which proved to be similar to that of free CDDP. No changes could be verified in the renal tissue after any formulations containing CDDP had been administered. These findings showed that SpHL-CDDP allowed for the administration of higher doses of CDDP, significantly improving its antitumor effect.
Volumetric response of intracranial meningioma after photon or particle irradiation.
Mozes, Petra; Dittmar, Jan Oliver; Habermehl, Daniel; Tonndorf-Martini, Eric; Hideghety, Katalin; Dittmar, Anne; Debus, Jürgen; Combs, Stephanie E
2017-03-01
Meningiomas are usually slow growing, well circumscribed intracranial tumors. In symptom-free cases observation with close follow-up imaging could be performed. Symptomatic meningiomas could be surgically removed and/or treated with radiotherapy. The study aimed to evaluate the volumetric response of intracranial meningiomas at different time points after photon, proton, and a mixed photon and carbon ion boost irradiation. In Group A 38 patients received proton therapy (median dose: 56 GyE in 1.8-2 GyE daily fractions) or a mixed photon/carbon ion therapy (50 Gy in 2 Gy daily fractions with intensity modulated radiotherapy (IMRT) and 18 GyE in 3 GyE daily dose carbon ion boost). Thirty-nine patients (Group B) were treated by photon therapy with IMRT or fractionated stereotactic radiotherapy technique (median dose: 56 Gy in 1.8-2 Gy daily fractions). The delineation of the tumor volume was based on the initial, one- and two-year follow-up magnetic resonance imaging and these volumes were compared to evaluate the volumetric tumor response. Significant tumor volume shrinkage was detected at one- and at two-year follow-up both after irradiation by particles and by photons. No significant difference in tumor volume change was observed between photon, proton or combined photon plus carbon ion boost treated patients. WHO grade and gender appear to be determining factors for tumor volume shrinkage. Significant volumetric shrinkage of meningiomas could be observed independently of the applied radiation modality. Long-term follow-up is recommended to evaluate further dynamic of size reduction and its correlation with outcome data.
Clafshenkel, William P; King, Tracy L; Kotlarczyk, Mary P; Cline, J Mark; Foster, Warren G; Davis, Vicki L; Witt-Enderby, Paula A
2012-01-01
Morinda citrifolia (noni) is reported to have many beneficial properties, including on immune, inflammatory, quality of life, and cancer endpoints, but little is known about its ability to prevent or treat breast cancer. To test its anticancer potential, the effects of Tahitian Noni Juice (TNJ) on mammary carcinogenesis were examined in MMTV-neu transgenic mice. Mammary tumor latency, incidence, multiplicity, and metastatic incidence were unaffected by TNJ treatment, which suggests that it would not increase or decrease breast cancer risk in women taking TNJ for its other benefits. However, noni may be useful to enhance treatment responses in women with existing HER2/neu breast cancer since TNJ resulted in significant reductions in tumor weight and volume and in longer tumor doubling times in mice. Remarkably, its ability to inhibit the growth of this aggressive form of cancer occurred with the mouse equivalent of a recommended dose for humans (<3 oz/day). A 30-day treatment with TNJ also induced significant changes in mammary secondary ductule branching and lobuloalveolar development, serum progesterone levels, and estrous cycling. Additional studies investigating TNJ-induced tumor growth suppression and modified reproductive responses are needed to characterize its potential as a CAM therapy for women with and without HER2(+) breast cancer.
Luks, Tracy L; McKnight, Tracy Richmond; Jalbert, Llewellyn E; Williams, Aurelia; Neill, Evan; Lobo, Khadjia A; Persson, Anders I; Perry, Arie; Phillips, Joanna J; Molinaro, Annette M; Chang, Susan M; Nelson, Sarah J
2018-06-05
The goal of this research was to elucidate the relationship between WHO 2016 molecular classifications of newly diagnosed, nonenhancing lower grade gliomas (LrGG), tissue sample histopathology, and magnetic resonance (MR) parameters derived from diffusion, perfusion, and 1 H spectroscopic imaging from the tissue sample locations and the entire tumor. A total of 135 patients were scanned prior to initial surgery, with tumor cellularity scores obtained from 88 image-guided tissue samples. MR parameters were obtained from corresponding sample locations, and histograms of normalized MR parameters within the T2 fluid-attenuated inversion recovery lesion were analyzed in order to evaluate differences between subgroups. For tissue samples, higher tumor scores were related to increased normalized apparent diffusion coefficient (nADC), lower fractional anisotropy (nFA), lower cerebral blood volume (nCBV), higher choline (nCho), and lower N-acetylaspartate (nNAA). Within the T2 lesion, higher tumor grade was associated with higher nADC, lower nFA, and higher Cho to NAA index. Pathological analysis confirmed that diffusion and metabolic parameters increased and perfusion decreased with tumor cellularity. This information can be used to select targets for tissue sampling and to aid in making decisions about treating residual disease. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Liu, Lianke; Ni, Fang; Zhang, Jianchao; Wang, Chunyu; Lu, Xiang; Guo, Zhirui; Yao, Shaowei; Shu, Yongqian; Xu, Ruizhi
2011-12-01
Hyperthermia incorporating magnetic nanoparticles (MNPs) is a hopeful therapy to cancers and steps into clinical tests at present. However, the clinical plan of MNPs deposition in tumors, especially applied for directly multipoint injection hyperthermia (DMIH), and the information of temperature rise in tumors by DMIH is lack of studied. In this paper, we mainly discussed thermal distributions induced by MNPs in the rat brain tumors during DMIH. Due to limited experimental measurement for detecting thermal dose of tumors, and in order to acquire optimized results of temperature distributions clinically needed, we designed the thermal model in which three types of MNPs injection for hyperthermia treatments were simulated. The simulated results showed that MNPs injection plan played an important role in determining thermal distribution, as well as the overall dose of MNPs injected. We found that as injected points enhanced, the difference of temperature in the whole tumor volume decreased. Moreover, from temperature detecting data by Fiber Optic Temperature Sensors (FOTSs) in glioma bearing rats during MNPs hyperthermia, we found the temperature errors by FOTSs reduced as the number of points injected enhanced. Finally, the results showed that the simulations are preferable and the optimized plans of the numbers and spatial positions of MNPs points injected are essential during direct injection hyperthermia.
Application of 23Na MRI to Monitor Chemotherapeutic Response in RIF-1 Tumors1
Babsky, Andriy M; Hekmatyar, Shahryar K; Zhang, Hong; Solomon, James L; Bansal, Navin
2005-01-01
Abstract Effects of an alkylating anticancer drug, cyclophosphamide (Cp), on 23Na signal intensity (23Na SI) and water apparent diffusion coefficient (ADC) were examined in subcutaneously-implanted radiation-induced fibrosarcoma (RIF-1) tumors by in vivo 23Na and 1H magnetic resonance imaging (MRI). MRI experiments were performed on untreated control (n = 5) and Cp-treated (n = 6) C3H mice, once before Cp injection (300 mg/kg) then daily for 3 days after treatment. Tumor volumes were significantly lower in treated animals 2 and 3 days posttreatment. At the same time points, MRI experiments showed an increase in both 23Na SI and water ADC in treated tumors, whereas control tumors did not show any significant changes. The correlation between 23Na SI and water ADC changes was dramatically increased in the Cp-treated group, suggesting that the observed increases in 23Na SI and water ADC were caused by the same mechanism. Histologic sections showed decreased cell density in the regions of increased 23Na and water ADC SI. Destructive chemical analysis showed that Cp treatment increased the relative extracellular space and tumor [Na+]. We conclude that the changes in water ADC and 23Na SI were largely due to an increase in extracellular space. 23Na MRI and 1H water ADC measurements may provide valuable noninvasive techniques for monitoring chemotherapeutic responses. PMID:16026645
Mok, Wilson; Stylianopoulos, Triantafyllos; Boucher, Yves; Jain, Rakesh K.
2010-01-01
Purpose Although oncolytic viral vectors show promise for the treatment of various cancers, ineffective initial distribution and propagation throughout the tumor mass often limit the therapeutic response. A mathematical model is developed to describe the spread of herpes simplex virus from the initial injection site. Experimental Design The tumor is modeled as a sphere of radius R. The model incorporates reversible binding, interstitial diffusion, viral degradation, and internalization and physiologic parameters. Three species are considered as follows: free interstitial virus, virus bound to cell surfaces, and internalized virus. Results This analysis reveals that both rapid binding and internalization as well as hindered diffusion contain the virus to the initial injection volume, with negligible spread to the surrounding tissue. Unfortunately, increasing the dose to saturate receptors and promote diffusion throughout the tumor is not a viable option: the concentration necessary would likely compromise safety. However, targeted modifications to the virus that decrease the binding affinity have the potential to increase the number of infected cells by 1.5-fold or more. An increase in the effective diffusion coefficient can result in similar gains. Conclusions This analysis suggests criteria by which the potential response of a tumor to oncolytic herpes simplex virus therapy can be assessed. Furthermore, it reveals the potential of modifications to the vector delivery method, physicochemical properties of the virus, and tumor extracellular matrix composition to enhance efficacy. PMID:19318482
Kundu, Bornali; Penwarden, Amy; Wood, Joel M; Gallagher, Thomas A; Andreoli, Matthew J; Voss, Jed; Meier, Timothy; Nair, Veena A; Kuo, John S; Field, Aaron S; Moritz, Chad; Meyerand, M Elizabeth; Prabhakaran, Vivek
2013-04-01
Functional MRI (fMRI) has the potential to be a useful presurgical planning tool to treat patients with primary brain tumor. In this study the authors retrospectively explored relationships between language-related postoperative outcomes in such patients and multiple factors, including measures estimated from task fMRI maps (proximity of lesion to functional activation area, or lesion-to-activation distance [LAD], and activation-based language lateralization, or lateralization index [LI]) used in the clinical setting for presurgical planning, as well as other factors such as patient age, patient sex, tumor grade, and tumor volume. Patient information was drawn from a database of patients with brain tumors who had undergone preoperative fMRI-based language mapping of the Broca and Wernicke areas. Patients had performed a battery of tasks, including word-generation tasks and a text-versus-symbols reading task, as part of a clinical fMRI protocol. Individually thresholded task fMRI activation maps had been provided for use in the clinical setting. These clinical imaging maps were used to retrospectively estimate LAD and LI for the Broca and Wernicke areas. There was a relationship between postoperative language deficits and the proximity between tumor and Broca area activation (the LAD estimate), where shorter LADs were related to the presence of postoperative aphasia. Stratification by tumor location further showed that for posterior tumors within the temporal and parietal lobes, more bilaterally oriented Broca area activation (LI estimate close to 0) and a shorter Wernicke area LAD were associated with increased postoperative aphasia. Furthermore, decreasing LAD was related to decreasing LI for both Broca and Wernicke areas. Preoperative deficits were related to increasing patient age and a shorter Wernicke area LAD. Overall, LAD and LI, as determined using fMRI in the context of these paradigms, may be useful indicators of postsurgical outcomes. Whereas tumor location may influence postoperative deficits, the results indicated that tumor proximity to an activation area might also interact with how the language network is affected as a whole by the lesion. Although the derivation of LI must be further validated in individual patients by using spatially specific statistical methods, the current results indicated that fMRI is a useful tool for predicting postoperative outcomes in patients with a single brain tumor.
The Lateral Decubitus Breast Boost: Description, Rationale, and Efficacy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludwig, Michelle S., E-mail: mludwig@mdanderson.or; McNeese, Marsha D.; Buchholz, Thomas A.
2010-01-15
Purpose: To describe and evaluate the modified lateral decubitus boost, a breast irradiation technique. Patients are repositioned and resimulated for electron boost to minimize the necessary depth for the electron beam and optimize target volume coverage. Methods and Materials: A total of 2,606 patients were treated with post-lumpectomy radiation at our institution between January 1, 2000, and February 1, 2008. Of these, 231 patients underwent resimulation in the lateral decubitus position with electron boost. Distance from skin to the maximal depth of target volume was measured in both the original and boost plans. Age, body mass index (BMI), boost electronmore » energy, and skin reaction were evaluated. Results: Resimulation in the lateral decubitus position reduced the distance from skin to maximal target volume depth in all patients. Average depth reduction by repositioning was 2.12 cm, allowing for an average electron energy reduction of approximately 7 MeV. Mean skin entrance dose was reduced from about 90% to about 85% (p < 0.001). Only 14 patients (6%) experienced moist desquamation in the boost field at the end of treatment. Average BMI of these patients was 30.4 (range, 17.8-50.7). BMI greater than 30 was associated with more depth reduction by repositioning and increased risk of moist desquamation. Conclusions: The lateral decubitus position allows for a decrease in the distance from the skin to the target volume depth, improving electron coverage of the tumor bed while reducing skin entrance dose. This is a well-tolerated regimen for a patient population with a high BMI or deep tumor location.« less
Gamma Knife radiosurgery for large vestibular schwannomas greater than 3 cm in diameter.
Huang, Cheng-Wei; Tu, Hsien-Tang; Chuang, Chun-Yi; Chang, Cheng-Siu; Chou, Hsi-Hsien; Lee, Ming-Tsung; Huang, Chuan-Fu
2018-05-01
OBJECTIVE Stereotactic radiosurgery (SRS) is an important alternative management option for patients with small- and medium-sized vestibular schwannomas (VSs). Its use in the treatment of large tumors, however, is still being debated. The authors reviewed their recent experience to assess the potential role of SRS in larger-sized VSs. METHODS Between 2000 and 2014, 35 patients with large VSs, defined as having both a single dimension > 3 cm and a volume > 10 cm 3 , underwent Gamma Knife radiosurgery (GKRS). Nine patients (25.7%) had previously undergone resection. The median total volume covered in this group of patients was 14.8 cm 3 (range 10.3-24.5 cm 3 ). The median tumor margin dose was 11 Gy (range 10-12 Gy). RESULTS The median follow-up duration was 48 months (range 6-156 months). All 35 patients had regular MRI follow-up examinations. Twenty tumors (57.1%) had a volume reduction of greater than 50%, 5 (14.3%) had a volume reduction of 15%-50%, 5 (14.3%) were stable in size (volume change < 15%), and 5 (14.3%) had larger volumes (all of these lesions were eventually resected). Four patients (11.4%) underwent resection within 9 months to 6 years because of progressive symptoms. One patient (2.9%) had open surgery for new-onset intractable trigeminal neuralgia at 48 months after GKRS. Two patients (5.7%) who developed a symptomatic cyst underwent placement of a cystoperitoneal shunt. Eight (66%) of 12 patients with pre-GKRS trigeminal sensory dysfunction had hypoesthesia relief. One hemifacial spasm completely resolved 3 years after treatment. Seven patients with facial weakness experienced no deterioration after GKRS. Two of 3 patients with serviceable hearing before GKRS deteriorated while 1 patient retained the same level of hearing. Two patients improved from severe hearing loss to pure tone audiometry less than 50 dB. The authors found borderline statistical significance for post-GKRS tumor enlargement for later resection (p = 0.05, HR 9.97, CI 0.99-100.00). A tumor volume ≥ 15 cm 3 was a significant factor predictive of GKRS failure (p = 0.005). No difference in outcome was observed based on indication for GKRS (p = 0.0761). CONCLUSIONS Although microsurgical resection remains the primary management choice in patients with VSs, most VSs that are defined as having both a single dimension > 3 cm and a volume > 10 cm 3 and tolerable mass effect can be managed satisfactorily with GKRS. Tumor volume ≥ 15 cm 3 is a significant factor predicting poor tumor control following GKRS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donovan, Ellen M., E-mail: ellen.donovan@icr.ac.u; Ciurlionis, Laura; Fairfoul, Jamie
Purpose: To establish planning solutions for a concomitant three-level radiation dose distribution to the breast using linear accelerator- or tomotherapy-based intensity-modulated radiotherapy (IMRT), for the U.K. Intensity Modulated and Partial Organ (IMPORT) High trial. Methods and Materials: Computed tomography data sets for 9 patients undergoing breast conservation surgery with implanted tumor bed gold markers were used to prepare three-level dose distributions encompassing the whole breast (36 Gy), partial breast (40 Gy), and tumor bed boost (48 or 53 Gy) treated concomitantly in 15 fractions within 3 weeks. Forward and inverse planned IMRT and tomotherapy were investigated as solutions. A standardmore » electron field was compared with a photon field arrangement encompassing the tumor bed boost volume. The out-of-field doses were measured for all methods. Results: Dose-volume constraints of volume >90% receiving 32.4 Gy and volume >95% receiving 50.4 Gy for the whole breast and tumor bed were achieved. The constraint of volume >90% receiving 36 Gy for the partial breast was fulfilled in the inverse IMRT and tomotherapy plans and in 7 of 9 cases of a forward planned IMRT distribution. An electron boost to the tumor bed was inadequate in 8 of 9 cases. The IMRT methods delivered a greater whole body dose than the standard breast tangents. A contralateral lung volume >2.5 Gy was increased in the inverse IMRT and tomotherapy plans, although it did not exceed the constraint. Conclusion: We have demonstrated a set of widely applicable solutions that fulfilled the stringent clinical trial requirements for the delivery of a concomitant three-level dose distribution to the breast.« less
Cameron, Ivan L; Markov, Marko S; Hardman, W Elaine
2014-01-01
This study provided additional data on the effects of a therapeutic electromagnetic field (EMF) device on growth and vascularization of murine 16/C mammary adenocarcinoma cells implanted in C3H/HeJ mice. The therapeutic EMF device generated a defined 120 Hz semi sine wave pulse signal of variable intensity. Murine 16/C mammary adenocarcinoma tumor fragments were implanted subcutaneously between the scapulae of syngeneic C3H mice. Once the tumor grew to 100 mm(3), daily EMF treatments were started by placing the cage of mice within the EMF field. Treatment ranged from 10 to 20 milli-Tesla (mT) and was given for 3 to 80 minutes either once or twice a day for 12 days. Tumors were measured and volumes calculated each 3-4 days. Therapeutic EMF treatment significantly suppressed tumor growth in all 7 EMF treated groups. Exposure to 20mT for 10 minutes twice a day was the most effective tumor growth suppressor. The effect of EMF treatment on extent of tumor vascularization, necrosis and viable area was determined after euthanasia. The EMF reduced the vascular (CD31 immunohistochemically positive) volume fraction and increased the necrotic volume of the tumor. Treatment with 15 mT for 10 min/d gave the maximum anti-angiogenic effect. Lack of a significant correlation between tumor CD 31 positive area and tumor growth rate indicates a mechanism for suppression of tumor growth in addition to suppression of tumor vascularization. It is proposed that EMF therapy aimed at suppression of tumor growth and vascularization may prove a safe alternative for patients whether they are or are not candidates for conventional cancer therapy.
Wen, Li-Li; Zhang, Xin; Zhang, Qing-Rong; Wu, Qi; Chen, Shu-Juan; Deng, Jin-Long; Huang, Kaiyi; Wang, Han-Dong
2017-11-01
Preoperative embolization of hypervascular brain tumors is frequently used to minimize intraoperative bleeding. To explore the efficacy of embolization using flat-detector CT (FDCT) parenchymal blood volume (PBV) maps before and after the intervention. Twenty-five patients with hypervascular brain tumors prospectively received pre- and postprocedural FDCT PBV scans using a biplane system under a protocol approved by the institutional research ethics committee. Semiquantitative analysis, based on region of interest measurements of the pre- and post-embolization PBV maps, operating time, and blood loss, was performed to assess the feasibility of PBV maps in detecting the perfusion deficit and to evaluate the efficacy of embolization. Preoperative embolization was successful in 18 patients. The relative PBV decreased significantly from 3.98±1.41 before embolization to 2.10±2.00 after embolization. Seventeen patients underwent surgical removal of tumors 24 hours after embolization. The post-embolic tumor perfusion index correlated significantly with blood loss (ρ=0.55) and operating time (ρ=0.60). FDCT PBV mapping is a useful method for evaluating the perfusion of hypervascular brain tumors and the efficacy of embolization. It can be used as a supplement to CT perfusion, MRI, and DSA in the evaluation of tumor embolization. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
‘Obligate’ anaerobic Salmonella strain YB1 suppresses liver tumor growth and metastasis in nude mice
Li, Chang-Xian; Yu, Bin; Shi, Lei; Geng, Wei; Lin, Qiu-Bin; Ling, Chang-Chun; Yang, Mei; Ng, Kevin T. P.; Huang, Jian-Dong; Man, Kwan
2017-01-01
The antitumor properties of bacteria have been demonstrated over the past decades. However, the efficacy is limited and unclear. Furthermore, systemic infection remains a serious concern in bacteria treatment. In this study, the effect of YB1, a rationally designed ‘obligate’ anaerobic Salmonella typhimurium strain, on liver tumor growth and metastasis in a nude mouse orthotopic liver tumor model was investigated. The orthotopic liver tumor model was established in nude mice using the hepatocellular carcinoma cell line MHCC-97L. Two weeks after orthotopic liver tumor implantation, YB1, SL7207 and saline were respectively administered through the tail vein of the mice. Longitudinal monitoring of tumor growth and metastasis was performed using Xenogen IVIS, and direct measurements of tumor volume were taken 3 weeks after treatment. In vitro, MHCC-97L and PLC cells were incubated with YB1 or SL7207 under anaerobic conditions. YB1 was observed to invade tumor cells and induce tumor cell apoptosis and death. The results revealed that all mice in the YB1 group were alive 3 weeks after YB1 injection while all mice in the SL7207 group died within 11 days of the SL7207 injection. The body weight decreased by ~9% on day 1 after YB1 injection and but subsequently recovered. Liver tumor growth and metastases were significantly inhibited following YB1 treatment. By contrast to the control group, a large number of Gr1-positive cells were detected on days 1 to 21 following YB1 treatment. Furthermore, YB1 also effectively invaded tumor cells and induced tumor cell apoptosis and death. In conclusion, YB1 suppressed liver tumor growth and metastasis in a nude mice liver tumor model. The potential mechanism may be through enhancing innate immune response and inducing tumor cell apoptosis and cell death. PMID:28123538
Dostalova, Simona; Polanska, Hana; Svobodova, Marketa; Balvan, Jan; Krystofova, Olga; Haddad, Yazan; Krizkova, Sona; Masarik, Michal; Eckschlager, Tomas; Stiborova, Marie; Heger, Zbynek; Adam, Vojtech
2018-06-11
Herein, we describe the in vivo effects of doxorubicin (DOX) encapsulated in ubiquitous protein apoferritin (APO) and its efficiency and safety in anti-tumor treatment. APODOX is both passively (through Enhanced Permeability and Retention effect) and actively targeted to tumors through prostate-specific membrane antigen (PSMA) via mouse antibodies conjugated to the surface of horse spleen APO. To achieve site-directed conjugation of the antibodies, a HWRGWVC heptapeptide linker was used. The prostate cancer-targeted and non-targeted nanocarriers were tested using subcutaneously implanted LNCaP cells in athymic mice models, and compared to free DOX. Prostate cancer-targeted APODOX retained the high potency of DOX in attenuation of tumors (with 55% decrease in tumor volume after 3 weeks of treatment). DOX and non-targeted APODOX treatment caused damage to liver, kidney and heart tissues. In contrast, no elevation in liver or kidney enzymes and negligible changes were revealed by histological assessment in prostate cancer-targeted APODOX-treated mice. Overall, we show that the APO nanocarrier provides an easy encapsulation protocol, reliable targeting, high therapeutic efficiency and very low off-target toxicity, and is thus a promising delivery system for translation into clinical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayr, Nina A., E-mail: Nina.Mayr@osumc.edu; Huang Zhibin; Wang, Jian Z.
2012-07-01
Purpose: Treatment response in cancer has been monitored by measuring anatomic tumor volume (ATV) at various times without considering the inherent functional tumor heterogeneity known to critically influence ultimate treatment outcome: primary tumor control and survival. This study applied dynamic contrast-enhanced (DCE) functional MRI to characterize tumors' heterogeneous subregions with low DCE values, at risk for treatment failure, and to quantify the functional risk volume (FRV) for personalized early prediction of treatment outcome. Methods and Materials: DCE-MRI was performed in 102 stage IB{sub 2}-IVA cervical cancer patients to assess tumor perfusion heterogeneity before and during radiation/chemotherapy. FRV represents the totalmore » volume of tumor voxels with critically low DCE signal intensity (<2.1 compared with precontrast image, determined by previous receiver operator characteristic analysis). FRVs were correlated with treatment outcome (follow-up: 0.2-9.4, mean 6.8 years) and compared with ATVs (Mann-Whitney, Kaplan-Meier, and multivariate analyses). Results: Before and during therapy at 2-2.5 and 4-5 weeks of RT, FRVs >20, >13, and >5 cm{sup 3}, respectively, significantly predicted unfavorable 6-year primary tumor control (p = 0.003, 7.3 Multiplication-Sign 10{sup -8}, 2.0 Multiplication-Sign 10{sup -8}) and disease-specific survival (p = 1.9 Multiplication-Sign 10{sup -4}, 2.1 Multiplication-Sign 10{sup -6}, 2.5 Multiplication-Sign 10{sup -7}, respectively). The FRVs were superior to the ATVs as early predictors of outcome, and the differentiating power of FRVs increased during treatment. Discussion: Our preliminary results suggest that functional tumor heterogeneity can be characterized by DCE-MRI to quantify FRV for predicting ultimate long-term treatment outcome. FRV is a novel functional imaging heterogeneity parameter, superior to ATV, and can be clinically translated for personalized early outcome prediction before or as early as 2-5 weeks into treatment.« less
Inter-method Performance Study of Tumor Volumetry Assessment on Computed Tomography Test-retest Data
Buckler, Andrew J.; Danagoulian, Jovanna; Johnson, Kjell; Peskin, Adele; Gavrielides, Marios A.; Petrick, Nicholas; Obuchowski, Nancy A.; Beaumont, Hubert; Hadjiiski, Lubomir; Jarecha, Rudresh; Kuhnigk, Jan-Martin; Mantri, Ninad; McNitt-Gray, Michael; Moltz, Jan Hendrik; Nyiri, Gergely; Peterson, Sam; Tervé, Pierre; Tietjen, Christian; von Lavante, Etienne; Ma, Xiaonan; Pierre, Samantha St.; Athelogou, Maria
2015-01-01
Rationale and objectives Tumor volume change has potential as a biomarker for diagnosis, therapy planning, and treatment response. Precision was evaluated and compared among semi-automated lung tumor volume measurement algorithms from clinical thoracic CT datasets. The results inform approaches and testing requirements for establishing conformance with the Quantitative Imaging Biomarker Alliance (QIBA) CT Volumetry Profile. Materials and Methods Industry and academic groups participated in a challenge study. Intra-algorithm repeatability and inter-algorithm reproducibility were estimated. Relative magnitudes of various sources of variability were estimated using a linear mixed effects model. Segmentation boundaries were compared to provide a basis on which to optimize algorithm performance for developers. Results Intra-algorithm repeatability ranged from 13% (best performing) to 100% (least performing), with most algorithms demonstrating improved repeatability as the tumor size increased. Inter-algorithm reproducibility determined in three partitions and found to be 58% for the four best performing groups, 70% for the set of groups meeting repeatability requirements, and 84% when all groups but the least performer were included. The best performing partition performed markedly better on tumors with equivalent diameters above 40 mm. Larger tumors benefitted by human editing but smaller tumors did not. One-fifth to one-half of the total variability came from sources independent of the algorithms. Segmentation boundaries differed substantially, not just in overall volume but in detail. Conclusions Nine of the twelve participating algorithms pass precision requirements similar to what is indicated in the QIBA Profile, with the caveat that the current study was not designed to explicitly evaluate algorithm Profile conformance. Change in tumor volume can be measured with confidence to within ±14% using any of these nine algorithms on tumor sizes above 10 mm. No partition of the algorithms were able to meet the QIBA requirements for interchangeability down to 10 mm, though the partition comprised of the best performing algorithms did meet this requirement above a tumor size of approximately 40 mm. PMID:26376841
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabolizadeh, Peyman, E-mail: peyman.kabolizadeh@beaumont.org; Chen, Yen-Lin; Liebsch, Norbert
Purpose: Treatment of spine and sacral chordoma generally involves surgical resection, usually in conjunction with radiation therapy. In certain circumstances where resection may result in significant neurologic or organ dysfunction, patients can be treated definitively with radiation therapy alone. Herein, we report the outcome and the assessment of tumor response to definitive radiation therapy. Methods and Materials: A retrospective analysis was performed on 40 patients with unresected chordoma treated with photon/proton radiation therapy. Nineteen patients had complete sets of imaging scans. The soft tissue and bone compartments of the tumor were defined separately. Tumor response was evaluated by the modifiedmore » Response Evaluation Criteria in Solid Tumors (RECIST) and volumetric analysis. Results: With a median follow-up time of 50.3 months, the rates of 5-year local control, overall survival, disease-specific survival, and distant failure were 85.4%, 81.9%, 89.4%, and 20.2%, respectively. Eighty-four computed tomographic and magnetic resonance imaging scans were reviewed. Among the 19 patients, only 4 local failures occurred, and the median tumor dose was 77.4 GyRBE. Analysis at a median follow-up time of 18 months showed significant volumetric reduction of the total target volume (TTV) and the soft tissue target volume (STTV) within the first 24 months after treatment initiation, followed by further gradual reduction throughout the rest of the follow-up period. The median maximum percentage volumetric regressions of TTV and STTV were 43.2% and 70.4%, respectively. There was only a small reduction in bone target volume over time. In comparison with the modified RECIST, volumetric analysis was more reliable, more reproducible, and could help in measuring minimal changes in the tumor volume. Conclusion: These results continue to support the use of high-dose definitive radiation therapy for selected patients with unresected spine and sacral chordomas. Assessment of tumor response to radiation therapy by volumetric analysis is superior to modified RECIST in chordoma patients. Evaluating the soft tissue target volume is an excellent indicator of tumor response.« less
Le Nobin, Julien; Rosenkrantz, Andrew B; Villers, Arnauld; Orczyk, Clément; Deng, Fang-Ming; Melamed, Jonathan; Mikheev, Artem; Rusinek, Henry; Taneja, Samir S
2015-08-01
We compared prostate tumor boundaries on magnetic resonance imaging and radical prostatectomy histological assessment using detailed software assisted co-registration to define an optimal treatment margin for achieving complete tumor destruction during image guided focal ablation. Included in study were 33 patients who underwent 3 Tesla magnetic resonance imaging before radical prostatectomy. A radiologist traced lesion borders on magnetic resonance imaging and assigned a suspicion score of 2 to 5. Three-dimensional reconstructions were created from high resolution digitalized slides of radical prostatectomy specimens and co-registered to imaging using advanced software. Tumors were compared between histology and imaging by the Hausdorff distance and stratified by the magnetic resonance imaging suspicion score, Gleason score and lesion diameter. Cylindrical volume estimates of treatment effects were used to define the optimal treatment margin. Three-dimensional software based registration with magnetic resonance imaging was done in 46 histologically confirmed cancers. Imaging underestimated tumor size with a maximal discrepancy between imaging and histological boundaries for a given tumor of an average ± SD of 1.99 ± 3.1 mm, representing 18.5% of the diameter on imaging. Boundary underestimation was larger for lesions with an imaging suspicion score 4 or greater (mean 3.49 ± 2.1 mm, p <0.001) and a Gleason score of 7 or greater (mean 2.48 ± 2.8 mm, p = 0.035). A simulated cylindrical treatment volume based on the imaging boundary missed an average 14.8% of tumor volume compared to that based on the histological boundary. A simulated treatment volume based on a 9 mm treatment margin achieved complete histological tumor destruction in 100% of patients. Magnetic resonance imaging underestimates histologically determined tumor boundaries, especially for lesions with a high imaging suspicion score and a high Gleason score. A 9 mm treatment margin around a lesion visible on magnetic resonance imaging would consistently ensure treatment of the entire histological tumor volume during focal ablative therapy. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Rao, Shreyas S; Stoehr, Jenna; Dokic, Danijela; Wan, Lei; Decker, Joseph T; Konopka, Kristine; Thomas, Alexandra L; Wu, Jia; Kaklamani, Virginia G; Shea, Lonnie D; Jeruss, Jacqueline S
2017-10-13
Activation of CDK2 in triple negative breast cancer (TNBC) can contribute to non-canonical phosphorylation of a TGFβ signaling component, Smad3, promoting cell proliferation and migration. Inhibition of CDK2 was shown to decrease breast cancer oncogenesis. Eribulin chemotherapy was used effectively in the treatment of TNBC. To this end, we tested therapeutic efficacy of a novel CDK2/9 inhibitor, CYC065, eribulin, and the combination of CYC065 and eribulin in 3 different TNBC cell lines, and an in vivo xenograft model. Specifically, we characterized cell proliferation, apoptosis, migration, cell cycle associated protein expression, treatment-related transcription factor activity, and tumor growth in TNBC. Treatment with CYC065 and eribulin in combination had a superior effect on decreasing cell proliferation, inducing apoptosis, and inhibiting migration in TNBC cell lines in vitro . Combination therapy inhibited non-canonical Smad3 phosphorylation at the T179 site in the protein linker region, and resulted in increased p15 and decreased c-myc expression. In a transcription factor array, combination treatment significantly increased activity of AP1 and decreased activity of factors including NFκB, SP1, E2F, and SMAD3. In an in vivo xenograft model of TNBC, individual and combination treatments resulted in a decrease in both tumor volume and mitotic indices. Taken together, these studies highlight the potential of this novel drug combination, CYC065 and eribulin, to suppress the growth of TNBC cells in vitro and in vivo, warranting further clinical investigation.
Tummala, Shashank; Gowthamarajan, K; Satish Kumar, M N; Wadhwani, Ashish
2016-06-01
Tumor necrosis factor related apoptosis inducing ligand (TRAIL) proved to be a promising new target for colorectal cancer treatment. Elevated expression of TRAIL protein in tumor cells distinguishes it from healthy cells, thereby delivering the drug at the specific site. Here, we formulated oxaliplatin immunohybrid nanoparticles (OIHNPs) to deliver oxaliplatin and anti-TRAIL for colorectal cancer treatment in xenograft tumor models. The polymeric chitosan layer binds to the lipid film with the mixture of phospholipids by an ultra sound method followed by conjugating with thiolated antibody using DSPE-PEG-mal3400, resulting in the formation of OIHNPs. The polymer layer helps in more encapsulation of the drug (71 ± 0.09%) with appreciable particle size (95 ± 0.01 nm), and lipid layer prevents degradation of the drug in serum by preventing nanoparticle aggregation. OIHNPs have shown a 4-fold decrease in the IC50 value compared to oxaliplatin in HT-29 cells by the MTT assay. These immuno-nanoparticles represent the successful uptake and internalization of oxaliplatin in HT-29 cells rather than in MCF-7 cells determined by triple fluorescence method. Apoptotic activity in vitro of OIHNPs was determined by the change in the mitochondria membrane potential that further elevates its anti-tumor property. Furthermore, the conjugated nanoparticles can effectively deliver the drug to the tumor sites, which can be attributed to its ability in reducing tumor mass and tumor volume in xenograft tumor models in vivo along with sustaining its release in vitro. These findings indicated that the oxaliplatin immuno-hybrid nanoparticles would be a promising nano-sized active targeted formulation for colorectal-tumor targeted therapy.
Peeters, Sarah G J A; Zegers, Catharina M L; Biemans, Rianne; Lieuwes, Natasja G; van Stiphout, Ruud G P M; Yaromina, Ala; Sun, Jessica D; Hart, Charles P; Windhorst, Albert D; van Elmpt, Wouter; Dubois, Ludwig J; Lambin, Philippe
2015-07-01
Conventional anticancer treatments are often impaired by the presence of hypoxia. TH-302 selectively targets hypoxic tumor regions, where it is converted into a cytotoxic agent. This study assessed the efficacy of the combination treatment of TH-302 and radiotherapy in two preclinical tumor models. The effect of oxygen modification on the combination treatment was evaluated and the effect of TH-302 on the hypoxic fraction (HF) was monitored using [(18)F]HX4-PET imaging and pimonidazole IHC stainings. Rhabdomyosarcoma R1 and H460 NSCLC tumor-bearing animals were treated with TH-302 and radiotherapy (8 Gy, single dose). The tumor oxygenation status was altered by exposing animals to carbogen (95% oxygen) and nicotinamide, 21% or 7% oxygen breathing during the course of the treatment. Tumor growth and treatment toxicity were monitored until the tumor reached four times its start volume (T4×SV). Both tumor models showed a growth delay after TH-302 treatment, which further increased when combined with radiotherapy (enhancement ratio rhabdomyosarcoma 1.23; H460 1.49). TH-302 decreases the HF in both models, consistent with its hypoxia-targeting mechanism of action. Treatment efficacy was dependent on tumor oxygenation; increasing the tumor oxygen status abolished the effect of TH-302, whereas enhancing the HF enlarged TH-302's therapeutic effect. An association was observed in rhabdomyosarcoma tumors between the pretreatment HF as measured by [(18)F]HX4-PET imaging and the T4×SV. The combination of TH-302 and radiotherapy is promising and warrants clinical testing, preferably guided by the companion biomarker [(18)F]HX4 hypoxia PET imaging for patient selection. ©2015 American Association for Cancer Research.
Soliman, Amel M; Fahmy, Sohair R; El-Abied, Salma A
2015-01-01
Objectives: With the development of sophisticated instruments for the isolation and elucidation of natural products structures from marine and freshwater organisms, major advances have been made in the discovery of aquatic derived therapeutics. Present investigations were carried out to evaluate cuttlefish (Sepia officinalis) ink extract (IE) and freshwater clam (Coelatura aegyptiaca) extract (CE) for their anticancer and antioxidant activities as compared to 5-flurouracil (5-Fu), in Ehrlich ascites carcinoma (EAC). Methods: Sixty female Swiss albino mice were divided into five groups (n = 12). All groups except group I received EAC cells (5 × 106 cells/mouse i.p.) and this was taken as the 0th day. Group I served as saline control (5 ml/kg 0.9% NaCl w/v p.o). Group II served as EAC control. Rats of groups III, IV and V received IE, CE (200 mg/kg body weight i.p.), and reference drug (5-Fu, 20 mg/kg body weight i.p.), respectively. Results: The reduction in tumor volume, packed cell volume, tumor cell counts and increase in median survival time and percentage increase in life span in treated animals were observed. There was a significant increase in RBC count; Hb content in treated animals and reduction in total WBC count. There was a significant decrease in AST, ALT, ALP and liver MDA levels and increase in GSH, SOD and NO levels were observed in all treated animals. Conclusion: Both IE and CE were effective in inhibiting the tumor growth in ascitic tumor models. The biochemical, antioxidants and histopathological studies were also supported their antitumor properties. PMID:26097537
Shang, Q-Y; Wu, C-S; Gao, H-R
2017-09-01
The present study explored the effect that deoxycytidine kinase (DCK) knockdown had on proliferation, apoptosis and tumorigenicity in vivo of cervical cancer HeLa cells. Human cervical cancer HeLa cells that had received no prior treatment were selected from the HeLa group. The HeLa-negative control (NC) group consisted of cells that had undergone an empty vector treatment, and finally the HeLa-short hairpin RNA (shRNA) group included cells that were treated by means of shRNA-DCK expression. DCK expressions were evaluated by quantitative real-time polymerase chain reaction in addition to western blotting assays. Cell proliferation was estimated using the Cell Counting Kit-8 (CCK-8) assay and cell cycle progression. Cell apoptosis was determined by flow cytometry. BALB/c nude mice (n=24) were selected to establish transplanted tumor models, with gross tumor volume measured every 3 days. The results in vitro were as follows: compared with the HeLa group, the HeLa-shRNA group exhibited downregulation of DCK expression and inhibition of cell proliferation at 48, 72 and 96 h. Additionally, more cells in the HeLa-shRNA group were arrested in G0/G1 stage and less in S and G2/M stages, as well as in promotion of cell apoptosis. In vivo results are as follows: when comparing the HeLa and HeLa-NC groups, the gross tumor volume of the transplanted tumor in nude mice in the HeLa-shRNA group was found to have decreased in 13, 16, 19 and 22 days. Based on these findings, our study suggests that DCK knockdown facilitates apoptosis while inhibiting proliferation and tumorigenicity in vivo of cervical cancer HeLa cells.
Primary Endoscopic Transnasal Transsphenoidal Surgery for Giant Pituitary Adenoma.
Kuo, Chao-Hung; Yen, Yu-Shu; Wu, Jau-Ching; Chang, Peng-Yuan; Chang, Hsuan-Kan; Tu, Tsung-Hsi; Huang, Wen-Cheng; Cheng, Henrich
2016-07-01
Giant pituitary adenoma (>4 cm) remains challenging because the optimal surgical approach is uncertain. Consecutive patients with giant pituitary adenoma who underwent endoscopic transnasal transsphenoidal surgery (ETTS) as the first and primary treatment were retrospectively reviewed. Inclusion criteria were tumor diameter ≥4 cm in at least 1 direction, and tumor volume ≥10 cm(3). Exclusion criteria were follow-ups <2 years and diseases other than pituitary adenoma. All the clinical and radiologic outcomes were evaluated. A total of 38 patients, average age 50.8 years, were analyzed with a mean follow-up of 72.9 months. All patients underwent ETTS as the first and primary treatment, and 8 (21.1%) had complete resection without any evidence of recurrence at the latest follow-up. Overall, mean tumor volume decreased from 29.7 to 3.2 cm(3) after surgery. Residual and recurrent tumors (n = 30) were managed with 1 of the following: Gamma Knife radiosurgery (GKRS), reoperation (redo ETTS), both GKRS and ETTS, medication, conventional radiotherapy, or none. At last follow-up, most of the patients had favorable outcomes, including 8 (21.1%) who were cured and 29 (76.3%) who had a stable residual condition without progression. Only 1 (2.6%) had late recurrence at 66 months after GKRS. The overall progression-free rate was 97.4%, with few complications. In this series of giant pituitary adenoma, primary (ie, the first) ETTS yielded complete resection and cure in 21.1%. Along with adjuvant therapies, including GKRS, most patients (97.4%) were stable and free of disease progression. Therefore, primary ETTS appeared to be an effective surgical approach for giant pituitary adenoma. Copyright © 2016 Elsevier Inc. All rights reserved.
SU-D-201-02: Prediction of Delivered Dose Based On a Joint Histogram of CT and FDG PET Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Choi, Y; Cho, A
2015-06-15
Purpose: To investigate whether pre-treatment images can be used in predicting microsphere distribution in tumors. When intra-arterial radioembolization using Y90 microspheres was performed, the microspheres were often delivered non-uniformly within the tumor, which could lead to an inefficient therapy. Therefore, it is important to estimate the distribution of microspheres. Methods: Early arterial phase CT and FDG PET images were acquired for patients with primary liver cancer prior to radioembolization (RE) using Y90 microspheres. Tumor volume was delineated on CT images and fused with FDG PET images. From each voxel (3.9×3.9×3.3 mm3) in the tumor, the Hounsfield unit (HU) from themore » CT and SUV values from the FDG PET were harvested. We binned both HU and SUV into 11 bins and then calculated a normalized joint-histogram in an 11×11 array.Patients also underwent a post-treatment Y90 PET imaging. Radiation dose for the tumor was estimated using convolution of the Y90 distribution with a dose-point kernel. We also calculated a fraction of the tumor volume that received a radiation dose great than 100Gy. Results: Averaged over 40 patients, 55% of tumor volume received a dose greater than 100Gy (range : 1.1 – 100%). The width of the joint histogram was narrower for patients with a high dose. For patients with a low dose, the width was wider and a larger fraction of tumor volume had low HU. Conclusion: We have shown the pattern of joint histogram of the HU and SUV depends on delivered dose. The patterns can predict the efficacy of uniform intra-arterial delivery of Y90 microspheres.« less
Lung tumor motion change during stereotactic body radiotherapy (SBRT): an evaluation using MRI
Olivier, Kenneth R.; Li, Jonathan G.; Liu, Chihray; Newlin, Heather E.; Schmalfuss, Ilona; Kyogoku, Shinsuke; Dempsey, James F.
2014-01-01
The purpose of this study is to investigate changes in lung tumor internal target volume during stereotactic body radiotherapy treatment (SBRT) using magnetic resonance imaging (MRI). Ten lung cancer patients (13 tumors) undergoing SBRT (48 Gy over four consecutive days) were evaluated. Each patient underwent three lung MRI evaluations: before SBRT (MRI‐1), after fraction 3 of SBRT (MRI‐3), and three months after completion of SBRT (MRI‐3m). Each MRI consisted of T1‐weighted images in axial plane through the entire lung. A cone‐beam CT (CBCT) was taken before each fraction. On MRI and CBCT taken before fractions 1 and 3, gross tumor volume (GTV) was contoured and differences between the two volumes were compared. Median tumor size on CBCT before fractions 1 (CBCT‐1) and 3 (CBCT‐3) was 8.68 and 11.10 cm3, respectively. In 12 tumors, the GTV was larger on CBCT‐3 compared to CBCT‐1 (median enlargement, 1.56 cm3). Median tumor size on MRI‐1, MRI‐3, and MRI‐3m was 7.91, 11.60, and 3.33 cm3, respectively. In all patients, the GTV was larger on MRI‐3 compared to MRI‐1 (median enlargement, 1.54 cm3). In all patients, GTV was smaller on MRI‐3m compared to MRI‐1 (median shrinkage, 5.44 cm3). On CBCT and MRI, all patients showed enlargement of the GTV during the treatment week of SBRT, except for one patient who showed minimal shrinkage (0.86 cm3). Changes in tumor volume are unpredictable; therefore, motion and breathing must be taken into account during treatment planning, and image‐guided methods should be used, when treating with large fraction sizes. PACS number: 87.53.Ly PMID:24892328
Pain correlates with germline mutation in schwannomatosis.
Jordan, Justin T; Smith, Miriam J; Walker, James A; Erdin, Serkan; Talkowski, Michael E; Merker, Vanessa L; Ramesh, Vijaya; Cai, Wenli; Harris, Gordon J; Bredella, Miriam A; Seijo, Marlon; Suuberg, Alessandra; Gusella, James F; Plotkin, Scott R
2018-02-01
Schwannomatosis has been linked to germline mutations in the SMARCB1 and LZTR1 genes, and is frequently associated with pain.In a cohort study, we assessed the mutation status of 37 patients with clinically diagnosed schwannomatosis and compared to clinical data, whole body MRI (WBMRI), visual analog pain scale, and Short Form 36 (SF-36) bodily pain subscale.We identified a germline mutation in LZTR1 in 5 patients (13.5%) and SMARCB1 in 15 patients (40.5%), but found no germline mutation in 17 patients (45.9%). Peripheral schwannomas were detected in 3 LZTR1-mutant (60%) and 10 SMARCB1-mutant subjects (66.7%). Among those with peripheral tumors, the median tumor number was 4 in the LZTR1 group (median total body tumor volume 30 cc) and 10 in the SMARCB1 group (median volume 85cc), (P=.2915 for tumor number and P = .2289 for volume). mutation was associated with an increased prevalence of spinal schwannomas (100% vs 41%, P = .0197). The median pain score was 3.9/10 in the LZTR1 group and 0.5/10 in the SMARCB1 group (P = .0414), and SF-36 pain-associated quality of life was significantly worse in the LZTR1 group (P = .0106). Pain scores correlated with total body tumor volume (rho = 0.32471, P = .0499), but not with number of tumors (rho = 0.23065, P = .1696).We found no significant difference in quantitative tumor burden between mutational groups, but spinal schwannomas were more common in LZTR1-mutant patients. Pain was significantly higher in LZTR1-mutant than in SMARCB1-mutant patients, though spinal tumor location did not significantly correlate with pain. This suggests a possible genetic association with schwannomatosis-associated pain.