Sample records for decreased liver function

  1. Growth hormone and drug metabolism. Acute effects on microsomal mixed-function oxidase activities in rat liver.

    PubMed Central

    Wilson, J T; Spelsberg, T C

    1976-01-01

    Adult male rats were subjected either to sham operation or to hypophysectomy and adrenalectomy and maintained for a total of 10 days before treatment with growth hormone. Results of the early effects of growth hormone on the activities of the mixed-function oxidases in rat liver over a 96h period after growth-hormone treatment are presented. 2. Hypophysectomy and adrenalectomy result in decreased body and liver weight and decreased drug metabolism (mixed-function oxidases). Concentrations of electron-transport-system components are also decreased. 3. In the hypophysectomized/adrenalectomized rats, growth hormone decreases the activities of the liver mixed-function oxidases and the cytochrome P-450 and cytochrome c reductases, as well as decreasing the concentration of cytochrome P-450 compared with that of control rats. Similar but less dramatic results are obtained with sham-operated rats. 4. It is concluded that whereas growth hormone enhances liver growth, including induction of many enzyme activities, it results in a decrease in mixed-function oxidase activity. Apparently, mixed-function oxidase activity decreases in liver when growth (mitogenesis) increases. PMID:938458

  2. Lovastatin decreases mortality and improves liver functions in fulminant hepatic failure from 90% partial hepatectomy in rats.

    PubMed

    Cai, S R; Motoyama, K; Shen, K J; Kennedy, S C; Flye, M W; Ponder, K P

    2000-01-01

    Liver insufficiency occurs when the liver cannot perform critical functions such as ammonia metabolism, gluconeogenesis, or production of coagulation factors The hypothesis of this study was that decreased function of existing hepatocytes may contribute to hepatic failure, and that the function of these cells might be increased pharmacologically. Lovastatin is a 3-hydroxy-3-methylglutaryl CoA reductase inhibitor that inhibits cholesterol biosynthesis and affects the activity of some signal transduction pathways and liver transcription factors. Changes in hepatic transcription factors during liver regeneration might result in decreased liver functions, and lovastatin might prevent these changes Rats received 90% partial hepatectomy (90% PH), and either lovastatin or vehicle alone daily. Survival and liver functions were assessed. Lovastatin increased survival to 58% (vs. 6% in controls that received 90% PH without drug), decreased the peak ammonia level to 427 microM (vs. 846 microM in controls), increased the nadir of glucose to 88 mg/dl (vs. 57 mg/dl in controls), decreased the peak prothrombin time to 23 s (vs 29 s in controls), and decreased the peak activated partial thromboplastin time to 29 s (vs. 39 s in controls). The full survival and metabolic benefits were observed when lovastatin was started at 30 min after 90% PH, but lovastatin was less efficacious when started at later times. Lovastatin increases the function of existing hepatocytes and might be used to improve liver function after extensive hepatic resection.

  3. Postoperative Decrease in Platelet Counts Is Associated with Delayed Liver Function Recovery and Complications after Partial Hepatectomy.

    PubMed

    Takahashi, Kazuhiro; Kurokawa, Tomohiro; Oshiro, Yukio; Fukunaga, Kiyoshi; Sakashita, Shingo; Ohkohchi, Nobuhiro

    2016-05-01

    Peripheral platelet counts decrease after partial hepatectomy; however, the implications of this phenomenon are unclear. We assessed if the observed decrease in platelet counts was associated with postoperative liver function and morbidity (complications grade ≤ II according to the Clavien-Dindo classification). We enrolled 216 consecutive patients who underwent partial hepatectomy for primary liver cancers, metastatic liver cancers, benign tumors, and donor hepatectomy. We classified patients as either low or high platelet percentage (postoperative platelet count/preoperative platelet count) using the optimal cutoff value calculated by a receiver operating characteristic (ROC) curve analysis, and analyzed risk factors for delayed liver functional recovery and morbidity after hepatectomy. Delayed liver function recovery and morbidity were significantly correlated with the lowest value of platelet percentage based on ROC analysis. Using a cutoff value of 60% acquired by ROC analysis, univariate and multivariate analysis determined that postoperative lowest platelet percentage ≤ 60% was identified as an independent risk factor of delayed liver function recovery (odds ratio (OR) 6.85; P < 0.01) and morbidity (OR, 4.90; P < 0.01). Furthermore, patients with the lowest platelet percentage ≤ 60% had decreased postoperative prothrombin time ratio and serum albumin level and increased serum bilirubin level when compared with patients with platelet percentage ≥ 61%. A greater than 40% decrease in platelet count after partial hepatectomy was an independent risk factor for delayed liver function recovery and postoperative morbidity. In conclusion, the decrease in platelet counts is an early marker to predict the liver function recovery and complications after hepatectomy.

  4. Influence of Prescribed Herbal and Western Medicine on Patients with Abnormal Liver Function Tests: A Retrospective Quasi-Experimental Study

    PubMed Central

    Lee, Ah-Ram; Yim, Je-Min; Kim, Won-Il

    2012-01-01

    Objectives: The aim of this study was to investigate the safety and the efficacy of Korean herbal, western and combination medicine use in patients with abnormal liver function tests. Methods: We investigated nerve disease patients with abnormal liver function tests who were treated with Korean herbal, western and combination medicine at Dong-Eui University Oriental Hospital from January 2011 to August 2011. We compared aspartic aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and total bilirubin (T-bil) levels before and after taking medicine and excluded patients who had liver-related disease when admitted. Results: AST and ALT were decreased significantly in patients who had taken herbal, western medicine. AST, ALT and ALP were decreased significantly in patients who had taken combination medicine. Compare to herbal medicine, AST, ALT and ALP were decreased significantly in patients who had taken western medicine, and ALT and ALP were decreased significantly in patients who had taken combination medicine. There were no significant differences between western and combination medicine. Conclusions: This study suggests that prescribed Korean herbal medicine, at least, does not injure liver function for patients’, moreover, it was shown to be effective in patients with abnormal liver function tests. PMID:25780634

  5. Monitoring of Total and Regional Liver Function after SIRT.

    PubMed

    Bennink, Roelof J; Cieslak, Kasia P; van Delden, Otto M; van Lienden, Krijn P; Klümpen, Heinz-Josef; Jansen, Peter L; van Gulik, Thomas M

    2014-01-01

    Selective internal radiation therapy (SIRT) is a promising treatment modality for advanced hepatocellular carcinoma or metastatic liver cancer. SIRT is usually well tolerated. However, in most patients, SIRT will result in a (temporary) decreased liver function. Occasionally patients develop radioembolization-induced liver disease (REILD). In case of a high tumor burden of the liver, it could be beneficial to perform SIRT in two sessions enabling the primary untreated liver segments to guarantee liver function until function in the treated segments has recovered or functional hypertrophy has occurred. Clinically used liver function tests provide evidence of only one of the many liver functions, though all of them lack the possibility of assessment of segmental (regional) liver function. Hepatobiliary scintigraphy (HBS) has been validated as a tool to assess total and regional liver function in liver surgery. It is also used to assess segmental liver function before and after portal vein embolization. HBS is considered as a valuable quantitative liver function test enabling assessment of segmental liver function recovery after regional intervention and determination of future remnant liver function. We present two cases in which HBS was used to monitor total and regional liver function in a patient after repeated whole liver SIRT complicated with REILD and a patient treated unilaterally without complications.

  6. [Kidney function and liver transplantation].

    PubMed

    Gámán, György; Gelley, Fanni; Gerlei, Zsuzsa; Dabasi, Eszter; Görög, Dénes; Fehérvári, Imre; Kóbori, László; Lengyel, Gabriella; Zádori, Gergely; Fazakas, János; Doros, Attila; Sárváry, Enikő; Nemes, Balázs

    2013-06-30

    In liver cirrhosis renal function decreases as well. Hepatorenal syndrome is the most frequent cause of the decrease, but primary kidney failure, diabetes mellitus and some diseases underlying endstage liver failure (such as hepatitis C virus infection) can also play an important role. In liver transplantation several further factors (total cross-clamping of vena cava inferior, polytransfusion, immunosuppression) impair the renal function, too. The aim of this study was to analyse the changes in kidney function during the first postoperative year after liver transplantation. Retrospective data analysis was performed after primary liver transplantations (n = 319). impaired preoperative renal function increased the devepolment of postoperative complications and the first year cumulative patient survival was significantly worse (91,7% vs 69,9%; p<0,001) in this group. If renal function of the patients increased above 60 ml/min/1,73 m2 after the first year, patient survival was better. Independently of the preoperative kidney function, 76% of the patients had impaired kidney function at the first postoperative year. In this group, de novo diabetes mellitus was more frequently diagnosed (22,5% vs 9,5%; p = 0,023). Selection of personalized immunosuppressive medication has a positive effect on renal function.

  7. Ob/ob Mouse Livers Show Decreased Oxidative Phosphorylation Efficiencies and Anaerobic Capacities after Cold Ischemia

    PubMed Central

    Tagaloa, Sherry; Zhang, Linda; Dare, Anna J.; MacDonald, Julia R.; Yeong, Mee-Ling; Bartlett, Adam S. J. R.; Phillips, Anthony R. J.

    2014-01-01

    Background Hepatic steatosis is a major risk factor for graft failure in liver transplantation. Hepatic steatosis shows a greater negative influence on graft function following prolonged cold ischaemia. As the impact of steatosis on hepatocyte metabolism during extended cold ischaemia is not well-described, we compared markers of metabolic capacity and mitochondrial function in steatotic and lean livers following clinically relevant durations of cold preservation. Methods Livers from 10-week old leptin-deficient obese (ob/ob, n = 9) and lean C57 mice (n = 9) were preserved in ice-cold University of Wisconsin solution. Liver mitochondrial function was then assessed using high resolution respirometry after 1.5, 3, 5, 8, 12, 16 and 24 hours of storage. Metabolic marker enzymes for anaerobiosis and mitochondrial mass were also measured in conjunction with non-bicarbonate tissue pH buffering capacity. Results Ob/ob and lean mice livers showed severe (>60%) macrovesicular and mild (<30%) microvesicular steatosis on Oil Red O staining, respectively. Ob/ob livers had lower baseline enzymatic complex I activity but similar adenosine triphosphate (ATP) levels compared to lean livers. During cold storage, the respiratory control ratio and complex I-fueled phosphorylation deteriorated approximately twice as fast in ob/ob livers compared to lean livers. Ob/ob livers also demonstrated decreased ATP production capacities at all time-points analyzed compared to lean livers. Ob/ob liver baseline lactate dehydrogenase activities and intrinsic non-bicarbonate buffering capacities were depressed by 60% and 40%, respectively compared to lean livers. Conclusions Steatotic livers have impaired baseline aerobic and anaerobic capacities compared to lean livers, and mitochondrial function indices decrease particularly from after 5 hours of cold preservation. These data provide a mechanistic basis for the clinical recommendation of shorter cold storage durations in steatotic donor livers. PMID:24956382

  8. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging.

    PubMed

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie

    2016-02-01

    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p < 0.05 to all). Significant decrease in hepatic artery perfusion was also observed in pericancerous liver tissue, but other parameters kept constant. CT perfusion imaging is able to detect decrease in blood perfusion of liver cancer post-argon-helium knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy. © The Author(s) 2014.

  9. Metformin and/or clomiphene do not adversely affect liver or renal function in women with polycystic ovary syndrome.

    PubMed

    Aubuchon, Mira; Kunselman, Allen R; Schlaff, William D; Diamond, Michael P; Coutifaris, Christos; Carson, Sandra A; Steinkampf, Michael P; Carr, Bruce R; McGovern, Peter G; Cataldo, Nicholas A; Gosman, Gabriella G; Nestler, John E; Myers, Evan R; Legro, Richard S

    2011-10-01

    Nonalcoholic fatty liver disease is common to insulin-resistant states such as polycystic ovary syndrome (PCOS). Metformin (MET) is often used to treat PCOS but information is limited as to its effects on liver function. We sought to determine the effects of MET on serum hepatic parameters in PCOS patients. This was a secondary analysis of a randomized, doubled-blind trial from 2002-2004. This multi-center clinical trial was conducted in academic centers. Six hundred twenty-six infertile women with PCOS with serum liver function parameters less than twice the upper limit of normal were included. Clomiphene citrate (n = 209), MET (n = 208), or combined (n = 209) were given for up to 6 months. The percent change from baseline in renal and liver function between- and within-treatment arms was assessed. Renal function improved in all treatment arms with significant decreases in serum blood urea nitrogen levels (range, -14.7 to -21.3%) as well as creatinine (-4.2 to -6.9%). There were similar decreases in liver transaminase levels in the clomiphene citrate and combined arms (-10% in bilirubin, -9 to -11% in transaminases) without significant changes in the MET arm. When categorizing baseline bilirubin, aspartate aminotransferase, and alanine aminotransferase into tertiles, there were significant within-treatment arm differences between the tertiles with the highest tertile having the largest decrease from baseline regardless of treatment arm. Women with PCOS can safely use metformin and clomiphene even in the setting of mildly abnormal liver function parameters, and both result in improved renal function.

  10. Senescence marker protein 30 (SMP30)/regucalcin (RGN) expression decreases with aging, acute liver injuries and tumors in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujisawa, Koichi; Terai, Shuji, E-mail: terais@yamaguchi-u.ac.jp; Hirose, Yoshikazu

    2011-10-22

    Highlights: {yields} Zebrafish SMP30/RGN mRNA expression decreases with aging. {yields} Decreased expression was observed in liver tumors as compared to the surrounding area. {yields} SMP30/RGN is important for liver proliferation and tumorigenesis. -- Abstract: Senescence marker protein 30 (SMP30)/regucalcin (RGN) is known to be related to aging, hepatocyte proliferation and tumorigenesis. However, expression and function of non-mammalian SMP30/RGN is poorly understood. We found that zebrafish SMP30/RGN mRNA expression decreases with aging, partial hepatectomy and thioacetamide-induced acute liver injury. SMP30/RGN expression was also greatly decreased in a zebrafish liver cell line. In addition, we induced liver tumors in adult zebrafish bymore » administering diethylnitrosamine. Decreased expression was observed in foci, hepatocellular carcinomas, cholangiocellular carcinomas and mixed tumors as compared to the surrounding area. We thus showed the importance of SMP30/RGN in liver proliferation and tumorigenesis.« less

  11. Improvement of liver injury and survival by JNK2 and iNOS deficiency in liver transplants from cardiac death mice.

    PubMed

    Liu, Qinlong; Rehman, Hasibur; Krishnasamy, Yasodha; Schnellmann, Rick G; Lemasters, John J; Zhong, Zhi

    2015-07-01

    Inclusion of liver grafts from cardiac death donors (CDD) would increase the availability of donor livers but is hampered by a higher risk of primary non-function. Here, we seek to determine mechanisms that contribute to primary non-function of liver grafts from CDD with the goal to develop strategies for improved function and outcome, focusing on c-Jun-N-terminal kinase (JNK) activation and mitochondrial depolarization, two known mediators of graft failure. Livers explanted from wild-type, inducible nitric oxide synthase knockout (iNOS(-/-)), JNK1(-/-) or JNK2(-/-) mice after 45-min aorta clamping were implanted into wild-type recipients. Mitochondrial depolarization was detected by intravital confocal microscopy in living recipients. After transplantation of wild-type CDD livers, graft iNOS expression and 3-nitrotyrosine adducts increased, but hepatic endothelial NOS expression was unchanged. Graft injury and dysfunction were substantially higher in CDD grafts than in non-CDD grafts. iNOS deficiency and inhibition attenuated injury and improved function and survival of CDD grafts. JNK1/2 and apoptosis signal-regulating kinase-1 activation increased markedly in wild-type CDD grafts, which was blunted by iNOS deficiency. JNK inhibition and JNK2 deficiency, but not JNK1 deficiency, decreased injury and improved function and survival of CDD grafts. Mitochondrial depolarization and binding of phospho-JNK2 to Sab, a mitochondrial protein linked to the mitochondrial permeability transition, were higher in CDD than in non-CDD grafts. iNOS deficiency, JNK inhibition and JNK2 deficiency all decreased mitochondrial depolarization and blunted ATP depletion in CDD grafts. JNK inhibition and deficiency did not decrease 3-nitrotyrosine adducts in CDD grafts. The iNOS-JNK2-Sab pathway promotes CDD graft failure via increased mitochondrial depolarization, and is an attractive target to improve liver function and survival in CDD liver transplantation recipients. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  12. Metformin and/or Clomiphene Do Not Adversely Affect Liver or Renal Function in Women with Polycystic Ovary Syndrome

    PubMed Central

    Aubuchon, Mira; Kunselman, Allen R.; Schlaff, William D.; Diamond, Michael P.; Coutifaris, Christos; Carson, Sandra A.; Steinkampf, Michael P.; Carr, Bruce R.; McGovern, Peter G.; Cataldo, Nicholas A.; Gosman, Gabriella G.; Nestler, John E.; Myers, Evan R.

    2011-01-01

    Context: Nonalcoholic fatty liver disease is common to insulin-resistant states such as polycystic ovary syndrome (PCOS). Metformin (MET) is often used to treat PCOS but information is limited as to its effects on liver function. Objective: We sought to determine the effects of MET on serum hepatic parameters in PCOS patients. Design: This was a secondary analysis of a randomized, doubled-blind trial from 2002–2004. Setting: This multi-center clinical trial was conducted in academic centers. Patients: Six hundred twenty-six infertile women with PCOS with serum liver function parameters less than twice the upper limit of normal were included. Interventions: Clomiphene citrate (n = 209), MET (n = 208), or combined (n = 209) were given for up to 6 months. Main Outcome Measure: The percent change from baseline in renal and liver function between- and within-treatment arms was assessed. Results: Renal function improved in all treatment arms with significant decreases in serum blood urea nitrogen levels (range, −14.7 to −21.3%) as well as creatinine (−4.2 to −6.9%). There were similar decreases in liver transaminase levels in the clomiphene citrate and combined arms (−10% in bilirubin, −9 to −11% in transaminases) without significant changes in the MET arm. When categorizing baseline bilirubin, aspartate aminotransferase, and alanine aminotransferase into tertiles, there were significant within-treatment arm differences between the tertiles with the highest tertile having the largest decrease from baseline regardless of treatment arm. Conclusion: Women with PCOS can safely use metformin and clomiphene even in the setting of mildly abnormal liver function parameters, and both result in improved renal function. PMID:21832111

  13. Liver Ischemic Preconditioning (IPC) Improves Intestinal Microbiota Following Liver Transplantation in Rats through 16s rDNA-Based Analysis of Microbial Structure Shift

    PubMed Central

    Lu, Haifeng; Chen, Xinhua; Jiang, Jianwen; Liu, Hui; He, Yong; Ding, Songming; Hu, Zhenhua; Wang, Weilin; Zheng, Shusen

    2013-01-01

    Background Ischemia-reperfusion (I/R) injury is associated with intestinal microbial dysbiosis. The “gut-liver axis” closely links gut function and liver function in health and disease. Ischemic preconditioning (IPC) has been proven to reduce I/R injury in the surgery. This study aims to explore the effect of IPC on intestinal microbiota and to analyze characteristics of microbial structure shift following liver transplantation (LT). Methods The LT animal models of liver and gut IPC were established. Hepatic graft function was assessed by histology and serum ALT/AST. Intestinal barrier function was evaluated by mucosal ultrastructure, serum endotoxin, bacterial translocation, fecal sIgA content and serum TNF-α. Intestinal bacterial populations were determined by quantitative PCR. Microbial composition was characterized by DGGE and specific bacterial species were determined by sequence analysis. Principal Findings Liver IPC improved hepatic graft function expressed as ameliorated graft structure and reduced ALT/AST levels. After administration of liver IPC, intestinal mucosal ultrastructure improved, serum endotoxin and bacterial translocation mildly decreased, fecal sIgA content increased, and serum TNF-α decreased. Moreover, liver IPC promoted microbial restorations mainly through restoring Bifidobacterium spp., Clostridium clusters XI and Clostridium cluster XIVab on bacterial genus level. DGGE profiles indicated that liver IPC increased microbial diversity and species richness, and cluster analysis demonstrated that microbial structures were similar and clustered together between the NC group and Liver-IPC group. Furthermore, the phylogenetic tree of band sequences showed key bacteria corresponding to 10 key band classes of microbial structure shift induced by liver IPC, most of which were assigned to Bacteroidetes phylum. Conclusion Liver IPC cannot only improve hepatic graft function and intestinal barrier function, but also promote restorations of intestinal microbiota following LT, which may further benefit hepatic graft by positive feedback of the “gut-liver axis”. PMID:24098410

  14. Liver ischemic preconditioning (IPC) improves intestinal microbiota following liver transplantation in rats through 16s rDNA-based analysis of microbial structure shift.

    PubMed

    Ren, Zhigang; Cui, Guangying; Lu, Haifeng; Chen, Xinhua; Jiang, Jianwen; Liu, Hui; He, Yong; Ding, Songming; Hu, Zhenhua; Wang, Weilin; Zheng, Shusen

    2013-01-01

    Ischemia-reperfusion (I/R) injury is associated with intestinal microbial dysbiosis. The "gut-liver axis" closely links gut function and liver function in health and disease. Ischemic preconditioning (IPC) has been proven to reduce I/R injury in the surgery. This study aims to explore the effect of IPC on intestinal microbiota and to analyze characteristics of microbial structure shift following liver transplantation (LT). The LT animal models of liver and gut IPC were established. Hepatic graft function was assessed by histology and serum ALT/AST. Intestinal barrier function was evaluated by mucosal ultrastructure, serum endotoxin, bacterial translocation, fecal sIgA content and serum TNF-α. Intestinal bacterial populations were determined by quantitative PCR. Microbial composition was characterized by DGGE and specific bacterial species were determined by sequence analysis. Liver IPC improved hepatic graft function expressed as ameliorated graft structure and reduced ALT/AST levels. After administration of liver IPC, intestinal mucosal ultrastructure improved, serum endotoxin and bacterial translocation mildly decreased, fecal sIgA content increased, and serum TNF-α decreased. Moreover, liver IPC promoted microbial restorations mainly through restoring Bifidobacterium spp., Clostridium clusters XI and Clostridium cluster XIVab on bacterial genus level. DGGE profiles indicated that liver IPC increased microbial diversity and species richness, and cluster analysis demonstrated that microbial structures were similar and clustered together between the NC group and Liver-IPC group. Furthermore, the phylogenetic tree of band sequences showed key bacteria corresponding to 10 key band classes of microbial structure shift induced by liver IPC, most of which were assigned to Bacteroidetes phylum. Liver IPC cannot only improve hepatic graft function and intestinal barrier function, but also promote restorations of intestinal microbiota following LT, which may further benefit hepatic graft by positive feedback of the "gut-liver axis".

  15. Laparoscopic splenectomy for patients with liver cirrhosis: Improvement of liver function in patients with Child-Pugh class B.

    PubMed

    Yamamoto, Naoki; Okano, Keiichi; Oshima, Minoru; Akamoto, Shitaro; Fujiwara, Masao; Tani, Joji; Miyoshi, Hisaaki; Yoneyama, Hirohito; Masaki, Tsutomu; Suzuki, Yasuyuki

    2015-12-01

    We aimed to assess the short-term outcomes of laparoscopic splenectomy (LS) and liver function at 1 year after splenectomy in the patients with liver cirrhosis. Forty-five patients with liver cirrhosis and hypersplenism underwent LS. We reviewed electronic medical records regarding the liver functional reserve, the etiology of liver cirrhosis, and the presence of hepatocellular carcinoma and esophago-gastric varices. Prospectively collected data of perioperative variables, postoperative complications, and long-term liver function were analyzed. Forty-five patients had a chronic liver disease classified into Child-Pugh classes (A/B/C: 23/20/2). The etiologies of disease were hepatitis C virus infection in 34 patients, hepatitis B virus infection in 4, and others in 7. Fourteen patients underwent procedures in addition to LS, including hepatectomy (n = 7) and devascularization for esophagogastric varices (n = 8). Postoperative complications occurred in 11 patients (24%). Neither postoperative liver failure nor in-hospital mortality occurred. White blood cell and platelet counts determined 7 days, 1 month, and 1 year after LS doubled or increased more than twice compared with the preoperative values (P < .001). One year after LS, patients who had been classified preoperatively into Child-Pugh class B had decreased total serum bilirubin levels (P = .03), and increased prothrombin activity (P = 003) and decreased Child-Pugh scores (P = .001). The Child-Pugh classifications improved in 14 of 18 patients (78%) who had Child-Pugh class B preoperatively. LS is a safe and feasible procedure for hypersplenism in patients with liver cirrhosis. In addition, LS most likely ameliorates liver function at 1 year after LS in patients with Child-Pugh class B liver cirrhosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Inhibition of glycogen synthase kinase (GSK)-3-β improves liver microcirculation and hepatocellular function after hemorrhagic shock.

    PubMed

    Jellestad, Lena; Fink, Tobias; Pradarutti, Sascha; Kubulus, Darius; Wolf, Beate; Bauer, Inge; Thiemermann, Chris; Rensing, Hauke

    2014-02-05

    Ischemia and reperfusion may cause liver injury and are characterized by hepatic microperfusion failure and a decreased hepatocellular function. Inhibition of glycogen synthase kinase (GSK)-3β, a serine-threonine kinase that has recently emerged as a key regulator in the modulation of the inflammatory response after stress events, may be protective in conditions like sepsis, inflammation and shock. Therefore, aim of the study was to assess the role of GSK-3β in liver microcirculation and hepatocellular function after hemorrhagic shock and resuscitation (H/R). Anesthetized male Sprague-Dawley rats underwent pretreatment with Ringer´s solution, vehicle (DMSO) or TDZD-8 (1 mg/kg), a selective GSK-3β inhibitor, 30 min before induction of hemorrhagic shock (mean arterial pressure 35±5 mmHg for 90 min) and were resuscitated with shed blood and Ringer´s solution (2h). 5h after resuscitation hepatic microcirculation was assessed by intravital microscopy. Propidium iodide (PI) positive cells, liver enzymes and alpha-GST were measured as indicators of hepatic injury. Liver function was estimated by assessment of indocyanine green plasma disappearance rate. H/R led to a significant decrease in sinusoidal diameters and impairment of liver function compared to sham operation. Furthermore, the number of PI positive cells in the liver as well as serum activities of liver enzymes and alpha-GST increased significantly after H/R. Pretreatment with TDZD-8 prevented the changes in liver microcirculation, hepatocellular injury and liver function after H/R. A significant rise in the plasma level of IL-10 was observed. Thus, inhibition of GSK-3β before hemorrhagic shock modulates the inflammatory response and improves hepatic microcirculation and hepatocellular function. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Chronic liver injury in mice promotes impairment of skin barrier function via tumor necrosis factor-alpha.

    PubMed

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2016-09-01

    Alcohol is frequently used to induce chronic liver injury in laboratory animals. Alcohol causes oxidative stress in the liver and increases the expression of inflammatory mediators that cause hepatocellular damage. However, during chronic liver injury, it is unclear if/how these liver-derived factors affect distal tissues, such as the skin. The purpose of this study was to evaluate skin barrier function during chronic liver injury. Hairless mice were administered 5% or 10% ethanol for 8 weeks, and damages to the liver and skin were assessed using histological and protein-analysis methods, as well as by detecting inflammatory mediators in the plasma. After alcohol administration, the plasma concentration of the aspartate and alanine aminotransferases increased, while albumin levels decreased. In mice with alcohol-induced liver injury, transepidermal water loss was significantly increased, and skin hydration decreased concurrent with ceramide and type I collagen degradation. The plasma concentrations of [Formula: see text]/[Formula: see text] and tumor necrosis factor-alpha (TNF-α) were significantly increased in mice with induced liver injury. TNF receptor (TNFR) 2 expression was upregulated in the skin of alcohol-administered mice, while TNFR1 levels remained constant. Interestingly, the impairment of skin barrier function in mice administered with 10% ethanol was ameliorated by administering an anti-TNF-α antibody. We propose a novel mechanism whereby plasma TNF-α, via TNFR2 alone or with TNFR1, plays an important role in skin barrier function during chronic liver disease in these mouse models.

  18. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    PubMed Central

    Wong, Weng-Yew; Poudyal, Hemant; Ward, Leigh C.; Brown, Lindsay

    2012-01-01

    Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF) on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome. PMID:23201770

  19. Ascites: A Common Problem in People with Cirrhosis

    MedlinePlus

    ... liver (portal hypertension) and a decrease in liver function caused by scarring of the liver, i.e., cirrhosis. Symptoms Most patients who develop ascites notice abdominal distension and rapid weight gain. Some people also develop swelling of ankles and ...

  20. Protective effects of ACLF sera on metabolic functions and proliferation of hepatocytes co-cultured with bone marrow MSCs in vitro

    PubMed Central

    Shi, Xiao-Lei; Gu, Jin-Yang; Zhang, Yue; Han, Bing; Xiao, Jiang-Qiang; Yuan, Xian-Wen; Zhang, Ning; Ding, Yi-Tao

    2011-01-01

    AIM: To investigate whether the function of hepatocytes co-cultured with bone marrow mesenchymal stem cells (MSCs) could be maintained in serum from acute-on-chronic liver failure (ACLF) patients. METHODS: Hepatocyte supportive functions and cytotoxicity of sera from 18 patients with viral hepatitis B-induced ACLF and 18 healthy volunteers were evaluated for porcine hepatocytes co-cultured with MSCs and hepatocyte mono-layered culture, respectively. Chemokine profile was also examined for the normal serum and liver failure serum. RESULTS: Hepatocyte growth factor (HGF) and Tumor necrosis factor; tumor necrosis factor (TNF)-α were remarkably elevated in response to ACLF while epidermal growth factor (EGF) and VEGF levels were significantly decreased. Liver failure serum samples induced a higher detachment rate, lower viability and decreased liver support functions in the homo-hepatocyte culture. Hepatocytes co-cultured with MSCs could tolerate the cytotoxicity of the serum from ACLF patients and had similar liver support functions compared with the hepatocytes cultured with healthy human serum in vitro. In addition, co-cultured hepatocytes maintained a proliferative capability despite of the insult from liver failure serum. CONCLUSION: ACLF serum does not impair the cell morphology, viability, proliferation and overall metabolic capacities of hepatocyte co-cultured with MSCs in vitro. PMID:21633639

  1. Impact of pretransplant renal function on survival after liver transplantation.

    PubMed

    Gonwa, T A; Klintmalm, G B; Levy, M; Jennings, L S; Goldstein, R M; Husberg, B S

    1995-02-15

    To determine the effect of pretransplant liver function on survival following orthotopic liver transplantation and to quantify the effects of cyclosporine administration on long-term renal function in patients undergoing liver transplant, we performed an analysis of a prospectively maintained database. Data from 569 consecutive patients undergoing liver transplantation alone who were treated with CsA for immunosuppression were used for this study. Actuarial graft and patient survival rates were calculated using Kaplan-Meier statistics. Glomerular filtration rates, serum creatinine, and the use of various immunosuppressives were analyzed for this study. The initial analysis demonstrated that patients presenting for liver transplant with hepatorenal syndrome have a significantly decreased acturial patient survival after liver transplant at 5 years compared with patients without hepatorenal syndrome (60% vs. 68%, P < 0.03). Patients with hepatorenal syndrome recovered their renal function after liver transplant. Patients who had hepatorenal syndrome were sicker and required longer stays in the intensive care unit, longer hospitalizations, and more dialysis treatments after transplantation compared with patients who did not have hepatorenal syndrome. The incidence of end-stage renal disease after liver transplantation in patients who had hepatorenal syndrome was 7%, compared with 2% in patients who did not have hepatorenal syndrome. To more fully examine the effect of pretransplant renal function on posttransplant survival, the non-hepatorenal syndrome patients were divided into quartiles depending upon their pretransplant renal function. The patients with the lowest pretransplant renal function had the same survival as the patients with the highest pretransplant renal function. In addition, there was no increased incidence of acute or chronic rejection in any of the groups. The patients with the lower pretransplant renal function were treated with more azathioprine to maintain renal function and had a negligible decrease in glomerular filtration rate following transplant. Conversely, patients with the highest level of renal function pretransplant had a 40% decline in renal function in the first year, but maintained stable renal function up to 4 years after transplant. We conclude that pretransplant renal function other than hepato-renal syndrome has no effect on patient survival after orthotopic liver transplant. Renal function after liver transplant is stable after an initial decline, despite continued administration of CsA.(ABSTRACT TRUNCATED AT 400 WORDS)

  2. Real time monitoring of rat liver energy state during ischemia.

    PubMed

    Barbiro, E; Zurovsky, Y; Mayevsky, A

    1998-11-01

    Hepatic failure is one of the major problems developed during the posttransplantation period. A possible cause of hepatic failure is the prolonged ischemia induced during the implantation procedure. Hepatic ischemia leads to a reduction in oxygen supply, ATP level decline, liver metabolism impairment, and finally organ failure. The purpose of this study was to estimate the functional state of the liver by monitoring liver blood flow and the mitochondrial NADH redox state simultaneously and continuously during in situ liver ischemia followed by reperfusion. Measurements were performed using the multiprobe developed in our laboratory consisting of fibers for the measurement of relative liver blood flow (laser Doppler flowmetry) and mitochondrial redox state (NADH fluorescence). The experimental procedure included the temporary interruption of blood flow to the liver using three types of ischemia, hepatic artery occlusion, portal vein occlusion, and simultaneous occlusion of hepatic artery and portal vein, followed by a reperfusion period. These preliminary experiments showed a significant decrease in liver blood flow, following the three types of liver ischemia, and a significant increase in NADH levels. The probe used in this study incorporates the advantage of monitoring NADH and liver blood flow simultaneously and continuously from the same area on the surface of the liver. Since each of these two parameters is not calibrated in absolute units, the simultaneous monitoring decreases possible artifacts. Also, it will allow us to determine of the coupling between tissue blood flow and oxidative phosphorylation. It is believed that the measurements of respiratory chain dysfunction might predict organ viability in clinical organ transplantation situations. Using this probe may also help to decrease the variability in liver blood flow monitoring since liver blood flow monitoring is supported simultaneously with the mitochondrial redox state, which supplies the information on liver metabolic and functional state. Copyright 1998 Academic Press.

  3. Cajanus cajan Linn. (Leguminosae) prevents alcohol-induced rat liver damage and augments cytoprotective function.

    PubMed

    Kundu, Rakesh; Dasgupta, Suman; Biswas, Anindita; Bhattacharya, Anirban; Pal, Bikas C; Bandyopadhyay, Debashis; Bhattacharya, Shelley; Bhattacharya, Samir

    2008-08-13

    Cajanus cajan Linn. (Leguminosae) is a nontoxic edible herb, widely used in Indian folk medicine for the prevention of various liver disorders. In the present study we have demonstrated that methanol-aqueous fraction (MAF2) of Cajanus cajan leaf extract could prevent the chronically treated alcohol induced rat liver damage. Chronic doses of alcohol (3.7 g/ kg) orally administered to rats for 28 days and liver function marker enzymes such as GPT, GOT, ALP and anti-oxidant enzyme activities were determined. Effect of MAF2 at a dose of 50mg/kg body weight on alcohol treated rats was noted. Alcohol effected significant increase in liver marker enzyme activities and reduced the activities of anti-oxidant enzymes. Co-administration of MAF2 reversed the liver damage due to alcohol; it decreased the activities of liver marker enzymes and augmented antioxidant enzyme activities. We also demonstrate significant decrease of the phase II detoxifying enzyme, UDP-glucuronosyl transferase (UGT) activity along with a three- and two-fold decrease of UGT2B gene and protein expression respectively. MAF2 co-administration normalized UGT activity and revived the expression of UGT2B with a concomitant expression and nuclear translocation of Nrf2, a transcription factor that regulates the expression of many cytoprotective genes. Cajanus cajan extract therefore shows a promise in therapeutic use in alcohol induced liver dysfunction.

  4. IGF-1 decreases portal vein endotoxin via regulating intestinal tight junctions and plays a role in attenuating portal hypertension of cirrhotic rats.

    PubMed

    Zhao, Tian-Yu; Su, Li-Ping; Ma, Chun-Ye; Zhai, Xiao-Han; Duan, Zhi-Jun; Zhu, Ying; Zhao, Gang; Li, Chun-Yan; Wang, Li-Xia; Yang, Dong

    2015-07-08

    Intestinal barrier dysfunction is not only the consequence of liver cirrhosis, but also an active participant in the development of liver cirrhosis. Previous studies showed that external administration of insulin-like growth factor 1 (IGF-1) improved intestinal barrier function in liver cirrhosis. However, the mechanism of IGF-1 on intestinal barrier in liver cirrhosis is not fully elucidated. The present study aims to investigate the mechanisms of IGF-1 improving intestinal barrier function via regulating tight junctions in intestines. We used carbon tetrachloride induced liver cirrhotic rats to investigate the effect of IGF-1 on intestinal claudin-1 and occludin expressions, serum alanine transaminase (ALT) and aspartate transaminase (AST) levels, severity of liver fibrosis, portal pressures, enterocytic apoptosis and lipopolysaccharides (LPS) levels in portal vein. The changes of IGF-1 in serum during the development of rat liver cirrhosis were also evaluated. Additionally, we assessed the effect of IGF-1 on claudin-1 and occludin expressions, changes of transepithelial electrical resistance (TEER) and apoptosis in Caco-2 cells to confirm in vivo findings. Serum IGF-1 levels were decreased in the development of rat liver cirrhosis, and external administration of IGF-1 restored serum IGF-1 levels. External administration of IGF-1 reduced serum ALT and AST levels, severity of liver fibrosis, LPS levels in portal vein, enterocytic apoptosis and portal pressure in cirrhotic rats. External administration of IGF-1 increased the expressions of claudin-1 and occludin in enterocytes, and attenuated tight junction dysfunction in intestines of cirrhotic rats. LPS decreased TEER in Caco-2 cell monolayer. LPS also decreased claudin-1 and occludin expressions and increased apoptosis in Caco-2 cells. Furthermore, IGF-1 attenuated the effect of LPS on TEER, claudin-1 expression, occludin expression and apoptosis in Caco-2 cells. Tight junction dysfunction develops during the development of liver cirrhosis, and endotoxemia will develop subsequently. Correspondingly, increased endotoxin in portal system worsens tight junction dysfunction via decreasing intestinal occludin and claudin-1 expressions and increasing enterocytic apoptosis. Endotoxemia and intestinal barrier dysfunction form a vicious circle. External administration of IGF-1 breaks this vicious circle. Improvement of tight junctions might be one possible mechanism of the restoration of intestinal barrier function mediated by IGF-1.

  5. Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.

    2011-11-01

    Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime imaging showed a decrease in cellular metabolic activity. Multiphoton and fluorescence lifetime imaging microscopy detected evidence of early I/R injury both structurally and functionally. This provides a simple noninvasive technique useful for following progressive liver injury without external markers.

  6. Inhibition of cyclooxygenase-2 alleviates liver cirrhosis via improvement of the dysfunctional gut-liver axis in rats.

    PubMed

    Gao, Jin-Hang; Wen, Shi-Lei; Tong, Huan; Wang, Chun-Hui; Yang, Wen-Juan; Tang, Shi-Hang; Yan, Zhao-Ping; Tai, Yang; Ye, Cheng; Liu, Rui; Huang, Zhi-Yin; Tang, Ying-Mei; Yang, Jin-Hui; Tang, Cheng-Wei

    2016-06-01

    Inflammatory transport through the gut-liver axis may facilitate liver cirrhosis. Cyclooxygenase-2 (COX-2) has been considered as one of the important molecules that regulates intestinal epithelial barrier function. This study was aimed to test the hypothesis that inhibition of COX-2 by celecoxib might alleviate liver cirrhosis via reduction of intestinal inflammatory transport in thiacetamide (TAA) rat model. COX-2/prostaglandin E2 (PGE2)/EP-2/p-ERK integrated signal pathways regulated the expressions of intestinal zonula occludens-1 (ZO-1) and E-cadherin, which maintain the function of intestinal epithelial barrier. Celecoxib not only decreased the intestinal permeability to a 4-kDa FITC-dextran but also significantly increased expressions of ZO-1 and E-cadherin. When celecoxib greatly decreased intestinal levels of LPS, TNF-α, and IL-6, it significantly enhanced T cell subsets reduced by TAA. As a result, liver fibrosis induced by TAA was significantly alleviated in the celecoxib group. These data indicated that celecoxib improved the integrity of intestinal epithelial barrier, blocked inflammatory transport through the dysfunctional gut-liver axis, and ameliorated the progress of liver cirrhosis. Copyright © 2016 the American Physiological Society.

  7. FXR and liver carcinogenesis

    PubMed Central

    Huang, Xiong-fei; Zhao, Wei-yu; Huang, Wen-dong

    2015-01-01

    Farnesoid X receptor (FXR) is a member of the nuclear receptor family and a ligand-modulated transcription factor. In the liver, FXR has been considered a multi-functional cell protector and a tumor suppressor. FXR can suppress liver carcinogenesis via different mechanisms: 1) FXR maintains the normal liver metabolism of bile acids, glucose and lipids; 2) FXR promotes liver regeneration and repair after injury; 3) FXR protects liver cells from death and enhances cell survival; 4) FXR suppresses hepatic inflammation, thereby preventing inflammatory damage; and 5) FXR can directly increase the expression of some tumor-suppressor genes and repress the transcription of several oncogenes. However, inflammation and epigenetic silencing are known to decrease FXR expression during tumorigenesis. The reactivation of FXR function in the liver may be a potential therapeutic approach for patients with liver cancer. PMID:25500874

  8. Bone marrow-derived mesenchymal stem cells effectively regenerate fibrotic liver in bile duct ligation rat model

    PubMed Central

    Elswefy, Sahar E; Rashed, Laila A; Younis, Nahla N; Shaheen, Mohamed A; Ghanim, Amal MH

    2016-01-01

    Mesenchymal stem cells (MSCs) have attracted lots of attention for the treatment of acute liver failure and end-stage liver diseases. This study aimed at investigating the fundamental mechanism by which bone marrow-derived MSCs (BM-MSCs) induce liver regeneration of fibrotic liver in rats. Rats underwent bile duct ligation (BDL) surgery and four weeks later they were treated with either BM-MSCs (3 × 106 cells /rat, once, tail vein injection) or silymarin (100 mg/kg, daily, orally) for four weeks. Liver function tests and hepatic oxidative stress were determined. Hepatic injury and fibrosis were assessed by H and E, Sirus red staining and immunohistochemical expression of α-smooth muscle actin (α-SMA). Hepatocyte growth factor (HGF) and the gene expression of cytokeratin-19 (CK-19) and matrix metalloproteinase-2 (MMP-2) in liver tissue were determined. BDL induced cholestatic liver injury characterized by elevated ALT and AST activities, bilirubin and decreased albumin. The architecture damage was staged as Metavir score: F3, A3. Fibrosis increased around proliferating bile duct as indicated by sirus red staining and α-SMA immunostaining. Fibrogenesis was favored over fibrolysis and confirmed by decreased HGF with increased expression of CK-19, but decreased MMP-2 expression. BM-MSCs treatment restored deteriorated liver functions and restored the histological changes, resolved fibrosis by improving liver regenerative capabilities (P < 0.001), increases in HGF and MMP-2 mRNA and downregulating CK-19 mRNA. Sliymarin, however, induced similar but less prominent effects compared to BM-MSCs. In conclusion, liver regenerative capabilities can be stimulated by BM-MSCs via augmentation of HGF that subsequently up-regulate MMP-2 mRNA while downregulating CK-19 mRNA. PMID:26811102

  9. Bone marrow-derived mesenchymal stem cells effectively regenerate fibrotic liver in bile duct ligation rat model.

    PubMed

    Mohamed, Hoda E; Elswefy, Sahar E; Rashed, Laila A; Younis, Nahla N; Shaheen, Mohamed A; Ghanim, Amal M H

    2016-03-01

    Mesenchymal stem cells (MSCs) have attracted lots of attention for the treatment of acute liver failure and end-stage liver diseases. This study aimed at investigating the fundamental mechanism by which bone marrow-derived MSCs (BM-MSCs) induce liver regeneration of fibrotic liver in rats. Rats underwent bile duct ligation (BDL) surgery and four weeks later they were treated with either BM-MSCs (3 × 10(6) cells /rat, once, tail vein injection) or silymarin (100 mg/kg, daily, orally) for four weeks. Liver function tests and hepatic oxidative stress were determined. Hepatic injury and fibrosis were assessed by H and E, Sirus red staining and immunohistochemical expression of α-smooth muscle actin (α-SMA). Hepatocyte growth factor (HGF) and the gene expression of cytokeratin-19 (CK-19) and matrix metalloproteinase-2 (MMP-2) in liver tissue were determined. BDL induced cholestatic liver injury characterized by elevated ALT and AST activities, bilirubin and decreased albumin. The architecture damage was staged as Metavir score: F3, A3. Fibrosis increased around proliferating bile duct as indicated by sirus red staining and α-SMA immunostaining. Fibrogenesis was favored over fibrolysis and confirmed by decreased HGF with increased expression of CK-19, but decreased MMP-2 expression. BM-MSCs treatment restored deteriorated liver functions and restored the histological changes, resolved fibrosis by improving liver regenerative capabilities (P < 0.001), increases in HGF and MMP-2 mRNA and downregulating CK-19 mRNA. Sliymarin, however, induced similar but less prominent effects compared to BM-MSCs. In conclusion, liver regenerative capabilities can be stimulated by BM-MSCs via augmentation of HGF that subsequently up-regulate MMP-2 mRNA while downregulating CK-19 mRNA. © 2016 by the Society for Experimental Biology and Medicine.

  10. Experimental non-alcoholic fatty liver disease results in decreased hepatic uptake transporter expression and function in rats

    PubMed Central

    Fisher, Craig D.; Lickteig, Andrew J.; Augustine, Lisa M.; Oude Elferink, Ronald P.J.; Besselsen, David G.; Erickson, Robert P.; Cherrington, Nathan J.

    2009-01-01

    Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of diagnoses ranging from simple fatty liver (SFL), to non-alcoholic steatohepatitis (NASH). This study aimed to determine the effect of moderate and severe NAFLD on hepatic transporter expression and function in vivo. Rats were fed a high-fat diet (SFL model) or a methionine-choline-deficient diet (NASH model) for eight weeks. Hepatic uptake transporter function was determined by bromosulfophthalein (BSP) disposition. Transporter expression was determined by branched DNA signal amplification assay and western blotting; inflammation was identified by immunostaining of liver slices for interleukin 1 beta (IL-1β). MC- rats showed significant retention of BSP in the plasma when compared to control rats. Hepatic NTCP, OATP1a1, 1a4, 1b2 and 2b1; and OAT 2 and 3 mRNA levels were significantly decreased in high-fat and MC- diet rats when compared to control. Protein expression of OATP1a1 was significantly decreased in high-fat animals, while OATP1a1 and OATP1b2 expression was significantly lower in MC- rats when compared to control. Liver tissue from high-fat and MC- rats stained positive for IL-1β, a pro-inflammatory cytokine known to decrease expression of NTCP, OATP and OAT transporters, suggesting a plausible mechanism for the observed transporter alterations. These data suggest that different stages of NAFLD result in altered hepatic uptake transporter expression that can lead to a functional impairment of xenobiotic uptake from the blood. Furthermore, NAFLD may alter the plasma retention time of clinically relevant drugs that are reliant on these transporters and may increase the potential drug toxicity. PMID:19358839

  11. Impact of myeloid-derived suppressor cell on Kupffer cells from mouse livers with hepatocellular carcinoma

    PubMed Central

    Lacotte, Stéphanie; Slits, Florence; Orci, Lorenzo A.; Meyer, Jeremy; Oldani, Graziano; Gonelle-Gispert, Carmen; Morel, Philippe; Toso, Christian

    2016-01-01

    ABSTRACT Kupffer cells represent the first line of defense against tumor cells in the liver. Myeloid-derived suppressor cells (MDSC) have recently been observed in the liver parenchyma of tumor-bearing animals. The present study investigates the function of the MDSC subsets, and their impact on Kupffer cell phenotype and function. RIL-175 mouse hepatocellular carcinoma (HCC) cells were injected into the median liver lobe of C57BL/6 mice. Three weeks later, the median lobe hosting the tumor nodule was removed, and Kupffer cells and MDSCs were sorted from the remaining liver. Mouse livers devoid of HCC served as control. Kupffer cells expressed less co-stimulatory CD86 and MHCII and more co-inhibitory CD274 molecules in HCC-bearing livers than in control livers. Corresponding to this phenotype, Kupffer cells from HCC-bearing mice were less efficient in their function as antigen-presenting cells. Three CD11b+ cell populations were identified and sorted from HCC-bearing mice. These cells had various phenotypes with different levels of MDSC-specific surface markers (Ly6Ghigh cells, Gr1high cells, and Ly6Clow cells), and may be considered as bonafide MDSCs given their suppression of antigen-specific T cell proliferation. Primary isolated Kupffer cells in co-culture with the three MDSC subsets showed a decrease in CCL2 and IL-18 secretion, and an increase in IL-10 and IL-1β secretion, and an increased expression of CD86, CD274, and MHCII. In conclusion, these data demonstrated the existence of three MDSC subsets in HCC-bearing animals. These cells altered Kupffer cell function and may decrease the migration and activation of anticancer effector cells in the liver. PMID:27999748

  12. NNMT activation can contribute to the development of fatty liver disease by modulating the NAD + metabolism.

    PubMed

    Komatsu, Motoaki; Kanda, Takeshi; Urai, Hidenori; Kurokochi, Arata; Kitahama, Rina; Shigaki, Shuhei; Ono, Takashi; Yukioka, Hideo; Hasegawa, Kazuhiro; Tokuyama, Hirobumi; Kawabe, Hiroshi; Wakino, Shu; Itoh, Hiroshi

    2018-06-05

    Nicotinamide N-methyltransferase (NNMT) catalyses the reaction between nicotinamide (NAM) and S-adenosylmethionine to produce 1-methylnicotinamide and S-adenosylhomocysteine. Recently, this enzyme has also been reported to modulate hepatic nutrient metabolism, but its role in the liver has not been fully elucidated. We developed transgenic mice overexpressing NNMT to elucidate its role in hepatic nutrient metabolism. When fed a high fat diet containing NAM, a precursor for nicotinamide adenine dinucleotide (NAD) + , these NNMT-overexpressing mice exhibit fatty liver deterioration following increased expression of the genes mediating fatty acid uptake and decreased very low-density lipoprotein secretion. NNMT overactivation decreased the NAD + content in the liver and also decreased gene activity related to fatty acid oxidation by inhibiting NAD + -dependent deacetylase Sirt3 function. Moreover, the transgenic mice showed liver fibrosis, with the induction of inflammatory and fibrosis genes. Induced NNMT expression decreased the tissue methylation capacity, thereby reducing methylation of the connective tissue growth factor (CTGF) gene promoter, resulting in increased CTGF expression. These data indicate that NNMT links the NAD + and methionine metabolic pathways and promotes liver steatosis and fibrosis. Therefore, targeting NNMT may serve as a therapeutic strategy for treating fatty liver and fibrosis.

  13. Cyclin D1 in the Liver: Role of Noncanonical Signaling in Liver Steatosis and Hormone Regulation

    PubMed Central

    Núñez, Kelley G.; Gonzalez-Rosario, Janet; Thevenot, Paul T.; Cohen, Ari J.

    2017-01-01

    Background: Cyclin D1 is an important protein for cell cycle progression; however, functions independent of the cell cycle have been described in the liver. Cyclin D1 is also involved in DNA repair, is overexpressed in many cancers, and functions as a proto-oncogene. The lesser-known roles of Cyclin D1, specifically in hepatocytes, impact liver steatosis and hormone regulation in the liver. Methods: A comprehensive search of PubMed was conducted using the keywords Cyclin D1, steatosis, lipogenesis, and liver transplantation. In this article, we review the results from this literature search, with a focus on the role of Cyclin D1 in hepatic lipogenesis and gluconeogenesis, as well as the impact and function of this protein in hepatic steatosis. Results: Cyclin D1 represses carbohydrate response element binding protein (ChREBP) and results in a decrease in transcription of fatty acid synthase (FAS) and acetyl-coenzyme A carboxylase (ACC). Cyclin D1 also inhibits peroxisome proliferator-activated receptor gamma (PPARγ) which is involved in hepatic lipogenesis. Cyclin D1 inhibits both hepatocyte nuclear factor 4 alpha (HNF4α) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) and represses transcription of lipogenic genes FAS and liver-type pyruvate kinase (Pklr), along with the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Conclusion: Cyclin D1 represses multiple proteins involved in both lipogenesis and gluconeogenesis in the liver. Targeting Cyclin D1 to decrease hepatic steatosis in patients with nonalcoholic fatty liver disease or alcoholic fatty liver disease may help improve patient health and the quality of the donor liver pool. PMID:28331449

  14. Lead nitrate induced unallied expression of liver and kidney functions in male albino rats.

    PubMed

    Chougule, Priti; Patil, Bhagyashree; Kanase, Aruna

    2005-06-01

    To determine the effects of lead where lead accumulates maximum (liver followed by kidney), liver and kidney functions were studied using low oral dose of lead nitrate for prolonged duration. Dose of 20 mg lead nitrate/kg body wt/day was used in male albino rats. AST and ALT levels altered independently. When ALT remained unaltered after 7 and 21 days of treatment, it is decreased by 13.21% after 14 days treatment. AST was marginally lowered after 7 days, increased after 14 days and increased marginally after 21 days. Bilirubin (conjugated, unconjugated and total) decreased after 7 and 14 days and increased after 21 days. Urea increase was directly proportional to duration. Creatinine remained unaltered.

  15. Caffeine and acetaminophen association: Effects on mitochondrial bioenergetics.

    PubMed

    Gonçalves, Débora F; de Carvalho, Nelson R; Leite, Martim B; Courtes, Aline A; Hartmann, Diane D; Stefanello, Sílvio T; da Silva, Ingrid K; Franco, Jéferson L; Soares, Félix A A; Dalla Corte, Cristiane L

    2018-01-15

    Many studies have been demonstrating the role of mitochondrial function in acetaminophen (APAP) hepatotoxicity. Since APAP is commonly consumed with caffeine, this work evaluated the effects of the combination of APAP and caffeine on hepatic mitochondrial bioenergetic function in mice. Mice were treated with caffeine (20mg/kg, intraperitoneal (i.p.)) or its vehicle and, after 30minutes, APAP (250mg/kg, i.p.) or its vehicle. Four hours later, livers were removed, and the parameters associated with mitochondrial function and oxidative stress were evaluated. Hepatic cellular oxygen consumption was evaluated by high-resolution respirometry (HRR). APAP treatment decreased cellular oxygen consumption and mitochondrial complex activities in the livers of mice. Additionally, treatment with APAP increased swelling of isolated mitochondria from mice livers. On the other hand, caffeine administered with APAP was able to improve hepatic mitochondrial bioenergetic function. Treatment with APAP increased lipid peroxidation and reactive oxygen species (ROS) production and decreased glutathione levels in the livers of mice. Caffeine administered with APAP was able to prevent lipid peroxidation and the ROS production in mice livers, which may be associated with the improvement of mitochondrial function caused by caffeine treatment. We suggest that the antioxidant effects of caffeine and/or its interactions with mitochondrial bioenergetics may be involved in its beneficial effects against APAP hepatotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. [Correlation between red blood cell count and liver function status].

    PubMed

    Xie, Xiaomeng; Wang, Leijie; Yao, Mingjie; Wen, Xiajie; Chen, Xiangmei; You, Hong; Jia, Jidong; Zhao, Jingmin; Lu, Fengmin

    2016-02-01

    To investigate the changes in red blood cell count in patients with different liver diseases and the correlation between red blood cell count and degree of liver damage. The clinical data of 1427 patients with primary liver cancer, 172 patients with liver cirrhosis, and 185 patients with hepatitis were collected, and the Child-Pugh class was determined for all patients. The differences in red blood cell count between patients with different liver diseases were retrospectively analyzed, and the correlation between red blood cell count and liver function status was investigated. The Mann-Whitney U test, Kruskal-Wallis H test, rank sum test, Spearman rank sum correlation test, and chi-square test were performed for different types of data. Red blood cell count showed significant differences between patients with chronic hepatitis, liver cancer, and liver cirrhosis and was highest in patients with chronic hepatitis and lowest in patients with liver cirrhosis (P < 0.05). In the patients with liver cirrhosis, red blood cell count tended to decrease in patients with a higher Child-Pugh class (P < 0.05). For patients with liver cirrhosis, red blood cell count can reflect the degree of liver damage, which may contribute to an improved liver function prediction model for these patients.

  17. [ACTION OF L-CARNITINE, CORVITIN AND THEIR COMBINATION ON FUNCTIONAL STATE OF LIVER IN EXPERIMENTAL MODEL OF REYE SYNDROME IN RATS].

    PubMed

    Ghonghadze, M; Antelava, N; Liluashvili, K; Okujava, M; Pachkoria, K

    2017-02-01

    Administration of Aacetylsalicylic acid in children with viral infections (influence B, chickenpox) can be related with development of Reye syndrome - severe encephalopathy and liver insufficiency with mortality in 50% of cases. During Reye syndrome most important is deficiency of carnitine and hepatocyte damage. Decreased amount of carnitine impairs the energy function of mitochondria and gluconeogenesis as well as production of urea. As a result develops toxic encephalopathy and liver insufficiency. The goal of the research was assessment of efficacy of L-Carnitine, Corvitin and their combination on functional state of liver in experimental model of Reye Syndrome in rats. The study was performed on mature white male Wistar rates with body mass 150-180g. 50 rats were randomly divided into 5 groups (10 rats in each group). The model of Reye syndrome was induced in accordance with A.Vengersky's method. Intraperitoneal administration of 4-pentenoic acid was performed once daily during seven days, the used dosage was 20mg/kg. The treatment of toxic hepatitis was carried with intraperitoneal administration of L-Carnitine 300mg/kg, Corvitine 100mg/kg and concurrent administration of these drugs. Monotherapy with Corvitin and L-Carnitin successfully improved liver function and equally decreased indicators of hepatocyte's cytolyses and increased levels of glucose and urea. The markers of cholestasis was slightly more improved during use of L-Carnitine. Simultaneous use of both drugs was effective in rats with Reye syndrome, indicators of liver damage normalized and herewith, no mortality outcome was observed. The most pronounced hepatoprotective effect of concurrent administration of L-Carnitine and Corvitin may be due to synergic action of these drugs and such regime can be recommended for correction of liver function during Reye syndrome.

  18. Assessment of hepatoprotective and nephroprotective potential of withaferin A on bromobenzene-induced injury in Swiss albino mice: possible involvement of mitochondrial dysfunction and inflammation.

    PubMed

    Vedi, Mahima; Sabina, Evan Prince

    2016-10-01

    Bromobenzene is a well-known environmental toxin which causes liver and kidney damage through CYP450-mediated bio-activation to generate reactive metabolites and, consequently, oxidative stress. The present study aimed to evaluate the possible protective role of withaferin A against bromobenzene-induced liver and kidney damage in mice. Withaferin A (10 mg/kg) was administered orally to the mice for 8 days before intragastric intubation of bromobenzene (10 mmol/kg). As results of this experiment, the levels of liver and kidney functional markers, lipid peroxidation, and cytokines (TNF-α and IL-1β) presented an increase and there was a decrease in anti-oxidant activity in the bromobenzene-treated group of mice. Pre-treatment with withaferin A not only significantly decreased the levels of liver and kidney functional markers and cytokines but also reduced oxidative stress, as evidenced by improved anti-oxidant status. In addition, the mitochondrial dysfunction shown through the decrease in the activities of mitochondrial enzymes and imbalance in the Bax/Bcl-2 expression in the livers and kidneys of bromobenzene-treated mice was effectively prevented by pre-administration of withaferin A. These results validated our conviction that bromobenzene caused liver and kidney damage via mitochondrial pathway and withaferin A provided significant protection against it. Thus, withaferin A may have possible usage in clinical liver and kidney diseases in which oxidative stress and mitochondrial dysfunction may be existent.

  19. Biliary drainage strategy of unresectable malignant hilar strictures by computed tomography volumetry.

    PubMed

    Takahashi, Ei; Fukasawa, Mitsuharu; Sato, Tadashi; Takano, Shinichi; Kadokura, Makoto; Shindo, Hiroko; Yokota, Yudai; Enomoto, Nobuyuki

    2015-04-28

    To identify criteria for predicting successful drainage of unresectable malignant hilar biliary strictures (UMHBS) because no ideal strategy currently exists. We examined 78 patients with UMHBS who underwent biliary drainage. Drainage was considered effective when the serum bilirubin level decreased by ≥ 50% from the value before stent placement within 2 wk after drainage, without additional intervention. Complications that occurred within 7 d after stent placement were considered as early complications. Before drainage, the liver volume of each section (lateral and medial sections of the left liver and anterior and posterior sections of the right liver) was measured using computed tomography (CT) volumetry. Drained liver volume was calculated based on the volume of each liver section and the type of bile duct stricture (according to the Bismuth classification). Tumor volume, which was calculated by using CT volumetry, was excluded from the volume of each section. Receiver operating characteristic (ROC) analysis was performed to identify the optimal cutoff values for drained liver volume. In addition, factors associated with the effectiveness of drainage and early complications were evaluated. Multivariate analysis showed that drained liver volume [odds ratio (OR) = 2.92, 95%CI: 1.648-5.197; P < 0.001] and impaired liver function (with decompensated liver cirrhosis) (OR = 0.06, 95%CI: 0.009-0.426; P = 0.005) were independent factors contributing to the effectiveness of drainage. ROC analysis for effective drainage showed cutoff values of 33% of liver volume for patients with preserved liver function (with normal liver or compensated liver cirrhosis) and 50% for patients with impaired liver function (with decompensated liver cirrhosis). The sensitivity and specificity of these cutoff values were 82% and 80% for preserved liver function, and 100% and 67% for impaired liver function, respectively. Among patients who met these criteria, the rate of effective drainage among those with preserved liver function and impaired liver function was 90% and 80%, respectively. The rates of effective drainage in both groups were significantly higher than in those who did not fulfill these criteria (P < 0.001 and P = 0.02, respectively). Drainage-associated cholangitis occurred in 9 patients (12%). A smaller drained liver volume was associated with drainage-associated cholangitis (P < 0.01). Liver volume drainage ≥ 33% in patients with preserved liver function and ≥ 50% in patients with impaired liver function correlates with effective biliary drainage in UMHBS.

  20. Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis.

    PubMed

    Nussler, Andreas K; Wildemann, Britt; Freude, Thomas; Litzka, Christian; Soldo, Petra; Friess, Helmut; Hammad, Seddik; Hengstler, Jan G; Braun, Karl F; Trak-Smayra, Viviane; Godoy, Patricio; Ehnert, Sabrina

    2014-04-01

    Patients with chronic liver diseases frequently exhibit decreased bone mineral densities (BMD), which is defined as hepatic osteodystrophy (HOD). HOD is a multifactorial disease whose regulatory mechanisms are barely understood. Thus, an early diagnosis and therapy is hardly possible. Therefore, the aim of our study consisted in characterizing a mouse model reflecting the human pathomechanism. Serum samples were collected from patients with chronic liver diseases and 12-week old C57Bl6/N mice after 6-week treatment with carbon tetrachloride (CCl4). Repetitive injections of CCl4 induced liver damage in mice, resembling liver fibrosis in patients, as assessed by serum analysis and histological staining. Although CCl4 did not affect primary osteoblast cultures, μCT analysis revealed significantly decreased BMD, bone volume, trabecular number and thickness in CCl4-treated mice. In both HOD patients and CCl4-treated mice, an altered vitamin D metabolism with decreased CYP27A1, CYP2R1, vitamin D-binding protein GC and increased 7-dehydrocholesterol reductase hepatic gene expression, results in decreased 25-OH vitamin D serum levels. Moreover, both groups exhibit excessively high active transforming growth factor-beta (TGF-β) serum levels, inhibiting osteoblast function in vitro. Summarizing, our mouse model presents possible mediators of HOD, e.g. altered vitamin D metabolism and increased active TGF-β. Liver damage and significant changes in bone structure and mineralization are already visible by μCT analysis after 6 weeks of CCl4 treatment. This fast response and easy transferability makes it an ideal model to investigate specific gene functions in HOD.

  1. Estradiol improves cardiac and hepatic function after trauma-hemorrhage: role of enhanced heat shock protein expression.

    PubMed

    Szalay, László; Shimizu, Tomoharu; Suzuki, Takao; Yu, Huang-Ping; Choudhry, Mashkoor A; Schwacha, Martin G; Rue, Loring W; Bland, Kirby I; Chaudry, Irshad H

    2006-03-01

    Although studies indicate that 17beta-estradiol administration after trauma-hemorrhage (T-H) improves cardiac and hepatic functions, the underlying mechanisms remain unclear. Because the induction of heat shock proteins (HSPs) can protect cardiac and hepatic functions, we hypothesized that these proteins contribute to the salutary effects of estradiol after T-H. To test this hypothesis, male Sprague-Dawley rats ( approximately 300 g) underwent laparotomy and hemorrhagic shock (35-40 mmHg for approximately 90 min) followed by resuscitation with four times the shed blood volume in the form of Ringer lactate. 17beta-estradiol (1 mg/kg body wt) was administered at the end of the resuscitation. Five hours after T-H and resuscitation there was a significant decrease in cardiac output, positive and negative maximal rate of left ventricular pressure. Liver function as determined by bile production and indocyanine green clearance was also compromised after T-H and resuscitation. This was accompanied by an increase in plasma alanine aminotransferase (ALT) levels and liver perfusate lactic dehydrogenase levels. Furthermore, circulating levels of TNF-alpha, IL-6, and IL-10 were also increased. In addition to decreased cardiac and hepatic function, there was an increase in cardiac HSP32 expression and a reduction in HSP60 expression after T-H. In the liver, HSP32 and HSP70 were increased after T-H. There was no change in heart HSP70 and liver HSP60 after T-H and resuscitation. Estradiol administration at the end of T-H and resuscitation increased heart/liver HSPs expression, ameliorated the impairment of heart/liver functions, and significantly prevented the increase in plasma levels of ALT, TNF-alpha, and IL-6. The ability of estradiol to induce HSPs expression in the heart and the liver suggests that HSPs, in part, mediate the salutary effects of 17beta-estradiol on organ functions after T-H.

  2. Therapeutic effect comparison of hepatocyte-like cells and bone marrow mesenchymal stem cells in acute liver failure of rats.

    PubMed

    Li, Dongliang; Fan, Jingjing; He, Xiuhua; Zhang, Xia; Zhang, Zhiqiang; Zeng, Zhiyu; Ruan, Mei; Cai, Lirong

    2015-01-01

    To evaluate the therapeutic efficacy of rat bone marrow mesenchymal stem cells (BMSCs) induced into hepatocyte-like cells and of un-induced BMSCs in acute liver failure rats. BMSCs in highly homogenous passage 3 were cultured using the whole bone marrow adherent culture method. Hepatic-related characters were confirmed with morphology, RT-PCR analysis, glycogen staining and albumin (ALB) immunofluorescence assay. Carbon tetrachloride (CCl4) was injected intraperitoneally to establish an acute rat liver failure model. Hepatocyte-like cells or un-induced BMSCs were respectively injected into the models to examine rats' appearance, liver function assay and liver tissue pathology. Hepatocyte-like morphology, higher expression of cytokeratin 18 (CK18) mRNA and ALB protein, and glycogen accumulation were confirmed in the induced BMSCs. The transplanted DAPI-labeled BMSCs were localized in the liver tissue 3-14 days after transplantation. The levels of liver function indicators (AST, ALT, ALP, and TBIL) from transplanted rats were significant decreased and pathology was improved, indicating the recovery of liver function. However, the differences were statistically insignificant. Both hepatocyte-like cells and un-induced BMSCs had a similarly positively therapeutic efficacy on liver regeneration in rat liver failure model.

  3. [Activity of NAD.H-generating enzymes and cytochrome content in mitochondria from rat liver and myocardium under artificial hypobiosis].

    PubMed

    Mel'nychuk, S D; Khyzhniak, S V; Morozova, V S; Voĭtsits'kyĭ, V M

    2013-01-01

    The modification particularities of the structural and functional state of the inner mitochondrial membrane of the rat liver and myocardium were observed in conditions of artificial hypobiosis, which was created using hypoxic and hypercapnic gas medium with a body temperature reduction. Under the artificial hypobiosis the activity of NAD.H-generating enzymes of the Krebs cycle of the liver mitochondria decreases. The established changes of the enzymes activity and cytochromes content of the inner mitochondrial membrane indicate the decrease of the oxidative activity of a respiratory chain, that can be limited on a terminal (cytochrome c oxidase) site and leads to the decrease (by 49% at an average) of the H+-ATPase activity of the liver mitochondria. Under the artificial hypobiosis the detected increase of the succinate-KoQ-oxidoreductase activity (by 65% at average) causes the maintaining of the functional activity of a mitochondrial respiratory chain, considering the high (relative to control) cytochrome c oxidase and H+-ATPase activities of the mitochondria of the rats' myocardium. The structural changes of the inner mitochondrial membrane of the liver and myocardium in experimental conditions are accompanied by the increase of hydrophobicity of tryptophan residues microenvironment and the intramolecular modifications of protein molecules.

  4. Platelets in liver disease, cancer and regeneration.

    PubMed

    Kurokawa, Tomohiro; Ohkohchi, Nobuhiro

    2017-05-14

    Although viral hepatitis treatments have evolved over the years, the resultant liver cirrhosis still does not completely heal. Platelets contain proteins required for hemostasis, as well as many growth factors required for organ development, tissue regeneration and repair. Thrombocytopenia, which is frequently observed in patients with chronic liver disease (CLD) and cirrhosis, can manifest from decreased thrombopoietin production and accelerated platelet destruction caused by hypersplenism; however, the relationship between thrombocytopenia and hepatic pathogenesis, as well as the role of platelets in CLD, is poorly understood. In this paper, experimental evidence of platelets improving liver fibrosis and accelerating liver regeneration is summarized and addressed based on studies conducted in our laboratory and current progress reports from other investigators. In addition, we describe our current perspective based on the results of these studies. Platelets improve liver fibrosis by inactivating hepatic stellate cells, which decreases collagen production. The regenerative effect of platelets in the liver involves a direct effect on hepatocytes, a cooperative effect with liver sinusoidal endothelial cells, and a collaborative effect with Kupffer cells. Based on these observations, we ascertained the direct effect of platelet transfusion on improving several indicators of liver function in patients with CLD and liver cirrhosis. However, unlike the results of our previous clinical study, the smaller incremental changes in liver function in patients with CLD who received eltrombopag for 6 mo were due to patient selection from a heterogeneous population. We highlight the current knowledge concerning the role of platelets in CLD and cancer and anticipate a novel application of platelet-based clinical therapies to treat liver disease.

  5. Association between liver function and metabolic syndrome in Chinese men and women

    PubMed Central

    Wang, Sen; Zhang, Jie; Zhu, Li; Song, Linlin; Meng, Zhaowei; Jia, Qiang; Li, Xue; Liu, Na; Hu, Tianpeng; Zhou, Pingping; Zhang, Qing; Liu, Li; Song, Kun; Jia, Qiyu

    2017-01-01

    Metabolic syndrome (MS) could be associated with liver function. Our study aimed to investigate the association between liver function and MS in a large cohort of Chinese men and women. We enrolled 32,768 ostensibly healthy participants. The associations between liver function and MS of both genders were analyzed separately after dividing total bilirubin (TBIL), gamma glutamyltransferase (GGT), alanine aminotransferase (ALT) into quartiles. Young males had significantly higher MS prevalence than females, yet after menopause, females had higher MS prevalence. We used TBIL, GGT and ALT quartiles as categorical variables in binary logistic regression models. Significantly decreased MS risks were demonstrated in TBIL quartiles 2 to 4 for males, and quartiles 3 to 4 for females. As to GGT and ALT, significantly increased MS risks were shown in high quartiles for both genders. Aging also resulted in significantly higher MS risks in both genders except for young females. This study displayed close associations between liver function and MS, which were influenced by gender and age. A high TBIL level had protective effect against MS, while high GGT and ALT levels were risk factors for MS. It is meaningful that liver function is used as clinical risk predictors for MS. PMID:28317840

  6. [Study on liver targeted drug delivery system of the effective anticancer component from Bolbstemma paniculatum].

    PubMed

    Sun, Yi-Yi; Ll, Tong-Hui; Tang, Chen-Kang; Zhu, Zi-Ping; Chi, Qun; Hou, Shi-Xiang

    2005-06-01

    To study the liver targeted drug delivery system of TBMS--the effective anticancer component from Bolbstemma paniculatum, and to discuss the system's function of decreasing toxicity. BCA was used as carrier material. The preparation through overall feedback dynamic techniques. The properties of preparation and toxicology were also technology of nanoparticles was optimized studied. Thenanoparticles' targeting in mice vivo was observed with transmission electron microscopy. The function of decreasing toxicity was researched by the XXTX-2000 automatic quantitative analysis management system. D50 was 0.68 microm. Drug-loading rate and entrapment rate were 37.3% and 88.6% respectively. The release in vitro accorded with Weibull equation. The reaching release balance time and the t 1/2 extended 26 times and 19 times respectively comparing with injection. Nanoparticles mainly distributed in liver tissue. Their toxicity to lung and liver was evidently lower than injection. Nanoparticles' LD50 exceeded injection's by 13.5% and their stimulus was much lower than injection. The TBMS can be targeted to liver by liver targeted drug delivery system. At the same time, the problem about the toxicity hindering clinical application could be solved, which lays the foundation for the further studies on TBMS.

  7. Trace metals in liver from bluefish, tautog, and tilefish in relation to body length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mears, H.C.; Eisler, R.

    1977-09-01

    Livers from bluefish, tilefish and tautog collected during the summer of 1971 off the New Jersey coast were analyzed for Cd, Cr, Cu, Fe, Mn, Ni, and Zn by atomic absorption spectrophotometry. Liver ash from male and female tautog contained decreasing concentrations of Ni with increasing body length. Smaller males also contained greater levels of Cr and Cu in liver than larger tautogs. Larger tilefish contained proportionately more Cd, Cu, and Fe in liver than smaller tilefish. Decreasing levels of Mn and Zn with body length were apparent only for females. Livers from larger male bluefish were associated with highermore » concentrations of Fe than those from smaller males, while those from larger females contained lower concentrations of Cr than those from smaller females. The data suggest that future comparisons for trace metals which vary as a function of size be made only among fish of the same length.« less

  8. Effect of Simulated Microgravity on the Activity of Regulatory Enzymes of Glycolysis and Gluconeogenesis in Mice Liver

    NASA Astrophysics Data System (ADS)

    Ramirez, Joaquin; Periyakaruppan, Adaikkappan; Sarkar, Shubhashish; Ramesh, Govindarajan T.; Sharma, S. Chidananda

    2014-02-01

    Gravity supports all the life activities present on earth. Microgravity environments have effect on the biological functions and physiological status of an individual. The present study was undertaken to investigate the effect of simulated microgravity on important regulatory enzymes of carbohydrate metabolism in liver using HLS mice model. Following hind limb unloading of mice for 11 days the animal's average body weights were found to be not different, while the liver weights were decreased and found to be significantly different ( p < 0.05) from control mice. Further, in liver the specific activity of hexokinase enzyme was reduced ( p < 0.02) and the phosphoenolpyruvate carboxykinase activity was significantly increased in simulated microgravity subjected mice compared to control ( p < 0.003). Immunoblot analysis show decreased phosphofructokinase-2 activity in HLS mice compared to control. Liver lactate dehydrogenase activity significantly reduced in simulated microgravity subjected mice ( p < 0.005). Thus in our study the rodents have adapted to simulated microgravity conditions, with decreased glycolysis and increased gluconeogenesis in liver and reciprocally regulated.

  9. Effect of Dietary Vitamin A on Reproductive Performance and Immune Response of Broiler Breeders

    PubMed Central

    Guo, Yuming; Wang, Yongwei; Guo, Shuangshuang

    2014-01-01

    The effects of dietary vitamin A supplementation on reproductive performance, liver function, fat-soluble vitamin retention, and immune response were studied in laying broiler breeders. In the first phase of the experiment, 1,120 Ross-308 broiler breeder hens were fed a diet of corn and soybean meal supplemented with 5,000 to 35,000 IU/kg vitamin A (retinyl acetate) for 20 weeks. In the second phase, 384 Ross-308 broiler breeder hens were fed the same diet supplemented with 5,000 to 135,000 IU/kg vitamin A (retinyl acetate) for 24 weeks. The hens' reproductive performance, the concentrations of vitamins A and E in liver and egg yolk, liver function, mRNA expression of vitamin D receptor in duodenal mucosa, antibody titers against Newcastle disease virus vaccine, and T-cell proliferation responses were evaluated. Supplementation of vitamin A at levels up to and including 35,000 IU/kg did not affect reproductive performance and quadratically affected antibody titer to Newcastle disease virus vaccine (p<0.05). Dietary addition of vitamin A linearly increased vitamin A concentration in liver and yolk and linearly decreased α-, γ-, and total tocopherol concentration in yolk (p<0.01) and α-tocopherol in liver (p<0.05). Supplementation of vitamin A at doses of 45,000 IU/kg and above significantly decreased egg weight, yolk color, eggshell thickness and strength, and reproductive performance. Dietary vitamin A significantly increased mRNA expression of vitamin D receptor in duodenal mucosa (p<0.05), increased aspartate amino transferase activity, and decreased total bilirubin concentration in serum. Supplementation of vitamin A at 135,000 IU/kg decreased the proliferation of peripheral blood lymphocytes (p<0.05). Therefore, the maximum tolerable dose of vitamin A for broiler breeders appears to be 35,000 IU/kg, as excessive supplementation has been shown to impair liver function, reproductive performance, and immune response. PMID:25148198

  10. Beetroot and Sodium Nitrate Ameliorate Cardiometabolic Changes in Diet-Induced Obese Hypertensive Rats.

    PubMed

    Bhaswant, Maharshi; Brown, Lindsay; McAinch, Andrew J; Mathai, Michael L

    2017-12-01

    Dietary intake of beetroot by humans reduces blood pressure but whether this is caused by nitrate or betanin is not well-defined; neither are effects on other signs of metabolic syndrome. Rats fed a high-carbohydrate, high-fat diet (H) for 16 weeks developed abdominal obesity, hypertension, altered cardiovascular and liver structure and function, and impaired glucose tolerance compared to rats fed a corn starch diet (C). H rats treated with ∼16 mg/kg/day of nitrate either from beetroot juice (H+B) or sodium nitrate (H+N) for the last 8 weeks reduced systolic blood pressure by ∼25 mmHg, improved cardiac structure and function, plasma lipid profile and plasma markers of liver function, reduced inflammatory cell infiltration in heart and liver and decreased left ventricular fibrosis. In the left ventricle, H rats increased mRNA expression of connective tissue growth factor (CTGF), monocyte chemoattractant protein 1 (MCP-1), matrix metalloproteinase-2 (MMP-2), and adenosine monophosphate-activated protein kinase-alpha (AMPK-α) and decreased mRNA expression of peroxisome proliferator-activated receptor-alpha (PPAR-α); both beetroot and sodium nitrate diet-fed rats decreased CTGF threefold, MCP-1, and MMP-2 twofold, and doubled PPAR-α mRNA expression in left ventricular tissue. The similar functional and molecular responses to beetroot and sodium nitrate indicate that the nitrate content of beetroot reduced inflammation and improved cardiovascular, liver, and metabolic function in rats with metabolic syndrome, rather than betanin. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ectopic fat depots and left ventricular function in nondiabetic men with nonalcoholic fatty liver disease.

    PubMed

    Granér, Marit; Nyman, Kristofer; Siren, Reijo; Pentikäinen, Markku O; Lundbom, Jesper; Hakkarainen, Antti; Lauerma, Kirsi; Lundbom, Nina; Nieminen, Markku S; Taskinen, Marja-Riitta

    2015-01-01

    Nonalcoholic fatty liver disease has emerged as a novel cardiovascular risk factor. The aim of the study was to assess the effect of different ectopic fat depots on left ventricular (LV) function in subjects with nonalcoholic fatty liver disease. Myocardial and hepatic triglyceride contents were measured with 1.5 T magnetic resonance spectroscopy and LV function, visceral adipose tissue (VAT) and subcutaneous adipose tissue, epicardial and pericardial fat by MRI in 75 nondiabetic men. Subjects were stratified by hepatic triglyceride content into low, moderate, and high liver fat groups. Myocardial triglyceride, epicardial and pericardial fat, VAT, and subcutaneous adipose tissue increased stepwise from low to high liver fat group. Parameters of LV diastolic function showed a stepwise decrease over tertiles of liver fat and VAT, and they were inversely correlated with hepatic triglyceride, VAT, and VAT/subcutaneous adipose tissue ratio. In multivariable analyses, hepatic triglyceride and VAT were independent predictors of LV diastolic function, whereas myocardial triglyceride was not associated with measures of diastolic function. Myocardial triglyceride, epicardial and pericardial fat increased with increasing amount of liver fat and VAT. Hepatic steatosis and VAT associated with significant changes in LV structure and function. The association of LV diastolic function with hepatic triglyceride and VAT may be because of toxic systemic effects. The effects of myocardial triglyceride on LV structure and function seem to be more complex than previously thought and merit further study. © 2014 American Heart Association, Inc.

  12. Effects of endurance and endurance-strength exercise on biochemical parameters of liver function in women with abdominal obesity.

    PubMed

    Skrypnik, Damian; Ratajczak, Marzena; Karolkiewicz, Joanna; Mądry, Edyta; Pupek-Musialik, Danuta; Hansdorfer-Korzon, Rita; Walkowiak, Jarosław; Jakubowski, Hieronim; Bogdański, Paweł

    2016-05-01

    Obesity is a risk factor of nonalcoholic fatty liver disease. Although the standard therapy for obesity involves physical exercise, well-planned studies of the changes in liver function in response to different exercise intensities in obese subjects are scarce. The aim of the present study was to examine a question of how does exercise mode affect the liver function. 44 women with abdominal obesity were randomized into two exercise groups: endurance (group A) and endurance-strength (group B). Women in each group exercised for 60min 3 times/week for a 3-month period. Markers of liver function: serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltranspeptidase (GGT), alkaline phosphatase (ALP) activities, and bilirubin levels were quantified. We found significant differences in ALT (p<0.01) and AST (p<0.05) activities between group A and B after training exercise. Blood ALT and AST tended to decrease in group B, increase in group A. Significant reduction in serum GGT level after exercise in both groups was observed (p<0.001, group A; p<0.01, group B). Neither endurance nor endurance-strength exercise led to changes in serum ALP activity and total or direct bilirubin level. However, endurance-strength training resulted in significant decreases in serum indirect bilirubin (p<0.05). Strong positive correlations between serum indirect bilirubin and body mass (r=0.615; p=0.0085) and BMI (r=0.576; p=0.0154) were found after endurance-strength exercise (group B). The mode of exercise does matter: endurance-strength exercise led to a greater improvement, compared to endurance exercise, in the liver function in women with abdominal obesity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration

    PubMed Central

    Pu, Wenjuan; Zhang, Hui; Huang, Xiuzhen; Tian, Xueying; He, Lingjuan; Wang, Yue; Zhang, Libo; Liu, Qiaozhen; Li, Yan; Li, Yi; Zhao, Huan; Liu, Kuo; Lu, Jie; Zhou, Yingqun; Huang, Pengyu; Nie, Yu; Yan, Yan; Hui, Lijian; Lui, Kathy O.; Zhou, Bin

    2016-01-01

    Hepatocytes are functionally heterogeneous and are divided into two distinct populations based on their metabolic zonation: the periportal and pericentral hepatocytes. During liver injury and regeneration, the cellular dynamics of these two distinct populations remain largely elusive. Here we show that major facilitator super family domain containing 2a (Mfsd2a), previously known to maintain blood–brain barrier function, is a periportal zonation marker. By genetic lineage tracing of Mfsd2a+ periportal hepatocytes, we show that Mfsd2a+ population decreases during liver homeostasis. Nevertheless, liver regeneration induced by partial hepatectomy significantly stimulates expansion of the Mfsd2a+ periportal hepatocytes. Similarly, during chronic liver injury, the Mfsd2a+ hepatocyte population expands and completely replaces the pericentral hepatocyte population throughout the whole liver. After injury recovery, the adult liver re-establishes the metabolic zonation by reprogramming the Mfsd2a+-derived hepatocytes into pericentral hepatocytes. The evidence of entire zonation replacement during injury increases our understanding of liver biology and disease. PMID:27857132

  14. [Effects of total glucosides of paeony on enhancing insulin sensitivity and antagonizing nonalcoholic fatty liver in rats].

    PubMed

    Zheng, Lin-Ying; Pan, Jing-Qiang; Lv, Jun-Hua

    2008-10-01

    To study the pathological changes of blood glucose, serum lipid, insulin resistance, liver function, liver cell denaturalization of total glucosides of paeony on nonalcoholic fatty liver rats caused by insulin resistance and discuss the acting mechanism. Adult SD rats were maintained on high-fat-sugar-salt diet for 56 days. In the 57th day, their fasting blood glucose (FBG) and 2-hours blood glucose after oral glucose tolerance test (OGTT-2 hBG) were mensurated, according to which and the weight the rats were divided randomly into nonalcoholic fatty liver model group, metformin group (0.2 g x kg(-1)) and total glucosides of paeony group (high dosage 0.15 g x kg(-1), low dosage 0.05 g x kg(-1)). All the rats were still administered the same diet and given different drugs by intragastric administration for 28 days. In the 29th day, all of them were killed and the blood was sampled to measure the levels of blood glucose [FBG, OGTT-2 hBG, fasting insulin (Fins)] and serum lipid [free fatty acids (FFA), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C)], then the HOMA insulin resistance index (HOMA-IRI, fasting glucosexinsulin) and insulin sensitivity index (ISI) were counted. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholinesterase (ChE), superoxide dismutase (SOD) and the contents of malondialdehyde (MDA) were measured also. Livers were weighed and collected to be observed the pathological changes. Compared with normal group, in nonalcoholic fatty liver model group the levels of Fins and IRI were increased obviously (P < 0.01), ISI were decreased (P < 0.01), FFA, TG, TC, LDL-C were increased (P < 0.01), HDL-C were decreased (P < 0.05); the content of MDA were increased (P < 0.05), the activities of SOD were decreased (P < 0.01); AST, ALT and ChE were increased (P < 0.05, or P < 0.01), the pathological changes of liver fat were severe (P < 0.01). In glucosides of paeony group and metformin group, hyperinsulinaemia and insulin resistence were resisted (P < 0.05, or P < 0.01); the levels of FFA, TG, TC, LDL-C were decreased and HDL-C were increased (P < 0.05, or P < 0.01); the activities of AST, ALT, ChE were decreased (P < 0.05, or P < 0.01) and SOD were increased (P < 0.01). The contents of MDA were decreased (P < 0.05). The levels of FBG and 2 hBG in metformin group were decreased but in total glucosides of paeony group were not decreased obviously. Total glucosides of paeony may protect liver function and modulate serum lipid for the fatty liver rats caused by insulin resistance, and its action mechanism may be concerned with enhancing insulin sensitivity and antioxidative ability, decreasing serum lipid.

  15. Ultrasonic diagnosis of patients with clonorchiasis and preliminary study of pathogenic mechanism.

    PubMed

    Fan, Mei; Lu, Lin; Su, Chun; Xue, Mei; Dou, Ji-Mei; Li, Pei; Feng, Han-Qi; Fan, Yan-Bing

    2016-07-01

    To discuss the liver function damage mechanism of patients with clonorchiasis by analyzing the ultrasound characteristics, liver function, change of the serum inflammatory factors and cell apoptosis factors. Color Doppler ultrasound technique was adopted to detect the portal vein and blood flow change of patients with clonorchiasis; ELISA was used to determine the level of different serum inflammatory factors. The levels of serum total bilirubin, serum albumin and glutamic-pyruvic transaminase were detected by automatic biochemical analyzer. Western blot was used to determine the expression of proteins relevant to apoptosis. Compared with the health control group, the trunk diameter of portal vein and the thickness of spleen, as well as the hepatic artery pulsation index of clonorchiasis patients increased obviously, the mean blood flow velocity of portal vein (P < 0.05 or P < 0.01) decreased. The content of total bilirubin and transaminase in plasma increased significantly, but albumin decreased (P < 0.05). Levels of TNF-α, IL-6 and IFN-γ increased remarkably, and the level of every factor was significantly different among patients with Child-Pugh , Child-Pugh II and Child-Pugh III classification of liver function (P < 0.05 or P < 0.01). With the exacerbation of liver dysfunction, levels of TNF-α, IL-6 and IFN-γ gradually increased (P < 0.05). Compared with the healthy control group, the expression quantity of apoptosis protein Fas, FasL, Bax and Caspase-3 increased significantly (P < 0.05 or P < 0.01), but Bcl-2 decreased (P < 0.05). Changes of ultrasonic characteristics and liver dysfunction, caused by liver fluke infection, may be related to that both inflammatory response and apoptosis response have participated in the pathogenic process and liver damage course of clonorchiasis. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  16. Protective effect of IGF-1 on experimental liver cirrhosis-induced common bile duct ligation.

    PubMed

    Cantürk, Nuh Zafer; Cantürk, Zeynep; Ozden, Meltem; Dalçik, Hakki; Yardimoglu, Melda; Tülübas, Feti

    2003-01-01

    The causes of malnutrition in liver cirrhosis are multifactorial. Levels of IGF-1 (insulin like growth factor-1) that is a crucial regulator of intermediary metabolism decreases. The aim of this study was to analyze the effect of IGF-1 supplementation during liver cirrhosis induced by common bile duct ligation. Rats were divided into five different groups: One sham and four experimental groups. Rats in three of four groups were treated with 2 micrograms/day IGF-1 with a different time of experiment in each group. Blood biochemical parameters, tissue malondialdehyde, glutathione levels and the activity of tissue antioxidant enzymes and conventional and immunohistochemical analysis of liver samples were studied for each group. Serum albumin, total protein, fibrinogen levels decreased and prothrombin time was prolonged in the bile duct ligated and transected experimental group but not in the IGF-I treated rats compared with the rats in sham group. Liver malondialdehyde levels significantly increased in control group but not in IGF-1 treated groups. The activities of antioxidant enzymes were decreased compared with the other groups. Histopathology findings of liver biopsy demonstrated intense degree fibrosis and overexpression of fibroblast growth factor and desmin in the control group but a lesser degree of those in the IGF-1 treated groups. IGF-1 treatment improves liver function and decreases oxidative liver damage and histopathological findings. Further studies are required to delineate the mechanisms of protective effects of IGF-1.

  17. Role of Oxygen Free Radicals, Nitric Oxide and Mitochondria in Mediating Cardiac Alterations During Liver Cirrhosis Induced by Thioacetamide.

    PubMed

    Amirtharaj, G Jayakumar; Natarajan, Sathish Kumar; Pulimood, Anna; Balasubramanian, K A; Venkatraman, Aparna; Ramachandran, Anup

    2017-04-01

    Thioacetamide (TAA) administration is widely used for induction of liver cirrhosis in rats, where reactive oxygen radicals (ROS) and nitric oxide (NO) participate in development of liver damage. Cardiac dysfunction is an important complication of liver cirrhosis, but the role of ROS or NO in cardiac abnormalities during liver cirrhosis is not well understood. This was investigated in animals after TAA-induced liver cirrhosis and temporal changes in oxidative stress, NO and mitochondrial function in the heart evaluated. TAA induced elevation in cardiac levels of nitrate before development of frank liver cirrhosis, without gross histological alterations. This was accompanied by an early induction of P38 MAP kinase, which is influenced by ROS and plays an important signaling role for induction of iNOS. Increased nitrotyrosine, protein oxidation and lipid peroxidation in the heart and cardiac mitochondria, suggestive of oxidative stress, also preceded frank liver cirrhosis. However, compromised cardiac mitochondrial function with a decrease in respiratory control ratio and increased mitochondrial swelling was seen later, when cirrhosis was evident. In conclusion, TAA induces elevations in ROS and NO in the heart in parallel to early liver damage. This leads to later development of functional deficits in cardiac mitochondria after development of liver cirrhosis.

  18. Long-lasting improvements in liver fat and metabolism despite body weight regain after dietary weight loss.

    PubMed

    Haufe, Sven; Haas, Verena; Utz, Wolfgang; Birkenfeld, Andreas L; Jeran, Stephanie; Böhnke, Jana; Mähler, Anja; Luft, Friedrich C; Schulz-Menger, Jeanette; Boschmann, Michael; Jordan, Jens; Engeli, Stefan

    2013-11-01

    Weight loss reduces abdominal and intrahepatic fat, thereby improving metabolic and cardiovascular risk. Yet, many patients regain weight after successful diet-induced weight loss. Long-term changes in abdominal and liver fat, along with liver test results and insulin resistance, are not known. We analyzed 50 overweight to obese subjects (46 ± 9 years of age; BMI, 32.5 ± 3.3 kg/m2; women, 77%) who had participated in a 6-month hypocaloric diet and were randomized to either reduced carbohydrates or reduced fat content. Before, directly after diet, and at an average of 24 (range, 17-36) months follow-up, we assessed body fat distribution by magnetic resonance imaging and markers of liver function and insulin resistance. Body weight decreased with diet but had increased again at follow-up. Subjects also partially regained abdominal subcutaneous and visceral adipose tissue. In contrast, intrahepatic fat decreased with diet and remained reduced at follow-up (7.8 ± 9.8% [baseline], 4.5 ± 5.9% [6 months], and 4.7 ± 5.9% [follow-up]). Similar patterns were observed for markers of liver function, whole-body insulin sensitivity, and hepatic insulin resistance. Changes in intrahepatic fat und intrahepatic function were independent of macronutrient composition during intervention and were most effective in subjects with nonalcoholic fatty liver disease at baseline. A 6-month hypocaloric diet induced improvements in hepatic fat, liver test results, and insulin resistance despite regaining of weight up to 2 years after the active intervention. Body weight and adiposity measurements may underestimate beneficial long-term effects of dietary interventions.

  19. Survival Benefit of Tolvaptan for Refractory Ascites in Patients with Advanced Cirrhosis.

    PubMed

    Tajiri, Kazuto; Tokimitsu, Yoshiharu; Ito, Hiroyuki; Atarashi, Yoshinari; Kawai, Kengo; Minemura, Masami; Yasumura, Satoshi; Takahara, Terumi; Shimizu, Yukihiro; Sugiyama, Toshiro

    2018-05-31

    The study aimed to evaluate the effects of tolvaptan treatment on survival of patients with decompensated liver cirrhosis with refractory ascites. This multicenter, retrospective, observational study included patients with cirrhosis who were treated with tolvaptan for hepatic ascites refractory to conventional diuretics. Patients who could and could not decrease accompanying diuretics within 1 month after tolvaptan administration were defined as the "Decreased" and "Not-decreased" groups, respectively. Median body weight change 1 week after tolvaptan treatment was -1.95 kg, with the 50% of patients experiencing a 2 kg/week reduction. Spot urinary sodium was found to be a better predictor of tolvaptan response than liver function and liver fibrosis markers. Median survival was significantly longer (not reached versus 116 days, p = 0.005) and serum creatinine concentrations 12 weeks after tolvaptan administration significantly lower (0.99 vs. 1.55 mg/dL, p < 0.05) in the Decreased than in the Not-decreased group. Multivariate analysis showed that the presence of viable hepatocellular carcinoma (hazards ratio [HR] 2.14, p = 0.02) and a decrease in diuretics were independently prognostic of survival (HR 0.36, p < 0.01). The maintenance of renal function is essential in enhancing survival of patients with cirrhosis. Doses of diuretics should be adjusted appropriately during tolvaptan treatment. © 2018 S. Karger AG, Basel.

  20. Tauroursodeoxycholic acid attenuates endoplasmic reticulum stress and protects the liver from chronic intermittent hypoxia induced injury.

    PubMed

    Hou, Yanpeng; Yang, Huai'an; Cui, Zeshi; Tai, Xuhui; Chu, Yanling; Guo, Xing

    2017-09-01

    Obstructive sleep apnea that characterized by chronic intermittent hypoxia (CIH) has been reported to associate with chronic liver injury. Tauroursodeoxycholic acid (TUDCA) exerts liver-protective effects in various liver diseases. The purpose of this study was to test the hypothesis that TUDCA could protect liver against CIH injury. C57BL/6 mice were subjected to intermittent hypoxia for eight weeks and applied with TUDCA by intraperitoneal injection. The effect of TUDCA on liver histological changes, liver function, oxidative stress, inflammatory response, hepatocyte apoptosis and endoplasmic reticulum (ER) stress were investigated. The results showed that administration of TUDCA attenuated liver pathological changes, reduced serum alanine aminotransferase and aspartate aminotransferase level, suppressed reactive oxygen species activity, decreased tumor necrosis factor-α and interleukin-1β level and inhibited hepatocyte apoptosis induced by CIH. TUDCA also inhibited CIH-induced ER stress in liver as evidenced by decreased expression of ER chaperone 78 kDa glucose-related protein, unfolded protein response transducers and ER proapoptotic proteins. Altogether, the present study described a liver-protective effect of TUDCA in CIH mice model, and this effect seems at least partly through the inhibition of ER stress.

  1. Well Preserved Renal Function in Children With Untreated Chronic Liver Disease.

    PubMed

    Berg, Ulla B; Németh, Antal

    2018-04-01

    On the basis of studies with hepatorenal syndrome, it is widely regarded that renal function is impacted in chronic liver disease (CLD). Therefore, we investigated renal function in children with CLD. In a retrospective study of 277 children with CLD, renal function was investigated as glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), measured as clearance of inulin and para-amino hippuric acid or clearance of iohexol. The data were analyzed with regard to different subgroups of liver disease and to the grade of damage. Hyperfiltration (>+2 SD of controls) was found in the subgroups of progressive familial intrahepatic cholestasis (44%), glycogenosis (75%), and acute fulminant liver failure (60%). Patients with biliary atresia, most other patients with metabolic disease and intrahepatic cholestasis, and those with vascular anomalies and cryptogenic cirrhosis had normal renal function. Decreased renal function was found in patients with Alagille's syndrome (64% < -2 SD). Increased GFR and ERPF was found in patients with elevated transaminases, low prothrombin level, high bile acid concentration, and high aspartate-aminotransferase-to-platelet ratio. Most children with CLD had surprisingly well preserved renal function and certain groups had even hyperfiltration. The finding that children with decompensated liver disease and ongoing liver failure had stable kidney function suggests that no prognostic markers of threatening hepatorenal syndrome were at hand. Moreover, estimation of GFR based on serum creatinine fails to reveal hyperfiltration.

  2. [Perioperative changes of coagulation functions in the local advanced liver cancer patients receiving liver transplantation].

    PubMed

    Wang, Hao-Yuan; Zhao, Qing-Yu; Yuan, Yun-Fei

    2008-07-01

    Liver transplantation is widely accepted as an effective therapy of hepatoma. Perioperative dynamic observation of coagulation function is important for graft-receivers. This study was to explore perioperative changes of coagulation functions in the local advanced liver cancer patients who received liver transplantation. Clinical data of 31 local advanced liver cancer patients, underwent liver transplantation from Sep. 2003 to Jan. 2007, were analyzed. Platelet (PLT) counting, prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), fibrinogen (Fib) and international normalized ratio (INR) before operation, at anhepatic phase and the first week after operation were analyzed to evaluate congulation function. The coagulation functions of most patients were normal before operation. The six parameters varied significantly at anhepatic phase and on most days of the first week after operation when compared with the preoperative levels (P<0.05). The elevation of PT, APTT, TT and INR and the decrease of Fib and PLT were more apparent at anhepatic phase when compared with the preoperative levels [PT: (19.51+/-3.78) s vs. (14.16+/-1.46) sû APTT: (77.01+/-30.51) s vs. (40.19+/-4.11) sû TT: (27.50+/-15.10) s vs. (19.46+/-3.05) sû INR: 1.61+/-0.37 vs. 1.11+/-0.16û Fib: (1.73+/-0.70) g/L vs. (3.38+/-1.00) g/Lû PLT: (108+/-60)x10(9)/L vs. (184+/-108)x10(9)/L, all P<0.01]. In the first week after operation, the elevated PT, APTT, TT and INR levels decreased gradually, APTT was even lower than the preoperative level [(32.05+/-6.50) s vs. (40.19+/-4.11) s, P<0.01]. These changes appeared usually on 1-2 days after operation. Decreased PLT and Fib regained slowly at the first week after operation when compared with the preoperative levels [Fib: (2.13+/-0.53) g/L vs. (3.38+/-1.00) g/L, P<0.01û PLT: (145+/-90)x10(9)/L vs. 184+/-108]x10(9)/L, P<0.05], but the values were normal. According to stratification analysis, the hypocoagulability was more obvious in the patients with moderate or severe cirrhosis and those with Child-Pugh B level than in their counterparts. The coagulation functions of local advanced liver cancer patients shift from hypocoagulatory to hypercoagulatory or normal in perioperative period, therefore, prevention of bleeding should be focused on at anhepatic phase and on 1-2 days after operation while prevention of thrombosis should be focused on after the first week after operation. The degree of liver cirrhosis and Child-Pugh level could help to evaluate postoperative coagulation disorder.

  3. [Effect of phospholipids containing omega-3 fatty acids on structural changes of microsomal lipids in cell membranes of functionally different cells].

    PubMed

    Datsenko, Z M; Volkov, H L; Kryvenko, O M; Nechytaĭlo, L O; Shovkun, S A; Khmel', T O; Perederiĭ, O F

    2002-01-01

    As a result of the experimental researches conducted it has been shown that administration of some normal animal marine phospholipids (PL) including in their structure omega-3 polyunsaturated fatty acids (PUFA) provides for quantitative changes of individual PL, fatty acids (FA) content and quantity in general and individual PL of liver, heart, brain and gonads microsomes. While estimating general microsomal PL fraction FA content under the action of PL omega-3 PUFA FA concentration change, unsaturation index (omega 6/omega 3) and relation of arachidonic acid to docosahexenic (AA/DHA) decrease have been identified. The decrease of AA/DHA relationship occurs due to AA and DHA quantitative changes. In the case of AA increase in some tissues there is observed the decrease of docosapentaenic acid and increase of DHA and eucosapentaenic (EPA) acidds. As a result of studying FA content in the individual PL composition it has been identified that certain PL classes characteristic for some tissues respond by changes of some certain FA. The relationship omega 6/omega 3 has been shown as decreasing in phosphatidilcholine (PC) all tissues microsomes (liver, gonads, heart, brain), in phosphatidilethanolamine (PEA) of liver and cardiac microsomes, in phosphatidilserine (PS) this relationship relationship decreases in the liver, brain and heart, for phosphatidilinositole (PI) the changes take place in liver, gonads, brain. Simultaneously, the decrease of AA/DHA relationship in the individual PL decrease of AA and increase of EPA and DHA depend on the tested tissues. The marine phospholipids might be supposed to render their effect on AA metabolism resulting in AA/DHA relationship in PEA and PS relationship displays itself as specific and depends on the tissues functions. The preference of PEA and PS use by certain tissues microsomes could be explained by their membrane protective capability.

  4. Predictors of renal recovery in patients with pre-orthotopic liver transplant (OLT) renal dysfunction.

    PubMed

    Iglesias, Jose; Frank, Elliot; Mehandru, Sushil; Davis, John M; Levine, Jerrold S

    2013-07-13

    Renal dysfunction occurs commonly in patients awaiting orthotopic liver transplantation (OLT) for end-stage liver disease. The use of simultaneous liver-kidney transplantation has increased in the MELD scoring era. As patients may recover renal function after OLT, identifying factors predictive of renal recovery is a critical issue, especially given the scarcity of available organs. Employing the UNOS database, we sought to identify donor- and patient-related predictors of renal recovery among 1720 patients with pre-OLT renal dysfunction and transplanted from 1989 to 2005. Recovery of renal function post-OLT was defined as a composite endpoint of serum creatinine (SCr) ≤1.5 mg/dL at discharge and survival ≥29 days. Pre-OLT renal dysfunction was defined as any of the following: SCr ≥2 mg/dL at any time while awaiting OLT or need for renal replacement therapy (RRT) at the time of registration and/or OLT. Independent predictors of recovery of renal function post-OLT were absence of hepatic allograft dysfunction, transplantation during MELD era, recipient female sex, decreased donor age, decreased recipient ALT at time of OLT, decreased recipient body mass index at registration, use of anti-thymocyte globulin as induction therapy, and longer wait time from registration. Contrary to popular belief, a requirement for RRT, even for prolonged periods in excess of 8 weeks, was not an independent predictor of failure to recover renal function post-OLT. These data indicate that the duration of renal dysfunction, even among those requiring RRT, is a poor way to discriminate reversible from irreversible renal dysfunction.

  5. Gd-EOB-DTPA-enhanced MRI for monitoring future liver remnant function after portal vein embolization and extended hemihepatectomy: A prospective trial.

    PubMed

    Geisel, Dominik; Raabe, Philip; Lüdemann, Lutz; Malinowski, Maciej; Stockmann, Martin; Seehofer, Daniel; Pratschke, Johann; Hamm, Bernd; Denecke, Timm

    2017-07-01

    To evaluate changes in liver function after right portal vein embolization (PVE) and extended right hemihepatectomy using gadolinium ethoxybenzyl-DTPA-enhanced (Gd-EOB-DTPA) MRI. In this prospective trial, 37 patients undergoing PVE were examined before and 14 and 28 days after PVE and 10 days after extended hemihepatectomy using Gd-EOB-DTPA-enhanced MRI. Lobar volume, kinetic growth rate (KGR), relative enhancement (RE) as well as hepatocellular uptake index (HUI) and fat signal fraction (FSF) were calculated for each lobe. RE of the left liver lobe (LLL) was steadily increasing after PVE and decreased to 0.48 ± 0.19 10 days after surgery, which is significantly lower than 14 days and 28 days post PVE (P < 0.05). KGR was 14.06 ± 9.82%/week for the period from PVE to 14 days after PVE. HUI of the LLL increased steadily after PVE and was significantly higher at both 14 and 28 days after PVE compared to pre PVE (P < 0.05). HUI of the residual liver after surgery was lower than before. Gd-EOB-DTPA-enhanced MRI may be used to monitor the functional increase in the FLR after PVE and to depict the intraoperative liver injury leading to a decrease in liver remnant function. • The most significant FLR volume increase happens within the first 14 days. • No MRI parameter was able to predict the success of FLR growth. • Our data suggest an early resection about 14 days after PVE. • Routine Gd-EOB-DTPA-enhanced MRI might be suitable to replace ICG-test.

  6. Impact of Liver Indicators on Clinical Outcome in Patients Undergoing Transcatheter Aortic Valve Implantation.

    PubMed

    Wendt, Daniel; Kahlert, Philipp; Canbay, Ali; Knipp, Stephan; Thoenes, Martin; Cremer, Gordina; Al-Rashid, Fadi; Jánosi, Rolf-Alexander; El-Chilali, Karim; Kamler, Markus; El Gabry, Mohamed; Marx, Philipp; Dohle, Daniel Sebastian; Tsagakis, Konstantinos; Benedik, Jaroslav; Gerken, Guido; Rassaf, Tienush; Jakob, Heinz; Thielmann, Matthias

    2017-10-01

    Liver dysfunction increases death and morbidity after cardiac operations. There are currently no data evaluating liver function in patients undergoing transcatheter aortic valve replacement (TAVR). We aimed therefore to evaluate our TAVR results in regard to liver function. A total of 640 consecutive TAVR patients were evaluated. Of those, 11 patients presented with chronic liver disease before TAVR. The Model for End-Stage Liver Disease score was used to measure liver function in these patients. The primary study end point was 30-day mortality in patients presenting with liver dysfunction. Secondary study end point was liver enzymes after TAVR. The mean Model for End-Stage Liver Disease score in patients with chronic liver disease was 16.8 ± 6.2 (median, 18; range, 7 to 26). The 30-day mortality was 9.1% (57 of 629) in patients presenting without liver disease and 9.1% (1 of 11) in patients with liver disease (p = 1.00). Patients with chronic liver disease showed significantly higher preoperative levels of γ-glutamyl transpeptidase (p < 0.001). After TAVR, we observed a significant increase in alanine aminotransferase on postoperative day 3 compared with preoperative values (p < 0.001), accompanied by a decrease in albumin (p < 0.001). Liver cirrhosis per se is not considered as a contraindication for cardiac operations. In the present study, we did not observe a higher 30-day mortality rate in liver cirrhotic patients undergoing TAVR, suggesting TAVR as a feasible alternative with acceptable outcomes in patients with chronic liver disease. Moreover, the present study is the first to evaluate liver variables in patients undergoing TAVR. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Effect of Chinese traditional compound, Gan-fu-kang, on CCl(4)-induced liver fibrosis in rats and its probable molecular mechanisms.

    PubMed

    Xu, Ting-Ting; Jiang, Miao-Na; Li, Cong; Che, Ying; Jia, Yu-Jie

    2007-03-01

    To explore the antifibrotic effect of traditional Chinese medicine compound Gan-fu-kang (GFK) on CCl(4)-induced liver fibrosis in rats and its probable mechanisms. The effects of GFK on CCl(4)-induced liver fibrosis were tested in rats. The liver histopathology was examined by light microscope, polaring microscope and electron microscope. The activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed and the content of albumin (ALB) and hydroxyproline in the liver was measured. The expression of transforming growth factor-beta(1) (TGF-beta(1)) and laminin (LN) was determined by immunohistochemistry. Semi-quantitive computation of collagen types I and III and laminin was done. The expression of MMP-2 and TIMP-1 was assayed by reverse transcription polymerase chain reaction (RT-PCR). Upon pathological examination, GFK treatment had significantly reversed liver fibrosis. Hepatic extracellular matrix (ECM) deposition was significantly reduced, as evidenced by the reduction of the content of hydroxyproline, collagen types I and III, and laminin. Hepatic function was improved by GFK treatment, as evidenced by the increase of plasma ALB and A/G, and by the decrease of serum ALT and AST. TGF-beta(1) in liver was significantly reduced. A significant expression of MMP-2 and TIMP-1 mRNA in liver were downregulated after GFK treatment. The traditional Chinese medicine compound recipe GFK has an antifibrotic effect on CCl(4)-induced liver fibrosis in rats, which improves hepatic function and lessens the deposition of collagen in the liver. The probable antifibrotic mechanisms were: inhibiting the expression of TGF-beta(1) and decreasing expressions of MMP-2 and TIMP-1.

  8. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water

    PubMed Central

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury. PMID:26316710

  9. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water.

    PubMed

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury.

  10. Curcumin Attenuates N-Nitrosodiethylamine-Induced Liver Injury in Mice by Utilizing the Method of Metabonomics.

    PubMed

    Qiu, Peiyu; Sun, Jiachen; Man, Shuli; Yang, He; Ma, Long; Yu, Peng; Gao, Wenyuan

    2017-03-08

    N-Nitrosodiethylamine (DEN) exists as a food additive in cheddar cheese, processed meats, beer, water, and so forth. It is a potent hepatocarcinogen in animals and humans. Curcumin as a natural dietary compound decreased DEN-induced hepatocarcinogenesis in this research. According to the histopathological examination of liver tissues and biomarker detection in serum and livers, it was demonstrated that curcumin attenuated DEN-induced hepatocarcinogenesis through parts of regulating the oxidant stress enzymes (T-SOD and CAT), liver function (ALT and AST) and LDHA, AFP level, and COX-2/PGE2 pathway. Furthermore, curcumin attenuated metabolic disorders via increasing concentration of glucose and fructose, and decreasing levels of glycine and proline, and mRNA expression of GLUT1, PKM and FASN. Docking study indicated that curcumin presented strong affinity with key metabolism enzymes such as GLUT1, PKM, FASN and LDHA. There were a number of amino acid residues involved in curcumin-targeting enzymes of hydrogen bonds and hydrophobic interactions. All in all, curcumin exhibited a potent liver protective agent inhibiting chemically induced liver injury through suppressing liver cellular metabolism in the prospective application.

  11. Morphometric analysis of primary graft non-function in liver transplantation.

    PubMed

    Vertemati, M; Sabatella, G; Minola, E; Gambacorta, M; Goffredi, M; Vizzotto, L

    2005-04-01

    Primary graft non-function (PNF) is a life-threatening condition that is thought to be the consequence of microcirculation injury. The aim of the present study was to assess, with a computerized morphometric model, the morphological changes at reperfusion in liver biopsy specimens from patients who developed PNF after liver transplantation. Biopsy specimens were obtained at maximum ischaemia and at the end of reperfusion. Morphology included many stereological parameters, such as volumes of all parenchymal components, surface density, size distribution and mean diameter of hepatocytes. Other variables examined were intensive care unit stay, degree of steatosis, serum liver function tests and ischaemic time. In the postoperative period, the PNF group showed elevated serum levels of alanine transferase, decreased daily rate of bile production and prothrombin activity. Blood lactates were significantly higher in the PNF group than in a control group. When comparing groups, the volumetric parameters related to hepatocytes and sinusoids and the surface densities of the hepatic cells showed an inverse relationship. At the end of reperfusion, in PNF group the volume fraction of hepatocyte cytoplasm was decreased; in contrast, the volume fraction of sinusoidal lumen was markedly increased. The cell profiles showed the same inverse trend: the surface density of the parenchymal border of hepatocytes was decreased in PNF when compared with the control group, while the surface density of the vascular border was increased. In the PNF group, the surface density of the sinusoidal bed was directly correlated with alanine transferase, daily rate of bile production, prothrombin activity and cold ischaemic time. The alterations in hepatic architecture, as demonstrated by morphometric analysis in liver transplant recipients that developed PNF, provide additional information that may represent useful viability markers of the graft to complement conventional histological analysis.

  12. Long-Lasting Improvements in Liver Fat and Metabolism Despite Body Weight Regain After Dietary Weight Loss

    PubMed Central

    Haufe, Sven; Haas, Verena; Utz, Wolfgang; Birkenfeld, Andreas L.; Jeran, Stephanie; Böhnke, Jana; Mähler, Anja; Luft, Friedrich C.; Schulz-Menger, Jeanette; Boschmann, Michael; Jordan, Jens; Engeli, Stefan

    2013-01-01

    OBJECTIVE Weight loss reduces abdominal and intrahepatic fat, thereby improving metabolic and cardiovascular risk. Yet, many patients regain weight after successful diet-induced weight loss. Long-term changes in abdominal and liver fat, along with liver test results and insulin resistance, are not known. RESEARCH DESIGN AND METHODS We analyzed 50 overweight to obese subjects (46 ± 9 years of age; BMI, 32.5 ± 3.3 kg/m2; women, 77%) who had participated in a 6-month hypocaloric diet and were randomized to either reduced carbohydrates or reduced fat content. Before, directly after diet, and at an average of 24 (range, 17–36) months follow-up, we assessed body fat distribution by magnetic resonance imaging and markers of liver function and insulin resistance. RESULTS Body weight decreased with diet but had increased again at follow-up. Subjects also partially regained abdominal subcutaneous and visceral adipose tissue. In contrast, intrahepatic fat decreased with diet and remained reduced at follow-up (7.8 ± 9.8% [baseline], 4.5 ± 5.9% [6 months], and 4.7 ± 5.9% [follow-up]). Similar patterns were observed for markers of liver function, whole-body insulin sensitivity, and hepatic insulin resistance. Changes in intrahepatic fat und intrahepatic function were independent of macronutrient composition during intervention and were most effective in subjects with nonalcoholic fatty liver disease at baseline. CONCLUSIONS A 6-month hypocaloric diet induced improvements in hepatic fat, liver test results, and insulin resistance despite regaining of weight up to 2 years after the active intervention. Body weight and adiposity measurements may underestimate beneficial long-term effects of dietary interventions. PMID:23963894

  13. Cannabidiol improves brain and liver function in a fulminant hepatic failure-induced model of hepatic encephalopathy in mice

    PubMed Central

    Avraham, Y; Grigoriadis, NC; Poutahidis, T; Vorobiev, L; Magen, I; Ilan, Y; Mechoulam, R; Berry, EM

    2011-01-01

    BACKGROUND AND PURPOSE Hepatic encephalopathy is a neuropsychiatric disorder of complex pathogenesis caused by acute or chronic liver failure. We investigated the effects of cannabidiol, a non-psychoactive constituent of Cannabis sativa with anti-inflammatory properties that activates the 5-hydroxytryptamine receptor 5-HT1A, on brain and liver functions in a model of hepatic encephalopathy associated with fulminant hepatic failure induced in mice by thioacetamide. EXPERIMENTAL APPROACH Female Sabra mice were injected with either saline or thioacetamide and were treated with either vehicle or cannabidiol. Neurological and motor functions were evaluated 2 and 3 days, respectively, after induction of hepatic failure, after which brains and livers were removed for histopathological analysis and blood was drawn for analysis of plasma liver enzymes. In a separate group of animals, cognitive function was tested after 8 days and brain 5-HT levels were measured 12 days after induction of hepatic failure. KEY RESULTS Neurological and cognitive functions were severely impaired in thioacetamide-treated mice and were restored by cannabidiol. Similarly, decreased motor activity in thioacetamide-treated mice was partially restored by cannabidiol. Increased plasma levels of ammonia, bilirubin and liver enzymes, as well as enhanced 5-HT levels in thioacetamide-treated mice were normalized following cannabidiol administration. Likewise, astrogliosis in the brains of thioacetamide-treated mice was moderated after cannabidiol treatment. CONCLUSIONS AND IMPLICATIONS Cannabidiol restores liver function, normalizes 5-HT levels and improves brain pathology in accordance with normalization of brain function. Therefore, the effects of cannabidiol may result from a combination of its actions in the liver and brain. PMID:21182490

  14. Cannabidiol improves brain and liver function in a fulminant hepatic failure-induced model of hepatic encephalopathy in mice.

    PubMed

    Avraham, Y; Grigoriadis, Nc; Poutahidis, T; Vorobiev, L; Magen, I; Ilan, Y; Mechoulam, R; Berry, Em

    2011-04-01

    Hepatic encephalopathy is a neuropsychiatric disorder of complex pathogenesis caused by acute or chronic liver failure. We investigated the effects of cannabidiol, a non-psychoactive constituent of Cannabis sativa with anti-inflammatory properties that activates the 5-hydroxytryptamine receptor 5-HT(1A) , on brain and liver functions in a model of hepatic encephalopathy associated with fulminant hepatic failure induced in mice by thioacetamide. Female Sabra mice were injected with either saline or thioacetamide and were treated with either vehicle or cannabidiol. Neurological and motor functions were evaluated 2 and 3 days, respectively, after induction of hepatic failure, after which brains and livers were removed for histopathological analysis and blood was drawn for analysis of plasma liver enzymes. In a separate group of animals, cognitive function was tested after 8 days and brain 5-HT levels were measured 12 days after induction of hepatic failure. Neurological and cognitive functions were severely impaired in thioacetamide-treated mice and were restored by cannabidiol. Similarly, decreased motor activity in thioacetamide-treated mice was partially restored by cannabidiol. Increased plasma levels of ammonia, bilirubin and liver enzymes, as well as enhanced 5-HT levels in thioacetamide-treated mice were normalized following cannabidiol administration. Likewise, astrogliosis in the brains of thioacetamide-treated mice was moderated after cannabidiol treatment. Cannabidiol restores liver function, normalizes 5-HT levels and improves brain pathology in accordance with normalization of brain function. Therefore, the effects of cannabidiol may result from a combination of its actions in the liver and brain. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  15. Potential protection of vitamin C against liver-lesioned mice.

    PubMed

    Su, Min; Chen, Hongqiu; Wei, Chaohe; Chen, Ning; Wu, Wei

    2014-10-01

    Pathologically, liver injury can result from sustained trauma to hepatocytes, including acute damage. Thus, attenuation of hepatocellular lesion may help improve liver functions. The purpose of this study was to explore the potential advantages of vitamin C (VC) intake on acutely intralesional liver in carbon tetrachloride (CCl4)-exposed mice. Here our data showed that VC supplementation contributed to ameliorated vital signs of CCl4-lesioned mice, resulting in dose-dependent reduction of hepatomegaly. VC lowered the levels of liver functional enzymes including alanine aminotransferase (ALT) and glutamic-oxaloacetic transaminase (AST) in serum, while concentration of lactic acid concentration in blood plasma was decreased. VC-administered CCl4-lesioned mice manifested increased activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), while the malondialdehyde (MDA) content was reduced in liver tissue. Moreover, VC consumption attenuated hepatotoxic injuries of CCl4-lesioned mice, in which the number of TNF-α positive cells was dose-dependently reduced. Furthermore, intrahepatic expression of TRL-4 mRNA, a vital inflammation-regulator, was down-regulated in VC-administered mice. Overall, we conclude that VC has the potentiality of anti-hepatotoxicity that is capable of ameliorating liver functions, speculating that therapeutic mechanism relates to normalizing metabolism and blocking inflammatory stress in the liver. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The Protective Effects of Trypsin Inhibitor on Hepatic Ischemia-Reperfusion Injury and Liver Graft Survival

    PubMed Central

    Guan, Lianyue; Liu, Hongyu; Fu, Peiyao; Li, Zhuonan; Li, Peidong; Xie, Lijuan; Xin, Mingang; Wang, Zhanpeng

    2016-01-01

    The aim of this study was to explore the protective effects of ulinastatin (urinary trypsin inhibitor, UTI) on liver ischemia-reperfusion injury (IRI) and graft survival. We employed mouse liver cold IRI and orthotopic liver transplantation (OLTx) models. UTI was added to lactated Ringer's (LR) solution for liver perfusion and preservation in vitro or combined with UTI injection intraperitoneally to the liver graft recipient. Our results indicated that UTI supplementation protected the liver from cold IRI in a dose-dependent manner and prolonged liver graft survival from extended cold preserved liver donors significantly. The underlying mechanism of UTI on liver IRI may be mediated by inhibition of proinflammatory cytokine release, increasing the expression of the antiapoptotic gene Bcl-2 and decreasing the expression of the proapoptosis genes of Caspase-3 and Bax, and further protects hepatocytes from apoptotic death and improves liver function. PMID:26783413

  17. The Protective Effects of Trypsin Inhibitor on Hepatic Ischemia-Reperfusion Injury and Liver Graft Survival.

    PubMed

    Guan, Lianyue; Liu, Hongyu; Fu, Peiyao; Li, Zhuonan; Li, Peidong; Xie, Lijuan; Xin, Mingang; Wang, Zhanpeng; Li, Wei

    2016-01-01

    The aim of this study was to explore the protective effects of ulinastatin (urinary trypsin inhibitor, UTI) on liver ischemia-reperfusion injury (IRI) and graft survival. We employed mouse liver cold IRI and orthotopic liver transplantation (OLTx) models. UTI was added to lactated Ringer's (LR) solution for liver perfusion and preservation in vitro or combined with UTI injection intraperitoneally to the liver graft recipient. Our results indicated that UTI supplementation protected the liver from cold IRI in a dose-dependent manner and prolonged liver graft survival from extended cold preserved liver donors significantly. The underlying mechanism of UTI on liver IRI may be mediated by inhibition of proinflammatory cytokine release, increasing the expression of the antiapoptotic gene Bcl-2 and decreasing the expression of the proapoptosis genes of Caspase-3 and Bax, and further protects hepatocytes from apoptotic death and improves liver function.

  18. Regional metabolic liver function measured in patients with cirrhosis by 2-[¹⁸F]fluoro-2-deoxy-D-galactose PET/CT.

    PubMed

    Sørensen, Michael; Mikkelsen, Kasper S; Frisch, Kim; Villadsen, Gerda E; Keiding, Susanne

    2013-06-01

    There is a clinical need for methods that can quantify regional hepatic function non-invasively in patients with cirrhosis. Here we validate the use of 2-[(18)F]fluoro-2-deoxy-d-galactose (FDGal) PET/CT for measuring regional metabolic function to this purpose, and apply the method to test the hypothesis of increased intrahepatic metabolic heterogeneity in cirrhosis. Nine cirrhotic patients underwent dynamic liver FDGal PET/CT with blood samples from a radial artery and a liver vein. Hepatic blood flow was measured by indocyanine green infusion/Fick's principle. From blood measurements, hepatic systemic clearance (Ksyst, Lblood/min) and hepatic intrinsic clearance (Vmax/Km, Lblood/min) of FDGal were calculated. From PET data, hepatic systemic clearance of FDGal in liver parenchyma (Kmet, mL blood/mL liver tissue/min) was calculated. Intrahepatic metabolic heterogeneity was evaluated in terms of coefficient-of-variation (CoV, %) using parametric images of Kmet. Mean approximation of Ksyst to Vmax/Km was 86% which validates the use of FDGal as PET tracer of hepatic metabolic function. Mean Kmet was 0.157 mL blood/mL liver tissue/min, which was lower than 0.274 mL blood/mL liver tissue/min, previously found in healthy subjects (p<0.001), in accordance with decreased metabolic function in cirrhotic livers. Mean CoV for Kmet in liver tissue was 24.4% in patients and 14.4% in healthy subjects (p<0.0001). The degree of intrahepatic metabolic heterogeneity correlated positively with HVPG (p<0.05). A 20-min dynamic FDGal PET/CT with arterial sampling provides an accurate measure of regional hepatic metabolic function in patients with cirrhosis. This is likely to have clinical implications for the assessment of patients with liver disease as well as treatment planning and monitoring. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. A bioartificial liver to treat severe acute liver failure.

    PubMed Central

    Rozga, J; Podesta, L; LePage, E; Morsiani, E; Moscioni, A D; Hoffman, A; Sher, L; Villamil, F; Woolf, G; McGrath, M

    1994-01-01

    OBJECTIVE: To test the safety and efficacy of a bioartificial liver support system in patients with severe acute liver failure. SUMMARY BACKGROUND DATA: The authors developed a bioartificial liver using porcine hepatocytes. The system was tested in vitro and shown to have differentiated liver functions (cytochrome P450 activity, synthesis of liver-specific proteins, bilirubin synthesis, and conjugation). When tested in vivo in experimental animals with liver failure, it gave substantial metabolic and hemodynamic support. METHODS: Seven patients with severe acute liver failure received a double lumen catheter in the saphenous vein; blood was removed, plasma was separated and perfused through a cartridge containing 4 to 6 x 10(9) porcine hepatocytes, and plasma and blood cells were reconstituted and reinfused. Each treatment lasted 6 to 7 hours. RESULTS: All patients tolerated the procedure(s) well, with neurologic improvement, decreased intracranial pressure (23.0 +/- 2.3 to 7.8 +/- 1.7 mm Hg; p < 0.005) associated with an increase in cerebral perfusion pressure, decreased plasma ammonia (163.3 +/- 21.3 to 112.2 +/- 9.8 microMoles/L; p < 0.01), and increased encephalopathy index (0.60 +/- 0.17 to 1.24 +/- 0.22; p < 0.03). All patients survived, had a liver transplant, and were discharged from the hospital. CONCLUSIONS: This bioartificial liver is safe and serves as an effective "bridge" to liver transplant in some patients. Images Figure 2. Figure 3. PMID:8185403

  20. Biochemical and Cytological Aspects of Liver Cell Function During Infection

    DTIC Science & Technology

    1981-01-01

    diet (Powanda et al., 1972) or starved for 10 days prior to infection (Cockerell, 1973). Williams et al. (1965) reported that staphylococcal infection...as skeletal muscle and brain (Cahill et al., 1971). This ketogenic adaptation to starvation reduces the need for energy derived from glucose, which...result from a reduced ketogenic capacity of the liver as well as from a possible decrease in the supply of fatty acids to the liver (Wannemacher et al

  1. The effects of chronic acetaminophen exposure on the kidney, gill and liver in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Choi, Eugene; Alsop, Derek; Wilson, Joanna Y

    2018-05-01

    In this study, we examined if rainbow trout chronically exposed to acetaminophen (10 and 30 μgL -1 ) showed histological changes that coincided with functional changes in the kidney, gill and liver. Histological changes in the kidney included movement and loss of nuclei, non-uniform nuclei size, non-uniform cytoplasmic staining, and loss of tubule integrity. Histological effects were more severe at the higher concentration and coincided with concentration dependent increases in urine flow rate and increased urinary concentrations of sodium, chloride, potassium, calcium, urea, ammonia, glucose, and protein. Yet, glomerular filtration rate was not altered with acetaminophen exposure. In the gill, filament end swelling, whole filament swelling, and swelling of the lamellae were observed in exposed fish. Lamellar spacing decreased in both exposure groups, but lamellar area decreased only with 30 μgL -1 exposure. At faster swimming speeds, oxygen consumption was limited in acetaminophen exposed fish, and critical swimming speed was also decreased in both exposure groups. The liver showed decreased perisinusoidal spaces at 10 and 30 μgL -1 acetaminophen, and decreased cytoplasmic vacuolation with 30 μgL -1 acetaminophen. A decrease in liver glycogen was also observed at 30 μgL -1 . There was no change in plasma concentrations of sodium, chloride, potassium, calcium, magnesium, and glucose with exposure, suggesting compensation for urinary loss. Indeed, an increase in Na + -K + -ATPase activity in the gills was found with 30 μgL -1 acetaminophen exposure. Chronic exposure of rainbow trout to the environmentally relevant pharmaceutical acetaminophen, alters both histology and function of organs responsible for ion and nutrient homeostasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Systemic effect of mineral aggregate-based cements: histopathological analysis in rats.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Huck, Claudia; Magalhães, Fernando Augusto Cintra; Souza, Pedro Paulo Chaves de; Souza Costa, Carlos Alberto de

    2017-01-01

    Several studies reported the local tissue reaction caused by mineral aggregate-based cements. However, few studies have investigated the systemic effects promoted by these cements on liver and kidney when directly applied to connective tissue. The purpose of this in vivo study was to investigate the systemic effect of mineral aggregate-based cements on the livers and kidneys of rats. Samples of Mineral Trioxide Aggregate (MTA) and a calcium aluminate-based cement (EndoBinder) containing different radiopacifiers were implanted into the dorsum of 40 rats. After 7 and 30 d, samples of subcutaneous, liver and kidney tissues were submitted to histopathological analysis. A score (0-3) was used to grade the inflammatory reaction. Blood samples were collected to evaluate changes in hepatic and renal functions of animals. The moderate inflammatory reaction (2) observed for 7 d in the subcutaneous tissue decreased with time for all cements. The thickness of inflammatory capsules also presented a significant decrease with time (P<.05). Systemically, all cements caused adverse inflammatory reactions in the liver and kidney, being more evident for MTA, persisting until the end of the analysis. Liver functions increased significantly for MTA during 30 d (P<.05). The different cements induced to a locally limited inflammatory reaction. However, from the systemic point of view, the cements promoted significant inflammatory reactions in the liver and kidney. For MTA, the reactions were more accentuated.

  3. Hepatoprotective Effect of Low Doses of Caffeine on CCl4-Induced Liver Damage in Rats.

    PubMed

    Cachón, Andrés Uc; Quintal-Novelo, Carlos; Medina-Escobedo, Gilberto; Castro-Aguilar, Gaspar; Moo-Puc, Rosa E

    2017-03-04

    Several studies have shown the hepatoprotective effect of the consumption of coffee and tea, which is mainly attributed to caffeine. Many experimental studies have demonstrated this effect; however, these studies used high caffeine doses that are not related to human consumption. The aim of this study was to evaluate the hepatoprotective effect of low doses of caffeine on carbon tetrachloride (CCl 4 )-treated rats. Low doses of caffeine (CAFF) 5 and 10 mg/kg (CAFF5 and CAFF10) were evaluated in chronic liver damage induced by CCl 4 (0.75 mL/kg) in rats. CAFF treatment was administered once a day and CCl 4 administration was twice weekly for 10 weeks. Liver function tests (biochemical markers) and functional (sleeping time) and histological (hematoxylin-eosin and Masson trichrome stains) parameters were carried out at the end of damage treatment. Daily treatments of CAFF5 and CAFF10 exhibited a hepatoprotective effect supported by a decrease of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (AP) serum activities and bilirubin serum levels compared with control and also restored serum albumin levels and liver glutathione (GSH). Moreover, CAFF prevented CCl 4 -induced prolongation in pentobarbital sleeping time and a decrease of liver fibrosis and cell death. Our results demonstrated that low doses of CAFF exert a hepatoprotective effect against CCl 4 -induced liver damage in rats.

  4. TU-F-12A-04: Differential Radiation Avoidance of Functional Liver Regions Defined by 99mTc-Sulfur Colloid SPECT/CT with Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, S; Miyaoka, R; Kinahan, P

    2014-06-15

    Purpose: Radiotherapy for hepatocellular carcinoma patients is conventionally planned without consideration of spatial heterogeneity in hepatic function, which may increase risk of radiation-induced liver disease. Pencil beam scanning (PBS) proton radiotherapy (pRT) plans were generated to differentially decrease dose to functional liver volumes (FLV) defined on [{sup 99m}Tc]sulfur colloid (SC) SPECT/CT images (functional avoidance plans) and compared against conventional pRT plans. Methods: Three HCC patients underwent SC SPECT/CT scans for pRT planning acquired 15 min post injection over 24 min. Images were reconstructed with OSEM following scatter, collimator, and exhale CT attenuation correction. Functional liver volumes (FLV) were defined bymore » liver:spleen uptake ratio thresholds (43% to 90% maximum). Planning objectives to FLV were based on mean SC SPECT uptake ratio relative to GTV-subtracted liver and inversely scaled to mean liver dose of 20 Gy. PTV target coverage (V{sub 95}) was matched between conventional and functional avoidance plans. PBS pRT plans were optimized in RayStation for single field uniform dose (SFUD) and systematically perturbed to verify robustness to uncertainty in range, setup, and motion. Relative differences in FLV DVH and target dose heterogeneity (D{sub 2}-D{sub 98})/D50 were assessed. Results: For similar liver dose between functional avoidance and conventional PBS pRT plans (D{sub mean}≤5% difference, V{sub 18Gy}≤1% difference), dose to functional liver volumes were lower in avoidance plans but varied in magnitude across patients (FLV{sub 70%max} D{sub mean}≤26% difference, V{sub 18Gy}≤8% difference). Higher PTV dose heterogeneity in avoidance plans was associated with lower functional liver dose, particularly for the largest lesion [(D{sub 2}-D{sub 98})/D{sub 50}=13%, FLV{sub 90%max}=50% difference]. Conclusion: Differential avoidance of functional liver regions defined on sulfur colloid SPECT/CT is feasible with proton therapy. The magnitude of benefit appears to be patient specific and dependent on tumor location, size, and proximity to functional volumes. Further investigation in a larger cohort of patients may validate the clinical utility of functional avoidance planning of HCC radiotherapy.« less

  5. Impact of splenic artery ligation after major hepatectomy on liver function, regeneration and viability.

    PubMed

    Carrapita, Jorge; Abrantes, Ana Margarida; Campelos, Sofia; Gonçalves, Ana Cristina; Cardoso, Dulce; Sarmento-Ribeiro, Ana Bela; Rocha, Clara; Santos, Jorge Nunes; Botelho, Maria Filomena; Tralhão, José Guilherme; Farges, Olivier; Barbosa, Jorge Maciel

    2016-10-11

    It was reported that prevention of acute portal overpressure in small-for-size livers by inflow modulation results in a better postoperative outcome. The aim is to investigate the impact of portal blood flow reduction by splenic artery ligation after major hepatectomy in a murine model. Forty-eight rats were subjected to an 85% hepatectomy or 85% hepatectomy and splenic artery ligation. Both groups were evaluated at 24, 48, 72 and 120 post-operative hours: liver function, regeneration and viability. All methods and experiments were carried out in accordance with Coimbra University guidelines. Splenic artery ligation produces viability increase after 24 h, induces a relative decrease in oxidative stress during the first 48 hours, allows antioxidant capacity increment after 24 h, which is reflected in a decrease of half-time normalized liver curve at 48 h and at 72 h and in an increase of mitotic index between 48 h and 72 h. Splenic artery ligation combined with 85% hepatectomy in a murine model, allows portal inflow modulation, promoting an increase in hepatocellular viability and regeneration, without impairing the function, probably by inducing a less marked elevation of oxidative stress at first 48 hours.

  6. Abnormalities of Lipoprotein Levels in Liver Cirrhosis: Clinical Relevance.

    PubMed

    Privitera, Graziella; Spadaro, Luisa; Marchisello, Simona; Fede, Giuseppe; Purrello, Francesco

    2018-01-01

    Progressive lipoprotein impairment occurs in liver cirrhosis and is associated with increased morbidity and mortality. The present review aims to summarize the current evidence regarding the prognostic value of lipoprotein abnormalities in liver cirrhosis and to address the need of a better prognostic stratification of patients, including lipoprotein profile assessment. Low levels of lipoproteins are usual in cirrhosis. Much evidence supports the prognostic role of hypolipidemia in cirrhotic patients. In particular, hypocholesterolemia represents an independent predictor of survival in cirrhosis. In cirrhotic patients, lipoprotein impairment is associated with several complications: infections, malnutrition, adrenal function, and spur cell anemia. Alterations of liver function are associated with modifications of circulating lipids. Decreased levels of lipoproteins significantly impact the survival of cirrhotic patients and play an important role in the pathogenesis of some cirrhosis-related complications.

  7. Congenital hypothyroidism in a kitten resulting in decreased IGF-I concentration and abnormal liver function tests.

    PubMed

    Quante, Saskia; Fracassi, Federico; Gorgas, Daniela; Kircher, Patrick R; Boretti, Felicitas S; Ohlerth, Stefanie; Reusch, Claudia E

    2010-06-01

    A 7-month-old male kitten was presented with chronic constipation and retarded growth. Clinical examination revealed disproportional dwarfism with mild skeletal abnormalities and a palpable thyroid gland. The presumptive diagnosis of congenital hypothyroidism was confirmed by low serum total thyroxine (tT(4)) concentration prior to and after the administration of thyroid stimulation hormone (TSH), increased endogenous TSH concentration and abnormal thyroid scintigraphic scan. The kitten had abnormal liver function tests and decreased insulin-like growth factor 1 (IGF-1) concentration, both of which returned to normal in correspondence with an improvement of the clinical signs after 6 weeks of thyroxine therapy. Congenital hypothyroidism is a rare disease that may present with considerable variation in clinical manifestation. In cases in which clinical signs are ambiguous, disorders such as portosystemic shunt and hyposomatotropism have to be taken into account as differential diagnosis. As hypothyroidism may be associated with abnormal liver function tests and low IGF-1 concentrations, test results have to be interpreted carefully. Copyright 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  8. High regenerative capacity of the liver and irreversible injury of male reproductive system in carbon tetrachloride-induced liver fibrosis rat model.

    PubMed

    Bubnov, Rostyslav V; Drahulian, Maria V; Buchek, Polina V; Gulko, Tamara P

    2018-03-01

    Liver fibrosis (LF) is a chronic disease, associated with many collateral diseases including reproductive dysfunction. Although the normal liver has a large regenerative capacity the complications of LF could be severe and irreversible. Hormone and sex-related issues of LF development and interactions with male reproductive have not been finally studied. The aim was to study the reproductive function of male rats in experimental CCl 4 -induced liver fibrosis rat model, and the capability for restoration of both the liver and male reproduction system. Studies were conducted on 20 3-month old Wistar male rats. The experimental animals were injected with freshly prepared 50% olive oil solution of carbohydrate tetrachloride (CCl 4 ). On the 8th week after injection we noted the manifestations of liver fibrosis. The rats were left to self-healing of the liver for 8 weeks. All male rats underwent ultrasound and biopsy of the liver and testes on the 8th and 16th weeks. The male rats were mated with healthy females before CCl 4 injection, after modeling LF on the 8th week, and after self-healing of the liver. Pregnancy was monitored on ultrasound. On the 8th week of experiment we observed ultrasound manifestation of advanced liver fibrosis, including hepatosplenomegaly, portal hypertension. Ultrasound exam of the rat testes showed testicular degeneration, hydrocele, fibrosis, scarring, petrifications, size reduction, and restriction of testicular descent; testes size decreased from 1.24 ± 0.62 ml to 0.61 ± 0.13, p  < 0.01. Liver histology showed granular dystrophy of hepatocytes, necrotic areas, lipid inclusions in parenchyma. Rats with liver fibrosis demonstrated severe injury of the reproductive system and altering of fertility: the offspring of male rats with advanced LF was 4.71 ± 0.53 born alive vs 9.55 ± 0.47 born from mating with healthy males, p  < 0.001. Eight weeks after last CCl 4 injection, we revealed signs of liver regeneration, significant recovery of its structure. The ALT and AST levels significantly decreased and reached background measurements. As a result of the second interbreeding after liver self-healing no significant difference was found vs previous mating. Carbohydrate tetrachloride induces injury of liver parenchyma evoking fast and severe liver fibrosis, and is associated with irreversible structural and functional changes in testes, reducing fertility, decreasing potential pregnancy rate, and affecting its development. Liver showed high potential to regenerate, however the self-restoring after liver fibrosis was not accompanied with recovery of the reproductive system.

  9. Experiment K-6-14. Hepatic function in rats after spaceflight

    NASA Technical Reports Server (NTRS)

    Merrill, A., Jr.; Hoel, M.; Wang, E.; Jones, D.; Hargrove, J.; Mullins, R.; Popova, I.

    1990-01-01

    To determine the possible biochemical consequences of prolonged weightlessness on liver function, tissue samples from rats that had flown aboard Cosmos 1887 were analyzed for hepatic protein, glycogen and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the hepatic glycogen content and HMG-CoA reductase activities of the rats flown on Cosmos 1887, and a decrease in the amount of microsomal cytochrome P sub 450 and the activity of aniline hydroxylase, a cytochrome P sub 450-dependent enzyme. Decreases in these two indices of the microsomal mixed-function oxidase system indicated that spaceflight may compromise the ability of liver to metabolize drugs and toxins. The higher HMG-CoA reductase correlated with elevated levels of serum cholestrol. Other changes included somewhat higher blood glucose, creatinine, SGOT, and much greater alkaline phosphatase and BUN. These results generally support the earlier observation of changes in these parameters (Merrill et al., Am. J. Physiol. 252:R22-R226, 1987). The importance of these alterations in liver function is not known; however, they have the potential to complicate long-term spaceflight.

  10. Predictors of renal recovery in patients with pre-orthotopic liver transplant (OLT) renal dysfunction

    PubMed Central

    2013-01-01

    Background Renal dysfunction occurs commonly in patients awaiting orthotopic liver transplantation (OLT) for end-stage liver disease. The use of simultaneous liver-kidney transplantation has increased in the MELD scoring era. As patients may recover renal function after OLT, identifying factors predictive of renal recovery is a critical issue, especially given the scarcity of available organs. Methods Employing the UNOS database, we sought to identify donor- and patient-related predictors of renal recovery among 1720 patients with pre-OLT renal dysfunction and transplanted from 1989 to 2005. Recovery of renal function post-OLT was defined as a composite endpoint of serum creatinine (SCr) ≤1.5 mg/dL at discharge and survival ≥29 days. Pre-OLT renal dysfunction was defined as any of the following: SCr ≥2 mg/dL at any time while awaiting OLT or need for renal replacement therapy (RRT) at the time of registration and/or OLT. Results Independent predictors of recovery of renal function post-OLT were absence of hepatic allograft dysfunction, transplantation during MELD era, recipient female sex, decreased donor age, decreased recipient ALT at time of OLT, decreased recipient body mass index at registration, use of anti-thymocyte globulin as induction therapy, and longer wait time from registration. Contrary to popular belief, a requirement for RRT, even for prolonged periods in excess of 8 weeks, was not an independent predictor of failure to recover renal function post-OLT. Conclusion These data indicate that the duration of renal dysfunction, even among those requiring RRT, is a poor way to discriminate reversible from irreversible renal dysfunction. PMID:23849513

  11. Long-term obestatin treatment of mice type 2 diabetes increases insulin sensitivity and improves liver function.

    PubMed

    Kołodziejski, Paweł A; Pruszyńska-Oszmałek, Ewa; Strowski, Mathias Z; Nowak, Krzysztof W

    2017-06-01

    Obestatin and ghrelin are peptides encoded by the preproghrelin gene. Obestatin inhibits food intake, in addition to regulation of glucose and lipid metabolism. Here, we test the ability of obestatin at improving metabolic control and liver function in type 2 diabetic animals (type 2 diabetes mellitus). The effects of chronic obestatin treatment of mice with experimentally induced type 2 diabetes mellitus on serum levels of glucose and lipids, and insulin sensitivity are characterized. In addition, alterations of hepatic lipid and glycogen contents are evaluated. Obestatin reduced body weight and decreased serum glucose, fructosamine, and β-hydroxybutyrate levels, as well as total and low-density lipoprotein fractions of cholesterol. In addition, obestatin increased high-density lipoproteins cholesterol levels and enhanced insulin sensitivity in mice with type 2 diabetes mellitus. Moreover, obestatin diminished liver mass, hepatic triglycerides and cholesterol contents, while glycogen content was higher in livers of healthy and mice with type 2 diabetes mellitus treated with obestatin. These changes were accompanied by reduction of increased alanine aminotransferase, aspartate aminotransferase, and gamma glutamyl transpeptidase in T2DM mice with type 2 diabetes mellitus. Obestatin increased adiponectin levels and reduced leptin concentration. Obestatin influenced the expression of genes involved in lipid and carbohydrate metabolism by increasing Fabp5 and decreasing G6pc, Pepck, Fgf21 mRNA in the liver. Obestatin increased both, AKT and AMPK phosphorylation, and sirtuin 1 (SIRT1) protein levels as well as mRNA expression in the liver. Obestatin improves metabolic abnormalities in type 2 diabetes mellitus, restores hepatic lipid contents and decreases hepatic enzymes. Therefore, obestatin could potentially have a therapeutic relevance in treating of insulin resistance and metabolic dysfunctions in type 2 diabetes mellitus.

  12. Measurement of liver function using hepatobiliary scintigraphy improves risk assessment in patients undergoing major liver resection.

    PubMed

    Cieslak, Kasia P; Bennink, Roelof J; de Graaf, Wilmar; van Lienden, Krijn P; Besselink, Marc G; Busch, Olivier R C; Gouma, Dirk J; van Gulik, Thomas M

    2016-09-01

    (99m)Tc-mebrofenin-hepatobiliary-scintigraphy (HBS) enables measurement of future remnant liver (FRL)-function and was implemented in our preoperative routine after calculation of the cut-off value for prediction of postoperative liver failure (LF). This study evaluates our results since the implementation of HBS. Additionally, CT-volumetric methods of FRL-assessment, standardized liver volumetry and FRL/body-weight ratio (FRL-BWR), were evaluated. 163 patients who underwent major liver resection were included. Insufficient FRL-volume and/or FRL-function <2.7%/min/m(2) were indications for portal vein embolization (PVE). Non-PVE patients were compared with a historical cohort (n = 55). Primary endpoints were postoperative LF and LF related mortality. Secondary endpoint was preoperative identification of patients at risk for LF using the CT-volumetric methods. 29/163 patients underwent PVE; 8/29 patients because of insufficient FRL-function despite sufficient FRL-volume. According to FRL-BWR and standardized liver volumetry, 16/29 and 11/29 patients, respectively, would not have undergone PVE. LF and LF related mortality were significantly reduced compared to the historical cohort. HBS appeared superior in the identification of patients with increased surgical risk compared to the CT-volumetric methods. Implementation of HBS in the preoperative work-up led to a function oriented use of PVE and was associated with a significant decrease in postoperative LF and LF related mortality. Copyright © 2016 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  13. Polarized release of hepatic microRNAs into bile and serum in response to cellular injury and impaired liver function.

    PubMed

    Verhoeven, Cornelia J; Farid, Waqar R R; Roest, Henk P; Ramakrishnaiah, Vedashree; de Ruiter, Petra E; de Jonge, Jeroen; Kwekkeboom, Jaap; Metselaar, Herold J; Tilanus, Hugo W; Kazemier, Geert; Ijzermans, Jan N M; van der Laan, Luc J W

    2016-06-01

    Extracellular microRNAs (miRNAs) in serum and bile are currently under intense investigation for biomarker purposes in liver disease. However, the directions and pathways by which miRNAs are released from hepatic cells remains largely unknown. Here, we investigated the release of hepatocyte and cholangiocyte-derived miRNAs (HDmiRs and CDmiRs) into blood and bile during various (patho)physiological hepatic conditions. MiRNA release was analysed using longitudinally collected tissue and paired bile and serum samples (n = 124) that were obtained from liver transplant recipients during follow-up. Cell-type specificity of HDmiRs and CDmiRs was confirmed in liver and common bile duct biopsies (P < 0.001). Analysis of paired bile and serum samples showed up to 20-times higher miRNA-levels in bile compared to serum (P < 0.0001). Fractionation of bile showed the majority of miRNAs being present in the unpelletable supernatant, where protein conjunctions protect miRNAs against degradation (P < 0.0001). During episodes of liver injury and histologically proven rejection in liver transplant recipients, relative HDmiR-levels in bile decreased while its levels in serum increased (P ≤ 0.015). Simultaneously, relative CDmiR-levels in bile significantly increased, while their levels in serum decreased. Related to liver excretory function, a strong positive correlation was observed between HDmiR-122 levels and bilirubin excretion into bile (R = 0.694, P < 0.0001), whereas CDmiRs showed an inverse correlation (P < 0.05). During impaired excretory function and injury, the liver shows polarized release of extracellular HDmiRs and CDmiRs. This sheds new light on the biology of hepatic miRNA release which is relevant for the interpretation of hepatic miRNAs as biomarkers. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Chronic effects of soft drink consumption on the health state of Wistar rats: A biochemical, genetic and histopathological study.

    PubMed

    Alkhedaide, Adel; Soliman, Mohamed Mohamed; Salah-Eldin, Alaa-Eldin; Ismail, Tamer Ahmed; Alshehiri, Zafer Saad; Attia, Hossam Fouad

    2016-06-01

    The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca‑Cola, Pepsi and 7‑Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi‑quantitative reverse transcription polymerase chain reaction was used to observe the changes in the expression of genes in the liver and kidney, which are associated with oxidative stress resistance. Histopathological investigations were performed to determine the changes in bone, liver and kidney tissues using hematoxylin and eosin stains. SDC affected liver, kidney and bone function biomarkers. Soft drinks increased oxidative stress, which is represented by an increase in malondialdehyde and a decrease in antioxidant levels. SDC affected serum mineral levels, particularly calcium and phosphorus. Soft drinks downregulated the expression levels of glutathione‑S‑transferase and super oxide dismutase in the liver compared with that of control rats. Rats administered Coca‑Cola exhibited a hepatic decrease in the mRNA expression of α2‑macroglobulin compared with rats administered Pepsi and 7‑Up. On the other hand, SDC increased the mRNA expression of α1‑acid glycoprotein. The present renal studies revealed that Coca‑Cola increased the mRNA expression levels of desmin, angiotensinogen and angiotensinogen receptor compared with the other groups, together with mild congestion in renal histopathology. Deleterious histopathological changes were reported predominantly in the bone and liver of the Coca‑Cola and Pepsi groups. In conclusion, a very strict caution must be considered with SDC due to the increase in oxidative stress biomarkers and disruption in the expression of certain genes associated with the bio‑vital function of both the liver and kidney.

  15. Chronic effects of soft drink consumption on the health state of Wistar rats: A biochemical, genetic and histopathological study

    PubMed Central

    ALKHEDAIDE, ADEL; SOLIMAN, MOHAMED MOHAMED; SALAH-ELDIN, ALAA-ELDIN; ISMAIL, TAMER AHMED; ALSHEHIRI, ZAFER SAAD; ATTIA, HOSSAM FOUAD

    2016-01-01

    The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca-Cola, Pepsi and 7-Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi-quantitative reverse transcription polymerase chain reaction was used to observe the changes in the expression of genes in the liver and kidney, which are associated with oxidative stress resistance. Histopathological investigations were performed to determine the changes in bone, liver and kidney tissues using hematoxylin and eosin stains. SDC affected liver, kidney and bone function biomarkers. Soft drinks increased oxidative stress, which is represented by an increase in malondialdehyde and a decrease in antioxidant levels. SDC affected serum mineral levels, particularly calcium and phosphorus. Soft drinks downregulated the expression levels of glutathione-S-transferase and super oxide dismutase in the liver compared with that of control rats. Rats administered Coca-Cola exhibited a hepatic decrease in the mRNA expression of α2-macroglobulin compared with rats administered Pepsi and 7-Up. On the other hand, SDC increased the mRNA expression of α1-acid glycoprotein. The present renal studies revealed that Coca-Cola increased the mRNA expression levels of desmin, angiotensinogen and angiotensinogen receptor compared with the other groups, together with mild congestion in renal histopathology. Deleterious histopathological changes were reported predominantly in the bone and liver of the Coca-Cola and Pepsi groups. In conclusion, a very strict caution must be considered with SDC due to the increase in oxidative stress biomarkers and disruption in the expression of certain genes associated with the bio-vital function of both the liver and kidney. PMID:27121771

  16. Thrombocytopenia after liver transplantation: Should we care?

    PubMed Central

    Takahashi, Kazuhiro; Nagai, Shunji; Safwan, Mohamed; Liang, Chen; Ohkohchi, Nobuhiro

    2018-01-01

    Transient thrombocytopenia is a common phenomenon after liver transplantation. After liver transplantation (LT), platelet count decreases and reaches a nadir on postoperative days 3-5, with an average reduction in platelet counts of 60%; platelet count recovers to preoperative levels approximately two weeks after LT. The putative mechanisms include haemodilution, decreased platelet production, increased sequestration, medications, infections, thrombosis, or combination of these processes. However, the precise mechanisms remain unclear. The role of platelets in liver transplantation has been highlighted in recent years, and particular attention has been given to their effects beyond hemostasis and thrombosis. Previous studies have demonstrated that perioperative thrombocytopenia causes poor graft regeneration, increases the incidence of postoperative morbidity, and deteriorates the graft and decreases patient survival in both the short and long term after liver transplantation. Platelet therapies to increase perioperative platelet counts, such as thrombopoietin, thrombopoietin receptor agonist, platelet transfusion, splenectomy, and intravenous immunoglobulin treatment might have a potential for improving graft survival, however clinical trials are lacking. Further studies are warranted to detect direct evidence on whether thrombocytopenia is the cause or result of poor-graft function and postoperative complications, and to determine who needs platelet therapies in order to prevent postoperative complications and thus improve post-transplant outcomes. PMID:29632420

  17. Perioperative Care of the Liver Transplant Patient.

    PubMed

    Keegan, Mark T; Kramer, David J

    2016-07-01

    With the evolution of surgical and anesthetic techniques, liver transplantation has become "routine," allowing for modifications of practice to decrease perioperative complications and costs. There is debate over the necessity for intensive care unit admission for patients with satisfactory preoperative status and a smooth intraoperative course. Postoperative care is made easier when the liver graft performs optimally. Assessment of graft function, vigilance for complications after the major surgical insult, and optimization of multiple systems affected by liver disease are essential aspects of postoperative care. The intensivist plays a vital role in an integrated multidisciplinary transplant team. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. In Vivo Effects of Free Form Astaxanthin Powder on Anti-Oxidation and Lipid Metabolism with High-Cholesterol Diet

    PubMed Central

    Chen, Yung-Yi; Lee, Pei-Chi; Wu, Yi-Long; Liu, Li-Yun

    2015-01-01

    Astaxanthin extracted from Pomacea canaliculata eggs was made into free-form astaxanthin powder (FFAP) and its effects on lipid metabolism, liver function, antioxidants activities and astaxanthin absorption rate were investigated. 45 hamsters were split into 5 groups and fed with normal diet, high-cholesterol control (0.2% cholesterol), 1.6FFAP (control+1.6% FFAP), 3.2FFAP (control+3.2% FFAP) and 8.0FFAP (control+8.0% FFAP), respectively, for 6 weeks. FFAP diets significantly decreased the liver total cholesterol, triglyceride levels and increased liver fatty acids (C20:5n3; C22:6n3) compositions. It decreased plasma alanine aminotransferase and aspartate aminotransferase. In terms of anti-oxidative activities, we found 8.0 FFAP diet significantly decreased plasma and liver malonaldehyde (4.96±1.96 μg TEP eq./mL and 1.56±0.38 μg TEP eq./g liver) and liver 8-isoprostane levels (41.48±13.69 μg 8-ISOP/g liver). On the other hand, it significantly increased liver catalase activity (149.10±10.76 μmol/min/g liver), Vitamin C (2082.97±142.23 μg/g liver), Vitamin E (411.32±81.67 μg/g liver) contents, and glutathione levels (2.13±0.42 mg GSH eq./g liver). Furthermore, 80% of astaxanthin absorption rates in all FFAP diet groups suggest FFAP is an effective form in astaxanthin absorption. Finally, astaxanthin was found to re-distribute to the liver and eyes in a dose dependent manner. Taken together, our results suggested that the appropriate addition of FFAP into high cholesterol diets increases liver anti-oxidative activity and reduces the concentration of lipid peroxidase and therefore, it may be beneficial as a material in developing healthy food. PMID:26262684

  19. Biochemical effects of vinyl chloride monomer on the liver of occupationally exposed workers.

    PubMed

    Saad, A A; el-Sewedy, S M; Bader, G A; Mousa, S M; Mahdy, M M

    2000-01-01

    We investigated the effects of vinyl chloride monomer exposure on the liver of 86 workers by measuring beta-glucuronidase, arylsulfatase A, adenosine deaminase, 5'-nucleotidase and routine liver function enzymes in the sera of the workers. In 21 of them, three or more of these parameters were raised, with a significant decrease in the level of blood glutathione and a significant increase in the enzyme activity level of glutathione S-transferase. Of these 21 workers, 14 had fatty liver infiltration, 8 of whom were also suffering from liver enlargement. Also, 4 workers had liver enlargement without fatty infiltration and 3 had enlarged spleens. The study highlights the need for vigilance in environmental monitoring and medical surveillance of workers exposed to this chemical.

  20. In vivo hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells: Therapeutic effect on liver fibrosis/cirrhosis.

    PubMed

    Zhang, Guo-Zun; Sun, Hui-Cong; Zheng, Li-Bo; Guo, Jin-Bo; Zhang, Xiao-Lan

    2017-12-14

    To investigate the hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and to evaluate their therapeutic effect on liver fibrosis/cirrhosis. A CCl 4 -induced liver fibrotic/cirrhotic rat model was used to assess the effect of hUC-MSCs. Histopathology was assessed by hematoxylin and eosin (H&E), Masson trichrome and Sirius red staining. The liver biochemical profile was measured using a Beckman Coulter analyzer. Expression analysis was performed using immunofluorescent staining, immunohistochemistry, Western blot, and real-time PCR. We demonstrated that the infused hUC-MSCs could differentiate into hepatocytes in vivo . Functionally, the transplantation of hUC-MSCs to CCl 4 -treated rats improved liver transaminases and synthetic function, reduced liver histopathology and reversed hepatobiliary fibrosis. The reversal of hepatobiliary fibrosis was likely due to the reduced activation state of hepatic stellate cells, decreased collagen deposition, and enhanced extracellular matrix remodeling via the up-regulation of MMP-13 and down-regulation of TIMP-1. Transplanted hUC-MSCs could differentiate into functional hepatocytes that improved both the biochemical and histopathologic changes in a CCl 4 -induced rat liver fibrosis model. hUC-MSCs may offer therapeutic opportunities for treating hepatobiliary diseases, including cirrhosis.

  1. In vivo hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells: Therapeutic effect on liver fibrosis/cirrhosis

    PubMed Central

    Zhang, Guo-Zun; Sun, Hui-Cong; Zheng, Li-Bo; Guo, Jin-Bo; Zhang, Xiao-Lan

    2017-01-01

    AIM To investigate the hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and to evaluate their therapeutic effect on liver fibrosis/cirrhosis. METHODS A CCl4-induced liver fibrotic/cirrhotic rat model was used to assess the effect of hUC-MSCs. Histopathology was assessed by hematoxylin and eosin (H&E), Masson trichrome and Sirius red staining. The liver biochemical profile was measured using a Beckman Coulter analyzer. Expression analysis was performed using immunofluorescent staining, immunohistochemistry, Western blot, and real-time PCR. RESULTS We demonstrated that the infused hUC-MSCs could differentiate into hepatocytes in vivo. Functionally, the transplantation of hUC-MSCs to CCl4-treated rats improved liver transaminases and synthetic function, reduced liver histopathology and reversed hepatobiliary fibrosis. The reversal of hepatobiliary fibrosis was likely due to the reduced activation state of hepatic stellate cells, decreased collagen deposition, and enhanced extracellular matrix remodeling via the up-regulation of MMP-13 and down-regulation of TIMP-1. CONCLUSION Transplanted hUC-MSCs could differentiate into functional hepatocytes that improved both the biochemical and histopathologic changes in a CCl4-induced rat liver fibrosis model. hUC-MSCs may offer therapeutic opportunities for treating hepatobiliary diseases, including cirrhosis. PMID:29290652

  2. Protective effects of extracts from Pomegranate peels and seeds on liver fibrosis induced by carbon tetrachloride in rats.

    PubMed

    Wei, Xiang-Lan; Fang, Ru-Tang; Yang, Yong-Hua; Bi, Xue-Yuan; Ren, Guo-Xia; Luo, A-Li; Zhao, Ming; Zang, Wei-Jin

    2015-10-27

    Liver fibrosis is a feature in the majority of chronic liver diseases and oxidative stress is considered to be its main pathogenic mechanism. Antioxidants including vitamin E, are effective in preventing liver fibrogenesis. Several plant-drived antioxidants, such as silymarin, baicalin, beicalein, quercetin, apigenin, were shown to interfere with liver fibrogenesis. The antioxidans above are polyphenols, flavonoids or structurally related compounds which are the main chemical components of Pomegranate peels and seeds, and the antioxidant activity of Pomegranate peels and seeds have been verified. Here we investigated whether the extracts of pomegranate peels (EPP) and seeds (EPS) have preventive efficacy on liver fibrosis induced by carbon tetrachloride (CCl4) in rats and explored its possible mechanisms. The animal model was established by injection with 50 % CCl4 subcutaneously in male wistar rats twice a week for four weeks. Meanwhile, EPP and EPS were administered orally every day for 4 weeks, respectively. The protective effects of EPP and EPS on biochemical metabolic parameters, liver function, oxidative markers, activities of antioxidant enzymes and liver fibrosis were determined in CCl4-induced liver toxicity in rats. Compared with the sham group, the liver function was worse in CCl4 group, manifested as increased levels of serum alanine aminotransferase, aspartate aminotransferase and total bilirubin. EPP and EPS treatment significantly ameliorated these effects of CCl4. EPP and EPS attenuated CCl4-induced increase in the levels of TGF-β1, hydroxyproline, hyaluronic acid laminin and procollagen type III. They also restored the decreased superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities and inhibited the formation of lipid peroxidized products in rats treated with CCl4. The EPP and EPS have protective effects against liver fibrosis induced by CCl4, and its mechanisms might be associated with their antioxidant activity, the ability of decreasing the level of TGF-β1 and inhibition of collagen synthesis.

  3. Effects of inhaled citronella oil and related compounds on rat body weight and brown adipose tissue sympathetic nerve.

    PubMed

    Batubara, Irmanida; Suparto, Irma H; Sa'diah, Siti; Matsuoka, Ryunosuke; Mitsunaga, Tohru

    2015-03-12

    Citronella oil is one of the most famous Indonesian essential oils, having a distinctive aroma. As with other essential oils, it is crucial to explore the effects of inhalation of this oil. Therefore, the aim of this research was to elucidate the effects of inhalation of citronella oil and its components isolated from Cymbopogon nardus L. (Poaceae), Indonesian local name: "Sereh Wangi" on the body weight, blood lipid profile, and liver function of rats, as well as on the sympathetic nerve activity and temperature of brown adipose tissue. Sprague-Dawley male adult rats fed with high fat diet (HFD) were made to inhale citronella oil, R-(+)-citronellal, and β-citronellol for five weeks, and the observations were compared to those of HFD rats that were not subjected to inhalation treatment. The results showed that inhalation of β-citronellol decreased feed consumption. As a consequence, the percentage of weight gain decreased compared with that in control group and the blood cholesterol level in the β-citronellol group was significantly lowered. Concentration of liver function enzymes were not significantly different among the groups. In conclusion, inhalation of citronella oil, specifically β-citronellol, decreased body weight by decreasing appetite, without any marked changes in liver enzyme concentrations.

  4. A Polysaccharide from Ganoderma atrum Improves Liver Function in Type 2 Diabetic Rats via Antioxidant Action and Short-Chain Fatty Acids Excretion.

    PubMed

    Zhu, Ke-Xue; Nie, Shao-Ping; Tan, Le-He; Li, Chuan; Gong, De-Ming; Xie, Ming-Yong

    2016-03-09

    The present study was to evaluate the beneficial effect of polysaccharide isolated from Ganoderma atrum (PSG-1) on liver function in type 2 diabetic rats. Results showed that PSG-1 decreased the activities of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), while increasing hepatic glycogen levels. PSG-1 also exerted strong antioxidant activities, together with upregulated mRNA expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), glucose transporter-4 (GLUT4), phosphoinositide 3-kinase (PI3K), and phosphorylated-Akt (p-Akt) in the liver of diabetic rats. Moreover, the concentrations of short-chain fatty acids (SCFA) were significantly higher in the liver, serum, and faeces of diabetic rats after treating with PSG-1 for 4 weeks. These results suggest that the improvement of PSG-1 on liver function in type 2 diabetic rats may be due to its antioxidant effects, SCFA excretion in the colon from PSG-1, and regulation of hepatic glucose uptake by inducing GLUT4 translocation through PI3K/Akt signaling pathways.

  5. Diet Supplementation with Allicin Protects against Alcoholic Fatty Liver Disease in Mice by Improving Anti-inflammation and Antioxidative Functions.

    PubMed

    Panyod, Suraphan; Wu, Wei-Kai; Ho, Chi-Tang; Lu, Kuan-Hung; Liu, Chun-Ting; Chu, Yung-Lin; Lai, Yi-Syuan; Chen, Wei-Cheng; Lin, Yu-En; Lin, Shih-Hang; Sheen, Lee-Yan

    2016-09-28

    This study investigated the liver-protective effects of allicin, an active compound in fresh garlic, against alcoholic fatty liver disease (AFLD) and liver inflammation. Its effects were investigated in an AFLD model in male C57BL/6 mice, which were fed Lieber-DeCarli liquid diet containing ethanol. Allicin (5 and 20 mg/kg bw/day) was orally administered daily in the AFLD mice for 4 weeks. The results indicate that allicin promotes hepatoprotection by significantly reducing aspartate transaminase (AST) and alanine transaminase (ALT) levels (p < 0.05) in the plasma, which are key indicators of liver damage. Allicin reduced fat accumulation, increased glutathione and catalase levels, and decreased microsomal protein cytochrome P450 2E1 (CYP2E1) expression (p < 0.05) in the livers of the AFLD mice. Furthermore, allicin supplementation significantly decreased the levels of proinflammatory tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 and suppressed the expression of sterol regulatory element-binding protein-1 (SREBP-1) (p < 0.05). Additionally, it improved the hepatic alcohol dehydrogenase (ADH) activity (p < 0.05). Collectively, these findings demonstrate that allicin attenuates liver oxidative stress and inflammation.

  6. N-Acetyl-l-Cysteine treatment efficiently prevented pre-diabetes and inflamed-dysmetabolic liver development in hypothalamic obese rats.

    PubMed

    Villagarcía, Hernán Gonzalo; Castro, María Cecilia; Arbelaez, Luisa González; Schinella, Guillermo; Massa, María Laura; Spinedi, Eduardo; Francini, Flavio

    2018-04-15

    Hypothalamic obese rats are characterized by pre-diabetes, dyslipidemia, hyperadiposity, inflammation and, liver dysmetabolism with oxidative stress (OS), among others. We studied endocrine-metabolic dysfunctions and, liver OS and inflammation in both monosodium l-glutamate (MSG)-neonatally damaged and control litter-mate (C) adult male rats, either chronically treated with N-Acetyl-l-Cysteine since weaned (C-NAC and MSG-NAC) or not. We evaluated circulating TBARS, glucose, insulin, triglycerides, uric acid (UA) and, aspartate and alanine amino-transferase; insulin sensitivity markers (HOMA indexes, Liver Index of Insulin Sensitivity -LISI-) were calculated and liver steps of the insulin-signaling pathway were investigated. Additionally, we monitored liver OS (protein carbonyl groups, GSH and iNOS level) and inflammation-related markers (COX-2 and TNFα protein content; gene expression level of Il1b, Tnfα and Pai-1); and carbohydrate and lipid metabolic functions (glucokinase/fructokinase activities and, mRNA levels of Srebp1c, Fas and Gpat). Chronic NAC treatment in MSG rats efficiently decreased the high circulating levels of triglycerides, UA, transaminases and TBARS, as well as peripheral (high insulinemia and HOMA indexes) and liver (LISI and the P-AKT:AKT and P-eNOS:eNOS protein ratio values) insulin-resistance. Moreover, NAC therapy in MSG rats prevented liver dysmetabolism by decreasing local levels of OS and inflammation markers. Finally, NAC-treated MSG rats retained normal liver glucokinase and fructokinase activities, and Srebp1c, Fas and Gpat (lipogenic genes) expression levels. Our study strongly supports that chronic oral antioxidant therapy (NAC administration) prevented the development of pre-diabetes, dyslipidemia, and inflamed-dysmetabolic liver in hypothalamic obese rats by efficiently decreasing high endogenous OS. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Effect of trichloroethylene (TCE) toxicity on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in kidney and other rat tissues.

    PubMed

    Khan, Sheeba; Priyamvada, Shubha; Khan, Sara A; Khan, Wasim; Farooq, Neelam; Khan, Farah; Yusufi, A N K

    2009-07-01

    Trichloroethylene (TCE), an industrial solvent, is a major environmental contaminant. Histopathological examinations revealed that TCE caused liver and kidney toxicity and carcinogenicity. However, biochemical mechanism and tissue response to toxic insult are not completely elucidated. We hypothesized that TCE induces oxidative stress to various rat tissues and alters their metabolic functions. Male Wistar rats were given TCE (1000 mg/kg/day) in corn oil orally for 25 d. Blood and tissues were collected and analyzed for various biochemical and enzymatic parameters. TCE administration increased blood urea nitrogen, serum creatinine, cholesterol and alkaline phosphatase but decreased serum glucose, inorganic phosphate and phospholipids indicating kidney and liver toxicity. Activity of hexokinase, lactate dehydrogenase increased in the intestine and liver whereas decreased in renal tissues. Malate dehydrogenase and glucose-6-phosphatase and fructose-1, 6-bisphosphatase decreased in all tissues whereas increased in medulla. Glucose-6-phosphate dehydrogenase increased but NADP-malic enzyme decreased in all tissues except in medulla. The activity of BBM enzymes decreased but renal Na/Pi transport increased. Superoxide dismutase and catalase activities variably declined whereas lipid peroxidation significantly enhanced in all tissues. The present results indicate that TCE caused severe damage to kidney, intestine, liver and brain; altered carbohydrate metabolism and suppressed antioxidant defense system.

  8. Human Mesenchymal Stem Cell Transfusion Is Safe and Improves Liver Function in Acute-on-Chronic Liver Failure Patients

    PubMed Central

    Shi, Ming; Zhang, Zheng; Xu, Ruonan; Lin, Hu; Fu, Junliang; Zou, Zhengsheng; Zhang, Aimin; Shi, Jianfei; Chen, Liming; Lv, Sa; He, Weiping; Geng, Hua; Jin, Lei; Liu, Zhenwen

    2012-01-01

    Acute-on-chronic liver failure (ACLF) is a severe, life-threatening complication, and new and efficient therapeutic strategies for liver failure are urgently needed. Mesenchymal stem cell (MSC) transfusions have been shown to reverse fulminant hepatic failure in mice and to improve liver function in patients with end-stage liver diseases. We assessed the safety and initial efficacy of umbilical cord-derived MSC (UC-MSC) transfusions for ACLF patients associated with hepatitis B virus (HBV) infection. A total of 43 ACLF patients were enrolled for this open-labeled and controlled study; 24 patients were treated with UC-MSCs, and 19 patients were treated with saline as controls. UC-MSC therapy was given three times at 4-week intervals. The liver function, adverse events, and survival rates were evaluated during the 48-week or 72-week follow-up period. No significant side effects were observed during the trial. The UC-MSC transfusions significantly increased the survival rates in ACLF patients; reduced the model for end-stage liver disease scores; increased serum albumin, cholinesterase, and prothrombin activity; and increased platelet counts. Serum total bilirubin and alanine aminotransferase levels were significantly decreased after the UC-MSC transfusions. UC-MSC transfusions are safe in the clinic and may serve as a novel therapeutic approach for HBV-associated ACLF patients. PMID:23197664

  9. Temporary Intraoperative Porto-Caval Shunts in Piggy-Back Liver Transplantation Reduce Intraoperative Blood Loss and Improve Postoperative Transaminases and Renal Function: A Meta-Analysis.

    PubMed

    Pratschke, Sebastian; Rauch, Alexandra; Albertsmeier, Markus; Rentsch, Markus; Kirschneck, Michaela; Andrassy, Joachim; Thomas, Michael; Hartwig, Werner; Figueras, Joan; Del Rio Martin, Juan; De Ruvo, Nicola; Werner, Jens; Guba, Markus; Weniger, Maximilian; Angele, Martin K

    2016-12-01

    The value of temporary intraoperative porto-caval shunts (TPCS) in cava-sparing liver transplantation is discussed controversially. Aim of this meta-analysis was to analyze the impact of temporary intraoperative porto-caval shunts on liver injury, primary non-function, time of surgery, transfusion of blood products and length of hospital stay in cava-sparing liver transplantation. A systematic search of MEDLINE/PubMed, EMBASE and PsycINFO retrieved a total of 909 articles, of which six articles were included. The combined effect size and 95 % confidence interval were calculated for each outcome by applying the inverse variance weighting method. Tests for heterogeneity (I 2 ) were also utilized. Usage of a TPCS was associated with significantly decreased AST values, significantly fewer transfusions of packed red blood cells and improved postoperative renal function. There were no statistically significant differences in primary graft non-function, length of hospital stay or duration of surgery. This meta-analysis found that temporary intraoperative porto-caval shunts in cava-sparing liver transplantation reduce blood loss as well as hepatic injury and enhance postoperative renal function without prolonging operative time. Randomized controlled trials investigating the use of temporary intraoperative porto-caval shunts are needed to confirm these findings.

  10. Resolution of donor non-alcoholic fatty liver disease following liver transplantation.

    PubMed

    Posner, Andrew D; Sultan, Samuel T; Zaghloul, Norann A; Twaddell, William S; Bruno, David A; Hanish, Steven I; Hutson, William R; Hebert, Laci; Barth, Rolf N; LaMattina, John C

    2017-09-01

    Transplant surgeons conventionally select against livers displaying high degrees (>30%) of macrosteatosis (MaS), out of concern for primary non-function or severe graft dysfunction. As such, there is relatively limited experience with such livers, and the natural history remains incompletely characterized. We present our experience of transplanted livers with high degrees of MaS and microsteatosis (MiS), with a focus on the histopathologic and clinical outcomes. Twenty-nine cases were identified with liver biopsies available from both the donor and the corresponding liver transplant recipient. Donor liver biopsies displayed either MaS or MiS ≥15%, while all recipients received postoperative liver biopsies for cause. The mean donor MaS and MiS were 15.6% (range 0%-60%) and 41.3% (7.5%-97.5%), respectively. MaS decreased significantly from donor (M=15.6%) to recipient postoperative biopsies (M=0.86%), P<.001. Similarly, MiS decreased significantly from donor biopsies (M=41.3%) to recipient postoperative biopsies (M=1.8%), P<.001. At a median of 68 days postoperatively (range 4-384), full resolution of MaS and MiS was observed in 27 of 29 recipients. High degrees of MaS and MiS in donor livers resolve in recipients following liver transplantation. Further insight into the mechanisms responsible for treating fatty liver diseases could translate into therapeutic targets. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Normothermic machine perfusion reduces bile duct injury and improves biliary epithelial function in rat donor livers.

    PubMed

    Op den Dries, Sanna; Karimian, Negin; Westerkamp, Andrie C; Sutton, Michael E; Kuipers, Michiel; Wiersema-Buist, Janneke; Ottens, Petra J; Kuipers, Jeroen; Giepmans, Ben N; Leuvenink, Henri G D; Lisman, Ton; Porte, Robert J

    2016-07-01

    Bile duct injury may occur during liver procurement and transplantation, especially in livers from donation after circulatory death (DCD) donors. Normothermic machine perfusion (NMP) has been shown to reduce hepatic injury compared to static cold storage (SCS). However, it is unknown whether NMP provides better preservation of bile ducts. The aim of this study was to determine the impact of NMP on bile duct preservation in both DCD and non-DCD livers. DCD and non-DCD livers obtained from Lewis rats were preserved for 3 hours using either SCS or NMP, followed by 2 hours ex vivo reperfusion. Biomarkers of bile duct injury (gamma-glutamyltransferase and lactate dehydrogenase in bile) were lower in NMP-preserved livers compared to SCS-preserved livers. Biliary bicarbonate concentration, reflecting biliary epithelial function, was 2-fold higher in NMP-preserved livers (P < 0.01). In parallel with this, the pH of the bile was significantly higher in NMP-preserved livers (7.63 ± 0.02 and 7.74 ± 0.05 for non-DCD and DCD livers, respectively) compared with SCS-preserved livers (7.46 ± 0.02 and 7.49 ± 0.04 for non-DCD and DCD livers, respectively). Scanning and transmission electron microscopy of donor extrahepatic bile ducts demonstrated significantly decreased injury of the biliary epithelium of NMP-preserved donor livers (including the loss of lateral interdigitations and mitochondrial injury). Differences between NMP and SCS were most prominent in DCD livers. Compared to conventional SCS, NMP provides superior preservation of bile duct epithelial cell function and morphology, especially in DCD donor livers. By reducing biliary injury, NMP could have an important impact on the utilization of DCD livers and outcome after transplantation. Liver Transplantation 22 994-1005 2016 AASLD. © 2016 American Association for the Study of Liver Diseases.

  12. Impact of Hypocaloric Hyperproteic Diet on Gut Microbiota in Overweight or Obese Patients with Nonalcoholic Fatty Liver Disease: A Pilot Study.

    PubMed

    Pataky, Zoltan; Genton, Laurence; Spahr, Laurent; Lazarevic, Vladimir; Terraz, Sylvain; Gaïa, Nadia; Rubbia-Brandt, Laura; Golay, Alain; Schrenzel, Jacques; Pichard, Claude

    2016-09-01

    NAFLD is likely to become the most common cause of chronic liver disease. The first-line treatment includes weight loss. To analyze the impact of a hypocaloric hyperproteic diet (HHD) on gut microbiota in NAFLD patients. Fifteen overweight/obese patients with NAFLD were included. At baseline and after a 3-week HHD (Eurodiets(®), ~1000 kcal/day, ~125 g protein/day), we measured gut microbiota composition and function by shotgun metagenomics; body weight; body composition by bioelectrical impedance analysis; liver and visceral fat by magnetic resonance imaging; plasma C-reactive protein (CRP); and liver tests. Results between both time points, expressed as median (first and third quartile), were compared by Wilcoxon signed-rank tests. At baseline, age was 50 (47-55) years and body mass index 34.6 (32.4, 36.7) kg/m(2). HDD decreased body weight by 3.6 % (p < 0.001), percent liver fat by 65 % (p < 0.001), and CRP by 19 % (p = 0.014). HDD was associated with a decrease in Lachnospira (p = 0.019), an increase in Blautia (p = 0.026), Butyricicoccus (p = 0.024), and changes in several operational taxonomic units (OTUs) of Bacteroidales and Clostridiales. The reduced liver fat was negatively correlated with bacteria belonging to the Firmicutes and Bacteroidetes phyla (a Ruminococcaceae OTU, r = -0.83; Bacteroides, r = -0.73). The associated metabolic changes concerned mostly enzymes involved in amino acid and carbohydrate metabolism. In this pilot study, HHD changes gut microbiota composition and function in overweight/obese NAFLD patients, in parallel with decreased body weight, liver fat, and systemic inflammation. Future studies should aim to confirm these bacterial changes and understand their mode of action. Under clinicaltrials.gov: NCT01477307.

  13. Cardiolipin content is involved in liver mitochondrial energy wasting associated with cancer-induced cachexia without the involvement of adenine nucleotide translocase.

    PubMed

    Julienne, Cloé Mimsy; Tardieu, Marine; Chevalier, Stéphan; Pinault, Michelle; Bougnoux, Philippe; Labarthe, François; Couet, Charles; Servais, Stéphane; Dumas, Jean-François

    2014-05-01

    Cancer-induced cachexia describes the progressive skeletal muscle wasting associated with many cancers leading to shortened survival time in cancer patients. We previously reported that cardiolipin content and energy-wasting processes were both increased in liver mitochondria in a rat model of peritoneal carcinosis (PC)-induced cachexia. To increase the understanding of the cellular biology of cancer cachexia, we investigated the involvement of adenine nucleotide translocator (ANT) in mitochondrial energy-wasting processes in liver mitochondria of PC and pair-fed control rats and its interactions with cardiolipin in isolated liver mitochondria from healthy rats exposed to cardiolipin-enriched liposomes. We showed in this study that functional ANT content was decreased in liver mitochondria from PC rats but without any effects on the efficiency of ATP synthesis. Moreover, non-phosphorylating energy wasting was not affected by saturating concentrations of carboxyatractylate (CAT), a potent inhibitor of ANT, in liver mitochondria from PC rats. Decreased efficiency of ATP synthesis was found in normal liver mitochondria exposed to cardiolipin-enriched liposomes, with increased non-phosphorylating energy wasting, thus mimicking mitochondria from PC rats. However, the functional ANT content in these cardiolipin-enriched mitochondria was unchanged, although non-phosphorylating energy wasting was reduced by CAT-induced inhibition of ANT. Finally, non-phosphorylating energy wasting was increased in cardiolipin-enriched mitochondria with substrates for complexes 1 and 2, but not for complex 4. In conclusion, increased energy wasting measured in liver mitochondria from rats with cancer cachexia is dependent on cardiolipin but independent of ANT. Interactions between ANT and cardiolipin are modified when cancer cachexia occurs. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Systemic effect of mineral aggregate-based cements: histopathological analysis in rats

    PubMed Central

    Garcia, Lucas da Fonseca Roberti; Huck, Claudia; Magalhães, Fernando Augusto Cintra; de Souza, Pedro Paulo Chaves; de Souza Costa, Carlos Alberto

    2017-01-01

    Abstract Objective: Several studies reported the local tissue reaction caused by mineral aggregate-based cements. However, few studies have investigated the systemic effects promoted by these cements on liver and kidney when directly applied to connective tissue. The purpose of this in vivo study was to investigate the systemic effect of mineral aggregate-based cements on the livers and kidneys of rats. Material and Methods: Samples of Mineral Trioxide Aggregate (MTA) and a calcium aluminate-based cement (EndoBinder) containing different radiopacifiers were implanted into the dorsum of 40 rats. After 7 and 30 d, samples of subcutaneous, liver and kidney tissues were submitted to histopathological analysis. A score (0-3) was used to grade the inflammatory reaction. Blood samples were collected to evaluate changes in hepatic and renal functions of animals. Results: The moderate inflammatory reaction (2) observed for 7 d in the subcutaneous tissue decreased with time for all cements. The thickness of inflammatory capsules also presented a significant decrease with time (P<.05). Systemically, all cements caused adverse inflammatory reactions in the liver and kidney, being more evident for MTA, persisting until the end of the analysis. Liver functions increased significantly for MTA during 30 d (P<.05). Conclusion: The different cements induced to a locally limited inflammatory reaction. However, from the systemic point of view, the cements promoted significant inflammatory reactions in the liver and kidney. For MTA, the reactions were more accentuated. PMID:29211283

  15. Nicotinamide riboside attenuates alcohol induced liver injuries via activation of SirT1/PGC-1α/mitochondrial biosynthesis pathway.

    PubMed

    Wang, Sufan; Wan, Ting; Ye, Mingtong; Qiu, Yun; Pei, Lei; Jiang, Rui; Pang, Nengzhi; Huang, Yuanling; Liang, Baoxia; Ling, Wenhua; Lin, Xiaojun; Zhang, Zhenfeng; Yang, Lili

    2018-07-01

    Nicotinamide riboside (NR) is a nicotinamide adenine dinucleotide (NAD + ) precursor which is present in foods such as milk and beer. It was reported that NR can prevent obesity, increase longevity, and promote liver regeneration. However, whether NR can prevent ethanol-induced liver injuries is not known. This study aimed to explore the effect of NR on ethanol induced liver injuries and the underlying mechanisms. We fed C57BL/6 J mice with Lieber-DeCarli ethanol liquid diet with or without 400 mg/kg·bw NR for 16 days. Liver injuries and SirT1-PGC-1α-mitochondrial function were analyzed. In in vitro experiments, HepG2 cells (CYP2E1 over-expressing cells) were incubated with ethanol ± 0.5 mmol/L NR. Lipid accumulation and mitochondrial function were compared. SirT1 knockdown in HepG2 cells were further applied to confirm the role of SirT1 in the protection of NR on lipid accumulation. We found that ethanol significantly decreased the expression and activity of hepatic SirT1 and induced abnormal expression of enzymes of lipid metabolism in mice. Both in vivo and in vitro experiments showed that NR activated SirT1 through increasing NAD + levels, decreased oxidative stress, increased deacetylation of PGC-1α and mitochondrial function. In SirT1 knockdown HepG2 cells, NR lost its ability in enhancing mitochondrial function, and its protection against lipid accumulation induced by ethanol. NR can protect against ethanol induced liver injuries via replenishing NAD + , reducing oxidative stress, and activating SirT1-PGC-1α-mitochondrial biosynthesis. Our data indicate that SirT1 plays an important role in the protection of NR against lipid accumulation and mitochondrial dysfunctions induced by ethanol. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. The anti-fibrotic effect of liver growth factor is associated with decreased intrahepatic levels of matrix metalloproteinases 2 and 9 and transforming growth factor beta 1 in bile duct-ligated rats.

    PubMed

    Díaz-Gil, Juan J; García-Monzón, Carmelo; Rúa, Carmen; Martín-Sanz, Paloma; Cereceda, Rosa M; Miquilena-Colina, María E; Machín, Celia; Fernández-Martínez, Amalia; García-Cañero, Rarael

    2008-05-01

    Liver growth factor (LGF), a mitogen for liver cells, behaves as an anti-fibrotic agent even in extrahepatic sites, but its mechanistic basis is unknown. We aimed to determine the intrahepatic expression pattern of key modulators of liver fibrosis in bile duct-ligated rats (BDL) after injection of LGF. BDL rats received either LGF (4.5 microg/ratXdose, two doses/week, at time 0 or 2 or 5w after operation, depending on the group (BDL+LGF groups, n=20) or saline (BDL+S groups, n=20). Groups were compared in terms of fibrosis (histomorphometry), liver function (aminopyrine breath test), matrix metalloproteinases MMP-2 and MMP-9, transforming growth factor beta 1 (TGF-beta1) and liver endoglin content (Western blotting), and serum tissue inhibitor of metalloproteinases 1 (TIMP-1) levels (ELISA). In BDL+LGF rats, the fibrotic index was significantly lower at 5w, p=0.006, and at 8w, p=0.04, than in BDL+S rats. Liver function values in BDL+LGF rats were higher than those obtained in BDL+S rats (80% at 5w and 79% at 8w, versus 38% and 29%, p<0.01, taking healthy controls as 100%). Notably, in BDL+LGF rats the intrahepatic expression levels of both MMPs were lower at 2w (MMP-2, p=0.03; MMP-9, p=0.05) and 5w (MMP-2, p=0.05, MMP-9, p=0.04). In addition, the hepatic TGF-beta1 level in BDL+LGF rats was lower at 2w (36%, p=0.008), 5w (50%) and 8wk (37%), whereas intrahepatic endoglin expression remained constant in all BDL rats studied. LGF ameliorates liver fibrosis and improves liver function in BDL rats. The LGF-induced anti-fibrotic effect is associated with a decreased hepatic level of MMP-2, MMP-9 and TGF-beta1 in fibrotic rats.

  17. Oral Administration of CardioAid and Lunasin Alleviates Liver Damage in a High-Fat Diet Nonalcoholic Steatohepatitis Model.

    PubMed

    Drori, Ariel; Rotnemer-Golinkin, Dvorah; Zolotarov, Lidya; Ilan, Yaron

    2017-01-01

    Several of the drugs in development for treatment of nonalcoholic steatohepatitis (NASH) target liver fibrosis or have side effects that prohibit their long-term use in patients with mild to moderate disease. Lunasin is a soy-derived peptide with anti-inflammatory properties. ADM's CardioAid™ is a plant sterol extract that exerts cholesterol- and triacylglycerol-lowering effects. To determine the immunomodulatory effects of CardioAid and lunasin in a high-fat diet (HFD) animal model of NASH. C57BL/6 mice on an HFD were orally administered CardioAid or lunasin for 25 weeks. The effects on the immune system, liver function, insulin resistance and lipid profile were studied. Treatment with CardioAid and lunasin was associated with a significant decrease in the CD4/CD8 ratio and an increase in CD4+CD25+ lymphocytes. A decrease in interleukin 1-alpha serum levels and an increase in transforming growth factor beta serum levels were noted. These were associated with alleviation of liver damage as indicated by a significant decrease in liver enzymes and improvement in the histological nonalcoholic fatty liver disease activity score (NAS). Decreases in both serum triglyceride and serum glucose levels were observed in treated mice. A decrease in total body fat measured by EchoMRI was also observed in treated mice. CardioAid and lunasin exerted hepatoprotective and glucose-protective effects in an HFD NASH model. These data and the high-safety profiles of CardioAid and Lunasin support their use in patients in the early stages of NASH to prevent deterioration due to the disease. © 2017 S. Karger AG, Basel.

  18. Beneficial effects of enalapril on chlorhexidine digluconate-induced liver peritoneal fibrosis in rats.

    PubMed

    Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Ke, Chen-Yen; Lin, Nien-Tsung; Hsu, Bang-Gee

    2011-08-31

    Peritoneal fibrosis (PF) is a recognized complication of long-term peritoneal dialysis (PD) and can lead to ultrafiltration failure. The present study was designed to investigate the protective effects of enalapril on chlorhexidine digluconate-induced liver PF by decreasing transforming growth factor-β1 (TGF-β1) production in rats. PF was induced in Sprague-Dawley rats by daily administration of 0.5 ml 0.1% chlorhexidine digluconate in normal saline via PD tube for one week. Rats received daily intravenous injections of low dose enalapril (1 mg/kg), or high dose enalapril (2.5 mg/kg), for one week. After 7 days, conventional 4.25% Dianeal (30 ml) was administered via a PD catheter with a dwell time of 4 h and assessment of peritoneal function. At the end of dialysis, the rats were sacrificed and liver peritoneum was harvested for microscopic examination and immunohistochemistry. There was no significant difference in mean arterial pressure and heart rate between groups. After 4 h of PD, the D₄/P₄(urea) level was reduced, the D₄/D₀ glucose level, serum and the dialysate TGF-β1 level was increased, the liver peritoneum was markedly thicker, and the expression of TGF-β1, alpha-smooth muscle actin (α-SMA), fibronectin, collagen and vascular endothelial growth factor (VEGF) were elevated in the PF group compared with the vehicle group. High dose of enalapril decreased the serum and dialysate TGF-β1 levels, decreased the thickness of the liver peritoneum, and decreased the expression of TGF-β1, α-SMA, fibronectin, collagen and VEGF-positive cells in the liver peritoneum. Low dose of enalapril did not protect against chlorhexidine digluconate-induced PF in the rat. Enalapril protected against chlorhexidine digluconate-induced PF in rats by decreasing TGF-β1 production.

  19. Increase in left liver lobe function after preoperative right portal vein embolisation assessed with gadolinium-EOB-DTPA MRI.

    PubMed

    Geisel, Dominik; Lüdemann, Lutz; Keuchel, Thomas; Malinowski, Maciej; Seehofer, Daniel; Stockmann, Martin; Hamm, Bernd; Gebauer, Bernhard; Denecke, Timm

    2013-09-01

    To prospectively evaluate the early development of regional liver function after right portal vein embolisation (PVE) with Gd-EOB-DTPA-enhanced MRI in patients scheduled for extended right hemihepatectomy. Ten patients who received a PVE before an extended hemihepatectomy were examined before and 14 days after PVE using Gd-EOB-DTPA-enhanced MRI of the liver. In these sequences representative region of interest measurements were performed in the embolised right (RLL) and the non-embolised left liver lobe (LLL). The volume as well as hepatic uptake index (HUI) was calculated independently for each lobe. Relative enhancement 14 days after PVE decreased in the RLL and increased significantly in the LLL (P < 0.05). Average hepatic uptake index (HUI) for RLL was significantly lower 14 days after PVE than before PVE (P < 0.05) and significantly higher for LLL (P < 0.05). A significant shift of contrast uptake from the right to the left liver lobe can be depicted as early as 14 days after right PVE by using Gd-EOB-DTPA-enhanced MRI, which could reflect the redirected portal venous blood flow and the rapid utilisation of a hepatic functional reserve. • Preoperative portal vein embolisation (PVE) is widely performed before right-sided hepatic resection. • PVE increases intravenous contrast medium uptake in the left lobe of liver. • The hepatic uptake index for the left liver lobe increases rapidly after PVE. • Left liver lobe function increase may be visualised by Gd-EOB-DTPA-enhanced MRI.

  20. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    PubMed

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-05

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy.

  1. Effect of Caloric Restriction and AMPK Activation on Hepatic Nuclear Receptor, Biotransformation Enzyme, and Transporter Expression in Lean and Obese Mice

    PubMed Central

    Kulkarni, Supriya R.; Xu, Jialin; Donepudi, Ajay C.; Wei, Wei

    2014-01-01

    Purpose Fatty liver alters liver transporter expression. Caloric restriction (CR), the recommended therapy to reverse fatty liver, increases Sirtuin1 deacetylase activity in liver. This study evaluated whether CR and CR mimetics reversed obesity-induced transporter expression in liver and hepatocytes. Methods mRNA and protein expression was determined in adult lean (lean) and leptin-deficient obese (OB) mice fed ad libitum or placed on 40% (kCal) reduced diet. Hepatocytes were isolated from lean and OB mice, treated with AMP Kinase activators, and gene expression was determined. Results CR decreased Oatp1a1, Oatp1b2, and Abcb11 mRNA expression in lean, but not OB mice. CR increased Abcc2 mRNA OB livers, whereas protein expression increased in both genotypes. CR increased Abcc3 protein expression increased in OB livers. CR did not alter Abcc1, 4 and 5 mRNA expression in lean mice but decreased expression in livers of OB mice. CR increased Abcc4 protein in lean, but not OB mice. Conclusions CR restriction reversed the expression of some, but not all transporters in livers of OB mice. Overall, these data indicate a potential for CR to restore some hepatic transporter changes in OB mice, but suggest a functional leptin axis is needed for reversal of expression for some transporters. PMID:23949303

  2. Human Mesenchymal Stem Cells Provide Protection against Radiation-Induced Liver Injury by Antioxidative Process, Vasculature Protection, Hepatocyte Differentiation, and Trophic Effects

    PubMed Central

    Francois, Sabine; Mouiseddine, Moubarak; Allenet-Lepage, Bénédicte; Voswinkel, Jan; Douay, Luc; Benderitter, Marc; Chapel, Alain

    2013-01-01

    To evaluate the potential therapeutic effect of the infusion of hMSCs for the correction of liver injuries, we performed total body radiation exposure of NOD/SCID mice. After irradiation, mir-27b level decreases in liver, increasing the directional migration of hMSCs by upregulating SDF1α. A significant increase in plasmatic transaminases levels, apoptosis process in the liver vascular system, and in oxidative stress were observed. hMSC injection induced a decrease in transaminases levels and oxidative stress, a disappearance of apoptotic cells, and an increase in Nrf2, SOD gene expression, which might reduce ROS production in the injured liver. Engrafted hMSCs expressed cytokeratin CK18 and CK19 and AFP genes indicating possible hepatocyte differentiation. The presence of hMSCs expressing VEGF and Ang-1 in the perivascular region, associated with an increased expression of VEGFr1, r2 in the liver, can confer a role of secreting cells to hMSCs in order to maintain the endothelial function. To explain the benefits to the liver of hMSC engraftment, we find that hMSCs secreted NGF, HGF, and anti-inflammatory molecules IL-10, IL1-RA contributing to prevention of apoptosis, increasing cell proliferation in the liver which might correct liver dysfunction. MSCs are potent candidates to repair and protect healthy tissues against radiation damages. PMID:24369528

  3. Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome

    PubMed Central

    Gunewardena, Sumedha S.; Yoo, Byunggil; Peng, Lai; Lu, Hong; Zhong, Xiaobo; Klaassen, Curtis D.; Cui, Julia Yue

    2015-01-01

    During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth) to maturity (60-days after birth). Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2) RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome. PMID:26496202

  4. Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome.

    PubMed

    Gunewardena, Sumedha S; Yoo, Byunggil; Peng, Lai; Lu, Hong; Zhong, Xiaobo; Klaassen, Curtis D; Cui, Julia Yue

    2015-01-01

    During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth) to maturity (60-days after birth). Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2) RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome.

  5. Phase 1-2 pilot clinical trial in patients with decompensated liver cirrhosis treated with bone marrow-derived endothelial progenitor cells.

    PubMed

    D'Avola, Delia; Fernández-Ruiz, Verónica; Carmona-Torre, Francisco; Méndez, Miriam; Pérez-Calvo, Javier; Prósper, Felipe; Andreu, Enrique; Herrero, José Ignacio; Iñarrairaegui, Mercedes; Fuertes, Carmen; Bilbao, José Ignacio; Sangro, Bruno; Prieto, Jesús; Quiroga, Jorge

    2017-10-01

    The aim of this nonrandomized, open label, phase 1 clinical trial was to evaluate the safety and the feasibility of the treatment with autologous bone marrow-derived endothelial progenitor cells (EPC) in decompensated liver cirrhosis. In addition, the changes in liver function and hepatic venous pressure gradient (HVPG) and their relation with the characteristics of the cellular product were analyzed. Twelve patients with Child-Pugh ≥8 liver cirrhosis underwent bone marrow harvest for ex vivo differentiation of EPC. The final product was administered through the hepatic artery in a single administration. Patients underwent clinical and radiologic follow-up for 12 months. The phenotype and the ability to produce cytokines and growth factors of the final cellular suspension were analyzed. Eleven patients were treated (feasibility 91%). No treatment-related severe adverse events were observed as consequence of any study procedure or treatment. Model for end-stage liver disease score improved significantly (P 0.042) in the first 90 days after cells administration and 5 of the 9 patients alive at 90 days showed a decreased of HVPG. There was a direct correlation between the expression of acetylated-low density lipoprotein and von Willebrand factor in the cellular product and the improvement in liver function and HVPG. The treatment with EPCs in patients with decompensated liver cirrhosis is safe and feasible and might have therapeutic potential. Patients receiving a higher amount of functionally active EPC showed an improvement of liver function and portal hypertension suggesting that the potential usefulness of these cells for the treatment of liver cirrhosis deserves further evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. [Studying the hepatoprotector effect of bemithyl on a model of chronic toxic liver damage].

    PubMed

    Oskovityĭ, S V; Bezborodkina, N N; Zarubina, I V; Mironova, O P; Kudrivtsev, B N; Shulenin, S N

    2006-01-01

    A prophylactic and therapeutic introduction of the synthetic adaptogen bemithyl (2-ethylthiobensimidasole hydrobromide) produces a hepatoprotector effect in rats with experimental cirrhosis. The drug exhibits an anticytolytic activity, restores liver participation in the pigment exchange, and normalizes the function of the microsomal oxidation system responsible for the metabolism of xenobiotics. The treatment with bemithyl also leads to a certain improvement of a histologic picture of the damaged liver and to a decrease in the degree of fibrosis. The drug is also capable of increasing the activity of the antioxidant system and inhibiting the process of lipid peroxidation of proteins and lipids in the liver.

  7. Bendiocarb induced histopathological and biochemical alterations in rat liver and preventive role of vitamins C and E.

    PubMed

    Apaydin, Fatma Gökçe; Baş, Hatice; Kalender, Suna; Kalender, Yusuf

    2017-01-01

    In this study, biochemical changes and histological structure of rat liver after bendiocarb administration and possible preventive effects of vitamins C and E were studied. The animals were given with bendiocarb, vitamin C and vitamin E, daily 0,8mg/kg of body weight (bw), 100mg/kg-bw and 100mg/kg-bw for 28days, respectively. Lipid peroxidation, antioxidant enzyme activities, histological alterations and antioxidant capacity assays of liver and also liver function tests and lipid profile were measured. Bendiocarb treatment decreased the antioxidant enzyme activities, FRAP and TEAC values and increased malondialdehyde levels compared to control. Also, there were statistically significant alterations in liver function tests, lipid profile parameters and histopathological changes in bendiocarb treated groups. Vitamins C and E showed protective effects against examining parameters. According to results we can say that co-treatment of vitamin C and vitamin E may be more effective than use of them alone. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Chromium-induced membrane damage: protective role of ascorbic acid.

    PubMed

    Dey, S K; Nayak, P; Roy, S

    2001-07-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80-100 g body weight). It has been observed that the intoxication with chromium (i.p.) at the dose of 0.8 mg/100 g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospholipid of both liver and kidney. The alkaline phosphatase, total ATPase and Na(+)-K(+)-ATPase activities were significantly decreased in both liver and kidney after chromium treatment, except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid (i.p. at the dose of 0.5 mg/100 g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  9. Effects of Ergot Alkaloids on Liver Function of Piglets as Evaluated by the 13C-Methacetin and 13C-α-Ketoisocaproic Acid Breath Test

    PubMed Central

    Dänicke, Sven; Diers, Sonja

    2013-01-01

    Ergot alkaloids (the sum of individual ergot alkaloids are termed as total alkaloids, TA) are produced by the fungus Claviceps purpurea, which infests cereal grains commonly used as feedstuffs. Ergot alkaloids potentially modulate microsomal and mitochondrial hepatic enzymes. Thus, the aim of the present experiment was to assess their effects on microsomal and mitochondrial liver function using the 13C-Methacetin (MC) and 13C-α-ketoisocaproic acid (KICA) breath test, respectively. Two ergot batches were mixed into piglet diets, resulting in 11 and 22 mg (Ergot 5-low and Ergot 5-high), 9 and 14 mg TA/kg (Ergot 15-low and Ergot 15-high) and compared to an ergot-free control group. Feed intake and live weight gain decreased significantly with the TA content (p < 0.001). Feeding the Ergot 5-high diet tended to decrease the 60-min-cumulative 13CO2 percentage of the dose recovery (cPDR60) by 26% and 28% in the MC and KICA breath test, respectively, compared to the control group (p = 0.065). Therefore, both microsomal and mitochondrial liver function was slightly affected by ergot alkaloids. PMID:23322130

  10. Effects of ergot alkaloids on liver function of piglets as evaluated by the (13)C-methacetin and (13)C-α-ketoisocaproic acid breath test.

    PubMed

    Dänicke, Sven; Diers, Sonja

    2013-01-15

    Ergot alkaloids (the sum of individual ergot alkaloids are termed as total alkaloids, TA) are produced by the fungus Claviceps purpurea, which infests cereal grains commonly used as feedstuffs. Ergot alkaloids potentially modulate microsomal and mitochondrial hepatic enzymes. Thus, the aim of the present experiment was to assess their effects on microsomal and mitochondrial liver function using the (13)C-Methacetin (MC) and (13)C-α-ketoisocaproic acid (KICA) breath test, respectively. Two ergot batches were mixed into piglet diets, resulting in 11 and 22 mg (Ergot 5-low and Ergot 5-high), 9 and 14 mg TA/kg (Ergot 15-low and Ergot 15-high) and compared to an ergot-free control group. Feed intake and live weight gain decreased significantly with the TA content (p < 0.001). Feeding the Ergot 5-high diet tended to decrease the 60-min-cumulative (13)CO(2) percentage of the dose recovery (cPDR(60)) by 26% and 28% in the MC and KICA breath test, respectively, compared to the control group (p = 0.065). Therefore, both microsomal and mitochondrial liver function was slightly affected by ergot alkaloids.

  11. Desferrioxamine in warm reperfusion media decreases liver injury aggravated by cold storage

    PubMed Central

    Arthur, Peter G; Niu, Xian-Wa; Huang, Wen-Hua; DeBoer, Bastiaan; Lai, Ching Tat; Rossi, Enrico; Joseph, John; Jeffrey, Gary P

    2013-01-01

    AIM: To evaluate whether desferrioxamine decreases ischemia and perfusion injury aggravated by cold storage (CS) in a rat liver perfusion model. METHODS: Isolated rat livers were kept in CS in University of Wisconsin Solution for 20 h at 4 °C, then exposed to 25 min of warm ischemia (WI) at 37 °C followed by 2 h of warm perfusion (WP) at 37 °C with oxygenated (95% oxygen and 5% carbon dioxide) Krebs-Henseleit buffer. Desferrioxamine (DFO), an iron chelator, was added at different stages of storage, ischemia and perfusion: in CS only, in WI only, in WP only, in WI and perfusion, or in all stages. Effluent samples were collected after CS and after WI. Perfusate samples and bile were collected every 30 min (0, 0.5, 1, 1.5 and 2 h) during liver perfusion. Cellular injury was assessed by the determination of lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) in the effluent and perfusate samples. Total iron was analysed in the perfusate samples. After WP, the liver was collected for the determination of liver swelling (wet to dry ratio) and liver morphological examination (hematoxylin and eosin staining). RESULTS: Increased CS time caused increased liver dysfunction during WP. After 2 h of WP, liver injury was indicated by increased release of AST (0.5 h CS: 9.4 ± 2.2 U/g liver vs 20 h CS: 45.9 ± 10.8 U/g liver, P < 0.05) and LDH (0.5 h CS: 59 ± 14 U/g liver vs 20 h CS: 297 ± 71 U/g liver, P < 0.05). There was an associated increase in iron release into the perfusate (0.5 h CS: 0.11 ± 0.03 μmoL/g liver vs 20 h CS: 0.58 ± 0.10 μmoL/g liver, P < 0.05) and reduction in bile flow (0.5 h CS: 194 ± 12 μL/g vs 20 h CS: 71 ± 8 μL/g liver, P < 0.05). When DFO was added during WI and WP following 20 h of CS, release of iron into the perfusate was decreased (DFO absent 0.58 ± 0.10 μmoL/g liver vs DFO present 0.31 ± 0.06 μmoL/g liver, P < 0.05), and liver function substantially improved with decreased release of AST (DFO absent 45.9 ± 10.8 U/g liver vs DFO present 8.1 ± 0.9 U/g liver, P < 0.05) and LDH (DFO absent 297 ± 71 U/g liver vs DFO present 56 ± 7 U/g liver, P < 0.05), and increased bile flow (DFO absent 71 ± 8 μL/g liver vs DFO present 237 ± 36 μL/g liver, P < 0.05). DFO was also shown to improve liver morphology after WP. Cellular injury (the release of LDH and AST) was significantly reduced with the addition of DFO in CS medium but to a lesser extent compared to the addition of DFO in WP or WI and perfusion. There was no effect on liver swelling or bile flow when DFO was only added to the CS medium. CONCLUSION: DFO added during WI and perfusion decreased liver perfusion injury aggravated by extended CS. PMID:23429835

  12. Effects of Fuzheng Huayu 319 recipe on liver fibrosis in chronic hepatitis B

    PubMed Central

    Liu, Ping; Liu, Cheng; Xu, Lie-Ming; Hu, Yi-Yang; Xue, Hui-Ming; Liu, Cheng-Hai; Zhang, Zhi-Qing

    1998-01-01

    AIM: To investigate clinic effects of Fuzheng Huayu 319 recipe (319 recipe) on liver fibrosis in chronic hepatitis B. METHODS: Ninety-five patients with chronic hepatitis B were divide into the treated (63 cases) and control (32 cases) group, and orally administrated with 0.5g 319 capsule or 0.5g Dahuang Zhachong pill tid for 3 months, respectively. The liver functions and serological fibrotic markers were observed before and after treatment, 12 cases in the treated group were examined with liver biopsy. RESULTS: Three hundreds nineteen recipe could remarkably decreased serum ALT level and total bilirubin and significantly improve serum albumin and A/G ratio. Its effects were better than Dahuang Zhachong pill. Before treatment, patients¡äserum monamine oxidase activities, tissue inhibitor of metalloproteinase (TIMP)-1, procollagen type III and laminin were all higher than those of health peoples. These levels decreased remarkably after treatment, and urine hydroxyproline level increased significantly (P<0.001-0.05). Compared with the control, the improvement in treated group was better than that in the control except TIMP-1. According to the scoring system for staging of chronic hepatitis, the fibrotic extents of 7 cases among 12 cases examined by liver biopsy decreased remarkably (1 case decreased by 3 scores, 5 by 2 scores, 1 by 1 score). CONCLUSION: Fuzheng Huayu 319 recipe had good therapeutic effects on chronic hepatitis B, it could reverse the development of liver fibross to some extent. In general its effects were better than that of Dahuang Zhachong pill. PMID:11819318

  13. The impact of longitudinal intestinal lengthening and tailoring on liver function in short bowel syndrome.

    PubMed

    Reinshagen, K; Zahn, K; Buch, C von; Zoeller, M; Hagl, C I; Ali, M; Waag, K-L

    2008-08-01

    Short bowel syndrome is a functional or anatomic loss of major parts of the small bowel leading to severe malnutrition. The limiting factor for the survival of these patients remains parenteral nutrition-related liver damage leading to end-stage liver failure. Longitudinal intestinal lengthening and tailoring (LILT) has been proven to enhance peristalsis, to decrease bacterial overgrowth and to extend the mucosal contact time for the absorption of nutrients. The aim of this study was to show the impact of LILT on the development of parenteral nutrition-related liver damage. A cohort of 55 patients with short bowel syndrome managed with LILT in our institution between 1987 and 2007 was retrospectively reviewed. LILT was performed at a mean age of 24 months (range 4 - 150 months). Mean follow-up time was 83.76 months (range 5 - 240 months). We obtained reliable data from 31 patients with regard to liver enzymes and function parameters in blood samples before LILT and at the present time. Liver biopsy was performed in 14 patients prior to LILT. Liver enzymes ALAT (mean 121 U/l), ASAT (mean 166 U/l) and bilirubin (mean 2.49 mg/dl) were elevated preoperatively in 27/31 children. After the lengthening procedure, ALAT (mean 50 U/l), ASAT (mean 63 U/l) and bilirubin (mean 1.059 mg/dl) normalized except in 5 of 8 patients who could not be weaned from parenteral nutrition after LILT. Liver function parameters such as the international normal ratio (INR) were slightly elevated in 5/31 patients. Albumin was generally low, probably due to parenteral nutrition. Liver biopsy was performed in 14 patients preoperatively, showing 4 patients with low-grade, 6 patients with intermediate and 4 patients with high-grade fibrosis. End-stage liver disease with cirrhosis was an exclusion criterion for LILT. All patients with liver fibrosis showed a normalization of liver enzymes when they were weaned from parenteral nutrition. But patients with higher grade liver fibrosis tend to develop more complications perioperatively. After LILT, all patients with liver fibrosis who could be weaned from parenteral nutrition showed a normalization of liver enzymes. Preoperative liver biopsy is mandatory in order to differentiate reversible liver fibrosis from end-stage liver disease. A higher grade of liver fibrosis and elevated INR has been shown to be a sensitive parameter for peri- and postoperative complications.

  14. Effect of cryopreservation on the appearance and liver function of hepatocyte-like cells in cultures of cirrhotic liver of biliary atresia.

    PubMed

    Yamazaki, Taisuke; Enosawa, Shin; Tokiwa, Takayoshi

    2018-06-01

    Previously, we reported that non-parenchymal cell (NPC) fractions from cirrhotic liver of biliary atresia (BA) may contain stem/progenitor cells, and clusters of hepatocyte-like cells appear via hepatocyte growth factor/c-Met signaling in primary cultures of NPCs. BA is a rare and serious liver disease, and procurement of BA cells is difficult. Therefore, cryopreservation of BA liver cells is an unavoidable challenge. In this study, we examined the appearance and liver function of hepatocyte-like cells in cultures of BA liver-derived NPC fractions after cryopreservation for 1 or 6 mo using a chemically defined cryopreservation solution, STEM-CELLBANKER. Although a decrease in cell viability was observed in recovered cells after 1 mo of cryopreservation, clusters of hepatocyte-like cells appeared in the culture of cells that had been cryopreserved for 1 or 6 mo, similar to non-cryopreserved cells. In addition, these hepatocyte-like cells expressed hepatocyte-related mRNAs and demonstrated albumin production and glycogen storage. The present results suggest that hepatic stem/progenitor cells in NPC fractions may be efficiently cryopreserved, as demonstrated by the appearance of hepatocyte-like cells that show various hepatic functions even after cryopreservation. This study may lead to future BA cell therapy using the patient's own cells.

  15. Lymph Nodes and Survival in Pancreatic Neuroendocrine Tumors (pNET)

    PubMed Central

    Krampitz, Geoffrey W.; Norton, Jeffrey A.; Poultsides, George A.; Visser, Brendan C.; Sun, Lixian; Jensen, Robert T.

    2012-01-01

    Background The significance of lymph node metastases on survival of patients with pNET is controversial. Hypothesis Lymph node metastases decrease survival in patients with pNET. Design Prospective databases of the National Institutes of Health (NIH) and Stanford University Hospital (SUH) were queried. Main Outcome Measures Overall survival, disease-related survival, and time to development of liver metastases Results 326 underwent surgical exploration for pNET at the NIH (n=216) and SUH (n=110). 40 (13%) and 305 (94%) underwent enucleation and resection, respectively. Of the patients who underwent resection, 117 (42%) had partial pancreatectomy and 30 (11%) had a Whipple procedure. 41 also had liver resections, 21 wedge resections and 20 lobectomies. Average follow-up was 8 years (range 0.3–28.6 years). The 10-year overall survival for patients with no metastases or lymph node metastases only was similar at 80%. As expected, patients with liver metastases had a significantly decreased 10-year survival of 30% (p<0.001). The time to development of liver metastases was significantly reduced for patients with lymph node metastases alone compared to those with none (p<0.001). For the NIH cohort with longer follow-up, disease-related survival was significantly different for those patients with no metastases, lymph node metastases alone, and liver metastases (p<0.0001). Extent of lymph node involvement in this subgroup showed that disease-related survival decreased as a function of number of lymph nodes involved (p=0.004). Conclusion As expected, liver metastases decrease survival of patients with pNET. Patients with lymph node metastases alone have a shorter time to development of liver metastases that is dependent on the number of lymph nodes involved. With sufficient long-term follow-up, lymph node metastases decrease disease-related survival. Careful evaluation of number and extent of lymph node involvement is warranted in all surgical procedures for pNET. PMID:22987171

  16. Augmenter of liver regeneration attenuates acute rejection after rat liver transplantation.

    PubMed

    Chen, Yong; Liang, Shaoyong; Long, Feiwu; Li, Jinzheng; Gong, Jianping

    2016-07-01

    The role of augmenter of liver regeneration (ALR) on liver transplantation immune regulation remains unknown. Male Lewis and Brown-Norway (BN) rats were assigned to allograft group (Lewis-to-BN liver transplantation), isograft group (BN-to-BN), and ALR group (Lewis-to-BN, ALR, 100 μg/kg/d, intramuscular injection postoperatively). Rats were sacrificed at indicated times for assessment of cytokines production, T-cell (TC) activation and apoptosis. Kupffer cells (KCs) and TCs were isolated from grafts to assess cytokine expression. Effect of ALR and KCs on TCs was monitored by co-culture of (3)H-thymidine TCs. (1) Treatment with ALR significantly decreased interleukin-2 and interferon-γ expression, promoted TC apoptosis, and prolonged the survival of allografts; (2) KCs in ALR group and isograft group that had significantly increased interleukin-10 and decreased tumor necrosis factor-α expression were able to inhibit TC proliferation and induce their apoptosis relative to KCs in the allograft group; (3) ALR and KCs directly inhibited TC proliferation and activation and induced TC apoptosis. ALR could inhibit TC proliferation and function both in vivo and in vitro and attenuate acute rejection after liver transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. [Effects of low doses of essential oil on the antioxidant state of the erythrocytes, liver, and the brains of mice].

    PubMed

    Misharina, T A; Fatkullina, L D; Alinkina, E S; Kozachenko, A I; Nagler, L G; Medvedeva, I B; Goloshchapov, A N; Burlakova, E B

    2014-01-01

    We studied the effects of essential oil from oregano and clove and a mixture of lemon essential oil and a ginger extract on the antioxidant state of organs in intact and three experimental groups of Bulb mice. We found that the essential oil was an efficient in vivo bioantioxidant when mice were treated with it for 6 months even at very low doses, such as 300 ng/day. All essential oil studied inhibited lipid peroxidation (LPO) in the membranes of erythrocytes that resulted in increased membrane resistance to spontaneous hemolysis, decreased membrane microviscosity, maintenance of their structural integrity, and functional activity. The essential oil substantially decreased the LPO intensity in the liver and the brains of mice and increased the resistance of liver and brain lipids to oxidation and the activity of antioxidant enzymes in the liver. The most expressed bioantioxidant effect on erythrocytes was observed after clove oil treatment, whereas on the liver and brain, after treatment with a mixture of lemon essential oil and a ginger extract.

  18. Simplified technique for auxiliary orthotopic liver transplantation using a whole graft

    PubMed Central

    ROCHA-SANTOS, Vinicius; NACIF, Lucas Souto; PINHEIRO, Rafael Soares; DUCATTI, Liliana; ANDRAUS, Wellington; D'ALBURQUERQUE, Luiz Carneiro

    2015-01-01

    Background Acute liver failure is associated with a high mortality rate and the main purposes of treatment are to prevent cerebral edema and infections, which often are responsible for patient death. The orthotopic liver transplantation is the gold standard treatment and improves the 1-year survival. Aim To describe an alternative technique to auxiliary liver transplant on acute liver failure. Method Was performed whole auxiliary liver transplantation as an alternative technique for a partial auxiliary liver transplantation using a whole liver graft from a child removing the native right liver performed a right hepatectomy. The patient met the O´Grady´s criteria and the rational to indicate an auxiliary orthotopic liver transplantation was the acute classification without hemodynamic instability or renal failure in a patient with deterioration in consciousness. Results The procedure improved liver function and decreased intracranial hypertension in the postoperative period. Conclusion This technique can overcome some postoperative complications that are associated with partial grafts. As far as is known, this is the first case of auxiliary orthotopic liver transplantation in Brazil. PMID:26176253

  19. Mapping of the circulating metabolome reveals α-ketoglutarate as a predictor of morbid obesity-associated non-alcoholic fatty liver disease.

    PubMed

    Rodríguez-Gallego, E; Guirro, M; Riera-Borrull, M; Hernández-Aguilera, A; Mariné-Casadó, R; Fernández-Arroyo, S; Beltrán-Debón, R; Sabench, F; Hernández, M; del Castillo, D; Menendez, J A; Camps, J; Ras, R; Arola, L; Joven, J

    2015-02-01

    Obesity severely affects human health, and the accompanying non-alcoholic fatty liver disease (NAFLD) is associated with high morbidity and mortality. Rapid and non-invasive methods to detect this condition may substantially improve clinical care. We used liquid and gas chromatography-quadruple time-of-flight-mass spectrometry (LC/GC-QTOF-MS) analysis in a non-targeted metabolomics approach on the plasma from morbidly obese patients undergoing bariatric surgery to gain a comprehensive measure of metabolite levels. On the basis of these findings, we developed a method (GC-QTOF-MS) for the accurate quantification of plasma α-ketoglutarate to explore its potential as a novel biomarker for the detection of NAFLD. Plasma biochemical differences were observed between patients with and without NAFLD indicating that the accumulation of lipids in hepatocytes decreased β-oxidation energy production, reduced liver function and altered glucose metabolism. The results obtained from the plasma analysis suggest pathophysiological insights that link lipid and glucose disturbances with α-ketoglutarate. Plasma α-ketoglutarate levels are significantly increased in obese patients compared with lean controls. Among obese patients, the measurement of this metabolite differentiates between those with or without NAFLD. Data from the liver were consistent with data from plasma. Clinical utility was assessed, and the results revealed that plasma α-ketoglutarate is a fair-to-good biomarker in patients (n=230). Other common laboratory liver tests used in routine application did not favourably compare. Plasma α-ketoglutarate is superior to common liver function tests in obese patients as a surrogate biomarker of NAFLD. The measurement of this biomarker may potentiate the search for a therapeutic approach, may decrease the need for liver biopsy and may be useful in the assessment of disease progression.

  20. Maternal intake of trans-unsaturated or interesterified fatty acids during pregnancy and lactation modifies mitochondrial bioenergetics in the liver of adult offspring in mice.

    PubMed

    de Velasco, Patricia C; Chicaybam, Gustavo; Ramos-Filho, Dionizio M; Dos Santos, Raísa M A R; Mairink, Caroline; Sardinha, Fátima L C; El-Bacha, Tatiana; Galina, Antonio; Tavares-do-Carmo, Maria das Graças

    2017-07-01

    The quality of dietary lipids in the maternal diet can programme the offspring to diseases in later life. We investigated whether the maternal intake of palm oil or interesterified fat, substitutes for trans-unsaturated fatty acids (FA), induces metabolic changes in the adult offspring. During pregnancy and lactation, C57BL/6 female mice received normolipidic diets containing partially hydrogenated vegetable fat rich in trans-unsaturated fatty acids (TG), palm oil (PG), interesterified fat (IG) or soyabean oil (CG). After weaning, male offspring from all groups received the control diet until day 110. Plasma glucose and TAG and liver FA profiles were ascertained. Liver mitochondrial function was accessed with high-resolution respirometry by measuring VO2, fluorimetry for detection of hydrogen peroxide (H2O2) production and mitochondrial Ca2+ uptake. The results showed that the IG offspring presented a 20 % increase in plasma glucose and both the IG and TG offspring presented a 2- and 1·9-fold increase in TAG, respectively, when compared with CG offspring. Liver MUFA and PUFA contents decreased in the TG and IG offspring when compared with CG offspring. Liver MUFA content also decreased in the PG offspring. These modifications in FA composition possibly affected liver mitochondrial function, as respiration was impaired in the TG offspring and H2O2 production was higher in the IG offspring. In addition, mitochondrial Ca2+ retention capacity was reduced by approximately 40 and 55 % in the TG and IG offspring, respectively. In conclusion, maternal consumption of trans-unsaturated and interesterified fat affected offspring health by compromising mitochondrial bioenergetics and lipid metabolism in the liver.

  1. One year of baclofen in 100 patients with or without cirrhosis: a French real-life experience.

    PubMed

    Barrault, Camille; Lison, Hortensia; Roudot-Thoraval, Françoise; Garioud, Armand; Costentin, Charlotte; Béhar, Véronique; Medmoun, Mourad; Pulwermacher, Georges; Hagège, Hervé; Cadranel, Jean-François

    2017-10-01

    Several studies have suggested the efficacy of baclofen in reducing alcohol consumption, leading to a temporary recommendation for use in France. Our aim was to report our experience in using baclofen in alcohol-dependant patients with or without liver cirrhosis. Consecutive patients from two liver and alcohol units were recruited over a 3-year period and received increasing doses of baclofen associated with social, psychological, and medical care. One hundred patients were treated, of whom 65 were cirrhotic. After 1 year, 86 patients were still being followed up. At a mean dosage of 40 mg/day (extremes: 30-210), the median daily alcohol consumption reduced from 80 to 0 g/day (P<0.001). Twenty patients drank a small amount of alcohol of up to 30 g/day and 44 patients were completely abstinent. These declarative results were associated with a significant improvement in alcohol-related biological markers in this 'low-consumption' group of 64 patients: the median γ-glutamyl transferase decreased from 3.9 to 2.0 UNL (P<0.001), the mean aspartate transaminase decreased from 2.6 to 1.2 UNL (P<0.001), and the mean corpuscular volume decreased from 101 to 93 µm (P<0.001). In cirrhotic patients, bilirubinemia decreased significantly from 22 to 11 µmol/l (P=0.026), prothrombin time increased from 68 to 77% (P<0.001), and albuminemia increased from 34.1 to 37.4 g/l (P<0.001). Twenty patients reported grades 1-2 adverse events. No liver or renal function deterioration occurred in cirrhotic patients. In our cohort, baclofen associated with a global care was very well tolerated even in cirrhotic patients. The marked reduction in alcohol consumption in 64 patients translated into a significant improvement in biological markers and in liver function tests. Baclofen could be very useful, especially in cases of severe alcoholic liver disease.

  2. Associations of insulin resistance, inflammation and liver synthetic function with very low-density lipoprotein: The Cardiovascular Health Study.

    PubMed

    Jiang, Z Gordon; de Boer, Ian H; Mackey, Rachel H; Jensen, Majken K; Lai, Michelle; Robson, Simon C; Tracy, Russell; Kuller, Lewis H; Mukamal, Kenneth J

    2016-03-01

    Production of very low-density lipoprotein (VLDL) is increased in states of metabolic syndrome, leading to hypertriglyceridemia. However, metabolic syndrome is often associated with non-alcoholic fatty liver disease, which leads to liver fibrosis and inflammation that may decrease VLDL production. In this study, we aim to determine the interactive impact on VLDL profiles from insulin resistance, impairment in liver synthetic function and inflammation. We examined cross-sectional associations of insulin sensitivity, inflammation, and liver synthetic function with VLDL particle (VLDL-P) concentration and size among 1,850 older adults in the Cardiovascular Health Study. Indices for high insulin sensitivity and low liver synthetic function were associated with lower concentrations of VLDL-P. In addition, insulin resistance preferentially increased concentration of large VLDL and was associated with mean VLDL size. Indices for inflammation however demonstrated a nonlinear relationship with both VLDL-P concentration and VLDL size. When mutually adjusted, one standard deviation (SD) increment in Matsuda index and C-reactive protein (CRP) were associated with 4.9 nmol/L (-8.2 to -1.5, p=0.005) and 6.3 nmol/L (-11.0 to -1.6, p=0.009) lower VLDL-P concentration respectively. In contrast, one-SD increment in factor VII, a marker for liver synthetic function, was associated with 16.9 nmol/L (12.6-21.2, p<0.001) higher VLDL-P concentration. Furthermore, a one-SD increment in the Matsuda index was associated with 1.1 nm (-2.0 to -0.3, p=0.006) smaller mean VLDL size, whereas CRP and factor VII were not associated with VLDL size. Insulin sensitivity, inflammation and markers for liver synthetic function differentially impact VLDL-P concentration and VLDL size. These results underscore the complex effects of insulin resistance and its complications on VLDL production. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Safety of Direct-Acting Antiviral Therapy Regarding Renal Function in Post-Liver Transplant Patients Infected with Hepatitis C Virus and a 100% 12-Week Sustained Virologic Response-A Single-Center Study.

    PubMed

    Peschel, G; Moleda, L; Baier, L; Selgrad, M; Schmid, S; Scherer, M N; Müller, M; Weigand, K

    2018-06-01

    Patients after liver transplantation (LT) with hepatitis C virus (HCV) infection often suffer from renal or hepatic impairment. Treating patients after LT with direct-acting antivirals (DAA) might result in decreasing renal function due to interaction of DAA and immunosuppressive therapy. In this single-center study we analyzed clinical parameters of 18 HCV-infected patients treated with DAA therapy after LT. The primary end points were change of renal function (glomerular filtration rate) and sustained virologic response 12 weeks after therapy (SVR12). For secondary end points, we investigated the influence of DAA therapy on transaminases, bilirubin, international normalized ratio, noninvasive fibrosis measurement, and Model for End-Stage Liver Disease (MELD) score. Five out of 18 patients treated with DAA suffered from renal impairment stage 2, and 7 patients of renal impairment stage 3. Renal function at SVR12 was not influenced by preexisting renal impairment (P > .5), type of immunosuppressant (P > .5), or type of DAA regimen (P > .5). All patients reached SVR12. The levels of transaminases and bilirubin declined rapidly, as expected. Ten out of 18 patients already suffered from cirrhosis or liver fibrosis >F3 according to noninvasive measurement before initiation of treatment. Single-point acoustic radiation force impulse imaging improved in 9 patients (P = .012). In 7 patients, MELD score improved owing to the decrease of bilirubin levels. In 6 patients it worsened. DAA therapy in LT patients was effective and safe in this single-center real-life cohort. Renal function was not influenced by the administered drug combinations, even in patients with preexisting renal impairment. Copyright © 2018. Published by Elsevier Inc.

  4. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression

    PubMed Central

    Nantasanti, Sathidpak; Toussaint, Mathilda J. M.; Youssef, Sameh A.; Tooten, Peter C. J.; de Bruin, Alain

    2016-01-01

    The tumor suppressors Retinoblastoma (Rb) and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC) or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). DDC is metabolized mainly by cytochrome P450 (Cyp)3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC. PMID:26967735

  5. Knockdown of microRNA-155 in Kupffer cells results in immunosuppressive effects and prolongs survival of mouse liver allografts.

    PubMed

    Li, Jinzheng; Gong, Junhua; Li, Peizhi; Li, Min; Liu, Yiming; Liang, Shaoyong; Gong, Jianping

    2014-03-27

    Our previous studies have shown that Kupffer cells (KCs) play a crucial role in postoperative pathologic changes. Recent reports have demonstrated that microRNA-155 (miR-155) is associated with inflammation and upregulation of proinflammatory mediators in the peripheral blood and allografts of transplant patients. However, the precise mechanism for this remains unknown. KCs isolated from BALB/c mice were transfected with miR-155 mimic or inhibitor. Levels of suppressor of cytokine signaling 1/Janus kinase/signal transducer and activator of transcription (SOCS1/JAK/STAT) proteins and surface molecules (MHC-II, CD40, and CD86) were then measured. T-cell proliferation and apoptosis were evaluated in mixed lymphocyte reactions. Orthotopic liver transplantation was performed in mice after miR-155 short hairpin RNA lentivirus treatment, and postoperative survival, liver function and histology, and mRNA and protein expression were analyzed. miR-155 knockdown in KCs decreased MHC-II, CD40, and CD86 expression, suppressed antigen-presenting function, and affected SOCS1/JAK/STAT inflammatory pathways. In addition, KCs transfected with miR-155 inhibitor and cocultured with T lymphocytes showed reduced T-cell responses but a greater number of apoptotic T cells. Finally, miR-155 suppression in graft liver prolonged liver allograft survival and improved liver function. The changes were closely associated with the levels of T helper 1 and 2 (Th1/Th2) cytokines and T-cell apoptosis, but a direct mechanistic link in vivo was not established. These data suggest miR-155 regulates the balance of Th1/Th2 cytokines and the maturation and function of KCs in mice. miR-155 repression in KCs positively regulates KC function toward immunosuppression and prolongs liver allograft survival.

  6. Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease.

    PubMed

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Ventura, Gabrielle; Sarfati, Gilles; Nubret, Esther; Kapel, Nathalie; Waligora-Dupriet, Anne-Judith; Bergheim, Ina; Cynober, Luc; De-Bandt, Jean-Pascal

    2016-02-01

    Fructose diets have been shown to induce insulin resistance and to alter liver metabolism and gut barrier function, ultimately leading to non-alcoholic fatty liver disease. Citrulline, Glutamine and Arginine may improve insulin sensitivity and have beneficial effects on gut trophicity. Our aim was to evaluate their effects on liver and gut functions in a rat model of fructose-induced non-alcoholic fatty liver disease. Male Sprague-Dawley rats (n = 58) received a 4-week fructose (60%) diet or standard chow with or without Citrulline (0.15 g/d) or an isomolar amount of Arginine or Glutamine. All diets were made isonitrogenous by addition of non-essential amino acids. At week 4, nutritional and metabolic status (plasma glucose, insulin, cholesterol, triglycerides and amino acids, net intestinal absorption) was determined; steatosis (hepatic triglycerides content, histological examination) and hepatic function (plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin) were assessed; and gut barrier integrity (myeloperoxidase activity, portal endotoxemia, tight junction protein expression and localization) and intestinal and hepatic inflammation were evaluated. We also assessed diets effects on caecal microbiota. In these experimental isonitrogenous fructose diet conditions, fructose led to steatosis with dyslipidemia but without altering glucose homeostasis, liver function or gut permeability. Fructose significantly decreased Bifidobacterium and Lactobacillus and tended to increase endotoxemia. Arginine and Glutamine supplements were ineffective but Citrulline supplementation prevented hypertriglyceridemia and attenuated liver fat accumulation. While nitrogen supply alone can attenuate fructose-induced non-alcoholic fatty liver disease, Citrulline appears to act directly on hepatic lipid metabolism by partially preventing hypertriglyceridemia and steatosis. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  7. Temperature and frequency dependence of ultrasonic attenuation in selected tissues

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.; Croissette, D. H. L.; Heyser, R. C.

    1979-01-01

    Ultrasonic attenuation over the frequency range of 1.5-10 MHz has been measured as a function of temperature for porcine liver, backfat, kidney and spleen as well as for a single specimen of human liver. The attenuation in these excised specimens increases nearly linearly with frequency. Over the temperature range of approximately 4-37 C the attenuation decreases with increasing temperature for most soft tissue studied.

  8. Endurance exercise in a rat model of metabolic syndrome.

    PubMed

    Cameron, Isabelle; Alam, Mohammad Ashraful; Wang, Jianxiong; Brown, Lindsay

    2012-11-01

    We have measured the responses to endurance exercise training on body composition and glucose regulation, as well as cardiovascular and liver structure and function in rats fed a high carbohydrate and high fat (HCHF) diet as a model of human metabolic syndrome. Male Wistar rats (9-10 weeks old) were randomly allocated into corn starch (CS) or HCHF diet groups for 16 weeks; half of each group were exercised on a treadmill for 20, 25, and then 30 min/day, 5 days/week, during the last 8 weeks of the protocol. Metabolic, cardiovascular, and liver parameters were monitored. The HCHF diet induced symptoms of metabolic syndrome, including obesity, dyslipidemia, impaired glucose tolerance, and increased systolic blood pressure associated with the development of cardiovascular remodeling and nonalcoholic steatohepatitis. Exercise in HCHF rats decreased body mass, abdominal fat pads and circumference, blood glucose concentrations, plasma lipid profiles, systolic blood pressure, left ventricular diastolic stiffness, collagen deposition and inflammatory cell infiltration in the left ventricle, improved aortic contractile and relaxation responses, and decreased liver mass and hepatic fat accumulation. This study demonstrates that endurance exercise is effective in this rat model of diet-induced metabolic syndrome in improving body composition and glucose regulation, as well as cardiovascular and liver structure and function.

  9. Diagnostic value of fibronectin discriminant score for predicting liver fibrosis stages in chronic hepatitis C virus patients.

    PubMed

    Attallah, Abdelfattah M; Abdallah, Sanaa O; Attallah, Ahmed A; Omran, Mohamed M; Farid, Khaled; Nasif, Wesam A; Shiha, Gamal E; Abdel-Aziz, Abdel-Aziz F; Rasafy, Nancy; Shaker, Yehia M

    2013-01-01

    Several noninvasive predictive models were developed to substitute liver biopsy for fibrosis assessment. To evaluate the diagnostic value of fibronectin which reflect extracellular matrix metabolism and standard liver functions tests which reflect alterations in hepatic functions. Chronic hepatitis C (CHC) patients (n = 145) were evaluated using ROC curves and stepwise multivariate discriminant analysis (MDA) and was validated in 180 additional patients. Liver biochemical profile including transaminases, bilirubin, alkaline phosphatase, albumin, complete blood count were estimated. Fibronectin concentration was determined using monoclonal antibody and ELISA. A novel index named fibronectin discriminant score (FDS) based on fibronectin, APRI and albumin was developed. FDS produced areas under ROC curves (AUC) of 0.91 for significant fibrosis and 0.81 for advanced fibrosis. The FDS correctly classified 79% of the significant liver fibrosis patients (F2-F4) with 87% sensitivity and 75% specificity. The relative risk [odds ratio (OR)] of having significant liver fibrosis using the cut-off values determined by ROC curve analyses were 6.1 for fibronectin, 4.9 for APRI, and 4.2 for albumin. FDS predicted liver fibrosis with an OR of 16.8 for significant fibrosis and 8.6 for advanced fibrosis. The FDS had similar AUC and OR in the validation group to the estimation group without statistically significant difference. FDS predicted liver fibrosis with high degree of accuracy, potentially decreasing the number of liver biopsy required.

  10. Effect of low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats.

    PubMed

    Kostogrys, Renata B; Franczyk-Żarów, Magdalena; Maślak, Edyta; Topolska, Kinga

    2015-03-01

    The objective of this study was to compare effects of Western diet (WD) with low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats. Eighteen rats were randomly assigned to three experimental groups and fed for the next 2 months. The experimental diets were: Control (7% of soybean oil, 20% protein), WD (21% of butter, 20% protein), and LCHP (21% of butter and 52.4% protein) diet. The LCHP diet significantly decreased the body weight of the rats. Diet consumption was differentiated among groups, however significant changes were observed since third week of the experiment duration. Rats fed LCHP diet ate significantly less (25.2g/animal/day) than those from Control (30.2g/animal/day) and WD (27.8 g/animal/day) groups. Additionally, food efficiency ratio (FER) tended to decrease in LCHP fed rats. Serum homocysteine concentration significantly decreased in rats fed WD and LCHP diets. Liver weights were significantly higher in rats fed WD and LCHP diets. At the end of the experiment (2 months) the triacylglycerol (TAG) was significantly decreased in animals fed LCHP compared to WD. qRT-PCR showed that SCD-1 and FAS were decreased in LCHP fed rats, but WD diet increased expression of lipid metabolism genes. Rats receiving LCHP diet had two fold higher kidney weight and 54.5% higher creatinin level compared to Control and WD diets. In conclusion, LCHP diet decreased animal's body weight and decreased TAG in rat's serum. However, kidney damage in LCHP rats was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Role of transmethylation reactions in alcoholic liver disease

    PubMed Central

    Kharbanda, Kusum K

    2007-01-01

    Alcoholic liver disease is a major health care problem worldwide. Findings from many laboratories, including ours, have demonstrated that ethanol feeding impairs several of the many steps involved in methionine metabolism. Ethanol consumption predominantly results in a decrease in the hepatocyte level of S-adenosylmethionine and the increases in two toxic metabolites, homocysteine and S-adenosylhomocysteine. These changes, in turn, result in serious functional consequences which include decreases in essential methylation reactions via inhibition of various methyltransferases. Of particular interest to our laboratory is the inhibition of three important enzymes, phosphatidylethanolamine methyltransferase, isoprenylcysteine carboxyl methyltransferase and protein L-isoaspartate methyltransferase. Decreased activity of these enzymes results in increased fat deposition, increased apoptosis and increased accumulation of damaged proteins-all of which are hallmark features of alcoholic liver injury. Of all the therapeutic modalities available, betaine has been shown to be the safest, least expensive and most effective in attenuating ethanol-induced liver injury. Betaine, by virtue of aiding in the remethylation of homocysteine, removes both toxic metabolites (homocysteine and S-adenosylhomocysteine), restores S-adenosylmethionine level, and reverses steatosis, apoptosis and damaged proteins accumulation. In conclusion, betaine appears to be a promising therapeutic agent in relieving the methylation and other defects associated with alcoholic abuse. PMID:17854136

  12. Chemical and Hormonal Effects on STAT5b-Dependent Sexual Dimorphism of the Liver Transcriptome

    PubMed Central

    Oshida, Keiyu; Waxman, David J.; Corton, J. Christopher

    2016-01-01

    The growth hormone (GH)-activated transcription factor signal transducer and activator of transcription 5b (STAT5b) is a key regulator of sexually dimorphic gene expression in the liver. Suppression of hepatic STAT5b signaling is associated with lipid metabolic dysfunction leading to steatosis and liver cancer. In the companion publication, a STAT5b biomarker gene set was identified and used in a rank-based test to predict both increases and decreases in liver STAT5b activation status/function with high (≥ 97%) accuracy. Here, this computational approach was used to identify chemicals and hormones that activate (masculinize) or suppress (feminize) STAT5b function in a large, annotated mouse liver and primary hepatocyte gene expression compendium. Exposure to dihydrotestosterone and thyroid hormone caused liver masculinization, whereas glucocorticoids, fibroblast growth factor 15, and angiotensin II caused liver feminization. In mouse models of diabetes and obesity, liver feminization was consistently observed and was at least partially reversed by leptin or resveratrol exposure. Chemical-induced feminization of male mouse liver gene expression profiles was a relatively frequent phenomenon: of 156 gene expression biosets from chemically-treated male mice, 29% showed feminization of liver STAT5b function, while <1% showed masculinization. Most (93%) of the biosets that exhibited feminization of male liver were also associated with activation of one or more xenobiotic-responsive receptors, most commonly constitutive activated receptor (CAR) or peroxisome proliferator-activated receptor alpha (PPARα). Feminization was consistently associated with increased expression of peroxisome proliferator-activated receptor gamma (Pparg) but not other lipogenic transcription factors linked to steatosis. GH-activated STAT5b signaling in mouse liver is thus commonly altered by diverse chemicals, and provides a linkage between chemical exposure and dysregulated gene expression associated with adverse effects on the liver. PMID:26959237

  13. Hepatobiliary MRI: Signal intensity based assessment of liver function correlated to 13C-Methacetin breath test.

    PubMed

    Haimerl, Michael; Probst, Ute; Poelsterl, Stefanie; Beyer, Lukas; Fellner, Claudia; Selgrad, Michael; Hornung, Matthias; Stroszczynski, Christian; Wiggermann, Philipp

    2018-06-13

    Gadoxetic acid (Gd-EOB-DTPA) is a paramagnetic MRI contrast agent with raising popularity and has been used for evaluation of imaging-based liver function in recent years. In order to verify whether liver function as determined by real-time breath analysis using the intravenous administration of 13 C-methacetin can be estimated quantitatively from Gd-EOB-DTPA-enhanced MRI using signal intensity (SI) values. 110 patients underwent Gd-EOB-DTPA-enhanced 3-T MRI and, for the evaluation of liver function, a 13 C-methacetin breath test ( 13 C-MBT). SI values from before (SI pre ) and 20 min after (SI post ) contrast media injection were acquired by T1-weighted volume-interpolated breath-hold examination (VIBE) sequences with fat suppression. The relative enhancement (RE) between the plain and contrast-enhanced SI values was calculated and evaluated in a correlation analysis of 13 C-MBT values to SI post and RE to obtain a SI-based estimation of 13 C-MBT values. The simple regression model showed a log-linear correlation of 13 C-MBT values with SI post and RE (p < 0.001). Stratified by 3 different categories of 13 C-MBT readouts, there was a constant significant decrease in both SI post (p ≤ 0.002) and RE (p ≤ 0.033) with increasing liver disease progression as assessed by the 13 C-MBT. Liver function as determined using real-time 13 C-methacetin breath analysis can be estimated quantitatively from Gd-EOB-DTPA-enhanced MRI using SI-based indices.

  14. Protective effects of dietary avocado oil on impaired electron transport chain function and exacerbated oxidative stress in liver mitochondria from diabetic rats.

    PubMed

    Ortiz-Avila, Omar; Gallegos-Corona, Marco Alonso; Sánchez-Briones, Luis Alberto; Calderón-Cortés, Elizabeth; Montoya-Pérez, Rocío; Rodriguez-Orozco, Alain R; Campos-García, Jesús; Saavedra-Molina, Alfredo; Mejía-Zepeda, Ricardo; Cortés-Rojo, Christian

    2015-08-01

    Electron transport chain (ETC) dysfunction, excessive ROS generation and lipid peroxidation are hallmarks of mitochondrial injury in the diabetic liver, with these alterations also playing a role in the development of non-alcoholic fatty liver disease (NAFLD). Enhanced mitochondrial sensitivity to lipid peroxidation during diabetes has been also associated to augmented content of C22:6 in membrane phospholipids. Thus, we aimed to test whether avocado oil, a rich source of C18:1 and antioxidants, attenuates the deleterious effects of diabetes on oxidative status of liver mitochondria by decreasing unsaturation of acyl chains of membrane lipids and/or by improving ETC functionality and decreasing ROS generation. Streptozocin-induced diabetes elicited a noticeable increase in the content of C22:6, leading to augmented mitochondrial peroxidizability index and higher levels of lipid peroxidation. Mitochondrial respiration and complex I activity were impaired in diabetic rats with a concomitant increase in ROS generation using a complex I substrate. This was associated to a more oxidized state of glutathione, All these alterations were prevented by avocado oil except by the changes in mitochondrial fatty acid composition. Avocado oil did not prevented hyperglycemia and polyphagia although did normalized hyperlipidemia. Neither diabetes nor avocado oil induced steatosis. These results suggest that avocado oil improves mitochondrial ETC function by attenuating the deleterious effects of oxidative stress in the liver of diabetic rats independently of a hypoglycemic effect or by modifying the fatty acid composition of mitochondrial membranes. These findings might have also significant implications in the progression of NAFLD in experimental models of steatosis.

  15. The role of PTEN in regulation of hepatic macrophages activation and function in progression and reversal of liver fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yahui; Tian, Yuanyao; Xia, Jialu

    Activation of Kupffer cells (KCs) plays a pivotal role in the pathogenesis of liver fibrosis. The progression and reversal of CCl{sub 4}-induced mouse liver fibrosis showed a mixed induction of hepatic classical (M1) and alternative (M2) macrophage markers. Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in modulating myeloid cell activation has recently been identified, its function in macrophage activation during hepatic fibrosis remains to be fully appreciated. In our study, PTEN expression of KCs was remarkably decreased in CCl{sub 4}-induced mice but increased to a near-normal level in reversed mice. Moreover, PTEN was significantlymore » decreased in IL4-induced RAW 264.7 cells in vitro and lower expression of PTEN was observed in M2 macrophages in vivo. In addition, loss- and gain-of-function studies suggested that PTEN regulates M2 macrophages polarization via activation of PI3K/Akt/STAT6 signaling, but had a limited effect on M1 macrophages polarization in vitro. Additionally, Ly294002, a chemical inhibitor of PI3K/Akt, could dramatically down-regulate the hallmarks of M2 macrophages. In conclusion, PTEN mediates macrophages activation by PI3K/Akt/STAT6 signaling pathway, which provides novel compelling evidences on the potential of PTEN in liver injury and opens new cellular target for the pharmacological therapy of liver fibrosis. - Highlights: • CCl{sub 4} treatment triggered a mixed M1/M2 macrophage phenotype in fibrosis. • Lower expression of PTEN in murine M2 macrophages in vivo and vitro. • PTEN modulates M2 macrophages activation via PI3K/Akt/STAT6 signaling. • Provide a new cellular target modulate macrophage mediated hepatic fibrosis.« less

  16. Long-term and short-term effects of hemodialysis on liver function evaluated using the galactose single-point test.

    PubMed

    Hou, Yi-Chou; Liu, Wen-Chih; Liao, Min-Tser; Lu, Kuo-Cheng; Lo, Lan; Pan, Heng-Chih; Wu, Chia-Chao; Hu, Oliver Yoa-Pu; Tang, Hung-Shang

    2014-01-01

    The galactose single-point (GSP) test assesses functioning liver mass by measuring the galactose concentration in the blood 1 hour after its administration. The purpose of this study was to investigate the impact of hemodialysis (HD) on short-term and long-term liver function by use of GSP test. Seventy-four patients on maintenance HD (46 males and 28 females, 60.38 ± 11.86 years) with a mean time on HD of 60.77 ± 48.31 months were studied. The GSP values were compared in two groups: (1) before and after single session HD, and (2) after one year of maintenance HD. Among the 74 HD patient, only the post-HD Cr levels and years on dialysis were significantly correlated with GSP values (r = 0.280, P < 0.05 and r = -0.240, P < 0.05, resp.). 14 of 74 patients were selected for GSP evaluation before and after a single HD session, and the hepatic clearance of galactose was similar (pre-HD 410 ± 254 g/mL, post-HD 439 ± 298 g/mL, P = 0.49). GSP values decreased from 420.20 ± 175.26 g/mL to 383.40 ± 153.97 g/mL after 1 year maintenance HD in other 15 patients (mean difference: 19.00 ± 37.66 g/mL, P < 0.05). Patients on maintenance HD for several years may experience improvement of their liver function. However, a single HD session does not affect liver function significantly as assessed by the GSP test. Since the metabolism of galactose is dependent on liver blood flow and hepatic functional mass, further studies are needed.

  17. Commiphora molmol Modulates Glutamate-Nitric Oxide-cGMP and Nrf2/ARE/HO-1 Pathways and Attenuates Oxidative Stress and Hematological Alterations in Hyperammonemic Rats

    PubMed Central

    Alqahtani, Sultan; Othman, Sarah I.; Germoush, Mousa O.; Hussein, Omnia E.; Al-Basher, Gadh; Khim, Jong Seong; Al-Qaraawi, Maha A.; Al-Harbi, Hanan M.; Fadel, Abdulmannan; Allam, Ahmed A.

    2017-01-01

    Hyperammonemia is a serious complication of liver disease and may lead to encephalopathy and death. This study investigated the effects of Commiphora molmol resin on oxidative stress, inflammation, and hematological alterations in ammonium chloride- (NH4Cl-) induced hyperammonemic rats, with an emphasis on the glutamate-NO-cGMP and Nrf2/ARE/HO-1 signaling pathways. Rats received NH4Cl and C. molmol for 8 weeks. NH4Cl-induced rats showed significant increase in blood ammonia, liver function markers, and tumor necrosis factor-alpha (TNF-α). Concurrent supplementation of C. molmol significantly decreased circulating ammonia, liver function markers, and TNF-α in hyperammonemic rats. C. molmol suppressed lipid peroxidation and nitric oxide and enhanced the antioxidant defenses in the liver, kidney, and cerebrum of hyperammonemic rats. C. molmol significantly upregulated Nrf2 and HO-1 and decreased glutamine and nitric oxide synthase, soluble guanylate cyclase, and Na+/K+-ATPase expression in the cerebrum of NH4Cl-induced hyperammonemic rats. Hyperammonemia was also associated with hematological and coagulation system alterations. These alterations were reversed by C. molmol. Our findings demonstrated that C. molmol attenuates ammonia-induced liver injury, oxidative stress, inflammation, and hematological alterations. This study points to the modulatory effect of C. molmol on glutamate-NO-cGMP and Nrf2/ARE/HO-1 pathways in hyperammonemia. Therefore, C. molmol might be a promising protective agent against hyperammonemia. PMID:28744340

  18. Hypoglycemic and Hypolipidemic Effects of the Cracked-Cap Medicinal Mushroom Phellinus rimosus (Higher Basidiomycetes) in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Rony, Kuttikkadan A; Ajith, Thekkuttuparambil A; Janardhanan, Kainoor K

    2015-01-01

    Phellinus rimosus is a parasitic host specific polypore mushroom with profound antioxidant, antihepatotoxic, anti-inflammatory, antitumor, and antimutagenic activities. This study investigated the hypoglycemic and hypolipidemic activities of the wood-inhabiting polypore mushroom Ph. Rimosus in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by single intraperitoneal injection of STZ (45 mg/kg) to Wistar rats. The effects of 30 days treatment with Ph. Rimosus (50 and 250 mg/ kg) and glibenclamide (0.65 mg/kg) on blood glucose level, serum insulin, serum lipid profile, liver glycogen, liver function enzymes, and non-enzymic and enzymic antioxidants activities in pancreas, liver, and kidney were evaluated in STZ-induced diabetic rats. Oral administration of Ph. Rimosus extract exhibited a significant reduction in blood glucose, triacylglycerol, total cholesterol, LDL-cholesterol, and liver function enzymes, and increased serum insulin, liver glycogen, and HDL-cholesterol levels in STZ-induced diabetic rats. Furthermore, Ph. Rimosus treatment increased antioxidant status in pancreas, liver, and kidney tissues with concomitant decreases in levels of thiobarbituric acid- reactive substances. Results of this study indicated that Ph. Rimosus possessed significant hypoglycemic and hypolipidemic activities and this effect may be related to its insulinogenic and antioxidant effect.

  19. Urinary Copper Elevation in a Mouse Model of Wilson's Disease Is a Regulated Process to Specifically Decrease the Hepatic Copper Load

    PubMed Central

    Gray, Lawrence W.; Peng, Fangyu; Molloy, Shannon A.; Pendyala, Venkata S.; Muchenditsi, Abigael; Muzik, Otto; Lee, Jaekwon; Kaplan, Jack H.; Lutsenko, Svetlana

    2012-01-01

    Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilson's disease (WD), this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood. Using Positron Emission Tomography-Computed Tomography (PET-CT) imaging of live Atp7b−/− mice at different stages of disease, a longitudinal metal analysis, and characterization of copper-binding molecules, we show that urinary copper elevation is a specific regulatory process mediated by distinct molecules. PET-CT and atomic absorption spectroscopy directly demonstrate an age-dependent decrease in the capacity of Atp7b−/− livers to accumulate copper, concomitant with an increase in urinary copper. This reciprocal relationship is specific for copper, indicating that cell necrosis is not the primary cause for the initial phase of metal elevation in the urine. Instead, the urinary copper increase is associated with the down-regulation of the copper-transporter Ctr1 in the liver and appearance of a 2 kDa Small Copper Carrier, SCC, in the urine. SCC is also elevated in the urine of the liver-specific Ctr1 −/− knockouts, which have normal ATP7B function, suggesting that SCC is a normal metabolite carrying copper in the serum. In agreement with this hypothesis, partially purified SCC-Cu competes with free copper for uptake by Ctr1. Thus, hepatic down-regulation of Ctr1 allows switching to an SCC-mediated removal of copper via kidney when liver function is impaired. These results demonstrate that the body regulates copper export through more than one mechanism; better understanding of urinary copper excretion may contribute to an improved diagnosis and monitoring of WD. PMID:22802922

  20. Role of exercise in optimizing the functional status of patients with nonalcoholic fatty liver disease.

    PubMed

    Gerber, Lynn H; Weinstein, Ali; Pawloski, Lisa

    2014-02-01

    Nonalcoholic fatty liver disease (NAFLD) is frequently concomitant with obesity. This article discusses factors that influence health and functional outcomes of people who develop NAFLD, including increased burden of illness, whole body function, performance, and perception of self-efficacy. Changes in macronutrients, amount of calories consumed, and decreased physical activity all negatively influence patient outcome. The benefits of exercise in this population are also discussed. To be effective, exercise must be performed, regularly and in conjunction with dietary and other behavioral change. Therefore, a lifelong commitment to exercise, activity, and diet are needed if NAFLD is to be successfully treated. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. [Changes in serotonin and noradrenaline in hepatic encephalopathy as a result of liver failure in rat].

    PubMed

    Song, Min-ning; Song, Yu-na; Chen, Fu; Luo, Mei-lan

    2007-01-01

    To investigate the changes in serotonin (5-HT) and noradrenaline (NA) in hepatic encephalopathy as a result of acute and chronic liver failure in rat. One hundred and ten Sprague-Dawley (SD) rats were randomly divided into groups of normal control (n=20), experimental group of acute liver failure (ALF) encephalopathy (n=45), and experimental group of chronic liver failure (CLF) encephalopathy (n=45). Two dosages of thioacetamide (TAA) of 500 mg/kg were gavaged with an interval of 24 hours to reproduce ALF model. To reproduce CLF model rats were fed with 0.03% TAA in drinking water for 10 weeks, and 50% of TAA dosage was added or withheld according to the change in weekly body weight measurement. Animals were sacrificed and venous blood specimens were obtained after successful replication of model, and 5-HT, NA, ammonia, parameters of liver function were determined, and liver and brain were studied pathologically. The experiment showed that the liver functions of rats in groups ALF encephalopathy and CLF encephalopathy deteriorated seriously, changes in alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), albumen (ALB), ALB/globulin (A/G), and blood ammonia were observed(P<0.05 or P<0.01). The clinical manifestations, liver and brain pathologies were identical to those of ALF and CLF encephalopathy. The values of 5-HT were increased in groups ALF encephalopathy and CLF encephalopathy [(16.06+/-1.08) micromol/L and (15.32+/-1.48) micromol/L] compared with the normal group [(2.75+/-0.26) micromol/L, both P<0.01], while the value of NA decreased in the group of CLF encephalopathy [(94.0+/-2.13) pmol/L vs.(121.2+/-14.8) pmol/L,P<0.05]. The levels of 5-HT are elevated in the groups of ALF encephalopathy and CLF encephalopathy. The content of NA decreases remarkably in CLF encephalopathy.

  2. Expression of hepatic lipid droplets is decreased in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Takahashi, Hiromizu; Kutasy, Balazs; Friedmacher, Florian; Takahashi, Toshiaki; Puri, Prem

    2016-02-01

    Prenatal mortality in newborn infants with congenital diaphragmatic hernia (CDH) has been attributed to increased amounts of liver hernia ion through the diaphragmatic defect. Antenatal studies in human and rodent fetus with CDH further demonstrated a contribution of the developing liver in the pathogenesis of CDH. The abnormal hepatic growth in experimental animal models, therefore, indicates a disruption of normal liver development in CDH. However, the underlying structural, histological and functional changes in the liver of animals with CDH remain unclear. We design this study to test the hypothesis that the morphological and cellular liver development is altered in the nitrogen-induced CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Livers and chest were harvested on D21 and divided into two groups: control (n = 8), nitrofen with CDH (CDH, n = 8). Haematoxylin-eosin (Straub et al. Histopathology 68:617-631, 2013) staining was performed to evaluate underlying morphological changes. Apoptosis was checked by using TUNEL staining and apoptotic cell number was counted on 16-16 slides in 25 fields by two independent viewers. Hepatic lipid droplet expressions were evaluated by hepatic adipose differentiation-related protein (ARDP) expression. Compared to controls markedly increased hypertrophy was seen in CDH group. Significantly increased apoptotic cell numbers were detected in CDH group compared to controls (5.1 ± 1.5 vs 2.1 ± 0.6) (p < 0.05). The relative mRNA expression levels of ARDP were significantly reduced in CDH group compared to controls. Immunohistochemistry showed markedly decreased hepatic ADRP immunoreactivity in CDH fetuses compared to controls. Our findings provide strong evidence of hepatic hypertrophy and increased cell apoptosis in the liver of nitrofen-induced CDH. These morphological changes may affect liver lipid droplet expression function.

  3. Hepatoprotective Effect and Synergism of Bisdemethoycurcumin against MCD Diet-Induced Nonalcoholic Fatty Liver Disease in Mice

    PubMed Central

    Lee, Young-Seob; Han, Sin-Hee; Ahn, Young-Sup; Cha, Seon-Woo; Seo, Yun-Soo; Kong, Ryong; Kwon, Dong-Yeul

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, has become one of the most common causes of chronic liver disease over the last decade in developed countries. NAFLD includes a spectrum of pathological hepatic changes, such as steatosis, steatohepatitis, advanced fibrosis, and cirrhosis. Bisdemethoxycurcumin (BDMC) is polyphenolic compounds with a diarylheptanoid skeleton, curcumin close analogues, which is derived from the Curcumae Longae Rhizoma. While the rich bioavailability research of curcumin, BDMC is the poor studies. We investigated whether BDMC has the hepatoprotective effect and combinatory preventive effect with silymarin on methionine choline deficient (MCD)-diet-induced NAFLD in C57BL/6J mice. C57BL/6J mice were divided into five groups of normal (normal diet without any treatment), MCD diet (MCD diet only), MCD + silymarin (SIL) 100 mg/kg group, MCD + BDMC 100 mg/kg group, MCD + SIL 50 mg/kg + BDMC 50 mg/kg group. Body weight, liver weight, liver function tests, histological changes were assessed and quantitative real-time polymerase chain reaction and Western blot analyses were conducted after 4 weeks. Mice lost body weight on the MCD-diet, but BDMC did not lose less than the MCD-diet group. Liver weights decreased from BDMC, but they increased significantly in the MCD-diet groups. All liver function test values decreased from the MCD-diet, whereas those from the BDMC increased significantly. The MCD- diet induced severe hepatic fatty accumulation, but the fatty change was reduced in the BDMC. The BDMC showed an inhibitory effect on liver lipogenesis by reducing associated gene expression caused by the MCD-diet. In all experiments, the combinations of BDMC with SIL had a synergistic effect against MCD-diet models. In conclusion, our findings indicate that BDMC has a potential suppressive effect on NAFLD. Therefore, our data suggest that BDMC may act as a novel and potent therapeutic agent against NAFLD. PMID:26881746

  4. Hepatoprotective Effect and Synergism of Bisdemethoycurcumin against MCD Diet-Induced Nonalcoholic Fatty Liver Disease in Mice.

    PubMed

    Kim, Sung-Bae; Kang, Ok-Hwa; Lee, Young-Seob; Han, Sin-Hee; Ahn, Young-Sup; Cha, Seon-Woo; Seo, Yun-Soo; Kong, Ryong; Kwon, Dong-Yeul

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, has become one of the most common causes of chronic liver disease over the last decade in developed countries. NAFLD includes a spectrum of pathological hepatic changes, such as steatosis, steatohepatitis, advanced fibrosis, and cirrhosis. Bisdemethoxycurcumin (BDMC) is polyphenolic compounds with a diarylheptanoid skeleton, curcumin close analogues, which is derived from the Curcumae Longae Rhizoma. While the rich bioavailability research of curcumin, BDMC is the poor studies. We investigated whether BDMC has the hepatoprotective effect and combinatory preventive effect with silymarin on methionine choline deficient (MCD)-diet-induced NAFLD in C57BL/6J mice. C57BL/6J mice were divided into five groups of normal (normal diet without any treatment), MCD diet (MCD diet only), MCD + silymarin (SIL) 100 mg/kg group, MCD + BDMC 100 mg/kg group, MCD + SIL 50 mg/kg + BDMC 50 mg/kg group. Body weight, liver weight, liver function tests, histological changes were assessed and quantitative real-time polymerase chain reaction and Western blot analyses were conducted after 4 weeks. Mice lost body weight on the MCD-diet, but BDMC did not lose less than the MCD-diet group. Liver weights decreased from BDMC, but they increased significantly in the MCD-diet groups. All liver function test values decreased from the MCD-diet, whereas those from the BDMC increased significantly. The MCD- diet induced severe hepatic fatty accumulation, but the fatty change was reduced in the BDMC. The BDMC showed an inhibitory effect on liver lipogenesis by reducing associated gene expression caused by the MCD-diet. In all experiments, the combinations of BDMC with SIL had a synergistic effect against MCD-diet models. In conclusion, our findings indicate that BDMC has a potential suppressive effect on NAFLD. Therefore, our data suggest that BDMC may act as a novel and potent therapeutic agent against NAFLD.

  5. Donor morbidity in right and left hemiliver living donor liver transplantation: the impact of graft selection and surgical innovation on donor safety.

    PubMed

    Iwasaki, Junji; Iida, Taku; Mizumoto, Masaki; Uemura, Tadahiro; Yagi, Shintaro; Hori, Tomohide; Ogawa, Kohei; Fujimoto, Yasuhiro; Mori, Akira; Kaido, Toshimi; Uemoto, Shinji

    2014-11-01

    This study investigated adequate liver graft selection for donor safety by comparing postoperative donor liver function and morbidity between the right and left hemilivers (RL and LL, respectively) of living donors. Between April 2006 and March 2012, RL (n = 168) and LL (n = 140) donor operations were performed for liver transplantation at Kyoto University Hospital. Postoperative hyperbilirubinemia and coagulopathy persisted in RL donors, whereas the liver function of LL donors normalized more rapidly. The overall complication rate of the RL donors was significantly higher than that of the LL donors (59.5% vs. 30.7%; P < 0.001). There were no significant differences in severe complications worse than Clavien grade IIIa or in biliary complication rates between the two donor groups. In April 2006, we introduced an innovative surgical procedure: hilar dissection preserving the blood supply to the bile duct during donor hepatectomy. Compared with our previous outcomes (1990-2006), the biliary complication rate of the RL donors decreased from 12.2% to 7.2%, and the severity of these complications was significantly lower. In conclusion, LL donors demonstrated good recovery in postoperative liver function and lower morbidity, and our surgical innovations reduced the severity of biliary complications in living donors. © 2014 Steunstichting ESOT.

  6. Hepatoprotective Effect of Citral on Acetaminophen-Induced Liver Toxicity in Mice

    PubMed Central

    Silva-Filho, Saulo Euclides; Cardia, Gabriel Fernando Esteves; Cremer, Edivaldo; Bersani-Amado, Ciomar Aparecida

    2017-01-01

    High doses of acetaminophen (APAP) lead to acute liver damage. In this study, we evaluated the effects of citral in a murine model of hepatotoxicity induced by APAP. The liver function markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and gamma-glutamyl transferase (γGT) were determined to evaluate the hepatoprotective effects of citral. The livers were used to determine myeloperoxidase (MPO) activity and nitric oxide (NO) production and in histological analysis. The effect of citral on leukocyte migration and antioxidant activity was evaluated in vitro. Citral pretreatment decreased significantly the levels of ALT, AST, ALP, and γGT, MPO activity, and NO production. The histopathological analysis showed an improvement of hepatic lesions in mice after citral pretreatment. Citral inhibited neutrophil migration and exhibited antioxidant activity. Our results suggest that citral protects the liver against liver toxicity induced by APAP. PMID:28717379

  7. Hepatoprotective Effect of Citral on Acetaminophen-Induced Liver Toxicity in Mice.

    PubMed

    Uchida, Nancy Sayuri; Silva-Filho, Saulo Euclides; Cardia, Gabriel Fernando Esteves; Cremer, Edivaldo; Silva-Comar, Francielli Maria de Souza; Silva, Expedito Leite; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2017-01-01

    High doses of acetaminophen (APAP) lead to acute liver damage. In this study, we evaluated the effects of citral in a murine model of hepatotoxicity induced by APAP. The liver function markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and gamma-glutamyl transferase ( γ GT) were determined to evaluate the hepatoprotective effects of citral. The livers were used to determine myeloperoxidase (MPO) activity and nitric oxide (NO) production and in histological analysis. The effect of citral on leukocyte migration and antioxidant activity was evaluated in vitro. Citral pretreatment decreased significantly the levels of ALT, AST, ALP, and γ GT, MPO activity, and NO production. The histopathological analysis showed an improvement of hepatic lesions in mice after citral pretreatment. Citral inhibited neutrophil migration and exhibited antioxidant activity. Our results suggest that citral protects the liver against liver toxicity induced by APAP.

  8. Saccharomyces boulardii Administration Changes Gut Microbiota and Attenuates D-Galactosamine-Induced Liver Injury.

    PubMed

    Yu, Lei; Zhao, Xue-Ke; Cheng, Ming-Liang; Yang, Guo-Zhen; Wang, Bi; Liu, Hua-Juan; Hu, Ya-Xin; Zhu, Li-Li; Zhang, Shuai; Xiao, Zi-Wen; Liu, Yong-Mei; Zhang, Bao-Fang; Mu, Mao

    2017-05-02

    Growing evidence has shown that gut microbiome is a key factor involved in liver health. Therefore, gut microbiota modulation with probiotic bacteria, such as Saccharomyces boulardii, constitutes a promising therapy for hepatosis. In this study, we aimed to investigate the protective effects of S. boulardii on D-Galactosamine-induced liver injury in mice. Liver function test and histopathological analysis both suggested that the liver injury can be effectively attenuated by S. boulardii administration. In the meantime, S. boulardii induced dramatic changes in the gut microbial composition. At the phylum level, we found that S. boulardii significantly increased in the relative abundance of Bacteroidetes, and decreased the relative abundance of Firmicutes and Proteobacteria, which may explain the hepatic protective effects of S. boulardii. Taken together, our results demonstrated that S. boulardii administration could change the gut microbiota in mice and alleviate acute liver failure, indicating a potential protective and therapeutic role of S. boulardii.

  9. The effects of daily supplementation of Dendrobium huoshanense polysaccharide on ethanol-induced subacute liver injury in mice by proteomic analysis.

    PubMed

    Wang, Xiao-Yu; Luo, Jian-Ping; Chen, Rui; Zha, Xue-Qiang; Wang, He

    2014-09-01

    Polysaccharides isolated from edible Dendrobium huoshanense have been shown to possess a hepatoprotection function for selenium- and carbon tetrachloride-induced liver injury. In this study, we investigated the preventive effects of daily supplementation with an homogeneous polysaccharide (DHP) purified from D. huoshanense on ethanol-induced subacute liver injury in mice and its potential mechanisms in liver protection by a proteomic approach. DHP was found to effectively depress the increased ratio of liver weight to body weight, reduce the elevated levels of serum aspartate aminotransferase, total cholesterol, total bilirubin and low density lipoprotein, and alleviate hepatic steatosis in mice with ethanol-induced subacute liver injury. Hepatic proteomics analysis performed by two-dimensional difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) revealed that cystathionine beta-synthase (Cbs) and D-lactate dehydrogenase (Ldhd) were two key proteins regulated by daily DHP intervention, which may assist in correcting the abnormal hepatic methionine metabolism pathway and decreasing the level of hepatic methylglyoxal generated from disordered metabolic pathways caused by ethanol. Our data suggest that DHP can protect liver function from alcoholic injury with complicated molecular mechanisms involving regulation of Cbs and Ldhd.

  10. The correlation between NK cell and liver function in patients with primary hepatocellular carcinoma.

    PubMed

    Sha, Wei Hong; Zeng, Xiao Hui; Min, Lu

    2014-05-01

    This study aimed to detect the expression of natural killer (NK) cell receptor natural killer group 2D (NKG2D) in the peripheral blood of patients with primary hepatocellular carcinoma and to discuss the correlation between NK cell cytotoxicity and liver function. The number of NK cells and the expression of NK cell receptor NKG2D in peripheral blood were determined by flow cytometry in patients with primary hepatocellular carcinoma, hepatitis B cirrhosis, chronic hepatitis B, and healthy controls. When compared with patients in the healthy and the chronic hepatitis B groups, the primary hepatocellular carcinoma group showed significant decreases in all parameters, including the cytotoxicity of NK cells on K562 cells, expression rate of NKG2D in NK cells, number of NKG2D(+) NK cells, expression level of NKG2D, and number of NK cells (p<0.05). The activity of NK cells showed a positive correlation, whereas the Child-Pugh scores in the primary hepatocellular carcinoma and the hepatitis B cirrhosis groups showed a negative correlation with all parameters detected above. The decrease of NK cell activity in patients with primary hepatocellular carcinoma is closely related to their lower expression of NKG2D. Liver function affects the expression of NKG2D and the activity of NK cells.

  11. Molecular adsorbent recirculating system dialysis in patients with acute liver failure who are assessed for liver transplantation.

    PubMed

    Camus, Christophe; Lavoué, Sylvain; Gacouin, Arnaud; Le Tulzo, Yves; Lorho, Richard; Boudjéma, Karim; Jacquelinet, Christian; Thomas, Rémi

    2006-11-01

    To assess the usefulness of dialysis with the molecular adsorbent recirculating system (MARS) in patients with acute liver failure who fulfil criteria for liver transplantation. Observational cohort study. ICU at a liver transplantation centre. Twenty-two patients (23 episodes) received MARS dialysis. They were either listed for LT (n=14), delayed (n=1), or not listed (contra-indication, n=7). A total of 56 MARS treatments (median per patient 2; mean duration 7.6+/-2.6h) were performed on haemodialysis. Clinical and biological variables were assessed before and 24[Symbol: see text]h after MARS therapy. The rate of recovery of liver function without transplantation was compared with an expected rate and survival was analysed. Following MARS dialysis, we observed an improvement in the grade of hepatic encephalopathy (P=0.02) and the Glasgow coma score (P=0.02), a decrease in conjugated bilirubin (P=0.05) and INR (P=0.006), and an increase in prothrombin index (P=0.005). Overall, liver function improved in seven patients (32%): four listed patients in whom transplantation could be avoided and three patients among those not listed due to contra-indications. The transplant-free recovery rate in listed patients was 29% (vs. expected 9%, P=0.036). Listed patients (n=14) had a higher 30-day survival rate [86% (12/14) vs 38% (3/8), P=0.05] and a higher long-term survival rate (P=0.02). A statistically significant improvement of liver function was observed after MARS therapy. Transplant-free recovery was more frequent than expected. The apparent benefit of MARS dialysis to treat acute liver failure needs to be confirmed by a controlled study.

  12. Low Platelet to White Blood Cell Ratio Indicates Poor Prognosis for Acute-On-Chronic Liver Failure.

    PubMed

    Jie, Yusheng; Gong, Jiao; Xiao, Cuicui; Zhu, Shuguang; Zhou, Wenying; Luo, Juan; Chong, Yutian; Hu, Bo

    2018-01-01

    Background. Platelet to white blood cell ratio (PWR) was an independent prognostic predictor for outcomes in some diseases. However, the prognostic role of PWR is still unclear in patients with hepatitis B related acute-on-chronic liver failure (ACLF). In this study, we evaluated the clinical performances of PWR in predicting prognosis in HBV-related ACLF. Methods. A total of 530 subjects were recruited, including 97 healthy controls and 433 with HBV-related ACLF. Liver function, prothrombin time activity (PTA), international normalized ratio (INR), HBV DNA measurement, and routine hematological testing were performed at admission. Results . At baseline, PWR in patients with HBV-related ACLF (14.03 ± 7.17) was significantly decreased compared to those in healthy controls (39.16 ± 9.80). Reduced PWR values were clinically associated with the severity of liver disease and the increased mortality rate. Furthermore, PWR may be an inexpensive, easily accessible, and significant independent prognostic index for mortality on multivariate analysis (HR = 0.660, 95% CI: 0.438-0.996, p = 0.048) as well as model for end-stage liver disease (MELD) score. Conclusions . The PWR values were markedly decreased in ACLF patients compared with healthy controls and associated with severe liver disease. Moreover, PWR was an independent prognostic indicator for the mortality rate in patients with ACLF. This investigation highlights that PWR comprised a useful biomarker for prediction of liver severity.

  13. Optical analysis of cirrhotic liver by near infrared time resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishio, Toshihiro; Kitai, Toshiyuki; Miwa, Mitsuharu; Takahashi, Rei; Yamaoka, Yoshio

    1999-10-01

    The severity of liver cirrhosis was related with the optical properties of liver tissue. Various grades of liver cirrhosis were produced in rats by intraperitoneal injection of thioacetamide (TAA) for different periods: 4 weeks, 8 weeks, 12 weeks, and 16 weeks. Optical properties of the liver, absorption, coefficient ((mu) a) and scattering coefficient (microsecond(s) '), were measured by near-infrared time- resolved spectroscopy. Histological examination confirmed cirrhotic changes in the liver, which were more severe in rats with TAA administration for longer periods. The (mu) a increased in 4- and 8-week rats, and then decreased in 12- and 16-week rats. The (mu) a of blood-free liver decreased as liver cirrhosis progressed. The hemoglobin content in the liver calculated from the (mu) a values increased in 4- and 8-week rats and decreased in 12- and 16-week rats. The microsecond(s) ' decreased in the cirrhotic liver, probably reflecting the decrease in the mitochondria content. It was shown that (mu) a and microsecond(s) ' determination is useful to assess the severity of liver cirrhosis.

  14. Caffeine intake decreases oxidative stress and inflammatory biomarkers in experimental liver diseases induced by thioacetamide: Biochemical and histological study.

    PubMed

    Amer, Mona G; Mazen, Nehad F; Mohamed, Ahmed M

    2017-03-01

    Liver disease remains a significant global health problem. Increased caffeine consumption has been associated with a lower prevalence of chronic liver disease. This study aimed to investigate the modifying effects of caffeine on liver injury induced by thioacetamide (TAA) administration in male rats and the possible underlying mechanisms. Forty adult male rats were equally classified into four groups: control group, received only tap water; caffeine-treated group, received caffeine (37.5 mg/kg per day); TAA-treated group, received intraperitoneal (i.p.) TAA (200 mg/kg b.w.) twice a week; and caffeine + TAA-treated group, received combined TAA and caffeine in the same previous doses. After eight weeks of treatment, blood samples were collected for biochemical analysis and liver specimens were prepared for histological and immunohistochemical studies and for assessment of oxidative stress. TAA induced liver toxicity with elevated liver enzymes and histological alterations, fatty changes, apoptosis, and fibrosis evidenced by increased immunohistochemical reaction to matrix metalloproteinase-9 (MMP-9) and collagen type IV in hepatocytes. Also, the levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in serum were significantly elevated. Co-treatment with caffeine and TAA restored normal liver structure and function. Caffeine provided an anti-fibrogenic, anti-inflammatory, and antioxidant effect that was associated with recovery of hepatic histological and functional alterations from TAA-induced hepatotoxicity.

  15. Hippo Cascade Controls Lineage Commitment of Liver Tumors in Mice and Humans.

    PubMed

    Zhang, Shanshan; Wang, Jingxiao; Wang, Haichuan; Fan, Lingling; Fan, Biao; Zeng, Billy; Tao, Junyan; Li, Xiaolei; Che, Li; Cigliano, Antonio; Ribback, Silvia; Dombrowski, Frank; Chen, Bin; Cong, Wenming; Wei, Lixin; Calvisi, Diego F; Chen, Xin

    2018-04-01

    Primary liver cancer consists mainly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). A subset of human HCCs expresses a ICC-like gene signature and is classified as ICC-like HCC. The Hippo pathway is a critical regulator of normal and malignant liver development. However, the precise function(s) of the Hippo cascade along liver carcinogenesis remain to be fully delineated. The role of the Hippo pathway in a murine mixed HCC/ICC model induced by activated forms of AKT and Ras oncogenes (AKT/Ras) was investigated. The authors demonstrated the inactivation of Hippo in AKT/Ras liver tumors leading to nuclear localization of Yap and TAZ. Coexpression of AKT/Ras with Lats2, which activates Hippo, or the dominant negative form of TEAD2 (dnTEAD2), which blocks Yap/TAZ activity, resulted in delayed hepatocarcinogenesis and elimination of ICC-like lesions in the liver. Mechanistically, Notch2 expression was found to be down-regulated by the Hippo pathway in liver tumors. Overexpression of Lats2 or dnTEAD2 in human HCC cell lines inhibited their growth and led to the decreased expression of ICC-like markers, as well as Notch2 expression. Altogether, this study supports the key role of the Hippo cascade in regulating the differentiation status of liver tumors. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Polyethylene glycol rinse solution: An effective way to prevent ischemia-reperfusion injury

    PubMed Central

    Zaouali, Mohamed Amine; Bejaoui, Mohamed; Calvo, Maria; Folch-Puy, Emma; Pantazi, Eirini; Pasut, Gianfranco; Rimola, Antoni; Ben Abdennebi, Hassen; Adam, René; Roselló-Catafau, Joan

    2014-01-01

    AIM: To test whether a new rinse solution containing polyethylene glycol 35 (PEG-35) could prevent ischemia-reperfusion injury (IRI) in liver grafts. METHODS: Sprague-Dawley rat livers were stored in University of Wisconsin preservation solution and then washed with different rinse solutions (Ringer’s lactate solution and a new rinse solution enriched with PEG-35 at either 1 or 5 g/L) before ex vivo perfusion with Krebs-Heinseleit buffer solution. We assessed the following: liver injury (transaminase levels), mitochondrial damage (glutamate dehydrogenase activity), liver function (bile output and vascular resistance), oxidative stress (malondialdehyde), nitric oxide, liver autophagy (Beclin-1 and LCB3) and cytoskeleton integrity (filament and globular actin fraction); as well as levels of metalloproteinases (MMP2 and MMP9), adenosine monophosphate-activated protein kinase (AMPK), heat shock protein 70 (HSP70) and heme oxygenase 1 (HO-1). RESULTS: When we used the PEG-35 rinse solution, reduced hepatic injury and improved liver function were noted after reperfusion. The PEG-35 rinse solution prevented oxidative stress, mitochondrial damage, and liver autophagy. Further, it increased the expression of cytoprotective heat shock proteins such as HO-1 and HSP70, activated AMPK, and contributed to the restoration of cytoskeleton integrity after IRI. CONCLUSION: Using the rinse solution containing PEG-35 was effective for decreasing liver graft vulnerability to IRI. PMID:25473175

  17. Protective Effect of Zingiber Officinale against CCl4-Induced Liver Fibrosis Is Mediated through Downregulating the TGF-β1/Smad3 and NF-ĸB/IĸB Pathways.

    PubMed

    Hasan, Iman H; El-Desouky, M A; Hozayen, Walaa G; Abd el Aziz, Ghada M

    2016-01-01

    No ideal hepatoprotective agents are available in modern medicine to effectively prevent liver disorders. In this study, we aimed at evaluating the potential of Zingiber officinale in the regression of liver fibrosis and its underlining mechanism of action. To induce liver fibrosis, male Wistar rats received CCl4 (2 ml/kg/2 times/week; i.p.), with and without 300 or 600 mg/kg Z. officinale extract daily through oral gavage. To assess the protective effect of Z. officinale, liver function parameters, histopathology, inflammatory markers and gene expression of transforming growth factor-beta 1 (TGF-β1)/Smad3 and nuclear factor-kappa B (NF-ĸB)/IĸB pathways were analyzed. Results demonstrate that Z. officinale extract markedly prevented liver injury as evident by the decreased liver marker enzymes. Concurrent administration of Z. officinale significantly protected against the CCl4-induced inflammation as showed by the decreased pro-inflammatory cytokine levels as well as the downregulation of the NF-ĸB)/IĸB and TGF-β1/Smad3 pathways in CCl4-administered rats. In conclusion, our study provides evidence that the protective effect of Z. officinale against rat liver fibrosis could be explained through its ability to modulate the TGF-β1/Smad3 and NF-ĸB)/IĸB signaling pathways. © 2015 S. Karger AG, Basel.

  18. Serum bile acid concentrations in dairy cattle with hepatic lipidosis.

    PubMed

    Garry, F B; Fettman, M J; Curtis, C R; Smith, J A

    1994-01-01

    This study was designed to evaluate serum bile acid measurements as indicatory, of liver function and/or hepatic fat infiltration in dairy cattle. Serum bile acid concentrations were measured in healthy dairy cattle at different stages of lactation after fasting or feeding. Bile acid concentrations were compared with liver fat content and sulfobromophthalein (BSP) half-life (T 1/2). Serum bile acid concentrations were higher in cows in early lactation and with higher daily milk production. Compared with prefasting values, bile acid concentrations were decreased at 8, 14, and 24 hours of fasting. Blood samples from fed cows at 1- to 2-hour intervals had wide and inconsistent variations in bile acid concentration. Because serum bile acids correlated well with BSP T 1/2, it is suggested that both measurements evaluate a similar aspect of liver function. Neither bile acids nor BSP T 1/2 correlated with differences in liver fat content among cows. Because of large variability in serum bile acid concentrations in fed cows and the lack of correlation of measured values with liver fat content, bile acid determinations do not appear useful for showing changes in hepatic function in fed cows with subclinical hepatic lipidosis nor serve as a screening test for this condition.

  19. Low-dose oral rapamycin treatment reduces fibrogenesis, improves liver function, and prolongs survival in rats with established liver cirrhosis.

    PubMed

    Neef, Markus; Ledermann, Monika; Saegesser, Hans; Schneider, Vreni; Reichen, Juerg

    2006-12-01

    Mammalian target of rapamycin (mTOR) signalling is central in the activation of hepatic stellate cells (HSCs), the key source of extracellular matrix (ECM) in fibrotic liver. We tested the therapeutic potential of the mTOR inhibitor rapamycin in advanced cirrhosis. Cirrhosis was induced by bile duct-ligation (BDL) or thioacetamide injections (TAA). Rats received oral rapamycin (0.5 mg/kg/day) for either 14 or 28 days. Untreated BDL and TAA-rats served as controls. Liver function was quantified by aminopyrine breath test. ECM and ECM-producing cells were quantified by morphometry. MMP-2 activity was measured by zymography. mRNA expression of procollagen-alpha1, transforming growth factor-beta1 (TGF-beta1) and beta2 was quantified by RT-PCR. Fourteen days of rapamycin improved liver function. Accumulation of ECM was decreased together with numbers of activated HSCs and MMP-2 activity in both animal models. TGF-beta1 mRNA was downregulated in TAA, TGF-beta2 mRNA was downregulated in BDL. 28 days of rapamycin treatment entailed a survival advantage of long-term treated BDL-rats. Low-dose rapamycin treatment is effectively antifibrotic and attenuates disease progression in advanced fibrosis. Our results warrant the clinical evaluation of rapamycin as an antifibrotic drug.

  20. Parkin regulates mitophagy and mitochondrial function to protect against alcohol-induced liver injury and steatosis in mice

    PubMed Central

    Williams, Jessica A.; Ni, Hong-Min; Ding, Yifeng

    2015-01-01

    Alcoholic liver disease claims two million lives per year. We previously reported that autophagy protected against alcohol-induced liver injury and steatosis by removing damaged mitochondria. However, the mechanisms for removal of these mitochondria are unknown. Parkin is an evolutionarily conserved E3 ligase that is recruited to damaged mitochondria to initiate ubiquitination of mitochondrial outer membrane proteins and subsequent mitochondrial degradation by mitophagy. In addition to its role in mitophagy, Parkin has been shown to have other roles in maintaining mitochondrial function. We investigated whether Parkin protected against alcohol-induced liver injury and steatosis using wild-type (WT) and Parkin knockout (KO) mice treated with alcohol by the acute-binge and Gao-binge (chronic plus acute-binge) models. We found that Parkin protected against liver injury in both alcohol models, likely because of Parkin's role in maintaining a population of healthy mitochondria. Alcohol caused greater mitochondrial damage and oxidative stress in Parkin KO livers compared with WT livers. After alcohol treatment, Parkin KO mice had severely swollen and damaged mitochondria that lacked cristae, which were not seen in WT mice. Furthermore, Parkin KO mice had decreased mitophagy, β-oxidation, mitochondrial respiration, and cytochrome c oxidase activity after acute alcohol treatment compared with WT mice. Interestingly, liver mitochondria seemed able to adapt to alcohol treatment, but Parkin KO mouse liver mitochondria had less capacity to adapt to Gao-binge treatment compared with WT mouse liver mitochondria. Overall, our findings indicate that Parkin is an important mediator of protection against alcohol-induced mitochondrial damage, steatosis, and liver injury. PMID:26159696

  1. Abate Cytochrome C induced apoptosome to protect donor liver against ischemia reperfusion injury on rat liver transplantation model.

    PubMed

    Zhuang, Zhuonan; Lian, Peilong; Wu, Xiaojuan; Shi, Baoxu; Zhuang, Maoyou; Zhou, Ruiling; Zhao, Rui; Zhao, Zhen; Guo, Sen; Ji, Zhipeng; Xu, Kesen

    2016-01-01

    Aim of this study is to protect donor liver against ischemia-reperfusion injury by abating Cytochrome C induced apoptosome on rat model. A total of 25 clean SD inbred male rats were used in this research. The rats in ischemia-reperfusion injury group (I/R group, n=5) were under liver transplantation operation; rats in dichloroacetate diisopropylamine group (DADA group, n=5) were treated DADA before liver transplantation; control group (Ctrl group, n=5); other 10 rats were used to offer donor livers. In DADA therapy group, Cytochrome C expression in donor hepatocellular cytoplasm was detected lower than that in I/R group. And the Cytochrome C induced apoptosome was also decreased in according to the lower expressions of Apaf-1 and Caspase3. Low level of cleaved PARP expression revealed less apoptosis in liver tissue. The morphology of donor liver mitochondria in DADA group was observed to be slightly edema but less than I/R group after operation 12 h. The liver function indexes of ALT and AST in serum were tested, and the results in DADA group showed it is significantly lower than I/R group after operation 12 h. The inflammation indexes of IL-6 and TNF-α expressions in DADA group were significantly lower than that in I/R group after operation 24 h. The dichloroacetate diisopropylamine treatment could protect the hepatocellular mitochondria in case of the spillage of Cytochrome C induced apoptosome, and protect the liver against ischemia-reperfusion injury. Thus, it may be a method to promote the recovery of donor liver function after transplantation.

  2. Two-stage liver transplantation using auxiliary laparoscopically harvested grafts in adults: Emphasizing the concept of "hypersmall graft nursing".

    PubMed

    Scatton, Olivier; Cauchy, François; Conti, Filomena; Perdigao, Fabiano; Massault, Pierre Philippe; Goumard, Claire; Soubrane, Olivier

    2016-11-01

    Living donor liver transplantation is limited by the donor's risk in case of right liver donation and by the risk of small-for-size syndrome on the recipient in case of left lobe transplantation. This study aimed at evaluating the feasibility and results of two-stage liver transplantation using auxiliary hyper small grafts harvested laparoscopically and discussing relevant technical insights and issues that still need to be overcome. Retrospective analysis involving two patients operated at a tertiary referral center. The recipients underwent left lateral sectionectomy and then auxillary liver transplantation using laparoscopically harvested left lateral section. The native right liver was transiently left in place to sustain the initially small functional graft functional during its hypertrophy. No donor experienced postoperative complication. After 7days, the hypertrophy rate was 112% (105-120). Doppler assessments during the first two postoperative weeks showed progressive portal vein inflow decrease in the right native livers and portal vein inflow increase in the grafts. Liver biopsies on postoperative day 7 showed no lesion of overperfusion. No recipient experienced liver failure or small-for-size syndrome. Second stage hepatectomy of the native liver was undertaken in one patient. In the other patient, biliary stenosis on postoperative day 30 precluded second stage hepatectomy. This patient required retransplantation after one year. The current strategy increases donor safety and may allow increasing the pool of available grafts. Refinements in the management of the native right liver are however required to improve the feasibility rate of this strategy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Decreased Genetic Dosage of Hepatic Yin Yang 1 Causes Diabetic-Like Symptoms

    PubMed Central

    Verdeguer, Francisco; Blättler, Sharon M.; Cunningham, John T.; Hall, Jessica A.; Chim, Helen

    2014-01-01

    Insulin sensitivity in liver is characterized by the ability of insulin to efficiently inhibit glucose production and fatty acid oxidation as well as promote de novo lipid biosynthesis. Specific dysregulation of glucose and lipid metabolism in liver is sufficient to cause insulin resistance and type 2 diabetes; this is seen by a selective inability of insulin to suppress glucose production while remaining insulin-sensitive to de novo lipid biosynthesis. We have previously shown that the transcription factor Yin Yang 1 (YY1) controls diabetic-linked glucose and lipid metabolism gene sets in skeletal muscle, but whether liver YY1-targeted metabolic genes impact a diabetic phenotype is unknown. Here we show that decreased genetic dosage of YY1 in liver causes insulin resistance, hepatic lipid accumulation, and dyslipidemia. Indeed, YY1 liver-specific heterozygous mice exhibit blunted activation of hepatic insulin signaling in response to insulin. Mechanistically, YY1, through direct recruitment to promoters, functions as a suppressor of genes encoding for metabolic enzymes of the gluconeogenic and lipogenic pathways and as an activator of genes linked to fatty acid oxidation. These counterregulatory transcriptional activities make targeting hepatic YY1 an attractive approach for treating insulin-resistant diabetes. PMID:24467246

  4. Long-term pathological and immunohistochemical features in the liver after intraoperative whole-liver irradiation in rats.

    PubMed

    Imaeda, Masumi; Ishikawa, Hitoshi; Yoshida, Yukari; Takahashi, Takeo; Ohkubo, Yu; Musha, Atsushi; Komachi, Mayumi; Nakazato, Yoichi; Nakano, Takashi

    2014-07-01

    Radiation therapy (RT) has become particularly important recently for treatment of liver tumors, but there are few experimental investigations pertaining to radiation-induced liver injuries over long-term follow-up periods. Thus, the present study examined pathological liver features over a 10-month period using an intraoperative whole-liver irradiation model. Liver function tests were performed in blood samples, whereas cell death, cell proliferation, and fibrotic changes were evaluated pathologically in liver tissues, which were collected from irradiated rats 24 h, 1, 2, 4 and 40 weeks following administration of single irradiation doses of 0 (control), 15 or 30 Gy. The impaired liver function, increased hepatocyte number, and decreased apoptotic cell proportion observed in the 15 Gy group, but not the 30 Gy group, returned to control group levels after 40 weeks; however, the Ki-67 indexes in the 15 Gy group were still higher than those in the control group after 40 weeks. Azan staining showed a fibrotic pattern in the irradiated liver in the 30 Gy group only, but the expression levels of alpha smooth muscle actin (α-SMA) and transforming growth factor-beta 1 (TGF-β1) in both the 15 and 30 Gy groups were significantly higher than those in the control group (P < 0.05). There were differences in the pathological features of the irradiated livers between the 15 Gy and 30 Gy groups, but TGF-β1 and α-SMA expression patterns supported the gradual progression of radiation-induced liver fibrosis in both groups. These findings will be useful in the future development of protective drugs for radiation-induced liver injury. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  5. Cilostazol attenuates cholestatic liver injury and its complications in common bile duct ligated rats.

    PubMed

    Abdel Kawy, Hala S

    2015-04-05

    Cilostazol is a phosphodiesterase III inhibitor increases adenosine 3', 5'-cyclic monophosphate (cyclic AMP) level which inhibits hepatic stellate cell activation. Its pharmacological effects include vasodilation, inhibition of vascular smooth muscle cell growth, inhibition of platelet activation and aggregation. The aim of the current study was to determine the effects of early administration of low dose cilostazol on cholestatic liver injury induced by common bile duct ligation (CBDL) in rat. Male Wistar rats (180-200g) were divided into three groups: Group A; simple laparotomy group (sham). Group B; CBDL, Group C; CBDL rats treated with cilostazol (9mg/kg daily for 21 days). Six rats from each group were killed by the end of weeks one and three after surgery, livers and serum were collected for biochemical and histopathological studies. Aspartate aminotransferase, alanine aminotransferase, gama glutamyl transferase, alkaline phosphatase and total bilirubin serum levels decreased in the cilostazol treated rats, when compared with CBDL rats. The hepatic levels of tumor necrosis factor-alpha, transforming growth factor-beta, and platelet derived growth factor-B were significantly lower in cilostazol treated rats than that in CBDL rats. Cilostazol decreased vascular endothelial growth factor level and hemoglobin content in the livers. Cilostazol significantly lowered portal pressure, inhibited ductular proliferation, portal inflammation, hepatic fibrosis and decreased hepatic hydroxyproline contents. Administration of cilostazol in CBDL rats improved hepatic functions, decreased ductular proliferation, ameliorated portal inflammation, lowered portal hypertension and reduced fibrosis. These effects of cilostazol may be useful in the attenuation of liver injury in cholestasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Methylprednisolone therapy in deceased donors reduces inflammation in the donor liver and improves outcome after liver transplantation: a prospective randomized controlled trial.

    PubMed

    Kotsch, Katja; Ulrich, Frank; Reutzel-Selke, Anja; Pascher, Andreas; Faber, W; Warnick, P; Hoffman, S; Francuski, M; Kunert, C; Kuecuek, O; Schumacher, G; Wesslau, C; Lun, A; Kohler, S; Weiss, S; Tullius, S G; Neuhaus, P; Pratschke, Johann

    2008-12-01

    To investigate potential beneficial effects of donor treatment with methylprednisolone on organ function and outcome after liver transplantation. It is proven experimentally and clinically that the brain death of the donor leads to increased levels of inflammatory cytokines and is followed by an intensified ischemia/reperfusion injury after organ transplantation. In experiments, donor treatment with steroids successfully diminished these effects and led to better organ function after transplantation. To investigate whether methylprednisolone treatment of the deceased donor is applicable to attenuate brain death-associated damage in clinical liver transplantation we conducted a prospective randomized treatment-versus-control study in 100 deceased donors. Donor treatment (n = 50) consisted of 250 mg methylprednisolone at the time of consent for organ donation and a subsequent infusion of 100 mg/h until recovery of organs. A liver biopsy was taken immediately after laparotomy and blood samples were obtained after brain death diagnosis and before organ recovery. Cytokines were assessed by real-time reverse transcriptase-polymerase chain reaction. Soluble serum cytokines were measured by cytometric bead array system. After methylprednisolone treatment, steroid plasma levels were significantly higher (P < 0.05), and a significant decrease in soluble interleukins, monocyte chemotactic protein-1, interleukin-2, interleukin-6, tumor necrosis factor-alpha, and inducible protein-10 was observed. Methylprednisolone treatment resulted in a significant downregulation of intercellular adhesion molecule-1, tumor necrosis factor-alpha, major histocompatibility complex class II, Fas-ligand, inducible protein-10, and CD68 intragraft mRNA expression. Significantly ameliorated ischemia/reperfusion injury in the posttransplant course was accompanied by a decreased incidence of acute rejection. Our present study verifies the protective effect of methylprednisolone treatment in deceased donor liver transplantation, suggesting it as a potential therapeutical approach.

  7. Nilotinib counteracts thioacetamide-induced hepatic oxidative stress and attenuates liver fibrosis progression.

    PubMed

    Shaker, Mohamed E; Salem, Hatem A; Shiha, Gamal E; Ibrahim, Tarek M

    2011-04-01

    The aim of this study was to evaluate and compare the effects of imatinib and nilotinib to that of silymarin on established liver fibrosis and oxidative stress in a thioacetamide (TAA) rat model. Male Wistar rats received intraperitoneal (i.p.) injections of TAA (150mg/kg, twice weekly) for 12weeks. Daily treatments with imatinib (10mg/kg), nilotinib (10mg/kg), and silymarin (100mg/kg) were administered orally during the last 4weeks of TAA-administration. At the end of the study, hepatic damage was evaluated by analysis of liver function tests in serum. Hepatic histopathology and collagen content were employed to quantify liver fibrosis. Hepatic oxidative stress was assessed by measuring malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), total nitrate/nitrite (NOx), and reduced glutathione (GSH) contents, as well as myeloperoxidase (MPO) and superoxide dismutase (SOD) activities. Nilotinib, silymarin and, to a lesser extent, imatinib treatments ameliorated TAA-induced hepatic oxidative stress and damage as indicated by hepatic MDA, 4-HNE, NOx, GSH, MPO and SOD levels, as well as liver function tests. Hepatic histopathology results revealed that nilotinib, imatinib, and silymarin treatments decreased the mean score of fibrosis in TAA-treated rats by 24, 14, and 3%, respectively. However, nilotinib and silymarin, but not imatinib, treatments decreased hepatic collagen content in TAA-treated rats by 17 and 36%, respectively. In conclusion, we demonstrated for the first time that nilotinib not only protected against hepatic oxidative stress, but also slowed down liver fibrosis progression. Thus, we provide the first evidence that nilotinib might be a promising anti-fibrotic drug. © 2010 The Authors Fundamental and Clinical Pharmacology © 2010 Société Française de Pharmacologie et de Thérapeutique.

  8. Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straub, Adam C.; Stolz, Donna B.; Vin, Harina

    2007-08-01

    The vascular effects of arsenic in drinking water are global health concerns contributing to human disease worldwide. Arsenic targets the endothelial cells lining blood vessels, and endothelial cell activation or dysfunction may underlie the pathogenesis of both arsenic-induced vascular diseases and arsenic-enhanced tumorigenesis. The purpose of the current studies was to demonstrate that exposing mice to drinking water containing environmentally relevant levels of arsenic promoted endothelial cell dysfunction and pathologic vascular remodeling. Increased angiogenesis, neovascularization, and inflammatory cell infiltration were observed in Matrigel plugs implanted in C57BL/6 mice following 5-week exposures to 5-500 ppb arsenic [Soucy, N.V., Mayka, D., Klei,more » L.R., Nemec, A.A., Bauer, J.A., Barchowsky, A., 2005. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc.Toxicol 5, 29-42]. Therefore, functional in vivo effects of arsenic on endothelial cell function and vessel remodeling in an endogenous vascular bed were investigated in the liver. Liver sinusoidal endothelial cells (LSEC) became progressively defenestrated and underwent capillarization to decrease vessel porosity following exposure to 250 ppb arsenic for 2 weeks. Sinusoidal expression of PECAM-1 and laminin-1 proteins, a hallmark of capillarization, was also increased by 2 weeks of exposure. LSEC caveolin-1 protein and caveolae expression were induced after 2 weeks of exposure indicating a compensatory change. Likewise, CD45/CD68-positive inflammatory cells did not accumulate in the livers until after LSEC porosity was decreased, indicating that inflammation is a consequence and not a cause of the arsenic-induced LSEC phenotype. The data demonstrate that the liver vasculature is an early target of pathogenic arsenic effects and that the mouse liver vasculature is a sensitive model for investigating vascular health effects of arsenic.« less

  9. Beta-catenin regulates vitamin C biosynthesis and cell survival in murine liver.

    PubMed

    Nejak-Bowen, Kari N; Zeng, Gang; Tan, Xinping; Cieply, Benjamin; Monga, Satdarshan P

    2009-10-09

    Because the Wnt/beta-catenin pathway plays multiple roles in liver pathobiology, it is critical to identify gene targets that mediate such diverse effects. Here we report a novel role of beta-catenin in controlling ascorbic acid biosynthesis in murine liver through regulation of expression of regucalcin or senescence marker protein 30 and L-gulonolactone oxidase. Reverse transcription-PCR, Western blotting, and immunohistochemistry demonstrate decreased regucalcin expression in beta-catenin-null livers and greater expression in beta-catenin overexpressing transgenic livers, HepG2 hepatoma cells (contain constitutively active beta-catenin), regenerating livers, and in hepatocellular cancer tissues that exhibit beta-catenin activation. Interestingly, coprecipitation and immunofluorescence studies also demonstrate an association of beta-catenin and regucalcin. Luciferase reporter and chromatin immunoprecipitation assays verified a functional TCF-4-binding site located between -163 and -157 (CTTTGCA) on the regucalcin promoter to be critical for regulation by beta-catenin. Significantly lower serum ascorbate levels were observed in beta-catenin knock-out mice secondary to decreased expression of regucalcin and also of L-gulonolactone oxidase, the penultimate and last (also rate-limiting) steps in the synthesis of ascorbic acid, respectively. These mice also show enhanced basal hepatocyte apoptosis. To test if ascorbate deficiency secondary to beta-catenin loss and regucalcin decrease was contributing to apoptosis, beta-catenin-null hepatocytes or regucalcin small interfering RNA-transfected HepG2 cells were cultured, which exhibited significant apoptosis that was alleviated by the addition of ascorbic acid. Thus, through regucalcin and L-gulonolactone oxidase expression, beta-catenin regulates vitamin C biosynthesis in murine liver, which in turn may be one of the mechanisms contributing to the role of beta-catenin in cell survival.

  10. Age-dependent changes of the antioxidant system in rat livers are accompanied by altered MAPK activation and a decline in motor signaling

    PubMed Central

    Yang, Wei; Burkhardt, Britta; Fischer, Luise; Beirow, Maja; Bork, Nadja; Wönne, Eva C.; Wagner, Cornelia; Husen, Bettina; Zeilinger, Katrin; Liu, Liegang; Nussler, Andreas K.

    2015-01-01

    Aging is characterized by a progressive decrease of cellular functions, because cells gradually lose their capacity to respond to injury. Increased oxidative stress is considered to be one of the major contributors to age-related changes in all organs including the liver. Our study has focused on elucidating whether important antioxidative enzymes, the mTOR pathway, and MAPKs exhibit age-dependent changes in the liver of rats during aging. We found an age-dependent increase of GSH in the cytosol and mitochondria. The aged liver showed an increased SOD enzyme activity, while the CAT enzyme activity decreased. HO-1 and NOS-2 gene expression was lower in adult rats, but up-regulated in aged rats. Western blot analysis revealed that SOD1, SOD2, GPx, GR, γ-GCL, and GSS were age-dependent up-regulated, while CAT remained constant. We also demonstrated that the phosphorylation of Akt, JNK, p38, and TSC2Ser1254 decreased while ERK1/2 and TSC2Thr1462 increased age-dependently. Furthermore, our data show that the mTOR pathway seems to be activated in livers of aged rats, and hence stimulating cell proliferation/regeneration, as confirmed by an age-dependent increase of PCNA and p-eIF4ESer209 protein expression. Our data may help to explain the fact that liver cells only proliferate in cases of necessity, like injury and damage. In summary, we have demonstrated that, age-dependent changes of the antioxidant system and stress-related signaling pathways occur in the livers of rats, which may help to better understand organ aging. PMID:27004051

  11. Liver-specific GH receptor gene-disrupted (LiGHRKO) mice have decreased endocrine IGF-I, increased local IGF-I, and altered body size, body composition, and adipokine profiles.

    PubMed

    List, Edward O; Berryman, Darlene E; Funk, Kevin; Jara, Adam; Kelder, Bruce; Wang, Feiya; Stout, Michael B; Zhi, Xu; Sun, Liou; White, Thomas A; LeBrasseur, Nathan K; Pirtskhalava, Tamara; Tchkonia, Tamara; Jensen, Elizabeth A; Zhang, Wenjuan; Masternak, Michal M; Kirkland, James L; Miller, Richard A; Bartke, Andrzej; Kopchick, John J

    2014-05-01

    GH is an important regulator of body growth and composition as well as numerous other metabolic processes. In particular, liver plays a key role in the GH/IGF-I axis, because the majority of circulating "endocrine" IGF-I results from GH-stimulated liver IGF-I production. To develop a better understanding of the role of liver in the overall function of GH, we generated a strain of mice with liver-specific GH receptor (GHR) gene knockout (LiGHRKO mice). LiGHRKO mice had a 90% decrease in circulating IGF-I levels, a 300% increase in circulating GH, and significant changes in IGF binding protein (IGFBP)-1, IGFBP-2, IGFBP-3, IGFBP-5, and IGFBP-7. LiGHRKO mice were smaller than controls, with body length and body weight being significantly decreased in both sexes. Analysis of body composition over time revealed a pattern similar to those found in GH transgenic mice; that is, LiGHRKO mice had a higher percentage of body fat at early ages followed by lower percentage of body fat in adulthood. Local IGF-I mRNA levels were significantly increased in skeletal muscle and select adipose tissue depots. Grip strength was increased in LiGHRKO mice. Finally, circulating levels of leptin, resistin, and adiponectin were increased in LiGHRKO mice. In conclusion, LiGHRKO mice are smaller despite increased local mRNA expression of IGF-I in several tissues, suggesting that liver-derived IGF-I is indeed important for normal body growth. Furthermore, our data suggest that novel GH-dependent cross talk between liver and adipose is important for regulation of adipokines in vivo.

  12. [EFFECT OF ACETYLCYSTEINE, CORVITIN AND THEIR COMBINATION ON THE FUNCTIONAL STATE OF LIVER IN RATS WITH PARACETAMOL INDUCED TOXIC HEPATITIS].

    PubMed

    Ghonghadze, M; Antelava, N; Liluashvili, K; Okujava, M; Pachkoria, K

    2017-02-01

    Nowadays drug-induced hepatotoxicity is urgent problem worldwide. Currently more than 1000 drugs are hepatotoxic and most often are the reason of acute fulminant hepatitis and hepatocellular failure, the states requiring liver transplantation. The paracetamol induced liver toxicity is related with accumulation of its toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), which is the free radical and enhances peroxidation of lipids, disturbs the energy status and causes death of hepatocytes. During our research we investigated and assessed the efficacy of acetylcysteine, corvitin and their combination in rat model of paracetamol induced acute toxic hepatitis. The study was performed on mature white male Wistar rates with body mass 150-180 g. 50 rats were randomly divided into 5 groups (10 rats in each group). To get the model of acute toxic hepatitis single intraperitoneal injection of paracetamol solution was used (750 mg/kg). Toxic hepatitis was treated with intrapertoneal administration of 40mg/kg acetylcysteine or 100mg/kg corvitin, as well as with combination of these drugs. Monotherapy with acetylcysteine and corvitin of paracetamol induced toxic hepatitis improved the liver function, decreased relative mass of the liver and animal mortality. The treatment of toxic hepatitis was most effective in the case of simultaneous administration of acetylcysteine and corvitin. The normal value of laboratory tests (ALT, ACT, alkaline phosphatase, total and unconjugated bilirubin) was reached and mortality was not more observed. On the bases of obtained data was concluded that acetylcysteine and corvitin have almost equal hepatoprotective activity. The combination of two drugs actually improves the liver function. The most pronounced hepatoprotective effect may be due to synergic action of acetylcysteine and corvitin and such regime can be recommended for correction of liver function.

  13. [Effects of bemethyl, ethomersol, and yakton on the liver regeneration after partial hepatectomy].

    PubMed

    Gaĭvoronskaia, V V; Okovityĭ, S V; Shustov, E B; Smirnov, A V

    2000-01-01

    It is experimentally demonstrated for the first time that the new drugs bemithyl, etomerzol, and yakton are capable of accelerating the process of liver regeneration following partial hepatectomy. The drugs produce a hasty gain in the mass of liver, increase in the content of nucleic acids and glycogen, and improve the functional state, as manifested by a decrease in the blood bilirubin and a reduction in the hexenal sleep duration. Bemithyl, etomerzol, and yakton produce a positive effect upon the liver morphology and the intracellular regeneration process. The repair activity of the new drugs exceeds that of a combination of the well-known regeneration stimulants riboxin and potassium orotate, representing derivatives of purine and pyrimidine bases.

  14. Development of a fluorescence-based in vivo phagocytosis assay to measure mononuclear phagocyte system function in the rat.

    PubMed

    Tartaro, Karrie; VanVolkenburg, Maria; Wilkie, Dean; Coskran, Timothy M; Kreeger, John M; Kawabata, Thomas T; Casinghino, Sandra

    2015-01-01

    The mononuclear phagocyte system (MPS) which provides protection against infection is made up of phagocytic cells that engulf and digest bacteria or other foreign substances. Suppression of the MPS may lead to decreased clearance of pathogenic microbes. Drug delivery systems and immunomodulatory therapeutics that target phagocytes have a potential to inhibit MPS function. Available methods to measure inhibition of MPS function use uptake of radioactively-labeled cells or labor-intensive semi-quantitative histologic techniques. The objective of this work was to develop a non-radioactive quantitative method to measure MPS function in vivo by administering heat-killed E. coli conjugated to a pH-sensitive fluorescent dye (Bioparticles(®)). Fluorescence of the Bioparticles(®) is increased at low pH when they are in phagocytic lysosomes. The amount of Bioparticles(®) phagocytosed by MPS organs in rats was determined by measuring fluorescence intensity in livers and spleens ex vivo using an IVIS(®) Spectrum Pre-clinical In Vivo Imaging System. Phagocytosis of the particles by peripheral blood neutrophils was measured by flow cytometry. To assess method sensitivity, compounds likely to suppress the MPS [clodronate-containing liposomes, carboxylate-modified latex particles, maleic vinyl ether (MVE) polymer] were administered to rats prior to injection of the Bioparticles(®). The E. coli particles consistently co-localized with macrophage markers in the liver but not in the spleen. All of the compounds tested decreased phagocytosis in the liver, but had no consistent effects on phagocytic activity in the spleen. In addition, administration of clodronate liposomes and MVE polymer increased the percentage of peripheral blood neutrophils that phagocytosed the Bioparticles(®). In conclusion, an in vivo rat model was developed that measures phagocytosis of E. coli particles in the liver and may be used to assess the impact of test compounds on MPS function. Still, the detection of inhibition of splenic macrophage function will require further assay development.

  15. Cultured mycelium Cordyceps sinensis protects liver sinusoidal endothelial cells in acute liver injured mice.

    PubMed

    Peng, Yuan; Chen, Qian; Yang, Tao; Tao, Yanyan; Lu, Xiong; Liu, Chenghai

    2014-03-01

    Cultured mycelium Cordyceps sinensis (CMCS) was widely used for a variety of diseases including liver injury, the current study aims to investigate the protective effects of CMCS on liver sinusoidal endothelial cells (LSECs) in acute injury liver and related action mechanisms. The mice were injected intraperitoneally with lipopolysaccharide (LPS) and D-galactosamine (D-GalN). 39 male BABL/c mice were randomly divided into four groups: normal control, model control, CMCS treatment and 1,10-phenanthroline treatment groups. The Serum liver function parameters including alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were assayed with the commercial kit. The inflammation and scaffold structure in liver were stained with hematoxylin and eosin and silver staining respectively. The LSECs and sub-endothelial basement membrane were observed with the scanning and transmission electronic microscope. The protein expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in liver were analyzed with Western blotting. Expression of von Willebrand factor (vWF) was investigated with immunofluorescence staining. The lipid peroxidation indicators including antisuperoxideanion (ASAFR), hydroxyl free radical (·OH), superoxide dismutase (SOD), malondialdehyde and glutathione S-transferase (GST) were determined with kits, and matrix metalloproteinase-2 and 9 (MMP-2/9) activities in liver were analyzed with gelatin zymography and in situ fluorescent zymography respectively. The model mice had much higher serum levels of ALT and AST than the normal mice. Compared to that in the normal control, more severe liver inflammation and hepatocyte apoptosis, worse hepatic lipid peroxidation demonstrated by the increased ASAFR, ·OH and MDA, but decreased SOD and GST, increased MMP-2/9 activities and VCAM-1, ICAM-1 and vWF expressions, which revealed obvious LSEC injury and scaffold structure broken, were shown in the model control. Compared with the model group, CMCS and 1,10-phenanthroline significantly improved serum ALT/AST, attenuated hepatic inflammation and improved peroxidative injury in liver, decreased MMP-2/9 activities in liver tissue, improved integration of scaffold structure, and decreased protein expression of VCAM-1 and ICAM-1. CMCS could protect LSECs from injury and maintain the microvasculature integration in acute injured liver of mice induced by LPS/D-GalN. Its action mechanism was associated with the down-regulation of MMP-2/9 activities and inhibition of peroxidation in injured liver.

  16. Effects of testosterone administration on liver structure and function in aging rats.

    PubMed

    Nucci, Ricardo Aparecido Baptista; Teodoro, Ana Caroline de Souza; Krause Neto, Walter; Silva, Wellington de Assis; de Souza, Romeu Rodrigues; Anaruma, Carlos Alberto; Gama, Eliane Florencio

    2017-06-01

    Aging males have a decrease in testosterone levels, by which the testosterone treatment may influence in a negatively fashion the liver. This study aimed to analyze the effects of aging with or without testosterone administration on the liver components of animals. Wistar rats were divided into three groups: 20 months' group (G20), 24 months' group (G24), group treated with testosterone for 16 weeks (GT). All groups were sacrificed at 24 months except for G20 that was sacrificed at 20 months. Aging and testosterone treatment alters the body weight (BW), liver weight (LW) and relative liver weight. Besides, testosterone increased the mitogen capacity of hepatocytes. Nonetheless, we reinforce the negative effects of testosterone on old animals' liver as chronic hepatic congestion and/or cholestasis. In addition, we observed that testosterone plays an important role on hepatic glycogen stores. Our study showed many implications for the knowledge about the effects of aging with or without testosterone administration on old animals' liver.

  17. Olive oil and leaf extract prevent fluoxetine-induced hepatotoxicity by attenuating oxidative stress, inflammation and apoptosis.

    PubMed

    Elgebaly, Hassan A; Mosa, Nermeen M; Allach, Mariam; El-Massry, Khaled F; El-Ghorab, Ahmed H; Al Hroob, Amir M; Mahmoud, Ayman M

    2018-02-01

    Olive oil and leaf extract have several health benefits; however, their beneficial effect against fluoxetine-induced liver injury has not been investigated. The present study aimed to scrutinize the impact of fluoxetine on the liver of rats and to evaluate the protective effects of olive oil and leaf extract. Rats received fluoxetine orally at dose of 10 mg/kg body weight for 7 consecutive days. The fluoxetine-induced rats were concurrently treated with olive oil or leaf extract. At the end of the experiment, blood and liver samples were collected for analysis. Fluoxetine administration significantly increased circulating ALT, AST, ALP and the pro-inflammatory cytokines TNF-α and IL-1β levels in rats. Histological analysis showed several alterations, such as inflammatory cells infiltration, hepatocyte vacuolation and dilated sinusoids in the liver of fluoxetine-induced rats. Concurrent supplementation of olive oil and olive leaf extract significantly reduced circulating liver function marker enzymes and pro-inflammatory cytokines, and prevented fluoxetine-induced histological alterations. Both olive oil and leaf extract significantly decreased liver lipid peroxidation and nitric oxide, and ameliorated liver glutathione, superoxide dismutase, catalase and glutathione peroxidase. In addition, olive oil and leaf extract prevented fluoxetine-induced apoptosis in the liver of rats as evidenced by decreased expression of Bax and caspase-3, and up-regulated expression of Bcl-2. In conclusion, olive oil and leaf extract protect against fluoxetine-induced liver injury in rats through attenuation of oxidative stress, inflammation and apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Liver mitochondrial dysfunction and electron transport chain defect induced by high dietary copper in broilers.

    PubMed

    Yang, Fan; Cao, Huabin; Su, Rongsheng; Guo, Jianying; Li, Chengmei; Pan, Jiaqiang; Tang, Zhaoxin

    2017-09-01

    Copper is an important trace mineral in the diet of poultry due to its biological activity. However, limited information is available concerning the effects of high copper on mitochondrial dysfunction. In this study, 72 broilers were used to investigate the effects of high dietary copper on liver mitochondrial dysfunction and electron transport chain defect. Birds were fed with different concentrations [11, 110, 220, and 330 mg of copper/kg dry matter (DM)] of copper from tribasic copper chloride (TBCC). The experiment lasted for 60 d. Liver tissues on d 60 were subjected to histopathological observation. Additionally, liver mitochondrial function was recorded on d 12, 36, and 60. Moreover, a site-specific defect in the electron transport chain in liver mitochondria was also identified by using various chemical inhibitors of mitochondrial respiration. The results showed different degrees of degeneration, mitochondrial swelling, and high-density electrons in hepatocytes. In addition, the respiratory control ratio (RCR) and oxidative phosphorylation rate (OPR) in liver mitochondria increased at first and then decreased in high-dose groups. Moreover, hydrogen peroxide (H2O2) generation velocity in treated groups was higher than that in control group, which were magnified by inhibiting electron transport at Complex IV. The results indicated that high dietary copper could decline liver mitochondrial function in broilers. The presence of a site-specific defect at Complex IV in liver mitochondria may be responsible for liver mitochondrial dysfunction caused by high dietary copper. © 2017 Poultry Science Association Inc.

  19. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Merrill, A. H. Jr; Hoel, M.; Wang, E.; Mullins, R. E.; Hargrove, J. L.; Jones, D. P.; Popova, I. A.; Merrill AH, J. r. (Principal Investigator)

    1990-01-01

    To determine the possible biochemical effects of prolonged weightlessness on liver function, samples of liver from rats that had flown aboard Cosmos 1887 were analyzed for protein, glycogen, and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the glycogen content and hydroxymethylglutaryl-CoA (HMG-CoA) reductase activities for the rats flown on Cosmos 1887 and decreases in the amount of microsomal cytochrome P-450 and the activities of aniline hydroxylase and ethylmorphine N-demethylase, cytochrome P-450-dependent enzymes. These results support the earlier finding of differences in these parameters and suggest that altered hepatic function could be important during spaceflight and/or the postflight recovery period.

  20. Liver and kidney toxicity induced by Afzal smokeless tobacco product in Oman.

    PubMed

    Al-Mukhaini, Nawal; Ba-Omar, Taher; Eltayeb, Elsadig; Al-Shihi, Aisha; Al-Riyami, Nafila; Al-Belushi, Jamila; Al-Adawi, Kawthar

    2017-04-01

    Afzal, the common smokeless tobacco product (STP) in Oman, is believed to contain toxins that may impair the function of some organs such as liver and kidney. An aqueous extract from Afzal was added to drinking water to be administrated orally to Wistar albino rats (n=72) young and adult from both genders weighing between 60-80g and 150-240g respectively for 8 weeks. Animals were divided into three groups: control (distilled water instead of Afzal extract), low-dose (3mgnicotine/kgbodyweight/day) and high-dose (6mgnicotine/kgbodyweight/day). The animals were euthanized and their blood, liver and kidney were collected for biochemical and histopathological investigations. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed for the liver function, while blood urea nitrogen (BUN) and creatinine (CRT) were assayed for the kidney function. The results showed a significant increase in the ALT, AST, BUN and CRT levels (P<0.05) in both Afzal-treated groups (low and high doses) compared with the control. Histopathological findings revealed the initial but seem to be serious degenerative alterations of periportal fibrosis in liver and edematous and calcified changes in renal glomerulus among Afzal-treated groups. Additionally, the weight gain of the Afzal-treated groups was lower than the control group. Our findings show that the exposure of Wistar rats to the Afzal extract has the potentials of causing decreased weight gain and dose-dependent functional and structural damage to the biochemical and histological profiles of liver and kidney as well as serious biochemical effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Type I neuregulin1α is a novel local mediator to suppress hepatic gluconeogenesis in mice

    PubMed Central

    Arai, Takatomo; Ono, Yumika; Arimura, Yujiro; Sayama, Keimon; Suzuki, Tomohiro; Shinjo, Satoko; Kanai, Mai; Abe, Shin-ichi; Semba, Kentaro; Goda, Nobuhito

    2017-01-01

    Neuregulin1 is an epidermal growth factor (EGF)-like domain-containing protein that has multiple isoforms and functions as a local mediator in the control of various cellular functions. Here we show that type I isoform of neuregulin1 with an α-type EGF-like domain (Nrg1α) is the major isoform in mouse liver and regulates hepatic glucose production. Forced expression of Nrg1α in mouse liver enhanced systemic glucose disposal and decreased hepatic glucose production with reduced fasting blood glucose levels. Nuclear forkhead box protein O1 (FoxO1) and its downstream targets, PEPCK and G6Pase, were suppressed in liver and isolated hepatocytes by Nrg1α overexpression. In contrast, silencing of Nrg1α enhanced glucose production with increased PEPCK and G6Pase expressions in cAMP/dexamethasone-stimulated hepatocytes. Mechanistically, the recombinant α-type EGF-like domain of NRG1α (rNRG1α) stimulated the ERBB3 signalling pathway in hepatocytes, resulting in decreased nuclear FoxO1 accumulation via activation of both the AKT and ERK pathways. In addition, acute treatment with rNRG1α also suppressed elevation of blood glucose levels after both glucose and pyruvate challenge. Although a liver-specific deletion of Nrg1 gene in mice showed little effect on systemic glucose metabolism, these results suggest that NRG1α have a novel regulatory function in hepatic gluconeogenesis by regulating the ERBB3-AKT/ERK-FoxO1 cascade. PMID:28218289

  2. Physiological and biochemical basis of clinical liver function tests: a review.

    PubMed

    Hoekstra, Lisette T; de Graaf, Wilmar; Nibourg, Geert A A; Heger, Michal; Bennink, Roelof J; Stieger, Bruno; van Gulik, Thomas M

    2013-01-01

    To review the literature on the most clinically relevant and novel liver function tests used for the assessment of hepatic function before liver surgery. Postoperative liver failure is the major cause of mortality and morbidity after partial liver resection and develops as a result of insufficient remnant liver function. Therefore, accurate preoperative assessment of the future remnant liver function is mandatory in the selection of candidates for safe partial liver resection. A MEDLINE search was performed using the key words "liver function tests," "functional studies in the liver," "compromised liver," "physiological basis," and "mechanistic background," with and without Boolean operators. Passive liver function tests, including biochemical parameters and clinical grading systems, are not accurate enough in predicting outcome after liver surgery. Dynamic quantitative liver function tests, such as the indocyanine green test and galactose elimination capacity, are more accurate as they measure the elimination process of a substance that is cleared and/or metabolized almost exclusively by the liver. However, these tests only measure global liver function. Nuclear imaging techniques ((99m)Tc-galactosyl serum albumin scintigraphy and (99m)Tc-mebrofenin hepatobiliary scintigraphy) can measure both total and future remnant liver function and potentially identify patients at risk for postresectional liver failure. Because of the complexity of liver function, one single test does not represent overall liver function. In addition to computed tomography volumetry, quantitative liver function tests should be used to determine whether a safe resection can be performed. Presently, (99m)Tc-mebrofenin hepatobiliary scintigraphy seems to be the most valuable quantitative liver function test, as it can measure multiple aspects of liver function in, specifically, the future remnant liver.

  3. Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in DDC-induced cholestatic liver injury.

    PubMed

    Addante, Annalisa; Roncero, Cesáreo; Almalé, Laura; Lazcanoiturburu, Nerea; García-Álvaro, María; Fernández, Margarita; Sanz, Julián; Hammad, Seddik; Nwosu, Zeribe C; Lee, Se-Jin; Fabregat, Isabel; Dooley, Steven; Ten Dijke, Peter; Herrera, Blanca; Sánchez, Aránzazu

    2018-05-11

    Bone morphogenetic protein 9 (BMP9) interferes with liver regeneration upon acute injury, while promoting fibrosis upon carbon tetrachloride-induced chronic injury. We have now addressed the role of BMP9 in 3,5 diethoxicarbonyl-1,4 dihydrocollidine (DDC)-induced cholestatic liver injury, a model of liver regeneration mediated by hepatic progenitor cell (known as oval cell), exemplified as ductular reaction and oval cell expansion. WT and BMP9KO mice were submitted to DDC diet. Livers were examined for liver injury, fibrosis, inflammation and oval cell expansion by serum biochemistry, histology, RT-qPCR and western blot. BMP9 signalling and effects in oval cells were studied in vitro using western blot and transcriptional assays, plus functional assays of DNA synthesis, cell viability and apoptosis. Crosslinking assays and short hairpin RNA approaches were used to identify the receptors mediating BMP9 effects. Deletion of BMP9 reduces liver damage and fibrosis, but enhances inflammation upon DDC feeding. Molecularly, absence of BMP9 results in overactivation of PI3K/AKT, ERK-MAPKs and c-Met signalling pathways, which together with an enhanced ductular reaction and oval cell expansion evidence an improved regenerative response and decreased damage in response to DDC feeding. Importantly, BMP9 directly targets oval cells, it activates SMAD1,5,8, decreases cell growth and promotes apoptosis, effects that are mediated by Activin Receptor-Like Kinase 2 (ALK2) type I receptor. We identify BMP9 as a negative regulator of oval cell expansion in cholestatic injury, its deletion enhancing liver regeneration. Likewise, our work further supports BMP9 as an attractive therapeutic target for chronic liver diseases. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Relation between sex hormones and hepatocellular carcinoma.

    PubMed

    El Mahdy Korah, T; Abd Elfatah Badr, E; Mohamed Emara, M; Ahmed Samy Kohla, M; Gamal Saad Michael, G

    2016-11-01

    Males have higher incidence of hepatocellular carcinoma (HCC) than females. Sex hormones may be a risk factor. The aim was to determine the levels of sex hormones in male and female patients with HCC and cirrhosis versus controls and its possible relationship with HCC. This study was conducted on 90 subjects divided into 40 patients with HCC, 30 patients with liver cirrhosis and 20 apparently healthy subjects complete blood picture, liver function tests. Determination of AFP levels and hormonal assay of oestrogen, progesterone, total testosterone, prolactin, FSH and LH were performed on all subjects. Total testosterone levels were significantly decreased in the two patients groups compared with controls. While oestrogen levels were significantly decreased in the HCC group in comparison with other two groups, prolactin levels were significantly decreased in the HCC group compared with the liver cirrhosis group and increased in the liver cirrhosis group when compared to controls. FSH and LH levels were significantly increased in the HCC group when compared to controls. There is no significant correlation between sex hormones assay and both the size of HCC and degree of cirrhosis in both patient groups. It is concluded that there is no strong relation between sex hormones and HCC when the study was carried out on the levels of sex hormones in patients with HCC. © 2016 Blackwell Verlag GmbH.

  5. Antioxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut Microbiota.

    PubMed

    Cai, Jingwei; Zhang, Limin; Jones, Richard A; Correll, Jared B; Hatzakis, Emmanuel; Smith, Philip B; Gonzalez, Frank J; Patterson, Andrew D

    2016-02-05

    Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver (1)H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum (1)H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles was observed in germ-free mice, thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function, resulting in reduced host energy availability and a significant shift in liver metabolism toward a more catabolic state.

  6. Syphilitic hepatitis: clinical, immunological and morphological aspects.

    PubMed

    Fehér, J; Somogyi, T; Timmer, M; Józsa, L

    1975-01-01

    In 17 out of 176 cases of early syphilis (seropositive syphillis I; syphilis II) liver function tests yielded a positive result. In these patients a significant increase in the serum IgG, IgM and coeruloplasmin levels and a decrease in t4e transferrin level was found. The concentrations of alpha-2-macroglobulin and of beta-1-C-globulin were practically uneffected. Liver biopsy revealed hepatitis of variable severity in 13 patients with focal necroses or a proliferative process effecting the walls of the central veins, the arterioles and the branches of the portal vein. In 7 cases the presence of Treponema in the liver was demonstrated.

  7. Hyperammoniemic coma in a patient with ureterosigmoidostomy and normal liver function.

    PubMed

    Van Laethem, J L; Gay, F; Franck, N; Van Gossum, A

    1992-11-01

    Hyperammoniemic encephalopathy has been reported after ureterosigmoidostomy. Its development is related to a problem of bacterial overgrowth and, most often, is favored by the presence of an underlying liver dysfunction. We report the case of a 43-year-old woman with a ureterosigmoidostomy done 28 years earlier who developed hyperammoniemic coma induced by an acute rectocolitis and in the absence of any detectable liver dysfunction. Neither administration of Lactilol and neomycin nor rectal tube drainage were effective; systemic antimicrobial therapy effective against the urease-producing gram-negative bacilli was required and led to a decrease in serum ammonia levels and a dramatic clinical improvement.

  8. Differential effects of p,p'-DDE on testis and liver mitochondria: implications for reproductive toxicology.

    PubMed

    Mota, Paula C; Cordeiro, Marília; Pereira, Susana P; Oliveira, Paulo J; Moreno, António J; Ramalho-Santos, João

    2011-01-01

    The release of environmental contaminants can contribute to impaired male fertility. The bioenergetics of isolated liver mitochondria have been used as a toxicological indicator, an inexpensive first line model to screen possible effects of several substances. Here we report the effects of 2,2-bis(4-chlorophenyl)-1,1-dichloro-ethylene (DDE) on the bioenergetical parameters of testicular mitochondria. A significant decrease in repolarization potential (after a phosphorylative cycle), state 3 respiration and uncoupled respiration, with a concomitant increase in lag phase was found, demonstrating a decrease in mitochondrial function. Importantly, there was also a clear increase in maximum potential in DDE-treated testis mitochondria, which was not mirrored by more commonly used liver mitochondria. Indeed, comparative studies showed that testis and liver mitochondria have strikingly different sensitivities and patterns of response to DDE, indicating that testis mitochondria should be used as a primary toxicological model for a proper evaluation of putative effects of environmental toxicants on the bioenergetics of spermatogenesis and male fertility. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Cytokines and 90Y-Radioembolization: Relation to Liver Function and Overall Survival.

    PubMed

    Seidensticker, Max; Powerski, Maciej; Seidensticker, Ricarda; Damm, Robert; Mohnike, Konrad; Garlipp, Benjamin; Klopffleisch, Maurice; Amthauer, Holger; Ricke, Jens; Pech, Maciej

    2017-08-01

    To evaluate the course of pro- and anti-inflammatory cytokines after 90 Y-radioembolization (RE) of liver malignancies and to identify prognosticators for liver-related adverse events and survival. In 34 consecutive patients with secondary or primary liver tumors scheduled for RE, the following cytokines were measured prior to and 2 h, 3 days, and 6 weeks after RE: interleukin (IL) -1, IL-2, IL-4, IL-6, IL-8, tumor necrosis factor alpha (TNF-α), and interferon-γ. Liver function impairment was defined as an elevation of liver-related laboratory values as graded by CTCAE ≥ 2 and/or serum bilirubin ≥30 µmol/l and/or development of ascites at 6-week follow-up. Significant changes over time were seen in IL-1 (increase from 0.4 pg/ml (±0.7) at baseline to 1.1 pg/ml (±1.4) 3 days after RE (p = 0.02)), and in IL-6 (increase from 16.8 pg/ml (±21.8) at baseline to 54.6 pg/ml (±78.2) 3 days after RE (p = 0.003)). Baseline values of IL-6 and IL-8 were independently associated with liver function impairment at follow-up as well as decreased survival with an optimal cutoff at 6.53 and 60.8 pg/ml, respectively. Expected changes in pro- and anti-inflammatory cytokines after RE were shown. Furthermore, baseline values of IL-6 and IL-8 were associated with later liver dysfunction and survival. We hypothesize that these biomarkers are potential prognosticators and might help in patient selection for RE.

  10. Valsartan decreases TGF-β1 production and protects against chlorhexidine digluconate-induced liver peritoneal fibrosis in rats.

    PubMed

    Subeq, Yi-Maun; Ke, Chen-Yen; Lin, Nien-Tsung; Lee, Chung-Jen; Chiu, Yi-Han; Hsu, Bang-Gee

    2011-02-01

    Peritoneal fibrosis (PF) is a recognized complication of long-term peritoneal dialysis (PD) and can lead to ultrafiltration failure. The present study was designed to investigate the protective effects of valsartan on chlorhexidine digluconate-induced PF by decreasing TGF-β1 production in rats. PF was induced in Sprague-Dawley rats by daily administration of 0.5 ml 0.1% chlorhexidine digluconate in normal saline via peritoneal dialysis (PD) tube for 1 week. Rats received daily intravenous injections of low dose valsartan (1 mg/kg) or high dose valsartan (3 mg/kg) for 1 week. After 7 days, conventional 4.25% Dianeal (30 ml) was administered via a PD catheter with a dwell time of 4 h and assessed of peritoneal function. At the end of dialysis, rats were sacrificed and the liver peritoneum was harvested for microscopically and immunohistochemistry. There was no significant difference in mean arterial pressure and heart rate between groups. After 4 h of PD, the D₄/P(4Urea) level was reduced, the D₄/D₀ glucose level, serum and dialysate transforming growth factor-β1 (TGF-β1) level was increased, the liver peritoneum was markedly thicker, and the expression of TGF-β1, alpha-smooth muscle actin (α-SMA), fibronectin, collagen, and vascular endothelial growth factor (VEGF) were elevated in the PF group compared with the vehicle group. High dose of valsartan decreased the serum and dialysate TGF-β1 level, decreased the thickness of the liver peritoneum, and decreased the expression of TGF-β1, α-SMA, fibronectin, collagen, and VEGF-positive cells in liver peritoneum. The low dose of valsartan did not protect against chlorhexidine digluconate-induced PF in rat. Valsartan protected against chlorhexidine digluconate-induced PF in rats by decreasing TGF-β1 production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    PubMed

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. [Effect of K-ATP channel opener-pinacidil on the liver mitochondria function in rats with different resistance to hypoxia during stress].

    PubMed

    Tkachenko, H M; Kurhaliuk, N M; Vovkanych, L S

    2004-01-01

    We have examined the influence of ATP-sensitive potassium (KATP) channel opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on the changes of energy metabolism in the liver of rats under the stress conditions. The rats were divided in two groups with high and low resistance to hypoxia. The stress was modeled by placing the rats in a cage filled with water and closed with a net. The distance from water to the net was only 5 cm. The effects of KATP opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on ADP-stimulating mitochondrial respiration by Chance, calcium capacity of organellas and processes of lipid peroxidation in the liver of rats with different resistance to hypoxia under the stress condition have been investigated. We have used the next substrates of oxidation: 0.35 mM succinate and 1 mM alpha-ketoglutarate. The additional analyses were conducted with the use of inhibitors: mitochondrial enzyme complex I 10 mM rotenone and succinate dehydrohenase 2 mM malonic acid. It was shown that the stress condition evoked the succinate oxidation and the decrease of alpha-ketoglutarate efficacy, the increase of calcium mitochondrial capacity and the intensification of lipid peroxidation processes. Under the presence of succinate, the increase of O2 uptake with simultaneous decrease of ADP/O ratio in rats with high resistance under stress was observed. Simultaneously, oxidation of alpha-ketoglutarate, a NAD-dependent substrate, was inhibited. Pinacidil caused the reorganization of mitochondrial energy metabolism in favour of NAD-dependent oxidation and the improvment of the protection against stress. The decrease of the efficacy of mitochondrial energy processes functioning was shown in animals with low resistance to hypoxia. KATP channel opener pinacidil has a protective effect on the processes of mitochondrial liver energy support under stress. These changes deal with the increase of alpha-ketoglutarate oxidation (respiratory rate and ADP/O) and the decrease of lipid peroxidation processes. We concluded about protective effect ofpinacidil on mitochondrial functioning under stress.

  13. A Randomized Controlled Trial of the Effects of an Almond-enriched, Hypocaloric Diet on Liver Function Tests in Overweight/Obese Women.

    PubMed

    Abazarfard, Zohreh; Eslamian, Ghazaleh; Salehi, Mousa; Keshavarzi, Sareh

    2016-03-01

    Gradual weight reduction has been shown to be associated with improvements in liver enzymes. However, some evidence demonstrated that liver enzymes may transiently increase immediately after a diet-induced weight loss. This study was designed to assess the effects of a hypocaloric, almond-enriched diet (AED) compared with a hypocaloric nut-free diet (NFD) on liver function tests in the context of a three-month weight reduction program in overweight/obese women. This randomized controlled clinical trial was registered at Iranian Registry of Clinical Trials with ID number of IRCT2013062313751N1. Overweight and obese Iranian women [n = 108; age = 42.7 y, body mass index = 29.6 kg/m(2)] were randomly assigned to consume an AED or NFD. The carefully planned hypocaloric diets were identical for both groups except for the AED group who consumed 50 grams of almonds daily for three months. Anthropometric measurements and laboratory measurements including alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and γ-glutamyltransferase (GGT) were assessed before and immediately after the intervention. Of 108 participants, 50 women in AED group and 50 women in NFD group completed the protocol of the study (response rate: 92.6 %). The AED led to a median weight loss of 3.79 kg (interquartile range: 4.4 kg). Significant decreases within AED and NFD were observed in ALT (-16.6 ± 16.3 and -11.7 ± 16.8, P < 0.001, respectively). Similar significant decreases were observed in AST (-13.6 ± 15.7 and -7.7 ± 16.1; P < 0.001, respectively). The decrease in GGT was also significant in both groups (-11.4 ± 21.6 and -6.2 ± 19.8; P < 0.001 respectively). ALT, AST and GGT decreased significantly in the AED group compared to the NFD group (P < 0.001). AED improved liver enzymes in obese women. However, mild, transient increases in ALT and AST values can be observed immediately after an NFD in women.

  14. A Randomized Controlled Trial of the Effects of an Almond-enriched, Hypocaloric Diet on Liver Function Tests in Overweight/Obese Women

    PubMed Central

    Abazarfard, Zohreh; Eslamian, Ghazaleh; Salehi, Mousa; Keshavarzi, Sareh

    2016-01-01

    Background: Gradual weight reduction has been shown to be associated with improvements in liver enzymes. However, some evidence demonstrated that liver enzymes may transiently increase immediately after a diet-induced weight loss. Objectives: This study was designed to assess the effects of a hypocaloric, almond-enriched diet (AED) compared with a hypocaloric nut-free diet (NFD) on liver function tests in the context of a three-month weight reduction program in overweight/obese women. Patients and Methods: This randomized controlled clinical trial was registered at Iranian Registry of Clinical Trials with ID number of IRCT2013062313751N1. Overweight and obese Iranian women [n = 108; age = 42.7 y, body mass index = 29.6 kg/m2] were randomly assigned to consume an AED or NFD. The carefully planned hypocaloric diets were identical for both groups except for the AED group who consumed 50 grams of almonds daily for three months. Anthropometric measurements and laboratory measurements including alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and γ-glutamyltransferase (GGT) were assessed before and immediately after the intervention. Results: Of 108 participants, 50 women in AED group and 50 women in NFD group completed the protocol of the study (response rate: 92.6 %). The AED led to a median weight loss of 3.79 kg (interquartile range: 4.4 kg). Significant decreases within AED and NFD were observed in ALT (-16.6 ± 16.3 and -11.7 ± 16.8, P < 0.001, respectively). Similar significant decreases were observed in AST (-13.6 ± 15.7 and -7.7 ± 16.1; P < 0.001, respectively). The decrease in GGT was also significant in both groups (-11.4 ± 21.6 and -6.2 ± 19.8; P < 0.001 respectively). ALT, AST and GGT decreased significantly in the AED group compared to the NFD group (P < 0.001). Conclusions: AED improved liver enzymes in obese women. However, mild, transient increases in ALT and AST values can be observed immediately after an NFD in women. PMID:27231581

  15. How important is donor age in liver transplantation?

    PubMed

    Lué, Alberto; Solanas, Estela; Baptista, Pedro; Lorente, Sara; Araiz, Juan J; Garcia-Gil, Agustin; Serrano, M Trinidad

    2016-06-07

    The age of liver donors has been increasing in the past several years because of a donor shortage. In the United States, 33% of donors are age 50 years or older, as are more than 50% in some European countries. The impact of donor age on liver transplantation (LT) has been analyzed in several studies with contradictory conclusions. Nevertheless, recent analyses of the largest databases demonstrate that having an older donor is a risk factor for graft failure. Donor age is included as a risk factor in the more relevant graft survival scores, such as the Donor Risk Index, donor age and Model for End-stage Liver Disease, Survival Outcomes Following Liver Transplantation, and the Balance of Risk. The use of old donors is related to an increased rate of biliary complications and hepatitis C virus-related graft failure. Although liver function does not seem to be significantly affected by age, the incidence of several liver diseases increases with age, and the capacity of the liver to manage or overcome liver diseases or external injuries decreases. In this paper, the importance of age in LT outcomes, the role of donor age as a risk factor, and the influence of aging on liver regeneration are reviewed.

  16. How important is donor age in liver transplantation?

    PubMed Central

    Lué, Alberto; Solanas, Estela; Baptista, Pedro; Lorente, Sara; Araiz, Juan J; Garcia-Gil, Agustin; Serrano, M Trinidad

    2016-01-01

    The age of liver donors has been increasing in the past several years because of a donor shortage. In the United States, 33% of donors are age 50 years or older, as are more than 50% in some European countries. The impact of donor age on liver transplantation (LT) has been analyzed in several studies with contradictory conclusions. Nevertheless, recent analyses of the largest databases demonstrate that having an older donor is a risk factor for graft failure. Donor age is included as a risk factor in the more relevant graft survival scores, such as the Donor Risk Index, donor age and Model for End-stage Liver Disease, Survival Outcomes Following Liver Transplantation, and the Balance of Risk. The use of old donors is related to an increased rate of biliary complications and hepatitis C virus-related graft failure. Although liver function does not seem to be significantly affected by age, the incidence of several liver diseases increases with age, and the capacity of the liver to manage or overcome liver diseases or external injuries decreases. In this paper, the importance of age in LT outcomes, the role of donor age as a risk factor, and the influence of aging on liver regeneration are reviewed. PMID:27275089

  17. Left Lateral Sectionectomy of the Native Liver and Combined Living-Related Liver–Kidney Transplantation for Primary Hyperoxaluria Type 1

    PubMed Central

    Chen, Guo-Yong; Wei, Si-Dong; Zou, Zhong-Wu; Tang, Gao-Feng; Sun, Jian-Jun; Zhou, Shao-Tang

    2015-01-01

    Abstract Primary hyperoxaluria type I (PH1), the most severe form of primary hyperoxalurias, is a liver disease of the metabolic defect in glyoxylate detoxification that can be corrected by liver transplantation. A 21-year-old man presented to our center after 4 months of regular hemodialysis for kidney failure caused by nephrolithiasis. A diagnosis of PH1 was confirmed by mutations of the AGXT gene. Left lateral sectionectomy of the native liver was performed; and auxiliary partial orthotopic liver transplantation (APOLT) and kidney transplantation were carried out synchronously using a living donor. After transplantation, the patient's plasma oxalate and creatinine levels substantially decreased and the patient recovered well with good dual grafts function. APOLT and kidney transplantation can compensate the liver deficient in liver enzyme production and aid the renal elimination of oxalate, thus serving as an effective treatment option for patients with PH1. In conclusion, left lateral sectionectomy of the native liver and combined living-related liver–kidney transplantation can be a surgical option for PH1. PMID:26252291

  18. Multidisciplinary care of obese children and adolescents for one year reduces ectopic fat content in liver and skeletal muscle.

    PubMed

    Fonvig, Cilius Esmann; Chabanova, Elizaveta; Ohrt, Johanne Dam; Nielsen, Louise Aas; Pedersen, Oluf; Hansen, Torben; Thomsen, Henrik S; Holm, Jens-Christian

    2015-12-30

    Ectopic fat deposition in liver and skeletal muscle tissue is related to cardiovascular disease risk and is a common metabolic complication in obese children. We evaluated the hypotheses of ectopic fat in these organs could be diminished following 1 year of multidisciplinary care specialized in childhood obesity, and whether this reduction would associate with changes in other markers of metabolic function. This observational longitudinal study evaluated 40 overweight children and adolescents enrolled in a multidisciplinary treatment protocol at the Children's Obesity Clinic, Holbæk, Denmark. The participants were assessed by anthropometry, fasting blood samples (HbA1c, glucose, insulin, lipids, and biochemical variables of liver function), and liver and muscle fat content assessed by magnetic resonance spectroscopy at enrollment and following an average of 12.2 months of care. Univariate linear regression models adjusted for age, sex, treatment duration, baseline degree of obesity, and pubertal developmental stage were used for investigating possible associations. The standard deviation score (SDS) of baseline median body mass index (BMI) was 2.80 (range: 1.49-3.85) and the median age was 14 years (10-17). At the end of the observational period, the 40 children and adolescents (21 girls) significantly decreased their BMI SDS, liver fat, muscle fat, and visceral adipose tissue volume. The prevalence of hepatic steatosis changed from 28 to 20 % (p = 0.26) and the prevalence of muscular steatosis decreased from 75 to 45 % (p = 0.007). Changes in liver and muscle fat were independent of changes in BMI SDS, baseline degree of obesity, duration of treatment, age, sex, and pubertal developmental stage. A 1-year multidisciplinary intervention program in the setting of a childhood obesity outpatient clinic confers a biologically important reduction in liver and muscle fat; metabolic improvements that are independent of the magnitude of concurrent weight loss. ClinicalTrials.gov registration number: NCT00928473 , the Danish Childhood Obesity Biobank. Registered June 25, 2009.

  19. The effect of silymarin on hepatic regeneration after partial hepatectomy: is silymarin effective in hepatic regeneration?

    PubMed Central

    Cetinkunar, Suleyman; Tokgoz, Serhat; Bilgin, Bulent Caglar; Erdem, Hasan; Aktimur, Recep; Can, Serpil; Erol, Huseyin Serkan; Isgoren, Atilla; Sozen, Selim; Polat, Yilmaz

    2015-01-01

    Aim: Silymarin from Silybum marianum was found to reduce liver injury. The aim of the present study was to investigate the effects of silymarin on hepatic regeneration in partially hepatectomized rats. Methods: Thirty Wistar-Albino rats were divided into 3 groups of 10 animals as sham, control and experimental groups. In the sham group (n=10) abdominal incision was closed after laparotomy. In the control group (n=10), the rats underwent 70% hepatectomy after laparotomy. In the experimental group (n=10) after partial 70% hepatectomy, silymarin (200 mg/kg/d) were given to rats for 10 days. Rats in three groups were sacrificed on 10 days. Aspartate (AST) and alanine transaminase (ALT), gamma glutamyl transferase (GGT), ALP, LDH and total bilirubin levels were measured using intracardiac blood samples. Tissue malondialdehyde (MDA) and tissue glutathion (GSH) and Superoxide dismutase (SOD) levels were measured. To reveal the increase in the mass of the remnant liver tissue in the control and experimental groups relative weight of the liver was calculated. Histopathological analysis of the liver was performed using a semi-quantitative scoring system. Results: A statistically significant difference among three groups was not shown for AST and ALT levels. A statistically significant difference was found between the groups as for total bilirubin and gamma glutamyl transferase levels. Increases in relative liver weights were seen with time in Groups 2 and 3. A statistically significant difference was not found for tissue malondialdehyde, Glutathion and Superoxide dismutase levels between hepatectomy and hepatectomy + silymarin groups. On liver tissue sections of the rats in the hepatectomy + silymarin group, increased regeneration and lipid peroxidation were observed accompanied by decreased antioxidant response. Conclusion: It has been observed that silymarin with many established functions such as antiproliferative, anti-inflammatory and energy antioxidant effects, does not contributed to proliferative regeneration of the liver-which has very important metabolic functions -after partial hepatectomy; instead it will decrease serum levels of transaminases. PMID:25932204

  20. 8-pCPT-cGMP prevents mitochondrial depolarization and improves the outcome of steatotic partial liver transplantation

    PubMed Central

    Liu, Qinlong; Rehman, Hasibur; Krishnasamy, Yasodha; Lemasters, John J; Zhong, Zhi

    2017-01-01

    Permeant cGMP analogs prevent the mitochondria permeability transition (MPT) in vitro. In this study, we explored whether 8-pCPT-cGMP prevents the MPT and decreases post-transplant damage to fatty partial liver grafts (FPG) in vivo. Rats were fed a control or high-fat, high-fructose diet for 2-week. Lean and fatty liver explants were reduced in size ex vivo to ~35% and stored in the University of Wisconsin solution with and without 8-pCPT-cGMP (300 µM) for 2 h. After transplantation, alanine aminotransferase release (indicator of hepatocellular injury), hyperbilirubinemia (indicator of poor liver function), and cell death were all higher in FPG than in lean partial grafts (LPG). Liver regeneration increased in LPG but was suppressed in FPG. 8-pCPT-cGMP blunted graft injury, improved liver regeneration and function, and increased survival of FPG. Hepatic mitochondrial depolarization detected by intravital multiphoton microscopy of rhodamine 123 in living rats was ~3.5-fold higher in FPG than in LPG. 8-pCPT-cGMP decreased mitochondrial depolarization in FPG almost to the level of LPG. Activation of mammalian target of rapamycin (mTOR), an energy sensitive kinase that stimulates cell proliferation and growth, and p70S6 kinase, a downstream signaling molecule of mTOR, was increased in LPG but suppressed in FPG. 8-pCPT-cGMP restored the activity of mTOR and p70S6 kinase in FPG. 8-pCPT-cGMP also increased activation of cAMP response element-binding protein (CREB) and expression of cyclins D1 and E in FPG. Non-alcoholic steatosis increases injury and suppresses regeneration after partial liver transplantation, at least in part, due to more severe mitochondrial dysfunction. Protection of mitochondria with a cGMP analog effectively improves outcomes of FPG transplantation. PMID:28694919

  1. ERAD defects and the HFE-H63D variant are associated with increased risk of liver damages in Alpha 1-Antitrypsin Deficiency

    PubMed Central

    Di Martino, Julie; Ruiz, Mathias; Garin, Roman; Restier, Lioara; Belmalih, Abdelouahed; Marchal, Christelle; Cullin, Christophe; Arveiler, Benoit; Fergelot, Patricia; Gitler, Aaron D.; Lachaux, Alain; Couthouis, Julien

    2017-01-01

    Background The most common and severe disease causing allele of Alpha 1-Antitrypsin Deficiency (1ATD) is Z-1AT. This protein aggregates in the endoplasmic reticulum, which is the main cause of liver disease in childhood. Based on recent evidences and on the frequency of liver disease occurrence in Z-1AT patients, it seems that liver disease progression is linked to still unknown genetic factors. Methods We used an innovative approach combining yeast genetic screens with next generation exome sequencing to identify and functionally characterize the genes involved in 1ATD associated liver disease. Results Using yeast genetic screens, we identified HRD1, an Endoplasmic Reticulum Associated Degradation (ERAD) associated protein, as an inducer of Z-mediated toxicity. Whole exome sequencing of 1ATD patients resulted in the identification of two variants associated with liver damages in Z-1AT homozygous cases: HFE H63D and HERPUD1 R50H. Functional characterization in Z-1AT model cell lines demonstrated that impairment of the ERAD machinery combined with the HFE H63D variant expression decreased both cell proliferation and cell viability, while Unfolded Protein Response (UPR)-mediated cell death was hyperstimulated. Conclusion This powerful experimental pipeline allowed us to identify and functionally validate two genes involved in Z-1AT-mediated severe liver toxicity. This pilot study moves forward our understanding on genetic modifiers involved in 1ATD and highlights the UPR pathway as a target for the treatment of liver diseases associated with 1ATD. Finally, these findings support a larger scale screening for HERPUD1 R50H and HFE H63D variants in the sub-group of 1ATD patients developing significant chronic hepatic injuries (hepatomegaly, chronic cholestasis, elevated liver enzymes) and at risk developing liver cirrhosis. PMID:28617828

  2. Glucomannan- and glucomannan plus spirulina-enriched pork affect liver fatty acid profile, LDL receptor expression and antioxidant status in Zucker fa/fa rats fed atherogenic diets

    PubMed Central

    González-Torres, Laura; Matos, Cátia; Vázquez-Velasco, Miguel; Santos-López, Jorge A.; Sánchez-Martínez, Iria; García–Fernández, Camino; Bastida, Sara; Benedí, Juana; Sánchez-Muniz, Francisco J.

    2017-01-01

    ABSTRACT We evaluated the effects of glucomannan or glucomannan plus spirulina-restructured pork (RP) on liver fatty acid profile, desaturase/elongase enzyme activities and oxidative status of Zucker fa/fa rats for seven weeks. Control (C), glucomannan (G) and glucomannan/spirulina (GS)-RP; HC (cholesterol-enriched control), HG and HGS (cholesterol-enriched glucomannan and glucomannan/spirulina-RP) experimental diets were tested. Increased metabolic syndrome markers were found in C, G and GS rats. Cholesterol feeding increased liver size, fat, and cholesterol and reduced antioxidant enzyme levels and expressions. Cholesterolemia was lower in HG and HGS than in HC. GS vs. G showed higher stearic but lower oleic levels. SFA and PUFA decreased while MUFA increased by cholesterol feeding. The arachidonic/linoleic and docosahexaenoic/alpha-linolenic ratios were lower in HC, HG, and HGS vs. C, G, and GS, respectively, suggesting a delta-6-elongase-desaturase system inhibition. Moreover, cholesterol feeding, mainly in HGS, decreased low-density-lipoprotein receptor expression and the delta-5-desaturase activity and increased the delta-9-desaturase activity. In conclusion, the liver production of highly unsaturated fatty acids was limited to decrease their oxidation in presence of hypercholesterolaemia. Glucomannan or glucomannan/spirulina-RP has added new attributes to their functional properties in meat, partially arresting the negative effects induced by high-fat-high-cholesterol feeding on the liver fatty acid and antioxidant statuses. PMID:28325998

  3. Metabolomics Reveals Aryl Hydrocarbon Receptor Activation Induces Liver and Mammary Gland Metabolic Dysfunction in Lactating Mice.

    PubMed

    Belton, Kerry R; Tian, Yuan; Zhang, Limin; Anitha, Mallappa; Smith, Philip B; Perdew, Gary H; Patterson, Andrew D

    2018-04-06

    The liver and the mammary gland have complementary metabolic roles during lactation. Substrates synthesized by the liver are released into the circulation and are taken up by the mammary gland for milk production. The aryl hydrocarbon receptor (AHR) has been identified as a lactation regulator in mice, and its activation has been associated with myriad morphological, molecular, and functional defects such as stunted gland development, decreased milk production, and changes in gene expression. In this study, we identified adverse metabolic changes in the lactation network (mammary, liver, and serum) associated with AHR activation using 1 H nuclear magnetic resonance (NMR)-based metabolomics. Pregnant mice expressing Ahr d (low affinity) or Ahr b (high affinity) were fed diets containing beta naphthoflavone (BNF), a potent AHR agonist. Mammary, serum, and liver metabolomics analysis identified significant changes in lipid and TCA cycle intermediates in the Ahr b mice. We observed decreased amino acid and glucose levels in the mammary gland extracts of Ahr b mice fed BNF. The serum of BNF fed Ahr b mice had significant changes in LDL/VLDL (increased) and HDL, PC, and GPC (decreased). Quantitative PCR analysis revealed ∼50% reduction in the expression of key lactogenesis mammary genes including whey acid protein, α-lactalbumin, and β-casein. We also observed morphologic and developmental disruptions in the mammary gland that are consistent with previous reports. Our observations support that AHR activity contributes to metabolism regulation in the lactation network.

  4. Defective adaptive thermogenesis contributes to metabolic syndrome and liver steatosis in obese mice.

    PubMed

    Poekes, Laurence; Legry, Vanessa; Schakman, Olivier; Detrembleur, Christine; Bol, Anne; Horsmans, Yves; Farrell, Geoffrey C; Leclercq, Isabelle A

    2017-02-01

    Fatty liver diseases are complications of the metabolic syndrome associated with obesity, insulin resistance and low grade inflammation. Our aim was to uncover mechanisms contributing to hepatic complications in this setting. We used foz/foz mice prone to obesity, insulin resistance and progressive fibrosing non-alcoholic steatohepatitis (NASH). Foz/foz mice are hyperphagic but wild-type (WT)-matched calorie intake failed to protect against obesity, adipose inflammation and glucose intolerance. Obese foz/foz mice had similar physical activity level but reduced energy expenditure. Thermogenic adaptation to high-fat diet (HFD) or to cold exposure was severely impaired in foz/foz mice compared with HFD-fed WT littermates due to lower sympathetic tone in their brown adipose tissue (BAT). Intermittent cold exposure (ICE) restored BAT function and thereby improved glucose tolerance, decreased fat mass and liver steatosis. We conclude that failure of BAT adaptation drives the metabolic complications of obesity in foz/foz mice, including development of liver steatosis. Induction of endogenous BAT function had a significant therapeutic impact on obesity, glucose tolerance and liver complications and is a potential new avenue for therapy of non-alcoholic fatty liver disease (NAFLD). © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  5. Effects of oxymatrine from Ku Shen on cancer cells.

    PubMed

    Ho, John W; Ngan Hon, Parry Lee; Chim, Wai On

    2009-10-01

    Oxymatrine is one of active constituents isolated from Ku Shen, which is the dried root of Sophora flavescens Ait. The herb used in different herbal formulations is commonly known with specific pharmacological properties for treatment of liver disorders and other diseases such as arrhythmia, eczema and skin disorders, leukopenia and bronchitis. Sophora flavescens Ait is known to enhance liver functions and reduce hepatotoxicity due to oxidative stress and liver injury. The protection of cells from chemical toxicity is important in reducing liver damage. Reduction of oxidative stress by active components of herbal medicines is shown to be beneficial and important in regulating the normal functions of the liver. In this study, effects of oxymatrine on cancer cells after treatment of the cell line with DMSO were reported. This review described for cells without oxymatrine pre-treatment, cell injury was implicated as indicated by the decrease in cell viability. Ku Shen showed protective effects on cells from the DMSO-induced toxicity. The results show that oxymatrine can inhibit the G(2) and M phase of H4IIE. The findings suggest that anti-inflammatory constituents such as oxymatrine could mediate cell division of cancer cells and reduce cell cytotoxicity due probably to its capacity to inhibit the metabolic activation of hepato-toxin, a critical factor in the pathogenesis of chemical-induced liver injury.

  6. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis.

    PubMed

    Choi, Youngshim; Abdelmegeed, Mohamed A; Song, Byoung-Joon

    2018-05-01

    Indole-3-carbinol (I3C), found in Brassica family vegetables, exhibits antioxidant, anti-inflammatory, and anti-cancerous properties. Here, we aimed to evaluate the preventive effects of I3C against ethanol (EtOH)-induced liver injury and study the protective mechanism(s) by using the well-established chronic-plus-binge alcohol exposure model. The preventive effects of I3C were evaluated by conducting various histological, biochemical, and real-time PCR analyses in mouse liver, adipose tissue, and colon, since functional alterations of adipose tissue and intestine can also participate in promoting EtOH-induced liver damage. Daily treatment with I3C alleviated EtOH-induced liver injury and hepatocyte apoptosis, but not steatosis, by attenuating elevated oxidative stress, as evidenced by the decreased levels of hepatic lipid peroxidation, hydrogen peroxide, CYP2E1, NADPH-oxidase, and protein acetylation with maintenance of mitochondrial complex I, II, and III protein levels and activities. I3C also restored the hepatic antioxidant capacity by preventing EtOH-induced suppression of glutathione contents and mitochondrial aldehyde dehydrogenase-2 activity. I3C preventive effects were also achieved by attenuating the increased levels of hepatic proinflammatory cytokines, including IL1β, and neutrophil infiltration. I3C also attenuated EtOH-induced gut leakiness with decreased serum endotoxin levels through preventing EtOH-induced oxidative stress, apoptosis of enterocytes, and alteration of tight junction protein claudin-1. Furthermore, I3C alleviated adipose tissue inflammation and decreased free fatty acid release. Collectively, I3C prevented EtOH-induced liver injury via attenuating the damaging effect of ethanol on the gut-liver-adipose tissue axis. Therefore, I3C may also have a high potential for translational research in treating or preventing other types of hepatic injury associated with oxidative stress and inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier.

    PubMed

    Zhou, Da; Pan, Qin; Xin, Feng-Zhi; Zhang, Rui-Nan; He, Chong-Xin; Chen, Guang-Yu; Liu, Chang; Chen, Yuan-Wen; Fan, Jian-Gao

    2017-01-07

    To investigate whether gut microbiota metabolite sodium butyrate (NaB) is an effective substance for attenuating non-alcoholic fatty liver disease (NAFLD) and the internal mechanisms. Male C57BL/6J mice were divided into three groups, normal control were fed standard chow and model group were fed a high-fat diet (HFD) for 16 wk, the intervention group were fed HFD for 16 wk and treated with NaB for 8 wk. Gut microbiota from each group were detected at baseline and at 16 wk, liver histology were evaluated and gastrointestinal barrier indicator such as zonula occluden-1 (ZO-1) were detected by immunohistochemistry and realtime-PCR, further serum or liver endotoxin were determined by ELISA and inflammation- or metabolism-associated genes were quantified by real-time PCR. NaB corrected the HFD-induced gut microbiota imbalance in mice, while it considerably elevated the abundances of the beneficial bacteria Christensenellaceae , Blautia and Lactobacillus . These bacteria can produce butyric acid in what seems like a virtuous circle. And butyrate restored HFD induced intestinal mucosa damage, increased the expression of ZO-1 in small intestine, further decreased the levels of gut endotoxin in serum and liver compared with HF group. Endotoxin-associated genes such as TLR4 and Myd88, pro-inflammation genes such as MCP-1, TNF-α, IL-1, IL-2, IL-6 and IFN-γ in liver or epididymal fat were obviously downregulated after NaB intervention. Liver inflammation and fat accumulation were ameliorated, the levels of TG and cholesterol in liver were decreased after NaB intervention, NAS score was significantly decreased, metabolic indices such as FBG and HOMA-IR and liver function indicators ALT and AST were improved compared with HF group. NaB may restore the dysbiosis of gut microbiota to attenuate steatohepatitis, which is suggested to be a potential gut microbiota modulator and therapeutic substance for NAFLD.

  8. DPP-4 inhibitors improve liver dysfunction in type 2 diabetes mellitus.

    PubMed

    Kanazawa, Ippei; Tanaka, Ken-ichiro; Sugimoto, Toshitsugu

    2014-09-17

    Dipeptidyl peptidase-4 (DPP-4) inhibitors might have pleiotropic effects because receptors for incretin exist in various tissues, including liver. We examined whether DPP-4 inhibitors affect liver function in patients with type 2 diabetes. A retrospective review of 459 patients with type 2 diabetes who were prescribed DPP-4 inhibitors was performed. After exclusion of patients with hepatitis B or C, steroid use, and other diseases that might affect liver function and diabetes status, 224 patients were included in the analysis. Forty-four patients (19.6%) with liver injury defined by aspartate transaminase (AST) or alanine transaminase (ALT) over the normal level of 40 U/L. In the patients with liver injury, AST and ALT were significantly decreased after 6 months from the first date of DPP-4 prescription, with mean changes of -6.2 U/L [95% confidence interval (CI) -10.9 to -1.4, p=0.012] and of -11.9 U/L (95%CI -19.5 to -4.2, p=0.003), respectively. Percent changes in AST were significantly and negatively correlated with baseline AST and ALT (r=-0.27, p<0.001 and r=-0.23, p=0.002, respectively), and percent changes in ALT were also negatively correlated with them (r=-0.23, p=0.001 and r=-0.27, p<0.001, respectively). DPP-4 inhibitors improved liver dysfunction in patients with type 2 diabetes.

  9. Effect and Outcome of Intraoperative Fluid Restriction in Living Liver Donor Hepatectomy.

    PubMed

    Wang, Chih-Hsien; Cheng, Kwok-Wai; Chen, Chao-Long; Wu, Shao-Chun; Shih, Tsung-Hsiao; Yang, Sheng-Chun; Lee, Ying-En; Jawan, Bruno; Huang, Chiu-En; Juang, Sin-Ei; Huang, Chia-Jung

    2017-11-10

    BACKGROUND The purpose of this study was to evaluate the effect and outcome of intraoperative fluid restriction in living liver donor hepatectomy, regarding changes in intraoperative CVP levels, blood loss, and postoperative renal function. MATERIAL AND METHODS The charts of 167 patients were reviewed and analyzed retrospectively. Intraoperative central venous pressure levels, blood loss, fluids infused, and urine output per hour, before and after the liver allograft procurement, were calculated. Perioperative renal functions were also analyzed. RESULTS Fluid infused before and after liver allograft procurement was 3.21±1.5 and 9.0±3.9 mL/Kg/h and urine output was 1.5±0.7 and 1.8±1.4 mL/Kg/h, respectively. Intraoperative estimated blood loss was 91.3±78.9 mL. No patients required blood transfusion. Their preoperative and postoperative hemoglobin were 12.3±2.7 and 11.7±1.7 g/dL. CVP levels decreased gradually from 10.4±3.0 to a low of 8.1±1.9 mmHg at the time of transection of the liver parenchyma. Renal functions were not significantly affected based on the determination of BUN and creatinine levels. CONCLUSIONS The methods used to lower CVP are moderate and slow, with 2 main goals achieved: minimal blood loss (91.3±78.9 ml) and no blood transfusion. Furthermore, it did not have any negative effect on renal function.

  10. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

    PubMed

    Woodman, Andrew G; Mah, Richard; Keddie, Danae; Noble, Ronan M N; Panahi, Sareh; Gragasin, Ferrante S; Lemieux, Hélène; Bourque, Stephane L

    2018-06-01

    Prenatal iron deficiency alters fetal developmental trajectories, which results in persistent changes in organ function. Here, we studied the effects of prenatal iron deficiency on fetal kidney and liver mitochondrial function. Pregnant Sprague-Dawley rats were fed partially or fully iron-restricted diets to induce a state of moderate or severe iron deficiency alongside iron-replete control rats. We assessed mitochondrial function via high-resolution respirometry and reactive oxygen species generation via fluorescence microscopy on gestational d 21. Hemoglobin levels were reduced in dams in the moderate (-31%) and severe groups (-54%) compared with controls, which was accompanied by 55% reductions in fetal hemoglobin levels in both moderate and severe groups versus controls. Male iron-deficient kidneys exhibited globally reduced mitochondrial content and respiration, as well as increased cytosolic superoxide and decreased NO. Female iron-deficient kidneys exhibited complex II down-regulation and increased mitochondrial oxidative stress. Male iron-deficient livers exhibited reduced complex IV respiration and increased cytosolic superoxide, whereas female liver tissues exhibited no alteration in oxidant levels or mitochondrial function. These findings indicate that prenatal iron deficiency causes changes in mitochondrial content and function as well as oxidant status in a sex- and organ-dependent manner, which may be an important mechanism that underlies the programming of cardiovascular disease.-Woodman, A. G., Mah, R., Keddie, D., Noble, R. M. N., Panahi, S., Gragasin, F. S., Lemieux, H., Bourque, S. L. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

  11. [Therapeutic effect of saxagliptin in rat models of nonalcoholic fatty liver and type 2 diabetes].

    PubMed

    Liu, Yan; Zhang, Zhen; Chen, Rongping; Sun, Jia; Chen, Hong

    2014-06-01

    To observe the therapeutic effect of saxagliptin in a rat model of nonalcoholic fatty liver and type 2 diabetes and investigate the possible mechanism. Rats models of nonalcoholic fatty liver and type 2 diabetes established by feeding on a high glucose and fat diet and streptozotocin injection were treated with saxagliptin (daily dose of 10 mg/kg) gavage for 8 weeks, using saline as the control. After the treatment, fasting blood glucose, serum insulin, blood lipids, liver function, liver oxidative indices, and hepatic pathologies were evaluated in all the rats, and the expressions of Bcl-2 and Bax in the liver tissue were detected with immunohistochemistry and Western blotting. Compared with the model group, saxagliptin intervention significantly reduced blood glucose and HOMA-IR, improved the liver function and SOD activity (P<0.01), lowered the liver weight, liver index (P<0.01) and MDA level (P<0.05), and slightly lowered the body weight and blood lipids (P>0.05); AST level was similar between the normal control group and saxagliptin intervention group (P>0.05). HE and oil red staining showed obvious hepatic pathologies in the model group, and saxagliptin intervention significantly reduced lipid droplets in the hepatocytes and improved the structural damage of the liver. Hepatic Bax expression significantly increased and Bcl-2 expression decreased in the model group, and these changes were reversed by saxagliptin. Saxagliptin shows good therapeutic effect in rat models of nonalcoholic fatty liver and type 2 diabetes possibly by controlling blood glucose, lowering insulin resistance, alleviating hepatic oxidative stress and hepatocyte damage, and regulating the expression of apoptosis-related proteins.

  12. 17β-Estradiol protects the liver against cold ischemia/reperfusion injury through the Akt kinase pathway.

    PubMed

    Yang, Xiaohua; Qin, Lei; Liu, Jianxia; Tian, Liping; Qian, Haixin

    2012-12-01

    Hepatic ischemia-reperfusion (IR) injury occurs during liver resection and transplantation. Recent studies have shown that 17β-estradiol (E2) can protect the heart and liver against warm IR. The present study focused on the cytoprotective effects of E2 on cold IR injury to the liver. Sprague-Dawley male rats were randomly divided into three groups: sham, IR, and IR plus E2. The model of rat orthotopic liver transplantation was used. The rats in the IR plus E2 group were intraperitoneally injected with E2 (100 μg/kg/d) for 7 d before surgery. The sham and IR group received the same quantity of saline. The donor livers were then orthotopically transplanted into rats after cold ischemia preservation for 4 h at 4°C lactated Ringer's solution. After 6 h reperfusion, liver function, bile flow volume, hepatocyte apoptosis, and activation of Akt, glycogen synthase kinase-3β, and Bcl-2-associated death promoter were assessed. The survival rate of the rats was also investigated. The administration of E2 significantly prolonged the survival of liver grafts by improving liver function and decreasing hepatocyte apoptosis. Rats undergoing E2 demonstrated a greater level activation of Akt in the liver compared with the IR group. In addition, E2 also inhibited the activities of glycogen synthase kinase-3β, Bcl-2-associated death promoter, and caspase-3-induced by IR injury. E2 pretreatment attenuated the hepatocellular damage caused by hepatic cold IR injury through the Akt pathway. Estrogen therapy might be important in clinical settings associated with cold IR injury during liver transplantation. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Parkin regulates mitophagy and mitochondrial function to protect against alcohol-induced liver injury and steatosis in mice.

    PubMed

    Williams, Jessica A; Ni, Hong-Min; Ding, Yifeng; Ding, Wen-Xing

    2015-09-01

    Alcoholic liver disease claims two million lives per year. We previously reported that autophagy protected against alcohol-induced liver injury and steatosis by removing damaged mitochondria. However, the mechanisms for removal of these mitochondria are unknown. Parkin is an evolutionarily conserved E3 ligase that is recruited to damaged mitochondria to initiate ubiquitination of mitochondrial outer membrane proteins and subsequent mitochondrial degradation by mitophagy. In addition to its role in mitophagy, Parkin has been shown to have other roles in maintaining mitochondrial function. We investigated whether Parkin protected against alcohol-induced liver injury and steatosis using wild-type (WT) and Parkin knockout (KO) mice treated with alcohol by the acute-binge and Gao-binge (chronic plus acute-binge) models. We found that Parkin protected against liver injury in both alcohol models, likely because of Parkin's role in maintaining a population of healthy mitochondria. Alcohol caused greater mitochondrial damage and oxidative stress in Parkin KO livers compared with WT livers. After alcohol treatment, Parkin KO mice had severely swollen and damaged mitochondria that lacked cristae, which were not seen in WT mice. Furthermore, Parkin KO mice had decreased mitophagy, β-oxidation, mitochondrial respiration, and cytochrome c oxidase activity after acute alcohol treatment compared with WT mice. Interestingly, liver mitochondria seemed able to adapt to alcohol treatment, but Parkin KO mouse liver mitochondria had less capacity to adapt to Gao-binge treatment compared with WT mouse liver mitochondria. Overall, our findings indicate that Parkin is an important mediator of protection against alcohol-induced mitochondrial damage, steatosis, and liver injury. Copyright © 2015 the American Physiological Society.

  14. [Protective effects of polysaccharides from Dendrobium huoshanense on CCl4-induced acute liver injury in mice].

    PubMed

    Huang, Jing; Li, Sheng-Li; Zhao, Hong-Wei; Pan, Li-Hua; Sun, Hao-Qiao; Luo, Jian-Ping

    2013-02-01

    To study the protective effects of polysaccharides from Dendrobium huoshanense (DHP) against CCl4-induced liver injury in mice. Eighty male Kunming mice were randomly divided into normal control group, model control group, dextran control group, starch control group, hydrolyzate control group, three different dose of DPH groups consisting of high-dosage group, middle-dosage group and low-dosage group (200, 100, 50 mg x kg(-1)). Each group contained ten mice. The mice were treated with DHP via intragastric administration for 15 days before treatment of 50% CCl4 in olive oil for consecutive two days. Both alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in serum and superoxide dismutase (SOD) activities and malondialdehyde (MDA) contents in liver tissues were determined in all groups. Immunohistochemistry was used to detect the expression of TNF-alpha in hepatic tissue. Hepatic histopathological examination was observed. DHP effectively decreased the activities of ALT and AST in serum and the contents of hepatic MDA, and restored hepatic SOD activities in acute liver injury mice. Liver tissue damage induced by CCl4 was ameliorated in mice with DHP administration through histopathology examination. Furthermore, the expression of TNF-alpha was greatly decreased in groups treated with polysaccharides. DHP has a significantly hepatoprotective effect on CCl4-induced acute liver injury in mice. Protective effect of DHP on the liver may be related to its function of scavenging free radicals and inhibiting lipid peroxidation and TNF-alpha expression.

  15. Silymarin and caffeine combination ameliorates experimentally-induced hepatic fibrosis through down-regulation of LPAR1 expression.

    PubMed

    Eraky, Salma M; El-Mesery, Mohamed; El-Karef, Amro; Eissa, Laila A; El-Gayar, Amal M

    2018-05-01

    Lysophosphatidic acid is a lipid mediator that is supposed to be implicated in hepatic fibrosis. Silymarin and caffeine are natural compounds known for their anti-inflammatory and antioxidant effects. Our study aimed to explore the effect of silymarin, caffeine, and their combination on lysophosphatidic acid receptor 1 (LPAR1) pathway in thioacetamide (TAA)-induced hepatic fibrosis. Hepatic fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 200 mg/kg of TAA twice a week for 8 weeks. Silymarin (50 mg/kg), caffeine (50 mg/kg), and their combination (50 mg/kg silymarin + 50 mg/kg caffeine) were orally given to rats every day for 8 weeks along with TAA injection. Liver functions were measured. Histopathological examination of liver tissues was performed using hematoxylin and eosin and Masson's trichrome staining. mRNA expressions of LPAR1, transforming growth factor beta 1 (TGF-β1), connective tissue growth factor (CTGF), and alpha smooth muscle actin (α-SMA) were measured using RT-PCR. LPAR1 tissue expression was scored using immunohistochemistry. Silymarin, caffeine, and their combination significantly improved liver function. They caused significant decrease in fibrosis and necro-inflammatory scores. Combination of silymain and caffeine caused a significant decrease in the necro-inflammatory score than the single treatment with silymarin or caffeine. In addition, silymarin, caffeine, and their combination significantly decreased hepatic LPAR1, TGF-β1, CTGF, and α-SMA gene expressions and LPAR1 tissue expression. Silymarin, caffeine, and their combination protect against liver fibrosis through down-regulation of LPAR1, TGF-β1, and CTGF. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Liposomes as fatty acids carriers in isolated rat liver: effect on energy metabolism and on isolated mitochondria activity.

    PubMed

    Delmas-Beauvieux, M C; Leducq, N; Thiaudière, E; Diolez, P; Gin, H; Canioni, P; Gallis, J L

    2000-02-01

    The effects of fatty acids (FA)-carrier, egg-lecithin liposomes (LIPO) as alternative to BSA, on ATP, glycogen and glucose contents in isolated perfused liver of fed rats were non-invasively studied using 31P/13C nuclear magnetic resonance (NMR). Oxidative phosphorylation was studied in isolated mitochondria from the same liver consecutively to the NMR experiments. ATP content decreased slowly and ATP turnover was similar during the perfusion with saline solution (KHB) or LIPO. However, LIPO induced an enhancement of respiratory control ratio in isolated mitochondria. Tissue glycogen and glucose content decreased when FA (linoleate or linolenate) were perfused with defatted BSA (3%) or LIPO (600 mg/l) whereas glucose excretion level was unchanged and lactate excretion tended to increase, reflecting changes in the cytosolic redox state and/or an enhancement of glycolysis. Addition of FA (0.5 or 1.5 mM) to LIPO caused a dramatic fall in liver ATP, a mitochondrial uncoupling and an impairment of the phosphorylation activity. Perfusion with FA (1.5 mM) carried by BSA significantly increased the ATP degradation without change of mitochondrial function. Owing to the higher affinity of BSA than LIPO for FA, these latter could be more easily released from complex LIPO-FA, increasing their uncoupling effect. Hence, the FA concentrations have to be largely decreased from the above currently used concentrations to avoid this effect. It will then be possible to minimize the effector action of FA and to study their more specific metabolic function as fuel. It was concluded that LIPO were appropriate carriers to study the different metabolic effects of FA.

  17. Hepatic overexpression of steroid sulfatase ameliorates mouse models of obesity and type 2 diabetes through sex-specific mechanisms.

    PubMed

    Jiang, Mengxi; He, Jinhan; Kucera, Heidi; Gaikwad, Nilesh W; Zhang, Bin; Xu, Meishu; O'Doherty, Robert M; Selcer, Kyle W; Xie, Wen

    2014-03-21

    The steroid sulfatase (STS)-mediated desulfation is a critical metabolic mechanism that regulates the chemical and functional homeostasis of endogenous and exogenous molecules. In this report, we first showed that the liver expression of Sts was induced in both the high fat diet (HFD) and ob/ob models of obesity and type 2 diabetes and during the fed to fasting transition. In defining the functional relevance of STS induction in metabolic disease, we showed that overexpression of STS in the liver of transgenic mice alleviated HFD and ob/ob models of obesity and type 2 diabetes, including reduced body weight, improved insulin sensitivity, and decreased hepatic steatosis and inflammation. Interestingly, STS exerted its metabolic benefit through sex-specific mechanisms. In female mice, STS may have increased hepatic estrogen activity by converting biologically inactive estrogen sulfates to active estrogens and consequently improved the metabolic functions, whereas ovariectomy abolished this protective effect. In contrast, the metabolic benefit of STS in males may have been accounted for by the male-specific decrease of inflammation in white adipose tissue and skeletal muscle as well as a pattern of skeletal muscle gene expression that favors energy expenditure. The metabolic benefit in male STS transgenic mice was retained after castration. Treatment with the STS substrate estrone sulfate also improved metabolic functions in both the HFD and ob/ob models. Our results have uncovered a novel function of STS in energy metabolism and type 2 diabetes. Liver-specific STS induction or estrogen/estrogen sulfate delivery may represent a novel approach to manage metabolic syndrome.

  18. NMR-based metabonomic and quantitative real-time PCR in the profiling of metabolic changes in carbon tetrachloride-induced rat liver injury.

    PubMed

    Li, Xiaowei; Zhang, Fusheng; Wang, Dongqin; Li, Zhenyu; Qin, Xuemei; Du, Guanhua

    2014-02-01

    Carbon tetrachloride (CCl4) is commonly used as a model toxicant to induce chronic and acute liver injuries. In this study, metabolite profiling and gene expression analysis of liver tissues were performed by nuclear magnetic resonance and quantitative real-time polymerase chain reaction to understand the responses of acute liver injury system in rats to CCl4. Acute liver injury was successfully induced by CCl4 as revealed by histopathological results and significant increase in alanine aminotransferase and serum aspartate aminotransferase. We found that CCl4 caused a significant increase in lactate, succinate, citrate, dimethylgycine, choline and taurine. CCl4 also caused a decrease in some of the amino acids such as leucine/isoleucine, glutamine/glutathione and betaine. Gene function analysis revealed that 10 relevant enzyme genes exhibited changes in expressions in the acute liver injury model. In conclusion, the metabolic pathways, including tricarboxylic acid cycle, antioxidant defense systems, fatty acid β-oxidation, glycolysis and choline and mevalonate metabolisms were impaired in CCl4-treated rat livers. These findings provided an overview of the biochemical consequences of CCl4 exposure and comprehensive insights into the metabolic aspects of CCl4-induced hepatotoxicity in rats. These findings may also provide reference of the mechanisms of acute liver injury that could be used to study the changes in functional genes and metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Swimming Training Induces Liver Mitochondrial Adaptations to Oxidative Stress in Rats Submitted to Repeated Exhaustive Swimming Bouts

    PubMed Central

    Lima, Frederico D.; Stamm, Daniel N.; Della-Pace, Iuri D.; Dobrachinski, Fernando; de Carvalho, Nélson R.; Royes, Luiz Fernando F.; Soares, Félix A.; Rocha, João B.; González-Gallego, Javier; Bresciani, Guilherme

    2013-01-01

    Background and Aims Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS) production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. Methods Wistar rats were divided into training (n = 14) and control (n = 14) groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7) and control (n = 7) rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. Results Trained group showed increased reduced glutathione (GSH) content and reduced/oxidized (GSH/GSSG) ratio, higher superoxide dismutase (MnSOD) activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. Conclusions Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance. PMID:23405192

  20. Effect of intestinal microbiota alteration on hepatic damage in rats with acute rejection after liver transplantation.

    PubMed

    Xie, Yirui; Chen, Huazhong; Zhu, Biao; Qin, Nan; Chen, Yunbo; Li, Zhengfeng; Deng, Min; Jiang, Haiyin; Xu, Xiangfei; Yang, Jiezuan; Ruan, Bing; Li, Lanjuan

    2014-11-01

    The previous studies all focus on the effect of probiotics and antibiotics on infection after liver transplantation. Here, we focus on the effect of gut microbiota alteration caused by probiotics and antibiotics on hepatic damage after allograft liver transplantation. Brown-Norway rats received saline, probiotics, or antibiotics via daily gavage for 3 weeks. Orthotopic liver transplantation (OLT) was carried out after 1 week of gavage. Alteration of the intestinal microbiota, liver function and histopathology, serum and liver cytokines, and T cells in peripheral blood and Peyer's patch were evaluated. Distinct segregation of fecal bacterial diversity was observed in the probiotic group and antibiotic group when compared with the allograft group. As for diversity of intestinal mucosal microbiota and pathology of intestine at 2 weeks after OLT, antibiotics and probiotics had a significant effect on ileum and colon. The population of Lactobacillus and Bifidobacterium in the probiotic group was significantly greater than the antibiotic group and the allograft group. The liver injury was significantly reduced in the antibiotic group and the probiotic group compared with the allograft group. The CD4/CD8 and Treg cells in Peyer's patch were decreased in the antibiotic group. The intestinal Treg cell and serum and liver TGF-β were increased markedly while CD4/CD8 ratio was significantly decreased in the probiotic group. It suggested that probiotics mediate their beneficial effects through increase of Treg cells and TGF-β and deduction of CD4/CD8 in rats with acute rejection (AR) after OLT.

  1. Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring.

    PubMed

    Beauchamp, Brittany; Thrush, A Brianne; Quizi, Jessica; Antoun, Ghadi; McIntosh, Nathan; Al-Dirbashi, Osama Y; Patti, Mary-Elizabeth; Harper, Mary-Ellen

    2015-04-10

    Intrauterine growth restriction (IUGR) is associated with an increased risk of developing obesity, insulin resistance and cardiovascular disease. However, its effect on energetics in heart remains unknown. In the present study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have life-long implications for cardiovascular function and disease risk. © 2015 Authors.

  2. Maternal ethanol consumption reduces Se antioxidant function in placenta and liver of embryos and breastfeeding pups.

    PubMed

    Nogales, Fátima; Ojeda, M Luisa; Jotty, Karick; Murillo, M Luisa; Carreras, Olimpia

    2017-12-01

    The fetal alcohol exposition during pregnancy leads to different disorders in offspring, related to the oxidative stress generated by alcohol. It is well-documented that there is an impairment of the antioxidant selenoprotein Glutathione peroxidase (GPx) activity in ethanol offspring during the embryo period, although no-one has described Selenium (Se) status. The aim is to analyze for the first time Se deposits in vivo and Se's biological implication in embryos and placenta after alcohol exposure and in offspring whose mothers continued to drink ethanol during lactation. Se deposits, GPx and glutathione reductase (GR) activity, lipid and protein oxidation and the expression of GPx1 were measured in placenta and liver of both embryos (E-19) and breastfeeding pups (L-21) in control and ethanol groups (20% v/v). Ethanol consumption decreased Se deposits, GPx activity and GPx1 expression, while increasing biomolecular oxidation in placenta and in the liver of E-19 and L-21. The GR/GPx ratio decreased in placenta and in E-19, together with an increase in lipid oxidation, while increased in the liver of L-21 pups with protein oxidation. Ethanol also decreased the GPx1 expression/GPx activity ratio in the liver of E-19 and L-21, indicating that alcohol decreases GPx activity by both depleting Se deposits and promoting GPx inactivation. In placenta GPx activity is proportional to the GPx1 expression found, so the ethanol affects GPx activity in offspring more than in dams. Therefore, Se supplementation therapy in dams could contribute as an interesting antioxidant that prevents fetal alcohol syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A mouse model of mitochondrial complex III dysfunction induced by myxothiazol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoudi, Mina; Kallijärvi, Jukka; Marjavaara, Sanna

    2014-04-18

    Highlights: • Reversible chemical inhibition of complex III in wild type mouse. • Myxothiazol causes decreased complex III activity in mouse liver. • The model is useful for therapeutic trials to improve mitochondrial function. - Abstract: Myxothiazol is a respiratory chain complex III (CIII) inhibitor that binds to the ubiquinol oxidation site Qo of CIII. It blocks electron transfer from ubiquinol to cytochrome b and thus inhibits CIII activity. It has been utilized as a tool in studies of respiratory chain function in in vitro and cell culture models. We developed a mouse model of biochemically induced and reversible CIIImore » inhibition using myxothiazol. We administered myxothiazol intraperitoneally at a dose of 0.56 mg/kg to C57Bl/J6 mice every 24 h and assessed CIII activity, histology, lipid content, supercomplex formation, and gene expression in the livers of the mice. A reversible CIII activity decrease to 50% of control value occurred at 2 h post-injection. At 74 h only minor histological changes in the liver were found, supercomplex formation was preserved and no significant changes in the expression of genes indicating hepatotoxicity or inflammation were found. Thus, myxothiazol-induced CIII inhibition can be induced in mice for four days in a row without overt hepatotoxicity or lethality. This model could be utilized in further studies of respiratory chain function and pharmacological approaches to mitochondrial hepatopathies.« less

  4. Hypothermic maintenance of hepatocyte spheroids.

    PubMed

    Lai, Pamela H; Meng, Qin; Sielaff, Timothy D; Hu, Wei-Shou

    2005-01-01

    Primary hepatocytes form spheroids under some culture conditions. These spheroids exhibit many tissue-like ultrastructures and retain many liver-specific functions over a long period of time. They are attractive for many applications employing liver cells. The ability to maintain their viability and functions at a reduced temperature to allow for transportation to the site of their application will facilitate their use. Furthermore, with their structural and functional similarity, they could possibly be used as a model system for studying various liver ischemias. The effect of hypothermic treatment was assessed by oxygen consumption rate, ATP, H2O2, and caspase 8 content, as well as albumin and urea synthesis, during and posttreatment. No single outcome variable gives a superlative quantification of hypothermic damage. Taken together, the hypothermic treatment can be seen as increasingly damaging as the temperature decreases from 21 degrees C to 15 degrees C and 4 degrees C. The addition of the chemical protectants glutathione, N-acetyl-L-cystein (NAC), and tauroursodeoxycholic acid (TUDCA) decreased the damaging effect of hypothermic treatment. This protection effect was even more profound when spheroids were preincubated with the protectant for 24 h, and was most prominent at 4 degrees C. The viability of the hypothermically treated hepatocyte spheroids was confirmed by laser scanning confocal microscopy. The method reported provides a means of maintaining spheroids' viability and may allow for their distribution to application sites at a distance.

  5. Extracellular Superoxide Dismutase Enhances Recruitment of Immature Neutrophils to the Liver

    PubMed Central

    Break, Timothy J.; Witter, Alexandra R.; Indramohan, Mohanalaxmi; Mummert, Mark E.; Dory, Ladislav

    2016-01-01

    Listeria monocytogenes is a Gram-positive intracellular pathogen that causes spontaneous abortion in pregnant women, as well as septicemia, meningitis, and gastroenteritis, primarily in immunocompromised individuals. Although L. monocytogenes can usually be effectively treated with antibiotics, there is still around a 25% mortality rate with individuals who develop clinical listeriosis. Neutrophils are innate immune cells required for the clearance of pathogenic organisms, including L. monocytogenes. The diverse roles of neutrophils during both infectious and noninfectious inflammation have recently gained much attention. However, the impact of reactive oxygen species, and the enzymes that control their production, on neutrophil recruitment and function is not well understood. Using congenic mice with varying levels of extracellular superoxide dismutase (ecSOD) activity, we have recently shown that the presence of ecSOD decreases clearance of L. monocytogenes while increasing the recruitment of neutrophils that are not protective in the liver. The data presented here show that ecSOD activity does not lead to a cell-intrinsic increase in neutrophil-homing potential or a decrease in protection against L. monocytogenes. Instead, ecSOD activity enhances the production of neutrophil-attracting factors and protects hyaluronic acid (HA) from damage. Furthermore, neutrophils from the livers of ecSOD-expressing mice have decreased intracellular and surface-bound myeloperoxidase, are less capable of killing phagocytosed L. monocytogenes, and have decreased oxidative burst. Collectively, our data reveal that ecSOD activity modulates neutrophil recruitment and function in a cell-extrinsic fashion, highlighting the importance of the enzyme in protecting tissues from oxidative damage. PMID:27600509

  6. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy

    PubMed Central

    Yang, Lili; Rozenfeld, Raphael; Wu, Defeng; Devi, Lakshmi A.; Zhang, Zhenfeng; Cederbaum, Arthur

    2014-01-01

    Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy. PMID:24398069

  7. Establishment and characterization of a unique 1 microm diameter liver-derived progenitor cell line.

    PubMed

    Aravalli, Rajagopal N; Behnan Sahin, M; Cressman, Erik N K; Steer, Clifford J

    2010-01-01

    Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 microm in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers. Copyright 2009 Elsevier Inc. All rights reserved.

  8. The effect of androgen excess on maternal metabolism, placental function and fetal growth in obese dams.

    PubMed

    Fornes, Romina; Maliqueo, Manuel; Hu, Min; Hadi, Laila; Jimenez-Andrade, Juan M; Ebefors, Kerstin; Nyström, Jenny; Labrie, Fernand; Jansson, Thomas; Benrick, Anna; Stener-Victorin, Elisabet

    2017-08-14

    Pregnant women with polycystic ovary syndrome (PCOS) are often overweight or obese. To study the effects of maternal androgen excess in obese dams on metabolism, placental function and fetal growth, female C57Bl6J mice were fed a control (CD) or a high fat/high sucrose (HF/HS) diet for 4-10 weeks, and then mated. On gestational day (GD) 15.5-17.5, dams were injected with dihydrotestosterone (CD-DHT, HF/HS-DHT) or a vehicle (CD-Veh, HF/HS-Veh). HF/HS dams had higher fat content, both before mating and on GD18.5, with no difference in glucose homeostasis, whereas the insulin sensitivity was higher in DHT-exposed dams. Compared to the CD groups, the livers from HF/HS dams weighed more on GD18.5, the triglyceride content was higher, and there was a dysregulation of liver enzymes related to lipogenesis and higher mRNA expression of Fitm1. Fetuses from HF/HS-Veh dams had lower liver triglyceride content and mRNA expression of Srebf1c. Maternal DHT exposure, regardless of diet, decreased fetal liver Pparg mRNA expression and increased placental androgen receptor protein expression. Maternal diet-induced obesity, together with androgen excess, affects maternal and fetal liver function as demonstrated by increased triglyceride content and dysfunctional expression of enzymes and transcription factors involved in de novo lipogenesis and fat storage.

  9. Magnetic Resonance Spectroscopy for Evaluating Portal-Systemic Encephalopathy in Patients with Chronic Hepatic Schistosomiasis Japonicum.

    PubMed

    Li, Ying; Mei, Lihong; Qiang, Jinwei; Ju, Shuai; Zhao, Shuhui

    2016-12-01

    Portal-systemic encephalopathy (PSE) is classified as type B hepatic encephalopathy. Portal-systemic shunting rather than liver dysfunction is the main cause of PSE in chronic hepatic schistosomiasis japonicum (HSJ) patients. Owing to lack of detectable evidence of intrinsic liver disease, chronic HSJ patients with PSE are frequently clinically undetected or misdiagnosed, especially chronic HSJ patients with covert PSE (subclinical encephalopathy). In this study, we investigated whether magnetic resonance spectroscopy (MRS) could be a useful tool for diagnosing PSE in chronic HSJ patients. Magnetic resonance (MR) T1-weighted imaging, diffusion-weighted imaging, and MRS were performed in 41 chronic HSJ patients with suspected PSE and in 21 age-matched controls. The T1 signal intensity index (T1SI) and apparent diffusion coefficient (ADC) value were obtained in the Globus pallidus. Liver function was also investigated via serum ammonia and liver function tests. Higher T1SI and ADC values, increased lactate and glutamine levels, and decreased myo-inositol were found in the bilateral Globus pallidus in chronic HSJ patients with PSE. No significantly abnormal serum ammonia or liver function tests were observed in chronic HSJ patients with PSE. On the basis of these findings, we propose a diagnostic procedure for PSE in chronic HSJ patients. This study reveals that MRS can be useful for diagnosing PSE in chronic HSJ patients.

  10. Human Umbilical Cord MSC-Derived Exosomes Suppress the Development of CCl4-Induced Liver Injury through Antioxidant Effect.

    PubMed

    Jiang, Wenqian; Tan, Youwen; Cai, Mengjie; Zhao, Ting; Mao, Fei; Zhang, Xu; Xu, Wenrong; Yan, Zhixin; Qian, Hui; Yan, Yongmin

    2018-01-01

    Mesenchymal stem cells (MSCs) have been increasingly applied into clinical therapy. Exosomes are small (30-100 nm in diameter) membrane vesicles released by different cell types and possess the similar functions with their derived cells. Human umbilical cord MSC-derived exosomes (hucMSC-Ex) play important roles in liver repair. However, the effects and mechanisms of hucMSC-Ex on liver injury development remain elusive. Mouse models of acute and chronic liver injury and liver tumor were induced by carbon tetrachloride (CCl 4 ) injection, followed by administration of hucMSC-Ex via the tail vein. Alleviation of liver injury by hucMSC-Ex was determined. We further explored the production of oxidative stress and apoptosis in the development of liver injury and compared the antioxidant effects of hucMSC-Ex with frequently used hepatic protectant, bifendate (DDB) in liver injury. hucMSC-Ex alleviated CCl 4 -induced acute liver injury and liver fibrosis and restrained the growth of liver tumors. Decreased oxidative stress and apoptosis were found in hucMSC-Ex-treated mouse models and liver cells. Compared to bifendate (DDB) treatment, hucMSC-Ex presented more distinct antioxidant and hepatoprotective effects. hucMSC-Ex may suppress CCl 4 -induced liver injury development via antioxidant potentials and could be a more effective antioxidant than DDB in CCl 4 -induced liver tumor development.

  11. Ex vivo adenoviral gene transfer of constitutively activated STAT3 reduces post-transplant liver injury and promotes regeneration in a 20% rat partial liver transplant model.

    PubMed

    Huda, Kamrul A S M; Guo, Lei; Haga, Sanae; Murata, Hiroshi; Ogino, Tetsuya; Fukai, Moto; Yagi, Takahito; Iwagaki, Hiromi; Tanaka, Noriaki; Ozaki, Michitaka

    2006-05-01

    Signal transducer and activator of transcription-3 (STAT3) is one of the most important transcription factors for liver regeneration. This study was designed to examine the effects of constitutively activated STAT3 (STAT3-C) on post-transplant liver injury and regeneration in a rat 20% partial liver transplant (PLTx) model by ex vivo adenoviral gene transfer. Adenovirus encoding the STAT3-C gene was introduced intraportally into liver grafts and clamped for 30 min during cold preservation. After orthotopic PLTx, liver graft/body weights and serum biochemistry were monitored, and both a histological study and DNA binding assay were performed. STAT3-C protein expression and its binding to DNA in the liver graft were confirmed by Western blotting and electrophoretic mobility shift assay (EMSA), respectively. This treatment modality promoted post-Tx liver regeneration effectively and rapidly. The serum levels of alanine aminotransferase/aspartate aminotransferase (AST/ALT) and bilirubin decreased in rats with STAT3-C. However, albumin (a marker of liver function) did not. Ex vivo gene transfer of STAT3-C to liver grafts reduced post-Tx injury and promoted liver regeneration. Thus, the activation of STAT3 in the liver graft may be a potentially effective clinical strategy for improving the outcome of small-for-size liver transplantation.

  12. Chlorogenic acid protects D-galactose-induced liver and kidney injury via antioxidation and anti-inflammation effects in mice.

    PubMed

    Feng, Yan; Yu, Ying-Hua; Wang, Shu-Ting; Ren, Jing; Camer, Danielle; Hua, Yu-Zhou; Zhang, Qian; Huang, Jie; Xue, Dan-Lu; Zhang, Xiao-Fei; Huang, Xu-Feng; Liu, Yi

    2016-01-01

    Oxidative stress and inflammation are implicated in the aging process and its related hepatic and renal function decline. Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in the human diet. Recently, CGA has shown in vivo and in vitro antioxidant properties. The current study investigates the effects of protective effects of chlorogenic acid (CGA) on D-galactose-induced liver and kidney injury. Hepatic and renal injuries were induced in a mouse model by subcutaneously injection of D-galactose (D-gal; 100 mg/kg) once a day for 8 consecutive weeks and orally administered simultaneously with CGA included in the food (200 mg/kg of diet). The liver and renal functions were examined. Histological analyses of liver and kidney were done by haematoxylin and eosin staining. The oxidative stress markers and pro-inflammatory cytokines in the liver and the kidney were measured. Results CGA significantly reduced the serum aminotransferase, serum creatinine (SCr) and blood urea nitrogen (BUN) levels in D-gal mice (p <0.05). CGA also restored superoxide dismutase, catalase, and malondialdehyde levels and decreased glutathione content in the liver and kidney in D-gal mice (p <0.05). Improvements in liver and kidney were also noted in histopathological studies. CGA reduced tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) protein levels in the liver and kidney in D-gal mice (p <0.05). These findings suggest that CGA attenuates D-gal-induced chronic liver and kidney injury and that this protection may be due to its antioxidative and anti-inflammatory activities.

  13. Testosterone and estradiol treatments differently affect pituitary-thyroid axis and liver deiodinase 1 activity in orchidectomized middle-aged rats.

    PubMed

    Šošić-Jurjević, B; Filipović, B; Renko, K; Miler, M; Trifunović, S; Ajdžanovič, V; Kӧhrle, J; Milošević, V

    2015-12-01

    We previously reported that orchidectomy (Orx) of middle-aged rats (15-16-month-old; MA) slightly affected pituitary-thyroid axis, but decreased liver deiodinase (Dio) type 1 and pituitary Dio2 enzyme activities. At present, we examined the effects of subsequent testosterone-propionate treatment (5mg/kg; Orx+T), and compared the effects of testosterone with the effects of estradiol-dipropionate (0.06mg/kg; Orx+E) treatment. Hormones were subcutaneously administered, daily, for three weeks, while Orx and sham-operated (SO) controls received only the vehicle. The applied dose of T did not alter serum TSH, T4 and T3 concentrations in Orx- MA, though it increased TSH when administrated to Orx young adults (2.5-month-old; Orx-YA). However, pituitaries of Orx-MA+T rats had higher relative intensity of immunofluorescence (RIF) for TSHβ; in their thyroids we found increased volume and height of follicular epithelium, decreased volume of the colloid and higher RIF for T4-bound to thyroglobulin (Tg-T4). Liver Dio1 activity was increased. E-treatment did not affect serum hormone levels, pituitary RIF for TSHβ, or liver Dio1 activity in Orx-MA rats. Thyroids had decreased relative volume and height of follicular epithelium, increased relative volume of the colloid, decreased volume of sodium-iodide symporter-immunopositive epithelium and lower RIF for Tg-T4. Detected changes were statistically significant. In conclusion, androgenization enhanced pituitary TSHβ RIF, thyroid activation and liver Dio1 enzyme activity in Orx-MA, without elevating serum TSH as in Orx-YA rats. Estrogenization induced pituitary enlargement with no effect on pituitary TSHβ RIF, serum TSH or liver Dio1 activity. E also induced alterations in thyroid histology that indicate mild suppression of its functioning, and contributed to thyroid blood vessel enlargement in Orx-MA rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Dietary fructose causes defective insulin signalling and ceramide accumulation in the liver that can be reversed by gut microbiota modulation.

    PubMed

    Crescenzo, Raffaella; Mazzoli, Arianna; Di Luccia, Blanda; Bianco, Francesca; Cancelliere, Rosa; Cigliano, Luisa; Liverini, Giovanna; Baccigalupi, Loredana; Iossa, Susanna

    2017-01-01

    Objective : The link between metabolic derangement of the gut-2013liver-visceral white adipose tissue (v-WAT) axis and gut microbiota was investigated. Methods : Rats were fed a fructose-rich diet and treated with an antibiotic mix. Inflammation was measured in portal plasma, ileum, liver, and v-WAT, while insulin signalling was analysed by measuring levels of phosphorylated kinase Akt. The function and oxidative status of hepatic mitochondria and caecal microbiota composition were also evaluated. Results : Ileal inflammation, increase in plasma transaminases, plasma peroxidised lipids, portal concentrations of tumour necrosis factor alpha, lipopolysaccharide, and non-esterified fatty acids, were induced by fructose and were reversed by antibiotic. The increased hepatic ceramide content, inflammation and decreased insulin signaling in liver and v-WAT induced by fructose was reversed by antibiotic. Antibiotic also blunted the increase in hepatic mitochondrial efficiency and oxidative damage of rats fed fructose-rich diet. Three genera, Coprococcus, Ruminococcus, and Clostridium, significantly increased, while the Clostridiaceae family significantly decreased in rats fed a fructose-rich diet, and antibiotic abolished these variations Conclusions : When gut microbiota modulation by fructose is prevented by antibiotic, inflammatory flow from the gut to the liver and v-WAT are reversed.

  15. Protective Effect of Cymbopogon citratus Essential Oil in Experimental Model of Acetaminophen-Induced Liver Injury.

    PubMed

    Uchida, Nancy Sayuri; Silva-Filho, Saulo Euclides; Aguiar, Rafael Pazinatto; Wiirzler, Luiz Alexandre Marques; Cardia, Gabriel Fernando Esteves; Cavalcante, Heitor Augusto Otaviano; Silva-Comar, Francielli Maria de Souza; Becker, Tânia Cristina Alexandrino; Silva, Expedito Leite; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2017-01-01

    To investigate the hepatoprotective effect of Cymbopogon citratus or lemongrass essential oil (LGO), it was used in an animal model of acute liver injury induced by acetaminophen (APAP). Swiss mice were pretreated with LGO (125, 250 and 500[Formula: see text]mg/kg) and SLM (standard drug, 200[Formula: see text]mg/kg) for a duration of seven days, followed by the induction of hepatotoxicity of APAP (single dose, 250[Formula: see text]mg/kg). The liver function markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and gamma-glutamyl transferase were determined to evaluate the hepatoprotective effects of the LGO. The livers were used to determine myeloperoxidase (MPO) activity, nitric oxide (NO) production and histological analysis. The effect of LGO on leukocyte migration was evaluated in vitro. Anti-oxidant activity was performed by assessing the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in vitro. LGO pretreatment decreased significantly the levels of ALT, AST and ALP compared with APAP group. MPO activity and NO production were decreased. The histopathological analysis showed an improved of hepatic lesions in mice after LGO pretreatment. LGO inhibited neutrophil migration and exhibited anti-oxidant activity. Our results suggest that LGO has protective activity against liver toxicity induced by paracetamol.

  16. Hepatic Stellate Cells Orchestrate Clearance of Necrotic Cells in a HIF-1α-dependent Manner by Modulating Macrophage Phenotype in Mice

    PubMed Central

    Rockwell, Cheryl E.; Roth, Katherine J.; Chow, Aaron; O'Brien, Kate M; Albee, Ryan; Kelly, Kara; Towery, Keara; Luyendyk, James P.; Copple, Bryan L.

    2014-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is activated in hepatic stellate cells (HSCs) by hypoxia, and regulates genes important for tissue repair. Whether HIF-1α is activated in HSCs after acute injury and contributes to liver regeneration, however, is not known. To investigate this, mice were generated with reduced levels of HIF-1α in HSCs by crossing HIF-1α floxed mice with mice that express Cre recombinase under control of the glial fibrillary acidic protein (GFAP) promoter (i.e., HIF-1α-GFAP Cre+ mice). These mice and control mice (i.e., HIF-1α-GFAP Cre- mice) were treated with a single dose of carbon tetrachloride, and liver injury and repair were assessed. After carbon tetrachloride, HIF-1α was activated in HSCs. Although liver injury was not different between the two strains of mice, during resolution of injury, clearance of necrotic cells was decreased in HIF-1α-GFAP Cre+ mice. In these mice, the persistence of necrotic cells stimulated a fibrotic response characterized by extensive collagen deposition. Hepatic accumulation of macrophages, which clear necrotic cells from the liver after carbon tetrachloride, was not affected by HIF-1α deletion in HSCs. Conversion of macrophages to M1-like, pro-inflammatory macrophages, which have increased phagocytic activity, however, was reduced in HIF-1α-GFAP Cre+ mice as indicated by a decrease in pro-inflammatory cytokines, and a decrease in the percentage of Gr1hi macrophages. Collectively, these studies have identified a novel function for HSCs and HIF-1α in orchestrating the clearance of necrotic cells from the liver, and demonstrated a key role for HSCs in modulating macrophage phenotype during acute liver injury. PMID:24639359

  17. Impact of the Di(2-Ethylhexyl) Phthalate Administration on Trace Element and Mineral Levels in Relation of Kidney and Liver Damage in Rats.

    PubMed

    Aydemir, Duygu; Karabulut, Gözde; Şimşek, Gülsu; Gok, Muslum; Barlas, Nurhayat; Ulusu, Nuriye Nuray

    2018-04-13

    Di(2-ethylhexyl) phthalate (DEHP) is a widely used synthetic polymer in the industry. DEHP may induce reproductive and developmental toxicity, obesity, carcinogenesis and cause abnormal endocrine function in both human and wildlife. The aim of this study was to investigate trace element and mineral levels in relation of kidney and liver damage in DEHP-administered rats. Therefore, prepubertal male rats were dosed with 0, 100, 200, and 400 mg/kg/day of DEHP. At the end of the experiment, trace element and mineral levels, glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR) and glutathione S-transferase (GST) enzyme activities were evaluated in the serum, liver, and kidney samples of rats. Furthermore, serum clinical biochemistry parameters, organ/body weight ratios and histological changes were investigated to evaluate impact of DEHP more detailed. Our data indicated that sodium (Na), calcium (Ca), potassium (K), lithium (Li), rubidium (Rb) and cesium (Cs) levels significantly decreased, however iron (Fe) and selenium (Se) concentrations significantly increased in DEHP-administered groups compared to the control in the serum samples. On the other hand, upon DEHP administration, selenium concentration, G6PD and GR activities were significantly elevated, however 6-PGD activity significantly decreased compared to the control group in the kidney samples. Decreased G6PD activity was the only significant change between anti-oxidant enzyme activities in the liver samples. Upon DEHP administration, aberrant serum biochemical parameters have arisen and abnormal histological changes were observed in the kidney and liver tissue. In conclusion, DEHP may induce liver and kidney damage, also result abnormalities in the trace element and mineral levels.

  18. Dietary β-conglycinin prevents fatty liver induced by a high-fat diet by a decrease in peroxisome proliferator-activated receptor γ2 protein.

    PubMed

    Yamazaki, Tomomi; Kishimoto, Kyoko; Miura, Shinji; Ezaki, Osamu

    2012-02-01

    Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). Mice fed a high-fat diet, especially that of saturated-fat-rich oil, develop fatty liver with an increase in peroxisome proliferator-activated receptor (PPAR) γ2 protein in liver. The fatty liver induced by a high-fat diet is improved by knockdown of liver PPARγ2. In this study, we investigated whether β-conglycinin (a major protein of soy protein) could reduce PPARγ2 protein and prevent high-fat-diet-induced fatty liver in ddY mice. Mice were fed a high-starch diet (70 energy% [en%] starch) plus 20% (wt/wt) sucrose in their drinking water or a high-safflower-oil diet (60 en%) or a high-butter diet (60 en%) for 11 weeks, by which fatty liver is developed. As a control, mice were fed a high-starch diet with drinking water. Either β-conglycinin or casein (control) was given as dietary protein. β-Conglycinin supplementation completely prevented fatty liver induced by each type of diet, along with a reduction in adipose tissue weight. β-Conglycinin decreased sterol regulatory element-binding protein (SREBP)-1c and carbohydrate response element-binding protein (ChREBP) messenger RNAs (mRNAs) in sucrose-supplemented mice, whereas it decreased PPARγ2 mRNA (and its target genes CD36 and FSP27), but did not decrease SREBP-1c and ChREBP mRNAs, in mice fed a high-fat diet. β-Conglycinin decreased PPARγ2 protein and liver triglyceride (TG) concentration in a dose-dependent manner in mice fed a high-butter diet; a significant decrease in liver TG concentration was observed at a concentration of 15 en%. In conclusion, β-conglycinin effectively prevents fatty liver induced by a high-fat diet through a decrease in liver PPARγ2 protein. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The therapeutic effects of bone marrow-derived mesenchymal stem cells and simvastatin in a rat model of liver fibrosis.

    PubMed

    Motawi, Tarek M K; Atta, Hazem M; Sadik, Nermin A H; Azzam, May

    2014-01-01

    Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) proteins including collagen that occurs in most types of chronic liver diseases. Studies concerning the capacity of mesenchymal stem cells (MSCs) and simvasatain (SIMV) to repair fibrotic tissues through reducing inflammation, collagen deposition, are still controversial. This study aimed to investigate the therapeutic efficacy of bone marrow (BM)-derived MSCs and SIMV on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Rats were divided into: normal, CCl4, CCl4/MSCs, CCl4/SIMV, CCl4/MSCs/SIMV, and SIMV groups. BM-derived MSCs were detected by RT-PCR of CD29 and were then infused into the tail vein of female rats that received CCl4 injection to induce liver fibrosis. Sex-determining region Y (SRY) gene on Y-chromosome gene was assessed by PCR to confirm homing of the male stem cells in liver tissue of the female recipients. Serum liver function tests, liver procollagens I and III, tissue inhibitors of metalloproteinase-1 (TIMP-1), endoglin, matrix metalloproteinase-1 (MMP-1) gene expressions, transforming growth factor-beta (TGF-β1) immunostaining, and histopathologicl examination were performed. MSCs and SIMV decreased liver procollagens I and III, TIMP-1 and endoglin gene expressions, TGF-β1 immunostaining, and serum liver function tests compared with the CCl4 group. MMP-1 expression was increased in the CCl4/MSCs group. Histopathological examination as well as fibrosis score supports the biochemical and molecular findings. It can be concluded that MSCs and SIMV were effective in the treatment of hepatic CCl4-induced fibrosis-rat model. Treatment with MSCs was superior to SIMV. This antifibrotic effect can be attributed to their effect on the MMPs/TIMPs balance which is central in fibrogenesis.

  20. Effects of simvastatin administration on rodents with lipopolysaccharide-induced liver microvascular dysfunction.

    PubMed

    La Mura, Vincenzo; Pasarín, Marcos; Meireles, Cintia Z; Miquel, Rosa; Rodríguez-Vilarrupla, Aina; Hide, Diana; Gracia-Sancho, Jorge; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G

    2013-03-01

    Endothelial dysfunction drives vascular derangement and organ failure associated with sepsis. However, the consequences of sepsis on liver sinusoidal endothelial function are largely unknown. Statins might improve microvascular dysfunction in sepsis. The present study explores liver vascular abnormalities and the effects of statins in a rat model of endotoxemia. For this purpose, lipopolysaccharide (LPS) or saline was given to: (1) rats treated with placebo; (2) rats treated with simvastatin (25 mg/kg, orally), given at 3 and 23 hours after LPS/saline challenge; (3) rats treated with simvastatin (25 mg/kg/24 h, orally) from 3 days before LPS/saline injection. Livers were isolated and perfused and sinusoidal endothelial function was explored by testing the vasodilation of the liver circulation to increasing concentrations of acetylcholine. The phosphorylated endothelial nitric oxide synthase (PeNOS)/endothelial nitric oxide synthase (eNOS) ratio was measured as a marker of eNOS activation. LPS administration induced an increase in baseline portal perfusion pressure and a decrease in vasodilation to acetylcholine (sinusoidal endothelial dysfunction). This was associated with reduced eNOS phosphorylation and liver inflammation. Simvastatin after LPS challenge did not prevent the increase in baseline portal perfusion pressure, but attenuated the development of sinusoidal endothelial dysfunction. Treatment with simvastatin from 3 days before LPS prevented the increase in baseline perfusion pressure and totally normalized the vasodilating response of the liver vasculature to acetylcholine and reduced liver inflammation. Both protocols of treatment restored a physiologic PeNOS/eNOS ratio. LPS administration induces intrahepatic endothelial dysfunction that might be prevented by simvastatin, suggesting that statins might have potential for liver protection during endotoxemia. Copyright © 2012 American Association for the Study of Liver Diseases.

  1. Hepatocytes Polyploidization and Cell Cycle Control in Liver Physiopathology

    PubMed Central

    Gentric, Géraldine; Desdouets, Chantal; Celton-Morizur, Séverine

    2012-01-01

    Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of “diploid-polyploid conversion” during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels), oxidative stress, toxic insult, and chronic hepatitis etc.). Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth. PMID:23150829

  2. Hepatocytes polyploidization and cell cycle control in liver physiopathology.

    PubMed

    Gentric, Géraldine; Desdouets, Chantal; Celton-Morizur, Séverine

    2012-01-01

    Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of "diploid-polyploid conversion" during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels), oxidative stress, toxic insult, and chronic hepatitis etc.). Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.

  3. Bifidobacterium pseudocatenulatum CECT7765 promotes a TLR2-dependent anti-inflammatory response in intestinal lymphocytes from mice with cirrhosis.

    PubMed

    Moratalla, Alba; Gómez-Hurtado, Isabel; Moya-Pérez, Ángela; Zapater, Pedro; Peiró, Gloria; González-Navajas, José M; Gómez Del Pulgar, Eva Maria; Such, José; Sanz, Yolanda; Francés, Rubén

    2016-02-01

    Intestinal homeostasis plays an important role in bacteria-derived complications in cirrhosis. Intestinal lymphocytes are responsible for immune effector functions and can be modulated by certain probiotics. We evaluate the interaction between Bifidobacterium pseudocatenulatum CECT7765 and intestinal lymphocytes in mice with cirrhosis. Cirrhosis was induced by intragastrical administration of carbon tetrachloride in Balb/C mice. One week prior to laparotomy, animals received B. pseudocatenulatum CECT7765 (10(7), 10(9) or 10(10) cfu/daily) or placebo. Chemokine receptor and cytokine expression were evaluated in intestinal lymphocytes. Gut permeability was studied by FITC-LPS recovery in vivo. Luminal antigens, inflammation and functional markers were evaluated in liver samples. Bifidobacterium pseudocatenulatum CECT7765 decreased the expression of pro-inflammatory chemokine receptors CCR6, CCR9, CXCR3 and CXCR6 in intestinal lymphocytes from cirrhotic mice in a concentration-dependent manner. The bifidobacterial strain induced a shift towards an anti-inflammatory cytokine profile in this cell subset. B. pseudocatenulatum CECT7765-induced inflammatory modulation was TLR2-mediated, as in vitro TLR2 blockade inhibited the reduction of TNF-alpha and its receptors and the increase of IL-10 and IL-10 receptor secretion. The recovery rate of administered fluorescence-labelled endotoxin was significantly and dose-dependently lowered with the bifidobacterial strain. The reduced intestinal permeability was associated with a decreased burden of bacterial antigens in the liver of mice treated with B. pseudocatenulatum CECT7765. Liver function and inflammation were improved with the use of the bifidobacterial strain at the highest dose tested (10(10) cfu). Bifidobacterium pseudocatenulatum CECT7765 improves gut homeostasis and prevents gut-derived complications in experimental chronic liver disease.

  4. Left Lobe Auxiliary Liver Transplantation for End-stage Hepatitis B Liver Cirrhosis.

    PubMed

    Wang, S-F; Chen, X-P; Chen, Z-S; Wei, L; Dong, S-L; Guo, H; Jiang, J-P; Teng, W-H; Huang, Z-Y; Zhang, W-G

    2017-06-01

    Auxiliary liver transplantation (ALT) for hepatitis B virus (HBV)-related liver cirrhosis previously showed poor results, because the native liver was a significant source of HBV recurrence and the graft could be rapidly destroyed by HBV infection in an immunosuppressive condition. Four patients with HBV-related liver cirrhosis were unable to undergo orthotopic liver transplantation because the only available grafts of left lobe were too small. Under entecavir-based anti-HBV treatment, they underwent ALT in which the recipient left liver was removed and the small left lobe graft was implanted in the corresponding space. The mean graft weight/recipient weight was 0.49% (range, 0.38%-0.55%). One year after transplantation, the graft sizes were increased to 273% and the remnant livers were decreased to 44%. Serum HBV DNA was persistently undetectable. Periodic graft biopsy showed no signs of tissue injury and negative immunostaining for hepatitis B surface antigen and hepatitis B core antigen. After a mean follow-up period of 21 months, all patients live well with normal graft function. Our study suggests that ALT for HBV-related liver cirrhosis is feasible under entecavir-based anti-HBV treatment. Successful application of small left livers in end-stage liver cirrhosis may significantly increase the pool of left liver grafts for adult patients. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  5. [Dose-effect relationship between vitamin C and
paraquat poisoning rats].

    PubMed

    Wen, Baoling; Yu, Lei; Fang, Yan; Wang, Xiaolong

    2016-12-28

    To explore the dose-effect relationship between vitamin C and paraquat (PQ) poisoning rats.
 Methods: A total of 40 Sprague-Dawley (SD) rats were randomly divided into 4 groups: a control group, a PQ poisoning group, a vitamin C group 1 and a vitamin C group 2 (n=10 in each group). 150 mg/kg PQ was perfused into rat stomach to establish PQ poisoning rat model. In PQ poisoning group, 30 mg/kg methylprednisolone and 2.5 mg/kg cyclophosphamide were injected peritoneally on the basis of PQ poisoning rat model. In vitamin C1 and C2 group, vitamin C was injected at a dosage of 5 or 500 mg/kg, respectively. The control group only received normal saline (NS). The malondialdehyde (MDA), liver and kidney function as well as arterial blood gas in the blood were examined 36 h later. At the end, the rats were killed and took the liver tissues for pathological examination and weight ratio calculation. The glutathione peroxidase (GSH-PX), ctychrome C (Cyt C) in the liver tissues were detected by chromatometry, and the Bcl-2 was detected by Western blot.
 Results: Compared with the PQ poisoning group, the MDA and Cyt C were decreased, the GSH-PX was increased, and liver and kidney functions were improved in the vitamin C group 1 (all P<0.01); but in the vitamin C group 2, the MDA increased and liver/kidney functions were impaired (all P<0.01). The expression of Bcl-2 in the PQ poisoning group was lower than that in the control group; compared with the PQ poisoning group, it was increased in the vitamin C1 group, while it was decreased in the vitamin C group 2 (both P<0.01). There was no obvious difference in the lung function, wet/dry weight ratio and pathological changes between the poisoning group and experimental groups (all P>0.05).
 Conclusion: Vitamin C at the low dose shows a certain degree of protection for the liver and kidney in the PQ poisoning rats model through it antioxidative activity and anit-apoptosis activity, while vitamin C at the high does may promote oxidation. Meanwhile, vitamin C doesn't show protective effect on lung in the PQ poisoning rats.

  6. Recent Advancements in Diagnosis and Therapy of Liver Cirrhosis.

    PubMed

    Romanelli, Roberto Giulio; Stasi, Cristina

    2016-01-01

    Cirrhosis is a diffuse pathophysiological state of the liver considered to be the final stage of various liver injuries, characterized by chronic necroinflammatory and fibrogenetic processes, with subsequent conversion of normal liver architecture into structurally abnormal nodules, dense fibrotic septa, concomitant parenchymal exaustment and collapse of the liver tissue. Alcoholic liver disease and chronic infections due to HBV and/or HCV constitute the main causes of liver cirrhosis worldwide. During a lag time of 15 to 30 years, chronic liver diseases can lead to liver cirrhosis and its complications. Active hepatic inflammation plays a pivotal role in the inflammation- necrosis-regeneration process, which eventually leads to liver cirrhosis and hepatocellular carcinoma. Prognosis of liver cirrhosis is highly variable and influenced by several variables, such as etiology, severity of liver disease, presence of complications and comorbidities. In advanced cirrhosis, survival decreases to one or two years. Correct advanced diagnosis and selected treatment with different molecules may help in understanding mechanisms of fibrogenesis, the driving forces of cirrhosis's pathogenesis, and the scrupulous approach to more effective therapeutic procedures. Prevention of fibrosis with further deterioration of liver function through specific treatments is always required, through the removal of the underlying causes of liver disease. Advanced liver disease, with subsequent complications, requires targeted treatment. Therefore, the aim of this review is to assess the diagnosis and treatment of liver cirrhosis on the pathophysiological bases, searching for relevant studies published in English using the PubMed database from 2011 to the present.

  7. The mitochondrial-targeted antioxidant, MitoQ, increases liver mitochondrial cardiolipin content in obesogenic diet-fed rats.

    PubMed

    Fouret, Gilles; Tolika, Evanthia; Lecomte, Jérôme; Bonafos, Béatrice; Aoun, Manar; Murphy, Michael P; Ferreri, Carla; Chatgilialoglu, Chryssostomos; Dubreucq, Eric; Coudray, Charles; Feillet-Coudray, Christine

    2015-10-01

    Cardiolipin (CL), a unique mitochondrial phospholipid, plays a key role in several processes of mitochondrial bioenergetics as well as in mitochondrial membrane stability and dynamics. The present study was designed to determine the effect of MitoQ, a mitochondrial-targeted antioxidant, on the content of liver mitochondrial membrane phospholipids, in particular CL, and its fatty acid composition in obesogenic diet-fed rats. To do this, twenty-four 6week old male Sprague Dawley rats were randomized into three groups of 8 animals and fed for 8weeks with either a control diet, a high fat diet (HF), or a HF diet with MitoQ (HF+MitoQ). Phospholipid classes and fatty acid composition were assayed by chromatographic methods in liver and liver mitochondria. Mitochondrial bioenergetic function was also evaluated. While MitoQ had no or slight effects on total liver fatty acid composition and phospholipid classes and their fatty acid composition, it had major effects on liver mitochondrial phospholipids and mitochondrial function. Indeed, MitoQ both increased CL synthase gene expression and CL content of liver mitochondria and increased 18:2n-6 (linoleic acid) content of mitochondrial phospholipids by comparison to the HF diet. Moreover, mitochondrial CL content was positively correlated to mitochondrial membrane fluidity, membrane potential and respiration, as well as to ATP synthase activity, while it was negatively correlated to mitochondrial ROS production. These findings suggest that MitoQ may decrease pathogenic alterations to CL content and profiles, thereby preserving mitochondrial function and attenuating the development of some of the features of metabolic syndrome in obesogenic diet-fed rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. [The role of oxidative stress and arterial blood supply in the transplanted liver function].

    PubMed

    Kóbori, László; Sárváry, Enikö; Nemes, Balázs; Lakatos, Márta; Fehérvári, Imre; Görög, Dénes; Dallos, Gábor; Gerlei, Zsuzsa; Fazakas, János; Tóth, Tibor; Lengyel, Gabriella; Fehér, János; Járay, Jenö

    2003-11-09

    Reperfusion injury and hepatic artery thrombosis are major causes of graft failure after liver transplantation. The magnitude of oxidative stress increases after reperfusion and the appearance of an arterial thrombosis presents a higher risk for the graft and patient survival. The aim of the study was to detect the level of oxidative stress in the perioperative period of transplantation. Clinical documentations of 32 patients were investigated and the level of myeloperoxidase (MPO) was measured for the monitoring of the oxidative stress. The mean age of the patients was 43 years and hepatitis C cirrhosis was the most common indication (14 cases, 43%). Two retransplantations were done. In 24 cases (75%) the primary graft functions and patient survival were good. Eight patients died, in two cases because of acute liver failure, in two cases due to primary non function and in four cases due to late complications. The incidence of hepatic artery thrombosis was 11% (4 cases) and the incidence of acute rejection was 35% (12 cases). The level of MPO was higher (65 ng/ml) in all patients before operation. After the first 48 hours this level increased significantly (p < 0.0001) up to the mean level of 123 ng/ml and decreased after one week. In the cases with acute liver failure and hepatic artery thrombosis high levels of MPO were measured. This study provides evidence of increased oxidative stress before liver transplantation. The magnitude of these changes increased after operation, mostly in cases with acute liver failure and hepatic artery thrombosis. Reducing the reperfusion injury and performing an "ideal" arterial supply for the liver-graft present better survival.

  9. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression.

    PubMed

    Gonsebatt, M E; Del Razo, L M; Cerbon, M A; Zúñiga, O; Sanchez-Peña, L C; Ramírez, P

    2007-09-01

    Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 microM of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function.

  10. Biliary excretion of pravastatin and taurocholate in rats with bile salt export pump (Bsep) impairment.

    PubMed

    Cheng, Yaofeng; Freeden, Chris; Zhang, Yueping; Abraham, Pamela; Shen, Hong; Wescott, Debra; Humphreys, W Griffith; Gan, Jinping; Lai, Yurong

    2016-07-01

    The bile salt export pump (BSEP) is expressed on the canalicular membrane of hepatocytes regulating liver bile salt excretion, and impairment of BSEP function may lead to cholestasis in humans. This study explored drug biliary excretion, as well as serum chemistry, individual bile acid concentrations and liver transporter expressions, in the SAGE Bsep knockout (KO) rat model. It was observed that the Bsep protein in KO rats was decreased to 15% of that in the wild type (WT), as quantified using LC-MS/MS. While the levels of Ntcp and Mrp2 were not significantly altered, Mrp3 expression increased and Oatp1a1 decreased in KO animals. Compared with the WT rats, the KO rats had similar serum chemistry and showed normal liver transaminases. Although the total plasma bile salts and bile flow were not significantly changed in Bsep KO rats, individual bile acids in plasma and liver demonstrated variable changes, indicating the impact of Bsep KO. Following an intravenous dose of deuterium labeled taurocholic acid (D4-TCA, 2 mg/kg), the D4-TCA plasma exposure was higher and bile excretion was delayed by approximately 0.5 h in the KO rats. No differences were observed for the pravastatin plasma concentration-time profile or the biliary excretion after intravenous administration (1 mg/kg). Collectively, the results revealed that these rats have significantly lower Bsep expression, therefore affecting the biliary excretion of endogenous bile acids and Bsep substrates. However, these rats are able to maintain a relatively normal liver function through the remaining Bsep protein and via the regulation of other transporters. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Antioxidant and hepatoprotective effects of Crataegus songarica methanol extract.

    PubMed

    Ganie, Showkat Ahmad; Dar, Tanveer Ali; Zargar, Bilal; Hamid, Rabia; Zargar, Ovais; Dar, Parvaiz Ahmad; Abeer, Shayaq Ul; Masood, Akbar; Amin, Shajrul; Zargar, Mohammad Afzal

    2014-01-01

    The protective activity of the methanolic extract of the Crataegus songarica leaves was investigated against CCl4- and paracetamol-induced liver damage. On folklore levels, this plant is popularly used to treat various toxicological diseases. We evaluated both in vitro and ex vivo antioxidant activity of C. songarica. At higher concentration of plant extract (700 µg/ml), 88.106% inhibition on DPPH radical scavenging activity was observed and reducing power of extract was increased in a concentration-dependent manner. We also observed its inhibition on Fe2+/ascorbic acid-induced lipid peroxidation on rat liver microsomes in vitro. In addition, C. songarica extract exhibited antioxidant effects on calf thymus DNA damage induced by Fenton reaction. Hepatotoxicity was induced by challenging the animals with CCl4 (1 ml/kg body weight, i.p.) and paracetamol (500 mg/kg body weight) and the extract was administered at three concentrations (100, 200, and 300 mg/kg body weight). Hepatoprotection was evaluated by determining the activities of liver function marker enzymes and antioxidant status of liver. Administration of CCl4 elevated the levels of liver function enzymes, SGOT, SGPT, and LDH. We also observed a dramatic increase in ALT, AST, bilirubin, and alkaline phosphatase levels in rats administered 500 mg/kg body weight of paracetamol. Decreased antioxidant defense system as glutathione (GSH), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione-S-transferase (GST), and superoxide dismutase (SOD) were observed in rats treated with CCl4 and paracetamol. Pretreatment with the extract decreased the elevated serum GOT, GPT, LDH, bilirubin, and alkaline phosphatase activities and increased the antioxidant enzymes in a dose-dependent manner. Therefore, C. songarica methanol extract may be an effective hepatic protective agent and viable candidate for treating hepatic disorders and other oxidative stress-related diseases.

  12. Medium-chain TAG improve energy metabolism and mitochondrial biogenesis in the liver of intra-uterine growth-retarded and normal-birth-weight weanling piglets.

    PubMed

    Zhang, Hao; Li, Yue; Hou, Xiang; Zhang, Lili; Wang, Tian

    2016-05-01

    We previously reported that medium-chain TAG (MCT) could alleviate hepatic oxidative damage in weanling piglets with intra-uterine growth retardation (IUGR). There is a relationship between oxidative status and energy metabolism, a process involved in substrate availability and glucose flux. Therefore, the aim of this study was to investigate the effects of IUGR and MCT on hepatic energy metabolism and mitochondrial function in weanling piglets. Twenty-four IUGR piglets and twenty-four normal-birth-weight (NBW) piglets were fed a diet of either soyabean oil (SO) or MCT from 21 d of postnatal age to 49 d of postnatal age. Then, the piglets' biochemical parameters and gene expressions related to energy metabolism and mitochondrial function were determined (n 4). Compared with NBW, IUGR decreased the ATP contents and succinate oxidation rates in the liver of piglets, and reduced hepatic mitochondrial citrate synthase (CS) activity (P<0·05). IUGR piglets exhibited reductions in hepatic mitochondrial DNA (mtDNA) contents and gene expressions related to mitochondrial biogenesis compared with NBW piglets (P<0·05). The MCT diet increased plasma ghrelin concentration and hepatic CS and succinate dehydrogenase activities, but decreased hepatic pyruvate kinase activity compared with the SO diet (P<0·05). The MCT-fed piglets showed improved mtDNA contents and PPARγ coactivator-1α expression in the liver (P<0·05). The MCT diet alleviated decreased mRNA abundance of the hepatic PPARα induced by IUGR (P<0·05). It can therefore be postulated that MCT may have beneficial effects in improving energy metabolism and mitochondrial function in weanling piglets.

  13. The Chinese medicine Kuan-Sin-Yin improves liver function in patients with chronic hepatitis C: A randomised and placebo-controlled trial.

    PubMed

    Liu, Chia-Yu; Ko, Pin-Hao; Yen, Hung-Rong; Cheng, Chen-Hung; Li, Yu-Hsien; Liao, Zih-Han; Hsu, Chung-Hua

    2016-08-01

    This study examined the effects of a traditional Chinese medicine decoction, Kuan-Sin-Yin (KSY), on patients with chronic hepatitis C (CHC) in a randomised and placebo-controlled clinical trial. This trial enrolled 70 subjects with CHC who were randomised into 2 groups each with 35 participants. In total, 29 participants in the therapeutic group took 100mL of the herbal decoction daily, whereas 28 in the control group took an herbal placebo with the same dose and frequency for the 6-week study. The primary outcomes were liver function and viral load. Secondary measurements included haematopoietic and biochemical profiles, safety parameters, and a quality of life survey. All measurements were collected at the beginning of the study and after 6 weeks. In within-group analysis, significant decreases of glutamate pyruvate transaminase (GPT) 31.7±75.2IU/L and glutamate oxaloacetate transaminase (GOT) 20.3±45.7IU/L were found in the KSY group (p=0.031 and 0.024, respectively). In the between-group analysis, KSY reduced serum GOT and GPT levels by more than 20IU/L (p=0.027 and 0.047, respectively). KSY also significantly decreased viral load by 0.3 log units (p=0.047). In addition, KSY significantly decreased serum triglyceride 16.9±27.5mg/dL (p=0.024). This study demonstrates that taking the KSY herbal decoction for 6 weeks improves liver function and serum triglyceride levels and is safe for patients with CHC. The potential long-term effects of KSY on lipid metabolism related hepatoprotection and viral clearance warrant further investigation. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Clinical predictors of silent but substantial liver fibrosis in primary Sjogren's syndrome.

    PubMed

    Lee, Sang-Won; Kim, Beom Kyung; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Song, Jungsik; Park, Yong-Beom; Lee, Soo-Kon; Han, Kwang-Hyub; Kim, Seung Up

    2016-07-01

    To investigate the prevalence and the predictors of silent but substantial liver fibrosis in patients with primary Sjogren's syndrome (pSS). We enrolled 101 pSS patients with normal liver function and structures, and without significant liver diseases or other conditions affecting liver fibrosis. The European league against rheumatism (EULAR) SS patients reported index (ESSPRI) and the EULAR SS disease activity index (ESSDAI) were analyzed. Liver stiffness (LS) was measured using transient elastography and 7.4 kPa was determined as the cutoff value for significant liver fibrosis. The median age of patients (91women) was 53 years and the median LS value was 4.7 kPa. The median ESSPRI and ESSDAI showed no correlation with LS values. Twelve patients (11.9%) had significant liver fibrosis. In multivariate logistic regression, white blood cells count ≤4000.0/mm(3) (Odds ratio [OR] 9.821), serum albumin ≤3.8 mg/dL (OR 16.770) and aspartate aminotransferase (AST) ≥ 27.0 IU/L (OR 20.858) independently predicted silent but substantial liver fibrosis in pSS patients. The prevalence of silent but substantial liver fibrosis was 11.9% in pSS and its predictors were leukopenia, decreased serum albumin and increased AST levels.

  15. Atypical onset of bicalutamide-induced liver injury.

    PubMed

    Yun, Gee Young; Kim, Seok Hyun; Kim, Seok Won; Joo, Jong Seok; Kim, Ju Seok; Lee, Eaum Seok; Lee, Byung Seok; Kang, Sun Hyoung; Moon, Hee Seok; Sung, Jae Kyu; Lee, Heon Young; Kim, Kyung Hee

    2016-04-21

    Anti-androgen therapy is the leading treatment for advanced prostate cancer and is commonly used for neoadjuvant or adjuvant treatment. Bicalutamide is a non-steroidal anti-androgen, used during the initiation of androgen deprivation therapy along with a luteinizing hormone-releasing hormone agonist to reduce the symptoms of tumor-related flares in patients with advanced prostate cancer. As side effects, bicalutamide can cause fatigue, gynecomastia, and decreased libido through competitive androgen receptor blockade. Additionally, although not as common, drug-induced liver injury has also been reported. Herein, we report a case of hepatotoxicity secondary to bicalutamide use. Typically, bicalutamide-induced hepatotoxicity develops after a few days; however, in this case, hepatic injury occurred 5 mo after treatment initiation. Based on this rare case of delayed liver injury, we recommend careful monitoring of liver function throughout bicalutamide treatment for prostate cancer.

  16. [Effects of acute exposure to high altitude on hepatic function and CYP1A2 and CYP3A4 activities in rats].

    PubMed

    Li, Wenbin; Jia, Zhengping; Xie, Hua; Zhang, Juanhong; Wang, Yanling; Hao, Ying; Wang, Rong

    2014-07-01

    To investigate the changes in hepatic functions and activities of CYP1A2 and CYP3A4 in rats after acute exposure to high altitude. Twelve healthy male Wistar rats were randomly divided into control group and exposure group for acute exposure to normal and high altitude (4010 m) environment. Blood samples were collected from the vena orbitalis posterior for detection of the hepatic function. Hepatic pathologies of the rats were examined microscopically with HE staining. Liver microsomes were extracted by differential centrifugation to assess the activities of CYP1A2 and 3A4 using P450-GloTM kit. In rats with acute exposure to high altitude, AST, ALT, and ALP all increased significantly by 48.50%, 47.90%, and 103.02%, respectively, and TP decreased significantly by 17.80% as compared with those in rats maintained in normal altitude environment (P<0.05). Pathological examination of the liver revealed edema of the central vein of the liver and hepatocyte karyopyknosis in rats after acute exposure to high altitude, which also resulted in significantly lowered activities of CYP1A2 and 3A4 in the liver (by 96.56% and 43.53%, respectively). Acute exposure to high altitude can cause obvious liver injuries and lowered activities of CYP1A2 and 3A4 in rats to severely affect drug metabolism in the liver and result in increased concentration, prolonged half-life and reduced clearance of drugs.

  17. Hypoglycemic depression of hepatic phagocytosis in vivo and in the in situ perfused rat liver.

    PubMed

    Kober, P M; Filkins, J P

    1981-01-01

    Depression of the phagocytic function of the reticuloendothelial system (RES) during endotoxic hypoglycemia has been implicated in the pathogenesis of endotoxin shock. The present study evaluated the in vivo effects of hypoglycemia on RES function and assessed the effects of an vivo bout of hypoglycemia on phagocytosis in the in situ perfused rat liver. Hypoglycemia was produced in male Holtzman rats using either 1 U of regular insulin (RI) (ILETIN, Lilly) or 0.75 U of long-acting insulin (LAI) (85% LENTE/15% ULTRALENTE, Lilly). RES function was quantitated by intravascular clearance of 8 mg/100 gm body weight colloidal carbon (CC). Two hr after RI and 2.5 hr after LAI, the intravascular halftimes of CC clearance were 19 +/- 2 min (N = 22) and 18 +/- 1 min (N = 19), respectively, as compared to control, 11.3 +/- 0.4 min (N = 53, P less than 0.001). The corresponding plasma glucose (PG) levels were 95 +/- 2 mg/dl in control, 14.4 +/- 0.9 for the RI group, and 17 +/- 1 for LAI. Two hr after RI, livers were perfused for 10 min in situ with 50 mg/liter CC in saline 5% rat serum. PG for control liver donors were 90 +/- 3 mg/dl, while those for hypoglycemic liver donors were 15 +/- 2. CC uptake was decreased from 22 micrograms/min/gm liver in the control (+ serum, n = 19) to 11 +/- 2 in hypoglycemia livers (N = 6); no effect of serum on hypoglycemic depression of the RES was seen. There were no differences in flow rates in the 2 groups. These results indicate that hypoglycemia directly impairs RES function and that the in vivo depression of intravascular clearance is not related to either the presence or absence of serum factors or total hepatic blood flow. Thus, the characteristic hypoglycemia of endotoxin shock may contribute to RES depression and the lethal shock syndrome.

  18. Mitigation of autophagy ameliorates hepatocellular damage following ischemia-reperfusion injury in murine steatotic liver

    PubMed Central

    Kolachala, Vasantha L.; Jiang, Rong; Abramowsky, Carlos; Shenoi, Asha; Kosters, Astrid; Pavuluri, Haritha; Anania, Frank; Kirk, Allan D.

    2014-01-01

    Ischemia-reperfusion injury (IRI) is a common clinical consequence of hepatic surgery, cardiogenic shock, and liver transplantation. A steatotic liver is particularly vulnerable to IRI, responding with extensive hepatocellular injury. Autophagy, a lysosomal pathway balancing cell survival and cell death, is engaged in IRI, although its role in IRI of a steatotic liver is unclear. The role of autophagy was investigated in high-fat diet (HFD)-fed mice exposed to IRI in vivo and in steatotic hepatocytes exposed to hypoxic IRI (HIRI) in vitro. Two inhibitors of autophagy, 3-methyladenine and bafilomycin A1, protected the steatotic hepatocytes from HIRI. Exendin 4 (Ex4), a glucagon-like peptide 1 analog, also led to suppression of autophagy, as evidenced by decreased autophagy-associated proteins [microtubule-associated protein 1A/1B-light chain 3 (LC3) II, p62, high-mobility group protein B1, beclin-1, and autophagy-related protein 7], reduced hepatocellular damage, and improved mitochondrial structure and function in HFD-fed mice exposed to IRI. Decreased autophagy was further demonstrated by reversal of a punctate pattern of LC3 and decreased autophagic flux after IRI in HFD-fed mice. Under the same conditions, the effects of Ex4 were reversed by the competitive antagonist exendin 9-39. The present study suggests that, in IRI of hepatic steatosis, treatment of hepatocytes with Ex4 mitigates autophagy, ameliorates hepatocellular injury, and preserves mitochondrial integrity. These data suggest that therapies targeting autophagy, by Ex4 treatment in particular, may ameliorate the effects of IRI in highly prevalent steatotic liver. PMID:25258410

  19. Methadone hydrochloride: acute administration, disposition and effects on hepatic function in guinea pigs.

    PubMed

    Pak, R C; Ecobichon, D J

    1981-01-01

    d,1-Methadone hydrochloride was administered orally to adult female albino guinea pigs at a dose of 25 mg/kg body weight every 12 h for 10 consecutive days. Twelve hours after a dose, subgroups of animals were sacrificed at 2, 5 and 10 days for tissue (blood plasma, brain, liver and kidney) methadone residue analysis and the in vitro measurement of hepatic microsomal p-nitroanisole O-demethylase (OD), aniline hydroxylase (AH) and glucuronosyltransferase (GT) activities. No overt toxicity was observed during treatment other than a decrease in body weight. Withdrawal signs were absent during the 14-day post-treatment regression period. Tissue methadone levels were constant except for a decreased concentration in the liver at 5 and 10 days. No effect on hepatic OD and AH was observed during treatment but a significant decrease in GT activity was measured which returned to normal values 14 days after terminating treatment.

  20. How preservation time changes the linear viscoelastic properties of porcine liver.

    PubMed

    Wex, C; Stoll, A; Fröhlich, M; Arndt, S; Lippert, H

    2013-01-01

    The preservation time of a liver graft is one of the crucial factors for the success of a liver transplantation. Grafts are kept in a preservation solution to delay cell destruction and cellular edema and to maximize organ function after transplantation. However, longer preservation times are not always avoidable. In this paper we focus on the mechanical changes of porcine liver with increasing preservation time, in order to establish an indicator for the quality of a liver graft dependent on preservation time. A time interval of 26 h was covered and the rheological properties of liver tissue studied using a stress-controlled rheometer. For samples of 1 h preservation time 0.8% strain was found as the limit of linear viscoelasticity. With increasing preservation time a decrease in the complex shear modulus as an indicator for stiffness was observed for the frequency range from 0.1 to 10 Hz. A simple fractional derivative representation of the Kelvin Voigt model was applied to gain further information about the changes of the mechanical properties of liver with increasing preservation time. Within the small shear rate interval of 0.0001-0.01 s⁻¹ the liver showed Newtonian-like flow behavior.

  1. Hypocholesterolemia in Patients with an Amebic Liver Abscess

    PubMed Central

    Flores, María S.; Obregón-Cárdenas, Adriana; Tamez, Eva; Rodríguez, Elba; Arévalo, Katiushka; Quintero, Isela; Tijerina, Rolando; Bosques, Francisco; Galán, Luis

    2014-01-01

    Background/Aims Many parasites induce changes in the lipid profiles of the host. Cholesterol increases the virulence of Entamoeba histolytica in animal models and in vitro culture. This study aimed to determine, in patients with an amebic liver abscess, the correlation between cholesterol and other features, such as the size and number of abscesses, standard hematological and serum chemistry profiles, liver tests, and duration of hospital stay. Methods A total of 108 patients with an amebic liver abscess and 140 clinically healthy volunteers were investigated. Cholesterol and triglycerides were measured in the sera. The data from medical observations and laboratory tests were obtained from the clinical records. Results A total of 93% of patients with an amebic liver abscess showed hypocholesterolemia not related to any of the studied parameters. Liver function tests correlated with the size of the abscess. The most severe cases of amebic liver disease or death were found in patients whose cholesterol levels continued to decrease despite receiving antiamebic treatment and hospital care. Conclusions Our results show that the hypocholesterolemia observed in patients with an amebic liver abscess is not related to any of the clinical and laboratory features analyzed. This is the first study relating hypocholesterolemia to severity of hepatic amebiasis. PMID:25071907

  2. The alterations in the extracellular matrix composition guide the repair of damaged liver tissue

    PubMed Central

    Klaas, Mariliis; Kangur, Triin; Viil, Janeli; Mäemets-Allas, Kristina; Minajeva, Ave; Vadi, Krista; Antsov, Mikk; Lapidus, Natalia; Järvekülg, Martin; Jaks, Viljar

    2016-01-01

    While the cellular mechanisms of liver regeneration have been thoroughly studied, the role of extracellular matrix (ECM) in liver regeneration is still poorly understood. We utilized a proteomics-based approach to identify the shifts in ECM composition after CCl4 or DDC treatment and studied their effect on the proliferation of liver cells by combining biophysical and cell culture methods. We identified notable alterations in the ECM structural components (eg collagens I, IV, V, fibronectin, elastin) as well as in non-structural proteins (eg olfactomedin-4, thrombospondin-4, armadillo repeat-containing x-linked protein 2 (Armcx2)). Comparable alterations in ECM composition were seen in damaged human livers. The increase in collagen content and decrease in elastic fibers resulted in rearrangement and increased stiffness of damaged liver ECM. Interestingly, the alterations in ECM components were nonhomogenous and differed between periportal and pericentral areas and thus our experiments demonstrated the differential ability of selected ECM components to regulate the proliferation of hepatocytes and biliary cells. We define for the first time the alterations in the ECM composition of livers recovering from damage and present functional evidence for a coordinated ECM remodelling that ensures an efficient restoration of liver tissue. PMID:27264108

  3. Liver enzyme abnormalities in taking traditional herbal medicine in Korea: A retrospective large sample cohort study of musculoskeletal disorder patients.

    PubMed

    Lee, Jinho; Shin, Joon-Shik; Kim, Me-Riong; Byun, Jang-Hoon; Lee, Seung-Yeol; Shin, Ye-Sle; Kim, Hyejin; Byung Park, Ki; Shin, Byung-Cheul; Lee, Myeong Soo; Ha, In-Hyuk

    2015-07-01

    The objective of this study is to report the incidence of liver injury from herbal medicine in musculoskeletal disease patients as large-scale studies are scarce. Considering that herbal medicine is frequently used in patients irrespective of liver function in Korea, we investigated the prevalence of liver injury by liver function test results in musculoskeletal disease patients. Of 32675 inpatients taking herbal medicine at 7 locations of a Korean medicine hospital between 2005 and 2013, we screened for liver injury in 6894 patients with liver function tests (LFTs) at admission and discharge. LFTs included t-bilirubin, AST, ALT, and ALP. Liver injury at discharge was assessed by LFT result classifications at admission (liver injury, liver function abnormality, and normal liver function). In analyses for risk factors of liver injury at discharge, we adjusted for age, sex, length of stay, conventional medicine intake, HBs antigen/antibody, and liver function at admission. A total 354 patients (prevalence 5.1%) had liver injury at admission, and 217 (3.1%) at discharge. Of the 354 patients with liver injury at admission, only 9 showed a clinically significant increase after herbal medicine intake, and 225 returned to within normal range or showed significant liver function recovery. Out of 4769 patients with normal liver function at admission, 27 (0.6%) had liver injury at discharge. In multivariate analyses for risk factors, younger age, liver function abnormality at admission, and HBs antigen positive were associated with injury at discharge. The prevalence of liver injury in patients with normal liver function taking herbal medicine for musculoskeletal disease was low, and herbal medicine did not exacerbate liver injury in most patients with injury prior to intake. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Sulforaphane-rich broccoli sprout extract improves hepatic abnormalities in male subjects

    PubMed Central

    Kikuchi, Masahiro; Ushida, Yusuke; Shiozawa, Hirokazu; Umeda, Rumiko; Tsuruya, Kota; Aoki, Yudai; Suganuma, Hiroyuki; Nishizaki, Yasuhiro

    2015-01-01

    AIM: To evaluate effects of dietary supplementation of sulforaphane (SF)-rich broccoli sprout (BS) extract on hepatic abnormalities in Japanese male participants. METHODS: In a randomized, placebo-controlled, double blind trial, male participants with fatty liver received either BS capsules containing glucoraphanin [GR; a precursor of SF (n = 24)] or placebo (n = 28) for 2 mo. Liver function markers, serum levels of aspartate and alanine aminotransferases (AST and ALT, respectively) and γ-glutamyl transpeptidase (γ-GTP) and an oxidative stress marker, urinary levels of 8-hydroxydeoxyguanosine (8-OHdG), were measured and compared in participants before and after the trial period. In an animal model, chronic liver failure was induced in Sprague-Dawley rats by successive intraperitoneal injection with N-nitrosodimethylamine (NDMA) for 4 wk. Concomitantly, rats received AIN-76 diets supplemented with or without BS extract. Thereafter, rats were sacrificed, and their sera and livers were collected to measure serum liver function markers and hepatic levels of thiobarbituric acid reactive substances (TBARS) levels and hepatic glutathione S-transferase (GST) activity, a prototypical phase 2 antioxidant enzyme. RESULTS: Dietary supplementation with BS extract containing SF precursor GR for 2 mo significantly decreased serum levels of liver function markers, ALT [median (interquartile range), before: 54.0 (34.5-79.0) vs after supplementation: 48.5 (33.3-65.3) IU/L, P < 0.05] and γ-GTP [before: 51.5 (40.8-91.3) vs after: 50.0 (37.8-85.3) IU/L, P < 0.05], as well as the alkali phosphatase activity. Placebo showed no significant effects on the markers. The urinary level of 8-OHdG, an established oxidative stress marker, was significantly reduced in participants who had received BS capsules but not the placebo [before: 6.66 (5.51-9.03) vs after: 5.49 (4.89-6.66) ng/mg-creatinine, P < 0.05]. The reduction of urinary 8-OHdG was significantly correlated with decreased levels of both ALT and γ-GTP [∆8-OHdG and ∆ALT: Spearman r (r) 0.514 and P = 0.012, ∆8-OHdG and ∆γ-GTP: r = 0.496 and P = 0.016]. Intake of BS extract prevented NDMA-induced chronic liver failure in rats, which was attributable to the suppression of the increase in TBARS through induction of hepatic phase 2 antioxidant enzymes including hepatic GST (86.6 ± 95.2 vs 107.8 ± 7.7 IU/g, P < 0.01). CONCLUSION: Dietary supplementation with BS extract containing the SF precursor GR is likely to be highly effective in improving liver function through reduction of oxidative stress. PMID:26604653

  5. Correlation between the mechanical and histological properties of liver tissue.

    PubMed

    Yarpuzlu, Berkay; Ayyildiz, Mehmet; Tok, Olgu Enis; Aktas, Ranan Gulhan; Basdogan, Cagatay

    2014-01-01

    In order to gain further insight into the mechanisms of tissue damage during the progression of liver diseases as well as the liver preservation for transplantation, an improved understanding of the relation between the mechanical and histological properties of liver is necessary. We suggest that this relation can only be established truly if the changes in the states of those properties are investigated dynamically as a function of post mortem time. In this regard, we first perform mechanical characterization experiments on three bovine livers to investigate the changes in gross mechanical properties (stiffness, viscosity, and fracture toughness) for the preservation periods of 5, 11, 17, 29, 41 and 53h after harvesting. Then, the histological examination is performed on the samples taken from the same livers to investigate the changes in apoptotic cell count, collagen accumulation, sinusoidal dilatation, and glycogen deposition as a function of the same preservation periods. Finally, the correlation between the mechanical and histological properties is investigated via the Spearman's Rank-Order Correlation method. The results of our study show that stiffness, viscosity, and fracture toughness of bovine liver increase as the preservation period is increased. These macroscopic changes are very strongly correlated with the increase in collagen accumulation and decrease in deposited glycogen level at the microscopic level. Also, we observe that the largest changes in mechanical and histological properties occur after the first 11-17h of preservation. © 2013 Elsevier Ltd. All rights reserved.

  6. Orchidectomy of middle-aged rats decreases liver deiodinase 1 and pituitary deiodinase 2 activity.

    PubMed

    Sosic-Jurjevic, Branka; Filipovic, Branko; Renko, Kostja; Ajdzanovic, Vladimir; Manojlovic-Stojanoski, Milica; Milosevic, Verica; Köhrle, Josef

    2012-11-01

    Endogenous androgens are involved in regulation of thyroid function and metabolism of thyroid hormones. As serum testosterone level progressively declines with age, this regulation may change. We tested how androgen deprivation, achieved by orchidectomy, affects thyroid homeostasis in middle-aged rats. Fifteen-month-old Wistar rats were orchidectomized (Orx) or sham-operated under ketamine anesthesia (15 mg/kg body weight). Five weeks after the surgery, animals were decapitated. Thyroids were used for histomorphometric and ultrastructural examinations and together with livers and pituitaries for real-time quantitative PCR and deiodinase (DIO) activity measurements. Serum testosterone, TSH, l-thyroxine (T(4)), and cholesterol (Chol) levels were determined. As expected, middle-aged control rats had lower (P<0.05) testosterone and T(4) compared with 3-month-old males. In the Orx middle-aged group, we detected diminished serum testosterone (P<0.05), no change in TSH and T(4) levels, and higher Chol level (P<0.05), in comparison with age-matched controls. Histomorphometric analysis of thyroid tissue revealed decreased relative volume densities of follicles and colloid (P<0.05). Relevant gene expressions and DIO1 enzyme activity were not changed in the thyroids of Orx rats. Liver Dio1 gene expression and DIO1 activity were decreased (P<0.05) in comparison with the control values. Pituitary levels of TSHβ, Dio1, and Dio2 mRNAs did not change, while DIO2 activity decreased (P<0.05). In conclusion, orchidectomy of middle-aged rats affected thyroid structure with no effect on serum T(4) and TSH. However, decreased liver DIO1 and pituitary DIO2 enzyme activities indicate compensatory-adaptive changes in local T(3) production.

  7. [Limb remote ischemic preconditioning attenuates liver ischemia reperfusion injury by activating autophagy via modulating PPAR-γ pathway].

    PubMed

    Ruan, Wei; Liu, Qing; Chen, Chan; Li, Suobei; Xu, Junmei

    2016-09-28

    To investigate the effect of limb remote ischemic preconditioning (RIPC) on hepatic ischemia/reperfusion (IR) injury and the underlying mechanisms.
 Rats were subjected to partial hepatic IR (60 min ischemia followed by 24 hours reperfusion) with or without RIPC, which was achieved by 3 cycles of 10 min-occlusion and 10 min-
reperfusion at the bilateral femoral arteries interval 30 min before ischemia. Some rats were treated with a new PPAR-γ inhibitor, T0070907, before RIPC.
 At the end of reperfusion, liver injury was significantly increased (increases in Suzike's injury score, AST and ALT release), concomitant with elevated oxidative stress (increases in MDA formation, MPO activity, as well as the decrease in SOD activity) and inflammation (increases in TNF-α and IL-6 levels, decrease in IL-10 content). RIPC improved liver function and reduced histologic damage, accompanied by the increased PPAR-γ activation and autophagosome formation as well as the reduced autophagosome clearance. The beneficial effects of RIPC were markedly attenuated by T0070907, an inhibitor of PPAR-γ.
 RIPC exerts the protective effects on liver by activation of autophagy via PPAR-γ.

  8. [Effect of nutritional status of the donor on the quality of hepatic graft. Value of restoration of glycogenic reserves of the donor].

    PubMed

    Pattou, F; Boudjema, K; Kerr-Conte, J; Wolf, P; Jaeck, D; Cinqualbre, J

    1992-01-01

    Initial function of the graft is an essential factor for successful liver transplantation. The aim of this study was to evaluate the influence of the nutritional status of the donor on hepatic graft quality at reperfusion. Livers (n = 41) were taken from pigs normally fed or fasted for 24 h or fasted for 24 h and conditioned for 2 hours with a solution containing glucose, fructose and glutamine. The quality of liver grafts was evaluated using an original, blood-free isolated perfusion model, after 8 h cold storage, or after 15 min warm ischemia performed prior to harvesting. The hepatic concentration of glycogen and ATP, measured from in vivo biopsies, was decreased in fasted animals (P less than 0.05 vs fed) and restored by nutritional conditioning (P less than 0.05 vs fasted). At the time of reperfusion following 8 h cold ischemia, the liberation of aminotransferases and lactate dehydrogenase was elevated in livers coming from fasted animals (P less than 0.05 vs fed) and restored to fed levels after nutritional conditioning (P less than 0.01 vs fasted). After 15 min of warm ischemia, the bile secretion during the reperfusion period was decreased in the 24 h fasted livers (P less than 0.01 vs fed) and reestablished after nutritional conditioning (P less than 0.01 vs fasted). Perfusion of the donor liver, in the 2 h preceding harvest, with a solution of glucose plus neoglucogenic precursors enhances the quality of the liver graft at the time of reperfusion.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Probiotic as a Novel Treatment Strategy Against Liver Disease

    PubMed Central

    Imani Fooladi, Abbas Ali; Mahmoodzadeh Hosseini, Hamideh; Nourani, Mohammad Reza; Khani, Soghra; Alavian, Seyed Moayed

    2013-01-01

    Context A symbiotic relationship between the liver and intestinal tract enables the healthy status of both organs. Microflora resident in intestinal lumen plays a significant role in hepatocytes function. Alterations to the type and amount of microorganisms that live in the intestinal tract can result in serious and harmful liver dysfunctions such as cirrhosis, nonalcoholic fatty liver disease, alcoholic liver disease, and hepatic encephalopathy. An increased number of pathogens, especially enterobacteriaceae, enterococci, and streptococci species causes the elevation of intestinal permeability and bacterial translocation. The presence of high levels of lipopolysaccharide (LPS) and bacterial substances in the blood result in a portal hypertension and ensuing hepatocytes damage. Several methods including the usage of antibiotics, prebiotics, and probiotics can be used to prevent the overgrowth of pathogens. Compared to prebiotic and antibiotic therapy, probiotics strains are a safer and less expensive therapy. Probiotics are "live microorganisms (according to the FAO/WHO) which when administered in adequate amounts confer a health benefit on the host”. Evidence Acquisitions Data from numerous preclinical and clinical trials allows for control of the flora bacteria quantity, decreases in compounds derived from bacteria, and lowers proinflammatory production such as TNF-α, IL-6 and IFN-γ via down-regulation of the nuclear factor kappa B (NF-κ B). Results On the other hand, probiotic can reduce the urease activity of bacterial microflora. Furthermore, probiotic decreases fecal pH value and reduces ammonia adsorption. In addition, the serum level of liver enzymes and other substances synthesized by the liver are modulated subsequent to probiotic consumption. Conclusions According to our knowledge, Probiotic therapy as a safe, inexpensive and a noninvasive strategy can reduce pathophysiological symptoms and improve different types of liver diseases without side effects. PMID:23610585

  10. Deletion of Smad4 attenuates the hepatic inflammation and fibrogenesis during nonalcoholic steatohepatitis progression.

    PubMed

    Qin, Geng; Wang, Guo Zhen; Guo, Dan Dan; Bai, Ru-Xue; Wang, Miao; Du, Shi Yu

    2018-04-25

    To explore the effects of Smad4 deletion on inflammation and fibrogenesis during nonalcoholic steatohepatitis (NASH) progression. We collected 56 liver tissues from NASH patients (NASH group) and 60 normal liver tissues from patients received liver resection for trauma (control group). Smad4 Co/Co mice and wild-type (WT) mice were used to construct NASH model by high-fat diet (HFD) or methionine- and choline-deficient (MCD) diet. Hematoxylin and eosin (HE) staining and Tunnel assay were performed to observe pathological changes and apoptosis of liver tissues, respectively, quantitative real-time polymerase chain reaction (qRT-PCR) to detect expressions of inflammatory, fibrogenesis and apoptosis-related genes, and immunohistochemistry to determine proteins expressions of Smad4, MCP-1 and α-SMA. Smad4 protein expression was significantly increased in NASH patients as compared with Control group. Besides, in terms of HFD- and MCD- fed mice, those in Smad4 Co/Co group showed reduction of hepatic steatosis, inflammatory, liver apoptosis and NAS scores, and presented a decrease in glucose, TG, FFAs, AST and ALT, a great up-regulation in adiponectin. Besides, as compared with the WT mice fed with HFD and MCD, Smad4 Co/Co decreased the expressions of inflammatory markers (TNF-α, MCP-1, IFN-γ), fibrogenesis markers (COL1A1, α-SMA and TGF-β1), lipogenic genes (SREBP1c, FAS and ACC) and proapoptotic genes (Bax and caspase 3) in liver tissues, but increased the expressions of β-oxidation genes (PPARα, CPT1 and ACO) and antiapoptotic gene Bcl-2. Smad4 deletion may inhibit lipogenesis, stimulateβ-oxidation, ameliorate lipid metabolism and liver function, alleviate inflammation, fibrosis, and reduce liver apoptosis during NASH. This article is protected by copyright. All rights reserved.

  11. Curcumin Protects Against Intestinal Origin Endotoxemia in Rat Liver Cirrhosis by Targeting PCSK9.

    PubMed

    Cai, Yu; Lu, Di; Zou, Yanting; Zhou, Chaohui; Liu, Hongchun; Tu, Chuantao; Li, Feng; Liu, Lili; Zhang, Shuncai

    2017-03-01

    Intestinal origin endotoxemia always occurs in severe liver injury. The aim of the current study was to test antiendotoxemia effect of curcumin on tetrachloride (CCl 4 )-induced liver cirrhosis rats, and to elucidate the underlying molecular mechanism. Rat cirrhosis models were constructed with CCl 4 subcutaneous injections with curcumin (200 mg/kg/d) administered via gavages for 12 wk until the rats were sacrificed. We found that the administration of curcumin improved the physiological condition pertaining to activity index and temperature, and ameliorated the liver injury in CCl 4 -induced cirrhosis rats. Enzyme-linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (qRT-PCR) showed that curcumin could reduce c-reaction protein levels and inflammatory cytokine (TNF-α, IL-1β, IL-6, and CINC-1/IL-8) concentrations in peripheral serum and liver tissue. Furthermore, curcumin treatment decreased lipopolysaccharide (LPS) levels in peripheral vein, but not in portal vein. As low-density lipoprotein receptor (LDLR) is the important receptor on the surface of hepatocyte during LPS detoxification process, we used qRT-PCR, western blot, and immunohistochemistry (IHC), finding that curcumin significantly increased LDLR protein levels, but not gene levels in the liver tissues. We also tested proprotein convertase subtilisin/kexin type 9 (PCSK9), one negative regulator of LDLR, by qRT-PCR, western blot, and IHC. The results showed that PCSK9 significantly decreased both gene and protein levels in the rat liver tissues of curcumin treatment. Thus, we concluded that curcumin could function to protect against intestinal origin endotoxemia by inhibiting PCSK9 to promote LDLR expression, thereby enhancing LPS detoxification as one pathogen lipid through LDLR in the liver. © 2017 Institute of Food Technologists®.

  12. Methoxychlor affects multiple hormone signaling pathways in the largemouth bass (Micropterus salmoides) liver

    PubMed Central

    Martyniuk, Christopher J.; Spade, Daniel J.; Blum, Jason L.; Kroll, Kevin J.; Denslow, Nancy D.

    2011-01-01

    Methoxychlor (MXC) is an organochlorine pesticide that has been shown to have estrogenic activity by activating estrogen receptors and inducing vitellogenin production in male fish. Previous studies report that exposure to MXC induces changes in mRNA abundance of reproductive genes in the liver and testes of largemouth bass (Micropterus salmoides). The objective of the present study was to better characterize the mode of action of MXC by measuring the global transcriptomic response in the male largemouth liver using an oligonucleotide microarray. Microarray analysis identified highly significant changes in the expression of 37 transcripts (p<0.001) (20 induced and 17 decreased) in the liver after MXC injection and a total of 900 expression changes (p<0.05) in transcripts with high homology to known genes. Largemouth bass estrogen receptor alpha (esr1) and androgen receptor (ar) were among the transcripts that were increased in the liver after MXC treatment. Functional enrichment analysis identified the molecular functions of steroid binding and androgen receptor activity as well as steroid hormone receptor activity as being significantly over-represented gene ontology terms. Pathway analysis identified c-fos signaling as being putatively affected through both estrogen and androgen signaling. This study provides evidence that MXC elicits transcriptional effects through the estrogen receptor as well as androgen receptor-mediated pathways in the liver. PMID:21276474

  13. [Observation on the therapeutic effect of Lamivudin on chronic hepatitis B].

    PubMed

    Wen, Xiaofeng; Li, Xuemei; Xie, Houyu; Chen, Nian; Zeng, Wenfeng; Ru, Haiyun; Cui, Xaioping; Tang, Zhongmin

    2002-12-01

    To observe the therapeutic effect of Lamivudine on controlling hepatitis B virus DNA replication. The liver disease patients were divided into two groups, the treated group (n=64) was given Lamivudine 100 mg once a day for one year and was additionally given liver protection drugs according to their liver function, while the control group (n=30) was given common liver protection drugs. The blood routine test, liver function and the viral markers were detected at defined times. The results showed that after one year treatment of chronic hepatitis B with Lamivudine, the recovery rate of ALT was 90.7%, the negative conversion rate of HBV DNA was 73.1% showing a significant difference as compared with the control group (P<0.05). The negative seroconversion rate of HBeAg was 50%, HBeAg/anti HBe changing rate was 38.2%, that had no significant different as compared with the control group (P<0.05). The percentage for disease relapse and second elevation of ALT was 3.1% in therapeutic group that was significantly different from that of the control group (P<0.05). Two cases with severe hepatitis in the treated group were all alive. Lamivudine could effectively control HBV DNA replication, making ALT normal, it also could decrease the relapse rate of chronic hepatitis B and raise the survival rate of the patients with liver disease.

  14. Baseline HBV load increases the risk of anti-tuberculous drug-induced hepatitis flares in patients with tuberculosis.

    PubMed

    Zhu, Chun-Hui; Zhao, Man-Zhi; Chen, Guang; Qi, Jun-Ying; Song, Jian-Xin; Ning, Qin; Xu, Dong

    2017-02-01

    Hepatitis associated anti-tuberculous treatment (HATT) has been a main obstacle in managing patients co-infected with Mycobacterium tuberculosis and hepatitis B virus (HBV). Therefore, we evaluated the factors related to the severity of adverse effects during HATT, especially those associated with liver failure. A retrospective study was carried out at Tongji Hospital from 2007 to 2012. Increases in serum transaminase levels of >3, 5, and 10 times the upper limit of normal (ULN) were used to define liver damage as mild, moderate, and severe, respectively. Patients with elevated total bilirubin (TBil) levels that were more than 10 times the ULN (>171 μmol/L) with or without decreased (<40%) prothrombin activity (PTA) were diagnosed with liver failure. A cohort of 87 patients was analyzed. The incidence of liver damage and liver failure was 59.8% (n=52) and 25.3% (n=22), respectively. The following variables were correlated with the severity of hepatotoxicity: albumin (ALB) levels, PTA, platelet counts (PLT), and the use of antiretroviral therapies (P<0.05). Hypo-proteinemia and antiretroviral therapy were significantly associated with liver failure, and high viral loads were a significant risk factor with an odds ratio (OR) of 2.066. Judicious follow-up of clinical conditions, liver function tests, and coagulation function, especially in patients with high HBV loads and hypoalbuminemia is recommended. It may be advisable to reconsider the use of antiviral drugs failure during the course of anti-tuberculous treatment of HBV infection patients to avoid the occurrence of furious liver failure.

  15. Perforated peptic ulcer associated with abdominal compartment syndrome.

    PubMed

    Lynn, Jiun-Jen; Weng, Yi-Ming; Weng, Chia-Sui

    2008-11-01

    Abdominal compartment syndrome (ACS) is defined as an increased intra-abdominal pressure with adverse physiologic consequences. Abdominal compartment syndrome caused by perforated peptic ulcer is rare owing to early diagnosis and management. Delayed recognition of perforated peptic ulcer with pneumoperitoneum, bowel distension, and decreased abdominal wall compliance can make up a vicious circle and lead to ACS. We report a case of perforated peptic ulcer associated with ACS. A 74-year-old man with old stroke and dementia history was found to have distended abdomen, edema of bilateral legs, and cyanosis. Laboratory tests revealed deterioration of liver and kidney function. Abdominal compartment syndrome was suspected, and image study was arranged to find the cause. The study showed pneumoperitoneum, contrast stasis in heart with decreased caliber of vessels below the abdominal aortic level, and diffuse lymphedema at the abdominal walls. Emergent laparotomy was performed. Perforated peptic ulcer was noted and the gastrorrhaphy was done. The symptoms, and liver and kidney function improved right after emergent operation.

  16. Modeled Perfluorooctanoic Acid (PFOA) Exposure and Liver Function in a Mid-Ohio Valley Community.

    PubMed

    Darrow, Lyndsey A; Groth, Alyx C; Winquist, Andrea; Shin, Hyeong-Moo; Bartell, Scott M; Steenland, Kyle

    2016-08-01

    Perfluorooctanoic acid (PFOA or C8) has hepatotoxic effects in animals. Cross-sectional epidemiologic studies suggest PFOA is associated with liver injury biomarkers. We estimated associations between modeled historical PFOA exposures and liver injury biomarkers and medically validated liver disease. Participants completed surveys during 2008-2011 reporting demographic, medical, and residential history information. Self-reported liver disease, including hepatitis, fatty liver, enlarged liver and cirrhosis, was validated with healthcare providers. Alanine aminotransferase (ALT), γ-glutamyltransferase (GGT) and direct bilirubin, markers of liver toxicity, were obtained from blood samples collected in the C8 Health Project (2005-2006). Historically modeled PFOA exposure, estimated using environmental fate and transport models and participant residential histories, was analyzed in relation to liver biomarkers (n = 30,723, including 1,892 workers) and liver disease (n = 32,254, including 3,713 workers). Modeled cumulative serum PFOA was positively associated with ALT levels (p for trend < 0.0001), indicating possible liver toxicity. An increase from the first to the fifth quintile of cumulative PFOA exposure was associated with a 6% increase in ALT levels (95% CI: 4, 8%) and a 16% increased odds of having above-normal ALT (95% CI: odds ratio: 1.02, 1.33%). There was no indication of association with either elevated direct bilirubin or GGT; however, PFOA was associated with decreased direct bilirubin. We observed no evidence of an effect of cumulative exposure (with or without a 10-year lag) on all liver disease (n = 647 cases), nor on enlarged liver, fatty liver, and cirrhosis only (n = 427 cases). Results are consistent with previous cross-sectional studies showing association between PFOA and ALT, a marker of hepatocellular damage. We did not observe evidence that PFOA increases the risk of clinically diagnosed liver disease. Darrow LA, Groth AC, Winquist A, Shin HM, Bartell SM, Steenland K. 2016. Modeled perfluorooctanoic acid (PFOA) exposure and liver function in a Mid-Ohio Valley community. Environ Health Perspect 124:1227-1233; http://dx.doi.org/10.1289/ehp.1510391.

  17. A switch in the source of ATP production and a loss in capacity to perform glycolysis are hallmarks of hepatocyte failure in advance liver disease.

    PubMed

    Nishikawa, Taichiro; Bellance, Nadège; Damm, Aaron; Bing, Han; Zhu, Zhen; Handa, Kan; Yovchev, Mladen I; Sehgal, Vasudha; Moss, Tyler J; Oertel, Michael; Ram, Prahlad T; Pipinos, Iraklis I; Soto-Gutierrez, Alejandro; Fox, Ira J; Nagrath, Deepak

    2014-06-01

    The cause of hepatic failure in the terminal stages of chronic injury is unknown. Cellular metabolic adaptations in response to the microenvironment have been implicated in cellular breakdown. To address the role of energy metabolism in this process we studied mitochondrial number, respiration, and functional reserve, as well as cellular adenosine-5'-triphosphate (ATP) production, glycolytic flux, and expression of glycolysis related genes in isolated hepatocytes from early and terminal stages of cirrhosis using a model that produces hepatic failure from irreversible cirrhosis in rats. To study the clinical relevance of energy metabolism in terminal stages of chronic liver failure, we analyzed glycolysis and energy metabolism related gene expression in liver tissue from patients at different stages of chronic liver failure according to Child-Pugh classification. Additionally, to determine whether the expression of these genes in early-stage cirrhosis (Child-Pugh Class A) is related to patient outcome, we performed network analysis of publicly available microarray data obtained from biopsies of 216 patients with hepatitis C-related Child-Pugh A cirrhosis who were prospectively followed up for a median of 10years. In the early phase of cirrhosis, mitochondrial function and ATP generation are maintained by increasing energy production from glycolytic flux as production from oxidative phosphorylation falls. At the terminal stage of hepatic injury, mitochondria respiration and ATP production are significantly compromised, as the hepatocytes are unable to sustain the increased demand for high levels of ATP generation from glycolysis. This impairment corresponds to a decrease in glucose-6-phosphatase catalytic subunit and phosphoglucomutase 1. Similar decreased gene expression was observed in liver tissue from patients at different stages of chronic liver injury. Further, unbiased network analysis of microarray data revealed that expression of these genes was down regulated in the group of patients with poor outcome. An adaptive metabolic shift, from generating energy predominantly from oxidative phosphorylation to glycolysis, allows maintenance of energy homeostasis during early stages of liver injury, but leads to hepatocyte dysfunction during terminal stages of chronic liver disease because hepatocytes are unable to sustain high levels of energy production from glycolysis. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  18. Renal effects of the novel selective adenosine A1 receptor blocker SLV329 in experimental liver cirrhosis in rats.

    PubMed

    Hocher, Berthold; Heiden, Susi; von Websky, Karoline; Arafat, Ayman M; Rahnenführer, Jan; Alter, Markus; Kalk, Philipp; Ziegler, Dieter; Fischer, Yvan; Pfab, Thiemo

    2011-03-10

    Liver cirrhosis is often complicated by an impaired renal excretion of water and sodium. Diuretics tend to further deteriorate renal function. It is unknown whether chronic selective adenosine A(1) receptor blockade, via inhibition of the hepatorenal reflex and the tubuloglomerular feedback, might exert diuretic and natriuretic effects without a reduction of the glomerular filtration rate. In healthy animals intravenous treatment with the novel A(1) receptor antagonist SLV329 resulted in a strong dose-dependent diuretic (up to 3.4-fold) and natriuretic (up to 13.5-fold) effect without affecting creatinine clearance. Male Wistar rats with thioacetamide-induced liver cirrhosis received SLV329, vehicle or furosemide for 12 weeks. The creatinine clearance of cirrhotic animals decreased significantly (-36.5%, p<0.05), especially in those receiving furosemide (-41.9%, p<0.01). SLV329 was able to prevent this decline of creatinine clearance. Mortality was significantly lower in cirrhotic animals treated with SLV329 in comparison to animals treated with furosemide (17% vs. 54%, p<0.05). SLV329 did not relevantly influence the degree of liver fibrosis, kidney histology or expression of hepatic or renal adenosine receptors. In conclusion, chronic treatment with SLV329 prevented the decrease of creatinine clearance in a rat model of liver cirrhosis. Further studies will have to establish whether adenosine A(1) receptor antagonists are clinically beneficial at different stages of liver cirrhosis.

  19. Technetium-99m NGA functional hepatic imaging: preliminary clinical experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadalnik, R.C.; Vera, D.R.; Woodle, E.S.

    1985-11-01

    Technetium-99m galactosyl-neoglycoalbumin ( (Tc)NGA) is a radiolabeled ligand to hepatic binding protein, a receptor which resides at the plasma membrane of hepatocytes. This receptor-binding radiopharmaceutical and its kinetic model provide a noninvasive method for the assessment of liver function. Eighteen patients were studied: seven with hepatoma, eight with liver metastases, four with cirrhosis, and one patient with acute fulminant non-A, non-B hepatitis. Technetium-99m NGA liver imaging provided anatomic information of diagnostic quality comparable to that obtained with other routine imaging modalities, including computed tomography, angiography, ultrasound, and (Tc)sulfur colloid scintigraphy. Kinetic modeling of dynamic (Tc)NGA data produced estimates of standardizedmore » hepatic blood flow, Q (hepatic blood flow divided by total blood volume), and hepatic binding protein concentration, (HBP). Significant rank correlation was obtained between (HBP) estimates and CTC scores. This correlation supports the hypothesis that (HBP) is a measure of functional hepatocyte mass. The combination of decreased Q and markedly reduced (HBP) may have prognostic significance; all three patients with this combination died of hepatic failure within 6 wk of imaging.« less

  20. Cynanchum wilfordii Radix attenuates liver fat accumulation and damage by suppressing hepatic cyclooxygenase-2 and mitogen-activated protein kinase in mice fed with a high-fat and high-fructose diet.

    PubMed

    Jang, Seon-A; Lee, SungRyul; Sohn, Eun-Hwa; Yang, Jaehyuk; Park, Dae Won; Jeong, Yong Joon; Kim, Inhye; Kwon, Jung Eun; Song, Hae Seong; Cho, Young Mi; Meng, Xue; Koo, Hyun Jung; Kang, Se Chan

    2016-09-01

    Excessive consumption of fat and fructose augments the pathological progression of nonalcoholic fatty liver disease through hepatic fibrosis, inflammation, and hepatic de novo lipogenesis. We hypothesized that supplementation with Cynanchum wilfordii extract (CWE) decreases fat accumulation in the liver by suppressing cyclooxygenase-2 (COX-2), the nuclear translocation of nuclear factor κB (NF-κB), and p38 mitogen-activated protein kinase (MAPK). The beneficial effect of CWE was evaluated in a murine model of nonalcoholic fatty liver disease. Mice were fed either a normal diet or an atherogenic diet with fructose (ATHFR) in the presence or absence of CWE (50, 100, or 200 mg/kg; n=6/group). Treatment with ATHFR induced a hepatosplenomegaly-like condition (increased liver and spleen weight); this pathological change was attenuated in the presence of CWE. The ATHFR group exhibited impaired liver function, as evidenced by increased blood levels of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, fat accumulation in the liver, and lipid profiles. Supplementation of CWE (100 and 200 mg/kg, P<.05) ameliorated these impaired liver functions. Atherogenic diet with fructose increased the protein levels of COX-2 and p38 MAPK, as well as the nuclear translocation of NF-κB. These signaling pathways, which are associated with the inflammatory response, were markedly suppressed after CWE treatment (100 and 200 mg/kg). In summary, CWE supplementation reduced high-fat and high-fructose diet-induced fat accumulation and damage in the liver by suppressing COX-2, NF-κB, and p38 MAPK. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Impacts of exposure to 900 MHz mobile phone radiation on liver function in rats.

    PubMed

    Ma, Hui-rong; Ma, Zhi-hong; Wang, Gui-ying; Song, Cui-miao; Ma, Xue-lian; Cao, Xiao-hui; Zhang, Guo-hong

    2015-11-01

    To study the impacts of exposure to electromagnetic radiation (EMR) on liver function in rats. Twenty adult male Sprague-Dawley rats were randomly divided into normal group and radiated group. The rats in normal group were not radiated, those in radiated group were exposed to EMR 4 h/ d for 18 consecutive days. Rats were sacrificed immediately after the end of the experiment. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and those of malondialdehyde (MDA) and glutathione (GSH) in liver tissue were evaluated by colorimetric method. The liver histopathological changes were observed by hematoxylin and eosin staining and the protein expression of bax and bcl- 2 in liver tissue were detected by immunohistochemical method. Terminal-deoxynucleotidyl transferase mediated nick and labelling (TUNEL) method was used for analysis of apoptosis in liver. Compared with the normal rats, the serum levels of ALT and AST in the radiated group had no obvious changes (P>0.05), while the contents of MDA increased (P < 0.01) and those of GSH decreased (P < 0.01) in liver tissues. The histopathology examination showed diffuse hepatocyte swelling and vacuolation, small pieces and focal necrosis. The immunohistochemical results displayed that the expression of the bax protein was higher and that of bcl-2 protein was lower in radiated group. The hepatocyte apoptosis rates in radiated group was higher than that in normal group (all P < 0.01). The exposure to 900 MHz mobile phone 4 h/d for 18 days could induce the liver histological changes, which may be partly due to the apoptosis and oxidative stress induced in liver tissue by electromagnetic radiation.

  2. Hemorrhage-induced hepatic injury and hypoperfusion can be prevented by direct peritoneal resuscitation.

    PubMed

    Hurt, Ryan T; Zakaria, El Rasheid; Matheson, Paul J; Cobb, Mahoney E; Parker, John R; Garrison, R Neal

    2009-04-01

    Crystalloid fluid resuscitation after hemorrhagic shock (HS) that restores/maintains central hemodynamics often culminates in multi-system organ failure and death due to persistent/progressive splanchnic hypoperfusion and end-organ damage. Adjunctive direct peritoneal resuscitation (DPR) using peritoneal dialysis solution reverses HS-induced splanchnic hypoperfusion and improves survival. We examined HS-mediated hepatic perfusion (galactose clearance), tissue injury (histopathology), and dysfunction (liver enzymes). Anesthetized rats were randomly assigned (n = 8/group): (1) sham (no HS); (2) HS (40% mean arterial pressure for 60 min) plus conventional i.v. fluid resuscitation (CR; shed blood + 2 volumes saline); (3) HS + CR + 30 mL intraperitoneal (IP) DPR; or (4) HS + CR + 30 mL IP saline. Hemodynamics and hepatic blood flow were measured for 2 h after CR completion. In duplicate animals, liver and splanchnic tissues were harvested for histopathology (blinded, graded), hepatocellular function (liver enzymes), and tissue edema (wet-dry ratio). Group 2 decreased liver blood flow, caused liver injuries (focal to submassive necrosis, zones 2 and 3) and tissue edema, and elevated liver enzymes (alanine aminotransferase (ALT), 149 +/- 28 microg/mL and aspartate aminotransferase (AST), 234 +/- 24 microg/mL; p < 0.05) compared to group 1 (73 +/- 9 and 119 +/- 10 microg/mL, respectively). Minimal/no injuries were observed in group 3; enzymes were normalized (ALT 89 +/- 9 microg/mL and AST 150 +/- 17 microg/mL), and tissue edema was similar to sham. CR from HS restored and maintained central hemodynamics but did not restore or maintain liver perfusion and was associated with significant hepatocellular injury and dysfunction. DPR added to conventional resuscitation (blood and crystalloid) restored and maintained liver perfusion, prevented hepatocellular injury and edema, and preserved liver function.

  3. Hepatic (Liver) Function Panel

    MedlinePlus

    ... Educators Search English Español Blood Test: Hepatic (Liver) Function Panel KidsHealth / For Parents / Blood Test: Hepatic (Liver) ... kidneys ) is working. What Is a Hepatic (Liver) Function Panel? A liver function panel is a blood ...

  4. Human Hepatocyte Growth Factor (hHGF)-Modified Hepatic Oval Cells Improve Liver Transplant Survival

    PubMed Central

    Li, Li; Ran, Jiang-Hua; Li, Xue-Hua; Liu, Zhi-Heng; Liu, Gui-Jie; Gao, Yan-Chao; Zhang, Xue-Li; Sun, Hiu-Dong

    2012-01-01

    Despite progress in the field of immunosuppression, acute rejection is still a common postoperative complication following liver transplantation. This study aims to investigate the capacity of the human hepatocyte growth factor (hHGF) in modifying hepatic oval cells (HOCs) administered simultaneously with orthotopic liver transplantation as a means of improving graft survival. HOCs were activated and isolated using a modified 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH) model in male Lewis rats. A HOC line stably expressing the HGF gene was established following stable transfection of the pBLAST2-hHGF plasmid. Our results demonstrated that hHGF-modified HOCs could efficiently differentiate into hepatocytes and bile duct epithelial cells in vitro. Administration of HOCs at the time of liver transplantation induced a wider distribution of SRY-positive donor cells in liver tissues. Administration of hHGF-HOC at the time of transplantation remarkably prolonged the median survival time and improved liver function for recipients compared to these parameters in the other treatment groups (P<0.05). Moreover, hHGF-HOC administration at the time of liver transplantation significantly suppressed elevation of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) levels while increasing the production of IL-10 and TGF-β1 (P<0.05). HOC or hHGF-HOC administration promoted cell proliferation, reduced cell apoptosis, and decreased liver allograft rejection rates. Furthermore, hHGF-modified HOCs more efficiently reduced acute allograft rejection (P<0.05 versus HOC transplantation only). Our results indicate that the combination of hHGF-modified HOCs with liver transplantation decreased host anti-graft immune responses resulting in a reduction of allograft rejection rates and prolonging graft survival in recipient rats. This suggests that HOC-based cell transplantation therapies can be developed as a means of treating severe liver injuries. PMID:23028627

  5. [Liver transplantation preserving the vena cava and a temporary portocaval shunt].

    PubMed

    Hesse, U J; Berrevoet, F; Troisi, R; Mortier, E; Decruyenaere, J; Pattyn, P; de Hemptinne, B

    1999-02-01

    The experience with laterolateral cavocavostomy for hepatovenous reconstruction in liver transplantation is reviewed with and without the use of a temporary portocaval shunt. A total of 65 liver transplantations were analyzed. In 49 transplantations a laterolateral cavocaval anastomosis was performed (group I). In group II (n = 16) the same technique was used after a temporary portal caval shunt was constructed. Mean arterial pressure (mmHg): group I 128 +/- 34; group II 109 +/- 32. Cardiac output (l/min) decrease during the anhepatic phase was 2.3 +/- 1.9 and 1.2 +/- 1.5, respectively (P < 0.05). The peroperative blood loss measured as the number of packed cells transfused was 16.4 +/- 15.8 versus 1.2 +/- 2.3 (P < 0.04) and fresh frozen plasma 19.0 +/- 14.7 versus 3.7 +/- 4.0 (P < 0.02). Course on ICU (days), liver function tests, renal function and the need for reoperation because of bleeding were not statistically significantly different between the groups. One-year patient survival was 82.7 and 85.7%, respectively. In conclusion, we found that despite preservation of the caval flow during hepatectomy, the additional use of a temporary portocaval shunt was advantageous with regard to peroperative hemorrhage and hemodynamic stability and can potentially facilitate implantation of the liver graft.

  6. Capybara Oil Improves Hepatic Mitochondrial Dysfunction, Steatosis, and Inflammation in a Murine Model of Nonalcoholic Fatty Liver Disease.

    PubMed

    Marinho, Polyana C; Vieira, Aline B; Pereira, Priscila G; Rabelo, Kíssila; Ciambarella, Bianca T; Nascimento, Ana L R; Cortez, Erika; Moura, Aníbal S; Guimarães, Fernanda V; Martins, Marco A; Barquero, Gonzalo; Ferreira, Rodrigo N; de Carvalho, Jorge J

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD) is recognized as the most common cause of liver dysfunction worldwide and is commonly associated with obesity. Evidences suggest that NAFLD might be a mitochondrial disease, which contributes to the hepatic steatosis, oxidative stress, cytokine release, and cell death. Capybara oil (CO) is a rich source of polyunsaturated fatty acids (PUFA), which is known to improve inflammation and oxidative stress. In order to determine the effects of CO on NAFLD, C57Bl/6 mice were divided into 3 groups and fed a high-fat diet (HFD) (NAFLD group and NAFLD + CO group) or a control diet (CG group) during 16 weeks. The CO (1.5 g/kg/daily) was administered by gavage during the last 4 weeks of the diet protocol. We evaluated plasma liver enzymes, hepatic steatosis, and cytokine expression in liver as well as hepatocyte ultrastructural morphology and mitochondrial function. CO treatment suppressed hepatic steatosis, attenuated inflammatory response, and decreased plasma alanine aminotransferase (ALT) in mice with NAFLD. CO was also capable of restoring mitochondrial ultrastructure and function as well as balance superoxide dismutase and catalase levels. Our findings indicate that CO treatment has positive effects on NAFLD improving mitochondrial dysfunction, steatosis, acute inflammation, and oxidative stress.

  7. Naringin Improves Diet-Induced Cardiovascular Dysfunction and Obesity in High Carbohydrate, High Fat Diet-Fed Rats

    PubMed Central

    Alam, Md. Ashraful; Kauter, Kathleen; Brown, Lindsay

    2013-01-01

    Obesity, insulin resistance, hypertension and fatty liver, together termed metabolic syndrome, are key risk factors for cardiovascular disease. Chronic feeding of a diet high in saturated fats and simple sugars, such as fructose and glucose, induces these changes in rats. Naturally occurring compounds could be a cost-effective intervention to reverse these changes. Flavonoids are ubiquitous secondary plant metabolites; naringin gives the bitter taste to grapefruit. This study has evaluated the effect of naringin on diet-induced obesity and cardiovascular dysfunction in high carbohydrate, high fat-fed rats. These rats developed increased body weight, glucose intolerance, increased plasma lipid concentrations, hypertension, left ventricular hypertrophy and fibrosis, liver inflammation and steatosis with compromised mitochondrial respiratory chain activity. Dietary supplementation with naringin (approximately 100 mg/kg/day) improved glucose intolerance and liver mitochondrial dysfunction, lowered plasma lipid concentrations and improved the structure and function of the heart and liver without decreasing total body weight. Naringin normalised systolic blood pressure and improved vascular dysfunction and ventricular diastolic dysfunction in high carbohydrate, high fat-fed rats. These beneficial effects of naringin may be mediated by reduced inflammatory cell infiltration, reduced oxidative stress, lowered plasma lipid concentrations and improved liver mitochondrial function in rats. PMID:23446977

  8. Evaluation of liver functional reserve by combining D-sorbitol clearance rate and CT measured liver volume

    PubMed Central

    Li, Yi-Ming; Lv, Fan; Xu, Xin; Ji, Hong; Gao, Wen-Tao; Lei, Tuan-Jie; Ren, Gui-Bing; Bai, Zhi-Lan; Li, Qiang

    2003-01-01

    AIM: Our research attempted to evaluate the overall functional reserve of cirrhotic liver by combination of hepatic functional blood flow, liver volume, and Child-Pugh’s classification, and to discuss its value of clinical application. METHODS: Ninety two patients with portal hypertension due to hepatic cirrhosis were investigated. All had a history of haematemesis and hematochezia, esophageal and gastric fundus varices, splenomegaly and hypersplenia. A 2-year follow-up was routinely performed and no one was lost. Twenty two healthy volunteers were used as control group. Blood and urine samples were collected 4 times before and after intravenous D-sorbitol infusion. The hepatic clearance (CLH) of D-sorbitol was then calculated according to enzymatic spectrophotometric method while the total blood flow (QTOTAL) and intrahepatic shunt (RINS) were detected by multicolor Doppler ultrasound, and the liver volume was measured by spiral CT. Data were estimated by t-test, variance calculation and chi-squared test. The relationships between all these parameters and different groups were investigated according to Child-Pugh classification and postoperative complications respectively. RESULTS: Steady blood concentration was achieved 120 mins after D-sorbitol intravenous infusion, which was (0.358 ± 0.064) mmol·L-1 in cirrhotic group and (0.189 ± 0.05) mmol·L-1 in control group (P < 0.01). CLH = (812.7 ± 112.4) mL·min-1, QTOTAL = (1280.6 ± 131.4) mL·min-1, and RINS = (36.54 ± 10.65)% in cirrhotic group and CLH = (1248.3 ± 210.5) mL·min-1, QTOTAL = (1362.4 ± 126.9) mL·min-1, and RINS = (8.37 ± 3.32)% in control group (P < 0.01). The liver volume of cirrhotic group was 1057 ± 249 cm3, 851 ± 148 cm3 and 663 ± 77 cm3 in Child A, B and C group respectively with significant difference (P < 0.001). The average volume of cirrhotic liver in Child B, C group was significantly reduced in comparison with that in control group (P < 0.001). The patient, whose liver volume decreased by 40% with the CLH below 600 mL·min-1, would have a higher incidence of postoperative complications. There was no strict correspondent relationship between CLH, liver volume and Child-Pugh’s classification. CONCLUSION: The hepatic clearance of D-sorbitol, CT measured liver volume can be reliably used for the evaluation of hepatic functional blood flow and liver metabolic volume. Combined with the Child-Pugh’s classification, it could be very useful for further understanding the liver functional reserve, therefore help determine reasonable therapeutic plan, choose surgical procedures and operating time. PMID:12970913

  9. 13C-methacetin and 13C-galactose breath tests can assess restricted liver function even in early stages of primary biliary cirrhosis.

    PubMed

    Holtmeier, Julia; Leuschner, Maria; Schneider, Arne; Leuschner, Ulrich; Caspary, Wolfgang F; Braden, Barbara

    2006-11-01

    The 13C-methacetin breath test quantitatively evaluates cytochrome P450-dependent liver function. The 13C-galactose breath test non-invasively measures the galactose oxidation capacity of the liver. The aim of this study was to find out whether these breath tests are sensitive parameters also in non-cirrhotic patients with primary biliary cirrhosis. Nineteen patients with early-stage primary biliary cirrhosis (no cirrhotic alterations in the liver biopsy, Ludwig stage I-III) and 20 healthy controls underwent the 13C-methacetin and 13C-galactose breath tests. Patients with primary biliary cirrhosis metabolized less 13C-methacetin than controls (cumulative recovery within 30 min 7.5+/-2.4% versus 14.0+/-2.6%; p < 0.001). When a cut-off > 9.8% was used for the cumulative recovery after 30 min, the methacetin breath test reached 84.2% sensitivity and 95.0 specificity. In the 13C-galactose breath test, the percentage recovery at 60 min in patients was 3.1+/-1.3%/h, and 6.3+/-1.1%/h in controls (p < 0.001). Using a cut-off > 4.7%/h, the galactose breath test reached 89.5% sensitivity and 95.0 specificity. In non-cirrhotic, early-stage, primary biliary cirrhosis the 13C-methacetin breath test and the 13C-galactose breath test reliably indicate decreased liver function. The 13C-galactose breath test can also predict the histological score.

  10. Ion Imbalance Is Involved in the Mechanisms of Liver Oxidative Damage in Rats Exposed to Glyphosate

    PubMed Central

    Tang, Juan; Hu, Ping; Li, Yansen; Win-Shwe, Tin-Tin; Li, Chunmei

    2017-01-01

    Glyphosate (N-phosphonomethyl-glycine, GLP) is the most popular herbicide used worldwide. This study aimed to investigate the effects of glyphosate on rats' liver function and induction of pathological changes in ion levels and oxidative stress in hepatic tissue. Sprague-Dawley rats were treated orally with 0, 5, 50, and 500 mg/kg body weight of the GLP. After 5 weeks of treatment, blood and liver samples were analyzed for biochemical and histomorphological parameters. The various mineral elements content in the organs of the rats were also measured. Significant decreases were shown in the weights of body, liver, kidney and spleen between the control and treatment groups. Changes also happened in the histomorphology of the liver and kidney tissue of GLP-treated rats. The GLP resulted in an elevated level of glutamic-oxalacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT) and IL-1β in the serum. Besides, decreased total superoxide dismutase (T-SOD) activity and increased malondialdehyde (MDA) contents in the serum, liver, and kidney indicated the presence of oxidative stress. Moreover, increase of hydrogen peroxide (H2O2) level and catalase (CAT) activity in the serum and liver and decrease of glutathione (GSH) and lutathione peroxidase (GSH-Px) activity in the kidney tissue further confirmed the occurrence of oxidative stress. The results of RT-PCR showed that the mRNA expressions of IL-1α, IL-1β, IL-6, MAPK3, NF-κB, SIRT1, TNF-α, Keap1, GPX2, and Caspase-3 were significantly increased in the GLP-treated groups compared to the control group. Furthermore, PPARα, DGAT, SREBP1c, and SCD1 mRNA expressions were also remarkably increased in the GLP-treated groups compared to the control group. In addition, aluminum (Al), iron (Fe), copper (Cu), zinc (Zn), and magnesium (Mg) levels were showed a significant difference reduction or increase in rat liver, kidney, spleen, lung, heart, muscle, brain, and fat tissues. These results suggested that glyphosate caused obvious damage to rats' liver and caused various mineral elements content imbalances in various organs of rats. Ion imbalance could weaken antioxidant capacity and involve in the mechanism of liver oxidative damage caused by GLP. PMID:29311996

  11. Evaluation of blood metabolites reflects presence or absence of liver abscesses in beef cattle

    PubMed Central

    Macdonald, Alaina G C; Bourgon, Stéphanie L; Palme, Rupert; Miller, Stephen P; Montanholi, Yuri R

    2017-01-01

    Liver abscesses constitute a prominent concern regarding animal health and profitability of the beef industry. Our objective was to evaluate potential biliary and blood indicators of liver abscesses. Twenty-nine beef bulls (initially averaging 356±70.5 kg and 253±30 days of age) were fed a high-concentrate diet during a performance test of 112 days, during which blood was collected at nine time points spaced 0.5–13 days apart within 56 days before slaughter. At the abattoir, blood and bile were collected and livers were inspected for liver abscesses. Results indicated that liver abscesses are associated with elevated levels of plasma cortisol and aspartate aminotransferase, and decreased levels of albumin, cholesterol and testosterone over the period before slaughter. Based on the blood samples collected during exsanguination, the presence of liver abscesses was associated with lower concentrations of thyroxine, albumin, cholesterol and alkaline phosphatase, and is suggested to be associated with lower blood carbon dioxide (P=0.08) and lower biliary cortisol metabolites (P=0.07). Albumin and cholesterol are established indicators of hepatic function and are consistently related to the presence of liver abscesses. Identifying blood parameters that predict liver abscesses has practical implications for cattle husbandry and for ensuring food safety. PMID:28890789

  12. A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial of Shuangbai San for Treating Primary Liver Cancer Patients With Cancer Pain.

    PubMed

    Ye, Xiaowei; Lu, Dongyan; Chen, Xinlin; Li, Suihui; Chen, Yao; Deng, Li

    2016-06-01

    Shuangbai San is a Chinese herb preparation used externally to treat pain. There have been few randomized controlled trials addressing the safety and usefulness of Shuangbai San, such as its effect on pain relief and quality of life (QOL) improvement. This study was conducted to evaluate the effect of Shuangbai San on relieving pain and improving QOL in primary liver cancer patients with cancer pain. A total of 134 primary liver cancer patients with mild pain (numerical rating scale [NRS] ≤ 3), either locally in the liver or in the upper abdomen, were enrolled and randomly allocated to the group receiving Shuangbai San or the control group (receiving placebo). The primary outcome measures were the NRS score and QOL scales, including the QOL scale for patients with liver cancer, version 2.0 and the European Organization for Research and Treatment of Cancer QOL Questionnaire-C30. The secondary outcome measures included the Karnofsky Performance Status score, blood indicators, and liver and kidney function before and after treatment. The NRS scores decreased more significantly in the Shuangbai San group than in the placebo group (P < 0.05) at the corresponding time points. The changes in the scores for the physical function, psychological function, and symptoms/adverse effects domains of the QOL scale for patients with liver cancer, version 2.0 and the physical, emotional, and cognitive domains of the European Organization for Research and Treatment of Cancer QOL Questionnaire-C30 were significantly greater in the Shuangbai San group than in the placebo group (P < 0.05). The changes in the scores for the other domains were not significantly different (P > 0.05). The use of Shuangbai San can relieve mild pain in liver cancer patients and improve their QOL. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  13. [Dynamic change study of dermatitis medicamentosa-like of trichloroethylene patients with liver damage].

    PubMed

    Liu, Wei; Zhang, Yan-fang; Zhang, Zhi-min; Li, Pei-mao; Jiang, Xiao-dong; Zhou, Gui-feng; Liu, Jian-jun

    2011-10-01

    Observing the dynamic change characteristics of serum liver function indexes in occupational dermatitis medicamentosa-like of trichloroethylene patients with liver damage, we can underlie for guiding therapy, prognosis and mechanism of dermatitis medicamentosa-like of trichloroethylene patients with liver damage. We collected serum of 10 cases of occupational dermatitis medicamentosa-like of trichloro-ethylene patients with liver damage from different time points since they were hospitalized, using automatic biochemistry analyzer to detect total protein (TP), albumin (ALB), total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), alkaline phosphatase (ALP), albumin/globulin ratio etc 11 liver function biochemical indicators. We used Excel to establish database, professional drawing software gnuplot to draw dynamic variation diagram of each index. The variation range of 11 liver function indexes of 10 cases was TP 43.2-74.2 g/L, ALB 24.6-44.6 g/L, A/G 0.77-2.10, TBIL 3.7-268.2 umol/L, DBIL 1.0-166.0 umol/L, IBIL 2.4 -167.5 umol/L, ALT 11-5985 U/L, AST 14-5586 U/L, GGT 15-1500 U/L, ALP 35-309 U/L, S/L 0.07-1.94, respectively. TBIL, DBIL, ALT, AST, GGT, ALP concentration significantly increased, especially ALT, AST, GGT, ALT topped 5985 U/L, AST topped 5586 U/L, GGT topped 1500 U/L. But TP, ALB and S/L significantly decreased, TP lowest to 43.2 g/L, S/L lowest to 0.07. A/G basically remained unchanged, but IBIL didn't change regularly. The early liver damage in dermatitis medicamentosa-like of trichloroethylene patients was serious, and repeatedly attacked, so we should lead to enough attention to the clinical work and prevention. This also provided the basis for studying the mechanism of trichloroethylene poisoning.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ar Latin-Small-Letter-Dotless-I bas, Bilgin Kadri, E-mail: bilginaribas@hotmail.com; Dingil, Guerbuez; Koeroglu, Mert

    The aim of this case study is to present effectiveness of percutaneous drainage as a treatment option of ruptured lung and liver hydatid cysts. A 65-year-old male patient was admitted with complicated liver and lung hydatid cysts. A liver hydatid cyst had ruptured transdiaphragmatically, and a lung hydatid cyst had ruptured both into bronchi and pleural space. The patient could not undergo surgery because of decreased respiratory function. Both cysts were drained percutaneously using oral albendazole. Povidone-iodine was used to treat the liver cyst after closure of the diaphragmatic rupture. The drainage was considered successful, and the patient had nomore » recurrence of signs and symptoms. Clinical, laboratory, and radiologic recovery was observed during 2.5 months of catheterization. The patient was asymptomatic after catheter drainage. No recurrence was detected during 86 months of follow-up. For inoperable patients with ruptured liver and lung hydatid cysts, percutaneous drainage with oral albendazole is an alternative treatment option to surgery. The percutaneous approach can be life-saving in such cases.« less

  15. Antioxidant and Hepatoprotective Efficiency of Selenium Nanoparticles Against Acetaminophen-Induced Hepatic Damage.

    PubMed

    Amin, Kamal Adel; Hashem, Khalid Shaban; Alshehri, Fawziah Saleh; Awad, Said T; Hassan, Mohammed S

    2017-01-01

    Overdoses of acetaminophen (APAP), a famous and widely used drug, may have hepatotoxic effects. Nanoscience is a novel scientific discipline that provides specific tools for medical science problems including using nano trace elements in hepatic diseases. Our study aimed to assess the hepatoprotective role of selenium nanoparticles (Nano-Se) against APAP-induced hepatic injury. Twenty-four male rats were classified into three equal groups: a control group that received 0.9 % NaCl, an APAP-treated group (oral administration), and a group treated with Nano-Se (10-20 nm, intraperitoneal (i.p.) injection) and APAP (oral administration). APAP overdose induced significant elevations in liver function biomarkers, hepatic lipid peroxidation, hepatic catalase, and superoxide dismutase (SOD), decreased the reduced glutathione (GSH) content and glutathione reductase (GR) activity, and stimulated significant DNA damage in hepatocytes, compared to control rats. Nano-Se administration improved the hepatic antioxidant protection mechanism and decreased cellular sensitivity to DNA fragmentation. Nano-Se exhibits a protective effect against APAP-induced hepatotoxicity through improved liver function and oxidative stress mediated by catalase, SOD, and GSH and decreases hepatic DNA fragmentation, a hepatic biomarker of cell death. Nano-Se could be a novel hepatoprotective strategy to inhibit oxidative stress.

  16. Protective effect of Tribulus terrestris linn on liver and kidney in cadmium intoxicated rats.

    PubMed

    Lakshmi, G Dhana; Kumar, P Ravi; Bharavi, K; Annapurna, P; Rajendar, B; Patel, Pankaj T; Kumar, C S V Satish; Rao, G S

    2012-02-01

    Administration of cadmium (Cd) significantly increased the peroxidation markers such as malondialdehyde and protein carbonyls along with significant decrease in antioxidant markers such as super oxide dismutase and reduced glutathione in liver and kidney tissues. Cadmium also caused a significant alteration in hepatic and renal functional markers in serum viz. total protein, albumin, alanine transaminase, blood urea nitrogen and creatinine. Prominent pathological changes observed in liver were severe vascular and sinusoidal congestion with diffuse degenerative changes and mononuclear infiltration into peripheral areas, while the kidney showed vascular and glomerular congestion, cloudy swelling of tubular epithelium. Coadministration of ethonolic extract of T. terrestris or vitamin E along with Cd significantly reversed the Cd induced changes along with significant reduction in Cd load.

  17. SET mediates TCE-induced liver cell apoptosis through dephosphorylation and upregulation of nucleolin

    PubMed Central

    Ren, Xiaohu; Huang, Xinfeng; Yang, Xifei; Liu, Yungang; Liu, Wei; Huang, Haiyan; Wu, Desheng; Zou, Fei; Liu, Jianjun

    2017-01-01

    Trichloroethylene (TCE) is an occupational and environmental chemical that can cause severe hepatotoxicity. While our previous studies showed that the phosphatase inhibitor SET is a key mediator of TCE-induced liver cell apoptosis, the molecular mechanisms remain elusive. Using quantitative phosphoproteomic analysis, we report here that nucleolin is a SET-regulated phosphoprotein in human liver HL-7702 cells. Functional analysis suggested that SET promoted dephosphorylation of nucleolin, decreased its binding to its transcriptional activator, c-myc, and upregulated nucleolin expression in TCE-treated cells. Importantly, TCE-induced hepatocyte apoptosis was significantly attenuated when nucleolin was downregulated with specific siRNAs. These findings indicate that TCE may induce hepatocyte apoptosis via SET-mediated dephosphorylation and overexpression of nucleolin. PMID:28402964

  18. SET mediates TCE-induced liver cell apoptosis through dephosphorylation and upregulation of nucleolin.

    PubMed

    Ren, Xiaohu; Huang, Xinfeng; Yang, Xifei; Liu, Yungang; Liu, Wei; Huang, Haiyan; Wu, Desheng; Zou, Fei; Liu, Jianjun

    2017-06-20

    Trichloroethylene (TCE) is an occupational and environmental chemical that can cause severe hepatotoxicity. While our previous studies showed that the phosphatase inhibitor SET is a key mediator of TCE-induced liver cell apoptosis, the molecular mechanisms remain elusive. Using quantitative phosphoproteomic analysis, we report here that nucleolin is a SET-regulated phosphoprotein in human liver HL-7702 cells. Functional analysis suggested that SET promoted dephosphorylation of nucleolin, decreased its binding to its transcriptional activator, c-myc, and upregulated nucleolin expression in TCE-treated cells. Importantly, TCE-induced hepatocyte apoptosis was significantly attenuated when nucleolin was downregulated with specific siRNAs. These findings indicate that TCE may induce hepatocyte apoptosis via SET-mediated dephosphorylation and overexpression of nucleolin.

  19. N-acetylcysteine induces shedding of selectins from liver and intestine during orthotopic liver transplantation

    PubMed Central

    Taut, F J H; Schmidt, H; Zapletal, C M; Thies, J C; Grube, C; Motsch, J; Klar, E; Martin, E

    2001-01-01

    In orthotopic liver transplantation (OLT), N-acetylcysteine (NAC) reduces ischaemia/reperfusion (I/R) injury, improves liver synthesis function and prevents primary nonfunction of the graft. To further elucidate the mechanisms of these beneficial effects of NAC, we investigated influence of high-dose NAC therapy on the pattern of adhesion molecule release from liver and intestine during OLT. Nine patients receiving allograft OLT were treated with 150 mg NAC/kg during the first hour after reperfusion; 10 patients received the carrier only. One hour after reperfusion, samples of arterial, portal venous and hepatic venous plasma were taken and blood flow in the hepatic artery and the portal vein was measured. Absolute concentrations of sICAM-1, sVCAM-1, sP-selectin and sE-selectin were not markedly different. However, balance calculations showed release of selectins from NAC-treated livers as opposed to net uptake in controls (P ≤ 0·02 for sP-selectin). This shedding of selectins might be a contributing factor to the decrease in leucocyte adherence and improved haemodynamics found experimentally with NAC-treatment. PMID:11422213

  20. Zingiber officinale acts as a nutraceutical agent against liver fibrosis

    PubMed Central

    2011-01-01

    Background/objective Zingiber officinale Roscoe (ginger) (Zingiberaceae) has been cultivated for thousands of years both as a spice and for medicinal purposes. Ginger rhizomes successive extracts (petroleum ether, chloroform and ethanol) were examined against liver fibrosis induced by carbon tetrachloride in rats. Results The evaluation was done through measuring antioxidant parameters; glutathione (GSH), total superoxide dismutase (SOD) and malondialdehyde (MDA). Liver marker enzymes; succinate and lactate dehydrogenases (SDH and LDH), glucose-6-phosphatase (G-6-Pase), acid phosphatase (AP), 5'- nucleotidase (5'NT) and liver function enzymes; aspartate and alanine aminotransferases (AST and ALT) as well as cholestatic markers; alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), total bilirubin were estimated. Liver histopathological analysis and collagen content were also evaluated. Treatments with the selected extracts significantly increased GSH, SOD, SDH, LDH, G-6-Pase, AP and 5'NT. However, MDA, AST, ALT ALP, GGT and total bilirubin were significantly decreased. Conclusions Extracts of ginger, particularly the ethanol one resulted in an attractive candidate for the treatment of liver fibrosis induced by CCl4. Further studies are required in order to identify the molecules responsible of the pharmacological activity. PMID:21689445

  1. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells.

    PubMed

    Abu-Elsaad, Nashwa M; Elkashef, Wagdi Fawzi

    2016-05-01

    Modified citrus pectin (MCP) is a pH modified form of the dietary soluble citrus peel fiber known as pectin. The current study aims at testing its effect on liver fibrosis progression. Rats were injected with CCl4 (1 mL/kg, 40% v/v, i.p., twice a week for 8 weeks). Concurrently, MCP (400 or 1200 mg/kg) was administered daily in drinking water from the first week in groups I and II (prophylactic model) and in the beginning of week 5 in groups III and IV (therapeutic model). Liver function biomarkers (ATL, AST, and ALP), fibrosis markers (laminin and hyaluronic acid), and antioxidant biomarkers (reduced glutathione (GSH) and superoxide dismutase (SOD)) were measured. Stained liver sections were scored for fibrosis and necroinflammation. Additionally, expression of galectin-3 (Gal-3), α-smooth muscle actin (SMA), tissue inhibitor metalloproteinase (TIMP)-1, collagen (Col)1A1, caspase (Cas)-3, and apoptosis related factor (FAS) were assigned. Modified pectin late administration significantly (p < 0.05) decreased malondialdehyde (MDA), TIMP-1, Col1A1, α-SMA, and Gal-3 levels and increased levels of FAS, Cas-3, GSH, and SOD. It also decreased percentage of fibrosis and necroinflammation significantly (p < 0.05). It can be concluded that MCP can attenuate liver fibrosis through an antioxidant effect, inhibition of Gal-3 mediated hepatic stellate cells activation, and induction of apoptosis.

  2. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction.

    PubMed

    Schwabl, Philipp; Hambruch, Eva; Seeland, Berit A; Hayden, Hubert; Wagner, Michael; Garnys, Lukas; Strobel, Bastian; Schubert, Tim-Lukas; Riedl, Florian; Mitteregger, Dieter; Burnet, Michael; Starlinger, Patrick; Oberhuber, Georg; Deuschle, Ulrich; Rohr-Udilova, Nataliya; Podesser, Bruno K; Peck-Radosavljevic, Markus; Reiberger, Thomas; Kremoser, Claus; Trauner, Michael

    2017-04-01

    Steroidal farnesoid X receptor (FXR) agonists demonstrated potent anti-fibrotic activities and lowered portal hypertension in experimental models. The impact of the novel non-steroidal and selective FXR agonist PX20606 on portal hypertension and fibrosis was explored in this study. In experimental models of non-cirrhotic (partial portal vein ligation, PPVL, 7days) and cirrhotic (carbon tetrachloride, CCl 4 , 14weeks) portal hypertension, PX20606 (PX,10mg/kg) or the steroidal FXR agonist obeticholic acid (OCA,10mg/kg) were gavaged. We then measured portal pressure, intrahepatic vascular resistance, liver fibrosis and bacterial translocation. PX decreased portal pressure in non-cirrhotic PPVL (12.6±1.7 vs. 10.4±1.1mmHg; p=0.020) and cirrhotic CCl 4 (15.2±0.5 vs. 11.8±0.4mmHg; p=0.001) rats. In PPVL animals, we observed less bacterial translocation (-36%; p=0.041), a decrease in lipopolysaccharide binding protein (-30%; p=0.024) and splanchnic tumour necrosis factor α levels (-39%; p=0.044) after PX treatment. In CCl 4 rats, PX decreased fibrotic Sirius Red area (-43%; p=0.005), hepatic hydroxyproline (-66%; p<0.001), and expression of profibrogenic proteins (Col1a1, α smooth muscle actin, transforming growth factor β). CCl 4 -PX rats had significantly lower transaminase levels and reduced hepatic macrophage infiltration. Moreover, PX induced sinusoidal vasodilation (upregulation of cystathionase, dimethylaminohydrolase (DDAH)1, endothelial nitric oxide synthase (eNOS), GTP-cyclohydrolase1) and reduced intrahepatic vasoconstriction (downregulation of endothelin-1, p-Moesin). In cirrhosis, PX improved endothelial dysfunction (decreased von-Willebrand factor) and normalized overexpression of vascular endothelial growth factor, platelet-derived growth factor and angiopoietins. While short-term 3-day PX treatment reduced portal pressure (-14%; p=0.041) by restoring endothelial function, 14week PX therapy additionally inhibited sinusoidal remodelling and decreased portal pressure to a greater extent (-22%; p=0.001). In human liver sinusoidal endothelial cells, PX increased eNOS and DDAH expression. The non-steroidal FXR agonist PX20606 ameliorates portal hypertension by reducing liver fibrosis, vascular remodelling and sinusoidal dysfunction. The novel drug PX20606 activates the bile acid receptor FXR and shows beneficial effects in experimental liver cirrhosis: In the liver, it reduces scarring and inflammation, and also widens blood vessels. Thus, PX20606 leads to an improved blood flow through the liver and decreases hypertension of the portal vein. Additionally, PX20606 improves the altered intestinal barrier and decreases bacterial migration from the gut. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. The effects of blueberry anthocyanins on histone acetylation in rat liver fibrosis

    PubMed Central

    Zhan, Wei; Liao, Xin; Xie, Ru-Jia; Tian, Tian; Yu, Lei; Liu, Xing; Liu, Jing; Li, Po; Han, Bing; Yang, Ting; Zhang, Bei; Cai, Li-Jun; Li, Rui; Yang, Qin

    2017-01-01

    To determine the effects ofanthocyanins from blueberries on hepatic stellate cell (HSCs-T6) and on histone acetylation during liver fibrosis induced by CCl4 in rats. Fifty male SD rats weighing 180 ± 20g were randomly placed into a control group, a hepatic fibrosis group, a blueberry treatment group, a blueberry intervention group, and a natural recovery group. After the rats were sacrificed, the livers and the liver indexes were measured, and the pathological changes were observed by HE staining and Masson staining. The blood was analyzed for the four indexes of liver fibrosis and liver function; nucleoprotein from liver tissues and karyoplasm were isolated to determine the expression of acH3K9, acH3K14, and acH3K18 by Western blotting. Compared with the lethal rate of the control group, the median lethal rate of HSCs-T6 cells treated with a the 50μmol/L concentration was 66.94% (P < 0.05). The protein expression on α-SMA, type I collagen, TIMP1 significantly decreased (P < 0.05) following treatment with 50 ug/ml of anthocyanin for 36 h; moreover, the expression of acH3K9, acH3K14 and acH3K18 modification were up-regulated (P < 0.05). Furthermore, compared with the liver in the model group, the liver in the intervention group showed the most obvious improvement (P < 0.01), and its karyoplasm had increased expression of acH3K9, acH3K14 and acH3K18 (P<0.01). Regulating histone acetylation could improve liver function and liver fibrosis indexes in rats with hepatic fibrosis. The mechanism might be related to certain genes that promote apoptosis, so as to inhibit the effect of anti hepatic fibrosis. PMID:29228569

  4. Rescue allocation for liver transplantation within Eurotransplant: the Heidelberg experience.

    PubMed

    Schemmer, Peter; Nickkholgh, Arash; Gerling, Till; Weitz, Jürgen; Büchler, Markus W; Schmidt, Jan

    2009-12-01

    Organ shortage has driven many transplant centers to extend their criteria for organ acceptance. Graft allocation policies have been modified accordingly. This report focuses on the impact of applying the so-called rescue allocation (RA) strategy for liver transplantation (LT) in a single center within the Eurotransplant (ET) area. Liver grafts are considered for RA when the regular organ allocation is declined by at least three centers or is averted because of donor instability/unfavorable logistical reasons, thus entering a competitive or a single-recipient rescue organ offer procedure, respectively. The accepting center has the advantage to select a recipient from its own waiting list for these RA grafts. Among 253 livers accepted at the University of Heidelberg between January 2004 and December 2006, we transplanted 85 (34%) rescue-allocated livers. The indications for LT were hepatocellular carcinoma (HCC, 43%), chronic liver disease (55%), and acute liver failure (2%). Median cold ischemia time for RA grafts was 10 h (range: 4-17). The MELD score (mean +/- SD) was 13 +/- 7 (range: 6-40) and was 12 +/- 7 for recipients with HCC. Three (3.5%) primary non-functions (PNF) occurred after transplantation of RA livers. One-year patient and graft survival were 84% and 75%, respectively. A comparison between the recipients of RA livers and regularly allocated livers revealed no significant difference regarding initial poor function (IPF), PNF, and surgical complications. Furthermore, a median follow-up of 16 months revealed no significant difference regarding patient and graft survival between the two groups. The use of RA organs has increased the donor pool and transplantation dynamics with satisfying results. The unique possibility to match livers with recipients, which is left to the discretion of accepting center, should be judged according to the center's experience to decrease the waiting times for a timely rescue of organs/recipients while avoiding futile transplantations.

  5. The methyl donor S-adenosylmethionine prevents liver hypoxia and dysregulation of mitochondrial bioenergetic function in a rat model of alcohol-induced fatty liver disease.

    PubMed

    King, Adrienne L; Mantena, Sudheer K; Andringa, Kelly K; Millender-Swain, Telisha; Dunham-Snary, Kimberly J; Oliva, Claudia R; Griguer, Corinne E; Bailey, Shannon M

    2016-10-01

    Mitochondrial dysfunction and bioenergetic stress play an important role in the etiology of alcoholic liver disease. Previous studies from our laboratory show that the primary methyl donor S-Adenosylmethionine (SAM) minimizes alcohol-induced disruptions in several mitochondrial functions in the liver. Herein, we expand on these earlier observations to determine whether the beneficial actions of SAM against alcohol toxicity extend to changes in the responsiveness of mitochondrial respiration to inhibition by nitric oxide (NO), induction of the mitochondrial permeability transition (MPT) pore, and the hypoxic state of the liver. For this, male Sprague-Dawley rats were pair-fed control and alcohol-containing liquid diets with and without SAM for 5 weeks and liver hypoxia, mitochondrial respiration, MPT pore induction, and NO-dependent control of respiration were examined. Chronic alcohol feeding significantly enhanced liver hypoxia, whereas SAM supplementation attenuated hypoxia in livers of alcohol-fed rats. SAM supplementation prevented alcohol-mediated decreases in mitochondrial state 3 respiration and cytochrome c oxidase activity. Mitochondria isolated from livers of alcohol-fed rats were more sensitive to calcium-mediated MPT pore induction (i.e., mitochondrial swelling) than mitochondria from pair-fed controls, whereas SAM treatment normalized sensitivity for calcium-induced swelling in mitochondria from alcohol-fed rats. Liver mitochondria from alcohol-fed rats showed increased sensitivity to NO-dependent inhibition of respiration compared with pair-fed controls. In contrast, mitochondria isolated from the livers of SAM treated alcohol-fed rats showed no change in the sensitivity to NO-mediated inhibition of respiration. Collectively, these findings indicate that the hepato-protective effects of SAM against alcohol toxicity are mediated, in part, through a mitochondrial mechanism involving preservation of key mitochondrial bioenergetic parameters and the attenuation of hypoxic stress. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Can Patients Who Develop Cerebral Death in Fulminant Liver Failure Despite Liver Transplantation Be Previously Forseen?

    PubMed

    Sarici, K B; Karakas, S; Otan, E; Ince, V; Koc, C; Koc, S; Bayraktar, H; Aydin, C; Kayaalp, C; Gungor, S; Kablan, Y; Yilmaz, S

    2017-04-01

    The outcome of medical treatment is worse in fulminant liver failure (FLF) developing on acute or chronic ground. Recently, liver transplantations with the use of living and cadaveric donors have been performed in these diseases and good results obtained. In this study, we aimed to present the factors affecting the recovery of cerebral functions after liver transplantation in hepatic encephalopathy (HE) developing in FLF, to identify irreversible patient groups and to prevent unnecessary liver transplantation. In Inonu University's Liver Transplant Institute, 69 patients who made an emergency notice to the National Coordination Center for liver transplantation owing to FLF from January 2012 to December 2015 were included in the study. Patients were divided into 2 groups. Group 1 consisted of 52 patients who underwent liver transplantation and recovered normal brain function, and group 2 had 17 patients who underwent liver transplantation and did not recover normal brain function and had cerebral death. All patients were evaluated before surgery for clinical encephalopathy stage, light reflex, and convulsions. Groups were compared and assessed according to age (>40, 10-40 and <10 years), body mass index, etiologic factor, preoperative laboratory values, transplantation type, mortality, and encephalopathy level. Multivariate analysis was done for specific parameters. Prothrombin time (PT), international normalized ratio (INR), and total bilirubin values were significantly different between the groups. There was no significant difference between the groups regarding ammonia and lactate levels. There was a statistically significant difference between the groups regarding sodium and potassium levels from serum electrolytes. However, the averages of both groups were within normal limits. pH and total bilirubin levels were meaningful for multivariate analysis. HE reversibility, mortality, and morbidity are important in patients with HE who undergo liver transplantation. Therefore, West Haven clinical staging and serum INR, PT, and total bilirubin level may be helpful in predicting the reversibility of FLF patients with HE before liver transplantation. It was determined that West Haven encephalopathy grading is important in determining the reversibility of HE after transplantation in FLF; especially the probability of reversibility of stage 4 HE decreases significantly. High PT and INR levels, hyperbilirubinemia, and serum sodium and potassium concentrations were risk factors for the reversibility of HE in this study. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yuting, E-mail: wuyuting1302@sina.com; Liu, Xuejiao; Zhou, Qun

    SIRT1 (silent information regulator 1), a conserved NAD +-dependent histone deacetylase, is closely related with various biological processes. Moreover, the important role of SIRT1 in alcoholic liver disease, nonalcoholic fatty liver and HCC had been widely reported. Recently, a novel role of SIRT1 was uncovered in organ fibrosis diseases. Here, we investigated the inhibitory effect of SIRT1 in liver fibrogenesis. SIRT1 protein was dramatically decreased in CCl4-treated mice livers. Stimulation of LX-2 cells with TGF-β1 also resulted in a significant suppression of SIRT1 protein. Nevertheless, TGF-β1-induced LX-2 cell activation was inhibited by SIRT1 plasmid, and this was accompanied by up-regulationmore » of cell apoptosis-related proteins. Overexpression of SIRT1 also attenuated TGF-β1-induced expression of myofibroblast markers α-SMA and COL1a. However, the important characteristic of the recovery of liver fibrosis is not only the apoptosis of activated stellate cells but also the reversal of the myofibroblast-like phenotype to a quiescent-like phenotype. Restoration of SIRT1 protein was observed in the in vivo spontaneously liver fibrosis reversion model and in vitro MDI (isobutylmethylxanthine, dexamethasone, and insulin)-induced reversed stellate cells, and forced expression of SIRT1 also promoted the reversal of activated stellate cells. Furthermore, lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) was increased in liver fibrosis. RNAi-mediated suppression of MALAT1 resulted in a decrease of myofibroblast markers and restoration of SIRT1 protein. These observations suggested that SIRT1 contributed to apoptosis and reversion of activated LX-2 cells and SIRT1 might be regulated by MALAT1 in liver fibrosis. Therefore, SIRT1 could be considered as a valuable therapeutic target for translational studies of liver fibrosis. - Highlights: • This is the first report of SIRT1 expression and function in liver fibrogenesis and reversion. • Aberrant expression of SIRT1 might just occur at a post-transcriptional level. • LncRNA MALAT1 might be responsible for the changes of SIRT1 in liver fibrosis.« less

  8. Liver regeneration in donors and adult recipients after living donor liver transplantation.

    PubMed

    Haga, Junko; Shimazu, Motohide; Wakabayashi, Go; Tanabe, Minoru; Kawachi, Shigeyuki; Fuchimoto, Yasushi; Hoshino, Ken; Morikawa, Yasuhide; Kitajima, Masaki; Kitagawa, Yuko

    2008-12-01

    In living donor liver transplantation, the safety of the donor operation is the highest priority. The introduction of the right lobe graft was late because of concerns about donor safety. We investigated donor liver regeneration by the types of resected segments as well as recipients to assess that appropriate regeneration was occurring. Eighty-seven donors were classified into 3 groups: left lateral section donors, left lobe donors, and right lobe donors. Forty-seven adult recipients were classified as either left or right lobe grafted recipients. Volumetry was retrospectively performed at 1 week, 1, 2, 3, and 6 months, and 1 year after the operation. In the right lobe donor group, the remnant liver volume was 45.4%, and it rapidly increased to 68.9% at 1 month and 89.8% at 6 months. At 6 months, the regeneration ratios were almost the same in all donor groups. The recipient liver volume increased rapidly until 2 months, exceeding the standard liver volume, and then gradually decreased to 90% of the standard liver volume. Livers of the right lobe donor group regenerated fastest in the donor groups, and the recipient liver regenerated faster than the donor liver. Analyzing liver regeneration many times with a large number of donors enabled us to understand the normal liver regeneration pattern. Although the donor livers did not reach their initial volume, the donors showed normal liver function at 1 year. The donors have returned to their normal daily activities. Donor hepatectomy, even right hepatectomy, can be safely performed with accurate preoperative volumetry and careful decision-making concerning graft-type selection.

  9. Liver Function in Patients With Nonalcoholic Fatty Liver Disease Randomized to Roux-en-Y Gastric Bypass Versus Sleeve Gastrectomy: A Secondary Analysis of a Randomized Clinical Trial.

    PubMed

    Kalinowski, Piotr; Paluszkiewicz, Rafał; Ziarkiewicz-Wróblewska, Bogna; Wróblewski, Tadeusz; Remiszewski, Piotr; Grodzicki, Mariusz; Krawczyk, Marek

    2017-11-01

    The aim of the study was to compare the influence of sleeve gastrectomy (SG) versus Roux-en-Y gastric bypass (RYGB) on liver function in bariatric patients with non-alcoholic fatty liver disease (NAFLD) in a randomized clinical trial (NCT01806506). Rapid weight loss and malabsorption after bariatric surgery in patients with NAFLD or steatohepatitis (NASH) may impair liver function. Sixty-six morbidly obese patients randomized to SG or RYGB were included in a secondary outcome analysis. Intraoperative liver biopsies were categorized with NAFLD Activity Score (NAS) and liver function tests were done before surgery and after 1, 6 and 12 months. NASH was present in 54.5% RYGB and 51.5% SG patients (P > 0.05). At 12 months excess weight loss was 68.7 ± 19.7% after SG and 62.8 ± 18.5% after RYGB (P > 0.05). At 1 month international normalized ratio (INR) increased after RYGB (0.98 ± 0.05 vs 1.14 ± 0.11; P < 0.05) and SG (0.99 ± 0.06 vs 1.04 ± 0.06; P < 0.05), RYGB induced significantly greater increase in INR in the whole group and NASH patients than SG. After RYGB albumin decreased at 1 month (41.2 ± 2.7 vs 39.0 ± 3.2 g/L; P < 0.05). At 12 months, INR and albumin returned to baseline. At 12 months in NASH group, SG induced significant improvement in aspartate aminotransferase (32.4 ± 17.4 vs 21.5 ± 6.9U/L), alanine aminotransferase (39.9 ± 28.6U/L vs 23.8 ± 14.1U/L), gamma-glutamyl transpeptidase (34.3 ± 16.6 vs 24.5 ± 16.8U/L), and lactate dehydrogenase (510.8 ± 33 vs 292.4 ± 29). Variables predictive of INR change after 1 month included operation type, NAS ≥ 5, bilirubin, body mass index, hemoglobin A1C, and dyslipidemia. Patients with NASH undergoing RYGB are more susceptible to early transient deterioration of liver function than after SG.

  10. Livers from fasted rats acquire resistance to warm and cold ischemia injury.

    PubMed

    Sumimoto, R; Southard, J H; Belzer, F O

    1993-04-01

    Successful liver transplantation is dependent upon many factors, one of which is the quality of the donor organ. Previous studies have suggested that the donor nutritional status may affect the outcome of liver transplantation and starvation, due to prolonged stay in the intensive care unit, may adversely affect the liver. In this study we have used the orthotopic rat liver transplant model to measure how fasting the donor affects the outcome of liver transplantation. Rat livers were preserved with UW solution either at 37 degrees C (warm ischemia for 45-60 min) or at 4 degrees C (cold ischemia for 30 or 44 hr). After preservation the livers were orthotopically transplanted and survival (for 7 days) was measured, as well as liver functions 6 hr after transplantation. After 45 min of warm ischemia 50% (3 of 6) animals survived when the liver was obtained from a fed donor about 80% (4 of 5) survived when the liver was obtained from a three-day-fasted donor. After 60 min warm ischemia no animal survived (0 of 8, fed group). However, if the donor was fasted for 3 days 89% (8 of 9) of the animals survived for 7 days. Livers cold-stored for 30 hr were 50% viable (3 of 6) and fasting for 1-3 days did not affect this outcome. However, if the donor was fasted for 4 days 100% (9 of 9) survival was obtained. After 44-hr preservation only 29% (2/7) of the recipients survived for 7 days. If the donor was fasted for 4 days, survival increased to 83% (5/6). Liver functions, bile production, and serum enzymes were better in livers from the fasted rats than from the fed rats. Fasting caused a 95% decrease in liver glycogen content. Even with this low concentration of glycogen, liver viability (animal survival) after warm or cold ischemia was not affected, and livers with a low glycogen content were fully viable. Thus liver glycogen does not appear to be important in liver preservation. This study shows that fasting the donor does not cause injury to the liver after warm or cold ischemia. In fact, the livers appeared to be better able to tolerate ischemia when obtained from fasted rats. Thus donor nutritional status may be an important factor for outcome of liver transplantation. Livers from fasted donors may be capable of tolerating long-term preservation better than livers from fed donors.

  11. Functional characterization of liver-associated lymphocytes in patients with liver metastasis.

    PubMed

    Winnock, M; Garcia-Barcina, M; Huet, S; Bernard, P; Saric, J; Bioulac-Sage, P; Gualde, N; Balabaud, C

    1993-10-01

    The liver-associated lymphocytes (LAL) population is mainly composed of cells with natural killer (NK) activity expressing the CD3+/-CD56+ phenotype. No evident difference has been found in the phenotypic data between patients with benign or malignant liver disease. In this study, the cytotoxic pattern of this population has been characterized from patients who underwent an operation for benign or metastatic liver disease. LAL were isolated by sinusoidal high-pressure lavage from partial hepatectomies. Phenotype was characterized by flow cytometry, and cytotoxicity was evaluated by standard 4-hour 51Cr release assays against NK and lymphokine-activated killer (LAK)-sensitive targets. In patients with benign liver disease, LAL showed spontaneous high levels of NK activity and LAK activity compared with peripheral blood lymphocytes. In patients with metastatic liver disease, no difference was observed in the levels of NK activity between LAL and peripheral blood, and the level of LAK activity was far lower than that expressed in patients with benign liver disease. These results show that the cytotoxic pattern of peripheral blood lymphocytes does not mirror that of LAL. In patients with benign liver disease, LAL are in a state of activation, whereas the decreased level of LAL cytotoxicity in patients with metastatic liver disease suggests that the cytotoxic activity of these cells could be inhibited by the presence of suppressive factors.

  12. Modifying three-dimensional scaffolds from novel nanocomposite materials using dissolvable porogen particles for use in liver tissue engineering

    PubMed Central

    Fuller, Barry; Seldon, Clare; Davidson, Brian; Seifalian, Alexander

    2013-01-01

    Background: Although hepatocytes have a remarkable regenerative power, the rapidity of acute liver failure makes liver transplantation the only definitive treatment. Attempts to incorporate engineered three-dimensional liver tissue in bioartificial liver devices or in implantable tissue constructs, to treat or bridge patients to self-recovery, were met with many challenges, amongst which is to find suitable polymeric matrices. We studied the feasibility of utilising nanocomposite polymers in three-dimensional scaffolds for hepatocytes. Materials and methods: Hepatocytes (HepG2) were seeded on a flat sheet and in three-dimensional scaffolds made of a nanocomposite polymer (Polyhedral Oligomeric Silsesquioxane [POSS]-modified polycaprolactone urea urethane) alone as well as with porogen particles, i.e. glucose, sodium bicarbonate and sodium chloride. The scaffold architecture, cell attachment and morphology were studied with scanning electron microscopy, and we assessed cell viability and functionality. Results: Cell attachment to the scaffolds was demonstrated. The scaffold made with glucose particles as porogen showed a narrower range of pore size with higher porosity and better inter-pore communications and seemed to encourage near normal cell morphology. There was a steady increase of albumin secretion throughout the experiment while the control (monolayer cell culture) showed a steep decrease after day 7. At the end of the experiment, there was no significant difference in viability and functionality between the scaffolds and the control. Conclusion: In this initial study, porogen particles were used to modify the scaffolds produced from the novel polymer. Although there was no significance against the control in functionality and viability, the demonstrable attachment on scanning electron microscopy suggest potential roles for this polymer and in particular for scaffolds made with glucose particles in liver tissue engineering. PMID:22532408

  13. Medical Surveillance Monthly Report (MSMR). Volume 18, Number 03, March 2011

    DTIC Science & Technology

    2011-03-01

    nervous system dysfunction; the diagnosis was also applicable to patients with laboratory evidence of injury to the liver , muscles, or kidneys. Th e...decrease cerebral blood fl ow and disrupt brain function (e.g., hypotonic encephalopathy , seizures, coma). Without rapid and defi nitive treatment to

  14. Efficacy of a Standardized Extract of Prunus mume in Liver Protection and Redox Homeostasis: A Randomized, Double-Blind, Placebo-Controlled Study.

    PubMed

    Beretta, Alberto; Accinni, Roberto; Dellanoce, Cinzia; Tonini, Annamaria; Cardot, Jean-Michel; Bussière, Anthony

    2016-06-01

    The antioxidant, anti-inflammatory and hepatoprotective effects of Prunus mume (PM) have previously been demonstrated. This double-blind, placebo-controlled study was designed to evaluate the influence of two doses of a food supplement, made of 150 mg of a standardized PM extract on liver transaminases, lipid profile, glycemia, neopterin and reduced and oxidized thiols in plasma and erythrocytes, during a 3-month treatment period, in healthy subjects with transaminases levels between 20 and 40 UI/L. Forty-five subjects (56.0 ± 11.6 years) were enrolled. The results showed a beneficial and statistically significant effect versus placebo of PM extract on liver function, with a decrease versus baseline in alanine aminotransferase (47%), aspartate aminotransferase (7%), gamma-glutamyl transpeptidase (15%) and glycemia (11%). The lipid profile modification was also positive with an increase versus baseline in HDL cholesterol (13%), and a decrease in LDL/HDL ratio (12%) and triglycerides (8%). The antioxidant action of PM translated into a decrease in oxidized glutathione, reduced/oxidized cysteine-glycine, oxidized cysteine (intracellular pro-oxidant) and neopterin (inflammation biomarker), was associated with an increase in reduced glutathione. These results are in favor of the use of a standardized extract of P. mume for the support of liver health and prevention of common metabolic and inflammation-based diseases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Hepatoprotective effect of Arctium lappa root extract on cadmium toxicity in adult Wistar rats.

    PubMed

    de Souza Predes, Fabricia; da Silva Diamante, Maria Aparecida; Foglio, Mary Ann; Camargo, Camila de Andrade; Camargo, Camila Almeida; Aoyama, Hiroshi; Miranda, Silvio Cesar; Cruz, Bread; Gomes Marcondes, Maria Cristina Cintra; Dolder, Heidi

    2014-08-01

    This study was performed to determine the effects of Arctium lappa (Al) to protect against cadmium damage in the rat liver. Male rats received a single i.p. dose of CdCl2 (1.2 mg/kg body weight (BW)) with or without Al extract administered daily by gavage (300 mg/kg BW) for 7 or 56 days. After 7 days, Al caused plasma transaminase activity to diminish in groups Al (glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT)) and CdAl (GPT). After 56 days, GOT and GPT plasma activities were reduced in the Cd group. No alteration in plasma levels of creatinine, total bilirubin, and total protein were observed. GOT liver activity increased in the Cd group. No alteration was observed in superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and malondialdehyde (MDA) dosage. In the Cd group, hepatocyte proportion decreased and sinusoid capillary proportion increased. In the Al and CdAl groups, the nuclear proportion increased and the cytoplasmic proportion decreased. The hepatocyte nucleus density reduced in Cd and increased in the Al group. After 56 days, there was no alteration in the Cd group. In Al and CdAl groups, the nuclear proportion increased without cytoplasmic proportion variation, but the sinusoid capillary proportion was reduced. The hepatocyte nucleus density decreased in the Cd group and increased in the Al and CdAl groups. In conclusion, the liver function indicators showed that A. lappa protected the liver against cadmium toxicity damage.

  16. Berberine-induced Inactivation of Signal Transducer and Activator of Transcription 5 Signaling Promotes Male-specific Expression of a Bile Acid Uptake Transporter*

    PubMed Central

    Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo

    2017-01-01

    Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (−1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (−2898, −2164, and −691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the−2164 and −691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. PMID:28154180

  17. Modifications of Western-type diet regarding protein, fat and sucrose levels as modulators of steroid metabolism and activity in liver.

    PubMed

    Krawczyńska, Agata; Herman, Andrzej P; Antushevich, Hanna; Bochenek, Joanna; Dziendzikowska, Katarzyna; Gajewska, Alina; Gromadzka-Ostrowska, Joanna

    2017-01-01

    The aim of the study was to evaluate whether the modification of the Western-type diet (high-fat, high-sucrose diet rich in saturated fatty acids) considering macronutrients content would influence hepatic metabolism and activity of steroids. For 3 weeks Wistar rat were fed the Western-type diet (21% fat, 35% sucrose, 19% protein, lard) and its modifications regarding dietary protein (10 and 19%), fat (5 and 21%) and sucrose (0 and 35%) levels. The steroid 5α-reductase type 1 (Srd5a1) and androgen receptor (Ar) gene expression as well as testosterone (T) conversion towards 5α-reduced derivatives in liver were positively correlated with body weight gain. The Western-type diets with decreased protein content regardless of the sucrose level exerted the most negative effect on the antioxidant system decreasing catalase (Cat), sodium dismutase (Sod1) and glutathione peroxidase (Gpx1) gene expression as well as Cat and Gpx activity and total antioxidant status, simultaneously intensifying lipid peroxidation. The impaired antioxidant system was accompanied by decreased level of hepatic T metabolism towards estrogens: 17β-estradiol (E2) and estriol, and increased estrogen receptor type 1 (Esr1) gene expression. Liver Esr1 mRNA level was differently correlated with T (positively) and E2 (negatively) plasma levels. Whereas the fat reduction in Western-type diet restored the plasma proportion between T and E2. In conclusion it could be stated that Western-type diet modification relating to protein, sucrose and fat content can influence hepatic steroid metabolism and activity; however the estrogens and androgens metabolism in liver would be connected with impairment of liver function or catabolic activity, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Berberine-induced Inactivation of Signal Transducer and Activator of Transcription 5 Signaling Promotes Male-specific Expression of a Bile Acid Uptake Transporter.

    PubMed

    Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo

    2017-03-17

    Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (-1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (-2898, -2164, and -691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the-2164 and -691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Improvement of impaired albumin binding capacity in acute-on-chronic liver failure by albumin dialysis.

    PubMed

    Klammt, Sebastian; Mitzner, Steffen R; Stange, Jan; Loock, Jan; Heemann, Uwe; Emmrich, Jörg; Reisinger, Emil C; Schmidt, Reinhard

    2008-09-01

    Extracorporeal albumin dialysis (ECAD) enables the elimination of albumin bound substances and is used as artificial liver support system. Albumin binding function for the benzodiazepine binding site specific marker Dansylsarcosine was estimated in plasma samples of 22 patients with cirrhosis and hyperbilirubinaemia (ECAD: n = 12; control: n = 10) during a period of 30 days in a randomized controlled clinical ECAD trial. Albumin Binding Capacity (ABiC) at baseline was reduced to 31.8% (median; range 24%-74%) and correlated to the severity of liver disease. Within two weeks a significant improvement of ABiC and a reduction of the albumin bound markers bilirubin and bile acids were observed in the ECAD group. During single treatments a significant decrease of albumin bound substances (bilirubin and bile acids) as well as an increase in ABiC was observed. In the control group, baseline ABiC was significantly lower in patients who died during study period (34.2% vs. 41.7%; P < 0.028), whereas no significant differences were observed for CHILD, coagulation factors, albumin, bile acids nor bilirubin. At baseline 13 patients had a severely impaired ABiC (<40%), improvement of ABiC was more frequent in the ECAD group (5/6) than in the SMT group (2/7). Reduced albumin binding function is present in decompensated liver failure and is related to severity and 30 day survival. ABiC can be improved by ECAD. The beneficial effect of this treatment may be related to the improvement of albumin binding function more than to the elimination of specific substances. Characterization of albumin function by the ABiC test may help to evaluate different liver support systems and other therapeutic measures.

  20. Clinical research on liver reserve function by 13C-phenylalanine breath test in aged patients with chronic liver diseases

    PubMed Central

    2010-01-01

    Background The objective of this study was to investigate whether the 13C-phenylalanine breath test could be useful for the evaluation of hepatic function in elderly volunteers and patients with chronic hepatitis B and liver cirrhosis. Methods L-[1-13C] phenylalanine was administered orally at a dose of 100 mg to 55 elderly patients with liver cirrhosis, 30 patients with chronic hepatitis B and 38 elderly healthy subjects. The breath test was performed at 8 different time points (0, 10, 20, 30, 45, 60, 90, 120 min) to obtain the values of Delta over baseline, percentage 13CO2 exhalation rate and cumulative excretion (Cum). The relationships of the cumulative excretion with the 13C-%dose/h and blood biochemical parameters were investigated. Results The 13C-%dose/h at 20 min and 30 min combined with the cumulative excretion at 60 min and 120 min correlated with hepatic function tests, serum albumin, hemoglobin, platelet and Child-Pugh score. Prothrombin time, total and direct bilirubin were significantly increased, while serum albumin, hemoglobin and platelet, the cumulative excretion at 60 min and 120 min values decreased by degrees of intensity of the disease in Child-Pugh A, B, and C patients (P < 0.01). Conclusions The 13C-phenylalanine breath test can be used as a non-invasive assay to evaluate hepatic function in elderly patients with liver cirrhosis. The 13C-%dose/h at 20 min, at 30 min and cumulative excretion at 60 min may be the key value for determination at a single time-point. 13C-phenylalanine breath test is safe and helpful in distinguishing different stages of hepatic dysfunction for elderly cirrhosis patients. PMID:20459849

  1. Antrodia Cinnamomea Reduces Carbon Tetrachloride-induced Hepatotoxicity In Male Wister Rats.

    PubMed

    Shih, Yung-Luen; Wu, Ming-Fang; Lee, Ching-Hsiao; Yeh, Ming-Yang; Chou, Jason; Liu, Jia-You; Lu, Hsu-Feng; Huang, Yi-Ping; Liao, Nien-Chieh; Chung, Jing-Gung

    2017-01-01

    Antrodia cinnamomea is found with polysaccharides, lipids, vitamins, fibers and ash (minerals) and is well known in Taiwan as a traditional Chinese medicine. Its biological activities have been reported to have anti-inflammatory, anti-fatigue, anti-tumor and immunomodulatory effects, but its protective effects on liver function are still unclear. We determined if Antrodia cinnamomea was hepatoprotective against carbon tetrachloride (CCl 4 ) toxicity in Wistar rats. Six groups were used in the study: 1) control (no induction by CCl 4 ); 2) negative control (CCl 4 -induction and no treatment); 3) positive control (silymarin treatment); 4) groups 4-6 were treated with CC1 4 and different concentrations (350 mg/kg, 1,400 mg/kg, 3,150 mg/kg) of Antrodia cinnamomea. Blood and liver samples of rats were harvested and then detected by biochemical and tissue histochemical analysis. Activity of the antioxidative enzymes glutathione peroxidase, superoxide dismutase and catalase in the liver were also monitored. Only the high-dose treatment was able to decrease serum glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) levels and improve liver function. High and medium doses increased total liver protein and reduced hydroxyproline. It was also observed that the high dose treatment reduced lipid peroxidation. Liver sections of CC1 4 treated animals receiving Antrodia cinnamomea showed less fibrosis compared to the CCl 4 control group. This finding suggested that Antrodia cinnamomea can either enhance liver recovering from CCl 4 damage or attenuate CCl 4 toxicity in rats. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Inflammatory models drastically alter tumor growth and the immune microenvironment in hepatocellular carcinoma.

    PubMed

    Markowitz, Geoffrey J; Michelotti, Gregory A; Diehl, Anna Mae; Wang, Xiao-Fan

    2015-04-01

    Initiation and progression of hepatocellular carcinoma (HCC) is intimately associated with a chronically diseased liver tissue. This diseased liver tissue background is a drastically different microenvironment from the healthy liver, especially with regard to immune cell prevalence and presence of mediators of immune function. To better understand the consequences of liver disease on tumor growth and the interplay with its microenvironment, we utilized two standard methods of fibrosis induction and orthotopic implantation of tumors into the inflamed and fibrotic liver to mimic the liver condition in human HCC patients. Compared to non-diseased controls, tumor growth was significantly enhanced under fibrotic conditions. The immune cells that infiltrated the tumors were also drastically different, with decreased numbers of natural killer cells but greatly increased numbers of immune-suppressive CD11b + Gr1 hi myeloid cells in both models of fibrosis. In addition, there were model-specific differences: Increased numbers of CD11b + myeloid cells and CD4 + CD25 + T cells were found in tumors in the bile duct ligation model but not in the carbon tetrachloride model. Induction of fibrosis altered the cytokine production of implanted tumor cells, which could have farreaching consequences on the immune infiltrate and its functionality. Taken together, this work demonstrates that the combination of fibrosis induction with orthotopic tumor implantation results in a markedly different tumor microenvironment and tumor growth kinetics, emphasizing the necessity for more accurate modeling of HCC progression in mice, which takes into account the drastic changes in the tissue caused by chronic liver disease.

  3. Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease.

    PubMed

    Fukuo, Yuka; Yamashina, Shunhei; Sonoue, Hiroshi; Arakawa, Atsushi; Nakadera, Eisuke; Aoyama, Tomonori; Uchiyama, Akira; Kon, Kazuyoshi; Ikejima, Kenichi; Watanabe, Sumio

    2014-09-01

    Recent evidences indicate that hepatic steatosis suppresses autophagic proteolysis. The present study evaluated the correlation between autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease (NAFLD). Liver biopsy specimens were obtained from patients with chronic liver diseases (chronic hepatitis C [CHC; n = 20], chronic hepatitis B [CHB; n = 16], primary biliary cirrhosis [PBC; n = 23], NAFLD [n = 22] and control [n = 14]). The number of autophagic vesicles in hepatocytes was counted by using transmission electron microscopy. Expression of cathepsin B, D, L and p62 in the liver section was analyzed by immunohistochemical staining. The histological severity of NAFLD is assessed by NAFLD activity score (NAS). The number of autophagic vesicles in hepatocytes was significantly increased in both CHC and NAFLD groups, but not CHB and PBC, more than control. Although hepatocytes with aggregation of p62 were observed in less than 15% of CHC, p62 aggregation was detected in approximately 65% of NAFLD. Cathepsin B, D and L expression was significantly suppressed in the liver from NAFLD patients. Suppression of cathepsin B, D and L expression was not observed in CHB, CHC and PBC. In NAFLD patients, p62 aggregation was correlated with serum alanine aminotransferase value and inflammatory activity by NAS. These results indicate that a decrease in hepatic cathepsin expression in NAFLD is associated with autophagic dysfunction. Hepatic inflammation correlates with autophagic dysfunction in NAFLD. These findings indicate that the suppression of autophagic proteolysis by hepatic steatosis is involved in the pathogenesis of NAFLD. © 2013 The Japan Society of Hepatology.

  4. Activation of necroptosis in human and experimental cholestasis.

    PubMed

    Afonso, Marta B; Rodrigues, Pedro M; Simão, André L; Ofengeim, Dimitry; Carvalho, Tânia; Amaral, Joana D; Gaspar, Maria M; Cortez-Pinto, Helena; Castro, Rui E; Yuan, Junying; Rodrigues, Cecília M P

    2016-09-29

    Cholestasis encompasses liver injury and inflammation. Necroptosis, a necrotic cell death pathway regulated by receptor-interacting protein (RIP) 3, may mediate cell death and inflammation in the liver. We aimed to investigate the role of necroptosis in mediating deleterious processes associated with cholestatic liver disease. Hallmarks of necroptosis were evaluated in liver biopsies of primary biliary cholangitis (PBC) patients and in wild-type and RIP3-deficient (RIP3 -/- ) mice subjected to common bile duct ligation (BDL). The functional link between RIP3, heme oxygenase-1 (HO-1) and antioxidant response was investigated in vivo after BDL and in vitro. We demonstrate increased RIP3 expression and mixed lineage kinase domain-like protein (MLKL) phosphorylation in liver samples of human PBC patients, coincident with thioflavin T labeling, suggesting activation of necroptosis. BDL resulted in evident hallmarks of necroptosis, concomitant with progressive bile duct hyperplasia, multifocal necrosis, fibrosis and inflammation. MLKL phosphorylation was increased and insoluble aggregates of RIP3, MLKL and RIP1 formed in BLD liver tissue samples. Furthermore, RIP3 deficiency blocked BDL-induced necroinflammation at 3 and 14 days post-BDL. Serum hepatic enzymes, fibrogenic liver gene expression and oxidative stress decreased in RIP3 -/- mice at 3 days after BDL. However, at 14 days, cholestasis aggravated and fibrosis was not halted. RIP3 deficiency further associated with increased hepatic expression of HO-1 and accumulation of iron in BDL mice. The functional link between HO-1 activity and bile acid toxicity was established in RIP3-deficient primary hepatocytes. Necroptosis is triggered in PBC patients and mediates hepatic necroinflammation in BDL-induced acute cholestasis. Targeting necroptosis may represent a therapeutic strategy for acute cholestasis, although complementary approaches may be required to control progression of chronic cholestatic liver disease.

  5. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young C.; Yim, Hye K.; Jung, Young S.

    2007-08-15

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomymore » also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards.« less

  6. ­Characterization of pyruvate kinase from the anoxia tolerant turtle, Trachemys scripta elegans: a potential role for enzyme methylation during metabolic rate depression

    PubMed Central

    2018-01-01

    Background Pyruvate kinase (PK) is responsible for the final reaction in glycolysis. As PK is a glycolytic control point, the analysis of PK posttranslational modifications (PTM) and kinetic changes reveals a key piece of the reorganization of energy metabolism in an anoxia tolerant vertebrate. Methods To explore PK regulation, the enzyme was isolated from red skeletal muscle and liver of aerobic and 20-hr anoxia-exposed red eared-slider turtles (Trachemys scripta elegans). Kinetic analysis and immunoblotting were used to assess enzyme function and the corresponding covalent modifications to the enzymes structure during anoxia. Results Both muscle and liver isoforms showed decreased affinity for phosphoenolpyruvate substrate during anoxia, and muscle PK also had a lower affinity for ADP. I50 values for the inhibitors ATP and lactate were lower for PK from both tissues after anoxic exposure while I50 L-alanine was only reduced in the liver. Both isozymes showed significant increases in threonine phosphorylation (by 42% in muscle and 60% in liver) and lysine methylation (by 43% in muscle and 70% in liver) during anoxia which have been linked to suppression of PK activity in other organisms. Liver PK also showed a 26% decrease in tyrosine phosphorylation under anoxia. Discussion Anoxia responsive changes in turtle muscle and liver PK coordinate with an overall reduced activity state. This reduced affinity for the forward glycolytic reaction is likely a key component of the overall metabolic rate depression that supports long term survival in anoxia tolerant turtles. The coinciding methyl- and phospho- PTM alterations present the mechanism for tissue specific enzyme modification during anoxia. PMID:29900073

  7. -Characterization of pyruvate kinase from the anoxia tolerant turtle, Trachemys scripta elegans: a potential role for enzyme methylation during metabolic rate depression.

    PubMed

    Mattice, Amanda M S; MacLean, Isabelle A; Childers, Christine L; Storey, Kenneth B

    2018-01-01

    Pyruvate kinase (PK) is responsible for the final reaction in glycolysis. As PK is a glycolytic control point, the analysis of PK posttranslational modifications (PTM) and kinetic changes reveals a key piece of the reorganization of energy metabolism in an anoxia tolerant vertebrate. To explore PK regulation, the enzyme was isolated from red skeletal muscle and liver of aerobic and 20-hr anoxia-exposed red eared-slider turtles ( Trachemys scripta elegans ). Kinetic analysis and immunoblotting were used to assess enzyme function and the corresponding covalent modifications to the enzymes structure during anoxia. Both muscle and liver isoforms showed decreased affinity for phosphoenolpyruvate substrate during anoxia, and muscle PK also had a lower affinity for ADP. I 50 values for the inhibitors ATP and lactate were lower for PK from both tissues after anoxic exposure while I 50 L-alanine was only reduced in the liver. Both isozymes showed significant increases in threonine phosphorylation (by 42% in muscle and 60% in liver) and lysine methylation (by 43% in muscle and 70% in liver) during anoxia which have been linked to suppression of PK activity in other organisms. Liver PK also showed a 26% decrease in tyrosine phosphorylation under anoxia. Anoxia responsive changes in turtle muscle and liver PK coordinate with an overall reduced activity state. This reduced affinity for the forward glycolytic reaction is likely a key component of the overall metabolic rate depression that supports long term survival in anoxia tolerant turtles. The coinciding methyl- and phospho- PTM alterations present the mechanism for tissue specific enzyme modification during anoxia.

  8. [Effect of Xiaozheng Rongmu powder for the treatment of liver cirrhosis in rats].

    PubMed

    Mu, Yong-Ping; Chen, Xiao-Rong; Lu, Yun-Fei

    2010-10-01

    To observe the therapeutic effect of Xiaozheng Rongmu Powder (XRP) for the treatment of progressive CCl4-induced liver cirrhosis in rats. Rat liver cirrhosis model was established by subcutaneous injection of 50% CCl4-olive oil 2 mL/kg twice a week for 12 weeks. Experimental rats were divided into the control group treated by saline and the two treatment groups, treated with XRP and Xiaochaihu Decoction, respectively, with the treatment starting from the 9th week of modeling. Rats were sacrificed at the terminal of experiment, the death rate, character of ascites, liver histological changes, liver function, mRNA expression of hepatocyte mitosis and the liver fibrosis associated markers in rats were observed. At the end of the 8th week of modeling, serum levels of ALT, AST and TBil were increased, and Alb decreased significantly in rats (P < 0.01), cirrhosis formation with ascites could be seen in all rats. Meantime, levels of vascular smooth muscle alpha-actin, transforming growth factor-beta1, collagen I A2, tumor necrosis factor-alpha, tissue inhibitor of melalloproteinase-1 mRNA increased, while matrix melalloproteinase-13 mRNA were decreased significantly (P < 0.01), with visible liver proliferation to some extents. Further changes of above-mentioned abnormalities and clear suppression of hepatocytes mitosis were found in the modeled rats at the end of the 12th week. As compared to those occurred in the control group, changes in the XRP treated group were significantly milder at the corresponding duration, and clearly active hepatocytes mitosis was shown. XRP, a Chinese drug with the effect of dissolving phlegm, removing stasis and supplementing qi, could reverse the progress of cirrhosis formation induced by CCl4, and it brings potential new hope for the treatment of advanced cirrhosis by Chinese medicine.

  9. Effects of shenling baizhu powder herbal formula on intestinal microbiota in high-fat diet-induced NAFLD rats.

    PubMed

    Zhang, Yupei; Tang, Kairui; Deng, Yuanjun; Chen, Runsen; Liang, Shu; Xie, Huijun; He, Yifang; Chen, Yanning; Yang, Qinhe

    2018-06-01

    Worldwide, non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease closely associated with obesity, diabetes and other metabolic diseases. Shenling Baizhu powder (SLBZP), a formulation of a variety of natural medicinal plants, has hepatoprotective properties and clinical efficacy in treating non-infectious intestinal disease. SLBZP has improved NAFLD symptoms; however, its mechanism of action is unknown. We established an NAFLD model in rats given a high-fat diet (HFD), administered different interventions and measured serum biochemical indices and inflammatory factors. Liver tissues were stained with hematoxylin and eosin (HE) and oil red O, and colon tissues were analyzed by immunohistochemistry. The expression profiles of liver TLR4 pathway related protein was confirmed by western blotting. Changes in intestinal microbiota composition were analyzed using a 16S rDNA sequencing technique. Of note, SLBZP effectively reduced body weight in HFD-fed rats (p < 0.05). Serum biochemical analysis indicated that SLBZP decreased the serum level of total cholesterol (TC) and improved liver function. Additionally, SLBZP decreased the serum level of endotoxin, tumor necrosis factor α (TNF-α), interleukin-1β (IL-β) (p < 0.05), and decreased the expression of TLR4 pathway related protein. Pathological examination showed that SLBZP alleviates hepatic steatosis and repairs colon mucosa. Microbiome analysis revealed that SLBZP improved the abundance of intestinal microbiota. In taxonomy-based analysis, compared with control rats, SLBZP-treated rats showed obvious changes in intestinal microbiota composition. Moreover, SLBZP increased the relative abundance of short-chain fatty acid (SCFA)-producing bacteria, including Bifidobacterium and Anaerostipes. Taken together, these results suggest that the effects of SLBZP against NAFLD may be related to the increased abundance of beneficial gut microbiota and decreased levels of LPS in the portal vein. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Extracorporeal liver assist device to exchange albumin and remove endotoxin in acute liver failure: Results of a pivotal pre-clinical study.

    PubMed

    Lee, Karla C L; Baker, Luisa A; Stanzani, Giacomo; Alibhai, Hatim; Chang, Yu Mei; Jimenez Palacios, Carolina; Leckie, Pamela J; Giordano, Paola; Priestnall, Simon L; Antoine, Daniel J; Jenkins, Rosalind E; Goldring, Christopher E; Park, B Kevin; Andreola, Fausto; Agarwal, Banwari; Mookerjee, Rajeshwar P; Davies, Nathan A; Jalan, Rajiv

    2015-09-01

    In acute liver failure, severity of liver injury and clinical progression of disease are in part consequent upon activation of the innate immune system. Endotoxaemia contributes to innate immune system activation and the detoxifying function of albumin, critical to recovery from liver injury, is irreversibly destroyed in acute liver failure. University College London-Liver Dialysis Device is a novel artificial extracorporeal liver assist device, which is used with albumin infusion, to achieve removal and replacement of dysfunctional albumin and reduction in endotoxaemia. We aimed to test the effect of this device on survival in a pig model of acetaminophen-induced acute liver failure. Pigs were randomised to three groups: Acetaminophen plus University College London-Liver Dialysis Device (n=9); Acetaminophen plus Control Device (n=7); and Control plus Control Device (n=4). Device treatment was initiated two h after onset of irreversible acute liver failure. The Liver Dialysis Device resulted in 67% reduced risk of death in acetaminophen-induced acute liver failure compared to Control Device (hazard ratio=0.33, p=0.0439). This was associated with 27% decrease in circulating irreversibly oxidised human non-mercaptalbumin-2 throughout treatment (p=0.046); 54% reduction in overall severity of endotoxaemia (p=0.024); delay in development of vasoplegia and acute lung injury; and delay in systemic activation of the TLR4 signalling pathway. Liver Dialysis Device-associated adverse clinical effects were not seen. The survival benefit and lack of adverse effects would support clinical trials of University College London-Liver Dialysis Device in acute liver failure patients. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. Thioredoxin 2 haploinsufficiency in mice results in impaired mitochondrial function and increased oxidative stress.

    PubMed

    Pérez, Viviana I; Lew, Christie M; Cortez, Lisa A; Webb, Celeste R; Rodriguez, Marisela; Liu, Yuhong; Qi, Wenbo; Li, Yan; Chaudhuri, Asish; Van Remmen, Holly; Richardson, Arlan; Ikeno, Yuji

    2008-03-01

    The mitochondrial form of thioredoxin, thioredoxin 2 (Txn2), plays an important role in redox control and protection against ROS-induced mitochondrial damage. To evaluate the effect of reduced levels of Txn2 in vivo, we measured oxidative damage and mitochondrial function using mice heterozygous for the Txn2 gene (Txn2(+/-)). The Txn2(+/-) mice showed approximately 50% decrease in Trx-2 protein expression in all tissues without upregulating the other major components of the antioxidant defense system. Reduced levels of Txn2 resulted in decreased mitochondrial function as shown by reduced ATP production by isolated mitochondria and reduced activity of electron transport chain complexes (ETCs). Mitochondria isolated from Txn2(+/-) mice also showed increased ROS production compared to wild type mice. The Txn2(+/-) mice showed increased oxidative damage to nuclear DNA, lipids, and proteins in liver. In addition, we observed an increase in apoptosis in liver from Txn2(+/-) mice compared with wild type mice after diquat treatment. Our results suggest that Txn2 plays an important role in protecting the mitochondria against oxidative stress and in sensitizing the cells to ROS-induced apoptosis.

  12. Magnitude and Kinetics of Decrease in Liver Stiffness After Antiviral Therapy in Patients With Chronic Hepatitis C: A Systematic Review and Meta-analysis.

    PubMed

    Singh, Siddharth; Facciorusso, Antonio; Loomba, Rohit; Falck-Ytter, Yngve T

    2018-01-01

    We performed a systematic review and meta-analysis to estimate the decrease in liver stiffness, measured by vibration-controlled transient elastrography (VCTE), in patients with hepatitis C virus infection who achieved a sustained virologic response (SVR). We searched the literature through October 2016 for observational studies or randomized controlled trials of adults with hepatitis C virus infection who received antiviral therapy (either direct-acting antiviral agents or interferon-based therapies), underwent liver stiffness measurement using VCTE before starting therapy, and had at least 1 follow-up VCTE after completion of therapy; studies also provided data on mean or median liver stiffness measurements for patients who did and did not achieve an SVR. We identified 24 studies, and estimated weighted mean difference (and 95% confidence interval) in liver stiffness in patients with versus without SVR using random-effects meta-analysis. In patients who achieved SVR, liver stiffness decreased by 2.4 kPa at the end of therapy (95% CI, -1.7 to -3.0), by 3.1 kPa 1-6 months after therapy (95% CI, -1.6 to -4.7), by 3.2 kPa 6-12 months after therapy (90% CI, -2.6 to -3.9), and 4.1 kPa 12 months or more after therapy (95% CI, -3.3 to -4.9) (median decrease, 28.2%; interquartile range, 21.8-34.8). In contrast, there was no significant change in liver stiffness in patients who did not achieve an SVR (at 6-12 months after therapy, decrease of 0.6 kPa; 95% CI, -1.7 to 0.5). Decreases in liver stiffness were significantly greater in patients treated with direct-acting antiviral agents than with interferon-based therapy (decrease of 4.5 kPa vs decrease of 2.6 kPa; P = .03), cirrhosis at baseline (decrease of 5.1 kPa vs decrease of 2.8 kPa in patients with no cirrhosis; P = .02), or high pretreatment levels of alanine aminotransferase (P < .01). Among patients with baseline liver stiffness >9.5 kPa, 47% (95% CI, 27%-68%) achieved posttreatment liver stiffness of <9.5 kPa. In a systematic review and meta-analysis, we associated eradication of hepatitis C virus infection (SVR) with significant decreases in liver stiffness, particularly in patients with high baseline level of inflammation or patients who received direct-acting antiviral agents. Almost half the patients considered to have advanced fibrosis, based on VCTE, before therapy achieved posttreatment liver stiffness levels <9.5 kPa. Clinical Trial Registration no: CRD42016051034. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Insulin protects against hepatic damage postburn.

    PubMed

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes.

  14. Insulin Protects against Hepatic Damage Postburn

    PubMed Central

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes. PMID:21267509

  15. Hypoxic Conditioned Medium From Human Adipose-Derived Stem Cells Promotes Mouse Liver Regeneration Through JAK/STAT3 Signaling

    PubMed Central

    Lee, Sang Chul; Jeong, Hye Jin; Lee, Sang Kuon

    2016-01-01

    Adipose-derived stem cells (ASCs) mainly exert their function by secreting materials that are collectively termed the secretome. Despite recent attention to the secretome as an alternative to stem cell therapy, the culture conditions for generating optimal secretome contents have not been determined. Therefore, we investigated the role of hypoxic-conditioned media (HCM) from ASCs. Normoxic-conditioned media (NCM) and HCM were obtained after culturing ASCs in 20% O2 or 1% O2 for 24 hours, respectively. Subsequently, partially hepatectomized mice were infused with saline, control medium, NCM, or HCM, and then sera and liver specimens were obtained for analyses. Hypoxia (1% O2) significantly increased mRNA expression of mediators from ASCs, including interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF). HCM infusion significantly increased the number of Ki67-positive cells in the liver (p < .05). HCM infusion significantly increased phospho-signal transducer and activator of transcription 3 (STAT3) and decreased suppressor of cytokine signaling 3 (SOCS3) expression in the liver (p < .05). To determine the role of IL-6 in liver regeneration, we then performed IL-6 RNA interference study. Conditioned media (CM) obtained from ASCs, which were transfected with either siIL-6 or siControl, were administered to partially hepatectomized mice. The siIL-6 CM groups exhibited lower liver proliferation (Ki67-positive cells) and markers of regeneration (protein expression of proliferating cell nuclear antigen, p-STAT3, HGF, and VEGF and liver weights) than the siControl CM groups (p < .05). Taken together, hypoxic preconditioning of ASCs increased expression of mediators promoting anti-inflammatory and regenerative responses. The liver regenerative effects of HCM appear to be mediated by persistent and uninhibited expression of STAT3 in the liver, which results from decreased expression of SOCS3. Significance In this study, it was found that treatment with the medium from hypoxic-preconditioned adipose-derived stem cells (ASCs) increased the viability of hepatotoxic hepatocytes and enhance liver regeneration in partially hepatectomized mice. In addition, the researchers first revealed that the hepatoprotective effects of hypoxic-conditioned media are mediated by persistent and uninhibited expression of signal transducer and activator of transcription 3 in the liver, which result from a decreased expression of suppressor of cytokine signaling 3. Therefore, the hypoxic preconditioning of ASCs is expected to play a crucial role in regenerative medicine by optimizing the production of a highly effective secretome from ASCs. PMID:27102647

  16. Cu isotopic signature in blood serum of liver transplant patients: a follow-up study

    NASA Astrophysics Data System (ADS)

    Lauwens, Sara; Costas-Rodríguez, Marta; van Vlierberghe, Hans; Vanhaecke, Frank

    2016-07-01

    End-stage liver disease (ESLD) is life-threatening and liver transplantation (LTx) is the definitive treatment with good outcomes. Given the essential role of hepatocytes in Cu homeostasis, the potential of the serum Cu isotopic composition for monitoring a patient’s condition post-LTx was evaluated. For this purpose, high-precision Cu isotopic analysis of blood serum of ESLD patients pre- and post-LTx was accomplished via multi-collector ICP-mass spectrometry (MC-ICP-MS). The Cu isotopic composition of the ESLD patients was fractionated in favour of the lighter isotope (by about -0.50‰). Post-LTx, a generalized normalization of the Cu isotopic composition was observed for the patients with normal liver function, while it remained light when this condition was not reached. A strong decrease in the δ65Cu value a longer term post-LTx seems to indicate the recurrence of liver failure or cancer. The observed trend in favour of the heavier Cu isotopic composition post-LTx seems to be related with the restored biosynthetic capacity of the liver, the restored hepatic metabolism and/or the restored biliary secretion pathways. Thus, Cu isotopic analysis could be a valuable tool for the follow-up of liver transplant patients and for establishing the potential recurrence of liver failure.

  17. Volatile Biomarkers in Breath Associated With Liver Cirrhosis — Comparisons of Pre- and Post-liver Transplant Breath Samples

    PubMed Central

    Fernández del Río, R.; O'Hara, M.E.; Holt, A.; Pemberton, P.; Shah, T.; Whitehouse, T.; Mayhew, C.A.

    2015-01-01

    Background The burden of liver disease in the UK has risen dramatically and there is a need for improved diagnostics. Aims To determine which breath volatiles are associated with the cirrhotic liver and hence diagnostically useful. Methods A two-stage biomarker discovery procedure was used. Alveolar breath samples of 31 patients with cirrhosis and 30 healthy controls were mass spectrometrically analysed and compared (stage 1). 12 of these patients had their breath analysed after liver transplant (stage 2). Five patients were followed longitudinally as in-patients in the post-transplant period. Results Seven volatiles were elevated in the breath of patients versus controls. Of these, five showed statistically significant decrease post-transplant: limonene, methanol, 2-pentanone, 2-butanone and carbon disulfide. On an individual basis limonene has the best diagnostic capability (the area under a receiver operating characteristic curve (AUROC) is 0.91), but this is improved by combining methanol, 2-pentanone and limonene (AUROC curve 0.95). Following transplant, limonene shows wash-out characteristics. Conclusions Limonene, methanol and 2-pentanone are breath markers for a cirrhotic liver. This study raises the potential to investigate these volatiles as markers for early-stage liver disease. By monitoring the wash-out of limonene following transplant, graft liver function can be non-invasively assessed. PMID:26501124

  18. Anti-fibrosis effects of Huisheng oral solution in CCl4-induced hepatic fibrosis in rat.

    PubMed

    Li, Wenting; Wu, Yuanbo; Zhu, Chuanlong; Wang, Zheng; Gao, Rentao; Wu, Quan

    2014-01-01

    Some gradient of Huisheng oral solution (HOS) has been reported to have anti-fibrosis activity. This study was designed to investigate whether HOS could inhibit liver fibrosis and to elucidate its molecular mechanism of action. Hepatic fibrosis model in rat was induced by subcutaneous injection of CCl4. Rats in the treatment group were administrated with HOS intragastrically. Hematoxylin and eosin (H and E) staining and Masson's trichrome staining were used to examine the changes in liver pathology. Levels of ALT, AST, LDH, hyaluronic acid (HA) and laminin (LN) in serum and hydroxyproline (Hyp) in liver were detected by biochemical examination and radioimmunoassay, respectively. The expression and distribution of Smad3, TGF-β1, α-SMA and TIMP-1 were observed and the active TGF-β1 was tested. Our data demonstrated that HOS alleviated CCl4-induced collagen deposition in liver tissue, improved liver condition and liver function in rats. HOS also significantly reduced the expression and distribution of Smad3, TGF-β1, α-SMA and TIMP-1 as well as decreased active TGF-β1. This study revealed that HOS attenuates the development of liver fibrosis through suppressing the TGF-β1 pathway. It provides us a new approach to treatment of liver fibrosis.

  19. Cu isotopic signature in blood serum of liver transplant patients: a follow-up study

    PubMed Central

    Lauwens, Sara; Costas-Rodríguez, Marta; Van Vlierberghe, Hans; Vanhaecke, Frank

    2016-01-01

    End-stage liver disease (ESLD) is life-threatening and liver transplantation (LTx) is the definitive treatment with good outcomes. Given the essential role of hepatocytes in Cu homeostasis, the potential of the serum Cu isotopic composition for monitoring a patient’s condition post-LTx was evaluated. For this purpose, high-precision Cu isotopic analysis of blood serum of ESLD patients pre- and post-LTx was accomplished via multi-collector ICP-mass spectrometry (MC-ICP-MS). The Cu isotopic composition of the ESLD patients was fractionated in favour of the lighter isotope (by about −0.50‰). Post-LTx, a generalized normalization of the Cu isotopic composition was observed for the patients with normal liver function, while it remained light when this condition was not reached. A strong decrease in the δ65Cu value a longer term post-LTx seems to indicate the recurrence of liver failure or cancer. The observed trend in favour of the heavier Cu isotopic composition post-LTx seems to be related with the restored biosynthetic capacity of the liver, the restored hepatic metabolism and/or the restored biliary secretion pathways. Thus, Cu isotopic analysis could be a valuable tool for the follow-up of liver transplant patients and for establishing the potential recurrence of liver failure. PMID:27468898

  20. Cu isotopic signature in blood serum of liver transplant patients: a follow-up study.

    PubMed

    Lauwens, Sara; Costas-Rodríguez, Marta; Van Vlierberghe, Hans; Vanhaecke, Frank

    2016-07-29

    End-stage liver disease (ESLD) is life-threatening and liver transplantation (LTx) is the definitive treatment with good outcomes. Given the essential role of hepatocytes in Cu homeostasis, the potential of the serum Cu isotopic composition for monitoring a patient's condition post-LTx was evaluated. For this purpose, high-precision Cu isotopic analysis of blood serum of ESLD patients pre- and post-LTx was accomplished via multi-collector ICP-mass spectrometry (MC-ICP-MS). The Cu isotopic composition of the ESLD patients was fractionated in favour of the lighter isotope (by about -0.50‰). Post-LTx, a generalized normalization of the Cu isotopic composition was observed for the patients with normal liver function, while it remained light when this condition was not reached. A strong decrease in the δ(65)Cu value a longer term post-LTx seems to indicate the recurrence of liver failure or cancer. The observed trend in favour of the heavier Cu isotopic composition post-LTx seems to be related with the restored biosynthetic capacity of the liver, the restored hepatic metabolism and/or the restored biliary secretion pathways. Thus, Cu isotopic analysis could be a valuable tool for the follow-up of liver transplant patients and for establishing the potential recurrence of liver failure.

  1. Mushroom insoluble polysaccharides prevent carbon tetrachloride-induced hepatotoxicity in rat.

    PubMed

    Nada, Somaia A; Omara, Enayat A; Abdel-Salam, Omar M E; Zahran, Hanan G

    2010-11-01

    The aim of the present study was to investigate the effect of mushroom insoluble non-starch polysaccharides (MINSP) on the carbon tetrachloride (CCl(4))-induced hepatic damage in rat. MINSP (100 and 200 mg/kg) administered daily orally for 15 days before CCl(4) (1.5 ml/kg). The effect of MINSP treatment was also examined in normal rats. Normal groups treated with MINSP showed significant decrease in serum activities of the liver enzymes, lipid peroxides and nitric oxide (NO) in the liver. Reduced glutathione (GSH) and total proteins (TP) contents in liver homogenate also increased after treatment with only MINSP for 15 days. In CCl(4)-treated rats, significant elevation in serum liver enzymes, increased lipid peroxides and NO in the liver, and depletion of hepatic-GSH level were observed. Pre-treatment with MINSP significantly ameliorated the tested parameters when compared with CCl(4)-treated group. It improved the antioxidant activity of the liver in a dose-dependent manner. Histopathological examination of hepatic tissue revealed that MINSP administration alone protected hepatocytes from the damage induced by CCl(4). MINSP are safe; it could be used as fat replacer in processing low fat diet. MINSP represents a good functional food and liver supporter for patient suffering from various liver diseases. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Preliminary study on liver function changes after trisectionectomy with versus without prior portal vein embolization.

    PubMed

    Malinowski, Maciej; Lock, Johan Friso; Seehofer, Daniel; Gebauer, Bernhard; Schulz, Antje; Demirel, Lina; Bednarsch, Jan; Stary, Victoria; Neuhaus, Peter; Stockmann, Martin

    2016-09-01

    Post-hepatectomy liver failure (PHLF) is the major risk factor for mortality after hepatectomy. Preoperative planning of the future liver remnant volume reduces PHLF rates; however, future liver remnant function (FLR-F) might have an even stronger predictive value. In this preliminary study, we used a new method to calculate FLR-F by the LiMAx test and computer tomography-assisted volumetric-analysis to visualize liver function changes after portal vein embolization (PVE) before extended hepatectomy. The subjects included patients undergoing extended right hepatectomy either directly (NO-PVE group) or after PVE (PVE group). Computed tomography (CT) scan and liver function tests (LiMAx) were done before PVE and preoperatively. FLR-F was calculated and correlated with the postoperative liver function. There were 12 patients in the NO-PVE group and 19 patients in the PVE group. FLR-F and postoperative liver function correlated significantly in both groups (p = 0.036, p = 0.011), although postoperative liver function was slightly overestimated, at 32 and 45 µg/kg/min, in the NO-PVE and PVE groups, respectively. LiMAx value did not change after PVE. Volume-function analysis using LiMAx and CT scan enables us to reliably predict early postoperative liver function. Global enzymatic liver function measured by the LiMAx test did not change after PVE, confirming that liver function distribution in the liver stays constant after PVE. An overestimation of FLR-F is needed to compensate for the intraoperative liver injury that occurs in patients undergoing extended hepatectomy.

  3. Antioxidant status and mineral contents in tissues of rutin and baicalin fed rats.

    PubMed

    Gao, Zhonghong; Xu, Huibi; Chen, Xiaojun; Chen, Hao

    2003-08-08

    The versatile benefit effects of flavonoids lead some nutritionists to believe that they are micronutrients. However, excess intake of flavonoids may cause side effects. In this paper, the effects produced by a higher intake of rutin and baicalin on antioxidant status as well as trace minerals such as iron, copper and zinc in rat tissues were studied. When rats were fed a rutin or baicalin containing diet (1%) for 20 days, the body weight gain was lower than that of the control group. Both rutin and baicalin caused significant a decrease of catalase activity and a moderate increase of total superoxide dismutase activity in the liver. The total antioxidant status of flavonoid fed rats was increased in the liver but decreased in the serum. In comparison to the control group, the lipid peroxidation level in the liver of the rutin fed group was significantly decreased; however, there was no statistical significance in the liver of the baicalin fed group and the brain of both flavonoids groups. The liver homogenates of both flavonoid fed rats significantly inhibited alkyl radical-induced lipid peroxidation. The iron contents in the liver of flavonoid fed rats were significantly decreased; rutin also caused zinc and copper decrease in the liver. These results indicated that high flavonoid intake can improve rat antioxidant systems in the liver; while it can also cause a trace mineral decrease and, in turn, reduce the activities of some metal-containing enzymes and may cause harmful effects on health.

  4. 4-Phenylbutyrate modulates ubiquitination of hepatocanalicular MRP2 and reduces serum total bilirubin concentration.

    PubMed

    Hayashi, Hisamitsu; Mizuno, Tadahaya; Horikawa, Reiko; Nagasaka, Hironori; Yabuki, Takashi; Takikawa, Hajime; Sugiyama, Yuichi

    2012-05-01

    Multidrug resistance-associated protein 2 (in humans, MRP2; in rodents, Mrp2) mediates biliary excretion of bilirubin glucuronides. Therefore, upregulation of MRP2/Mrp2 expression may improve hyperbilirubinemia. We investigated the effects of 4-phenylbutyrate (4PBA), a drug used to treat ornithine transcarbamylase deficiency (OTCD), on the cell surface expression and transport function of MRP2/Mrp2 and serum T-Bil concentration. MRP2-expressing MDCKII (MRP2-MDCKII) cells and rats were studied to explore the change induced by 4PBA treatment in the cell surface expression and transport function of MRP2/Mrp2 and its underlying mechanism. Serum and liver specimens from OTCD patients were analyzed to examine the effect of 4PBA on hepatic MRP2 expression and serum T-Bil concentration in humans. In MRP2-MDCKII cells and the rat liver, 4PBA increased the cell surface expression and transport function of MRP2/Mrp2. In patients with OTCD, hepatic MRP2 expression increased and serum T-Bil concentration decreased significantly after 4PBA treatment. In vitro studies designed to explore the mechanism underlying this drug action suggested that cell surface-resident MRP2/Mrp2 is degraded via ubiquitination-mediated targeting to the endosomal/lysosomal degradation pathway and that 4PBA inhibits the degradation of cell surface-resident MRP2/Mrp2 by reducing its susceptibility to ubiquitination. 4PBA activates MRP2/Mrp2 function through increased expression of MRP2/Mrp2 at the hepatocanalicular membrane by modulating its ubiquitination, and thereby decreases serum T-Bil concentration. 4PBA has thus therapeutic potential for improving hyperbilirubinemia. Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. Cultured Mycelium Cordyceps sinensis allevi¬ates CCl4-induced liver inflammation and fibrosis in mice by activating hepatic natural killer cells.

    PubMed

    Peng, Yuan; Huang, Kai; Shen, Li; Tao, Yan-yan; Liu, Cheng-hai

    2016-02-01

    Recent evidence shows that cultured mycelium Cordyceps sinensis (CMCS) effectively protects against liver fibrosis in mice. Here, we investigated whether the anti-fibrotic action of CMCS was related to its regulation of the activity of hepatic natural killer (NK) cells in CCl4-treated mice. C57BL/6 mice were injected with 10% CCl4 (2 mL/kg, ip) 3 times per week for 4 weeks, and received CMCS (120 mg·kg(-1)·d(-1), ig) during this period. In another part of experiments, the mice were also injected with an NK cell-deleting antibody ASGM-1 (20 μg, ip) 5 times in the first 3 weeks. After the mice were sacrificed, serum liver function, and liver inflammation, hydroxyproline content and collagen deposition were assessed. The numbers of hepatic NK cells and expression of NKG2D (activation receptor of NK cells) on isolated liver lymphocytes were analyzed using flow cytometry. Desmin expression and cell apoptosis in liver tissues were studied using desmin staining and TUNEL assay, respectively. The levels of α-SMA, TGF-β, RAE-1δ and RAE-1ε in liver tissues were determined by RT-qPCR. In CCl4-treated mice, CMCS administration significantly improved liver function, attenuated liver inflammation and fibrosis, and increased the numbers of hepatic NK cells and expression level of NKG2D on hepatic NK cells. Furthermore, CMCS administration significantly decreased desmin expression in liver tissues, and increased TUNEL staining adjacent to hepatic stellate cells. Injection with NK cell-deleting ASGM-1 not only diminished the numbers of hepatic NK cells, but also greatly accelerated liver inflammation and fibrosis in CCl4-treated mice. In CCl4-treated mice with NK cell depletion, CMCS administration decelerated the rate of liver fibrosis development, and mildly upregulated the numbers of hepatic NK cells but without changing NKG2D expression. CMCS alleviates CCl4-induced liver inflammation and fibrosis via promoting activation of hepatic NK cells. CMCS partially reverses ASGM-1-induced depletion of hepatic NK cells.

  6. Ferulic acid prevents liver injury and increases the anti-tumor effect of diosbulbin B in vivo.

    PubMed

    Wang, Jun-ming; Sheng, Yu-chen; Ji, Li-li; Wang, Zheng-tao

    2014-06-01

    The present study is designed to investigate the protection by ferulic acid against the hepatotoxicity induced by diosbulbin B and its possible mechanism, and further observe whether ferulic acid augments diosbulbin B-induced anti-tumor activity. The results show that ferulic acid decreases diosbulbin B-increased serum alanine transaminase/aspartate transaminase (ALT/AST) levels. Ferulic acid also decreases lipid peroxide (LPO) levels which are elevated in diosbulbin B-treated mice. Histological evaluation of the liver demonstrates hydropic degeneration in diosbulbin B-treated mice, while ferulic acid reverses this injury. Moreover, the activities of copper- and zinc-containing superoxide dismutase (CuZn-SOD) and catalase (CAT) are decreased in the livers of diosbulbin B-treated mice, while ferulic acid reverses these decreases. Further results demonstrate that the mRNA expressions of CuZn-SOD and CAT in diosbulbin B-treated mouse liver are significantly decreased, while ferulic acid prevents this decrease. In addition, ferulic acid also augments diosbulbin B-induced tumor growth inhibition compared with diosbulbin B alone. Taken together, the present study shows that ferulic acid prevents diosbulbin B-induced liver injury via ameliorating diosbulbin B-induced liver oxidative stress injury and augments diosbulbin B-induced anti-tumor activity.

  7. Clamp-crushing vs. radiofrequency-assisted liver resection:changes in liver function tests.

    PubMed

    Palibrk, Ivan; Milicic, Biljana; Stojiljkovic, Ljuba; Manojlovic, Nebojsa; Dugalic, Vladimir; Bumbasirevic, Vesna; Kalezic, Nevena; Zuvela, Marinko; Milicevic, Miroslav

    2012-05-01

    Liver resection is the gold standard in managing patients with metastatic or primary liver cancer. The aim of our study was to compare the traditional clamp-crushing technique to the radiofrequency- assisted liver resection technique in terms of postoperative liver function. Liver function was evaluated preoperatively and on postoperative days 3 and 7. Liver synthetic function parameters (serum albumin level, prothrombin time and international normalized ratio), markers of hepatic injury and necrosis (serum alanine aminotransferase, aspartate aminotransferase and total bilirubin level) and microsomal activity (quantitative lidocaine test) were compared. Forty three patients completed the study (14 had clamp-crushing and 29 had radiofrequency assisted liver resection). The groups did not differ in demographic characteristics, pre-operative liver function, operative time and perioperative transfusion rate. In postoperative period, there were similar changes in monitored parameters in both groups except albumin levels, that were higher in radiofrequency-assisted liver resection group (p=0.047). Both, traditional clamp-crushing technique and radiofrequency assisted liver resection technique, result in similar postoperative changes of most monitored liver function parameters.

  8. Serum biomarkers for acute hepatotoxicity of Echis pyramidum snake venom in rats.

    PubMed

    Asmari, Abdulrahman K Al; Khan, Haseeb A; Banah, Faisal A; Buraidi, Ahmed A Al; Manthiri, Rajamohammed A

    2015-01-01

    Echis pyramidum is a venomous viper responsible for most cases of envenomation in Arabian Peninsula. We determined the acute phase (3-6 h) changes in serum markers of liver function including alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT) and bilirubin in adult male Sprague Dawley rats injected with Echis pyramidum venom (EPV) in the doses of 0.00 (control), 0.25, 0.50 and 1.00 mg/kg bodyweight. We also analyzed markers of oxidative stress including superoxide dismutase (SOD), catalase (CAT), total thiols (T-SH) and thiobarbituric acids reactive substances (TBARS) in liver. The results showed significant and dose- and time-dependent increases in serum ALT, ALP and GGT activities after a single injection of EPV. Serum bilirubin was significantly increased by medium and high doses of EVP after 3 h post-injection and then decreased at 6 h. The low dose of EPV neither affected the activity of SOD nor altered the levels of liver T-SH and TBARS, however, it significantly decreased the activity of CAT at 6 h post-injection of EPV. The medium dose of EPV significantly reduced liver SOD activity after 6 h whereas the high dose significantly reduced the SOD activity at 3 h and 6 h post-dosing. Both medium and high doses of EPV caused significant as well as dose- and time-dependent reductions in liver CAT activities. The high dose significantly reduced T-SH and increased TBARS in rat liver. Further studies are warranted to test the pharmacological potential of early phase antioxidant therapy for neutralizing the toxic effects of EPV.

  9. Paeoniflorin regulates macrophage activation in dimethylnitrosamine-induced liver fibrosis in rats

    PubMed Central

    2012-01-01

    Background Macrophages in other organs (e.g. kidneys, lungs, and spleen, et. al) have rarely been reported in the development of liver fibrosis. Therefore, it is important to investigate macrophage activation in the main organs in liver fibrosis. We investigated the potential antifibrogenic effects of paeoniflorin (PF) in a dimethylnitrosamine (DMN)-induced rat model with special focus on inhibiting macrophage activation in the main organs. Methods Rat hepatic fibrosis was induced by treatment with DMN three times weekly over a 4-week period. DMN rats were treated with water, PF, or gadolinium chloride (GdCl3) from the beginning of the 3rd week. The expression of CD68, marker of macrophage, was investigated using immunohistochemical, real-time PCR, and western blot analysis. Results Hepatic hydroxyproline content markedly decreased and histopathology improved in the DMN-PF rats. Expression of desmin and collagen 1 decreased notably in DMN-PF liver. CD68 expression in the liver, spleen and kidney increased markedly after 2 weeks but decreased in DMN-water rats. PF and GdCl3 decreased CD68 expression in the liver and spleen and there was no effect on kidney. CD68 expression in the lung increased gradually during the course of DMN-induced liver fibrosis, and PF inhibited CD68 expression in the lung significantly while GdCl3 increased CD68 markedly. Expression of tumor necrosis factor (TNF-α) was decreased significantly by GdCl3 in the liver, as revealed by real-time PCR analysis. However, GdCl3 could not decrease TNF-α level in the serum by enzyme linked immunosorbent assay (ELISA). Conclusions Macrophage activation was disrupted in the liver, spleen, lung and kidney during development of DMN-induced liver fibrosis. PF administration attenuated DMN-induced liver fibrosis at least in part by regulating macrophage disruption in the main organs. PMID:23237422

  10. Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosedale, Merrie; Wu, Hong; Kurtz, C. Lisa

    A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response.more » Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis • Decreased gene expression associated with protein ubiquitination in sensitive mice • Altered protein ubiquitination may cause oxidized protein accumulation in the liver.« less

  11. Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: Protection by melatonin and cranberry flavonoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheshchevik, V.T.; Department of Biochemistry, Yanka Kupala Grodno State University, Len. Kom. Blvd. - 50, 230017 Grodno; Lapshina, E.A.

    In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, pmore » < 0.05). Short-term melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction but decreased the enhanced NO production. After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was observed, despite marked changes in the redox-balance of mitochondria. The activities of the mitochondrial enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated with CCl{sub 4} displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl{sub 4}, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage. Highlights: ► After 30-day chronic CCl{sub 4} intoxication mitochondria displayed considerable changes. ► The functional parameters of mitochondria were similar to the control values. ► Melatonin + succinate + flavonoids prevented mitochondrial ultrastructure damage. ► The above complex enhanced regenerative processes in the liver.« less

  12. Skeletal muscle and liver gene expression profiles in finishing steers supplemented with Amaize.

    PubMed

    Elolimy, Ahmed A; Moisá, Sonia J; Brennan, Kristen M; Smith, Allison C; Graugnard, Daniel; Shike, Daniel W; Loor, Juan J

    2018-05-29

    Our main objective was to evaluate the effects of feeding α-amylase (Amaize, Alltech Inc., Nicholasville, KY, USA) for 140 days on skeletal muscle and liver gene transcription in beef steers. Steers fed Amaize had lower average daily gain (p = .03) and gain:feed ratio (p = .05). No differences (p > .10) in serum metabolites or carcass traits were detected between the two groups but Amaize steers tended (p < .15) to have increased 12th rib fat depth. Microarray analysis of skeletal muscle revealed 21 differentially expressed genes (DEG), where 14 were up-regulated and seven were down-regulated in Amaize-fed steers. The bioinformatics analysis indicated that metabolic pathways involved in fat formation and deposition, stress response, and muscle function were activated, while myogenesis was inhibited in Amaize-fed steers. The quantitative PCR results for liver revealed a decrease (p < .01) in expression of fatty acid binding protein 1 (FABP1) and 3-hydroxybutyrate dehydrogenase 1 (BDH1) with Amaize. Because these genes are key for intracellular fatty acid transport, oxidation and ketone body production, data suggest a reduction in hepatic lipid catabolism. Future work to investigate potential positive effects of Amaize on cellular stress response, muscle function, and liver function in beef cattle appears warranted. © 2018 Japanese Society of Animal Science.

  13. A decrease in fasting FGF19 levels is associated with the development of non-alcoholic fatty liver disease in obese adolescents.

    PubMed

    Wojcik, Malgorzata; Janus, Dominika; Dolezal-Oltarzewska, Katarzyna; Kalicka-Kasperczyk, Anna; Poplawska, Karolina; Drozdz, Dorota; Sztefko, Krystyna; Starzyk, Jerzy B

    2012-01-01

    Fibroblast growth factor 19 (FGF19) is a hormone released from the small intestine; recently, it has emerged as an endocrine regulator of glucose and lipid metabolism. The aim of this study was to investigate the role of FGF19 in the development of nonalcoholic fatty liver disease (NAFLD). This study included 23 (17 boys) obese adolescents (mean age of 14.1 years) with NAFLD. The control group consisted of 34 (13 boys) obese peers with normal ultrasonographic imaging and normal liver function tests. The definition of NAFLD was based on clinical criteria: elevated alanine aminotransferase (>35 U/L) and liver steatosis features on ultrasound imaging. Serum FGF19 levels were measured in a fasting blood sample. The definition of insulin resistance was based on the homeostasis model assessment (HOMA) threshold: >2.5. There was a significant difference between mean FGF19 levels in patients with NAFLD and controls (142.2 vs. 206 pg/mL, p=0.04). Mean fasting FGF19 levels were decreased in insulin-resistant patients in comparison with the non-insulin-resistant group (155.0 vs. 221.0 pg/mL, p=0.05). There was an inverse correlation between FGF19 and alanine aminotransferase levels (R=-0.3, p<0.05) and triglycerides (R=-0.27, p<0.05). A decrease in fasting FGF19 is associated with the development of NAFLD in obese adolescents. A decrease in fasting FGF19 levels may be a new important risk factor for NAFLD and the metabolic syndrome in adolescents. Further studies are needed to explain whether exogenous delivery of FGF19 might be therapeutically beneficial.

  14. Proteoglycan 4: A Dynamic Regulator of Skeletogenesis and Parathyroid Hormone Skeletal Anabolism

    PubMed Central

    Novince, Chad M; Michalski, Megan N; Koh, Amy J; Sinder, Benjamin P; Entezami, Payam; Eber, Matthew R; Pettway, Glenda J; Rosol, Thomas J; Wronski, Thomas J; Kozloff, Ken M; McCauley, Laurie K

    2014-01-01

    Proteoglycan 4 (Prg4), known for its lubricating and protective actions in joints, is a strong candidate regulator of skeletal homeostasis and parathyroid hormone (PTH) anabolism. Prg4 is a PTH-responsive gene in bone and liver. Prg4 null mutant mice were used to investigate the impact of proteoglycan 4 on skeletal development, remodeling, and PTH anabolic actions. Young Prg4 mutant and wild-type mice were administered intermittent PTH(1–34) or vehicle daily from 4 to 21 days. Young Prg4 mutant mice had decreased growth plate hypertrophic zones, trabecular bone, and serum bone formation markers versus wild-type mice, but responded with a similar anabolic response to PTH. Adult Prg4 mutant and wild-type mice were administered intermittent PTH(1–34) or vehicle daily from 16 to 22 weeks. Adult Prg4 mutant mice had decreased trabecular and cortical bone, and blunted PTH-mediated increases in bone mass. Joint range of motion and animal mobility were lower in adult Prg4 mutant versus wild-type mice. Adult Prg4 mutant mice had decreased marrow and liver fibroblast growth factor 2 (FGF-2) mRNA and reduced serum FGF-2, which were normalized by PTH. A single dose of PTH decreased the PTH/PTHrP receptor (PPR), and increased Prg4 and FGF-2 to a similar extent in liver and bone. Proteoglycan 4 supports endochondral bone formation and the attainment of peak trabecular bone mass, and appears to support skeletal homeostasis indirectly by protecting joint function. Bone- and liver-derived FGF-2 likely regulate proteoglycan 4 actions supporting trabeculae formation. Blunted PTH anabolic responses in adult Prg4 mutant mice are associated with altered biomechanical impact secondary to joint failure. PMID:21932346

  15. Aliskiren ameliorates chlorhexidine digluconate-induced peritoneal fibrosis in rats.

    PubMed

    Ke, Chun-Yen; Lee, Chia-Chi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2010-04-01

    Peritoneal fibrosis (PF) is a recognized complication of long-term peritoneal dialysis (PD) and can lead to ultrafiltration failure. The present study was designed to investigate the protective effects of aliskiren on chlorhexidine digluconate-induced PF in rats. The PF was induced in Sprague-Dawley rats by daily administration of 0.5 mL 0.1% chlorhexidine digluconate in normal saline via PD tube for 1 week. Rats received daily intravenous injections of low-dose aliskiren (1 mg kg(-1)) or high-dose aliskiren (10 mg kg(-1)) for 1 week. After 7 days, conventional 4.25% Dianeal (30 mL) was administered via a PD catheter with a dwell time of 4 h and assessed of peritoneal function. At the end of dialysis, rats were sacrificed and the liver peritoneum was harvested for microscopically and immunohistochemistry. There was no significant difference in mean arterial pressure and heart rate between groups. After 4 h of PD, the D(4)/P(4) urea level was reduced, the D(4)/D(0) glucose level, serum and dialysate transforming growth factor-beta1 (TGF-beta1) level was increased, the liver peritoneum was markedly thicker, and the expression of TGF-beta1, alpha-smooth muscle actin (alpha-SMA), fibronectin, collagen, and vascular endothelial growth factor (VEGF) were elevated in the PS group compared with the vehicle group. Aliskiren decreased the serum and dialysate TGF-beta1 level, decreased the thickness of the liver peritoneum, and decreased the expression of TGF-beta1, alpha-SMA, fibronectin, collagen, and VEGF-positive cells in liver peritoneum. Moreover, high-dose aliskiren had better protective effects against PF than low dose in rats. Aliskiren protected against chlorhexidine digluconate-induced PF in rats by decreasing TGF-beta1 production.

  16. Experimental study of osthole on treatment of hyperlipidemic and alcoholic fatty liver in animals

    PubMed Central

    Song, Fang; Xie, Mei-Lin; Zhu, Lu-Jia; Zhang, Ke-Ping; Xue, Jie; Gu, Zhen-Lun

    2006-01-01

    AIM: To evaluate the effects of osthole on fatty liver, and investigate the possible mechanism. METHODS: A quail model with hyperlipidemic fatty liver and rat model with alcoholic fatty liver were set up by feeding high fat diet and alcohol, respectively. These experimental animals were then treated with osthole 5-20 mg/kg for 6 wk, respectively. Whereafter, the lipid in serum and hepatic tissue, and coefficient of hepatic weight were measured. RESULTS: After treatment with osthole the levels of serum total cholesterol (TC), triglyceride (TG), lower density lipoprotein-cholesterol (LDL-C), coefficient of hepatic weight, and the hepatic tissue contents of TC and TG were significantly decreased. The activity of superoxide dismutase (SOD) in liver was improved. In alcohol-induced fatty liver rats, the level of malondialdehyde (MDA) in liver was decreased. In high fat-induced fatty liver quails, glutathione peroxidase (GSH-PX) in liver was significantly improved. The histological evaluation of liver specimens demonstrated that the osthole dramatically decreased lipid accumulation. CONCLUSION: These results suggested that osthole had therapeutic effects on both alcohol and high fat-induced fatty liver. The mechanism might be associated with its antioxidation. PMID:16865778

  17. Perinatal hypothyroidism modulates antioxidant defence status in the developing rat liver and heart.

    PubMed

    Zhang, Hongmei; Dong, Yan; Su, Qing

    2017-02-01

    In the present study, we investigated oxidative stress parameters and antioxidant defence status in perinatal hypothyroid rat liver and heart. We found that the proteincarbonyl content did not differ significantly between the three groups both in the pup liver and in the heart. The OH˙ level was significantly decreased in the hypothyroid heart but not in the liver compared with controls. A slight but not significant decrease in SOD activity was observed in both perinatal hypothyroid liver and heart. A significantly increased activity of CAT was observed in the liver but not in the heart of hypothyroid pups. The GPx activity was considerably increased compared with controls in the perinatal hypothyroid heart and was unaltered in the liver of hypothyroid pups. We also found that vitamin E levels in the liver decreased significantly in hypothyroidism and were unaltered in the heart of perinatal hypothyroid rats. The GSH content was elevated significantly in both hypothyroid liver and heart. The total antioxidant capacity was higher in the liver of the hypothyroid group but not in the hypothyroid heart. Thyroxine replacement could not repair the above changes to normal. In conclusion, perinatal hypothyroidism modulates the oxidative stress status of the perinatal liver and heart.

  18. Dietary fructose causes defective insulin signalling and ceramide accumulation in the liver that can be reversed by gut microbiota modulation

    PubMed Central

    Crescenzo, Raffaella; Mazzoli, Arianna; Di Luccia, Blanda; Bianco, Francesca; Cancelliere, Rosa; Cigliano, Luisa; Liverini, Giovanna; Baccigalupi, Loredana; Iossa, Susanna

    2017-01-01

    ABSTRACT Objective: The link between metabolic derangement of the gut–2013liver–visceral white adipose tissue (v-WAT) axis and gut microbiota was investigated. Methods: Rats were fed a fructose-rich diet and treated with an antibiotic mix. Inflammation was measured in portal plasma, ileum, liver, and v-WAT, while insulin signalling was analysed by measuring levels of phosphorylated kinase Akt. The function and oxidative status of hepatic mitochondria and caecal microbiota composition were also evaluated. Results: Ileal inflammation, increase in plasma transaminases, plasma peroxidised lipids, portal concentrations of tumour necrosis factor alpha, lipopolysaccharide, and non-esterified fatty acids, were induced by fructose and were reversed by antibiotic. The increased hepatic ceramide content, inflammation and decreased insulin signaling in liver and v-WAT induced by fructose was reversed by antibiotic. Antibiotic also blunted the increase in hepatic mitochondrial efficiency and oxidative damage of rats fed fructose-rich diet. Three genera, Coprococcus, Ruminococcus, and Clostridium, significantly increased, while the Clostridiaceae family significantly decreased in rats fed a fructose-rich diet, and antibiotic abolished these variations Conclusions: When gut microbiota modulation by fructose is prevented by antibiotic, inflammatory flow from the gut to the liver and v-WAT are reversed. PMID:28659742

  19. Protective and Curative Effects of the Sea Cucumber Holothuria atra Extract against DMBA-Induced Hepatorenal Diseases in Rats

    PubMed Central

    Dakrory, Ahmed I.; Fahmy, Sohair R.; Soliman, Amel M.; Mohamed, Ayman S.; Amer, Sayed A. M.

    2015-01-01

    Oxidative stress is a common mechanism contributing to the initiation and progression of hepatic damage. Hence there is a great demand for the development of agents with potent antioxidant effect. The aim of the present study is to evaluate the efficacy of Holothuria atra extract (HaE) as an antioxidant against 7,12-dimethylbenz[a]anthracene- (DMBA-) induced hepatorenal dysfunction. Experimental animals were divided into two main groups: protective and curative. Each group was then divided into five subgroups pre- or posttreated either with distilled water (DMBA subgroups) or with HaE (200 mg/kg body weight) for seven and fourteen days. Single oral administration of DMBA (15 mg/kg body weight) to Wistar rats resulted in a significant increase in the serum liver enzymes and kidney function's parameters. DMBA increased level of liver malondialdehyde (MDA), decreased levels of reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) in the liver tissue, and induced liver histopathological alterations. Pre- or posttreatment with HaE orally for 14 days significantly reversed the hepatorenal alterations induced following DMBA administration. In conclusion, HaE exhibits good hepatoprotective, curative, and antioxidant potential against DMBA-induced hepatorenal dysfunction in rats that might be due to decreased free radical generation. PMID:25821811

  20. Functional restoration of cirrhotic liver after partial hepatectomy in the rat.

    PubMed

    Hashimoto, Masaji; Watanabe, Goro

    2005-01-01

    Although cirrhosis is the terminal stage of various liver diseases, thanks to recent advances one might eliminate some causes of liver damage. Liver has a potent regeneration capacity. It is important to evaluate the regenerating cirrhotic liver after partial hepatectomy, morphologically and functionally, in the long term. We evaluated the functional capacity of the rat liver rendered cirrhotic by orally administered thioacetamide, and examined the correlation between morphological and functional restoration after 2/3 hepatectomy in comparison with hepatectomized normal rats and sham-operated cirrhotic rats. Morphological restoration was evaluated by remnant liver weight, proliferating cell nuclear antigen labeling index, and fibrosis ratio. Functional restoration was evaluated by the indocyanine green disappearance rate and aminopyrine clearance. Cirrhotic rats were functionally deteriorated in comparison with the normal rats. Morphological restoration in cirrhotic rats was delayed in comparison with normal rats. Functional restoration after 2/3 hepatectomy was advanced in comparison with morphological restoration. In comparison with sham-operated cirrhotic rats, functional restoration of the cirrhotic liver was accelerated by partial hepatectomy. In cirrhotic rats, functional restoration of the liver after 2/3 hepatectomy was advanced in comparison with morphological restoration. Partial hepatectomy seemed to promote functional restoration of the cirrhotic liver.

  1. Unraveling molecular mechanistic differences in liver metabolism between lean and fat lines of Pekin duck (Anas platyrhynchos domestica): a proteomic study.

    PubMed

    Zheng, Aijuan; Chang, Wenhuan; Hou, Shuisheng; Zhang, Shu; Cai, Huiyi; Chen, Guilan; Lou, Ruiying; Liu, Guohua

    2014-02-26

    Duck is one of the major poultry meat sources for human consumption. To satisfy different eating habits, lean and fat strains of Pekin ducks have been developed. The objective of this study was to determine the molecular mechanistic differences in liver metabolism between two duck strains. The liver proteome of the Pekin duck lines was compared on days 1, 14, 28, and 42 posthatching using 2-DE based proteomics. There was a different abundance of 76 proteins in the livers of the two duck lines. Fat ducks strongly expressed proteins related to pathways of glycolysis, ATP synthesis, and protein catabolism, suggesting enhanced fat deposition rather than protein retention. In contrast, highly expressed proteins in lean ducks improved protein anabolism and reduced protein catabolism, resulting in an enhancement of lean meat deposition. Along with the decrease in fat deposition, the immune system of the lean duck strain may be enhanced by enhanced expression of proteins involved in stress response, immune defense, and antioxidant functions. These results indicate that selection pressure has shaped the two duck lines differently resulting in different liver metabolic capacities. These observed variations between the two strains at the molecular level are matched with physiological changes in growth performance and meat production. This information may have beneficial impacts in areas such as genetic modification through the manipulation of target proteins or genes in specific pathways to improve the efficiency of duck meat production. The objective of this study was to unravel molecular mechanistic differences in liver metabolism between lean and fat Pekin duck (Anas platyrhynchos domestica) strains. There was a different abundance of 76 proteins in the livers of the two duck lines. Enhanced protein expression in the fat ducks related to pathways of glycolysis, ATP synthesis and protein catabolism suggesting increased fat deposition rather than protein retention. In contrast, highly expressed proteins in the lean ducks facilitated protein deposition by increasing protein anabolism and reducing protein catabolism to enhance the lean meat percentage. Along with the decrease of fat deposition, the immunity of lean duck appeared to be enhanced by increased expression of proteins involved in stress response, defense and antioxidant function. This study provides potential target proteins or genes for further functional analysis and genetic manipulation to increase the efficiency of duck meat production and help satisfy the global demand for poultry meat. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  2. Protective role of endogenous carbon monoxide in hepatic microcirculatory dysfunction after hemorrhagic shock in rats.

    PubMed Central

    Pannen, B H; Köhler, N; Hole, B; Bauer, M; Clemens, M G; Geiger, K K

    1998-01-01

    Maintenance of hepatic microcirculatory flow after ischemia of the liver is essential to prevent hepatic dysfunction. Thus, we determined the differential role of carbon monoxide (CO) and nitric oxide (NO) in the intrinsic control of sinusoidal perfusion, mitochondrial redox state, and bile production in the isolated perfused rat liver after hemorrhagic shock. Administration of tin protoporphyrin-IX (50 microM), a specific inhibitor of the CO generating enzyme heme oxygenase, caused a decrease in sinusoidal flow that was more pronounced after shock compared with sham shock, as determined by in situ epifluorescence microscopy. This was associated with a shift in hepatocellular redox potential to a more reduced state (increased fluorescence intensity of reduced pyridine nucleotides in hepatocytes, decreased acetoacetate/beta-hydroxybutyrate ratio in the perfusate) and a profound reduction in bile flow. In sharp contrast, the preferential inhibitor of the inducible isoform of NO synthase S-methylisothiourea sulfate (100 microM) did not affect sinusoidal flow, hepatic redox state, or function. This indicates that 1.) endogenously generated CO preserves sinusoidal perfusion after hemorrhagic shock, 2.) protection of the hepatic microcirculation by CO may serve to limit shock-induced liver dysfunction, and 3.) in contrast to CO, inducible NO synthase-derived NO is of only minor importance for the intrinsic control of hepatic perfusion and function under these conditions. PMID:9739056

  3. Short-term effects of splenectomy on serum fibrosis indexes in liver cirrhosis patients.

    PubMed

    Kong, Degang; Chen, Xiuli; Lu, Shichun; Guo, Qingliang; Lai, Wei; Wu, Jushan; Lin, Dongdong; Zeng, Daobing; Duan, Binwei; Jiang, Tao; Cao, Jilei

    2015-01-01

    To determine the changing patterns of 4 liver fibrosis markers pre and post splenectomy (combined with pericardial devascularization [PCDV]) and to examine the short-term effects of splenectomy on liver fibrosis. Four liver fibrosis markers of 39 liver cirrhosis patients were examined pre, immediately post, 2 days post, and 1 week post (15 cases) splenectomy (combined with PCDV). The laminin (LN) level decreased immediately post surgery compared with the preoperative LN level (P < 0.05). The type IV collagen level decreased immediately post surgery compared with that pre surgery (P < 0.05), it significantly increased (P < 0.05) 2 days post surgery and significantly decreased 1 week post surgery (P < 0.05). Hyaluronic acid and the procollagen III N-terminal peptide levels increased significantly 2 days post surgery compared with that pre and immediately post surgery, they significantly decreased 1 week post surgery compared to 2 days post surgery (P < 0.05). In the short-term, the 4 liver fibrosis markers and the FibroScans post splenectomy showed characteristic changes, splenectomy may transiently initiate the degradation process of liver fibrosis.

  4. Activation of RAS/ERK alone is insufficient to inhibit RXRα function and deplete retinoic acid in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ai-Guo, E-mail: wangaiguotl@hotmail.com; Song, Ya-Nan; Chen, Jun

    2014-09-26

    Highlights: • The activation of RAS/ERK is insufficient to inhibit RXRα function and deplete RA. • The retinoid metabolism-related genes are down-regulated by ras oncogene. • The atRA has no effect on preventing hepatic tumorigenesis or curing the developed hepatic nodules. - Abstract: Activation of RAS/ERK signaling pathway, depletion of retinoid, and phosphorylation of retinoid X receptor alpha (RXRα) are frequent events found in liver tumors and thought to play important roles in hepatic tumorigenesis. However, the relationships among them still remained to be elucidated. By exploring the transgenic mouse model of hepatic tumorigenesis induced by liver-specific expression of H-ras12Vmore » oncogene, the activation of RAS/ERK, the mRNA expression levels of retinoid metabolism-related genes, the contents of retinoid metabolites, and phosphorylation of RXRα were determined. RAS/ERK signaling pathway was gradually and significantly activated in hepatic tumor adjacent normal liver tissues (P) and hepatic tumor tissues (T) of H-ras12V transgenic mice compared with normal liver tissues (Wt) of wild type mice. On the contrary, the mRNA expression levels of retinoid metabolism-related genes were significantly reduced in P and T compared with Wt. Interestingly, the retinoid metabolites 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (atRA), the well known ligands for nuclear transcription factor RXR and retinoic acid receptor (RAR), were significantly decreased only in T compared with Wt and P, although the oxidized polar metabolite of atRA, 4-keto-all-trans-retinoic-acid (4-keto-RA) was significantly decreased in both P and T compared with Wt. To our surprise, the functions of RXRα were significantly blocked only in T compared with Wt and P. Namely, the total protein levels of RXRα were significantly reduced and the phosphorylation levels of RXRα were significantly increased only in T compared with Wt and P. Treatment of H-ras12V transgenic mice at 5-week-old or 5-month-old with atRA had no effect on the prevention of tumorigenesis or cure of developed nodules in liver. These events imply that the depletion of 9cRA and atRA and the inhibition of RXRα function in hepatic tumors involve more complex mechanisms besides the activation of RAS/ERK pathway.« less

  5. Protective effects of Mangifera indica L extract (Vimang), and its major component mangiferin, on iron-induced oxidative damage to rat serum and liver.

    PubMed

    Pardo-Andreu, Gilberto L; Barrios, Mariela Forrellat; Curti, Carlos; Hernández, Ivones; Merino, Nelson; Lemus, Yeny; Martínez, Ioanna; Riaño, Annia; Delgado, René

    2008-01-01

    In vivo preventive effects of a Mangifera indica L extract (Vimang) or its major component mangiferin on iron overload injury have been studied in rats given respectively, 50, 100, 250 mg kg(-1) body weight of Vimang, or 40 mg kg(-1) body weight of mangiferin, for 7 days prior to, and for 7 days following the administration of toxic amounts of iron-dextran. Both Vimang or mangiferin treatment prevented iron overload in serum as well as liver oxidative stress, decreased serum and liver lipid peroxidation, serum GPx activity, and increased serum and liver GSH, serum SOD and the animals overall antioxidant condition. Serum iron concentration was decreased although at higher doses, Vimang tended to increase it; percent tranferrin saturation, liver weight/body mass ratios, liver iron content was decreased. Treatment increased serum iron-binding capacity and decreased serum levels of aspartate-amine transferase (ASAT) and alanine-amine transferase (ALAT), as well as the number of abnormal Kupffer cells in iron-loaded livers. It is suggested that besides acting as antioxidants, Vimang extract or its mangiferin component decrease liver iron by increasing its excretion. Complementing earlier in vitro results from our group, it appears possible to support the hypothesis that Vimang and mangiferin present therapeutically useful effects in iron overload related diseases.

  6. Impact of recombinant globular adiponectin on early warm ischemia-reperfusion injury in rat bile duct after liver transplantation.

    PubMed

    Xia, Yang; Gong, Jian-Ping

    2014-09-19

    Adiponectin (APN) is an adipocyte protein with anti-diabetic properties, which has been recently revealed to have anti-inflammatory activity in organ ischemia- reperfusion injury (IRI). However, little is known about its function in bile duct IRI after liver transplantation. Therefore, we investigated whether APN affects early warm IRI in rat bile duct using a liver autologous transplantation model. In our study, rats were randomly divided into three experimental groups: a sham group, a IRI group, and a APN group. The serum enzyme levels and BDISS scores of bile duct histology associated with bile duct injury, decreased after administration of APN. Subsequently, the expression of proinflammatory cytokines, such as tumor necrosis factor(TNF-α),.interleukin-6(IL-6) and myeloperoxidase (MPO) decreased. Furthermore, pretreatment with APN suppressed the activation of nuclear factor-kappa B (NF-κB) (p65), a transcription factor involved in inflammatory reactions, compared to other two groups. Administration of APN also downregulated the expression of Fas protein and attenuated caspase-3 activity to decrease bile duct apoptosis. Our results illustrate that APN protects the rat bile duct against early warm IRI by suppressing the inflammatory response and hepatocyte apoptosis, and NF-κB (p65) plays an important role in this process.

  7. Protective effects of a natural herbal compound quercetin against snake venom-induced hepatic and renal toxicities in rats.

    PubMed

    Al-Asmari, Abdulrahman K; Khan, Haseeb A; Manthiri, Rajamohamed A; Al-Khlaiwi, Ahmad A; Al-Asmari, Bayan A; Ibrahim, Khalid E

    2018-05-08

    Echis pyramidum is a highly poisonous viper snake. Previous studies have shown acute phase hepatic and renal toxicities of Echis pyramidum venom (EPV) in rats. This study reports the protective effects of a natural herbal compound quercetin (QRC) on EPV-induced hepatic and renal toxicities in rats. A singly injection of EPV (4.76 mg/kg) caused significant increase in serum biomarkers of liver and kidney function. Pre-treatment of QRC (10 mg/kg) significantly reduced the toxic effects of EPV on functional impairment in liver and kidneys of rats. Administration of QRC also reversed EPV-induced increase in lipid peroxidation and decrease in total thiols. The histopathology of liver showed fat accumulation, focal degeneration and cytoplasmic vacuolation of hepatocytes in EPV treated rats. EPV also caused renal tubular dilation and focal atrophy of glomerular tufts in rat kidneys. Administration of QRC prevented EPV-induced structural tissue damage in liver and kidneys of rats. In conclusion, QRC significantly inhibited the acute phase toxic effects of EPV on liver and kidneys of rats by preventing the oxidative stress in these organs. QRC is also known for its anti-inflammatory, anti-edema, anti-hemorrhagic and PLA2-inhibitory properties and therefore may be regarded as a multi-action antidote against snake venom toxicity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial.

    PubMed

    Hallsworth, Kate; Thoma, Christian; Hollingsworth, Kieren G; Cassidy, Sophie; Anstee, Quentin M; Day, Christopher P; Trenell, Michael I

    2015-12-01

    Although lifestyle changes encompassing weight loss and exercise remain the cornerstone of non-alcoholic fatty liver disease (NAFLD) management, the effect of different types of exercise on NAFLD is unknown. This study defines the effect of modified high-intensity interval training (HIIT) on liver fat, cardiac function and metabolic control in adults with NAFLD. Twenty-three patients with NAFLD [age 54±10 years, body mass index (BMI) 31±4 kg/m(2), intra-hepatic lipid >5%) were assigned to either 12 weeks HIIT or standard care (controls). HIIT involved thrice weekly cycle ergometry for 30-40 min. MRI and spectroscopy were used to assess liver fat, abdominal fat and cardiac structure/function/energetics. Glucose control was assessed by oral glucose tolerance test and body composition by air displacement plethysmography. Relative to control, HIIT decreased liver fat (11±5% to 8±2% compared with 10±4% to 10±4% P=0.019), whole-body fat mass (35±7 kg to 33±8 kg compared with 31±9 kg to 32±9 kg, P=0.013), alanine (52±29 units/l to 42±20 units/l compared with 47±22 units/l to 51±24 units/l, P=0.016) and aspartate aminotransferase (AST; 36±18 units/l to 33±15 units/l compared with 31±8 units/l to 35±8 units/l, P=0.017) and increased early diastolic filling rate (244±84 ml/s to 302±107 ml/s compared with 255±82 ml/s to 251±82 ml/s, P=0.018). There were no between groups differences in glucose control. Modified HIIT reduces liver fat and improves body composition alongside benefits to cardiac function in patients with NAFLD and should be considered as part of the broader treatment regimen by clinical care teams. ISRCTN trial ID: ISRCTN78698481. © 2015 Authors; published by Portland Press Limited.

  9. Liver Function Tests

    MedlinePlus

    ... Liver Function Tests Clinical Trials Liver Transplant FAQs Medical Terminology Diseases of the Liver Alagille Syndrome Alcohol-Related ... the Liver The Progression of Liver Disease FAQs Medical Terminology HOW YOU CAN HELP Sponsorship Ways to Give ...

  10. IDH1 deficiency attenuates gluconeogenesis in mouse liver by impairing amino acid utilization.

    PubMed

    Ye, Jing; Gu, Yu; Zhang, Feng; Zhao, Yuanlin; Yuan, Yuan; Hao, Zhenyue; Sheng, Yi; Li, Wanda Y; Wakeham, Andrew; Cairns, Rob A; Mak, Tak W

    2017-01-10

    Although the enzymatic activity of isocitrate dehydrogenase 1 (IDH1) was defined decades ago, its functions in vivo are not yet fully understood. Cytosolic IDH1 converts isocitrate to α-ketoglutarate (α-KG), a key metabolite regulating nitrogen homeostasis in catabolic pathways. It was thought that IDH1 might enhance lipid biosynthesis in liver or adipose tissue by generating NADPH, but we show here that lipid contents are relatively unchanged in both IDH1-null mouse liver and IDH1-deficient HepG2 cells generated using the CRISPR-Cas9 system. Instead, we found that IDH1 is critical for liver amino acid (AA) utilization. Body weights of IDH1-null mice fed a high-protein diet (HPD) were abnormally low. After prolonged fasting, IDH1-null mice exhibited decreased blood glucose but elevated blood alanine and glycine compared with wild-type (WT) controls. Similarly, in IDH1-deficient HepG2 cells, glucose consumption was increased, but alanine utilization and levels of intracellular α-KG and glutamate were reduced. In IDH1-deficient primary hepatocytes, gluconeogenesis as well as production of ammonia and urea were decreased. In IDH1-deficient whole livers, expression levels of genes involved in AA metabolism were reduced, whereas those involved in gluconeogenesis were up-regulated. Thus, IDH1 is critical for AA utilization in vivo and its deficiency attenuates gluconeogenesis primarily by impairing α-KG-dependent transamination of glucogenic AAs such as alanine.

  11. Enzymatic liver function capacity correlates with disease severity of patients with liver cirrhosis: a study with the LiMAx test.

    PubMed

    Malinowski, Maciej; Jara, Maximilian; Lüttgert, Katja; Orr, James; Lock, Johan Friso; Schott, Eckart; Stockmann, Martin

    2014-12-01

    Assessment and quantification of actual liver function is crucial in patients with chronic liver disease to monitor disease progression and predict individual prognosis. Mathematical models, such as model for end-stage liver disease, are used for risk stratification of patients with chronic liver disease but do not include parameters that reflect the actual functional state of the liver. We aimed to evaluate the potential of a (13)C-based liver function test as a stratification tool by comparison with other liver function tests and clinical parameters in a large sample of healthy controls and cirrhotic patients. We applied maximum liver function capacity (LiMAx) to evaluate actual liver function in 347 patients with cirrhosis and in 86 controls. LiMAx showed strong negative correlation with Child-Pugh Score (r = -0.707; p < 0.001), MELD (r = -0.686; p < 0.001) and liver function tests. LiMAx was lower in patients with liver cirrhosis compared to healthy controls [99 (57-160) µg/kg/h vs. 412 (365-479) µg/kg/h, p < 0.001] and differed among Child-Pugh classes [a: 181 (144-227) µg/kg/h, b: 96 (62-132) µg/kg/h and c: 52 (37-81) µg/kg/h; p < 0.001]. When stratified patients according to disease severity, LiMAx results were not different between cirrhotic patients and cirrhotic patients with transjugular intrahepatic portosystemic shunt. LiMAx appears to provide reliable information on remnant enzymatic liver function in chronic liver disease and allows graduation of disease severity.

  12. Impact of Sofosbuvir-Based Regimens for the Treatment of Hepatitis C After Liver Transplant on Renal Function: Results of a Canadian National Retrospective Study.

    PubMed

    Faisal, Nabiha; Bilodeau, Marc; Aljudaibi, Bandar; Hirch, Geri; Yoshida, Eric M; Hussaini, Trana; Ghali, Maged P; Congly, Stephen E; Ma, Mang M; Lilly, Leslie B

    2018-04-04

    We assessed the impact of sofosbuvir-based regimens on renal function in liver transplant recipients with recurrent hepatitis C virus and the role of renal function on the efficacy and safety of these regimens. In an expanded pan-Canadian cohort, 180 liver transplant recipients were treated with sofosbuvir-based regimens for hepatitis C virus recurrence from January 2014 to May 2015. Mean age was 58 ± 6.85 years, and 50% had F3/4 fibrosis. Patients were stratified into 4 groups based on baseline estimated glomerular filtration rate (calculated by the Modification of Diet in Renal Disease formula): < 30, 30 to 45, 46 to 60, and > 60 mL/min/173 m2. The primary outcome was posttreatment changes in renal function from baseline. Secondary outcomes included sustained virologic response at 12 weeks posttreatment and anemia-related and serious adverse events. Posttreatment renal function was improved in most patients (58%). Renal function declined in 22% of patients, which was more marked in those with estimated glomerular filtration rate < 30 mL/min/173 m2, advanced cirrhosis (P = .05), and aggressive hepatitis C virus/fibrosing cholestatic hepatitis (P < .05). High rates (80%-88%) of sustained virologic response at 12 weeks posttreatment were seen across all renal function strata. Cirrhotic patients with glomerular filtration rates < 30 mL/min/173 m2 had sustained virologic response rates at 12 weeks posttreatment comparable to the overall patient group. Rates of anemia-related adverse events and transfusion requirements increased across decreasing estimated glomerular filtration rate groups, with notably more occurrences with ribavirin-based regimens. Sofosbuvir-based regimens improved overall renal function in liver transplant recipients, with sustained virologic response, suggesting an association of subclinical hepatitis C virus-related renal disease. Sustained virologic response rates at 12 weeks posttreatment (80%-88%) were comparable regardless of baseline renal function but lower in cirrhosis.

  13. A double-blind, placebo-controlled randomized trial to evaluate the efficacy of docosahexaenoic acid supplementation on hepatic fat and associated cardiovascular risk factors in overweight children with nonalcoholic fatty liver disease.

    PubMed

    Pacifico, L; Bonci, E; Di Martino, M; Versacci, P; Andreoli, G; Silvestri, L M; Chiesa, C

    2015-08-01

    Very little information is available on whether docosahexaenoic acid (DHA) supplementation has a beneficial effect on liver fat and cardiovascular disease (CVD) risk factors in children with nonalcoholic fatty liver disease (NAFLD). In a double-blind, placebo-controlled randomized trial we investigated whether 6-month treatment with DHA improves hepatic fat and other fat depots, and their associated CVD risk factors in children with biopsy-proven NAFLD. Of 58 randomized children, 51 (25 DHA, 26 placebo) completed the study. The main outcome was the change in hepatic fat fraction as estimated by magnetic resonance imaging. Secondary outcomes were changes in visceral adipose tissue (VAT), epicardial adipose tissue (EAT), and left ventricular (LV) function, as well as alanine aminotransferase (ALT), triglycerides, body mass index-standard deviation score (BMI-SDS), and insulin sensitivity. At 6 months, the liver fat was reduced by 53.4% (95% CI, 33.4-73.4) in the DHA group, as compared with 22.6% (6.2-39.0) in the placebo group (P = 0.040 for the comparison between the two groups). Likewise, in the DHA group VAT and EAT were reduced by 7.8% (0-18.3) and 14.2% (0-28.2%), as compared with 2.2% (0-8.1) and 1.7% (0-6.8%) in the placebo group, respectively (P = 0.01 for both comparisons). There were no significant between-group changes for LV function as well as BMI-SDS and ALT, while fasting insulin and triglycerides significantly decreased in the DHA-treated children (P = 0.028 and P = 0.041, respectively). DHA supplementation decreases liver and visceral fat, and ameliorates metabolic abnormalities in children with NAFLD. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farhat, Amani; National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3; Buick, Julie K.

    We previously demonstrated that in ovo exposure to the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP) decreased plasma thyroxine levels, reduced growth parameters, and decreased gallbladder size in chicken embryos. In the current study DNA microarrays were used to evaluate global mRNA expression in liver tissue of male chicken embryos that exhibited the above mentioned effects. Injected doses were dimethyl sulfoxide vehicle control, 7.6 or 45 μg TDCPP/g egg. TDCPP caused significant changes in the expression of five genes at the low dose and 47 genes at the high dose (False Discovery Rate p ≤ 0.1, fold change ≥ 1.5). The genemore » expression analysis suggested a compromised immune function, a state of cholestatic liver/biliary fibrosis, and disrupted lipid and steroid metabolism. Circulating bile acid levels were elevated, which is an indication of liver dysfunction, and plasma cholesterol levels were reduced; however, hepatic bile acid and cholesterol levels were unaltered. Interactome analyses identified apolipoprotein E, hepatocyte nuclear factor 4 alpha, and peroxisome proliferator-activated receptor alpha as key regulatory molecules involved in the effects of TDCPP. Our results demonstrate a targeted effect of TDCPP toxicity on lipid metabolism, including cholesterol, that helps explain the aforementioned phenotypic effects, as chicken embryos are highly dependent on yolk lipids for growth and maintenance throughout development. Finally, our results are in concordance with the literature that describes TDCPP as a cancer-causing agent, since the majority of dysregulated genes were involved in cancer pathways. - Highlights: • TDCPP dysregulates genes involved in immune function and lipid metabolism. • A targeted effect of TDCPP toxicity on cholesterol metabolism is apparent. • A state of cholestatic liver fibrosis is suggested by the expression profile. • Elevated plasma bile acids suggest that TDCPP causes liver dysfunction.« less

  15. Hepatitis C Virus Core Protein Promotes miR-122 Destabilization by Inhibiting GLD-2

    PubMed Central

    Kim, Geon-Woo; Lee, Seung-Hoon; Cho, Hee; Kim, Minwoo; Shin, Eui-Cheol; Oh, Jong-Won

    2016-01-01

    The liver-specific microRNA miR-122, which has essential roles in liver development and metabolism, is a key proviral factor for hepatitis C virus (HCV). Despite its crucial role in the liver and HCV life cycle, little is known about the molecular mechanism of miR-122 expression regulation by HCV infection. Here, we show that the HCV core protein downregulates the abundance of miR-122 by promoting its destabilization via the inhibition of GLD-2, a non-canonical cytoplasmic poly(A) polymerase. The decrease in miR-122 expression resulted in the dysregulation of the known functions of miR-122, including its proviral activity for HCV. By high-throughput sequencing of small RNAs from human liver biopsies, we found that the 22-nucleotide (nt) prototype miR-122 is modified at its 3′ end by 3′-terminal non-templated and templated nucleotide additions. Remarkably, the proportion of miR-122 isomers bearing a single nucleotide tail of any ribonucleotide decreased in liver specimens from patients with HCV. We found that these single-nucleotide-tailed miR-122 isomers display increased miRNA activity and stability over the 22-nt prototype miR-122 and that the 3′-terminal extension is catalyzed by the unique terminal nucleotidyl transferase activity of GLD-2, which is capable of adding any single ribonucleotide without preference of adenylate to the miR-122 3′ end. The HCV core protein specifically inhibited GLD-2, and its interaction with GLD-2 in the cytoplasm was found to be responsible for miR-122 downregulation. Collectively, our results provide new insights into the regulatory role of the HCV core protein in controlling viral RNA abundance and miR-122 functions through miR-122 stability modulation. PMID:27366906

  16. Dysregulation of autophagy in rat liver with mitochondrial DNA depletion induced by the nucleoside analogue zidovudine.

    PubMed

    Santos-Llamas, Ana; Monte, Maria J; Marin, Jose J G; Perez, Maria J

    2018-03-28

    The nucleoside reverse transcriptase inhibitor zidovudine (AZT), used in HIV infection treatment, induces mitochondrial DNA (mtDNA) depletion. A cause-effect relationship between mtDNA status alterations and autophagy has been reported. Both events are common in several liver diseases, including hepatocellular carcinoma. Here, we have studied autophagy activation in rat liver with mtDNA depletion induced by AZT administration in drinking water for 35 days. AZT at a concentration of 1 mg/ml, but not 0.5 mg/ml in the drinking water, decreased mtDNA levels in rat liver and extrahepatic tissues. In liver, mtDNA-encoded cytochrome c oxidase 1 protein levels were decreased. Although serum biomarkers of liver and kidney toxicity remained unaltered, β-hydroxybutyrate levels were increased in liver of AZT-treated rats. Moreover, autophagy was dysregulated at two levels: (i) decreased induction signalling of this process as indicated by increases in autophagy inhibitors activity (AKT/mTOR), and absence of changes (Beclin-1, Atg5, Atg7) or decreases (AMPK/ULK1) in the expression/activity of pro-autophagy proteins; and (ii) reduced autophagosome degradation as indicated by decreases in the lysosome abundance (LAMP2 marker) and the transcription factor TFEB controlling lysosome biogenesis. This resulted in increased autophagosome abundance (LC3-II marker) and accumulation of the protein selectively degraded by autophagy p62, and the transcription factor Nrf2 in liver of AZT-treated rats. Nrf2 was activated as indicated by the up-regulation of antioxidant target genes Nqo1 and Hmox-1. In conclusion, rat liver with AZT-induced mtDNA depletion presented dysregulations in autophagosome formation and degradation balance, which results in accumulation of these structures in parenchymal liver cells, favouring hepatocarcinogenesis.

  17. Creatine and the Liver: Metabolism and Possible Interactions.

    PubMed

    Barcelos, R P; Stefanello, S T; Mauriz, J L; Gonzalez-Gallego, J; Soares, F A A

    2016-01-01

    The process of creatine synthesis occurs in two steps, catalyzed by L-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT), which take place mainly in kidney and liver, respectively. This molecule plays an important energy/pH buffer function in tissues, and to guarantee the maintenance of its total body pool, the lost creatine must be replaced from diet or de novo synthesis. Creatine administration is known to decrease the consumption of Sadenosyl methionine and also reduce the homocysteine production in liver, diminishing fat accumulation and resulting in beneficial effects in fatty liver and non-alcoholic liver disease. Different studies have shown that creatine supplementation could supply brain energy, presenting neuroprotective effects against the encephalopathy induced by hyperammonemia in acute liver failure. Creatine is also taken by many athletes for its ergogenic properties. However, little is known about the adverse effects of creatine supplementation, which are barely described in the literature, with reports of mainly hypothetical effects arising from a small number of scientific publications. Antioxidant effects have been found in several studies, although one of the theories regarding the potential for toxicity from creatine supplementation is that it can increase oxidative stress and potentially form carcinogenic compounds.

  18. 5-lipoxygenase activation is involved in the mechanisms of chronic hepatic injury in a rat model of chronic aluminum overload exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Shaoshan

    We previously confirmed that rats overloaded with aluminum exhibited hepatic function damage and increased susceptibility to hepatic inflammation. However, the mechanism of liver toxicity by chronic aluminum overload is poorly understood. In this study, we investigated changes in the 5-lipoxygenase (5-LO) signaling pathway and its effect on liver injury in aluminum-overloaded rats. A rat hepatic injury model of chronic aluminum injury was established via the intragastric administration of aluminum gluconate (Al{sup 3+} 200 mg/kg per day, 5 days a week for 20 weeks). The 5-LO inhibitor, caffeic acid (10 and 30 mg/kg), was intragastrically administered 1 h after aluminum administration.more » Hematoxylin and eosin staining was used to visualize pathological changes in rat liver tissue. A series of biochemical indicators were measured with biochemistry assay or ELISAs. Immunochemistry and RT-PCR methods were used to detect 5-LO protein and mRNA expression in the liver, respectively. Caffeic acid administration protected livers against histopathological injury, decreased plasma ALT, AST, and ALP levels, decreased TNF-α, IL-6, IL-1β and LTs levels, increased the reactive oxygen species content, and down-regulated the mRNA and protein expressions of 5-LO in aluminum overloaded rats. Our results indicate that 5-lipoxygenase activation is mechanistically involved in chronic hepatic injury in a rat model of chronic aluminum overload exposure and that the 5-LO signaling pathway, which associated with inflammation and oxidative stress, is a potential therapeutic target for chronic non-infection liver diseases. - Highlights: • 5-LO signaling contributes to mechanisms of hepatotoxicity of aluminum overload. • Oxidative and inflammatory reaction involve in chonic aluminum hepatotoxicity. • 5-LO inhibitor has a protective effect on aluminum-overload liver injury. • 5-LO signaling is a potential therapeutic target for non-infection liver diseases.« less

  19. Semen Brassicae ameliorates hepatic fibrosis by regulating transforming growth factor-β1/Smad, nuclear factor-κB, and AKT signaling pathways in rats.

    PubMed

    Cao, Si; Zheng, Baoping; Chen, Tao; Chang, Xinfeng; Yin, Bao; Huang, Zhihua; Shuai, Ping; Han, Limin

    2018-01-01

    There is no effective treatment for liver fibrosis, which is a common phase during the progression of many chronic liver diseases to cirrhosis. Previous studies found that Semen Brassicae therapy can effectively improve the clinical symptoms of patients with asthma, allergic rhinitis, and chronic lung diseases; however, its effects on liver fibrosis in rats and its possible mechanisms of action remain unclear. Rats were injected intraperitoneally with 4% thioacetamide aqueous solution (5 mL·kg -1 ) at a dose of 200 mg·kg -1 twice a week for 8 consecutive weeks to establish the liver fibrosis model and were then treated with different concentrations of Semen Brassicae extract. After Semen Brassicae treatment, the morphology of the liver tissue was analyzed using hematoxylin and eosin and Masson's trichrome staining, and liver index and liver fibrosis grade were calculated. Thereafter, the levels of collagen-I, collagen-III, α-SMA, transforming growth factor (TGF)-β1, p-Smad 2/3, Smad 2/3, Smad4, NF-κB-p65, p-NF-κB-p65, IL-1β, IL-6, AKT, and p-AKT were determined using Western blotting. Compared with the untreated model group, the Semen Brassicae-treated group showed significantly decreased liver function indices; expression levels of collagen-I, collagen-III, and α-SMA; and hepatic fibrosis. Further studies also showed that the expression of TGF-β1, Smad4, p-Smad 2/3/Smad 2/3, p-NF-κB-p65/NF-κB-p65, IL-1β, IL-6, and p-AKT/AKT significantly decreased after the treatment. These results indicate that Semen Brassicae exhibits an anti-hepatic fibrosis effect, and the underlying mechanism of action may be related to the regulation of TGF-β1/Smad, NF-κB, and AKT signaling pathways and the reduction of extracellular matrix deposition.

  20. Portal pressure and liver stiffness measurements in the prediction of fibrosis regression after sustained virological response in recurrent hepatitis C.

    PubMed

    Mauro, Ezequiel; Crespo, Gonzalo; Montironi, Carla; Londoño, Maria-Carlota; Hernández-Gea, Virginia; Ruiz, Pablo; Sastre, Lydia; Lombardo, Julissa; Mariño, Zoe; Díaz, Alba; Colmenero, Jordi; Rimola, Antoni; Garcia-Pagán, Juan Carlos; Brunet, Mercé; Forns, Xavier; Navasa, Miquel

    2018-05-01

    Sustained virological response (SVR) improves survival in post-liver transplant (LT) recurrent hepatitis C. However, the impact of SVR on fibrosis regression is not well defined. In addition, the performance of noninvasive methods to evaluate the presence of fibrosis and portal hypertension (PH) post-SVR has been scarcely evaluated. We aimed to investigate the degree of fibrosis regression (decrease ≥1 METAVIR stage) after-SVR and its associated factors in recurrent hepatitis C, as well as the diagnostic capacity of noninvasive methods in the assessment of liver fibrosis and PH after viral clearance. We evaluated 112 hepatitis C virus-infected LT recipients who achieved SVR between 2001 and 2015. A liver biopsy was performed before treatment and 12 months post-SVR. Hepatic venous pressure gradient (HVPG), liver stiffness measurement (LSM), and Enhanced Liver Fibrosis (ELF) score were also determined at the same time points. Sixty-seven percent of the cohort presented fibrosis regression: 43% in recipients with cirrhosis and 72%-85% in the remaining stages (P = 0.002). HVPG, LSM, and ELF significantly decreased post-SVR. Liver function significantly improved, and survival was significantly better in patients achieving fibrosis regression. Baseline HVPG and LSM as well as decompensations before therapy were independent predictors of fibrosis regression. One year post-SVR, LSM had a high diagnostic accuracy to discard the presence of advanced fibrosis (AF) and clinically significant PH (AUROC, 0.902 and 0.888). In conclusion, SVR post-LT induces fibrosis regression in most patients, leading to significant clinical benefits. Pretreatment HVPG and LSM are significant determinants of the likelihood of fibrosis regression. Finally, LSM accurately predicts the presence of AF and PH 1 year after SVR and thus can be used to determine monitoring strategies. (Hepatology 2018;67:1683-1694). © 2017 by the American Association for the Study of Liver Diseases.

  1. [Effects of total flavonoids in Astragali Complanati Semen on liver lipid level and ERα expression on liver in hyperlipidemia rats with kidney-Yang deficiency pattern].

    PubMed

    Tang, Xiao-Ran; Wang, Jing-Xia; Fu, Lu; Yao, Jun-Kai; Li, Si-Ming; Gao, Xue-Min; Zhang, Jian-Jun

    2018-06-01

    Menopausal women appear lipid metabolism disorder with the ovarian function decline and the estrogen levels decreased. Modern clinical usually use estrogen replacement therapy and with long time application with lots of side effect appear. Traditional Chinese medicine has more secure and effective methords,using warming Yang drugs and methods. And the previous study proves the Chinese medicine Astragali Complanati Semen water extraction has a good role in regulation of blood lipids. Because of the liver is the most important organ on regulating metabolism, therefore this study aimed to evaluate the effects of total flavonoids in Astragali Complanati Semen(TFS)on liverlipid level and ERα expressionon liver in hyperlipidemia rats with kidney-Yang deficiency pattern to explore the substance basis and mechanism of Astragali Complanati Semen in regulate lipid effect and clarify traditional Chinese medicine advantages and features. This experiment uses hyperlipidemia rats with kidney-Yang deficiency pattern with bilateral ovariectomized and fed with high fat diet for 6 weeks. And rats of sham operation group and model group rats were intragastrilly(ig) with saline, estrogen group were intragastrilly with estrogen(0.2 mg·kg⁻¹). And three TFS group were intragastrilly with TFS at dose 28.5, 57, 114 mg·kg⁻¹ for 8 weeks. At the same time, TC, TG, LDL-C,HDL-C liver weight, liver index, uterine weight, uterine index, serum estrogen level, FSH levels and liver pathology, liver estrogen receptor expression were detected, weighting and calculating their organ index. The experimental results compared with the model group, TFS 114 mg·kg⁻¹ decreased the level of liver TG ( P <0.05), TC ( P <0.001) and LDL-C ( P <0.001) and increased the level of HDL-C ( P <0.05). Compared with the model group, estrogen group increased the level of blood serum ( P <0.001) and decreased the level of FSH ( P <0.001). In addition, compared with sham operation group,model group decreased the protein expression of ERα( P <0.01). Compared with the model group, estrogen group increased the protein expression of ERα significantly( P <0.001).TFS mid-dose group and TFS high-dose group is increased the protein expression of ERα( P <0.01, P <0.001).In a conclusion,Flavonoids is the main active ingredient of Astragali Complanati Semen. The mechanism of it maybe is enhancing the estrogen receptor sensitivity or the number of estrogen receptors, amplifying the signal after the receptor conduction, which could result in lipid-lowering effect. Copyright© by the Chinese Pharmaceutical Association.

  2. Mutant MMP-9 and HGF gene transfer enhance resolution of CCl4-induced liver fibrosis in rats: role of ASH1 and EZH2 methyltransferases repression.

    PubMed

    Atta, Hussein; El-Rehany, Mahmoud; Hammam, Olfat; Abdel-Ghany, Hend; Ramzy, Maggie; Roderfeld, Martin; Roeb, Elke; Al-Hendy, Ayman; Raheim, Salama Abdel; Allam, Hatem; Marey, Heba

    2014-01-01

    Hepatocyte growth factor (HGF) gene transfer inhibits liver fibrosis by regulating aberrant cellular functions, while mutant matrix metalloproteinase-9 (mMMP-9) enhances matrix degradation by neutralizing the elevated tissue inhibitor of metalloproteinase-1 (TIMP-1). It was shown that ASH1 and EZH2 methyltransferases are involved in development of liver fibrosis; however, their role in the resolution phase of liver fibrosis has not been investigated. This study evaluated the role of ASH1 and EZH2 in two mechanistically different therapeutic modalities, HGF and mMMP-9 gene transfer in CCl4 induced rat liver fibrosis. Liver fibrosis was induced in rats with twice a week intraperitoneal injection of CCl4 for 8 weeks. Adenovirus vectors encoding mMMP-9 or HGF genes were injected through tail vein at weeks six and seven and were sacrificed one week after the second injection. A healthy animal group was likewise injected with saline to serve as a negative control. Rats treated with mMMP-9 showed significantly lower fibrosis score, less Sirius red stained collagen area, reduced hydroxyproline and ALT concentration, decreased transforming growth factor beta 1 (TGF-β1) mRNA and lower labeling indices of α smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) stained cells compared with HGF- or saline-treated rats. Furthermore, TIMP-1 protein expression in mMMP-9 group was markedly reduced compared with all fibrotic groups. ASH1 and EZH2 protein expression was significantly elevated in fibrotic liver and significantly decreased in mMMP-9- and HGF-treated compared to saline-treated fibrotic livers with further reduction in the mMMP-9 group. Gene transfer of mMMP-9 and HGF reduced liver fibrosis in rats. ASH1 and EZH2 methyltransferases are significantly reduced in mMMP-9 and HGF treated rats which underlines the central role of these enzymes during fibrogenesis. Future studies should evaluate the role of selective pharmacologic inhibitors of ASH1 and EZH2 in resolution of liver fibrosis.

  3. Fatty Acid Metabolism and Ketogenesis in the Rat Exposed to Streptococcus pneumoniae.

    DTIC Science & Technology

    1980-04-30

    livers from rats infected with Streptococctis pneumoniae have a decreased ketogenic capacity compared to fasted controls. This study examines ~jpossible...CLASSIFICATION OF THIS PAGE(Whm De. ime.t pneumococcal sepsis, the decreased ketogenic capacity of the liver is accom- panied by increased hepatic carnitine...accompanies the illness. Previous studies have shown that livers from rats infected with Streptococcus pneumoniae have a decreased ketogenic capacity

  4. A fourth dimension in decision making in hepatology.

    PubMed

    Ilan, Yaron

    2010-12-01

    Today, the assessment of liver function in patients suffering from acute or chronic liver disease is based on liver biopsy and blood tests including synthetic function, liver enzymes and viral load, most of which provide only circumstantial evidence as to the degree of hepatic impairment. Most of these tests lack the degree of sensitivity to be useful for follow-up of these patients at the frequency that is needed for decision making in clinical hepatology. Accurate assessment of liver function is essential to determine both short- and long-term prognosis, and for making decisions about liver and non-liver surgery, TIPS, chemoembolization or radiofrequency ablation in patients with chronic liver disease. Liver function tests can serve as the basis for accurate decision-making regarding the need for liver transplantation in the setting of acute failure or in patients with chronic liver disease. The liver metabolic breath test relies on measuring exhaled (13) C tagged methacetin, which is metabolized only by the liver. Measuring this liver-specific substrate by means of molecular correlation spectroscopy is a rapid, non-invasive method for assessing liver function at the point-of-care. The (13) C methacetin breath test (MBT) is a powerful tool to aid clinical hepatologists in bedside decision-making. Our recent findings regarding the ability of point-of-care (13) C MBT to assess the hepatic functional reserve in patients with acute and chronic liver disease are reviewed along with suggested treatment algorithms for common liver disorders. © 2010 The Japan Society of Hepatology.

  5. The influence of interferon alpha on the rat liver injured by chronic administration of carbon tetrachloride.

    PubMed

    Madro, Agnieszka; Słomka, Maria; Celiński, Krzysztof; Chibowski, Daniel; Czechowska, Grazyna; Kleinrok, Zdzisław; Karpińska, Agnieszka

    2002-01-01

    Due to their complex and not fully known etiopathogenesis as well as difficulties in treatment, chronic hepatitis and cirrhosis still remain one of the main problems of hepatologists. Nowadays, the use of IFN alpha is considered the most effective method of treatment in chronic hepatitis. Recently, a new property of IFN, i.e. its effects on the reduction of fibrosis, has been discovered. The aim of the paper was to examine the effects of IFN alpha on biochemical parameters (AlAt and AspAt activities), on the metabolic function of the liver and its morphologic picture observed under the light and electron microscope after the 3- and 6-week CCl4-induced damage. The experiments were carried out in Wistar male rats. To evaluate the liver function, the test of aminophenazone elimination in the isolated perfused rat livers was used according to Miller modified by Hafte. Additionally, AspAt and AlAt activities were determined. The liver specimens were analysed under the light and electron microscope and using immunohistochemical methods. The findings show that after the 3-week CCl4-induced liver damage, IFN alpha does not significantly affect AlAt and AspAt activities, irrespective of the dose used. IFN alpha administered after the 6-week damage significantly changes those activities when the doses used are high. It was found that carbon tetrachloride does not result in evident cirrhotic changes, however it activates Ito cells, causes focal retraction of the stroma and fibrosis. The increased number of Ito cells in Disse's space observed in immunohistochemical and ultrastructural examinations is indicative of the activation of liver fibrotic processes following CCl4 administration in both variants used. IFN alpha substantially weakens fibrogenesis of the CCl4-damaged liver which is visible in the decreased number of Ito cells and weaker expression of the stroma retraction. Moreover, IFN alpha administered to the experimental animals after the CCl4-induced injury of the liver increases aminophenazone clearance, especially when used in higher doses. Positive effects of IFN confirmed in the studies suggest that the drug may be used in patients with chronic hepatitis and early cirrhosis since it is likely not only to eliminate the virus but also to improve the liver function and reduce fibrosis.

  6. Quality of life in patients with nonalcoholic fatty liver disease in combination with essential hypertension considering taste sensitivity to sodium chloride.

    PubMed

    Mashura, Hanna Y; Hanych, Taras M; Rishko, Alexander A

    2016-01-01

    Nonalcoholic fatty liver disease and hypertensive disease - is the most common combination of abnormalities that occur in people suffering from metabolic syndrome. Their combination not only causes concurrent damage of the liver and the heart, caused by common pathogenic beginning, and also mutually complicate the disease course of each other. The leading role in the development of nonalcoholic fatty liver disease belongs to abdominal obesity and insulin resistance, and is seen as a manifestation of liver disease in metabolic syndrome. Genetic predisposition, lifestyle, improper nutrition, including excessive use of sodium chloride, lead to excessive formation of visceral adipose tissue with development of abdominal obesity, which is a likely criterion of insulin resistance. The long course of nonalcoholic fatty liver disease in combination with essential hypertension in excessive consumption of sodium chloride may negatively affect their quality of life. The aim of the study is to find out the features of quality of life in patients with nonalcoholic fatty liver disease in combination with hypertensive disease with different taste sensitivity to sodium chloride. We have investigated the quality of life of 65 patients with nonalcoholic fatty liver disease in combination with hypertensive disease II stage with different taste sensitivity to sodium chloride. Salt taste sensitivity threshold to sodium chloride is determined by the method of R. Henkin. Assessment of quality of life was performed using the Ukrainian version of the questionnaire Medical Outcomes Study Short Form 36 (MO S SF-36). Was revealed that in patients with nonalcoholic fatty liver disease in combination with hypertensive disease II stage with high salt taste sensitivity threshold observed the decline in the quality of life that manifests as a decline in physical condition (especially of the physical functioning, physical role functioning and general health perceptions) and mental health (especially social functioning). Also the increased salt intake and salt appetite in patients with high salt taste sensitivity threshold were noted (p <0,05). Reducing the use of sodium chloride can be a preventive measure easier than a decrease in body weight, and one that will reduce the body weight, especially in people with nonalcoholic fatty liver disease in combination with hypertensive disease, can reduce the risk of complications and improve quality of life in patients.

  7. Ferulic acid prevents liver injury and increases the anti-tumor effect of diosbulbin B in vivo *

    PubMed Central

    Wang, Jun-ming; Sheng, Yu-chen; Ji, Li-li; Wang, Zheng-tao

    2014-01-01

    The present study is designed to investigate the protection by ferulic acid against the hepatotoxicity induced by diosbulbin B and its possible mechanism, and further observe whether ferulic acid augments diosbulbin B-induced anti-tumor activity. The results show that ferulic acid decreases diosbulbin B-increased serum alanine transaminase/aspartate transaminase (ALT/AST) levels. Ferulic acid also decreases lipid peroxide (LPO) levels which are elevated in diosbulbin B-treated mice. Histological evaluation of the liver demonstrates hydropic degeneration in diosbulbin B-treated mice, while ferulic acid reverses this injury. Moreover, the activities of copper- and zinc-containing superoxide dismutase (CuZn-SOD) and catalase (CAT) are decreased in the livers of diosbulbin B-treated mice, while ferulic acid reverses these decreases. Further results demonstrate that the mRNA expressions of CuZn-SOD and CAT in diosbulbin B-treated mouse liver are significantly decreased, while ferulic acid prevents this decrease. In addition, ferulic acid also augments diosbulbin B-induced tumor growth inhibition compared with diosbulbin B alone. Taken together, the present study shows that ferulic acid prevents diosbulbin B-induced liver injury via ameliorating diosbulbin B-induced liver oxidative stress injury and augments diosbulbin B-induced anti-tumor activity. PMID:24903991

  8. Prevention of hepatic and renal toxicity with bradykinin potentiating factor (BPF) isolated from Egyptian scorpion venom (Buthus occitanus) in gentamicin treated rats.

    PubMed

    Bekheet, Souad H M; Awadalla, Eatemaad A; Salman, Muhammad M; Hassan, Mohamed K

    2013-04-01

    The present investigation report the effect of a bradykinin-potentiating factor (BPF) on gentamicin-induced oxidative stress in rat liver and kidney. BPF is a peptide fraction isolated from the venom of the Egyptian scorpion (Buthus occitanus) has been demonstrated to have antioxidant, free radical scavenger and anti-inflammatory effects. Thirty male Rattus norvegicus (130-150 g) were included and divided into three equal groups as follows: Group I (control), group II was (ip) injected with gentamicin alone (80 mg/kg/day) for 15 days, group III was given (ip) injection of BPF (1mg/kg/day) one hour prior to gentamicin treatment for 15 days with the same dose of gentamicin as group II. Both organs were subjected to histopathological analysis with the light microscope. The activities of alanine aminotransferase (ALT), asparate aminotransferase (AST) and alkaline phosphatase (ALP) in serum were measured as indicators of the liver function. As parameters of the kidney function, creatinine, uric acid and urea concentrations were determined. Also, malondialdehyde (MDA), reduced glutathione (GSH), super oxide dismutase (SOD) and catalase (CAT) were determined in both tissues. Gentamicin caused a significant decrease or inhibition in the activities of GSH, SOD, and CAT, with significant increase in the level of MDA, ALT, AST, ALP, as well as creatinine, uric acid and urea concentrations in versus to control groups in both liver and kidney. Co-administration of gentamicin and BPF significantly increased the activity of GSH, SOD, and CAT, with significant decrease in the level of MDA and maintained serum (ALT); (AST); (ALP), creatinine, uric acid and urea concentrations as the same level as control group. Moreover, administration of gentamicin resulted in damage to liver and kidney structures. Administration of BPF before gentamicin exposure prevented severe alterations of biochemical parameters and disruptions of liver and kidney structures. In conclusion, this study obviously demonstrated that pretreatment with BPF significantly attenuated the physiological and histopathological alterations induced by gentamicin. Also, the present study identifies new areas of research for development of better therapeutic agents for liver, kidney, and other organs dysfunctions and diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Estrogen protects the liver and intestines against sepsis-induced injury in rats.

    PubMed

    Sener, Göksel; Arbak, Serap; Kurtaran, Pelin; Gedik, Nursal; Yeğen, Berrak C

    2005-09-01

    Sepsis is commonly associated with enhanced generation of reactive oxygen metabolites, leading to multiple organ dysfunctions. The aim of this study was to examine the putative protective role of estradiol against sepsis-induced oxidative organ damage. Sepsis was induced by cecal ligation and puncture method in Wistar albino rats. Sham-operated (control) and sepsis groups received saline or estradiol propionate (10 mg/kg) intraperitoneally immediately after the operation and at 12 h. Twenty-four hours after the surgery, rats were decapitated and malondialdehyde, glutathione levels, and myeloperoxidase activity were determined in the liver and ileum, while oxidant-induced tissue fibrosis was determined by collagen contents. Tissues were also examined microscopically. Serum aspartate aminotransferase, alanine aminotransferase levels, and lactate dehydrogenase were measured for the evaluation of liver functions and tissue damage, respectively. Tumor necrosis factor-alpha was also assayed in serum samples. In the saline-treated sepsis group, glutathione levels were decreased significantly, while the malondialdehyde levels, myeloperoxidase activity, and collagen content were increased in the tissues (P < 0.01 to P < 0.001), suggesting oxidative organ damage, which was also verified histologically. In the estradiol-treated sepsis group, all of these oxidant responses were reversed significantly (P < 0.05 to P < 0.01). Liver function tests and tumor necrosis factor-alpha levels, which were increased significantly (P < 0.001) following sepsis, were decreased (P < 0.05 to P < 0.001) with estradiol treatment. The results demonstrate the role of oxidative mechanisms in sepsis-induced tissue damage, and estradiol, by its antioxidant properties, ameliorates oxidative organ injury, implicating that treatment with estrogens might be applicable in clinical situations to ameliorate multiple organ damage induced by sepsis.

  10. Taurine zinc solid dispersions enhance bile-incubated L02 cell viability and improve liver function by inhibiting ERK2 and JNK phosphorylation during cholestasis.

    PubMed

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lai, Xiaofang; Xu, Donghui

    2016-07-29

    Dietary intakes of taurine and zinc are associated with decreased risk of liver disease. In this study, solid dispersions (SDs) of a taurine zinc complex on hepatic injury were examined in vitro using the immortalized human hepatocyte cell line L02 and in a rat model of bile duct ligation. Sham-operated and bile duct ligated Sprague-Dawley rats were treated with the vehicle alone or taurine zinc (40, 80, 160mg/kg) for 17days. Bile duct ligation significantly increased blood lipid levels, and promoted hepatocyte apoptosis, inflammation and compensatory biliary proliferation. In vitro, incubation with bile significantly reduced L02 cell viability; this effect was significantly attenuated by pretreatment with SP600125 (a JNK inhibitor) and enhanced when co-incubated with taurine zinc SDs. In vivo, administration of taurine zinc SDs decreased serum alanine aminotransferase and aspartate aminotransferase activities in a dose-dependent manner and attenuated the increases in serum total bilirubin, total cholesterol and low density lipoprotein cholesterol levels after bile duct ligation. Additionally, taurine zinc SDs downregulated the expression of interleukin-1β and inhibited the phosphorylation of Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase2 (ERK2) in the liver after bile duct ligation. Moreover, taurine zinc SDs had more potent blood lipid regulatory and anti-apoptotic effects than the physical mixture of taurine and zinc acetate. Therefore, we speculate that taurine zinc SDs protect liver function at least in part via a mechanism linked to reduce phosphorylation of JNK and ERK2, which suppresses inflammation, apoptosis and cholangiocyte proliferation during cholestasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Formation of cytochrome P-450 containing haem or cobalt-protoporphyrin in liver homogenates of rats treated with phenobarbital and allylisopropylacetamide.

    PubMed Central

    Bonkovsky, H L; Sinclair, J F; Healey, J F; Sinclair, P R; Smith, E L

    1984-01-01

    The potent porphyrogen allylisopropylacetamide and related compounds decrease hepatic concentrations of cytochrome P-450. This decrease occurs particularly in phenobarbital-induced cytochrome P-450 and is caused by suicidal breakdown of the haem of cytochrome P-450. Quantitative rocket immunoelectrophoresis showed that the protein moiety of the major phenobarbital-inducible form of hepatic cytochrome P-450 was not diminished up to 1 h, but was markedly decreased (to 43% of that of the phenobarbital-treated control) at 20 h after allylisopropylacetamide treatment. In contrast, the concentration of total cytochrome P-450, measured spectrophotometrically, decreased to 30-40% of the control at both 1 and 20 h after allylisopropylacetamide. Cytochrome P-450-dependent demethylations of ethylmorphine and benzphetamine decreased to a similar extent. When liver homogenates from rats treated with allylisopropylacetamide 1 h before being killed were incubated with haem, functional holocytochrome P-450 could be reconstituted from the apoprotein. Incubation with haem increased spectrophotometrically measurable cytochrome P-450 to 69%, ethylmorphine demethylase to 64% and benzphetamine demethylase to 93% of the activities in rats treated with phenobarbital alone. At 20 h after allylisopropylacetamide treatment, however, little or no reconstitution of cytochrome P-450 occurred after incubation with haem. When liver homogenates were incubated with cobalt and protoporphyrin, and microsomal proteins were then subjected to polyacrylamide-gel electrophoresis, cobalt-protoporphyrin was found specifically associated with proteins of Mr 50 000-53 000. When homogenates from rats given allylisopropylacetamide for 1 h or 20 h were compared, it was found that the extent of this association was higher in livers from the rats containing more apocytochrome P-450, suggesting that cobalt-protoporphyrin had associated with the apocytochrome. The data provide insight into the association of haem with the protein moiety of cytochrome P-450 and factors affecting breakdown of this protein. Images Fig. 2. Fig. 3. Fig. 5. PMID:6477526

  12. Efficacy of grape seed and skin extract against doxorubicin-induced oxidative stress in rat liver.

    PubMed

    Mokni, Meherzia; Hamlaoui, Sonia; Kadri, Safouen; Limam, Ferid; Amri, Mohamed; Marzouki, Lamjed; Aouani, Ezzedine

    2015-11-01

    Doxorubicin (Dox) is an anthracycline used in chemotherapy, although it causes toxicity and oxidative stress. Grape seed and skin extract (GSSE) is a mixture of polyphenolic compounds with antioxidant properties. To evaluate the hepato-toxicity of Dox on healthy rats as well as the protective effect of GSSE, rats were treated with GSSE (500mg/kg bw) during 8 days. At the 4th day of treatment, they received a single dose of Dox (20 mg/kg bw). After the treatment (9th day), livers were collected and processed for oxidative stress status. Dox increased MDA (+ 900%), decreased catalase (-60%) and increased peroxidase (+90%) and superoxide dismutase (+100%) activities. In this latter case Dox mainly increased the iron isoform. Furthermore Dox altered intracellular mediators as catalytic free iron (-75%), H₂O₂(-75%) and calcium (+30%). Dox also affected liver function by elevating plasma triacylglycerol and transaminases and liver morphology by altering its typical architecture. Importantly all Dox-induced liver disturbances were alleviated upon GSSE treatment. Dox induced liver toxicity and an oxidative stress mainly characterized by increased lipoperoxidation but not protein carbonylation. GSSE efficiently protected the liver from Dox-induced toxicity and appeared as a safe adjuvant that could be incorporated into chemotherapy protocols.

  13. Mineral metabolism in dimethylnitrosamine-induced hepatic fibrosis.

    PubMed

    George, Joseph

    2006-10-01

    Complications such as ascites during the pathogenesis of hepatic fibrosis and cirrhosis may lead to several abnormalities in mineral metabolism. In the present investigation, we have monitored serum and liver concentrations of calcium, magnesium, sodium and potassium during experimentally induced hepatic fibrosis in rats. The liver injury was induced by intraperitoneal injections of dimethylnitrosamine (DMN; N-nitrosodimethylamine, NDMA) in doses 1 mg/100 g body weight on 3 consecutive days of each week over a period of 21 days. Calcium, magnesium, sodium and potassium were measured by atomic absorption spectrophotometry in the serum and liver on days 7, 14 and 21 after the start of DMN administration. Negative correlations were observed between liver function tests and serum mineral levels, except with albumin. Calcium, magnesium, potassium and sodium concentrations in the serum were decreased after the induction of liver injury. The liver calcium content was increased after DMN treatment. No change occurred in liver sodium content. However, magnesium and potassium content was significantly reduced in the hepatic tissue. The results suggest that DMN-induced hepatic fibrosis plays certain role in the alteration of essential elements. The low levels of albumin and the related ascites may be one of the major causes of the imbalance of mineral metabolism in hepatic fibrosis and further aggravation of the disease.

  14. Angiopoietin-like 3 regulates hepatocyte proliferation and lipid metabolism in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, So-Hyun; Department of Biology, Chungnam National University, Daejeon; So, Ju-Hoon

    2014-04-18

    Highlights: • angptl3 is specifically expressed in the liver of developing zebrafish. • Knockdown of Angptl3 decreases liver size in developing zebrafish. • Knockdown of zebrafish Angptl3 elicits a hypocholesterolemia phenotype. - Abstract: Loss-of-function mutations in angiopoietin-like 3 (ANGPTL3) cause familial hypobetalipoproteinemia type 2 (FHBL2) in humans. ANGPTL3 belongs to the angiopoietin-like family, the vascular endothelial growth factor family that is structurally similar to angiopoietins and is known for a regulator of lipid and glucose metabolism, although it is unclear how mutations in ANGPTL3 lead to defect in liver development in the vertebrates. We report here that angptl3 is primarilymore » expressed in the zebrafish developing liver and that morpholino (MO) knockdown of Angptl3 reduces the size of the developing liver, which is caused by suppression of cell proliferation, but not by enhancement of apoptosis. However, MO knockdown of Angptl3 did not alter angiogenesis in the developing liver. Additionally, disruption of zebrafish Angptl3 elicits the hypocholesterolemia phenotype that is characteristic of FHBL2 in humans. Together, our findings propose a novel role for Angptl3 in liver cell proliferation and maintenance during zebrafish embryogenesis. Finally, angptl3 morphants will serve as a good model for understanding the pathophysiology of FHBL2.« less

  15. Lychee (Litchi chinensis Sonn.) Pulp Phenolic Extract Provides Protection against Alcoholic Liver Injury in Mice by Alleviating Intestinal Microbiota Dysbiosis, Intestinal Barrier Dysfunction, and Liver Inflammation.

    PubMed

    Xiao, Juan; Zhang, Ruifen; Zhou, Qiuyun; Liu, Lei; Huang, Fei; Deng, Yuanyuan; Ma, Yongxuan; Wei, Zhencheng; Tang, Xiaojun; Zhang, Mingwei

    2017-11-08

    Liver injury is the most common consequence of alcohol abuse, which is promoted by the inflammatory response triggered by gut-derived endotoxins produced as a consequence of intestinal microbiota dysbiosis and barrier dysfunction. The aim of this study was to investigate whether modulation of intestinal microbiota and barrier function, and liver inflammation contributes to the hepatoprotective effect of lychee pulp phenolic extract (LPPE) in alcohol-fed mice. Mice were treated with an ethanol-containing liquid diet alone or in combination with LPPE for 8 weeks. LPPE supplementation alleviated ethanol-induced liver injury and downregulated key markers of inflammation. Moreover, LPPE supplementation reversed the ethanol-induced alteration of intestinal microbiota composition and increased the expression of intestinal tight junction proteins, mucus protecting proteins, and antimicrobial proteins. Furthermore, in addition to decreasing serum endotoxin level, LPPE supplementation suppressed CD14 and toll-like receptor 4 expression, and repressed the activation of nuclear factor-κB p65 in the liver. These data suggest that intestinal microbiota dysbiosis, intestinal barrier dysfunction, and liver inflammation are improved by LPPE, and therefore, the intake of LPPE or Litchi pulp may be an effective strategy to alleviate the susceptibility to alcohol-induced hepatic diseases.

  16. Retrospective Identification of Herpes Simplex 2 Virus-Associated Acute Liver Failure in an Immunocompetent Patient Detected Using Whole Transcriptome Shotgun Sequencing.

    PubMed

    Ono, Atsushi; Hayes, C Nelson; Akamatsu, Sakura; Imamura, Michio; Aikata, Hiroshi; Chayama, Kazuaki

    2017-01-01

    Acute liver failure (ALF) is a severe condition in which liver function rapidly deteriorates in individuals without prior history of liver disease. While most cases result from acetaminophen overdose or viral hepatitis, in up to a third of patients, no clear cause can be identified. Liver transplantation has greatly reduced mortality among these patients, but 40% of patients recover without liver transplantation. Therefore, there is an urgent need for rapid determination of the etiology of acute liver failure. In this case report, we present a case of herpes simplex 2 virus- (HSV-) associated ALF in an immunocompetent patient. The patient recovered without LT, but the presence of HSV was not suspected at the time, precluding more effective treatment with acyclovir. To determine the etiology, stored blood samples were analyzed using whole transcriptome shotgun sequencing followed by mapping to a panel of viral reference sequences. The presence of HSV-DNA in blood samples at the time of admission was confirmed using real-time polymerase chain reaction, and, at the time of discharge, HSV-DNA levels had decreased by a factor of 10 6 . Conclusions. In ALF cases of undetermined etiology, uncommon causes should be considered, especially those for which an effective treatment is available.

  17. Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer

    PubMed Central

    Barbier-Torres, Lucía; Delgado, Teresa C.; García-Rodríguez, Juan L.; Zubiete-Franco, Imanol; Fernández-Ramos, David; Buqué, Xabier; Cano, Ainara; Juan, Virginia Gutiérrez-de; Fernández-Domínguez, Itziar; Lopitz-Otsoa, Fernando; Fernández-Tussy, Pablo; Boix, Loreto; Bruix, Jordi; Villa, Erica; Castro, Azucena; Lu, Shelly C.; Aspichueta, Patricia; Xirodimas, Dimitris; Varela-Rey, Marta; Mato, José M.; Beraza, Naiara; Martínez-Chantar, María L.

    2015-01-01

    The current view of cancer progression highlights that cancer cells must undergo through a post-translational regulation and metabolic reprogramming to progress in an unfriendly environment. In here, the importance of neddylation modification in liver cancer was investigated. We found that hepatic neddylation was specifically enriched in liver cancer patients with bad prognosis. In addition, the treatment with the neddylation inhibitor MLN4924 in Phb1-KO mice, an animal model of hepatocellular carcinoma showing elevated neddylation, reverted the malignant phenotype. Tumor cell death in vivo translating into liver tumor regression was associated with augmented phosphatidylcholine synthesis by the PEMT pathway, known as a liver-specific tumor suppressor, and restored mitochondrial function and TCA cycle flux. Otherwise, in protumoral hepatocytes, neddylation inhibition resulted in metabolic reprogramming rendering a decrease in oxidative phosphorylation and concomitant tumor cell apoptosis. Moreover, Akt and LKB1, hallmarks of proliferative metabolism, were altered in liver cancer being new targets of neddylation. Importantly, we show that neddylation-induced metabolic reprogramming and apoptosis were dependent on LKB1 and Akt stabilization. Overall, our results implicate neddylation/signaling/metabolism, partly mediated by LKB1 and Akt, in the development of liver cancer, paving the way for novel therapeutic approaches targeting neddylation in hepatocellular carcinoma. PMID:25650664

  18. cis-4-Decenoic and decanoic acids impair mitochondrial energy, redox and Ca(2+) homeostasis and induce mitochondrial permeability transition pore opening in rat brain and liver: Possible implications for the pathogenesis of MCAD deficiency.

    PubMed

    Amaral, Alexandre Umpierrez; Cecatto, Cristiane; da Silva, Janaína Camacho; Wajner, Alessandro; Godoy, Kálita Dos Santos; Ribeiro, Rafael Teixeira; Wajner, Moacir

    2016-09-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is biochemically characterized by tissue accumulation of octanoic (OA), decanoic (DA) and cis-4-decenoic (cDA) acids, as well as by their carnitine by-products. Untreated patients present episodic encephalopathic crises and biochemical liver alterations, whose pathophysiology is poorly known. We investigated the effects of OA, DA, cDA, octanoylcarnitine (OC) and decanoylcarnitine (DC) on critical mitochondrial functions in rat brain and liver. DA and cDA increased resting respiration and diminished ADP- and CCCP-stimulated respiration and complexes II-III and IV activities in both tissues. The data indicate that these compounds behave as uncouplers and metabolic inhibitors of oxidative phosphorylation. Noteworthy, metabolic inhibition was more evident in brain as compared to liver. DA and cDA also markedly decreased mitochondrial membrane potential, NAD(P)H content and Ca(2+) retention capacity in Ca(2+)-loaded brain and liver mitochondria. The reduction of Ca(2+) retention capacity was more pronounced in liver and totally prevented by cyclosporine A and ADP, as well as by ruthenium red, demonstrating the involvement of mitochondrial permeability transition (mPT) and Ca(2+). Furthermore, cDA induced lipid peroxidation in brain and liver mitochondria and increased hydrogen peroxide formation in brain, suggesting the participation of oxidative damage in cDA-induced alterations. Interestingly, OA, OC and DC did not alter the evaluated parameters, implying lower toxicity for these compounds. Our results suggest that DA and cDA, in contrast to OA and medium-chain acylcarnitines, disturb important mitochondrial functions in brain and liver by multiple mechanisms that are possibly involved in the neuropathology and liver alterations observed in MCAD deficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Niemann-Pick Type C2 Protein Regulates Free Cholesterol Accumulation and Influences Hepatic Stellate Cell Proliferation and Mitochondrial Respiration Function.

    PubMed

    Wang, Yuan-Hsi; Twu, Yuh-Ching; Wang, Chung-Kwe; Lin, Fu-Zhen; Lee, Chun-Ya; Liao, Yi-Jen

    2018-06-05

    Liver fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. A high-cholesterol diet is associated with liver fibrosis via the accumulation of free cholesterol in hepatic stellate cells (HSCs). Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular free cholesterol homeostasis via direct binding with free cholesterol. Previously, we reported that NPC2 was downregulated in liver cirrhosis tissues. Loss of NPC2 enhanced the accumulation of free cholesterol in HSCs and made them more susceptible to transforming growth factor (TGF)-β1. In this study, we showed that knockdown of NPC2 resulted in marked increases in platelet-derived growth factor BB (PDGF-BB)-induced HSC proliferation through enhanced extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinases (JNK), and protein kinase B (AKT) phosphorylation. In contrast, NPC2 overexpression decreased PDGF-BB-induced cell proliferation by inhibiting p38, JNK, and AKT phosphorylation. Although NPC2 expression did not affect caspase-related apoptosis, the autophagy marker light chain 3β (LC3B) was decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs. The mitochondrial respiration functions (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs, while NPC2-overexpressed cells remained normal. In addition, NPC2 expression did not affect the susceptibility of HSCs to lipopolysaccharides (LPS), and U18666A treatment induced free cholesterol accumulation, which enhanced LPS-induced Toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation, interleukin (IL)-1 and IL-6 expression. Our study demonstrated that NPC2-mediated free cholesterol homeostasis controls HSC proliferation and mitochondrial function.

  20. Effects of dietary interventions on liver volume in humans.

    PubMed

    Bian, Hua; Hakkarainen, Antti; Lundbom, Nina; Yki-Järvinen, Hannele

    2014-04-01

    To compare effects of similar weight loss induced either by a short-term low-carbohydrate or by a long-term hypocaloric diet, and to determine effects of high carbohydrate overfeeding on liver total, lean, and fat volumes. Liver total, lean, and fat volumes were measured before and after (i) a 6-day low-carbohydrate diet (n = 17), (ii) a 7-month standard hypocaloric diet (n = 26), and (iii) a 3-week high-carbohydrate diet (n = 17), by combining magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy ((1) H-MRS) techniques. At baseline, three groups were comparable with respect to age, body mass index, liver volumes and the liver fat content. Body weight decreased similarly by the short-term and long-term hypocaloric diets. Liver total volume decreased significantly more during the short-term low-carbohydrate (-22 ± 2%) than the long-term (-7 ± 2%) hypocaloric diet (P < 0.001). This was due to a greater decrease in liver lean volume in the short-term (-20 ± 2%) than the long-term (-4 ± 2%) weight loss group (P < 0.001). Decreases in liver fat were comparable. Liver volume increased by 9 ± 3% due to overfeeding (P< 0.02 for before vs. after). These data support the use of a short-term low-carbohydrate diet whenever a reduction in liver volume is desirable. Overeating carbohydrate is harmful because it increases liver volume. Copyright © 2013 The Obesity Society.

  1. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Abirami; Reddy, B. Uma; Raghav, Nallani; Ravi, Vijay Kumar; Kumar, Anuj; Maiti, Prabal K.; Sood, A. K.; Jayaraman, N.; Das, Saumitra

    2015-10-01

    A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting ``out'' in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the `proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting ``out'' in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the `proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector. Electronic supplementary information (ESI) available: Spectral data and experimental details. See DOI: 10.1039/c5nr02898a

  2. Expression of E-selectin ligand-1 (CFR/ESL-1) on hepatic stellate cells: implications for leukocyte extravasation and liver metastasis.

    PubMed

    Antoine, Marianne; Tag, Carmen G; Gressner, Axel M; Hellerbrand, Claus; Kiefer, Paul

    2009-02-01

    Leukocytes and tumor cells use E-selectin binding ligands to attach to activated endothelial cells expressing E-selectin during inflammation or metastasis. The cysteine-rich fibroblast growth factor receptor (CFR) represents the main E-selectin ligand (ESL-1) on granulocytes and its expression is exclusively modified by alpha(1,3)-fucosyltransferases IV or VII (FucT4 and FucT7). Hepatic stellate cells (HSC) are pericytes of liver sinusoidal endothelial cells. The activation of HSC and transdifferentiation into a myofibroblastic phenotype is involved in the repair of liver tissue injury, liver regeneration and angiogenesis of liver metastases. In the present study, we demonstrated that HSC expressed CFR together with FucT7 and exhibited a functional E-selectin binding activity on their cell surface. Since HSC appear to be oxygen-sensing cells, the expression of E-selectin binding activity was analyzed in HSC under a hypoxic atmosphere. While the expression of the glycoprotein CFR was unaffected by hypoxia, the cell-associated E-selectin binding activity decreased. However, under the same conditions, mRNA expression of the modifying enzyme FucT7 increased. The loss of E-selectin binding activity, therefore, appears to be neither the result of a reduced expression of the modifying transferase nor the expression of the backbone glycoprotein. After the transient transfection of HSC with CFR cDNA, the E-selectin binding activity (ESL-1) was efficiently released into the supernatant. Therefore, we hypothesize that under hypoxia, ESL-1 is shed from activated HSC. Our findings provide a novel perspective on the function of HSC in liver metastasis and inflammatory liver diseases.

  3. Liver function tests

    MedlinePlus

    Liver function tests are common tests that are used to see how well the liver is working. Tests include: ... E, Bowne WB, Bluth MH. Evaluation of liver function. In: McPherson RA, Pincus MR, eds. Henry's Clinical ...

  4. Liver Function Tests

    MedlinePlus

    ... food, store energy, and remove poisons. Liver function tests are blood tests that check to see how well your liver ... hepatitis and cirrhosis. You may have liver function tests as part of a regular checkup. Or you ...

  5. FUNCTIONAL CHANGES OF INTERNAL ORGANS AND SYSTEMS DURING SEVERE RADIATION SICKNESS FROM EXTERNAL RADIATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zedgenidze, G.A.

    1957-01-01

    Animals display different degrees of sensitivity to the action of ionizing radiation. At first increased intestinal motility of the alimentary tract is observed followed by a significant decrease in intestinal motility with radiation sickness of the third degree. Irradiation of the thoracic cage results in zonal atelectasis followed by emphysema. severe pneumonia resulting in death may develop. Contraction of the small bronchioles and expansion of the larger bronchioles is observed during radiation sickness. A decrease in muscle tone of the alimentary tract is accompanied by a decrease in muscle tone of the bronchial tubes. During moderate or severe radiation sicknessmore » it was noted that the flow of bile through the gall bladder was slowed down considerably. This disturbance in function of the liver and gall bladder could be frequently observed even during the latent period of radiation sickness. Damage to the kidneys during severe radiation sickness was noted by the fact that the sergosine clearance test took 300 min instead of the usual 40 to 80 min. A slowdown in kidney elimination was observed in all phases of radiation sickness, and hence, a determination of kidney function by urography is of value as a clinical test in the detection of mild radiation sickness. The subcutaneous injection of vitamins C, B/sub 1/, and B/sub 2/ moderated the course of the radiation sickness. It is concluded that the functional disturbances in internal organs such as the liver, kidneys, gall bladder, stomach, etc., are much more severe than the anatomical changes observed by histological examination. (TTT)« less

  6. Identification of miR-31-5p, miR-141-3p, miR-200c-3p, and GLT1 as human liver aging markers sensitive to donor-recipient age-mismatch in transplants.

    PubMed

    Capri, Miriam; Olivieri, Fabiola; Lanzarini, Catia; Remondini, Daniel; Borelli, Vincenzo; Lazzarini, Raffaella; Graciotti, Laura; Albertini, Maria Cristina; Bellavista, Elena; Santoro, Aurelia; Biondi, Fiammetta; Tagliafico, Enrico; Tenedini, Elena; Morsiani, Cristina; Pizza, Grazia; Vasuri, Francesco; D'Errico, Antonietta; Dazzi, Alessandro; Pellegrini, Sara; Magenta, Alessandra; D'Agostino, Marco; Capogrossi, Maurizio C; Cescon, Matteo; Rippo, Maria Rita; Procopio, Antonio Domenico; Franceschi, Claudio; Grazi, Gian Luca

    2017-04-01

    To understand why livers from aged donors are successfully used for transplants, we looked for markers of liver aging in 71 biopsies from donors aged 12-92 years before transplants and in 11 biopsies after transplants with high donor-recipient age-mismatch. We also assessed liver function in 36 age-mismatched recipients. The major findings were the following: (i) miR-31-5p, miR-141-3p, and miR-200c-3p increased with age, as assessed by microRNAs (miRs) and mRNA transcript profiling in 12 biopsies and results were validated by RT-qPCR in a total of 58 biopsies; (ii) telomere length measured by qPCR in 45 samples showed a significant age-dependent shortage; (iii) a bioinformatic approach combining transcriptome and miRs data identified putative miRs targets, the most informative being GLT1, a glutamate transporter expressed in hepatocytes. GLT1 was demonstrated by luciferase assay to be a target of miR-31-5p and miR-200c-3p, and both its mRNA (RT-qPCR) and protein (immunohistochemistry) significantly decreased with age in liver biopsies and in hepatic centrilobular zone, respectively; (iv) miR-31-5p, miR-141-3p and miR-200c-3p expression was significantly affected by recipient age (older environment) as assessed in eleven cases of donor-recipient extreme age-mismatch; (v) the analysis of recipients plasma by N-glycans profiling, capable of assessing liver functions and biological age, showed that liver function recovered after transplants, independently of age-mismatch, and recipients apparently 'rejuvenated' according to their glycomic age. In conclusion, we identified new markers of aging in human liver, their relevance in donor-recipient age-mismatches in transplantation, and offered positive evidence for the use of organs from old donors. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Prospective Longitudinal Assessment of Quality of Life for Liver Cancer Patients Treated With Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Jonathan, E-mail: jonathan.klein@rmp.uhn.on.ca; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario; Dawson, Laura A.

    Purpose: To evaluate quality of life (QoL), an important outcome owing to poor long-term survival, after stereotactic body radiation therapy (SBRT) to the liver. Methods and Materials: Patients (n=222) with hepatocellular carcinoma (HCC), liver metastases, or intrahepatic cholangiocarcinoma and Child-Pugh A liver function received 24-60 Gy of 6-fraction image-guided SBRT. Prospective QoL assessment was completed with the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core-30 (QLQ-C30) and/or Functional Assessment of Cancer Therapy-Hepatobiliary (FACT-Hep, version 4) questionnaires at baseline and 1, 3, 6, and 12 months after treatment. Ten HCC patients with Child-Pugh B liver function were alsomore » treated. Results: The QLQ-C30 was available for 205 patients, and 196 completed the FACT-Hep. No difference in baseline QoL (P=.17) or overall survival (P=.088) was seen between the HCC, liver metastases, and intrahepatic cholangiocarcinoma patients. Appetite loss and fatigue measured by the QLQ-C30 clinically and statistically worsened by 1 month after treatment but recovered by 3 months. At 3 and 12 months after treatment, respectively, the FACT-Hep score had improved relative to baseline in 13%/19%, worsened in 36%/27%, and remained stable in 51%/54%. Using the QLQ-C30 Global Health score, QoL improved in 16%/23%, worsened in 34%/39%, and remained stable in 50%/38% at 3 and 12 months, respectively. Median survival was 17.0 months (95% confidence interval [CI] 12.3-19.8 months). Higher baseline scores on both FACT-Hep and QLQ-C30 Global Health were associated with improved survival. Hazard ratios for death, per 10-unit decrease in QoL, were 0.90 (95% CI 0.83-0.98; P=.001) and 0.88 (95% CI 0.82-0.95; P=.001), respectively. Tumor size was inversely correlated with survival. Conclusions: Liver SBRT temporarily worsens appetite and fatigue, but not overall QoL. Stereotactic body radiation therapy is well tolerated and warrants comparison against other liver-directed therapies.« less

  8. The influence of the position of the oxygen dissociation curve on oxygen-dependent functions of the isolated perfused rat liver. III. Studies at different levels of anaemic hypoxia.

    PubMed

    Bakker, J C; Gortmaker, G C; de Vries-van Rossen, A; Offerijns, F G

    1977-03-11

    The influence of a 2,3-diphosphoglycerate (2,3-DPG)-induced displacement of the oxygen dissociation curve (O.D.C.) on the isolated perfused rat liver was studied at different levels of anaemic hypoxia. Rat livers were perfused either with fresh or with 2,3-DPG-depleted human erythrocytes at different haematocrit values (from 30% to 2.5%) at constant Po2 of the inflowing perfusate and at constant blood flow rate. The 2,3-DPG-induced difference in oxygen affinity of the red cells did not cause a significant difference in perfusion pressure during the perfusion experiments. Therefore, there is no evidence that 2,3-DPG did alter the vascular resistance of the liver, since blood flow rate could be adusted at equal values. The decrease in oxygen supply brought about by decrease of haematocrit caused a decrease of O2 consumption, of bile flow rate and of venous Po2 and an increase of lactate/pyruvate (L/P) ratio and of beta-hydroxybutyrate/acetoacetate (betaOH/Acac) ratio. There was no influence of a difference in 2,3-DPG content of the erythrocytes on the above-metioned parameters during severe anaemic hypoxia. At moderate anaemic hypoxia the venous Po2 was higher during perfusion with fresh erythrocytes than during perfusion with 2,3-DPG-depleted erythrocytes. Thus, although 2,3-DPG may play a compensatory role during conditions of mild anaemia, no such effects can be observed during conditions of severe hypoxia.

  9. Fructo-oligosaccharides and intestinal barrier function in a methionine-choline-deficient mouse model of nonalcoholic steatohepatitis.

    PubMed

    Matsumoto, Kotaro; Ichimura, Mayuko; Tsuneyama, Koichi; Moritoki, Yuki; Tsunashima, Hiromichi; Omagari, Katsuhisa; Hara, Masumi; Yasuda, Ichiro; Miyakawa, Hiroshi; Kikuchi, Kentaro

    2017-01-01

    Impairments in intestinal barrier function, epithelial mucins, and tight junction proteins have been reported to be associated with nonalcoholic steatohepatitis. Prebiotic fructo-oligosaccharides restore balance in the gastrointestinal microbiome. This study was conducted to determine the effects of dietary fructo-oligosaccharides on intestinal barrier function and steatohepatitis in methionine-choline-deficient mice. Three groups of 12-week-old male C57BL/6J mice were studied for 3 weeks; specifically, mice were fed a methionine-choline-deficient diet, a methionine-choline-deficient diet plus 5% fructo-oligosaccharides in water, or a normal control diet. Fecal bacteria, short-chain fatty acids, and immunoglobulin A (IgA) levels were investigated. Histological and immunohistochemical examinations were performed using mice livers for CD14 and Toll-like receptor-4 (TLR4) expression and intestinal tissue samples for IgA and zonula occludens-1 expression in epithelial tight junctions. The methionine-choline-deficient mice administered 5% fructo-oligosaccharides maintained a normal gastrointestinal microbiome, whereas methionine-choline-deficient mice without prebiotic supplementation displayed increases in Clostridium cluster XI and subcluster XIVa populations and a reduction in Lactobacillales spp. counts. Methionine-choline-deficient mice given 5% fructo-oligosaccharides exhibited significantly decreased hepatic steatosis (p = 0.003), decreased liver inflammation (p = 0.005), a decreased proportion of CD14-positive Kupffer cells (p = 0.01), decreased expression of TLR4 (p = 0.04), and increases in fecal short-chain fatty acid and IgA concentrations (p < 0.04) compared with the findings in methionine-choline-deficient mice that were not administered this prebiotic. This study illustrated that in the methionine-choline-deficient mouse model, dietary fructo-oligosaccharides can restore normal gastrointestinal microflora and normal intestinal epithelial barrier function, and decrease steatohepatitis. The findings support the role of prebiotics, such as fructo-oligosaccharides, in maintaining a normal gastrointestinal microbiome; they also support the need for further studies on preventing or treating nonalcoholic steatohepatitis using dietary fructo-oligosaccharides.

  10. Rifaximin Decreases the Incidence and Severity of Acute Kidney Injury and Hepatorenal Syndrome in Cirrhosis.

    PubMed

    Dong, Tien; Aronsohn, Andrew; Gautham Reddy, K; Te, Helen S

    2016-12-01

    While the effects of rifaximin have been shown to be protective against acute kidney injury (AKI) and hepatorenal syndrome (HRS) in alcohol-induced cirrhosis, its long-term effects on the renal function of other cirrhotic patients are unknown. To examine the long-term effects of rifaximin on the renal function of patients with cirrhosis from various etiologies. In a retrospective study, we examined cirrhotic patients at the University of Chicago Liver Clinic from January 1, 2011, to December 31, 2014. The study enrolled patients on rifaximin for ≥90 days, who were then matched by age, gender, and MELD score to a control group. Patients with malignancy and renal replacement therapy (RRT) at baseline were excluded. Data were censored at the last follow-up, termination of rifaximin therapy, initiation of RRT, death, or liver transplant. Eighty-eight rifaximin cases were identified and matched to 88 control cases. Baseline characteristics were similar, with the exceptions of more prevalent long-term midodrine use (≥90 days) (17.0 vs 4.5 %, p = 0.01) and baseline ascites (37.5 vs 23.8 %, p = 0.05) in the rifaximin group. There was no difference in the frequency of infections, deaths, liver transplants, or hospitalizations. After controlling for cofounders, the incidence rate ratio of AKI (IRR 0.71, p = 0.02) and HRS (IRR 0.21, p = 0.02), as well as the risk of requiring RRT (OR 0.23, p = 0.01), was lower in the rifaximin group. Long-term use of rifaximin is associated with a decrease incidence of AKI and HRS and a decrease risk of requiring RRT in a general population of cirrhotic patients.

  11. Diet-induced non-alcoholic fatty liver disease affects expression of major cytochrome P450 genes in a mouse model.

    PubMed

    Chiba, Tsuyoshi; Noji, Keiko; Shinozaki, Shohei; Suzuki, Sachina; Umegaki, Keizo; Shimokado, Kentaro

    2016-12-01

    Non-alcoholic fatty liver disease (NAFLD) is associated with impaired liver function, and resveratrol could suppress NAFLD progression. This study examined the effects of NAFLD on the expression of major cytochrome P450 (CYP) subtypes in the liver and whether the expression could be attenuated by resveratrol. C57BL/6 mice (male, 10 weeks of age) were fed a high-fat and high-sucrose (HFHS) diet to induce NAFLD. Major Cyp subtype mRNA expression in the liver was measured by real-time RT-PCR. Body and liver weights at 4 and 12 weeks were significantly higher in mice fed the HFHS diet compared with control. The HFHS diet significantly increased the accumulation of cholesterol and triglycerides at 12 weeks. Under this condition, the HFHS diet increased the expression of Cyp1a2 and decreased that of Cyp3a11 at 1 week and thereafter. On the other hand, Cyp1a1, 2b10 and 2c29 mRNA expression levels in the liver were significantly increased at 12 weeks only. Resveratrol (0.05% (w/w) in diet) slightly suppressed lipid accumulation in the liver, but failed to recover impaired Cyp gene expression levels in NAFLD. Drug metabolism may be impaired in NAFLD, and each Cyp subtype is regulated in a different manner. © 2016 Royal Pharmaceutical Society.

  12. Simultaneous Administration of ADSCs-Based Therapy and Gene Therapy Using Ad-huPA Reduces Experimental Liver Fibrosis.

    PubMed

    Meza-Ríos, Alejandra; García-Benavides, Leonel; García-Bañuelos, Jesus; Salazar-Montes, Adriana; Armendáriz-Borunda, Juan; Sandoval-Rodríguez, Ana

    2016-01-01

    hADSCs transplantation in cirrhosis models improves liver function and reduces fibrosis. In addition, Ad-huPA gene therapy diminished fibrosis and increased hepatocyte regeneration. In this study, we evaluate the combination of these therapies in an advanced liver fibrosis experimental model. hADSCs were expanded and characterized before transplantation. Ad-huPA was simultaneously administrated via the ileac vein. Animals were immunosuppressed by CsA 24 h before treatment and until sacrifice at 10 days post-treatment. huPA liver expression and hADSCs biodistribution were evaluated, as well as the percentage of fibrotic tissue, hepatic mRNA levels of Col-αI, TGF-β1, CTGF, α-SMA, PAI-I, MMP2 and serum levels of ALT, AST and albumin. hADSCs homed mainly in liver, whereas huPA expression was similar in Ad-huPA and hADSCs/Ad-huPA groups. hADSCs, Ad-huPA and hADSCs/Ad-huPA treatment improves albumin levels, reduces liver fibrosis and diminishes Collagen α1, CTGF and α-SMA mRNA liver levels. ALT and AST serum levels showed a significant decrease exclusively in the hADSCs group. These results showed that combinatorial effect of cell and gene-therapy does not improve the antifibrogenic effects of individual treatments, whereas hADSCs transplantation seems to reduce liver fibrosis in a greater proportion.

  13. Liver transplantation from a deceased donor with β-thalassemia intermedia is not contraindicated: A case report.

    PubMed

    Gumus, Ersin; Abbasoglu, Osman; Tanyel, Cahit; Gumruk, Fatma; Ozen, Hasan; Yuce, Aysel

    2017-05-01

    The use of extended criteria donors who might have previously been deemed unsuitable is an option to increase the organ supply for transplantation. This report presents a pediatric case of a successful liver transplantation from a donor with β-thalassemia intermedia. A patient, 6-year-old female, with a diagnosis of cryptogenic liver cirrhosis underwent deceased donor liver transplantation from a thalassemic donor. Extreme hyperferritinemia was detected shortly after transplantation. The most probable cause of hyperferritinemia was iron overload secondary to transplantation of a hemosiderotic liver. Hepatocellular injury due to acute graft rejection might have contributed to elevated ferritin levels by causing release of stored iron from the hemosiderotic liver graft. Iron chelation and phlebotomy therapies were started simultaneously in the early postoperative period to avoid iron-related organ toxicity and transplant failure. Follow-up with monthly phlebotomies after discharge yielded a favorable outcome with normal transplant functions. Thalassemia intermedia patients can be candidates of liver donors to decrease pretransplant waitlist mortality. After transplantation of a hemosiderotic liver, it is important to monitor the recipient in terms of iron overload and toxicity. Early attempts to lower iron burden including chelation therapy and/or phlebotomy should be considered to avoid organ toxicity and transplant failure. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Effect of adrenergic blockers, carvedilol, prazosin, metoprolol and combination of prazosin and metoprolol on paracetamol-induced hepatotoxicity in rabbits.

    PubMed

    Zubairi, Maysaa B; Ahmed, Jawad H; Al-Haroon, Sawsan S

    2014-01-01

    To evaluate hepatoprotective potential of carvedilol, prazosin, metoprolol and prazosin plus metoprolol in paracetamol-induced hepatotoxicity. Thirty-six male rabbits were divided into six groups, six in each, group 1 received distilled water, group 2 were treated with paracetamol (1 g/kg/day, orally), group 3, 4,5 and 6 were treated at a dose in (mg/kg/day) of the following: Carvedilol (10 mg), prazosin (0.5 mg), metoprolol (10 mg), and a combination of metoprolol (10 mg) and prazosin (0.5 mg) respectively 1 h before paracetamol treatment. All treatments were given for 9 days; animals were sacrificed at day 10. Liver function tests, malondialdehyde (MDA) and glutathione (GSH) in serum and liver homogenates were estimated. Histopathological examinations of liver were performed. Histopathological changes of hepatotoxicity were found in all paracetamol-treated rabbits. The histopathological findings of paracetamol toxicity disappeared in five rabbits on prazosin, very mild in one. In carvedilol group paracetamol toxicity completely disappeared in three, while mild in three rabbits. Paracetamol hepatotoxicity was not changed by metoprolol. In metoprolol plus prazosin treated rabbits, moderate histopathological changes were observed. Serum liver function tests and MDA in serum and in liver homogenate were elevated; GSH was depleted after paracetamol treatment and returned back to the control value on prior treatment with prazosin. MDA in serum and liver homogenate, alkaline phosphatase, total bilirubin were significantly decreased after carvedilol and prazosin plus metoprolol treatments. Carvedilol and prazosin are hepatoprotective in paracetamol hepatotoxicity, combination of prazosin and metoprolol have moderate, and metoprolol has a little hepatoprotection.

  15. Inhibition of Dexamethasone-induced Fatty Liver Development by Reducing miR-17-5p Levels

    PubMed Central

    Du, William W; Liu, Fengqiong; Shan, Sze Wan; Ma, Xindi Cindy; Gupta, Shaan; Jin, Tianru; Spaner, David; Krylov, Sergey N; Zhang, Yaou; Ling, Wenhua; Yang, Burton B

    2015-01-01

    Steatosis is a pivotal event in the initiation and progression of nonalcoholic fatty liver disease (NAFLD) which can be driven by peroxisome proliferator-activated receptor-α (PPAR-α) dysregulation. Through examining the effect of PPAR-α on fatty liver development, we found that PPAR-α is a target of miR-17-5p. Transgenic mice expressing miR-17 developed fatty liver and produced higher levels of triglyceride and cholesterol but lower levels of PPAR-α. Ectopic expression of miR-17 enhanced cellular steatosis. Gain-of-function and loss-of-function experiments confirmed PPAR-α as a target of miR-17-5p. On the other hand, PPAR-α bound to the promoter of miR-17 and promoted its expression. The feed-back loop between miR-17-5p and PPAR-α played a key role in the induction of steatosis and fatty liver development. Mice with high levels of miR-17-5p were sensitive to Dexamethasone-induced fatty liver formation. Inhibition of miR-17-5p suppressed this process and enhanced PPAR-α expression in mice treated with Dexamethasone. Clofibrate, Ciprofibrate, and WY-14643: three agents used for treatment of metabolic disorders, were found to promote PPAR-α expression while decreasing miR-17-5p levels and inhibiting steatosis. Our studies show that miR-17-5p inhibitor and agents used in metabolic disorders may be applied in combination with Dexamethasone in the treatment of anti-inflammation, immunosuppression, and cancer patients. PMID:25896250

  16. Systemic responses to inhaled ozone in mice: cachexia and down-regulation of liver xenobiotic metabolizing genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Last, Jerold A.; Gohil, Kishorchandra; Mathrani, Vivek C.

    2005-10-15

    Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkersmore » of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-{kappa}B in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone.« less

  17. Impact of ovariectomy, high fat diet, and lifestyle modifications on oxidative/antioxidative status in the rat liver.

    PubMed

    Vuković, Rosemary; Blažetić, Senka; Oršolić, Ivana; Heffer, Marija; Vari, Sandor G; Gajdoš, Martin; Krivošíková, Zora; Kramárová, Patrícia; Kebis, Anton; Has-Schön, Elizabeta

    2014-06-01

    To estimate the impact of high fat diet and estrogen deficiency on the oxidative and antioxidative status in the liver of the ovariectomized rats, as well as the ameliorating effect of physical activity or consumption of functional food containing bioactive compounds with antioxidative properties on oxidative damage in the rat liver. The study was conducted from November 2012 to April 2013. Liver oxidative damage was determined by lipid peroxidation levels expressed in terms of thiobarbituric acid reactive substances (TBARS), while liver antioxidative status was determined by catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) activities, and glutathione (GSH) content. Sixty-four female Wistar rats were divided into eight groups: sham operated and ovariectomized rats that received either standard diet, high fat diet, or high fat diet supplemented with cereal selenized onion biscuits or high fat diet together with introduction of physical exercise of animals. High fat diet significantly increased TBARS content in the liver compared to standard diet (P=0.032, P=0.030). Furthermore, high fat diet decreased the activities of CAT, GR, and GST, as well as the content of GSH (P<0.050). GPx activity remained unchanged in all groups. Physical activity and consumption of cereal selenized onion biscuits showed protective effect through increased GR activity in sham operated rats (P=0.026, P=0.009), while in ovariectomized group CAT activity was increased (P=0.018) in rats that received cereal selenized onion biscuits. Feeding rats with high fat diet was accompanied by decreased antioxidative enzyme activities and increased lipid peroxidation. Bioactive compounds of cereal selenized onion biscuits showed potential to attenuate the adverse impact of high fat diet on antioxidative status.

  18. Effect of parenteral serum plant sterols on liver enzymes and cholesterol metabolism in a patient with short bowel syndrome.

    PubMed

    Hallikainen, Maarit; Huikko, Laura; Kontra, Kirsi; Nissinen, Markku; Piironen, Vieno; Miettinen, Tatu; Gylling, Helena

    2008-01-01

    Hepatobiliary complications are common during parenteral nutrition. Lipid moiety in commercially available solutions contains plant sterols. It is not known whether plant sterols in parenteral nutrition interfere with hepatic function in adults. We detected how different amounts of plant sterols in parenteral nutrition solution affected serum plant sterol concentrations and liver enzymes during a 1.5-year follow-up in a patient with short bowel syndrome. Serum lipid, plant sterol, and liver enzyme levels were measured regularly during the transition from Intralipid (100% soy-based intravenous fat emulsion) to ClinOleic (an olive oil-based intravenous fat emulsion with 80% olive oil, 20% soy oil and lower plant sterols); the lipid supply was also gradually increased from 20 to 35 g/d. Plant sterols in parenteral nutrition solution and serum were measured with gas-liquid chromatography. During infusion of soy-based intravenous fat emulsion (30 g/d, total plant sterols 87 mg/d), the concentrations of sitosterol, campesterol, and stigmasterol were 4361, 1387, and 378 microg/dL, respectively, and serum liver enzyme values were >or= 2.5 times above upper limit of normal. After changing to olive oil-based intravenous fat emulsion (20-35 g/d, plant sterols 37-65 mg/d), concentrations decreased to 2148 to 2251 microg/dL for sitosterol, 569-297 microg/dL for campesterol, and 95-55 microg/dL for stigmasterol. Concomitantly, liver enzyme values decreased to 1.4 to 1.8 times above upper limit of normal at the end of follow-up. The nutrition status of the patient improved. The amount of plant sterols in lipid emulsion affects serum liver enzyme levels more than the amount of lipid.

  19. Systemic responses to inhaled ozone in mice: cachexia and down-regulation of liver xenobiotic metabolizing genes.

    PubMed

    Last, Jerold A; Gohil, Kishorchandra; Mathrani, Vivek C; Kenyon, Nicholas J

    2005-10-15

    Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkers of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-kappaB in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone.

  20. Plasma thyroid hormone concentration is associated with hepatic triglyceride content in patients with type 2 diabetes.

    PubMed

    Bril, Fernando; Kadiyala, Sushma; Portillo Sanchez, Paola; Sunny, Nishanth E; Biernacki, Diane; Maximos, Maryann; Kalavalapalli, Srilaxmi; Lomonaco, Romina; Suman, Amitabh; Cusi, Kenneth

    2016-01-01

    The underlying mechanisms responsible for the development and progression of non-alcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM) are unclear. Since the thyroid hormone regulates mitochondrial function in the liver, we designed this study in order to establish the association between plasma free T4 levels and hepatic triglyceride accumulation and histological severity of liver disease in patients with T2DM and NAFLD. This is a cross-sectional study including a total of 232 patients with T2DM. All patients underwent a liver MR spectroscopy ((1)H-MRS) to quantify hepatic triglyceride content, and an oral glucose tolerance test to estimate insulin resistance. A liver biopsy was performed in patients with a diagnosis of NAFLD. Patients were divided into 5 groups according to plasma free T4 quintiles. We observed that decreasing free T4 levels were associated with an increasing prevalence of NAFLD (from 55% if free T4≥1.18 ng/dL to 80% if free T4<0.80 ng/dL, p=0.016), and higher hepatic triglyceride accumulation by (1)H-MRS (p<0.001). However, lower plasma free T4 levels were not significantly associated with more insulin resistance or more severe liver histology (ie, inflammation, ballooning, or fibrosis). Decreasing levels of plasma free T4 are associated with a higher prevalence of NAFLD and increasing levels of hepatic triglyceride content in patients with T2DM. These results suggest that thyroid hormone may play a role in the regulation of hepatic steatosis and support the notion that hypothyroidism may be associated with NAFLD. No NCT number required. Copyright © 2016 American Federation for Medical Research.

  1. Liver function testing with nuclear medicine techniques is coming of age.

    PubMed

    Bennink, Roelof J; Tulchinsky, Mark; de Graaf, Wilmar; Kadry, Zakiyah; van Gulik, Thomas M

    2012-03-01

    Liver function is a broad term, as the organ participates in a multitude of different physiological and biochemical processes, including metabolic, synthetic, and detoxifying functions. However, it is the function of the hepatocyte that is central to sustaining normal life and dealing with disease states. When the liver begins to fail in severely ill patients, it forecasts a terminal outcome. However, unlike the glomerular filtration rate which clearly quantifies the key renal function, at most practice sites, there is no clinically available quantitative test for liver function. Although it is commonplace to assess indirect evidence of that function (by measuring blood levels of its end products and by-products) and to detect an acute injury (by following rising transaminases), a widely available test that would directly measure hepatocellular function is lacking. This article reviews current knowledge on liver function studies and focuses on those nuclear medicine tests available to study the whole liver and regional liver function. The clinical application driving these tests, prediction of remnant liver function after partial hepatectomy for primary liver malignancy or metastatic disease, is addressed here in detail. The test was recently validated for this specific application and was shown to be better than the current standard of practice (computed tomography volumetry), particularly in patients with hepatic comorbidities like cirrhosis, steatosis, or cholestasis. Furthermore, early assessment of regional liver function increase after preoperative portal vein embolization becomes possible with this technology. The limiting factor to a wider acceptance of this test is based on the lack of clinical software that would allow calculation of liver function parameters. This article provides information that enables a clinical nuclear medicine facility to provide this test using readily available equipment. Furthermore, it addresses emerging clinical applications that are under investigation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Pyruvate dehydrogenase complex and lactate dehydrogenase are targets for therapy of acute liver failure.

    PubMed

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-24

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate to the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-antibody, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by gene ontology enrichment analysis. Cell viability was evaluated in cell lines knocked-down for PDHA1 or LDH-A and in cells incubated with the LDH inhibitor galloflavin after treatment with CD95-antibody. We evaluated whether the histone acetyltransferase inhibitor garcinol or galloflavin could reduce liver damage in mice with acute liver failure. Levels and activities of PDHC and LDH were increased in nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-CoA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to damage response. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus, leading to increased nuclear concentrations of acetyl-CoA and lactate. This results in histone H3 hyper-acetylation and expression of damage response genes. Inhibition of PDHC and LDH reduces liver damage and improves survival in mice with acute liver failure. Thus, PDHC and LDH are targets for therapy of acute liver failure. Acute liver failure is a rapidly progressive deterioration of liver function resulting in high mortality. In experimental mouse models of acute liver failure, we found that two metabolic enzymes, namely pyruvate dehydrogenase complex and lactic dehydrogenase, translocate to the nucleus resulting in detrimental gene expression. Treatment with an inhibitor of these two enzymes was found to reduce liver damage and to improve survival. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. Gut microbiota of liver transplantation recipients.

    PubMed

    Sun, Li-Ying; Yang, Yun-Sheng; Qu, Wei; Zhu, Zhi-Jun; Wei, Lin; Ye, Zhi-Sheng; Zhang, Jian-Rui; Sun, Xiao-Ye; Zeng, Zhi-Gui

    2017-06-19

    The characteristics of intestinal microbial communities may be affected by changes in the pathophysiology of patients with end-stage liver disease. Here, we focused on the characteristics of intestinal fecal microbial communities in post-liver transplantation (LT) patients in comparison with those in the same individuals pre-LT and in healthy individuals. The fecal microbial communities were analyzed via MiSeq-PE250 sequencing of the V4 region of 16S ribosomal RNA and were then compared between groups. We found that the gut microbiota of patients with severe liver disease who were awaiting LT was significantly different from that of healthy controls, as represented by the first principal component (p = 0.0066). Additionally, the second principal component represented a significant difference in the gut microbiota of patients between pre-LT and post-LT surgery (p = 0.03125). After LT, there was a significant decrease in the abundance of certain microbial species, such as Actinobacillus, Escherichia, and Shigella, and a significant increase in the abundance of other microbial species, such as Micromonosporaceae, Desulfobacterales, the Sarcina genus of Eubacteriaceae, and Akkermansia. Based on KEGG profiles, 15 functional modules were enriched and 21 functional modules were less represented in the post-LT samples compared with the pre-LT samples. Our study demonstrates that fecal microbial communities were significantly altered by LT.

  4. Berberine attenuates oxidative stress and hepatocytes apoptosis via protecting mitochondria in blunt snout bream Megalobrama amblycephala fed high-fat diets.

    PubMed

    Lu, Kang-Le; Wang, Li-Na; Zhang, Ding-Dong; Liu, Wen-Bin; Xu, Wei-Na

    2017-02-01

    High-fat diets may have favorable effects on growth and cost, but high-fat diets often induce excessive fat deposition, resulting in liver damage. This study aimed to identify the hepatoprotective of a Chinese herb (berberine) for blunt snout bream (Megalobrama amblycephala). Fish were fed with a normal diet (LFD, 5 % fat), high-fat diet (HFD, 15 % fat) or berberine-supplemented diets (BSD, 15 % fat with berberine 50 or 100 mg/kg level) for 8 weeks. After the feeding, histology, oxidative status and mitochondrial function of liver were assessed. The results showed that HFD caused fat accumulation, oxidative stress and apoptosis in hepatocytes of fish. Hepatocytes in HFD group appeared to be hypertrophied, with larger liver cells diameter than these of LFD group. Berberine-supplemented diets could attenuate oxidative stress and hepatocytes apoptosis. HFD induced the decreasing mitochondrial complexes activities and bulk density and surface area density. Berberine improved function of mitochondrial respiratory chain via increasing the complex activities. Moreover, the histological results showed that berberine has the potential to repair mitochondrial ultrastructural damage and elevate the density in cells. In conclusion, our study demonstrated that berberine has attenuated liver damage induced by the high fat mainly via the protection for mitochondria.

  5. Enhanced hepatic insulin signaling in the livers of high altitude native rats under basal conditions and in the livers of low altitude native rats under insulin stimulation: a mechanistic study.

    PubMed

    Al Dera, Hussain; Eleawa, Samy M; Al-Hashem, Fahaid H; Mahzari, Moeber M; Hoja, Ibrahim; Al Khateeb, Mahmoud

    2017-07-01

    This study was designed to investigate the role of the liver in lowering fasting blood glucose levels (FBG) in rats native to high (HA) and low altitude (LA) areas. As compared with LA natives, besides the improved insulin and glucose tolerance, HA native rats had lower FBG, at least mediated by inhibition of hepatic gluconeogenesis and activation of glycogen synthesis. An effect that is mediated by the enhancement of hepatic insulin signaling mediated by the decreased phosphorylation of TSC induced inhibition of mTOR function. Such effect was independent of activation of AMPK nor stabilization of HIF1α, but most probably due to oxidative stress induced REDD1 expression. However, under insulin stimulation, and in spite of the less activated mTOR function in HA native rats, LA native rats had higher glycogen content and reduced levels of gluconeogenic enzymes with a more enhanced insulin signaling, mainly due to higher levels of p-IRS1 (tyr612).

  6. The hepatoprotective role of Silymarin in isoniazid induced liver damage of rabbits.

    PubMed

    Jahan, Sarwat; Khan, Moosa; Imran, Sana; Sair, Mohammad

    2015-06-01

    To evaluate the hepatoprotective role of Silymarin against isonicotinylhydrazine-induced hepatotoxicity in rabbit model. The experimental animal study was held at Jinnah Postgraduate Medical Centre, Karachi, from April to September 2013 and comprised rabbits weighing 1-1.5kgof either gender. The animals were divided randomly into equal groups: group I underwent liver function test without any drug; in group II effects of Silymarin (50mg/kg/day orally) was observed; in group III isoniazid (50mg/kg/dayorally) was administered; and in group IV combined effects of isoniazid and silymarin were observed. Liver function tests were performed at day0 and after the treatment at day19. SPSS 16 was used for statistical analysis. The 28 rabbits in the study were divided in four groups of 7(25%) each. No mortality was recorded in any group. In group III, bilirubin level was increased and alanine transaminase was decreased significantly (p<0.05 each). In group IV, there was significant improvement in serum billirubin and serum alanine transaminase (p<0.05 each). Isonicotinylhydrazine-induced hepatotoxicity was well treated by concurrent administration of Silymarin.

  7. Liver failure in total artificial heart therapy.

    PubMed

    Dimitriou, Alexandros Merkourios; Dapunt, Otto; Knez, Igor; Wasler, Andrae; Oberwalder, Peter; Koerfer, Reiner; Tenderich, Gero; Spiliopoulos, Sotirios

    2016-07-01

    Congestive hepatopathy (CH) and acute liver failure (ALF) are common among biventricular heart failure patients. We sought to evaluate the impact of total artificial heart (TAH) therapy on hepatic function and associated clinical outcomes. A total of 31 patients received a Syncardia Total Artificial Heart. Preoperatively 17 patients exhibited normal liver function or mild hepatic derangements that were clinically insignificant and did not qualify as acute or chronic liver failure, 5 patients exhibited ALF and 9 various hepatic derangements owing to CH. Liver associated mortality and postoperative course of liver values were prospectively documented and retrospectively analyzed. Liver associated mortality in normal liver function, ALF and CH cases was 0%, 20% (P=0.03) and 44.4% (P=0.0008) respectively. 1/17 (5.8%) patients with a normal liver function developed an ALF, 4/5 (80%) patients with an ALF experienced a markedly improvement of hepatic function and 6/9 (66.6%) patients with CH a significant deterioration. TAH therapy results in recovery of hepatic function in ALF cases. Patients with CH prior to surgery form a high risk group with increased liver associated mortality.

  8. [Herbs for calming liver and suppressing yang in treatment of hyperthyroidism with hyperactive liver yang: herbal effects on lymphocyte protein expression].

    PubMed

    Li, Xiangping; Yin, Tao; Zhong, Guangwei; Li, Wei; Luo, Yanhong; Xiang, Lingli; Liu, Zhehao

    2011-07-01

    To observe the herbal effects on hyperthyroidism patients with syndrome of hyperactivity of liver-Yang by method for calming the liver and suppressing Yang and investigate its effects on the lymphocyte protein expression. This approach may lay a foundation for the further investigation of the curative mechanisms of calming the liver and suppressing Yang treatment. A total of 48 hyperthyroidism patients with syndrome of hyperactivity of liver-Yang were randomly divided into treatment group and control group. The treatment group was treated by method for calming the liver and suppressing Yang in accordance with traditional Chinese medicine (TCM) and the control group with thiamazole tablets for three periods of treatment The therapeutic effects, the score of TCM symptom, electrocardiogram (P wave), thyroid hormones and ultrasound were observed in both groups before and after the treatment. The side effects in the treatment course were observed in both groups. The level of differential protein expression was analyzed by two-dimensional electrphoresis and matrix assisted laser desorption/ionizaton time-of-flight mass spectrometry. The treatment group has the effect on stepping down the heart rate, cutting down the P wave amplitude changes, regulating the level of thyroid hormones and decreasing the volume of thyromegaly. There are not statistically significant between the treatment group and control group. However, the treatment group has obviously better effect on regulating TCM symptom and decreasing the side reaction than the control group (P<0.05). There are not statistically significant on the total effective between the treatment group and control group. The average spots in lymphocyte for normal people, before and after treating hyperthyroidism patients with syndrome of hyperactivity of liver-Yang were (429 +/- 31), (452 +/- 28) and (437 +/- 36) spots respectively. Eight down-regulated protein expressions and 11 up-regulated protein expressions were obtained in the hyperthyroidism patients with syndrome of hyperactivity of liver-Yang and normal people. Five strengthened expressions of protein were also obtained in 8 down-regulated expressions of protein and 8 lower expressions of protein in 11 up-regulated expressions of protein before and after treating the migraine patients with syndrome of hyperactivity of liver-Yang. Ten of the total 8 differential protein spots were successfully identified by MALDI-TOF-MS. The functions of these proteins were involved in metabolism associated, transportation, antioxidation, sigal transduction and immume associated protein, etc. according to information provided by NCBI and MSDB database. In this study, the TCM complex prescription with herbs for calming the liver and suppressing Yang can regulate the thyroid hormones, improves TCM symptoms, and decrease the adverse reaction. It can possibly regulate lymphocyte protein expression.

  9. Longitudinal Profiling of the Tissue-Specific Expression of Genes Related with Insulin Sensitivity in Dairy Cows during Lactation Focusing on Different Fat Depots

    PubMed Central

    Saremi, Behnam; Winand, Sarah; Friedrichs, Paula; Kinoshita, Asako; Rehage, Jürgen; Dänicke, Sven; Häussler, Susanne; Breves, Gerhard; Mielenz, Manfred; Sauerwein, Helga

    2014-01-01

    In dairy cows the milk associated energy output in early lactation exceeds the input via voluntary feed intake. To spare glucose for mammary lactose synthesis, peripheral insulin sensitivity (IS) is reduced and fat mobilization is stimulated. For these processes a link between IS and the endocrine functions of adipose tissue (AT) is likely; we thus aimed to characterise the mRNA expression from bovine AT derived proteins and receptors that are related to IS according to the literature in metabolically active tissues plus systemic IS throughout lactation. Conjugated linoleic acids (CLA) reduce milk fat thus decreasing the milk drain of energy and potentially dampening lipolysis, but may also affect IS. Subcutaneous (s.c.) AT and liver from pluriparous cows receiving either control fat or CLA supplement (100 g/day from 1 to 182 days in milk each) were biopsied covering week −3 to 36 relative to parturition. In an additional trial with primiparous cows treated analogously and slaughtered on days in milk 1, 42 or 105, samples from liver, udder, skeletal muscle and 3 visceral and 3 s.c. AT were obtained and assayed for mRNA abundance of adiponectin, its receptors, leptin, leptin receptor, PPARγ, PPARγ2, IL-6, and TNF-α. In pluriparous animals, the mRNA abundance of most of the target genes decreased after parturition in s.c. AT but increased in liver. In primiparous cows, AT depot specific differences were mostly related to retroperitoneal AT; adiponectin receptor 1 and TNF-α were affected predominantly. CLA effects in primiparous cows were largely limited to decreased PPARγ2 mRNA abundance in udder tissue. In pluriparous cows, insulin secretion was increased by CLA resulting in decreased systemic IS but without consistent changes in tissue target mRNA abundance. The temporal gene expression profiles from the adipokines and related receptors support their coactive function in adapting to the needs of lactation. PMID:24465964

  10. Efficacy and Safety of Gonadotropin-Releasing Hormone Agonist Treatment to Suppress Puberty in Gender Dysphoric Adolescents.

    PubMed

    Schagen, Sebastian E E; Cohen-Kettenis, Peggy T; Delemarre-van de Waal, Henriette A; Hannema, Sabine E

    2016-07-01

    Puberty suppression using gonadotropin-releasing hormone agonists (GnRHas) is recommended by current guidelines as the treatment of choice for gender dysphoric adolescents. Although GnRHas have long been used to treat precocious puberty, there are few data on the efficacy and safety in gender dysphoric adolescents. Therefore, the Endocrine Society guideline recommends frequent monitoring of gonadotropins, sex steroids, and renal and liver function. To evaluate the efficacy and safety of GnRHa treatment to suppress puberty in gender dysphoric adolescents. Forty-nine male-to-female and 67 female-to-male gender dysphoric adolescents treated with triptorelin were included in the analysis. Physical examination, including assessment of Tanner stage, took place every 3 months and blood samples were drawn at 0, 3, and 6 months and then every 6 months. Body composition was evaluated using dual energy x-ray absorptiometry. GnRHa treatment caused a decrease in testicular volume in 43 of 49 male-to-female subjects. In one of four female-to-male subjects who presented at Tanner breast stage 2, breast development completely regressed. Gonadotropins and sex steroid levels were suppressed within 3 months. Treatment did not have to be adjusted because of insufficient suppression in any subject. No sustained abnormalities of liver enzymes or creatinine were encountered. Alkaline phosphatase decreased, probably related to a slower growth velocity, because height SD score decreased in boys and girls. Lean body mass percentage significantly decreased during the first year of treatment in girls and boys, whereas fat percentage significantly increased. Triptorelin effectively suppresses puberty in gender dysphoric adolescents. These data suggest routine monitoring of gonadotropins, sex steroids, creatinine, and liver function is not necessary during treatment with triptorelin. Further studies should evaluate the extent to which changes in height SD score and body composition that occur during GnRHa treatment can be reversed during subsequent cross-sex hormone treatment. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  11. A standardized extract from Paeonia lactiflora and Astragalus membranaceus attenuates liver fibrosis induced by porcine serum in rats.

    PubMed

    Sun, Wu-Yi; Wang, Ling; Liu, Hao; Li, Xiang; Wei, Wei

    2012-03-01

    Paeonia lactiflora and Astragalus membranaceus are two popular traditional Chinese medicines, commonly used in Chinese herb prescription to treat liver disease. The extract prepared from the roots of Paeonia lactiflora and Astragalus membranaceus (PAE) demonstrated better hepatoprotective activity than the herbs used individually as shown in our previous studies. This study was carried out to investigate the effects of PAE on liver fibrosis induced by porcine serum (PS) in rats and to explore its possible mechanisms. Liver fibrosis was induced in male Wistar rats by injection with PS intraperitoneally. The rats were randomly divided into a normal control group, a liver fibrosis model group and a PAE (40, 80, 160 mg•kg-1) treated group. After a 16-week treatment, PAE-treated rats showed significantly reduced liver damage and symptoms of liver fibrosis upon pathological examination. Administration of PAE significantly decreased serum HA, PC III levels, and content of hydroxyproline in the liver tissue of fibrotic rats. It also restored the decrease in SOD and GSH-Px activities and inhibited the formation of lipid peroxidative products during PS treatment. In vitro, PAE also significantly decreased [3H]-thymidine incorporation in hepatic stellate cells (HSCs) stimulated with platelet-derived growth factor-B subunit homodimer (PDGF-BB). Moreover, PAE significantly decreased the expression of PDGF receptor beta (PDGFR-β) and p-ERK1/2, p-p38, p-JNK. The results showed that PAE displays antifibrotic effects in rats induced by PS, the mechanism by which might be associated with its ability to scavenge free radicals, decreasing the expression of PDGFR-β, inhibition of HSC proliferation and MAPK activation. These findings indicate that PAE is a potential agent for the prevention of liver fibrosis.

  12. Reducing Liver Fat by Low Carbohydrate Caloric Restriction Targets Hepatic Glucose Production in Non-Diabetic Obese Adults with Non-Alcoholic Fatty Liver Disease.

    PubMed

    Yu, Haoyong; Jia, Weiping; Guo, ZengKui

    2014-09-01

    Non-alcoholic fatty liver disease (NAFLD) impairs liver functions, the organ responsible for the regulation of endogenous glucose production and thus plays a key role in glycemic homeostasis. Therefore, interventions designed to normalize liver fat content are needed to improve glucose metabolism in patients affected by NAFLD such as obesity. this investigation is designed to determine the effects of caloric restriction on hepatic and peripheral glucose metabolism in obese humans with NAFLD. eight non-diabetic obese adults were restricted for daily energy intake (800 kcal) and low carbohydrate (<10%) for 8 weeks. Body compositions, liver fat and hepatic glucose production (HGP) and peripheral glucose disposal before and after the intervention were determined. the caloric restriction reduced liver fat content by 2/3 (p = 0.004). Abdominal subcutaneous and visceral fat, body weight, BMI, waist circumference and fasting plasma triglyceride and free fatty acid concentrations all significantly decreased (p < 0.05). The suppression of post-load HGP was improved by 22% (p = 0.002) whereas glucose disposal was not affected (p = 0.3). Fasting glucose remained unchanged and the changes in the 2-hour plasma glucose and insulin concentration were modest and statistically insignificant (p > 0.05). Liver fat is the only independent variable highly correlated to HGP after the removal of confounders. NAFLD impairs HGP but not peripheral glucose disposal; low carbohydrate caloric restriction effectively lowers liver fat which appears to directly correct the HGP impairment.

  13. Elective living donor liver transplantation by hybrid hand-assisted laparoscopic surgery and short upper midline laparotomy.

    PubMed

    Eguchi, Susumu; Takatsuki, Mitsuhisa; Soyama, Akihiko; Hidaka, Masaaki; Tomonaga, Tetsuo; Muraoka, Izumi; Kanematsu, Takashi

    2011-11-01

    Although the technique of liver transplantation is well developed, the invasiveness of the operation can be decreased with laparoscopic procedures. We performed elective living donor liver transplantation (LDLT) through a short midline incision combined with hand-assisted laparoscopic surgery (HALS). Nine selected patients with end stage liver disease underwent the procedure between July, 2010 and February, 2011 (median age 60, median Child-Pugh 9, median MELD score 14). Splenectomy was performed simultaneously in 7 cases. The liver (and spleen) were mobilized by a sealing device under a HALS procedure with an 8-cm upper midline incision, followed by explantation of the diseased liver (and spleen) through the upper midline incision which was extended to 12 to 15 cm. Partial liver grafts were implanted through the upper midline incision. The median duration of the operation was 741 minutes, the median time needed for anastomosis was 48 minutes, the median blood loss was 3,940 g, and the median liver weight was 866 g. Eight recipients are alive and have good graft function. A difficult implantation for one patient required an additional right transverse incision. When compared with 13 recent liver recipients who underwent LDLT with a regular Mercedes-Benz-type incision, no clinically relevant drawbacks of the HALS hybrid procedure were observed. We have shown the feasibility and safety of LDLT performed through a short midline incision without abdominal muscle disruption with the aid of HALS. Copyright © 2011 Mosby, Inc. All rights reserved.

  14. Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt

    PubMed Central

    Abdel-Moneim, Adel; Morsy, Basant M.; Mahmoud, Ayman M.; Abo-Seif, Mohamed A.; Zanaty, Mohamed I.

    2013-01-01

    Hepatitis C is a major global health burden and Egypt has the highest prevalence of hepatitis C virus (HCV) worldwide. The current study was designed to evaluate the beneficial therapeutic effects of ethanolic extracts of Nigella sativa, Zingiber officinale and their mixture in Egyptian HCV patients. Sixty volunteer patients with proven HCV and fifteen age matched healthy subjects were included in this study. Exclusion criteria included patients on interferon alpha (IFN-α) therapy, infection with hepatitis B virus, drug-induced liver diseases, advanced cirrhosis, hepatocellular carcinoma (HCC) or other malignancies, blood picture abnormalities and major severe illness. Liver function enzymes, albumin, total bilirubin, prothrombin time and concentration, international normalized ratio, alpha fetoprotein and viral load were all assessed at baseline and at the end of the study. Ethanolic extracts of Nigella sativa and Zingiber officinale were prepared and formulated into gelatinous capsules, each containing 500 mg of Nigella sativa and/or Zingiber officinale. Clinical response and incidence of adverse drug reactions were assessed initially, periodically, and at the end of the study. Both extracts as well as their mixture significantly ameliorated the altered viral load, alpha fetoprotein, liver function parameters; with more potent effect for the combined therapy. In conclusion, administration of Nigella sativa and/or Zingiber officinale ethanolic extracts to HCV patients exhibited potential therapeutic benefits via decreasing viral load and alleviating the altered liver function, with more potent effect offered by the mixture. PMID:27298610

  15. Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt.

    PubMed

    Abdel-Moneim, Adel; Morsy, Basant M; Mahmoud, Ayman M; Abo-Seif, Mohamed A; Zanaty, Mohamed I

    2013-01-01

    Hepatitis C is a major global health burden and Egypt has the highest prevalence of hepatitis C virus (HCV) worldwide. The current study was designed to evaluate the beneficial therapeutic effects of ethanolic extracts of Nigella sativa, Zingiber officinale and their mixture in Egyptian HCV patients. Sixty volunteer patients with proven HCV and fifteen age matched healthy subjects were included in this study. Exclusion criteria included patients on interferon alpha (IFN-α) therapy, infection with hepatitis B virus, drug-induced liver diseases, advanced cirrhosis, hepatocellular carcinoma (HCC) or other malignancies, blood picture abnormalities and major severe illness. Liver function enzymes, albumin, total bilirubin, prothrombin time and concentration, international normalized ratio, alpha fetoprotein and viral load were all assessed at baseline and at the end of the study. Ethanolic extracts of Nigella sativa and Zingiber officinale were prepared and formulated into gelatinous capsules, each containing 500 mg of Nigella sativa and/or Zingiber officinale. Clinical response and incidence of adverse drug reactions were assessed initially, periodically, and at the end of the study. Both extracts as well as their mixture significantly ameliorated the altered viral load, alpha fetoprotein, liver function parameters; with more potent effect for the combined therapy. In conclusion, administration of Nigella sativa and/or Zingiber officinale ethanolic extracts to HCV patients exhibited potential therapeutic benefits via decreasing viral load and alleviating the altered liver function, with more potent effect offered by the mixture.

  16. Dynamic gadoxetate-enhanced MRI for the assessment of total and segmental liver function and volume in primary sclerosing cholangitis.

    PubMed

    Nilsson, Henrik; Blomqvist, Lennart; Douglas, Lena; Nordell, Anders; Jacobsson, Hans; Hagen, Karin; Bergquist, Annika; Jonas, Eduard

    2014-04-01

    To evaluate dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) for the assessment of global and segmental liver volume and function in patients with primary sclerosing cholangitis (PSC), and to explore the heterogeneous distribution of liver function in this patient group. Twelve patients with primary sclerosing cholangitis (PSC) and 20 healthy volunteers were examined using DHCE-MRI with Gd-EOB-DTPA. Segmental and total liver volume were calculated, and functional parameters (hepatic extraction fraction [HEF], input relative blood-flow [irBF], and mean transit time [MTT]) were calculated in each liver voxel using deconvolutional analysis. In each study subject, and incongruence score (IS) was constructed to describe the mismatch between segmental function and volume. Among patients, the liver function parameters were correlated to bile duct obstruction and to established scoring models for liver disease. Liver function was significantly more heterogeneously distributed in the patient group (IS 1.0 versus 0.4). There were significant correlations between biliary obstruction and segmental functional parameters (HEF rho -0.24; irBF rho -0.45), and the Mayo risk score correlated significantly with the total liver extraction capacity of Gd-EOB-DTPA (rho -0.85). The study demonstrates a new method to quantify total and segmental liver function using DHCE-MRI in patients with PSC. Copyright © 2013 Wiley Periodicals, Inc.

  17. Abnormal liver function in common variable immunodeficiency disorders due to nodular regenerative hyperplasia.

    PubMed

    Ward, C; Lucas, M; Piris, J; Collier, J; Chapel, H

    2008-09-01

    Patients with common variable immunodeficiency disorders are monitored for liver function test abnormalities. A proportion of patients develop deranged liver function and some also develop hepatomegaly. We investigated the prevalence of abnormalities and types of liver disease, aiming to identify those at risk and determine outcomes. The local primary immunodeficiency database was searched for patients with a common variable immunodeficiency disorder and abnormal liver function and/or a liver biopsy. Patterns of liver dysfunction were determined and biopsies reviewed. A total of 47 of 108 patients had deranged liver function, most commonly raised alkaline phosphatase levels. Twenty-three patients had liver biopsies. Nodular regenerative hyperplasia was found in 13 of 16 with unexplained pathology. These patients were more likely to have other disease-related complications of common variable immunodeficiency disorders, in particular non-coeliac (gluten insensitive) lymphocytic enteropathy. However, five had no symptoms of liver disease and only one died of liver complications. Nodular regenerative hyperplasia is a common complication of common variable immunodeficiency disorders but was rarely complicated by portal hypertension.

  18. Future remnant liver function as predictive factor for the hypertrophy response after portal vein embolization.

    PubMed

    Cieslak, Kasia P; Huisman, Floor; Bais, Thomas; Bennink, Roelof J; van Lienden, Krijn P; Verheij, Joanne; Besselink, Marc G; Busch, Olivier R C; van Gulik, Thomas M

    2017-07-01

    Preoperative portal vein embolization is widely used to increase the future remnant liver. Identification of nonresponders to portal vein embolization is essential because these patients may benefit from associating liver partition and portal vein ligation for staged hepatectomy (ALPPS), which induces a more powerful hypertrophy response. 99m Tc-mebrofenin hepatobiliary scintigraphy is a quantitative method for assessment of future remnant liver function with a calculated cutoff value for the prediction of postoperative liver failure. The aim of this study was to analyze future remnant liver function before portal vein embolization to predict sufficient functional hypertrophy response after portal vein embolization. Sixty-three patients who underwent preoperative portal vein embolization and computed tomography imaging were included. Hepatobiliary scintigraphy was performed to determine pre-portal vein embolization and post-portal vein embolization future remnant liver function. Receiver operator characteristic analysis of pre-portal vein embolization future remnant liver function was performed to identify patients who would meet the post-portal vein embolization cutoff value for sufficient function (ie, 2.7%/min/m 2 ). Mean pre-portal vein embolization future remnant liver function was 1.80% ± 0.45%/min/m 2 and increased to 2.89% ± 0.97%/min/m 2 post-portal vein embolization. Receiver operator characteristic analysis in 33 patients who did not receive chemotherapy revealed that a pre-portal vein embolization future remnant liver function of ≥1.72%/min/m 2 was able to identify patients who would meet the safe future remnant liver function cutoff value 3 weeks after portal vein embolization (area under the curve = 0.820). The predictive value was less pronounced in 30 patients treated with neoadjuvant chemotherapy (area under the curve = 0.618). A total of 45 of 63 patients underwent liver resection, of whom 5 of 45 developed postoperative liver failure; 4 of 5 patients had a post-portal vein embolization future remnant liver function below the cutoff value for safe resection. When selecting patients for portal vein embolization, future remnant liver function assessed with hepatobiliary scintigraphy can be used as a predictor of insufficient functional hypertrophy after portal vein embolization, especially in nonchemotherapy patients. These patients are potential candidates for ALPPS. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Inhibitory Activities of Zygophyllum album: A Natural Weight-Lowering Plant on Key Enzymes in High-Fat Diet-Fed Rats

    PubMed Central

    Mnafgui, Kais; Hamden, Khaled; Ben Salah, Hichem; Kchaou, Mouna; Nasri, Mbarek; Slama, Sadok; Derbali, Fatma; Allouche, Noureddine; Elfeki, Abdelfattah

    2012-01-01

    Obesity is a serious health problem that increased risk for many complications, including diabetes and cardiovascular disease. The results showed EZA, which found rich in flavonoids and phenolic compounds, exhibited an inhibitory activity on pancreatic lipase in vitro with IC50 of 91.07 μg/mL. In vivo administration of this extract to HFD-rats lowered body weight and serum leptin level; and inhibited lipase activity of obese rats by 37% leading to notable decrease of T-Ch, TGs and LDL-c levels accompanied with an increase in HDL-c concentration in serum and liver of EZA treated HFD-rats. Moreover, the findings revealed that EZA helped to protect liver tissue from the appearance of fatty cysts. Interestingly, supplementation of EZA modulated key enzyme related to hypertension such as ACE by 36% in serum of HFD animals and improve some of serum electrolytes such as Na+, K+, Cl−, Ca2+ and Mg2+. Moreover, EZA significantly protected the liver-kidney function by reverted back near to normal the values of the liver-kidney dysfunction indices AST&ALT, ALP, CPK and GGT activities, decreased T-Bili, creat, urea and uric acid rates. In conclusion, these results showed a strong antihypelipidemic effect of EZA which can delay the occurrence of dislipidemia and hypertension. PMID:23258993

  20. Downregulation of Glutathione Biosynthesis Contributes to Oxidative Stress and Liver Dysfunction in Acute Kidney Injury

    PubMed Central

    Siow, Yaw L.; Isaak, Cara K.

    2016-01-01

    Ischemia-reperfusion is a common cause for acute kidney injury and can lead to distant organ dysfunction. Glutathione is a major endogenous antioxidant and its depletion directly correlates to ischemia-reperfusion injury. The liver has high capacity for producing glutathione and is a key organ in modulating local and systemic redox balance. In the present study, we investigated the mechanism by which kidney ischemia-reperfusion led to glutathione depletion and oxidative stress. The left kidney of Sprague-Dawley rats was subjected to 45 min ischemia followed by 6 h reperfusion. Ischemia-reperfusion impaired kidney and liver function. This was accompanied by a decrease in glutathione levels in the liver and plasma and increased hepatic lipid peroxidation and plasma homocysteine levels. Ischemia-reperfusion caused a significant decrease in mRNA and protein levels of hepatic glutamate-cysteine ligase mediated through the inhibition of transcription factor Nrf2. Ischemia-reperfusion inhibited hepatic expression of cystathionine γ-lyase, an enzyme responsible for producing cysteine (an essential precursor for glutathione synthesis) through the transsulfuration pathway. These results suggest that inhibition of glutamate-cysteine ligase expression and downregulation of the transsulfuration pathway lead to reduced hepatic glutathione biosynthesis and elevation of plasma homocysteine levels, which, in turn, may contribute to oxidative stress and distant organ injury during renal ischemia-reperfusion. PMID:27872680

  1. Blockade of vascular adhesion protein-1 inhibits lymphocyte infiltration in rat liver allograft rejection.

    PubMed

    Martelius, Timi; Salaspuro, Ville; Salmi, Marko; Krogerus, Leena; Höckerstedt, Krister; Jalkanen, Sirpa; Lautenschlager, Irmeli

    2004-12-01

    Vascular adhesion protein-1 (VAP-1) has been shown to mediate lymphocyte adhesion to endothelia at sites of inflammation, but its functional role in vivo has not been tested in any rodent model. Here we report the effects of VAP-1 blockade on rat liver allograft rejection. BN recipients of PVG liver allografts (known to develop acute rejection by day 7) were treated with 2 mg/kg anti-VAP-1 (a new anti-rat VAP-1 mAb 174-5) or isotype-matched irrelevant antibody (NS1) every other day (n = 6/group) and one group with anti-VAP-1 2 mg/kg daily (n = 7). On day 7, samples were collected for transplant aspiration cytology, histology, and immunohistochemistry. Lymphocyte infiltration to the graft was clearly affected by VAP-blockade. The total inflammation, mainly the number of active lymphoid cells, in transplant aspiration cytology was significantly decreased in animals treated with anti-VAP-1 (4.7 +/- 1.0 and 2.4 +/- 1.0 corrected increment units, respectively) compared to control (6.6 +/- 1.0) (P < 0.05). In histology, the intensity of portal inflammation was significantly decreased (P < 0.05). The amount of T cells expressing activation markers diminished. This is the first demonstration in any prolonged in vivo model that VAP-1 plays an important role in lymphocyte infiltration to sites of inflammation, and, in particular, liver allograft rejection.

  2. Impact of liver volume and liver function on posthepatectomy liver failure after portal vein embolization- A multivariable cohort analysis.

    PubMed

    Alizai, Patrick H; Haelsig, Annabel; Bruners, Philipp; Ulmer, Florian; Klink, Christian D; Dejong, Cornelis H C; Neumann, Ulf P; Schmeding, Maximilian

    2018-01-01

    Liver failure remains a life-threatening complication after liver resection, and is difficult to predict preoperatively. This retrospective cohort study evaluated different preoperative factors in regard to their impact on posthepatectomy liver failure (PHLF) after extended liver resection and previous portal vein embolization (PVE). Patient characteristics, liver function and liver volumes of patients undergoing PVE and subsequent liver resection were analyzed. Liver function was determined by the LiMAx test (enzymatic capacity of cytochrome P450 1A2). Factors associated with the primary end point PHLF (according to ISGLS definition) were identified through multivariable analysis. Secondary end points were 30-day mortality and morbidity. 95 patients received PVE, of which 64 patients underwent major liver resection. PHLF occurred in 7 patients (11%). Calculated postoperative liver function was significantly lower in patients with PHLF than in patients without PHLF (67 vs. 109 μg/kg/h; p = 0.01). Other factors associated with PHLF by univariable analysis were age, future liver remnant, MELD score, ASA score, renal insufficiency and heart insufficiency. By multivariable analysis, future liver remnant was the only factor significantly associated with PHLF (p = 0.03). Mortality and morbidity rates were 4.7% and 29.7% respectively. Future liver remnant is the only preoperative factor with a significant impact on PHLF. Assessment of preoperative liver function may additionally help identify patients at risk for PHLF.

  3. Prediction of Nonalcoholic Fatty Liver Disease Via a Novel Panel of Serum Adipokines

    PubMed Central

    Jamali, Raika; Arj, Abbas; Razavizade, Mohsen; Aarabi, Mohammad Hossein

    2016-01-01

    Abstract Considering limitations of liver biopsy for diagnosis of nonalcoholic liver disease (NAFLD), biomarkers’ panels were proposed. The aims of this study were to establish models based on serum adipokines for discriminating NAFLD from healthy individuals and nonalcoholic steatohepatitis (NASH) from simple steatosis. This case-control study was conducted in patients with persistent elevated serum aminotransferase levels and fatty liver on ultrasound. Individuals with evidence of alcohol consumption, hepatotoxic medication, viral hepatitis, and known liver disease were excluded. Liver biopsy was performed in the remaining patients to distinguish NAFLD/NASH. Histologic findings were interpreted using “nonalcoholic fatty liver activity score.” Control group consisted of healthy volunteers with normal physical examination, liver function tests, and liver ultrasound. Binary logistic regression analysis was applied to ascertain the effects of independent variables on the likelihood that participants have NAFLD/NASH. Decreased serum adiponectin and elevated serum visfatin, IL-6, TNF-a were associated with an increased likelihood of exhibiting NAFLD. NAFLD discriminant score was developed as the following: [(−0.298 × adiponectin) + (0.022 × TNF-a) + (1.021 × Log visfatin) + (0.709 × Log IL-6) + 1.154]. In NAFLD discriminant score, 86.4% of original grouped cases were correctly classified. Discriminant score threshold value of (−0.29) yielded a sensitivity and specificity of 91% and 83% respectively, for discriminating NAFLD from healthy controls. Decreased serum adiponectin and elevated serum visfatin, IL-8, TNF-a were correlated with an increased probability of NASH. NASH discriminant score was proposed as the following: [(−0.091 × adiponectin) + (0.044 × TNF-a) + (1.017 × Log visfatin) + (0.028 × Log IL-8) − 1.787] In NASH model, 84% of original cases were correctly classified. Discriminant score threshold value of (−0.22) yielded a sensitivity and specificity of 90% and 66% respectively, for separating NASH from simple steatosis. New discriminant scores were introduced for differentiating NAFLD/NASH patients with a high accuracy. If verified by future studies, application of suggested models for screening of NAFLD/NASH seems reasonable. PMID:26844476

  4. Cystathionine γ-Lyase Deficiency Exacerbates CCl4-Induced Acute Hepatitis and Fibrosis in the Mouse Liver.

    PubMed

    Ci, Lei; Yang, Xingyu; Gu, Xiaowen; Li, Qing; Guo, Yang; Zhou, Ziping; Zhang, Mengjie; Shi, Jiahao; Yang, Hua; Wang, Zhugang; Fei, Jian

    2017-07-20

    The present study examined the role of cystathionine γ-lyase (CSE) in carbon tetrachloride (CCl 4 )-induced liver damage. A CSE gene knock-out and luciferase gene knock-in (KI) mouse model was constructed to study the function of CSE and to trace its expression in living status. CCl 4 or lipopolysaccharide markedly downregulated CSE expression in the liver of mice. CSE-deficient mice showed increased serum alanine aminotransferase and aspartate aminotransferase levels, and liver damage after CCl 4 challenge, whereas albumin and endogenous hydrogen sulfide (H 2 S) levels decreased significantly. CSE knockout mice showed increased serum homocysteine levels, upregulation of inflammatory cytokines, and increased autophagy and IκB-α degradation in the liver in response to CCl 4 treatment. The increase in pro-inflammatory cytokines, including tumor necrosis factor-alpha in CSE-deficient mice after CCl 4 challenge, was accompanied by a significant increase in liver tissue hydroxyproline and α-smooth muscle actin and histopathologic changes in the liver. However, H 2 S donor pretreatment effectively attenuated most of these imbalances. Here, a CSE knock-out and luciferase KI mouse model was established for the first time to study the transcriptional regulation of CSE expression in real time in a non-invasive manner, providing information on the effects and potential mechanisms of CSE on CCl 4 -induced liver injury. CSE deficiency increases pro-inflammatory cytokines in the liver and exacerbates acute hepatitis and liver fibrosis by reducing H 2 S production from L-cysteine in the liver. The present data suggest the potential of an H 2 S donor for the treatment of liver diseases such as toxic hepatitis and fibrosis. Antioxid. Redox Signal. 27, 133-149.

  5. Complement C5 controls liver lipid profile, promotes liver homeostasis and inflammation in C57BL/6 genetic background.

    PubMed

    Bavia, Lorena; de Castro, Íris Arantes; Cogliati, Bruno; Dettoni, Juliano Bertollo; Alves, Venancio Avancini Ferreira; Isaac, Lourdes

    2016-07-01

    Innate immunity contributes effectively to the development of alcoholic liver disease (ALD). In special, the activation of the complement system is involved in the pathogenesis of this disease. Here we investigated the contribution of complement C5 protein to the establishment and maintenance of ALD. Eight- to ten-week-old B6C5(+) and B6C5(-) male mice were fed with high fat diet (HFD) only or the same diet containing equicaloric supplements of ethanol (HFDE) or maltodextrin (HFDM) for 10 weeks. Serum parameters of liver function as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AP), albumin, glucose, triglycerides (TG) and cholesterol were evaluated. Liver tissue samples were collected for histopathological analysis, lipid extraction (TG and cholesterol), cytokines (TNF-α, IL-6, IL-1β, IL-10, IL-12, IL-17, IFN-γ, TGF-β) measurement and NO production. We observed that B6C5(-) mice HFDE-fed accumulated more liver cholesterol and TG, increased liver IL-17 and IL-10 levels and reduced liver TGF-β levels when compared to HFD-fed mice. We also observed that serum AST, AP and albumin were increased in B6C5(-) mice. Liver IL-1β, IL-6, IL-12 and IFN-γ were decreased in B6C5(-) mice independently of diet. We conclude that C5 acts in the control of serum TG and cholesterol, liver cholesterol deposition, liver homeostasis and C5 promotes a pro-inflammatory liver environment in our mouse model of ALD. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Effects of purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease: results from the Welcome* study.

    PubMed

    Scorletti, Eleonora; Bhatia, Lokpal; McCormick, Keith G; Clough, Geraldine F; Nash, Kathryn; Hodson, Leanne; Moyses, Helen E; Calder, Philip C; Byrne, Christopher D

    2014-10-01

    There is no licensed treatment for non-alcoholic fatty liver disease (NAFLD), a condition that increases risk of chronic liver disease, type 2 diabetes and cardiovascular disease. We tested whether 15-18 months treatment with docosahexaenoic acid (DHA) plus eicosapentaenoic acid (EPA) (Omacor/Lovaza) (4 g/day) decreased liver fat and improved two histologically-validated liver fibrosis biomarker scores (primary outcomes). Patients with NAFLD were randomised in a double blind placebo-controlled trial [DHA+EPA(n=51), placebo(n=52)]. We quantified liver fat percentage (%) by magnetic resonance spectroscopy in three liver zones. We measured liver fibrosis using two validated scores. We tested adherence to the intervention (Omacor group) and contamination (with DHA and EPA) (placebo group) by measuring erythrocyte percentage DHA and EPA enrichment (gas chromatography). We undertook multivariable linear regression to test effects of: a) DHA+EPA treatment (ITT analyses) and b) erythrocyte DHA and EPA enrichment (secondary analysis). Median (IQR) baseline and end of study liver fat% were 21.7 (19.3) and 19.7 (18.0) (placebo), and 23.0 (36.2) and 16.3 (22.0), (DHA+EPA). In the fully adjusted regression model there was a trend towards improvement in liver fat% with DHA+EPA treatment (β=-3.64 (95%CI -8.0,0.8); p=0.1) but there was evidence of contamination in the placebo group and variable adherence to the intervention in the Omacor group. Further regression analysis showed that DHA enrichment was independently associated with a decrease in liver fat% (for each 1% enrichment, β=-1.70 (95%CI -2.9,-0.5); p=0.007). No improvement in the fibrosis scores occurred. Conclusion. Erythrocyte DHA enrichment with DHA+EPA treatment is linearly associated with decreased liver fat%. Substantial decreases in liver fat% can be achieved with high percentage erythrocyte DHA enrichment in NAFLD. (Hepatology 2014;).

  7. Increased hepatic mitochondrial FA oxidation reduces plasma and liver TG levels and is associated with regulation of UCPs and APOC-III in rats

    PubMed Central

    Lindquist, Carine; Bjørndal, Bodil; Rossmann, Christine Renate; Tusubira, Deusdedit; Svardal, Asbjørn; Røsland, Gro Vatne; Tronstad, Karl Johan; Hallström, Seth; Berge, Rolf Kristian

    2017-01-01

    Hepatic mitochondrial function, APOC-III, and LPL are potential targets for triglyceride (TG)-lowering drugs. After 3 weeks of dietary treatment with the compound 2-(tridec-12-yn-1-ylthio)acetic acid (1-triple TTA), the hepatic mitochondrial FA oxidation increased more than 5-fold in male Wistar rats. Gene expression analysis in liver showed significant downregulation of APOC-III and upregulation of LPL and the VLDL receptor. This led to lower hepatic (53%) and plasma (73%) TG levels. Concomitantly, liver-specific biomarkers related to mitochondrial biogenesis and function (mitochondrial DNA, citrate synthase activity, and cytochrome c and TFAM gene expression) were elevated. Interestingly, 1-triple TTA lowered plasma acetylcarnitine levels, whereas the concentration of β-hydroxybutyrate was increased. The hepatic energy state was reduced in 1-triple TTA-treated rats, as reflected by increased AMP/ATP and decreased ATP/ADP ratios, whereas the energy state remained unchanged in muscle and heart. The 1-triple TTA administration induced gene expression of uncoupling protein (UCP)2 and UCP3 in liver. In conclusion, the 1-triple TTA-mediated clearance of blood TG may result from lowered APOC-III production, increased hepatic LPL gene expression, mitochondrial FA oxidation, and (re)uptake of VLDL facilitating drainage of FAs to the liver for β-oxidation and production of ketone bodies as extrahepatic fuel. The possibility that UCP2 and UCP3 mediate a moderate degree of mitochondrial uncoupling should be considered. PMID:28473603

  8. Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a.

    PubMed

    Xin, Xiaoru; Wu, Mengying; Meng, Qiuyu; Wang, Chen; Lu, Yanan; Yang, Yuxin; Li, Xiaonan; Zheng, Qidi; Pu, Hu; Gui, Xin; Li, Tianming; Li, Jiao; Jia, Song; Lu, Dongdong

    2018-06-12

    Long noncoding RNA HULC is highly up-regulation in human hepatocellular carcinoma (HCC). However, the functions of HULC in hepatocarcinogenesis remains unclear. RT-PCR, Western blotting, Chromatin immunoprecipitation (CHIP) assay, RNA Immunoprecipitation (RIP) and tumorignesis test in vitro and in vivo were performed. HULC is negatively associated with expression of PTEN or miR15a in patients of human liver cancer. Moreover, HULC accelerates malignant progression of liver cancer cells in vitro and in vivo. Mechanistically, HULC increasesthe expression of P62 via decreasing mature miR15a. On the other hand, excessive HULC increases the expression of LC3 on the level of transcription and then activates LC3 through Sirt1 (a deacetylase). Notably, HULC enhanced the interplay between LC3 and ATG3. Furthermore, HULC also increases the expression of becline-1(autophagy related gene). Therefore, HULC increases the cellular autophagy by increasing LC3II dependent on Sirt1.Noteworthy, excessive HULC reduces the expression of PTEN, β-catenin and enhances the expression of SAPK/JUNK, PKM2, CDK2, NOTCH1, C-Jun in liver cancer cells. Of significance, our observations also revealed that HULC inhibited PTEN through ubiquitin-proteasome system mediated by autophagy-P62.Ultimately,HULC activates AKT-PI3K-mTOR pathway through inhibiting PTEN in human liver cancer cells. This study elucidates a novel mechanism that lncRNA HULC produces a vital function during hepatocarcinogenesis.

  9. Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism?

    PubMed Central

    Mao, Xiao Wen; Bellinger, Denise L.; Jonscher, Karen R.; Stodieck, Louis S.; Ferguson, Virginia L.; Bateman, Ted A.; Mohney, Robert P.; Gridley, Daila S.

    2017-01-01

    The Space Shuttle Atlantis launched on its final mission (STS-135) on July 8, 2011. After just under 13 days, the shuttle landed safely at Kennedy Space Center (KSC) for the last time. Female C57BL/6J mice flew as part of the Commercial Biomedical Testing Module-3 (CBTM-3) payload. Ground controls were maintained at the KSC facility. Subsets of these mice were made available to investigators as part of NASA’s Bio-specimen Sharing Program (BSP). Our group characterized cell phenotype distributions and phagocytic function in the spleen, catecholamine and corticosterone levels in the adrenal glands, and transcriptomics/metabolomics in the liver. Despite decreases in most splenic leukocyte subsets, there were increases in reactive oxygen species (ROS)-related activity. Although there were increases noted in corticosterone levels in both the adrenals and liver, there were no significant changes in catecholamine levels. Furthermore, functional analysis of gene expression and metabolomic profiles suggest that the functional changes are not due to oxidative or psychological stress. Despite changes in gene expression patterns indicative of increases in phagocytic activity (e.g. endocytosis and formation of peroxisomes), there was no corresponding increase in genes related to ROS metabolism. In contrast, there were increases in expression profiles related to fatty acid oxidation with decreases in glycolysis-related profiles. Given the clear link between immune function and metabolism in many ground-based diseases, we propose a similar link may be involved in spaceflight-induced decrements in immune and metabolic function. PMID:28542224

  10. Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism?

    PubMed

    Pecaut, Michael J; Mao, Xiao Wen; Bellinger, Denise L; Jonscher, Karen R; Stodieck, Louis S; Ferguson, Virginia L; Bateman, Ted A; Mohney, Robert P; Gridley, Daila S

    2017-01-01

    The Space Shuttle Atlantis launched on its final mission (STS-135) on July 8, 2011. After just under 13 days, the shuttle landed safely at Kennedy Space Center (KSC) for the last time. Female C57BL/6J mice flew as part of the Commercial Biomedical Testing Module-3 (CBTM-3) payload. Ground controls were maintained at the KSC facility. Subsets of these mice were made available to investigators as part of NASA's Bio-specimen Sharing Program (BSP). Our group characterized cell phenotype distributions and phagocytic function in the spleen, catecholamine and corticosterone levels in the adrenal glands, and transcriptomics/metabolomics in the liver. Despite decreases in most splenic leukocyte subsets, there were increases in reactive oxygen species (ROS)-related activity. Although there were increases noted in corticosterone levels in both the adrenals and liver, there were no significant changes in catecholamine levels. Furthermore, functional analysis of gene expression and metabolomic profiles suggest that the functional changes are not due to oxidative or psychological stress. Despite changes in gene expression patterns indicative of increases in phagocytic activity (e.g. endocytosis and formation of peroxisomes), there was no corresponding increase in genes related to ROS metabolism. In contrast, there were increases in expression profiles related to fatty acid oxidation with decreases in glycolysis-related profiles. Given the clear link between immune function and metabolism in many ground-based diseases, we propose a similar link may be involved in spaceflight-induced decrements in immune and metabolic function.

  11. Treatment With Human Wharton’s Jelly-Derived Mesenchymal Stem Cells Attenuates Sepsis-Induced Kidney Injury, Liver Injury, and Endothelial Dysfunction

    PubMed Central

    Cóndor, José M.; Rodrigues, Camila E.; de Sousa Moreira, Roberto; Canale, Daniele; Volpini, Rildo A.; Shimizu, Maria H.M.; Camara, Niels O.S.; Noronha, Irene de L.

    2016-01-01

    The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks. Downregulation of endothelial nitric oxide synthase contributes to sepsis-induced endothelial dysfunction. Human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) are known to reduce expression of proinflammatory cytokines and markers of apoptosis. We hypothesized that treatment with WJ-MSCs would protect renal, hepatic, and endothelial function in a cecal ligation and puncture (CLP) model of sepsis in rats. Rats were randomly divided into three groups: sham-operated rats; rats submitted to CLP and left untreated; and rats submitted to CLP and intraperitoneally injected, 6 hours later, with 1 × 106 WJ-MSCs. The glomerular filtration rate (GFR) was measured at 6 and 24 hours after CLP or sham surgery. All other studies were conducted at 24 hours after CLP or sham surgery. By 6 hours, GFR had decreased in the CLP rats. At 24 hours, Klotho renal expression significantly decreased. Treatment with WJ-MSCs improved the GFR; improved tubular function; decreased the CD68-positive cell count; decreased the fractional interstitial area; decreased expression of nuclear factor κB and of cytokines; increased expression of eNOS, vascular endothelial growth factor, and Klotho; attenuated renal apoptosis; ameliorated hepatic function; increased glycogen deposition in the liver; and improved survival. Sepsis-induced acute kidney injury is a state of Klotho deficiency, which WJ-MSCs can attenuate. Klotho protein expression was higher in WJ-MSCs than in human adipose-derived MSCs. Because WJ-MSCs preserve renal and hepatic function, they might play a protective role in sepsis. Significance Sepsis is the leading cause of death in intensive care units. Although many different treatments for sepsis have been tested, sepsis-related mortality rates remain high. It was hypothesized in this study that treatment with human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) would protect renal, hepatic, and endothelial function in a model of sepsis in rats. Treatment with WJ-MSCs improved the glomerular filtration rate, improved tubular function, decreased expression of nuclear factor κB and of cytokines, increased expression of eNOS and of Klotho, attenuated renal apoptosis, and improved survival. Sepsis-induced acute kidney injury is a state of Klotho deficiency, which WJ-MSCs can attenuate. PMID:27280799

  12. Oxidative Inactivation of Liver Mitochondria in High Fructose Diet-Induced Metabolic Syndrome in Rats: Effect of Glycyrrhizin Treatment.

    PubMed

    Sil, Rajarshi; Chakraborti, Abhay Sankar

    2016-09-01

    Metabolic syndrome is a serious health problem in the present world. Glycyrrhizin, a triterpenoid saponin of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate the primary complications and hepatocellular damage in rats with the syndrome. In this study, we have explored metabolic syndrome-induced changes in liver mitochondrial function and effect of glycyrrhizin against the changes. Metabolic syndrome was induced in rats by high fructose (60%) diet for 6 weeks. The rats were then treated with glycyrrhizin (50 mg/kg body weight) by single intra-peritoneal injection. After 2 weeks of the treatment, the rats were sacrificed to collect liver tissue. Elevated mitochondrial ROS, lipid peroxidation and protein carbonyl, and decreased reduced glutathione content indicated oxidative stress in metabolic syndrome. Loss of mitochondrial inner membrane cardiolipin was observed. Mitochondrial complex I activity did not change but complex IV activity decreased significantly. Mitochondrial MTT reduction ability, membrane potential, phosphate utilisation and oxygen consumption decreased in metabolic syndrome. Reduced mitochondrial aconitase activity and increased aconitase carbonyl content suggested oxidative damage of the enzyme. Elevated Fe(2+) ion level in mitochondria might be associated with increased ROS generation in metabolic syndrome. Glycyrrhizin effectively attenuated mitochondrial oxidative stress and aconitase degradation, and improved electron transport chain activity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. KEAP1-NRF2 COMPLEX IN ISCHEMIA-INDUCED HEPATOCELLULAR DAMAGE OF MOUSE LIVER TRANSPLANTS

    PubMed Central

    Ke, Bibo; Shen, Xiu-Da; Zhang, Yu; Ji, Haofeng; Gao, Feng; Yue, Shi; Kamo, Naoko; Zhai, Yuan; Yamamoto, Masayuki; Busuttil, Ronald W.; Kupiec-Weglinski, Jerzy W.

    2015-01-01

    Background The Keap1-Nrf2 signaling pathway regulates host cell defense responses against oxidative stress and maintains the cellular redox balance. Aims&Methods: We investigated the function/molecular mechanisms by which Keap1-Nrf2 complex may influence liver ischemia/reperfusion injury (IRI) in a mouse model of hepatic cold storage (20h at 4 C) followed by orthotopic liver transplantation (OLT). Results The Keap1 hepatocyte-specific knock-out (HKO) in the donor liver ameliorated post-transplant IRI, evidenced by improved hepatocellular function and OLT outcomes (Keap1HKO Keap1HKO; 100% survival), as compared with controls (WT WT; 50% survival; p<0.01). In contrast, donor liver Nrf2 deficiency exacerbated IRI in transplant recipients (Nrf2KO Nrf2KO; 40% survival). Ablation of Keap1 signaling reduced macrophage/neutrophil trafficking, pro-inflammatory cytokine programs, and hepatocellular necrosis/apoptosis, while simultaneously promoting anti-apoptotic functions in OLTs. At the molecular level, Keap1HKO increased Nrf2 levels, stimulated Akt phosphorylation, and enhanced expression of anti-oxidant Trx1, HIF-1 , and HO-1. Pretreatment of liver donors with PI3K inhibitor (LY294002) disrupted Akt/HIF-1 signaling and recreated hepatocellular damage in otherwise IR-resistant Keap1HKO transplants. In parallel in vitro studies, hydrogen peroxide-stressed Keap1-deficient hepatocytes were characterized by enhanced expression of Nrf2, Trx1, and Akt phosphorylation, in association with decreased release of lactate dehydrogenase (LDH) in cell culture supernatants. Conclusions Keap1-Nrf2 complex prevents oxidative injury in IR-stressed OLTs through Keap1 signaling, which negatively regulates Nrf2 pathway. Activation of Nrf2 induces Trx1 and promotes PI3K/Akt, crucial for HIF-1 activity. HIF-1 -mediated overexpression of HO-1/CyclinD1 facilitates cytoprotection by limiting hepatic inflammatory responses, and hepatocellular necrosis/apoptosis in PI3K-dependent manner. PMID:23867319

  14. Human serum cholinesterase from liver pathological samples exhibit highly elevated aryl acylamidase activity.

    PubMed

    Boopathy, Rathanam; Rajesh, Ramanna Valmiki; Darvesh, Sultan; Layer, Paul G

    2007-05-01

    Although aspartate aminotransferase (AST) and gamma-glutamyltransferase (gamma GT) enzymes are widely used as markers for liver disorders, the ubiquitous enzyme butyrylcholinesterase (BChE), synthesized in liver is also used as marker in the assessment of liver pathophysiology. This BChE enzyme in addition to its esterase activity has yet another enzymatic function designated as aryl acylamidase (AAA) activity. It is determined in in vitro based on the hydrolysis of the synthetic substrate o-nitroacetanilide. In the present study, human serum cholinesterase (BChE) activity was studied with respect to its AAA activity on the BChE protein (AAA(BChE)) in patients with liver disorders. AST and gamma GT values were taken into account in this study as known markers for liver disorders. Blood samples were grouped into 3 based on esterase activity associated with BChE protein. They are normal, low, and very low BChE activity but with markedly increased AST and gamma GT levels. These samples were tested for their respective AAA function. Association of AAA with BChE from samples was proved using BChE monoclonal antibody precipitation experiment. The absolute levels of AAA were increased as BChE activity decreased while deviating from normal samples and such deviation was directly proportional to the severity of the liver disorder. Differences between these groups became prominent after determining the ratios of AAA(BChE) to BChE activities. Samples showing very high AAA(BChE) to BChE ratio were also showing high to very high gamma GT values. These findings establish AAA(BChE) as an independently regulated enzymatic activity on BChE especially in liver disorders. Moreover, since neither the low esterase activity of BChE by itself nor increased levels of AST/gamma GT are sufficient pathological indicators, this pilot study merits replication with large sample numbers.

  15. Assessing alcohol intake & its dose-dependent effects on liver enzymes by 24-h recall and questionnaire using NHANES 2001-2010 data

    DOE PAGES

    Agarwal, Sanjiv; Fulgoni, III, Victor L.; Lieberman, Harris R.

    2016-06-22

    Alcohol is a significant component of the diet with dose-dependent risks and benefits. High doses of alcohol damage the liver and early symptoms of liver disease include changes in routinely assessed liver enzymes. Less is known regarding the mechanisms responsible for the benefits of moderate alcohol consumption, including their effects on the liver. The objectives of this study were to examine alcohol’s dose-dependent effects on markers of liver function (alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transferase (GGT), and bilirubin), as well as to compare the different methods of assessing alcohol intake using NHANES 2001–2010 adultmore » data (N =24,807). Three methods were used to estimate alcohol intake from all volunteers: 24-h recall; the National Cancer Institute (NCI) method of usual intake; and a specific alcohol intake questionnaire. Mean alcohol intake by 24-h recall, NCI method and questionnaire was 41.0 ± 0.8 g/d, 10.9 ± 0.2 g/d and 11.0 ± 0.2 g/d, respectively. Alcohol consumers had significantly lower levels of ALP and higher levels of AST, GGT and bilirubin compared to non-consumers (P < 0.01) and activities of ALT, AST, and GGT increased and of ALP decreased as alcohol intake increased, regardless of intake assessment method used. The most sensitive measure of alcohol consumption was GGT. Since alcohol had a graded linear effect on several liver enzymes, including at low and moderate doses, benefits as well as risks of alcohol intake may be related to liver function. In conclusion, since the NCI method and alcohol questionnaire yielded very similar alcohol intake estimates, this study cross-validated these methods and demonstrated the robustness of the NCI method for estimating intake of irregularly consumed foods.« less

  16. Assessing alcohol intake & its dose-dependent effects on liver enzymes by 24-h recall and questionnaire using NHANES 2001-2010 data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Sanjiv; Fulgoni, III, Victor L.; Lieberman, Harris R.

    Alcohol is a significant component of the diet with dose-dependent risks and benefits. High doses of alcohol damage the liver and early symptoms of liver disease include changes in routinely assessed liver enzymes. Less is known regarding the mechanisms responsible for the benefits of moderate alcohol consumption, including their effects on the liver. The objectives of this study were to examine alcohol’s dose-dependent effects on markers of liver function (alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transferase (GGT), and bilirubin), as well as to compare the different methods of assessing alcohol intake using NHANES 2001–2010 adultmore » data (N =24,807). Three methods were used to estimate alcohol intake from all volunteers: 24-h recall; the National Cancer Institute (NCI) method of usual intake; and a specific alcohol intake questionnaire. Mean alcohol intake by 24-h recall, NCI method and questionnaire was 41.0 ± 0.8 g/d, 10.9 ± 0.2 g/d and 11.0 ± 0.2 g/d, respectively. Alcohol consumers had significantly lower levels of ALP and higher levels of AST, GGT and bilirubin compared to non-consumers (P < 0.01) and activities of ALT, AST, and GGT increased and of ALP decreased as alcohol intake increased, regardless of intake assessment method used. The most sensitive measure of alcohol consumption was GGT. Since alcohol had a graded linear effect on several liver enzymes, including at low and moderate doses, benefits as well as risks of alcohol intake may be related to liver function. In conclusion, since the NCI method and alcohol questionnaire yielded very similar alcohol intake estimates, this study cross-validated these methods and demonstrated the robustness of the NCI method for estimating intake of irregularly consumed foods.« less

  17. Interferon-free regimens improve portal hypertension and histological necroinflammation in HIV/HCV patients with advanced liver disease.

    PubMed

    Schwabl, P; Mandorfer, M; Steiner, S; Scheiner, B; Chromy, D; Herac, M; Bucsics, T; Hayden, H; Grabmeier-Pfistershammer, K; Ferlitsch, A; Oberhuber, G; Trauner, M; Peck-Radosavljevic, M; Reiberger, T

    2017-01-01

    HIV/HCV co-infected patients show accelerated fibrosis progression and higher risk for complications of portal hypertension (PHT). To assess the effects of interferon-free therapy on portal pressure, liver histology and plasma biomarkers in HIV/HCV-coinfected patients with PHT. Twenty-two patients with paired hepatic venous pressure gradient (HVPG) measurements prior and after successful treatment (SVR) with interferon-free regimens were included. Liver stiffness was assessed by transient elastography and biopsies were scored according to METAVIR. Plasma biomarkers were determined by ELISA. Overall, HVPG decreased from 10.7 ± 4.1 mmHg at baseline to 7.4 ± 4.2 mmHg after HCV treatment (Δ:-3.3 ± 2.7 mmHg; p < 0.001). In patients with clinically significant PHT (HVPG≥10 mmHg, n = 11), HVPG decreased from 14.1 ± 2.9 to 10.4 ± 3.9 mmHg (Δ:-3.7 ± 3.3 mmHg; p = 0.004) and a haemodynamic response (HVPG decrease ≥10%) was observed in 73%. In 64% of patients with subclinical PHT (HVPG 6-9 mmHg, n = 11), portal pressure normalised at SVR. Mean liver stiffness decreased from 20.8 kPa to 11.5 kPa (Δ:-8.8 ± 7.4 kPa; p < 0.001). Fifty percent (7/14) of patients with cirrhosis were re-classified as METAVIR ≤F3 and all patients with decompensated cirrhosis improved their Child-Pugh stage. After successful HCV treatment, 39% still had persistent histological necroinflammatory activity (METAVIR A1), which correlated with less HVPG response and more steatosis. While most biomarkers improved with SVR, METAVIR A1 patients had significantly higher plasma levels of fibrogenic (PDGF, TGF-β) and angiogenic (VEGF, Angiopoietin1) biomarkers. Interferon-free therapy reduces PHT and halts histological necroinflammatory activity in the majority of HIV/HCV-coinfected patients after SVR, which may lead to re-compensation of liver function in cirrhosis. Biomarkers could identify patients with persisting hepatic necroinflammation. © 2016 John Wiley & Sons Ltd.

  18. Neutrophil depletion improves diet-induced non-alcoholic fatty liver disease in mice.

    PubMed

    Ou, Rongying; Liu, Jia; Lv, Mingfen; Wang, Jingying; Wang, Jinmeng; Zhu, Li; Zhao, Liang; Xu, Yunsheng

    2017-07-01

    Non-alcoholic fatty liver disease is highly associated with morbidity and mortality in population. Although studies have already demonstrated that the immune response plays a pivotal role in the development of non-alcoholic fatty liver disease, the comprehensive regulation is unclear. Therefore, present study was carried out to investigate the non-alcoholic fatty liver disease development under neutrophil depletion. To achieve the aim of the study, C57BL/6 J mice were fed with high fat diet for 6 weeks before treated with neutrophil deplete antibody 1A8 or isotype control (200 μg/ mouse every week) for another 4 weeks. Treated with 1A8 antibody, obese mice exhibited better whole body metabolic parameters, including reduction of body weight gain and fasting blood glucose levels. Neutrophil depletion also effectively reduced hepatic structural disorders, dysfunction and lipid accumulation. Lipid β-oxidative markers, phosphorylated-AMP-activated protein kinase α and phosphorylated-acetyl-CoA carboxylase levels were increased in 1A8 antibody-treated obese mouse group. The mitochondrial number and function were also reversed after 1A8 antibody treatment, including increased mitochondrial number, reduced lipid oxidative damage and enhanced mitochondrial activity. Furthermore, the expression of inflammatory cytokines, tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1 were obviously reduced after neutrophil depletion, accompanied with decreased F4/80 mRNA level and macrophage percentage in liver. The decreased NF-κB signaling activity was also involved in the beneficial effect of neutrophil depletion. Taken together, neutrophil depletion could attenuate metabolic syndromes and hepatic dysfunction.

  19. Decreased expression of peroxisome proliferator activated receptor gamma in cftr-/- mice.

    PubMed

    Ollero, Mario; Junaidi, Omer; Zaman, Munir M; Tzameli, Iphigenia; Ferrando, Adolfo A; Andersson, Charlotte; Blanco, Paola G; Bialecki, Eldad; Freedman, Steven D

    2004-08-01

    Some of the pathological manifestations of cystic fibrosis are in accordance with an impaired expression and/or activity of PPARgamma. We hypothesized that PPARgamma expression is altered in tissues lacking the normal cystic fibrosis transmembrane regulator protein (CFTR). PPARgamma mRNA levels were measured in colonic mucosa, ileal mucosa, adipose tissue, lung, and liver from wild-type and cftr-/- mice by quantitative RT-PCR. PPARgamma expression was decreased twofold in CFTR-regulated tissues (colon, ileum, and lung) from cftr-/- mice compared to wild-type littermates. In contrast, no differences were found in fat and liver. Immunohistochemical analysis of PPARgamma in ileum and colon revealed a predominantly nuclear localization in wild-type mucosal epithelial cells while tissues from cftr-/- mice showed a more diffuse, lower intensity labeling. A significant decrease in PPARgamma expression was confirmed in nuclear extracts of colon mucosa by Western blot analysis. In addition, binding of the PPARgamma/RXR heterodimer to an oligonucletotide containing a peroxisome proliferator responsive element (PPRE) was also decreased in colonic mucosa extracts from cftr-/- mice. Treatment of cftr-/- mice with the PPARgamma ligand rosiglitazone restored both the nuclear localization and binding to DNA, but did not increase RNA levels. We conclude that PPARgamma expression in cftr-/- mice is downregulated at the RNA and protein levels and its function diminished. These changes may be related to the loss of function of CFTR and may be relevant to the pathogenesis of metabolic abnormalities associated with cystic fibrosis in humans. Copyright 2004 Wiley-Liss, Inc.

  20. Prediction of postoperative outcome after hepatectomy with a new bedside test for maximal liver function capacity.

    PubMed

    Stockmann, Martin; Lock, Johan F; Riecke, Björn; Heyne, Karsten; Martus, Peter; Fricke, Michael; Lehmann, Sina; Niehues, Stefan M; Schwabe, Michael; Lemke, Arne-Jörn; Neuhaus, Peter

    2009-07-01

    To validate the LiMAx test, a new bedside test for the determination of maximal liver function capacity based on C-methacetin kinetics. To investigate the diagnostic performance of different liver function tests and scores including the LiMAx test for the prediction of postoperative outcome after hepatectomy. Liver failure is a major cause of mortality after hepatectomy. Preoperative prediction of residual liver function has been limited so far. Sixty-four patients undergoing hepatectomy were analyzed in a prospective observational study. Volumetric analysis of the liver was carried out using preoperative computed tomography and intraoperative measurements. Perioperative factors associated with morbidity and mortality were analyzed. Cutoff values of the LiMAx test were evaluated by receiver operating characteristic. Residual LiMAx demonstrated an excellent linear correlation with residual liver volume (r = 0.94, P < 0.001) after hepatectomy. The multivariate analysis revealed LiMAx on postoperative day 1 as the only predictor of liver failure (P = 0.003) and mortality (P = 0.004). AUROC for the prediction of liver failure and liver failure related death by the LiMAx test was both 0.99. Preoperative volume/function analysis combining CT volumetry and LiMAx allowed an accurate calculation of the remnant liver function capacity prior to surgery (r = 0.85, P < 0.001). Residual liver function is the major factor influencing the outcome of patients after hepatectomy and can be predicted preoperatively by a combination of LiMAx and CT volumetry.

  1. The Role of Akt in Chronic Liver Disease and Liver Regeneration.

    PubMed

    Morales-Ruiz, Manuel; Santel, Ansgar; Ribera, Jordi; Jiménez, Wladimiro

    2017-02-01

    The liver is continuously exposed to diverse insults, which may culminate in pathological processes causing liver disease. An effective therapeutic strategy for chronic liver disease should control the causal factors of the disease and stimulate functional liver regeneration. Preclinical studies have shown that interventions aimed at maintaining Akt activity in a dysfunctional liver meet most of the criteria. Although the central function of Akt is cell survival, other cellular aspects such as glucose uptake, glycogen synthesis, cell-cycle progression, and lipid metabolism have been shown to be prominent functions of Akt in the context of hepatic physiology. In this review, the authors describe the benefits of the Akt signaling pathway, emphasizing its importance in coordinating proper cellular growth and differentiation during liver regeneration, hepatic function, and liver disease. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Intestinal microbial variation may predict early acute rejection after liver transplantation in rats.

    PubMed

    Ren, Zhigang; Jiang, Jianwen; Lu, Haifeng; Chen, Xinhua; He, Yong; Zhang, Hua; Xie, Haiyang; Wang, Weilin; Zheng, Shusen; Zhou, Lin

    2014-10-27

    Acute rejection (AR) remains a life-threatening complication after orthotopic liver transplantation (OLT) and there are few available diagnostic biomarkers clinically for AR. This study aims to identify intestinal microbial profile and explore potential application of microbial profile as a biomarker for AR after OLT. The OLT models in rats were established. Hepatic graft histology, ultrastructure, function, and intestinal barrier function were tested. Ileocecal contents were collected for intestinal microbial analysis. Hepatic graft suffered from the ischemia-reperfusion (I/R) injury on day 1, initial AR on day 3, and severe AR on day 7 after OLT. Real-time quantitative polymerase chain reaction results showed that genus Faecalibacterium prausnitzii and Lactobacillus were decreased, whereas Clostridium bolteae was increased during AR. Notably, cluster analysis of denaturing gradient gel electrophoresis (DGGE) profiles showed the 7AR and 3AR groups clustered together with 73.4% similarity, suggesting that intestinal microbiota was more sensitive than hepatic function in responding to AR. Microbial diversity and species richness were decreased during AR. Phylogenetic tree analysis showed that most of the decreased key bacteria belonged to phylum Firmicutes, whereas increased key bacteria belonged to phylum Bacteroidetes. Moreover, intestinal microvilli loss and tight junction damage were noted, and intestinal barrier dysfunction during AR presented a decrease of fecal secretory immunoglobulin A (sIgA) and increase of blood bacteremia, endotoxin, and tumor necrosis factor-α. We dynamically detail intestinal microbial characterization and find a high sensitivity of microbial change during AR after OLT, suggesting that intestinal microbial variation may predict AR in early phase and become an assistant therapeutic target to improve rejection after OLT.

  3. Intestinal Microbial Variation May Predict Early Acute Rejection after Liver Transplantation in Rats

    PubMed Central

    Ren, Zhigang; Jiang, Jianwen; Lu, Haifeng; Chen, Xinhua; He, Yong; Zhang, Hua; Xie, Haiyang; Wang, Weilin; Zheng, Shusen; Zhou, Lin

    2014-01-01

    Background Acute rejection (AR) remains a life-threatening complication after orthotopic liver transplantation (OLT) and there are few available diagnostic biomarkers clinically for AR. This study aims to identify intestinal microbial profile and explore potential application of microbial profile as a biomarker for AR after OLT. Methods The OLT models in rats were established. Hepatic graft histology, ultrastructure, function, and intestinal barrier function were tested. Ileocecal contents were collected for intestinal microbial analysis. Results Hepatic graft suffered from the ischemia-reperfusion (I/R) injury on day 1, initial AR on day 3, and severe AR on day 7 after OLT. Real-time quantitative polymerase chain reaction results showed that genus Faecalibacterium prausnitzii and Lactobacillus were decreased, whereas Clostridium bolteae was increased during AR. Notably, cluster analysis of denaturing gradient gel electrophoresis (DGGE) profiles showed the 7AR and 3AR groups clustered together with 73.4% similarity, suggesting that intestinal microbiota was more sensitive than hepatic function in responding to AR. Microbial diversity and species richness were decreased during AR. Phylogenetic tree analysis showed that most of the decreased key bacteria belonged to phylum Firmicutes, whereas increased key bacteria belonged to phylum Bacteroidetes. Moreover, intestinal microvilli loss and tight junction damage were noted, and intestinal barrier dysfunction during AR presented a decrease of fecal secretory immunoglobulin A (sIgA) and increase of blood bacteremia, endotoxin, and tumor necrosis factor-α. Conclusion We dynamically detail intestinal microbial characterization and find a high sensitivity of microbial change during AR after OLT, suggesting that intestinal microbial variation may predict AR in early phase and become an assistant therapeutic target to improve rejection after OLT. PMID:25321166

  4. Computational Modeling in Liver Surgery

    PubMed Central

    Christ, Bruno; Dahmen, Uta; Herrmann, Karl-Heinz; König, Matthias; Reichenbach, Jürgen R.; Ricken, Tim; Schleicher, Jana; Ole Schwen, Lars; Vlaic, Sebastian; Waschinsky, Navina

    2017-01-01

    The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant. However, size and function of the liver are not necessarily equivalent. Hence, determining the future liver volume might misestimate the future liver function, especially in cases of hepatic comorbidities such as hepatic steatosis. A systems medicine approach could be applied, including biological, medical, and surgical aspects, by integrating all available anatomical and functional information of the individual patient. Such an approach holds promise for better prediction of postoperative liver function and hence improved risk assessment. This review provides an overview of mathematical models related to the liver and its function and explores their potential relevance for computational liver surgery. We first summarize key facts of hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a description of the computational tools currently used in liver surgical planning. Then we present selected state-of-the-art computational liver models potentially useful to support liver surgery. Finally, we discuss the main challenges that will need to be addressed when developing advanced computational planning tools in the context of liver surgery. PMID:29249974

  5. Hoxa5 overexpression correlates with IGFBP1 upregulation and postnatal dwarfism: evidence for an interaction between Hoxa5 and Forkhead box transcription factors.

    PubMed

    Foucher, Isabelle; Volovitch, Michel; Frain, Monique; Kim, J Julie; Souberbielle, Jean-Claude; Gan, Lixia; Unterman, Terry G; Prochiantz, Alain; Trembleau, Alain

    2002-09-01

    Transgenic mice expressing the homeobox gene Hoxa5 under the control of Hoxb2 regulatory elements present a growth arrest during weeks two and three of postnatal development, resulting in proportionate dwarfism. These mice present a liver phenotype illustrated by a 12-fold increase in liver insulin-like growth factor binding protein 1 (IGFBP1) mRNA and a 50% decrease in liver insulin-like growth factor 1 (IGF1) mRNA correlated with a 50% decrease in circulating IGF1. We show that the Hoxa5 transgene is expressed in the liver of these mice, leading to an overexpression of total (endogenous plus transgene) Hoxa5 mRNA in this tissue. We have used several cell lines to investigate a possible physiological interaction of Hoxa5 with the main regulator of IGFBP1 promoter activity, the Forkhead box transcription factor FKHR. In HepG2 cells, Hoxa5 has little effect by itself but inhibits the FKHR-dependent activation of the IGFBP1 promoter. In HuF cells, Hoxa5 cooperates with FKHR to dramatically enhance IGFBP1 promoter activity. This context-dependent physiological interaction probably corresponds to the existence of a direct interaction between Hoxa5 and FKHR and FoxA2/HNF3beta, as demonstrated by pull-down experiments achieved either in vitro or after cellular co-expression. In conclusion, we propose that the impaired growth observed in this transgenic line relates to a liver phenotype best explained by a direct interaction between Hoxa5 and liver-specific Forkhead box transcription factors, in particular FKHR but also Foxa2/HNF3beta. Because Hoxa5 and homeogenes of the same paralog group are normally expressed in the liver, the present results raise the possibility that homeoproteins, in addition to their established role during early development, regulate systemic physiological functions.

  6. MicroRNA-29a mitigation of endoplasmic reticulum and autophagy aberrance counteracts in obstructive jaundice-induced fibrosis in mice.

    PubMed

    Huang, Ying-Hsien; Yang, Ya-Ling; Huang, Fu-Chen; Tiao, Mao-Meng; Lin, Yen-Cheng; Tsai, Ming-Horng; Wang, Feng-Sheng

    2018-01-01

    Hepatic fibrosis was caused by a number of signaling pathways that damage liver integrity. We have previously shown that microRNA-29a (miR-29a) protects against liver fibrosis. Aberrant endoplasmic reticulum (ER) and autophagy function reportedly exaggerate hepatic disorders. The aim of this study was to characterize the biological influence of miR-29a on ER function in injured livers with bile duct ligation (BDL). We performed BDL on miR-29a transgenic mice (miR-29aTg) and wild-type mice to induce cholestatic liver injury. Rat T6 cells were transfected with miR-29a mimic and tunicamycin. Compared to the wild-type mice, the BDL deterioration of liver function in terms of total bilirubin, alanine transaminase, and aspartate transaminase activity in the miR-29aTg mice was significantly reduced. Affected livers in the miR-29aTg mice demonstrated a slight fibrotic matrix formation. miR-29a over-expression reduced the BDL disturbance of the expressions of inositol-requiring kinase 1alpha, double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase, spliced-X-box binding protein 1 (sXBP1), CCAAT/enhancer-binding protein homologous protein (CHOP), ULK, LC3BII, p62, and cleaved caspase-8, 9 and 3. In vitro, T6 cells exposed to tunicamycin by increasing abundances of CHOP, sXBP1, cleaved caspase-3, and LC3BII were diminished in the cell cultures transfected with the miR-29a mimic. On the other hand, we observed that miR-29a signaling protected liver tissues from BDL-mediated metabolic dysfunction and excessive fibrosis histopathology. This study provides new molecular insight into the miR-29a stabilization of ER integrity that slows the progression of cholestatic liver deterioration. Impact statement Long-term hepatic damage caused by hepatitis and cholestasis can accelerate fibrosis matrix over-production, which is a harmful process attributed to the dysregulation of a number of cellular and molecular events. The purpose of this study is to characterize the biological influence of miR-29a on endoplasmic reticulum (ER) function in bile duct ligation (BDL)-injured livers. To the best of our knowledge, this report is the first demonstration that miR-29a over-expression diminishes BDL provocation of ER stress (unfolded protein response, UPR) effector protein expression. This work also demonstrates that miR-29a decreased caspases protein expression in cholestatic livers, while an increase in miR-29a function reduced sXBP1 and CHOP expressions in T6 cells in mice. Analyses of this study highlight that controlling miR-29a signaling can serve as an innovative strategy in the future for microRNA regulation of ER homeostasis to combat cholestasis induction hepatic disorders.

  7. Citrulline and Nonessential Amino Acids Prevent Fructose-Induced Nonalcoholic Fatty Liver Disease in Rats.

    PubMed

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Ventura, Gabrielle; Nubret, Esther; Sarfati, Gilles; Bergheim, Ina; De Bandt, Jean-Pascal

    2015-10-01

    Fructose induces nonalcoholic fatty liver disease (NAFLD). Citrulline (Cit) may exert a beneficial effect on steatosis. We compared the effects of Cit and an isonitrogenous mixture of nonessential amino acids (NEAAs) on fructose-induced NAFLD. Twenty-two male Sprague Dawley rats were randomly assigned into 4 groups (n = 4-6) to receive for 8 wk a 60% fructose diet, either alone or supplemented with Cit (1 g · kg(-1) · d(-1)), or an isonitrogenous amount of NEAAs, or the same NEAA-supplemented diet with starch and maltodextrin instead of fructose (controls). Nutritional and metabolic status, liver function, and expression of genes of hepatic lipid metabolism were determined. Compared with controls, fructose led to NAFLD with significantly higher visceral fat mass (128%), lower lean body mass (-7%), insulin resistance (135%), increased plasma triglycerides (TGs; 67%), and altered plasma amino acid concentrations with decreased Arg bioavailability (-27%). This was corrected by both NEAA and Cit supplementation. Fructose caused a 2-fold increase in the gene expression of fatty acid synthase (Fas) and 70% and 90% decreases in that of carnitine palmitoyl-transferase 1a and microsomal TG transfer protein via a nearly 10-fold higher gene expression of sterol regulatory element-binding protein-1c (Srebp1c) and carbohydrate-responsive element-binding protein (Chrebp), and a 90% lower gene expression of peroxisome proliferator-activated receptor α (Ppara). NEAA or Cit supplementation led to a Ppara gene expression similar to controls and decreased those of Srebp1c and Chrebp in the liver by 50-60%. Only Cit led to Fas gene expression and Arg bioavailability similar to controls. In our rat model, Cit and NEAAs effectively prevented fructose-induced NAFLD. On the basis of literature data and our findings, we propose that NEAAs may exert their effects specifically on the liver, whereas Cit presumably acts at both the hepatic and whole-body level, in part via improved peripheral Arg metabolism. © 2015 American Society for Nutrition.

  8. A metabolic mechanism analysis of Fuzheng-Huayu formula for improving liver cirrhosis with traditional Chinese medicine syndromes.

    PubMed

    Song, Ya-Nan; Chen, Jian; Cai, Fei-Fei; Lu, Yi-Yu; Chen, Qi-Long; Zhang, Yong-Yu; Liu, Ping; Su, Shi-Bing

    2018-06-01

    Fuzheng-Huayu formula (FZHY), a Chinese herbal mixture prescription, has been proven effective in treating liver fibrosis and cirrhosis in both clinical trials and animal experiments. In this study we assessed the metabolic mechanisms of traditional Chinese medicine (TCM) syndrome-based FZHY treatment in liver cirrhosis (LC). A total of 113 participants, including 50 healthy controls and 63 LC patients, were recruited. According to the diagnosis and differentiation of the TCM syndromes, the LC patients were classified into 5 TCM syndrome groups including the liver stagnation syndrome (LSS), spleen deficiency and damp overabundance syndrome (SDDOS), damp-heat accumulation syndrome (DHAS), liver-kidney Yin deficiency syndrome (LKYDS), and blood stagnation syndrome (BSS), and administered FZHY for 6 months. FZHY treatment significantly decreased serum levels of hyaluronic acid (HA), a biochemical marker for LC, as well as TCM syndrome scores (the TCM syndrome scores were decreased in all the groups with significant decreases in the LSS and LKYDS groups). Furthermore, FZHY treatment gradually shifted the metabolic profiles of LC patients from a pathologic state to a healthy state, especially in LC patients with LSS and LKYDS. Twenty-two differently altered metabolites (DAMs) were identified, including carbohydrates, amino acids, fatty acids, etc with 9 DAMs in LSS patients, 9 in LKYDS patients, and 4 in other patients. The metabolic pathways involved in the conversion of amino acids and the body's detoxification process were regulated first, followed by the pathways involved in the body's energy supply process. In conclusion, the evaluation of the effect of TCM syndrome-based FZHY treatment show that FZHY has a better effect on LKYDS and LSS than on the other TCM syndromes, and the metabolic mechanisms might be involved in the increased detoxification function in LKYDS and the improvement of energy supply in LSS, which provides important evidence for the clinical application of TCM syndrome-based treatment.

  9. Optimizing global liver function in radiation therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Wu, Victor W.; Epelman, Marina A.; Wang, Hesheng; Romeijn, H. Edwin; Feng, Mary; Cao, Yue; Ten Haken, Randall K.; Matuszak, Martha M.

    2016-09-01

    Liver stereotactic body radiation therapy (SBRT) patients differ in both pre-treatment liver function (e.g. due to degree of cirrhosis and/or prior treatment) and radiosensitivity, leading to high variability in potential liver toxicity with similar doses. This work investigates three treatment planning optimization models that minimize risk of toxicity: two consider both voxel-based pre-treatment liver function and local-function-based radiosensitivity with dose; one considers only dose. Each model optimizes different objective functions (varying in complexity of capturing the influence of dose on liver function) subject to the same dose constraints and are tested on 2D synthesized and 3D clinical cases. The normal-liver-based objective functions are the linearized equivalent uniform dose (\\ell \\text{EUD} ) (conventional ‘\\ell \\text{EUD} model’), the so-called perfusion-weighted \\ell \\text{EUD} (\\text{fEUD} ) (proposed ‘fEUD model’), and post-treatment global liver function (GLF) (proposed ‘GLF model’), predicted by a new liver-perfusion-based dose-response model. The resulting \\ell \\text{EUD} , fEUD, and GLF plans delivering the same target \\ell \\text{EUD} are compared with respect to their post-treatment function and various dose-based metrics. Voxel-based portal venous liver perfusion, used as a measure of local function, is computed using DCE-MRI. In cases used in our experiments, the GLF plan preserves up to 4.6 % ≤ft(7.5 % \\right) more liver function than the fEUD (\\ell \\text{EUD} ) plan does in 2D cases, and up to 4.5 % ≤ft(5.6 % \\right) in 3D cases. The GLF and fEUD plans worsen in \\ell \\text{EUD} of functional liver on average by 1.0 Gy and 0.5 Gy in 2D and 3D cases, respectively. Liver perfusion information can be used during treatment planning to minimize the risk of toxicity by improving expected GLF; the degree of benefit varies with perfusion pattern. Although fEUD model optimization is computationally inexpensive and often achieves better GLF than \\ell \\text{EUD} model optimization does, the GLF model directly optimizes a more clinically relevant metric and can further improve fEUD plan quality.

  10. Immunohistochemical study of retinol-binding protein in livers of polar bears (Thalarctos maritimus).

    PubMed

    Heier, A; Gröne, A; Völlm, J; Kübber-Heiss, A; Bacciarini, L N

    2003-03-01

    Liver tumors of unknown cause have frequently been described in polar bears. Concurrent decrease of vitamin A levels and chronic liver disease are associated with hepatic carcinogenesis in humans. More than 90% of the body's vitamin A is stored in the liver, where it is bound to an intracellular retinol-binding protein (RBP). Therefore, in this retrospective study, RBP was assessed by immunohistochemistry in liver sections of 11 polar bears. Two of these polar bears had hepatocellular carcinoma, four showed other chronic liver changes, and five had normal livers. In normal livers, the cytoplasm stained diffusely positive with intensely staining cytoplasmic granules. RBP staining was evaluated and the abundance of diffuse cytoplasmic staining and intracytoplasmic large granules was determined. All cases with pathologic liver changes had markedly decreased staining intensities for RBP compared with normal livers. The findings of this study suggest that in polar bears, as in humans, vitamin A metabolism may play a role in hepatic carcinogenesis.

  11. Effects of selenium on mallard duck reproduction and immune function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteley, P.L.; Yuill, T.M.; Fairbrother, A.

    Selenium from irrigation drain water and coal-fired power stations is a significant environmental contaminant in some regions of the USA. The objectives were to examine whether selenium-exposed waterfowl had altered immune function, disease resistance, or reproduction. Pairs of adult mallards were exposed for 95-99 days on streams with sodium selenite-treated water at 10 and 30 ppb, or on untreated streams. Selenium biomagnified through the food chain to the ducks. Disease resistance was decreased in ducklings hatched on the streams and challenged with duck hepatitis virus 1 (DHV1) when 15-days old. Liver selenium concentrations for these ducklings on the 10 andmore » 30 ppb streams was 3.6 and 7.6 ppm dry weight, respectively. Mortality of ducklings purchased when 7-days old, exposed to selenium for 14 days, and challenged when 22-days old was not affected. However, their selenium exposure was lower (liver selenium 4.1 ppm dry weight for the 30 ppb stream). Five parameters of immune function were measured in adult ducks. Phagocytosis of killed Pasteurella multocida by blood heterophils and monocytes, and blood monocyte concentrations were higher in adult males following 84 days exposure to 30 ppb selenium. Their liver selenium concentrations were 11.1 ppm dry weight after 95-99 days exposure.« less

  12. Partial deletion of argininosuccinate synthase protects from pyrazole plus lipopolysaccharide-induced liver injury by decreasing nitrosative stress

    PubMed Central

    Lu, Yongke; Leung, Tung Ming; Ward, Stephen C.

    2012-01-01

    Argininosuccinate synthase (ASS) is the rate-limiting enzyme in the urea cycle. Along with nitric oxide synthase (NOS)-2, ASS endows cells with the l-citrulline/nitric oxide (NO·) salvage pathway to continually supply l-arginine from l-citrulline for sustained NO· generation. Because of the relevant role of NOS in liver injury, we hypothesized that downregulation of ASS could decrease the availability of intracellular substrate for NO· synthesis by NOS-2 and, hence, decrease liver damage. Previous work demonstrated that pyrazole plus LPS caused significant liver injury involving NO· generation and formation of 3-nitrotyrosine protein adducts; thus, wild-type (WT) and Ass+/− mice (Ass−/− mice are lethal) were treated with pyrazole plus LPS, and markers of nitrosative stress, as well as liver injury, were analyzed. Partial ablation of Ass protected from pyrazole plus LPS-induced liver injury by decreasing nitrosative stress and hepatic and circulating TNFα. Moreover, apoptosis was prevented, since pyrazole plus LPS-treated Ass+/− mice showed decreased phosphorylation of JNK; increased MAPK phosphatase-1, which is known to deactivate JNK signaling; and lower cleaved caspase-3 than treated WT mice, and this was accompanied by less TdT-mediated dUTP nick end labeling-positive staining. Lastly, hepatic neutrophil accumulation was almost absent in pyrazole plus LPS-treated Ass+/− compared with WT mice. Partial Ass ablation prevents pyrazole plus LPS-mediated liver injury by reducing nitrosative stress, TNFα, apoptosis, and neutrophil infiltration. PMID:22052013

  13. Extracorporeal Bioartificial Liver for Treating Acute Liver Diseases

    PubMed Central

    Kumar, Ashok; Tripathi, Anuj; Jain, Shivali

    2011-01-01

    Abstract: Liver is a vital organ of the human body performing myriad of essential functions. Liver-related ailments are often life-threatening and dramatically deteriorate the quality of life of patients. Management of acute liver diseases requires adequate support of various hepatic functions. Thus far, liver transplantation has been proven as the only effective solution for acute liver diseases. However, broader application of liver transplantation is limited by demand for lifelong immunosuppression, shortage of organ donors, relative high morbidity, and high cost. Therefore, research has been focused on attempting to develop alternative support systems to treat liver diseases. Earlier attempts have been made to use nonbiological therapies based on the use of conventional detoxification procedures such as filtration and dialysis. However, the absence of liver cells in such techniques reduced the overall survival rate of the patients and led to inadequate essential liver-specific functions. As a result, there has been growing interest in the development of biological therapy-based extracorporeal liver support systems as a bridge to liver transplantation or to support the ailing liver. A bioartificial liver support is an extracorporeal device through which plasma is circulated over living and functionally active hepatocytes packed in a bioreactor with the aim to aid the diseased liver until it regenerates or until a suitable graft for transplantation is available. This review article gives a brief overview of efficacy of various liver support systems that are currently available. Also, the development of advanced liver support systems, which has been analyzed for improving the important system component such as cell source and other culture and circulation conditions for the maintenance of the liver-specific functions, have been described. PMID:22416599

  14. Urinary Liver Type Fatty Acid Binding Protein Is Negatively Associated With Estimated Glomerular Filtration Rate in Renal Transplant Recipients With Graft Loss.

    PubMed

    Huang, Y-C; Chang, Y-S; Chen, C-C; Tsai, S-F; Yu, T-M; Wu, M-J; Chen, C-H

    2018-05-01

    Liver type fatty acid binding protein (L-FABP) is abundant not only in the liver but also in the kidney and is excreted in urine. Its primary function is to facilitate intracellular long chain fatty acid transport and it might also act as an endogenous antioxidant molecular. The purpose of this study was to investigate whether plasma or urinary L-FABP levels were associated with graft function in renal transplant recipients. Sixty-seven renal transplant recipients with a mean age of 48.8 years were recruited. The mean duration of renal transplantation was 4131 days. Recipients were divided into 2 groups based on their estimated glomerular filtration rate (eGFR) values: moderate graft function (eGFR ≥60 mL/min/1.73 m 2 ) and low graft function (eGFR <60 mL/min/1.73 m 2 ). Fasting plasma and urinary L-FABP levels were measured. There was no significant difference in plasma L-FABP level between the 2 groups, although recipients in the low graft function group had significantly lower urinary L-FABP level when compared with recipients in the moderate graft function group. Plasma and urinary L-FABP levels were not associated with eGFR in the 67 recipients; however, urinary L-FABP level (β = -1.24, P = .037) and level adjusted by urinary creatinine (β = -0.75, P = .046) were significantly negatively associated with eGFR in recipients with low graft function after adjusting for potential confounders. Increased urinary L-FABP level seems to be a significant indicator of decreased graft function in renal transplant recipients with loss of graft function. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Deferasirox, an oral iron chelator, prevents hepatocarcinogenesis and adverse effects of sorafenib

    PubMed Central

    Yamamoto, Naoki; Yamasaki, Takahiro; Takami, Taro; Uchida, Koichi; Fujisawa, Koichi; Matsumoto, Toshihiko; Saeki, Issei; Terai, Shuji; Sakaida, Isao

    2016-01-01

    Although sorafenib is expected to have a chemopreventive effect on hepatocellular carcinoma (HCC) recurrence, there are limitations to its use because of adverse effects, including effects on liver function. We have reported that the iron chelator, deferoxamine can prevent liver fibrosis and preneoplastic lesions. We investigated the influence of administering a new oral iron chelator, deferasirox (DFX), on the effects of sorafenib. We used the choline-deficient l-amino acid-defined (CDAA) diet-induced rat liver fibrosis and HCC model. We divided rats into four groups: CDAA diet only (control group), CDAA diet with sorafenib (sorafenib group), CDAA diet with DFX (DFX group), and CDAA diet with DFX and sorafenib (DFX + sorafenib group). Liver fibrosis and development of preneoplastic lesions were assessed. In addition, we assessed adverse effects such as changes in body and liver weight, skin damage (eruption, dryness, and hair loss), which is defined as hand-foot skin syndrome, in the sorafenib and DFX + sorafenib groups. The combination of DFX + sorafenib markedly prevented liver fibrosis and preneoplastic lesions better than the other treatments. Furthermore, the combination therapy significantly decreased adverse effects compared with the sorafenib group. In conclusion, the combination therapy with DFX and sorafenib may be a useful adjuvant therapy to prevent recurrence after curative treatment of HCC. PMID:27257345

  16. Deferasirox, an oral iron chelator, prevents hepatocarcinogenesis and adverse effects of sorafenib.

    PubMed

    Yamamoto, Naoki; Yamasaki, Takahiro; Takami, Taro; Uchida, Koichi; Fujisawa, Koichi; Matsumoto, Toshihiko; Saeki, Issei; Terai, Shuji; Sakaida, Isao

    2016-05-01

    Although sorafenib is expected to have a chemopreventive effect on hepatocellular carcinoma (HCC) recurrence, there are limitations to its use because of adverse effects, including effects on liver function. We have reported that the iron chelator, deferoxamine can prevent liver fibrosis and preneoplastic lesions. We investigated the influence of administering a new oral iron chelator, deferasirox (DFX), on the effects of sorafenib. We used the choline-deficient l-amino acid-defined (CDAA) diet-induced rat liver fibrosis and HCC model. We divided rats into four groups: CDAA diet only (control group), CDAA diet with sorafenib (sorafenib group), CDAA diet with DFX (DFX group), and CDAA diet with DFX and sorafenib (DFX + sorafenib group). Liver fibrosis and development of preneoplastic lesions were assessed. In addition, we assessed adverse effects such as changes in body and liver weight, skin damage (eruption, dryness, and hair loss), which is defined as hand-foot skin syndrome, in the sorafenib and DFX + sorafenib groups. The combination of DFX + sorafenib markedly prevented liver fibrosis and preneoplastic lesions better than the other treatments. Furthermore, the combination therapy significantly decreased adverse effects compared with the sorafenib group. In conclusion, the combination therapy with DFX and sorafenib may be a useful adjuvant therapy to prevent recurrence after curative treatment of HCC.

  17. Maresin 1, a Proresolving Lipid Mediator, Mitigates Carbon Tetrachloride-Induced Liver Injury in Mice

    PubMed Central

    Li, Ruidong; Wang, Yaxin; Zhao, Ende; Wu, Ke; Li, Wei; Shi, Liang; Wang, Di; Xie, Gengchen; Yin, Yuping; Deng, Meizhou; Zhang, Peng; Tao, Kaixiong

    2016-01-01

    Maresin 1 (MaR 1) was recently reported to have protective properties in several different animal models of acute inflammation by inhibiting inflammatory response. However, its function in acute liver injury is still unknown. To address this question, we induced liver injury in BALB/c mice with intraperitoneal injection of carbon tetrachloride with or without treatment of MaR 1. Our data showed that MaR 1 attenuated hepatic injury, oxidative stress, and lipid peroxidation induced by carbon tetrachloride, as evidenced by increased thiobarbituric acid reactive substances and reactive oxygen species levels were inhibited by treatment of MaR 1. Furthermore, MaR 1 increased activities of antioxidative mediators in carbon tetrachloride-treated mice liver. MaR 1 decreased indices of inflammatory mediators such as tumor necrosis factor-α, interleukin-6, interleukin-1β, monocyte chemotactic protein 1, myeloperoxidase, cyclooxygenase-2, and inducible nitric oxide synthase. Administration of MaR 1 inhibited activation of nuclear factor kappa B (NF-κb) and mitogen-activated protein kinases (MAPKs) in the liver of CCl4 treated mice. In conclusion, these results suggested the antioxidative, anti-inflammatory properties of MaR 1 in CCl4 induced liver injury. The possible mechanism is partly implicated in its abilities to inhibit ROS generation and activation of NF-κb and MAPK pathway. PMID:26881046

  18. An evaluation of the protective role of α-tocopherol on free radical induced hepatotoxicity and nephrotoxicity due to chromium in rats

    PubMed Central

    Balakrishnan, Rajendran; Satish Kumar, Chitturi Sree; Rani, Matukumalli Usha; Srikanth, Mylaram Kistaiah; Boobalan, Gopu; Reddy, Alla Gopala

    2013-01-01

    Aim: To avert the health problems induced by many environmental pollutants, available antioxidants have been evaluated. The present study was aimed to investigate whether α-tocopherol could protect the hexavalent chromium (Cr VI)-induced peroxidation in the liver and kidney and to explore the underlying mechanism of the same. Materials and Methods: A total of 24 Wistar adult female rats were equally divided into four groups. Group 1 served as control while Groups 2 and 3 were administered K2Cr2O7(10 mg/kg b.wt. s.c. single dose). In addition to (Cr VI), Group 3 also received α-tocopherol (125 mg/kg, daily) by oral gavage for 14 days. Group 4 was maintained as α-tocopherol control (dose as above). At the end of 14 days, blood samples were drawn for hematology. Subsequently, all the rats were sacrificed to collect liver and kidney samples for assay of tissue peroxidation markers, antioxidant markers and functional markers and histopathology. Results: Administration of chromium (Cr VI) in Group 2 significantly (P < 0.05) reduced the antioxidant markers such as superoxide dismutase and reduced glutathione along with significant (P < 0.05) increase in peroxidation markers such as malondialdehyde and protein carbonyls in the liver and kidney as compared with other groups. The functional markers in serum such as total protein was decreased significantly (P < 0.05), whereas other functional markers viz. alanine transaminase, blood urea nitrogen and creatinine were increased significantly (P < 0.05) in Group 2 as compared with the other groups. Significant (P < 0.05) decrease in hemoglobin, packed cell volume, total erythrocyte count, mean corpuscular volume, mean corpuscular hemoglobin and total leukocyte count were observed in Cr VI treated Group 2 rats. Prominent pathological changes were observed in the liver and kidney of Group 2. Co-treatment with α-tocopherol in Group 3 rats significantly (P < 0.05) reversed the Cr VI induced changes. The parameters in the study in Group 4 did not differ as compared with Group 1. Conclusions: α–tocopherol exhibited protective effect against Cr VI-induced damage to the liver and kidney by inhibition of lipid peroxidation owing its antioxidant activity. PMID:24130385

  19. A non-human primate model of human radiation-induced venocclusive liver disease and hepatocyte injury

    PubMed Central

    Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; Roy-Chowdhury, Jayanta; Locker, Joseph; Abe, Michio; Enke, Charles A.; Baranowska-Kortylewicz, Janina; Solberg, Timothy D.; Guha, Chandan; Fox, Ira J.

    2014-01-01

    Background Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Since the characteristic venocclusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic venocclusive disease. Methods We performed a dose escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results At doses ≥40Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses where radiation-induced liver disease was mild or non-existent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions The cynomolgus monkey, as the first animal model of human venocclusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury. PMID:24315566

  20. Antifibrotic effect of total flavonoids of Astmgali Radix on dimethylnitrosamine-induced liver cirrhosis in rats.

    PubMed

    Cheng, Yang; Mai, Jing-Yin; Wang, Mei-Feng; Chen, Gao-Feng; Ping, Jian

    2017-01-01

    To study the effect of total flavonoids of Astmgali Radix (TFA) on liver cirrhosis induced with dimethylnitrosamine (DMN) in rats, and the effect on peroxisome proliferator-activated receptor γ (PPARγ), uncoupling protein 2 (UCP2) and farnesoid X receptor (FXR). Fifty-three Sprague-Dawley rats were randomly divided into a control group (10 rats) and a DMN group (43 rats). Rats in the DMN group were given DMN for 4 weeks and divided randomly into a model group (14 rats), a low-dosage TFA group (14 rats) and a high-dosage TFA group (15 rats) in the 3rd week. Rats were given TFA for 4 weeks at the dosage of 15 and 30 mg/kg in the low- and high-TFA groups, respectively. At the end of the experiment blood and liver samples were collected. Serum liver function and liver tissue hydroxyproline content were determined. hematoxylin-eosin (HE), Sirus red and immunohistochemical stainings of collagen I, smooth muscle actin (α-SMA) was conducted in paraffinembedded liver tissue slices. Real time polymerase chain reaction (PCR) was adopted to determine PPARγ, UCP2 and FXR mRNA levels. Western blot was adopted to determine protein levels of collagen I, α-SMA, PPARγ, UCP2 and FXR. Compared with the model group, TFA increased the ratio of liver/body weight (low-TFA group P<0.05, high-TFA group P<0.01), improved liver biochemical indices (P<0.01 for ALT, AST, GGT in both groups, P<0.05 for albumin and TBil in the high-TFA group) and reduced liver tissue hydroxproline content (P<0.01 in both groups) in treatment groups significantly. HE staining showed that TFA alleviated liver pathological changes markedly and Sirus red staining showed that TFA reduced collagen deposition, alleviated formation and extent of liver pseudolobule. Collagen I and α-SMA immunohistochemical staining showed that staining area and extent markedly decreased in TFA groups compared with the model group. TFA could increase PPARγ, it regulated target UCP2, and FXR levels significantly compared with the model group (in the low-TFA group all P<0.05, in the high group all P<0.01). TFA could improve liver function, alleviate liver pathological changes, and reduce collagen deposition and formation of liver pseudolobule in rats with liver cirrhosis. The antifibrotic effect of TFA was through regulating PPARγ signal pathway and the interaction with FXR.

Top