NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Sun, Zelai; Li, Chengrong
2017-11-01
Surface charge accumulation can incur changes in electric field distribution, involved in the electron propagation process, and result in a significant decrease in the surface flashover voltage. The existing 2D surface charge measurement fails to meet the actual needs in real engineering applications that usually adopt the 45° conical frustum insulators. The present research developed a novel 3D measurement platform to capture surface charge distribution on solid insulation under nanosecond pulse in a vacuum. The results indicate that all surface charges are positive under a positive pulse and negative under a negative pulse. Surface charges tend to accumulate more near the upper electrode. Surface charge density increases significantly with the increase in pulse counts and amplitudes. Accumulation of surface charge results in a certain decrease of flashover voltage. Taking consideration of the secondary electron emission for the surface charge accumulation, four materials were obtained to demonstrate the effects on surface charge. Combining the effect incurred by secondary electron emission and the weighty action taken by surface charge accumulation on the flashover phenomena, the discharge mechanism along the insulator surface under nanosecond pulse voltage was proposed.
Liu, Jing; Zhang, Hai-Bo
2014-12-01
The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Singh, Kunwar Pal; Guo, Chunlei
2017-06-21
The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.
NASA Astrophysics Data System (ADS)
Tani, Tadaaki; Inami, Yoshiyasu
2000-09-01
Ultraviolet photoelectron spectroscopy has been successfully used to measure the heights of the tops of the valence bands of the surfaces of AgBr layers on Ag substrates for the verification of the space charge layer model. According to this model, the positive space charge layer (composed of negative charges with excess negative kink sites on the surface and corresponding positive charges with interstitial silver ions in the interior) is formed in silver halides, causing the difference in the electronic energy levels between their surface and interior. The depression of the positive space charge layer of AgBr caused by such adsorbates as photographic stabilizers and antifoggants was estimated from the decrease in the ionic conductivity of cubic AgBr microcrystals by the adsorbates. It was confirmed by the decrease in the heights of the tops of the valence bands of the surfaces of AgBr layers caused by the adsorbates in the presence of thin gelatin membranes on their surfaces. This result provided the explanation for the fact that the adsorbates increased the number of the microcrystals which formed latent image centers on the surface and decreased the number of the microcrystals, which formed latent image centers in the interior.
Effects of Discrete Charge Clustering in Simulations of Charged Interfaces.
Grime, John M A; Khan, Malek O
2010-10-12
A system of counterions between charged surfaces is investigated, with the surfaces represented by uniform charged planes and three different arrangements of discrete surface charges - an equispaced grid and two different clustered arrangements. The behaviors of a series of systems with identical net surface charge density are examined, with particular emphasis placed on the long ranged corrections via the method of "charged slabs" and the effects of the simulation cell size. Marked differences are observed in counterion distributions and the osmotic pressure dependent on the particular representation of the charged surfaces; the uniformly charged surfaces and equispaced grids of discrete charge behave in a broadly similar manner, but the clustered systems display a pronounced decrease in osmotic pressure as the simulation size is increased. The influence of the long ranged correction is shown to be minimal for all but the very smallest of system sizes.
Burney, Patrick R; Nordwald, Erik M; Hickman, Katie; Kaar, Joel L; Pfaendtner, Jim
2015-04-01
Molecular simulations of the enzymes Candida rugosa lipase and Bos taurus α-chymotrypsin in aqueous ionic liquids 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium ethyl sulfate were used to study the change in enzyme-solvent interactions induced by modification of the enzyme surface charge. The enzymes were altered by randomly mutating lysine surface residues to glutamate, effectively decreasing the net surface charge by two for each mutation. These mutations resemble succinylation of the enzyme by chemical modification, which has been shown to enhance the stability of both enzymes in ILs. After establishing that the enzymes were stable on the simulated time scales, we focused the analysis on the organization of the ionic liquid substituents about the enzyme surface. Calculated solvent charge densities show that for both enzymes and in both solvents that changing positively charged residues to negative charge does indeed increase the charge density of the solvent near the enzyme surface. The radial distribution of IL constituents with respect to the enzyme reveals decreased interactions with the anion are prevalent in the modified systems when compared to the wild type, which is largely accompanied by an increase in cation contact. Additionally, the radial dependence of the charge density and ion distribution indicates that the effect of altering enzyme charge is confined to short range (≤1 nm) ordering of the IL. Ultimately, these results, which are consistent with that from prior experiments, provide molecular insight into the effect of enzyme surface charge on enzyme stability in ILs. © 2015 Wiley Periodicals, Inc.
Modulation of protein stability and aggregation properties by surface charge engineering.
Raghunathan, Govindan; Sokalingam, Sriram; Soundrarajan, Nagasundarapandian; Madan, Bharat; Munussami, Ganapathiraman; Lee, Sun-Gu
2013-09-01
An attempt to alter protein surface charges through traditional protein engineering approaches often affects the native protein structure significantly and induces misfolding. This limitation is a major hindrance in modulating protein properties through surface charge variations. In this study, as a strategy to overcome such a limitation, we attempted to co-introduce stabilizing mutations that can neutralize the destabilizing effect of protein surface charge variation. Two sets of rational mutations were designed; one to increase the number of surface charged amino acids and the other to decrease the number of surface charged amino acids by mutating surface polar uncharged amino acids and charged amino acids, respectively. These two sets of mutations were introduced into Green Fluorescent Protein (GFP) together with or without stabilizing mutations. The co-introduction of stabilizing mutations along with mutations for surface charge modification allowed us to obtain functionally active protein variants (s-GFP(+15-17) and s-GFP(+5-6)). When the protein properties such as fluorescent activity, folding rate and kinetic stability were assessed, we found the possibility that the protein stability can be modulated independently of activity and folding by engineering protein surface charges. The aggregation properties of GFP could also be altered through the surface charge engineering.
Experimental and Theoretical Investigations of Glass Surface Charging Phenomena
NASA Astrophysics Data System (ADS)
Agnello, Gabriel
Charging behavior of multi-component display-type (i.e. low alkali) glass surfaces has been studied using a combination of experimental and theoretical methods. Data obtained by way of a Rolling Sphere Test (RST), streaming/zeta potential and surface energy measurements from commercially available display glass surfaces (Corning EAGLE XGRTM and Lotus(TM) XT) suggest that charge accumulation is highly dependent on surface treatment (chemical and/or physical modification) and measurement environment, presumably through reactionary mechanisms at the surface with atmospheric moisture. It has been hypothesized that water dissociation, along with the corresponding hydroxylation of the glass surface, are important processes related to charging in glass-metal contact systems. Classical Molecular Dynamics (MD) simulations, in conjunction with various laboratory based measurements (RST, a newly developed ElectroStatic Gauge (ESG) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)) on simpler Calcium AluminoSilicate (CAS) glass surfaces were used to further explore these phenomena. Analysis of simulated high-silica content (≥50%) (CAS) glass structures suggest that controlled variation of bulk chemistry can directly affect surface defect concentrations, such as non-bridging oxygen (NBO), which can be suitable high-energy sites for hydrolysis-type reactions to occur. Calculated NBO surface concentrations correlate well with charge based measurements on laboratory fabricated CAS surfaces. The data suggest that a directional/polar shift in contact-charge transfer occurs at low silica content (≤50%) where the highest concentrations of NBOs are observed. Surface charging sensitivity with respect to NBO concentration decreases as the relative humidity of the measurement environment increases; which should be expected as the highly reactive sites are progressively covered by liquid water layers. DRIFTS analysis of CAS powders expand on this analysis showing a gradual increase in molecular water absorption at the surface in samples containing ≥60% silica, and an abrupt decrease in those with ≤60% silica. This behavior is very likely related to the aforementioned charge polarity shift (negative (-) to positive (+)) in low silica containing glasses, leading to the conclusion that structural defect mediated charge accumulation and/or transfer are likely to be important mechanisms related to the contact charging of glass surfaces.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun
2018-06-01
The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most significant suppression impact on surface charge accumulation.
Surface-charge-governed electrolyte transport in carbon nanotubes
NASA Astrophysics Data System (ADS)
Xue, Jian-Ming; Guo, Peng; Sheng, Qian
2015-08-01
The transport behavior of pressure-driven aqueous electrolyte solution through charged carbon nanotubes (CNTs) is studied by using molecular dynamics simulations. The results reveal that the presence of charges around the nanotube can remarkably reduce the flow velocity as well as the slip length of the aqueous solution, and the decreasing of magnitude depends on the number of surface charges and distribution. With 1-M KCl solution inside the carbon nanotube, the slip length decreases from 110 nm to only 14 nm when the number of surface charges increases from 0 to 12 e. This phenomenon is attributed to the increase of the solid-liquid friction force due to the electrostatic interaction between the charges and the electrolyte particles, which can impede the transports of water molecules and electrolyte ions. With the simulation results, we estimate the energy conversion efficiency of nanofluidic battery based on CNTs, and find that the highest efficiency is only around 30% but not 60% as expected in previous work. Project supported by the National Natural Science Foundation of China (Grant Nos. 11375031 and 11335003).
Du, Huiwen; Li, Denghua; Wang, Yibing; Wang, Chenxuan; Zhang, Dongdong; Yang, Yan-lian; Wang, Chen
2013-08-29
We report here the measurement of the temperature-dependent surface charge density of purple membrane (PM) by using electrostatic force microscopy (EFM). The surface charge density was measured to be 3.4 × 10(5) e/cm(2) at room temperature and reaches the minimum at around 52 °C. The initial decrease of the surface charge density could be attributed to the reduced dipole alignment because of the thermally induced protein mobility in PM. The increase of charge density at higher temperature could be ascribed to the weakened interaction between proteins and the lipids, which leads to the exposure of the charged amino acids. This work could be a benefit to the direct assessment of the structural stability and electric properties of biological membranes at the nanoscale.
Kweon, Hyojin; Yiacoumi, Sotira Z.; Tsouris, Costas
2015-06-19
In this study, the influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorptionmore » on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems.« less
2017-01-01
High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl2 concentration. Using DLVO theory with charge regulation, we determine from the measured force–distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca2+ ion adsorption, while Cl– adsorption at higher CaCl2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl– ions will co-adsorb, thereby changing the observed ordered surface structure. PMID:29140711
Kumar, N; Andersson, M P; van den Ende, D; Mugele, F; Siretanu, I
2017-12-19
High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl 2 concentration. Using DLVO theory with charge regulation, we determine from the measured force-distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl 2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl 2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca 2+ ion adsorption, while Cl - adsorption at higher CaCl 2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca 2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl - ions will co-adsorb, thereby changing the observed ordered surface structure.
Complexation of ferric oxide particles with pectins of different charge density.
Milkova, Viktoria; Kamburova, Kamelia; Petkanchin, Ivana; Radeva, Tsetska
2008-09-02
The effect of polyelectrolyte charge density on the electrical properties and stability of suspensions of oppositely charged oxide particles is followed by means of electro-optics and electrophoresis. Variations in the electro-optical effect and the electrophoretic mobility are examined at conditions where fully ionized pectins of different charge density adsorb onto particles with ionizable surfaces. The charge neutralization point coincides with the maximum of particle aggregation in all suspensions. We find that the concentration of polyelectrolyte, needed to neutralize the particle charge, decreases with increasing charge density of the pectin. The most highly charged pectin presents an exception to this order, which is explained with a reduction of the effective charge density of this pectin due to condensation of counterions. The presence of condensed counterions, remaining bound to the pectin during its adsorption on the particle surface, is proved by investigation of the frequency behavior of the electro-optical effect at charge reversal of the particle surface.
Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.
Ubbink, Job; Khokhlov, Alexei R
2004-03-15
A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.
Effect of electrical polarization of hydroxyapatite ceramics on new bone formation.
Itoh, S; Nakamura, S; Kobayashi, T; Shinomiya, K; Yamashita, K; Itoh, S
2006-03-01
Large surface charges can be induced on hydroxyapatite (HAp) ceramics by proton transport polarization, but this does not affect beta-tricalcium phosphate (TCP) because of its low polarizability. We wished to examine differences in osteogenic cell activity and new bone growth between positively or negatively surface-charged HAp and HAp/TCP plates using a calvarial bone defect model. In the first group of rats, test pieces were placed with their positively charged surfaces face down on the dura mater. In the second group, test pieces were placed with their negatively charged surfaces face down on the dura mater. A third group received noncharged test pieces. Histological examination, including enzymatic staining for osteoblasts and osteoclasts, was carried out. While no bone formation was observed at the pericranium, direct bone formation on the cranial bone debris and new bone growth expanded from the margins of the sites of injury to bridge across both the positively and negatively charged surfaces of HAp and HAp/TCP plates occurred. Electrical polarization of implanted plates, including positive charge, led to enhanced osteoblast activity, though decreased osteoclast activity was seen on the positively charged plate surface. Thus, polarization of HAp ceramics may modulate new bone formation and resorption.
NASA Astrophysics Data System (ADS)
Wang, Weiwang; Li, Shengtao; Min, Daomin
2016-04-01
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.
Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W
2010-12-21
This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.
Anomalous mobility of highly charged particles in pores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Yinghua; Yang, Crystal; Hinkle, Preston
2015-07-16
Single micropores in resistive-pulse technique were used to understand a complex dependence of particle mobility on its surface charge density. We show that the mobility of highly charged carboxylated particles decreases with the increase of the solution pH due to an interplay of three effects: (i) ion condensation, (ii) formation of an asymmetric electrical double layer around the particle, and (iii) electroosmotic flow induced by the charges on the pore walls and the particle surfaces. The results are important for applying resistive-pulse technique to determine surface charge density and zeta potential of the particles. As a result, the experiments alsomore » indicate the presence of condensed ions, which contribute to the measured current if a sufficiently high electric field is applied across the pore.« less
Effect of cultivation medium on some physicochemical parameters of outer bacterial membrane.
Horská, E; Pokorný, J; Labajová, M
1995-01-01
The changes of surface charge and hydrophobicity of the outer bacterial membrane in relation to utilization of n-hexadecane were studied. For this spectrophotometric study adsorption of methylene blue and transport of gentian violet were used. The decrease in the negative charge of the bacterial strains Pseudomonas putida CCM 3423, P. aeruginosa, and P. fluorescens CCM 2115, depended on the type of growth medium. The decrease of surface charge was in the order: meat extract peptone broth > mineral medium with glucose > mineral medium with n-hexadecane. The highest permeability of the bacterial membrane for gentian violet was determined in the case of P. fluorescens grown in meat extract peptone broth. This effect can be explained by a greater hydrophobicity of the bacterial surface for this strain. In other strains a lower permeability was observed. P. fluorescens showed a greater adherence to hexadecane.
Applying simulation model to uniform field space charge distribution measurements by the PEA method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Salama, M.M.A.
1996-12-31
Signals measured under uniform fields by the Pulsed Electroacoustic (PEA) method have been processed by the deconvolution procedure to obtain space charge distributions since 1988. To simplify data processing, a direct method has been proposed recently in which the deconvolution is eliminated. However, the surface charge cannot be represented well by the method because the surface charge has a bandwidth being from zero to infinity. The bandwidth of the charge distribution must be much narrower than the bandwidths of the PEA system transfer function in order to apply the direct method properly. When surface charges can not be distinguished frommore » space charge distributions, the accuracy and the resolution of the obtained space charge distributions decrease. To overcome this difficulty a simulation model is therefore proposed. This paper shows their attempts to apply the simulation model to obtain space charge distributions under plane-plane electrode configurations. Due to the page limitation for the paper, the charge distribution originated by the simulation model is compared to that obtained by the direct method with a set of simulated signals.« less
Tongtaksin, A; Leevailoj, C
This study investigated the influence of battery charge levels on the stability of light-emitting diode (LED) curing-light intensity by measuring the intensity from fully charged through fully discharged batteries. The microhardness of resin composites polymerized by the light-curing units at various battery charge levels was measured. The light intensities of seven fully charged battery LED light-curing units-1) LY-A180, 2) Bluephase, 3) Woodpecker, 4) Demi Plus, 5) Saab II, 6) Elipar S10, and 7) MiniLED-were measured with a radiometer (Kerr) after every 10 uses (20 seconds per use) until the battery was discharged. Ten 2-mm-thick cylindrical specimens of A3 shade nanofilled resin composite (PREMISE, Kerr) were prepared per LED light-curing unit group. Each specimen was irradiated by the fully charged light-curing unit for 20 seconds. The LED light-curing units were then used until the battery charge fell to 50%. Specimens were prepared again as described above. This was repeated again when the light-curing units' battery charge fell to 25% and when the light intensity had decreased to 400 mW/cm 2 . The top/bottom surface Knoop hardness ratios of the specimens were determined. The microhardness data were analyzed by one-way analysis of variance with Tukey test at a significance level of 0.05. The Pearson correlation coefficient was used to determine significant correlations between surface hardness and light intensity. We found that the light intensities of the Bluephase, Demi Plus, and Elipar S10 units were stable. The intensity of the MiniLED unit decreased slightly; however, it remained above 400 mW/cm 2 . In contrast, the intensities of the LY-A180, Woodpecker, and Saab II units decreased below 400 mW/cm 2 . There was also a significant decrease in the surface microhardnesses of the resin composite specimens treated with MiniLED, LY-A180, Woodpecker, and Saab II. In conclusion, the light intensity of several LED light-curing units decreased as the battery was discharged, with a coincident reduction in the units' ability to polymerize resin composite. Therefore, the intensity of an LED light-curing unit should be evaluated during the life of its battery charge to ensure that sufficient light intensity is being generated.
NASA Astrophysics Data System (ADS)
Zhou, S.
2017-12-01
Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of the salt ion; whereas if the 1:1 type electrolyte and the symmetrical patterns are considered, then the opposite may be the case. All of these findings can be explained self-consistently from several perspectives: an excess adsorption of the salt ions (induced by the surface charge separation) serving to raise the osmotic pressure between the plates, configuration fine-tuning in the thinner ion adsorption layer driven by the energy decrease principle, direct Coulombic interactions operating between charged objects on the two face-to-face plates involved, and net charge strength in the ion adsorption layer responsible for the net electrostatic repulsion.
Surface charges promote nonspecific nanoparticle adhesion to stiffer membranes
NASA Astrophysics Data System (ADS)
Sinha, Shayandev; Jing, Haoyuan; Sachar, Harnoor Singh; Das, Siddhartha
2018-04-01
This letter establishes the manner in which the electric double layer induced by the surface charges of the plasma membrane (PM) enhances the nonspecific adhesion (NSA) of a metal nanoparticle (NP) to stiffer PMs (i.e., PMs with larger bending moduli). The NSA is characterized by the physical attachment of the NP to the membrane and occurs when the decrease in the surface energy (or any other mechanism) associated with the attachment process provides the energy for bending the membrane. Such an attachment does not involve receptor-ligand interactions that characterize the specific membrane-NP adhesion. Here, we demonstrate that a significant decrease in the electrostatic energy caused by the NP-attachment-induced destruction of the charged-membrane-electrolyte interface is responsible for providing the additional energy needed for bending the membrane during the NP adhesion to stiffer membranes. A smaller salt concentration and a larger membrane charge density augment this effect, which can help to design drug delivery to cells with stiffer membranes due to pathological conditions, fabricate NPs with biomimetic cholesterol-rich lipid bilayer encapsulation, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiwang; Li, Shengtao, E-mail: sli@xjtu.edu.cn; Min, Daomin
2016-04-15
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al{sub 2}O{sub 3} nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al{sub 2}O{sub 3} nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and themore » strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al{sub 2}O{sub 3} nanodielectrics is improved.« less
Nordwald, Erik M; Kaar, Joel L
2013-08-01
We have recently developed a general approach to improve the utility of enzymes in ionic liquids (ILs) via tuning of the ratio of enzyme-containing positive to negative surface charges. In this work, the impact of enzyme surface charge ratio on the biophysical interaction of 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) with chymotrypsin and lipase was investigated to understand this approach at the molecular level. Results of fluorescence quenching assays indicated that the extent of binding of the [BMIM] cation decreased (7- and 3.5-fold for chymotrypsin and lipase, respectively) as a function of increasing ratio of positive to negative surface charges. Conformational stability assays further showed a close correlation between thermodynamic stabilization and enzyme surface charge ratio as well as [BMIM] binding. As evidence of this correlation, succinylation and acetylation resulted in the stabilization of chymotrypsin in 10% (v/v) [BMIM][Cl] by 17.0 and 6.6 kJ/mol, respectively, while cationization destabilized chymotrypsin by 3.6 kJ/mol. Combined, these results indicate that altering the surface charge ratio mediates the organization of IL molecules, namely, [BMIM] and [Cl], around the enzymes. Preferential exclusion of [Cl], in particular, via lowering of the ratio of positive to negative surface charges, correlated with increased enzyme stability. Accordingly, these results more broadly provide insight into the mechanism of stabilization in ILs via charge modification.
Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu
2015-12-01
Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 (3-/4-) as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.
NASA Astrophysics Data System (ADS)
Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu
2015-06-01
Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.
NASA Astrophysics Data System (ADS)
Gabovich, A. M.; Il'chenko, L. G.; Pashitskii, E. A.; Romanov, Yu. A.
1980-04-01
Using the Poisson equation Green function for a self-consistent field in a spatially inhomogeneous system, expressions for the electrostatic energy and screened charge interaction near the surface of a semi-infinite metal and a thin quantizing film are derived. It is shown that the decrease law and Friedel oscillation amplitude of adsorbed atom indirect interaction are determined by the electron spectrum character and the Fermi surface shape. The results obtained enable us to explain, in particular, the submonolayer adsorbed film structure on the W and Mo surfaces.
Long term performance stability of silicon sensors
NASA Astrophysics Data System (ADS)
Mori, R.; Betancourt, C.; Kühn, S.; Hauser, M.; Messmer, I.; Hasenfratz, A.; Thomas, M.; Lohwasser, K.; Parzefall, U.; Jakobs, K.
2015-10-01
The HL-LHC investigations on silicon particle sensor performance are carried out with the intention to reproduce the harsh environments foreseen, but usually in individual short measurements. Recently, several groups have observed a decrease in the charge collection of silicon strip sensors after several days, in particular on sensors showing charge multiplication. This phenomenon has been explained with a surface effect, the increase of charge sharing due to the increment of positive charge in the silicon oxide coming from the source used for charge collection measurements. Observing a similar behaviour in other sensors for which we can exclude this surface effect, we propose and investigate alternative explanations, namely trapping related effects (change of polarization) and annealing related effects. Several n-on-p strip sensors, as-processed and irradiated with protons and neutrons up to 5 ×1015neq /cm2, have been subjected to charge collection efficiency measurements for several days, while parameters like the impedance have been monitored. The probable stressing conditions have been changed in an attempt to recover the collected charge in case of a decrease. The results show that for the investigated sensors the effect of charge sharing induced by a radioactive source is not important, and a main detrimental factor is due to very high voltage, while at lower voltages the performance is stable.
Command Surface of Self-Organizing Structures by Radical Polymers with Cooperative Redox Reactivity.
Sato, Kan; Mizuma, Takahiro; Nishide, Hiroyuki; Oyaizu, Kenichi
2017-10-04
Robust radical-substituted polymers with ideal redox capability were used as "command surfaces" for liquid crystal orientation. The alignment of the smectic liquid crystal electrolytes with low-dimensional ion conduction pathways was reversible and readily switched in response to the redox states of the polymers. In one example, a charge storage device with a cooperative redox effect was fabricated. The bulk ionic conductivity of the cell was significantly decreased only after the electrode was fully charged, due to the anisotropic ionic conductivity of the electrolytes (ratio >10 3 ). The switching enabled both a rapid cell response and long charge retention. Such a cooperative command surface of self-assembled structures will give rise to new highly energy efficient supramolecular-based devices including batteries, charge carriers, and actuators.
Nagornov, Yuri S
2018-05-01
The charge model for efficiency of betavoltaics effect is proposed. It allows calculating the charge value for pin structures under irradiation of Ni-63. We approximated the current-voltage characteristics of the structures using an equivalent diode circuit with a charge on the barrier capacitance. We calculated the charge function from current-voltage characteristics for two types of silicon pin structures - with and without getter annealing. The charging on the surface of pin structure decreases the efficiency of betavoltaics effect. Value of charge for our structures is changed in the range from -50 to +15mC/cm 2 and depends on the applied potential. The getter annealing allows getting the structures with a higher efficiency of betavoltaic effect, but it does not exclude the surface charging under beta irradiation from Ni-63. Copyright © 2018 Elsevier Ltd. All rights reserved.
Theoretical study for heterojunction surface of NEA GaN photocathode dispensed with Cs activation
NASA Astrophysics Data System (ADS)
Xia, Sihao; Liu, Lei; Wang, Honggang; Wang, Meishan; Kong, Yike
2016-09-01
For the disadvantages of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, new-type NEA GaN photocathodes with heterojunction surface dispensed with Cs activation are investigated based on first-principle study with density functional theory. Through the growth of an ultrathin n-type GaN cap layer on p-type GaN emission layer, a p-n heterojunction is formed on the surface. According to the calculation results, it is found that Si atoms tend to replace Ga atoms to result in an n-type doped cap layer which contributes to the decreasing of work function. After the growth of n-type GaN cap layer, the atom structure near the p-type emission layer is changed while that away from the surface has no obvious variations. By analyzing the E-Mulliken charge distribution of emission surface with and without cap layer, it is found that the positive charge of Ga and Mg atoms in the emission layer decrease caused by the cap layer, while the negative charge of N atom increases. The conduction band moves downwards after the growth of cap layer. Si atom produces donor levels around the valence band maximum. The absorption coefficient of GaN emission layer decreases and the reflectivity increases caused by n-type GaN cap layer.
NASA Astrophysics Data System (ADS)
Shrestha, K.; Chou, M.; Graf, D.; Yang, H. D.; Lorenz, B.; Chu, C. W.
2017-05-01
Weak antilocalization (WAL) effects in Bi2Te3 single crystals have been investigated at high and low bulk charge-carrier concentrations. At low charge-carrier density the WAL curves scale with the normal component of the magnetic field, demonstrating the dominance of topological surface states in magnetoconductivity. At high charge-carrier density the WAL curves scale with neither the applied field nor its normal component, implying a mixture of bulk and surface conduction. WAL due to topological surface states shows no dependence on the nature (electrons or holes) of the bulk charge carriers. The observations of an extremely large nonsaturating magnetoresistance and ultrahigh mobility in the samples with lower carrier density further support the presence of surface states. The physical parameters characterizing the WAL effects are calculated using the Hikami-Larkin-Nagaoka formula. At high charge-carrier concentrations, there is a greater number of conduction channels and a decrease in the phase coherence length compared to low charge-carrier concentrations. The extremely large magnetoresistance and high mobility of topological insulators have great technological value and can be exploited in magnetoelectric sensors and memory devices.
Chen, Kai; Xu, Jing; Luft, J Christopher; Tian, Shaomin; Raval, Jay S; DeSimone, Joseph M
2014-07-16
Lowering the modulus of hydrogel particles could enable them to bypass in vivo physical barriers that would otherwise filter particles with similar size but higher modulus. Incorporation of electrolyte moieties into the polymer network of hydrogel particles to increase the swelling ratio is a straightforward and quite efficient way to decrease the modulus. In addition, charged groups in hydrogel particles can also help secure cargoes. However, the distribution of charged groups on the surface of a particle can accelerate the clearance of particles. Herein, we developed a method to synthesize highly swollen microgels of precise size with near-neutral surface charge while retaining interior charged groups. A strategy was employed to enable a particle to be highly cross-linked with very small mesh size, and subsequently PEGylated to quench the exterior amines only without affecting the internal amines. Acidic degradation of the cross-linker allows for swelling of the particles to microgels with a desired size and deformability. The microgels fabricated demonstrated extended circulation in vivo compared to their counterparts with a charged surface, and could potentially be utilized in in vivo applications including as oxygen carriers or nucleic acid scavengers.
Work Function of Oxide Ultrathin Films on the Ag(100) Surface.
Sementa, Luca; Barcaro, Giovanni; Negreiros, Fabio R; Thomas, Iorwerth O; Netzer, Falko P; Ferrari, Anna Maria; Fortunelli, Alessandro
2012-02-14
Theoretical calculations of the work function of monolayer (ML) and bilayer (BL) oxide films on the Ag(100) surface are reported and analyzed as a function of the nature of the oxide for first-row transition metals. The contributions due to charge compression, charge transfer and rumpling are singled out. It is found that the presence of empty d-orbitals in the oxide metal can entail a charge flow from the Ag(100) surface to the oxide film which counteracts the decrease in the work function due to charge compression. This flow can also depend on the thickness of the film and be reduced in passing from ML to BL systems. A regular trend is observed along first-row transition metals, exhibiting a maximum for CuO, in which the charge flow to the oxide is so strong as to reverse the direction of rumpling. A simple protocol to estimate separately the contribution due to charge compression is discussed, and the difference between the work function of the bare metal surface and a Pauling-like electronegativity of the free oxide slabs is used as a descriptor quantity to predict the direction of charge transfer.
Adsorption of surfactant ions and binding of their counterions at an air/water interface.
Tagashira, Hiroaki; Takata, Youichi; Hyono, Atsushi; Ohshima, Hiroyuki
2009-01-01
An expression for the surface tension of an aqueous mixed solution of surfactants and electrolyte ions in the presence of the common ions was derived from the Helmholtz free energy of an air/water surface. By applying the equation to experimental data for the surface tension, the adsorption constant of surfactant ions onto the air/water interface, the binding constant of counterions on the surfactants, and the surface potential and surface charge density of the interface were estimated. The adsorption constant and binding constant were dependent on the species of surfactant ion and counterion, respectively. Taking account of the dependence of surface potential and surface charge density on the concentration of electrolyte, it was suggested that the addition of electrolyte to the aqueous surfactant solution brings about the decrease in the surface potential, the increase in the surface density of surfactant ions, and consequently, the decrease in the surface tension. Furthermore, it was found that the configurational entropy plays a predominant role for the surface tension, compared to the electrical work.
NASA Astrophysics Data System (ADS)
Arenas, Mónica P.; Lanzoni, Evandro M.; Pacheco, Clara J.; Costa, Carlos A. R.; Eckstein, Carlos B.; de Almeida, Luiz H.; Rebello, João M. A.; Deneke, Christoph F.; Pereira, Gabriela R.
2018-01-01
In this study, we investigate artifacts arising from electric charges present in magnetic force microscopy images. Therefore, we use two austenitic steel samples with different microstructural conditions. Furthermore, we examine the influence of the surface preparation, like etching, in magnetic force images. Using Kelvin probe force microscopy we can quantify the charges present on the surface. Our results show that electrical charges give rise to a signature in the magnetic force microscopy, which is indistinguishable from a magnetic signal. Our results on two differently aged steel samples demonstrate that the magnetic force microscopy images need to be interpreted with care and must be corrected due to the influence of electrical charges present. We discuss three approaches, how to identify these artifacts - parallel acquisition of magnetic force and electric force images on the same position, sample surface preparation to decrease the presence of charges and inversion of the magnetic polarization in two succeeding measurement.
Computational insights into charge transfer across functionalized semiconductor surfaces
NASA Astrophysics Data System (ADS)
Kearney, Kara; Rockett, Angus; Ertekin, Elif
2017-12-01
Photoelectrochemical water-splitting is a promising carbon-free fuel production method for producing H2 and O2 gas from liquid water. These cells are typically composed of at least one semiconductor photoelectrode which is prone to degradation and/or oxidation. Various surface modifications are known for stabilizing semiconductor photoelectrodes, yet stabilization techniques are often accompanied by a decrease in photoelectrode performance. However, the impact of surface modification on charge transport and its consequence on performance is still lacking, creating a roadblock for further improvements. In this review, we discuss how density functional theory and finite-element device simulations are reliable tools for providing insight into charge transport across modified photoelectrodes.
Secondary Structures of Ubiquitin Ions Soft-Landed onto Self-Assembled Monolayer Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Qichi; Laskin, Julia
2016-06-09
The secondary structures of multiply charged ubiquitin ions soft-landed onto self-assembled monolayer (SAM) surfaces were studied using in situ infrared reflection-absorption spectroscopy (IRRAS). Two charge states of ubiquitin, 5+ and 13+, were mass selected separately from a mixture of different charge states produced by electrospray ionization (ESI). The low 5+ charge state represents a native-like folded state of ubiquitin, while the high 13+ charge state assumes an extended, almost linear conformation. Each of the two charge states was soft-landed onto a CH 3- and COOH-terminated SAM of alkylthiols on gold (HSAM and COOH-SAM). HSAM is a hydrophobic surface known tomore » stabilize helical conformations of soft-landed protonated peptides, whereas COOH-SAM is a hydrophilic surface that preferentially stabilizes β-sheet conformations. IRRAS spectra of the soft-landed ubiquitin ions were acquired as a function of time during and after ion soft-landing. Similar to smaller peptide ions, helical conformations of ubiquitin are found to be more abundant on HSAM, while the relative abundance of β-sheet conformations increases on COOH-SAM. The initial charge state of ubiquitin also has a pronounced effect on its conformation on the surface. Specifically, on both surfaces, a higher relative abundance of helical conformations and lower relative abundance of β-sheet conformations is observed for the 13+ charge state compared to the 5+ charge state. Time-resolved experiments indicate that the α-helical band in the spectrum of the 13+ charge state slowly increases with time on the HSAM surface and decreases in the spectrum of the 13+ charge state on COOH-SAM. These results further support the preference of the hydrophobic HSAM surface toward helical conformations and demonstrate that soft-landed protein ions may undergo slow conformational changes during and after deposition.« less
Proton transfer to charged platinum electrodes. A molecular dynamics trajectory study.
Wilhelm, Florian; Schmickler, Wolfgang; Spohr, Eckhard
2010-05-05
A recently developed empirical valence bond (EVB) model for proton transfer on Pt(111) electrodes (Wilhelm et al 2008 J. Phys. Chem. C 112 10814) has been applied in molecular dynamics (MD) simulations of a water film in contact with a charged Pt surface. A total of seven negative surface charge densities σ between -7.5 and -18.9 µC cm(-2) were investigated. For each value of σ, between 30 and 84 initial conditions of a solvated proton within a water slab were sampled, and the trajectories were integrated until discharge of a proton occurred on the charged surfaces. We have calculated the mean rates for discharge and for adsorption of solvated protons within the adsorbed water layer in contact with the metal electrode as a function of surface charge density. For the less negative values of σ we observe a Tafel-like exponential increase of discharge rate with decreasing σ. At the more negative values this exponential increase levels off and the discharge process is apparently transport limited. Mechanistically, the Tafel regime corresponds to a stepwise proton transfer: first, a proton is transferred from the bulk into the contact water layer, which is followed by transfer of a proton to the charged surface and concomitant discharge. At the more negative surface charge densities the proton transfer into the contact water layer and the transfer of another proton to the surface and its discharge occur almost simultaneously.
Cellulose nanocrystals with tunable surface charge for nanomedicine
NASA Astrophysics Data System (ADS)
Hosseinidoust, Zeinab; Alam, Md Nur; Sim, Goeun; Tufenkji, Nathalie; van de Ven, Theo G. M.
2015-10-01
Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge.Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge. Electronic supplementary information (ESI) available: Additional results are presented in the ESI in Fig. S1 through S4. See DOI: 10.1039/c5nr02506k
NASA Astrophysics Data System (ADS)
Sun, Guang-Yu; Guo, Bao-Hong; Song, Bai-Peng; Su, Guo-Qiang; Mu, Hai-Bao; Zhang, Guan-Jun
2018-06-01
A 2D simulation based on particle-in-cell and Monte Carlo collision algorithm is implemented to investigate the accumulation and dissipation of surface charges on an insulator during flashover with outgassing in vacuum. A layer of positive charges is formed on the insulator after the secondary electrons emission (SEE) reaches saturation. With the build-up of local pressure resulting from gas desorption, the incident energy of electrons is affected by electron-neutral collisions and field distortion, remarkably decreasing the charge density on the insulator. Gas desorption ionization initiates near the anode, culminating, and then abates, followed by a steady and gradual augmentation as the negatively charged surface spreads towards the cathode and halts the SEE nearby. The initiation of flashover development is discussed in detail, and a subdivision of flashover development is proposed, including an anode-initiated desorption ionization avalanche, establishment of a plasma sheath, and plasma expansion. The transform from saturation to explosion of space charges and dissipation of the surface charge are revealed, which can be explained by the competition between multipactor electrons and ionized electrons.
NASA Astrophysics Data System (ADS)
Kamali, Reza; Soloklou, Mohsen Nasiri; Hadidi, Hooman
2018-05-01
In this study, coupled Lattice Boltzmann method is applied to solve the dynamic model for an electroosmotic flow and investigate the effects of roughness in a 2-D flat microchannel. In the present model, the Poisson equation is solved for the electrical potential, the Nernst- Planck equation is solved for the ion concentration. In the analysis of electroosmotic flows, when the electric double layers fully overlap or the convective effects are not negligible, the Nernst-Planck equation must be used to find the ionic distribution throughout the microchannel. The effects of surface roughness height, roughness interval spacing and roughness surface potential on flow conditions are investigated for two different configurations of the roughness, when the EDL layers fully overlap through the microchannel. The results show that in both arrangements of roughness in homogeneously charged rough channels, the flow rate decreases by increasing the roughness height. A discrepancy in the mass flow rate is observed when the roughness height is about 0.15 of the channel width, which its average is higher for the asymmetric configuration and this difference grows by increasing the roughness height. In the symmetric roughness arrangement, the mass flow rate increases until the roughness interval space is almost 1.5 times the roughness width and it decreases for higher values of the roughness interval space. For the heterogeneously charged rough channel, when the roughness surface potential ψr is less than channel surface potential ψs , the net charge density increases by getting far from the roughness surface, while in the opposite situation, when ψs is more than ψr , the net charge density decreases from roughness surface to the microchannel middle center. Increasing the roughness surface potential induces stronger electric driving force on the fluid which results in larger velocities in the flow.
Heterogeneous surface charge enhanced micromixing for electrokinetic flows.
Biddiss, Elaine; Erickson, David; Li, Dongqing
2004-06-01
Enhancing the species mixing in microfluidic applications is key to reducing analysis time and increasing device portability. The mixing in electroosmotic flow is usually diffusion-dominated. Recent numerical studies have indicated that the introduction of electrically charged surface heterogeneities may augment mixing efficiencies by creating localized regions of flow circulation. In this study, we experimentally visualized the effects of surface charge patterning and developed an optimized electrokinetic micromixer applicable to the low Reynolds number regime. Using the optimized micromixer, mixing efficiencies were improved between 22 and 68% for the applied potentials ranging from 70 to 555 V/cm when compared with the negatively charged homogeneous case. For producing a 95% mixture, this equates to a potential decrease in the required mixing channel length of up to 88% for flows with Péclet numbers between 190 and 1500.
Long-range interaction between heterogeneously charged membranes.
Jho, Y S; Brewster, R; Safran, S A; Pincus, P A
2011-04-19
Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the electrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased. © 2011 American Chemical Society
Anomalous low strain induced by surface charge in nanoporous gold with low relative density.
Liu, Feng; Ye, Xing-Long; Jin, Hai-Jun
2017-07-26
The surface stress induced axial strain in a fiber-like solid is larger than its radical strain, and is also greater than the radical strain in similar-sized spherical solids. It is thus envisaged that the surface-induced macroscopic dimension change (i.e., actuation strain) in nanoporous gold (NPG) increases with decreasing relative density, or alternatively, with an increasing ratio between volumes of fiber-like ligaments and sphere-like nodes. In this study, electrochemical actuations of NPG with similar structure sizes, same (oxide-covered) surface state but different relative densities were characterized in situ in response to surface charging/discharging. We found that the actuation strain amplitude did not increase, but decreased dramatically with decreasing relative density of NPG, in contrast to the above prediction. The actuation strain decreased abruptly when the relative density of NPG was decreased to below 0.25, when the Au content in the AuAg precursor was below 20 at%. Further studies indicate that this anomalous behavior cannot be explained by potential- or size-dependences of the elasticity, the structure difference arising from different dealloying rates, or additional strain induced by the external load during dilatometry experiments. In NPG with low relative density, mutual movements of nano-ligaments may occur in the pore space and disconnected regions, which may compensate the local strain in ligaments and account for the anomalous low actuation strain in macroscopic NPG samples.
High Stability Pentacene Transistors Using Polymeric Dielectric Surface Modifier.
Wang, Xiaohong; Lin, Guangqing; Li, Peng; Lv, Guoqiang; Qiu, Longzhen; Ding, Yunsheng
2015-08-01
1,6-bis(trichlorosilyl)hexane (C6Cl), polystyrene (PS), and cross-linked polystyrene (CPS) were investigated as gate dielectric modified layers for high performance organic transistors. The influence of the surface energy, roughness and morphology on the charge transport of the organic thin-film transistors (OTFTs) was investigated. The surface energy and roughness both affect the grain size of the pentacene films which will control the charge carrier mobility of the devices. Pentacene thin-film transistors fabricated on the CPS modified dielectric layers exhibited charge carrier mobility as high as 1.11 cm2 V-1 s-1. The bias stress stability for the CPS devices shows that the drain current only decays 1% after 1530 s and the mobility never decreases until 13530 s.
NASA Astrophysics Data System (ADS)
Donglai, WANG; Tiebing, LU; Yuan, WANG; Bo, CHEN; Xuebao, LI
2018-05-01
The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current (HVDC) power lines. HVDC lines may cross the greenhouses due to the restricted transmission corridors. Under the condition of ion flow field, the dielectric films on the greenhouses will be charged, and the electric fields in the greenhouses may exceed the limit value. Field mills are widely used to measure the ground-level direct current electric fields under the HVDC power lines. In this paper, the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields. The advantages of hiding the field mill probes in the ground are studied. The charge inversion algorithm is optimized in order to decrease the impact of measurement errors. Based on the experimental results, the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied. The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height. Compared with the total electric field strengths, the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.
Gongadze, E.; van Rienen, U.; Kralj-Iglič, V.; Iglič, A.
2012-01-01
Contact between a charged metal surface and an electrolyte implies a particular ion distribution near the charged surface, i.e. the electrical double layer. In this mini review, different mean-field models of relative (effective) permittivity are described within a simple lattice model, where the orientational ordering of water dipoles in the saturation regime is taken into account. The Langevin-Poisson-Boltzmann (LPB) model of spatial variation of the relative permittivity for point-like ions is described and compared to a more general Langevin-Bikerman (LB) model of spatial variation of permittivity for finite-sized ions. The Bikerman model and the Poisson-Boltzmann model are derived as limiting cases. It is shown that near the charged surface, the relative permittivity decreases due to depletion of water molecules (volume-excluded effect) and orientational ordering of water dipoles (saturation effect). At the end, the LPB and LB models are generalised by also taking into account the cavity field. PMID:22263808
NASA Astrophysics Data System (ADS)
Zuo, Hao-Ran; Fu, Jia-Bei; Cao, Gui-Ping; Hu, Nian; Lu, Hui; Liu, Hui-Qing; Chen, Peng-Peng; Yu, Jie
2018-04-01
Monodisperse surface-charged submicron polystyrene particles were designed, synthesized, and blended into polysulfone (PSF) support layer to prepare forward osmosis (FO) membrane with high performance. The membrane incorporated with particles were characterized with respect to morphology, porosity, and internal osmotic pressure (IOP). Results showed that the polymer particles not only increased the hydrophilicity and porosity of support layer, but also generated considerable IOP, which helped markedly decreasing the structure parameter from 1550 to 670 μm. The measured mass transfer parameters further confirmed the beneficial effects of the surface-charged submicron polymer particles on the performance of FO membrane. For instance, the water permeability coefficient (5.37 L m-2 h-1 bar-1) and water flux (49.7 L m-2 h-1) of the FO membrane incorporated with 5 wt% particles were almost twice as much as that of FO membrane without incorporation. This study suggests that monodisperse surface-charged submicron polymer particles are potential modifiers for improving the performance of FO membranes.
NASA Astrophysics Data System (ADS)
Joyce, Hannah J.; Baig, Sarwat A.; Parkinson, Patrick; Davies, Christopher L.; Boland, Jessica L.; Tan, H. Hoe; Jagadish, Chennupati; Herz, Laura M.; Johnston, Michael B.
2017-06-01
Bare unpassivated GaAs nanowires feature relatively high electron mobilities (400-2100 cm2 V-1 s-1) and ultrashort charge carrier lifetimes (1-5 ps) at room temperature. These two properties are highly desirable for high speed optoelectronic devices, including photoreceivers, modulators and switches operating at microwave and terahertz frequencies. When engineering these GaAs nanowire-based devices, it is important to have a quantitative understanding of how the charge carrier mobility and lifetime can be tuned. Here we use optical-pump-terahertz-probe spectroscopy to quantify how mobility and lifetime depend on the nanowire surfaces and on carrier density in unpassivated GaAs nanowires. We also present two alternative frameworks for the analysis of nanowire photoconductivity: one based on plasmon resonance and the other based on Maxwell-Garnett effective medium theory with the nanowires modelled as prolate ellipsoids. We find the electron mobility decreases significantly with decreasing nanowire diameter, as charge carriers experience increased scattering at nanowire surfaces. Reducing the diameter from 50 nm to 30 nm degrades the electron mobility by up to 47%. Photoconductivity dynamics were dominated by trapping at saturable states existing at the nanowire surface, and the trapping rate was highest for the nanowires of narrowest diameter. The maximum surface recombination velocity, which occurs in the limit of all traps being empty, was calculated as 1.3 × 106 cm s-1. We note that when selecting the optimum nanowire diameter for an ultrafast device, there is a trade-off between achieving a short lifetime and a high carrier mobility. To achieve high speed GaAs nanowire devices featuring the highest charge carrier mobilities and shortest lifetimes, we recommend operating the devices at low charge carrier densities.
Waterflooding injectate design systems and methods
Brady, Patrick V.; Krumhansl, James L.
2014-08-19
A method of designing an injectate to be used in a waterflooding operation is disclosed. One aspect includes specifying data representative of chemical characteristics of a liquid hydrocarbon, a connate, and a reservoir rock, of a subterranean reservoir. Charged species at an interface of the liquid hydrocarbon are determined based on the specified data by evaluating at least one chemical reaction. Charged species at an interface of the reservoir rock are determined based on the specified data by evaluating at least one chemical reaction. An extent of surface complexation between the charged species at the interfaces of the liquid hydrocarbon and the reservoir rock is determined by evaluating at least one surface complexation reaction. The injectate is designed and is operable to decrease the extent of surface complexation between the charged species at interfaces of the liquid hydrocarbon and the reservoir rock. Other methods, apparatus, and systems are disclosed.
Basconi, Joseph E; Carta, Giorgio; Shirts, Michael R
2015-04-14
Multiscale simulation is used to study the adsorption of lysozyme onto ion exchangers obtained by grafting charged polymers into a porous matrix, in systems with various polymer properties and strengths of electrostatic interaction. Molecular dynamics simulations show that protein partitioning into the polymer-filled pore space increases with the overall charge content of the polymers, while the diffusivity in the pore space decreases. However, the combination of greatly increased partitioning and modestly decreased diffusion results in macroscopic transport rates that increase as a function of charge content, as the large concentration driving force due to enhanced pore space partitioning outweighs the reduction in the pore space diffusivity. Matrices having greater charge associated with the grafted polymers also exhibit more diffuse intraparticle concentration profiles during transient adsorption. In systems with a high charge content per polymer and a low protein loading, the polymers preferentially partition toward the surface due to favorable interactions with the surface-bound protein. These results demonstrate the potential of multiscale modeling to illuminate qualitative trends between molecular properties and the adsorption equilibria and kinetic properties observable on macroscopic scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chunya; Skelton, Adam A.; Chen, Mingjun
Here the binding of a negatively charged residue, aspartic acid (Asp) in tripeptide arginine-glycine-aspartic acid, onto a negatively charged hydroxylated rutile (110) surface in aqueous solution, containing divalent (Mg 2+, Ca 2+, or Sr 2+) or monovalent (Na +, K +, or Rb +) cations, was studied by molecular dynamics (MD) simulations. The results indicate that ionic radii and charges will significantly affect the hydration, adsorption geometry, and distance of cations from the rutile surface, thereby regulating the Asp/rutile binding mode. The adsorption strength of monovalent cations on the rutile surface in the order Na + > K + >more » Rb + shows a “reverse” lyotropic trend, while the divalent cations on the same surface exhibit a “regular” lyotropic behavior with decreasing crystallographic radii (the adsorption strength of divalent cations: Sr 2+ > Ca 2+ > Mg 2+). The Asp side chain in NaCl, KCl, and RbCl solutions remains stably H-bonded to the surface hydroxyls and the inner-sphere adsorbed compensating monovalent cations act as a bridge between the COO – group and the rutile, helping to “trap” the negatively charged Asp side chain on the negatively charged surface. In contrast, the mediating divalent cations actively participate in linking the COO– group to the rutile surface; thus the Asp side chain can remain stably on the rutile (110) surface, even if it is not involved in any hydrogen bonds with the surface hydroxyls. Inner- and outer-sphere geometries are all possible mediation modes for divalent cations in bridging the peptide to the rutile surface.« less
Effect of hydrogen on void initiation in tensile test of carbon steel JIS-S25C
NASA Astrophysics Data System (ADS)
Sugawa, S.; Tsutsumi, N.; Oda, K.
2018-06-01
In order to investigate the effect of hydrogen on tensile fracture mechanism of a carbon steel, tensile tests were conducted. Pre-strain specimens (0%, 5% and 10%) were used to study the effect of hydrogen content, since saturated hydrogen content in specimens increases in increasing dislocation density. The tensile strength and the yield stress of hydrogen specimens were almost the same as uncharged. In contrast, the reduction of area of hydrogen charged specimens was smaller than that of uncharged. To reveal the reasons of decrease of the reduction of area, the fracture surface and longitudinal cross section near the fracture surface were observed. On the fracture surface of uncharged specimens, only dimples were observed. On the other hand, dimples and flat fracture surface were observed on the fracture surface of hydrogen charged. On the longitudinal cross section of hydrogen charged specimens, many voids were observed compared to uncharged. From these observations, it is showed that hydrogen gives a rise to the increase of voids and the hydrogen charged specimens break without sufficient necking, thus hydrogen makes the reduction of area smaller.
Static charge outside chamber induces dielectric breakdown of solid-state nanopore membranes
NASA Astrophysics Data System (ADS)
Matsui, Kazuma; Goto, Yusuke; Yanagi, Itaru; Yanagawa, Yoshimitsu; Ishige, Yu; Takeda, Ken-ichi
2018-04-01
Reducing device capacitance is effective for decreasing current noise observed in a solid-state nanopore-based DNA sequencer. On the other hand, we have recently found that voltage stress causes pinhole-like defects in such low-capacitance devices. The origin of voltage stress, however, has not been determined. In this research, we identified that a dominant origin is static charge on the outer surface of a flow cell. Even though the outer surface was not in direct contact with electrolytes in the flow cell, the charge induces high voltage stress on a membrane according to the capacitance coupling ratio of the flow cell to the membrane.
Basic surface properties of mononuclear cells from Didelphis marsupialis.
Nacife, V P; de Meirelles, M de N; Silva Filho, F C
1998-01-01
The electrostatic surface charge and surface tension of mononuclear cells/monocytes obtained from young and adult marsupials (Didelphis marsupialis) were investigated by using cationized ferritin and colloidal iron hydroxyde, whole cell electrophoresis, and measurements of contact angles. Anionic sites were found distributed throughout the entire investigated cell surfaces. The results revealed that the anionic character of the cells is given by electrostatic charges corresponding to -18.8 mV (cells from young animals) and -29.3 mV (cells from adult animals). The surface electrostatic charge decreased from 10 to 65.2% after treatment of the cells with each one of trypsin, neuraminidase and phospholipase C. The hydrophobic nature of the mononuclear cell surfaces studied by using the contact angle method revealed that both young and adult cells possess cell surfaces of high hidrofilicity since the angles formed with drops of saline water were 42.5 degrees and 40.8 degrees, respectively. Treatment of the cells with trypsin or neuraminidase rendered their surfaces more hydrophobic, suggesting that sialic acid-containing glycoproteins are responsible for most of the hydrophilicity observed in the mononuclear cell surfaces from D. marsupialis.
Using Amphiphilic Copolymers and Nanoparticles to Organize Charged Biopolymers
NASA Astrophysics Data System (ADS)
Park, Jung Hyun; McConnell, Marla; Sun, Yujie; Goldman, Yale; Composto, Russell
2009-03-01
Nanoparticles (NPs) on amphiphilic random copolymers control filamentous actin (F-actin) attachment. 3-aminopropyltriethoxysilane (APTES) coated silica NPs are selectively bonded to acrylic acid groups on the surface of a poly(styrene-r-acrylic acid) (PS-r-PAA) film. By changing the concentration of NPs in the medium, the surface density of positively charged anchors is tuned. Using total internal reflection fluorescence (TIRF) microscopy, immobilization of F-actin is observed via electrostatic interaction with NPs at high NP coverages. Below a critical coverage, F-actin is weakly attached and undergoes thermal fluctuations near the surface. Another method to tune F-actin attachment is to use APTES to cross-link and create positive charge in PAA films. Here, the surface coverage of F-actin decreases as APTES concentration increases. This observation is attributed to an increase in surface roughness and hydrophobicity that reduces the effective surface sites that attract F-actin. In addition, in-situ G-actin polymerization to F-actin is observed on both the NP and cross-linked PAA templates.
Zhang, J S; Stanforth, R S; Pehkonen, S O
2007-02-01
Arsenate and methylated arsenicals, such as dimethylarsinate (DMA) and monomethylarsonate (MMA), are being found with increasing frequency in natural water systems. The mobility and bioavailability of these arsenic species in the environment are strongly influenced by their interactions with mineral surface, especially iron and aluminum oxides. Goethite (alpha-FeOOH), one of the most abundant ferric (hydr)oxides in natural systems, has a high retention capacity for arsenic species. Unfortunately, the sorption mechanism for the species is not completely understood, which limits our ability to model their behavior in natural systems. The purpose of this study is to investigate the effect of replacing a hydroxyl group with a methyl group on the adsorption behaviors of arsenic (V) species using adsorption edges, the influence of the background electrolyte on arsenic adsorption, and their effect on the zeta potential of goethite. The affinity of the three species to the goethite surface decreases in the order of AsO4=MMA>DMA. The uptake of DMA and MMA is independent of the concentration of background electrolyte, indicating that both species form inner-sphere complexes on the goethite surface and the most charge of adsorbed DMA and MMA locates at the surface plane. Arsenate uptake increases with increasing concentrations of background electrolyte at pH above 4, possibly due to that the charge of adsorbed arsenate is distributed between the surface plane and another electrostatic plane. DMA and lower concentrations of MMA have small effect on the zeta potential, whereas the zeta potential of goethite decreases in the presence of arsenate. The small effect on zeta potential of DMA or MMA adsorption suggests that the sorption sites for the anions is not important in controlling the surface charge. This observation is inconsistent with most adsorption models that postulate a singly coordinated hydroxyls contributing to both the adsorption and the surface charge, but supports the thesis that the charge on the goethite surface comes primarily from protonation of the triply bound oxygen atoms on the surface.
Lim, Bernard; Venkatachalam, Kalpathi L; Jahangir, Arshad; Johnson, Susan B; Asirvatham, Samuel J
2008-08-01
Thromboembolism resulting from coagulum formation on the catheter and electrode surfaces is a serious complication with radiofrequency ablation procedures for heart rhythm disorders. Why coagulum occurs despite therapeutic heparinization is unclear. In this report, we demonstrate a novel approach to minimize coagulum formation based on the electromolecular characteristics of fibrinogen. Atomic force microscopy was used to establish that fibrinogen deposited on surfaces underwent conformational changes that resulted in spontaneous clot formation. We then immersed ablation catheters that were uncharged, negatively, or positively charged in heparinized blood for 30 minutes and noted the extent of clot formation. In separate experiments, ablation catheters were sutured to the ventricle of an excised porcine heart immersed in whole, heparinized blood and radiofrequency ablation performed for 5 minutes with and without charge delivered to the catheter tips. Electron microscopy of the catheter tips showed surface coverage of fibrin clot of the catheter to be 33.8% for negatively charged catheters, compared with 84.7% (P = 0.01) in noncharged catheters. There was no significant difference in surface coverage of fibrin clot between positively charged catheters (93.8%) and noncharged catheters (84.7%, P = ns). In contrast, the thickness of surface clot coverage for positively charged catheters was 87.5%, compared with 28.45% (P= 0.03) for noncharged catheters and 11.25% (P = 0.03) for negatively charged catheters, compared with noncharged catheters. We describe a novel method of placing negative charge on electrodes during ablation that reduced coagulum formation. This may decrease thromboembolism-related complications with radiofrequency ablation procedures.
NASA Astrophysics Data System (ADS)
Horvath, J.; Moffatt, S.
1991-04-01
Ion implantation processing exposes semiconductor devices to an energetic ion beam in order to deposit dopant ions in shallow layers. In addition to this primary process, foreign materials are deposited as particles and surface films. The deposition of particles is a major cause of IC yield loss and becomes even more significant as device dimensions are decreased. Control of particle addition in a high-volume production environment requires procedures to limit beamline and endstation sources, control of particle transport, cleaning procedures and a well grounded preventative maintenance philosophy. Control of surface charge by optimization of the ion beam and electron shower conditions and measurement with a real-time charge sensor has been effective in improving the yield of NMOS and CMOS DRAMs. Control of surface voltages to a range between 0 and -20 V was correlated with good implant yield with PI9200 implanters for p + and n + source-drain implants.
Kulkarni, Mukta; Mazare, Anca; Park, Jung; Gongadze, Ekaterina; Killian, Manuela Sonja; Kralj, Slavko; von der Mark, Klaus; Iglič, Aleš; Schmuki, Patrik
2016-11-01
In the present work we investigate the key factors involved in the interaction of small-sized charged proteins with TiO 2 nanostructures, i.e. albumin (negatively charged), histone (positively charged). We examine anodic nanotubes with specific morphology (simultaneous control over diameter and length, e.g. diameter - 15, 50 or 100nm, length - 250nm up to 10μm) and nanopores. The nanostructures surface area has a direct influence on the amount of bound protein, nonetheless the protein physical properties as electric charge and size (in relation to nanotopography and biomaterial's electric charge) are crucial too. The highest quantity of adsorbed protein is registered for histone, for 100nm diameter nanotubes (10μm length) while higher values are registered for 15nm diameter nanotubes when normalizing protein adsorption to nanostructures' surface unit area (evaluated from dye desorption measurements) - consistent with theoretical considerations. The proteins presence on the nanostructures is evaluated by XPS and ToF-SIMS; additionally, we qualitatively assess their presence along the nanostructures length by ToF-SIMS depth profiles, with decreasing concentration towards the bottom. Surface nanostructuring of titanium biomedical devices with TiO 2 nanotubes was shown to significantly influence the adhesion, proliferation and differentiation of mesenchymal stem cells (and other cells too). A high level of control over the nanoscale topography and over the surface area of such 1D nanostructures enables a direct influence on protein adhesion. Herein, we investigate and show how the nanostructure morphology (nanotube diameter and length) influences the interactions with small-sized charged proteins, using as model proteins bovine serum albumin (negatively charged) and histone (positively charged). We show that the protein charge strongly influences their adhesion to the TiO 2 nanostructures. Protein adhesion is quantified by ELISA measurements and determination of the nanostructures' total surface area. We use a quantitative surface charge model to describe charge interactions and obtain an increased magnitude of the surface charge density at the top edges of the nanotubes. In addition, we track the proteins presence on and inside the nanostructures. We believe that these aspects are crucial for applications where the incorporation of active molecules such as proteins, drugs, growth factors, etc., into nanotubes is desired. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman
2016-04-01
The dielectrophoretic motion and shape deformation of a Newtonian liquid drop in an otherwise quiescent Newtonian liquid medium in the presence of an axisymmetric nonuniform dc electric field consisting of uniform and quadrupole components is investigated. The theory put forward by Feng [J. Q. Feng, Phys. Rev. E 54, 4438 (1996), 10.1103/PhysRevE.54.4438] is generalized by incorporating the following two nonlinear effects—surface charge convection and shape deformation—towards determining the drop velocity. This two-way coupled moving boundary problem is solved analytically by considering small values of electric Reynolds number (ratio of charge relaxation time scale to the convection time scale) and electric capillary number (ratio of electrical stress to the surface tension) under the framework of the leaky dielectric model. We focus on investigating the effects of charge convection and shape deformation for different drop-medium combinations. A perfectly conducting drop suspended in a leaky (or perfectly) dielectric medium always deforms to a prolate shape and this kind of shape deformation always augments the dielectrophoretic drop velocity. For a perfectly dielectric drop suspended in a perfectly dielectric medium, the shape deformation leads to either increase (for prolate shape) or decrease (for oblate shape) in the dielectrophoretic drop velocity. Both surface charge convection and shape deformation affect the drop motion for leaky dielectric drops. The combined effect of these can significantly increase or decrease the dielectrophoretic drop velocity depending on the electrohydrodynamic properties of both the liquids and the relative strength of the electric Reynolds number and electric capillary number. Finally, comparison with the existing experiments reveals better agreement with the present theory.
Adsorptive Removal of Nitrate from Aqueous Solution Using Nitrogen Doped Activated Carbon.
Machida, Motoi; Goto, Tatsuru; Amano, Yoshimasa; Iida, Tatsuya
2016-01-01
Activated carbon (AC) has been widely applied for adsorptive removal of organic contaminants from aqueous phase, but not for ionic pollutants. In this study, nitrogen doped AC was prepared to increase the adsorption capacity of nitrate from water. AC was oxidized with (NH 4 ) 2 S 2 O 8 solution to maximize oxygen content for the first step, and then NH 3 gas treatment was carried out at 950°C to aim at forming quaternary nitrogen (N-Q) species on AC surface (Ox-9.5AG). Influence of solution pH was examined so as to elucidate the relationship between surface charge and adsorption amounts of nitrate. The results showed that Ox-9.5AG exhibited about twice higher adsorption capacity than non-treatment AC at any initial nitrate concentration and any equilibrium solution pH (pH e ) investigated. The more decrease in pH e value, the more adsorption amount of negatively charged nitrate ion, because the surface charge of AC and Ox-9.5AG could become more positive in acidic solution. The oxidation and consecutive ammonia treatments lead to increase in nitrogen content from 0.35 to 6.4% and decrease in the pH of the point of zero charge (pH pzc ) from 7.1 to 4.0 implying that positively charged N-Q of a Lewis acid was created on the surface of Ox-9.5AG. Based on a Langmuir data analysis, maximum adsorption capacity attained 0.5-0.6 mmol/g of nitrate and adsorption affinity was 3.5-4.0 L/mmol at pH e 2.5 for Ox-9.5AG.
NASA Astrophysics Data System (ADS)
Lei, Huaping; Wang, Caizhuang; Yao, Yongxin; Wang, Yangang; Hupalo, Myron; McDougall, Dan; Tringides, Michael; Ho, Kaiming
2013-12-01
The adsorption, diffusion, and molecular dissociation of hydrogen on the biaxially strained Mg (0001) surface have been systematically investigated by the first principle calculations based on density functional theory. When the strain changes from the compressive to tensile state, the adsorption energy of H atom linearly increases while its diffusion barrier linearly decreases oppositely. The dissociation barrier of H2 molecule linearly reduces in the tensile strain region. Through the chemical bonding analysis including the charge density difference, the projected density of states and the Mulliken population, the mechanism of the strain effect on the adsorption of H atom and the dissociation of H2 molecule has been elucidated by an s-p charge transfer model. With the reduction of the orbital overlap between the surface Mg atoms upon the lattice expansion, the charge transfers from p to s states of Mg atoms, which enhances the hybridization of H s and Mg s orbitals. Therefore, the bonding interaction of H with Mg surface is strengthened and then the atomic diffusion and molecular dissociation barriers of hydrogen decrease accordingly. Our works will be helpful to understand and to estimate the influence of the lattice deformation on the performance of Mg-containing hydrogen storage materials.
NASA Astrophysics Data System (ADS)
Gassara, S.; Abdelkafi, A.; Quémener, D.; Amar, R. Ben; Deratani, A.
2015-07-01
Poly(ether imide) (PEI) ultrafiltration membranes were chemically modified with branched poly(ethyleneimine) to obtain nanofiltration (NF) membrane Cat PEI with a positive charge in the pH range below 9. An oppositely charged polyelectrolyte layer was deposited on the resulting membrane surface by using sodium polystyrene sulfonate (PSSNa) and sodium polyvinyl sulfonate (PVSNa) to prepare a bipolar layered membrane NF Cat PEI_PSS and Cat PEI_PVS having a negatively charged surface and positively charged pores. Cat PEI exhibited good performance to remove multivalent cations (more than 90% of Ca2+) from single salt solutions except in presence of sulfate ions. Adding an anionic polyelectrolyte layer onto the positively charged surface resulted in a significant enhancement of rejection performance even in presence of sulfate anions. Application of the prepared membranes in water softening of natural complex mixtures was successful for the different studied membranes and a large decrease of hardness was obtained. Moreover, Cat PEI_PSS showed a good selectivity for nitrate removal. Fouling experiments were carried out with bovine serum albumin, as model protein foulant. Cat PEI_PSS showed much better fouling resistance than Cat PEI with a quantitative flux recovery ratio.
Micro-PIV/LIF measurements on electrokinetically-driven flow in surface modified microchannels
NASA Astrophysics Data System (ADS)
Ichiyanagi, Mitsuhisa; Sasaki, Seiichi; Sato, Yohei; Hishida, Koichi
2009-04-01
Effects of surface modification patterning on flow characteristics were investigated experimentally by measuring electroosmotic flow velocities, which were obtained by micron-resolution particle image velocimetry using a confocal microscope. The depth-wise velocity was evaluated by using the continuity equation and the velocity data. The microchannel was composed of a poly(dimethylsiloxane) chip and a borosilicate cover-glass plate. Surface modification patterns were fabricated by modifying octadecyltrichlorosilane (OTS) on the glass surface. OTS can decrease the electroosmotic flow velocity compared to the velocity in the glass microchannel. For the surface charge varying parallel to the electric field, the depth-wise velocity was generated at the boundary area between OTS and the glass surfaces. For the surface charge varying perpendicular to the electric field, the depth-wise velocity did not form because the surface charge did not vary in the stream-wise direction. The surface charge pattern with the oblique stripes yielded a three-dimensional flow in a microchannel. Furthermore, the oblique patterning was applied to a mixing flow field in a T-shaped microchannel, and mixing efficiencies were evaluated from heterogeneity degree of fluorescent dye intensity, which was obtained by laser-induced fluorescence. It was found that the angle of the oblique stripes is an important factor to promote the span-wise and depth-wise momentum transport and contributes to the mixing flow in a microchannel.
NASA Astrophysics Data System (ADS)
Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia
2016-07-01
Parameters of specific surface area as well as surface charge were used to determine and compare sorption properties of soils with different physicochemical characteristics. The gravimetric method was used to obtain water vapour isotherms and then specific surface areas, whereas surface charge was estimated from potentiometric titration curves. The specific surface area varied from 12.55 to 132.69 m2 g-1 for Haplic Cambisol and Mollic Gleysol soil, respectively, and generally decreased with pH (R=0.835; α = 0.05) and when bulk density (R=-0.736; α = 0.05) as well as ash content (R=-0.751; α = 0.05) increased. In the case of surface charge, the values ranged from 63.00 to 844.67 μmol g-1 Haplic Fluvisol and Mollic Gleysol, respecively. Organic matter gave significant contributions to the specific surface area and cation exchange capacity due to the large surface area and numerous surface functional groups, containing adsorption sites for water vapour molecules and for ions. The values of cation exchange capacity and specific surface area correlated linearly at the level of R=0.985; α = 0.05.
Der, Bryan S.; Kluwe, Christien; Miklos, Aleksandr E.; Jacak, Ron; Lyskov, Sergey; Gray, Jeffrey J.; Georgiou, George; Ellington, Andrew D.; Kuhlman, Brian
2013-01-01
Reengineering protein surfaces to exhibit high net charge, referred to as “supercharging”, can improve reversibility of unfolding by preventing aggregation of partially unfolded states. Incorporation of charged side chains should be optimized while considering structural and energetic consequences, as numerous mutations and accumulation of like-charges can also destabilize the native state. A previously demonstrated approach deterministically mutates flexible polar residues (amino acids DERKNQ) with the fewest average neighboring atoms per side chain atom (AvNAPSA). Our approach uses Rosetta-based energy calculations to choose the surface mutations. Both protocols are available for use through the ROSIE web server. The automated Rosetta and AvNAPSA approaches for supercharging choose dissimilar mutations, raising an interesting division in surface charging strategy. Rosetta-supercharged variants of GFP (RscG) ranging from −11 to −61 and +7 to +58 were experimentally tested, and for comparison, we re-tested the previously developed AvNAPSA-supercharged variants of GFP (AscG) with +36 and −30 net charge. Mid-charge variants demonstrated ∼3-fold improvement in refolding with retention of stability. However, as we pushed to higher net charges, expression and soluble yield decreased, indicating that net charge or mutational load may be limiting factors. Interestingly, the two different approaches resulted in GFP variants with similar refolding properties. Our results show that there are multiple sets of residues that can be mutated to successfully supercharge a protein, and combining alternative supercharge protocols with experimental testing can be an effective approach for charge-based improvement to refolding. PMID:23741319
Field observations of the electrostatic charges of blowing snow in Hokkaido, Japan
NASA Astrophysics Data System (ADS)
Omiya, S.; Sato, A.
2011-12-01
An electrostatic charge of blowing snow may be a contributing factor in the formation of a snow drift and a snow cornice, and changing of the trajectory of own motion. However, detailed electrification characteristics of blowing snow are not known as there are few reports of charge measurements. We carried out field observations of the electrostatic charges of blowing snow in Tobetsu, Hokkaido, Japan in the mid winter of 2011. An anemovane and a thermohygrometer were used for the meteorological observation. Charge-to-mass ratios of blowing snow were obtained by a Faraday-cage, an electrometer and an electric balance. In this observation period, the air temperature during the blowing snow event was -6.5 to -0.5 degree Celsius. The measured charges in this observation were consistent with the previous studies in sign, which is negative, but they were smaller than the previous one. In most cases, the measured values increased with the temperature decrease, which corresponds with previous studies. However, some results contradicted the tendency, and the maximum value was obtained on the day of the highest air temperature of -0.5 degree Celsius. This discrepancy may be explained from the difference of the snow surface condition on observation day. The day when the maximum value was obtained, the snow surface was covered with old snow, and hard. On the other hand, in many other cases, the snow surface was covered with the fresh snow, and soft. Blowing snow particles on the hard surface can travel longer distance than on the soft one. Therefore, it can be surmised that the hard surface makes the blowing snow particles accumulate a lot of negative charges due to a large number of collisions to the surface. This can be supported by the results of the wind tunnel experiments by Omiya and Sato (2011). By this field observation, it was newly suggested that the electrostatic charge of blowing snow are influenced greatly by the difference of the snow surface condition. REFERENCE: Omiya and Sato,(2010):An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface. AGU Abstract Database, 2010 Fall Meeting.
Mechanisms of Polyelectrolyte Enhanced Surfactant Adsorption at the Air-Water Interface
Stenger, Patrick C.; Palazoglu, Omer A.; Zasadzinski, Joseph A.
2009-01-01
Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids. PMID:19366599
Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface.
Stenger, Patrick C; Palazoglu, Omer A; Zasadzinski, Joseph A
2009-05-01
Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.
NASA Astrophysics Data System (ADS)
Akdogan, E. K.; Safari, A.
2007-03-01
We propose a phenomenological intrinsic finite-size effect model for single domain, mechanically free, and surface charge compensated ΔG-P ⃗s-ξ space, which describes the decrease in tetragonal phase stability with decreasing ξ rigorously.
SFG and SPR Study of Sodium Dodecyl Sulfate Film Assembly on Positively Charged Surfaces
NASA Astrophysics Data System (ADS)
Song, Sanghun; Weidner, Tobias; Wagner, Matthew; Castner, David
2012-02-01
This study uses sum frequency generation (SFG) vibrational spectroscopy and surface plasmon resonance (SPR) sensing to investigate the structure of sodium dodecyl sulfate (SDS) films formed on positively charged and hydrophilic surfaces. The SPR signals show a good surface coverage suggesting that full monolayer coverage is reached at 1 mM. SFG spectra of SDS adsorbed exhibits well resolved CH3 peaks and OH peaks. At both 0.2 mM and 1 mM SDS concentration the intensity of both the CH3 and OH peaks decreased close to background levels. We found that the loss of SFG signal at 0.2 mM occurs at this concentration independent of surface charge density. It is more likely that the loss of signal is related to structural inhomogeneity induced by a striped phase - stand-up phase transition. This is supported by a distinct change of the relative SFG phase between CH3/OH near 0.2 mM. The second intensity minimum might be related to charge compensation effects. We observed a substrate dependence for the high concentration transition. We also observed distinct SFG signal phase changes for water molecules associated with SDS layers at different SDS solution concentrations indicating that the orientation of bound water changed with SDS surface structure.
Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric
2011-10-15
Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for modification is easy to control and can be optimized and implemented for many carbon materials currently used in microbial fuel cells and other bioelectrochemical systems. Copyright © 2011 Elsevier B.V. All rights reserved.
Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter.
Ghosh, Saikat; Mashayekhi, Hamid; Pan, Bo; Bhowmik, Prasanta; Xing, Baoshan
2008-11-04
The colloidal behavior of aluminum oxide nanoparticles (NPs) was investigated as a function of pH and in the presence of two structurally different humic acids (HAs), Aldrich HA (AHA) and the seventh HA fraction extracted from Amherst peat soil (HA7). Dynamic light scattering (DLS) and atomic force microscopy (AFM) were employed to determine the colloidal behavior of the NPs. Influence of pH and HAs on the surface charges of the NPs was determined. zeta-Potential data clearly showed that the surface charge of the NPs decreased with increasing pH and reached the point of zero charge (ZPC) at pH 7.9. Surface charge of the NPs also decreased with the addition of HAs. The NPs tend to aggregate as the pH of the suspension approaches ZPC, where van der Waals attraction forces dominate over electrostatic repulsion. However, the NP colloidal suspension was stable in the pHs far from ZPC. Colloidal stability was strongly enhanced in the presence of HAs at the pH of ZPC or above it, but in acidic conditions NPs showed strong aggregation in the presence of HAs. AFM imaging revealed the presence of long-chain fractions in HA7, which entangled with the NPs to form large aggregates. The association of HA with the NP surface can be assumed to follow a two-step process, possibly the polar fractions of the HA7 sorbed on the NP surface followed by entanglement with the long-chain fractions. Thus, our study demonstrated that the hydrophobic nature of the HA molecules strongly influenced the aggregation of colloidal NPs, possibly through their conformational behavior in a particular solution condition. Therefore, various organic matter samples will result in different colloidal behavior of NPs, subsequently their environmental fate and transport.
Probing surface charge potentials of clay basal planes and edges by direct force measurements.
Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe
2008-11-18
The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the surface element integrated DLVO model. The point of zero charge of the muscovite edge surface was estimated to be pH 7-8.
Subtle charge balance controls surface-nucleated self-assembly of designed biopolymers.
Charbonneau, Céline; Kleijn, J Mieke; Cohen Stuart, Martien A
2014-03-25
We report the surface-nucleated self-assembly into fibrils of a biosynthetic amino acid polymer synthesized by the yeast Pichia pastoris. This polymer has a block-like architecture, with a central silk-like block labeled SH, responsible for the self-assembly into fibrils, and two collagen-like random coil end blocks (C) that colloidally stabilize the fibers in aqueous solution. The silk-like block contains histidine residues (pKa≈6) that are positively charged in the low pH region, which hinders self-assembly. In aqueous solution, CSHC self-assembles into fibers above a pH-dependent critical nucleation concentration Ccb. Below Ccb, where no self-assembly occurs in solution, fibril formation can be induced by a negatively charged surface (silica) in the pH range of 3.5-7. The density of the fibers at the surface and their length are controlled by a subtle balance in charge between the protein polymer and the silica surface, which is evidenced from the dependence on pH. With increasing number density of the fibers at the surface, their average length decreases. The results can be explained on the basis of a nucleation-and-growth mechanism: the surface density of fibers depends on the rate of nucleation, while their growth rate is limited by transport of proteins from solution. Screening of the charges on the surface and histidine units by adding NaCl influences the nucleation-and-growth process in a complicated fashion: at low pH, the growth is improved, while at high pH, the nucleation is limited. Under conditions where nucleation in the bulk solution is not possible, growth of the surface-nucleated fibers into the solution--away from the surface--can still occur.
Formation of pentacene wetting layer on the SiO2 surface and charge trap in the wetting layer.
Kim, Chaeho; Jeon, D
2008-09-01
We studied the early-stage growth of vacuum-evaporated pentacene film on a native SiO(2) surface using atomic force microscopy and in-situ spectroscopic ellipsometry. Pentacene deposition prompted an immediate change in the ellipsometry spectra, but atomic force microscopy images of the early stage films did not show a pentacene-related morphology other than the decrease in the surface roughness. This suggested that a thin pentacene wetting layer was formed by pentacene molecules lying on the surface before the crystalline islands nucleated. Growth simulation based on the in situ spectroscopic ellipsometry spectra supported this conclusion. Scanning capacitance microscopy measurement indicated the existence of trapped charges in the SiO(2) and pentacene wetting layer.
Investigation of ultrahigh sensitivity in GaInAsP nanolaser biosensor
NASA Astrophysics Data System (ADS)
Saijo, Yoshito; Watanabe, Takumi; Hasegawa, Yu; Nishijima, Yoshiaki; Baba, Toshihiko
2018-02-01
We have developed GaInAsP semiconductor photonic crystal nanolaser biosensor and demonstrated the detection of ultralow-concentration (fM to aM) proteins and deoxyribonucleic acids (DNAs) adsorbed on the device surface. In general, this type of photonic sensors exploiting optical resonance has been considered to detect the refractive index of biomolecules via the wavelength shift. However, this principle cannot explain the detection of such ultralowconcentration. Therefore, we investigated another candidate principle, i.e., ion sensitivity. We consider such a process that 1) the electric charge of biomolecules changes the nanolaser's surface charge, 2) the Schottky barrier near the semiconductor surface is increased or decreased, 3) the distribution of photopumped carriers is modified by the barrier, 4) the refractive index of the semiconductor is changed by the carrier effects, and 5) the laser wavelength shifts. To confirm this process, we electrochemically measured the zeta and flatband potentials when charged electrolyte polymers were adsorbed in water. We clearly observed that these potentials temporally behaved consistently with that of the laser wavelength, which suggests that polymers significantly acted on the Schottky barrier. The same behaviors were also observed for the adsorption of 1 fM DNA. We consider that a limited number of charged DNA changed the surface functional group of the entire device surface. Such charge effects will be the key that achieves the ultrahigh sensitivity in the nanolaser biosensor.
Effect of silicon, tantalum, and tungsten doping and polarization on bioactivity of hydroxyapatite
NASA Astrophysics Data System (ADS)
Dhal, Jharana
Hydroxyapatite (HAp) ceramics has important applications as bone graft because of the structural and compositional similarities with bone tissue. However, inferior osteogenic capacity to bone and poor mechanical properties have been identified to be major disadvantages of synthetic HAp compared to the living bone tissue. The objective of the current study is to evaluate the effect of doping with higher valent cations (Tungsten, tantalum, and silicon) and polarization or combination of both on change in property of doped HAp and subsequent impact its bioactivity. In vitro study with human osteoblast cells was used to investigate the influences of doping and polarization on bone cell-materials interactions. The bioactivity of doped HAp was compared with pure HAp. Effect of doping and polarization on the change in HAp was investigated by monitoring change in mineral phases, stored charge, and activation energy of HAp. Activation energy of depolarization was used to explain the possible mechanism of polarization in doped samples. Bioactivity of HAp increased when doped with tantalum and tungsten. Polarization further increased the bioactivity of tungsten- and tantalum-doped samples. Increase in bioactivity on polarized and doped samples was attributed to increase in surface energy and increase in surface wettability. Whereas, an increase in bioactivity on doped unpolarized surface was attributed to change in microstructure. Polarized charge calculated from TSDC indicates that polarized charge decreases on tantalum- and tungsten-doped HAp. The decrease in polarized charge was attributed to the presence of significant amount of different phases that may hinder the ionic motion in doped samples. However, for silicon-doped HAp, TSDC study showed no difference in the mechanism of polarization between doped and undoped samples. Increase in silicon doping decreased the grain size though mechanism is not affected by grain size. Total stored charge decreased with increase in dopant concentration at a particular sintering temperature. Results of this study provide further evidence for use of higher valence cations to improve biological performance of HAp ceramics and to advance our understanding on mechanism of polarization in doped samples.
pH-dependence of pesticide adsorption by wheat-residue-derived black carbon.
Yang, Yaning; Chun, Yuan; Sheng, Guangyao; Huang, Minsheng
2004-08-03
The potential of black carbon as an adsorbent for pesticides in soils may be strongly influenced by the properties of the adsorbent and pesticides and by the environmental conditions. This study evaluated the effect of pH on the adsorption of diuron, bromoxynil, and ametryne by a wheat (Triticum aestivum L.) residue derived black carbon (WC) as compared to a commercial activated carbon (AC). The pH drift method indicated that WC had a point of zero charge of 4.2, much lower than that of 7.8 for AC. The density of oxygen-containing surface functional groups, measured by the Boehm titration, on WC was 5.4 times higher than that on AC, resulting in a pesticide adsorption by WC being 30-50% of that by AC, due to the blockage of WC surface by the waters associated with the functional groups. A small decrease (5.5%/unit pH) in diuron adsorption by WC with increase in pH resulted from increased deprotonation of surface functional groups at higher pH values. A much larger decrease (14-21%/unit pH) in bromoxynil adsorption by WC with increase in pH resulted from the deprotonation of both the adsorbate and surface functional groups of the adsorbent. The deprotonation reduced the adsorptive interaction between bromoxynil and the neutral carbon surface and increased the electrical repulsion between the negatively charged WC surface and bromoxynil anions. Deprotonation of ametryne with increase in pH over the low pH range increased its fraction of molecular form and thus adsorption on WC by 15%/unit pH. Further increase in pH resulted in a 20%/unit pH decrease in ametryne adsorption by WC due primarily to the development of a negative charge on the surface of WC. The pH-dependent adsorption of pesticides by black carbon may significantly influence their environmental fate in soils.
Does the liquid method of electret forming influence the adhesion of blood platelets?
Lowkis, B; Szymanowicz, M
1995-01-01
This work presents the results of the effect of the electric charge on the adhesion of blood platelets. All experiments were carried out on polyethylene foil. The liquid method was used to form electrets. The evaluation of the electret effect influence on the adhesion of blood platelets was made on the basis of the observation of the electret surface after the contact with fresh citrate human blood group O Rh+ in an electron scanning microscope. Experimental results confirmed the essential influence of the electric charge on the process of adhesion of blood platelets. It was noticed that the preliminary aging of electrets decreases the density of the surface charge and improves the athrombogenic characteristics of polyethylene foil.
Huang, Ke; Boerhan, Rena; Liu, Changming; Jiang, Guoqiang
2017-12-04
Nanoparticles (NPs) are widely studied as tumor targeted vehicles. The penetration of NPs into the tumor is considered as a major barrier for delivery of NPs into tumor cell and a big challenge to translate NPs from lab to the clinic. The objective of this study is to know how the surface charge of NPs, the protein corona surrounding the NPs, and the fluid flow around the tumor surface affect the penetration and accumulation of NPs into the tumor, through in vitro penetration study based on a spheroid-on-chip system. Surface decorated polystyrene (PS) NPs (100 nm) carrying positive and negative surface charge were loaded to the multicellular spheroids under static and flow conditions, in the presence or absence of serum proteins. NP penetration was investigated by confocal laser microscopy scanning followed with quantitative image analysis. The results reveal that negatively charged NPs are attached more on the spheroid surface and easier to penetrate into the spheroids. Protein corona, which is formed surrounding the NPs in the presence of serum protein, changes the surface properties of the NPs, weakens the NP-cell affinity, and, therefore, results in lower NP concentration on the spheroid surface but might facilitate deeper penetration. The exterior fluid flow enhances the interstitial flow into the spheroid, which benefits the penetration but also strips the NPs (especially the NPs with protein corona) on the spheroid surface, which decreases the penetration flux significantly. The maximal penetration was obtained by applying negatively charged NPs without protein corona under the flow condition. We hope the present study will help to understand the spatiotemporal performance of drug delivery NPs and inform the rational design of NPs with highly defined drug accumulation localized at a target site.
Layer Dependence and Light Tuning Surface Potential of 2D MoS2 on Various Substrates.
Li, Feng; Qi, Junjie; Xu, Minxuan; Xiao, Jiankun; Xu, Yuliang; Zhang, Xiankun; Liu, Shuo; Zhang, Yue
2017-04-01
Here surface potential of chemical vapor deposition (CVD) grown 2D MoS 2 with various layers is reported, and the effect of adherent substrate and light illumination on surface potential of monolayer MoS 2 are investigated. The surface potential of MoS 2 on Si/SiO 2 substrate decreases from 4.93 to 4.84 eV with the increase in the number of layer from 1 to 4 or more. Especially, the surface potentials of monolayer MoS 2 are strongly dependent on its adherent substrate, which are determined to be 4.55, 4.88, 4.93, 5.10, and 5.50 eV on Ag, graphene, Si/SiO 2 , Au, and Pt substrates, respectively. Light irradiation is introduced to tuning the surface potential of monolayer MoS 2 , with the increase in light intensity, the surface potential of MoS 2 on Si/SiO 2 substrate decreases from 4.93 to 4.74 eV, while increases from 5.50 to 5.56 eV on Pt substrate. The I-V curves on vertical of monolayer MoS 2 /Pt heterojunction show the decrease in current with the increase of light intensity, and Schottky barrier height at MoS 2 /Pt junctions increases from 0.302 to 0.342 eV. The changed surface potential can be explained by trapped charges on surface, photoinduced carriers, charge transfer, and local electric field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Possible method for diagnosing waves in dusty plasmas with magnetized charged dust particulates
NASA Astrophysics Data System (ADS)
Rosenberg, M.; Shukla, P. K.
2005-05-01
We discuss theoretically a possible method for diagnosing some features of dust wave behavior in a magnetized plasma containing small (tens of nm) charged dust grains whose motion is magnetized. It is easier to magnetize a small dust particle because its charge-to-mass ratio increases as its size decreases. However, it is more difficult to use the backscattering of light from the dust as a diagnostic as the dust size decreases below the diffraction limit. The idea proposed here is to measure the reduction in transmitted UV or optical light intensity due to enhanced extinction by small metal dust particles that have surface plasmon resonances at those wavelengths. Such measurements could indicate the spatial location of the dust density compressions or rarefactions, which may yield information on the dust wave behavior, or perhaps even charged dust transport. Parameters that may be relevant to possible laboratory dusty plasma experiments are discussed.
Effects of Ni particle morphology on cell performance of Na/NiCl2 battery
NASA Astrophysics Data System (ADS)
Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan
2017-11-01
Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.
Charging and Discharging of Amorphous Solid Water Ice: Effects of Porosity
NASA Astrophysics Data System (ADS)
Bu, Caixia; Baragiola, Raul A.
2015-11-01
Introduction: Amorphous solid water (ASW) is abundant on Saturn’s icy satellites and rings [1,2], where it is subject to bombardment of energetic ions, electrons, and photons; together with secondary electron and ion emission, this may leave the surfaces charged. Surface potential can affect the flux of incoming charged particles, altering surface evolution. We examined the role of porosity [3] on electrostatic charging and discharging of ASW films at 30-140 K.Experiment: Experiments were performed in ultra-high vacuum [4]. ASW films were deposited at 30 K onto a liquid-He-cooled quartz crystal microbalance (QCM). Film porosity was calculated from the areal mass via the QCM and thickness via a UV-visible interferometry. ASW films were charged at 30 K using 500 eV He+. Surface potentials (Vs) of the films were measured with a Kelvin probe, and infrared spectra were collected using a Fourier transform infrared spectrometer.Results: We measured Vs of the ASW film at 30 K as a function of ion fluence (F). The Vs(F) deviates from a straight line at low fluence, attributed to emitted secondary electrons due to the negative polarization voltage [5,6], and increases linearly when the Vs is positive. We also measured Vs as a function of annealing temperature. We prepared ASW films with various porosities by annealing the films to different temperatures (Ta) prior to irradiation or varying the vapor-beam incidence angle (θ). Upon heating, we observed sharp decreases of the Vs at temperatures that strongly depend on Ta and θ. Decreases of the infrared absorbance of the dangling OH bands of the charged film share similar trends as that of the Vs. We propose a model that includes porosity for electrostatic charging/discharging of ASW films at temperatures below 100 K. Results are applicable to the study of plasma-surface interactions of icy satellites and rings.References: [1] Jurac et al., J. Geophys. Res. 100, 14821 (1995); [2] A. L. Graps et al., Space Sci. Rev. 137, 435 (2008); [3] U. Raut et al., J. Chem. Phys. 127, 204713 (2007); [4] C. Bu and R. B. Baragiola, J. Chem. Phys. 143, 074702 (2015); [5] C. Bu et al., J. Chem. Phys. 142, 134702 (2015); [6] M. J. Iedema et al., J. Phys. Chem. B 102, 9203 (1998).
Surface Plasmon Polariton Dependence on Metal Surface Morphology
2007-11-13
is equipped with a high efficiency collector consisting of a parabolic mirror and light guide (2, Fig. 8), which is directly coupled to the... compound of bφ = 0.7 eV and all other values as previously defined, a linear decrease in sheet charge is expected with a maximum value at Vg=0 and
Probing Interactions at the Nanoscale by Ion Current through Nanopores and Nanovoids
NASA Astrophysics Data System (ADS)
Gamble, Trevor Patrick
Polymer nanopores offer themselves as excellent test beds for study of phenomena that occur on the nano-scale, such as Debye layer formation, surface charge modulation, current saturation, and rectification. Studying ions interactions within the Debye layer, for example, is not possible on the micro-scale, where the pore diameter can be 100 times the size of the zone where interactions of interest occur. However, in our nanopores with an opening diameter less than 10 nm, a slight change of the Debye length can lead to drastic changes of the recorded ion current. Here we present our nanopores' use as a tool to study geometrical and electrochemical properties of porous manganese oxide. There is great value in studying nano-scale properties of this material because of its importance in lithium ion batteries and newly developed nano-architectures within supercapacitors. We electrodeposited manganese oxide wires into our cylindrical nanopores, filling them completely. In this use, nanopores became a template to probe properties of the embedded material such as surface charge, ion selectivity, and porosity. This information was then reported to the Energy Frontier Research Center (EFRC) collaboration, so that other groups can incorporate these recently discovered characteristics into future their nano-architecture design. Additionally, we constructed conical nanopores to study interactions between the surface charges found on the walls and alkali metal ions. In particular we looked at lithium, as it is the electrochemically active ion during charge cycling in EFRC energy storage devices. We attempted to reveal lithium ion's affinity to bind to surface charges. We found this binding led to lowering of the effective surface charge of the pore walls, while also decreasing lithium's ability to move through channels or voids that have charged walls. In connection to manganese oxide, a porous, charged material with voids, information on lithium's interaction with these charges is paramount.
Durán-Álvarez, Agustín; Maldonado-Domínguez, Mauricio; González-Antonio, Oscar; Durán-Valencia, Cecilia; Romero-Ávila, Margarita; Barragán-Aroche, Fernando; López-Ramírez, Simón
2016-03-22
The adsorption of surfactants (DTAB, SDS, and CAPB) at the calcite-water interface was studied through surface zeta potential measurements and multiscale molecular dynamics. The ground-state polarization of surfactants proved to be a key factor for the observed behavior; correlation was found between adsorption and the hard or soft charge distribution of the amphiphile. SDS exhibits a steep aggregation profile, reaching saturation and showing classic ionic-surfactant behavior. In contrast, DTAB and CAPB featured diversified adsorption profiles, suggesting interplay between supramolecular aggregation and desorption from the solid surface and alleviating charge buildup at the carbonate surface when bulk concentration approaches CMC. This manifests as an adsorption profile with a fast initial step, followed by a metastable plateau and finalizing with a sharp decrease and stabilization of surface charge. Suggesting this competition of equilibria, elicited at the CaCO3 surface, this study provides atomistic insight into the adsorption mechanism for ionic surfactants on calcite, which is in accordance with experimental evidence and which is a relevant criterion for developing enhanced oil recovery processes.
Removal of aniline and phenol from water using raw and aluminum hydroxide-modified diatomite.
Wu, C D; Zhang, J Y; Wang, L; He, M H
2013-01-01
The feasibility of using raw diatomite and aluminum hydroxide-modified diatomite (Al-diatomite) for removal of aniline and phenol from water was investigated. Their physicochemical characteristics such as pHsolution, point of zero charge (pHPZC), surface area, Fourier transform infrared (FT-IR) and scanning electron microscopy was determined. After the raw diatomite was modified, the surface area of Al-diatomite increases from 26.67 to 82.65 m(2) g(-1). The pHPZC and pHsolution (10%) occurred around pH 5.2 and pH 8.6, respectively. The removal rates of aniline and phenol on diatomite and Al-diatomite decreased with increasing solution pH, while surface charge density decreased. The adsorption of aniline and phenol on diatomite presented a good fit to the Langmuir and Freundlich models, but the models are not fit to forecast the adsorption of aniline and phenol on Al-diatomite. The study indicated that electrostatic interaction was a dominating mechanism of aniline and phenol sorption onto Al-diatomite.
Biosorption of metal ions from aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiaping; Yiacoumi, Sotira
1997-01-01
Copper biosorption from aqueous solutions by calcium alginate is reported in this paper. The experimental section includes potentiometric titrations of biosorbents, batch equilibrium and kinetic studies of copper biosorption, as well as fixed-bed biosorption experiments. The potentiometric titration results show that the surface charge increases with decreasing pH. The biosorption of copper strongly depends on solution pH; the metal ion binding increases from 0 to 90 percent in pH ranging from 1.5 to 5.0. In addition, a decrease in ionic strength results in an increase of copper ion removal. Kinetic studies indicate that mass transfer plays an important role inmore » the biosorption rate. Furthermore, a fixed-bed biosorption experiment shows that calcium alginate has a significant capacity for copper ion removal. The two-pK Basic Stem model successfully represents the surface charge and equilibrium biosorption experimental data. The calculation results demonstrate that the copper removal may result from the binding of free copper and its hydroxide with surface functional groups of the biosorbents.« less
Li, Dien; Kaplan, Daniel I; Roberts, Kimberly A; Seaman, John C
2012-03-06
Cementitious materials are increasingly used as engineered barriers and waste forms for radiological waste disposal. Yet their potential effect on mobile colloid generation is not well-known, especially as it may influence colloid-facilitated contaminant transport. Whereas previous papers have studied the introduction of cement colloids into sediments, this study examined the influence of cement leachate chemistry on the mobilization of colloids from a subsurface sediment collected from the Savannah River Site, USA. A sharp mobile colloid plume formed with the introduction of a cement leachate simulant. Colloid concentrations decreased to background concentrations even though the aqueous chemical conditions (pH and ionic strength) remained unchanged. Mobile colloids were mainly goethite and to a lesser extent kaolinite. The released colloids had negative surface charges and the mean particle sizes ranged primarily from 200 to 470 nm. Inherent mineralogical electrostatic forces appeared to be the controlling colloid removal mechanism in this system. In the background pH of ~6.0, goethite had a positive surface charge, whereas quartz (the dominant mineral in the immobile sediment) and kaolinite had negative surface charges. Goethite acted as a cementing agent, holding kaolinite and itself onto the quartz surfaces due to the electrostatic attraction. Once the pH of the system was elevated, as in the cementitious high pH plume front, the goethite reversed to a negative charge, along with quartz and kaolinite, then goethite and kaolinite colloids were mobilized and a sharp spike in turbidity was observed. Simulating conditions away from the cementitious source, essentially no colloids were mobilized at 1:1000 dilution of the cement leachate or when the leachate pH was ≤ 8. Extreme alkaline pH environments of cementitious leachate may change mineral surface charges, temporarily promoting the formation of mobile colloids.
Hoffeditz, William L; Katz, Michael J; Deria, Pravas; Martinson, Alex B F; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T
2014-06-11
Dye-sensitized solar cell (DSC) redox shuttles other than triiodide/iodide have exhibited significantly higher charge transfer resistances at the dark electrode. This often results in poor fill factor, a severe detriment to device performance. Rather than moving to dark electrodes of untested materials that may have higher catalytic activity for specific shuttles, the surface area of platinum dark electrodes could be increased, improving the catalytic activity by simply presenting more catalyst to the shuttle solution. A new copper-based redox shuttle that experiences extremely high charge-transfer resistance at conventional Pt dark electrodes yields cells having fill-factors of less than 0.3. By replacing the standard Pt dark electrode with an inverse opal Pt electrode fabricated via atomic layer deposition, the dark electrode surface area is boosted by ca. 50-fold. The resulting increase in interfacial electron transfer rate (decrease in charge-transfer resistance) nearly doubles the fill factor and therefore the overall energy conversion efficiency, illustrating the utility of this high-area electrode for DSCs.
NASA Astrophysics Data System (ADS)
Bekkara, Mohammed Fethi; Dascalescu, Lucien; Benmimoun, Youcef; Zeghloul, Thami; Tilmatine, Amar; Zouzou, Noureddine
2018-01-01
The aim of this paper is to quantify the effects of dielectric barrier discharge (DBD) exposure on the physico-chemical and tribo-electric properties of polymers. The study was conducted in atmospheric air on polypropylene, polyethylene and polyvinyl-chloride. These three types of polymers are widely used in industry. The polymers were characterized by means of an optical profilometer, a fourier-transform infrared (FTIR) spectrometer and an electric charge measurement system. The latter is composed of a Faraday pail connected to an electrometer. The profilometer analyses showed that the DBD plasma treatment has increased the surface roughness of the three polymers. FTIR revealed that oxygen atoms and polar groups were grafted on their surfaces, thereby conferring them a hydrophilic character. The short (2 sec) DBD plasma treatment has considerably improved the electrostatic charge acquired by the polymers during electrostatic tribo-charging, while longer exposures conferred the polymer anti-static properties and decreased its tribo-charging capability. The correlation between the results of the physico-chemical analyses and the tribo-electric behavior has been discussed.
Sprenger, K G; Pfaendtner, Jim
2016-06-07
Thermodynamic analyses can provide key insights into the origins of protein self-assembly on surfaces, protein function, and protein stability. However, obtaining quantitative measurements of thermodynamic observables from unbiased classical simulations of peptide or protein adsorption is challenging because of sampling limitations brought on by strong biomolecule/surface binding forces as well as time scale limitations. We used the parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) enhanced sampling method to study the adsorption behavior and thermodynamics of several explicitly solvated model peptide adsorption systems, providing new molecular-level insight into the biomolecule adsorption process. Specifically studied were peptides LKα14 and LKβ15 and trpcage miniprotein adsorbing onto a charged, hydrophilic self-assembled monolayer surface functionalized with a carboxylic acid/carboxylate headgroup and a neutral, hydrophobic methyl-terminated self-assembled monolayer surface. Binding free energies were calculated as a function of temperature for each system and decomposed into their respective energetic and entropic contributions. We investigated how specific interfacial features such as peptide/surface electrostatic interactions and surface-bound ion content affect the thermodynamic landscape of adsorption and lead to differences in surface-bound conformations of the peptides. Results show that upon adsorption to the charged surface, configurational entropy gains of the released solvent molecules dominate the configurational entropy losses of the bound peptide. This behavior leads to an apparent increase in overall system entropy upon binding and therefore to the surprising and seemingly nonphysical result of an apparent increased binding free energy at elevated temperatures. Opposite effects and conclusions are found for the neutral surface. Additional simulations demonstrate that by adjusting the ionic strength of the solution, results that show the expected physical behavior, i.e., peptide binding strength that decreases with increasing temperature or is independent of temperature altogether, can be recovered on the charged surface. On the basis of this analysis, an overall free energy for the entire thermodynamic cycle for peptide adsorption on charged surfaces is constructed and validated with independent simulations.
Reid, Michael S; Kedzior, Stephanie A; Villalobos, Marco; Cranston, Emily D
2017-08-01
This work explores cellulose nanocrystal (CNC) thin films (<50 nm) and particle-particle interactions by investigating film swelling in aqueous solutions with varying ionic strength (1-100 mM). CNC film hydration was monitored in situ via surface plasmon resonance, and the kinetics of liquid uptake were quantified. The contribution of electrostatic double-layer forces to film swelling was elucidated by using CNCs with different surface charges (anionic sulfate half ester groups, high and low surface charge density, and cationic trimethylammonium groups). Total water uptake in the thin films was found to be independent of ionic strength and surface chemistry, suggesting that in the aggregated state van der Waals forces dominate over double-layer forces to hold the films together. However, the rate of swelling varied significantly. The water uptake followed Fickian behavior, and the measured diffusion constants decreased with the ionic strength gradient between the film and the solution. This work highlights that nanoparticle interactions and dispersion are highly dependent on the state of particle aggregation and that the rate of water uptake in aggregates and thin films can be tailored based on surface chemistry and solution ionic strength.
Fujita, Yosuke; Kobayashi, Motoyoshi
2016-07-01
We have studied the transport of colloidal silica in various degrees of a water-saturated Toyoura sand column, because silica particles are widely used as catalyst carriers and abrasive agents, and their toxicity is reported recently. Since water-silica, water-sand, and air-water interfaces have pH-dependent negative charges, the magnitude of surface charge was controlled by changing the solution pH. The results show that, at high pH conditions (pH 7.4), the deposition of colloidal silica to the sand surface is interrupted and the silica concentration at the column outlet immediately reaches the input concentration in saturated conditions. In addition, the relative concentration of silica at the column outlet only slightly decreases to 0.9 with decreasing degrees of water saturation to 38%, because silica particles are trapped in straining regions in the soil pore and air-water interface. On the other hand, at pH 5 conditions (low pH), where sand and colloid have less charge, reduced repulsive forces result in colloidal silica attaching onto the sand in saturated conditions. The deposition amount of silica particles remarkably increases with decreasing degrees of water saturation to 37%, which is explained by more particles being retained in the sand column associated with the air-water interface. In conclusion, at higher pH, the mobility of silica particles is high, and the air-water interface is inactive for the deposition of silica. On the other hand, at low pH, the deposition amount increases with decreasing water saturation, and the particle transport is inhibited. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion
NASA Astrophysics Data System (ADS)
Buyukdagli, Sahin; Achim, C. V.; Ala-Nissila, T.
2012-09-01
Electrostatic correlation effects in inhomogeneous symmetric electrolytes are investigated within a previously developed electrostatic self-consistent theory [R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003)], 10.1140/epje/i2002-10159-0. To this aim, we introduce two computational approaches that allow to solve the self-consistent equations beyond the loop expansion. The first method is based on a perturbative Green's function technique, and the second one is an extension of a previously introduced semiclassical approximation for single dielectric interfaces to the case of slit nanopores. Both approaches can handle the case of dielectrically discontinuous boundaries where the one-loop theory is known to fail. By comparing the theoretical results obtained from these schemes with the results of the Monte Carlo simulations that we ran for ions at neutral single dielectric interfaces, we first show that the weak coupling Debye-Huckel theory remains quantitatively accurate up to the bulk ion density ρb ≃ 0.01 M, whereas the self-consistent theory exhibits a good quantitative accuracy up to ρb ≃ 0.2 M, thus improving the accuracy of the Debye-Huckel theory by one order of magnitude in ionic strength. Furthermore, we compare the predictions of the self-consistent theory with previous Monte Carlo simulation data for charged dielectric interfaces and show that the proposed approaches can also accurately handle the correlation effects induced by the surface charge in a parameter regime where the mean-field result significantly deviates from the Monte Carlo data. Then, we derive from the perturbative self-consistent scheme the one-loop theory of asymmetrically partitioned salt systems around a dielectrically homogeneous charged surface. It is shown that correlation effects originate in these systems from a competition between the salt screening loss at the interface driving the ions to the bulk region, and the interfacial counterion screening excess attracting them towards the surface. This competition can be quantified in terms of the characteristic surface charge σ _s^*=√{2ρ _b/(π ℓ _B)}, where ℓB = 7 Å is the Bjerrum length. In the case of weak surface charges σ _s≪ σ _s^* where counterions form a diffuse layer, the interfacial salt screening loss is the dominant effect. As a result, correlation effects decrease the mean-field density of both coions and counterions. With an increase of the surface charge towards σ _s^*, the surface-attractive counterion screening excess starts to dominate, and correlation effects amplify in this regime the mean-field density of both type of ions. However, in the regime σ _s>σ _s^*, the same counterion screening excess also results in a significant decrease of the electrostatic mean-field potential. This reduces in turn the mean-field counterion density far from the charged surface. We also show that for σ _s≫ σ _s^*, electrostatic correlations result in a charge inversion effect. However, the electrostatic coupling regime where this phenomenon takes place should be verified with Monte Carlo simulations since this parameter regime is located beyond the validity range of the one-loop theory.
Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion.
Buyukdagli, Sahin; Achim, C V; Ala-Nissila, T
2012-09-14
Electrostatic correlation effects in inhomogeneous symmetric electrolytes are investigated within a previously developed electrostatic self-consistent theory [R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003)]. To this aim, we introduce two computational approaches that allow to solve the self-consistent equations beyond the loop expansion. The first method is based on a perturbative Green's function technique, and the second one is an extension of a previously introduced semiclassical approximation for single dielectric interfaces to the case of slit nanopores. Both approaches can handle the case of dielectrically discontinuous boundaries where the one-loop theory is known to fail. By comparing the theoretical results obtained from these schemes with the results of the Monte Carlo simulations that we ran for ions at neutral single dielectric interfaces, we first show that the weak coupling Debye-Huckel theory remains quantitatively accurate up to the bulk ion density ρ(b) ≃ 0.01 M, whereas the self-consistent theory exhibits a good quantitative accuracy up to ρ(b) ≃ 0.2 M, thus improving the accuracy of the Debye-Huckel theory by one order of magnitude in ionic strength. Furthermore, we compare the predictions of the self-consistent theory with previous Monte Carlo simulation data for charged dielectric interfaces and show that the proposed approaches can also accurately handle the correlation effects induced by the surface charge in a parameter regime where the mean-field result significantly deviates from the Monte Carlo data. Then, we derive from the perturbative self-consistent scheme the one-loop theory of asymmetrically partitioned salt systems around a dielectrically homogeneous charged surface. It is shown that correlation effects originate in these systems from a competition between the salt screening loss at the interface driving the ions to the bulk region, and the interfacial counterion screening excess attracting them towards the surface. This competition can be quantified in terms of the characteristic surface charge σ(s)*=√(2ρ(b)/(πl(B)), where l(B) = 7 Å is the Bjerrum length. In the case of weak surface charges σ(s)≪σ(s)* where counterions form a diffuse layer, the interfacial salt screening loss is the dominant effect. As a result, correlation effects decrease the mean-field density of both coions and counterions. With an increase of the surface charge towards σ(s)*, the surface-attractive counterion screening excess starts to dominate, and correlation effects amplify in this regime the mean-field density of both type of ions. However, in the regime σ(s)>σ(s)*, the same counterion screening excess also results in a significant decrease of the electrostatic mean-field potential. This reduces in turn the mean-field counterion density far from the charged surface. We also show that for σ(s)≫σ(s)*, electrostatic correlations result in a charge inversion effect. However, the electrostatic coupling regime where this phenomenon takes place should be verified with Monte Carlo simulations since this parameter regime is located beyond the validity range of the one-loop theory.
Ghobadi, Ahmadreza F; Letteri, Rachel; Parelkar, Sangram S; Zhao, Yue; Chan-Seng, Delphine; Emrick, Todd; Jayaraman, Arthi
2016-02-08
Polymer-based gene delivery vehicles benefit from the presence of hydrophilic groups that mitigate the inherent toxicity of polycations and that provide tunable polymer-DNA binding strength and stable complexes (polyplexes). However, hydrophilic groups screen charge, and as such can reduce cell uptake and transfection efficiency. We report the effect of embedding zwitterionic sulfobetaine (SB) groups in cationic comb polymers, using a combination of experiments and molecular simulations. Ring-opening metathesis polymerization (ROMP) produced comb polymers with tetralysine (K4) and SB pendent groups. Dynamic light scattering, zeta potential measurements, and fluorescence-based experiments, together with coarse-grained molecular dynamics simulations, described the effect of SB groups on the size, shape, surface charge, composition, and DNA binding strength of polyplexes formed using these comb polymers. Experiments and simulations showed that increasing SB composition in the comb polymers decreased polymer-DNA binding strength, while simulations indicated that the SB groups distributed throughout the polyplex. This allows polyplexes to maintain a positive surface charge and provide high levels of gene expression in live cells. Notably, comb polymers with nearly 50 mol % SB form polyplexes that exhibit positive surface charge similarly as polyplexes formed from purely cationic comb polymers, indicating the ability to introduce an appreciable amount of SB functionality without screening surface charge. This integrated simulation-experimental study demonstrates the effectiveness of incorporating zwitterions in polyplexes, while guiding the design of new and effective gene delivery vectors.
The impacts of surface polarity on the solubility of nanoparticle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jianzhuo; Su, Jiguo, E-mail: jiguosu@ysu.edu.cn; Ou, Xinwen
In order to study the dependence of water solubility and hydration behavior of nanoparticles on their surface polarity, we designed polar nanoparticles with varying surface polarity by assigning atomic partial charge to the surface of C60. The water solubility of the nanoparticle is enhanced by several orders of magnitude after the introduction of surface polarity. Nevertheless, when the atomic partial charge grows beyond a certain value (q{sub M}), the solubility continuously decreases to the level of nonpolar nanoparticle. It should be noted that such q{sub M} is comparable with atomic partial charge of a variety of functional groups. The hydrationmore » behaviors of nanoparticles were then studied to investigate the non-monotonic dependence of solubility on the surface polarity. The interaction between the polar nanoparticle and the hydration water is stronger than the nonpolar counterpart, which should facilitate the dissolution of the nanoparticles. On the other hand, the surface polarity also reduces the interaction of hydration water with the other water molecules and enhances the interaction between the nanoparticles which may hinder their dispersion. Besides, the introduction of surface polarity disturbs and even rearranges the hydration structure of nonpolar nanoparticle. Interestingly, the polar nanoparticle with less ordered hydration structure tends to have higher water solubility.« less
Stripe-like Clay Nanotubes Patterns in Glass Capillary Tubes for Capture of Tumor Cells.
Liu, Mingxian; He, Rui; Yang, Jing; Zhao, Wei; Zhou, Changren
2016-03-01
Here, we used capillary tubes to evaporate an aqueous dispersion of halloysite nanotubes (HNTs) in a controlled manner to prepare a patterned surface with ordered alignment of the nanotubes . Sodium polystyrenesulfonate (PSS) was added to improve the surface charges of the tubes. An increased negative charge of HNTs is realized by PSS coating (from -26.1 mV to -52.2 mV). When the HNTs aqueous dispersion concentration is higher than 10%, liquid crystal phenomenon of the dispersion is found. A typical shear flow behavior and decreased viscosity upon shear is found when HNTs dispersions with concentrations higher than 10%. Upon drying the HNTs aqueous dispersion in capillary tubes, a regular pattern is formed in the wall of the tube. The width and spacing of the bands increase with HNTs dispersion concentration and decrease with the drying temperature for a given initial concentration. Morphology results show that an ordered alignment of HNTs is found especially for the sample of 10%. The patterned surface can be used as a model for preparing PDMS molding with regular micro-/nanostructure. Also, the HNTs rough surfaces can provide much higher tumor cell capture efficiency compared to blank glass surfaces. The HNTs ordered surfaces provide promising application for biomedical areas such as biosensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad
2011-10-15
We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces.more » As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.« less
Ropers, M H; Novales, B; Boué, F; Axelos, M A V
2008-11-18
The binding of a cationic surfactant (hexadecyltrimethylammonium bromide, CTAB) to a negatively charged natural polysaccharide (pectin) at air-solution interfaces was investigated on single interfaces and in foams, versus the linear charge densities of the polysaccharide. Besides classical methods to investigate polymer/surfactant systems, we applied, for the first time concerning these systems, the analogy between the small angle neutron scattering by foams and the neutron reflectivity of films to measure in situ film thicknesses of foams. CTAB/pectin foam films are much thicker than the pure surfactant foam film but similar for high- and low-charged pectin/CTAB systems despite the difference in structure of complexes at interfaces. The improvement of the foam properties of CTAB bound to pectin is shown to be directly related to the formation of pectin-CTAB complexes at the air-water interface. However, in opposition to surface activity, there is no specific behavior for the highly charged pectin: foam properties depend mainly upon the bulk charge concentration, while the interfacial behavior is mainly governed by the charge density of pectin. For the highly charged pectin, specific cooperative effects between neighboring charged sites along the chain are thought to be involved in the higher surface activity of pectin/CTAB complexes. A more general behavior can be obtained at lower charge density either by using a low-charged pectin or by neutralizing the highly charged pectin in decreasing pH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Tao, E-mail: st@mail.iee.ac.cn; Yang, Wenjin; Zhang, Cheng
Polymer materials, such as polymethylmethacrylate (PMMA), are widely used as insulators in vacuum. The insulating performance of a high-voltage vacuum system is mainly limited by surface flashover of the insulators rather than bulk breakdown. Non-thermal plasmas are an efficient method to modify the chemical and physical properties of polymer material surfaces, and enhance the surface insulating performance. In this letter, an atmospheric-pressure dielectric barrier discharge is used to treat the PMMA surface to improve the surface flashover strength in vacuum. Experimental results indicate that the plasma treatment method using Ar and CF{sub 4} (10:1) as the working gas can etchmore » the PMMA surface, introduce fluoride groups to the surface, and then alter the surface characteristics of the PMMA. The increase in the surface roughness can introduce physical traps that can capture free electrons, and the fluorination can enhance the charge capturing ability. The increase in the surface roughness and the introduction of the fluoride groups can enhance the PMMA hydrophobic ability, improve the charge capturing ability, decrease the secondary electron emission yield, increase the surface resistance, and improve the surface flashover voltage in vacuum.« less
Bazant, Martin Z; Kilic, Mustafa Sabri; Storey, Brian D; Ajdari, Armand
2009-11-30
The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the thermal voltage (kT/e approximately 25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several V approximately 100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields and induced surface charges are large enough to violate the assumptions of the classical theory. In this article, we review the experimental and theoretical literatures, highlight discrepancies between theory and experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that, in response to a large applied voltage, the "compact layer" and "shear plane" effectively advance into the liquid, due to the crowding of counterions. Using simple continuum models, we predict two general trends at large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific. Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-sized ions.
NASA Astrophysics Data System (ADS)
Ando, Yasunobu; Otani, Minoru
MXenes are a new, large family of layered materials synthesized from MAX phases by simple chemical treatments. Due to their enormous variations, MXenes have attracted great attention as promising candidates as anode materials for next-generation secondary batteries. Unfortunately, the specific capacitance of MXenes supercapacitors is lower than that of active-carbon ones. Theoretical investigation of the electric-double layer (EDL) at electrode interfaces is necessary to improve their capacitance. First-principles molecular dynamics (FPMD) simulation based on the density functional theory (DFT) is performed to estimate the EDL capacitance from a potential profile V(z) and a charge distribution q(z) induced by the ions at water-Ti2CTx (T =O, F) interfaces. Potential profiles V(z) of both Ti2CO2 and Ti2CF2 decrease about 1.0 eV steeply in a region of only 3 Å from a Ti layer, which is the same profile at the platinum interfaces. On the other hand, induced charge distribution q(z) depends on the species of surface termination. Induced electrons are introduced at Ti layers in the case of O surface termination. However, Ti2CF2 is not capable to store electrons at Ti layers because it is mono-valence anions. It indicates that effective surface-position of MXenes depends on the surface terminations. Our results are revealed that small induced charge leads the low EDL capacitance at MXene interfaces. This is because interface polarization due to strong interaction between water and Ti2CTx induces net charge. The surface net charge hinders the introduction of ion-induced charges.
Multipactor saturation in parallel-plate waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorolla, E.; Mattes, M.
2012-07-15
The saturation stage of a multipactor discharge is considered of interest, since it can guide towards a criterion to assess the multipactor onset. The electron cloud under multipactor regime within a parallel-plate waveguide is modeled by a thin continuous distribution of charge and the equations of motion are calculated taking into account the space charge effects. The saturation is identified by the interaction of the electron cloud with its image charge. The stability of the electron population growth is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above the threshold onset are identified. Themore » impact energy in the collision against the metal plates decreases during the electron population growth due to the attraction of the electron sheet on the image through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over point, the electron surface density tends to a constant value. When the stability is broken before reaching the first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this case, an expression to calculate the maximum electron surface charge density is found whose predictions agree with the simulations when the voltage is not too high.« less
Underscreening in concentrated electrolytes.
Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan
2017-07-01
Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.
Effect of temperature on anodic behavior of 13Cr martensitic steel in CO2 environment
NASA Astrophysics Data System (ADS)
Zhao, G. X.; Zheng, M.; Lv, X. H.; Dong, X. H.; Li, H. L.
2005-04-01
The corrosion behavior of 13Cr martensitic stainless steel in a CO2 environment in a stimulated oilfield was studied with potentiodynamic polarization and the impedance spectra technique. The results showed that the microstructure of the surface scale clearly changed with temperature. This decreased the sensitivity of pitting corrosion and increased the tendency toward general (or uniform) corrosion. The capacitance, the charge transfer resistance, and the polarization resistance of the corrosion product scale decrease with increasing temperature from 90 to 120 °C, and thus the corrosion is a thermal activation controlled process. Charge transfer through the scale is difficult and the corrosion is controlled by a diffusion process at a temperature of 150 °C. Resistance charge transfer through the corrosion product layer is higher than that in the passive film.
NASA Astrophysics Data System (ADS)
Liang, Sang-Zi; Chen, Gugang; Harutyunyan, Avetik R.; Sofo, Jorge O.
2014-09-01
In carbon nanotube and graphene gas sensing, the measured conductance change after the sensor is exposed to target molecules has been traditionally attributed to carrier density change due to charge transfer between the sample and the adsorbed molecule. However, this explanation has many problems when it is applied to graphene: The increased amount of Coulomb impurities should lead to decrease in carrier mobility which was not observed in many experiments, carrier density is controlled by the gate voltage in the experimental setup, and there are inconsistencies in the energetics of the charge transfer. In this paper we explore an alternative mechanism. Charged functional groups and dipolar molecules on the surface of graphene may counteract the effect of charged impurities on the substrate. Because scattering of electrons with these charged impurities has been shown to be the limiting factor in graphene conductivity, this leads to significant changes in the transport behavior. A model for the conductivity is established using the random phase approximation dielectric function of graphene and the first-order Born approximation for scattering. The model predicts optimal magnitudes for the charge and dipole moment which maximally screen a given charged impurity. The dipole screening is shown to be generally weaker than the charge screening although the former becomes more effective with higher gate voltage away from the charge neutrality point. The model also predicts that with increasing amount of adsorbates, the charge impurities eventually become saturated and additional adsorption always lead to decreasing conductivity.
Liu, Zhao-Dong; Wang, Hai-Cui; Zhou, Qin; Xu, Ren-Kou
2017-11-01
Iron (Fe) and aluminum (Al) hydroxides in variable charge soils attached to rice roots may affect surface-charge properties and subsequently the adsorption and uptake of nutrients and toxic metals by the roots. Adhesion of amorphous Fe and Al hydroxides onto rice roots and their effects on zeta potential of roots and adsorption of potassium (K + ) and cadmium (Cd 2+ ) by roots were investigated. Rice roots adsorbed more Al hydroxide than Fe hydroxide because of the greater positive charge on Al hydroxide. Adhesion of Fe and Al hydroxides decreased the negative charge on rice roots, and a greater effect of the Al hydroxide. Consequently, adhesion of Fe and Al hydroxides reduced the K + and Cd 2+ adsorption by rice roots. The results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and desorption of K + and Cd 2+ from rice roots indicated that physical masking by Fe and Al hydroxides and diffuse-layer overlapping between the positively-charged hydroxides and negatively-charged roots were responsible for the reduction of negative charge on roots induced by adhesion of the hydroxides. Therefore, the interaction between Fe and Al hydroxides and rice roots reduced negative charge on roots and thus inhibited their adsorption of nutrient and toxic cations. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazic, Predrag; Stefancic, Hrvoje; Abraham, Hrvoje
2006-03-20
We introduce a novel numerical method, named the Robin Hood method, of solving electrostatic problems. The approach of the method is closest to the boundary element methods, although significant conceptual differences exist with respect to this class of methods. The method achieves equipotentiality of conducting surfaces by iterative non-local charge transfer. For each of the conducting surfaces, non-local charge transfers are performed between surface elements, which differ the most from the targeted equipotentiality of the surface. The method is tested against analytical solutions and its wide range of application is demonstrated. The method has appealing technical characteristics. For the problemmore » with N surface elements, the computational complexity of the method essentially scales with N {sup {alpha}}, where {alpha} < 2, the required computer memory scales with N, while the error of the potential decreases exponentially with the number of iterations for many orders of magnitude of the error, without the presence of the Critical Slowing Down. The Robin Hood method could prove useful in other classical or even quantum problems. Some future development ideas for possible applications outside electrostatics are addressed.« less
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Mandal, Shubhadeep; Chakraborty, Suman
2017-06-01
Here we attempt to solve the fully coupled Poisson-Nernst-Planck-Navier-Stokes equations, to ascertain the influence of finite electric double layer (EDL) thickness on coupled charge and fluid dynamics over patterned charged surfaces. We go beyond the well-studied "weak-field" limit and obtain numerical solutions for a wide range of EDL thicknesses, applied electric field strengths, and the surface potentials. Asymptotic solutions to the coupled system are also derived using a combination of singular and regular perturbation, for thin EDLs and low surface potential, and good agreement between the two solutions is observed. Counterintuitively to common arguments, our analysis reveals that finite EDL thickness may either increase or decrease the "free-stream velocity" (equivalent to net throughput), depending on the strength of the applied electric field. We also unveil a critical EDL thickness for which the effect of finite EDL thickness on the free-stream velocity is the most prominent. Finally, we demonstrate that increasing the surface potential and the applied field tends to influence the overall flow patterns in the contrasting manners. These results may be of profound importance in developing a comprehensive theoretical basis for designing electro-osmotically actuated microfluidic mixtures.
I-V curve hysteresis induced by gate-free charging of GaAs nanowires' surface oxide
NASA Astrophysics Data System (ADS)
Alekseev, P. A.; Geydt, P.; Dunaevskiy, M. S.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.
2017-09-01
The control of nanowire-based device performance requires knowledge about the transport of charge carriers and its limiting factors. We present the experimental and modeled results of a study of electrical properties of GaAs nanowires (NWs), considering their native oxide cover. Measurements of individual vertical NWs were performed by conductive atomic force microscopy (C-AFM). Experimental C-AFM observations with numerical simulations revealed the complex resistive behavior of NWs. A hysteresis of current-voltage characteristics of the p-doped NWs as-grown on substrates with different types of doping was registered. The emergence of hysteresis was explained by the trapping of majority carriers in the surface oxide layer near the reverse-biased barriers under the source-drain current. It was found that the accumulation of charge increases the current for highly doped p+-NWs on n+-substrates, while for moderately doped p-NWs on p+-substrates, charge accumulation decreases the current due to blocking of the conductive channel of NWs.
NASA Astrophysics Data System (ADS)
Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.
2013-08-01
The Electro-Hydro-Dynamics (EHD) interaction induced by a surface dielectric barrier discharge in the aerodynamic boundary layer at one atmosphere still air has been investigated. Three different geometrical configurations of the actuator have been utilized. In the first configuration, an electrode pair separated by a 2 mm dielectric sheet has been used. The second and the third configurations have been obtained by adding a third electrode on the upper side of the dielectric surface. This electrode has been placed downstream of the upper electrode and has been connected to ground or has been left floating. Three different dielectric materials have been utilized. The high voltage upper electrode was fed by an a.c. electric tension. Measurements of the dielectric surface potential generated by the charge deposition have been done. The discharge has been switched off after positive and negative phases of the plasma current (the current phase was characterized by a positive or a negative value, respectively). The measurements have been carried out after both phases. The charge distribution strongly depended on the switching off phase and was heavily affected by the geometrical configuration. A remarkable decrease of the charge deposited on the dielectric surface has been detected when the third electrode was connected to ground. Velocity profiles were obtained by using a Pitot probe. They showed that the presence of the third electrode limits the fluid dynamics performance of the actuator. A relation between the charge surface distribution and the EHD interaction phenomenon has been found. Imaging of the plasma has been done to evaluate the discharge structure and the extension of the plasma in the configurations investigated.
Löfgren, Stefan; Gustafsson, Jon Petter; Bringmark, Lage
2010-12-01
Numerous studies report increased concentrations of dissolved organic carbon (DOC) during the last two decades in boreal lakes and streams in Europe and North America. Recently, a hypothesis was presented on how various spatial and temporal factors affect the DOC dynamics. It was concluded that declining sulphur deposition and thereby increased DOC solubility, is the most important driver for the long-term DOC concentration trends in surface waters. If this recovery hypothesis is correct, the DOC levels should increase both in the soil solution as well as in the surrounding surface waters as soil pH rises and the ionic strength declines due to the reduced input of SO(4)(2-) ions. In this project a geochemical model was set up to calculate the net humic charge and DOC solubility trends in soils during the period 1996-2007 at two integrated monitoring sites in southern Sweden, showing clear signs of acidification recovery. The Stockholm Humic Model was used to investigate whether the observed DOC solubility is related to the humic charge and to examine how pH and ionic strength influence it. Soil water data from recharge and discharge areas, covering both podzols and riparian soils, were used. The model exercise showed that the increased net charge following the pH increase was in many cases counteracted by a decreased ionic strength, which acted to decrease the net charge and hence the DOC solubility. Thus, the recovery from acidification does not necessarily have to generate increasing DOC trends in soil solution. Depending on changes in pH, ionic strength and soil Al pools, the trends might be positive, negative or indifferent. Due to the high hydraulic connectivity with the streams, the explanations to the DOC trends in surface waters should be searched for in discharge areas and peat lands. Copyright © 2010 Elsevier B.V. All rights reserved.
Mudedla, Sathish Kumar; Azhagiya Singam, Ettayapuram Ramaprasad; Balamurugan, Kanagasabai; Subramanian, Venkatesan
2015-11-11
The complexation of small interfering RNA (siRNA) with positively charged gold nanoclusters has been studied in the present investigation with the help of classical molecular dynamics and steered molecular dynamics simulations accompanied by free energy calculations. The results show that gold nanoclusters form a stable complex with siRNA. The wrapping of siRNA around the gold nanocluster depends on the size and charge on the surface of the gold cluster. The binding pattern of the gold nanocluster with siRNA is also influenced by the presence of another cluster. The interaction between the positively charged amines in the gold nanocluster and the negatively charged phosphate group in the siRNA is responsible for the formation of complexes. The binding free energy value increases with the size of the gold cluster and the number of positive charges present on the surface of the gold nanocluster. The results reveal that the binding energy of small gold nanoclusters increases in the presence of another gold nanocluster while the binding of large gold nanoclusters decreases due to the introduction of another gold nanocluster. Overall, the findings have clearly demonstrated the effect of size and charge of gold nanoclusters on their interaction pattern with siRNA.
Phase transitions of a water overlayer on charged graphene: from electromelting to electrofreezing.
Zhu, Xueyan; Yuan, Quanzi; Zhao, Ya-Pu
2014-05-21
We show by using molecular dynamics simulations that a water overlayer on charged graphene experiences first-order ice-to-liquid (electromelting), and then liquid-to-ice (electrofreezing) phase transitions with the increase of the charge value. Corresponding to the ice-liquid-ice transition, the variations of the order parameters indicate an order-disorder-order transition. The key to this novel phenomenon is the surface charge induced change of the orientations of water dipoles, which leads to the change of the water-water interactions from being attractive to repulsive at a critical charge value qc. To further uncover how the orientations of water dipoles influence the interaction strength between water molecules, a theoretical model considering both the Coulomb and van der Waals interactions is established. The results show that with the increase of the charge value, the interaction strength between water molecules decreases below qc, then increases above qc. These two inverse processes lead to electromelting and electrofreezing, respectively. Combining this model with the Eyring equation, the diffusion coefficient is obtained, the variation of which is in qualitative agreement with the simulation results. Our findings not only expand our knowledge of the graphene-water interface, but related analyses could also help recognize the controversial role of the surface charge or electric field in promoting phase transitions of water.
Hyono, Atsushi; Gaboriaud, Fabien; Mazda, Toshio; Takata, Youichi; Ohshima, Hiroyuki; Duval, Jérôme F L
2009-09-15
The stability of native and enzyme-treated human red blood cells of type A (Rh D positive) against agglutination is investigated under conditions where it is mediated by immunoglobuline G (IgG) anti-D antibody binding. The propensity of cells to agglutinate is related to their interphasic (electrokinetic) properties. These properties significantly depend on the concentration of proteolytic papain enzyme and protease-free neuraminidase enzyme that the cells are exposed to. The analysis is based on the interpretation of electrophoretic data of cells by means of the numerical theory for the electrokinetics of soft (bio)particles. A significant reduction of the hydrodynamic permeability of the external soft glycoprotein layer of the cells is reported under the action of papain. This reflects a significant decrease in soft surface layer thickness and a loss in cell surface integrity/rigidity, as confirmed by nanomechanical AFM analysis. Neuraminidase action leads to an important decrease in the interphase charge density by removing sialic acids from the cell soft surface layer. This is accompanied by hydrodynamic softness modulations less significant than those observed for papain-treated cells. On the basis of these electrohydrodynamic characteristics, the overall interaction potential profiles between two native cells and two enzyme-treated cells are derived as a function of the soft surface layer thickness in the Debye-Hückel limit that is valid for cell suspensions under physiological conditions (approximately 0.16 M). The thermodynamic computation of cell suspension stability against IgG-mediated agglutination then reveals that a decrease in the cell surface layer thickness is more favorable than a decrease in interphase charge density for inducing agglutination. This is experimentally confirmed by agglutination data collected for papain- and neuraminidase-treated cells.
The Electronic Structure and Secondary Pyroelectric Properties of Lithium Tetraborate
Adamiv, Volodymyr.T.; Burak, Yaroslav.V.; Wooten, David. J.; McClory, John; Petrosky, James; Ketsman, Ihor; Xiao, Jie; Losovyj, Yaroslav B.; Dowben, Peter A.
2010-01-01
We review the pyroelectric properties and electronic structure of Li2B4O7(110) and Li2B4O7(100) surfaces. There is evidence for a pyroelectric current along the [110] direction of stoichiometric Li2B4O7 so that the pyroelectric coefficient is nonzero but roughly 103 smaller than along the [001] direction of spontaneous polarization. Abrupt decreases in the pyroelectric coefficient along the [110] direction can be correlated with anomalies in the elastic stiffness C33D contributing to the concept that the pyroelectric coefficient is not simply a vector but has qualities of a tensor, as expected. The time dependent surface photovoltaic charging suggests that surface charging is dependent on crystal orientation and doping, as well as temperature. PMID:28883341
NASA Astrophysics Data System (ADS)
Majkić, M. D.; Nedeljković, N. N.; Dojčilović, R. J.
2017-09-01
We consider the slow highly charged ions impinging upon a metal surface covered with a thin dielectric film, and formation of the surface nanostructures (craters) from the standpoint of the required energy. For the moderate ionic velocities, the size of the surface features depends on the deposited kinetic energy of the projectile and the ionic neutralization energy. The neutralization energy is calculated by employing the recently developed quasi-resonant two-state vector model for the intermediate Rydberg state population and the micro-staircase model for the cascade neutralization. The electron interactions with the ionic core, polarized dielectric and charge induced on the metal surface are modelled by the appropriate asymptotic expressions and the method for calculation of the effective ionic charges in the dielectric is proposed. The results are presented for the interaction of \\text{X}{{\\text{e}}Z+} ions (velocity v=0.25 a.u.; 25) with the metal surface (Co) covered with a thin dielectric film, for model values of dielectric constant inside the interaction region. In the absence of dielectric film, the neutralization energy is lower than the potential (ionization) energy due to the incomplete neutralization. The presence of dielectric film additionally decreases the neutralization energy. We calculate the projectile neutralization energy in the perturbed dielectric (perturbation is caused by the ionic motion and the surface structure formation). We correlate the neutralization energy added to the deposited kinetic energy with the experimentally obtained energy necessary for the formation of the nano-crater of a given depth.
DEVELOPMENT OF A MODEL TO INVESTIGATE RED BLOOD CELL SURFACE CHARACTERISTICS AFTER CRYOPRESERVATION.
Gordiyenko, O I; Anikieieva, M O; Rozanova, S L; Kovalenko, S Ye; Kovalenkol, I F; Gordiyenko, E O
2015-01-01
Maintaining cell surface properties after freezing and thawing, characterized in particular by the surface potential and associated with it cell ability to intercellular adhesion, could be used as a characteristic of successful cryopreservation. This study was conducted to research applying different erythrocytes freezing modes and analyses the regimes cryopreservation effect on the cell surface charge and adhesion to microorganisms. Human erythrocytes frozen by three modes. In order to determine adhesion index was used dried bacterial cells of S. thermophilus. The surface charge of erythrocytes was evaluated using Alcian blue cationic dye. The results showed the significant decrease in the lactobacillus adhesion to erythrocytes frozen glycerol and 1,2-propanediol. After erythrocytes were freezen with glycerol and 1,2-propanediol, the cationic dye binding to erythrocytes significantly reduced. AB binding to erythrocytes frozen with PEG-1500 does not differ from control data. Erythrocytes frozen with PEG-1500 mantained surface properties after thawing better, compared to erythrocytes cryopreserved by other methods.
Adsorption characteristics of Bisphenol-A on tailored activated carbon in aqueous solutions.
Yan, Liang; Lv, Di; Huang, Xinwen; Shi, Huixiang; Zhang, Geshan
2016-10-01
The adsorption behavior of pharmaceuticals and personal care product, Bisphenol-A (BPA), according to four coal-based and four wood-based granular activated carbons modified using outgassing treatment, acidic treatment or alkaline treatment was studied. The adsorption isotherm results indicated that carbon surface acidity played a very important role in the adsorption of BPA. It was found that increasing surface acidity would increase the hydrogen bonding effects and increase adsorption of BPA on activated carbon. The acidic modified sample (F600-A and OLC-A) represented the best adsorption capacity, and the equilibrium adsorption amounts reached 346.42 and 338.55 mg/g, respectively. Further, effects of surface charge and surface basicity were examined. It was found that the adsorbed amount of BPA decreased with the increase of surface charge. Finally, there appeared to be a significant oligomerization phenomenon with BPA molecules onto the surface of activated carbon. OLC and OLC-OG, which have higher micropore percentages, are very effective in hampering the oligomerization of BPA under oxic conditions.
NASA Astrophysics Data System (ADS)
Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo
2018-04-01
Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.
NASA Technical Reports Server (NTRS)
Trigwell, Steve; Boucher, Derrick; Calle, Carlos
2006-01-01
The use of an atmospheric pressure glow discharge (APGD) plasma was used at KSC to increase the hydrophilicity of spaceport materials to enhance their surface charge dissipation and prevent possible ESD in spaceport operations. Significant decreases in charge decay times were observed after tribocharging the materials using the standard KSC tribocharging test. The polarity and amount of charge transferred was dependent upon the effective work function differences between the respective materials. In this study, polyethylene (PE) and polytetrafluoroethylene (PTFE) were exposed to a He+O2 APGD. The pre and post treatment surface chemistry was analyzed by X-ray photoelectron spectroscopy and contact angle measurements. Semi-empirical and ab initio calculations were performed to correlate the experimental results with some plausible molecular and electronic structure features of the oxidation process. For the PE, significant surface oxidation was observed, as indicated by XPS showing C-O, C=O, and O-C=O bonding, and a decrease in the surface contact angle from 98.9 deg to 61.2 deg. For the PTFE, no C-O bonding appeared and the surface contact angle increased indicating the APGD only succeeded in cleaning the PTFE surface without affecting the surface structure. The calculations using the PM3 and DFT methods were performed on single and multiple oligomers to simulate a wide variety of oxidation scenarios. Calculated work function results suggest that regardless of oxidation mechanism, e.g. -OH, =0 or a combination thereof, the experimentally observed levels of surface oxidation are unlikely to lead to a significant change in the electronic structure of PE and that its increased hydrophilic properties are the primary reason for the observed changes in its electrostatic behavior. The calculations for PTFE argue strongly against significant oxidation of that material, as confirmed by the XPS results.
Influence of the Amino Acid Sequence on Protein-Mineral Interactions in Soil
NASA Astrophysics Data System (ADS)
Chacon, S. S.; Reardon, P. N.; Purvine, S.; Lipton, M. S.; Washton, N.; Kleber, M.
2017-12-01
The intimate associations between protein and mineral surfaces have profound impacts on nutrient cycling in soil. Proteins are an important source of organic C and N, and a subset of proteins, extracellular enzymes (EE), can catalyze the depolymerization of soil organic matter (SOM). Our goal was to determine how variation in the amino acid sequence could influence a protein's susceptibility to become chemically altered by mineral surfaces to infer the fate of adsorbed EE function in soil. We hypothesized that (1) addition of charged amino acids would enhance the adsorption onto oppositely charged mineral surfaces (2) addition of aromatic amino acids would increase adsorption onto zero charged surfaces (3) Increase adsorption of modified proteins would enhance their susceptibility to alterations by redox active minerals. To test these hypotheses, we generated three engineered proxies of a model protein Gb1 (IEP 4.0, 6.2 kDA) by inserting either negatively charged, positively charged or aromatic amino acids in the second loop. These modified proteins were allowed to interact with functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnessite) at pH 5 and 7. We used LC-MS/MS and solution-state Heteronuclear Single Quantum Coherence Spectroscopy NMR to observe modifications on engineered proteins as a consequence to mineral interactions. Preliminary results indicate that addition of any amino acids to a protein increase its susceptibility to fragmentation and oxidation by redox active mineral surfaces, and alter adsorption to the other mineral surfaces. This suggest that not all mineral surfaces in soil may act as sorbents for EEs and chemical modification of their structure should also be considered as an explanation for decrease in EE activity. Fragmentation of proteins by minerals can bypass the need to produce proteases, but microbial acquisition of other nutrients that require enzymes such as cellulases, ligninases or phosphatases may be hampered by mineral association.
Semiconductor electrode with improved photostability characteristics
Frank, A.J.
1985-02-19
An electrode is described for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode consists of a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.
Semiconductor electrode with improved photostability characteristics
Frank, Arthur J.
1987-01-01
An electrode is disclosed for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode includes a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.
Potassium-intercalated H2Pc films: Alkali-induced electronic and geometrical modifications
NASA Astrophysics Data System (ADS)
Nilson, K.; Åhlund, J.; Shariati, M.-N.; Schiessling, J.; Palmgren, P.; Brena, B.; Göthelid, E.; Hennies, F.; Huismans, Y.; Evangelista, F.; Rudolf, P.; Göthelid, M.; Mârtensson, N.; Puglia, C.
2012-07-01
X-ray spectroscopy studies of potassium intercalated metal-free phthalocyanine multilayers adsorbed on Al(110) have been undertaken. Photoelectron spectroscopy measurements show the presence of several charge states of the molecules upon K intercalation, due to a charge transfer from the alkali. In addition, the comparison of valence band photoemission spectra with the density functional theory calculations of the density of states of the H2Pc- anion indicates a filling of the formerly lowest unoccupied molecular orbital by charge transfer from the alkali. This is further confirmed by x-ray absorption spectroscopy (XAS) studies, which show a decreased density of unoccupied states. XAS measurements in different experimental geometries reveal that the molecules in the pristine film are standing upright on the surface or are only slightly tilted away from the surface normal but upon K intercalation, the molecular orientation is changed in that the tilt angle of the molecules increases.
Interactions of microbicide nanoparticles with a simulated vaginal fluid.
das Neves, José; Rocha, Cristina M R; Gonçalves, Maria Pilar; Carrier, Rebecca L; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno
2012-11-05
The interaction with cervicovaginal mucus presents the potential to impact the performance of drug nanocarriers. These systems must migrate through this biological fluid in order to deliver their drug payload to the underlying mucosal surface. We studied the ability of dapivirine-loaded polycaprolactone (PCL)-based nanoparticles (NPs) to interact with a simulated vaginal fluid (SVF) incorporating mucin. Different surface modifiers were used to produce NPs with either negative (poloxamer 338 NF and sodium lauryl sulfate) or positive (cetyltrimethylammonium bromide) surface charge. Studies were performed using the mucin particle method, rheological measurements, and real-time multiple particle tracking. Results showed that SVF presented rheological properties similar to those of human cervicovaginal mucus. Analysis of NP transport indicated mild interactions with mucin and low adhesive potential. In general, negatively charged NPs underwent subdiffusive transport in SVF, i.e., hindered as compared to their diffusion in water, but faster than for positively charged NPs. These differences were increased when the pH of SVF was changed from 4.2 to 7.0. Diffusivity was 50- and 172-fold lower in SVF at pH 4.2 than in water for negatively charged and positively charged NPs, respectively. At pH 7.0, this decrease was around 20- and 385-fold, respectively. The estimated times required to cross a layer of SVF were equal to or lower than 1.7 h for negatively charged NPs, while for positively charged NPs these values were equal to or higher than 7 h. Overall, our results suggest that negatively charged PCL NPs may be suitable to be used as carriers in order to deliver dapivirine and potentially other antiretroviral drugs to the cervicovaginal mucosal lining. Also, they further reinforce the importance in characterizing the interactions of nanosystems with mucus fluids or surrogates when considering mucosal drug delivery.
Charge retention of soft-landed phosphotungstate Keggin anions on self-assembled monolayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunaratne, K. Don D.; Prabhakaran, Venkateshkumar; Andersen, Amity
Soft landing of mass-selected ions onto surfaces often results in partial loss of charge that may affect the structure and reactivity of deposited species. In this study, Keggin phosphotungstate anions in two selected charge states, PW12O403- (WPOM3-) and PW12O402- (WPOM2-), were soft-landed onto different self-assembled monolayer (SAM) surfaces and examined using in situ infrared reflection absorption spectroscopy (IRRAS) and density functional theory (DFT) calculations. Partial retention of the 3- charge was observed when WPOM3- was soft-landed onto the fluorinated SAM (FSAM), while the charge state distribution was dominated by the 2- charge after both WPOM3- and WPOM2- were deposited ontomore » a hydrophilic alkylthiol SAM terminated with cationic NH3+ functional groups (NH3+SAM). We found that during the course of the soft landing of WPOM3-, the relative abundance of WPOM3- on FSAM decreased while that of WPOM2- increased. We propose that the higher stability of immobilized WPOM2- in comparison with WPOM3- makes it the preferred charge state of WPOM on both the FSAM and NH3+SAM. We also observe weaker binding of WPOM anions to SAMs in comparison with phosphomolybdate ions (MoPOM) reported previously (J. Phys. Chem. C 2014, 118, 27611–27622). The weaker binding of WPOM to SAMs is attributed to the lower reactivity of WPOM reported in the literature. This study demonstrates that both the charge retention and the reactivity of deposited anionic POM clusters on surfaces are determined by the type of addenda metal atoms in the cluster.« less
NASA Astrophysics Data System (ADS)
Faur-Brasquet, Catherine; Reddad, Zacaria; Kadirvelu, Krishna; Le Cloirec, Pierre
2002-08-01
Activated carbon cloths (ACCs), whose efficiency has been demonstrated for microorganics adsorption from water, were here studied in the removal of metal ions from aqueous solution. Two ACCs are investigated, they are characterized in terms of porosity parameters (BET specific surface area, percentage of microporosity) and chemical characteristics (acidic surface groups, acidity constants, point of zero charge). A first part consists in the experimental study of three metal ions removal (Cu 2+, Ni 2+ and Pb 2+) in a batch reactor. Isotherms modeling by Freundlich and Brunauer-Emmett-Teller (BET) equations enables the following adsorption order: Cu 2+>Ni 2+>Pb 2+ to be determined for adsorption capacities on a molar basis. It may be related to adsorbates characteristics in terms of electronegativity and ionic radius. The influence of adsorbent's microporosity is also shown. Adsorption experiments carried out for pH values ranging from 2 to 10 demonstrate: (i) an adsorption occurring below the precipitation pH; (ii) the strong influence of pH, with a decrease of electrostatic repulsion due to the formation of less charged hydrolyzed species coupled with a decrease of activated carbon surface charge as pH increases. The second part focuses on the modeling of adsorption versus the pH experimental data by the diffuse layer model (DLM) using Fiteql software. The model is efficient to describe the system behavior in the pH range considered. Regarding complexation constants, they show the following affinity for ACC: Pb 2+>Cu 2+>Ni 2+. They are related to initial concentrations used for the three metal ions.
Supported Silver Nanoparticle and Near-Interface Solution Dynamics in a Deep Eutectic Solvent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammons, Joshua A.; Ustarroz, Jon; Muselle, Thibault
2016-01-28
Type III deep eutectic solvents (DES) have attracted significant interest as both environmentally friendly and functional solvents that are, in some ways, advantageous to traditional aqueous systems. While these solvents continue to produce remarkable thin films and nanoparticle assemblies, their interactions with metallic surfaces are complex and difficult to manipulate. In this study, the near-surface region (2–600 nm) of a carbon surface is investigated immediately following silver nanoparticle nucleation and growth. This is accomplished, in situ, using a novel grazing transmission small-angle X-ray scattering approach with simultaneous voltammetry and electrochemical impedance spectroscopy. With this physical and electrochemical approach, the timemore » evolution of three distinct surface interaction phenomena is observed: aggregation and coalescence of Ag nanoparticles, multilayer perturbations induced by nonaggregated Ag nanoparticles, and a stepwise transport of dissolved Ag species from the carbon surface. The multilayer perturbations contain charge-separated regions of positively charged choline-ethylene and negatively charged Ag and Cl species. Both aggregation-coalescence and the stepwise decrease in Ag precursor near the surface are observed to be very slow (~2 h) processes, as both ion and particle transport are significantly impeded in a DES as compared to aqueous electrolytes. Finally, altogether, this study shows how the unique chemistry of the DES changes near the surface and in the presence of nanoparticles that adsorb the constituent species.« less
Seo, Hyunwoong; Ichida, Daiki; Hashimoto, Shinji; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu; Nam, Sang-Hun; Boo, Jin-Hyo
2016-05-01
The multiple exciton generation characteristics of quantum dots have been expected to enhance the performance of photochemical solar cells. In previous work, we first introduced Si quantum dot for sensitized solar cells. The Si quantum dots were fabricated by multi-hollow discharge plasma chemical vapor deposition, and were characterized optically and morphologically. The Si quantum dot-sensitized solar cells had poor performance due to significant electron loss by charge recombination. Although the large Si particle size resulted in the exposure of a large TiO2 surface area, there was a limit to ho much the particle size could be decreased due to the reduced absorbance of small particles. Therefore, this work focused on decreasing the internal impedance to improve charge transfer. TiO2 was electronically modified by doping with vanadium, which can improve electron transfer in the TiO2 network, and which is stable in the redox electrolyte. Photogenerated electrons can more easily arrive at the conductive electrode due to the decreased internal impedance. The dark photovoltaic properties confirmed the reduction of charge recombination, and the photon-to-current conversion efficiency reflected the improved electron transfer. Impedance analysis confirmed a decrease in internal impedance and an increased electron lifetime. Consequently, these improvements by vanadium doping enhanced the overall performance of Si quantum dot-sensitized solar cells.
On the nature of the {SO2-4}/{Ag(111) } and {SO2-4}/{Au(111) } surface bonding
NASA Astrophysics Data System (ADS)
Patrito, E. M.; Olivera, P. Paredes; Sellers, Harrell
1997-05-01
The nature of sulfate-Ag(111) and sulfate-Au(111) surface bonding has been investigated at the SCF + MP2 level of theory. Convergence of binding energy with cluster size is investigated and, unlike neutral adsorbates, large clusters are required in order to obtain reliable binding energies. In the most stable adsorption mode, sulfate binds to the surface via three oxygen atoms (C 3v symmetry) with a binding energy of 159.3 kcal/mol on Ag(111) and 143.9 kcal/mol on Au(111). The geometry of adsorbed sulfate was optimized at the SCF level. While the bond length between sulfur and the oxygens coordinated to the surface increases, the sulfur-uncoordinated oxygen bond length decreases. This weakening and strengthening of the bonds, respectively, is consistent with bond order conservation in adsorbates on metal surfaces. Although a charge transfer of 0.4 electrons towards the metal is observed, the adsorbate remains very much sulfate-like. The molecular orbital analysis indicates that there is also some charge back-donation towards unoccupied orbitals of sulfate. This results in an increased electron density around sulfur as revealed in the electron density difference maps. Analysis of the Laplacian of the charge density of free sulfate provides a suitable framework to understand the nature of the different charge transfer processes and allows us to establish some similarities with the CO- and SO 2-metal bondings.
NASA Astrophysics Data System (ADS)
Wu, Ming-Chung; Chen, Ching-Hsiang; Huang, Wei-Kang; Hsiao, Kai-Chi; Lin, Ting-Han; Chan, Shun-Hsiang; Wu, Po-Yeh; Lu, Chun-Fu; Chang, Yin-Hsuan; Lin, Tz-Feng; Hsu, Kai-Hsiang; Hsu, Jen-Fu; Lee, Kun-Mu; Shyue, Jing-Jong; Kordás, Krisztián; Su, Wei-Fang
2017-01-01
Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses. Photodegradation of various organic dyes such as methyl orange, rhodamine 6G and brilliant green is shown to take place with significantly higher rates on our novel catalyst than on pristine TiO2 nanofibers and commercial nanoparticle based photocatalytic materials, which is attributed to surface defects (oxygen vacancy and Ti3+ interstitial defect) on the hydrogen treated surface. We propose three properties/mechanisms responsible for the enhanced photocatalytic activity, which are: (1) improved absorbance allowing for increased exciton generation, (2) highly crystalline anatase TiO2 that promotes fast charge transport rate, and (3) decreased charge recombination caused by the nanoscopic Schottky junctions at the interface of pristine core and hydrogenated shell thus promoting long-life surface charges. The developed H:TiO2 NFs can be helpful for future high performance photocatalysts in environmental applications.
Wu, Ming-Chung; Chen, Ching-Hsiang; Huang, Wei-Kang; Hsiao, Kai-Chi; Lin, Ting-Han; Chan, Shun-Hsiang; Wu, Po-Yeh; Lu, Chun-Fu; Chang, Yin-Hsuan; Lin, Tz-Feng; Hsu, Kai-Hsiang; Hsu, Jen-Fu; Lee, Kun-Mu; Shyue, Jing-Jong; Kordás, Krisztián; Su, Wei-Fang
2017-01-01
Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses. Photodegradation of various organic dyes such as methyl orange, rhodamine 6G and brilliant green is shown to take place with significantly higher rates on our novel catalyst than on pristine TiO2 nanofibers and commercial nanoparticle based photocatalytic materials, which is attributed to surface defects (oxygen vacancy and Ti3+ interstitial defect) on the hydrogen treated surface. We propose three properties/mechanisms responsible for the enhanced photocatalytic activity, which are: (1) improved absorbance allowing for increased exciton generation, (2) highly crystalline anatase TiO2 that promotes fast charge transport rate, and (3) decreased charge recombination caused by the nanoscopic Schottky junctions at the interface of pristine core and hydrogenated shell thus promoting long-life surface charges. The developed H:TiO2 NFs can be helpful for future high performance photocatalysts in environmental applications. PMID:28102314
Anomalous pH-Dependent Nanofluidic Salinity Gradient Power.
Yeh, Li-Hsien; Chen, Fu; Chiou, Yu-Ting; Su, Yen-Shao
2017-12-01
Previous studies on nanofluidic salinity gradient power (NSGP), where energy associated with the salinity gradient can be harvested with ion-selective nanopores, all suggest that nanofluidic devices having higher surface charge density should have higher performance, including osmotic power and conversion efficiency. In this manuscript, this viewpoint is challenged and anomalous counterintuitive pH-dependent NSGP behaviors are reported. For example, with equal pH deviation from its isoelectric point (IEP), the nanopore at pH < IEP is shown to have smaller surface charge density but remarkably higher NSGP performance than that at pH > IEP. Moreover, for sufficiently low pH, the NSGP performance decreases with lowering pH (increasing nanopore charge density). As a result, a maximum osmotic power density as high as 5.85 kW m -2 can be generated along with a conversion efficiency of 26.3% achieved for a single alumina nanopore at pH 3.5 under a 1000-fold concentration ratio. Using the rigorous model with considering the surface equilibrium reactions on the pore wall, it is proved that these counterintuitive surface-charge-dependent NSGP behaviors result from the pH-dependent ion concentration polarization effect, which yields the degradation in effective concentration ratio across the nanopore. These findings provide significant insight for the design of next-generation, high-performance NSGP devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neutralization by a Corona Discharge Ionizer in Nitrogen Atmosphere
NASA Astrophysics Data System (ADS)
Ikeuchi, Toru; Takahashi, Kazunori; Ohkubo, Takahiro; Fujiwara, Tamiya
An electrostatic neutralization of multilayer-loading silicon wafers is demonstrated using a corona discharge ionizer in nitrogen atmosphere, where ac and dc voltages are applied to two needle electrodes for generation of the negative- and positive-charged particles, respectively. We observe a surface potential of the silicon wafer decreases from ±1kV to ±20V within three seconds. Moreover, the density profiles of the charged particles generated by the electrodes are experimentally and theoretically investigated in nitrogen and air atmospheres. Our results show the possibility that the negative-charged particles contributing to the electrostatic neutralization are electrons and negative ions in nitrogen and air atmospheres, respectively.
Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi; ...
2017-10-02
It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi
It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less
Azeez, Fadhel; Al-Hetlani, Entesar; Arafa, Mona; Abdelmonem, Yasser; Nazeer, Ahmed Abdel; Amin, Mohamed O; Madkour, Metwally
2018-05-08
Herein, a simple approach based on tailoring the surface charge of nanoparticles, NPs, during the preparation to boost the electrostatic attraction between NPs and the organic pollutant was investigated. In this study, chargeable titania nanoparticles (TiΟ 2 NPs) were synthesized via a hydrothermal route under different pH conditions (pH = 1.6, 7.0 and 10). The prepared TiΟ 2 NPs were fully characterized via various techniques including; transmission electron microscopy (TEM), X-ray diffraction (XRD), N 2 adsorption/desorption, X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible spectroscopy (UV-Vis) and dynamic light scattering (DLS). The influence of the preparation pH on the particle size, surface area and band gap was investigated and showed pH-dependent behavior. The results revealed that upon increasing the pH value, the particle size decreases and lead to larger surface area with less particles agglomeration. Additionally, the effect of pH on the surface charge was monitored by XPS to determine the amount of hydroxyl groups on the TiO 2 NPs surface. Furthermore, the photocatalytic activity of the prepared TiΟ 2 NPs towards methylene blue (MB) photodegradation was manifested. The variation in the preparation pH affected the point of zero charge (pH PZC ) of TiO 2 NPs, subsequently, different photocatalytic activities based on electrostatic interactions were observed. The optimum efficiency obtained was 97% at a degradation rate of 0.018 min -1 using TiO 2 NPs prepared at pH 10.
Reiner, Maria; Pietschnig, Rudolf; Ostermaier, Clemens
2015-10-21
The influence of surface modifications on the Schottky barrier height for gallium nitride semiconductor devices is frequently underestimated or neglected in investigations thereof. We show that a strong dependency of Schottky barrier heights for nickel/aluminum-gallium nitride (0001) contacts on the surface terminations exists: a linear correlation of increasing barrier height with increasing electronegativity of superficial adatoms is observed. The negatively charged adatoms compete with the present nitrogen over the available gallium (or aluminum) orbital to form an electrically improved surface termination. The resulting modification of the surface dipoles and hence polarization of the surface termination causes observed band bending. Our findings suggest that the greatest Schottky barrier heights are achieved by increasing the concentration of the most polarized fluorine-gallium (-aluminum) bonds at the surface. An increase in barrier height from 0.7 to 1.1 eV after a 15% fluorine termination is obtained with ideality factors of 1.10 ± 0.05. The presence of surface dipoles that are changing the surface energy is proven by the sessile drop method as the electronegativity difference and polarization influences the contact angle. The extracted decrease in the Lifshitz-van-der-Waals component from 48.8 to 40.4 mJ/m(2) with increasing electronegativity and concentration of surface adatoms confirms the presence of increasing surface dipoles: as the polarizability of equally charged anions decreases with increasing electronegativity, the diiodomethane contact angles increase significantly from 14° up to 39° after the 15% fluorine termination. Therefore, a linear correlation between increasing anion electronegativity of the (Al)GaN termination and total surface energy within a 95% confidence interval is obtained. Furthermore, our results reveal a generally strong Lewis basicity of (Al)GaN surfaces explaining the high chemical inertness of the surfaces.
Ion evaporation from the surface of a Taylor cone.
Higuera, F J
2003-07-01
An analysis is carried out of the electric field-induced evaporation of ions from the surface of a polar liquid that is being electrosprayed in a vacuum. The high-field cone-to-jet transition region of the electrospray, where ion evaporation occurs, is studied taking advantage of its small size and neglecting the inertia of the liquid and the space charge around the liquid. Evaporated ions and charged drops coexist in a range of flow rates, which is investigated numerically. The structure of the cone-to-jet transition comprises: a hydrodynamic region where the nearly equipotential surface of the liquid departs from a Taylor cone and becomes a jet; a slender region where the radius of the jet decreases and the electric field increases while the pressure and the viscous stress balance the electric stress at the surface; the ion evaporation region of high, nearly constant field; and a charged, continuously strained jet that will eventually break into drops. Estimates of the ion and drop contributions to the total, conduction-limited current show that the first of these contributions dominates for small flow rates, while most of the mass is still carried by the drops.
Analytical Debye-Huckel model for electrostatic potentials around dissolved DNA.
Wagner, K; Keyes, E; Kephart, T W; Edwards, G
1997-07-01
We present an analytical, Green-function-based model for the electric potential of DNA in solution, treating the surrounding solvent with the Debye-Huckel approximation. The partial charge of each atom is accounted for by modeling DNA as linear distributions of atoms on concentric cylindrical surfaces. The condensed ions of the solvent are treated with the Debye-Huckel approximation. The resultant leading term of the potential is that of a continuous shielded line charge, and the higher order terms account for the helical structure. Within several angstroms of the surface there is sufficient information in the electric potential to distinguish features and symmetries of DNA. Plots of the potential and equipotential surfaces, dominated by the phosphate charges, reflect the structural differences between the A, B, and Z conformations and, to a smaller extent, the difference between base sequences. As the distances from the helices increase, the magnitudes of the potentials decrease. However, the bases and sugars account for a larger fraction of the double helix potential with increasing distance. We have found that when the solvent is treated with the Debye-Huckel approximation, the potential decays more rapidly in every direction from the surface than it did in the concentric dielectric cylinder approximation.
Correlation between charge input and cycle life of MgNi electrode for Ni-MH batteries
NASA Astrophysics Data System (ADS)
Ruggeri, Stéphane; Roué, Lionel
Amorphous MgNi material has been prepared by mechanically alloying magnesium and nickel powders for 10 h. Its cycle life as a negative electrode for nickel-metal hydride (Ni-MH) batteries has been studied with charge inputs varying from 0 to 600 mAh/g. For charge inputs lower than 400 mAh/g, the first cycle discharge capacity is superior to the charge input capacity. This surplus discharge capacity can be associated with the alloy oxidation to Mg(OH) 2 and Ni(OH) 2. For charge inputs higher than 400 mAh/g, the initial discharge capacity becomes inferior to the charge input capacity due to the progressive decrease of the charge efficiency related to the hydrogen evolution side reaction. From the second charge/discharge cycle, no additional discharge capacity appears and no discharge capacity degradation occurs for charge inputs inferior or equal to 233 mAh/g. In contrast, for higher charge input values, an important decay in the discharge capacity appears, which is accentuated with increasing charge input. The thresholds charge input of 233 mAh/g corresponds to an amount of hydrogen absorbed into the alloy of 0.8 wt.% (MgNiH 0.7). For higher absorbed hydrogen amounts, it is assumed that extended electrode pulverization occurs, which breaks the passive surface layer of Mg(OH) 2 formed during the first charge/discharge cycle. This creates unprotected fresh MgNi surfaces and consequently, leads to electrode capacity degradation. The stability of the MgNi electrode for absorbed hydrogen content lower than 0.8 wt.% may be related to its amorphous character, which favors a gradual volume expansion upon hydrogen absorption in contrast to crystalline compounds characterized by an abrupt α-to-β lattice expansion.
NASA Technical Reports Server (NTRS)
Koga, J. K.; Lin, C. S.; Winglee, R. M.
1989-01-01
Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.
Rajaee, Sean S; Theriault, Raminta V; Pevear, Mary E; Smith, Eric L
2016-09-01
The ideal bearing surface for primary total hip arthroplasty (THA) in young patients remains a debate. Data on recent national trends are lacking. The purpose of this study is to provide an analysis on the national epidemiologic trends of bearing surface usage in patients aged ≤30 years undergoing THA from 2009 through 2012. Using the Healthcare Cost and Utilization Project Nationwide Inpatient Sample from 2009 to 2012, 9265 THA discharges (4210 coded by bearing surface) were identified in patients aged ≤30 years. Prevalence of surface type was analyzed along with patient and hospital demographic data. Statistical analysis was performed using SAS (SAS version 9.1; SAS, Inc, Cary, NC). Significance was set at P < .05. Ceramic-on-polyethylene (CoP) bearing surfaces were most commonly used, representing 35.6% of cases, followed by metal-on-polyethylene (MoP; 28.0%), metal-on-metal (MoM; 19.3%), and ceramic-on-ceramic (CoC; 17.0%) bearing surfaces. Hard-on-hard bearing surfaces (MoM and CoC) represented only 36.4% of cases, a significant decrease from previously reported findings (2006-2009) where hard-on-hard bearing surfaces were the majority (62.2%; P < .05). Hard-on-hard bearing surface usage decreased from 2009 to 2012 (MoM: 29.7% to 10.2%; CoC: 20.0% to 14.7%), whereas hard-on-soft bearing surface usage (MoP and CoP) increased. CoP bearing surfaces saw the most significant increase from 25.7% in 2009 to 48.2% in 2012. A cost analysis revealed that CoP discharges were associated with higher hospital charges than other surface types, with an average charge of $66,457 (P < .05). Use of hard-on-hard surfaces has decreased significantly in this population, whereas CoP and MoP surfaces have become increasingly common. Determining the optimal bearing surface for extremely young patients continues to be a challenge for orthopedic surgeons as they weigh the risks and benefits of each. Copyright © 2016 Elsevier Inc. All rights reserved.
Finite-size versus interface-proximity effects in thin-film epitaxial SrTiO3
NASA Astrophysics Data System (ADS)
De Souza, R. A.; Gunkel, F.; Hoffmann-Eifert, S.; Dittmann, R.
2014-06-01
The equilibrium electrical conductivity of epitaxial SrTiO3 (STO) thin films was investigated as a function of temperature, 950≤ T/K ≤1100, and oxygen partial pressure, 10-23≤ pO2/bar ≤1. Compared with single-crystal STO, nanoscale thin-film STO exhibited with decreasing film thickness an increasingly enhanced electronic conductivity under highly reducing conditions, with a corresponding decrease in the activation enthalpy of conduction. This implies substantial modification of STO's point-defect thermodynamics for nanoscale film thicknesses. We argue, however, against such a finite-size effect and for an interface-proximity effect. Indeed, assuming trapping of oxygen vacancies at the STO surface and concomitant depletion of oxygen vacancies—and accumulation of electrons—in an equilibrium surface space-charge layer, we are able to predict quantitatively the conductivity as a function of temperature, oxygen partial pressure, and film thickness. Particularly complex behavior is predicted for ultrathin films that are consumed entirely by space charge.
Colloidal Stability in Asymmetric Electrolytes: Modifications of the Schulze-Hardy Rule.
Trefalt, Gregor; Szilagyi, Istvan; Téllez, Gabriel; Borkovec, Michal
2017-02-21
The Schulze-Hardy rule suggests a strong dependence of the critical coagulation concentration (CCC) on the ionic valence. This rule is addressed theoretically and confronted with recent experimental results. The commonly presented derivation of this rule assumes symmetric electrolytes and highly charged particles. Both assumptions are incorrect. Symmetric electrolytes containing multivalent ions are hardly soluble, and experiments are normally carried out with the well-soluble salts of asymmetric electrolytes containing monovalent and multivalent ions. In this situation, however, the behavior is completely different whether the multivalent ions represent the counterions or co-ions. When these ions represent the counterions, meaning that the multivalent ions have the opposite sign than the charge of the particle, they adsorb strongly to the particles. Thereby, they progressively reduce the magnitude of the surface charge with increasing valence. In fact, this dependence of the charge density on the counterion valence is mainly responsible for the decrease of the CCC with the valence. In the co-ion case, where the multivalent ions have the same sign as the charge of the particle, the multivalent ions are repelled from the particles, and the surfaces remain highly charged. In this case, the inverse Schulze-Hardy rule normally applies, whereby the CCC varies inversely proportional to the co-ion valence.
pH Reversible Encapsulation of Oppositely Charged Colloids Mediated by Polyelectrolytes
2017-01-01
We report the first example of reversible encapsulation of micron-sized particles by oppositely charged submicron smaller colloids. The reversibility of this encapsulation process is regulated by pH-responsive poly(acrylic acid) (PAA) present in solution. The competitive adsorption between the small colloids and the poly(acrylic acid) on the surface of the large colloids plays a key role in the encapsulation behavior of the system. pH offers an experimental knob to tune the electrostatic interactions between the two oppositely charged particle species via regulation of the charge density of the poly(acrylic acid). This results in an increased surface coverage of the large colloids by the smaller colloids when decreasing pH. Furthermore, the poly(acrylic acid) also acts as a steric barrier limiting the strength of the attractive forces between the oppositely charged particle species, thereby enabling detachment of the smaller colloids. Finally, based on the pH tunability of the encapsulation behavior and the ability of the small colloids to detach, reversible encapsulation is achieved by cycling pH in the presence of the PAA polyelectrolytes. The role of polyelectrolytes revealed in this work provides a new and facile strategy to control heteroaggregation behavior between oppositely charged colloids, paving the way to prepare sophisticated hierarchical assemblies. PMID:28419800
Tereshchuk, Polina; Freire, Rafael L H; Ungureanu, Crina G; Seminovski, Yohanna; Kiejna, Adam; Da Silva, Juarez L F
2015-05-28
Despite extensive studies of transition metal (TM) clusters supported on ceria (CeO2), fundamental issues such as the role of the TM atoms in the change in the oxidation state of Ce atoms are still not well understood. In this work, we report a theoretical investigation based on static and ab initio molecular dynamics density functional theory calculations of the interaction of 13-atom TM clusters (TM = Pd, Ag, Pt, Au) with the unreduced CeO2(111) surface represented by a large surface unit cell and employing Hubbard corrections for the strong on-site Coulomb correlation in the Ce f-electrons. We found that the TM13 clusters form pyramidal-like structures on CeO2(111) in the lowest energy configurations with the following stacking sequence, TM/TM4/TM8/CeO2(111), while TM13 adopts two-dimensional structures at high energy structures. TM13 induces a change in the oxidation state of few Ce atoms (3 of 16) located in the topmost Ce layer from Ce(IV) (itinerant Ce f-states) to Ce(III) (localized Ce f-states). There is a charge flow from the TM atoms to the CeO2(111) surface, which can be explained by the electronegativity difference between the TM (Pd, Ag, Pt, Au) and O atoms, however, the charge is not uniformly distributed on the topmost O layer due to the pressure induced by the TM13 clusters on the underlying O ions, which yields a decrease in the ionic charge of the O ions located below the cluster and an increase in the remaining O ions. Due to the charge flow mainly from the TM8-layer to the topmost O-layer, the charge cannot flow from the Ce(IV) atoms to the O atoms with the same magnitude as in the clean CeO2(111) surface. Consequently, the effective cationic charge decreases mainly for the Ce atoms that have a bond with the O atoms not located below the cluster, and hence, those Ce atoms change their oxidation state from IV to III. This increases the size of the Ce(III) compared with the Ce(IV) cations, which builds-in a strain within the topmost Ce layer, and hence, also affecting the location of the Ce(III) cations and the structure of the TM13 clusters.
Smith, N L; Coukouma, A; Dubnik, S; Asher, S A
2017-12-06
We fabricate 2D photonic crystals (2DPC) by spreading a dispersion of charged colloidal particles (diameters = 409, 570, and 915 nm) onto the surface of electrolyte solutions using a needle tip flow method. When the interparticle electrostatic interaction potential is large, particles self-assemble into highly ordered hexagonal close packed (hcp) monolayers. Ordered 2DPC efficiently forward diffract monochromatic light to produce a Debye ring on a screen parallel to the 2DPC. The diameter of the Debye ring is inversely proportional to the 2DPC particle spacing, while the Debye ring brightness and thickness depends on the 2DPC ordering. The Debye ring thickness increases as the 2DPC order decreases. The Debye ring ordering measurements of 2DPC attached to glass slides track measurements of the 2D pair correlation function order parameter calculated from SEM micrographs. The Debye ring method was used to investigate the 2DPC particle spacing, and ordering at the air-solution interface of NaCl solutions, and for 2DPC arrays attached to glass slides. Surprisingly, the 2DPC ordering does not monotonically decrease as the salt concentration increases. This is because of chloride ion adsorption onto the anionic particle surfaces. This adsorption increases the particle surface charge and compensates for the decreased Debye length of the electric double layer when the NaCl concentration is below a critical value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk
2016-08-14
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on themore » adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.« less
NASA Astrophysics Data System (ADS)
Spencer, J.; Gajdos, F.; Blumberger, J.
2016-08-01
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.
Wang, Dengjun; Bradford, Scott A; Harvey, Ronald W; Hao, Xiuzhen; Zhou, Dongmei
2012-08-30
Hydroxyapatite nanoparticle (nHAP) is increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated granular media. Experiments were carried out over a range of ionic strength (I(c), 0-50mM NaCl) conditions in the presence of 10 mg L(-1) humic acid. The transport of ARS-nHAP was found to decrease with increasing suspension I(c) in part, because of enhanced aggregation and chemical heterogeneity. The retention profiles (RPs) of ARS-nHAP exhibited hyperexponential shapes (a decreasing rate of retention with increasing transport distance) for all test conditions, suggesting that some of the attachment was occurring under unfavorable conditions. Surface charge heterogeneities on the collector surfaces and especially within the ARS-nHAP population were contributing causes for the hyperexponential RPs. Consideration of the effect(s) of I(c) in the presence of HA is needed to improve the efficacy of nHAP for scavenging metals and actinides in real soils and groundwater environments. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Dengjun; Bradford, Scott A.; Harvey, Ronald W.; Hao, Xiuzhen; Zhou, Dongmei
2012-01-01
Hydroxyapatite nanoparticle (nHAP) is increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated granular media. Experiments were carried out over a range of ionic strength (Ic, 0–50 mM NaCl) conditions in the presence of 10 mg L−1 humic acid. The transport of ARS-nHAP was found to decrease with increasing suspension Ic in part, because of enhanced aggregation and chemical heterogeneity. The retention profiles (RPs) of ARS-nHAP exhibited hyperexponential shapes (a decreasing rate of retention with increasing transport distance) for all test conditions, suggesting that some of the attachment was occurring under unfavorable conditions. Surface charge heterogeneities on the collector surfaces and especially within the ARS-nHAP population were contributing causes for the hyperexponential RPs. Consideration of the effect(s) of Ic in the presence of HA is needed to improve the efficacy of nHAP for scavenging metals and actinides in real soils and groundwater environments.
Abudalo, R.A.; Ryan, J.N.; Harvey, R.W.; Metge, D.W.; Landkamer, Lee L.
2010-01-01
To assess the effect of organic matter on the transport of Cryptosporidium parvum oocysts in a geochemically heterogeneous saturated porous medium, we measured the breakthrough and collision efficiencies of oocysts as a function of dissolved organic matter concentration in a flow-through column containing ferric oxyhydroxide-coated sand. We characterized the surface properties of the oocysts and ferric oxyhydroxide-coated sand using microelectrophoresis and streaming potential, respectively, and the amount of organic matter adsorbed on the ferric oxyhydroxide-coated sand as a function of the concentration of dissolved organic matter (a fulvic acid isolated from Florida Everglades water). The dissolved organic matter had no significant effect on the zeta potential of the oocysts. Low concentrations of dissolved organic matter were responsible for reversing the charge of the ferric oxyhydroxide-coated sand surface from positive to negative. The charge reversal and accumulation of negative charge on the ferric oxyhydroxide-coated sand led to increases in oocyst breakthrough and decreases in oocyst collision efficiency with increasing dissolved organic matter concentration. The increase in dissolved organic matter concentration from 0 to 20 mg L-1 resulted in a two-fold decrease in the collision efficiency. ?? 2009 Elsevier Ltd.
Aqueous Assembly of Oxide and Fluoride Nanoparticles into 3D Microassemblies.
Cui, Shanying; Guan, Xin N; Ghantous, Eliana; Vajo, John J; Lucas, Matthew; Hsiao, Ming-Siao; Drummy, Lawrence F; Collins, Joshua; Juhl, Abigail; Roper, Christopher S; Gross, Adam F
2018-06-28
We demonstrate rapid [∼mm 3 /(h·L)] organic ligand-free self-assembly of three-dimensional, >50 μm single-domain microassemblies containing up to 10 7 individual aligned nanoparticles through a scalable aqueous process. Organization and alignment of aqueous solution-dispersed nanoparticles are induced by decreasing their pH-dependent surface charge without organic ligands, which could be temperature-sensitive or infrared light absorbing. This process is exhibited by transforming both dispersed iron oxide hydroxide nanorods and lithium yttrium fluoride nanoparticles into high packing density microassemblies. The approach is generalizable to nanomaterials with pH-dependent surface charge (e.g., oxides, fluorides, and sulfides) for applications requiring long-range alignment of nanostructures as well as high packing density.
Lv, Aifeng; Freitag, Matthias; Chepiga, Kathryn M; Schäfer, Andreas H; Glorius, Frank; Chi, Lifeng
2018-04-16
N-Heterocyclic carbenes (NHCs), which react with the surface of Au electrodes, have been successfully applied in pentacene transistors. With the application of NHCs, the charge-carrier mobility of pentacene transistors increased by five times, while the contact resistance at the pentacene-Au interface was reduced by 85 %. Even after annealing the NHC-Au electrodes at 200 °C for 2 h before pentacene deposition, the charge-carrier mobility of the pentacene transistors did not decrease. The distinguished performance makes NHCs as excellent alternatives to thiols as metal modifiers for the application in organic field-effect transistors (OFETs). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionizing radiation fluxes and dose measurements during the Kosmos 1887 satellite flight.
Charvat, J; Spurny, F; Kopecka, B; Votockova, I
1990-01-01
The results of dosimetric experiments performed during the flight of Kosmos 1887 biosatellite are presented. Two kinds of measurements were performed on the external surface of the satellite. First, the fluences and spectra of low energy charged particles were established. It was found that most of the particles registered by means of solid state nuclear track detectors are helium nuclei. Tracks of oxygen nuclei and some heavier charged particles were also observed. Thermoluminescent detectors were used to establish absorbed doses in open space on the satellite's surface and behind thin shielding. It was found that these doses were rather high; nevertheless, their decrease with shielding thickness is very rapid. Dosimetric and other consequences of the results obtained are analyzed and discussed.
Madliger, Michael; Sander, Michael; Schwarzenbach, René P
2010-12-01
Adsorption governs the fate of Cry proteins from genetically modified Bt crops in soils. The effect of ionic strength (I) on the adsorption of Cry1Ab (isoelectric point IEP(Cry1Ab) ≈ 6) to negatively charged quartz (SiO(2)) and positively charged poly-L-lysine (PLL) was investigated at pH 5 to 8, using quartz crystal microbalance with dissipation monitoring and optical waveguide lightmode spectroscopy. Cry1Ab adsorbed via positively and negatively charged surface patches to SiO(2) and PLL, respectively. This patch controlled electrostatic attraction (PCEA) explains the observed increase in Cry1Ab adsorption to sorbents that carried the same net charge as the protein (SiO(2) at pH > IEP(Cry1Ab) and PLL at pH < IEP(Cry1Ab)) with decreasing I. In contrast, the adsorption of two reference proteins, BSA and HEWL, with different adsorption mechanism, were little affected by similar changes of I. Consistent with PCEA, Cry1Ab desorption from SiO(2) at pH > IEP(Cry1Ab) increased with increasing I and pH. Weak Cry1Ab-SiO(2) PCEA above pH 7 resulted in reversible, concentration dependent adsorption. Solution depletion experiments showed that PCEA also governed Cry1Ab adsorption to SiO(2) particles at environmentally relevant concentrations (a few ng mL(-1)). These results imply that models describing Cry1Ab adsorption to charged surfaces in soils need to account for the nonuniform surface charge distribution of the protein.
The determination of Volta-potentials at the metal/solution interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakovlev, V.M.
1985-08-01
This paper discusses the effect of polar dielectric solvents on the Voltapotential component caused by the change in surface potential in sp-metals which are in contact with a solution at the point of zero charge. It is shown that this change depends relatively little on the metal and solvent. A change in potential drop occurs in the metal as a result of phase contact. This change is known to be responsible for the decrease in surface energy of the metal such as is revealed in the effect of enhanced metallic ductility during mechanical working in polar media. The conjugate effectmore » of improved wettability is seen during cathodic polarization of electrodes when the metal's surface potential also should decrease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roh, Ki-Min; Jo, Eun-Hee; Chang, Hankwon
Since the introduction of dye-sensitized solar cells (DSSCs) with low fabrication cost and high power conversion efficiency, extensive studies have been carried out to improve the charge transfer rate and performance of DSSCs. In this paper, we present DSSCs that use surface modified fluorine-doped tin oxide (FTO) substrates with reduced graphene oxide (r-GO) sheets prepared using the Langmuir–Blodgett (LB) technique to decrease the charge recombination at the TiO{sub 2}/FTO interface. R-GO sheets were excellently attached on FTO surface without physical deformations such as wrinkles; effects of the surface coverage of r-GO on the DSSC performance were also investigated. By usingmore » graphene modified FTO substrates, the resistance at the interface of TiO{sub 2}/FTO was reduced and the power conversion efficiency was increased to 8.44%. - Graphical abstract: DSSCs with graphene modified FTO glass were fabricated with the Langmuir Blodgett technique. GO sheets were transferred to FTO at various surface pressures in order to change the surface density of graphene and the highest power conversion efficiency of the DSSC was 8.44%. - Highlights: • By LB technique, r-GO sheets were coated on FTO without physical deformation. • DSSCs were fabricated with, r-GO modified FTO substrates. • With surface modification by r-GO, the interface resistance of DSSC decreased. • Maximum PCE of the DSSC was increased up to 8.44%.« less
Quantification of surface charge density and its effect on boundary slip.
Jing, Dalei; Bhushan, Bharat
2013-06-11
Reduction of fluid drag is important in the micro-/nanofluidic systems. Surface charge and boundary slip can affect the fluid drag, and surface charge is also believed to affect boundary slip. The quantification of surface charge and boundary slip at a solid-liquid interface has been widely studied, but there is a lack of understanding of the effect of surface charge on boundary slip. In this paper, the surface charge density of borosilicate glass and octadecyltrichlorosilane (OTS) surfaces immersed in saline solutions with two ionic concentrations and deionized (DI) water with different pH values and electric field values is quantified by fitting experimental atomic force microscopy (AFM) electrostatic force data using a theoretical model relating the surface charge density and electrostatic force. Results show that pH and electric field can affect the surface charge density of glass and OTS surfaces immersed in saline solutions and DI water. The mechanisms of the effect of pH and electric field on the surface charge density are discussed. The slip length of the OTS surface immersed in saline solutions with two ionic concentrations and DI water with different pH values and electric field values is measured, and their effects on the slip length are analyzed from the point of surface charge. Results show that a larger absolute value of surface charge density leads to a smaller slip length for the OTS surface.
Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium
Gorth, Deborah J; Puckett, Sabrina; Ercan, Batur; Webster, Thomas J; Rahaman, Mohamed; Bal, B Sonny
2012-01-01
A significant need exists for orthopedic implants that can intrinsically resist bacterial colonization. In this study, three biomaterials that are used in spinal implants – titanium (Ti), polyether-ether-ketone (PEEK), and silicon nitride (Si3N4) – were tested to understand their respective susceptibility to bacterial infection with Staphylococcus epidermidis, Staphlococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus. Specifically, the surface chemistry, wettability, and nanostructured topography of respective biomaterials, and the effects on bacterial biofilm formation, colonization, and growth were investigated. Ti and PEEK were received with as-machined surfaces; both materials are hydrophobic, with net negative surface charges. Two surface finishes of Si3N4 were examined: as-fired and polished. In contrast to Ti and PEEK, the surface of Si3N4 is hydrophilic, with a net positive charge. A decreased biofilm formation was found, as well as fewer live bacteria on both the as-fired and polished Si3N4. These differences may reflect differential surface chemistry and surface nanostructure properties between the biomaterials tested. Because protein adsorption on material surfaces affects bacterial adhesion, the adsorption of fibronectin, vitronectin, and laminin on Ti, PEEK, and Si3N4 were also examined. Significantly greater amounts of these proteins adhered to Si3N4 than to Ti or PEEK. The findings of this study suggest that surface properties of biomaterials lead to differential adsorption of physiologic proteins, and that this phenomenon could explain the observed in-vitro differences in bacterial affinity for the respective biomaterials. Intrinsic biomaterial properties as they relate to resistance to bacterial colonization may reflect a novel strategy toward designing future orthopedic implants. PMID:22973102
Ramana, CV; Becker, U; Shutthanandan, V; Julien, CM
2008-01-01
Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia. The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400°C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant increase in size associated with a decrease in density with further annealing. PMID:18534025
Ramana, C V; Becker, U; Shutthanandan, V; Julien, C M
2008-06-05
Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia.The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA).Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400 degrees C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant increase in size associated with a decrease in density with further annealing.
Fukuhara, Mikio; Sugawara, Kazuyuki
2014-01-01
Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC.
2014-01-01
Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC. PMID:24959106
Ji, Deyang; Xu, Xiaomin; Jiang, Longfeng; Amirjalayer, Saeed; Jiang, Lang; Zhen, Yonggang; Zou, Ye; Yao, Yifan; Dong, Huanli; Yu, Junsheng; Fuchs, Harald; Hu, Wenping
2017-02-22
Efficient charge transport in organic semiconductors is essential for construction of high performance optoelectronic devices. Herein, for the first time, we demonstrate that poly(amic acid) (PAA), a facilely deposited and annealing-free dielectric layer, can tailor the growth of organic semiconductor films with large area and high crystallinity toward efficient charge transport and high mobility in their thin film transistors. Pentacene is used as a model system to demonstrate the concept with mobility up to 30.6 cm 2 V -1 s -1 , comparable to its high quality single crystal devices. The structure of PAA has corrugations with OH groups pointing out of the surface, and the presence of an amide bond further allows adjacent polymer strands to interact via hydrogen bonding, leading to a self-rippled surface perpendicular to the corrugation. On the other hand, the strong polar groups (-COOH/-CONH) of PAA could provide repulsive forces between PAA and pentacene, which results in the vertical orientation of pentacene on the dielectric surface. Indeed, in comparison with its imidized counterpart polyimide (PI), PAA dielectric significantly enhances the film crystallinity, drastically increases the domain size, and decreases the interface trap density, giving rise to superior device performance with high mobility. This concept can be extended to more organic semiconducting systems, e.g., 2,6-diphenylanthracene (DPA), tetracene, copper phthalocyanine (CuPc), and copper hexadecafluorophthalocyanine (F 16 CuPc), demonstrating the general applicability. The results show the importance of combining surface nanogrooves with the strong polarity in orienting the molecular arrangement for high crystallinity toward efficient charge transport in organic semiconductors.
Zeta potential control for electrophoresis cells
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1973-01-01
Zeta potential arises from fact that ions tend to be adsorbed on surface of cell walls. This potential interfaces with electric field sensed by migrating particles and degrades resolution of separation. By regulating sign and magnitude of applied potential induced charge can be used to increase or decrease effective wall zeta potential.
Role of ion hydration for the differential capacitance of an electric double layer.
Caetano, Daniel L Z; Bossa, Guilherme V; de Oliveira, Vinicius M; Brown, Matthew A; de Carvalho, Sidney J; May, Sylvio
2016-10-12
The influence of soft, hydration-mediated ion-ion and ion-surface interactions on the differential capacitance of an electric double layer is investigated using Monte Carlo simulations and compared to various mean-field models. We focus on a planar electrode surface at physiological concentration of monovalent ions in a uniform dielectric background. Hydration-mediated interactions are modeled on the basis of Yukawa potentials that add to the Coulomb and excluded volume interactions between ions. We present a mean-field model that includes hydration-mediated anion-anion, anion-cation, and cation-cation interactions of arbitrary strengths. In addition, finite ion sizes are accounted for through excluded volume interactions, described either on the basis of the Carnahan-Starling equation of state or using a lattice gas model. Both our Monte Carlo simulations and mean-field approaches predict a characteristic double-peak (the so-called camel shape) of the differential capacitance; its decrease reflects the packing of the counterions near the electrode surface. The presence of hydration-mediated ion-surface repulsion causes a thin charge-depleted region close to the surface, which is reminiscent of a Stern layer. We analyze the interplay between excluded volume and hydration-mediated interactions on the differential capacitance and demonstrate that for small surface charge density our mean-field model based on the Carnahan-Starling equation is able to capture the Monte Carlo simulation results. In contrast, for large surface charge density the mean-field approach based on the lattice gas model is preferable.
Sorption of perfluoroalkyl substances to two types of minerals.
Hellsing, Maja S; Josefsson, Sarah; Hughes, Arwel V; Ahrens, Lutz
2016-09-01
The sorption of perfluoroalkyl substances (PFASs) was investigated for two model soil mineral surfaces, alumina (Al2O3) and silica (SiO2), on molecular level using neutron scattering. The PFASs were selected (i.e. perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS)) to examine the role of hydrophobic chain length and hydrophilic functional group on their sorption behaviour. All four PFASs were found to sorb to alumina surface (positively charged) forming a hydrated layer consisting of 50% PFASs. The PFAS solubility limit, which decrease with chain length, was found to strongly influence the sorption behaviour. The sorbed PFAS layer could easily be removed by gentle rinsing with water, indicating release upon rainfall in the environment. No sorption was observed for PFOA and PFOS at silica surface (negatively charged), showing electrostatic interaction being the driving force in the sorption process. Copyright © 2016 Elsevier Ltd. All rights reserved.
An equivalent body surface charge model representing three-dimensional bioelectrical activity
NASA Technical Reports Server (NTRS)
He, B.; Chernyak, Y. B.; Cohen, R. J.
1995-01-01
A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.
Hong, John; Hou, Bo; Lim, Jongchul; Pak, Sangyeon; Kim, Byung-Sung; Cho, Yuljae; Lee, Juwon; Lee, Young-Woo; Giraud, Paul; Lee, Sanghyo; Park, Jong Bae; Morris, Stephen M.; Snaith, Henry J.; Kim, Jong Min
2016-01-01
Colloidal quantum dots (CQDs) are extremely promising as photovoltaic materials. In particular, the tunability of their electronic band gap and cost effective synthetic procedures allow for the versatile fabrication of solar energy harvesting cells, resulting in optimal device performance. However, one of the main challenges in developing high performance quantum dot solar cells (QDSCs) is the improvement of the photo-generated charge transport and collection, which is mainly hindered by imperfect surface functionalization, such as the presence of surface electronic trap sites and the initial bulky surface ligands. Therefore, for these reasons, finding effective methods to efficiently decorate the surface of the as-prepared CQDs with new short molecular length chemical structures so as to enhance the performance of QDSCs is highly desirable. Here, we suggest employing hybrid halide ions along with the shortest heterocyclic molecule as a robust passivation structure to eliminate surface trap sites while decreasing the charge trapping dynamics and increasing the charge extraction efficiency in CQD active layers. This hybrid ligand treatment shows a better coordination with Pb atoms within the crystal, resulting in low trap sites and a near perfect removal of the pristine initial bulky ligands, thereby achieving better conductivity and film structure. Compared to halide ion-only treated cells, solar cells fabricated through this hybrid passivation method show an increase in the power conversion efficiency from 5.3% for the halide ion-treated cells to 6.8% for the hybrid-treated solar cells. PMID:29308200
Imaging of blood plasma coagulation at supported lipid membranes.
Faxälv, Lars; Hume, Jasmin; Kasemo, Bengt; Svedhem, Sofia
2011-12-15
The blood coagulation system relies on lipid membrane constituents to act as regulators of the coagulation process upon vascular trauma, and in particular the 2D configuration of the lipid membranes is known to efficiently catalyze enzymatic activity of blood coagulation factors. This work demonstrates a new application of a recently developed methodology to study blood coagulation at lipid membrane interfaces with the use of imaging technology. Lipid membranes with varied net charges were formed on silica supports by systematically using different combinations of lipids where neutral phosphocholine (PC) lipids were mixed with phospholipids having either positively charged ethylphosphocholine (EPC), or negatively charged phosphatidylserine (PS) headgroups. Coagulation imaging demonstrated that negatively charged SiO(2) and membrane surfaces exposing PS (obtained from liposomes containing 30% of PS) had coagulation times which were significantly shorter than those for plain PC membranes and EPC exposing membrane surfaces (obtained from liposomes containing 30% of EPC). Coagulation times decreased non-linearly with increasing negative surface charge for lipid membranes. A threshold value for shorter coagulation times was observed below a PS content of ∼6%. We conclude that the lipid membranes on solid support studied with the imaging setup as presented in this study offers a flexible and non-expensive solution for coagulation studies at biological membranes. It will be interesting to extend the present study towards examining coagulation on more complex lipid-based model systems. Copyright © 2011 Elsevier Inc. All rights reserved.
Interaction of Charged Patchy Protein Models with Like-Charged Polyelectrolyte Brushes.
Yigit, Cemil; Kanduč, Matej; Ballauff, Matthias; Dzubiella, Joachim
2017-01-10
We study the adsorption of charged patchy particle models (CPPMs) on a thin film of a like-charged and dense polyelectrolyte (PE) brush (of 50 monomers per chain) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined one- and two-patched spherical globules, each of the same net charge and (nanometer) size, with mono- and multipole moments comparable to those of small globular proteins. We focus on electrostatic effects on the adsorption far away from the isoelectric point of typical proteins, i.e., where charge regulation plays no role. Despite the same net charge of the brush and globule, we observe large binding affinities up to tens of the thermal energy, k B T, which are enhanced by decreasing salt concentration and increasing charge of the patch(es). Our analysis of the distance-resolved potentials of mean force together with a phenomenological description of all leading interaction contributions shows that the attraction is strongest at the brush surface, driven by multipolar, Born (self-energy), and counterion-release contributions, dominating locally over the monopolar and steric repulsions.
Madliger, Michael; Gasser, Christoph A; Schwarzenbach, René P; Sander, Michael
2011-05-15
Bt crops are genetically modified to be resistant against insect pests by expressing insecticidal Cry proteins. The processes governing the fate and bioavailability of the expressed transgenic Cry proteins in soils are poorly understood. We studied adsorption of Cry1Ab to negatively charged silica (SiO(2)) particles, a major soil constituent and a model for negatively charged mineral surfaces, at pH 5 to 10 and ionic strengths I = 10 mM to 250 mM, both in solution depletion and saturated column transport experiments. Cry1Ab-SiO(2) interactions were dominated by patch-controlled electrostatic attraction (PCEA), as evident from increasing Cry1Ab attraction to SiO(2) with decreasing I at pH at which both Cry1Ab and SiO(2) were net negatively charged. Experimental and modeling evidence is provided that the surface heterogeneity of SiO(2) particles modulated PCEA, leading to a fraction of adsorption sites with slow Cry1Ab desorption kinetics. Desorption rates from these sites increased upon increasing the solution pH. In toxicity bioassays, we demonstrated that Cry1Ab retained insecticidal activity when adsorbed to SiO(2), suggesting high protein conformational stability during adsorption-desorption cycles. Models predicting Cry1A protein adsorption in soils therefore need to account for combined effects of the nonuniform protein surface charge distribution and of sorbent surface heterogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir
2015-06-15
The effect of deposition temperature (T{sub dep}) and subsequent annealing time (t{sub anl}) of atomic layer deposited aluminum oxide (Al{sub 2}O3) films on silicon surface passivation (in terms of surface recombination velocity, SRV) is investigated. The pristine samples (as-deposited) show presence of positive fixed charges, Q{sub F}. The interface defect density (D{sub it}) decreases with increase in T{sub dep} which further decreases with t{sub anl} up to 100s. An effective surface passivation (SRV<8 cm/s) is realized for T{sub dep} ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized bymore » high thermal budget process (t{sub anl} between 10 to 30 min)« less
Charge Transfer and Support Effects in Heterogeneous Catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hervier, Antoine
The kinetic, electronic and spectroscopic properties of two-dimensional oxide-supported catalysts were investigated in order to understand the role of charge transfer in catalysis. Pt/TiO 2 nanodiodes were fabricated and used as catalysts for hydrogen oxidation. During the reaction, the current through the diode, as well as its I-V curve, were monitored, while gas chromatography was used to measure the reaction rate. The current and the turnover rate were found to have the same temperature dependence, indicating that hydrogen oxidation leads to the non-adiabatic excitation of electrons in Pt. A fraction of these electrons have enough energy to ballistically transport throughmore » Pt and overcome the Schottky barrier at the interface with TiO 2. The yield for this phenomenon is on the order of 10 -4 electrons per product molecule formed, similar to what has been observed for CO oxidation and for the adsorption of many different molecules. The same Pt/TiO 2 system was used to compare currents in hydrogen oxidation and deuterium oxidation. The current through the diode under deuterium oxidation was found to be greater than under hydrogen oxidation by a factor of three. Weighted by the difference in turnover frequencies for the two isotopes, this would imply a chemicurrent yield 5 times greater for D 2 compared to H 2, contrary to what is expected given the higher mass of D 2. Reversible changes in the rectification factor of the diode are observed when switching between D 2 and H 2. These changes are a likely cause for the differences in current between the two isotopes. In the nanodiode experiments, surface chemistry leads to charge flow, suggesting the possibility of creating charge flow to tune surface chemistry. This was done first by exposing a Pt/Si diode to visible light while using it as a catalyst for H 2 oxidation. Absorption of the light in the Si, combined with the band bending at the interface, gives rise to a steady-state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO 2 films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO 2, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO 2 films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO 2 as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO 2. With non-stoichiometric TiO 2, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was used to investigate this F-doping effect in reaction conditions. In O 2 alone, and in CO oxidation conditions, the O1s spectrum showed a high binding energy peak that correlated in intensity with the activity of the different films: for stoichiometric films, the peak decreased in intensity with F-doping, while for nonstoichiometric films, the opposite was observed. No such changes were visible in the C1s spectrum, confirming the role of O activation in the reaction. This thesis adds to the body of knowledge on the importance of charge transfer at the metal-oxide interface in shaping the reactivity of heterogeneous catalysts, and provides examples of how this can be the basis for new methods to tune reactivity.« less
Simultaneous sorption of four ionizable pharmaceuticals in different horizons of three soil types.
Kočárek, Martin; Kodešová, Radka; Vondráčková, Lenka; Golovko, Oksana; Fér, Miroslav; Klement, Aleš; Nikodem, Antonín; Jakšík, Ondřej; Grabic, Roman
2016-11-01
Soils may be contaminated by human or veterinary pharmaceuticals. Their behaviour in soil environment is largely controlled by sorption of different compounds in a soil solution onto soil constituents. Here we studied the sorption affinities of 4 pharmaceuticals (atenolol, trimethoprim, carbamazepine and sulfamethoxazole) applied in solute mixtures to soils taken from different horizons of 3 soil types (Greyic Phaeozem on loess, Haplic Luvisol on loess and Haplic Cambisol on gneiss). In the case of the carbamazepine (neutral form) and sulfamethoxazole (partly negatively charged and neutral), sorption affinity of compounds decreased with soil depth, i.e. decreased with soil organic matter content. On the other hand, in the case of atenolol (positively charged) and trimethoprim (partly positively charged and neutral) compound sorption affinity was not depth dependent. Compound sorption affinities in the four-solute systems were compared with those experimentally assessed in topsoils, and were estimated using the pedotransfer rules proposed in our previous study for single-solute systems. While sorption affinities of trimethoprim and carbamazepine in topsoils decreased slightly, sorption affinity of sulfamethoxazole increased. Decreases in sorption of the two compounds could be attributed to their competition between each other and competition with atenolol. Differences between carbamazepine and atenolol behaviour in the one- and four-solute systems could also be explained by the slightly different soil properties in this and our previous study. A great increase of sulfamethoxazole sorption in the Greyic Phaeozem and Haplic Luvisol was observed, which was attributed to elimination of repulsion between negatively charged molecules and particle surfaces due to cation sorption (atenolol and trimethoprim) on soil particles. Thus, our results proved not only an antagonistic but also a synergic affect of differently charged organic molecules on their sorption to soil constituents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J
2015-01-01
High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption. PMID:25559441
Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J
2015-01-01
High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption.
Analytical Debye-Huckel model for electrostatic potentials around dissolved DNA.
Wagner, K; Keyes, E; Kephart, T W; Edwards, G
1997-01-01
We present an analytical, Green-function-based model for the electric potential of DNA in solution, treating the surrounding solvent with the Debye-Huckel approximation. The partial charge of each atom is accounted for by modeling DNA as linear distributions of atoms on concentric cylindrical surfaces. The condensed ions of the solvent are treated with the Debye-Huckel approximation. The resultant leading term of the potential is that of a continuous shielded line charge, and the higher order terms account for the helical structure. Within several angstroms of the surface there is sufficient information in the electric potential to distinguish features and symmetries of DNA. Plots of the potential and equipotential surfaces, dominated by the phosphate charges, reflect the structural differences between the A, B, and Z conformations and, to a smaller extent, the difference between base sequences. As the distances from the helices increase, the magnitudes of the potentials decrease. However, the bases and sugars account for a larger fraction of the double helix potential with increasing distance. We have found that when the solvent is treated with the Debye-Huckel approximation, the potential decays more rapidly in every direction from the surface than it did in the concentric dielectric cylinder approximation. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 7 PMID:9199767
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Guang; Jiang, Deen; Cummings, Peter T
Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulationsmore » reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased ion density per unit area of electrode surface as the OLC becomes smaller.« less
Dochter, Alexandre; Garnier, Tony; Pardieu, Elodie; Chau, Nguyet Trang Thanh; Maerten, Clément; Senger, Bernard; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia
2015-09-22
The development of new surface functionalization methods that are easy to use, versatile, and allow local deposition represents a real scientific challenge. Overcoming this challenge, we present here a one-pot process that consists in self-assembling, by electrochemistry on an electrode, films made of oppositely charged macromolecules. This method relies on a charge-shifting polyanion, dimethylmaleic-modified poly(allylamine) (PAHd), that undergoes hydrolysis at acidic pH, leading to an overall switching of its charge. When a mixture of the two polyanions, PAHd and poly(styrenesulfonate) (PSS), is placed in contact with an electrode, where the pH is decreased locally by electrochemistry, the transformation of PAHd into a polycation (PAH) leads to the continuous self-assembly of a nanometric PAH/PSS film by electrostatic interactions. The pH decrease is obtained by the electrochemical oxidation of hydroquinone, which produces protons locally over nanometric distances. Using a negatively charged enzyme, alkaline phosphatase (AP), instead of PSS, this one-pot process allows the creation of enzymatically active films. Under mild conditions, self-assembled PAH/AP films have an enzymatic activity which is adjustable simply by controlling the self-assembly time. The selective functionalization of microelectrode arrays by PAH/AP was achieved, opening the route toward miniaturized biosensors.
Zhang, Wei; Liu, Na; Shi, Haigang; Liu, Jun; Shi, Lianxin; Zhang, Bo; Wang, Huaiyu; Ji, Junhui; Chu, Paul K.
2015-01-01
Positively-charged surfaces on implants have a similar potential to upregulate osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) as electromagnetic therapy approved for bone regeneration. Generally, their osteogenesis functions are generally considered to stem from the charge-induced adhesion of extracellular matrix (ECM) proteins without exploring the underlying surface charge/cell signaling molecule pathways. Herein, a positively-charged surface with controllable tertiary amines is produced on a polymer implant by plasma surface modification. In addition to inhibiting the TNF-α expression, the positively-charged surface with tertiary amines exhibits excellent cytocompatibility as well as remarkably upregulated osteogenesis-related gene/protein expressions and calcification of the contacted BMSCs. Stimulated by the charged surface, these BMSCs display high iNOS expressions among the three NOS isoforms. Meanwhile, downregulation of the iNOS by L-Can or siRNA inhibit osteogenic differentiation in the BMSCs. These findings suggest that a positively-charged surface with tertiary amines induces osteogenesis of BMSCs via the surface charge/iNOS signaling pathway in addition to elevated ECM protein adhesion. Therefore, creating a positively-charged surface with tertiary amines is a promising approach to promote osseointegration with bone tissues. PMID:25791957
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Mukul M.; Freeman, Benny D.; Van Wagner, Elizabeth M.
2010-08-01
The market for polyamide desalination membranes is expected to continue to grow during the coming decades. Purification of alternative water sources will also be necessary to meet growing water demands. Purification of produced water, a byproduct of oil and gas production, is of interest due to its dual potential to provide water for beneficial use as well as to reduce wastewater disposal costs. However, current polyamide membranes are prone to fouling, which decreases water flux and shortens membrane lifetime. This research explored surface modification using poly(ethylene glycol) diglycidyl ether (PEGDE) to improve the fouling resistance of commercial polyamide membranes. Characterizationmore » of commercial polyamide membrane performance was a necessary first step before undertaking surface modification studies. Membrane performance was found to be sensitive to crossflow testing conditions. Concentration polarization and feed pH strongly influenced NaCl rejection, and the use of continuous feed filtration led to higher water flux and lower NaCl rejection than was observed for similar tests performed using unfiltered feed. Two commercial polyamide membranes, including one reverse osmosis and one nanofiltration membrane, were modified by grafting PEGDE to their surfaces. Two different PEG molecular weights (200 and 1000) and treatment concentrations (1% (w/w) and 15% (w/w)) were studied. Water flux decreased and NaCl rejection increased with PEGDE graft density ({micro}g/cm{sup 2}), although the largest changes were observed for low PEGDE graft densities. Surface properties including hydrophilicity, roughness and charge were minimally affected by surface modification. The fouling resistance of modified and unmodified membranes was compared in crossflow filtration studies using model foulant solutions consisting of either a charged surfactant or an oil in water emulsion containing n-decane and a charged surfactant. Several PEGDE-modified membranes demonstrated improved fouling resistance compared to unmodified membranes of similar initial water flux, possibly due to steric hindrance imparted by the PEG chains. Fouling resistance was higher for membranes modified with higher molecular weight PEG. Fouling was more extensive for feeds containing the cationic surfactant, potentially due to electrostatic attraction with the negatively charged membranes. However, fouling was also observed in the presence of the anionic surfactant, indicating hydrodynamic forces are also responsible for fouling.« less
Hamid, Rossuriati Dol; Swedlund, Peter J; Song, Yantao; Miskelly, Gordon M
2011-11-01
The effect of ionic strength on reactions at aqueous interfaces can provide insights into the nature of the chemistry involved. The adsorption of H(4)SiO(4) on iron oxides at low surface silicate concentration (Γ(Si)) forms monomeric silicate complexes with Fe-O-Si linkages, but as Γ(Si) increases silicate oligomers with Si-O-Si linkages become increasingly prevalent. In this paper, the effect of ionic strength (I) on both Γ(Si) and the extent of silicate oligomerization on the ferrihydrite surface is determined at pH 4, 7, and 10, where the surface is, respectively, positive, nearly neutral, and negatively charged. At pH 4, an increase in ionic strength causes Γ(Si) to decrease at a given H(4)SiO(4) solution concentration, while the proportion of oligomers on the surface at a given Γ(Si) increases. At pH 10, the opposite is observed; Γ(Si) increases as I increases, while the proportion of surface oligomers at a given Γ(Si) decreases. Ionic strength has only a small effect on the surface chemistry of H(4)SiO(4) at pH 7, but at low Γ(Si) this effect is in the direction observed at pH 4 while at high Γ(Si) the effect is in the direction observed at pH 10. The pH where the surface has zero charge decreases from ≈8 to 6 as Γ(Si) increases so that the surface potential (Ψ) is positive at pH 4 for all Γ(Si) and at pH 7 with low Γ(Si). Likewise, Ψ < 0 at pH 10 for all Γ(Si) and at pH 7 with high Γ(Si). The diffuse layer model is used to unravel the complex and subtle interactions between surface potential (Ψ) and chemical parameters that influence interfacial silicate chemistry. This analysis reveals that the decrease in the absolute value of Ψ as I increases causes Γ(Si) to decrease or increase where Ψ is, respectively, positive or negative. Therefore, at a given Γ(Si), the solution H(4)SiO(4) concentration changes with I, and because oligomerization has a higher H(4)SiO(4) stoichiometry coefficient than monomer adsorption, this results in the observed dependence of the extent of silicate oligomerization on I.
Liu, Jie; Peng, Chunwang; Yu, Gaobo; Zhou, Jian
2015-10-06
The surrounding conditions, such as surface charge density and ionic strength, play an important role in enzyme adsorption. The adsorption of a nonmodular type-A feruloyl esterase from Aspergillus niger (AnFaeA) on charged surfaces was investigated by parallel tempering Monte Carlo (PTMC) and all-atom molecular dynamics (AAMD) simulations at different surface charge densities (±0.05 and ±0.16 C·m(-2)) and ionic strengths (0.007 and 0.154 M). The adsorption energy, orientation, and conformational changes were analyzed. Simulation results show that whether AnFaeA can adsorb onto a charged surface is mainly controlled by electrostatic interactions between AnFaeA and the charged surface. The electrostatic interactions between AnFaeA and charged surfaces are weakened when the ionic strength increases. The positively charged surface at low surface charge density and high ionic strength conditions can maximize the utilization of the immobilized AnFaeA. The counterion layer plays a key role in the adsorption of AnFaeA on the negatively charged COOH-SAM. The native conformation of AnFaeA is well preserved under all of these conditions. The results of this work can be used for the controlled immobilization of AnFaeA.
NASA Astrophysics Data System (ADS)
Tang, Enling; Zhao, Liangliang; Han, Yafei; Zhang, Qingming; Wang, Ruizhi; He, Liping; Liu, Shuhua
2018-04-01
Due to the actual situation of spacecraft surface' charging, such as convex corners, weld line, whalebone and a multiple-interfaces with different materials, all these are main factors leading to uneven charging of spacecraft surface, even creating gradient potential. If the charging spacecraft surface is impacted by debris or micrometeor, discharge effect induced by impacting will pose a serious threat to spacecraft in orbit. So realizing spacecraft charging surface with different potential differences and grasping discharge characteristics are a decisive importance at the different experimental conditions in laboratory. To simulate the spacecraft surface with a gradient potential in laboratory, spacecraft surface is split into different parts, which different gaps reserved in 2 adjacent surface is added resistance to create different potential surfaces, and the high potential surface as a impact target in the split targets. Charging circuit system realizing different gradient potential and discharge test system are built by ourselves, combining with two-stage light gas gun loading system, six sets of experiments have been performed about hypervelocity impact on 2A12 aluminum split targets with gradient potentials. In the experiments, gaps of 2A12 aluminum target are the same among different parts in every experiments, the gaps of the split targets are 2mm, 3mm, 5mm, 7mm and 10mm in the experiments, respectively. And the applied voltage is 300V in all the experiments and high-potential 2A12 aluminum plate as the impact target. The experiments have been performed at the impact velocity of about 3km/s and the incidence angles of 60o and 90o (between projectile flying trajectory and target plane), respectively. Voltage probe and current probes are used for acquiring discharge voltages and currents during the process of the impact. The experimental results showed that the discharge induced by impact plasma were generated among high and low-potential target by forming a plasma discharge channel. With the increasing of the gaps among the high and low-potential targets, the peak values of the discharge current decreased first then increased. When the gaps of split targets reached a certain value, the peak values of the discharge current decreased again. Meanwhile, the gaps among high and low-potential targets was 5mm, the peak value of the discharge current was the smallest. With the increasing of the gaps among the split targets, a primary discharge duration also increased. However, when the gaps among the split targets were greater than 5mm, increasing trend of discharge duration would slow down. When the gaps among the split targets were greater than 7mm, there was a secondary discharge phenomenon, and the physical explanations were given about the influence of different gaps among the split targets on the discharge effects created by hypervelocity impact.
NASA Astrophysics Data System (ADS)
Yoshinaga, Takao
2018-04-01
Linear temporal instabilities of a two-dimensional planar liquid sheet in a static electric field are investigated when the relaxation and convection of surface electric charges are considered. Both viscous sheet liquid and inviscid surrounding liquid are placed between two parallel sheath walls, on which an external electric field is imposed. In particular, effects of the electric Peclet number {Pe} (charge relaxation time/convection time) and the electric Euler number Λ (electric pressure/liquid inertial) on the instabilities are emphasized for the symmetric and antisymmetric deformations of the sheet. It is found that the unstable mode is composed of the aerodynamic and electric modes, which are merged with each other for the symmetric deformation and separated for the antisymmetric deformation. For the symmetric deformation, the combined mode is more destabilized with the decrease of {Pe} and the increase of Λ. On the other hand, for the antisymmetric deformation, the electric mode is more destabilized and the aerodynamic mode is left unchanged with the decrease of {Pe}, while the electric mode is more destabilized but the aerodynamic mode is more stabilized with the increase of Λ. It is also found for both symmetric and antisymmetric deformations that the instabilities are most suppressed when {σ }R≃ 1/{ε }P ({σ }R: conductivity ratio of the surrounding to the sheet liquid, {ε }P: permittivity ratio of the sheet to the surrounding liquid), whose trend of the instabilities is more enhanced with the decrease of {Pe} except for vanishingly small {Pe}.
Effect of Surface Hydration on Antifouling Properties of Mixed Charged Polymers.
Leng, Chuan; Huang, Hao; Zhang, Kexin; Hung, Hsiang-Chieh; Xu, Yao; Li, Yaoxin; Jiang, Shaoyi; Chen, Zhan
2018-05-07
Interfacial water structure on a polymer surface in water (or surface hydration) is related to the antifouling activity of the polymer. Zwitterionic polymer materials exhibit excellent antifouling activity due to their strong surface hydration. It was proposed to replace zwitterionic polymers using mixed charged polymers because it is much easier to prepare mixed charged polymer samples with much lower costs. In this study, using sum frequency generation (SFG) vibrational spectroscopy, we investigated interfacial water structures on mixed charged polymer surfaces in water, and how such structures change while exposing to salt solutions and protein solutions. The 1:1 mixed charged polymer exhibits excellent antifouling property while other mixed charged polymers with different ratios of the positive/negative charges do not. It was found that on the 1:1 mixed charged polymer surface, SFG water signal is dominated by the contribution of the strongly hydrogen bonded water molecules, indicating strong hydration of the polymer surface. The responses of the 1:1 mixed charged polymer surface to salt solutions are similar to those of zwitterionic polymers. Interestingly, exposure to high concentrations of salt solutions leads to stronger hydration of the 1:1 mixed charged polymer surface after replacing the salt solution with water. Protein molecules do not substantially perturb the interfacial water structure on the 1:1 mixed charged polymer surface and do not adsorb to the surface, showing that this mixed charged polymer is an excellent antifouling material.
NASA Astrophysics Data System (ADS)
Cheng, He; Liu, Xin; Lu, Xinpei; Liu, Dawei
2016-07-01
The atmospheric pressure non-equilibrium plasma has shown a significant potential as a novel food decontamination technology. In this paper, we report a computational study of the intersection of negative streamer produced by air dielectric barrier discharge with bacteria biofilm on an apple surface. The structure, conductivities, and permittivities of bacteria biofilm have been considered in the Poisson's equations and transportation equations of charge and neutral species to realize self-consistent transportation of plasma between electrode and charging surfaces of apple. We find that the ionization near the biofilm facilitates the propagation of negative streamer when the streamer head is 1 mm from the biofilm. The structure of the biofilm results in the non-uniform distribution of ROS and RNS captured by flux and time fluence of these reactive species. The mean free path of charged species in μm scale permitted the plasma penetrate into the cavity of the biofilm, therefore, although the density of ROS and RNS decrease by 6-7 order of magnitude, the diffusion results in the uniform distribution of ROS and RNS inside the cavity during the pulse off period.
Electric field makes Leidenfrost droplets take a leap.
Wildeman, Sander; Sun, Chao
2016-12-06
Leidenfrost droplets, i.e. droplets whose mobility is ensured by a thin vapor film between the droplet and a hot plate, are exposed to an external electric field. We find that in a strong vertical electric field the droplet can start to bounce progressively higher, defying gravitational attraction. From the droplet's trajectory we infer the temporal evolution of the amount of charge on the droplet. This reveals that the charge starts high and then decreases in steps as the droplet slowly evaporates. After each discharge event the charge is in a fixed proportion to the droplet's surface area. We show that this behavior can be accurately modeled by treating the droplet as a conducting sphere that occasionally makes electrical contact with the hot plate, at intervals dictated by an electro-capillary instability in the vapor film. An analysis of the kinetic and potential energies of the bouncing droplet reveals that, while the overall motion is damped, the droplet occasionally experiences a sudden boost, keeping its energy close to the value for which the free fall trajectory and droplet oscillation are in sync. This helps the droplet to escape from the hot surface when finally the electrical surface forces overtake gravity.
Hoernke, Maria; Schwieger, Christian; Kerth, Andreas; Blume, Alfred
2012-07-01
Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely omithine (Orn), alpha, gamma-diaminobutyric acid (Dab) and alpha, beta-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.
Recent progress on RE2O3-Mo/W emission materials.
Wang, Jinshu; Zhang, Xizhu; Liu, Wei; Cui, Yuntao; Wang, Yiman; Zhou, Meiling
2012-08-01
RE2O3-Mo/W cathodes were prepared by powder metallurgy method. La2O3-Y2O3-Mo cermet cathodes prepared by traditional sintering method and spark plasma sintering (SPS) exhibit different secondary emission properties. The La2O3-Y2O3-Mo cermet cathode prepared by SPS method has smaller grain size and exhibits better secondary emission performance. Monte carlo calculation results indicate that the secondary electron emission way of the cathode correlates with the grain size. Decreasing the grain size can decrease the positive charging effect of RE2O3 and thus is favorable for the escaping of secondary electrons to vacuum. The Scandia doped tungsten matrix dispenser cathode with a sub-micrometer microstructure of matrix with uniformly distributed nanometer-particles of Scandia has good thermionic emission property. Over 100 A/cm2 full space charge limited current density can be obtained at 950Cb. The cathode surface is covered by a Ba-Sc-O active surface layer with nano-particles distributing mainly on growth steps of W grains, leads to the conspicuous emission property of the cathode.
The effect of self-assembled monolayers on graphene conductivity and morphology
NASA Astrophysics Data System (ADS)
Moore, T. L.; Chen, J. H.; Riddick, B.; Williams, E. D.
2009-03-01
Graphene transport properties are limited by charge defects in SiO2, and by large charge density due to strong interaction with SiC. To modify these effects we have treated 300 nm SiO2 with tricholosilanes with different termination groups including pure and fluoro and amino-terminated hydrocarbons for use as substrates for mechanical exfoliation of graphene. XPS measurements verify the presence of the expected termination groups. AFM measurements reveal modified monolayer roughness and correlation lengths; for a fluorinated carbon chain the RMS roughness is 0.266 ± 0.017 nm and the correlation length is 10.2 ± 0.7 nm compared to 0.187 ± 0.011 nm and 19.8 ± 2.5 nm for SiO2. Surface free energies of the monolayers and the SiO2 blank have been computed from static contact angle measurements and all decrease the SiO2 surface free energy; for the fluorinated carbon chain monolayer a decrease of 20 mJ/m^2 from SiO2. We will discuss the ease of exfoliation, and the morphology and conductivity of graphene on these monolayers.
Studies of Surface Charging of Polymers by Indirect Triboelectrification
NASA Astrophysics Data System (ADS)
Mantovani, James; Calle, Carlos; Groop, Ellen; Buehler, Martin
2001-03-01
Charge is known to develop on the surface of an insulating polymer by frictional charging through direct physical contact with another material. We will present results of recent triboelectrification studies of polymer surfaces that utilized an indirect method of frictional charging. This method first involves placing a grounded thin metal foil in stationary contact over the polymer surface. The exposed metal foil is then rubbed with the surface of the material that generates the triboelectric charge. Data is presented for five types of polymers: fiberglass/epoxy, polycarbonate (Lexan), polytetraflouroethylene (Teflon), Rulon J, and polymethylmethacrylate (PMMA, Lucite). The amount of charge that develops on an insulator's surface is measured using the MECA Electrometer, which was developed jointly by NASA Kennedy Space Center and the Jet Propulsion Laboratory to study the electrostatic properties of soil on the surface of Mars. Even though the insulator's surface is electrically shielded from the rubbing material by the grounded metal foil, charge measurements obtained by the MECA Electrometer after the metal foil is separated from the insulator's surface reveal that the insulator's surface does accumulate charge by indirect frictional charging. A possible explanation of the observations will be presented based on a simple contact barrier model.
Reduction of thermal conductivity in phononic nanomesh structures.
Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas; Varghese, Joseph; Heath, James R
2010-10-01
Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications and in the cooling of integrated circuits. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity.
Formation of positively charged gold nanoparticle monolayers on silica sensors.
Oćwieja, Magdalena; Maciejewska-Prończuk, Julia; Adamczyk, Zbigniew; Roman, Maciej
2017-09-01
Formation of positively charged gold nanoparticle monolayers on the Si/SiO 2 was studied under in situ conditions using quartz microbalance (QCM). The gold nanoparticles were synthesized in a chemical reduction method using sodium borohydride as reducing agent. Cysteamine hydrochloride was applied to generate a positive surface charge of nanoparticles. The micrographs obtained from transmission electron microscopy (TEM) revealed that the average size of nanoparticles was equal to 12±3nm. The stability of nanoparticle suspensions under controlled pH and ionic strength was determined by dynamic light scattering (DLS). The electrophoretic mobility measurements showed that the zeta potential of nanoparticles was positive, decreasing with ionic strength and pH from 56mV at pH 4.2 and I=10 -4 M to 22mV at pH 8.3 and I=3×10 -3 M. The surface enhanced Raman spectroscopy (SERS) confirmed chemisorption of cysteamine on nanoparticles and the contribution of amine moieties in the generation of nanoparticle charge. The influence of suspension concentration, ionic strength and flow rate on the kinetics of nanoparticle deposition on the sensors was quantitatively determined. It was confirmed that the deposition for the low coverage regime is governed by the bulk mass transfer that results in a linear increase of the coverage with time. The significant increase in the maximum coverage of gold monolayers with ionic strength was interpreted as due to the decreasing range of the electrostatic interactions among deposited particles. Moreover, the hydratation of formed monolayers, their structure and the stability were determined by the comparison of the QCM results with those obtained by AFM and SEM. The experimental data were adequately interpreted in terms of the extended random sequential adsorption (eRSA) model that considers the bulk and surface transfer steps in a rigorous way. The obtained results are useful for a facile fabrication of gold nanoparticle-based biosensors capable to bind target molecules via available amine moieties. Copyright © 2017 Elsevier Inc. All rights reserved.
Rectification of nanopores at surfaces
Sa, Niya
2011-01-01
At the nanoscale, methods to measure surface charge can prove challenging. Herein we describe a general method to report surface charge through the measurement of ion current rectification of a nanopipette brought in close proximity to a charged substrate. This method is able to discriminate between charged cationic and anionic substrates when the nanopipette is brought within distances from ten to hundreds of nanometers from the surface. Further studies of the pH dependence on the observed rectification support a surface-induced mechanism and demonstrate the ability to further discriminate between cationic and nominally uncharged surfaces. This method could find application in measurement and mapping of heterogeneous surface charges and is particularly attractive for future biological measurements, where noninvasive, noncontact probing of surface charge will prove valuable. PMID:21675734
The electrokinetic behavior of calcium oxalate monohydrate in macromolecular solutions
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.
1988-01-01
Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chrondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for chemical adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopopolysacchrides have greater affinity for the COM surface than the proteins. The amount of proteins that can chemically adsorb appears to be limited to approximately one monomolecular layer. When the surface charge is high, an insufficient number of proteins can chemically adsorb to neutralize or reverse the surface charge. The remaining surface charge is balanced by proteins held near the surface by longer range electrostatic forces only. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.
Hartvig, Rune A; van de Weert, Marco; Østergaard, Jesper; Jorgensen, Lene; Jensen, Henrik
2011-03-15
The understanding of protein adsorption at charged surfaces is important for a wide range of scientific disciplines including surface engineering, separation sciences and pharmaceutical sciences. Compared to chemical entities having a permanent charge, the adsorption of small ampholytes and proteins is more complicated as the pH near a charged surface can be significantly different from the value in bulk solution. In this work, we have developed a phenomenological adsorption model which takes into account the combined role of interfacial ion distribution, interfacial charge regulation of amino acids in the proximity of the surface, electroneutrality, and mass balance. The model is straightforward to apply to a given set of experimental conditions as most model parameters are obtained from bulk properties and therefore easy to estimate or are directly measurable. The model provides a detailed understanding of the importance of surface charge on adsorption and in particular of how changes in surface charge, concentration, and surface area may affect adsorption behavior. The model is successfully used to explain the experimental adsorption behavior of the two model proteins lysozyme and α-lactalbumin. It is demonstrated that it is possible to predict the pH and surface charge dependent adsorption behavior from experimental or theoretical estimates of a preferred orientation of a protein at a solid charged interface.
The Charging Events in Contact-Separation Electrification.
Musa, Umar G; Cezan, S Doruk; Baytekin, Bilge; Baytekin, H Tarik
2018-02-06
Contact electrification (CE)-charging of surfaces that are contacted and separated, is a common phenomenon, however it is not completely understood yet. Recent studies using surface imaging techniques and chemical analysis revealed a 'spatial' bipolar distribution of charges at the nano dimension, which made a paradigm shift in the field. However, such analyses can only provide information about the charges that remained on the surface after the separation, providing limited information about the actual course of the CE event. Tapping common polymers and metal surfaces to each other and detecting the electrical potential produced on these surfaces 'in-situ' in individual events of contact and separation, we show that, charges are generated and transferred between the surfaces in both events; the measured potential is bipolar in contact and unipolar in separation. We show, the 'contact-charges' on the surfaces are indeed the net charges that results after the separation process, and a large contribution to tribocharge harvesting comes, in fact, from the electrostatic induction resulting from the generated CE charges. Our results refine the mechanism of CE providing information for rethinking the conventional ranking of materials' charging abilities, charge harvesting, and charge prevention.
Gerts, David W; Bean, Robert S; Metcalf, Richard R
2013-02-19
A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.
Eckenrode, Heather M; Jen, Shih-Hui; Han, Jun; Yeh, An-Gong; Dai, Hai-Lung
2005-03-17
Nonlinear optical probe, second harmonic generation (SHG), of the adsorption of the dye molecule malachite green (MG), in cationic form at pH < or = 5, on polystyrene microspheres in aqueous solution is used to study the effect of surface charge and composition on molecular adsorption. Three types of polystyrene microspheres with different surface composition are investigated: (1) a sulfate terminated, anionic surface, (2) a neutral surface without any functional group termination, and (3) an amine terminated, cationic surface. The cationic dye was found to adsorb at all three surfaces, regardless of surface charge. The adsorption free energies, DeltaG's, measured for the three surfaces are -12.67, -12.39, and -10.46 kcal/mol, respectively, with the trend as expected from the charge interactions. The adsorption density on the anionic surface, where attractive charge-charge interaction dominates, is determined by the surface negative charge density. The adsorption densities on the neutral and cationic surfaces are on the other hand higher, perhaps as a result of a balance between minimizing repulsive charge interaction and maximizing attractive molecule-substrate and intermolecular interactions. The relative strength of the SH intensity per molecule, in combination of a model calculation, reveals that the C(2) axis of the MG molecule is nearly perpendicular to the surface on the anionic surface and tilts away from the surface norm when the surface is neutral and further away when cationic. Changing the pH of the solution may alter the surface charge and subsequently affect the adsorption configuration and SH intensity.
Grenoble, Zlata; Baldelli, Steven
2013-08-29
The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface further indicate that the surface charge and potential influence the surfactant diffusion and kinetic rates of adsorption at the silica-water interface.
NASA charging analyzer program: A computer tool that can evaluate electrostatic contamination
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.; Mandell, M. J.
1978-01-01
A computer code, the NASA Charging Analyzer Program (NASCAP), was developed to study the surface charging of bodies subjected to geomagnetic substorm conditions. This program will treat the material properties of a surface in a self-consistent manner and calculate the electric fields in space due to the surface charge. Trajectories of charged particles in this electric field can be computed to determine if these particles enhance surface contamination. A preliminary model of the Spacecraft Charging At The High Altitudes (SCATHA) satellite was developed in the NASCAP code and subjected to a geomagnetic substorm environment to investigate the possibility of electrostatic contamination. The results indicate that differential voltages will exist between the spacecraft ground surfaces and the insulator surfaces. The electric fields from this differential charging can enhance the contamination of spacecraft surfaces.
Impact of radon gas concentration in the aerosoles profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukaj, Edmond, E-mail: mondilukaj@yahoo.com; Vila, Floran, E-mail: floranvila@yahoo.com; Mandija, Florian, E-mail: fmandija@yahoo.com
Radon gases relased from building materials and from earth surface are the major responsibility of air ionization. Radon nuclear decay can produce an alpha particle with high energy and Radon progeny. This particle and gamma rays can deliver particles in the air and produce ions with different polarities. This ions, because of induced electric charge, can attach with air aerosols and charge them with their electric charge. The charged aerosols can interact with the other aerosols and ions. Because of this exchange, the air conductivity and the aerosol profiles will change dependently by Radon gas concentration and gamma radiation. Observationsmore » show an increase in concentration of Radon during the night, and a decrease during the daylight time. The Radon gas concentration changed hour by hour can induce aerosol profile to change. This dependency between the aerosol profiles and the Radon gas concentrations is discussed.« less
Salt induced reduction of lysozyme adsorption at charged interfaces
NASA Astrophysics Data System (ADS)
Göhring, Holger; Paulus, Michael; Salmen, Paul; Wirkert, Florian; Kruse, Theresa; Degen, Patrick; Stuhr, Susan; Rehage, Heinz; Tolan, Metin
2015-06-01
A study of lysozyme adsorption below a behenic acid membrane and at the solid-liquid interface between aqueous lysozyme solution and a silicon wafer in the presence of sodium chloride is presented. The salt concentration was varied between 1 mmol L-1 and 1000 mmol L-1. X-ray reflectivity data show a clear dependence of the protein adsorption on the salt concentration. Increasing salt concentrations result in a decreased protein adsorption at the interface until a complete suppression at high concentrations is reached. This effect can be attributed to a reduced attractive electrostatic interaction between the positively charged proteins and negatively charged surfaces by charge screening. The measurements at the solid-liquid interfaces show a transition from unoriented order of lysozyme in the adsorbed film to an oriented order with the short protein axis perpendicular to the solid-liquid interface with rising salt concentration.
Nemec, H; Rochford, J; Taratula, O; Galoppini, E; Kuzel, P; Polívka, T; Yartsev, A; Sundström, V
2010-05-14
Charge transport and recombination in nanostructured semiconductors are poorly understood key processes in dye-sensitized solar cells. We have employed time-resolved spectroscopies in the terahertz and visible spectral regions supplemented with Monte Carlo simulations to obtain unique information on these processes. Our results show that charge transport in the active solar cell material can be very different from that in nonsensitized semiconductors, due to strong electrostatic interaction between injected electrons and dye cations at the surface of the semiconductor nanoparticle. For ZnO, this leads to formation of an electron-cation complex which causes fast charge recombination and dramatically decreases the electron mobility even after the dissociation of the complex. Sensitized TiO2 does not suffer from this problem due to its high permittivity efficiently screening the charges.
Influence of humic acid concentration on nTiO2 attachment to quartz sand and Fe-coated quartz sand
NASA Astrophysics Data System (ADS)
Cheng, T.; Wu, Y.
2016-12-01
The transport of nano-scale or micro-scale titanium dioxide particles (nTiO2) in subsurface environments are strongly influenced by nTiO2 attachment to sediment grains. The objective of this study is to investigate the role of humic acid (HA) in the attachment of nTiO2 to sand at low HA concentrations that are relevant to typical groundwater conditions, so that mechanisms that control nTiO2 immobilization and transport in groundwater can be elucidated. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the transport of negatively-charged colloids, may influence nTiO2 in different manners. Attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand are experimentally measured under a range of HA concentrations at fixed pH. Experimental results show that at pH 5, negatively-charged HA strongly adsorbs to positively-charged nTiO2 and Fe oxyhydroxide, which, at low HA concentrations, partially neutralizes the positive charges on nTiO2 and Fe oxyhydroxide, and therefore decreases the repulsive electrostatic forces between the surfaces, resulting in relatively high nTiO2 attachment. At high HA concentrations, adsorbed HA reverses the surface charges of nTiO2 and Fe oxyhydroxide, and makes nTiO2 and Fe oxyhydroxide strongly negatively charged, resulting in low nTiO2 attachment. At pH 9, HA, nTiO2, and Fe oxyhydroxide are all negatively charged, and HA adsorption is low and does not have a strong impact on the attachment of nTiO2. This study demonstrates that the changes in surface charges of nTiO2 and Fe oxyhydroxide coating caused by HA adsorption could be a key factor that controls the attachment of nTiO2 to sediment grains.
Adhesion of osteoblasts to a nanorough titanium implant surface
Gongadze, Ekaterina; Kabaso, Doron; Bauer, Sebastian; Slivnik, Tomaž; Schmuki, Patrik; van Rienen, Ursula; Iglič, Aleš
2011-01-01
This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts. PMID:21931478
Giaouris, Efstathios; Briandet, Romain; Meyrand, Mickael; Courtin, Pascal; Chapot-Chartier, Marie-Pierre
2008-01-01
An increase of the degree of d-alanylation of teichoic acids in Lactococcus lactis resulted in a significant increase of bacterial resistance toward the cationic antimicrobials nisin and lysozyme, whereas the absence of d-alanylation led to a decreased resistance toward the same compounds. In contrast, the same variations of the d-alanylation degree did not modify bacterial cell surface charge and hydrophobicity. Bacterial adhesion to polystyrene and glass surfaces was not modified either. PMID:18539809
Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli
2012-07-21
We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.
On the physics of both surface overcharging and charge reversal at heterophase interfaces.
Wang, Zhi-Yong; Zhang, Pengli; Ma, Zengwei
2018-02-07
The conventional paradigm for characterizing surface overcharging and charge reversal is based on the so-called Stern layer, in which surface dissociation reaction and specific chemical adsorption are assumed to take place. In this article, a series of Monte Carlo simulations have been applied to obtain useful insights into the underlying physics responsible for these two kinds of anomalous phenomena at the interface of two dielectrics, with special emphasis on the case of divalent counterions that are more relevant in natural and biological environments. At a weakly charged surface, it is found that independent of the type of surface charge distribution and the dielectric response of the solution, the overcharging event is universally driven by the ion size-asymmetric effect. Exceptionally, the overcharging still persists when the surface is highly charged but is only restricted to the case of discrete surface charge in a relatively low dielectric medium. As compared to the adsorption onto the homogeneously smeared charge surface that has the same average affinity for counterions, on the other hand, charge reversal under the action of a dielectric response can be substantially enhanced in the discrete surface charge representation due to strong association of counterions with interfacial groups, and the degree of enhancement depends in a nontrivial way on the reduction of the medium dielectric constant and the steric effects of finite ion size. Rather interestingly, the charge reversal is of high relevance to the overcharging of interfaces because the overwhelming interfacial association forces the coions closer to the surface due to their smaller size than the counterions. Upon the addition of a monovalent salt to the solution, the interfacial association with divalent counterions makes surface overcharging and charge reversal widely unaffected, in contrast to the prevailing notion that screening of surface charge of a homogeneous nature is determined by the competitive effects between size-exclusion effects and energetic contributions. Overall, the present work highlights that the complex interplay between the electrostatic and steric interactions should be coupled to the realistic character of surface charge to establish a faithful description of the overcharging and charge reversal at heterophase interfaces.
Computer Simulation Study of Graphene Oxide Supercapacitors: Charge Screening Mechanism.
Park, Sang-Won; DeYoung, Andrew D; Dhumal, Nilesh R; Shim, Youngseon; Kim, Hyung J; Jung, YounJoon
2016-04-07
Graphene oxide supercapacitors in the parallel plate configuration are studied via molecular dynamics (MD) simulations. The full range of electrode oxidation from 0 to 100% is examined by oxidizing the graphene surface with hydroxyl groups. Two different electrolytes, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI(+)BF4(-)) as an ionic liquid and its 1.3 M solution in acetonitrile as an organic electrolyte, are considered. While the area-specific capacitance tends to decrease with increasing electrode oxidation for both electrolytes, its details show interesting differences between the organic electrolyte and ionic liquid, including the extent of decrease. For detailed insight into these differences, the screening mechanisms of electrode charges by electrolytes and their variations with electrode oxidation are analyzed with special attention paid to the aspects shared by and the contrasts between the organic electrolyte and ionic liquid.
Electrochemical and XPS study of LiFePO4 cathode nanocomposite with PPy/PEG conductive network
NASA Astrophysics Data System (ADS)
Fedorková, A.; Oriňáková, R.; Oriňák, A.; Kupková, M.; Wiemhöfer, H.-D.; Audinot, J. N.; Guillot, J.
2012-08-01
High performance PPy/PEG-LiFePO4 nanocomposites as cathode materials were synthesized by solvothermal method and simple chemical oxidative polymerization of pyrrole (Py) monomer on the surface of LiFePO4 particles. The samples were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectrometry (XPS) and charge-discharge tests. PPyPEG hybrid layers decrease particle to particle contact resistance while the impedance measurements confirmed that the coating of PPy-PEG significantly decreases the charge transfer resistance of the electrode material. The initial discharge capacities of this sample at C/5 and 1C are 150 and 128 mAh/g, respectively. The results show that PPy/PEGLiFePO4 composites are more effective than bare LiFePO4 as cathode material.
Electrostatic Control of Bioactivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberger, Joshua E.; Berns, Eric J.; Bitton, Ronit
2012-03-15
The power of independence: When exhibited on the surface of self-assembling peptide-amphiphile nanofibers, the hydrophobic laminin-derived IKVAV epitope induced nanofiber bundling through interdigitation with neighboring fibers and thus decreased the bioactivity of the resulting materials. The inclusion of charged amino acids in the peptide amphiphiles disrupted the tendency to bundle and led to significantly enhanced neurite outgrowth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisal, Martin; Department of Physics, Faculty of Science, J. E. Purkinje University, 400 96 Usti n. Lab.; Izak, Pavel
Molecular dynamics simulations of n-hexane adsorbed onto the interface of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([bmim][Tf{sub 2}N]) are performed at three n-hexane surface densities, ranged from 0.7 to 2.3 {mu}mol/m{sup 2} at 300 K. For [bmim][Tf{sub 2}N] room-temperature ionic liquid, we use a non-polarizable all-atom force field with the partial atomic charges based on ab initio calculations for the isolated ion pair. The net charges of the ions are {+-}0.89e, which mimics the anion to cation charge transfer and polarization effects. The OPLS-AA force field is employed for modeling of n-hexane. The surface tension is computed using the mechanical route and itsmore » value decreases with increase of the n-hexane surface density. The [bmim][Tf{sub 2}N]/n-hexane interface is analyzed using the intrinsic method, and the structural and dynamic properties of the interfacial, sub-interfacial, and central layers are computed. We determine the surface roughness, global and intrinsic density profiles, and orientation ordering of the molecules to describe the structure of the interface. We further compute the survival probability, normal and lateral self-diffusion coefficients, and re-orientation correlation functions to elucidate the effects of n-hexane on dynamics of the cations and anions in the layers.« less
Lísal, Martin; Izák, Pavel
2013-07-07
Molecular dynamics simulations of n-hexane adsorbed onto the interface of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([bmim][Tf2N]) are performed at three n-hexane surface densities, ranged from 0.7 to 2.3 μmol/m(2) at 300 K. For [bmim][Tf2N] room-temperature ionic liquid, we use a non-polarizable all-atom force field with the partial atomic charges based on ab initio calculations for the isolated ion pair. The net charges of the ions are ±0.89e, which mimics the anion to cation charge transfer and polarization effects. The OPLS-AA force field is employed for modeling of n-hexane. The surface tension is computed using the mechanical route and its value decreases with increase of the n-hexane surface density. The [bmim][Tf2N]/n-hexane interface is analyzed using the intrinsic method, and the structural and dynamic properties of the interfacial, sub-interfacial, and central layers are computed. We determine the surface roughness, global and intrinsic density profiles, and orientation ordering of the molecules to describe the structure of the interface. We further compute the survival probability, normal and lateral self-diffusion coefficients, and re-orientation correlation functions to elucidate the effects of n-hexane on dynamics of the cations and anions in the layers.
Nanopipette delivery: influence of surface charge.
Shi, Wenqing; Sa, Niya; Thakar, Rahul; Baker, Lane A
2015-07-21
In this report, transport through a nanopipette is studied and the interplay between current rectification and ion delivery for small pipettes is examined. First, surface charge dependence of concentration polarization effects in a quartz nanopipette was investigated. Electrical characterization was performed through current-potential (I-V) measurements. In addition, fluorescein (an anionic fluorescent probe) was utilized to optically map ion enrichment and ion depletion in the nanopipette tip. Bare nanopipettes and polyethylenimine (PEI)-modified nanopipettes were examined. Results confirm that concentration polarization is a surface charge dependent phenomenon and delivery can be controlled through modification of surface charge. The relationship between concentration polarization effects and voltage-driven delivery of charged electroactive species was investigated with a carbon ring/nanopore electrode fabricated from pyrolyzed parylene C (PPC). Factors such as surface charge polarity of the nanopipette, electrolyte pH, and electrolyte concentration were investigated. Results indicate that with modification of surface charge, additional control over delivery of charged species can be achieved.
Wang, Qi; Puntambekar, Ajinkya; Chakrapani, Vidhya
2017-09-14
Species from ambient atmosphere such as water and oxygen are known to affect electronic and optical properties of GaN, but the underlying mechanism is not clearly known. In this work, we show through careful measurement of electrical resistivity and photoluminescence intensity under various adsorbates that the presence of oxygen or water vapor alone is not sufficient to induce electron transfer to these species. Rather, the presence of both water and oxygen is necessary to induce electron transfer from GaN that leads to the formation of an electron depletion region on the surface. Exposure to acidic gases decreases n-type conductivity due to increased electron transfer from GaN, while basic gases increase n-type conductivity and PL intensity due to reduced charge transfer from GaN. These changes in the electrical and optical properties, as explained using a new electrochemical framework based on the phenomenon of surface transfer doping, suggest that gases interact with the semiconductor surface through electrochemical reactions occurring in an adsorbed water layer present on the surface.
Polarization-induced surface charges in hydroxyapatite ceramics
NASA Astrophysics Data System (ADS)
Horiuchi, N.; Nakaguki, S.; Wada, N.; Nozaki, K.; Nakamura, M.; Nagai, A.; Katayama, K.; Yamashita, K.
2014-07-01
Calcium hydroxyapatite (HAp; Ca10(PO4)6(OH)2) is a well-known biomaterial that is the main inorganic component of bones and teeth. Control over the surface charge on HAp would be a key advance in the development of the material for tissue engineering. We demonstrate here that surface charge can be induced by an electrical poling process using the Kelvin method. Positive and negative charges were induced on the HAp surface in response to the applied electric field in the poling process. The surface charging is attributed to dipole polarization that is homogeneously distributed in HAp. Additionally, the surface charging is considered to originate from the organization of OH- ions into a polar phase in the structure.
Wang, Zhiliang; Zong, Xu; Gao, Yuying; Han, Jingfeng; Xu, Zhiqiang; Li, Zheng; Ding, Chunmei; Wang, Shengyang; Li, Can
2017-09-13
Photoelectrochemical water splitting provides an attractive way to store solar energy in molecular hydrogen as a kind of sustainable fuel. To achieve high solar conversion efficiency, the most stringent criteria are effective charge separation and injection in electrodes. Herein, efficient photoelectrochemical water oxidation is realized by optimizing charge separation and surface charge transfer of GaN:ZnO photoanode. The charge separation can be greatly improved through modified moisture-assisted nitridation and HCl acid treatment, by which the interfaces in GaN:ZnO solid solution particles are optimized and recombination centers existing at the interfaces are depressed in GaN:ZnO photoanode. Moreover, a multimetal phosphide of NiCoFeP was employed as water oxidation cocatalyst to improve the charge injection at the photoanode/electrolyte interface. Consequently, it significantly decreases the overpotential and brings the photocurrent to a benchmark of 3.9 mA cm -2 at 1.23 V vs RHE and a solar conversion efficiency over 1% was obtained.
Surface states and annihilation characteristics of positrons trapped at the oxidized Cu(100) surface
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Weiss, A. H.
2013-06-01
In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Oxidation of the Cu(100) surface has been studied by performing an ab-initio investigation of the stability and electronic structure of the Cu(100) missing row reconstructed surface at various on-surface and subsurface oxygen coverages ranging from 0.5 to 1.5 monolayers using density functional theory (DFT). All studied structures have been found to be energetically more favorable as compared to structures formed by purely on-surface oxygen adsorption. The observed decrease in the positron work function when oxygen atoms occupy on-surface and subsurface sites has been attributed to a significant charge redistribution within the first two layers, buckling effects within each layer and an interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of the surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). The results presented provide an explanation for the changes observed in the probability of annihilation of surface trapped positrons with Cu 3p core-level electrons as a function of annealing temperature.
NASA Astrophysics Data System (ADS)
Liao, Baochen; Stangl, Rolf; Mueller, Thomas; Lin, Fen; Bhatia, Charanjit S.; Hoex, Bram
2013-01-01
The effect of light soaking of crystalline silicon wafer lifetime samples surface passivated by thermal atomic layer deposited (ALD) Al2O3 is investigated in this paper. Contrary to other passivation materials used in solar cell applications (i.e., SiO2, SiNx), using thermal ALD Al2O3, an increase in effective carrier lifetime after light soaking under standard testing conditions is observed for both p-type (˜45%) and n-type (˜60%) FZ c-Si lifetime samples. After light soaking and storing the samples in a dark and dry environment, the effective lifetime decreases again and practically returns to the value before light soaking. The rate of lifetime decrease after light soaking is significantly slower than the rate of lifetime increase by light soaking. To investigate the underlying mechanism, corona charge experiments are carried out on p-type c-Si samples before and after light soaking. The results indicate that the negative fixed charge density Qf present in the Al2O3 films increases due to the light soaking, which results in an improved field-effect passivation. Numerical calculations also confirm that the improved field-effect passivation is the main contributor for the increased effective lifetime after light soaking. To further understand the light soaking phenomenon, a kinetic model—a charge trapping/de-trapping model—is proposed to explain the time dependent behavior of the lifetime increase/decrease observed under/after light soaking. The trap model fits the experimental results very well. The observed light enhanced passivation for ALD Al2O3 passivated c-Si is of technological relevance, because solar cell devices operate under illumination, thus an increase in solar cell efficiency due to light soaking can be expected.
Method for Estimating the Charge Density Distribution on a Dielectric Surface.
Nakashima, Takuya; Suhara, Hiroyuki; Murata, Hidekazu; Shimoyama, Hiroshi
2017-06-01
High-quality color output from digital photocopiers and laser printers is in strong demand, motivating attempts to achieve fine dot reproducibility and stability. The resolution of a digital photocopier depends on the charge density distribution on the organic photoconductor surface; however, directly measuring the charge density distribution is impossible. In this study, we propose a new electron optical instrument that can rapidly measure the electrostatic latent image on an organic photoconductor surface, which is a dielectric surface, as well as a novel method to quantitatively estimate the charge density distribution on a dielectric surface by combining experimental data obtained from the apparatus via a computer simulation. In the computer simulation, an improved three-dimensional boundary charge density method (BCM) is used for electric field analysis in the vicinity of the dielectric material with a charge density distribution. This method enables us to estimate the profile and quantity of the charge density distribution on a dielectric surface with a resolution of the order of microns. Furthermore, the surface potential on the dielectric surface can be immediately calculated using the obtained charge density. This method enables the relation between the charge pattern on the organic photoconductor surface and toner particle behavior to be studied; an understanding regarding the same may lead to the development of a new generation of higher resolution photocopiers.
Lunar Surface Charging during Solar Energetic Particle Events
NASA Astrophysics Data System (ADS)
Halekas, Jasper S.; Delory, G. T.; Mewaldt, R. A.; Lin, R. P.; Fillingim, M. O.; Brain, D. A.; Lee, C. O.; Stubbs, T. J.; Farrell, W. M.; Hudson, M. K.
2006-09-01
The surface of the Moon, not protected by any substantial atmosphere, is directly exposed to the impact of both solar UV and solar wind plasma and energetic particles. This creates a complex lunar electrostatic environment, with the surface typically charging slightly positive in sunlight, and negative in shadow. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging leads to dust electrification and transport, posing a potentially significant hazard for exploration. The most significant charging effects should occur when the Moon is exposed to high-temperature plasmas like those encountered in the terrestrial plasmasheet or in solar storms. We now present evidence for kilovolt-scale negative charging of the shadowed lunar surface during solar energetic particle (SEP) events, utilizing data from the Lunar Prospector Electron Reflectometer (LP ER). We find that SEP events are associated with the most extreme lunar surface charging observed during the LP mission - rivaled only by previously reported charging during traversals of the terrestrial plasmasheet. The largest charging event observed by LP is a 4 kV negative surface potential (as compared to typical values of V) during a SEP event in May 1998. We characterize lunar surface charging during several SEP events, and compare to energetic particle measurements from ACE, Wind, and SOHO in order to determine the relationship between SEP events and extreme lunar surface charging. Space weather events are already considered by NASA to be a significant hazard to lunar exploration, due to high-energy ionizing radiation. Our observations demonstrate that plasma interactions with the lunar surface during SEP events, causing extreme surface charging and potentially significant dust electrification and transport, represent an additional hazard associated with space weather.
Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates
NASA Technical Reports Server (NTRS)
Walton, Otis R.; Johnson, Scott M.
2010-01-01
The charge-spot technique for modeling the static electric forces acting between charged fine particles entails treating electric charges on individual particles as small sets of discrete point charges, located near their surfaces. This is in contrast to existing models, which assume a single charge per particle. The charge-spot technique more accurately describes the forces, torques, and moments that act on triboelectrically charged particles, especially image-charge forces acting near conducting surfaces. The discrete element method (DEM) simulation uses a truncation range to limit the number of near-neighbor charge spots via a shifted and truncated potential Coulomb interaction. The model can be readily adapted to account for induced dipoles in uncharged particles (and thus dielectrophoretic forces) by allowing two charge spots of opposite signs to be created in response to an external electric field. To account for virtual overlap during contacts, the model can be set to automatically scale down the effective charge in proportion to the amount of virtual overlap of the charge spots. This can be accomplished by mimicking the behavior of two real overlapping spherical charge clouds, or with other approximate forms. The charge-spot method much more closely resembles real non-uniform surface charge distributions that result from tribocharging than simpler approaches, which just assign a single total charge to a particle. With the charge-spot model, a single particle may have a zero net charge, but still have both positive and negative charge spots, which could produce substantial forces on the particle when it is close to other charges, when it is in an external electric field, or when near a conducting surface. Since the charge-spot model can contain any number of charges per particle, can be used with only one or two charge spots per particle for simulating charging from solar wind bombardment, or with several charge spots for simulating triboelectric charging. Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.
NASA Astrophysics Data System (ADS)
Swint, Amy Lynn
Changes in the in-plane conductance of conductive thin films are observed as a result of chemical adsorption at the surface. Reaction of the indium tin oxide (ITO) surface with Bronsted acids (bases) leads to increases (decreases) in its in-plane conductance as measured by a four-point probe configuration. The conductance varies monotonically with pH suggesting that the degree of surface protonation or hydroxylation controls the surface charge density, which in turn affects the width of the n-type depletion layer, and ultimately the in-plane conductance. Measurements at constant pH with a series of tetraalkylammonium hydroxide species of varying cation size indicate that surface dipoles also affect ITO conductance by modulating the magnitude of the surface polarization. Modulating the double layer with varying aqueous salt solutions also affects ITO conductance, though not to the same degree as strong Bronsted acids and bases. Solvents of varying dielectric constant and proton donating ability (ethanol, dimethylformamide) decrease ITO conductance relative to H2O. In addition, changing solvent gives rise to thermally-derived conductance transients, which result from exothermic solvent mixing. The self-assembly of alkanethiols at the surface increases the conductance of ITO films, most likely through carrier population effects. In all cases examined the combined effects of surface charge, adsorbed dipole layer magnitude and carrier injection are responsible for altering the ITO conductance. Besides being directly applicable to the control of electronic properties, these results also point to the use of four-point probe resistance measurements in condensed phase sensing applications. Ultrasensitive conductance-based gas phase sensing of organothiol adsorption to gold nanowires is accomplished with a limit of detection in the 105 molecule range. Further refinement of the inherently low noise resistance measurement may lead to observation of single adsorption events at the gold surface.
Atomistic and molecular effects in electric double layers at high surface charges
Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali
2015-06-16
Here, the Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities providedmore » by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.« less
High resolution photoemission investigation: The oxidation of W
NASA Astrophysics Data System (ADS)
Morar, J. F.; Himpsel, F. J.; Hughes, G. J.; Jordan, J. L.; McFeely, F. R.; Hollinge, G.
High resolution photoemission measurements of surface oxide layers on tungsten has revealed a set of well resolved core level shifts characteristic of individual metal oxidation states. Measurement and analysis of this type of data can provide specific and quantitative chemical information about surface oxides. The formation of bonds between transition metals and strongly electronegative elements such as oxygen and fluorine results in charge transfer with the effect of shifting the metal core electron binding energies. The magnitude of such shifts depends primarily on two factors; the amount of charge transfer and the screening ability of the metals electrons. The size of core-level shifts tend to increase with additional charge transfer and be decreased by screening. In the case of tungsten the amount of screening should be a function of oxygen content since the oxygen ties up free electrons which are effective at screening. A continuous change in the tungsten core level shifts is observed with increasing oxygen content, i.e., as the screening changes from that characteristic of a metal screened to that characteristic of an insulator unscreened.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, He; Liu, Xin; Lu, Xinpei
The atmospheric pressure non-equilibrium plasma has shown a significant potential as a novel food decontamination technology. In this paper, we report a computational study of the intersection of negative streamer produced by air dielectric barrier discharge with bacteria biofilm on an apple surface. The structure, conductivities, and permittivities of bacteria biofilm have been considered in the Poisson's equations and transportation equations of charge and neutral species to realize self-consistent transportation of plasma between electrode and charging surfaces of apple. We find that the ionization near the biofilm facilitates the propagation of negative streamer when the streamer head is 1 mm frommore » the biofilm. The structure of the biofilm results in the non-uniform distribution of ROS and RNS captured by flux and time fluence of these reactive species. The mean free path of charged species in μm scale permitted the plasma penetrate into the cavity of the biofilm, therefore, although the density of ROS and RNS decrease by 6–7 order of magnitude, the diffusion results in the uniform distribution of ROS and RNS inside the cavity during the pulse off period.« less
Counterion effects in protein nanoparticle electrostatic binding: a theoretical study.
Ghosh, Goutam
2015-04-01
Effects of counterions on the folding conformation of proteins, bound electrostatically on the surface of charge-ligand functionalized nanoparticles, have been investigated based on the protein folding energy calculation. The folding energy of a protein has been taken as a sum of the short range interaction energies, like, the van der Waals attraction and the hydrogen bond energies, and the long range coulomb interaction energy. On electrostatic binding, counterions associated with surface ligands of nanoparticles diffuse into bound proteins through the medium of dispersion. As a result, bound proteins partially unfold, as observed in circular dichroism experiments, which has been realized using the "charge-dipole" and the "charge-induced dipole" interactions of counterions with polar and non-polar residues, respectively. The effect of counterions solvation in the dispersing medium, e.g., water, which causes water molecules to polarize around the counterions, has also been considered. The folding energy of bound proteins has been seen to decrease proportionally with the increasing number of diffusion of counterions and their polarizability. Copyright © 2015 Elsevier B.V. All rights reserved.
Ma, Ming; Li, Feng; Liu, Xiu-hong; Yuan, Zhe-fan; Chen, Fu-jie; Zhuo, Ren-xi
2010-10-01
Amphiphilic triblock copolymers monomethoxyl poly(ethylene glycol) (mPEG)-b-poly(ε-caprolactone) (PCL)-b-poly(aminoethyl methacrylate)s (PAMAs) (mPECAs) were synthesized as gene delivery vectors. They exhibited lower cytotoxicity and higher transfection efficiency in COS-7 cells in presence of serum compared to 25 kDa bPEI. The influence of mPEG and PCL segments in mPECAs was evaluated by comparing with corresponding diblock copolymers. The studies showed the incorporation of the hydrophobic PCL segment in triblock copolymers affected the binding capability to pDNA and surface charges of complexes due to the formation of micelles increasing the local charges. The presence of mPEG segment in gene vector decreased the surface charges of the complexes and increased the stability of the complexes in serum because of the steric hindrance effect. It was also found that the combination of PEG and PCL segments into one macromolecule might lead to synergistic effect for better transfection efficiency in serum.
Coupled factors influencing detachment of nano- and micro-sized particles from primary minima.
Shen, Chongyang; Lazouskaya, Volha; Jin, Yan; Li, Baoguo; Ma, Zhiqiang; Zheng, Wenjuan; Huang, Yuanfang
2012-06-01
This study examined the detachments of nano- and micro-sized colloids from primary minima in the presence of cation exchange by laboratory column experiments. Colloids were initially deposited in columns packed with glass beads at 0.2 M CaCl(2) in the primary minima of Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies. Then, the columns were flushed with NaCl solutions with different ionic strengths (i.e., 0.001, 0.01, 0.1 and 0.2 M). Detachments were observed at all ionic strengths and were particularly significant for the nanoparticle. The detachments increased with increasing electrolyte concentration for the nanoparticle whereas increased from 0.001 M to 0.01 M and decreased with further increasing electrolyte concentration for the micro-sized colloid. The observations were attributed to coupled influence of cation exchange, short-range repulsion, surface roughness, surface charge heterogeneity, and deposition in the secondary minima. The detachments of colloids from primary minima challenge the common belief that colloid interaction in primary minimum is irreversible and resistant to disturbance in solution ionic strength and composition. Although the significance of surface roughness, surface charge heterogeneity, and secondary minima on colloid deposition has been widely recognized, our study implies that they also play important roles in colloid detachment. Whereas colloid detachment is frequently associated with decrease of ionic strength, our results show that increase of ionic strength can also cause detachment due to influence of cation exchange. Copyright © 2012 Elsevier B.V. All rights reserved.
Surface charge mapping with a nanopipette.
McKelvey, Kim; Kinnear, Sophie L; Perry, David; Momotenko, Dmitry; Unwin, Patrick R
2014-10-01
Nanopipettes are emerging as simple but powerful tools for probing chemistry at the nanoscale. In this contribution the use of nanopipettes for simultaneous surface charge mapping and topographical imaging is demonstrated, using a scanning ion conductance microscopy (SICM) format. When a nanopipette is positioned close to a surface in electrolyte solution, the direct ion current (DC), driven by an applied bias between a quasi-reference counter electrode (QRCE) in the nanopipette and a second QRCE in the bulk solution, is sensitive to surface charge. The charge sensitivity arises because the diffuse double layers at the nanopipette and the surface interact, creating a perm-selective region which becomes increasingly significant at low ionic strengths (10 mM 1:1 aqueous electrolyte herein). This leads to a polarity-dependent ion current and surface-induced rectification as the bias is varied. Using distance-modulated SICM, which induces an alternating ion current component (AC) by periodically modulating the distance between the nanopipette and the surface, the effect of surface charge on the DC and AC is explored and rationalized. The impact of surface charge on the AC phase (with respect to the driving sinusoidal signal) is highlighted in particular; this quantity shows a shift that is highly sensitive to interfacial charge and provides the basis for visualizing charge simultaneously with topography. The studies herein highlight the use of nanopipettes for functional imaging with applications from cell biology to materials characterization where understanding surface charge is of key importance. They also provide a framework for the design of SICM experiments, which may be convoluted by topographical and surface charge effects, especially for small nanopipettes.
Yu, Wenzheng; Liu, Teng; Crawshaw, John; Liu, Ting; Graham, Nigel
2018-08-01
The fouling of ultrafiltration (UF) and nanofiltration (NF) membranes during the treatment of surface waters continues to be of concern and the particular role of natural organic matter (NOM) requires further investigation. In this study the effect of pH and surface charge on membrane fouling during the treatment of samples of a representative surface water (Hyde Park recreational lake) were evaluated, together with the impact of pre-ozonation. While biopolymers in the surface water could be removed by the UF membrane, smaller molecular weight (MW) fractions of NOM were poorly removed, confirming the importance of membrane pore size. For NF membranes the removal of smaller MW fractions (800 Da-10 kDa) was less than expected from their pore size; however, nearly all of the hydrophobic, humic-type substances could be removed by the hydrophilic NF membranes for all MW distributions (greater than 90%). The results indicated the importance of the charge and hydrophilic nature of the NOM. Thus, the hydrophilic NF membrane could remove the hydrophobic organic matter, but not the hydrophilic substances. Increasing charge effects (more negative zeta potentials) with increasing solution pH were found to enhance organics removal and reduce fouling (flux decline), most likely through greater membrane surface repulsion. Pre-ozonation of the surface water increased the hydrophilic fraction and anionic charge of NOM and altered their size distributions. This resulted in a decreased fouling (less flux decline) for the UF and smaller pore NF, but a slight increase in fouling for the larger pore NF. The differences in the NF behavior are believed to relate to the relative sizes of ozonated organic fractions and the NF pores; a similar size of ozonated organic fractions and the NF pores causes significant membrane fouling. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
The electronic and optical properties of Cs adsorbed GaAs nanowires via first-principles study
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei
2018-07-01
In this study, we investigate the Cs adsorption mechanism on (110) surface of zinc-blende GaAs nanowire. The adsorption energy, work function, dipole moment, geometric structure, Mulliken charge distribution, charge transfer index, band structures, density of state and optical properties of Cs adsorption structures are calculated utilizing first-principles method based on density function theory. Total-energy calculations show that all the adsorption energies are negative, indicating that Cs adsorption process is exothermic and Cs covered GaAs nanowires are stable. The work function of nanowire surface has an obvious decrease after Cs adsorption. Besides, the ionization of nanowire surface is enhanced as well. More importantly, Cs adsorption contributes to a lower side shift of bands near Fermi level, and the corresponding band gap disappears. Additionally, the absorption peak and energy loss function after Cs adsorption are far higher than those before adsorption, implying better light absorption characteristic of nanowire surface after Cs adsorption. These theoretical calculations can directly guide the Cs activation experiment for negative electron affinity GaAs nanowire, and also lay a foundation for the further study of Cs/O co-adsorption on the nanowire surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Yandong; Zhang, Bingkai; Zheng, Jiaxin
Abstract. Due to the enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, reduced cycling stability and total electrode capacity. In this work, we report a size-dependent excess capacity beyond the theoretical value of 170 mAhg-1 in a special carbon coated LiFePO4 composite cathode material, which delivers capacities of 191.2 and 213.5 mAhg-1 with the mean particle sizes of 83 nm and 42 nm, respectively. Moreover, this LiFePO4 composite also shows excellent cycling stability and high ratemore » performance. Our further experimental tests and ab initio calculations reveal that the excess capacity comes from the charge passivation for which the C-O-Fe bonds would lead to charge redistribution on the surface of LiFePO4 and hence to enhance the bonding interaction between surface O atoms and Li-ions. The surface reconstruction for excess Li-ion storage makes full use of the large specific surface area for the nanocrystallites, which can maintain the fast Li-ion transport and enhance the capacity greatly that the nanocrystallites usually suffers.« less
Gui, Qunfang; Xu, Zhen; Zhang, Haifeng; Cheng, Chuanwei; Zhu, Xufei; Yin, Min; Song, Ye; Lu, Linfeng; Chen, Xiaoyuan; Li, Dongdong
2014-10-08
One-dimensional anodic titanium oxide nanotube (TONT) arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for electrochemical energy conversion and storage devices. However, the prominent surface recombination due to the large amount surface defects hinders the performance improvement. In this work, the surface states of TONTs were passivated by conformal coating of high-quality Al2O3 onto the tubular structures using atomic layer deposition (ALD). The modified TONT films were subsequently employed as anodes for photoelectrochemical (PEC) water splitting. The photocurrent (0.5 V vs Ag/AgCl) recorded under air mass 1.5 global illumination presented 0.8 times enhancement on the electrode with passivation coating. The reduction of surface recombination rate is responsible for the substantially improved performance, which is proposed to have originated from a decreased interface defect density in combination with a field-effect passivation induced by a negative fixed charge in the Al2O3 shells. These results not only provide a physical insight into the passivation effect, but also can be utilized as a guideline to design other energy conversion devices.
High resolution printing of charge
Rogers, John; Park, Jang-Ung
2015-06-16
Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.
Influence of droplet charge on the chemical stability of citral in oil-in-water emulsions.
Choi, Seung Jun; Decker, Eric Andrew; Henson, Lulu; Popplewell, L Michael; McClements, David Julian
2010-08-01
The chemical stability of citral, a flavor component widely used in beverage, food, and fragrance products, in oil-in-water emulsions stabilized by surfactants with different charge characteristics was investigated. Emulsions were prepared using cationic (lauryl alginate, LAE), non-ionic (polyoxyethylene (23) lauryl ether, Brij 35), and anionic (sodium dodecyl sulfate, SDS) surfactants at pH 3.5. The citral concentration decreased over time in all the emulsions, but the rate of decrease depended on surfactant type. After 7 d storage, the citral concentrations remaining in the emulsions were around 60% for LAE- or Brij 35-stabilized emulsions and 10% for SDS-stabilized emulsions. An increase in the local proton (H(+)) concentration around negatively charged droplet surfaces may account for the more rapid citral degradation observed in SDS-stabilized emulsions. A strong metal ion chelator (EDTA), which has previously been shown to be effective at increasing the oxidative stability of labile components, had no effect on citral stability in LAE- or Brij 35-stabilized emulsions, but it slightly decreased the initial rate of citral degradation in SDS-stabilized emulsions. These results suggest the surfactant type used to prepare emulsions should be controlled to improve the chemical stability of citral in emulsion systems.
Toko, Kiyoshi; Hara, Daichi; Tahara, Yusuke; Yasuura, Masato; Ikezaki, Hidekazu
2014-01-01
The bitterness of bitter substances can be measured by the change in the membrane electric potential caused by adsorption (CPA) using a taste sensor (electronic tongue). In this study, we examined the relationship between the CPA value due to an acidic bitter substance and the amount of the bitter substance adsorbed onto lipid/polymer membranes, which contain different lipid contents, used in the taste sensor. We used iso-α-acid which is an acidic bitter substance found in several foods and beverages. The amount of adsorbed iso-α-acid, which was determined by spectroscopy, showed a maximum at the lipid concentration 0.1 wt % of the membrane, and the same phenomenon was observed for the CPA value. At the higher lipid concentration, however, the amount adsorbed decreased and then remained constant, while the CPA value decreased monotonically to zero. This constant adsorption amount was observed when the membrane potential in the reference solution did not change with increasing lipid concentration. The decrease in CPA value in spite of the constant adsorption amount is caused by a decrease in the sensitivity of the membrane as the surface charge density increases. The reason why the peaks appeared in both the CPA value and adsorption amount is based on the contradictory adsorption properties of iso-α-acid. The increasing charged lipid concentration of the membrane causes an increasing electrostatic attractive interaction between iso-α-acid and the membrane, but simultaneously causes a decreasing hydrophobic interaction that results in decreasing adsorption of iso-α-acid, which also has hydrophobic properties, onto the membrane. Estimates of the amount of adsorption suggest that iso-α-acid molecules are adsorbed onto both the surface and interior of the membrane. PMID:25184491
Photoelectric charging of partially sunlit dielectric surfaces in space
NASA Technical Reports Server (NTRS)
De, B. R.; Criswell, D. R.
1977-01-01
Sunlight-shadow effects may substantially alter the charging situation for a dielectric surface. The sunlight-shadow boundary tends to be the site of intense multipole electric fields. Charges on a sunlit dielectric surface have a finite effective mobility. The charge distribution tends to resemble that on a conducting surface. A boundary between a conducting and a dielectric surface may not represent a conductivity discontinuity when this boundary is sunlit; charges may migrate at a nontrivial rate across the boundary. A contracting or expanding sunlit area may experience a supercharging.
Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel
2007-06-21
The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.
Ivanov, Ilia N.; Puretzky, Alexander A.; Zhao, Bin; Geohegan, David B.; Styers-Barnett, David J.; Hu, Hui
2014-07-15
A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.
Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K
2011-09-01
Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids.
Molecular dynamics studies of water deposition on hematite surfaces
NASA Astrophysics Data System (ADS)
Kvamme, Bjørn; Kuznetsova, Tatiana; Haynes, Martin
2012-12-01
The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decrease in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide to the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures which may lead to the formation of hydrate between residual water dissolved in carbon dioxide. The critical question is whether the water at some condition of temperature and pressure will drop out as liquid droplets or as water adsorbed on the surfaces of the pipeline and then subsequently form hydrates heterogeneously. In this work we have used the 6-311G basis set with B3LYP to estimate the charge distribution of different sizes of hematite crystals. The obtained surface charge distribution were kept unchanged while the inner charge distribution where scaled so as to result in an overall neutral crystal. These rust particles were embedded in water and chemical potential for adsorbed water molecules were estimated through thermodynamic integration and compared to similar estimates for same size water cluster. Estimated values of water chemical potentials indicate that it is thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based this sequence of processes.
Fluorination effect of activated carbons on performance of asymmetric capacitive deionization
NASA Astrophysics Data System (ADS)
Jo, Hanjoo; Kim, Kyung Hoon; Jung, Min-Jung; Park, Jae Hyun; Lee, Young-Seak
2017-07-01
Activated carbons (ACs) were fluorinated and fabricated into electrodes to investigate the effect of fluorination on asymmetric capacitive deionization (CDI). Fluorine functional groups were introduced on the AC surfaces via fluorination. The specific capacitance of the fluorinated AC (Fsbnd AC) electrode increased drastically from 261 to 337 F/g compared with the untreated AC (Rsbnd AC) electrode at a scan rate of 5 mV/s, despite a decrease in the specific surface area and total pore volume after fluorination. The desalination behavior of asymmetric CDI cells assembled with an Rsbnd AC electrode as the counter electrode and an Fsbnd AC electrode as the cathode (R || F-) or anode (R || F +) was studied. For R || F-, the salt adsorption capacity and charge efficiency increased from 10.6 mg/g and 0.58-12.4 mg/g and 0.75, respectively, compared with the CDI cell assembled with identical Rsbnd AC electrodes at 1 V. This CDI cell exhibited consistently better salt adsorption capacity and charge efficiency at different applied voltages because Fsbnd AC electrodes have a cation attractive effect originating from the partially negatively charged fluorine functional groups on the AC surface. Therefore, co-ion expulsion in the Fsbnd AC electrode as the cathode is effectively diminished, leading to enhanced CDI performance.
The Electrostatic Environments of Mars and the Moon
NASA Technical Reports Server (NTRS)
Calle, Carlos I.
2011-01-01
The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.
Luo, Long; Holden, Deric A; White, Henry S
2014-03-25
A solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore. A switch from a high-conductivity state to a low-conductivity state occurs over a very narrow voltage window (<2 mV) that depends on the nanopore geometry, electrolyte concentration, and nanopore surface charge density. Finite element simulations based on a simultaneous solution of the Navier-Stokes, Poisson, and Nernst-Planck equations demonstrate that NDR results from a positive feedback mechanism between the ion distributions and electroosmotic flow, yielding a true bistability in fluid flow and electrical current at a critical applied voltage, i.e., the NDR "switching potential". Solution pH and Ca2+ were separately employed as chemical stimuli to investigate the dependence of the NDR on the surface charge density. The NDR switching potential is remarkably sensitive to the surface charge density, and thus to pH and the presence of Ca2+, suggesting possible applications in chemical sensing.
NASA Astrophysics Data System (ADS)
Kumar, Naveen; Zhao, Cunlu; Klaassen, Aram; van den Ende, Dirk; Mugele, Frieder; Siretanu, Igor
2016-02-01
Most solid surfaces, in particular clay minerals and rock surfaces, acquire a surface charge upon exposure to an aqueous environment due to adsorption and/or desorption of ionic species. Macroscopic techniques such as titration and electrokinetic measurements are commonly used to determine the surface charge and ζ -potential of these surfaces. However, because of the macroscopic averaging character these techniques cannot do justice to the role of local heterogeneities on the surfaces. In this work, we use dynamic atomic force microscopy (AFM) to determine the distribution of surface charge on the two (gibbsite-like and silica-like) basal planes of kaolinite nanoparticles immersed in aqueous electrolyte with a lateral resolution of approximately 30 nm. The surface charge density is extracted from force-distance curves using DLVO theory in combination with surface complexation modeling. While the gibbsite-like and the silica-like facet display on average positive and negative surface charge values as expected, our measurements reveal lateral variations of more than a factor of two on seemingly atomically smooth terraces, even if high resolution AFM images clearly reveal the atomic lattice on the surface. These results suggest that simple surface complexation models of clays that attribute a unique surface chemistry and hence homogeneous surface charge densities to basal planes may miss important aspects of real clay surfaces.
Proximity charge sensing for semiconductor detectors
Luke, Paul N; Tindall, Craig S; Amman, Mark
2013-10-08
A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.
Wang, Bin; Ding, Yanping; Zhao, Xiaozheng; Han, Xuexiang; Yang, Na; Zhang, Yinlong; Zhao, Ying; Zhao, Xiao; Taleb, Mohammad; Miao, Qing Robert; Nie, Guangjun
2018-08-01
Nogo-B receptor (NgBR) plays fundamental roles in regulating angiogenesis, vascular development, and the epithelial-mesenchymal transition (EMT) of cancer cells. However, the therapeutic effect of NgBR blockade on tumor vasculature and malignancy is unknown, investigations on which requires an adequate delivery system for small interfering RNA against NgBR (NgBR siRNA). Here a surface charge switchable polymeric nanoparticle that was sensitive to the slightly acidic tumor microenvironment was developed for steady delivery of NgBR siRNA to tumor tissues. The nanoformulation was constructed by conjugating 2, 3-dimethylmaleic anhydride (DMMA) molecules to the surface amines of micelles formed by cationic co-polymer poly(lactic-co-glycolic acid) 2 -poly(ethylenimine) and subsequent absorption of NgBR siRNAs. The nanoparticles remained negatively charged in physiological condition and smartly converted to positive surface charge due to tumor-acidity-activated shedding of DMMA. The charge conversion facilitated cellular uptake of siRNAs and in turn efficiently depleted the expression of NgBR in tumor-bearing tissues. Silencing of NgBR suppressed endothelial cell migration and tubule formation, and reverted the EMT process of breast cancer cells. Delivery of the nanoformulation to mice bearing orthotopic breast carcinoma showed no effect on tumor growth, but led to remarkable decrease of distant metastasis by normalizing tumor vessels and suppressing the EMT of breast cancer cells. This study demonstrated that NgBR is a promising therapeutic target in abnormal tumor vasculature and aggressive cancer cells, and the tumor-responsive nanoparticle with the feature of charge transformation offers great potential for tumor-specific delivery of gene therapeutics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Characterizing the surface charge of synthetic nanomembranes by the streaming potential method
Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo
2010-01-01
The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt concentration on the ionic mobilities and the thickness of the deposited layer of PEG. Theoretical interpretation of the streaming potential data collected from silicon membranes having nanoscale pore sizes, with/without pore wall surface modification with PEG, indicates that finite electric double layer (EDL) effects in the pore-confined electrolyte significantly affect the interpretation of the membrane charge and that surface modification with PEG leads to a reduction in the pore wall surface charge density. The theoretical model is also used to study the relative significance of the following uniquely nanoscale factors affecting the interpretation of streaming potential in moderate to strongly charged pores: altered net charge convection by applied pressure differentials, surface-charge effects on ionic conduction, and electroosmotic convection of charges. PMID:20462592
Electronically shielded solid state charged particle detector
Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.
1996-08-20
An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.
Electronically shielded solid state charged particle detector
Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.
1996-08-20
An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.
Anomalous surface behavior of hydrated guanidinium ions due to ion pairing
NASA Astrophysics Data System (ADS)
Ekholm, Victor; Vazdar, Mario; Mason, Philip E.; Bialik, Erik; Walz, Marie-Madeleine; Öhrwall, Gunnar; Werner, Josephina; Rubensson, Jan-Erik; Jungwirth, Pavel; Björneholm, Olle
2018-04-01
Surface affinity of aqueous guanidinium chloride (GdmCl) is compared to that of aqueous tetrapropylammonium chloride (TPACl) upon addition of sodium chloride (NaCl) or disodium sulfate (Na2SO4). The experimental results have been acquired using the surface sensitive technique X-ray photoelectron spectroscopy on a liquid jet. Molecular dynamics simulations have been used to produce radial distribution functions and surface density plots. The surface affinities of both TPA+ and Gdm+ increase upon adding NaCl to the solution. With the addition of Na2SO4, the surface affinity of TPA+ increases, while that of Gdm+ decreases. From the results of MD simulations it is seen that Gdm+ and SO4 2 - ions form pairs. This finding can be used to explain the decreased surface affinity of Gdm+ when co-dissolved with SO4 2 - ions. Since SO4 2 - ions avoid the surface due to the double charge and strong water interaction, the Gdm+-SO4 2 - ion pair resides deeper in the solutions' bulk than the Gdm+ ions. Since TPA+ does not form ion pairs with SO4 2 -, the TPA+ ions are instead enriched at the surface.
Baker, Nathan A.; McCammon, J. Andrew
2008-01-01
The solvent reaction field potential of an uncharged protein immersed in Simple Point Charge/Extended (SPC/E) explicit solvent was computed over a series of molecular dynamics trajectories, intotal 1560 ns of simulation time. A finite, positive potential of 13 to 24 kbTec−1 (where T = 300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0 Å from the solute surface, on average 0.008 ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit-solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99. PMID:17949217
NASA Astrophysics Data System (ADS)
Cerutti, David S.; Baker, Nathan A.; McCammon, J. Andrew
2007-10-01
The solvent reaction field potential of an uncharged protein immersed in simple point charge/extended explicit solvent was computed over a series of molecular dynamics trajectories, in total 1560ns of simulation time. A finite, positive potential of 13-24 kbTec-1 (where T =300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0Å from the solute surface, on average 0.008ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99.
SEP events and wake region lunar dust charging with grain radii
NASA Astrophysics Data System (ADS)
Chandran, S. B. Rakesh; Rajesh, S. R.; Abraham, A.; Renuka, G.; Venugopal, Chandu
2017-01-01
Our lunar surface is exposed to all kinds of radiations from the Sun, since it lacks a global magnetic field. Like lunar surface, dust particles are also exposed to plasmas and UV radiation and, consequently they carry electrostatic charges. During Solar Energetic Particle events (SEPs) secondary electron emission plays a vital role in charging of lunar dusts. To study the lunar dust charging during SEPs on lunar wake region, we derived an expression for lunar dust potential and analysed how it varies with different electron temperatures and grain radii. Because of high energetic solar fluxes, secondary yield (δ) values reach up to 2.3 for 0.5 μm dust grain. We got maximum yield at an energy of 550 eV which is in well agreement with lunar sample experimental observation (Anderegg et al., 1972). It is observed that yield value increases with electron energy, reaches to a maximum value and then decreases. During SEPs heavier dust grains show larger yield values because of the geometry of the grains. On the wake region, the dust potential reaches up to -497 V for 0.5 μm dust grain. The electric field of these grains could present a significant threat to manned and unmanned missions to the Moon.
Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60.
Barbasz, Anna; Oćwieja, Magdalena; Roman, Maciej
2017-08-01
The toxicity of three types of silver nanoparticles towards histiocytic lymphoma (U-937) and human promyelocytic cells (HL-60) was studied. The nanoparticles were synthesized in a chemical reduction method using sodium borohydride. Trisodium citrate and cysteamine hydrochloride were used to generate a negative and positive nanoparticle surface charge. The evaluation of cell viability, membrane integrity, antioxidant activity and the induction of inflammation were used to evaluate the difference in cellular response to the nanoparticle treatment. The results revealed that the cysteamine-stabilized (positively charged) nanoparticles (SBATE) were the least toxic although they exhibited a similar ion release profile as the unmodified (negatively charged) nanoparticles obtained using sodium borohydride (SBNM). Citrate-stabilized nanoparticles (SBTC) induced superoxide dismutase (SOD) activity in the HL-60 cells and total antioxidant activity in the U-937 cells despite their resistance to oxidative dissolution. The toxicity of SBNM nanoparticles was manifested in the disruption of membrane integrity, decrease in the mitochondrial functions of cells and the induction of inflammation. These findings allowed to conclude that mechanism of silver nanoparticle cytotoxicity is the combination of effects coming from the surface charge of nanoparticles, released silver ions and biological activity of stabilizing agent molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf
2015-05-07
We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to the (equal) mean charges on the two surfaces and the osmotic pressure of monovalent ions residing between them. These effects can be quite significant even with a small degree of surface charge disorder relative to the mean surface charge. The strong coupling, disorder-induced attraction is typically much stronger than the van der Waals interaction between the surfaces, especially within a range of several nanometers for the inter-surface separation, where such effects are predicted to be most pronounced.
Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Amiri, Houshang; Bordonali, Lorenzo; Lascialfari, Alessandro; Wan, Sha; Monopoli, Marco P.; Lynch, Iseult; Laurent, Sophie; Mahmoudi, Morteza
2013-08-01
Magnetic nanoparticles (NPs) are increasingly being considered for use in biomedical applications such as biosensors, imaging contrast agents and drug delivery vehicles. In a biological fluid, proteins associate in a preferential manner with NPs. The small sizes and high curvature angles of NPs influence the types and amounts of proteins present on their surfaces. This differential display of proteins bound to the surface of NPs can influence the tissue distribution, cellular uptake and biological effects of NPs. To date, the effects of adsorption of a protein corona (PC) on the magnetic properties of NPs have not been considered, despite the fact that some of their potential applications require their use in human blood. Here, to investigate the effects of a PC (using fetal bovine serum) on the MRI contrast efficiency of superparamagnetic iron oxide NPs (SPIONs), we have synthesized two series of SPIONs with variation in the thickness and functional groups (i.e. surface charges) of the dextran surface coating. We have observed that different physico-chemical characteristics of the dextran coatings on the SPIONs lead to the formation of PCs of different compositions. 1H relaxometry was used to obtain the longitudinal, r1, and transverse, r2, relaxivities of the SPIONs without and with a PC, as a function of the Larmor frequency. The transverse relaxivity, which determines the efficiency of negative contrast agents (CAs), is very much dependent on the functional group and the surface charge of the SPIONs' coating. The presence of the PC did not alter the relaxivity of plain SPIONs, while it slightly increased the relaxivity of the negatively charged SPIONs and dramatically decreased the relaxivity of the positively charged ones, which was coupled with particle agglomeration in the presence of the proteins. To confirm the effect of the PC on the MRI contrast efficiency, in vitro MRI experiments at ν = 8.5 MHz were performed using a low-field MRI scanner. The MRI contrasts, produced by different samples, were fully in agreement with the relaxometry findings.Magnetic nanoparticles (NPs) are increasingly being considered for use in biomedical applications such as biosensors, imaging contrast agents and drug delivery vehicles. In a biological fluid, proteins associate in a preferential manner with NPs. The small sizes and high curvature angles of NPs influence the types and amounts of proteins present on their surfaces. This differential display of proteins bound to the surface of NPs can influence the tissue distribution, cellular uptake and biological effects of NPs. To date, the effects of adsorption of a protein corona (PC) on the magnetic properties of NPs have not been considered, despite the fact that some of their potential applications require their use in human blood. Here, to investigate the effects of a PC (using fetal bovine serum) on the MRI contrast efficiency of superparamagnetic iron oxide NPs (SPIONs), we have synthesized two series of SPIONs with variation in the thickness and functional groups (i.e. surface charges) of the dextran surface coating. We have observed that different physico-chemical characteristics of the dextran coatings on the SPIONs lead to the formation of PCs of different compositions. 1H relaxometry was used to obtain the longitudinal, r1, and transverse, r2, relaxivities of the SPIONs without and with a PC, as a function of the Larmor frequency. The transverse relaxivity, which determines the efficiency of negative contrast agents (CAs), is very much dependent on the functional group and the surface charge of the SPIONs' coating. The presence of the PC did not alter the relaxivity of plain SPIONs, while it slightly increased the relaxivity of the negatively charged SPIONs and dramatically decreased the relaxivity of the positively charged ones, which was coupled with particle agglomeration in the presence of the proteins. To confirm the effect of the PC on the MRI contrast efficiency, in vitro MRI experiments at ν = 8.5 MHz were performed using a low-field MRI scanner. The MRI contrasts, produced by different samples, were fully in agreement with the relaxometry findings. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00345k
Effect of surface material on electrostatic charging of houseflies (Musca domestica L).
McGonigle, Daniel F; Jackson, Chris W
2002-04-01
Houseflies (Musca domestica L) accumulated electrostatic charges when walking over clean, uncharged dielectric surfaces. The charges elicited on a walking housefly by a range of materials were quantified, allowing a triboelectric series to be determined relative to M domestica. This ranged from surfaces that charged individuals positively, e.g. Correx (corrugated polypropylene) [.1 (+/- 4.2)pC], to those that applied a negative charge, e.g. clear cast acrylic [-14.9 (+/- 2.9)pC]. Maximum positive and negative charges accumulated by individual M domestica were +73 and -27 pC. Replicate measurements on the same fly and surface showed little variation. Variation between individuals was not related to sex and was not consistent between surfaces. Different materials charged M domestica significantly differently and individual flies had significantly different charging properties. Variation in temperature between 21.3 degrees C and 24.7 degrees C and humidity between 24% and 41% RH significantly affected charge accumulated by M domestica on some surfaces, although further experimentation is needed to confirm this. The implications of this work are discussed in relation to insect trap design and pollination biology.
Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge
NASA Astrophysics Data System (ADS)
Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng
2018-04-01
Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm2, the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.
Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.
Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng
2018-04-19
Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.
NASA Astrophysics Data System (ADS)
Barbosa, R. M.; da Silva, C. M. G.; Bella, T. S.; de Araújo, D. R.; Marcato, P. D.; Durán, N.; de Paula, E.
2013-04-01
Dibucaine (DBC) is powerful long-lasting local anesthetic, but it is also considered fairly toxic to the CNS. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have attracted attention as carriers for drug delivery. The aim of this study was to develop and to evaluate the cytotoxic activity of DBC-loaded SLN and NLC against 3T3 fibroblast and HaCat keratinocyte cells. The SLN and NLC had myristyl myristate and Liponate®GC as their lipid matrices, respectively, plus a surfactant. SLN and NLC were characterized in terms in their diameter, size distribution, surface charge and DBC encapsulation efficiency. The particle size of SLN and NLC were around 234.33 and 166.62 nm, respectively. The polydispersity index was kept below 0.2 for both nanomaterials. Negative surface charges were observed for both nanoparticles, which decreased in the presence of the anesthetic. Encapsulation efficiency reached 76% and 90%, respectively, in SLN and NLC. DBC alone was found to be toxic to 3T3 and HaCat cells in culture. However, NLC and SLN loaded DBC decreased its intrinsic cytotoxic effect against 3T3 and HaCat cells. In conclusion, encapsulation of DBC in SLN and NLC decreased the in vitro toxicity of the local anesthetic, indicating the potential of these nanocarriers for clinical applications.
Critical Dipole Length for the Wetting Transition Due to Collective Water-dipoles Interactions
Wang, Chunlei; Zhou, Bo; Tu, Yusong; Duan, Manyi; Xiu, Peng; Li, Jingye; Fang, Haiping
2012-01-01
The wetting behavior of water on the solid surfaces is fundamental to various physical, chemical and biological processes. Conventionally, the surface with charges or charge dipoles is hydrophilic, whereas the non-polar surface is hydrophobic though some exceptions were recently reported. Using molecular dynamics simulations, we show that there is a critical length of the charge dipoles on the solid surface. The solid surface still exhibited hydrophobic behavior when the dipole length was less than the critical value, indicating that the water molecules on the solid surface seemed not “feel” attractive interactions from the charge dipoles on the solid surface. Those unexpected observations result from the collective interactions between the water molecules and charge dipoles on the solid surface, where the steric exclusion effect between water molecules greatly reduces the water-dipole interactions. Remarkably, the steric exclusion effect is also important for surfaces with charge dipole lengths greater than this critical length. PMID:22496954
NASA Astrophysics Data System (ADS)
Luque-Caballero, Germán; Martín-Molina, Alberto; Quesada-Pérez, Manuel
2014-05-01
Both experiments and theory have evidenced that multivalent cations can mediate the interaction between negatively charged polyelectrolytes and like-charged objects, such as anionic lipoplexes (DNA-cation-anionic liposome complexes). In this paper, we use Monte Carlo simulations to study the electrostatic interaction responsible for the trivalent-counterion-mediated adsorption of polyelectrolytes onto a like-charged planar surface. The evaluation of the Helmholtz free energy allows us to characterize both the magnitude and the range of the interaction as a function of the polyelectrolyte charge, surface charge density, [3:1] electrolyte concentration, and cation size. Both polyelectrolyte and surface charge favor the adsorption. It should be stressed, however, that the adsorption will be negligible if the surface charge density does not exceed a threshold value. The effect of the [3:1] electrolyte concentration has also been analyzed. In certain range of concentrations, the counterion-mediated attraction seems to be independent of this parameter, whereas very high concentrations of salt weaken the adsorption. If the trivalent cation diameter is doubled the adsorption moderates due to the excluded volume effects. The analysis of the integrated charge density and ionic distributions suggests that a delicate balance between charge inversion and screening effects governs the polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent cations.
Taheri-Araghi, Sattar; Ha, Bae-Yeun
2005-08-01
We reexamine the problem of charge renormalization and inversion of a highly charged surface of a low dielectric constant immersed in ionic solutions. To be specific, we consider an asymmetrically charged lipid bilayer, in which only one layer is negatively charged. In particular, we study how dielectric discontinuities and charge correlations (among lipid charges and condensed counterions) influence the effective charge of the surface. When counterions are monovalent (e.g., Na+), our mean-field approach implies that dielectric discontinuities can enhance counterion condensation. A simple scaling picture shows how the effects of dielectric discontinuities and surface-charge distributions are intertwined: Dielectric discontinuities diminish condensation if the backbone charge is uniformly smeared out while counterions are localized in space; they can, however, enhance condensation when the backbone charge is discrete. In the presence of asymmetric salts such as CaCl2 , we find that the correlation effect, treated at the Gaussian level, is more pronounced when the surface has a lower dielectric constant, inverting the sign of the charge at a smaller value of Ca2+ concentration.
NASA Astrophysics Data System (ADS)
Terzyk, Artur P.; Ćwiertnia, Magdalena S.; Wiśniewski, Marek; Gauden, Piotr A.; Rychlicki, Gerhard; Szymański, Grzegorz S.
2007-02-01
We present the results of benzene adsorption at the acidic pH level determined on the series of chemically modified activated carbons and at three temperatures. The influence of carbon surface chemical composition on benzene adsorption is discussed. It is shown that the decrease in the pH level from 7 up to 1.5 increases benzene adsorption and the only exception is carbon modified with gaseous ammonia. Basing on the results of current work and those published previously (for phenol, paracetamol, acetanilide and aniline) and using the results of quantum chemistry calculations (DFT, Gaussian 98) we show, that the value of the energy of interaction with unit positive charge is crucial during the analysis of the influence of pH level on adsorption. Obtained results allow to predict the changes in adsorption of aromatics on carbons with the decrease in the pH level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhi -Yong; Wu, Jianzhong
2017-07-11
Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmedmore » with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Lastly, our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.« less
Triboelectric, Corona, and Induction Charging of Insulators as a Function of Pressure
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Mucciolo, Eduardo R.; Calle, Carlos I.
2006-01-01
Theoretical and experimental research has been performed that shows that the surface charge on an insulator after triboelectric charging with another insulator is rapidly dissipated with lowered atmospheric pressure. This pressure discharge is consistent with surface ions being evaporated off the surface once their vapor pressure is attained. In this paper we will report on the results of three different charging techniques (triboelectric, corona, and induction) performed on selected polymers with varying atmospheric pressure. This data will show that ion exchange between the polymer samples is the mechanism responsible for most of the surface charge on the polymer surfaces.
SEPAC data analysis in support of the environmental interaction program
NASA Technical Reports Server (NTRS)
Lin, Chin S.
1990-01-01
Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a two dimensional electrostatic particle code. The ionization effects of spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged space craft produced an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the space craft charging potential measured during the SEPAC experiments from Spacelab 1. A second paper is presented in which a two dimensional electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.
Singh, Kunwar Pal
2016-10-12
The ion current rectification has been obtained as a function of the location of a heterojunction in a bipolar conical nanopore fluidic diode for different parameters to determine the junction location for maximum ion current rectification using numerical simulations. Forward current peaks for a specific location of the junction and reverse current decreases with the junction location due to a change in ion enrichment/depletion in the pore. The optimum location of the heterojunction shifts towards the tip with base/tip diameter and surface charge density, and towards the base with the electrolyte concentration. The optimum location of the heterojunction has been approximated by an equation as a function of pore length, base/tip diameter, surface charge density and electrolyte concentration. The study is useful to design a rectifier with maximum ion current rectification for practical purposes.
Heat Treatment of Tantalum and Niobium Powders Prepared by Magnesium-Thermic Reduction
NASA Astrophysics Data System (ADS)
Orlov, V. M.; Prokhorova, T. Yu.
2017-11-01
Changes in the specific surface area and porous structure of tantalum and niobium powders, which were prepared by magnesium-thermic reduction of Ta2O5, Mg4Ta2O9, and Mg4Nb2O9 oxide compounds and subjected to heat treatments at temperatures of 600-1500°C, have been studied. It is noted that, owing to the mesoporous structure of the magnesium-thermic powders, the decrease in the surface area during heat treatment, first of all, is related to a decrease in the amount of pores less than 10 nm in size. The heat treatment of a reacting mass is shown to allow us to correct the specific surface area of the powder without any increase in the oxygen content in it. Data on the effect of heat treatment conditions on the specific charge of capacitor anodes are reported.
NASA Astrophysics Data System (ADS)
Bazilchuk, Molly; Haug, Halvard; Marstein, Erik Stensrud
2015-04-01
Several important semiconductor devices such as solar cells and photodetectors may be fabricated based on surface inversion layer junctions induced by fixed charge in a dielectric layer. Inversion layer junctions can easily be fabricated by depositing layers with a high density of fixed charge on a semiconducting substrate. Increasing the fixed charge improves such devices; for instance, the efficiency of a solar cell can be substantially increased by reducing the surface recombination velocity, which is a function of the fixed charge density. Methods for increasing the charge density are therefore of interest. In this work, the fixed charge density in silicon nitride layers deposited by plasma enhanced chemical vapor deposition is increased to very high values above 1 × 1013 cm-2 after the application of an external voltage to a gate electrode. The effect of the fixed charge density on the surface recombination velocity was experimentally observed using the combination of capacitance-voltage characterization and photoluminescence imaging, showing a significant reduction in the surface recombination velocity for increasing charge density. The surface recombination velocity vs. charge density data was analyzed using a numerical device model, which indicated the presence of a sub-surface damage region formed during deposition of the layers. Finally, we have demonstrated that the aluminum electrodes used for charge injection may be chemically removed in phosphoric acid without loss of the underlying charge. The injected charge was shown to be stable for a prolonged time period, leading us to propose charge injection in silicon nitride films by application of soaking voltage as a viable method for fabricating inversion layer devices.
NASA Technical Reports Server (NTRS)
Van Alstine, J. M.; Trust, T. J.; Brooks, D. E.
1986-01-01
Two-polymer aqueous-phase systems in which partitioning of biological matter between the phases occurs according to surface properties such as hydrophobicity, charge, and lipid composition are used to compare the surface properties of strains of the fish pathogen Aeromonas salmonicida. The differential ability of strains to produce a surface protein array crucial to their virulence, the A layer, and to produce smooth lipopolysaccharide is found to be important in the partitioning behavior of Aeromonas salmonicida. The presence of the A layer is shown to decrease the surface hydrophilicity of the pathogen, and to increase specifically its surface affinity for fatty acid esters of polyethylene glycol. The method has application to the analysis of surface properties crucial to bacterial virulence, and to the selection of strains and mutants with specific surface characteristics.
Zielke, L.; Barchasz, C.; Waluś, S.; Alloin, F.; Leprêtre, J.-C.; Spettl, A.; Schmidt, V.; Hilger, A.; Manke, I.; Banhart, J.; Zengerle, R.; Thiele, S.
2015-01-01
Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance. PMID:26043280
NASA Astrophysics Data System (ADS)
Zielke, L.; Barchasz, C.; Waluś, S.; Alloin, F.; Leprêtre, J.-C.; Spettl, A.; Schmidt, V.; Hilger, A.; Manke, I.; Banhart, J.; Zengerle, R.; Thiele, S.
2015-06-01
Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance.
Electric Double-Layer Interaction between Dissimilar Charge-Conserved Conducting Plates.
Chan, Derek Y C
2015-09-15
Small metallic particles used in forming nanostructured to impart novel optical, catalytic, or tribo-rheological can be modeled as conducting particles with equipotential surfaces that carry a net surface charge. The value of the surface potential will vary with the separation between interacting particles, and in the absence of charge-transfer or electrochemical reactions across the particle surface, the total charge of each particle must also remain constant. These two physical conditions require the electrostatic boundary condition for metallic nanoparticles to satisfy an equipotential whole-of-particle charge conservation constraint that has not been studied previously. This constraint gives rise to a global charge conserved constant potential boundary condition that results in multibody effects in the electric double-layer interaction that are either absent or are very small in the familiar constant potential or constant charge or surface electrochemical equilibrium condition.
Bernstein, Roy; Belfer, Sofia; Freger, Viatcheslav
2011-07-15
Concentration polarization-enhanced radical graft polymerization, a facile surface modification technique, was examined as an approach to reduce bacterial deposition onto RO membranes and thus contribute to mitigation of biofouling. For this purpose an RO membrane ESPA-1 was surface-grafted with a zwitterionic and negatively and positively charged monomers. The low monomer concentrations and low degrees of grafting employed in modifications moderately reduced flux (by 20-40%) and did not affect salt rejection, yet produced substantial changes in surface chemistry, charge and hydrophilicity. The propensity to bacterial attachment of original and modified membranes was assessed using bacterial deposition tests carried out in a parallel plate flow setup using a fluorescent strain of Pseudomonas fluorescens. Compared to unmodified ESPA-1 the deposition (mass transfer) coefficient was significantly increased for modification with the positively charged monomer. On the other hand, a substantial reduction in bacterial deposition rates was observed for membranes modified with zwitterionic monomer and, still more, with very hydrophilic negatively charged monomers. This trend is well explained by the effects of surface charge (as measured by ζ-potential) and hydrophilicity (contact angle). It also well correlated with force distance measurements by AFM using surrogate spherical probes with a negative surface charge mimicking the bacterial surface. The positively charged surface showed a strong hysteresis with a large adhesion force, which was weaker for unmodified ESPA-1 and still weaker for zwitterionic surface, while negatively charged surface showed a long-range repulsion and negligible hysteresis. These results demonstrate the potential of using the proposed surface- modification approach for varying surface characteristics, charge and hydrophilicity, and thus minimizing bacterial deposition and potentially reducing propensity biofouling.
Lu, Tingli; Wang, Zhao; Ma, Yufan; Zhang, Yang; Chen, Tao
2012-01-01
Liposomes containing pH-sensitive polymers are promising candidates for the treatment of tumors and localized infection. This study aimed to identify parameters influencing the extent of contents release from poly(ethylacrylic acid) (PEAA) vesicles, focusing on the effects of polymer size, lipid composition, vesicle surface charge, and temperature. Anchored lipid pH-sensitive PEAA was synthesized using PEAA with a molecular weight of 8.4 kDa. PEAA vesicles were prepared by insertion of the lipid-anchored PEAA into preformed large unilamellar vesicles. The preformed liposomes were manipulated by varying the phosphocholine and cholesterol content, and by adding negative or positive charges to the liposomes. A calcein release assay was used to evaluate the effects of polymer size, liposome composition, surface charge, and temperature on liposomal permeability. The release efficiency of the calcein-entrapped vesicles was found to be dependent on the PEAA polymer size. PEAA vesicles containing a phosphatidylcholine to cholesterol ratio of 60:40 (mol/mol) released more than 80% of their calcein content when the molecular weight of PEAA was larger than 8.4 kDa. Therefore, the same-sized polymer of 8.4 kDa was used for the rest of study. The calcein release potential was found to decrease as the percentage of cholesterol increased and with an increase in the phosphocholine acyl chain length (DMPC DPPC DSPC). Negatively charged and neutral vesicles released similar amounts of calcein, whereas positively charged liposomes released a significant amount of their contents. pH-sensitive release was dependent on temperature. Dramatic content release was observed at higher temperatures. The observed synergistic effect of pH and temperature on release of the contents of PEAA vesicles suggests that this pH-sensitive liposome might be a good candidate for intracellular drug delivery in the treatment of tumors or localized infection.
Lu, Tingli; Wang, Zhao; Ma, Yufan; Zhang, Yang; Chen, Tao
2012-01-01
Background Liposomes containing pH-sensitive polymers are promising candidates for the treatment of tumors and localized infection. This study aimed to identify parameters influencing the extent of contents release from poly(ethylacrylic acid) (PEAA) vesicles, focusing on the effects of polymer size, lipid composition, vesicle surface charge, and temperature. Methods Anchored lipid pH-sensitive PEAA was synthesized using PEAA with a molecular weight of 8.4 kDa. PEAA vesicles were prepared by insertion of the lipid-anchored PEAA into preformed large unilamellar vesicles. The preformed liposomes were manipulated by varying the phosphocholine and cholesterol content, and by adding negative or positive charges to the liposomes. A calcein release assay was used to evaluate the effects of polymer size, liposome composition, surface charge, and temperature on liposomal permeability. Results The release efficiency of the calcein-entrapped vesicles was found to be dependent on the PEAA polymer size. PEAA vesicles containing a phosphatidylcholine to cholesterol ratio of 60:40 (mol/mol) released more than 80% of their calcein content when the molecular weight of PEAA was larger than 8.4 kDa. Therefore, the same-sized polymer of 8.4 kDa was used for the rest of study. The calcein release potential was found to decrease as the percentage of cholesterol increased and with an increase in the phosphocholine acyl chain length (DMPC DPPC DSPC). Negatively charged and neutral vesicles released similar amounts of calcein, whereas positively charged liposomes released a significant amount of their contents. pH-sensitive release was dependent on temperature. Dramatic content release was observed at higher temperatures. Conclusion The observed synergistic effect of pH and temperature on release of the contents of PEAA vesicles suggests that this pH-sensitive liposome might be a good candidate for intracellular drug delivery in the treatment of tumors or localized infection. PMID:23028220
Charging of moving surfaces by corona discharges sustained in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun-Chieh, E-mail: junchwan@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu; Zhang, Daihua, E-mail: dhzhang@tju.edu.cn
Atmospheric pressure corona discharges are used in electrophotographic (EP) printing technologies for charging imaging surfaces such as photoconductors. A typical corona discharge consists of a wire (or wire array) biased with a few hundred volts of dc plus a few kV of ac voltage. An electric discharge is produced around the corona wire from which electrons drift towards and charge the underlying dielectric surface. The surface charging reduces the voltage drop across the gap between the corona wire and the dielectric surface, which then terminates the discharge, as in a dielectric barrier discharge. In printing applications, this underlying surface ismore » continuously moving throughout the charging process. For example, previously charged surfaces, which had reduced the local electric field and terminated the local discharge, are translated out of the field of view and are replaced with uncharged surface. The uncharged surface produces a rebound in the electric field in the vicinity of the corona wire which in turn results in re-ignition of the discharge. The discharge, so reignited, is then asymmetric. We found that in the idealized corona charging system we investigated, a negatively dc biased corona blade with a dielectric covered ground electrode, the discharge is initially sustained by electron impact ionization from the bulk plasma and then dominated by ionization from sheath accelerated secondary electrons. Depending on the speed of the underlying surface, the periodic re-ignition of the discharge can produce an oscillatory charging pattern on the moving surface.« less
Shen, Jia-Wei; Wu, Tao; Wang, Qi; Kang, Yu; Chen, Xin
2009-06-02
Ordered hydration shells: The more ordered hydration shells outside the charged CNT surfaces prevent more compact adsorption of the peptide in the charged CNT systems [picture: see text], but peptide binding strengths on the charged CNT surfaces are stronger due to the electrostatic interaction.Studies of adsorption dynamics and stability for peptides/proteins on single-walled carbon nanotubes (SWNTs) are of great importance for a better understanding of the properties and nature of nanotube-based biosystems. Herein, the dynamics and mechanism of the adsorption of the insulin chain B peptide on different charged SWNTs are investigated by explicit solvent molecular dynamics simulations. The results show that all types of surfaces effectively attract the model peptide. Water molecules play a significant role in peptide adsorption on the surfaces of charged carbon nanotubes (CNTs). Compared to peptide adsorption on neutral CNT surfaces, the more ordered hydration shells outside the tube prevent more compact adsorption of the peptide in charged CNT systems. This shield effect leads to a smaller conformational change and van der Waals interaction between the peptide and surfaces, but peptide binding strengths on charged CNT surfaces are stronger than those on the neutral CNT surface due to the strong electrostatic interaction. The result of these simulations implies the possibility of improving the binding strength of peptides/proteins on CNT surfaces, as well as keeping the integrity of the peptide/protein conformation in peptide/protein-CNT complexes by charging the CNTs.
Brown, Matthew A; Duyckaerts, Nicolas; Redondo, Amaia Beloqui; Jordan, Inga; Nolting, Frithjof; Kleibert, Armin; Ammann, Markus; Wörner, Hans Jakob; van Bokhoven, Jeroen A; Abbas, Zareen
2013-04-23
Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements. We compare the results and interpretation of the in-situ XPS and corrected Debye-Hückel theory for surface complexation calculations with traditional surface tension measurements. Our results show that controlling the surface charge density of colloid particles can regulate their adsorption to the interface between two dielectrics.
Tao, Xiaojun; Jin, Shu; Wu, Dehong; Ling, Kai; Yuan, Liming; Lin, Pingfa; Xie, Yongchao; Yang, Xiaoping
2015-01-01
We prepared two types of cholesterol hydrophobically modified pullulan nanoparticles (CHP) and carboxyethyl hydrophobically modified pullulan nanoparticles (CHCP) substituted with various degrees of cholesterol, including 3.11, 6.03, 6.91 and 3.46 per polymer, and named CHP−3.11, CHP−6.03, CHP−6.91 and CHCP−3.46. Dynamic laser light scattering (DLS) showed that the pullulan nanoparticles were 80–120 nm depending on the degree of cholesterol substitution. The mean size of CHCP nanoparticles was about 160 nm, with zeta potential −19.9 mV, larger than CHP because of the carboxyethyl group. A greater degree of cholesterol substitution conferred greater nanoparticle hydrophobicity. Drug-loading efficiency depended on nanoparticle hydrophobicity, that is, nanoparticles with the greatest degree of cholesterol substitution (6.91) showed the most drug encapsulation efficiency (90.2%). The amount of drug loading increased and that of drug release decreased with enhanced nanoparticle hydrophobicity. Nanoparticle surface-negative charge disturbed the amount of drug loading and drug release, for an opposite effect relative to nanoparticle hydrophobicity. The drug release in pullulan nanoparticles was higher pH 4.0 than pH 6.8 media. However, the changed drug release amount was not larger for negative-surface nanoparticles than CHP nanoparticles in the acid release media. Drug release of pullulan nanoparticles was further slowed with human serum albumin complexation and was little affected by nanoparticle hydrophobicity and surface negative charge. PMID:28344259
Meschke, S; Smith, B D; Yost, M; Miksch, R R; Gefter, P; Gehlke, S; Halpin, H A
2009-04-01
A series of experiments were conducted to evaluate the effect of surface charge and air ionization on the deposition of airborne bacteria. The interaction between surface electrostatic potential and the deposition of airborne bacteria in an indoor environment was investigated using settle plates charged with electric potentials of 0, +/-2.5kV and +/-5kV. Results showed that bacterial deposition on the plates increased proportionally with increased potential to over twice the gravitational sedimentation rate at +5kV. Experiments were repeated under similar conditions in the presence of either negative or bipolar air ionization. Bipolar air ionization resulted in reduction of bacterial deposition onto the charged surfaces to levels nearly equal to gravitational sedimentation. In contrast, diffusion charging appears to have occurred during negative air ionization, resulting in an even greater deposition onto the oppositely charged surface than observed without ionization. Static charges on fomitic surfaces may attract bacteria resulting in deposition in excess of that expected by gravitational sedimentation or simple diffusion. Implementation of bipolar ionization may result in reduction of bacterial deposition. Fomitic surfaces are important vehicles for the transmission of infectious organisms. This study has demonstrated a simple strategy for minimizing charge related deposition of bacteria on surfaces.
Photochemistry of Inorganic Nanomaterials for Solar Energy Conversion
NASA Astrophysics Data System (ADS)
Shelton, Timothy L.
As our world's population is constantly growing, so also is the need to power the growth and spread of technology. The conversion of abundant solar energy into useable sources of fuel is an area of significant and vital research. Photocatalytic water splitting via suspended nanomaterials or photoelectrochemical cells has great promise for this purpose. This research focuses on the preparation and analysis of nanomaterials utilizing simple methods and earth abundant chemicals that will lead to cost-competitive methods to convert solar energy into an easily stored and transported fuel source. Specifically, our research seeks to better understand the methods of charge generation and separation in nanomaterial films and to quantify the limits of activity in suspended photocatalysts. Chapter 2 introduces a study on the nature of photovoltage generation in well-ordered hematite films under zero applied bias. The thickness of Fe 2O3 nanorod films is varied by a simple hydrothermal synthesis and confirmed with TEM and profilometry measurements. Surface photovoltage spectroscopy (SPS) in the presence of air, water, nitrogen, oxygen, and under vacuum confirms photovoltages are associated with oxidation of surface water and hydroxyl groups and with reversible surface hole trapping on the 1 minute time scale and de-trapping on the 1 hour time scale with a maximum photovoltage of -130 mW under 2.0 eV - 4.5 eV illumination. Sacrificial donors (KI, H2O2, KOH) increase the voltage to -240 and -400 mW, due to improved hole transfer. The photovoltage is quenched with the addition of co-catalysts CoOx and Co-Pi, possibly due to the removal of surface states and enhanced e/h recombination. Chapter 3 outlines a methodical exploration of the limits of water oxidation from illuminated beta-FeO(OH) suspensions. Well-defined akaganeite nanocrystals are able to produce oxygen gas from aqueous solutions in the presence of an appropriate electron acceptor. Optimal conditions were achieved by systematically varying the amount of catalyst, concentration of the electron acceptor, pH of the solution, and light intensity. A decrease in activity is shown to be the result of particle agglomeration after roughly 5 hours of illumination. A maximum O2 evolution rate of 35.2 mumol O 2 h-1 is observed from an optimized system, with a QE of 0.19%, and TON of 2.58 based on total beta-FeO(OH). Chapter 4 continues to understand charge separation and transport in CdS nanorods. These nanomaterials are capable of catalytic proton reduction under visible illumination, but suffer from photo-corrosion resulting in decreased H2 production. SPS measurements show a maximum photovoltage of -230 mV at 2.75 eV and the charge separation is largely reversible. Coating the rods with graphitic carbon nitride (g-C3N4) creates a hole accepting protective layer than prevents oxidative loss of photo-activity. By adding platinum salts, additional photovoltage could be extracted through field induced charge migration from excited sub gap defect states and trap sites. The addition of a sacrificial reagent would either decrease or increase the photovoltage (depending on the reagent used) by creating additional bias in the films or charge recombination pathways. Finally, it was shown that varying the substrate has an effect on the platinum/substrate polarized charge injection. Chapter 5 Surface photovoltage is used to show for the first time the charge separation properties of Sn2TiO4, an n-type photocatalyst, a series of cuprous niobium oxides doped with tantalum (CuNb1-yTa yOx), and a Cu (I) tantalum oxide Cu5Ta11 O3.
Surface charge-induced EDL interaction on the contact angle of surface nanobubbles.
Jing, Dalei; Li, Dayong; Pan, Yunlu; Bhushan, Bharat
2016-11-01
The contact angle (CA) of surface nanobubbles is believed to affect the stability of nanobubbles and fluid drag in micro/nanofluidic systems. The CA of nanobubbles is dependent on size and is believed to be affected by the surface charge-induced electrical double layer (EDL). However, neither of these of attributes are well understood. In this paper, by introducing an EDL-induced electrostatic wetting tension, a theoretical model is first established to study the effect of EDLs formed near the solid-liquid interface and the liquid-nanobubble interface on the gas phase CA of nanobubbles. The size-dependence of this EDL interaction is studied as well. Next, by using atomic force microscopy (AFM), the effect of the EDL on nanobubbles' gas phase CA is studied with variable electrical potential at the solid-liquid interface, which is adjusted by an applied voltage. Both the theoretical and the experimental results show that the EDLs formed near the solid-liquid interface and the liquid-nanobubble interface lead to a reduction of gas phase CA of the surface nanobubbles because of an electrostatic wetting tension on the nanobubble due to the attractive electrostatic interaction between the liquid and nanobubble within the EDL, which is in the nanobubbles' outward direction. An EDL with a larger zeta potential magnitude leads to a larger gas phase CA reduction. Furthermore, the effect of EDL on the nanobubbles' gas phase CA shows a significant size-dependence considering the size dependence of the electrostatic wetting tension. The gas phase CA reduction due to the EDL decreases with increasing nanobubble height and increases with the nanobubble's increasing curvature radius, indicating that a surface charge-induced EDL could possibly explain the size dependence of the gas phase CA of nanobubbles.
Altering surface charge nonuniformity on individual colloidal particles.
Feick, Jason D; Chukwumah, Nkiru; Noel, Alexandra E; Velegol, Darrell
2004-04-13
Charge nonuniformity (sigmazeta) was altered on individual polystyrene latex particles and measured using the novel experimental technique of rotational electrophoresis. It has recently been shown that unaltered sulfated latices often have significant charge nonuniformity (sigmazeta = 100 mV) on individual particles. Here it is shown that anionic polyelectrolytes and surfactants reduce the native charge nonuniformity on negatively charged particles by 80% (sigmazeta = 20 mV), even while leaving the average surface charge density almost unchanged. Reduction of charge uniformity occurs as large domains of nonuniformity are minimized, giving a more random distribution of charge on individual particle surfaces. Targeted reduction of charge nonuniformity opens new opportunities for the dispersion of nanoparticles and the oriented assembly of particles.
Mechanism of the free charge carrier generation in the dielectric breakdown
NASA Astrophysics Data System (ADS)
Rahim, N. A. A.; Ranom, R.; Zainuddin, H.
2017-12-01
Many studies have been conducted to investigate the effect of environmental, mechanical and electrical stresses on insulator. However, studies on physical process of discharge phenomenon, leading to the breakdown of the insulator surface are lacking and difficult to comprehend. Therefore, this paper analysed charge carrier generation mechanism that can cause free charge carrier generation, leading toward surface discharge development. Besides, this paper developed a model of surface discharge based on the charge generation mechanism on the outdoor insulator. Nernst’s Planck theory was used in order to model the behaviour of the charge carriers while Poisson’s equation was used to determine the distribution of electric field on insulator surface. In the modelling of surface discharge on the outdoor insulator, electric field dependent molecular ionization was used as the charge generation mechanism. A mathematical model of the surface discharge was solved using method of line technique (MOL). The result from the mathematical model showed that the behaviour of net space charge density was correlated with the electric field distribution.
NASA Astrophysics Data System (ADS)
Lee, Victor; James, Nicole M.; Waitukaitis, Scott R.; Jaeger, Heinrich M.
2018-03-01
Electrostatic charging of insulating fine particles can be responsible for numerous phenomena ranging from lightning in volcanic plumes to dust explosions. However, even basic aspects of how fine particles become charged are still unclear. Studying particle charging is challenging because it usually involves the complexities associated with many-particle collisions. To address these issues, we introduce a method based on acoustic levitation, which makes it possible to initiate sequences of repeated collisions of a single submillimeter particle with a flat plate, and to precisely measure the particle charge in situ after each collision. We show that collisional charge transfer between insulators is dependent on the hydrophobicity of the contacting surfaces. We use glass, which we modify by attaching nonpolar molecules to the particle, the plate, or both. We find that hydrophilic surfaces develop significant positive charges after contacting hydrophobic surfaces. Moreover, we demonstrate that charging between a hydrophilic and a hydrophobic surface is suppressed in an acidic environment and enhanced in a basic one. Application of an electric field during each collision is found to modify the charge transfer, again depending on surface hydrophobicity. We discuss these results within the context of contact charging due to ion transfer, and we show that they lend strong support to O H- ions as the charge carriers.
Electric field measurements in nanosecond pulse discharges in air over liquid water surface
NASA Astrophysics Data System (ADS)
Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.
2018-01-01
Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.
NASA Astrophysics Data System (ADS)
Zykov, V. M.; Neiman, D. A.
2018-04-01
A physico-mathematical model of the processes of radiation-induced charging of dielectric materials with open surfaces, irradiated with monoenergetic electrons in the energy range 10-30 keV, is described. The model takes into account the relationship between the processes of surface and bulk charging for the given conditions of the experimental design, which accounts for the effect of anomalously long charging of dielectrics after the incident energy of primary electrons during charging is reduced to below the second critical energy for the secondary electronic emission coefficient. The initial fast phase of charging a high-resistivity dielectric material (Al2O3) is investigated. It is shown that as the incident electron energy is approaching the second critical energy during charging, the secondary electronic emission is partially suppressed due to negative charging of the open surface of the dielectric and formation of a near-surface inversion electrical field retarding the electronic emission yield.
Ion association at discretely-charged dielectric interfaces: Giant charge inversion
NASA Astrophysics Data System (ADS)
Wang, Zhi-Yong; Wu, Jianzhong
2017-07-01
Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.
Stability of nTiO2 particles and their attachment to sand: Effects of humic acid at different pH.
Wu, Yang; Cheng, Tao
2016-01-15
The fate and transport of nano-scale or micro-scale titanium dioxide particles (nTiO2) in subsurface environments are strongly influenced by the stability of nTiO2 and their attachment to sediment grains. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively-charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand at HA concentrations that are relevant to typical groundwater conditions, so that mechanisms that control nTiO2 immobilization and transport in natural systems can be elucidated. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand are experimentally measured under a range of HA concentrations at pH5 and 9. Results show that at pH5, negatively-charged HA strongly adsorbs to positively-charged nTiO2 and Fe oxyhydroxide, which, at low HA concentrations, partially neutralizes the positive charges on nTiO2 and Fe oxyhydroxide, and therefore decreases the repulsive electrostatic forces between the surfaces, resulting in nTiO2 aggregation and attachment. At high HA concentrations, adsorbed HA reverses the surface charges of nTiO2 and Fe oxyhydroxide, and makes nTiO2 and Fe oxyhydroxide strongly negatively charged, resulting in stable nTiO2 suspension and low nTiO2 attachment. At pH9, HA, nTiO2, and Fe oxyhydroxide are all negatively charged, and HA adsorption is low and does not have a strong impact on the stability and attachment of nTiO2. Overall, this study shows that changes in surface charges of nTiO2 and Fe oxyhydroxide coating caused by HA adsorption is a key factor that influences the stability and attachment of nTiO2. Copyright © 2015 Elsevier B.V. All rights reserved.
Surface properties of beached plastics.
Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K
2015-07-01
Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.
An unusual metallic behavior in a Ag4SSe single crystal
NASA Astrophysics Data System (ADS)
Matteppanavar, Shidaling; Bui, Nguyen Hai An; van Smaalen, Sander; Thamizhavel, A.; Ramakrishnan, S.
2018-04-01
We report the magnetic susceptibility, resistivity and heat capacity measurements on high quality single crystalline tetra silver sulphoselenide (Ag4SSe). The magnetic susceptibility and resistivity measurements show anomalies around 260 K. The large diamagnetic drop with hysteresis at the transition implies a first order transition. Such a diamagnetic drop cannot be ascribed to the formation of charge density wave (CDW) since the temperature dependence of the resistivity shows no upturn at this transition. Infact the resistivity is decreasing with decreasing temperature, indicating a metallic behavior. However, unlike normal metals, the resistivity is almost temperature independent in the temperature range from 4-180 K. Usually, when one observes a diamagnetic transition, it is assumed to be due to a drop in the density of states at the Fermi level which leads to the decrease in the Pauli paramagnetic susceptibility. Such a decrease in the density of states often results in an increase in resistivity unless mobility of the charge carriers changes significantly. Hence, we believe that in Ag4SSe, the structural transition causes an unusual Fermi surface reconstruction which in turn leads to a strange metallic behavior at low temperatures.
NASA Astrophysics Data System (ADS)
Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A.
2018-08-01
The effect of thermal aging on the charging phenomena in cross-linked polyethylene (XLPE) has been studied under electron beam irradiation in scanning electron microscope (SEM). The dynamic variation of trapped charge represents the trapping process of XLPE under electron beam irradiation. We have found that the trapped charge variation can be approximated by a first order exponential function. The amount of trapped charge presents enhanced values at the beginning of aging at lower temperatures (80 °C and 100 °C). This suggests the diffusion of cross-linking by-products to the surface of sample that acts as traps for injected electrons. The oxidation which is a very important form of XLPE degradation has an effect at the advanced stage of the aging process. For higher temperatures (120 °C and 140 °C), the taken part process in the evolution of the trapped charge is the crystallinity increase at the beginning of aging leading to the trapped charge decreasing, and the polar groups generated by thermo-oxidation process at the end of aging leading to the trapped charge increase. Variations of leakage current according to the aging time have quite similar trends with the dielectric losses factor and consequently some correlations must be made between charging mechanisms and the electrical behaviour of XLPE under thermal aging.
Effect of mobile ions on the electric field needed to orient charged diblock copolymer thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehghan, Ashkan; Shi, An-Chang; Schick, M.
We examine the behavior of lamellar phases of charged/neutral diblock copolymer thin films containing mobile ions in the presence of an external electric field. We employ self-consistent field theory and focus on the aligning effect of the electric field on the lamellae. Of particular interest are the effects of the mobile ions on the critical field, the value required to reorient the lamellae from the parallel configuration favored by the surface interaction to the perpendicular orientation favored by the field. We find that the critical field depends strongly on whether the neutral or charged species is favored by the substrates.more » In the case in which the neutral species is favored, the addition of charges decreases the critical electric field significantly. The effect is greater when the mobile ions are confined to the charged lamellae. In contrast, when the charged species is favored by the substrate, the addition of mobile ions stabilizes the parallel configuration and thus results in an increase in the critical electric field. The presence of ions in the system introduces a new mixed phase in addition to those reported previously.« less
Monte Carlo simulations of polyelectrolytes inside viral capsids.
Angelescu, Daniel George; Bruinsma, Robijn; Linse, Per
2006-04-01
Structural features of polyelectrolytes as single-stranded RNA or double-stranded DNA confined inside viral capsids and the thermodynamics of the encapsidation of the polyelectrolyte into the viral capsid have been examined for various polyelectrolyte lengths by using a coarse-grained model solved by Monte Carlo simulations. The capsid was modeled as a spherical shell with embedded charges and the genome as a linear jointed chain of oppositely charged beads, and their sizes corresponded to those of a scaled-down T=3 virus. Counterions were explicitly included, but no salt was added. The encapisdated chain was found to be predominantly located at the inner capsid surface, in a disordered manner for flexible chains and in a spool-like structure for stiff chains. The distribution of the small ions was strongly dependent on the polyelectrolyte-capsid charge ratio. The encapsidation enthalpy was negative and its magnitude decreased with increasing polyelectrolyte length, whereas the encapsidation entropy displayed a maximum when the capsid and polyelectrolyte had equal absolute charge. The encapsidation process remained thermodynamically favorable for genome charges ca. 3.5 times the capsid charge. The chain stiffness had only a relatively weak effect on the thermodynamics of the encapsidation.
VARIABLE CHARGE SOILS: MINERALOGY AND CHEMISTRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Ranst, Eric; Qafoku, Nikolla; Noble, Andrew
2016-09-19
Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered to be variable charge soils (2) (Table 1). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH and ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate mineralsmore » such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid phase. Highly weathered soils and subsoils (e.g., Oxisols and some Ultisols, Alfisols and Andisols) may undergo isoelectric weathering and reach a “zero net charge” stage during their development. They usually have a slightly acidic to acidic soil solution pH, which is close to either the point of zero net charge (PZNC) (3) or the point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems.« less
NASA Astrophysics Data System (ADS)
Marcovitz, Amir; Naftaly, Aviv; Levy, Yaakov
2015-02-01
Water molecules are abundant in protein-DNA interfaces, especially in their nonspecific complexes. In this study, we investigated the organization and energetics of the interfacial water by simplifying the geometries of the proteins and the DNA to represent them as two equally and oppositely charged planar surfaces immersed in water. We found that the potential of mean force for bringing the two parallel surfaces into close proximity comprises energetic barriers whose properties strongly depend on the charge density of the surfaces. We demonstrated how the organization of the water molecules into discretized layers and the corresponding energetic barriers to dehydration can be modulated by the charge density on the surfaces, salt, and the structure of the surfaces. The 1-2 layers of ordered water are tightly bound to the charged surfaces representing the nonspecific protein-DNA complex. This suggests that water might mediate one-dimensional diffusion of proteins along DNA (sliding) by screening attractive electrostatic interactions between the positively charged molecular surface on the protein and the negatively charged DNA backbone and, in doing so, reduce intermolecular friction in a manner that smoothens the energetic landscape for sliding, and facilitates the 1D diffusion of the protein.
Characterizing the effects of regolith surface roughness on photoemission from surfaces in space
NASA Astrophysics Data System (ADS)
Dove, A.; Horanyi, M.; Wang, X.
2017-12-01
Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.
Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doktorova, Milka; Heberle, Frederick A.; Kingston, Richard L.
Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein’s matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here in this paper, using a broad set of in vitro and in silico techniques we addressed molecularmore » mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins.« less
Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties
Doktorova, Milka; Heberle, Frederick A.; Kingston, Richard L.; ...
2017-11-07
Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein’s matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here in this paper, using a broad set of in vitro and in silico techniques we addressed molecularmore » mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins.« less
Space and surface charge behavior analysis of charge-eliminated polymer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Tetsuji; Takashima, Kazunori; Ichiyama, Shinichiro
1995-12-31
Charge behavior of corona-charged or charge eliminated polymer films being dipped in the city water were studied. They were polytetrafluoroethylene (PTFE teflon{trademark}), polypropylene (PP), low density or high density polyethylene (LDPE or HDPE) thin films which are as grown (native) or plasma-processed. The plasma processing at low pressure was tested as antistatic processing. Charge elimination was done by being dipped in alcohol or city water. TSDC analysis and surface charge profile measurement were done for both charged and charge eliminated polymer films. Surface charge density of plasma processed polymer films just after corona charging is roughly the same as thatmore » of an original film. There is little difference between surface charge density profile of a native film and that of a plasma processed film. A large hetero current peak of TSDC was observed at room temperature for a processed film. It was found that the hetero peak disappears after charge elimination process. A pressure pulse wave method by using a pulse-driven piezoelectric PVDF polymer film as a piezoelectric actuator was newly developed to observe real space charge distribution. A little difference of internal space charge distribution between the plasma processed film and the native one after corona charging is found.« less
Chen, Xiaoyun; Wang, Jie; Paszti, Zoltan; Wang, Fulin; Schrauben, Joel N; Tarabara, Volodymyr V; Schmaier, Alvin H; Chen, Zhan
2007-05-01
Electrostatic interactions between negatively charged polymer surfaces and factor XII (FXII), a blood coagulation factor, were investigated by sum frequency generation (SFG) vibrational spectroscopy, supplemented by several analytical techniques including attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), quartz crystal microbalance (QCM), zeta-potential measurement, and chromogenic assay. A series of sulfonated polystyrenes (sPS) with different sulfonation levels were synthesized as model surfaces with different surface charge densities. SFG spectra collected from FXII adsorbed onto PS and sPS surfaces with different surface charge densities showed remarkable differences in spectral features and especially in spectral intensity. Chromogenic assay experiments showed that highly charged sPS surfaces induced FXII autoactivation. ATR-FTIR and QCM results indicated that adsorption amounts on the PS and sPS surfaces were similar even though the surface charge densities were different. No significant conformational change was observed from FXII adsorbed onto surfaces studied. Using theoretical calculations, the possible contribution from the third-order nonlinear optical effect induced by the surface electric field was evaluated, and it was found to be unable to yield the SFG signal enhancement observed. Therefore it was concluded that the adsorbed FXII orientation and ordering were the main reasons for the remarkable SFG amide I signal increase on sPS surfaces. These investigations indicate that negatively charged surfaces facilitate or induce FXII autoactivation on the molecular level by imposing specific orientation and ordering on the adsorbed protein molecules.
Gokarn, Yatin R; Fesinmeyer, R Matthew; Saluja, Atul; Razinkov, Vladimir; Chase, Susan F; Laue, Thomas M; Brems, David N
2011-01-01
Specific-ion effects are ubiquitous in nature; however, their underlying mechanisms remain elusive. Although Hofmeister-ion effects on proteins are observed at higher (>0.3M) salt concentrations, in dilute (<0.1M) salt solutions nonspecific electrostatic screening is considered to be dominant. Here, using effective charge (Q*) measurements of hen-egg white lysozyme (HEWL) as a direct and differential measure of ion-association, we experimentally show that anions selectively and preferentially accumulate at the protein surface even at low (<100 mM) salt concentrations. At a given ion normality (50 mN), the HEWL Q* was dependent on anion, but not cation (Li+, Na+, K+, Rb+, Cs+, GdnH+, and Ca2+), identity. The Q* decreased in the order F− > Cl− > Br− > NO3− ∼ I− > SCN− > ClO4− ≫ SO42−, demonstrating progressively greater binding of the monovalent anions to HEWL and also show that the SO42− anion, despite being strongly hydrated, interacts directly with the HEWL surface. Under our experimental conditions, we observe a remarkable asymmetry between anions and cations in their interactions with the HEWL surface. PMID:21432935
NASA Astrophysics Data System (ADS)
Cyr-Choinière, O.; Badoux, S.; Grissonnanche, G.; Michon, B.; Afshar, S. A. A.; Fortier, S.; LeBoeuf, D.; Graf, D.; Day, J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Doiron-Leyraud, N.; Taillefer, Louis
2017-07-01
The Seebeck coefficient S of the cuprate YBa2 Cu3 Oy is measured in magnetic fields large enough to suppress superconductivity, at hole dopings p =0.11 and p =0.12 , for heat currents along the a and b directions of the orthorhombic crystal structure. For both directions, S /T decreases and becomes negative at low temperature, a signature that the Fermi surface undergoes a reconstruction due to broken translational symmetry. Above a clear threshold field, a strong new feature appears in Sb, for conduction along the b axis only. We attribute this feature to the onset of 3D-coherent unidirectional charge-density-wave modulations seen by x-ray diffraction, also along the b axis only. Because these modulations have a sharp onset temperature well below the temperature where S /T starts to drop towards negative values, we infer that they are not the cause of Fermi-surface reconstruction. Instead, the reconstruction must be caused by the quasi-2D bidirectional modulations that develop at significantly higher temperature. The unidirectional order only confers an additional anisotropy to the already reconstructed Fermi surface, also manifest as an in-plane anisotropy of the resistivity.
Direct measurement of sub-Debye-length attraction between oppositely charged surfaces.
Kampf, Nir; Ben-Yaakov, Dan; Andelman, David; Safran, S A; Klein, Jacob
2009-09-11
Using a surface force balance with fast video analysis, we have measured directly the attractive forces between oppositely charged solid surfaces (charge densities sigma(+), sigma(-)) across water over the entire range of interaction, in particular, at surface separations D below the Debye screening length lambda(S). At very low salt concentration we find a long-ranged attraction between the surfaces (onset ca. 100 nm), whose variation at D
Adu, Kofi W; Li, Qixiu; Desai, Sharvil C; Sidorov, Anton N; Sumanasekera, Gamini U; Lueking, Angela D
2009-01-06
The response of two carbide derived carbons (CDCs) films to NH(3), N(2)O, and room air is investigated by four probe resistance at room temperature and pressures up to 760 Torr. The two CDC films were synthesized at 600 (CDC-600) and 1000 degrees C (CDC-1000) to vary the carbon morphology from completely amorphous to more ordered, and determine the role of structure, surface area, and porosity on sensor response. Sensor response time followed kinetic diameter and indicated a more ordered carbon structure slowed response due to increased tortuosity caused by the formation of graphitic layers at the particle fringe. Steady state sensor response was greater for the less-ordered material, despite its decreased surface area, decreased micropore volume, and less favorable surface chemistry, suggesting carbon structure is a stronger predictor of sensor response than surface chemistry. The lack of correlation between adsorption of the probe gases and sensor response suggests chemical interaction (charge transfer) drive sensor response within the material; N(2)O response, in particular, did not follow simple adsorption behavior. Based on Raman and FTIR characterization, carbon morphology (disorder) appeared to be the determining factor in overall sensor response, likely due to increased charge transfer between gases and carbon defects of amorphous or disordered regions. The response of the amorphous CDC-600 film to NH(3) was 45% without prior oxidation, showing amorphous CDCs have promise as chemical sensors without additional pretreatment common to other carbon sensors.
Ziaeifar, Leila; Labbafi Mazrae Shahi, Mohsen; Salami, Maryam; Askari, Gholam R
2018-05-21
The effect of the addition of the camel casein fraction on some physico-chemical properties of low fat camel milk cream was studied. Oil-in-water emulsions, 25, 30, and 35 (w/w) fat, were prepared using inulin, camel skim milk, milk fat and variable percentages of casein (1, 2, and 3% w/w). The droplet size, ζ-potential, surface protein concentration, viscosity and surface tension of low fat dairy creams was measured. Cream containing 2% (w/w) casein had better stability. The modifications in physico-chemical properties appeared to be driven by changes in particle size distribution caused by droplet aggregation. The cream containing 2% casein leads to a gradual decrease in droplet size, as the particle size decreased, apparent viscosity increased. When casein concentration increased, ζ-potential decreased due to combination of c terminal (negative charge) with the surface of fat particles but steric repulsion improved textural properties. Cream with 30% fat and 2% casein had the best result. Copyright © 2018 Elsevier B.V. All rights reserved.
Rasmuson, Anna; Pazmino, Eddy; Assemi, Shoeleh; Johnson, William P
2017-02-21
Surface roughness has been reported to both increase as well as decrease colloid retention. In order to better understand the boundaries within which roughness operates, attachment of a range of colloid sizes to glass with three levels of roughness was examined under both favorable (energy barrier absent) and unfavorable (energy barrier present) conditions in an impinging jet system. Smooth glass was found to provide the upper and lower bounds for attachment under favorable and unfavorable conditions, respectively. Surface roughness decreased, or even eliminated, the gap between favorable and unfavorable attachment and did so by two mechanisms: (1) under favorable conditions attachment decreased via increased hydrodynamic slip length and reduced attraction and (2) under unfavorable conditions attachment increased via reduced colloid-collector repulsion (reduced radius of curvature) and increased attraction (multiple points of contact, and possibly increased surface charge heterogeneity). Absence of a gap where these forces most strongly operate for smaller (<200 nm) and larger (>2 μm) colloids was observed and discussed. These observations elucidate the role of roughness in colloid attachment under both favorable and unfavorable conditions.
Photoluminescence in Spray Pyrolysis Deposited β-In2S3 Thin Films
NASA Astrophysics Data System (ADS)
Jayakrishnan, R.
2018-04-01
Spray pyrolysis deposited In2S3 thin films exhibit two prominent photoluminescent emissions. One of the emissions is green in color and centered at around ˜ 540 nm and the other is centered at around ˜ 690 nm and is red in color. The intensity of the green emission decreases when the films are subjected to annealing in air or vacuum. The intensity of red emission increases when films are air annealed and decreases when vacuum annealed. Vacuum annealing leads to an increase in work function whereas air annealing leads to a decrease in work function for this thin film system relative to the as deposited films indicating changes in space charge regions. Surface photovoltage analysis using a Kelvin probe leads to the conclusion that inversion of band bending occurs as a result of annealing. Correlating surface contact potential measurements using a Kelvin probe, x-ray photoelectron spectroscopy and photoluminescence, we conclude that the surface passivation plays a critical role in controlling the photoluminescence from the spray pyrolysis deposited for In2S3 thin films.
Wu, Yan; Zhang, Panyue; Zhang, Haibo; Zeng, Guangming; Liu, Jianbo; Ye, Jie; Fang, Wei; Gou, Xiying
2016-04-01
Rice husk biochar modified by FeCl3 (MRB-Fe) was used to enhance sludge dewaterability in this study. MRB-Fe preparation conditions and dosage were optimized. Mechanisms of MRB-Fe improving sludge dewaterability were investigated. The optimal modification conditions were: FeCl3 concentration, 3mol/L; ultrasound time, 1h. The optimal MRB-Fe dosage was 60% DS. Compared with raw sludge, the sludge specific resistance to filtration (SRF) decreased by 97.9%, the moisture content of sludge cake decreased from 96.7% to 77.9% for 6min dewatering through vacuum filtration under 0.03MPa, the SV30% decreased from 96% to 60%, and the net sludge solids yield (YN) increased by 28 times. Positive charge from iron species on MRB-Fe surface counteracted negative charge of sludge flocs to promote sludge settleability and dewaterability. Meanwhile, MRB-Fe kept a certain skeleton structure in sludge cake, making the moisture pass through easily. Using MRB-Fe, therefore, for sludge conditioning and dewatering is promising. Copyright © 2016. Published by Elsevier Ltd.
Through thick and thin: tuning the threshold voltage in organic field-effect transistors.
Martínez Hardigree, Josué F; Katz, Howard E
2014-04-15
Organic semiconductors (OSCs) constitute a class of organic materials containing densely packed, overlapping conjugated molecular moieties that enable charge carrier transport. Their unique optical, electrical, and magnetic properties have been investigated for use in next-generation electronic devices, from roll-up displays and radiofrequency identification (RFID) to biological sensors. The organic field-effect transistor (OFET) is the key active element for many of these applications, but the high values, poor definition, and long-term instability of the threshold voltage (V(T)) in OFETs remain barriers to realization of their full potential because the power and control circuitry necessary to compensate for overvoltages and drifting set points decrease OFET practicality. The drifting phenomenon has been widely observed and generally termed "bias stress." Research on the mechanisms responsible for this poor V(T) control has revealed a strong dependence on the physical order and chemical makeup of the interfaces between OSCs and adjacent materials in the OFET architecture. In this Account, we review the state of the art for tuning OFET performance via chemical designs and physical processes that manipulate V(T). This parameter gets to the heart of OFET operation, as it determines the voltage regimes where OFETs are either ON or OFF, the basis for the logical function of the devices. One obvious way to decrease the magnitude and variability of V(T) is to work with thinner and higher permittivity gate dielectrics. From the perspective of interfacial engineering, we evaluate various methods that we and others have developed, from electrostatic poling of gate dielectrics to molecular design of substituted alkyl chains. Corona charging of dielectric surfaces, a method for charging the surface of an insulating material using a constant high-voltage field, is a brute force means of shifting the effective gate voltage applied to a gate dielectric. A gentler and more direct method is to apply surface voltage to dielectric interfaces by direct contact or postprocess biasing; these methods could also be adapted for high throughput printing sequences. Dielectric hydrophobicity is an important chemical property determining the stability of the surface charges. Functional organic monolayers applied to dielectrics, using the surface attachment chemistry made available from "self-assembled" monolayer chemistry, provide local electric fields without any biasing process at all. To the extent that the monolayer molecules can be printed, these are also suitable for high throughput processes. Finally, we briefly consider V(T) control in the context of device integration and reliability, such as the role of contact resistance in affecting this parameter.
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-01-01
Local surface charge density of lipid membranes influences membrane–protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. PMID:27561322
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy
NASA Astrophysics Data System (ADS)
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-08-01
Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy.
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-08-26
Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.
Surface charges for gravity and electromagnetism in the first order formalism
NASA Astrophysics Data System (ADS)
Frodden, Ernesto; Hidalgo, Diego
2018-02-01
A new derivation of surface charges for 3 + 1 gravity coupled to electromagnetism is obtained. Gravity theory is written in the tetrad-connection variables. The general derivation starts from the Lagrangian, and uses the covariant symplectic formalism in the language of forms. For gauge theories, surface charges disentangle physical from gauge symmetries through the use of Noether identities and the exactness symmetry condition. The surface charges are quasilocal, explicitly coordinate independent, gauge invariant and background independent. For a black hole family solution, the surface charge conservation implies the first law of black hole mechanics. As a check, we show the first law for an electrically charged, rotating black hole with an asymptotically constant curvature (the Kerr–Newman (anti-)de Sitter family). The charges, including the would-be mass term appearing in the first law, are quasilocal. No reference to the asymptotic structure of the spacetime nor the boundary conditions is required and therefore topological terms do not play a rôle. Finally, surface charge formulae for Lovelock gravity coupled to electromagnetism are exhibited, generalizing the one derived in a recent work by Barnich et al Proc. Workshop ‘ About Various Kinds of Interactions’ in honour of Philippe Spindel (4–5 June 2015, Mons, Belgium) C15-06-04 (2016 (arXiv:1611.01777 [gr-qc])). The two different symplectic methods to define surface charges are compared and shown equivalent.
Nagaraja, Ashvin T; Pradhan, Sulolit; McShane, Michael J
2014-03-15
Calcium carbonate nanoparticles of the vaterite polymorph were synthesized by combining CaCl2 and Na2CO3 in the presence of poly (vinylsulfonic acid) (PVSA). By studying the important experimental parameters we found that controlling PVSA concentration, reaction temperature, and order of reagent addition the particle size, monodispersity, and surface charge can be controlled. By increasing PVSA concentration or by decreasing temperature CCNPs with an average size from ≈150 to 500 nm could be produced. We believe the incorporation of PVSA into the reaction plays a dual role to (1) slow down the nucleation rate by sequestering calcium and to (2) stabilize the resulting CCNPs as the vaterite polymorph, preventing surface calcification or aggregation into microparticles. The obtained vaterite nanoparticles were found to maintain their crystal structure and surface charge after storage in aqueous buffer for at least 5 months. The aqueous stable vaterite nanoparticles could be a useful platform for the encapsulation of a large variety of biomolecules for drug delivery or as a sacrificial template toward capsule formation for biosensor applications. Copyright © 2013 Elsevier Inc. All rights reserved.
Roles of additives and surface control in slurry atomization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, S.C.
1990-01-01
This report focuses on the effects of interparticle forces on the rheology and airblast atomization of micronized coal water slurry (CWS). We found that the CWS flow behavior index is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The former intensifies as the Hamaker constant increases and the interparticle distance reduces while the latter increases as the particle surface charge density increases. The interparticle attraction causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior. In contrast, the interparticle repulsion prevents particle aggregation andmore » thus leads to Newtonian behavior. Both atomized at low atomizing air pressures (less than 270 kPa) using twin-fluid jet atomizers of various distributor designs. We found that the atomized drop sizes of micronized coal water slurries substantially decrease as the atomizing air pressure exceeds a threshold value. The effects of coal volume fraction, coal particle surface charge, liquid composition and liquid viscosity on slurry atomization can be accounted for by their effects on slurry rheology. 26 refs.« less
Strong compensation hinders the p-type doping of ZnO: a glance over surface defect levels
NASA Astrophysics Data System (ADS)
Huang, B.
2016-07-01
We propose a surface doping model of ZnO to elucidate the p-type doping and compensations in ZnO nanomaterials. With an N-dopant, the effects of N on the ZnO surface demonstrate a relatively shallow acceptor level in the band gap. As the dimension of the ZnO materials decreases, the quantum confinement effects will increase and render the charge transfer on surface to influence the shifting of Fermi level, by evidence of transition level changes of the N-dopant. We report that this can overwhelm the intrinsic p-type conductivity and transport of the ZnO bulk system. This may provide a possible route of using surface doping to modify the electronic transport and conductivity of ZnO nanomaterials.
NASA Astrophysics Data System (ADS)
Wang, X.; Robertson, S. H.; Horanyi, M.; NASA Lunar Science Institute: Colorado CenterLunar Dust; Atmospheric Studies
2011-12-01
The Moon does not have a global magnetic field, unlike the Earth, rather it has strong crustal magnetic anomalies. Data from Lunar Prospector and SELENE (Kaguya) observed strong interactions between the solar wind and these localized magnetic fields. In the laboratory, a configuration of a horseshoe permanent magnet below an insulating surface is used as an analogue of lunar crustal magnetic anomalies. Plasmas are created above the surface by a hot filament discharge. Potential distributions are measured with an emissive probe and show complex spatial structures. In our experiments, electrons are magnetized with gyro-radii r smaller than the distance from the surface d (r < d) and ions are un-magnetized with r > d. Unlike negative charging on surfaces with no magnetic fields, the surface potential at the center of the magnetic dipole is found close to the plasma bulk potential. The surface charging is dominated by the cold unmagnetized ions, while the electrons are shielded away. A potential minimum is formed between the center of the surface and the bulk plasma, most likely caused by the trapped electrons between the two magnetic mirrors at the cusps. The value of the potential minimum with respect to the bulk plasma potential decreases with increasing plasma density and neutral pressure, indicating that the mirror-trapped electrons are scattered by electron-electron and electron-neutral collisions. The potential at the two cusps are found to be more negative due to the electrons following the magnetic field lines onto the surface.
Direct Observation of Charge Transfer at a MgO(111) Surface
NASA Astrophysics Data System (ADS)
Subramanian, A.; Marks, L. D.; Warschkow, O.; Ellis, D. E.
2004-01-01
Transmission electron diffraction (TED) combined with direct methods have been used to study the √(3)×√(3)R30° reconstruction on the polar (111) surface of MgO and refine the valence charge distribution. The surface is nonstoichiometric and is terminated by a single magnesium atom. A charge-compensating electron hole is localized in the next oxygen layer and there is a nominal charge transfer from the oxygen atoms to the top magnesium atom. The partial charges that we obtain for the surface atoms are in reasonable agreement with empirical bond-valence estimations.
The surface charge of trypanosomatids.
Souto-Padrón, Thaïs
2002-12-01
The surface charge of trypanosomatids was evaluated by means of the binding of cationic particles, as visualized by electron microscopy and by direct measurements of the electrophoretic mobility of cells. The results obtained indicate that most of the trypanosomatids exhibit a negatively charged surface whose value is species specific and varies according to the developmental stages. Sialic acids associated with glycoproteins, glycolipids and phosphate groups are the major components responsible for the net negative surface charge of the trypanosomatids.
Miniaturized ultrafine particle sizer and monitor
NASA Technical Reports Server (NTRS)
Qi, Chaolong (Inventor); Chen, Da-Ren (Inventor)
2011-01-01
An apparatus for measuring particle size distribution includes a charging device and a precipitator. The charging device includes a corona that generates charged ions in response to a first applied voltage, and a charger body that generates a low energy electrical field in response to a second applied voltage in order to channel the charged ions out of the charging device. The corona tip and the charger body are arranged relative to each other to direct a flow of particles through the low energy electrical field in a direction parallel to a direction in which the charged ions are channeled out of the charging device. The precipitator receives the plurality of particles from the charging device, and includes a disk having a top surface and an opposite bottom surface, wherein a predetermined voltage is applied to the top surface and the bottom surface to precipitate the plurality of particles.
films on silicon at different annealing temperatures
NASA Astrophysics Data System (ADS)
Zhao, Yan; Zhou, Chunlan; Zhang, Xiang; Zhang, Peng; Dou, Yanan; Wang, Wenjing; Cao, Xingzhong; Wang, Baoyi; Tang, Yehua; Zhou, Su
2013-03-01
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density ( Q f) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Q f can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Q f obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Q f. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiO x /Si interface region decreased with increased temperature. Measurement results of Q f proved that the Al vacancy of the bulk film may not be related to Q f. The defect density in the SiO x region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C.
Superconductivity and charge density wave in ZrTe 3–xSe x
Zhu, Xiangde; Ning, Wei; Li, Lijun; ...
2016-06-02
Charge density wave (CDW), the periodic modulation of the electronic charge density, will open a gap on the Fermi surface that commonly leads to decreased or vanishing conductivity. On the other hand superconductivity, a commonly believed competing order, features a Fermi surface gap that results in infinite conductivity. Here we report that superconductivity emerges upon Se doping in CDW conductor ZrTe 3 when the long range CDW order is gradually suppressed. Superconducting critical temperature T c(x) in ZrTe 3–xSe x (0 ≤ x ≤ 0.1) increases up to 4 K plateau for 0.04 ≤ x ≤ 0.07. Further increase inmore » Se content results in diminishing T c and filametary superconductivity. The CDW modes from Raman spectra are observed in x = 0.04 and 0.1 crystals, where signature of ZrTe 3 CDW order in resistivity vanishes. As a result, the electronic-scattering for high T c crystals is dominated by local CDW fluctuations at high temperatures, the resistivity is linear up to highest measured T = 300 K and contributes to substantial in-plane anisotropy.« less
Devarapalli, Rami Reddy; Debgupta, Joyashish; Pillai, Vijayamohanan K.; Shelke, Manjusha V.
2014-01-01
One-dimensional heterostructure nanoarrays are efficiently promising as high performance electrodes for photo electrochemical (PEC) water splitting applications, wherein it is highly desirable for the electrode to have a broad light absorption, efficient charge separation and redox properties as well as defect free surface with high area suitable for fast interfacial charge transfer. We present highly active and unique photoelectrode for solar H2 production, consisting of silicon nanowires (SiNWs)/TiO2 core-shell structures. SiNWs are passivated to reduce defect sites and protected against oxidation in air or water by forming very thin carbon layer sandwiched between SiNW and TiO2 surfaces. This carbon layer decreases recombination rates and also enhances the interfacial charge transfer between the silicon and TiO2. A systematic investigation of the role of SiNW length and TiO2 thickness on photocurrent reveals enhanced photocurrent density up to 5.97 mA/cm2 at 1.0 V vs.NHE by using C@SiNW/TiO2 nanoarrays with photo electrochemical efficiency of 1.17%. PMID:24810865
Method of adhesion between an oxide layer and a metal layer
Jennison, Dwight R.; Bogicevic, Alexander; Kelber, Jeffry A.; Chambers, Scott A.
2004-09-14
A method of controlling the wetting characteristics and increasing the adhesion between a metal and an oxide layer. By introducing a negatively-charged species to the surface of an oxide layer, layer-by-layer growth of metal deposited onto the oxide surface is promoted, increasing the adhesion strength of the metal-oxide interface. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species. The deposited metal adatoms can thereby bond laterally to the negatively-charged species as well as vertically to the oxide surface as well as react with the negatively charged species, be oxidized, and incorporated on or into the surface of the oxide.
The dynamical properties of a Rydberg hydrogen atom between two parallel metal surfaces
NASA Astrophysics Data System (ADS)
Liu, Wei; Li, Hong-Yun; Yang, Shan-Ying; Lin, Sheng-Lu
2011-03-01
This paper presents the dynamical properties of a Rydberg hydrogen atom between two metal surfaces using phase space analysis methods. The dynamical behaviour of the excited hydrogen atom depends sensitively on the atom—surface distance d. There exists a critical atom—surface distance dc = 1586 a.u. When the atom—surface distance d is larger than the critical distance dc, the image charge potential is less important than the Coulomb potential, the system is near-integrable and the electron motion is regular. As the distance d decreases, the system will tend to be non-integrable and unstable, and the electron might be captured by the metal surfaces. Project supported by the National Natural Science Foundation of China (Grant No. 10774093) and the Natural Science Foundation of Shandong Province (Grant No. ZR2009FZ006).
Human fibrinogen adsorption on positively charged latex particles.
Zeliszewska, Paulina; Bratek-Skicki, Anna; Adamczyk, Zbigniew; Cieśla, Michał
2014-09-23
Fibrinogen (Fb) adsorption on positively charged latex particles (average diameter of 800 nm) was studied using the microelectrophoretic and the concentration depletion methods based on AFM imaging. Monolayers on latex were adsorbed from diluted bulk solutions at pH 7.4 and an ionic strength in the range of 10(-3) to 0.15 M where fibrinogen molecules exhibited an average negative charge. The electrophoretic mobility of the latex after controlled fibrinogen adsorption was systematically measured. A monotonic decrease in the electrophoretic mobility of fibrinogen-covered latex was observed for all ionic strengths. The results of these experiments were interpreted according to the three-dimensional electrokinetic model. It was also determined using the concentration depletion method that fibrinogen adsorption was irreversible and the maximum coverage was equal to 0.6 mg m(-2) for ionic strength 10(-3) M and 1.3 mg m(-2) for ionic strength 0.15 M. The increase of the maximum coverage was confirmed by theoretical modeling based on the random sequential adsorption approach. Paradoxically, the maximum coverage of fibrinogen on positively charged latex particles was more than two times lower than the maximum coverage obtained for negative latex particles (3.2 mg m(-2)) at pH 7.4 and ionic strength of 0.15 M. This was interpreted as a result of the side-on adsorption of fibrinogen molecules with their negatively charged core attached to the positively charged latex surface. The stability and acid base properties of fibrinogen monolayers on latex were also determined in pH cycling experiments where it was observed that there were no irreversible conformational changes in the fibrinogen monolayers. Additionally, the zeta potential of monolayers was more positive than the zeta potential of fibrinogen in the bulk, which proves a heterogeneous charge distribution. These experimental data reveal a new, side-on adsorption mechanism of fibrinogen on positively charged surfaces and confirmed the decisive role of electrostatic interactions in this process.
Liu, Chunyu; Zhang, Dezhong; Li, Zhiqi; Zhang, Xinyuan; Guo, Wenbin; Zhang, Liu; Ruan, Shengping; Long, Yongbing
2017-07-05
To overcome drawbacks of the electron transport layer, such as complex surface defects and unmatched energy levels, we successfully employed a smart semiconductor-metal interfacial nanojunciton in organic solar cells by evaporating an ultrathin Al interlayer onto annealing-free ZnO electron transport layer, resulting in a high fill factor of 73.68% and power conversion efficiency of 9.81%. The construction of ZnO-Al nanojunction could effectively fill the surface defects of ZnO and reduce its work function because of the electron transfer from Al to ZnO by Fermi level equilibrium. The filling of surface defects decreased the interfacial carrier recombination in midgap trap states. The reduced surface work function of ZnO-Al remodulated the interfacial characteristics between ZnO and [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM), decreasing or even eliminating the interfacial barrier against the electron transport, which is beneficial to improve the electron extraction capacity. The filled surface defects and reduced interfacial barrier were realistically observed by photoluminescence measurements of ZnO film and the performance of electron injection devices, respectively. This work provides a simple and effective method to simultaneously solve the problems of surface defects and unmatched energy level for the annealing-free ZnO or other metal oxide semiconductors, paving a way for the future popularization in photovoltaic devices.
Electrostatics-driven shape transitions in soft shells.
Jadhao, Vikram; Thomas, Creighton K; Olvera de la Cruz, Monica
2014-09-02
Manipulating the shape of nanoscale objects in a controllable fashion is at the heart of designing materials that act as building blocks for self-assembly or serve as targeted drug delivery carriers. Inducing shape deformations by controlling external parameters is also an important way of designing biomimetic membranes. In this paper, we demonstrate that electrostatics can be used as a tool to manipulate the shape of soft, closed membranes by tuning environmental conditions such as the electrolyte concentration in the medium. Using a molecular dynamics-based simulated annealing procedure, we investigate charged elastic shells that do not exchange material with their environment, such as elastic membranes formed in emulsions or synthetic nanocontainers. We find that by decreasing the salt concentration or increasing the total charge on the shell's surface, the spherical symmetry is broken, leading to the formation of ellipsoids, discs, and bowls. Shape changes are accompanied by a significant lowering of the electrostatic energy and a rise in the surface area of the shell. To substantiate our simulation findings, we show analytically that a uniformly charged disc has a lower Coulomb energy than a sphere of the same volume. Further, we test the robustness of our results by including the effects of charge renormalization in the analysis of the shape transitions and find the latter to be feasible for a wide range of shell volume fractions.
Chang, Jin; Ogomi, Yuhei; Ding, Chao; Zhang, Yao Hong; Toyoda, Taro; Hayase, Shuzi; Katayama, Kenji; Shen, Qing
2017-03-01
The surface chemistry of colloidal quantum dots (QDs) plays an important role in determining the photoelectric properties of QD films and the corresponding quantum dot heterojunction solar cells (QDHSCs). To investigate the effects of the ligand structure on the photovoltaic performance and exciton dynamics of QDHSCs, PbS QDHSCs were fabricated by the solid state ligand exchange method with mercaptoalkanoic acid as the cross-linking ligand. Temperature-dependent photoluminescence and ultrafast transient absorption spectra show that the electronic coupling and charge transfer rate within QD ensembles were monotonically enhanced as the ligand length decreased. However, in practical QDHSCs, the second shortest ligand 3-mercaptopropionic acid (MPA) showed higher power conversion efficiency than the shortest ligand thioglycolic acid (TGA). This could be attributed to the difference in their surface trap states, supported by thermally stimulated current measurements. Moreover, compared with the non-conjugated ligand MPA, the conjugated ligand 4-mercaptobenzoic acid (MBA) introduces less trap states and has a similar charge transfer rate in QD ensembles, but has poor photovoltaic properties. This unexpected result could be contributed by the QD-ligand orbital mixing, leading to the charge transfer from QDs to ligands instead of charge transfer between adjacent QDs. This work highlights the significant effects of ligand structures on the photovoltaic properties and exciton dynamics of QDHSCs, which would shed light on the further development of QD-based photoelectric devices.
Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth Tri-Tellurides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sacchetti, A.; /Zurich, ETH; Arcangeletti, E.
2009-12-14
We investigate the pressure dependence of the optical properties of CeTe{sub 3}, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe{submore » 3}.« less
Method and system for treating an interior surface of a workpiece using a charged particle beam
Swenson, David Richard
2007-05-23
A method and system of treating an interior surface on an internal cavity of a workpiece using a charged particle beam. A beam deflector surface of a beam deflector is placed within the internal cavity of the workpiece and is used to redirect the charged particle beam toward the interior surface to treat the interior surface.
Effect of anti-biofilm glass-ionomer cement on Streptococcus mutans biofilms.
Wang, Su-Ping; Ge, Yang; Zhou, Xue-Dong; Xu, Hockin Hk; Weir, Michael D; Zhang, Ke-Ke; Wang, Hao-Hao; Hannig, Matthias; Rupf, Stefan; Li, Qian; Cheng, Lei
2016-06-30
Dental restorative materials with antimicrobial properties can inhibit bacterial colonization, which may result in a reduction of caries at tooth-filling interaction zones. This study aimed to develop antibacterial glass-ionomer cements (GIC) containing a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and to investigate their effect on material performance and antibacterial properties. Different mass fractions (0, 1.1% and 2.2%) of DMADDM were incorporated into the GIC. The flexure strength, surface charge density, surface roughness and fluoride release were tested. A Streptococcus mutans biofilm model was used. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm matrix. In addition, biofilm metabolic activity, lactic acid metabolism and the expression of glucosyltransferase genes gtfB, gtfC and gtfD were measured. GIC containing 1.1% and 2.2% DMADDM had flexural strengths matching those of the commercial control (P>0.1). DMADDM was able to increase the surface charge density but reduced surface roughness (P<0.05). The incorporation of 1.1% and 2.2% DMADDM elevated the release of fluoride by the GIC in the first 2 days (P<0.05). The novel DMADDM-modified GIC significantly reduced biofilm metabolic activity (P<0.05) and decreased lactic acid production (P<0.05). The quantitative polymerase chain reaction (qPCR) results showed that the expression of gtfB, gtfC and gtfD decreased when mass fractions of DMADDM increased (P<0.05). EPS staining showed that both the bacteria and EPS in biofilm decreased in the DMADDM groups. The incorporation of DMADDM could modify the properties of GIC to influence the development of S. mutans biofilms. In this study, we investigated the interface properties of antibacterial materials for the first time. GIC containing DMADDM can improve material performance and antibacterial properties and may contribute to the better management of secondary caries.
Determination of molecular configuration by debye length modulation.
Vacic, Aleksandar; Criscione, Jason M; Rajan, Nitin K; Stern, Eric; Fahmy, Tarek M; Reed, Mark A
2011-09-07
Silicon nanowire field effect transistors (FETs) have emerged as ultrasensitive, label-free biodetectors that operate by sensing bound surface charge. However, the ionic strength of the environment (i.e., the Debye length of the solution) dictates the effective magnitude of the surface charge. Here, we show that control of the Debye length determines the spatial extent of sensed bound surface charge on the sensor. We apply this technique to different methods of antibody immobilization, demonstrating different effective distances of induced charge from the sensor surface.
Mapping the surface charge distribution of amyloid fibril
NASA Astrophysics Data System (ADS)
Lee, Gyudo; Lee, Wonseok; Lee, Hyungbeen; Woo Lee, Sang; Sung Yoon, Dae; Eom, Kilho; Kwon, Taeyun
2012-07-01
It is of high importance to measure and map the surface charge distribution of amyloids, since electrostatic interaction between amyloidogenic proteins and biomolecules plays a vital role in amyloidogenesis. In this work, we have measured and mapped the surface charge distributions of amyloids (i.e., β-lactoglobulin fibril) using Kelvin probe force microscopy. It is shown that the surface charge distribution is highly dependent on the conformation of amyloids (e.g., the helical pitch of amyloid fibrils) as well as the pH of a solvent.
Large enhancement of capacitance driven by electrostatic image forces
NASA Astrophysics Data System (ADS)
Loth, Matthew Scott
The purpose of this thesis is to examine the role of electrostatic images in determining the capacitance and the structure of the electrostatic double layer (EDL) formed at the interface of a metal electrode and an electrolyte. Current mean field theories, and the majority of simulations, do not account for ions to form image charges in the metal electrodes and claim that the capacitance of the double layer cannot be larger than that of the Helmholtz capacitor, whose width is equal to the radius of an ion. However, in some experiments, and simulations where the images are included, the apparent width of the capacitor is substantially smaller. Monte Carlo simulations are used to examine the interface between a metal electrode and a room temperature ionic liquid (RTIL) modeled by hard spheres (the "restricted primitive model"). Image charges for each ion are included in the simulated electrode. At moderately low temperatures the capacitance of the metal/RTIL interface is so large that the effective thickness of the electrostatic double-layer is up to 3 times smaller than the ion radius. To interpret these results, an approach is used that is based on the interaction between discrete ions and their image charges, which therefore goes beyond the mean-field approximation. When a voltage is applied across the interface, the strong image attraction causes counterions to condense onto the metal surface to form compact ion-image dipoles. These dipoles repel each other to form a correlated liquid. When the surface density of these dipoles is low, the insertion of an additional dipole does not require much energy. This leads to a large capacitance C that decreases monotonically with voltage V, producing a "bell-shaped" C( V) curve. In the case of a semi-metal electrode, the finite screening radius of the electrode shifts the reflection plane for image charges to the interior of the electrode resulting in a "camel-shaped" C(V) curve, which is parabolic near V = 0, reaches a maximum and then decreases. These predictions are in qualitative agreement with experiment. A similarly simple model is employed to simulate the EDL of superionic crystals. In this case only small cations are mobile and other ions form an oppositely charged background. Simulations show an effective thickness of the EDL that may be 3 times smaller than the ion radius. The weak repulsion of ion-image dipoles again plays a central role in determining the capacitance in this theory, which is in reasonable agreement with experiment. Finally, the problem of a strongly charged, insulating macroion in a dilute solution of multivalent counterions is considered. While an ideal conductor does not exist in the problem, and no images are explicitly included, simulations demonstrate that adsorbed counterions form a strongly correlated liquid of at the surface of the macroion and acts as an effective metal surface. In fact, the surface screens the electric field of distant ions with a negative screening radius. The simulation results serve to confirm existing non-mean-field theories.
Charging Characteristics of an Insulating Hollow Cylinder in Vacuum
NASA Astrophysics Data System (ADS)
Yamamoto, Osamu; Hayashi, Hirotaka; Wadahama, Toshihiko; Takeda, Daisuke; Hamada, Shoji; Ohsawa, Yasuharu
This paper deals with charging characteristics of the inner surface of an insulating hollow cylinder in vacuum. We conducted measurements of electric field strength near the triple points on cathode by using an electrostatic probe. Also we conducted a computer simulation of charging based on the Secondary Electron Emission Avalanche (SEEA) mechanism. These results are compared with those obtained previously for solid cylinders. As a result, we have clarified that hollow cylinders acquire surface charge which is larger than that of solid cylinders. We have also found that charge controlling effect by roughening the inner surface, which have been proved effective to depress charging on the surface of solid cylinders in our previous studies, is limited for hollow cylinders.
Relating Silica Scaling in Reverse Osmosis to Membrane Surface Properties.
Tong, Tiezheng; Zhao, Song; Boo, Chanhee; Hashmi, Sara M; Elimelech, Menachem
2017-04-18
We investigated the relationship between membrane surface properties and silica scaling in reverse osmosis (RO). The effects of membrane hydrophilicity, free energy for heterogeneous nucleation, and surface charge on silica scaling were examined by comparing thin-film composite polyamide membranes grafted with a variety of polymers. Results show that the rate of silica scaling was independent of both membrane hydrophilicity and free energy for heterogeneous nucleation. In contrast, membrane surface charge demonstrated a strong correlation with the extent of silica scaling (R 2 > 0.95, p < 0.001). Positively charged membranes significantly facilitated silica scaling, whereas a more negative membrane surface charge led to reduced scaling. This observation suggests that deposition of negatively charged silica species on the membrane surface plays a critical role in silica scale formation. Our findings provide fundamental insights into the mechanisms governing silica scaling in reverse osmosis and highlight the potential of membrane surface modification as a strategy to reduce silica scaling.
Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo
2013-01-01
Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson’s equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both of the mean-field theory and MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling. PMID:22680474
Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo
2012-04-01
Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect-included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson's equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both the mean-field theory and the MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling.
Yan, Jinlong; Jiang, Tao; Yao, Ying; Lu, Song; Wang, Qilei; Wei, Shiqiang
2016-04-01
Iron oxide (FeO) coated by natural organic matter (NOM) is ubiquitous. The associations of minerals with organic matter (OM) significantly changes their surface properties and reactivity, and thus affect the environmental fate of pollutants, including nutrients (e.g., phosphorus (P)). In this study, ferrihydrite/goethite-humic acid (FH/GE-HA) complexes were prepared and their adsorption characteristics on P at various pH and ionic strength were investigated. The results indicated that the FeO-OM complexes showed a decreased P adsorption capacity in comparison with bare FeO. The maximum adsorption capacity (Qmax) decreased in the order of FH (22.17 mg/g)>FH-HA (5.43 mg/g)>GE (4.67 mg/g)>GE-HA (3.27 mg/g). After coating with HA, the amorphous FH-HA complex still showed higher P adsorption than the crystalline GE-HA complex. The decreased P adsorption observed might be attributed to changes of the FeO surface charges caused by OM association. The dependence of P adsorption on the specific surface area of adsorbents suggests that the FeO component in the complexes is still the main contributor for the adsorption surfaces. The P adsorptions on FeO-HA complexes decreased with increasing initial pH or decreasing initial ionic strength. A strong dependence of P adsorption on ionic strength and pH may demonstrate that outer-sphere complexes between the OM component on the surface and P possibly coexist with inner-sphere surface complexes between the FeO component and P. Therefore, previous over-emphasis on the contributions of original minerals to P immobilization possibly over-estimates the P loading capacity of soils, especially in humic-rich areas. Copyright © 2015. Published by Elsevier B.V.
Battery Power Management in Heavy-duty HEVs based on the Estimated Critical Surface Charge
2011-03-01
health prospects without any penalty on fuel efficiency. Keywords: Lithium - ion battery ; power management; critical surface charge; Lithium-ion...fuel efficiency. 15. SUBJECT TERMS Lithium - ion battery ; power management; critical surface charge; Lithium-ion concentration; estimation; extended...Di Domenico, D., Fiengo, G., and Stefanopoulou, A. (2008) ’ Lithium - ion battery state of charge estimation with a kalman filter based on a
Aggregation and charging of sulfate and amidine latex particles in the presence of oxyanions.
Sugimoto, Takuya; Cao, Tianchi; Szilagyi, Istvan; Borkovec, Michal; Trefalt, Gregor
2018-08-15
Electrophoretic mobility and time resolved light scattering are used to measure the effect on charging and aggregation of amidine and sulfate latex particles of different oxyanions namely, phosphate, arsenate, sulfate, and selenate. In the case of negatively charged sulfate latex particles oxyanions represent the coions, while they represent counterions in the case of the positively charged amidine latex. Repulsive interaction between the sulfate latex surface and the coions results in weak ion specific effects on the charging and aggregation. On the other hand the interaction of oxyanions with the amidine latex surface is highly specific. The monovalent dihydrogen phosphate ion strongly adsorbs to the positively charged surface and reverses the charge of the particle. This charge reversal leads also to the restabilization of the amidine latex suspension at the intermediate phosphate concentrations. In the case of dihydrogen arsenate the adsorption to amidine latex surface is weaker and no charge reversal and restabilization occurs. Similar differences are seen between the sulfate and selenate analogues, where selenate adsorbs more strongly to the surface as compared to the sulfate ion and invokes charge reversal. The present results indicate that ion specificity is much more pronounced in the case of counterions. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakovlev, G. E., E-mail: geyakovlev@etu.ru; Frolov, D. S.; Zubkova, A. V.
2016-03-15
The method of electrochemical capacitance–voltage profiling is used to study boron-implanted silicon structures for CCD matrices with backside illumination. A series of specially prepared structures with different energies and doses of ion implantation and also with various materials used for the coating layers (aluminum, silicon oxide, and their combinations) is studied. The profiles of the depth distribution of majority charge carriers of the studied structures are obtained experimentally. Also, using the Poisson equation and the Fredholm equation of the first kind, the distributions of the charge-carrier concentration and of the electric field in the structures are calculated. On the basismore » of the analysis and comparison of theoretical and experimental concentration profiles, recommendations concerning optimization of the structures’ parameters in order to increase the value of the pulling field and decrease the effect of the surface potential on the transport of charge carriers are suggested.« less
Role of protein surface charge in monellin sweetness.
Xue, Wei-Feng; Szczepankiewicz, Olga; Thulin, Eva; Linse, Sara; Carey, Jannette
2009-03-01
A small number of proteins have the unusual property of tasting intensely sweet. Despite many studies aimed at identifying their sweet taste determinants, the molecular basis of protein sweetness is not fully understood. Recent mutational studies of monellin have implicated positively charged residues in sweetness. In the present work, the effect of overall net charge was investigated using the complementary approach of negative charge alterations. Multiple substitutions of Asp/Asn and Glu/Gln residues radically altered the surface charge of single-chain monellin by removing six negative charges or adding four negative charges. Biophysical characterization using circular dichroism, fluorescence, and two-dimensional NMR demonstrates that the native fold of monellin is preserved in the variant proteins under physiological solution conditions although their stability toward chemical denaturation is altered. A human taste test was employed to determine the sweetness detection threshold of the variants. Removal of negative charges preserves monellin sweetness, whereas added negative charge has a large negative impact on sweetness. Meta-analysis of published charge variants of monellin and other sweet proteins reveals a general trend toward increasing sweetness with increasing positive net charge. Structural mapping of monellin variants identifies a hydrophobic surface predicted to face the receptor where introduced positive or negative charge reduces sweetness, and a polar surface where charges modulate long-range electrostatic complementarity.
Kubiak-Ossowska, Karina; Mulheran, Paul A; Nowak, Wieslaw
2014-08-21
The mechanism of human fibronectin adhesion synergy region (known as integrin binding region) in repeat 9 (FN(III)9) domain adsorption at pH 7 onto various and contrasting model surfaces has been studied using atomistic molecular dynamics simulations. We use an ionic model to mimic mica surface charge density but without a long-range electric field above the surface, a silica model with a long-range electric field similar to that found experimentally, and an Au {111} model with no partial charges or electric field. A detailed description of the adsorption processes and the contrasts between the various model surfaces is provided. In the case of our model silica surface with a long-range electrostatic field, the adsorption is rapid and primarily driven by electrostatics. Because it is negatively charged (-1e), FN(III)9 readily adsorbs to a positively charged surface. However, due to its partial charge distribution, FN(III)9 can also adsorb to the negatively charged mica model because of the absence of a long-range repulsive electric field. The protein dipole moment dictates its contrasting orientation at these surfaces, and the anchoring residues have opposite charges to the surface. Adsorption on the model Au {111} surface is possible, but less specific, and various protein regions might be involved in the interactions with the surface. Despite strongly influencing the protein mobility, adsorption at these model surfaces does not require wholesale FN(III)9 conformational changes, which suggests that the biological activity of the adsorbed protein might be preserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Boya; Zhang, Guixin, E-mail: guixin@mail.tsinghua.edu.cn; Li, Chuanyang
2015-12-15
Surface charge accumulation on insulators under high dc voltage is a major factor that may lead to the reduction of insulation levels in gas insulated devices. In this paper, disc insulators made of Al{sub 2}O{sub 3}-filled epoxy resin were surface fluorinated using a F{sub 2}/N{sub 2} mixture (12.5% F{sub 2}) at 50 °C and 0.1 MPa for different durations of 15 min, 30 min and 60 min. A dc voltage was applied to the insulator for 30 min and the charge density on its surface was measured by an electrostatic probe. The results revealed significant lower surface charge densities on themore » fluorinated insulators in comparison with the original one. Surface conductivity measurements indicated a higher surface conductivity by over three orders of magnitude after fluorination, which would allow the charges to transfer along the surface and thus may suppress their accumulation. Further, attenuated total reflection infrared analysis and surface morphology observations of the samples revealed that the introduction of fluoride groups altered the surface physicochemical properties. These structure changes, especially the physical defects reduced the depth of charge traps in the surface layer, which was verified by the measurement of energy distributions of the electron and hole traps based on the isothermal current theory. The results in this paper demonstrate that fluorination can be a promising and effective method to suppress surface charge accumulation on epoxy insulators in gas insulated devices.« less
Charge heterogeneity of surfaces: mapping and effects on surface forces.
Drelich, Jaroslaw; Wang, Yu U
2011-07-11
The DLVO theory treats the total interaction force between two surfaces in a liquid medium as an arithmetic sum of two components: Lifshitz-van der Waals and electric double layer forces. Despite the success of the DLVO model developed for homogeneous surfaces, a vast majority of surfaces of particles and materials in technological systems are of a heterogeneous nature with a mosaic structure composed of microscopic and sub-microscopic domains of different surface characteristics. In such systems, the heterogeneity of the surface can be more important than the average surface character. Attractions can be stronger, by orders of magnitude, than would be expected from the classical mean-field DLVO model when area-averaged surface charge or potential is employed. Heterogeneity also introduces anisotropy of interactions into colloidal systems, vastly ignored in the past. To detect surface heterogeneities, analytical tools which provide accurate and spatially resolved information about material surface chemistry and potential - particularly at microscopic and sub-microscopic resolutions - are needed. Atomic force microscopy (AFM) offers the opportunity to locally probe not only changes in material surface characteristic but also charges of heterogeneous surfaces through measurements of force-distance curves in electrolyte solutions. Both diffuse-layer charge densities and potentials can be calculated by fitting the experimental data with a DLVO theoretical model. The surface charge characteristics of the heterogeneous substrate as recorded by AFM allow the charge variation to be mapped. Based on the obtained information, computer modeling and simulation can be performed to study the interactions among an ensemble of heterogeneous particles and their collective motions. In this paper, the diffuse-layer charge mapping by the AFM technique is briefly reviewed, and a new Diffuse Interface Field Approach to colloid modeling and simulation is briefly discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Boschloo, Gerrit; Häggman, Leif; Hagfeldt, Anders
2006-07-06
Addition of 4-tert-butylpyridine (4TBP) to redox electrolytes used in dye-sensitized TiO2 solar cells has a large effect on their performance. In an electrolyte containing 0.7 M LiI and 0.05 M I2 in 3-methoxypropionitrile, addition of 0.5 M 4TBP gave an increase of the open-circuit potential of 260 mV. Using charge extraction and electron lifetime measurements, this increases could be attributed to a shift of the TiO2 band edge toward negative potentials (responsible for 60% of the voltage increase) and to an increase of the electron lifetime (40%). At a lower 4TBP concentration the shift of the band edge was similar, but the effect on the electron lifetime was less pronounced. The working mechanism of 4TBP can be summarized as follows: (1) 4TBP affects the surface charge of TiO2 by decreasing the amount of adsorbed protons and/or Li+ ions. (2) It decreases the recombination of electrons in TiO2 with triiodide in the electrolyte by preventing triiodide access to the TiO2 surface and/or by complexation with iodine in the electrolyte.
Interdye Hole Transport Accelerates Recombination in Dye Sensitized Mesoporous Films.
Moia, Davide; Szumska, Anna; Vaissier, Valérie; Planells, Miquel; Robertson, Neil; O'Regan, Brian C; Nelson, Jenny; Barnes, Piers R F
2016-10-12
Charge recombination between oxidized dyes attached to mesoporous TiO 2 and electrons in the TiO 2 was studied in inert electrolytes using transient absorption spectroscopy. Simultaneously, hole transport within the dye monolayers was monitored by transient absorption anisotropy. The rate of recombination decreased when hole transport was inhibited selectively, either by decreasing the dye surface coverage or by changing the electrolyte environment. From Monte Carlo simulations of electron and hole diffusion in a particle, modeled as a cubic structure, we identify the conditions under which hole lifetime depends on the hole diffusion coefficient for the case of normal (disorder free) diffusion. From simulations of transient absorption and transient absorption anisotropy, we find that the rate and the dispersive character of hole transport in the dye monolayer observed spectroscopically can be explained by incomplete coverage and disorder in the monolayer. We show that dispersive transport in the dye monolayer combined with inhomogeneity in the TiO 2 surface reactivity can contribute to the observed stretched electron-hole recombination dynamics and electron density dependence of hole lifetimes. Our experimental and computational analysis of lateral processes at interfaces can be applied to investigate and optimize charge transport and recombination in solar energy conversion devices using electrodes functionalized with molecular light absorbers and catalysts.
The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review
Pan, Yunlu; Zhao, Xuezeng
2014-01-01
Summary The drag of fluid flow at the solid–liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA) and contact angle hysteresis (CAH) of a droplet of deionized (DI) water on a hydrophobic polystyrene (PS) surface were measured with applied direct current (DC) and alternating current (AC) voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS) surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found. PMID:25161839
The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review.
Pan, Yunlu; Bhushan, Bharat; Zhao, Xuezeng
2014-01-01
The drag of fluid flow at the solid-liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA) and contact angle hysteresis (CAH) of a droplet of deionized (DI) water on a hydrophobic polystyrene (PS) surface were measured with applied direct current (DC) and alternating current (AC) voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS) surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found.
Profiling charge complementarity and selectivity for binding at the protein surface.
Sulea, Traian; Purisima, Enrico O
2003-05-01
A novel analysis and representation of the protein surface in terms of electrostatic binding complementarity and selectivity is presented. The charge optimization methodology is applied in a probe-based approach that simulates the binding process to the target protein. The molecular surface is color coded according to calculated optimal charge or according to charge selectivity, i.e., the binding cost of deviating from the optimal charge. The optimal charge profile depends on both the protein shape and charge distribution whereas the charge selectivity profile depends only on protein shape. High selectivity is concentrated in well-shaped concave pockets, whereas solvent-exposed convex regions are not charge selective. This suggests the synergy of charge and shape selectivity hot spots toward molecular selection and recognition, as well as the asymmetry of charge selectivity at the binding interface of biomolecular systems. The charge complementarity and selectivity profiles map relevant electrostatic properties in a readily interpretable way and encode information that is quite different from that visualized in the standard electrostatic potential map of unbound proteins.
NASA Astrophysics Data System (ADS)
Han, D.; Wang, J.
2015-12-01
The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.
Acceleration of osteogenesis by using barium titanate piezoelectric ceramic as an implant material
NASA Astrophysics Data System (ADS)
Furuya, K.; Morita, Y.; Tanaka, K.; Katayama, T.; Nakamachi, E.
2011-04-01
As bone has piezoelectric properties, it is expected that activity of bone cells and bone formation can be accelerated by applying piezoelectric ceramics to implants. Since lead ions, included in ordinary piezoelectric ceramics, are harmful, a barium titanate (BTO) ceramic, which is a lead-free piezoelectric ceramic, was used in this study. The purpose of this study was to investigate piezoelectric effects of surface charge of BTO on cell differentiation under dynamic loading in vitro. Rat bone marrow cells seeded on surfaces of BTO ceramics were cultured in culture medium supplemented with dexamethasone, β-glycerophosphate and ascorbic acid while a dynamic load was applied to the BTO ceramics. After 10 days of cultivation, the cell layer and synthesized matrix on the BTO surfaces were scraped off, and then DNA content, alkaline phosphtase (ALP) activity and calcium content were measured, to evaluate osteogenic differentiation. ALP activity on the charged BTO surface was slightly higher than that on the non-charged BTO surface. The amount of calcium on the charged BTO surface was also higher than that on the non-charged BTO surface. These results showed that the electric charged BTO surface accelerated osteogenesis.
Issa Hamoud, Houeida; Finqueneisel, Gisèle; Azambre, Bruno
2017-06-15
In this study, the removal of binary mixtures of dyes with similar (Orange II/Acid Green 25) or opposite charges (Orange II/Malachite Green) was investigated either by simple adsorption on ceria or by the heterogeneous Fenton reaction in presence of H 2 O 2 . First, the CeO 2 nanocatalyst with high specific surface area (269 m 2 /g) and small crystal size (5 nm) was characterized using XRD, Raman spectroscopy and N 2 physisorption at 77 K. The adsorption of single dyes was studied either from thermodynamic and kinetic viewpoints. It is shown that the adsorption of dyes on ceria surface is highly pH-dependent and followed a pseudo-second order kinetic model. Adsorption isotherms fit well the Langmuir model with a complete monolayer coverage and higher affinity towards Orange II at pH 3, compared to other dyes. For the (Orange II/Acid Green 25) mixture, both the amounts of dyes adsorbed on ceria surface and discoloration rates measured from Fenton experiments were decreased by comparison with single dyes. This is due to the adsorption competition existing onto the same surface Ce x+ sites and the reaction competition with hydroxyl radicals, respectively. The behavior of the (Orange II/Malachite Green) mixture is markedly different. Dyes with opposite charges undergo paired adsorption on ceria as well as homogeneous and heterogeneous coagulation/flocculation processes, but can also be removed by heterogeneous Fenton process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Water-mediated interactions between hydrophobic and ionic species in cylindrical nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaitheeswaran, S.; Reddy, G.; Thirumalai, D.
2009-03-07
We use Metropolis Monte Carlo and umbrella sampling to calculate the free energies of interaction of two methane molecules and their charged derivatives in cylindrical water-filled pores. Confinement strongly alters the interactions between the nonpolar solutes and completely eliminates the solvent separated minimum (SSM) that is seen in bulk water. The free energy profiles show that the methane molecules are either in contact or at separations corresponding to the diameter and the length of the cylindrical pore. Analytic calculations that estimate the entropy of the solutes, which are solvated at the pore surface, qualitatively explain the shape of the freemore » energy profiles. Adding charges of opposite sign and magnitude 0.4e or e (where e is the electronic charge) to the methane molecules decreases their tendency for surface solvation and restores the SSM. We show that confinement induced ion-pair formation occurs whenever l{sub B}/D{approx}O(1), where l{sub B} is the Bjerrum length and D is the pore diameter. The extent of stabilization of the SSM increases with ion charge density as long as l{sub B}/D<1. In pores with D{<=}1.2 nm, in which the water is strongly layered, increasing the charge magnitude from 0.4e to e reduces the stability of the SSM. As a result, ion-pair formation that occurs with negligible probability in the bulk is promoted. In larger diameter pores that can accommodate a complete hydration layer around the solutes, the stability of the SSM is enhanced.« less
Peng, Chunwang; Liu, Jie; Zhao, Daohui; Zhou, Jian
2014-09-30
In this work, the adsorptions of hydrophobin (HFBI) on four different self-assembled monolayers (SAMs) (i.e., CH3-SAM, OH-SAM, COOH-SAM, and NH2-SAM) were investigated by parallel tempering Monte Carlo and molecular dynamics simulations. Simulation results indicate that the orientation of HFBI adsorbed on neutral surfaces is dominated by a hydrophobic dipole. HFBI adsorbs on the hydrophobic CH3-SAM through its hydrophobic patch and adopts a nearly vertical hydrophobic dipole relative to the surface, while it is nearly horizontal when adsorbed on the hydrophilic OH-SAM. For charged SAM surfaces, HFBI adopts a nearly vertical electric dipole relative to the surface. HFBI has the narrowest orientation distribution on the CH3-SAM, and thus can form an ordered monolayer and reverse the wettability of the surface. For HFBI adsorption on charged SAMs, the adsorption strength weakens as the surface charge density increases. Compared with those on other SAMs, a larger area of the hydrophobic patch is exposed to the solution when HFBI adsorbs on the NH2-SAM. This leads to an increase of the hydrophobicity of the surface, which is consistent with the experimental results. The binding of HFBI to the CH3-SAM is mainly through hydrophobic interactions, while it is mediated through a hydration water layer near the surface for the OH-SAM. For the charged SAM surfaces, the adsorption is mainly induced by electrostatic interactions between the charged surfaces and the oppositely charged residues. The effect of a hydrophobic dipole on protein adsorption onto hydrophobic surfaces is similar to that of an electric dipole for charged surfaces. Therefore, the hydrophobic dipole may be applied to predict the probable orientations of protein adsorbed on hydrophobic surfaces.
Determination of Protein Surface Hydration by Systematic Charge Mutations
NASA Astrophysics Data System (ADS)
Yang, Jin; Jia, Menghui; Qin, Yangzhong; Wang, Dihao; Pan, Haifeng; Wang, Lijuan; Xu, Jianhua; Zhong, Dongping; Dongping Zhong Collaboration; Jianhua Xu Collaboration
Protein surface hydration is critical to its structural stability, flexibility, dynamics and function. Recent observations of surface solvation on picosecond time scales have evoked debate on the origin of such relatively slow motions, from hydration water or protein charged sidechains, especially with molecular dynamics simulations. Here, we used a unique nuclease with a single tryptophan as a local probe and systematically mutated neighboring three charged residues to differentiate the contributions from hydration water and charged sidechains. By mutations of alternative one and two and all three charged residues, we observed slight increases in the total tryptophan Stokes shifts with less neighboring charged residue(s) and found insensitivity of charged sidechains to the relaxation patterns. The dynamics is correlated with hydration water relaxation with the slowest time in a dense charged environment and the fastest time at a hydrophobic site. On such picosecond time scales, the protein surface motion is restricted. The total Stokes shifts are dominantly from hydration water relaxation and the slow dynamics is from water-driven relaxation, coupled with local protein fluctuations.
Gritti, Fabrice; Guiochon, Georges
2013-03-22
The adsorption behaviors of a neutral (caffeine) and a positively charged compound (nortriptylinium) are investigated on two RPLC/hybrid stationary phases, eluted with a low ionic strength buffer (phosphate buffer, W(S)pH 2.63, I=10mM). The first phase, bridge ethylene hybrid (BEH), is neutral at all pHs whereas the second, charged surface hybrid (CSH), contains a protonated ligand at W(W)pH <7. The band profiles of these two compounds eluted by mixture of acetonitrile and water were recorded under overloaded conditions. The adsorption isotherms of the neutral compound on both columns were well accounted for by a heterogeneous Linear-Langmuir (LL) model, which has an adsorption-desorption equilibrium constants about twice larger for caffeine on the CSH than on the BEH, due to charge-dipole interactions. In contrast, at low loadings (0.3 and 1.2μL, C=30g/L), the adsorption isotherm of the charged compound can be accounted for by a homogeneous electrostatically modified Langmuir (EML) or by a heterogeneous bi-EML implicit isotherms onto the CSH and BEH adsorbent, respectively. Electrostatic repulsions definitely account the lesser retention of the ionizable compound on CSH than on BEH. This is explained by the surface potential of CSH-C18 at 20mV and by the subsequent decrease of the equilibrium constant of weak adsorption sites (C18 environment) and removal of the strong adsorption sites (accessible silanols). At the highest sample loadings (5 and 20μL, C=30g/L), the EML and the bi-EML isotherms failed because some adsorbate-adsorbate interactions take place when bulk concentrations exceed 0.2g/L. The experimental data were then successively fitted to an empirical heterogeneous Langmuir-Moreau (LM) explicit isotherm. The best saturation capacities of the empirical heterogeneous LM isotherm is consistent with the manufacturer's estimate of the surface concentration of residual silanols onto the BEH- and CSH-C18 endcapped adsorbent (<0.1μmol/m(2)). Copyright © 2013 Elsevier B.V. All rights reserved.
Study of the adsorbed layer on a solid electrode surface by specular reflection measurement
NASA Astrophysics Data System (ADS)
Kusu, Fumiyo; Takamura, Kiyoko
1985-07-01
Specular reflection measurements were carried out to study the adsorbed layers of certain heterocyclic compounds such as adenine, barbital, 2'-deoxyadenosine, phenobarbital, pyridine and thymine. When pyridine was present in 0.1M NaClO 4, a marked decrease in the reflectivity of a gold electrode was observed. In the potential range near the point of zero charge on the reflectivity-potential curve, the decrease was due to the adsorption of pyridine. Assuming the reflectivity change to be proportional to the surface coverage, the potential and concentration dependence of pyridine adsorption was determined and analysed on the basis of a Langmuir-type adsorption isotherm. The refractive indices and extinction coefficients for the adsorbed layers of the compounds investigated were evaluated using the observed reflectivity change, according to relations proposed by McIntyre and Aspnes.
Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study
USDA-ARS?s Scientific Manuscript database
We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...
Roelofs, Andreas; Hong, Seungbum
2018-02-06
A method for rapid imaging of a material specimen includes positioning a tip to contact the material specimen, and applying a force to a surface of the material specimen via the tip. In addition, the method includes moving the tip across the surface of the material specimen while removing electrical charge therefrom, generating a signal produced by contact between the tip and the surface, and detecting, based on the data, the removed electrical charge induced through the tip during movement of the tip across the surface. The method further includes measuring the detected electrical charge.
Variable Charge Soils: Mineralogy and Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Nik; Van Ranst, Eric; Noble, Andrew
2003-11-01
Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered variable charge soils (2). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH, ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate minerals such as kaolinite, mica, andmore » hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid. Highly weathered soils usually undergo isoeletric weathering and reach a “zero net charge” stage during their development. They have a slightly acidic to acidic soil solution pH, which is close to either point of zero net charge (PZNC) (3) or point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems. The coexistence and interactions of oppositely charged surfaces or particles confers a different pattern of physical and chemical behavior on the soil, relatively to a homogeneously charged system of temperate regions. In some variable charge soils (Oxisols and some Ultisols developed on ferromagnesian-rich parent materials) the surfaces of phyllosilicates are coated to a lesser or greater extent by amorphous or crystalline, oppositely charged nanoparticles of Fe and Al oxides. These coatings exhibit a high reactive surface area and help cementing larger particles with one another. As a result of these electrostatic interactions, stable microaggregates that are difficult to disperse are formed in variable charge soils. Most of highly weathered soils have reached the “advanced stage” of Jackson-Sherman weathering sequence that is characterized by the removal of Na, K, Ca, Mg, and Fe(II), the presence of Fe and Al polymers, and very dilute soil solutions with an ionic strength (IS) of less than 1 mmol L-1. The inter-penetration or overlapping of the diffuse double layers on oppositely charged surfaces may occur in these dilute systems. These diffuse layer interactions may affect the magnitude of the effective charge, i.e., the counter-ion charge (4). In addition, salt adsorption, which is defined as the simultaneous adsorption in equivalent amounts of the cation and anion of an electrolyte with no net release of other ions into the soil solution, appears to be a common phenomenon in these soils. They act as cation- and anion-exchangers and as salt-sorbers. The magnitude of salt adsorption depends strongly on initial IS in the soil solution and the presence in appreciable amounts of oppositely charged surfaces. Among the authors that have made illustrious contributions towards a better understanding of these fascinating soil systems are S. Matson, R.K. Schofield, van Olphen, M.E. Sumner, G.W. Thomas, G.P. Gillman, G. Uehara, B.K.G. Theng, K. Wada, N.J. Barrow, J.W. Bowden, R.J. Hunter and G. Sposito. This entry is mainly based on publications by these authors.« less
Effect of Surfaces on Amyloid Fibril Formation
Moores, Bradley; Drolle, Elizabeth; Attwood, Simon J.; Simons, Janet; Leonenko, Zoya
2011-01-01
Using atomic force microscopy (AFM) we investigated the interaction of amyloid beta (Aβ) (1–42) peptide with chemically modified surfaces in order to better understand the mechanism of amyloid toxicity, which involves interaction of amyloid with cell membrane surfaces. We compared the structure and density of Aβ fibrils on positively and negatively charged as well as hydrophobic chemically-modified surfaces at physiologically relevant conditions. We report that due to the complex distribution of charge and hydrophobicity amyloid oligomers bind to all types of surfaces investigated (CH3, COOH, and NH2) although the charge and hydrophobicity of surfaces affected the structure and size of amyloid deposits as well as surface coverage. Hydrophobic surfaces promote formation of spherical amorphous clusters, while charged surfaces promote protofibril formation. We used the nonlinear Poisson-Boltzmann equation (PBE) approach to analyze the electrostatic interactions of amyloid monomers and oligomers with modified surfaces to complement our AFM data. PMID:22016789
Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces
NASA Astrophysics Data System (ADS)
Xie, Yun; Zhou, Jian; Jiang, Shaoyi
2010-02-01
In this work, the parallel tempering Monte Carlo (PTMC) algorithm is applied to accurately and efficiently identify the global-minimum-energy orientation of a protein adsorbed on a surface in a single simulation. When applying the PTMC method to simulate lysozyme orientation on charged surfaces, it is found that lysozyme could easily be adsorbed on negatively charged surfaces with "side-on" and "back-on" orientations. When driven by dominant electrostatic interactions, lysozyme tends to be adsorbed on negatively charged surfaces with the side-on orientation for which the active site of lysozyme faces sideways. The side-on orientation agrees well with the experimental results where the adsorbed orientation of lysozyme is determined by electrostatic interactions. As the contribution from van der Waals interactions gradually dominates, the back-on orientation becomes the preferred one. For this orientation, the active site of lysozyme faces outward, which conforms to the experimental results where the orientation of adsorbed lysozyme is co-determined by electrostatic interactions and van der Waals interactions. It is also found that despite of its net positive charge, lysozyme could be adsorbed on positively charged surfaces with both "end-on" and back-on orientations owing to the nonuniform charge distribution over lysozyme surface and the screening effect from ions in solution. The PTMC simulation method provides a way to determine the preferred orientation of proteins on surfaces for biosensor and biomaterial applications.
Anumalla, Bramhini; Prabhu, N Prakash
2018-01-25
When organisms are subjected to stress conditions, one of their adaptive responses is accumulation of small organic molecules called osmolytes. These osmolytes affect the structure and stability of the biological macromolecules including proteins. The present study examines the effect of a negatively charged amino acid osmolyte, glutamate (Glu), on two model proteins, ribonuclease A (RNase A) and α-lactalbumin (α-LA), which have positive and negative surface charges at pH 7, respectively. These proteins follow two-state unfolding transitions during both heat and chemical induced denaturation processes. The addition of Glu stabilizes the proteins against temperature and induces an early equilibrium intermediate during unfolding. The stability is found to be enthalpy-driven, and the free energy of stabilization is more for α-LA compared to RNase A. The decrease in the partial molar volume and compressibility of both of the proteins in the presence of Glu suggests that the proteins attain a more compact state through surface hydration which could provide a more stable conformation. This is also supported by molecule dynamic simulation studies which demonstrate that the water density around the proteins is increased upon the addition of Glu. Further, the intermediates could be completely destabilized by lower concentrations (∼0.5 M) of guanidinium chloride and salt. However, urea subverts the Glu-induced intermediate formed by α-LA, whereas it only slightly destabilizes in the case of RNase A which has a positive surface charge and could possess charge-charge interactions with Glu. This suggests that, apart from hydration, columbic interactions might also contribute to the stability of the intermediate. Gdm-induced denaturation of RNase A and α-LA in the absence and the presence of Glu at different temperatures was carried out. These results also show the Glu-induced stabilization of both of the proteins; however, all of the unfolding transitions followed two-state transitions during chemical denaturation. The extent of stability exerted by Glu is higher for RNase A at higher temperature, whereas it provides more stability for α-LA at lower temperature. Thus, the experiments indicate that Glu induces a thermal equilibrium intermediate and increases the thermodynamic stability of proteins irrespective of their surface charges. The extent of stability varies between the proteins in a temperature-dependent manner.
Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties.
Doktorova, Milka; Heberle, Frederick A; Kingston, Richard L; Khelashvili, George; Cuendet, Michel A; Wen, Yi; Katsaras, John; Feigenson, Gerald W; Vogt, Volker M; Dick, Robert A
2017-11-07
Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein's matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here, using a broad set of in vitro and in silico techniques we addressed molecular mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
PALS and SPM/EFM investigation of charged nanoporous electret films
NASA Astrophysics Data System (ADS)
Chiang, Dar-Ming; Liu, Wen-Liang; Chen, Jen-Luan; Susuki, Ryoichi
2005-08-01
The electret properties of nanoporous Teflon-FEP films, fabricated by the super-critical fluids method and charged by the corona method at room temperature, are investigated. PALS and SAXS are applied first to examine the charge characteristics of a free volume of electret materials. The topography and surface charges of electret materials are determined by scanning probe microscopy and electric field microscopy, respectively. The experimental results reveal that the interior surface areas of the pores of the electret materials influence the retention and stability of charge. Initial and aged surface charge was increased by factors of two and ten, with and without nanoporous Teflon-FEP films, respectively.
NASA Astrophysics Data System (ADS)
Yang, Dan; Qiu, Wenmei; Xu, Jingcai; Han, Yanbing; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Ji; Ge, Hongliang; Wang, Xinqing
2015-12-01
Modifications with different acids (HNO3, H2SO4, HCl and HF, respectively) were introduced to treat the activated carbons (ACs) surface. The microstructures and surface chemical properties were discussed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), ASAP, Raman spectra and Fourier transform infrared (FTIR) spectra. The ACs electrode-based supercapacitors were assembled with 6 mol ṡ L-1 KOH electrolyte. The electrochemical properties were studied by galvanostatic charge-discharge and cyclic voltammetry. The results indicated that although the BET surface area of modified ACs decreased, the functional groups were introduced and the ash contents were reduced on the surface of ACs, receiving larger specific capacitance to initial AC. The specific capacitance of ACs modified with HCl, H2SO4, HF and HNO3 increased by 31.4%, 23%, 21% and 11.6%, respectively.
Solar Wind Access to Lunar Polar Craters: Feedback Between Surface Charging and Plasma Expansion
NASA Technical Reports Server (NTRS)
Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Jackson, T. L.
2011-01-01
Determining the plasma environment within permanently shadowed lunar craters is critical to understanding local processes such as surface charging, electrostatic dust transport, volatile sequestration, and space weathering. In order to investigate the nature of this plasma environment, the first two-dimensional kinetic simulations of solar wind expansion into a lunar crater with a self-consistent plasma-surface interaction have been undertaken. The present results reveal how the plasma expansion into a crater couples with the electrically-charged lunar surface to produce a quasi-steady wake structure. In particular, there is a negative feedback between surface charging and ambipolar wake potential that allows an equilibrium to be achieved, with secondary electron emission strongly moderating the process. A range of secondary electron yields is explored, and two distinct limits are highlighted in which either surface charging or ambipoiar expansion is responsible for determining the overall wake structure.
Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Density and Surface Tension
NASA Astrophysics Data System (ADS)
Yan, Zhiming; Lv, Xuewei; Pang, Zhengde; Lv, Xueming; Bai, Chenguang
2018-03-01
The effects of the Al2O3 concentration and Al2O3/SiO2 ratio on the density and surface tension of molten aluminosilicate CaO-SiO2-Al2O3-9 mass pct MgO-1 mass pct TiO2 slag were investigated at temperatures from 1723 K to 1823 K (1450 °C to 1550 °C) using the Archimedean method and the maximum bubble pressure (MBP) technique, respectively. The mechanism of the changes in density and surface tension with composition was analyzed from the viewpoint of the degree of polymerization in the structure and the types of oxygen species in the melts. At a fixed CaO/SiO2 ratio of 1.20, the density decreased with increasing Al2O3 content up to 25 mass pct, subsequently increasing. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.92 caused an increase in the density at a fixed CaO content, and the density decreased slightly when the Al2O3/SiO2 ratio was greater than 0.92. Based on the structural information, the density decreased when the Al2O3 content enhanced the network structure and increased when the (Q 2 + Q 3)/(Q 0 + Q 1) ratio and structural complexity decreased. The surface tension increased with increasing Al2O3 content and Al2O3/SiO2 ratio. On the one hand, the surface-active component of SiO2 decreased; on the other hand, the concentration of [AlO4]5- tetrahedra and metal cations that act as charge compensators increased at the melt surface. A model based on the anionic and cationic radii and the Butler equation was employed to predict the surface tension, and an iso-surface tension diagram was obtained at 1773 K (1500 °C).
Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Density and Surface Tension
NASA Astrophysics Data System (ADS)
Yan, Zhiming; Lv, Xuewei; Pang, Zhengde; Lv, Xueming; Bai, Chenguang
2018-06-01
The effects of the Al2O3 concentration and Al2O3/SiO2 ratio on the density and surface tension of molten aluminosilicate CaO-SiO2-Al2O3-9 mass pct MgO-1 mass pct TiO2 slag were investigated at temperatures from 1723 K to 1823 K (1450 °C to 1550 °C) using the Archimedean method and the maximum bubble pressure (MBP) technique, respectively. The mechanism of the changes in density and surface tension with composition was analyzed from the viewpoint of the degree of polymerization in the structure and the types of oxygen species in the melts. At a fixed CaO/SiO2 ratio of 1.20, the density decreased with increasing Al2O3 content up to 25 mass pct, subsequently increasing. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.92 caused an increase in the density at a fixed CaO content, and the density decreased slightly when the Al2O3/SiO2 ratio was greater than 0.92. Based on the structural information, the density decreased when the Al2O3 content enhanced the network structure and increased when the ( Q 2 + Q 3)/( Q 0 + Q 1) ratio and structural complexity decreased. The surface tension increased with increasing Al2O3 content and Al2O3/SiO2 ratio. On the one hand, the surface-active component of SiO2 decreased; on the other hand, the concentration of [AlO4]5- tetrahedra and metal cations that act as charge compensators increased at the melt surface. A model based on the anionic and cationic radii and the Butler equation was employed to predict the surface tension, and an iso-surface tension diagram was obtained at 1773 K (1500 °C).
Nap, R J; Tagliazucchi, M; Szleifer, I
2014-01-14
This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads to systematic, but in general small, corrections to earlier theoretical predictions describing the behavior of weak polyelectrolyte layers. However, polyelectrolyte uncharging results in a decrease in the concentration of counterions and inclusion of the Born Energy can result in a substantial decrease of the counterion concentration. The effect of considering the Born energy contribution is explored for end-grafted weak polyelectrolyte layers by calculating experimental observables which are known to depend on the presence of charges within the polyelectrolyte layer: inclusion of the Born energy contribution leads to a decrease in the capacitance of polyelectrolyte-modified electrodes, a decrease of conductivity of polyelectrolyte-modified nanopores and an increase in the repulsion exerted by a planar polyelectrolyte layer confined by an opposing wall.
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.
2011-06-01
Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ˜550 °C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M2,3VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 °C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fazleev, N. G.; Department of Physics, Kazan State University, Kazan 420008; Nadesalingam, M. P.
2011-06-01
Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The PAES intensity then decreases monotonically as the annealing temperature is increased to {approx}550 deg. C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M{sub 2,3}VV and O KLL Auger transitions. PAESmore » results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 deg. C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.« less
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2018-05-01
The dispersion properties of surface dust ion-acoustic waves in a self-gravitating magnetized dusty plasma layer with the (r, q) distribution are investigated. The result shows that the wave frequency of the symmetric mode in the plasma layer decreases with an increase in the wave number. It is also shown that the wave frequency of the symmetric mode decreases with an increase in the spectral index r. However, the wave frequency of the anti-symmetric mode increases with an increase in the wave number. It is also found that the anti-symmetric mode wave frequency increases with an increase in the spectral index r. In addition, it is found that the influence of the self-gravitation on the symmetric mode wave frequency decreases with increasing scaled Jeans frequency. Moreover, it is found that the wave frequency of the symmetric mode increases with an increase in the dust charge; however, the anti-symmetric mode shows opposite behavior.
Microelectrophoretic study of calcium oxalate monohydrate in macromolecular solutions
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.
1987-01-01
Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopolysaccharides have greater affinity for the COM surface than the proteins. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.
Fluorination of Boron-Doped Diamond Film Electrodes for Minimization of Perchlorate Formation.
Gayen, Pralay; Chaplin, Brian P
2017-08-23
This research investigated the effects of surface fluorination on both rates of organic compound oxidation (phenol and terephthalic acid (TA)) and ClO 4 - formation at boron-doped diamond (BDD) film anodes at 22 °C. Different fluorination methods (i.e., electrochemical oxidation with perfluorooctanoic acid (PFOA), radio frequency plasma, and silanization) were used to incorporate fluorinated moieties on the BDD surface, which was confirmed by X-ray photoelectron spectroscopy (XPS). The silanization method was found to be the most effective fluorination method using a 1H,1H,2H,2H-perfluorodecyltrichlorosilane precursor to form a self-assembled monolayer (SAM) on the oxygenated BDD surface. The ClO 4 - formation decreased from rates of 0.45 ± 0.03 mmol m -2 min -1 during 1 mM NaClO 3 oxidation and 0.28 ± 0.01 mmol m -2 min -1 during 10 mM NaCl oxidation on the BDD electrode to below detectable levels (<0.12 μmoles m -2 min -1 ) for the BDD electrode functionalized by a 1H,1H,2H,2H-perfluorodecyltrichlorosilane SAM. These decreases in rates corresponded to 99.94 and 99.85% decreases in selectivity for ClO 4 - formation during the electrolysis of 10 mM NaCl and 1 mM NaClO 3 electrolytes, respectively. By contrast, the oxidation rates of phenol were reduced by only 16.3% in the NaCl electrolyte and 61% in a nonreactive 0.1 M KH 2 PO 4 electrolyte. Cyclic voltammetry with Fe(CN) 6 3-/4- and Fe 3+/2+ redox couples indicated that the long fluorinated chains created a blocking layer on the BDD surface that inhibited charge transfer via steric hindrance and hydrophobic effects. The surface coverages and thicknesses of the fluorinated films controlled the charge transfer rates, which was confirmed by estimates of film thicknesses using XPS and density functional theory simulations. The aliphatic silanized electrode also showed very high stability during OH • production. Perchlorate formation rates were below the detection limit (<0.12 μmoles m -2 min -1 ) for up to 10 consecutive NaClO 3 oxidation experiments.
NASA Astrophysics Data System (ADS)
Suo, Xinkun; Abdoli, Leila; Liu, Yi; Xia, Peng; Yang, Guanjun; Li, Hua
2017-04-01
Copper coatings were fabricated on stainless steel plates by cold spraying. Attachment and colonization of Bacillus sp. on their surfaces in artificial seawater were characterized, and their effects on anticorrosion performances of the coatings were examined. Attached bacteria were observed using field emission scanning electron microscopy. Electrochemical behaviors including potentiodynamic polarization and electrochemical impedance spectroscopy with/without bacterial attachment were evaluated using commercial electrochemical analysis station Modulab. Results show that Bacillus sp. opt to settle on low-lying spots of the coating surfaces in early stage, followed by recruitment and attachment of extracellular polymeric substances (EPS) secreted through metabolism of Bacillus sp. The bacteria survive with the protection of EPS. An attachment model is proposed to illustrate the bacterial behaviors on the surfaces of the coatings. Electrochemical data show that current density under Bacillus sp. environment decreases compared to that without the bacteria. Charge-transfer resistance increases markedly in bacteria-containing seawater, suggesting that corrosion resistance increases and corrosion rate decreases. The influencing mechanism of bacteria settlement on corrosion resistance of the cold-sprayed copper coatings was discussed and elucidated.
Structural charge site influence on the interlayer hydration of expandable three-sheet clay minerals
Kerns, Raymond L.; Mankin, Charles J.
1968-01-01
Previous investigations have demonstrated the influences of interlayer cation composition, relative humidity, temperature, and magnitude of interlayer surface charge on the interlayer hydration of montmorillonites and vermiculites. It has been suggested that the sites of layer charge deficiencies may also have an influence upon the amount of hydration that can take place in the interlayers of expandable clay minerals. If the interlayer cation-to-layer bonds are considered as ideally electrostatic, the magnitude of the forces resisting expansion may be expressed as a form of Coulomb's law. If this effect is significant, expandable structures in which the charge-deficiency sites are predominantly in the tetrahedral sheet should have less pronounced swelling properties than should structures possessing charge deficiencies located primarily in the octahedral sheet.Three samples that differed in location of layer charge sites were selected for study. An important selection criterion was a non-correlation between tetrahedral charge sites and high surface-charge density, and between octahedral charge sites and low surface-charge density.The effects of differences in interlayer cation composition were eliminated by saturating portions of each sample with the same cations. Equilibrium (001) d values at controlled constant humidities were used as a measure of the relative degree of interlayer hydration.Although no correlation could be made between the degree of interlayer hydration and total surface-charge density, the investigation does not eliminate total surface-charge density as being significant to the swelling properties of three-sheet clay-mineral structures. The results do indicate a correlation between more intense expandability and predominance of charge deficiencies in the octahedral sheet. Conversely, less intense swelling behavior is associated with predominantly tetrahedral charge deficiencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.
Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagornov, Yu. S., E-mail: Nagornov.Yuri@gmail.com; Murashev, V. N.
2016-01-15
The prospects of β voltaics as electric-power sources for semiconductor circuits are considered. Experimental studies show that charging of the surface and a decrease in the electrovoltaic power are important. Simulation of the β-voltaic effect induced by electrons from a nickel-63 source on silicon pin structures is performed; it is shown that the coefficient of the collection of generated charge carriers can be as high as 13%. The dose dependences of the performance efficiency of silicon β-voltaic structures are determined for the case of irradiation with α particles and γ-ray photons; it is shown that 1.3 × 10{sup 14} andmore » 10{sup 20} cm{sup –2}, respectively, are the threshold doses, above which a rapid decrease in efficiency occurs. The optimal parameters of microchannel structures in β-voltaic electronics, in which the width of the channels and the distance between them correspond to 3 and 10 μm, are determined.« less
The radiation environment on the Moon from galactic cosmic rays in a lunar habitat.
Jia, Y; Lin, Z W
2010-02-01
We calculated how the radiation environment in a habitat on the surface of the Moon would have depended on the thickness of the habitat in the 1977 galactic cosmic-ray environment. The Geant4 Monte Carlo transport code was used, and a hemispherical dome made of lunar regolith was used to simulate the lunar habitat. We investigated the effective dose from primary and secondary particles including nuclei from protons up to nickel, neutrons, charged pions, photons, electrons and positrons. The total effective dose showed a strong decrease with the thickness of the habitat dome. However, the effective dose values from secondary neutrons, charged pions, photons, electrons and positrons all showed a strong increase followed by a gradual decrease with the habitat thickness. The fraction of the summed effective dose from these secondary particles in the total effective dose increased with the habitat thickness, from approximately 5% for the no-habitat case to about 47% for the habitat with an areal thickness of 100 g/cm(2).
NASA Astrophysics Data System (ADS)
Tu, Xiuwen
2008-10-01
Several novel phenomena at the single-atom and single-molecule level occurring on the surfaces of single crystals were studied with home-built low temperature scanning tunneling microscopes. The results revealed intriguing properties of single atoms and single molecules, including nonlinearity, resonance, charging, and motion. First, negative differential resistance (NDR) was observed in the dI/dV spectra for single copper-phthalocyanine (CuPc) molecules adsorbed on one- and two-layer sodium bromide (NaBr), but not for single CuPc molecules adsorbed on three-layer NaBr, all grown on a NiAl(110) surface. This transition from NDR to the absence of NDR was explained as the result of competing effects in the double-barrier tunnel junction (DBTJ) and was reproduced in a calculation based on a resonant-tunneling model. Second, the nonlinearity of the STM junction due to a single manganese (Mn) atom or MnCO molecule adsorbed on a NiAl(110) surface was used to rectify microwave irradiation. The resulting rectification current was shown to be sensitive to the spin-splitting of the electronic states of the Mn atom and to the vibrations of the MnCO molecule. Next, the ordering of cesium (Cs) atoms adsorbed on a Au(111) surface and a NiAl(110) surface was imaged in real space. Because of charge transfer to the substrates, Cs adatoms were positively charged on both surfaces. Even at 12 K, Cs adatoms were able to move and adjust according to coverage. On Au(111), the Cs first layer had a quasi-hexagonal lattice and islands of the second Cs layer did not appear until the first was completed. On NiAl(110), a locally disordered Cs first layer was observed before a locally ordered layer appeared at higher coverages. The cation-pi interactions were then studied at the single molecular level. We were able to form cation-pi complexes such as Cs···DSB, Cs···DSB···Cs, Rb···DSB, and Rb···ZnEtiol controllably by manipulation with the STM tip. We could also separate these complexes controllably by voltage pulses. STM imaging and spectroscopy revealed precise information about the atomic and electronic structure of these cation-pi complexes. Finally, electron transport through single atoms and molecules in a double-barrier tunnel junction (DBTJ) was examined. Charge bistability was observed for single ZnEtioI molecules adsorbed in several different conformations on ultrathin aluminum oxide. A sudden decrease in local apparent barrier height (LABH) was observed at the onset of an adsorbate electronic orbital for single ZnEtioI molecules and Cs atoms supported by the ultrathin aluminum oxide. The resonant-tunneling model, which was proposed to explain the transition from NDR to the absence of NDR, was found useful in explaining the sudden decrease in LABH, too. NDR, bipolar tunneling, and vibronic states were also observed and discussed in the context of DBTJ.
Chen, Liang; Mccrate, Joseph M.; Lee, James C-M.; Li, Hao
2011-01-01
The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles surface charge was varied by the surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FTIR) confirmed the adsorption and binding of the carboxylic acids on HAP nanoparticle surface; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate cell membrane due to the larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of the HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles shows strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular uptake of HAP nanoparticles and the different uptake also influence the behavior of cells. These in-vitro results may also provide useful information for investigations of HAP nanoparticles applications in the gene delivery and intracellular drug delivery. PMID:21289408
NASA Astrophysics Data System (ADS)
Johnson, Grant; Priest, Thomas; Laskin, Julia
2012-02-01
Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Gold clusters were synthesized in methanol solution by reduction of a gold precursor with a weak reducing agent in the presence of a diphosphine capping ligand. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (SIMS) it is demonstrated that the cluster retains its 3+ charge state when soft landed onto the surface of a fluorinated self assembled monolayer on gold. In contrast, when deposited onto carboxylic acid terminated and conventional alkyl thiol surfaces on gold the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the surface have been investigated using in-situ Fourier Transform Ion Cyclotron Resonance SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the fluorinated monolayer surface while an almost instantaneous neutralization takes place on the surface of the alkyl thiol monolayer. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto selected substrates.
Kinetics of electron-beam dispersion of fullerite C60
NASA Astrophysics Data System (ADS)
Razanau, Ihar; Mieno, Tetsu; Kazachenko, Victor
2012-06-01
Electron-beam dispersion of pressed fullerite C60 targets in vacuum leads to the deposition of thin films containing polymeric forms of C60. The aim of the present report is to analyze physical-chemical processes in the fullerite target during its electron-beam dispersion through the analysis of the kinetics of the radiation temperature of the target surface, the coating growth rate and the density of negative current on the substrate. It was shown that the induction stage of the process is determined by the negative charging and radiation-induced modification and heating of the target. The transitional stage is characterized by nonstationary sublimation of the target material through the pores in the modified surface layer and release of the accumulated negative charge. Stabilization of the process parameters owing to the convection cooling of the target by the sublimation products and the decrease in the pressure inside the microcavities beneath the pores leads to a quasi-stationary stage of target sublimation and deposition of a coating containing polymeric forms of C60.
Mechanistic elucidation of thermal runaway in potassium-ion batteries
NASA Astrophysics Data System (ADS)
Adams, Ryan A.; Varma, Arvind; Pol, Vilas G.
2018-01-01
For the first time, thermal runaway of charged graphite anodes for K-ion batteries is investigated, using differential scanning calorimetry (DSC) to probe the exothermic degradation reactions. Investigated parameters such as state of charge, cycle number, surface area, and binder demonstrate strong influences on the DSC profiles. Thermal runaway initiates at 100 °C owing to KxC8 - electrolyte reactions, but the K-ion graphite anode evolves significantly less heat as compared to the analogous Li-ion system (395 J g-1 vs. 1048 J g-1). The large volumetric expansion of graphite during potassiation cracks the SEI layer, enabling contact and reaction of KC8 - electrolyte, which diminishes with cycle number due to continuous SEI growth. High surface area graphite decreases the total heat generation, owing to thermal stability of the K-ion SEI layer. These findings illustrate the dynamic nature of K-ion thermal runaway and its many contrasts with the Li-ion graphite system, permitting possible engineering solutions for safer batteries.
A Spacecraft Charging Capability for SXTF.
1979-01-17
surfaces can charge up. ’Iiiis differential charging of satellite surfaces can cause vacutum sparks , and dielectric breakdowns, and wi 11 effect the S...times required to reach steady charge state in the spacecraft internal dielectrics upon electron irradiation. In space , typical times (order of magni...WORDS (Continue on reverse side it necessary end Identify by block nunmber) Spacecraft charging Dielectric breakdown SGEMP Electron accelerators
Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko
2016-10-01
Various molecular interaction forces are generated during protein adsorption process on material surfaces. Thus, it is necessary to control them to suppress protein adsorption and the subsequent cell and tissue responses. A series of binary copolymer brush layers were prepared via surface-initiated atom transfer radical polymerization, by mixing the cationic monomer unit and anionic monomer unit randomly in various ratios. Surface characterization revealed that the constructed copolymer brush layers exhibited an uniform super-hydrophilic nature and different surface potentials. The strength of the electrostatic interaction forces operating on these mixed-charge copolymer brush surfaces was evaluated quantitatively using force-versus-distance (f-d) curve measurements by atomic force microscopy (AFM) and probes modified by negatively charged carboxyl groups or positively charged amino groups. The electrostatic interaction forces were determined based on the charge ratios of the copolymer brush layers. Notably, the surface containing equivalent cationic/anionic monomer units hardly interacted with both the charged groups. Furthermore, the protein adsorption force and the protein adsorption mass on these surfaces were examined by AFM f-d curve measurement and surface plasmon resonance measurement, respectively. To clarify the influence of the electrostatic interaction on the protein adsorption behavior on the surface, three kinds of proteins having negative, positive, and relatively neutral net charges under physiological conditions were used in this study. We quantitatively demonstrated that the amount of adsorbed proteins on the surfaces would have a strong correlation with the strength of surface-protein interaction forces, and that the strength of surface-protein interaction forces would be determined from the combination between the properties of the electrostatic interaction forces on the surfaces and the charge properties of the proteins. Especially, the copolymer brush surface composed of equivalent cationic/anionic monomer units exhibited no significant interaction forces, and dramatically suppressed the adsorption of proteins regardless of their charge properties. We conclude that the established methodology could elucidate relationship between the protein adsorption behavior and molecular interaction, especially the electrostatic interaction forces, and demonstrated that the suppression of the electrostatic interactions with the ionic functional groups would be important for the development of new polymeric biomaterials with a high repellency of protein adsorption. Copyright © 2016 Elsevier Ltd. All rights reserved.
The role of interfacial water layer in atmospherically relevant charge separation
NASA Astrophysics Data System (ADS)
Bhattacharyya, Indrani
Charge separation at interfaces is important in various atmospheric processes, such as thunderstorms, lightning, and sand storms. It also plays a key role in several industrial processes, including ink-jet printing and electrostatic separation. Surprisingly, little is known about the underlying physics of these charging phenomena. Since thin films of water are ubiquitous, they may play a role in these charge separation processes. This talk will focus on the experimental investigation of the role of a water adlayer in interfacial charging, with relevance to meteorologically important phenomena, such as atmospheric charging due to wave actions on oceans and sand storms. An ocean wave generates thousands of bubbles, which upon bursting produce numerous large jet droplets and small film droplets that are charged. In the 1960s, Blanchard showed that the jet droplets are positively charged. However, the charge on the film droplets was not known. We designed an experiment to exclusively measure the charge on film droplets generated by bubble bursting on pure water and aqueous salt solution surfaces. We measured their charge to be negative and proposed a model where a slight excess of hydroxide ions in the interfacial water layer is responsible for generating these negatively charged droplets. The findings from this research led to a better understanding of the ionic disposition at the air-water interface. Sand particles in a wind-blown sand layer, or 'saltation' layer, become charged due to collisions, so much so, that it can cause lightning. Silica, being hydrophilic, is coated with a water layer even under low-humidity conditions. To investigate the importance of this water adlayer in charging the silica surfaces, we performed experiments to measure the charge on silica surfaces due to contact and collision processes. In case of contact charging, the maximum charge separation occurred at an optimum relative humidity. On the contrary, in collisional charging process, no humidity effect was observed. We proposed an ion transfer mechanism in case of contact charging. However, an electron transfer mechanism explained the collisional charging process. The effects of temperature, surface roughness, and chemical nature of surface were also studied for both contact and collisional charging processes.
Polyelectrolytes tethered to a free surface
NASA Astrophysics Data System (ADS)
Dubreuil, F.; Guenoun, P.
Several attempts have been already carried out in order to tether charged chains by an end at a free fluctuating surface. We review here most of these attempts and focus on how close the physics of charged brushes can be investigated by such an approach. We first describe results about films of charged-neutral diblock copolymers spread at the surface of water. Results can be mostly rationalized in terms of charged brushes although additional structurations and fluctuations of the interface can be observed. The latter deformations are also observed when adsorbed layers of charged-neutral diblock copolymers are considered. At last, we examine how free suspended films of charged-neutral diblock copolymers can be viewed as two opposing charged brushes, both in terms of thickness and pressure.
NASA Astrophysics Data System (ADS)
Downs, Emily Elizabeth
Protein-nanostructure conjugates, particularly particles, are a subject of significant interest due to changes in their fundamental behavior compared to bulk surfaces. As the size scale of nano-structured materials and proteins are on the same order of magnitude, nanomaterial properties can heavily influence how proteins adsorb and conform to the surface. Previous work has demonstrated the ability of nanoscale surfaces to modulate protein activity, conformation, and retention by modifying the particle surface curvature, morphology, and surface charge. This work has improved our understanding of the protein material interactions, but a complete understanding is still lacking. The goal of this thesis is to investigate two missing areas of understanding using two distinct systems. The first system utilizes a particle with controlled surface energy to observe the impact of surface energy on protein-particle interactions, while the second system uses a modified Listeria-specific protein to determine how protein structure and flexibility affects protein adsorption and activity on particles. Spherical, amorphous, and uniformly doped Zn-silica particles with tailored surface energies were synthesized to understand the impact of surface energy on protein adsorption behavior. Particle surface energy increased with a decrease in particle size and greater dopant concentrations. Protein adsorption and structural loss increased with both particle size and particle surface energy. Higher surface energies promoted protein-particle association and increased protein unfolding. Particle curvature and protein steric hindrance effects limited adsorption and structural loss on smaller particles. Protein surface charge heterogeneity was also found to be linked to both protein adsorption and unfolding behavior on larger particles. Greater surface charge heterogeneity led to higher adsorption concentrations and multilayer formation. These multilayers transitioned from protein-particle interactions to protein-protein interactions and were thicker with greater surface energy, which resulted in the recovery of secondary structure in the outermost layer. To help understand the impact of protein structure on nano-bio conjugate interactions, a listeria specific protein was used. This system was chosen as it has applications in the food industry in preventing bacterial contamination. The insertion of an amino acid linker between the enzymatic and binding domain of the protein improved the flexibility between domains, leading to increased adsorption, and improved activity in both cell-wall and plating assays. Additionally, linker modified protein incorporated into the silica-polymer nanocomposite showed significant activity in a real-world example of contaminated lettuce. This thesis study has isolated the impact of surface energy and protein flexibility on protein adsorption and structure. Particle surface energy affects adsorbed protein concentration and conformation. Coupled with protein surface charge, surface energy was also found to dictate multilayer thickness. The conformational flexibility of the protein was shown to help in controlling not only protein adsorption concentration but also in retaining protein activity after immobilization. Also, a controllable synthesis method for particles with adjustable surface energy, an ideal platform for studying protein-particle interactions, has been established.
2D particle-in-cell simulation of the entire process of surface flashover on insulator in vacuum
NASA Astrophysics Data System (ADS)
Wang, Hongguang; Zhang, Jianwei; Li, Yongdong; Lin, Shu; Zhong, Pengfeng; Liu, Chunliang
2018-04-01
With the introduction of an external circuit model and a gas desorption model, the surface flashover on the plane insulator-vacuum interface perpendicular to parallel electrodes is simulated by a Particle-In-Cell method. It can be seen from simulations that when the secondary electron emission avalanche (SEEA) occurs, the current sharply increases because of the influence of the insulator surface charge on the cathode field emission. With the introduction of the gas desorption model, the current keeps on increasing after SEEA, and then the feedback of the external circuit causes the voltage between the two electrodes to decrease. The cathode emission current decreases, while the anode current keeps growing. With the definition that flashover occurs when the diode voltage drops by more than 20%, we obtained the simulated flashover voltage which agrees with the experimental value with the use of the field enhancement factor β = 145 and the gas molecule desorption coefficient γ=0.25 . From the simulation results, we can also see that the time delay of flashover decreases exponentially with voltage. In addition, from the gas desorption model, the gas density on the insulator surface is found to be proportional to the square of the gas desorption rate and linear with time.
Mukherjee, Joy; Ow, Saw Yen; Noirel, Josselin; Biggs, Catherine A
2011-02-01
Cell surface physicochemical characterization techniques were combined with quantitative changes in protein expression, to investigate the biological and biophysical changes of Escherichia coli MG1655 cells when grown as a biofilm (BIO). The overall surface charge of BIO cells was found to be less negative, highlighting the need for a lower electrophoretic mobility for attachment to occur. Comparison of the chemical functional groups on the cell surface showed similar profiles, with the absorbance intensity higher for proteins and carbohydrates in the BIO cells. Quantitative proteomic analysis demonstrated that 3 proteins were significantly increased, and 9 proteins significantly decreased in abundance, in cells grown as a BIO compared to their planktonic counterparts, with 7 of these total 12 proteins unique to this study. Proteins showing significant increased or decreased abundance include proteins involved in acid resistance, DNA protection and binding and ABC transporters. Further predictive analysis of the metabolic pathways showed an increased abundance of the amino acid metabolism and tricarboxylic acid (TCA) cycle, with a decrease in expression within the pentose phosphate and glycolysis pathways. It is therefore hypothesized that cells grown as a BIO are still energetically viable potentially using amino acids as an indirect carbon backbone source into the TCA cycle. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Studies of Oxidation of the Cu(100) Surface Using Low Energy Positrons
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Maddox, W. B.; Nadesalingam, M.; Rajeshwar, K.; Weiss, A. H.
2009-03-01
Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the positron annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300° C. The intensity then decreases monotonically as the annealing temperature is increased to ˜600° C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. Possible explanation for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature is proposed.
Studies of oxidation of the Cu(100) surface using low energy positrons.
NASA Astrophysics Data System (ADS)
Maddox, W. B.; Fazleev, N. G.; Weiss, A. H.
2009-03-01
Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the positron annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300^o C. The intensity then decreases monotonically as the annealing temperature is increased to ˜600^o C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. Possible explanation for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature is proposed.
Depletion region surface effects in electron beam induced current measurements.
Haney, Paul M; Yoon, Heayoung P; Gaury, Benoit; Zhitenev, Nikolai B
2016-09-07
Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p - n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.
Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Coullerez, Geraldine; Hofmann-Amtenbrink, Margarethe; Vries, Marcel; Motazacker, Mahdi; Rezaee, Farhad; Hofmann, Heinrich
2015-02-01
As nanoparticles (NPs) are increasingly used in many applications their safety and efficient applications in nanomedicine have become concerns. Protein coronas on nanomaterials' surfaces can influence how the cell "recognizes" nanoparticles, as well as the in vitro and in vivo NPs' behaviors. The SuperParamagnetic Iron Oxide Nanoparticle (SPION) is one of the most prominent agents because of its superparamagnetic properties, which is useful for separation applications. To mimic surface properties of different types of NPs, a core-shell SPION library was prepared by coating with different surfaces: polyvinyl alcohol polymer (PVA) (positive, neutral and negative), SiO2 (positive and negative), titanium dioxide and metal gold. The SPIONs with different surfaces were incubated at a fixed serum : nanoparticle surface ratio, magnetically trapped and washed. The tightly bound proteins were quantified and identified. The surface charge has a great impact on protein adsorption, especially on PVA and silica where proteins preferred binding to the neutral and positively charged surfaces. The importance of surface material on protein adsorption was also revealed by preferential binding on TiO2 and gold coated SPION, even negatively charged. There is no correlation between the protein net charge and the nanoparticle surface charge on protein binding, nor direct correlation between the serum proteins' concentration and the proteins detected in the coronas.
Impact of surface strain on the spin dynamics of deposited Co nanowires
NASA Astrophysics Data System (ADS)
Polyakov, O. P.; Korobova, J. G.; Stepanyuk, O. V.; Bazhanov, D. I.
2017-01-01
Tailoring the magnetic properties at atomic-scale is essential in the engineering of modern spintronics devices. One of the main concerns in the novel nanostructured materials design is the decrease of the paid energy in the way of functioning, but allowing to switch between different magnetic states with a relative low-cost energy at the same time. Magnetic anisotropy (MA) energy defines the stability of a spin in the preferred direction and is a fundamental variable in magnetization switching processes. Transition-metal wires are known to develop large, stable spin and orbital magnetic moments together with MA energies that are orders of magnitude larger than in the corresponding solids. Different ways of controlling the MA have been exploited such as alloying, surface charging, and external electrical fields. Here we investigate from a first-principle approach together with dynamic calculations, the surface strain driven mechanism to tune the magnetic properties of deposited nanowires. We consider as a prototype system, the monoatomic Co wires deposited on strained Pt(111) and Au(111) surfaces. Our first-principles calculations reveal a monotonic increase/decrease of MA energy under compressive/tensile strain in supported Co wire. Moreover, the spin dynamics studies based on solving the Landau-Lifshitz-Gilbert equation show that the induced surface-strain leads to a substantial decrease of the required external magnetic field magnitude for magnetization switching in Co wire.
Surface-Charge-Based Micro-Models--A Solid Foundation for Learning about Direct Current Circuits
ERIC Educational Resources Information Center
Hirvonen, P. E.
2007-01-01
This study explores how the use of a surface-charge-based instructional approach affects introductory university level students' understanding of direct current (dc) circuits. The introduced teaching intervention includes electrostatics, surface-charge-based micro-models that explain the existence of an electric field inside the current-carrying…
Boggs, Joan M; Rangaraj, Godha; Gao, Wen; Heng, Yew-Meng
2006-01-17
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is most likely responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also polymerize actin, bundle F-actin filaments, and bind actin filaments to lipid bilayers through electrostatic interactions. MBP consists of a number of posttranslationally modified isomers of varying charge, some resulting from phosphorylation at several sites by different kinases, including mitogen-activated protein kinase (MAPK). Phosphorylation of MBP in oligodendrocytes occurs in response to various extracellular stimuli. Phosphorylation/dephosphorylation of MBP also occurs in the myelin sheath in response to electrical activity in the brain. Here we investigate the effect of phosphorylation of MBP on its interaction with actin in vitro by phosphorylating the most highly charged unmodified isomer, C1, at two sites with MAPK. Phosphorylation decreased the ability of MBP to polymerize actin and to bundle actin filaments but had no effect on the dissociation constant of the MBP-actin complex or on the ability of Ca2+-calmodulin to dissociate the complex. The most significant effect of phosphorylation on the MBP-actin complex was a dramatic reduction in its ability to bind to negatively charged lipid bilayers. The effect was much greater than that reported earlier for another charge isomer of MBP, C8, in which six arginines were deiminated to citrulline, resulting in a reduction of net positive charge of 6. These results indicate that although average electrostatic forces are the primary determinant of the interaction of MBP with actin, phosphorylation may have an additional effect due to a site-specific electrostatic effect or to a conformational change. Thus, phosphorylation of MBP, which occurs in response to various extracellular signals in both myelin and oligodendrocytes, attenuates the ability of MBP to polymerize and bundle actin and to bind it to a negatively charged membrane.
NASA Astrophysics Data System (ADS)
Shaw, David; West, Andrew; Bredin, Jerome; Wagenaars, Erik
2016-12-01
Plasma treatments are common for increasing the surface energy of plastics, such as polypropylene (PP), to create improved adhesive properties. Despite the significant differences in plasma sources and plasma properties used, similar effects on the plastic film can be achieved, suggesting a common dominant plasma constituent and underpinning mechanism. However, many details of this process are still unknown. Here we present a study into the mechanisms underpinning surface energy increase of PP using atmospheric-pressure plasmas. For this we use the effluent of an atmospheric-pressure plasma jet (APPJ) since, unlike most plasma sources used for these treatments, there is no direct contact between the plasma and the PP surface; the APPJ provides a neutral, radical-rich environment without charged particles and electric fields impinging on the PP surface. The APPJ is a RF-driven plasma operating in helium gas with small admixtures of O2 (0-1%), where the effluent propagates through open air towards the PP surface. Despite the lack of charged particles and electric fields on the PP surface, measurements of contact angle show a decrease from 93.9° to 70.1° in 1.4 s and to 35° in 120 s, corresponding to a rapid increase in surface energy from 36.4 mN m-1 to 66.5 mN m-1 in the short time of 1.4 s. These treatment effects are very similar to what is found in other devices, highlighting the importance of neutral radicals produced by the plasma. Furthermore, we find an optimum percentage of oxygen of 0.5% within the helium input gas, and a decrease of the treatment effect with distance between the APPJ and the PP surface. These observed effects are linked to two-photon absorption laser-induced fluorescence spectroscopy (TALIF) measurements of atomic oxygen density within the APPJ effluent which show similar trends, implying the importance of this radical in the surface treatment of PP. Analysis of the surface reveals a two stage mechanism for the production of polar bonds on the surface of the polymer: a fast reaction producing carboxylic acid, or a similar ketone, followed by a slower reaction that includes nitrogen from the atmosphere on the surface, producing amides from the ketones.
Chen, Xiaojie; Tieleman, D Peter; Liang, Qing
2018-02-01
The interactions between nanoparticles and lipid bilayers are critical in applications of nanoparticles in nanomedicine, cell imaging, toxicology, and elsewhere. Here, we investigate the interactions between nanoparticles coated with neutral and/or charged ligands and phase-separated lipid bilayers using coarse-grained molecular dynamics simulation. Both penetration and adsorption processes as well as the final distribution of the nanoparticles can be readily modulated by varying the ligand density and the surface charge of the nanoparticles. Completely hydrophobic (neutral) nanoparticles with larger size initially preferentially penetrate into the liquid-disordered region of the lipid bilayer and finally transfer into the liquid-ordered region; partially hydrophilic nanoparticles with low or moderate surface charge tend to either distribute in the liquid-disordered region or be adsorbed on the surface of the lipid bilayer, while strongly hydrophilic nanoparticles with high surface charge always reside on the surface of the lipid bilayer. Interactions of the nanoparticles with the lipid bilayers are affected by the surface charge of nanoparticles, hydrophobic mismatch, bending of the ligands, and the packing state of the lipids. Insight in these factors can be used to improve the efficiency of designing nanoparticles for specific applications.
2015-01-01
To study the importance of the surface charge for cellular uptake of silica nanoparticles (NPs), we synthesized five different single- or multifunctionalized fluorescent silica NPs (FFSNPs) by introducing various ratios of amino and sulfonate groups into their surface. The zeta potential values of these FFSNPs were customized from highly positive to highly negative, while other physicochemical properties remained almost constant. Irrespective of the original surface charge, serum proteins adsorbed onto the surface, neutralized the zeta potential values, and prevented the aggregation of the tailor-made FFSNPs. Depending on the surface charge and on the absence or presence of serum, two opposite trends were found concerning the cellular uptake of FFSNPs. In the absence of serum, positively charged NPs were more strongly accumulated by human osteoblast (HOB) cells than negatively charged NPs. In contrast, in serum-containing medium, anionic FFSNPs were internalized by HOB cells more strongly, despite the similar size and surface charge of all types of protein-covered FFSNPs. Thus, at physiological condition, when the presence of proteins is inevitable, sulfonate-functionalized silica NPs are the favorite choice to achieve a desired high rate of NP internalization. PMID:26030456
Vivaudou, M; Forestier, C
1995-01-01
1. The molecular mechanisms underlying pH regulation of skeletal muscle ATP-sensitive K+ (KATP) channels were studied using the patch clamp technique in the inside-out configuration. Two effects of intracellular protons were studied in detail: the decrease in magnitude of single-channel currents and the increase in open probability (Po) of nucleotide-inhibited channels. 2. The pH dependence of inward unit currents under different ionic conditions was in poor agreement with either a direct block of the pore by protons or an indirect proton-induced conformational change, but was compatible with the protonation of surface charges located near the cytoplasmic entrance of the pore. This latter electrostatic mechanism was modelled using Gouy-Chapman-Stern theory, which predicted the data accurately with a surface charge density of about 0.1 negative elementary charges per square nanometre and a pK (pH value for 50% effect) value for protonation of these charges of 6.25. The same mechanism, i.e. neutralization of negative surface charges by cation binding, could also account for the previously reported reduction of inward unit currents by Mg2+. 3. Intracellular alkalization did not affect Po of the KATP channels. Acidification increased Po. In the presence of 0.1 mM ATP (no Mg2+), the channel activation vs. pH relationship could be fitted with a sigmoid curve with a Hill coefficient slightly above 2 and a pK value of 6. This latter value was dependent on the ATP concentration, decreasing from 6.3 in 30 microM ATP to 5.3 in 1 microM ATP. 4. Conversely, the channel inhibition vs. ATP concentration curve was shifted to the right when the pH was lowered. At pH 7.1, the ATP concentration causing half-maximal inhibition was about 10 microM. At pH 5.4, it was about 400 microM. The Hill coefficient values remained slightly below 2. Similar effects were observed when ADP was used as the inhibitory nucleotide. 5. These results confirm that a reciprocal competitive link exists between proton and nucleotide binding sites. Quantitatively, they are in full agreement with a steady-state model of a KATP channel possessing four identical protonation sites (microscopic pK, 6) allosterically connected to the channel open state and two identical nucleotide sites (microscopic ATP dissociation constant, approximately 30 microM) connected to the closed state. Images Figure 13 PMID:7473225
Boldeskul, A E; Gubskiĭ, Iu I; Mel'nik, A A; Fal'kovskaia, E N
1993-01-01
The influence of chlorophos on the endoplasmatic reticulum of rat liver has been studied using the methods of gas-liquid chromatography and fluorescence. Experiments have demonstrated an increase of lysophosphatidylethanolamine, total phospholipids, unsaturated fatty acids (C20:4 n6, C18:1 n11, C18:1 n7) and a decrease of phosphatidylserine and phosphatidylethanolamine. Changes in microviscosity and surface charge were also shown.
Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R
2014-10-01
Plasma immersion ion implantation (PIII) treatment of polymers creates a biointerface capable of direct covalent immobilization of biomolecules. The immobilization of protein molecules is achieved by covalent bonds formed between embedded radicals on the treated surface and amino acid side chains and cells can be immobilized through cell-wall proteins. The attachment density of negatively charged entities on a PIII treated surface is inhibited by its negative surface charge at neutral pH. To reduce the negative charge of PIII treated surfaces in phosphate buffer (pH 7.4, 11mM), we develop an effective approach of grafting allylamine monomers onto the treated surface. The results reveal reactions between allylamine and radicals on the PIII treated surface. One of these triggers polymerization, increasing the number of amine groups grafted. As a consequence, the PIII treated polystyrene surface after allylamine exposure becomes more hydrophobic and less negatively charged in phosphate buffer. Using yeast cells as an example, we have shown a significant improvement (6-15 times) of cell density immobilized on the PIII treated surface after exposure to allylamine. Copyright © 2014 Elsevier B.V. All rights reserved.
Jia, Ming; Hu, Xiaoyu; Liu, Jin; Liu, Yexiang; Ai, Liang
2017-05-21
The operating voltage of an aluminum electrolytic capacitor is determined by the breakdown voltage (U b ) of the Al 2 O 3 anode. U b is related to the molecular adsorption at the Al 2 O 3 /electrolyte interface. Therefore, we have employed sum-frequency vibrational spectroscopy (SFVS) to study the adsorption states of a simple electrolyte, ethylene glycol (EG) solution with ammonium adipate, on an α-Al 2 O 3 surface. In an acidic electrolyte (pH < 6), the Al 2 O 3 surface is positively charged. The observed SFVS spectra show that long chain molecules poly ethylene glycol and ethylene glycol adipate adopt a "lying" orientation at the interface. In an alkaline electrolyte (pH > 8), the Al 2 O 3 surface is negatively charged and the short chain EG molecules adopt a "tilting" orientation. The U b results exhibit a much higher value at pH < 6 compared with that at pH > 8. Since the "lying" long chain molecules cover and protect the Al 2 O 3 surface, U b increases with a decrease of pH. These findings provide new insights to study the breakdown mechanisms and to develop new electrolytes for high operating voltage capacitors.
Numerical modelling of needle-grid electrodes for negative surface corona charging system
NASA Astrophysics Data System (ADS)
Zhuang, Y.; Chen, G.; Rotaru, M.
2011-08-01
Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.
Well-behaved relativistic charged super-dense star models
NASA Astrophysics Data System (ADS)
Faruqi, Shahab; Pant, Neeraj
2012-10-01
A new class of charged super-dense star models is obtained by using an electric intensity, which involves a parameter, K. The metric describing the model shares its metric potential g 44 with that of Durgapal's fourth solution (J. Phys. A, Math. Gen. 15:2637, 1982). The pressure-free surface is kept at the density ρ b =2×1014 g/cm3 and joins smoothly with the Reissner-Nordstrom solution. The charge analogues are well-behaved for a wide range, 0≤ K≤59, with the optimum value of X=0.264 i.e. the pressure, density, pressure-density ratio and velocity of sound are monotonically decreasing and the electric intensity is monotonically increasing in nature for the given range of the parameter K. The maximum mass and the corresponding radius occupied by the neutral solution are 4.22 M Θ and 20 km, respectively for X=0.264. For the charged solution, the maximum mass and radius are defined by the expressions M≈(0.0059 K+4.22) M Θ and r b ≈-0.021464 K+20 km respectively.
NASA Astrophysics Data System (ADS)
Das, Kaushik; Kundu, Sarathi; Mehan, Sumit; Aswal, V. K.
2016-02-01
Both short range attraction and long range electrostatic repulsion exist among globular protein Bovine Serum Albumin in solution below its isoelectric point (pI ≈ 4.8). At pD ≈ 4.0, below pI, protein has a net positive surface charge although local charge inhomogeneity presents. Small angle neutron scattering study reveals that in the presence of both mono-(Na+) and di-(Ni2+) valent ions attractive interaction increases and repulsive interaction decreases with the increase of salt concentration. However, for tri-valent (Fe3+) ions, both attractive and repulsive interaction increases with increasing salt concentration but the relative strength of repulsion is more than the attraction.
Surface transport processes in charged porous media
Gabitto, Jorge; Tsouris, Costas
2017-03-03
Surface transport processes are important in chemistry, colloidal sciences, engineering, biology, and geophysics. Natural or externally produced charges on surfaces create electrical double layers (EDLs) at the solid-liquid interface. The existence of the EDLs produces several complex processes including bulk and surface transport of ions. In this work, a model is presented to simulate bulk and transport processes in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations inmore » the limit of thin electrical double layers. Description of the EDL between the electrolyte solution and the charged wall is accomplished using the Gouy-Chapman-Stern (GCS) model. The surface transport terms enter into the average equations due to the use of boundary conditions for diffuse interfaces. Two extra surface transports terms appear in the closed average equations. One is a surface diffusion term equivalent to the transport process in non-charged porous media. The second surface transport term is a migration term unique to charged porous media. The effective bulk and transport parameters for isotropic porous media are calculated solving the corresponding closure problems.« less
Dust Grain Charge above the Lunar terminator
NASA Astrophysics Data System (ADS)
Vaverka, Jakub; Richterova, Ivana; Nemecek, Zdenek; Safrankova, Jana; Pavlu, Jiri; Vysinka, Marek
Interaction of a lunar surface with the solar wind and magnetosphere leads to its charging by several processes as photoemission, a collection of primary particles, and secondary electron emission. Nevertheless, charging of the lunar surface is complicated by a shielding of solar light and solar wind ions by hills, craters, and boulders that can locally influence the surface potential. Moreover, a presence of a plasma wake can strongly affect this potential at the night side of the Moon. A typical surface potential varies from slightly positive (dayside) to negative values of the order of several hundred volts (night side). An electric field above the charged surface can lead to a levitation of dust grains as it has been observed by several spacecraft and by astronauts during Apollo missions. Although charging and transport of dust grains above the lunar surface are in the center of interest for many years, these phenomena are not still completely understood. We present calculation of an equilibrium potential of dust grains above the lunar surface. We focus on a terminator area during the Earth’s plasma sheet crossing. We use the secondary electron emission model for dust grains which takes into account an influence of the grain size, material, and surface roughness and findings from laboratory experiments with charging of lunar dust simulants by an electron beam.
Surface transport processes in charged porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabitto, Jorge; Tsouris, Costas
Surface transport processes are important in chemistry, colloidal sciences, engineering, biology, and geophysics. Natural or externally produced charges on surfaces create electrical double layers (EDLs) at the solid-liquid interface. The existence of the EDLs produces several complex processes including bulk and surface transport of ions. In this work, a model is presented to simulate bulk and transport processes in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations inmore » the limit of thin electrical double layers. Description of the EDL between the electrolyte solution and the charged wall is accomplished using the Gouy-Chapman-Stern (GCS) model. The surface transport terms enter into the average equations due to the use of boundary conditions for diffuse interfaces. Two extra surface transports terms appear in the closed average equations. One is a surface diffusion term equivalent to the transport process in non-charged porous media. The second surface transport term is a migration term unique to charged porous media. The effective bulk and transport parameters for isotropic porous media are calculated solving the corresponding closure problems.« less
Profiling Charge Complementarity and Selectivity for Binding at the Protein Surface
Sulea, Traian; Purisima, Enrico O.
2003-01-01
A novel analysis and representation of the protein surface in terms of electrostatic binding complementarity and selectivity is presented. The charge optimization methodology is applied in a probe-based approach that simulates the binding process to the target protein. The molecular surface is color coded according to calculated optimal charge or according to charge selectivity, i.e., the binding cost of deviating from the optimal charge. The optimal charge profile depends on both the protein shape and charge distribution whereas the charge selectivity profile depends only on protein shape. High selectivity is concentrated in well-shaped concave pockets, whereas solvent-exposed convex regions are not charge selective. This suggests the synergy of charge and shape selectivity hot spots toward molecular selection and recognition, as well as the asymmetry of charge selectivity at the binding interface of biomolecular systems. The charge complementarity and selectivity profiles map relevant electrostatic properties in a readily interpretable way and encode information that is quite different from that visualized in the standard electrostatic potential map of unbound proteins. PMID:12719221
The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle
NASA Astrophysics Data System (ADS)
Khair, Aditya S.; Squires, Todd M.
2009-04-01
Recent theoretical studies have suggested a significant enhancement in electro-osmotic flows over hydrodynamically slipping surfaces, and experiments have indeed measured O(1) enhancements. In this paper, we investigate whether an equivalent effect occurs in the electrophoretic motion of a colloidal particle whose surface exhibits hydrodynamic slip. To this end, we compute the electrophoretic mobility of a uniformly charged spherical particle with slip length λ as a function of the zeta (or surface) potential of the particle ζ and diffuse-layer thickness κ-1. In the case of a thick diffuse layer, κa ≪1 (where a is the particle size), simple arguments show that slip does lead to an O(1) enhancement in the mobility, owing to the reduced viscous drag on the particle. On the other hand, for a thin-diffuse layer κa ≫1, the situation is more complicated. A detailed asymptotic analysis, following the method of O'Brien [J. Colloid Interface Sci. 92, 204 (1983)], reveals that an O(κλ) increase in the mobility occurs at low-to-moderate zeta potentials (with ζ measured on the scale of thermal voltage kBT /e≈25 mV). However, as ζ is further increased, the mobility decreases and ultimately becomes independent of the slip length—the enhancement is lost—which is due to the importance of nonuniform surface conduction within the thin-diffuse layer, at large ζ and large, but finite, κa. Our asymptotic calculations for thick and thin-diffuse layers are corroborated and bridged by computation of the mobility from the numerical solution of the full electrokinetic equations (using the method of O'Brien and White [J. Chem. Soc., Faraday Trans. 2 74, 1607 (1978)]). In summary, then, we demonstrate that hydrodynamic slip can indeed produce an enhancement in the electrophoretic mobility; however, such enhancements will not be as dramatic as the previously studied κa →∞ limit would suggest. Importantly, this conclusion applies not only to electrophoresis but also to electro-osmosis over highly charged surfaces, wherein any inhomogeneities (e.g., due to curvature, roughness, charge patterning, or a variation in slip length) will drive nonuniform surface conduction, which prevents the significant slip-driven flow enhancements predicted for a uniform highly charged surface.
Norgren, Magnus; Gärdlund, Linda; Notley, Shannon M; Htun, Myat; Wågberg, Lars
2007-03-27
For the first time to the knowledge of the authors, well-defined and stable lignin model surfaces have been utilized as substrates in polyelectrolyte adsorption studies. The adsorption of polyallylamine (PAH), poly(acrylic acid) (PAA), and polyelectrolyte complexes (PECs) was monitored using quartz crystal microgravimetry with dissipation (QCM-D). The PECs were prepared by mixing PAH and PAA at different ratios and sequences, creating both cationic and anionic PECs with different charge levels. The adsorption experiments were performed in 1 and 10 mM sodium chloride solutions at pH 5 and 7.5. The highest adsorption of PAH and cationic PECs was found at pH 7.5, where the slightly negatively charged nature of the lignin substrate is more pronounced, governing electrostatic attraction of oppositely charged polymeric substances. An increase in the adsorption was further found when the electrolyte concentration was increased. In comparison, both PAA and the anionic PEC showed remarkably high adsorption to the lignin model film. The adsorption of PAA was further studied on silica and was found to be relatively low even at high electrolyte concentrations. This indicated that the high PAA adsorption on the lignin films was not induced by a decreased solubility of the anionic polyelectrolyte. The high levels of adsorption on lignin model surfaces found both for PAA and the anionic PAA-PAH polyelectrolyte complex points to the presence of strong nonionic interactions in these systems.
NASA Astrophysics Data System (ADS)
Hildebrandt, Peter
1991-05-01
The effect of electrostatic fields on the structure of cytochrome c bound to charged interfaces was studied by resonance Raman and surface enhanced resonance Raman spectroscopy. Binding of this heme protein to the Ag electrode or heteropolytungstates which may be regarded as simple model systems for biological interfaces establishes an equilibrium between two conformational states (I II). In state I the structure and the redox potential are the same as for the uncomplexed cytochrome c. In state II however the heme pocket assumes an open structure and the axial iron Met80 bond is weakened leading to thennal coordination equilibrium between the fivecoordinated high spin and the sixcoordinated low spin configuration. These structural changes are accompanied by a decrease of the redox potential by 420 mV. The structural rearrangement of the heme pocket in state II is presumably initiated by the dissociation of the internal salt bridge of Lys13 due to electrostatic interactions with the negatively charged surfaces of the model systems. From detailed Raman spectroscopic studies characteristic spectral properties of the states I and II were identified. Based on these findings the interactions of cytochrome c with phospholipid vesicles as well as with its physiological reaction partner cytocbrome c oxidase were analysed. A systematic study of the cytochmme c/phospholipid system by varying the lipid composition and the temperature revealed mutual structural changes in both the lipid and the protein structure.
SrFe12O19 based ceramics with ultra-low dielectric loss in the millimetre-wave band
NASA Astrophysics Data System (ADS)
Yu, Chuying; Zeng, Yang; Yang, Bin; Wylde, Richard; Donnan, Robert; Wu, Jiyue; Xu, Jie; Gao, Feng; Abrahams, Isaac; Reece, Mike; Yan, Haixue
2018-04-01
Non-reciprocal devices such as isolators and circulators, based mainly on ferromagnetic materials, require extremely low dielectric loss in order for strict power-link budgets to be met for millimetre (mm)-wave and terahertz (THz) systems. The dielectric loss of commercial SrFe12O19 hexaferrite was significantly reduced to below 0.002 in the 75-170 GHz band by thermal annealing. While the overall concentration of Fe2+ and oxygen vacancy defects is relatively low in the solid, their concentration at the surface is significantly higher, allowing for a surface sensitive technique such as XPS to monitor the Fe3+/Fe2+ redox reaction. Oxidation of Fe2+ and a decrease in oxygen vacancies are found at the surface on annealing, which are reflected in the bulk sample by a small change in the unit cell volume. The significant decrease in the dielectric loss property can be attributed to the decreased concentration of charged defects such as Fe2+ and oxygen vacancies through the annealing process, which demonstrated that thermal annealing could be effective in improving the dielectric performance of ferromagnetic materials for various applications.
Deionization and desalination using electrostatic ion pumping
Bourcier, William L.; Aines, Roger D.; Haslam, Jeffery J.; Schaldach, Charlene M.; O& #x27; Brien, Kevin C.; Cussler, Edward
2013-06-11
The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.
Deionization and desalination using electrostatic ion pumping
Bourcier, William L [Livermore, CA; Aines, Roger D [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Schaldach, Charlene M [Pleasanton, CA; O'Brien, Kevin C [San Ramon, CA; Cussler, Edward [Edina, MN
2011-07-19
The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.
A switchable polymer layer: Chain folding in end-charged polymer brushes
NASA Astrophysics Data System (ADS)
Heine, David; Wu, David T.
2001-03-01
We use a self-consistent field approximation to model the configurations of end-charged homopolymer and block copolymer brushes in response to an external electric field due to charges on the grafting surface. By varying the charge density on the grafting surface, we can cause the chains either to extend outward, greatly increasing the brush height, or to loop back to the grafting surface. We show that such a copolymer brush can present one block at the exposed surface in the extended state and present the other block in the retracted state. This occurs for both a solvated brush and a dry brush. We also compare these results to those of a modified Alexander-de Gennes model for the end-charged homopolymer brush.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winnerl, Andrea, E-mail: andrea.winnerl@wsi.tum.de; Pereira, Rui N.; Stutzmann, Martin
2015-10-21
In this work, we use GaN with different deposited Pt nanostructures as a controllable model system to investigate the kinetics of photo-generated charge carriers in hybrid photocatalysts. We combine conductance and contact potential difference measurements to investigate the influence of Pt on the processes involved in the capture and decay of photo-generated charge carriers at and close to the GaN surface. We found that in the presence of Pt nanostructures the photo-excitation processes are similar to those found in Pt free GaN. However, in GaN with Pt nanostructures, photo-generated holes are preferentially trapped in surface states of the GaN coveredmore » with Pt and/or in electronic states of the Pt and lead to an accumulation of positive charge there, whereas negative charge is accumulated in localized states in a shallow defect band of the GaN covered with Pt. This preferential accumulation of photo-generated electrons close to the surface is responsible for a dramatic acceleration of the turn-off charge transfer kinetics and a stronger dependence of the surface photovoltage on light intensity when compared to a Pt free GaN surface. Our study shows that in hybrid photocatalysts, the metal nanostructures induce a spatially inhomogeneous surface band bending of the semiconductor that promotes a lateral drift of photogenerated charges towards the catalytic nanostructures.« less
Effect of Atomic Oxygen Exposure on Surface Resistivity Change of Spacecraft Insulator Material
NASA Astrophysics Data System (ADS)
Mundari, Noor Danish Ahrar; Khan, Arifur Rahman; Chiga, Masaru; Okumura, Teppei; Masui, Hirokazu; Iwata, Minoru; Toyoda, Kazuhiro; Cho, Mengu
Spacecraft surface charging can lead to arcing and a loss of electricity generation capability in solar panels or even loss of a satellite. The charging problem may be further aggravated by atomic oxygen (AO) exposure in Low Earth orbits, which modifies the surface of materials like polyimide, Teflon, anti-reflective coatings, cover glass etc, used on satellite surfaces, affecting materials properties, such as resistivity, secondary electron emissivity and photo emission, which govern the charging behavior. These properties are crucial input parameters for spacecraft charging analysis. To study the AO exposure effect on charging governing properties, an atomic oxygen exposure facility based on laser detonation of oxygen was built. The facility produces AO with a peak velocity value around 10-12km/s and a higher flux than that existing in orbit. After exposing the polyimide test material to the equivalent of 10 years of AO fluence at an altitude of 700-800 km, surface charging properties like surface resistivity and volume resistivity were measured. The measurement was performed in a vacuum using the charge storage decay method at room temperature, which is considered the most appropriate for measuring resistivity for space applications. The results show that the surface resistivity increases and the volume resistivity remains almost the same for the AO exposure fluence of 5.4×1018 atoms cm-2.
Surface charge sensing by altering the phase transition in VO2
NASA Astrophysics Data System (ADS)
Kumar, S.; Esfandyarpour, R.; Davis, R.; Nishi, Y.
2014-08-01
Detection of surface charges has various applications in medicine, electronics, biotechnology, etc. The source of surface charge induction may range from simple charge-polarized molecules like water to complicated proteins. It was recently discovered that surface charge accumulation can alter the temperature at which VO2 undergoes a Mott transition. Here, we deposited polar molecules onto the surface of two-terminal thin-film VO2 lateral devices and monitored the joule-heating-driven Mott transition, or conductance switching. We observed that the power required to induce the conductance switching reduced upon treatment with polar molecules and, using in-situ blackbody-emission direct measurement of local temperature, we show that this reduction in power was accompanied by reduction in the Mott transition temperature. Further evidence suggested that this effect has specificity to the nature of the species used to induce surface charges. Using x-ray absorption spectroscopy, we also show that there is no detectable change in oxidation state of vanadium or structural phase in the bulk of the 40 nm VO2 thin-film even as the phase transition temperature is reduced by up to 20 K by the polar molecules. The ability to alter the phase transition parameters by depositing polar molecules suggests a potential application in sensing surface charges of different origins and this set of results also highlights interesting aspects of the phase transition in VO2.
Atomistic Molecular Dynamics Simulations of Charged Latex Particle Surfaces in Aqueous Solution.
Li, Zifeng; Van Dyk, Antony K; Fitzwater, Susan J; Fichthorn, Kristen A; Milner, Scott T
2016-01-19
Charged particles in aqueous suspension form an electrical double layer at their surfaces, which plays a key role in suspension properties. For example, binder particles in latex paint remain suspended in the can because of repulsive forces between overlapping double layers. Existing models of the double layer assume sharp interfaces bearing fixed uniform charge, and so cannot describe aqueous binder particle surfaces, which are soft and diffuse, and bear mobile charge from ionic surfactants as well as grafted multivalent oligomers. To treat this industrially important system, we use atomistic molecular dynamics simulations to investigate a structurally realistic model of commercial binder particle surfaces, informed by extensive characterization of particle synthesis and surface properties. We determine the interfacial profiles of polymer, water, bound and free ions, from which the charge density and electrostatic potential can be calculated. We extend the traditional definitions of the inner and outer Helmholtz planes to our diffuse interfaces. Beyond the Stern layer, the simulated electrostatic potential is well described by the Poisson-Boltzmann equation. The potential at the outer Helmholtz plane compares well to the experimental zeta potential. We compare particle surfaces bearing two types of charge groups, ionic surfactant and multivalent oligomers, with and without added salt. Although the bare charge density of a surface bearing multivalent oligomers is much higher than that of a surfactant-bearing surface at realistic coverage, greater counterion condensation leads to similar zeta potentials for the two systems.
From Folding to Function: Design of a New Switchable Biosurfactant Protein.
Zhao, Chun-Xia; Dwyer, Mirjana Dimitrijev; Yu, Lei; Middelberg, Anton P J
2017-03-03
A new anionic biosurfactant protein (SP16) capable of tuning foaming behaviour by pH or salt has been designed. This biosurfactant exhibits unique foaming behaviour with high sensitivity to pH. A good level of foaming was observed at pH 2 but not at pH 3. A further increase by one pH unit to pH 4 restored good foaming. At pH 5-8, SP16 again showed low foaming propensity, whereas the presence of salt (NaCl) was able to restore foaming again. Interfacial tension and circular dichroism investigations revealed the foaming control mechanism. The high negative charge (-16.6) at pH 6 and above restricted the ability of SP16 to fold into an α-helical conformation and also restricted surface activity. For pH 5 (-13.6), even though SP16 folds in bulk to give α-helical structure, the high charge inhibited adsorption at the air-water interface, resulting in a significant lag time of about 150-200 sec to achieve a decrease in interfacial tension. In contrast to its low foaming behaviour at pH 5-8, the presence of salt (NaCl) was found to effectively screen negative charge, thus leading to its folding and a decrease of interfacial tension. This new design offers a new strategy to control foaming behaviour, and elaborates a clear link between charge, structure and interfacial activity for biosurfactants. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Leherte, Laurence; Vercauteren, Daniel P
2017-10-26
We investigate the influence of various solvent models on the structural stability and protein-water interface of three ubiquitin complexes (PDB access codes: 1Q0W , 2MBB , 2G3Q ) modeled using the Amber99sb force field (FF) and two different point charge distributions. A previously developed reduced point charge model (RPCM), wherein each amino acid residue is described by a limited number of point charges, is tested and compared to its all-atom (AA) version. The complexes are solvated in TIP4P-Ew or TIP3P type water molecules, involving either the scaling of the Lennard-Jones protein-O water interaction parameters, or the coarse-grain (CG) SIRAH water description. The best agreements between the RPCM and AA models were obtained for structural, protein-water, and ligand-ubiquitin properties when using the TIP4P-Ew water FF with a scaling factor γ of 0.7. At the RPCM level, a decrease in γ, or the inclusion of SIRAH particles, allows weakening of the protein-water interactions. It results in a slight collapse of the protein structure and a less compact hydration shell and, thus, in a decrease in the number of protein-water and water-water H-bonds. The dynamics of the surface protein atoms and of the water shell molecules are also slightly refrained, which allow the generation of stable RPCM trajectories.
Ávila-Orta, Carlos A.; Quiñones-Jurado, Zoe V.; Waldo-Mendoza, Miguel A.; Rivera-Paz, Erika A.; Cruz-Delgado, Víctor J.; Mata-Padilla, José M.; González-Morones, Pablo; Ziolo, Ronald F.
2015-01-01
Isotactic polypropylenes (iPP) with different melt flow indexes (MFI) were used to fabricate nanocomposites (NCs) with 10 wt % loadings of multi-wall carbon nanotubes (MWCNTs) using ultrasound-assisted extrusion methods to determine their effect on the morphology, melt flow, and electrical properties of the NCs. Three different types of iPPs were used with MFIs of 2.5, 34 and 1200 g/10 min. Four different NC fabrication methods based on melt extrusion were used. In the first method melt extrusion fabrication without ultrasound assistance was used. In the second and third methods, an ultrasound probe attached to a hot chamber located at the exit of the die was used to subject the sample to fixed frequency and variable frequency, respectively. The fourth method is similar to the first method, with the difference being that the carbon nanotubes were treated in a fluidized air-bed with an ultrasound probe before being used in the fabrication of the NCs with no ultrasound assistance during extrusion. The samples were characterized by MFI, Optical microscopy (OM), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), electrical surface resistivity, and electric charge. MFI decreases in all cases with addition of MWCNTs with the largest decrease observed for samples with the highest MFI. The surface resistivity, which ranged from 1013 to 105 Ω/sq, and electric charge, were observed to depend on the ultrasound-assisted fabrication method as well as on the melt flow index of the iPP. A relationship between agglomerate size and area ratio with electric charge was found. Several trends in the overall data were identified and are discussed in terms of MFI and the different fabrication methods. PMID:28793686
Hu, Jingjing; Cheng, Yiyun; Wu, Qinglin; Zhao, Libo; Xu, Tongwen
2009-08-06
The host-guest chemistry of dendrimer-drug complexes is investigated by NMR techniques, including (1)H NMR and 2D-NOESY studies. The effects of molecular properties of drug molecules (protonation ability and spatial steric hindrance of charged groups) and surface functionalities of dendrimers (positively charged amine groups and negatively charged carboxylate groups) on the host-guest interactions are discussed. Different interaction mechanisms between dendrimers and drug molecules are proposed on the basis of NMR results. Primary amine- and secondary amine-containing drugs preferentially bind to negatively charged dendrimers by strong electrostatic interactions, whereas tertiary amine and quaternary ammonium-containing drugs have weak binding ability with dendrimers due to relatively low protonation ability of the tertiary amine group and serious steric hindrance of the quaternary ammonium group. Positively charged drugs locate only on the surface of negatively charged dendrimers, whereas negatively charged drugs locate both on the surface and in the interior cavities of positively charged dendrimers. The host-guest chemistry of dendrimer-drug complexes is promising for the development of new drug delivery systems.
Effect of surface charge alteration on stability of L-asparaginase II from Escherichia sp.
Vidya, Jalaja; Ushasree, Mrudula Vasudevan; Pandey, Ashok
2014-03-05
Escherichia coli L-asparaginases have great significance in the treatment of leukemia. Consequently, there is considerable interest in engineering this enzyme for improving its stability. In this work, the effect of surface charge on the stability of the enzyme l-asparaginase II was studied by site-directed mutagenesis of the cloned ansB gene from Escherichia sp. Replacement of two positively charged residues (K139 and K207) on the surface loops with neutral and reverse charges resulted in altered thermo stability in designed variants. Neutral charge substitutions (K139A and K207A) retained greater tolerance and stability followed by negative charge substitutions (K139D and K207D) compared to control mutant K139R and wild enzyme. From the results, it was concluded that the optimization of surface charge contributed much to the thermal properties of proteins without affecting the structure. Copyright © 2013 Elsevier Inc. All rights reserved.
Shore, Joel D.; Thurston, George M.
2018-01-01
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (pH-pK,W) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of pH-pK and W, and 1/W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of 74 lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (pH-pK,W) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions. PMID:26764648
Shore, Joel D; Thurston, George M
2015-12-01
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (pH-pK,W) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of pH-pK and W, and 1/W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √74 lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (pH-pK,W) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions.
NASA Astrophysics Data System (ADS)
Shore, Joel D.; Thurston, George M.
2015-12-01
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (p H-p K ,W ) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of p H-p K and W , and 1 /W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √{74 } lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (p H-p K ,W ) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions.
Mozley, Olivia L; Thompson, Ben C; Fernandez-Martell, Alejandro; James, David C
2014-01-01
In this study, we examine the molecular and cellular interactions that underpin efficient internalization and utilization of polyethylenimine (PEI):DNA complexes (polyplexes) by Chinese Hamster Ovary (CHO) cells. Cell surface polyplex binding and internalization was a biphasic process, consisting of an initial rapid Phase (I), lasting approximately 15 min, followed by a slower second Phase (II), saturating at approximately 240 min post transfection. The second Phase accounted for the majority (60-70%) of polyplex internalization. While cell surface heparan sulphate proteoglycans (HSPGs) were rapidly cointernalized with polyplexes during Phase I, cell surface polyplex binding was not dependent on HSPGs. However, Phase II polyplex internalization and HSPG regeneration onto the surface of trypsinized cells occurred at similar rates, suggesting that the rate of recycling of HSPG-containing membrane to the plasma membrane limits Phase II internalization rate. Under optimal transfection conditions, polyplexes had a near neutral surface charge (zeta potential) and cell surface binding was dependent on hydrophobic interactions, being significantly inhibited by both chemical sequestration of cholesterol from the plasma membrane and addition of nonionic surfactant. Induced alterations in polyplex zeta potential, using ferric (III) citrate to decrease surface charge and varying PEI:DNA ratio to increase surface charge, served to inhibit polyplex binding or reduce secreted alkaline phosphatase reporter expression and cell viability, respectively. To increase polyplex hydrophobicity and internalization an alkylated derivative of PEI, propyl-PEI, was chemically synthesized. Using Design of Experiments-Response Surface Modeling to optimize the transfection process, the function of propyl-PEI was compared to that of unmodified PEI in both parental CHO-S cells and a subclone (Clone 4), which exhibited superior transgene expression via an increased resistance to polyplex cytotoxicity. The combination of propyl-PEI and Clone 4 doubled the efficiency of recombinant DNA utilization and reporter protein production. These data show that for maximal efficacy, strategies to increase polyplex internalization into cells must be used in concert with strategies to offset the inherent cytotoxicity of this process. © 2014 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Ma, Yifan; Zhuang, Yan; Xie, Xiaofang; Wang, Ce; Wang, Fei; Zhou, Dongmei; Zeng, Jianqiang; Cai, Lintao
2011-05-01
Cationic liposomes have emerged as a novel adjuvant and antigen delivery system to enhance vaccine efficacy. However, the role of surface charge density in cationic liposome-regulated immune responses has not yet been elucidated. In the present study, we prepared a series of DOTAP/DOPC cationic liposomes with different surface densities by incorporating varying amounts of DOPC (a neutral lipid) into DOTAP (a cationic lipid). The results showed that DOTAP/DOPC cationic liposome-regulated immune responses relied on the surface charge density, and might occur through ROS signaling. The liposomes with a relatively high charge density, such as DOTAP/DOPC 5 : 0 and 4 : 1 liposomes, potently enhanced dendritic cell maturation, ROS generaion, antigen uptake, as well as the production of OVA-specific IgG2a and IFN-γ. In contrast, low-charge liposomes, such as DOTAP/DOPC 1 : 4 liposome, failed to promote immune responses even at high concentrations, confirming that the immunoregulatory effect of cationic liposomes is mostly attributable to their surface charge density. Moreover, the DOTAP/DOPC 1 : 4 liposome suppressed anti-OVA antibody responses in vivo. Overall, maintaining an appropriate surface charge is crucial for optimizing the adjuvant effect of cationic liposomes and enhancing the efficacy of liposome-based vaccines.
Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation
NASA Astrophysics Data System (ADS)
Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.
2018-02-01
Understanding the nature and effect of the multitude of plasma-surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.
Tang, Xiaoxiao; Qiao, Xiuying; Miller, Reinhard; Sun, Kang
2016-12-01
The amphiphilic character and surface activity endows silk fibroin with the ability to reside at fluid interfaces and effectively stabilize emulsions. However, the influence of relevant factors and their actual effect on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface has received less attention. In the present study, the effect of ionic strength on the interfacial viscoelasticity, emulsification effectiveness and stability of silk fibroin at the oil/water interface was investigated in detail. A higher ion concentration facilitates greater adsorption, stronger molecular interaction and faster structure reorganization of silk fibroin at the oil/water interface, thus causing quicker interfacial saturation adsorption, greater interfacial strength and lower interfacial structural fracture on large deformation. However, the presence of concentrated ions screens the charges in silk fibroin molecules and the zeta potential decreases as a result of electrostatic screening and ion-binding effects, which may result in emulsion droplet coalescence and a decrease in emulsion stability. The positively-charged ions significantly affect the interfacial elasticity and stability of silk fibroin layers at the oil/water interface as a result of the strong electrostatic interactions between counter-ions and the negatively-charged groups of silk fibroin. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Cationic flocculants carrying hydrophobic functionalities: applications for solid/liquid separation.
Schwarz, S; Jaeger, W; Paulke, B-R; Bratskaya, S; Smolka, N; Bohrisch, J
2007-07-26
The flocculation behaviors of three series of polycations with narrow molecular weight distributions carrying hydrophobic substituents on their backbones [poly(N-vinylbenzyl-N,N,N-trimethylammonium chloride), poly(N-vinylbenzyl-N,N-dimethyl-N-butylammonium chloride), and poly(N-vinylbenzylpyridinium chloride)] were investigated in dispersions of monodisperse polystyrene latexes and kaolin. Apparently, the charge density of the polycations decreases with increasing substituent hydrophobicity and increasing molecular weight of the polyelectrolytes. The necessary amount of flocculant for phase separation in dispersions with high substrate surface charge densities increases with increasing hydrophobicity of the polyelectrolyte. Nevertheless, the introduction of hydrophobic functionalities is beneficial, resulting in a substantial broadening of the range between the minimum and maximum amounts of flocculant necessary for efficient flocculation (flocculation window). An increase in ionic strength supports this effect. When the substrate has a low charge density, the hydrophobic interactions play a much more significant role in the flocculation process. Here, the minimum efficient doses remained the same for all three polyelectrolytes investigated, but the width of the flocculation window increased as the polycation hydrophobicity and the molecular weight increased. The necessary amount of flocculant increased with an increase in particle size at constant solid content of the dispersion, as well as with a decreasing number of particles at a constant particle size.
Abo, Toru; Watanabe, Mayumi; Tomiyama, Chikako; Kanda, Yasuhiro
2014-07-01
Capillary vessel flow in the base of the fingernail can be observed by microscopy. This flow is switched off under some conditions, such as coldness, surprise, and anger and is switched on again under other conditions, such as warming, relaxation, and mild exercise. In other words, capillary vessels perform two functions: switching flow on and off. It is speculated that the switch-off function is necessary to direct energy production to the glycolysis pathway, while the switch-on function is necessary for the mitochondrial pathway. This is because glycolysis takes place under anaerobic conditions, while oxidative phosphorylation in the mitochondria proceeds under aerobic conditions in the body. To switch off circulation, the negative electric charges on the surface of erythrocytes and the capillary wall may be decreased by stimulation of the sympathetic nerves and secretion of steroid hormones. Negative charge usually acts as repulsive force between erythrocytes and between erythrocytes and the capillary wall. By decreasing the negative charge, erythrocytes can aggregate and also adhere to the capillary wall. These behaviors may be related to the capillary flow switch-off function. Here, it is emphasized that the capillary vessels possess not only a switch-on function but also a switch-off function for circulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hydrogen Cracking in Gas Tungsten Arc Welding of an AISI Type 321 Stainless Steel
NASA Astrophysics Data System (ADS)
Rozenak, P.; Unigovski, Ya.; Shneck, R.
The effects of in situ cathodic charging on the tensile properties and susceptibility to cracking of an AISI type 321 stainless steel, welded by the gas tungsten arc welding (GTAW) process, was studied by various treatments. Appearance of delta-ferrite phase in the as-welded steels in our tested conditions was observed with discontinuous grain boundaries (M23C6) and a dense distribution of metal carbides MC ((Ti, Nb)C), which precipitated in the matrix. Shielding gas rates changes the mechanical properties of the welds. Ultimate tensile strength and ductility are increases with the resistance to the environments related the increase of the supplied shielding inert gas rates. Charged specimens, caused mainly in decreases in the ductility of welded specimens. However, more severe decrease in ductility was obtained after post weld heat treatment (PWHT). The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited massive transgranular regions. Both types of specimen demonstrated narrow brittle zones at the sides of the fracture surface and ductile micro-void coalescences in the middle. Ferrite δ was form after welding with high density of dislocation structures and stacking faults formation and the thin stacking fault plates with e-martensite phase were typically found in the austenitic matrix after the cathodical charging process.
Mykhaylyk, Olga; Sobisch, Titus; Almstätter, Isabella; Sanchez-Antequera, Yolanda; Brandt, Sabine; Anton, Martina; Döblinger, Markus; Eberbeck, Dietmar; Settles, Marcus; Braren, Rickmer; Lerche, Dietmar; Plank, Christian
2012-05-01
To optimize silica-iron oxide magnetic nanoparticles with surface phosphonate groups decorated with 25-kD branched polyethylenimine (PEI) for gene delivery. Surface composition, charge, colloidal stabilities, associations with adenovirus, magneto-tranduction efficiencies, cell internalizations, in vitro toxicities and MRI relaxivities were tested for the particles decorated with varying amounts of PEI. Moderate PEI-decoration of MNPs results in charge reversal and destabilization. Analysis of space and time resolved concentration changes during centrifugation clearly revealed that at >5% PEI loading flocculation gradually decreases and sufficient stabilization is achieved at >10%. The association with adenovirus occurred efficiently at levels over 5% PEI, resulting in the complexes stable in 50% FCS at a PEI-to-iron w/w ratio of ≥7%; the maximum magneto-transduction efficiency was achieved at 9-12% PEI. Primary silica iron oxide nanoparticles and those with 11.5% PEI demonstrated excellent r(2)* relaxivity values (>600 s(-1)(mM Fe)(-1)) for the free and cell-internalized particles. Surface decoration of the silica-iron oxide nanoparticles with a PEI-to-iron w/w ratio of 10-12% yields stable aqueous suspensions, allows for efficient viral gene delivery and labeled cell detection by MRI.
Iron layer-dependent surface-enhanced raman scattering of hierarchical nanocap arrays
NASA Astrophysics Data System (ADS)
Chen, Lei; Sun, Huanhuan; Zhao, Yue; Gao, Renxian; Wang, Yaxin; Liu, Yang; Zhang, Yongjun; Hua, Zhong; Yang, Jinghai
2017-11-01
In this report, we fabricated the multi-layer Ag/Fe/Ag sandwich cap-shaped films on monolayer non-closed packed (ncp) polystyrene colloidal particle (PSCP) templates through a layer-by-layer (LBL) depositing method. This research focused on the surface-enhanced Raman scattering (SERS) effect of the thickness of the deposited Fe film which was controlled by the sputtering time. The SERS intensities were increased firstly, and then decreased as the thickness of Fe layer grows gradually, which is attributed to the charge transition from the Fermi level of the Ag NPs to Fe layer. The use of multi-layer Ag/Fe/Ag sandwich cap-shaped films enables us to evaluate the contribution of surface plasmon resonance and charge distribution between Ag and Fe to SERS enhancement. Our work introduced a novel system (Ag/Fe/Ag) for high performance SERS and extended the SERS application of Fe. Furthermore, we have designed the Ag/Fe/Ag SERS-active substrate as the immunoassay chip for quantitative determination of AFP-L3 which is the biomarker of hepatocellular carcinoma (HCC). The proposed research demonstrates that the SERS substrates with Ag/Fe/Ag sandwich cap-shaped arrays have a high sensitivity for bioassay.
Positive selection in octopus haemocyanin indicates functional links to temperature adaptation.
Oellermann, Michael; Strugnell, Jan M; Lieb, Bernhard; Mark, Felix C
2015-07-05
Octopods have successfully colonised the world's oceans from the tropics to the poles. Yet, successful persistence in these habitats has required adaptations of their advanced physiological apparatus to compensate impaired oxygen supply. Their oxygen transporter haemocyanin plays a major role in cold tolerance and accordingly has undergone functional modifications to sustain oxygen release at sub-zero temperatures. However, it remains unknown how molecular properties evolved to explain the observed functional adaptations. We thus aimed to assess whether natural selection affected molecular and structural properties of haemocyanin that explains temperature adaptation in octopods. Analysis of 239 partial sequences of the haemocyanin functional units (FU) f and g of 28 octopod species of polar, temperate, subtropical and tropical origin revealed natural selection was acting primarily on charge properties of surface residues. Polar octopods contained haemocyanins with higher net surface charge due to decreased glutamic acid content and higher numbers of basic amino acids. Within the analysed partial sequences, positive selection was present at site 2545, positioned between the active copper binding centre and the FU g surface. At this site, methionine was the dominant amino acid in polar octopods and leucine was dominant in tropical octopods. Sites directly involved in oxygen binding or quaternary interactions were highly conserved within the analysed sequence. This study has provided the first insight into molecular and structural mechanisms that have enabled octopods to sustain oxygen supply from polar to tropical conditions. Our findings imply modulation of oxygen binding via charge-charge interaction at the protein surface, which stabilize quaternary interactions among functional units to reduce detrimental effects of high pH on venous oxygen release. Of the observed partial haemocyanin sequence, residue 2545 formed a close link between the FU g surface and the active centre, suggesting a role as allosteric binding site. The prevalence of methionine at this site in polar octopods, implies regulation of oxygen affinity via increased sensitivity to allosteric metal binding. High sequence conservation of sites directly involved in oxygen binding indicates that functional modifications of octopod haemocyanin rather occur via more subtle mechanisms, as observed in this study.
Charge reversal at a planar boundary between two dielectrics.
Wang, Zhi-Yong
2016-01-01
Despite the ubiquitous character and relevance of the electric double layer in the entire realm of interface and colloid science, very little is known of the effect that surface heterogeneity exerts on the underlying mechanisms of ion adsorption. Herein, computer simulations offer a perspective that, in sharp contrast to the homogeneously charged surface, discrete groups promote multivalent counterion binding, leading to charge reversal but possibly having not a sign change of the electrophoretic mobility. Counterintuitively, the introduction of dielectric images yields a significantly greater accumulation of counterions, which further facilitates the magnitude of charge reversal. The reported results are very sensitive to both the degree of ion hydration and the representation of surface charges. Our findings shed light on the mechanism for charge reversal over a broad range of coupling regimes operating the adsorption of counterions through surface group bridging attraction with their own images and provide opportunities for experimental studies and theoretical development.
Charge reversal at a planar boundary between two dielectrics
NASA Astrophysics Data System (ADS)
Wang, Zhi-Yong
2016-01-01
Despite the ubiquitous character and relevance of the electric double layer in the entire realm of interface and colloid science, very little is known of the effect that surface heterogeneity exerts on the underlying mechanisms of ion adsorption. Herein, computer simulations offer a perspective that, in sharp contrast to the homogeneously charged surface, discrete groups promote multivalent counterion binding, leading to charge reversal but possibly having not a sign change of the electrophoretic mobility. Counterintuitively, the introduction of dielectric images yields a significantly greater accumulation of counterions, which further facilitates the magnitude of charge reversal. The reported results are very sensitive to both the degree of ion hydration and the representation of surface charges. Our findings shed light on the mechanism for charge reversal over a broad range of coupling regimes operating the adsorption of counterions through surface group bridging attraction with their own images and provide opportunities for experimental studies and theoretical development.
Electrostatic thin film chemical and biological sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.
A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includesmore » providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.« less
Biochemical Study of Anti-Inflammatory Proteins vCCI and vMIP-II
2014-07-17
protein ), where we showed that vCCI is able to bind so many different chemokines due to its general negatively charged surface , allowing it to bind...sample of these competition curves. Our conclusion from the data in Table 1 and Figure 1 is that the negatively charged surface of vCCI allows it to...Similar to our mutagenesis results, the overall data indicate that vCCI uses a negatively charged surface to bind positive charges on the chemokine
SPM observation of nano-dots induced by slow highly charged ions
NASA Astrophysics Data System (ADS)
Nakamura, Nobuyuki; Terada, Masashi; Nakai, Yoichi; Kanai, Yasuyuki; Ohtani, Shunsuke; Komaki, Ken-ichiro; Yamazaki, Yasunori
2005-05-01
We have observed nano-dots on a highly oriented pyrolytic graphite (HOPG) surface produced by highly charged ion impacts with a scanning probe microscope. In order to clarify the role of potential and kinetic energies in surface modification, we have measured the kinetic energy and incident ion charge dependences of the dot size. The results showed that the potential energy or the incident ion charge has strong influence on the surface modification rather than the kinetic energy.
Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field
NASA Astrophysics Data System (ADS)
Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao
2017-03-01
External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.
Zhao, Yan; Zhou, Chunlan; Zhang, Xiang; Zhang, Peng; Dou, Yanan; Wang, Wenjing; Cao, Xingzhong; Wang, Baoyi; Tang, Yehua; Zhou, Su
2013-03-02
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density (Qf) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Qf can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Qf obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Qf. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiOx/Si interface region decreased with increased temperature. Measurement results of Qf proved that the Al vacancy of the bulk film may not be related to Qf. The defect density in the SiOx region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C.
2013-01-01
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density (Qf) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Qf can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Qf obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Qf. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiOx/Si interface region decreased with increased temperature. Measurement results of Qf proved that the Al vacancy of the bulk film may not be related to Qf. The defect density in the SiOx region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C. PMID:23452508
Adsorption and dissociation of molecular oxygen on α-Pu (0 2 0) surface: A density functional study
NASA Astrophysics Data System (ADS)
Wang, Jianguang; Ray, Asok K.
2011-09-01
Molecular and dissociative oxygen adsorptions on the α-Pu (0 2 0) surface have been systematically studied using the full-potential linearized augmented-plane-wave plus local orbitals (FP-LAPW+lo) basis method and the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. Chemisorption energies have been optimized for the distance of the admolecule from the Pu surface and the bond length of O-O atoms for four adsorption sites and three approaches of O 2 admolecule to the (0 2 0) surface. Chemisorption energies have been calculated at the scalar relativistic level with no spin-orbit coupling (NSOC) and at the fully relativistic level with spin-orbit coupling (SOC). Dissociative adsorptions are found at the two horizontal approaches (O 2 is parallel to the surface and perpendicular/parallel to a lattice vector). Hor2 (O 2 is parallel to the surface and perpendicular to a lattice vector) approach at the one-fold top site is the most stable adsorption site, with chemisorption energies of 8.048 and 8.415 eV for the NSOC and SOC cases, respectively, and an OO separation of 3.70 Å. Molecular adsorption occurs at the Vert (O 2 is vertical to the surface) approach of each adsorption site. The calculated work functions and net spin magnetic moments, respectively, increase and decrease in all cases upon chemisorption compared to the clean surface. The partial charges inside the muffin-tins, the difference charge density distributions, and the local density of states have been used to investigate the Pu-admolecule electronic structures and bonding mechanisms.
Electrostatic dust transport on the surfaces of airless bodies
NASA Astrophysics Data System (ADS)
Wang, X.; Schwan, J.; Hsu, H. W.; Horanyi, M.
2015-12-01
The surfaces of airless bodies are charged due to the exposure to solar wind plasma and UV radiation. Dust particles on the regolith of these surfaces can become charged, and may move and even get lofted due to electrostatic force. Electrostatic dust transport has been a long-standing problem that may be related to many observed phenomena on the surfaces of airless planetary bodies, including the lunar horizon glow, the dust ponds on asteroid Eros, the spokes in Saturn's rings, and more recently, the collection of dust particles ejected off Comet 67P, observed by Rosetta. In order to resolve these puzzles, a handful of laboratory experiments have been performed in the past and demonstrated that dust indeed moves and lifts from surfaces exposed to plasma. However, the exact mechanisms for the mobilization of dust particles still remain a mystery. Current charging models, including the so-called "shared charge model" and the charge fluctuation theory, will be discussed. It is found that neither of these models can explain the results from either laboratory experiments or in-situ observations. Recently, single dust trajectories were captured with our new dust experiments, enabling novel micro-scale investigations. The particles' initial launch speeds and size distributions are analyzed, and a new so-called "patched charge model" is proposed to explain our findings. We identify the role of plasma micro-cavities that are formed in-between neighboring dust particles. The emitted secondary or photo- electrons are proposed to be absorbed inside the micro-cavities, resulting in significant charge accumulation on the exposed patches of the surfaces of neighboring particles. The resulting enhanced Coulomb force (repulsion) between particles is likely the dominant force to mobilize and lift them off the surface. The role of other properties, including surface morphology, cohesion and photoelectron charging, will also be discussed.
Influence of charge and flexibility on smectic phase formation in filamentous virus suspensions
NASA Astrophysics Data System (ADS)
Purdy, Kirstin R.; Fraden, Seth
2007-07-01
We present experimental measurements of the cholesteric-smectic phase transition of suspensions of charged semiflexible rods as a function of rod flexibility and surface charge. The rod particles consist of the bacteriophage M13 and closely related mutants, which are structurally identical to M13, but vary either in contour length and therefore ratio of persistence length to contour length, or surface charge. Surface charge is altered in two ways; by changing solution pH and by comparing M13 with fd virus, a virus which differs from M13 only by the substitution of a single charged amino acid for a neutral one per viral coat protein. Phase diagrams are measured as a function of particle length, particle charge, and ionic strength. The experimental results are compared with existing theoretical predictions for the phase behavior of flexible rods and charged rods.
Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas
2014-01-01
Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.
Patil, Ashwini; Nakamura, Haruki
2007-01-01
Hubs are highly connected proteins in a protein-protein interaction network. Previous work has implicated disordered domains and high surface charge as the properties significant in the ability of hubs to bind multiple proteins. While conformational flexibility of disordered domains plays an important role in the binding ability of large hubs, high surface charge is the dominant property in small hubs. In this study, we further investigate the role of the high surface charge in the binding ability of small hubs in the absence of disordered domains. Using multipole expansion, we find that the charges are highly distributed over the hub surfaces. Residue enrichment studies show that the charged residues in hubs are more prevalent on the exposed surface, with the exception of Arg, which is predominantly found at the interface, as compared to non-hubs. This suggests that the charged residues act primarily from the exposed surface rather than the interface to affect the binding ability of small hubs. They do this through (i) enhanced intra-molecular electrostatic interactions to lower the desolvation penalty, (ii) indirect long – range intermolecular interactions with charged residues on the partner proteins for better complementarity and electrostatic steering, and (iii) increased solubility for enhanced diffusion-controlled rate of binding. Along with Arg, we also find a high prevalence of polar residues Tyr, Gln and His and the hydrophobic residue Met at the interfaces of hubs, all of which have the ability to form multiple types of interactions, indicating that the interfaces of hubs are optimized to participate in multiple interactions. PMID:27857564
Patil, Ashwini; Nakamura, Haruki
2007-01-01
Hubs are highly connected proteins in a protein-protein interaction network. Previous work has implicated disordered domains and high surface charge as the properties significant in the ability of hubs to bind multiple proteins. While conformational flexibility of disordered domains plays an important role in the binding ability of large hubs, high surface charge is the dominant property in small hubs. In this study, we further investigate the role of the high surface charge in the binding ability of small hubs in the absence of disordered domains. Using multipole expansion, we find that the charges are highly distributed over the hub surfaces. Residue enrichment studies show that the charged residues in hubs are more prevalent on the exposed surface, with the exception of Arg, which is predominantly found at the interface, as compared to non-hubs. This suggests that the charged residues act primarily from the exposed surface rather than the interface to affect the binding ability of small hubs. They do this through (i) enhanced intra-molecular electrostatic interactions to lower the desolvation penalty, (ii) indirect long - range intermolecular interactions with charged residues on the partner proteins for better complementarity and electrostatic steering, and (iii) increased solubility for enhanced diffusion-controlled rate of binding. Along with Arg, we also find a high prevalence of polar residues Tyr, Gln and His and the hydrophobic residue Met at the interfaces of hubs, all of which have the ability to form multiple types of interactions, indicating that the interfaces of hubs are optimized to participate in multiple interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerville, L.; Bareno, J.; Trask, S.
Increased charging rates negatively affect the lifetime of lithium-ion cells by increasing cell resistance and reducing capacity. This work is a post-mortem study of 18650 cells subjected to charge rates of 0.7-, 2-, 4-, and 6-C. For cells charged at 0.7-C to 4-C, this performance degradation is primarily related to surface film thickness with no observable change in surface film chemical composition. However, at charge rates of 6-C, the chemical composition of the surface film changes significantly, suggesting that this change is the reason for the sharper increase in cell resistance compared to the lower charge rates. In addition, wemore » found that surface film formation was not uniform across the electrode. Surface film was thicker and chemically different along the central band of the electrode “jelly roll”. This result is most likely attributable to an increase in temperature that results from non-uniform electrode wetting during manufacture. As a result, this non-uniform change further resulted in active material delamination from the current collector owing to chemical changes to the binder for the cell charged at 6-C.« less
Somerville, L.; Bareno, J.; Trask, S.; ...
2016-10-22
Increased charging rates negatively affect the lifetime of lithium-ion cells by increasing cell resistance and reducing capacity. This work is a post-mortem study of 18650 cells subjected to charge rates of 0.7-, 2-, 4-, and 6-C. For cells charged at 0.7-C to 4-C, this performance degradation is primarily related to surface film thickness with no observable change in surface film chemical composition. However, at charge rates of 6-C, the chemical composition of the surface film changes significantly, suggesting that this change is the reason for the sharper increase in cell resistance compared to the lower charge rates. In addition, wemore » found that surface film formation was not uniform across the electrode. Surface film was thicker and chemically different along the central band of the electrode “jelly roll”. This result is most likely attributable to an increase in temperature that results from non-uniform electrode wetting during manufacture. As a result, this non-uniform change further resulted in active material delamination from the current collector owing to chemical changes to the binder for the cell charged at 6-C.« less
A mosaic infrared sensor for space astronomy, phase 3
NASA Technical Reports Server (NTRS)
Sood, A. K.
1985-01-01
Short wavelength (1 to 3 micron) HgCdTe mosaic detector arrays for space astronomy purposes were fabricated and studied. Honeywell will test and analyze these arrays at moderate temperatures (300-130K). Low temperature testing will be performed at the University of Hawaii. Short wavelength mosaic arrays were fabricated on three wafers and one array from each wafer was tested and analyzed. The p-type base carrier concentration on these wafers was an order of magnitude lower than typically used so far on this program (10 to the 14/cc as compared to 10 to the 15/cc). Tunneling currents are expected to decrease with this decrease in carrier concentration, resulting in improved performance at very low temperatures. The risk with such a low carrier concentration is that fixed charge in the surface passivating layer must be carefully controlled to prevent surface inversion layers.
NASA Technical Reports Server (NTRS)
Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)
1994-01-01
The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.
Printing-assisted surface modifications of patterned ultrafiltration membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem
Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted inmore » all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.« less
Printing-assisted surface modifications of patterned ultrafiltration membranes
Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; ...
2016-10-17
Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted inmore » all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.« less
Curtis, Colin K; Marek, Antonin; Smirnov, Alex I
2017-01-01
This article reports a comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively (hydroxylated) or negatively (carboxylated) charged nanodiamonds (ND). Immersion in −ND suspensions resulted in a decrease in the macroscopic friction coefficients to values in the range 0.05–0.1 for both stainless steel and alumina, while +ND suspensions yielded an increase in friction for stainless steel contacts but little to no increase for alumina contacts. Quartz crystal microbalance (QCM), atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements were employed to assess nanoparticle uptake, surface polishing, and resistance to solid–liquid interfacial shear motion. The QCM studies revealed abrupt changes to the surfaces of both alumina and stainless steel upon injection of –ND into the surrounding water environment that are consistent with strong attachment of NDs and/or chemical changes to the surfaces. AFM images of the surfaces indicated slight increases in the surface roughness upon an exposure to both +ND and −ND suspensions. A suggested mechanism for these observations is that carboxylated −NDs from aqueous suspensions are forming robust lubricious deposits on stainless and alumina surfaces that enable gliding of the surfaces through the −ND suspensions with relatively low resistance to shear. In contrast, +ND suspensions are failing to improve tribological performance for either of the surfaces and may have abraded existing protective boundary layers in the case of stainless steel contacts. This study therefore reveals atomic scale details associated with systems that exhibit starkly different macroscale tribological properties, enabling future efforts to predict and design complex lubricant interfaces. PMID:29046852
[Sorption of microorganisms by fiber materials].
Nikovskaia, G N; Gordienko, A S; Globa, L I
1986-01-01
Candida guilliermondii and Escherichia coli cells were adsorbed on glass and basalt fibres with a similar specific surface, but with a different charge. The quantity of adsorbed microorganisms did not depend on the type and charge of a fibre surface. However, cells were adsorbed faster and more firmly on positively charged and uncharged fibres than on negatively charged fibres.
Wilker, Molly B.; Utterback, James K.; Greene, Sophie; ...
2017-12-08
Complexes of CdS nanorods and [FeFe] hydrogenase from Clostridium acetobutylicum have been shown to photochemically produce H 2. This study examines the role of the ligands that passivate the nanocrystal surfaces in the electron transfer from photoexcited CdS to hydrogenase and the H 2 generation that follows. We functionalized CdS nanorods with a series of mercaptocarboxylate surface-capping ligands of varying lengths and measured their photoexcited electron relaxation by transient absorption (TA) spectroscopy before and after hydrogenase adsorption. Rate constants for electron transfer from the nanocrystals to the enzyme, extracted by modeling of TA kinetics, decrease exponentially with ligand length, suggestingmore » that the ligand layer acts as a barrier to charge transfer and controls the degree of electronic coupling. Relative light-driven H 2 production efficiencies follow the relative quantum efficiencies of electron transfer, revealing the critical role of surface-capping ligands in determining the photochemical activity of these nanocrystal-enzyme complexes. Our results suggest that the H 2 production in this system could be maximized with a choice of a surface-capping ligand that decreases the distance between the nanocrystal surface and the electron injection site of the enzyme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilker, Molly B.; Utterback, James K.; Greene, Sophie
Complexes of CdS nanorods and [FeFe] hydrogenase from Clostridium acetobutylicum have been shown to photochemically produce H 2. This study examines the role of the ligands that passivate the nanocrystal surfaces in the electron transfer from photoexcited CdS to hydrogenase and the H 2 generation that follows. We functionalized CdS nanorods with a series of mercaptocarboxylate surface-capping ligands of varying lengths and measured their photoexcited electron relaxation by transient absorption (TA) spectroscopy before and after hydrogenase adsorption. Rate constants for electron transfer from the nanocrystals to the enzyme, extracted by modeling of TA kinetics, decrease exponentially with ligand length, suggestingmore » that the ligand layer acts as a barrier to charge transfer and controls the degree of electronic coupling. Relative light-driven H 2 production efficiencies follow the relative quantum efficiencies of electron transfer, revealing the critical role of surface-capping ligands in determining the photochemical activity of these nanocrystal-enzyme complexes. Our results suggest that the H 2 production in this system could be maximized with a choice of a surface-capping ligand that decreases the distance between the nanocrystal surface and the electron injection site of the enzyme.« less
Charge collection kinetics on ferroelectric polymer surface using charge gradient microscopy
Choi, Yoon-Young; Tong, Sheng; Ducharme, Stephen P.; ...
2016-05-03
Here, a charge gradient microscopy (CGM) probe was used to collect surface screening charges on poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. These charges are naturally formed on unscreened ferroelectric domains in ambient condition. The CGM data were used to map the local electric current originating from the collected surface charges on the poled ferroelectric domains in the P(VDF-TrFE) thin films. Both the direction and amount of the collected current were controlled by changing the polarity and area of the poled domains. The endurance of charge collection by rubbing the CGM tip on the polymer film was limited to 20 scan cycles,more » after which the current reduced to almost zero. This degradation was attributed to the increase of the chemical bonding strength between the external screening charges and the polarization charges. Once this degradation mechanism is mitigated, the CGM technique can be applied to efficient energy harvesting devices using polymer ferroelectrics.« less
Manzini, Mariana C; Perez, Katia R; Riske, Karin A; Bozelli, José C; Santos, Talita L; da Silva, Marcia A; Saraiva, Greice K V; Politi, Mario J; Valente, Ana P; Almeida, Fábio C L; Chaimovich, Hernan; Rodrigues, Magali A; Bemquerer, Marcelo P; Schreier, Shirley; Cuccovia, Iolanda M
2014-07-01
The cecropin-melittin hybrid antimicrobial peptide BP100 (H-KKLFKKILKYL-NH2) is selective for Gram-negative bacteria, negatively charged membranes, and weakly hemolytic. We studied BP100 conformational and functional properties upon interaction with large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs, containing variable proportions of phosphatidylcholine (PC) and negatively charged phosphatidylglycerol (PG). CD and NMR spectra showed that upon binding to PG-containing LUVs BP100 acquires α-helical conformation, the helix spanning residues 3-11. Theoretical analyses indicated that the helix is amphipathic and surface-seeking. CD and dynamic light scattering data evinced peptide and/or vesicle aggregation, modulated by peptide:lipid ratio and PG content. BP100 decreased the absolute value of the zeta potential (ζ) of LUVs with low PG contents; for higher PG, binding was analyzed as an ion-exchange process. At high salt, BP100-induced LUVS leakage requires higher peptide concentration, indicating that both electrostatic and hydrophobic interactions contribute to peptide binding. While a gradual release took place at low peptide:lipid ratios, instantaneous loss occurred at high ratios, suggesting vesicle disruption. Optical microscopy of GUVs confirmed BP100-promoted disruption of negatively charged membranes. The mechanism of action of BP100 is determined by both peptide:lipid ratio and negatively charged lipid content. While gradual release results from membrane perturbation by a small number of peptide molecules giving rise to changes in acyl chain packing, lipid clustering (leading to membrane defects), and/or membrane thinning, membrane disruption results from a sequence of events - large-scale peptide and lipid clustering, giving rise to peptide-lipid patches that eventually would leave the membrane in a carpet-like mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.
Krasnoslobodtsev, Alexey V.; Smirnov, Sergei N.
2008-01-01
Surface assisted photoinduced transient displacement charge (SPTDC) technique was used to study charge transfer in self-assembled monolayers of 7-diethylaminocoumarin covalently linked to oxide surface in atmosphere of different gases. The dipole signal was found to be opposite to that in solution and dependent on the nature of gas and its pressure. The results were explained by collision-induced relaxation that impedes uninhibited tilting of molecules onto the surface. Collisions with paramagnetic oxygen induce intersystem crossing to long-lived triplet dipolar states of coumarin with the rate close to the half of that for the collision rate. PMID:16956285
Role of Surface Charge Density in Nanoparticle-templated Assembly of Bromovirus Protein Cages
Daniel, Marie-Christine; Tsvetkova, Irina B.; Quinkert, Zachary T.; Murali, Ayaluru; De, Mrinmoy; Rotello, Vincent M.; Kao, C. Cheng; Dragnea, Bogdan
2010-01-01
Self-assembling icosahedral protein cages have potencially useful physical and chemical characteristics for a variety of nanotechnology applications, ranging from therapeutic or diagnostic vectors to building blocks for hierarchical materials. For application-specific functional control of protein cage assemblies, a deeper understanding of the interaction between the protein cage and its payload is necessary. Protein-cage encapsulated nanoparticles, with their well-defined surface chemistry, allow for systematic control over key parameters of encapsulation such as the surface charge, hydrophobicity, and size. Independent control over these variables allows experimental testing of different assembly mechanism models. Previous studies done with Brome mosaic virus capsids and negatively-charged gold nanoparticles indicated that the result of the self-assembly process depends on the diameter of the particle. However, in these experiments, the surface-ligand density was maintained at saturation levels, while the total charge and the radius of curvature remained coupled variables, making the interpretation of the observed dependence on the core size difficult. The current work furnishes evidence of a critical surface charge density for assembly through an analysis aimed at decoupling the surface charge the core size. PMID:20575505
In Vitro Biocompatibility of Si Alloyed Multi-Principal Element Carbide Coatings
Vladescu, Alina; Titorencu, Irina; Dekhtyar, Yuri; Jinga, Victor; Pruna, Vasile; Balaceanu, Mihai; Dinu, Mihaela; Pana, Iulian; Vendina, Viktorija
2016-01-01
In the current study, we have examined the possibility to improve the biocompatibility of the (TiZrNbTaHf)C through replacement of either Ti or Ta by Si. The coatings were deposited on Si and 316L stainless steel substrates by magnetron sputtering in an Ar+CH4 mixed atmosphere and were examined for elemental composition, chemical bonds, surface topography, surface electrical charge and biocompatible characteristics. The net surface charge was evaluated at nano and macroscopic scale by measuring the electrical potential and work function, respectively. The biocompatible tests comprised determination of cell viability and cell attachment to the coated surface. The deposited coatings had C/(metal+Si) ratios close to unity, while a mixture of metallic carbide, free-carbon and oxidized species formed on the film surface. The coatings’ surfaces were smooth and no influence of surface roughness on electrical charge or biocompatibility was found. The biocompatible characteristics correlated well with the electrical potential/work function, suggesting a significant role of surface charge in improving biocompatibility, particularly cell attachment to coating's surface. Replacement of either Ti or Ta by Si in the (TiZrNbTaHf)C coating led to an enhanced surface electrical charge, as well as to superior biocompatible properties, with best results for the (TiZrNbSiHf)C coating. PMID:27571361
NASA Astrophysics Data System (ADS)
Roy, J. C.; Ferri, A.; Salaün, F.; Giraud, S.; Chen, G.; Jinping, G.
2017-10-01
Chitosan-based emulsions were prepared at pH from 4.0 to 6.0. The zeta potential and droplet size were monitored at different pH. Double emulsions (wateroil- water) were observed due to the stiff conformation of chitosan at pH 4.0. At pH 5.0, the emulsion droplets were the smallest (2.9 μm) of the experimental pH range. The emulsion droplets were well dispersed due to high surface charge of chitosan (for example, +50 mV at pH 5.5) in entire pH range. The emulsion was treated with carboxymethyl cellulose (CMC) for neutralizing the charged chitosan on the surface of emulsion droplets. Above 10×10-2 mg/ml of CMC, no change in zeta potential was observed indicating no more free chitosan existed after neutralization with CMC. The emulsion was then crosslinked with different amount of glutaraldehyde. Upon increasing the amount of glutaraldehyde, the amount of core content inside the microcapsule and encapsulation efficiency of shell materials decreased gradually. The Dynamic Scanning Calorimetry data confirmed no interaction between core and shell material in the microencapsulation process. The thermal degradation of the microcapsules was examined by thermogravimetric analysis and a gradual decrease in the degradation temperature upon increasing glutaraldehyde concentration was found. The tuning of CMC concentration can provide valuable information regarding stable emulsion and efficient microcapsule formulation via coacervation.
Effects of Zn2+ and Pb2+ dopants on the activity of Ga2O3-based photocatalysts for water splitting.
Wang, Xiang; Shen, Shuai; Jin, Shaoqing; Yang, Jingxiu; Li, Mingrun; Wang, Xiuli; Han, Hongxian; Li, Can
2013-11-28
Zn-doped and Pb-doped β-Ga2O3-based photocatalysts were prepared by an impregnation method. The photocatalyst based on the Zn-doped β-Ga2O3 shows a greatly enhanced activity in water splitting while the Pb-doped β-Ga2O3 one shows a dramatic decrease in activity. The effects of Zn(2+) and Pb(2+) dopants on the activity of Ga2O3-based photocatalysts for water splitting were investigated by HRTEM, XPS and time-resolved IR spectroscopy. A ZnGa2O4-β-Ga2O3 heterojunction is formed in the surface region of the Zn-doped β-Ga2O3 and a slower decay of photogenerated electrons is observed. The ZnGa2O4-β-Ga2O3 heterojunction exhibits type-II band alignment and facilitates charge separation, thus leading to an enhanced photocatalytic activity for water splitting. Unlike Zn(2+) ions, Pb(2+) ions are coordinated by oxygen atoms to form polyhedra as dopants, resulting in distorted surface structure and fast decay of photogenerated electrons of β-Ga2O3. These results suggest that the Pb dopants act as charge recombination centers expediting the recombination of photogenerated electrons and holes, thus decreasing the photocatalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia
2012-11-29
The ionic charge state of monodisperse cationic gold clusters on surfaces may be controlled by selecting the coverage of mass-selected ions soft landed onto a substrate. Polydisperse diphosphine-capped gold clusters were synthesized in solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine in the presence of 1,3-bis(diphenylphosphino)propane. The polydisperse gold clusters were introduced into the gas phase by electrospray ionization and mass selection was employed to select a multiply charged cationic cluster species (Au11L53+, m/z = 1409, L = 1,3-bis(diphenylphosphino)propane) which was delivered to the surfaces of four different self-assembled monolayers on gold (SAMs) at coverages of 1011 and 1012 clusters/mm2.more » Employing the spatial profiling capabilities of in-situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) it is shown that, in addition to the chemical functionality of the monolayer (as demonstrated previously: ACS Nano, 2012, 6, 573) the coverage of cationic gold clusters on the surface may be used to control the distribution of ionic charge states of the soft-landed multiply charged clusters. In the case of a 1H,1H,2H,2H-perfluorodecanethiol SAM (FSAM) almost complete retention of charge by the deposited Au11L53+ clusters was observed at a lower coverage of 1011 clusters/mm2. In contrast, at a higher coverage of 1012 clusters/mm2, pronounced reduction of charge to Au11L52+ and Au11L5+ was observed on the FSAM. When soft landed onto 16- and 11-mercaptohexadecanoic acid surfaces on gold (16,11-COOH-SAMs), the mass-selected Au11L53+ clusters exhibited partial reduction of charge to Au11L52+ at lower coverage and additional reduction of charge to both Au11L52+ and Au11L5+ at higher coverage. The reduction of charge was found to be more pronounced on the surface of the shorter (thinner) C11 than the longer (thicker) C16-COOH-SAM. On the surface of the 1-dodecanethiol (HSAM) monolayer, the most abundant charge state was found to be Au11L52+ at lower coverage and Au11L5+ at higher coverage, respectively. A coverage-dependent electron tunneling mechanism is proposed to account for the observed reduction of charge of mass-selected multiply charged gold clusters soft landed on SAMs. The results demonstrate that one of the critical parameters that influence the chemical and physical properties of supported metal clusters, ionic charge state, may be controlled by selecting the coverage of charged species soft landed onto surfaces.« less
NASA Astrophysics Data System (ADS)
Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung
2011-08-01
The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.
NASA Astrophysics Data System (ADS)
Giocondi, Jennifer Lynn
Experiments have been conducted to determine the effects of dipolar fields, surface termination, and surface orientation on the photochemical reactivity of several transition metal oxides. These compounds include BaTiO3, SrTiO3, BaTi4O9, Sr2Nb2O 7, and Sr2Ta2O7 which were studied as polycrystalline ceramics, single crystals, micron-sized faceted particles, or some combination of these forms. The reduction of Ag+ from an aqueous AgNO3 solution (Ag0 product) and the oxidation of Pb2+ from an aqueous lead acetate solution (PbO 2 product) were selected as probe reactions because they leave insoluble products on the oxide surfaces. The reactivity of ferroelectric BaTiO3 was dominated by the effect of dipolar fields on the transport of photogenerated charge carriers. Silver was reduced on domains with a positive surface charge while lead was oxidized on domains with a negative surface charge. This reactivity implies that the dipolar field in individual domains drives photogenerated charge carriers to oppositely charged surfaces. This reaction mechanism results in a physical separation of the photogenerated charge carriers and the locations of the oxidation and reduction half reactions on the catalyst surface. Experiments performed on polycrystalline ceramics, single crystals, and micron-sized particles all showed this domain specific reactivity. SrTiO3 has the ideal cubic perovskite structure from which the tetragonally distorted ferroelectric BaTiO3 phase is derived. Polished and annealed surfaces of randomly oriented grain surfaces were bound by some combination of the following three planes: {110}, {111}, and a complex facet inclined approximately 24° from {100}. Surfaces with the complex {100} facet were found to be the most active for Ag reduction. Single crystal studies also showed that the nonpolar (100) surface is the most reactive and that the composition of the termination layer does not influence this reaction. However, the polar (111) and (110) surfaces had a non-uniform distribution of reaction products. For these orientations, the location of the reduction and oxidation reactions is determined by the chemical and charge terminations of the different terraces or facets. The reactivity for silver reduction on the faceted particles is ranked as (100) > (111) > (110) while the (100) surface was least reactive for lead oxidation. Overall, these results show that the photochemical reactivity of SrTiO3 is anisotropic and that on polar surfaces, dipolar fields arising from charged surface domains influence the transport of photogenerated charge carriers and promote spatially selective oxidation and reduction reactions. (Abstract shortened by UMI.)
Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.
Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva
2008-11-01
Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.