Visual, Musculoskeletal, and Balance Complaints in AMD: A Follow-Up Study
Richter, Hans Olof
2016-01-01
Purpose. To investigate whether patients with age-related macular degeneration (AMD) run a potentially higher risk of developing visual, musculoskeletal, and balance complaints than age-matched controls with normal vision. Methods. Visual assessments, self-rated visual function, self-rated visual, musculoskeletal, and balance complaints, and perceived general health were obtained in 37 AMD patients and 18 controls, at baseline and after an average of 3.8 years later. Results. At follow-up both groups reported decreased visual acuity (VA) and visual function, but only AMD patients reported significantly increased visual, musculoskeletal, and balance complaints. Decreased VA, need for larger font size when reading, need for larger magnification, and decreased self-rated visual function were identified as risk markers for increased complaints in AMD patients. These complaints were also identified as risk markers for decreased health. For controls, decreased VA and self-reported visual function were associated with increased visual and balance complaints. Conclusions. Visual deterioration was a risk marker for increased visual, musculoskeletal, balance, and health complaints in AMD patients. Specifically, magnifying visual aids, such as CCTV, were a risk marker for increased complaints in AMD patients. This calls for early and coordinated actions to treat and prevent visual, musculoskeletal, balance, and health complaints in AMD patients. PMID:27830084
Quality of Vision in Eyes With Epiphora Undergoing Lacrimal Passage Intubation.
Koh, Shizuka; Inoue, Yasushi; Ochi, Shintaro; Takai, Yoshihiro; Maeda, Naoyuki; Nishida, Kohji
2017-09-01
To investigate visual function and optical quality in eyes with epiphora undergoing lacrimal passage intubation. Prospective case series. Thirty-four eyes of 30 patients with lacrimal passage obstruction were enrolled. Before and 1 month after lacrimal passage intubation, functional visual acuity (FVA), higher-order aberrations (HOAs), lower tear meniscus, and tear clearance were assessed. An FVA measurement system was used to examine changes in continuous visual acuity (VA) over time, and visual function parameters such as FVA, visual maintenance ratio, and blink frequency were obtained. Sequential ocular HOAs were measured for 10 seconds after the blink using a wavefront sensor. Aberration data were analyzed in the central 4 mm for coma-like, spherical-like, and total HOAs. Fluctuation and stability indices of the total HOAs over time were calculated. Lower tear meniscus was assessed by anterior segment optical coherence tomography. After lacrimal passage intubation, visual function significantly improved, as indicated by improved FVA (P = .003) and visual maintenance ratio (P < .001). Blink frequency decreased significantly after treatment (P = .01). Optical quality significantly improved, as indicated by a decrease in coma-like aberrations (P = .003), spherical-like aberrations (P = .018), and total HOAs (P = .001). Stability index increased (P < .001) and fluctuation index decreased (P = .019), and tear meniscus dimension decreased (P < .001). Lacrimal passage intubation for eyes with epiphora significantly improved visual function and optical quality via patency of the lacrimal passage. Copyright © 2017 Elsevier Inc. All rights reserved.
Does visual impairment lead to additional disability in adults with intellectual disabilities?
Evenhuis, H M; Sjoukes, L; Koot, H M; Kooijman, A C
2009-01-01
This study addresses the question to what extent visual impairment leads to additional disability in adults with intellectual disabilities (ID). In a multi-centre cross-sectional study of 269 adults with mild to profound ID, social and behavioural functioning was assessed with observant-based questionnaires, prior to expert assessment of visual function. With linear regression analysis the percentage of variance, explained by levels of visual function, was calculated for the total population and per ID level. A total of 107/269 participants were visually impaired or blind (WHO criteria). On top of the decrease by ID visual impairment significantly decreased daily living skills, communication & language, recognition/communication. Visual impairment did not cause more self-absorbed and withdrawn behaviour or anxiety. Peculiar looking habits correlated with visual impairment and not with ID. In the groups with moderate and severe ID this effect seems stronger than in the group with profound ID. Although ID alone impairs daily functioning, visual impairment diminishes the daily functioning even more. Timely detection and treatment or rehabilitation of visual impairment may positively influence daily functioning, language development, initiative and persistence, social skills, communication skills and insecure movement.
Ludwig, Karin; Sterzer, Philipp; Kathmann, Norbert; Hesselmann, Guido
2016-10-01
As a functional organization principle in cortical visual information processing, the influential 'two visual systems' hypothesis proposes a division of labor between a dorsal "vision-for-action" and a ventral "vision-for-perception" stream. A core assumption of this model is that the two visual streams are differentially involved in visual awareness: ventral stream processing is closely linked to awareness while dorsal stream processing is not. In this functional magnetic resonance imaging (fMRI) study with human observers, we directly probed the stimulus-related information encoded in fMRI response patterns in both visual streams as a function of stimulus visibility. We parametrically modulated the visibility of face and tool stimuli by varying the contrasts of the masks in a continuous flash suppression (CFS) paradigm. We found that visibility - operationalized by objective and subjective measures - decreased proportionally with increasing log CFS mask contrast. Neuronally, this relationship was closely matched by ventral visual areas, showing a linear decrease of stimulus-related information with increasing mask contrast. Stimulus-related information in dorsal areas also showed a dependency on mask contrast, but the decrease rather followed a step function instead of a linear function. Together, our results suggest that both the ventral and the dorsal visual stream are linked to visual awareness, but neural activity in ventral areas more closely reflects graded differences in awareness compared to dorsal areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Duncan, Robert O; Sample, Pamela A; Bowd, Christopher; Weinreb, Robert N; Zangwill, Linda M
2012-05-01
Altered metabolic activity has been identified as a potential contributing factor to the neurodegeneration associated with primary open angle glaucoma (POAG). Consequently, we sought to determine whether there is a relationship between the loss of visual function in human glaucoma and resting blood perfusion within primary visual cortex (V1). Arterial spin labeling (ASL) functional magnetic resonance imaging (fMRI) was conducted in 10 participants with POAG. Resting cerebral blood flow (CBF) was measured from dorsal and ventral V1. Behavioral measurements of visual function were obtained using standard automated perimetry (SAP), short-wavelength automated perimetry (SWAP), and frequency-doubling technology perimetry (FDT). Measurements of CBF were compared to differences in visual function for the superior and inferior hemifield. Differences in CBF between ventral and dorsal V1 were correlated with differences in visual function for the superior versus inferior visual field. A statistical bootstrapping analysis indicated that the observed correlations between fMRI responses and measurements of visual function for SAP (r=0.49), SWAP (r=0.63), and FDT (r=0.43) were statistically significant (all p<0.05). Resting blood perfusion in human V1 is correlated with the loss of visual function in POAG. Altered CBF may be a contributing factor to glaucomatous optic neuropathy, or it may be an indication of post-retinal glaucomatous neurodegeneration caused by damage to the retinal ganglion cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Maldjian, P D; Chen, T
2016-11-01
To determine if visual assessment of the attenuation of morphologically normal appearing thyroid glands on unenhanced computed tomography (CT) of the chest is useful for identifying patients with decreased thyroid function. This was a retrospective study of 765 patients who underwent both unenhanced CT of the chest and thyroid function tests performed within 1 year of the CT examination. Attenuation of the thyroid gland was visually assessed in each patient relative to the attenuation of the surrounding muscles to categorise the gland as "low attenuation" (attenuation similar to surrounding muscles) or "high attenuation" (attenuation greater than surrounding muscles). Thyroid attenuation was quantitatively measured in each case to determine the validity of the visual assessment. Results of thyroid function tests were used to classify thyroid function as hypothyroid, euthyroid, or hyperthyroid. Data were analysed to determine the relationship between visual assessment of thyroid attenuation and status of thyroid function. Thyroid glands of low attenuation were present in 4.2% (32/765) of the patients. Nearly half (47%) of the patients with low-attenuation thyroids had hypofunctioning thyroid glands. Compared to patients with high-attenuation thyroids, patients with low-attenuation thyroids were significantly more likely to have decreased thyroid function (clinical and subclinical hypothyroidism) and significantly less likely to be euthyroid (p<0.0001). Quantitative measurement of thyroid attenuation confirmed the validity of the visual assessment. Low attenuation of an otherwise normal-appearing thyroid gland on unenhanced CT of the chest is strongly associated with decreased thyroid function. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
2,3,7,8-TCDD effects on visual structure and function in swim-up rainbow trout
Carvalho, Paulo S. M.
2004-01-01
An understanding of mechanisms of contaminant effects across levels of biological organization is essential in ecotoxicology if we are to generate predictive models for population-level effects. We applied a suite of biochemical, histological, and behavioral end points related to visual structure and function and foraging behavior to evaluate effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) on swim-up rainbow trout. We detected a dose-dependent decrease in densities of retinal ganglion cells (RGC), key retinal neurons that link the eye with the brain. These changes resulted in corresponding deficits in visual/motor function including reductions in visual acuity and in scotopic and photopic thresholds due to TCDD. The loss of RGCs suggests an increase in convergence of synapses from photoreceptors to RGCs as a cellular mechanism for the visual deficits. Dose-dependent increases in immunohistochemical detection of CYP1A protein in the vasculature of the brain and eye choroid was proportional with decreased ganglion cell densities in the retina. TCDD-induced AHR-regulated effects on these tissues might be involved in the detected decrease in ganglion cell densities. Prey capture rate decreased after TCDD exposure only at the highest treatment groups evaluated. Collectively, these results show that TCDD causes biochemical and structural changes in the eye and brain of rainbow trout that are associated with behavioral deficits leading to decreased individual fitness.
Ganesh, Suma; Sethi, Sumita; Srivastav, Sonia; Chaudhary, Amrita; Arora, Priyanka
2013-09-01
To evaluate the impact of low vision rehabilitation on functional vision of children with visual impairment. The LV Prasad-Functional Vision Questionnaire, designed specifically to measure functional performance of visually impaired children of developing countries, was used to assess the level of difficulty in performing various tasks pre and post visual rehabilitation in children with documented visual impairment. Chi-square test was used to assess the impact of rehabilitation intervention on functional vision performance; a P < 0.05 was considered significant. LogMAR visual acuity prior to the introduction of low vision devices (LVDs) was 0.90 ± 0.05 for distance and for near it was 0.61 ± 0.05. After the intervention, the acuities improved significantly for distance (0.2 ± 0.27; P < 0.0001) and near (0.42 ± 0.17; P = 0.001). The most common reported difficulties were related to their academic activities like copying from the blackboard (80%), reading textbook at arm's length (77.2%), and writing along a straight line (77.2%). Absolute raw score of disability pre-LVD was 15.05 which improved to 7.58 post-LVD. An improvement in functional vision post visual rehabilitation was especially found in those activities related to their studying lifestyle like copying from the blackboard (P < 0.0001), reading textbook at arm's length (P < 0.0001), and writing along a straight line (P = 0.003). In our study group, there was a significant improvement in functional vision post visual rehabilitation, especially with those activities which are related to their academic output. It is important for these children to have an early visual rehabilitation to decrease the impairment associated with these decreased visual output and to enhance their learning abilities.
Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state.
Wang, Tianyue; Li, Qian; Guo, Mingxia; Peng, Yanmin; Li, Qingji; Qin, Wen; Yu, Chunshui
2014-05-14
Amblyopia is a developmental disorder resulting from anomalous binocular visual input in early life. Task-based neuroimaging studies have widely investigated cortical functional impairments in amblyopia, but changes in spontaneous neuronal functional activities in amblyopia remain largely unknown. In the present study, functional connectivity density (FCD) mapping, an ultrafast data-driven method based on fMRI, was applied for the first time to investigate changes in cortical functional connectivities in amblyopia during the resting-state. We quantified and compared both short- and long-range FCD in both the brains of children with anisometropic amblyopia (AAC) and normal sighted children (NSC). In contrast to the NSC, the AAC showed significantly decreased short-range FCD in the inferior temporal/fusiform gyri, parieto-occipital and rostrolateral prefrontal cortices, as well as decreased long-range FCD in the premotor cortex, dorsal inferior parietal lobule, frontal-insular and dorsal prefrontal cortices. Furthermore, most regions with reduced long-range FCD in the AAC showed decreased functional connectivity with occipital and posterior parietal cortices in the AAC. The results suggest that chronically poor visual input in amblyopia not only impairs the brain's short-range functional connections in visual pathways and in the frontal cortex, which is important for cognitive control, but also affects long-range functional connections among the visual areas, posterior parietal and frontal cortices that subserve visuomotor and visual-guided actions, visuospatial attention modulation and the integration of salient information. This study provides evidence for abnormal spontaneous brain activities in amblyopia. Copyright © 2014 Elsevier B.V. All rights reserved.
Memory as Perception of the Past: Compressed Time inMind and Brain.
Howard, Marc W
2018-02-01
In the visual system retinal space is compressed such that acuity decreases further from the fovea. Different forms of memory may rely on a compressed representation of time, manifested as decreased accuracy for events that happened further in the past. Neurophysiologically, "time cells" show receptive fields in time. Analogous to the compression of visual space, time cells show less acuity for events further in the past. Behavioral evidence suggests memory can be accessed by scanning a compressed temporal representation, analogous to visual search. This suggests a common computational language for visual attention and memory retrieval. In this view, time functions like a scaffolding that organizes memories in much the same way that retinal space functions like a scaffolding for visual perception. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alternations of functional connectivity in amblyopia patients: a resting-state fMRI study
NASA Astrophysics Data System (ADS)
Wang, Jieqiong; Hu, Ling; Li, Wenjing; Xian, Junfang; Ai, Likun; He, Huiguang
2014-03-01
Amblyopia is a common yet hard-to-cure disease in children and results in poor or blurred vision. Some efforts such as voxel-based analysis, cortical thickness analysis have been tried to reveal the pathogenesis of amblyopia. However, few studies focused on alterations of the functional connectivity (FC) in amblyopia. In this study, we analyzed the abnormalities of amblyopia patients by both the seed-based FC with the left/right primary visual cortex and the network constructed throughout the whole brain. Experiments showed the following results: (1)As for the seed-based FC analysis, FC between superior occipital gyrus and the primary visual cortex was found to significantly decrease in both sides. The abnormalities were also found in lingual gyrus. The results may reflect functional deficits both in dorsal stream and ventral stream. (2)Two increased functional connectivities and 64 decreased functional connectivities were found in the whole brain network analysis. The decreased functional connectivities most concentrate in the temporal cortex. The results suggest that amblyopia may be caused by the deficits in the visual information transmission.
Bokde, Arun L W; Karmann, Michaela; Teipel, Stefan J; Born, Christine; Lieb, Martin; Reiser, Maximilian F; Möller, Hans-Jürgen; Hampel, Harald
2009-04-01
Visual perception has been shown to be altered in Alzheimer disease (AD) patients, and it is associated with decreased cognitive function. Galantamine is an active cholinergic agent, which has been shown to lead to improved cognition in mild to moderate AD patients. This study examined brain activation in a group of mild AD patients after a 3-month open-label treatment with galantamine. The objective was to examine the changes in brain activation due to treatment. There were 2 tasks to visual perception. The first task was a face-matching task to test the activation along the ventral visual pathway, and the second task was a location-matching task to test neuronal function along the dorsal pathway. Brain activation was measured using functional magnetic resonance imaging. There were 5 mild AD patients in the study. There were no differences in the task performance and in the cognitive scores of the Consortium to Establish a Registry for Alzheimer's Disease battery before and after treatment. In the location-matching task, we found a statistically significant decrease in activation along the dorsal visual pathway after galantamine treatment. A previous study found that AD patients had higher activation in the location-matching task compared with healthy controls. There were no differences in activation for the face-matching task after treatment. Our data indicate that treatment with galantamine leads to more efficient visual processing of stimuli or changes the compensatory mechanism in the AD patients. A visual perception task recruiting the dorsal visual system may be useful as a biomarker of treatment effects.
Jacob, Joseph; Bartholmai, Brian J; Brun, Anne Laure; Egashira, Ryoko; Rajagopalan, Srinivasan; Karwoski, Ronald; Kouranos, Vasileios; Kokosi, Maria; Hansell, David M; Wells, Athol U
2017-11-01
To determine whether computer-based quantification (CALIPER software) is superior to visual computed tomography (CT) scoring in the identification of CT patterns indicative of restrictive and obstructive functional indices in hypersensitivity pneumonitis (HP). A total of 135 consecutive HP patients had CT parenchymal patterns evaluated quantitatively by both visual scoring and CALIPER. Results were evaluated against: forced vital capacity (FVC), total lung capacity (TLC), diffusing capacity for carbon monoxide (DL CO ) and a composite physiological index (CPI) to identify which CT scoring method better correlated with functional indices. CALIPER-derived scores of total interstitial lung disease extent correlated more strongly than visual scores: FVC (CALIPER R = 0.73, visual R = 0.51); DL CO (CALIPER R = 0.61, visual R = 0.48); and CPI (CALIPER R = 0·70, visual R = 0·55). The CT variable that correlated most strongly with restrictive functional indices was CALIPER pulmonary vessel volume (PVV): FVC R = 0.75, DL CO R = 0.68 and CPI R = 0.76. Ground-glass opacity quantified by CALIPER alone demonstrated strong associations with restrictive functional indices: CALIPER FVC R = 0.65; DL CO R = 0.59; CPI R = 0.64; and visual = not significant. Decreased attenuation lung quantified by CALIPER was a better morphological measure of obstructive lung disease than equivalent visual scores as judged by relationships with TLC (CALIPER R = 0.63 and visual R = 0.12). All results were maintained on multivariate analysis. CALIPER improved on visual scoring in HP as judged by restrictive and obstructive functional correlations. Decreased attenuation regions of the lung quantified by CALIPER demonstrated better linkages to obstructive lung physiology than visually quantified CT scores. A novel CALIPER variable, the PVV, demonstrated the strongest linkages with restrictive functional indices and could represent a new automated index of disease severity in HP. © 2017 Asian Pacific Society of Respirology.
Stock, Michael V; Vollman, David E; Baze, Elizabeth F; Chomsky, Amy S; Daly, Mary K; Lawrence, Mary G
2015-04-01
To determine if cataract surgery on eyes with AMD confers as much functional visual improvement as surgery on eyes without retinal pathology. This is a retrospective analysis of 4924 cataract surgeries from the Veterans Healthcare Administration Ophthalmic Surgical Outcomes Data Project (OSOD). We included cases of eyes with AMD that had both preoperative and postoperative NEI-VFQ-25 questionnaires submitted and compared their outcomes with controls without retinal pathology. We excluded patients with other retinal pathologies (740 patients). The analyses compared changes in visual acuity and overall functional visual improvement and its subscales using t-tests, multivariate logistic regressions, and linear regression modeling. Preoperative and postoperative questionnaires were submitted by 58.3% of AMD and 63.8% of no retinal pathology cases (controls). Analysis of overall score showed that cataract surgery on eyes with AMD led to increased visual function (13.8 ± 2.4 NEI-VFQ units, P < 0.0001); however, increases were significantly less when compared with controls (-6.4 ± 2.9 NEI-VFQ units, P < 0.0001). Preoperative best-corrected visual acuity (preBCVA) in AMD was predictive of postoperative visual function (r = -0.38, P < 0.0001). In controls, postoperative visual function was only weakly associated with preBCVA (r = -0.075, P = 0.0002). Patients with AMD with vision of 20/40 or better had overall outcomes similar to controls (-2.2 ± 4.7 NEI-VFQ units, P = 0.37). Cataract surgery on eyes with AMD offers an increase in functional visual improvement; however, the amount of benefit is associated with the eye's preBCVA. For eyes with preBCVA of 20/40 or greater, the improvement is similar to that of patients without retinal pathology. However, if preBCVA is less than 20/40, the amount of improvement was shown to be significantly less and decreased with decreasing preBCVA.
Evaluation of stereoscopic display with visual function and interview
NASA Astrophysics Data System (ADS)
Okuyama, Fumio
1999-05-01
The influence of binocular stereoscopic (3D) television display on the human eye were compared with one of a 2D display, using human visual function testing and interviews. A 40- inch double lenticular display was used for 2D/3D comparison experiments. Subjects observed the display for 30 minutes at a distance 1.0 m, with a combination of 2D material and one of 3D material. The participants were twelve young adults. Main optometric test with visual function measured were visual acuity, refraction, phoria, near vision point, accommodation etc. The interview consisted of 17 questions. Testing procedures were performed just before watching, just after watching, and forty-five minutes after watching. Changes in visual function are characterized as prolongation of near vision point, decrease of accommodation and increase in phoria. 3D viewing interview results show much more visual fatigue in comparison with 2D results. The conclusions are: 1) change in visual function is larger and visual fatigue is more intense when viewing 3D images. 2) The evaluation method with visual function and interview proved to be very satisfactory for analyzing the influence of stereoscopic display on human eye.
Zhu, X; Ye, H; He, W; Yang, J; Dai, J; Lu, Y
2017-01-01
Purpose To explore the objective functional visual outcomes of cataract surgery in patients with good preoperative visual acuity. Methods We enrolled 130 cataract patients whose best-corrected visual acuity (BCVA) was 20/40 or better preoperatively. Objective visual functions were evaluated with a KR-1W analyzer before and at 1 month after cataract surgery. Results The nuclear (N), cortical (C), and N+C groups had very high preoperative ocular and internal total high-order aberrations (HOAs), coma, and abnormal spherical aberrations. At 1 month after cataract surgery, in addition to the remarkable increase of both uncorrected visual acuity and BCVA, both ocular and internal HOAs in the three groups decreased significantly after cataract surgery (all P<0.05). Point spread function and modulation transfer functions were also improved significantly in these patients (all P<0.05). Conclusions The objective functional vision of patients with 20/40 or better preoperative BCVA improved significantly after cataract surgery. This finding shows that the arbitrary threshold of BCVA worse than 20/40 in China cannot always be used to determine who will benefit from cataract surgery. PMID:27858933
A longitudinal study of visual function in carriers of X-linked recessive retinitis pigmentosa.
Grover, S; Fishman, G A; Anderson, R J; Lindeman, M
2000-02-01
This study was carried out to evaluate the progression of visual function impairment in carriers of X-linked recessive retinitis pigmentosa. We also assessed the relationship between the retinal findings at presentation and the extent of deterioration. Observational, retrospective, case series. Twenty-seven carriers of X-linked recessive retinitis pigmentosa. Each carrier was clinically categorized into one of four grades (grades 0 through 3) depending on the presence or absence of a tapetal-like retinal reflex and the extent of peripheral pigmentary degeneration. A complete ophthalmologic examination was performed and data for visual acuity, visual field area, and electroretinographic measurements were collected on the most recent visit in both eyes. These were then compared with similar data obtained on their initial visits. A comparison of visual function was carried out between the initial visit and the most recent visit on each carrier. The visual acuity was measured with Snellen's acuity charts. The visual fields to targets V-4-e and II-4-e were planimeterized and used for the analysis. The electroretinographic (ERG) measures used were light-adapted single-flash b-wave amplitudes and 30-Hz red flicker for cone function, dark-adapted maximal b-wave amplitudes, and response to a low intensity blue-flash for rod function. None of the 11 carriers with a tapetal-like reflex only (grade 1) showed any significant change in visual acuity or fields as compared with 3 of 7 (43%) carriers with diffuse peripheral pigmentary findings (grade 3) who showed significant deterioration in visual acuity in at least one eye, and 6 of 7 (86%) who showed a significant decrease in visual field area with at least one target size in at least one eye. By comparison, only 1 of 10 carriers with a grade 1 fundus finding demonstrated a significant decrease in maximal dark-adapted ERG function as compared with 5 of 6 (83%) carriers with grade 3 in response to a single-flash stimulus and with 4 of 5 (80%) carriers in response to a single-flash blue stimulus. For the single-flash photopic response, none of the 10 carriers with grade 1 showed any significant deterioration, whereas 2 of 4 (50%) with grade 3 did show such deterioration. The ERG responses for carriers with grade 2 were in between the extent of decrease in ERG amplitudes of those in carriers with grades 1 and 3. In our cohort of X-linked retinitis pigmentosa carriers, those with only a tapetal-like retinal reflex at presentation had a better prognosis to retain visual function than those with peripheral retinal pigmentation. These data are useful in counseling such carriers as to their visual prognosis.
Dawson, Debra Ann; Lam, Jack; Lewis, Lindsay B.; Carbonell, Felix; Mendola, Janine D.
2016-01-01
Abstract Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased approximately linearly with increasing distances separating the tested ROIs. Partial correlation showed a more complex dependence on cortical distance: it decreased exponentially with increasing distance within a quadrant, but was best fit by a quadratic function between quadrants. We conclude that RSFCs within and between lower visual areas are retinotopically organized. Correlation-based FC is nonselectively high across lower visual areas, even between regions that do not share direct anatomical connections. The mechanisms likely involve network effects caused by the dense anatomical connectivity within this network and projections from higher visual areas. FC based on partial correlation, which minimizes network effects, follows expectations based on direct anatomical connections in the monkey visual cortex better than correlation. Last, partial correlation-based retinotopically organized RSFC reflects more than cortical distance effects. PMID:26415043
Dawson, Debra Ann; Lam, Jack; Lewis, Lindsay B; Carbonell, Felix; Mendola, Janine D; Shmuel, Amir
2016-02-01
Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased approximately linearly with increasing distances separating the tested ROIs. Partial correlation showed a more complex dependence on cortical distance: it decreased exponentially with increasing distance within a quadrant, but was best fit by a quadratic function between quadrants. We conclude that RSFCs within and between lower visual areas are retinotopically organized. Correlation-based FC is nonselectively high across lower visual areas, even between regions that do not share direct anatomical connections. The mechanisms likely involve network effects caused by the dense anatomical connectivity within this network and projections from higher visual areas. FC based on partial correlation, which minimizes network effects, follows expectations based on direct anatomical connections in the monkey visual cortex better than correlation. Last, partial correlation-based retinotopically organized RSFC reflects more than cortical distance effects.
Aging effects on functional auditory and visual processing using fMRI with variable sensory loading.
Cliff, Michael; Joyce, Dan W; Lamar, Melissa; Dannhauser, Thomas; Tracy, Derek K; Shergill, Sukhwinder S
2013-05-01
Traditionally, studies investigating the functional implications of age-related structural brain alterations have focused on higher cognitive processes; by increasing stimulus load, these studies assess behavioral and neurophysiological performance. In order to understand age-related changes in these higher cognitive processes, it is crucial to examine changes in visual and auditory processes that are the gateways to higher cognitive functions. This study provides evidence for age-related functional decline in visual and auditory processing, and regional alterations in functional brain processing, using non-invasive neuroimaging. Using functional magnetic resonance imaging (fMRI), younger (n=11; mean age=31) and older (n=10; mean age=68) adults were imaged while observing flashing checkerboard images (passive visual stimuli) and hearing word lists (passive auditory stimuli) across varying stimuli presentation rates. Younger adults showed greater overall levels of temporal and occipital cortical activation than older adults for both auditory and visual stimuli. The relative change in activity as a function of stimulus presentation rate showed differences between young and older participants. In visual cortex, the older group showed a decrease in fMRI blood oxygen level dependent (BOLD) signal magnitude as stimulus frequency increased, whereas the younger group showed a linear increase. In auditory cortex, the younger group showed a relative increase as a function of word presentation rate, while older participants showed a relatively stable magnitude of fMRI BOLD response across all rates. When analyzing participants across all ages, only the auditory cortical activation showed a continuous, monotonically decreasing BOLD signal magnitude as a function of age. Our preliminary findings show an age-related decline in demand-related, passive early sensory processing. As stimulus demand increases, visual and auditory cortex do not show increases in activity in older compared to younger people. This may negatively impact on the fidelity of information available to higher cognitive processing. Such evidence may inform future studies focused on cognitive decline in aging. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Multisensory Attentional Consequences of Tool Use: A Functional Magnetic Resonance Imaging Study
Holmes, Nicholas P.; Spence, Charles; Hansen, Peter C.; Mackay, Clare E.; Calvert, Gemma A.
2008-01-01
Background Tool use in humans requires that multisensory information is integrated across different locations, from objects seen to be distant from the hand, but felt indirectly at the hand via the tool. We tested the hypothesis that using a simple tool to perceive vibrotactile stimuli results in the enhanced processing of visual stimuli presented at the distal, functional part of the tool. Such a finding would be consistent with a shift of spatial attention to the location where the tool is used. Methodology/Principal Findings We tested this hypothesis by scanning healthy human participants' brains using functional magnetic resonance imaging, while they used a simple tool to discriminate between target vibrations, accompanied by congruent or incongruent visual distractors, on the same or opposite side to the tool. The attentional hypothesis was supported: BOLD response in occipital cortex, particularly in the right hemisphere lingual gyrus, varied significantly as a function of tool position, increasing contralaterally, and decreasing ipsilaterally to the tool. Furthermore, these modulations occurred despite the fact that participants were repeatedly instructed to ignore the visual stimuli, to respond only to the vibrotactile stimuli, and to maintain visual fixation centrally. In addition, the magnitude of multisensory (visual-vibrotactile) interactions in participants' behavioural responses significantly predicted the BOLD response in occipital cortical areas that were also modulated as a function of both visual stimulus position and tool position. Conclusions/Significance These results show that using a simple tool to locate and to perceive vibrotactile stimuli is accompanied by a shift of spatial attention to the location where the functional part of the tool is used, resulting in enhanced processing of visual stimuli at that location, and decreased processing at other locations. This was most clearly observed in the right hemisphere lingual gyrus. Such modulations of visual processing may reflect the functional importance of visuospatial information during human tool use. PMID:18958150
Lee, In-Seon; Preissl, Hubert; Giel, Katrin; Schag, Kathrin; Enck, Paul
2018-01-23
The food-related behavior of functional dyspepsia has been attracting more interest of late. This pilot study aims to provide evidence of the physiological, emotional, and attentional aspects of food processing in functional dyspepsia patients. The study was performed in 15 functional dyspepsia patients and 17 healthy controls after a standard breakfast. We measured autonomic nervous system activity using skin conductance response and heart rate variability, emotional response using facial electromyography, and visual attention using eyetracking during the visual stimuli of food/non-food images. In comparison to healthy controls, functional dyspepsia patients showed a greater craving for food, a decreased intake of food, more dyspeptic symptoms, lower pleasantness rating of food images (particularly of high fat), decreased low frequency/high frequency ratio of heart rate variability, and suppressed total processing time of food images. There were no significant differences of skin conductance response and facial electromyography data between groups. The results suggest that high level cognitive functions rather than autonomic and emotional mechanisms are more liable to function differently in functional dyspepsia patients. Abnormal dietary behavior, reduced subjective rating of pleasantness and visual attention to food should be considered as important pathophysiological characteristics in functional dyspepsia.
Laitinen, Arja; Koskinen, Seppo; Härkänen, Tommi; Reunanen, Antti; Laatikainen, Leila; Aromaa, Arpo
2005-12-01
To estimate the prevalence rates of habitual visual acuity (VA) levels and visual impairment in Finland and to assess their correlation with self-reported visual function. Cross-sectional population-based study. Subjects were selected randomly from the Finnish population aged 30 years or older. Of 7979 eligible people, 7393 (93%) were interviewed, 6771 (85%) were examined, and 6663 (84%) had distance VA assessed. Participants underwent a home interview and a comprehensive examination including measuring binocular VA for distance and for near with the participants' current spectacles, if any. The level of VA for distance and for near with current spectacle correction. The self-reported capability to read newsprint and television text and the ability to move about without being restricted by reduced vision. The prevalence of good to moderate VA for distance (VA> or =0.5 [> or =20/40]) measured with current spectacles was 95.9%, and 87.4% had a VA level of 0.8 (20/25) or better. The prevalence of habitual visual impairment (VA< or =0.25 [< or =20/80]) was 1.6%, and 0.5% were blind (VA<0.1 [<20/200]). The prevalence of visual impairment increased significantly with age (P<0.001), especially in the age group of 65 to 74 years and upward. There was no gender difference in VA for distance, but decreased near vision (VA< or =0.25 [< or =20/80]) was significantly more common in men than in women (P<0.01). By applying the imputated numbers of visually impaired and blind participants to the Finnish population (approximately 3 million aged 30 years or older), there were approximately 65000 (2.1%) visually impaired and 17000 (0.6%) blind adult persons in the country in 2000. The correlation between self-reported visual ability and measured visual function was moderate but statistically significant (r = 0.27-0.40; P<0.0001). The proportion of people with reading difficulties or who were unable to read newsprint has decreased 7% during the last 2 decades. Functional visual impairment increased with age especially in the age group of 65 to 74 years and upward and was as prevalent in women as in men. The prevalence of people with reading difficulties has decreased considerably since 1980.
Yotsukura, Erisa; Torii, Hidemasa; Saiki, Megumi; Negishi, Kazuno; Tsubota, Kazuo
2016-03-01
To evaluate the effect of neodymium:YAG (Nd:YAG) laser capsulotomy on the visual function in patients with posterior capsule opacification (PCO) and good visual acuity. Keio University Hospital, Tokyo, Japan. Observational case series. Eyes were evaluated that had previous cataract surgery with a clinical diagnosis of PCO requiring Nd:YAG laser capsulotomy regardless of a good corrected distance visual acuity (CDVA) (at least 20/20). The CDVA, 10% low contrast visual acuity (LCVA), wavefront aberrations from the 3rd to 6th order, and retinal straylight were measured before and after Nd:YAG laser capsulotomy. The study included 16 eyes of 16 patients (10 men, 6 women; mean age 69.5 years ± 9.3 [SD]). The mean CDVA, LCVA, and straylight after Nd:YAG laser capsulotomy improved significantly (P < .05). The root mean square (RMS) of the 3rd Zernike coefficients (S3) and the RMS of the total higher-order aberrations (HOAs) from the 3rd to 6th order decreased significantly after capsulotomy (P < .05). The straylight correlated significantly with the total HOAs (r = 0.727, P = .002) and S3 (r = 0.748, P = .001) before capsulotomy. Subjective symptoms resolved after capsulotomy in all cases. Neodymium:YAG laser capsulotomy enabled a significant improvement in visual function even in patients with PCO with good visual acuity. Straylight measurements might be useful to determine the indications for Nd:YAG laser capsulotomy when patients report visual disturbances without decreased visual acuity. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Matsushima, Hiroyuki; Nagata, Mayumi; Katsuki, Yoko; Ota, Ichiro; Miyake, Kensaku; Beiko, George H.H.; Grzybowski, Andrzej
2015-01-01
Background To report on five patients with decreased visual acuity due to glistening and severe sub-surface nano-glistening (SSNG) formation within their intraocular lenses (IOLs). Design Case reports and analysis of extracted IOLs. Participants and samples We report improved visual acuity when IOLs with severe glistening and SSNG were exchanged for clear IOLs in five patients. Methods Case reports. Main outcome measures The main outcome measure was visual acuity. The secondary outcome measure was light transmission. Explanted IOLs were subjected to investigation. Pre- and postoperative slit lamp images of the anterior eye and microscopic images of the extracted IOLs were taken and compared. Light transmission of the IOL was measured using a double beam type spectrophotometer. An integrated value of the percentage light transmittance in the visible light spectrum was calculated. Results We report on five patients whose visual acuity improved when IOLs were exchanged because of severe glistening and SSNG. All of the affected IOLs were MA60BM (Alcon, Forth Wroth Texas, USA) and the original implantation had occurred over a range of 6–15 years prior to the IOL exchange. Light transmission was decreased in all affected lenses compared to a similar control IOL. Conclusions Although only a few reports of cases in which glistening and SSNG have progressed to the level of decreased visual function have been published, the likelihood is that this phenomena will increase as the severity and incidence of these inclusions have been shown to increase with time. Appropriate evaluations of visual function in such patients are needed and consideration should be given to IOL exchange in symptomatic patients. PMID:26586975
Visual function affects prosocial behaviors in older adults.
Teoli, Dac A; Smith, Merideth D; Leys, Monique J; Jain, Priyanka; Odom, J Vernon
2016-02-01
Eye-related pathological conditions such as glaucoma, diabetic retinopathy, and age-related macular degeneration commonly lead to decreased peripheral/central field, decreased visual acuity, and increased functional disability. We sought to answer if relationships exist between measures of visual function and reported prosocial behaviors in an older adult population with eye-related diagnoses. The sample consisted of adults, aged ≥ 60 years old, at an academic hospital's eye institute. Vision ranged from normal to severe impairment. Medical charts determined the visual acuities, ocular disease, duration of disease (DD), and visual fields (VF). Measures of giving help were via validated questionnaires on giving formal support (GFS) and giving informal support; measures of help received were perceived support (PS) and informal support received (ISR). ISR had subscales: tangible support (ISR-T), emotional support (ISR-E), and composite (ISR-C). Visual acuities of the better and worse seeing eyes were converted to LogMAR values. VF information converted to a 4-point rating scale of binocular field loss severity. DD was in years. Among 96 participants (mean age 73.28; range 60-94), stepwise regression indicated a relationship of visual variables to GFS (p < 0.05; Multiple R (2) = 0.1679 with acuity-better eye, VF rating, and DD), PS (p < 0.05; Multiple R (2) = 0.2254 with acuity-better eye), ISR-C (p < 0.05; Multiple R (2) = 0.041 with acuity-better eye), and ISR-T (p < 0.05; Multiple R (2) = 0.1421 with acuity-better eye). The findings suggest eye-related conditions can impact levels and perceptions of support exchanges. Our data reinforces the importance of visual function as an influence on prosocial behavior in older adults.
Dormal, Giulia; Lepore, Franco; Harissi-Dagher, Mona; Albouy, Geneviève; Bertone, Armando; Rossion, Bruno
2014-01-01
Visual deprivation leads to massive reorganization in both the structure and function of the occipital cortex, raising crucial challenges for sight restoration. We tracked the behavioral, structural, and neurofunctional changes occurring in an early and severely visually impaired patient before and 1.5 and 7 mo after sight restoration with magnetic resonance imaging. Robust presurgical auditory responses were found in occipital cortex despite residual preoperative vision. In primary visual cortex, crossmodal auditory responses overlapped with visual responses and remained elevated even 7 mo after surgery. However, these crossmodal responses decreased in extrastriate occipital regions after surgery, together with improved behavioral vision and with increases in both gray matter density and neural activation in low-level visual regions. Selective responses in high-level visual regions involved in motion and face processing were observable even before surgery and did not evolve after surgery. Taken together, these findings demonstrate that structural and functional reorganization of occipital regions are present in an individual with a long-standing history of severe visual impairment and that such reorganizations can be partially reversed by visual restoration in adulthood. PMID:25520432
2000-12-01
To investigate the effect of cataract on visual function and the role of cataract in explaining a race-treatment interaction in outcomes of glaucoma surgery. The Advanced Glaucoma Intervention Study (AGIS) enrolled 332 black patients (451 eyes) and 249 white patients (325 eyes) with advanced glaucoma. Eyes were randomly assigned to an argon laser trabeculoplasty (ALT)-trabeculectomy-trabeculectomy sequence or a trabeculectomy-ALT-trabeculectomy sequence. From the AGIS experience with cataract surgery during follow-up, we estimated the expected change in visual function scores from before cataract surgery to after cataract surgery. Then, for eyes with cataract not removed, we used these estimates of expected change to adjust visual function scores for the presumed effects of cataract. In turn, we used the adjusted scores to obtain cataract-adjusted main outcome measures. Average percent of eyes with decrease of visual field (APDVF) and average percent of eyes with decrease of visual acuity (APDVA). Within the 2 months before cataract surgery, visual acuity was better in eyes of white patients than of black patients by an average of approximately 2 lines on the visual acuity test chart. Cataract surgery improved visual acuity and visual field defect scores, with the amounts of improvement greater when preoperative visual acuity was lower. Adjustments for cataract brought about the following relative reductions: for APDVF, a relative reduction of 5% to 11% in black patients and 9% to 11% in white patients; for APDVA, a relative reduction of 45% to 49% in black patients and 31% to 38% in white patients; and for the APDVF and APDVA race-treatment interactions, relative reductions of 25% and 45%, respectively. On average, visual function scores improved after cataract surgery. The findings of reduced race-treatment interactions after adjustment for cataract do not alter our earlier conclusion that the AGIS 7-year results support use of the ALT-trabeculectomy-trabeculectomy sequence for black patients and of the trabeculectomy-ALT-trabeculectomy sequence for white patients without life-threatening health problems. The choice of treatment should take into account individual patient characteristics and needs.
Visual function at altitude under night vision assisted conditions.
Vecchi, Diego; Morgagni, Fabio; Guadagno, Anton G; Lucertini, Marco
2014-01-01
Hypoxia, even mild, is known to produce negative effects on visual function, including decreased visual acuity and sensitivity to contrast, mostly in low light. This is of special concern when night vision devices (NVDs) are used during flight because they also provide poor images in terms of resolution and contrast. While wearing NVDs in low light conditions, 16 healthy male aviators were exposed to a simulated altitude of 12,500 ft in a hypobaric chamber. Snellen visual acuity decreased in normal light from 28.5 +/- 4.2/20 (normoxia) to 37.2 +/- 7.4/20 (hypoxia) and, in low light, from 33.8 +/- 6.1/20 (normoxia) to 42.2 +/- 8.4/20 (hypoxia), both at a significant level. An association was found between blood oxygen saturation and visual acuity without significance. No changes occurred in terms of sensitivity to contrast. Our data demonstrate that mild hypoxia is capable of affecting visual acuity and the photopic/high mesopic range of NVD-aided vision. This may be due to several reasons, including the sensitivity to hypoxia of photoreceptors and other retinal cells. Contrast sensitivity is possibly preserved under NVD-aided vision due to its dependency on the goggles' gain.
Magnetic resonance in studies of glaucoma
Fiedorowicz, Michał; Dyda, Wojciech; Rejdak, Robert; Grieb, Paweł
2011-01-01
Summary Glaucoma is the second leading cause of blindness. It affects retinal ganglion cells and the optic nerve. However, there is emerging evidence that glaucoma also affects other components of the visual pathway and visual cortex. There is a need to employ new methods of in vivo brain evaluation to characterize these changes. Magnetic resonance (MR) techniques are well suited for this purpose. We review data on the MR evaluation of the visual pathway and the use of MR techniques in the study of glaucoma, both in humans and in animal models. These studies demonstrated decreases in optic nerve diameter, localized white matter loss and decrease in visual cortex density. Studies on rats employing manganese-enhanced MRI showed that axonal transport in the optic nerve is affected. Diffusion tensor MRI revealed signs of degeneration of the optic pathway. Functional MRI showed decreased response of the visual cortex after stimulation of the glaucomatous eye. Magnetic resonance spectroscopy demonstrated changes in metabolite levels in the visual cortex in a rat model of glaucoma, although not in glaucoma patients. Further applications of MR techniques in studies of glaucomatous brains are indicated. PMID:21959626
Visual noise disrupts conceptual integration in reading.
Gao, Xuefei; Stine-Morrow, Elizabeth A L; Noh, Soo Rim; Eskew, Rhea T
2011-02-01
The Effortfulness Hypothesis suggests that sensory impairment (either simulated or age-related) may decrease capacity for semantic integration in language comprehension. We directly tested this hypothesis by measuring resource allocation to different levels of processing during reading (i.e., word vs. semantic analysis). College students read three sets of passages word-by-word, one at each of three levels of dynamic visual noise. There was a reliable interaction between processing level and noise, such that visual noise increased resources allocated to word-level processing, at the cost of attention paid to semantic analysis. Recall of the most important ideas also decreased with increasing visual noise. Results suggest that sensory challenge can impair higher-level cognitive functions in learning from text, supporting the Effortfulness Hypothesis.
Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1.
Seillier, Lenka; Lorenz, Corinna; Kawaguchi, Katsuhisa; Ott, Torben; Nieder, Andreas; Pourriahi, Paria; Nienborg, Hendrikje
2017-11-22
Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals. We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus ("noise-correlation"). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity. Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal's behavioral or motivational context, complementing other known state-dependent gain-control mechanisms. SIGNIFICANCE STATEMENT Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless, surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This identifies a simple computational function of serotonin for state-dependent sensory processing, depending on the animal's affective or motivational state. Copyright © 2017 Seillier, Lorenz et al.
Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1
Seillier, Lenka; Lorenz, Corinna; Kawaguchi, Katsuhisa; Ott, Torben; Pourriahi, Paria
2017-01-01
Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals. We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus (“noise-correlation”). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity. Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal's behavioral or motivational context, complementing other known state-dependent gain-control mechanisms. SIGNIFICANCE STATEMENT Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless, surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This identifies a simple computational function of serotonin for state-dependent sensory processing, depending on the animal's affective or motivational state. PMID:29042433
Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B
2016-01-01
Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. DOI: http://dx.doi.org/10.7554/eLife.15252.001 PMID:27596931
Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B
2016-09-06
Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.
Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game.
Vedamurthy, Indu; Nahum, Mor; Bavelier, Daphne; Levi, Dennis M
2015-02-26
Amblyopia is a deficit in vision that arises from abnormal visual experience early in life. It was long thought to develop into a permanent deficit, unless properly treated before the end of the sensitive period for visual recovery. However, a number of studies now suggest that adults with long-standing amblyopia may at least partially recover visual acuity and stereopsis following perceptual training. Eliminating or reducing interocular suppression has been hypothesized to be at the root of these changes. Here we show that playing a novel dichoptic video game indeed results in reduced suppression, improved visual acuity and, in some cases, improved stereopsis. Our relatively large cohort of adults with amblyopia, allowed us, for the first time, to assess the link between visual function recovery and reduction in suppression. Surprisingly, no significant correlation was found between decreased suppression and improved visual function. This finding challenges the prevailing view and suggests that while dichoptic training improves visual acuity and stereopsis in adult amblyopia, reduced suppression is unlikely to be at the root of visual recovery. These results are discussed in the context of their implication on recovery of amblyopia in adults.
Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game
Vedamurthy, Indu; Nahum, Mor; Bavelier, Daphne; Levi, Dennis M.
2015-01-01
Amblyopia is a deficit in vision that arises from abnormal visual experience early in life. It was long thought to develop into a permanent deficit, unless properly treated before the end of the sensitive period for visual recovery. However, a number of studies now suggest that adults with long-standing amblyopia may at least partially recover visual acuity and stereopsis following perceptual training. Eliminating or reducing interocular suppression has been hypothesized to be at the root of these changes. Here we show that playing a novel dichoptic video game indeed results in reduced suppression, improved visual acuity and, in some cases, improved stereopsis. Our relatively large cohort of adults with amblyopia, allowed us, for the first time, to assess the link between visual function recovery and reduction in suppression. Surprisingly, no significant correlation was found between decreased suppression and improved visual function. This finding challenges the prevailing view and suggests that while dichoptic training improves visual acuity and stereopsis in adult amblyopia, reduced suppression is unlikely to be at the root of visual recovery. These results are discussed in the context of their implication on recovery of amblyopia in adults. PMID:25719537
Jaakkola, A; Heikkonen, J; Tarkkanen, A; Immonen, I
1999-02-01
To report 2-year visual and angiographic results in eyes treated with strontium plaque irradiation for subfoveal choroidal neovascular membranes (CNVM) in age-related macular degeneration. Twenty eyes with recent subfoveal CNVM were treated with local irradiation. The impact of the treatment on visual function was evaluated by visual acuity, contrast sensitivity and reading speed testing. At 12 months visual acuity had improved or remained the same in 9/ 20 eyes (45%). At 24 months visual acuity was stable in 5/18 eyes (28%). Eyes with signs of CNVM regression (13/18, 72%) lost a mean of 3.3 lines, but eyes with recurrent CNVM lost a mean of 5.1 lines of vision. The mean contrast sensitivity was better in the irradiated eyes than in the fellow eyes with late age-related macular degeneration at 24 months. Six of 17 irradiated eyes (35%) could read at least some words at 24 months. Visual function decreases in patients treated with strontium irradiation, but less in eyes showing regression of the CNVM than in eyes with further growth of the CNVM.
Brown, G C
1999-01-01
OBJECTIVE: To determine the relationship of visual acuity loss to quality of life. DESIGN: Three hundred twenty-five patients with visual loss to a minimum of 20/40 or greater in at least 1 eye were interviewed in a standardized fashion using a modified VF-14, questionnaire. Utility values were also obtained using both the time trade-off and standard gamble methods of utility assessment. MAIN OUTCOME MEASURES: Best-corrected visual acuity was correlated with the visual function score on the modified VF-14 questionnaire, as well as with utility values obtained using both the time trade-off and standard gamble methods. RESULTS: Decreasing levels of vision in the eye with better acuity correlated directly with decreasing visual function scores on the modified VF-14 questionnaire, as did decreasing utility values using the time trade-off method of utility evaluation. The standard gamble method of utility evaluation was not as directly correlated with vision as the time trade-off method. Age, level of education, gender, race, length of time of visual loss, and the number of associated systemic comorbidities did not significantly affect the time trade-off utility values associated with visual loss in the better eye. The level of reduced vision in the better eye, rather than the specific disease process causing reduced vision, was related to mean utility values. The average person with 20/40 vision in the better seeing eye was willing to trade 2 of every 10 years of life in return for perfect vision (utility value of 0.8), while the average person with counting fingers vision in the better eye was willing to trade approximately 5 of every 10 remaining years of life (utility value of 0.52) in return for perfect vision. CONCLUSIONS: The time trade-off method of utility evaluation appears to be an effective method for assessing quality of life associated with visual loss. Time trade-off utility values decrease in direct conjunction with decreasing vision in the better-seeing eye. Unlike the modified VF-14 test and its counterparts, utility values allow the quality of life associated with visual loss to be more readily compared to the quality of life associated with other health (disease) states. This information can be employed for cost-effective analyses that objectively compare evidence-based medicine, patient-based preferences and sound econometric principles across all specialties in health care. PMID:10703139
Traverso, Carlo Enrico; Cutolo, Carlo Alberto
2017-08-01
To investigate the clinical, anatomical, and patient-reported outcomes of phacoemulsification (PE) with intraocular lens implantation performed to treat primary angle closure (PAC) and primary angle-closure glaucoma (PACG). Patients were evaluated at baseline and at 6 months after PE. The examination included visual acuity, intraocular pressure (IOP), visual field, optic nerve head, endothelial cell count (ECC), aqueous depth, and ocular biometric parameters. Patient-reported visual function and health status were assessed. Coprimary outcome measures were IOP changes, angle widening, and patient-reported visual function; secondary outcome measures were visual acuity changes, use of IOP-lowering medications, and complications. Univariate and multivariate analyses were performed to determine the predictors of IOP change. Thirty-nine cases were identified, and postoperative data were analyzed for 59 eyes, 39 with PACG and 20 with PAC. Globally, PE resulted in a mean reduction in IOP of -6.33 mm Hg (95% CI, -8.64 to -4.01, P <.001). Aqueous depth and angle measurements improved ( P <.01), whereas ECC significantly decreased ( P <.001). Both corrected and uncorrected visual acuity improved ( P <.01). The EQ visual analog scale did not change ( P =.16), but VFQ-25 improved ( P <.01). The IOP-lowering effect of PE was greater in the PACG compared to the PAC group ( P =.04). In both groups, preoperative IOP was the most significant predictor of IOP change ( P <.01). No sight-threatening complications were recorded. Our data support the usefulness of PE in lowering the IOP in patients with PAC and PACG. Although PE resulted in several anatomical and patient-reported visual improvements, we observe that a marked decrease in ECC should be carefully weighed before surgery.
Wren, Patricia A; Musch, David C; Janz, Nancy K; Niziol, Leslie M; Guire, Kenneth E; Gillespie, Brenda W
2009-01-01
To compare 2 vision-specific functional status measures to each other and to clinical parameters in the Collaborative Initial Glaucoma Treatment Study (CIGTS). CIGTS participants completed the Visual Activities Questionnaire (VAQ) and the National Eye Institute-Visual Function Questionnaire (NEI-VFQ) and were tested for visual field (VF) and visual acuity (VA). In all, 426 subjects contributed the VAQ and NEI-VFQ scores at 54 months. Pearson correlations were used to assess associations. The VAQ subscales (range, 0 to 100) that assessed light-dark adaptation (mean=66.1), glare disability (66.4), and acuity/spatial vision (67.7) indicated vision-related functions that CIGTS participants found most difficult. On the NEI-VFQ, subjects reported high levels of visual functioning, with mean >/=90 (out of 100) on the total score and in 9 of 12 subscales. General vision (mean=82.6) received the lowest subscale score. Two subscales common to both questionnaires were highly correlated: VA (r=0.68) and peripheral vision (r=0.77) (both P<0.0001). Correlations between participants' perceptions and clinical measures of visual function were in the expected direction, but weaker. Stronger associations were found between clinical measures and the NEI-VFQ than the VAQ. Better eye VF and worse eye VA had the highest number of significant correlations with subjects' perceptions of their visual function. Increasing VF loss was associated with a significant decrease in the overall and peripheral vision subscale scores from both questionnaires, and also several other subscales. CIGTS patients reported excellent visual function on both the NEI-VFQ and VAQ. These findings will help researchers interested in assessing patients' perceptions of their visual function make an informed selection when choosing between the VAQ and the NEI-VFQ.
Inhibition to excitation ratio regulates visual system responses and behavior in vivo.
Shen, Wanhua; McKeown, Caroline R; Demas, James A; Cline, Hollis T
2011-11-01
The balance of inhibitory to excitatory (I/E) synaptic inputs is thought to control information processing and behavioral output of the central nervous system. We sought to test the effects of the decreased or increased I/E ratio on visual circuit function and visually guided behavior in Xenopus tadpoles. We selectively decreased inhibitory synaptic transmission in optic tectal neurons by knocking down the γ2 subunit of the GABA(A) receptors (GABA(A)R) using antisense morpholino oligonucleotides or by expressing a peptide corresponding to an intracellular loop of the γ2 subunit, called ICL, which interferes with anchoring GABA(A)R at synapses. Recordings of miniature inhibitory postsynaptic currents (mIPSCs) and miniature excitatory PSCs (mEPSCs) showed that these treatments decreased the frequency of mIPSCs compared with control tectal neurons without affecting mEPSC frequency, resulting in an ∼50% decrease in the ratio of I/E synaptic input. ICL expression and γ2-subunit knockdown also decreased the ratio of optic nerve-evoked synaptic I/E responses. We recorded visually evoked responses from optic tectal neurons, in which the synaptic I/E ratio was decreased. Decreasing the synaptic I/E ratio in tectal neurons increased the variance of first spike latency in response to full-field visual stimulation, increased recurrent activity in the tectal circuit, enlarged spatial receptive fields, and lengthened the temporal integration window. We used the benzodiazepine, diazepam (DZ), to increase inhibitory synaptic activity. DZ increased optic nerve-evoked inhibitory transmission but did not affect evoked excitatory currents, resulting in an increase in the I/E ratio of ∼30%. Increasing the I/E ratio with DZ decreased the variance of first spike latency, decreased spatial receptive field size, and lengthened temporal receptive fields. Sequential recordings of spikes and excitatory and inhibitory synaptic inputs to the same visual stimuli demonstrated that decreasing or increasing the I/E ratio disrupted input/output relations. We assessed the effect of an altered I/E ratio on a visually guided behavior that requires the optic tectum. Increasing and decreasing I/E in tectal neurons blocked the tectally mediated visual avoidance behavior. Because ICL expression, γ2-subunit knockdown, and DZ did not directly affect excitatory synaptic transmission, we interpret the results of our study as evidence that partially decreasing or increasing the ratio of I/E disrupts several measures of visual system information processing and visually guided behavior in an intact vertebrate.
fMRI response during visual motion stimulation in patients with late whiplash syndrome.
Freitag, P; Greenlee, M W; Wachter, K; Ettlin, T M; Radue, E W
2001-01-01
After whiplash trauma, up to one fourth of patients develop chronic symptoms including head and neck pain and cognitive disturbances. Resting perfusion single-photon-emission computed tomography (SPECT) found decreased temporoparietooccipital tracer uptake among these long-term symptomatic patients with late whiplash syndrome. As MT/MST (V5/V5a) are located in that area, this study addressed the question whether these patients show impairments in visual motion perception. We examined five symptomatic patients with late whiplash syndrome, five asymptomatic patients after whiplash trauma, and a control group of seven volunteers without the history of trauma. Tests for visual motion perception and functional magnetic resonance imaging (fMRI) measurements during visual motion stimulation were performed. Symptomatic patients showed a significant reduction in their ability to perceive coherent visual motion compared with controls, whereas the asymptomatic patients did not show this effect. fMRI activation was similar during random dot motion in all three groups, but was significantly decreased during coherent dot motion in the symptomatic patients compared with the other two groups. Reduced psychophysical motion performance and reduced fMRI responses in symptomatic patients with late whiplash syndrome both point to a functional impairment in cortical areas sensitive to coherent motion. Larger studies are needed to confirm these clinical and functional imaging results to provide a possible additional diagnostic criterion for the evaluation of patients with late whiplash syndrome.
Early-Stage Visual Processing and Cortical Amplification Deficits in Schizophrenia
Butler, Pamela D.; Zemon, Vance; Schechter, Isaac; Saperstein, Alice M.; Hoptman, Matthew J.; Lim, Kelvin O.; Revheim, Nadine; Silipo, Gail; Javitt, Daniel C.
2005-01-01
Background Patients with schizophrenia show deficits in early-stage visual processing, potentially reflecting dysfunction of the magnocellular visual pathway. The magnocellular system operates normally in a nonlinear amplification mode mediated by glutamatergic (N-methyl-d-aspartate) receptors. Investigating magnocellular dysfunction in schizophrenia therefore permits evaluation of underlying etiologic hypotheses. Objectives To evaluate magnocellular dysfunction in schizophrenia, relative to known neurochemical and neuroanatomical substrates, and to examine relationships between electrophysiological and behavioral measures of visual pathway dysfunction and relationships with higher cognitive deficits. Design, Setting, and Participants Between-group study at an inpatient state psychiatric hospital and out-patient county psychiatric facilities. Thirty-three patients met DSM-IV criteria for schizophrenia or schizoaffective disorder, and 21 nonpsychiatric volunteers of similar ages composed the control group. Main Outcome Measures (1) Magnocellular and parvocellular evoked potentials, analyzed using nonlinear (Michaelis-Menten) and linear contrast gain approaches; (2) behavioral contrast sensitivity measures; (3) white matter integrity; (4) visual and nonvisual neuropsychological measures, and (5) clinical symptom and community functioning measures. Results Patients generated evoked potentials that were significantly reduced in response to magnocellular-biased, but not parvocellular-biased, stimuli (P=.001). Michaelis-Menten analyses demonstrated reduced contrast gain of the magnocellular system (P=.001). Patients showed decreased contrast sensitivity to magnocellular-biased stimuli (P<.001). Evoked potential deficits were significantly related to decreased white matter integrity in the optic radiations (P<.03). Evoked potential deficits predicted impaired contrast sensitivity (P=.002), which was in turn related to deficits in complex visual processing (P≤.04). Both evoked potential (P≤.04) and contrast sensitivity (P=.01) measures significantly predicted community functioning. Conclusions These findings confirm the existence of early-stage visual processing dysfunction in schizophrenia and provide the first evidence that such deficits are due to decreased nonlinear signal amplification, consistent with glutamatergic theories. Neuroimaging studies support the hypothesis of dysfunction within low-level visual pathways involving thalamocortical radiations. Deficits in early-stage visual processing significantly predict higher cognitive deficits. PMID:15867102
Williams, Rebecca J; Reutens, David C; Hocking, Julia
2015-11-01
Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.
Change in vision, visual disability, and health after cataract surgery.
Helbostad, Jorunn L; Oedegaard, Maria; Lamb, Sarah E; Delbaere, Kim; Lord, Stephen R; Sletvold, Olav
2013-04-01
Cataract surgery improves vision and visual functioning; the effect on general health is not established. We investigated if vision, visual functioning, and general health follow the same trajectory of change the year after cataract surgery and if changes in vision explain changes in visual disability and general health. One-hundred forty-eight persons, with a mean (SD) age of 78.9 (5.0) years (70% bilateral surgery), were assessed before and 6 weeks and 12 months after surgery. Visual disability and general health were assessed by the CatQuest-9SF and the Short Formular-36. Corrected binocular visual acuity, visual field, stereo acuity, and contrast vision improved (P < 0.001) from before to 6 weeks after surgery, with further improvements of visual acuity evident up to 12 months (P = 0.034). Cataract surgery had an effect on visual disability 1 year later (P < 0.001). Physical and mental health improved after surgery (P < 0.01) but had returned to presurgery level after 12 months. Vision changes did not explain visual disability and general health 6 weeks after surgery. Vision improved and visual disability decreased in the year after surgery, whereas changes in general health and visual functioning were short-term effects. Lack of associations between changes in vision and self-reported disability and general health suggests that the degree of vision changes and self-reported health do not have a linear relationship.
Jonas, Jacques; Frismand, Solène; Vignal, Jean-Pierre; Colnat-Coulbois, Sophie; Koessler, Laurent; Vespignani, Hervé; Rossion, Bruno; Maillard, Louis
2014-07-01
Electrical brain stimulation can provide important information about the functional organization of the human visual cortex. Here, we report the visual phenomena evoked by a large number (562) of intracerebral electrical stimulations performed at low-intensity with depth electrodes implanted in the occipito-parieto-temporal cortex of 22 epileptic patients. Focal electrical stimulation evoked primarily visual hallucinations with various complexities: simple (spot or blob), intermediary (geometric forms), or complex meaningful shapes (faces); visual illusions and impairments of visual recognition were more rarely observed. With the exception of the most posterior cortical sites, the probability of evoking a visual phenomenon was significantly higher in the right than the left hemisphere. Intermediary and complex hallucinations, illusions, and visual recognition impairments were almost exclusively evoked by stimulation in the right hemisphere. The probability of evoking a visual phenomenon decreased substantially from the occipital pole to the most anterior sites of the temporal lobe, and this decrease was more pronounced in the left hemisphere. The greater sensitivity of the right occipito-parieto-temporal regions to intracerebral electrical stimulation to evoke visual phenomena supports a predominant role of right hemispheric visual areas from perception to recognition of visual forms, regardless of visuospatial and attentional factors. Copyright © 2013 Wiley Periodicals, Inc.
[Usher syndrome: about a case].
Daoudi, Chama; Boutimzine, Noureddine; Haouzi, Samia El; Lezrek, Omar; Tachfouti, Samira; Lezrek, Mounir; Laghmari, Mina; Daoudi, Rajae
2017-01-01
Usher syndrome is a genetic disease resulting in double sensory deprivation (auditory and visual) called deafblindness. We report the case of a 50-year old patient, born to consanguineous parents, presenting with congenital deafness associated with normal vestibular function and pigmentary retinopathy responsible for decreased bilateral visual acuity occurred at the age of 16 years. This association composes Usher syndrome type 2, a rare autosomal recessive disorder. Cataract surgery allowed visual acuity improvement in this patient.
Probing the functional impact of sub-retinal prosthesis
Roux, Sébastien; Matonti, Frédéric; Dupont, Florent; Hoffart, Louis; Takerkart, Sylvain; Picaud, Serge; Pham, Pascale; Chavane, Frédéric
2016-01-01
Retinal prostheses are promising tools for recovering visual functions in blind patients but, unfortunately, with still poor gains in visual acuity. Improving their resolution is thus a key challenge that warrants understanding its origin through appropriate animal models. Here, we provide a systematic comparison between visual and prosthetic activations of the rat primary visual cortex (V1). We established a precise V1 mapping as a functional benchmark to demonstrate that sub-retinal implants activate V1 at the appropriate position, scalable to a wide range of visual luminance, but with an aspect-ratio and an extent much larger than expected. Such distorted activation profile can be accounted for by the existence of two sources of diffusion, passive diffusion and activation of ganglion cells’ axons en passant. Reverse-engineered electrical pulses based on impedance spectroscopy is the only solution we tested that decreases the extent and aspect-ratio, providing a promising solution for clinical applications. DOI: http://dx.doi.org/10.7554/eLife.12687.001 PMID:27549126
Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi
2016-09-07
Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.
Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark
2008-07-01
The maintenance of visual stimuli across a delay interval in working memory tasks is thought to involve reverberant neural communication between the prefrontal cortex and posterior visual association areas. Recent studies suggest that the hippocampus might also contribute to this retention process, presumably via reciprocal interactions with visual regions. To characterize the nature of these interactions, we performed functional connectivity analysis on an event-related functional magnetic resonance imaging data set in which participants performed a delayed face recognition task. As the number of faces that participants were required to remember was parametrically increased, the right inferior frontal gyrus (IFG) showed a linearly decreasing degree of functional connectivity with the fusiform face area (FFA) during the delay period. In contrast, the hippocampus linearly increased its delay period connectivity with both the FFA and the IFG as the mnemonic load increased. Moreover, the degree to which participants' FFA showed a load-dependent increase in its connectivity with the hippocampus predicted the degree to which its connectivity with the IFG decreased with load. Thus, these neural circuits may dynamically trade off to accommodate the particular mnemonic demands of the task, with IFG-FFA interactions mediating maintenance at lower loads and hippocampal interactions supporting retention at higher loads.
Huseyinoglu, Nergiz; Ekinci, Metin; Ozben, Serkan; Buyukuysal, Cagatay
2014-01-01
Abstract Studies that explored the anterior visual pathway in the patients with multiple sclerosis (MS) have demonstrated contradictory results about the correlation between structural and functional status of optic nerve and retina. We aimed to investigate the functional and structural findings in our cohort of mildly disabled relapsing-remitting MS patients. A total of 134 eyes (80 eyes of the patients with MS and 54 eyes of the control group) were investigated. Eyes of MS patients were divided into two groups—as eyes with history of optic neuritis (ON group) and without history of optic neuritis (NON group). Ophthalmological investigation including visual evoked potentials, standard automated perimetry, and optical coherence tomography were performed for all participants. Retinal and macular thicknesses were significantly decreased in ON and NON groups compared with controls. Also, visual evoked potential latencies and visual field loss were worse in the both MS groups compared with control group. We did not find any correlation between visual evoked potentials and retinal or macular thickness values but visual field parameters were correlated between retinal and macular layer loss in the NON group. According to our results and some previous studies, although both functional and structural changes were detected in patients with MS, functional status markers do not always show parallelism (or synchrony) with structural changes, especially in eyes with history of optic neuritis. PMID:27928266
High visual working memory capacity in trait social anxiety.
Moriya, Jun; Sugiura, Yoshinori
2012-01-01
Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions.
2012-01-01
Background Economic viability of treatments for primary open-angle glaucoma (POAG) should be assessed objectively to prioritise health care interventions. This study aims to identify the methods for eliciting utility values (UVs) most sensitive to differences in visual field and visual functioning in patients with POAG. As a secondary objective, the dimensions of generic health-related and vision-related quality of life most affected by progressive vision loss will be identified. Methods A total of 132 POAG patients were recruited. Three sets of utility values (EuroQoL EQ-5D, Short Form SF-6D, Time Trade Off) and a measure of perceived visual functioning from the National Eye Institute Visual Function Questionnaire (VFQ-25) were elicited during face-to-face interviews. The sensitivity of UVs to differences in the binocular visual field, visual acuity and visual functioning measures was analysed using non-parametric statistical methods. Results Median utilities were similar across Integrated Visual Field score quartiles for EQ-5D (P = 0.08) whereas SF-6D and Time-Trade-Off UVs significantly decreased (p = 0.01 and p = 0.001, respectively). The VFQ-25 score varied across Integrated Visual Field and binocular visual acuity groups and was associated with all three UVs (P ≤ 0.001); most of its vision-specific sub-scales were associated with the vision markers. The most affected dimension was driving. A relationship with vision markers was found for the physical component of SF-36 and not for any dimension of EQ-5D. Conclusions The Time-Trade-Off was more sensitive than EQ-5D and SF-6D to changes in vision and visual functioning associated with glaucoma progression but could not measure quality of life changes in the mildest disease stages. PMID:22909264
Saito, Kiyo; Ono, Takashi; Mochida, Masumi; Ohyama, Kimie
2006-01-01
The current study aimed to determine how nasorespiratory function changes in association with maxillary distraction osteogenesis (DO). Furthermore, with regard to impaired nasorespiratory function, the possibility of a relationship between the cleft side and laterality and any effect of maxillary distraction osteogenesis was investigated. In this descriptive, prospective clinical report, subjective and objective data regarding nasorespiratory function before and after maxillary distraction osteogenesis were compared. Data from 13 subjects with cleft lip and palate were used. Subjects had a severe maxillary deficiency and underwent distraction osteogenesis using a rigid external device system. The subjective measure was the score on a questionnaire regarding nasorespiratory function using a visual analog scale. The objective measure was nasal resistance. The visual analog scale score for two items significantly decreased just after distraction osteogenesis. Nasal resistance also significantly decreased 1 year after distraction osteogenesis. Moreover, nasal resistance on the cleft side was significantly greater than that on the noncleft side just before and 1 year after distraction osteogenesis. There was a significant positive correlation between changes in the visual analog scale score and nasal resistance. These results suggest that nasorespiratory function changes in association with maxillary distraction osteogenesis in subjects with cleft lip and palate. Moreover, it appears that nasal obstruction on the cleft side does not change in subjects with unilateral cleft lip and palate.
Changes in Visual Function in the Elderly Population in the United States: 1995-2010.
Chen, Yiqun; Hahn, Paul; Sloan, Frank A
2016-06-01
To document recent trends in visual function among the United States population aged 70+ years and investigate how the trends can be explained by inter-temporal changes in: (1) population sociodemographic characteristics, and chronic disease prevalence, including eye diseases (compositional changes); and (2) effects of the above factors on visual function (structural changes). Data from the 1995 Asset and Health Dynamics among the Oldest Old (AHEAD) and the 2010 Health and Retirement Study (HRS) were merged with Medicare Part B claims in the interview years and the 2 previous years. Decomposition analysis was performed. Respondents from both studies were aged 70+ years. The outcome measure was respondent self-reported visual function on a 6-point scale (from 6 = blind to 1 = excellent). Overall, visual function improved from slightly worse than good (3.14) in 1995 to slightly better than good (2.98) in 2010. A decline in adverse effects of aging on vision was found. Among the compositional changes were higher educational attainment leading to improved vision, and higher prevalence of such diseases as diabetes mellitus, which tended to lower visual function. However, compared to compositional changes, structural changes were far more important, including decreased adverse effects of aging, diabetes mellitus (when not controlling for eye diseases), and diagnosed glaucoma. Although the US population has aged and is expected to age further, visual function improved among elderly persons, especially among persons 80+ years, likely reflecting a favorable role of structural changes identified in this study in mitigating the adverse effect of ongoing aging on vision.
Main and Interaction Effects of Metallic Pollutants on Cognitive Functioning.
ERIC Educational Resources Information Center
Moon, Charles; And Others
1985-01-01
A study involving 69 randomly selected elementary students indicated that increases in arsenic and interaction of arsenic lead were significantly related to decreased reading and spelling achievement, and increases in aluminum and the interaction of aluminum with lead were significantly related to decreased visual-motor performance. (Author/CL)
Eandi, Chiara M; Piccolino, Felice Cardillo; Alovisi, Camilla; Tridico, Federico; Giacomello, Daniela; Grignolo, Federico M
2015-04-01
To find possible correlations between the morphologic macular changes revealed by fundus autofluorescence (FAF) and the functional parameters such as visual acuity and retinal sensitivity in patients with chronic central serous chorioretinopathy (CSC). Prospective, cross-sectional study. Forty-six eyes (39 consecutive patients) with chronic CSC were studied with FAF and microperimetry (MP). Retinal sensitivity value maps were exactly superimposed over FAF images. The following microperimetric parameters were applied: central 10-degree visual field, 4-2-1 strategy, 61 stimulation spots, white monochromatic background, stimulation time 200 ms, stimulation spot size Goldmann III. A possible relationship between MP and FAF was investigated. Mean best-corrected visual acuity (BCVA) was 20/32 (median 20/25, range 20/20-20/200). BCVA was significantly correlated with FAF findings (Mann-Whitney test; P < .0001). A positive concordance between FAF and MP evaluation was also found (total concordance of 0.720 with a kappa of Cohen of 0.456). The hypo-autofluorescent areas showed decreased retinal sensitivity, while adjacent areas of increased FAF could be associated to both normal and decreased retinal sensitivity. Absolute scotoma, defined as 0 dB retinal sensitivity, corresponded with absence of autofluorescence. Altered FAF in chronic CSC patients has a functional correlation quantified by microperimetry. This study confirms the impact of FAF changes on retinal sensitivity and their value to reflect the functional impairment in chronic CSC. Copyright © 2015 Elsevier Inc. All rights reserved.
Kaptsov, V A; Sosunov, N N; Shishchenko, I I; Viktorov, V S; Tulushev, V N; Deynego, V N; Bukhareva, E A; Murashova, M A; Shishchenko, A A
2014-01-01
There was performed the experimental work on the study of the possibility of the application of LED lighting (LED light sources) in rail transport for traffic safety in related professions. Results of 4 series of studies involving 10 volunteers for the study and a comparative evaluation of the functional state of the visual analyzer, the general functional state and mental capacity under the performing the simulated operator activity in conditions of traditional light sources (incandescent, fluorescent lamp) and the new LED (LED lamp, LED panel) light sources have revealed changes in the negative direction. This was pronounced in a some decrease of functional stability to color discrimination between green and red cone signals, as well as an increase in response time in complex visual--motor response and significant reduction in readiness for emergency action of examinees.
Sarabi, Mitra Taghizadeh; Aoki, Ryuta; Tsumura, Kaho; Keerativittayayut, Ruedeerat; Jimura, Koji; Nakahara, Kiyoshi
2018-01-01
The neural mechanisms underlying visual perceptual learning (VPL) have typically been studied by examining changes in task-related brain activation after training. However, the relationship between post-task "offline" processes and VPL remains unclear. The present study examined this question by obtaining resting-state functional magnetic resonance imaging (fMRI) scans of human brains before and after a task-fMRI session involving visual perceptual training. During the task-fMRI session, participants performed a motion coherence discrimination task in which they judged the direction of moving dots with a coherence level that varied between trials (20, 40, and 80%). We found that stimulus-induced activation increased with motion coherence in the middle temporal cortex (MT+), a feature-specific region representing visual motion. On the other hand, stimulus-induced activation decreased with motion coherence in the dorsal anterior cingulate cortex (dACC) and bilateral insula, regions involved in decision making under perceptual ambiguity. Moreover, by comparing pre-task and post-task rest periods, we revealed that resting-state functional connectivity (rs-FC) with the MT+ was significantly increased after training in widespread cortical regions including the bilateral sensorimotor and temporal cortices. In contrast, rs-FC with the MT+ was significantly decreased in subcortical regions including the thalamus and putamen. Importantly, the training-induced change in rs-FC was observed only with the MT+, but not with the dACC or insula. Thus, our findings suggest that perceptual training induces plastic changes in offline functional connectivity specifically in brain regions representing the trained visual feature, emphasising the distinct roles of feature-representation regions and decision-related regions in VPL.
Chavez-Solano, Marbella; Ibarra-Sanchez, Alfredo; Treviño, Mario; Gonzalez-Espinosa, Claudia; Lamas, Monica
2016-04-01
Fyn kinase is widely expressed in neuronal and glial cells of the brain, where it exerts multiple functional roles that affect fundamental physiological processes. The aim of our study was to investigate the, so far unknown, functional role of Fyn in the retina. We report that Fyn is expressed, in vivo, in a subpopulation of Müller glia. We used a mouse model of Fyn genetic ablation and Müller-enriched primary cultures to demonstrate that Fyn deficiency induces morphological alterations in the mature retina, a reduction in the thickness of the outer and inner nuclear layers and alterations in postnatal Müller cell physiology. These include shortening of Müller cell processes, a decrease in cell proliferation, inactivation of the Akt signal transduction pathway, a reduced number of focal adhesions points and decreased adhesion of these cells to the ECM. As abnormalities in Müller cell physiology have been previously associated to a compromised retinal function we evaluated behavioral responses to visual stimulation. Our results associate Fyn deficiency with impaired visual optokinetic responses under scotopic and photopic light conditions. Our study reveals novel roles for Fyn kinase in retinal morphology and Müller cell physiology and suggests that Fyn is required for optimal visual processing. Copyright © 2016 Elsevier Inc. All rights reserved.
Neuro-ophthalmic manifestations of cerebrovascular accidents.
Ghannam, Alaa S Bou; Subramanian, Prem S
2017-11-01
Ocular functions can be affected in almost any type of cerebrovascular accident (CVA) creating a burden on the patient and family and limiting functionality. The present review summarizes the different ocular outcomes after stroke, divided into three categories: vision, ocular motility, and visual perception. We also discuss interventions that have been proposed to help restore vision and perception after CVA. Interventions that might help expand or compensate for visual field loss and visuospatial neglect include explorative saccade training, prisms, visual restoration therapy (VRT), and transcranial direct current stimulation (tDCS). VRT makes use of neuroplasticity, which has shown efficacy in animal models but remains controversial in human studies. CVAs can lead to decreased visual acuity, visual field loss, ocular motility abnormalities, and visuospatial perception deficits. Although ocular motility problems can be corrected with surgery, vision, and perception deficits are more difficult to overcome. Interventions to restore or compensate for visual field deficits are controversial despite theoretical underpinnings, animal model evidence, and case reports of their efficacies.
Chung, Byunghoon; Lee, Hun; Choi, Bong Joon; Seo, Kyung Ryul; Kim, Eung Kwon; Kim, Dae Yune; Kim, Tae-Im
2017-02-01
The purpose of this study was to investigate the clinical efficacy of an optimized prolate ablation procedure for correcting residual refractive errors following laser surgery. We analyzed 24 eyes of 15 patients who underwent an optimized prolate ablation procedure for the correction of residual refractive errors following laser in situ keratomileusis, laser-assisted subepithelial keratectomy, or photorefractive keratectomy surgeries. Preoperative ophthalmic examinations were performed, and uncorrected distance visual acuity, corrected distance visual acuity, manifest refraction values (sphere, cylinder, and spherical equivalent), point spread function, modulation transfer function, corneal asphericity (Q value), ocular aberrations, and corneal haze measurements were obtained postoperatively at 1, 3, and 6 months. Uncorrected distance visual acuity improved and refractive errors decreased significantly at 1, 3, and 6 months postoperatively. Total coma aberration increased at 3 and 6 months postoperatively, while changes in all other aberrations were not statistically significant. Similarly, no significant changes in point spread function were detected, but modulation transfer function increased significantly at the postoperative time points measured. The optimized prolate ablation procedure was effective in terms of improving visual acuity and objective visual performance for the correction of persistent refractive errors following laser surgery.
Visual Cortical Function in Very Low Birth Weight Infants without Retinal or Cerebral Pathology
Hou, Chuan; Norcia, Anthony M.; Madan, Ashima; Tith, Solina; Agarwal, Rashi
2011-01-01
Purpose. Preterm infants are at high risk of visual and neural developmental deficits. However, the development of visual cortical function in preterm infants with no retinal or neurologic morbidity has not been well defined. To determine whether premature birth itself alters visual cortical function, swept parameter visual evoked potential (sVEP) responses of healthy preterm infants were compared with those of term infants. Methods. Fifty-two term infants and 58 very low birth weight (VLBW) infants without significant retinopathy of prematurity or neurologic morbidities were enrolled. Recruited VLBW infants were between 26 and 33 weeks of gestational age, with birth weights of less than 1500 g. Spatial frequency, contrast, and vernier offset sweep VEP tuning functions were measured at 5 to 7 months' corrected age. Acuity and contrast thresholds were derived by extrapolating the tuning functions to 0 amplitude. These thresholds and suprathreshold response amplitudes were compared between groups. Results. Preterm infants showed increased thresholds (indicating decreased sensitivity to visual stimuli) and reductions in amplitudes for all three measures. These changes in cortical responsiveness were larger in the <30 weeks ' gestational age subgroup than in the ≥30 weeks' gestational age subgroup. Conclusions. Preterm infants with VLBW had measurable and significant changes in cortical responsiveness that were correlated with gestational age. These results suggest that premature birth in the absence of identifiable retinal or neurologic abnormalities has a significant effect on visual cortical sensitivity at 5 to 7 months' of corrected age and that gestational age is an important factor in visual development. PMID:22025567
Freeman, William R.; Van Natta, Mark L.; Jabs, Douglas; Sample, Pamela A.; Sadun, Alfredo A.; Thorne, Jennifer; Shah, Kayur H.; Holland, Gary N.
2008-01-01
Purpose To evaluate the prevalence and risk factors for vision loss in patients with clinical or immunologic AIDS without infectious retinitis. Design A prospective multicentered cohort study of patients with AIDS. Methods 1,351 patients (2,671 eyes) at 19 clinical trials centers diagnosed with AIDS but without major ocular complications of HIV. Standardized measurements of visual acuity, automated perimetry, and contrast sensitivity were analyzed and correlated with measurements of patients’ health and medical data relating to HIV infection. We evaluated correlations between vision function testing and HIV-related risk factors and medical testing. Results There were significant (p<0.05) associations between measures of decreasing vision function and indices of increasing disease severity including Karnofsky score and hemoglobin. A significant relationship was seen between low contrast sensitivity and decreasing levels of CD4+ T-cell count. Three percent of eyes had a visual acuity worse than 20/40 Snellen equivalents, which was significantly associated with a history of opportunistic infections and low Karnofsky score. When compared to external groups with normal vision, 39% of eyes had abnormal mean deviation on automated perimetry, 33% had abnormal pattern standard deviation, and 12% of eyes had low contrast sensitivity. Conclusions This study confirms that visual dysfunction is common in patients with AIDS but without retinitis. The most prevalent visual dysfunction is loss of visual field; nearly 40% of patients have some abnormal visual field. There is an association between general disease severity and less access to care and vision loss. The pathophysiology of this vision loss is unknown but is consistent with retinovascular disease or optic nerve disease. PMID:18191094
BOLD repetition decreases in object-responsive ventral visual areas depend on spatial attention.
Eger, E; Henson, R N A; Driver, J; Dolan, R J
2004-08-01
Functional imaging studies of priming-related repetition phenomena have become widely used to study neural object representation. Although blood oxygenation level-dependent (BOLD) repetition decreases can sometimes be observed without awareness of repetition, any role for spatial attention in BOLD repetition effects remains largely unknown. We used fMRI in 13 healthy subjects to test whether BOLD repetition decreases for repeated objects in ventral visual cortices depend on allocation of spatial attention to the prime. Subjects performed a size-judgment task on a probe object that had been attended or ignored in a preceding prime display of 2 lateralized objects. Reaction times showed faster responses when the probe was the same object as the attended prime, independent of the view tested (identical vs. mirror image). No behavioral effect was evident from unattended primes. BOLD repetition decreases for attended primes were found in lateral occipital and fusiform regions bilaterally, which generalized across identical and mirror-image repeats. No repetition decreases were observed for ignored primes. Our results suggest a critical role for attention in achieving visual representations of objects that lead to both BOLD signal decreases and behavioral priming on repeated presentation.
Begenisic, Tatjana; Spolidoro, Maria; Braschi, Chiara; Baroncelli, Laura; Milanese, Marco; Pietra, Gianluca; Fabbri, Maria E.; Bonanno, Giambattista; Cioni, Giovanni; Maffei, Lamberto; Sale, Alessandro
2011-01-01
Down syndrome (DS) is the most common genetic disorder associated with mental retardation. It has been repeatedly shown that Ts65Dn mice, the prime animal model for DS, have severe cognitive and neural plasticity defects due to excessive inhibition. We report that increasing sensory-motor stimulation in adulthood through environmental enrichment (EE) reduces brain inhibition levels and promotes recovery of spatial memory abilities, hippocampal synaptic plasticity, and visual functions in adult Ts65Dn mice. PMID:22207837
Functional vision loss: a diagnosis of exclusion.
Villegas, Rex B; Ilsen, Pauline F
2007-10-01
Most cases of visual acuity or visual field loss can be attributed to ocular pathology or ocular manifestations of systemic pathology. They can also occasionally be attributed to nonpathologic processes or malingering. Functional vision loss is any decrease in vision the origin of which cannot be attributed to a pathologic or structural abnormality. Two cases of functional vision loss are described. In the first, a 58-year-old man presented for a baseline eye examination for enrollment in a vision rehabilitation program. He reported bilateral blindness since a motor vehicle accident with head trauma 4 years prior. Entering visual acuity was "no light perception" in each eye. Ocular health examination was normal and the patient made frequent eye contact with the examiners. He was referred for neuroimaging and electrophysiologic testing. The second case was a 49-year-old man who presented with a long history of intermittent monocular diplopia. His medical history was significant for psycho-medical evaluations and a diagnosis of factitious disorder. Entering uncorrected visual acuities were 20/20 in each eye, but visual field testing found constriction. No abnormalities were found that could account for the monocular diplopia or visual field deficit. A diagnosis of functional vision loss secondary to factitious disorder was made. Functional vision loss is a diagnosis of exclusion. In the event of reduced vision in the context of a normal ocular health examination, all other pathology must be ruled out before making the diagnosis of functional vision loss. Evaluation must include auxiliary ophthalmologic testing, neuroimaging of the visual pathway, review of the medical history and lifestyle, and psychiatric evaluation. Comanagement with a psychiatrist is essential for patients with functional vision loss.
Unhealthy behaviours and risk of visual impairment: The CONSTANCES population-based cohort.
Merle, Bénédicte M J; Moreau, Gwendoline; Ozguler, Anna; Srour, Bernard; Cougnard-Grégoire, Audrey; Goldberg, Marcel; Zins, Marie; Delcourt, Cécile
2018-04-26
Unhealthy behaviours are linked to a higher risk of eye diseases, but their combined effect on visual function is unknown. We aimed to examine the individual and combined associations of diet, physical activity, smoking and alcohol consumption with visual impairment among French adults. 38 903 participants aged 18-73 years from the CONSTANCES nationwide cohort (2012-2016) with visual acuity measured and who completed, lifestyle, medical and food frequency questionnaires were included. Visual impairment was defined as a presenting visual acuity <20/40 in the better eye. After full multivariate adjustment, the odds for visual impairment increased with decreasing diet quality (p for trend = 0.04), decreasing physical activity (p for trend = 0.02) and increasing smoking pack-years (p for trend = 0.03), whereas no statistically significant association with alcohol consumption was found. Combination of several unhealthy behaviours was associated with increasing odds for visual impairment (p for trend = 0.0002), with a fully-adjusted odds ratio of 1.81 (95% CI 1.18 to 2.79) for participants reporting 2 unhealthy behaviours and 2.92 (95% CI 1.60 to 5.32) for those reporting 3 unhealthy behaviours. An unhealthy lifestyle including low/intermediate diet quality, low physical activity and heavy smoking was associated with visual impairment in this large population-based study.
van de Ven, Vincent; Jacobs, Christianne; Sack, Alexander T
2012-01-04
The neural correlates for retention of visual information in visual short-term memory are considered separate from those of sensory encoding. However, recent findings suggest that sensory areas may play a role also in short-term memory. We investigated the functional relevance, spatial specificity, and temporal characteristics of human early visual cortex in the consolidation of capacity-limited topographic visual memory using transcranial magnetic stimulation (TMS). Topographically specific TMS pulses were delivered over lateralized occipital cortex at 100, 200, or 400 ms into the retention phase of a modified change detection task with low or high memory loads. For the high but not the low memory load, we found decreased memory performance for memory trials in the visual field contralateral, but not ipsilateral to the side of TMS, when pulses were delivered at 200 ms into the retention interval. A behavioral version of the TMS experiment, in which a distractor stimulus (memory mask) replaced the TMS pulses, further corroborated these findings. Our findings suggest that retinotopic visual cortex contributes to the short-term consolidation of topographic visual memory during early stages of the retention of visual information. Further, TMS-induced interference decreased the strength (amplitude) of the memory representation, which most strongly affected the high memory load trials.
Motion Direction Biases and Decoding in Human Visual Cortex
Wang, Helena X.; Merriam, Elisha P.; Freeman, Jeremy
2014-01-01
Functional magnetic resonance imaging (fMRI) studies have relied on multivariate analysis methods to decode visual motion direction from measurements of cortical activity. Above-chance decoding has been commonly used to infer the motion-selective response properties of the underlying neural populations. Moreover, patterns of reliable response biases across voxels that underlie decoding have been interpreted to reflect maps of functional architecture. Using fMRI, we identified a direction-selective response bias in human visual cortex that: (1) predicted motion-decoding accuracy; (2) depended on the shape of the stimulus aperture rather than the absolute direction of motion, such that response amplitudes gradually decreased with distance from the stimulus aperture edge corresponding to motion origin; and 3) was present in V1, V2, V3, but not evident in MT+, explaining the higher motion-decoding accuracies reported previously in early visual cortex. These results demonstrate that fMRI-based motion decoding has little or no dependence on the underlying functional organization of motion selectivity. PMID:25209297
Kahathuduwa, Chanaka N; Dhanasekara, Chathurika S; Chin, Shao-Hua; Davis, Tyler; Weerasinghe, Vajira S; Dassanayake, Tharaka L; Binks, Martin
2018-01-01
Oral intake of l-theanine and caffeine supplements is known to be associated with faster stimulus discrimination, possibly via improving attention to stimuli. We hypothesized that l-theanine and caffeine may be bringing about this beneficial effect by increasing attention-related neural resource allocation to target stimuli and decreasing deviation of neural resources to distractors. We used functional magnetic resonance imaging (fMRI) to test this hypothesis. Solutions of 200mg of l-theanine, 160mg of caffeine, their combination, or the vehicle (distilled water; placebo) were administered in a randomized 4-way crossover design to 9 healthy adult men. Sixty minutes after administration, a 20-minute fMRI scan was performed while the subjects performed a visual color stimulus discrimination task. l-Theanine and l-theanine-caffeine combination resulted in faster responses to targets compared with placebo (∆=27.8milliseconds, P=.018 and ∆=26.7milliseconds, P=.037, respectively). l-Theanine was associated with decreased fMRI responses to distractor stimuli in brain regions that regulate visual attention, suggesting that l-theanine may be decreasing neural resource allocation to process distractors, thus allowing to attend to targets more efficiently. l-Theanine-caffeine combination was associated with decreased fMRI responses to target stimuli as compared with distractors in several brain regions that typically show increased activation during mind wandering. Factorial analysis suggested that l-theanine and caffeine seem to have a synergistic action in decreasing mind wandering. Therefore, our hypothesis is that l-theanine and caffeine may be decreasing deviation of attention to distractors (including mind wandering); thus, enhancing attention to target stimuli was confirmed. Copyright © 2017 Elsevier Inc. All rights reserved.
Jockwitz, Christiane; Caspers, Svenja; Lux, Silke; Jütten, Kerstin; Schleicher, Axel; Eickhoff, Simon B; Amunts, Katrin; Zilles, Karl
2017-01-01
Healthy aging is accompanied by changes in the functional architecture of the default mode network (DMN), e.g. a posterior to anterior shift (PASA) of activations. The putative structural correlate for this functional reorganization, however, is largely unknown. Changes in gyrification, i.e. decreases of cortical folding were found to be a marker of atrophy of the brain in later decades of life. Therefore, the present study assessed local gyrification indices of the DMN in relation to age and cognitive performance in 749 older adults aged 55-85 years. Age-related decreases in local gyrification indices were found in the anterior part of the DMN [particularly; medial prefrontal cortex (mPFC)] of the right hemisphere, and the medial posterior parts of the DMN [particularly; posterior cingulate cortex (PCC)/precuneus] of both hemispheres. Positive correlations between cognitive performance and local gyrification indices were found for (1) selective attention and left PCC/precuneus, (2) visual/visual-spatial working memory and bilateral PCC/precuneus and right angular gyrus (AG), and (3) semantic verbal fluency and right AG and right mPFC. The more pronounced age-related decrease in local gyrification indices of the posterior parts of the DMN supports the functionally motivated PASA theory by correlated structural changes. Surprisingly, the prominent age-related decrease in local gyrification indices in right hemispheric ROIs provides evidence for a structural underpinning of the right hemi-aging hypothesis. Noticeably, the performance-related changes in local gyrification largely involved the same parts of the DMN that were subject to age-related local gyrification decreases. Thus, the present study lends support for a combined structural and functional theory of aging, in that the functional changes in the DMN during aging are accompanied by comparably localized structural alterations.
Disentangling How the Brain is “Wired” in Cortical/Cerebral Visual Impairment (CVI)
Merabet, Lotfi B.; Mayer, D. Luisa; Bauer, Corinna M.; Wright, Darick; Kran, Barry S.
2017-01-01
Cortical/cerebral visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment/blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher order visual processing and attention. Together, these visual impairments can dramatically impact upon a child’s development and well-being. Given the complex neurological underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition. PMID:28941531
Disentangling How the Brain is "Wired" in Cortical (Cerebral) Visual Impairment.
Merabet, Lotfi B; Mayer, D Luisa; Bauer, Corinna M; Wright, Darick; Kran, Barry S
2017-05-01
Cortical (cerebral) visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment or blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher-order visual processing and attention. Together, these visual impairments can dramatically influence a child's development and well-being. Given the complex neurologic underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns, respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition. Copyright © 2017 Elsevier Inc. All rights reserved.
Diffusion fMRI detects white-matter dysfunction in mice with acute optic neuritis
Lin, Tsen-Hsuan; Spees, William M.; Chiang, Chia-Wen; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei
2014-01-01
Optic neuritis is a frequent and early symptom of multiple sclerosis (MS). Conventional magnetic resonance (MR) techniques provide means to assess multiple MS-related pathologies, including axonal injury, demyelination, and inflammation. A method to directly and non-invasively probe white-matter function could further elucidate the interplay of underlying pathologies and functional impairments. Previously, we demonstrated a significant 27% activation-associated decrease in the apparent diffusion coefficient of water perpendicular to the axonal fibers (ADC⊥) in normal C57BL/6 mouse optic nerve with visual stimulation using diffusion fMRI. Here we apply this approach to explore the relationship between visual acuity, optic nerve pathology, and diffusion fMRI in the experimental autoimmune encephalomyelitis (EAE) mouse model of optic neuritis. Visual stimulation produced a significant 25% (vs. baseline) ADC⊥ decrease in sham EAE optic nerves, while only a 7% (vs. baseline) ADC⊥ decrease was seen in EAE mice with acute optic neuritis. The reduced activation-associated ADC⊥ response correlated with post-MRI immunohistochemistry determined pathologies (including inflammation, demyelination, and axonal injury). The negative correlation between activation-associated ADC⊥ response and visual acuity was also found when pooling EAE-affected and sham groups under our experimental criteria. Results suggest that reduction in diffusion fMRI directly reflects impaired axonal-activation in EAE mice with optic neuritis. Diffusion fMRI holds promise for directly gauging in vivo white-matter dysfunction or therapeutic responses in MS patients. PMID:24632420
Decreased susceptibility to motion sickness during exposure to visual inversion in microgravity
NASA Technical Reports Server (NTRS)
Lackner, James R.; Dizio, Paul
1991-01-01
Head and body movements made in microgravity tend to bring on symptoms of motion sickness. Such head movements, relative to comparable ones made on earth, are accompanied by unusual combinations of semicircular canal and otolith activity owing to the unloading of the otoliths in 0G. Head movements also bring on symptoms of motion sickness during exposure to visual inversion (or reversal) on earth because the vestibulo-ocular reflex is rendered anti-compensatory. Here, evidence is presented that susceptibility to motion sickness during exposure to visual inversion is decreased in a 0G relative to 1G force background. This difference in susceptibility appears related to the alteration in otolith function in 0G. Some implications of this finding for the etiology of space motion sickness are described.
Episodic Memory Retrieval Functionally Relies on Very Rapid Reactivation of Sensory Information.
Waldhauser, Gerd T; Braun, Verena; Hanslmayr, Simon
2016-01-06
Episodic memory retrieval is assumed to rely on the rapid reactivation of sensory information that was present during encoding, a process termed "ecphory." We investigated the functional relevance of this scarcely understood process in two experiments in human participants. We presented stimuli to the left or right of fixation at encoding, followed by an episodic memory test with centrally presented retrieval cues. This allowed us to track the reactivation of lateralized sensory memory traces during retrieval. Successful episodic retrieval led to a very early (∼100-200 ms) reactivation of lateralized alpha/beta (10-25 Hz) electroencephalographic (EEG) power decreases in the visual cortex contralateral to the visual field at encoding. Applying rhythmic transcranial magnetic stimulation to interfere with early retrieval processing in the visual cortex led to decreased episodic memory performance specifically for items encoded in the visual field contralateral to the site of stimulation. These results demonstrate, for the first time, that episodic memory functionally relies on very rapid reactivation of sensory information. Remembering personal experiences requires a "mental time travel" to revisit sensory information perceived in the past. This process is typically described as a controlled, relatively slow process. However, by using electroencephalography to measure neural activity with a high time resolution, we show that such episodic retrieval entails a very rapid reactivation of sensory brain areas. Using transcranial magnetic stimulation to alter brain function during retrieval revealed that this early sensory reactivation is causally relevant for conscious remembering. These results give first neural evidence for a functional, preconscious component of episodic remembering. This provides new insight into the nature of human memory and may help in the understanding of psychiatric conditions that involve the automatic intrusion of unwanted memories. Copyright © 2016 the authors 0270-6474/16/360251-10$15.00/0.
Emrich, Stephen M; Riggall, Adam C; Larocque, Joshua J; Postle, Bradley R
2013-04-10
Traditionally, load sensitivity of sustained, elevated activity has been taken as an index of storage for a limited number of items in visual short-term memory (VSTM). Recently, studies have demonstrated that the contents of a single item held in VSTM can be decoded from early visual cortex, despite the fact that these areas do not exhibit elevated, sustained activity. It is unknown, however, whether the patterns of neural activity decoded from sensory cortex change as a function of load, as one would expect from a region storing multiple representations. Here, we use multivoxel pattern analysis to examine the neural representations of VSTM in humans across multiple memory loads. In an important extension of previous findings, our results demonstrate that the contents of VSTM can be decoded from areas that exhibit a transient response to visual stimuli, but not from regions that exhibit elevated, sustained load-sensitive delay-period activity. Moreover, the neural information present in these transiently activated areas decreases significantly with increasing load, indicating load sensitivity of the patterns of activity that support VSTM maintenance. Importantly, the decrease in classification performance as a function of load is correlated with within-subject changes in mnemonic resolution. These findings indicate that distributed patterns of neural activity in putatively sensory visual cortex support the representation and precision of information in VSTM.
de Rivera, Christina; Boutet, Isabelle; Zicker, Steven C; Milgram, Norton W
2005-03-01
Tasks requiring visual discrimination are commonly used in assessment of canine cognitive function. However, little is known about canine visual processing, and virtually nothing is known about the effects of age on canine visual function. This study describes a novel behavioural method developed to assess one aspect of canine visual function, namely contrast sensitivity. Four age groups (young, middle aged, old, and senior) were studied. We also included a group of middle aged to old animals that had been maintained for at least 4 years on a specially formulated food containing a broad spectrum of antioxidants and mitochondrial cofactors. Performance of this group was compared with a group in the same age range maintained on a control diet. In the first phase, all animals were trained to discriminate between two high contrast shapes. In the second phase, contrast was progressively reduced by increasing the luminance of the shapes. Performance decreased as a function of age, but the differences did not achieve statistical significance, possibly because of a small sample size in the young group. All age groups were able to acquire the initial discrimination, although the two older age groups showed slower learning. Errors increased with decreasing contrast with the maximal number of errors for the 1% contrast shape. Also, all animals on the antioxidant diet learned the task and had significantly fewer errors at the high contrast compared with the animals on the control diet. The initial results suggest that contrast sensitivity deteriorates with age in the canine while form perception is largely unaffected by age.
Stepwise emergence of the face-sensitive N170 event-related potential component.
Jemel, Boutheina; Schuller, Anne-Marie; Cheref-Khan, Yasémine; Goffaux, Valérie; Crommelinck, Marc; Bruyer, Raymond
2003-11-14
The present study used a parametric design to characterize early event-related potentials (ERP) to face stimuli embedded in gradually decreasing random noise levels. For both N170 and the vertex positive potential (VPP) there was a linear increase in amplitude and decrease in latency with decreasing levels of noise. In contrast, the earlier visual P1 component was stable across noise levels. The P1/N170 dissociation suggests not only a functional dissociation between low and high-level visual processing of faces but also that the N170 reflects the integration of sensorial information into a unitary representation. In addition, the N170/VPP association supports the view that they reflect the same processes operating when viewing faces.
Common and distinct brain networks underlying verbal and visual creativity.
Zhu, Wenfeng; Chen, Qunlin; Xia, Lingxiang; Beaty, Roger E; Yang, Wenjing; Tian, Fang; Sun, Jiangzhou; Cao, Guikang; Zhang, Qinglin; Chen, Xu; Qiu, Jiang
2017-04-01
Creativity is imperative to the progression of human civilization, prosperity, and well-being. Past creative researches tends to emphasize the default mode network (DMN) or the frontoparietal network (FPN) somewhat exclusively. However, little is known about how these networks interact to contribute to creativity and whether common or distinct brain networks are responsible for visual and verbal creativity. Here, we use functional connectivity analysis of resting-state functional magnetic resonance imaging data to investigate visual and verbal creativity-related regions and networks in 282 healthy subjects. We found that functional connectivity within the bilateral superior parietal cortex of the FPN was negatively associated with visual and verbal creativity. The strength of connectivity between the DMN and FPN was positively related to both creative domains. Visual creativity was negatively correlated with functional connectivity within the precuneus of the pDMN and right middle frontal gyrus of the FPN, and verbal creativity was negatively correlated with functional connectivity within the medial prefrontal cortex of the aDMN. Critically, the FPN mediated the relationship between the aDMN and verbal creativity, and it also mediated the relationship between the pDMN and visual creativity. Taken together, decreased within-network connectivity of the FPN and DMN may allow for flexible between-network coupling in the highly creative brain. These findings provide indirect evidence for the cooperative role of the default and executive control networks in creativity, extending past research by revealing common and distinct brain systems underlying verbal and visual creative cognition. Hum Brain Mapp 38:2094-2111, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Chuman, Hideki; Maekubo, Tomoyuki; Osako, Takako; Ishiai, Michitaka; Kawano, Naoko; Nao-I, Nobuhisa
2013-07-01
The aims of this study were to clarify the effectiveness of L-arginine (1) for reducing the severity of anatomical changes in the eye and improving visual function in the acute stage of a rodent model of nonarteritic ischemic optic neuropathy (rNAION) and (2) in preventing those changes in anatomy and visual function. For the first aim, L-arginine was intravenously injected into rats 3 h after rNAION induction; for the second aim, rNAION was induced after the oral administration of L-arginine for 7 days. The inner retinal thickness was determined over time by optical coherence tomography, and the amplitude of the scotopic threshold response (STR) and the number of surviving retinal ganglion cells (RGCs) were measured. These data were compared with the baseline data from the control group. Both intravenous infusion of L-arginine after rNAION induction and oral pretreatment with L-arginine significantly decreased optic disc edema in the acute stage and thinning of the inner retina, reduced the decrease in STR amplitude, and reduced the decrease in the number of RGCs during rNAION. Based on these results, we conclude that L-arginine treatment is effective for reducing anatomical changes in the eye and improving visual function in the acute stage of rNAION and that pretreatment with L-arginine is an effective therapy to reduce the severity of the condition during recurrence in the other eye.
Unilateral Amblyopia Affects Two Eyes: Fellow Eye Deficits in Amblyopia.
Meier, Kimberly; Giaschi, Deborah
2017-03-01
Unilateral amblyopia is a visual disorder that arises after selective disruption of visual input to one eye during critical periods of development. In the clinic, amblyopia is understood as poor visual acuity in an eye that was deprived of pattern vision early in life. By its nature, however, amblyopia has an adverse effect on the development of a binocular visual system and the interactions between signals from two eyes. Visual functions aside from visual acuity are impacted, and many studies have indicated compromised sensitivity in the fellow eye even though it demonstrates normal visual acuity. While these fellow eye deficits have been noted, no overarching theory has been proposed to describe why and under what conditions the fellow eye is impacted by amblyopia. Here, we consider four explanations that may account for decreased fellow eye sensitivity: the fellow eye is adversely impacted by treatment for amblyopia; the maturation of the fellow eye is delayed by amblyopia; fellow eye sensitivity is impacted for visual functions that rely on binocular cortex; and fellow eye deficits reflect an adaptive mechanism that works to equalize the sensitivity of the two eyes. To evaluate these ideas, we describe five visual functions that are commonly reported to be deficient in the amblyopic eye (hyperacuity, contrast sensitivity, spatial integration, global motion, and motion-defined form), and unify the current evidence for fellow eye deficits. Further research targeted at exploring fellow eye deficits in amblyopia will provide us with a broader understanding of normal visual development and how amblyopia impacts the developing visual system.
Concentration: The Neural Underpinnings of How Cognitive Load Shields Against Distraction.
Sörqvist, Patrik; Dahlström, Örjan; Karlsson, Thomas; Rönnberg, Jerker
2016-01-01
Whether cognitive load-and other aspects of task difficulty-increases or decreases distractibility is subject of much debate in contemporary psychology. One camp argues that cognitive load usurps executive resources, which otherwise could be used for attentional control, and therefore cognitive load increases distraction. The other camp argues that cognitive load demands high levels of concentration (focal-task engagement), which suppresses peripheral processing and therefore decreases distraction. In this article, we employed an functional magnetic resonance imaging (fMRI) protocol to explore whether higher cognitive load in a visually-presented task suppresses task-irrelevant auditory processing in cortical and subcortical areas. The results show that selectively attending to an auditory stimulus facilitates its neural processing in the auditory cortex, and switching the locus-of-attention to the visual modality decreases the neural response in the auditory cortex. When the cognitive load of the task presented in the visual modality increases, the neural response to the auditory stimulus is further suppressed, along with increased activity in networks related to effortful attention. Taken together, the results suggest that higher cognitive load decreases peripheral processing of task-irrelevant information-which decreases distractibility-as a side effect of the increased activity in a focused-attention network.
Concentration: The Neural Underpinnings of How Cognitive Load Shields Against Distraction
Sörqvist, Patrik; Dahlström, Örjan; Karlsson, Thomas; Rönnberg, Jerker
2016-01-01
Whether cognitive load—and other aspects of task difficulty—increases or decreases distractibility is subject of much debate in contemporary psychology. One camp argues that cognitive load usurps executive resources, which otherwise could be used for attentional control, and therefore cognitive load increases distraction. The other camp argues that cognitive load demands high levels of concentration (focal-task engagement), which suppresses peripheral processing and therefore decreases distraction. In this article, we employed an functional magnetic resonance imaging (fMRI) protocol to explore whether higher cognitive load in a visually-presented task suppresses task-irrelevant auditory processing in cortical and subcortical areas. The results show that selectively attending to an auditory stimulus facilitates its neural processing in the auditory cortex, and switching the locus-of-attention to the visual modality decreases the neural response in the auditory cortex. When the cognitive load of the task presented in the visual modality increases, the neural response to the auditory stimulus is further suppressed, along with increased activity in networks related to effortful attention. Taken together, the results suggest that higher cognitive load decreases peripheral processing of task-irrelevant information—which decreases distractibility—as a side effect of the increased activity in a focused-attention network. PMID:27242485
Russo, Giancarlo; Remonato, Alessandro; Remonato, Roberto; Zanier, Emiliano
2017-01-01
Context • Pregnancy causes physiological alterations to the visual system, particularly in relation to retinal vascularization, with a consequent increase of intraocular pressure, and to the lacrimal fluid, with a consequent ocular dryness, which both can lead to a reduction in visual acuity. Numerous case reports refer to the employment of hypnotic treatment in cases of myopia, but the literature does not report any case of decreased visual acuity postpartum that was treated with hypnosis. Objective • For women with visual disorders that had appeared during pregnancy or were preexisting, the study intended to evaluate the benefits of treatment of the diaphragm by hypnotherapy and osteopathy to modify intracorporeal pressure and restore the women's visual function. Design • The research team performed a case study. Setting • The setting was a private osteopathic clinic. Participant • The participant was a 35-y-old woman lacking visual acuity postpartum. Intervention • The study took place during a period of 1 d. The participant first took part in a hypnotherapy session, the first intervention, and then participated in an osteopathic session, the second intervention. Outcome Measures • For the first evaluation of visual function at baseline, 3 tests were performed: (1) a visual acuity test; (2) a cover test for near and distance vision; and (3) a test for near point convergence. The visual function evaluation (all 3 tests) occurred after the 2 types of treatment (T1, T2). Finally, a visual function evaluation (all 3 tests) occurred at a follow-up session 1 mo after the end of treatment (T3). Results • The intervention produced a significant improvement in visual acuity, due to the multidisciplinary approach of treatment with hypnotherapy and osteopathy, and achieved a result that was maintained in the medium term. Conclusions • Hypnosis and osteopathy produced a significant improvement in visual acuity and the result was maintained in the medium term. Further studies are needed to verify the efficacy of the 2 treatments.
Functional significance of the emotion-related late positive potential
Brown, Stephen B. R. E.; van Steenbergen, Henk; Band, Guido P. H.; de Rover, Mischa; Nieuwenhuis, Sander
2012-01-01
The late positive potential (LPP) is an event-related potential (ERP) component over visual cortical areas that is modulated by the emotional intensity of a stimulus. However, the functional significance of this neural modulation remains elusive. We conducted two experiments in which we studied the relation between LPP amplitude, subsequent perceptual sensitivity to a non-emotional stimulus (Experiment 1) and visual cortical excitability, as reflected by P1/N1 components evoked by this stimulus (Experiment 2). During the LPP modulation elicited by unpleasant stimuli, perceptual sensitivity was not affected. In contrast, we found some evidence for a decreased N1 amplitude during the LPP modulation, a decreased P1 amplitude on trials with a relatively large LPP, and consistent negative (but non-significant) across-subject correlations between the magnitudes of the LPP modulation and corresponding changes in d-prime or P1/N1 amplitude. The results provide preliminary evidence that the LPP reflects a global inhibition of activity in visual cortex, resulting in the selective survival of activity associated with the processing of the emotional stimulus. PMID:22375117
Electrophysiological Evidence for Ventral Stream Deficits in Schizophrenia Patients
Plomp, Gijs; Roinishvili, Maya; Chkonia, Eka; Kapanadze, George; Kereselidze, Maia; Brand, Andreas; Herzog, Michael H.
2013-01-01
Schizophrenic patients suffer from many deficits including visual, attentional, and cognitive ones. Visual deficits are of particular interest because they are at the fore-end of information processing and can provide clear examples of interactions between sensory, perceptual, and higher cognitive functions. Visual deficits in schizophrenic patients are often attributed to impairments in the dorsal (where) rather than the ventral (what) stream of visual processing. We used a visual-masking paradigm in which patients and matched controls discriminated small vernier offsets. We analyzed the evoked electroencephalography (EEG) responses and applied distributed electrical source imaging techniques to estimate activity differences between conditions and groups throughout the brain. Compared with controls, patients showed strongly reduced discrimination accuracy, confirming previous work. The behavioral deficits corresponded to pronounced decreases in the evoked EEG response at around 200 ms after stimulus onset. At this latency, patients showed decreased activity for targets in left parietal cortex (dorsal stream), but the decrease was most pronounced in lateral occipital cortex (in the ventral stream). These deficiencies occurred at latencies that reflect object processing and fine shape discriminations. We relate the reduced ventral stream activity to deficient top-down processing of target stimuli and provide a framework for relating the commonly observed dorsal stream deficiencies with the currently observed ventral stream deficiencies. PMID:22258884
Electrophysiological evidence for ventral stream deficits in schizophrenia patients.
Plomp, Gijs; Roinishvili, Maya; Chkonia, Eka; Kapanadze, George; Kereselidze, Maia; Brand, Andreas; Herzog, Michael H
2013-05-01
Schizophrenic patients suffer from many deficits including visual, attentional, and cognitive ones. Visual deficits are of particular interest because they are at the fore-end of information processing and can provide clear examples of interactions between sensory, perceptual, and higher cognitive functions. Visual deficits in schizophrenic patients are often attributed to impairments in the dorsal (where) rather than the ventral (what) stream of visual processing. We used a visual-masking paradigm in which patients and matched controls discriminated small vernier offsets. We analyzed the evoked electroencephalography (EEG) responses and applied distributed electrical source imaging techniques to estimate activity differences between conditions and groups throughout the brain. Compared with controls, patients showed strongly reduced discrimination accuracy, confirming previous work. The behavioral deficits corresponded to pronounced decreases in the evoked EEG response at around 200 ms after stimulus onset. At this latency, patients showed decreased activity for targets in left parietal cortex (dorsal stream), but the decrease was most pronounced in lateral occipital cortex (in the ventral stream). These deficiencies occurred at latencies that reflect object processing and fine shape discriminations. We relate the reduced ventral stream activity to deficient top-down processing of target stimuli and provide a framework for relating the commonly observed dorsal stream deficiencies with the currently observed ventral stream deficiencies.
Aging and the interaction of sensory cortical function and structure.
Peiffer, Ann M; Hugenschmidt, Christina E; Maldjian, Joseph A; Casanova, Ramon; Srikanth, Ryali; Hayasaka, Satoru; Burdette, Jonathan H; Kraft, Robert A; Laurienti, Paul J
2009-01-01
Even the healthiest older adults experience changes in cognitive and sensory function. Studies show that older adults have reduced neural responses to sensory information. However, it is well known that sensory systems do not act in isolation but function cooperatively to either enhance or suppress neural responses to individual environmental stimuli. Very little research has been dedicated to understanding how aging affects the interactions between sensory systems, especially cross-modal deactivations or the ability of one sensory system (e.g., audition) to suppress the neural responses in another sensory system cortex (e.g., vision). Such cross-modal interactions have been implicated in attentional shifts between sensory modalities and could account for increased distractibility in older adults. To assess age-related changes in cross-modal deactivations, functional MRI studies were performed in 61 adults between 18 and 80 years old during simple auditory and visual discrimination tasks. Results within visual cortex confirmed previous findings of decreased responses to visual stimuli for older adults. Age-related changes in the visual cortical response to auditory stimuli were, however, much more complex and suggested an alteration with age in the functional interactions between the senses. Ventral visual cortical regions exhibited cross-modal deactivations in younger but not older adults, whereas more dorsal aspects of visual cortex were suppressed in older but not younger adults. These differences in deactivation also remained after adjusting for age-related reductions in brain volume of sensory cortex. Thus, functional differences in cortical activity between older and younger adults cannot solely be accounted for by differences in gray matter volume. (c) 2007 Wiley-Liss, Inc.
Neuro-ophthalmologic evaluation, quality of life, and functional disability in patients with MS.
Garcia-Martin, Elena; Rodriguez-Mena, Diego; Herrero, Raquel; Almarcegui, Carmen; Dolz, Isabel; Martin, Jesus; Ara, Jose R; Larrosa, Jose M; Polo, Vicente; Fernández, Javier; Pablo, Luis E
2013-07-02
To evaluate correlations between longitudinal changes in neuro-ophthalmologic measures and quality of life (QOL) and disability in patients with multiple sclerosis (MS), using optical coherence tomography (OCT), visual evoked potentials (VEP), and visual field examination. Fifty-four patients with relapsing-remitting MS were enrolled in this study and underwent Multiple Sclerosis Quality of Life questionnaire (54 items) (MSQOL-54) and Expanded Disability Status Scale (EDSS) evaluation, as well as complete neuro-ophthalmologic examination including visual field testing and retinal nerve fiber layer (RNFL) measurements using Cirrus and Spectralis OCT and VEP. All patients were re-evaluated at 12, 24, and 36 months. Logistical regression was performed to analyze which measures, if any, could predict QOL. Overall, RNFL thickness results at the baseline evaluation were significantly different from those at 3 years (p ≤ 0.05), but there were no differences in functional measures (visual acuity, contrast sensitivity, color vision, visual field, and VEP). A reduced MSQOL-54 score was associated with an increase in EDSS score and a decrease in both functional and structural parameters. Patients with longer MS duration presented with a lower MSQOL-54 score (reduction in QOL). Patients with progressive axonal loss as seen in RNFL results had a lower QOL and more functional disability.
Fang, Ying; Zhang, Ying
2017-01-01
Visual motor integration (VMI) is a vital ability in childhood development, which is associated with the performance of many functional skills. By using the Beery Developmental Test Package and Executive Function Tasks, the present study explored the VMI development and its factors (visual perception, motor coordination, and executive function) among 151 Chinese preschoolers from 4 to 6 years. Results indicated that the VMI skills of children increased quickly at 4 years and peaked at 5 years and decreased at around 5 to 6 years. Motor coordination and cognitive flexibility were related to the VMI development of children from 4 to 6 years. Visual perception was associated with the VMI development at early 4 years and inhibitory control was also associated with it among 4-year-old and the beginning of 5-year-old children. Working memory had no impact on the VMI. In conclusion, the development of VMI skills among children in preschool was not stable but changed dynamically in this study. Meanwhile the factors of the VMI worked in different age range for preschoolers. These findings may give some guidance to researchers or health professionals on improving children's VMI skills in their early childhood. PMID:29457030
Changes in visual-evoked potential habituation induced by hyperventilation in migraine.
Coppola, Gianluca; Currà, Antonio; Sava, Simona Liliana; Alibardi, Alessia; Parisi, Vincenzo; Pierelli, Francesco; Schoenen, Jean
2010-12-01
Hyperventilation is often associated with stress, an established trigger factor for migraine. Between attacks, migraine is associated with a deficit in habituation to visual-evoked potentials (VEP) that worsens just before the attack. Hyperventilation slows electroencephalographic (EEG) activity and decreases the functional response in the occipital cortex during visual stimulation. The neural mechanisms underlying deficient-evoked potential habituation in migraineurs remain unclear. To find out whether hyperventilation alters VEP habituation, we recorded VEPs before and after experimentally induced hyperventilation lasting 3 min in 18 healthy subjects and 18 migraine patients between attacks. We measured VEP P100 amplitudes in six sequential blocks of 100 sweeps and habituation as the change in amplitude over the six blocks. In healthy subjects, hyperventilation decreased VEP amplitude in block 1 and abolished the normal VEP habituation. In migraine patients, hyperventilation further decreased the already low block 1 amplitude and worsened the interictal habituation deficit. Hyperventilation worsens the habituation deficit in migraineurs possibly by increasing dysrhythmia in the brainstem-thalamo-cortical network.
Özkul, Çağla; Kılınç, Muhammed; Yıldırım, Sibel Aksu; Topçuoğlu, Elif Yalçın; Akyüz, Müfit
2015-01-01
Chronic pain is a common consequence of spinal cord injury (SCI). No therapeutic drugs or drug groups are proven to be superior for neuropathic pain and treatments only aim to convert pain from dull to tolerable levels and not to remove it. This study was planned to compare the effect of visual illusion (VI) and transcutaneous electrical nerve stimulation (TENS) on pain intensity, pain quality and functional capacity in SCI patients with neuropathic pain. Twenty-four patients were included and randomly categorized into two groups. In the first group (n= 12), visual illusion was applied for first two weeks, 1 week wash out period and then TENS was applied for 2 weeks. In second group (n= 12), TENS was applied firstly, 1 week wash out and then %visual illusion VI were applied. Pain severity, pain quality, and functional capacity were assessed with the visual analog scale (VAS), the neuropathic pain scale (NPS), and the brief pain inventory (BPI), respectively. A pre-post-treatment and cross over design was used. Wilcoxon signed-rank tests were used for within group analyses. Mann-Whitney U tests were used for analyses that compared different groups. It was observed that pain intensity decrease immediately after both applications (VI: p= 0.07, TENS: p= 0.08). After TENS application for 2 weeks, it was observed that significant decrease in most (p= 0.04) and less (p= 0.02) pain intensity; while there was no significant decrease in pain intensity after 2 weeks for VI (p> 0.05). When findings of NPS were analyzed, hot (p= 0.047), sharp (p= 0.02), unpleasant (p= 0.03) and deep items (p= 0.047) decreased after VI application. When the results of BPI were detected, they were observed that the negative effect of pain on moving ability (p= 0.04) after visual illusion application and the negative effect of pain on mood (p= 0.03), relationships with others (p= 0.04) and sleep (p= 0.04) after TENS application decreased significantly. TENS and VI therapies can be successfully used in clinical practice as an alternative treatment or as a supportive method separetely or together.
Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review
Nuzzi, Raffaele; Dallorto, Laura; Rolle, Teresa
2018-01-01
Background: Glaucoma is a leading cause of irreversible blindness worldwide. The increasing interest in the involvement of the cortical visual pathway in glaucomatous patients is due to the implications in recent therapies, such as neuroprotection and neuroregeneration. Objective: In this review, we outline the current understanding of brain structural, functional, and metabolic changes detected with the modern techniques of neuroimaging in glaucomatous subjects. Methods: We screened MEDLINE, EMBASE, CINAHL, CENTRAL, LILACS, Trip Database, and NICE for original contributions published until 31 October 2017. Studies with at least six patients affected by any type of glaucoma were considered. We included studies using the following neuroimaging techniques: functional Magnetic Resonance Imaging (fMRI), resting-state fMRI (rs-fMRI), magnetic resonance spectroscopy (MRS), voxel- based Morphometry (VBM), surface-based Morphometry (SBM), diffusion tensor MRI (DTI). Results: Over a total of 1,901 studies, 56 case series with a total of 2,381 patients were included. Evidence of neurodegenerative process in glaucomatous patients was found both within and beyond the visual system. Structural alterations in visual cortex (mainly reduced cortex thickness and volume) have been demonstrated with SBM and VBM; these changes were not limited to primary visual cortex but also involved association visual areas. Other brain regions, associated with visual function, demonstrated a certain grade of increased or decreased gray matter volume. Functional and metabolic abnormalities resulted within primary visual cortex in all studies with fMRI and MRS. Studies with rs-fMRI found disrupted connectivity between the primary and higher visual cortex and between visual cortex and associative visual areas in the task-free state of glaucomatous patients. Conclusions: This review contributes to the better understanding of brain abnormalities in glaucoma. It may stimulate further speculation about brain plasticity at a later age and therapeutic strategies, such as the prevention of cortical degeneration in patients with glaucoma. Structural, functional, and metabolic neuroimaging methods provided evidence of changes throughout the visual pathway in glaucomatous patients. Other brain areas, not directly involved in the processing of visual information, also showed alterations. PMID:29896087
Dynamic reorganization of human resting-state networks during visuospatial attention.
Spadone, Sara; Della Penna, Stefania; Sestieri, Carlo; Betti, Viviana; Tosoni, Annalisa; Perrucci, Mauro Gianni; Romani, Gian Luca; Corbetta, Maurizio
2015-06-30
Fundamental problems in neuroscience today are understanding how patterns of ongoing spontaneous activity are modified by task performance and whether/how these intrinsic patterns influence task-evoked activation and behavior. We examined these questions by comparing instantaneous functional connectivity (IFC) and directed functional connectivity (DFC) changes in two networks that are strongly correlated and segregated at rest: the visual (VIS) network and the dorsal attention network (DAN). We measured how IFC and DFC during a visuospatial attention task, which requires dynamic selective rerouting of visual information across hemispheres, changed with respect to rest. During the attention task, the two networks remained relatively segregated, and their general pattern of within-network correlation was maintained. However, attention induced a decrease of correlation in the VIS network and an increase of the DAN→VIS IFC and DFC, especially in a top-down direction. In contrast, within the DAN, IFC was not modified by attention, whereas DFC was enhanced. Importantly, IFC modulations were behaviorally relevant. We conclude that a stable backbone of within-network functional connectivity topography remains in place when transitioning between resting wakefulness and attention selection. However, relative decrease of correlation of ongoing "idling" activity in visual cortex and synchronization between frontoparietal and visual cortex were behaviorally relevant, indicating that modulations of resting activity patterns are important for task performance. Higher order resting connectivity in the DAN was relatively unaffected during attention, potentially indicating a role for simultaneous ongoing activity as a "prior" for attention selection.
Peripheral resolution and contrast sensitivity: Effects of stimulus drift.
Venkataraman, Abinaya Priya; Lewis, Peter; Unsbo, Peter; Lundström, Linda
2017-04-01
Optimal temporal modulation of the stimulus can improve foveal contrast sensitivity. This study evaluates the characteristics of the peripheral spatiotemporal contrast sensitivity function in normal-sighted subjects. The purpose is to identify a temporal modulation that can potentially improve the remaining peripheral visual function in subjects with central visual field loss. High contrast resolution cut-off for grating stimuli with four temporal frequencies (0, 5, 10 and 15Hz drift) was first evaluated in the 10° nasal visual field. Resolution contrast sensitivity for all temporal frequencies was then measured at four spatial frequencies between 0.5 cycles per degree (cpd) and the measured stationary cut-off. All measurements were performed with eccentric optical correction. Similar to foveal vision, peripheral contrast sensitivity is highest for a combination of low spatial frequency and 5-10Hz drift. At higher spatial frequencies, there was a decrease in contrast sensitivity with 15Hz drift. Despite this decrease, the resolution cut-off did not vary largely between the different temporal frequencies tested. Additional measurements of contrast sensitivity at 0.5 cpd and resolution cut-off for stationary (0Hz) and 7.5Hz stimuli performed at 10, 15, 20 and 25° in the nasal visual field also showed the same characteristics across eccentricities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability.
van Dijk, Hanneke; Schoffelen, Jan-Mathijs; Oostenveld, Robert; Jensen, Ole
2008-02-20
Although the resting and baseline states of the human electroencephalogram and magnetoencephalogram (MEG) are dominated by oscillations in the alpha band (approximately 10 Hz), the functional role of these oscillations remains unclear. In this study we used MEG to investigate how spontaneous oscillations in humans presented before visual stimuli modulate visual perception. Subjects had to report if there was a subtle difference in gray levels between two superimposed presented discs. We then compared the prestimulus brain activity for correctly (hits) versus incorrectly (misses) identified stimuli. We found that visual discrimination ability decreased with an increase in prestimulus alpha power. Given that reaction times did not vary systematically with prestimulus alpha power changes in vigilance are not likely to explain the change in discrimination ability. Source reconstruction using spatial filters allowed us to identify the brain areas accounting for this effect. The dominant sources modulating visual perception were localized around the parieto-occipital sulcus. We suggest that the parieto-occipital alpha power reflects functional inhibition imposed by higher level areas, which serves to modulate the gain of the visual stream.
Orssaud, C
2014-06-01
Amblyopia is a developmental disorder of the entire visual system, including the extra-striate cortex. It manifests mainly by impaired visual acuity in the amblyopic eye. However, other abnormalities of visual function can be observed, such as decreased contrast sensitivity and stereoscopic vision, and some abnormalities can be found in the "good" eye. Amblyopia occurs during the critical period of brain development. It may be due to organic pathology of the visual pathways, visual deprivation or functional abnormalities, mainly anisometropia or strabismus. The diagnosis of amblyopia must be confirmed prior to treatment. Confirmation is based on cycloplegic refraction, visual acuity measurement and orthoptic assessment. However, screening for amblyopia and associated risk factors permits earlier diagnosis and treatment. The younger the child, the more effective the treatment, and it can only be achieved during the critical period. It requires parental cooperation in order to be effective and is based on occlusion or penalization of the healthy eye. The amblyopic eye may then develop better vision. Maintenance therapy must be performed until the end of the critical period to avoid recurrence. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Siu, Timothy L; Morley, John W
2007-12-01
The development of a visual prosthesis has been limited by an incomplete understanding of functional changes of the visual cortex accompanying deafferentation. In particular, the role of the corpus callosum in modulating these changes has not been fully evaluated. Recent experimental evidence suggests that through synaptic modulation, short-term (4-5 days) visual deafferentation can induce plastic changes in the visual cortex, leading to adaptive enhancement of residual visual input. We therefore investigated whether a compensatory rerouting of visual information can occur via the indirect transcallosal linkage after deafferentation and the influence of this interhemispheric communication on the visual evoked response of each hemisphere. In albino rabbits, misrouting of uncrossed optic fibres reduces ipsilateral input to a negligible degree. We thus took advantage of this congenital anomaly to model unilateral cortical and ocular deafferentation by eliminating visual input from one eye and recorded the visual evoked potential (VEP) from the intact eye. In keeping with the chiasmal anomaly, no VEP was elicited from the hemisphere ipsilateral to the intact eye. This remained unchanged following unilateral visual deafferentation. The amplitude and latency of the VEP in the fellow hemisphere, however, were significantly decreased in the deafferented animals. Our data suggest that callosal linkage does not contribute to visual evoked responses and this is not changed after short-term deafferentation. The decrease in amplitude and latency of evoked responses in the hemisphere ipsilateral to the treated eye, however, confirms the facilitatory role of callosal transfer. This observation highlights the importance of bicortical stimulation in the future design of a cortical visual prosthesis.
[Impairment of safety in navigation caused by alcohol: impact on visual function].
Grütters, G; Reichelt, J A; Ritz-Timme, S; Thome, M; Kaatsch, H J
2003-05-01
So far in Germany, no legally binding standards for blood alcohol concentration exist that prove an impairment of navigability. The aim of our interdisciplinary project was to obtain data in order to identify critical blood alcohol limits. In this context the visual system seems to be of decisive importance. 21 professional skippers underwent realistic navigational demands soberly and alcoholized in a sea traffic simulator. The following parameters were considered: visual acuity, stereopsis, color vision, and accommodation. Under the influence of alcohol (average blood alcohol concentration: 1.08 per thousand ) each skipper considered himself to be completely capable of navigating. While simulations were running, all of the skippers made nautical mistakes or underestimated dangerous situations. Severe impairment in visual acuity or binocular function were not observed. Accommodation decreased by an average of 18% ( p=0.0001). In the test of color vision skippers made more mistakes ( p=0.017) and the time needed for this test was prolonged ( p=0.004). Changes in visual function as well as vegetative and psychological reactions could be the cause of mistakes and alcohol should therefore be regarded as a severe risk factor for security in sea navigation.
Keane, Pearse A.; Patel, Praveen J.; Ouyang, Yanling; Chen, Fred K.; Ikeji, Felicia; Walsh, Alexander C.; Tufail, Adnan
2010-01-01
Purpose. To investigate the effect of changes in retinal morphology on contrast sensitivity and reading ability in patients with neovascular age-related macular degeneration (AMD) in the Avastin (bevacizumab; Genentech, South San Francisco, CA) for choroidal neovascularization (ABC) Trial. Methods. Contrast sensitivity obtained with Pelli-Robson charts, reading ability assessed with Minnesota Reading charts, and Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuity (VA) obtained by protocol refraction, were recorded. Raw Stratus optical coherence tomography (OCT; Carl Zeiss Meditec, Inc., Dublin, CA) images were analyzed with the publicly available software OCTOR, which allows precise delineation of any retinal compartment of interest. Thickness and volume were calculated for neurosensory retina, subretinal fluid (SRF), subretinal tissue, and pigment epithelium detachment, and the resulting measurements were correlated with each visual function parameter. Results. One hundred twenty-two patients with newly diagnosed neovascular AMD and enrolled in the ABC Trial, were evaluated. Increased subretinal tissue volume correlated with decreased contrast sensitivity (Pearson's correlation coefficient, r = −0.4944, P = 0.001). A modest correlation was detected between SRF volume and contrast sensitivity (r = −0.2562, P = 0.004). Increased retinal thickness at the foveal center also correlated with decreased visual function (ETDRS VA: r = −0.4530, P < 0.001). Conclusions. The strongest correlation detected between the functional parameters assessed and any of the OCT-derived morphologic parameters was that between decreased contrast sensitivity and increased subretinal tissue. In the future, assessment of contrast sensitivity and reading ability, in combination with quantitative subanalysis of retinal compartments, may lead to the identification of parameters relevant to functional improvement and ultimate prognosis in patients with newly diagnosed neovascular AMD (www.controlled-trials.com number, ISRCTN83325075). PMID:20554607
Hunger and satiety in anorexia nervosa: fMRI during cognitive processing of food pictures.
Santel, Stephanie; Baving, Lioba; Krauel, Kerstin; Münte, Thomas F; Rotte, Michael
2006-10-09
Neuroimaging studies of visually presented food stimuli in patients with anorexia nervosa have demonstrated decreased activations in inferior parietal and visual occipital areas, and increased frontal activations relative to healthy persons, but so far no inferences could be drawn with respect to the influence of hunger or satiety. Thirteen patients with AN and 10 healthy control subjects (aged 13-21) rated visual food and non-food stimuli for pleasantness during functional magnetic resonance imaging (fMRI) in a hungry and a satiated state. AN patients rated food as less pleasant than controls. When satiated, AN patients showed decreased activation in left inferior parietal cortex relative to controls. When hungry, AN patients displayed weaker activation of the right visual occipital cortex than healthy controls. Food stimuli during satiety compared with hunger were associated with stronger right occipital activation in patients and with stronger activation in left lateral orbitofrontal cortex, the middle portion of the right anterior cingulate, and left middle temporal gyrus in controls. The observed group differences in the fMRI activation to food pictures point to decreased food-related somatosensory processing in AN during satiety and to attentional mechanisms during hunger that might facilitate restricted eating in AN.
Preferred retinal locus in macular disease: characteristics and clinical implications.
Greenstein, Vivienne C; Santos, Rodrigo A V; Tsang, Stephen H; Smith, R Theodore; Barile, Gaetano R; Seiple, William
2008-10-01
To investigate the location and fixation stability of preferred retinal locations (PRLs) in patients with macular disease, and the relationship among areas of abnormal fundus autofluorescence, the PRL and visual sensitivity. Fifteen patients (15 eyes) were studied. Seven had Stargardt disease, 1 bull's eye maculopathy, 5 age-related macular degeneration, 1 Best disease, and 1 pattern dystrophy. All tested eyes had areas of abnormal fundus autofluorescence. The PRL was evaluated with fundus photography and the Nidek microperimeter. Visual field sensitivity was measured with the Nidek microperimeter. Of the 15 eyes, 4 had foveal and 11 had eccentric fixation. Eccentric PRLs were above the atrophic lesion and their stability did not depend on the degree of eccentricity from the fovea. Visual sensitivity was markedly decreased in locations corresponding to hypofluorescent areas. Sensitivity was not decreased in hyperfluorescent areas corresponding to flecks but was decreased if hyperfluorescence was in the form of dense annuli. Eccentric PRLs were in the superior retina in regions of normal fundus autofluorescence. Fixation stability was not correlated with the degree of eccentricity from the fovea. To assess the outcomes of treatment trials it is important to use methods that relate retinal morphology to visual function.
Neural correlates of the LSD experience revealed by multimodal neuroimaging.
Carhart-Harris, Robin L; Muthukumaraswamy, Suresh; Roseman, Leor; Kaelen, Mendel; Droog, Wouter; Murphy, Kevin; Tagliazucchi, Enzo; Schenberg, Eduardo E; Nest, Timothy; Orban, Csaba; Leech, Robert; Williams, Luke T; Williams, Tim M; Bolstridge, Mark; Sessa, Ben; McGonigle, John; Sereno, Martin I; Nichols, David; Hellyer, Peter J; Hobden, Peter; Evans, John; Singh, Krish D; Wise, Richard G; Curran, H Valerie; Feilding, Amanda; Nutt, David J
2016-04-26
Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD's marked effects on the visual cortex did not significantly correlate with the drug's other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of "ego-dissolution" and "altered meaning," implying the importance of this particular circuit for the maintenance of "self" or "ego" and its processing of "meaning." Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others.
Neural correlates of the LSD experience revealed by multimodal neuroimaging
Carhart-Harris, Robin L.; Muthukumaraswamy, Suresh; Roseman, Leor; Kaelen, Mendel; Droog, Wouter; Murphy, Kevin; Tagliazucchi, Enzo; Schenberg, Eduardo E.; Nest, Timothy; Orban, Csaba; Leech, Robert; Williams, Luke T.; Williams, Tim M.; Bolstridge, Mark; Sessa, Ben; McGonigle, John; Sereno, Martin I.; Nichols, David; Hobden, Peter; Evans, John; Singh, Krish D.; Wise, Richard G.; Curran, H. Valerie; Feilding, Amanda; Nutt, David J.
2016-01-01
Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD’s marked effects on the visual cortex did not significantly correlate with the drug’s other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of “ego-dissolution” and “altered meaning,” implying the importance of this particular circuit for the maintenance of “self” or “ego” and its processing of “meaning.” Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others. PMID:27071089
The role of awake craniotomy in reducing intraoperative visual field deficits during tumor surgery
Wolfson, Racheal; Soni, Neil; Shah, Ashish H.; Hosein, Khadil; Sastry, Ananth; Bregy, Amade; Komotar, Ricardo J.
2015-01-01
Objective: Homonymous hemianopia due to damage to the optic radiations or visual cortex is a possible consequence of tumor resection involving the temporal or occipital lobes. The purpose of this review is to present and analyze a series of studies regarding the use of awake craniotomy (AC) to decrease visual field deficits following neurosurgery. Materials and Methods: A literature search was performed using the Medline and PubMed databases from 1970 and 2014 that compared various uses of AC other than intraoperative motor/somatosensory/language mapping with a focus on visual field mapping. Results: For the 17 patients analyzed in this study, 14 surgeries resulted in quadrantanopia, 1 in hemianopia, and 2 without visual deficits. Overall, patient satisfaction with AC was high, and AC was a means to reduce surgery-related complications and cost related with the procedure. Conclusion AC is a safe and tolerable procedure that can be used effectively to map optic radiations and the visual cortices in order to preserve visual function during resection of tumors infiltrating the temporal and occipital lobes. In the majority of cases, a homonymous hemianopia was prevented and patients were left with a quadrantanopia that did not interfere with daily function. PMID:26396597
Zhao, Zhiyong; Wu, Jie; Fan, Mingxia; Yin, Dazhi; Tang, Chaozheng; Gong, Jiayu; Xu, Guojun; Gao, Xinjie; Yu, Qiurong; Yang, Hao; Sun, Limin; Jia, Jie
2018-04-24
Motor functions are supported through functional integration across the extended motor system network. Individuals following stroke often show deficits on motor performance requiring coordination of multiple brain networks; however, the assessment of connectivity patterns after stroke was still unclear. This study aimed to investigate the changes in intra- and inter-network functional connectivity (FC) of multiple networks following stroke and further correlate FC with motor performance. Thirty-three left subcortical chronic stroke patients and 34 healthy controls underwent resting-state functional magnetic resonance imaging. Eleven resting-state networks were identified via independent component analysis (ICA). Compared with healthy controls, the stroke group showed abnormal FC within the motor network (MN), visual network (VN), dorsal attention network (DAN), and executive control network (ECN). Additionally, the FC values of the ipsilesional inferior parietal lobule (IPL) within the ECN were negatively correlated with the Fugl-Meyer Assessment (FMA) scores (hand + wrist). With respect to inter-network interactions, the ipsilesional frontoparietal network (FPN) decreased FC with the MN and DAN; the contralesional FPN decreased FC with the ECN, but it increased FC with the default mode network (DMN); and the posterior DMN decreased FC with the VN. In sum, this study demonstrated the coexistence of intra- and inter-network alterations associated with motor-visual attention and high-order cognitive control function in chronic stroke, which might provide insights into brain network plasticity following stroke. © 2018 Wiley Periodicals, Inc.
Stuart, Samuel; Galna, Brook; Delicato, Louise S; Lord, Sue; Rochester, Lynn
2017-07-01
Gait impairment is a core feature of Parkinson's disease (PD) which has been linked to cognitive and visual deficits, but interactions between these features are poorly understood. Monitoring saccades allows investigation of real-time cognitive and visual processes and their impact on gait when walking. This study explored: (i) saccade frequency when walking under different attentional manipulations of turning and dual-task; and (ii) direct and indirect relationships between saccades, gait impairment, vision and attention. Saccade frequency (number of fast eye movements per-second) was measured during gait in 60 PD and 40 age-matched control participants using a mobile eye-tracker. Saccade frequency was significantly reduced in PD compared to controls during all conditions. However, saccade frequency increased with a turn and decreased under dual-task for both groups. Poorer attention directly related to saccade frequency, visual function and gait impairment in PD, but not controls. Saccade frequency did not directly relate to gait in PD, but did in controls. Instead, saccade frequency and visual function deficit indirectly impacted gait impairment in PD, which was underpinned by their relationship with attention. In conclusion, our results suggest a vital role for attention with direct and indirect influences on gait impairment in PD. Attention directly impacted saccade frequency, visual function and gait impairment in PD, with connotations for falls. It also underpinned indirect impact of visual and saccadic impairment on gait. Attention therefore represents a key therapeutic target that should be considered in future research. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Laby, Daniel M
2018-05-17
Despite our inability to attenuate the course of many ocular diseases that can ultimately lead to loss or significantly decreased visual function, this report describes a potential technique to aid such patients in maximizing the use of the vision that remains. The aim of this study was to demonstrate the applicability of utilizing sports vision training to improve objective and subjective visuomotor function in a low-vision patient. A 37-year-old woman with Usher syndrome presented with reduced central visual acuity and visual field. Although we were unable to reverse the damage resulting from her diagnosis, we were able to improve the use of the remaining vision. A 27 to 31% improvement in hand-eye coordination was achieved along with a 41% improvement in object tracking and visual concentration. Most importantly, following the 14-week training period, there was also a subjective improvement in the patient's appreciation of her visual ability. The sports vision literature cites many examples in which sports vision training is useful in improving visuomotor and on-field performance. We hypothesized that these techniques may be used to aid not only athletes but also patients with low vision. Despite suffering from reduced acuity and a limited visual field, these patients often still have a significant amount of vision ability that can be used to guide motor actions. Using techniques to increase the efficient use of this remaining vision may reduce the impact of the reduced visual function and aid in activities of daily living.
Ethambutol/Linezolid Toxic Optic Neuropathy.
Libershteyn, Yevgeniya
2016-02-01
To report a rare toxic optic neuropathy after long-term use of two medications: ethambutol and linezolid. A 65-year-old man presented to the Miami Veterans Affairs Medical Center in December 2014 for evaluation of progressive vision decrease in both eyes. The patient presented with best-corrected visual acuities of 20/400 in the right eye and counting fingers at 5 feet in the left eye. Color vision was significantly reduced in both eyes. Visual fields revealed a cecocentral defect in both eyes. His fundus and optic nerve examination was unremarkable. Because vision continued to decline after discontinuation of ethambutol, linezolid was also discontinued, after which vision, color vision, and visual fields improved. Because of these findings, the final diagnosis was toxic optic neuropathy. Final visual outcome was 20/30 in the right eye and 20/40 in the left eye. Drug-associated toxic optic neuropathy is a rare but vision-threatening condition. Diagnosis is made based on an extensive case history and careful clinical examination. The examination findings include varying decrease in vision, normal pupils and extraocular muscles, and unremarkable fundoscopy, with the possibility of swollen optic discs in the acute stage of the optic neuropathy. Other important findings descriptive of toxic optic neuropathy include decreased color vision and cecocentral visual field defects. This case illustrates the importance of knowledge of all medications and/or substances a patient consumes that may cause a toxic reaction and discontinuing them immediately if the visual functions are worsening or not improving.
Schwartz, Sophie; Vuilleumier, Patrik; Hutton, Chloe; Maravita, Angelo; Dolan, Raymond J; Driver, Jon
2005-06-01
Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. Activations in visual cortex for irrelevant peripheral stimulation decreased with increasing attentional load at fixation. This relative decrease was present even in V1, but became larger for successive visual areas through to V4. Decreases in activation for contralateral peripheral checkerboards due to higher central load were more pronounced within retinotopic cortex corresponding to 'inner' peripheral locations relatively near the central targets than for more eccentric 'outer' locations, demonstrating a predominant suppression of nearby surround rather than strict 'tunnel vision' during higher task load at central fixation. Contralateral activations for peripheral stimulation in one hemifield were reduced by competition with concurrent stimulation in the other hemifield only in inferior parietal cortex, not in retinotopic areas of occipital visual cortex. In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within posterior parietal areas, rather than earlier occipital cortex.
Rubin, G S; West, S K; Muñoz, B; Bandeen-Roche, K; Zeger, S; Schein, O; Fried, L P
1997-03-01
The Salisbury Eye Evaluation Project is a longitudinal study of risk factors for age-related eye diseases and the impact of eye disease and visual impairment on physical disability. In this article, the authors report the prevalence of visual impairment in their population and explore the relations among the various measures of visual function. A population-based sample of 2520 residents of Salisbury, Maryland, between the ages of 65 and 84 years were enrolled in the study. Twenty-six percent of participants were black. Vision tests included best-corrected Early Treatment Diabetic Retinopathy Study acuity, Pelli-Robson contrast sensitivity with and without glare, Randot stereoacuity, and 60 degrees Humphrey visual fields. Visual function decreased linearly with age for the acuity, contrast sensitivity, glare, and visual field tests. Stereoacuity remained constant into the mid-70s and declined at an accelerating rate thereafter. Black participants had lower contrast sensitivity, reduced stereoacuity, and worse visual fields, at all ages compared to white participants; however, white participants were more sensitive to glare. The overall prevalence of visual acuity impairment in blacks was 5.6% versus 3.0% for whites, using the traditional United States definition (worse than 20/40 to better than 20/200) and 3.3% for blacks versus 1.6% for whites, using the World Health Organization definition (worse than 20/60 to 20/400). Acuity was correlated moderately with contrast sensitivity, stereoacuity, and visual fields (Spearman rho = 0.50, 0.35, and 0.34, respectively). The correlation between acuity and glare sensitivity was low (rho = 0.12). Many aspects of visual function, not just acuity, decline with age. Black participants have more visual impairement than do white participants for all tests except glare sensitivity. The prevalence of visual acuity impairement in the Salisbury Eye Evaluation population is lower than that reported by other studies using similar test procedures. Low-to-moderate correlations among vision test scores suggest that several different dimensions of visual function are being assessed.
Cerebral versus Ocular Visual Impairment: The Impact on Developmental Neuroplasticity.
Martín, Maria B C; Santos-Lozano, Alejandro; Martín-Hernández, Juan; López-Miguel, Alberto; Maldonado, Miguel; Baladrón, Carlos; Bauer, Corinna M; Merabet, Lotfi B
2016-01-01
Cortical/cerebral visual impairment (CVI) is clinically defined as significant visual dysfunction caused by injury to visual pathways and structures occurring during early perinatal development. Depending on the location and extent of damage, children with CVI often present with a myriad of visual deficits including decreased visual acuity and impaired visual field function. Most striking, however, are impairments in visual processing and attention which have a significant impact on learning, development, and independence. Within the educational arena, current evidence suggests that strategies designed for individuals with ocular visual impairment are not effective in the case of CVI. We propose that this variance may be related to differences in compensatory neuroplasticity related to the type of visual impairment, as well as underlying alterations in brain structural connectivity. We discuss the etiology and nature of visual impairments related to CVI, and how advanced neuroimaging techniques (i.e., diffusion-based imaging) may help uncover differences between ocular and cerebral causes of visual dysfunction. Revealing these differences may help in developing future strategies for the education and rehabilitation of individuals living with visual impairment.
Cerebral versus Ocular Visual Impairment: The Impact on Developmental Neuroplasticity
Martín, Maria B. C.; Santos-Lozano, Alejandro; Martín-Hernández, Juan; López-Miguel, Alberto; Maldonado, Miguel; Baladrón, Carlos; Bauer, Corinna M.; Merabet, Lotfi B.
2016-01-01
Cortical/cerebral visual impairment (CVI) is clinically defined as significant visual dysfunction caused by injury to visual pathways and structures occurring during early perinatal development. Depending on the location and extent of damage, children with CVI often present with a myriad of visual deficits including decreased visual acuity and impaired visual field function. Most striking, however, are impairments in visual processing and attention which have a significant impact on learning, development, and independence. Within the educational arena, current evidence suggests that strategies designed for individuals with ocular visual impairment are not effective in the case of CVI. We propose that this variance may be related to differences in compensatory neuroplasticity related to the type of visual impairment, as well as underlying alterations in brain structural connectivity. We discuss the etiology and nature of visual impairments related to CVI, and how advanced neuroimaging techniques (i.e., diffusion-based imaging) may help uncover differences between ocular and cerebral causes of visual dysfunction. Revealing these differences may help in developing future strategies for the education and rehabilitation of individuals living with visual impairment. PMID:28082927
Shinohe, Yutaka; Higuchi, Satomi; Sasaki, Makoto; Sato, Masahito; Noda, Mamoru; Joh, Shigeharu; Satoh, Kenichi
2016-12-07
Conscious sedation with propofol sometimes causes amnesia while keeping the patient awake. However, it remains unknown how propofol compromises the memory function. Therefore, we investigated the changes in brain activation induced by visual stimulation during and after conscious sedation with propofol using serial functional MRI. Healthy volunteers received a target-controlled infusion of propofol, and underwent functional MRI scans with a block-design paradigm of visual stimulus before, during, and after conscious sedation. Random-effect model analyses were performed using Statistical Parametric Mapping software. Among the areas showing significant activation in response to the visual stimulus, the visual cortex and fusiform gyrus were significantly suppressed in the sedation session and tended to recover in the early-recovery session of ∼20 min (P<0.001, uncorrected). In contrast, decreased activations of the hippocampus, thalamus, inferior frontal cortex (ventrolateral prefrontal cortex), and cerebellum were maintained during the sedation and early-recovery sessions (P<0.001, uncorrected) and were recovered in the late-recovery session of ∼40 min. Temporal changes in the signals from these areas varied in a manner comparable to that described by the random-effect model analysis (P<0.05, corrected). In conclusion, conscious sedation with propofol may cause prolonged suppression of the activation of memory-related structures, such as the hippocampus, during the early-recovery period, which may lead to transient amnesia.
Zhang, Ying; Whitfield-Gabrieli, Susan; Christodoulou, Joanna A.; Gabrieli, John D. E.
2013-01-01
Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading. PMID:23825653
Wang, Zhong I; Dell'Osso, Louis F; Tomsak, Robert L; Jacobs, Jonathan B
2007-04-01
To investigate the effects of combined tenotomy and recession procedures on both acquired downbeat nystagmus and horizontal infantile nystagmus. Patient 1 had downbeat nystagmus with a chin-down (upgaze) position, oscillopsia, strabismus, and diplopia. Asymmetric superior rectus recessions and inferior rectus tenotomies reduced right hypertropia and rotated both eyes downward. Patient 2 had horizontal infantile nystagmus, a 20 degrees left-eye exotropia, and alternating (abducting-eye) fixation. Lateral rectus recessions and medial rectus tenotomies were performed. Horizontal and vertical eye movements were recorded pre- and postsurgically using high-speed digital video. The eXpanded Nystagmus Acuity Function (NAFX) and nystagmus amplitudes and frequencies were measured. Patient 1: The NAFX peak moved from 10 degrees up to primary position where NAFX values improved 17% and visual acuity increased 25%. Vertical NAFX increased across the -10 degrees to +5 degrees vertical range. Primary-position right hypertropia decreased approximately 50%; foveation time per cycle increased 102%; vertical amplitude, oscillopsia, and diplopia were reduced, and frequency was unchanged. Patient 2: Two lateral, narrow high-NAFX regions (due to alternating fixation) became one broad region with a 43% increase in primary position (acuity increased approximately 92.3%). Diplopia amplitude decreased; convergence and gaze holding were improved. Primary-position right exotropia was reduced; foveation time per cycle increased 257%; horizontal-component amplitude decreased 45.7%, and frequency remained unchanged. Combining tenotomy with nystagmus or strabismus recession procedures increased NAFX and visual acuities and reduced diplopia and oscillopsia in downbeat nystagmus and infantile nystagmus.
Greenstein, Vivienne C; Duncker, Tobias; Holopigian, Karen; Carr, Ronald E; Greenberg, Jonathan P; Tsang, Stephen H; Hood, Donald C
2012-02-01
To analyze the structure and visual function of regions bordering the hyperautofluorescent ring/arcs in retinitis pigmentosa. Twenty-one retinitis pigmentosa patients (21 eyes) with rings/arcs and 21 normal individuals (21 eyes) were studied. Visual sensitivity in the central 10° was measured with microperimetry. Retinal structure was evaluated with spectral-domain optical coherence tomography. The distance from the fovea to disruption/loss of the inner outer segment (IS/OS) junction and thicknesses of the total receptor plus retinal pigment epithelial complex and outer segment plus retinal pigment epithelial complex layers were measured. Results were compared with measurements of the distance from the fovea to the inner and outer borders of the ring/arc seen on fundus autofluorescence. Disruption/loss of the inner outer segment junction occurred closer to the inner border of the ring/arc and it was closer to the fovea in eight eyes. For 19 eyes, outer segment plus and receptor plus RPE complex thicknesses were significantly decreased at locations closer to the fovea than the appearance of the inner border of hyperautofluorescence. Mean visual sensitivity was decreased inside, across, and outside the ring/arc by 3.5 ± 3.8, 8.9 ± 4.8, and 17.0 ± 2.4 dB, respectively. Structural and functional changes can occur inside the hyperfluorescent ring/arc in retinitis pigmentosa.
Greenstein, Vivienne C.; Duncker, Tobias; Holopigian, Karen; Carr, Ronald E.; Greenberg, Jonathan; Tsang, Stephen H.; Hood, Donald C.
2013-01-01
Purpose To analyze the structure and visual function of regions bordering the hyperautofluorescent ring/arcs in retinitis pigmentosa (RP). Methods Twenty -one RP patients (21 eyes) with rings/arcs and 21 normals (21 eyes) were studied. Visual sensitivity in the central 10° was measured with microperimetry. Retinal structure was evaluated with spectral domain optical coherence tomography (SD-OCT). The distance from the fovea to disruption/loss of the inner outer segment (IS/OS) junction and thicknesses of the total receptor plus retinal pigment epithelial (RPE) complex (R+), and outer segment plus RPE complex (OS+) layers were measured. Results were compared to measurements of the distance from the fovea to the inner and outer borders of the ring/arc seen on fundus autofluorescence (FAF). Results Disruption/loss of the IS/OS junction occurred closer to the inner border of the ring/arc and it was closer to the fovea in 8 eyes. For 19 eyes, OS+ and R+ thicknesses were significantly decreased at locations closer to the fovea than the appearance of the inner border of hyperautofluorescence. Mean visual sensitivity was decreased inside, across and outside the ring/arc by 3.5 ± 3.8, 8.9 ± 4.8 and 17.0±2.4 dB respectively. Conclusions Structural and functional changes can occur inside the hyperfluorescent ring/arc in RP. PMID:21909055
Nutrition in brain development and aging: role of essential fatty acids.
Uauy, Ricardo; Dangour, Alan D
2006-05-01
The essential fatty acids (EFAs), particularly the n-3 long-chain polyunsaturated fatty acids (LCPs), are important for brain development during both the fetal and postnatal period. They are also increasingly seen to be of value in limiting the cognitive decline during aging. EFA deficiency was first shown over 75 years ago, but the more subtle effects of the n-3 fatty acids in terms of skin changes, a poor response to linoleic acid supplementation, abnormal visual function, and peripheral neuropathy were only discovered later. Both n-3 and n-6 LCPs play important roles in neuronal growth, development of synaptic processing of neural cell interaction, and expression of genes regulating cell differentiation and growth. The fetus and placenta are dependent on maternal EFA supply for their growth and development, with docosahexaenomic acid (DHA)-supplemented infants showing significantly greater mental and psychomotor development scores (breast-fed children do even better). Dietary DHA is needed for the optimum functional maturation of the retina and visual cortex, with visual acuity and mental development seemingly improved by extra DHA. Aging is also associated with decreased brain levels of DHA: fish consumption is associated with decreased risk of dementia and Alzheimer's disease, and the reported daily use of fish-oil supplements has been linked to improved cognitive function scores, but confirmation of these effects is needed.
Functional Analysis of Internal Moving Organs Using Super-Resolution Echography
NASA Astrophysics Data System (ADS)
Masuda, Kohji; Ishihara, Ken; Nagakura, Toshiaki; Tsuda, Takao; Furukawa, Toshiyuki; Maeda, Hajime; Kumagai, Sadatoshi; Kodama, Shinzo
1994-05-01
We have developed super-resolution echography to visualize instantaneous velocity and acceleration of internal organs from time-series echograms recorded by a high-frame-rate echograph. The algorithm for this method involves subtraction of two echograms, dividing the difference by the brightness gradient of the first echogram, and normalization of that result by the time interval between the two echograms. Velocity or acceleration is classified into some suitable colors and superimposed on the original B-mode image. Functional diagnosis of moving organs can be made by visualizing instantaneous velocity. In the case of the heart, hypokinesis can be distinguished from a normal heart by the value and the variation of colored parts representing instantaneous velocity. This can also be applied to the liver to observe pulsatile motion. By visualizing instantaneous acceleration, increase or decrease of velocity can be detected. Throb timing and the location of arrhythmia in a heart can be observed. This method has the possibility of contributing to noninvasive functional and characteristic evaluation.
Spinal Cord Injury Disrupts Resting-State Networks in the Human Brain.
Hawasli, Ammar H; Rutlin, Jerrel; Roland, Jarod L; Murphy, Rory K J; Song, Sheng-Kwei; Leuthardt, Eric C; Shimony, Joshua S; Ray, Wilson Z
2018-03-15
Despite 253,000 spinal cord injury (SCI) patients in the United States, little is known about how SCI affects brain networks. Spinal MRI provides only structural information with no insight into functional connectivity. Resting-state functional MRI (RS-fMRI) quantifies network connectivity through the identification of resting-state networks (RSNs) and allows detection of functionally relevant changes during disease. Given the robust network of spinal cord afferents to the brain, we hypothesized that SCI produces meaningful changes in brain RSNs. RS-fMRIs and functional assessments were performed on 10 SCI subjects. Blood oxygen-dependent RS-fMRI sequences were acquired. Seed-based correlation mapping was performed using five RSNs: default-mode (DMN), dorsal-attention (DAN), salience (SAL), control (CON), and somatomotor (SMN). RSNs were compared with normal control subjects using false-discovery rate-corrected two way t tests. SCI reduced brain network connectivity within the SAL, SMN, and DMN and disrupted anti-correlated connectivity between CON and SMN. When divided into separate cohorts, complete but not incomplete SCI disrupted connectivity within SAL, DAN, SMN and DMN and between CON and SMN. Finally, connectivity changed over time after SCI: the primary motor cortex decreased connectivity with the primary somatosensory cortex, the visual cortex decreased connectivity with the primary motor cortex, and the visual cortex decreased connectivity with the sensory parietal cortex. These unique findings demonstrate the functional network plasticity that occurs in the brain as a result of injury to the spinal cord. Connectivity changes after SCI may serve as biomarkers to predict functional recovery following an SCI and guide future therapy.
Cartier, Chloé; Warembourg, Charline; Monfort, Christine; Rouget, Florence; Limon, Gwendolina; Durand, Gaël; Cordier, Sylvaine; Saint-Amour, Dave; Chevrier, Cécile
2018-05-24
Human exposure to organophosphate pesticides (OP) is widespread. Several studies suggest that OP prenatal exposure alters the development of cognitive and behavioural functions in children, but the effects of OP prenatal exposure on child sensory functions are largely unknown. The aim of the study was to evaluate the association between OP prenatal exposure and visual processing in school-aged children from the mother-child PELAGIE cohort (France). OP biomarkers of exposure were measured in maternal urine samples at the beginning of pregnancy. The Functional Acuity Contrast Test (FACT) was used to assess visual contrast sensitivity in 180 children at 6 years of age. Linear regression models were performed on all children, and separately for boys and girls, taking into account various potential confounders, including maternal education and breastfeeding. No associations were observed in the whole sample, while maternal OP urinary metabolite levels were associated with a decrease of FACT scores in boys. These findings indicate that OP prenatal exposure might impair visual processing later in life in boys only. Copyright © 2018. Published by Elsevier B.V.
Bountziouka, Vasiliki; Cumberland, Phillippa M; Rahi, Jugnoo S
2017-09-01
Despite the existing country-specific strategies tackling social inequalities in visual health in adults, little is known about trends in visual function in childhood and its association with social position. To investigate the distribution of childhood visual function in the United Kingdom and associations with early-life social position between 1961 and 1986, a period of significant social change. Longitudinal cohort study using harmonized data sets from the British 1946, 1958, and 1970 national birth cohorts. In total, 14 283 cohort members with complete data on visual acuity at age 15 or 16 years, measured in 1961, 1974, and 1986, respectively, for each cohort, and social position were assessed. Using habitual distance visual acuity (with correction if prescribed), participants were assigned to a visual function category ranging from bilateral normal to visual impairment/severe visual impairment/blindness (International Statistical Classification of Diseases, Tenth Revision, Clinical Modification). Distribution of visual function over time and associations with social position (risk ratios [RRs] and 95% confidence intervals) were analyzed. Complete data were available for 3152 participants (aged 15 years; 53% boys [n = 1660]) in the 1946 Medical Research Council National Survey of Health and Development, 6683 participants (aged 16 years; 51% boys [n = 3420]) in the 1958 National Child Development Study, and 4448 participants (aged 16 years; 48% boys [n = 2156]) in the 1970 British Birth Cohort Study. The proportion of children with bilateral normal vision decreased by 1.3% (95% CI, -5.1% to 2.7%) in 1974 and 1.7% (95% CI, -5.9% to 2.7%) in 1986. The risk of overall impaired vision increased by 1.20 times (95% CI, 1.01-1.43) and the risk of visual impairment/severe visual impairment/blindness by 1.75 times (95% CI, 1.03-2.98) during this period. Girls were consistently at increased risk of all vision impairment categories. Higher social position at birth and in childhood was associated with reduced risk of visual impairment/severe visual impairment/blindness (RR, 0.58; 95% CI, 0.20-1.68) and unilateral impairment (RR, 0.89; 95% CI, 0.72-1.11), respectively. Our study provides evidence of temporal decline in childhood visual function between 1961 and 1986. Despite the limited power of the analysis owing to the small sample size of those with impaired vision, we found an emergence of a contribution of sociodemographic status to the cohort effect that may be the antecedent of the current picture of childhood blindness. Equally, early-life social position may also have contributed to the current social patterning in visual function in older adults in the United Kingdom. These findings highlight the potential value of targeting children in national ophthalmic public policies tackling inequalities.
Krajcovicova, Lenka; Mikl, Michal; Marecek, Radek; Rektorova, Irena
2014-01-01
Changes in connectivity of the posterior node of the default mode network (DMN) were studied when switching from baseline to a cognitive task using functional magnetic resonance imaging. In all, 15 patients with mild to moderate Alzheimer's disease (AD) and 18 age-, gender-, and education-matched healthy controls (HC) participated in the study. Psychophysiological interactions analysis was used to assess the specific alterations in the DMN connectivity (deactivation-based) due to psychological effects from the complex visual scene encoding task. In HC, we observed task-induced connectivity decreases between the posterior cingulate and middle temporal and occipital visual cortices. These findings imply successful involvement of the ventral visual pathway during the visual processing in our HC cohort. In AD, involvement of the areas engaged in the ventral visual pathway was observed only in a small volume of the right middle temporal gyrus. Additional connectivity changes (decreases) in AD were present between the posterior cingulate and superior temporal gyrus when switching from baseline to task condition. These changes are probably related to both disturbed visual processing and the DMN connectivity in AD and reflect deficits and compensatory mechanisms within the large scale brain networks in this patient population. Studying the DMN connectivity using psychophysiological interactions analysis may provide a sensitive tool for exploring early changes in AD and their dynamics during the disease progression.
Dynamic visual acuity using "far" and "near" targets
NASA Technical Reports Server (NTRS)
Peters, Brian T.; Bloomberg, Jacob J.
2005-01-01
CONCLUSIONS: DVA may be useful for assessing the functional consequences of an impaired gaze stabilization mechanism or for testing the effectiveness of a rehabilitation paradigm. Because target distance influences the relative contributions of canal and otolith inputs, the ability to measure DVA at near and far viewing distances may also lead to tests that will independently assess canal and otolith function. OBJECTIVE: To present and test a methodology that uses dynamic visual acuity (DVA) to assess the efficacy of compensatory gaze mechanisms during a functionally relevant activity that differentially measures canal and otolith function. MATERIAL AND METHODS: The effect of treadmill walking at a velocity of 1.79 m/s on subjects' visual acuity was assessed at each of two viewing distances. A custom-written threshold determination program was used to display Landolt C optotypes on a laptop computer screen during a "far" (4 m) target condition and on a micro-display for a "near" (50 cm) target condition. The walking acuity scores for each target distance were normalized by subtracting a corresponding acuity measure obtained while standing still on the treadmill belt. RESULTS: As predicted by subjective reports of relative target motion, the decrease in visual acuity was significantly greater (p < 0.00001) for the near compared to the far condition.
Memory-guided force control in healthy younger and older adults.
Neely, Kristina A; Samimy, Shaadee; Blouch, Samantha L; Wang, Peiyuan; Chennavasin, Amanda; Diaz, Michele T; Dennis, Nancy A
2017-08-01
Successful performance of a memory-guided motor task requires participants to store and then recall an accurate representation of the motor goal. Further, participants must monitor motor output to make adjustments in the absence of visual feedback. The goal of this study was to examine memory-guided grip force in healthy younger and older adults and compare it to performance on behavioral tasks of working memory. Previous work demonstrates that healthy adults decrease force output as a function of time when visual feedback is not available. We hypothesized that older adults would decrease force output at a faster rate than younger adults, due to age-related deficits in working memory. Two groups of participants, younger adults (YA: N = 32, mean age 21.5 years) and older adults (OA: N = 33, mean age 69.3 years), completed four 20-s trials of isometric force with their index finger and thumb, equal to 25% of their maximum voluntary contraction. In the full-vision condition, visual feedback was available for the duration of the trial. In the no vision condition, visual feedback was removed for the last 12 s of each trial. Participants were asked to maintain constant force output in the absence of visual feedback. Participants also completed tasks of word recall and recognition and visuospatial working memory. Counter to our predictions, when visual feedback was removed, younger adults decreased force at a faster rate compared to older adults and the rate of decay was not associated with behavioral performance on tests of working memory.
Impact of Retinitis Pigmentosa on Quality of Life, Mental Health, and Employment Among Young Adults.
Chaumet-Riffaud, Anne Elisabeth; Chaumet-Riffaud, Philippe; Cariou, Anaelle; Devisme, Céline; Audo, Isabelle; Sahel, José-Alain; Mohand-Said, Saddek
2017-05-01
To determine the relationship between visual function and quality of life, education, mental health, and employment among young adults with retinitis pigmentosa (RP). Cross-sectional study. Inclusion of 148 patients (mean age 38.2 ± 7.1 years) diagnosed with RP, living in France. Quality of life was assessed using the National Eye Institute Visual Function Questionnaire (VFQ-25), mental state with the Hospital and Anxiety and Depression Scale (HADS), and employment with a specifically designed questionnaire. Limited visual impairment was noted in 22.3%, low vision in 29.7%, and legal blindness in 48.0%. There was a correlation between quality-of-life scores and residual visual field (P < .0001). Mental health scores were suggestive of anxiety in 36.5% and depression in 15.5%. The rates did not increase with disability level (P = .738, P = .134). The percentage of subjects with higher education did not significantly decrease with disability level (P = .113). The employment rate did not significantly decrease with disability level (P = .276). It was lower in subjects reporting depression (P = .0414). Self-rated impact of RP on employment increased with disability level (P = .02642). Our results differ from previous results showing lower education rates and employment rates in young adults with RP. Further research is warranted focusing on the impact of mental health, education, workplace conditions, and employment aids on employment rate vs age- and education-matched normally sighted controls to guide visual disability strategies in RP. Copyright © 2017 Elsevier Inc. All rights reserved.
Mobility performance in glaucoma.
Turano, K A; Rubin, G S; Quigley, H A
1999-11-01
To determine whether glaucoma affects mobility performance and whether there is a relationship between mobility performance and stage of disease as estimated from vision-function measures. The mobility performance of 47 glaucoma subjects was compared with that of 47 normal-vision subjects who were of similar age. Mobility performance was assessed by the time required to complete an established travel path and the number of mobility incidents. The subjective assessment of falling and fear of falling were also compared. Vision function was assessed by measures of visual acuity, contrast sensitivity, monocular automated threshold perimetry, and suprathreshold; binocular visual fields were assessed with the Esterman test. The glaucoma subjects walked on average 10% more slowly than did the normal-vision subjects. The number of people who experienced bumps, stumbles, or orientation problems was almost twice as high in the glaucoma group than the normal-vision group, but the difference did not reach statistical significance. The difference between groups also was not significant with respect to the number of people who reported falling in the past year (38% for the glaucoma group and 30% for the normal-vision group) or a fear of falling (28% for the glaucoma group and 23% for the normal-vision group). The visual fields assessed with a Humphrey 24-2 test were more highly correlated with walking speed in glaucoma than the visual fields scored by the Esterman scale or than visual acuity or contrast sensitivity. Glaucoma is associated with a modest decrease in mobility performance. Walking speed decreases with severity of the disease as estimated by threshold perimetry.
Xia, Jing; Zhang, Wei; Jiang, Yizhou; Li, You; Chen, Qi
2018-05-16
Practice and experiences gradually shape the central nervous system, from the synaptic level to large-scale neural networks. In natural multisensory environment, even when inundated by streams of information from multiple sensory modalities, our brain does not give equal weight to different modalities. Rather, visual information more frequently receives preferential processing and eventually dominates consciousness and behavior, i.e., visual dominance. It remains unknown, however, the supra-modal and modality-specific practice effect during cross-modal selective attention, and moreover whether the practice effect shows similar modality preferences as the visual dominance effect in the multisensory environment. To answer the above two questions, we adopted a cross-modal selective attention paradigm in conjunction with the hybrid fMRI design. Behaviorally, visual performance significantly improved while auditory performance remained constant with practice, indicating that visual attention more flexibly adapted behavior with practice than auditory attention. At the neural level, the practice effect was associated with decreasing neural activity in the frontoparietal executive network and increasing activity in the default mode network, which occurred independently of the modality attended, i.e., the supra-modal mechanisms. On the other hand, functional decoupling between the auditory and the visual system was observed with the progress of practice, which varied as a function of the modality attended. The auditory system was functionally decoupled with both the dorsal and ventral visual stream during auditory attention while was decoupled only with the ventral visual stream during visual attention. To efficiently suppress the irrelevant visual information with practice, auditory attention needs to additionally decouple the auditory system from the dorsal visual stream. The modality-specific mechanisms, together with the behavioral effect, thus support the visual dominance model in terms of the practice effect during cross-modal selective attention. Copyright © 2018 Elsevier Ltd. All rights reserved.
Vision related quality of life in patients with type 2 diabetes in the EUROCONDOR trial.
Trento, Marina; Durando, Olga; Lavecchia, Sonia; Charrier, Lorena; Cavallo, Franco; Costa, Miguel Angelo; Hernández, Cristina; Simó, Rafael; Porta, Massimo
2017-07-01
To evaluate vision related quality of life in the patients enrolled in The European Consortium for the Early Treatment of Diabetic Retinopathy, a clinical trial on prevention of diabetic retinopathy. Four-hundred-forty-nine patients, 153 women, with type 2 Diabetes and no or mild diabetic retinopathy were enrolled in a 2-year multicenter randomized controlled trial. The 25-item National Eye Institute Visual Functioning Questionnaire was used to explore 12 subscales of vision related quality of life. The patients were 62.8 ± 6.7 years old and had 11.1 ± 5.6 years known disease duration. Diabetic retinopathy was absent in 193 (43.0 %) and mild in 256 (57.0 %). Patients without diabetic retinopathy were older, had shorter diabetes duration and used less insulin and glucose-lowering agents but did not differ by gender, best corrected visual acuity or any subscale, except vision specific mental health and vision specific role difficulties. Patients with reduced retinal thickness at the ganglion cell layer (n = 36) did not differ for diabetic retinopathy but were older, had lower best corrected visual acuity and worse scores for ocular pain, color vision and peripheral vision. On multivariable analysis, worse scores for general vision remained associated with reduced retinal thickness, diabetes duration and best corrected visual acuity, and scores for visual specific mental health with diabetic retinopathy and lower best corrected visual acuity. Visual specific role difficulties were only associated with reduced best corrected visual acuity. Scores for driving decreased among females, with worsening of Hemoglobin A1c and best corrected visual acuity. Color vision depended only on reduced retinal thickness, and peripheral vision on both reduced thickness and best corrected visual acuity. The National Eye Institute Visual Functioning Questionnaire could detect subtle changes in patients' perception of visual function, despite absent/minimal diabetic retinopathy.
Oh, Se-Il; Kim, Jin-Kyung; Park, So-Yeon
2015-12-01
[Purpose] This study aimed to examine the effects of visual field with prism glasses, and intensive upper limb functional training on reduction of hemineglect and improvement in upper limb function and activities of daily living in three stroke patients with hemineglect. [Subjects] This study included three stroke patients hospitalized in a sanatorium. [Methods] Intervention treatment involving prism glass use for 12 hours and 30 minutes and paretic side upper limb training was conducted 5 days a week for 15 weeks. Three upper limb training tasks (hitting a balloon, passing through a ring, and reading a newspaper) were performed for 10 minutes each session, for a total of 30 minutes. Line by Section, Motor-Free Visual Perception Test-3 (MVPT-3), Manual Function Test (MFT), Box & Block Test (BBT), and Assessment of Motor and Process Skills (AMPS) were conducted before and after intervention. [Results] Subjects' hemineglect decreased and upper limb function on the paretic side improved after intervention, which enhanced activities of daily living. [Conclusion] Prism glass use and paretic upper limb functional training effectively ameliorated stroke patients' hemineglect and improved upper limb function. Future research should focus on prism glasses that provide a wide visual field for use in patients with different conditions.
The pigeon's distant visual acuity as a function of viewing angle.
Uhlrich, D J; Blough, P M; Blough, D S
1982-01-01
Distant visual acuity was determined for several viewing angles in two restrained White Carneaux pigeons. The behavioral technique was a classical conditioning procedure that paired presentation of sinusoidal gratings with shock. A conditioned heart rate acceleration during the grating presentation indicated resolution of the grating. The bird's acuity was fairly uniform across a large range of their lateral visual field; performance decreased slightly for posterior stimulus placement and sharply for frontal placements. The data suggest that foveal viewing is relatively less advantageous for acuity in pigeons than in humans. The data are also consistent with the current view that pigeons are myopic in frontal vision.
Visual Function in Carriers of X-linked Retinitis Pigmentosa
Comander, Jason; Weigel-DiFranco, Carol; Sandberg, Michael A.; Berson, Eliot L.
2015-01-01
Purpose To determine the frequency and severity of visual function loss in female carriers of X-linked retinitis pigmentosa (XLRP). Design Case series. Participants XLRP carriers with cross-sectional data (n = 242) and longitudinal data (n = 34, median follow-up: 16 years, follow-up range: 3–37 years). Half of the carriers were from RPGR- or RP2-genotyped families. Methods Retrospective medical records review. Main Outcome Measures Visual acuities, visual field areas, final dark adaptation thresholds, and full-field ERGs to 0.5 Hz and 30 Hz flashes. Results In genotyped families, 40% of carriers showed a baseline abnormality on at least one of the three psychophysical tests. There was a wide range of function among carriers; for example 3 of 121 (2%) of genotyped carriers were legally blind due to poor visual acuity, some as young as 35 years of age. Visual fields were less affected than visual acuity. In all carriers, the average ERG amplitude to 30 Hz flashes was about 50% of normal, and the average exponential rate of amplitude loss over time was half that of XLRP males (3.7%/year vs 7.4%/year, respectively). Among obligate carriers with affected fathers and/or sons, 53 of 55 (96%) had abnormal baseline ERGs. Some carriers who initially had completely normal fundi in both eyes went on to develop moderately decreased vision, though not legal blindness. Among carriers with RPGR mutations, those with mutations in ORF15, compared to those in exons 1–14, had worse final dark adaptation thresholds and lower 0.5 Hz and 30 Hz ERG amplitudes. Conclusions Most carriers of XLRP had mildly or moderately reduced visual function but rarely became legally blind. In most cases, obligate carriers could be identified by ERG testing. Carriers of RPGR ORF15 mutations tended to have worse visual function than carriers of RPGR exon 1–14 mutations. Since XLRP carrier ERG amplitudes and decay rates over time were on average half of those of affected males, these observations were consistent with the Lyon hypothesis of random X-inactivation. PMID:26143542
Kojima, Takashi; Matsumoto, Yukihiro; Ibrahim, Osama M A; Wakamatsu, Tais Hitomi; Uchino, Miki; Fukagawa, Kazumi; Ogawa, Junko; Dogru, Murat; Negishi, Kazuno; Tsubota, Kazuo
2011-11-11
To prospectively evaluate the effect of controlled adverse chamber environment (CACE) exposure on tear function, including tear osmolarity, in subjects wearing narafilcon A versus those wearing etafilcon A soft contact lens (SCL). Thirty-one healthy subjects with no history of contact lens wear (13 women, 18 men; average age, 30.5 ± 6.5 years) were randomly divided into age- and sex-matched groups (15 subjects wearing narafilcon A SCL; 16 subjects wearing etafilcon A SCL) and entered a CACE for 20 minutes. All subjects underwent tear osmolarity, tear evaporation rate, strip meniscometry, tear film breakup time, fluorescein vital staining, and functional visual acuity measurement before and after exposure to the controlled adverse chamber. The mean blink rate increased with significant deteriorations in the mean symptom VAS scores, mean tear osmolarity, tear evaporation rate, strip meniscometry score, and tear stability with CACE exposure along with a decrease in visual maintenance ratio in functional visual acuity testing in etafilcon A wearers. The mean symptom VAS scores, mean tear evaporation rate, tear stability, blink rates, and visual maintenance ratios did not change significantly in narafilcon A wearers after CACE exposure. This study suggested marked tear instability, higher tear osmolarity, and increased tear evaporation with marked dry eye and visual symptomatology in nonadapted hydrogel SCL wearers, suggesting that silicone hydrogel SCLs may be suitable for persons who live and work in cool, low-humidity, and windy environments, as tested in this study.
Farr, Olivia M; Upadhyay, Jagriti; Gavrieli, Anna; Camp, Michelle; Spyrou, Nikolaos; Kaye, Harper; Mathew, Hannah; Vamvini, Maria; Koniaris, Anastasia; Kilim, Holly; Srnka, Alexandra; Migdal, Alexandra; Mantzoros, Christos S
2016-10-01
Lorcaserin is a serotonin 5-hydroxytryptamine 2c receptor agonist effective in treating obesity. Studies in rodents have shown that lorcaserin acts in the brain to exert its weight-reducing effects, but this has not yet been studied in humans. We performed a randomized, placebo-controlled, double-blind trial with 48 obese participants and used functional MRI to study the effects of lorcaserin on the brain. Subjects taking lorcaserin had decreased brain activations in the attention-related parietal and visual cortices in response to highly palatable food cues at 1 week in the fasting state and in the parietal cortex in response to any food cues at 4 weeks in the fed state. Decreases in emotion- and salience-related limbic activity, including the insula and amygdala, were attenuated at 4 weeks. Decreases in caloric intake, weight, and BMI correlated with activations in the amygdala, parietal, and visual cortices at baseline. These data suggest that lorcaserin exerts its weight-reducing effects by decreasing attention-related brain activations to food cues (parietal and visual cortices) and emotional and limbic activity (insula, amygdala). Results indicating that baseline activation of the amygdala relates to increased efficacy suggest that lorcaserin would be of particular benefit to emotional eaters. © 2016 by the American Diabetes Association.
Farr, Olivia M.; Upadhyay, Jagriti; Gavrieli, Anna; Camp, Michelle; Spyrou, Nikolaos; Kaye, Harper; Mathew, Hannah; Vamvini, Maria; Koniaris, Anastasia; Kilim, Holly; Srnka, Alexandra; Migdal, Alexandra
2016-01-01
Lorcaserin is a serotonin 5-hydroxytryptamine 2c receptor agonist effective in treating obesity. Studies in rodents have shown that lorcaserin acts in the brain to exert its weight-reducing effects, but this has not yet been studied in humans. We performed a randomized, placebo-controlled, double-blind trial with 48 obese participants and used functional MRI to study the effects of lorcaserin on the brain. Subjects taking lorcaserin had decreased brain activations in the attention-related parietal and visual cortices in response to highly palatable food cues at 1 week in the fasting state and in the parietal cortex in response to any food cues at 4 weeks in the fed state. Decreases in emotion- and salience-related limbic activity, including the insula and amygdala, were attenuated at 4 weeks. Decreases in caloric intake, weight, and BMI correlated with activations in the amygdala, parietal, and visual cortices at baseline. These data suggest that lorcaserin exerts its weight-reducing effects by decreasing attention-related brain activations to food cues (parietal and visual cortices) and emotional and limbic activity (insula, amygdala). Results indicating that baseline activation of the amygdala relates to increased efficacy suggest that lorcaserin would be of particular benefit to emotional eaters. PMID:27385157
Two subdivisions of macaque LIP process visual-oculomotor information differently.
Chen, Mo; Li, Bing; Guang, Jing; Wei, Linyu; Wu, Si; Liu, Yu; Zhang, Mingsha
2016-10-11
Although the cerebral cortex is thought to be composed of functionally distinct areas, the actual parcellation of area and assignment of function are still highly controversial. An example is the much-studied lateral intraparietal cortex (LIP). Despite the general agreement that LIP plays an important role in visual-oculomotor transformation, it remains unclear whether the area is primary sensory- or motor-related (the attention-intention debate). Although LIP has been considered as a functionally unitary area, its dorsal (LIPd) and ventral (LIPv) parts differ in local morphology and long-distance connectivity. In particular, LIPv has much stronger connections with two oculomotor centers, the frontal eye field and the deep layers of the superior colliculus, than does LIPd. Such anatomical distinctions imply that compared with LIPd, LIPv might be more involved in oculomotor processing. We tested this hypothesis physiologically with a memory saccade task and a gap saccade task. We found that LIP neurons with persistent memory activities in memory saccade are primarily provoked either by visual stimulation (vision-related) or by both visual and saccadic events (vision-saccade-related) in gap saccade. The distribution changes from predominantly vision-related to predominantly vision-saccade-related as the recording depth increases along the dorsal-ventral dimension. Consistently, the simultaneously recorded local field potential also changes from visual evoked to saccade evoked. Finally, local injection of muscimol (GABA agonist) in LIPv, but not in LIPd, dramatically decreases the proportion of express saccades. With these results, we conclude that LIPd and LIPv are more involved in visual and visual-saccadic processing, respectively.
Visual pathways from the perspective of cost functions and multi-task deep neural networks.
Scholte, H Steven; Losch, Max M; Ramakrishnan, Kandan; de Haan, Edward H F; Bohte, Sander M
2018-01-01
Vision research has been shaped by the seminal insight that we can understand the higher-tier visual cortex from the perspective of multiple functional pathways with different goals. In this paper, we try to give a computational account of the functional organization of this system by reasoning from the perspective of multi-task deep neural networks. Machine learning has shown that tasks become easier to solve when they are decomposed into subtasks with their own cost function. We hypothesize that the visual system optimizes multiple cost functions of unrelated tasks and this causes the emergence of a ventral pathway dedicated to vision for perception, and a dorsal pathway dedicated to vision for action. To evaluate the functional organization in multi-task deep neural networks, we propose a method that measures the contribution of a unit towards each task, applying it to two networks that have been trained on either two related or two unrelated tasks, using an identical stimulus set. Results show that the network trained on the unrelated tasks shows a decreasing degree of feature representation sharing towards higher-tier layers while the network trained on related tasks uniformly shows high degree of sharing. We conjecture that the method we propose can be used to analyze the anatomical and functional organization of the visual system and beyond. We predict that the degree to which tasks are related is a good descriptor of the degree to which they share downstream cortical-units. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fluorouracil as a treatment for corneal papilloma in a Malayan tapir.
Karpinski, Lorraine G; Miller, Christine L
2002-09-01
A 26-year-old, wild caught, male Malayan tapir at the Miami Metrozoo with bilateral corneal papillomas was serially immobilized and given subconjunctival injections of fluorouracil. Over the course of 17 weeks five bilateral injections of 25 mg fluorouracil were given. This treatment caused regression of the corneal lesions as evidenced by decreased lesion diameter, decreased corneal vascularity, increased corneal clarity, and improved visual function. No adverse drug effects were observed.
D'Souza, Dany V; Auer, Tibor; Frahm, Jens; Strasburger, Hans; Lee, Barry B
2016-03-01
Psychophysical sensitivity to red-green chromatic modulation decreases with visual eccentricity, compared to sensitivity to luminance modulation, even after appropriate stimulus scaling. This is likely to occur at a central, rather than a retinal, site. Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to stimuli designed to separately stimulate different afferent channels' [red-green, luminance, and short-wavelength (S)-cone] circular gratings were recorded as a function of visual eccentricity (±10 deg) and spatial frequency (SF) in human primary visual cortex (V1) and further visual areas (V2v, V3v). In V1, the SF tuning of BOLD fMRI responses became coarser with eccentricity. For red-green and luminance gratings, similar SF tuning curves were found at all eccentricities. The pattern for S-cone modulation differed, with SF tuning changing more slowly with eccentricity than for the other two modalities. This may be due to the different retinal distribution with eccentricity of this receptor type. A similar pattern held in V2v and V3v. This would suggest that transformation or spatial filtering of the chromatic (red-green) signal occurs beyond these areas.
Prolonged fasting impairs neural reactivity to visual stimulation.
Kohn, N; Wassenberg, A; Toygar, T; Kellermann, T; Weidenfeld, C; Berthold-Losleben, M; Chechko, N; Orfanos, S; Vocke, S; Laoutidis, Z G; Schneider, F; Karges, W; Habel, U
2016-01-01
Previous literature has shown that hypoglycemia influences the intensity of the BOLD signal. A similar but smaller effect may also be elicited by low normal blood glucose levels in healthy individuals. This may not only confound the BOLD signal measured in fMRI, but also more generally interact with cognitive processing, and thus indirectly influence fMRI results. Here we show in a placebo-controlled, crossover, double-blind study on 40 healthy subjects, that overnight fasting and low normal levels of glucose contrasted to an activated, elevated glucose condition have an impact on brain activation during basal visual stimulation. Additionally, functional connectivity of the visual cortex shows a strengthened association with higher-order attention-related brain areas in an elevated blood glucose condition compared to the fasting condition. In a fasting state visual brain areas show stronger coupling to the inferior temporal gyrus. Results demonstrate that prolonged overnight fasting leads to a diminished BOLD signal in higher-order occipital processing areas when compared to an elevated blood glucose condition. Additionally, functional connectivity patterns underscore the modulatory influence of fasting on visual brain networks. Patterns of brain activation and functional connectivity associated with a broad range of attentional processes are affected by maturation and aging and associated with psychiatric disease and intoxication. Thus, we conclude that prolonged fasting may decrease fMRI design sensitivity in any task involving attentional processes when fasting status or blood glucose is not controlled.
Schuster, Sarah; Hawelka, Stefan; Hutzler, Florian; Kronbichler, Martin; Richlan, Fabio
2016-01-01
Word length, frequency, and predictability count among the most influential variables during reading. Their effects are well-documented in eye movement studies, but pertinent evidence from neuroimaging primarily stem from single-word presentations. We investigated the effects of these variables during reading of whole sentences with simultaneous eye-tracking and functional magnetic resonance imaging (fixation-related fMRI). Increasing word length was associated with increasing activation in occipital areas linked to visual analysis. Additionally, length elicited a U-shaped modulation (i.e., least activation for medium-length words) within a brain stem region presumably linked to eye movement control. These effects, however, were diminished when accounting for multiple fixation cases. Increasing frequency was associated with decreasing activation within left inferior frontal, superior parietal, and occipito-temporal regions. The function of the latter region—hosting the putative visual word form area—was originally considered as limited to sublexical processing. An exploratory analysis revealed that increasing predictability was associated with decreasing activation within middle temporal and inferior frontal regions previously implicated in memory access and unification. The findings are discussed with regard to their correspondence with findings from single-word presentations and with regard to neurocognitive models of visual word recognition, semantic processing, and eye movement control during reading. PMID:27365297
Chaplin, Tristan A; Yu, Hsin-Hao; Rosa, Marcello G P
2013-04-01
The primary visual area (V1) forms a systematic map of the visual field, in which adjacent cell clusters represent adjacent points of visual space. A precise quantification of this map is key to understanding the anatomical relationships between neurons located in different stations of the visual pathway, as well as the neural bases of visual performance in different regions of the visual field. We used computational methods to quantify the visual topography of V1 in the marmoset (Callithrix jacchus), a small diurnal monkey. The receptive fields of neurons throughout V1 were mapped in two anesthetized animals using electrophysiological recordings. Following histological reconstruction, precise 3D reconstructions of the V1 surface and recording sites were generated. We found that the areal magnification factor (M(A) ) decreases with eccentricity following a function that has the same slope as that observed in larger diurnal primates, including macaque, squirrel, and capuchin monkeys, and humans. However, there was no systematic relationship between M(A) and polar angle. Despite individual variation in the shape of V1, the relationship between M(A) and eccentricity was preserved across cases. Comparison between V1 and the retinal ganglion cell density demonstrated preferential magnification of central space in the cortex. The size of the cortical compartment activated by a punctiform stimulus decreased from the foveal representation towards the peripheral representation. Nonetheless, the relationship between the receptive field sizes of V1 cells and the density of ganglion cells suggested that each V1 cell receives information from a similar number of retinal neurons, throughout the visual field. Copyright © 2012 Wiley Periodicals, Inc.
Wang, Zhong; Dell'Osso, Louis F; Jacobs, Jonathan B; Burnstine, Robert A; Tomsak, Robert L
2006-12-01
To investigate the effects of four-muscle tenotomy on visual function and gaze angle in patients with infantile nystagmus syndrome (INS). Eye movements of nine patients with infantile nystagmus were recorded using infrared reflection or high-speed digital video techniques. Experimental protocols were designed to record the patients' eye-movement waveforms, pre- and post-tenotomy, at different gaze angles. We used the eXpanded Nystagmus Acuity Function (NAFX) to measure tenotomy-induced changes in the nystagmus at primary position and various gaze angles. The longest foveation domains (LFD) were measured from fitted curves. Peak-to-peak nystagmus amplitudes and foveation-period durations were also measured. All measurements were made unmasked. All seven patients with narrow, high-NAFX, gaze-angle regions showed broadening of these regions of higher visual function. Three patients showed moderate NAFX improvement (13.9-32.6%) at primary position, five showed large improvement (39.9-162.4%), and one showed no NAFX change (due to his high pretenotomy NAFX). Primary position measured acuities improved in six patients. All patients had reductions in nystagmus amplitudes ranging from 14.6 to 37%. The duration of the foveation period increased in all nine patients (11.2-200%). The percentage improvements in both the NAFX and the LFD decreased with higher pretenotomy values. In addition to elevating primary position NAFX, tenotomy also broadens the high-NAFX regions. This broadening effect is more prominent in patients who had sharp pretenotomy NAFX peaks. Four-muscle tenotomy produces higher primary position NAFX increases in infantile nystagmus patients whose pretenotomy values are relatively low, with the improvement decreasing at higher pretenotomy values. The tenotomy procedure improves visual function beyond primary position acuity. This extends the utility of surgical therapy to several different classes of patients with INS for whom other procedures are contraindicated. The pretenotomy NAFX can now be used to predict both primary position acuity improvements and broadening of a patient's high-NAFX range of gaze angles.
Aging: A Predisposition to Dry Eyes
Hindman, Holly B.
2014-01-01
Dry eye syndrome is a disease of the ocular surface and tear film that is prevalent in older adults. Even though the degree of visual acuity loss in dry eye patients is commonly mild-to-moderate, in the aging population, this minimal change in visual status can lead to a significant decrease in visual function and quality of life. A healthy ocular surface is maintained by appropriate tear production and tear drainage, and deficiencies in this delicate balance can lead to dryness. In the aging eye, risk factors such as polypharmacy, androgen deficiency, decreased blink rates, and oxidative stress can predispose the patient to developing dry eye that is frequently more severe, has higher economic costs, and leads to worse consequences to the well-being of the patient. Understanding why elderly patients are at higher risk for developing dry eyes can provide insights into the diagnosis and management of the growing number of older adults struggling with dry eye and minimize the burden of disease on our aging population. PMID:25197560
Changes in brain morphology in albinism reflect reduced visual acuity.
Bridge, Holly; von dem Hagen, Elisabeth A H; Davies, George; Chambers, Claire; Gouws, Andre; Hoffmann, Michael; Morland, Antony B
2014-07-01
Albinism, in humans and many animal species, has a major impact on the visual system, leading to reduced acuity, lack of binocular function and nystagmus. In addition to the lack of a foveal pit, there is a disruption to the routing of the nerve fibers crossing at the optic chiasm, resulting in excessive crossing of fibers to the contralateral hemisphere. However, very little is known about the effect of this misrouting on the structure of the post-chiasmatic visual pathway, and the occipital lobes in particular. Whole-brain analyses of cortical thickness in a large cohort of subjects with albinism showed an increase in cortical thickness, relative to control subjects, particularly in posterior V1, corresponding to the foveal representation. Furthermore, mean cortical thickness across entire V1 was significantly greater in these subjects compared to controls and negatively correlated with visual acuity in albinism. Additionally, the group with albinism showed decreased gyrification in the left ventral occipital lobe. While the increase in cortical thickness in V1, also found in congenitally blind subjects, has been interpreted to reflect a lack of pruning, the decreased gyrification in the ventral extrastriate cortex may reflect the reduced input to the foveal regions of the ventral visual stream. Copyright © 2012 Elsevier Ltd. All rights reserved.
The visually impaired patient.
Rosenberg, Eric A; Sperazza, Laura C
2008-05-15
Blindness or low vision affects more than 3 million Americans 40 years and older, and this number is projected to reach 5.5 million by 2020. In addition to treating a patient's vision loss and comorbid medical issues, physicians must be aware of the physical limitations and social issues associated with vision loss to optimize health and independent living for the visually impaired patient. In the United States, the four most prevalent etiologies of vision loss in persons 40 years and older are age-related macular degeneration, cataracts, glaucoma, and diabetic retinopathy. Exudative macular degeneration is treated with laser therapy, and progression of nonexudative macular degeneration in its advanced stages may be slowed with high-dose antioxidant and zinc regimens. The value of screening for glaucoma is uncertain; management of this condition relies on topical ocular medications. Cataract symptoms include decreased visual acuity, decreased color perception, decreased contrast sensitivity, and glare disability. Lifestyle and environmental interventions can improve function in patients with cataracts, but surgery is commonly performed if the condition worsens. Diabetic retinopathy responds to tight glucose control, and severe cases marked by macular edema are treated with laser photocoagulation. Vision-enhancing devices can help magnify objects, and nonoptical interventions include special filters and enhanced lighting.
Effects of Breast Cancer Chemotherapy Agents on Brain Activity in Rats: Functional Imaging Studies
2011-04-29
and in a small region of the striatum. Visual stimulation produced bilateral activation of the superior colliculus, lateral geniculate and a small...pattern was seen in the lateral geniculate . These results demonstrate the feasibility of using brain activation by parametric sensory stimulation as...both the right and left lateral geniculate functional ROIs (25% and 29%, respectively). There were smaller but not statistically significant decreases
[Evaluation of visual functions in elderly patients with femoral neck fracture].
Oner, Mithat; Oner, Ayşe; Güney, Ahmet; Halici, Mehmet; Arda, Hatice; Bilal, Okkeş
2009-01-01
We aimed at assessing the visual functions in elderly patients with femoral neck fracture and to compare the results with age-matched controls in this three-year prospective study. Seventy-one patients with a history of fall related hip fracture (39 females, 32 males; mean age 76.3+/-9.7 years; range 64 to 90 years) and who were diagnosed with femoral neck fracture after direct graphy were treated by means of bipolar partial prosthesis and they were contacted postoperatively or prior to discharge to participate in the study. Visual acuity, depth perception, the presence of cataract in the red reflex were evaluated. A dilated fundus and slit-lamp examination were performed if possible. On completion of the examination, the ophthalmologist documented the causes of any visual impairment found. Control group was comprised of age-matched 40 subjects (22 females, 18 males; mean age 73.2+/-7.6 years; range 62 to 90 years) who applied to ophtalmology clinic for routine examination. The visual acuity was significantly decreased in the patient group as was stereopsis (p<0.05). We found no difference between the study group and the controls when we evaluate the distribution of self reported eye disease and eye disease found on ocular examination. The rate of cases who reported not usually wearing glasses was 35% while it was 5% in the control group. When we evaluate the time since last examination, 38% of cases had not had an eye examination for over four years, as compared with 22.5% of controls. This study shows that elderly people should have their eyes tested at least once every two years, refractive errors should be corrected and eye diseases should be treated to decrease the risk of fall-related femoral neck fractures.
2011-01-01
Purpose To evaluate the efficacy and toxicity of stereotactic fractionated radiotherapy (SFRT) for patients with pituitary macroadenoma (PMA). Methods and Materials Between March 2000 and March 2009, 27 patients (male to female ratio, 1.25) with PMA underwent SFRT (median dose, 50.4 Gy). Mean age of the patients was 56.5 years (range, 20.3 - 77.4). In all but one patient, SFRT was administered for salvage treatment after surgical resection (transphenoidal resection in 23, transphenoidal resection followed by craniotomy in 2 and multiple transphenoidal resections in another patient). In 10 (37%) patients, the PMAs were functional (3 ACTH-secreting, 3 prolactinomas, 2 growth hormone-secreting and 2 multiple hormone-secretion). Three (11.1%) and 9 (33.3%) patients had PMA abutting and compressing the optic chiasm, respectively. Mean tumor volume was 2.9 ± 4.6 cm3. Eighteen (66.7%) patients had hypopituitarism prior to SFRT. The mean follow-up period after SFRT was 72.4 ± 37.2 months. Results Tumor size decreased for 6 (22.2%) patients and remained unchanged for 19 (70.4%) other patients. Two (7.4%) patients had tumor growth inside the prescribed treatment volume. The estimated 5-year tumor growth control was 95.5% after SFRT. Biochemical remission occurred in 3 (30%) patients with functional PMA. Two patients with normal anterior pituitary function before SFRT developed new deficits 25 and 65 months after treatment. The 5-year survival without new anterior pituitary deficit was thus 95.8%. Five patients with visual field defect had improved visual function and 1 patient with no visual defect prior to SFRT, but an optic chiasm abutting tumor, had a decline in visual function. The estimated 5-year vision and pituitary function preservation rates were 93.2% and 95.8%, respectively. Conclusions SFRT is a safe and effective treatment for patients with PMA, although longer follow-up is needed to evaluate long-term outcomes. In this study, approximately 1 patient with visual field defect out of two had an improved visual function. PMID:22152397
Tear dysfunction and the cornea: LXVIII Edward Jackson Memorial Lecture.
Pflugfelder, Stephen C
2011-12-01
To describe the cause and consequence of tear dysfunction-related corneal disease. Perspective on effects of tear dysfunction on the cornea. Evidence is presented on the effects of tear dysfunction on corneal morphology, function, and health, as well as efficacy of therapies for tear dysfunction-related corneal disease. Tear dysfunction is a prevalent eye disease and the most frequent cause for superficial corneal epithelial disease that results in corneal barrier disruption, an irregular optical surface, light scattering, optical aberrations, and exposure and sensitization of pain-sensing nerve endings (nociceptors). Tear dysfunction-related corneal disease causes irritation and visual symptoms such as photophobia and blurred and fluctuating vision that may decrease quality of life. Dysfunction of 1 or more components of the lacrimal functional unit results in changes in tear composition, including elevated osmolarity and increased concentrations of matrix metalloproteinases, inflammatory cytokines, and chemokines. These tear compositional changes promote disruption of tight junctions, alter differentiation, and accelerate death of corneal epithelial cells. Corneal epithelial disease resulting from tear dysfunction causes eye irritation and decreases visual function. Clinical and basic research has improved understanding of the pathogenesis of tear dysfunction-related corneal epithelial disease, as well as treatment outcomes. Copyright © 2011 Elsevier Inc. All rights reserved.
Gennari, Silvia P; Millman, Rebecca E; Hymers, Mark; Mattys, Sven L
2018-06-12
Perceiving speech while performing another task is a common challenge in everyday life. How the brain controls resource allocation during speech perception remains poorly understood. Using functional magnetic resonance imaging (fMRI), we investigated the effect of cognitive load on speech perception by examining brain responses of participants performing a phoneme discrimination task and a visual working memory task simultaneously. The visual task involved holding either a single meaningless image in working memory (low cognitive load) or four different images (high cognitive load). Performing the speech task under high load, compared to low load, resulted in decreased activity in pSTG/pMTG and increased activity in visual occipital cortex and two regions known to contribute to visual attention regulation-the superior parietal lobule (SPL) and the paracingulate and anterior cingulate gyrus (PaCG, ACG). Critically, activity in PaCG/ACG was correlated with performance in the visual task and with activity in pSTG/pMTG: Increased activity in PaCG/ACG was observed for individuals with poorer visual performance and with decreased activity in pSTG/pMTG. Moreover, activity in a pSTG/pMTG seed region showed psychophysiological interactions with areas of the PaCG/ACG, with stronger interaction in the high-load than the low-load condition. These findings show that the acoustic analysis of speech is affected by the demands of a concurrent visual task and that the PaCG/ACG plays a role in allocating cognitive resources to concurrent auditory and visual information. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Life Span Changes in Visual Enumeration: The Number Discrimination Task.
ERIC Educational Resources Information Center
Trick, Lana M.; And Others
1996-01-01
Ninety-eight participants from 5 age groups with mean ages of 6, 8, 10, 22, and 72 years were tested in a series of speeded number discriminations. Found that response time slope as a function of number size decreased with age for numbers in the 1-4 range. (MDM)
Liu, Tai-Xiang; Chen, Yong-Tao; Dan, Ting-Ting; Shi, Rong; Linghu, Shao-Rong; Li, Hai-Xiang
2015-01-01
Objective: To report on 4-year follow-up of corneal higher-order aberrations and daily visual functions of myopic patients after laser in situ keratomileusis (LASIK). Methods: One hundred thirty four eyes of 67 patients who underwent LASIK guided by aspherical ablation were included in this study. The vision, corneal spherical aberration (SphA) and Coma were recorded before LASIK and at 6 month and 4 year after LASIK. The evaluation of the questionnaire about daily visual functions was performed by the same physician after LASIK. Results: No eye decreased the BCVA during 4 year follow-up. The effect index and safety index were 1.08±0.16, 1.11±0.17 and 1.12±0.16, 1.13±0.14 respectively at 6 month and 4 year post-LASIK. After LASIK the corneal SphA and Coma were significantly increased, however the difference between 6 month and 4 year post-LASIK was no statistical significance. Most patients (94.3%-92.4%) felt satisfaction or high satisfaction about the ability to perform each daily visual function after LASIK. Meanwhile there was still about 7.4%-9.2% patients who complained that they could not drive at night. Further analysis showed that the score of driving at night was negative correlation with corneal SphA (r=-0.645, p=0.040; r=-0.688, p=0.040 at 6 month and 4 year post-LASIK respectively). Conclusions: Our four-year follow-up outcomes indicated that the myopic patients after LASIK had the long-term stable corneal aberration and satisfaction of daily visual functions. PMID:26870114
Iaria, Giuseppe; Fox, Christopher J; Scheel, Michael; Stowe, Robert M; Barton, Jason J S
2010-04-01
In this study, we report the case of a patient experiencing hallucinations of faces that could be reliably precipitated by looking at trees. Using functional Magnetic Resonance Imaging (fMRI), we found that face hallucinations were associated with increased and decreased neural activity in a number of cortical regions. Within the same fusiform face area, however, we found significant decreased and increased neural activity according to whether the patient was experiencing hallucinations or veridical perception of faces, respectively. These findings may indicate key differences in how hallucinatory and veridical perceptions lead to the same phenomenological experience of seeing faces.
Msall, Michael E; Phelps, Dale L; Hardy, Robert J; Dobson, Velma; Quinn, Graham E; Summers, C Gail; Tremont, Michelle R
2004-04-01
To describe the educational status and special education services at 8 years among children who had threshold retinopathy of prematurity (ROP). A prospective study was conducted of a cohort of children who had birth weight of <1251 g and threshold ROP in the Cryotherapy for Retinopathy of Prematurity multicenter study. At age 5.5 years, visual status, functional skills, and social information were obtained. At 8 years, special education classes, developmental disabilities, rehabilitation therapies, and academic and social competencies were determined by questionnaire. Visual status was considered favorable/unfavorable on the basis of the better eye. Of 255 survivors, 216 (85%) were evaluated at both 5.5 and 8 years. Major impairments were significantly more prevalent in children with unfavorable versus favorable visual status: cerebral palsy (39% vs 16%), developmental disability (57% vs 22%), autism (9% vs 1%), and epilepsy (23% vs 3%). Special education services (63% vs 27%), below-grade-level academic performance (84% vs 48%), and school-based rehabilitation services were significantly less common in children with favorable visual status. Favorable visual status, favorable functional ratings at 5.5 years, markers of higher socioeconomic status, and nonblack race were associated with significantly lower rates of both special education placement and below-grade-level academic performance at age 8. On multivariate logistic regression, only favorable visual status and functional status remained significant predictors for decreasing special education placement. Threshold ROP is associated with high rates of developmental, educational, and social challenges in middle childhood; preserved vision was associated with a clear advantage, with more than half of the children with favorable visual status performing at grade level.
Developing Tests of Visual Dependency
NASA Technical Reports Server (NTRS)
Kindrat, Alexandra N.
2011-01-01
Astronauts develop neural adaptive responses to microgravity during space flight. Consequently these adaptive responses cause maladaptive disturbances in balance and gait function when astronauts return to Earth and are re-exposed to gravity. Current research in the Neuroscience Laboratories at NASA-JSC is focused on understanding how exposure to space flight produces post-flight disturbances in balance and gait control and developing training programs designed to facilitate the rapid recovery of functional mobility after space flight. In concert with these disturbances, astronauts also often report an increase in their visual dependency during space flight. To better understand this phenomenon, studies were conducted with specially designed training programs focusing on visual dependency with the aim to understand and enhance subjects ability to rapidly adapt to novel sensory situations. The Rod and Frame test (RFT) was used first to assess an individual s visual dependency, using a variety of testing techniques. Once assessed, subjects were asked to perform two novel tasks under transformation (both the Pegboard and Cube Construction tasks). Results indicate that head position cues and initial visual test conditions had no effect on an individual s visual dependency scores. Subjects were also able to adapt to the manual tasks after several trials. Individual visual dependency correlated with ability to adapt manual to a novel visual distortion only for the cube task. Subjects with higher visual dependency showed decreased ability to adapt to this task. Ultimately, it was revealed that the RFT may serve as an effective prediction tool to produce individualized adaptability training prescriptions that target the specific sensory profile of each crewmember.
Motor performance in children with Noonan syndrome.
Croonen, Ellen A; Essink, Marlou; van der Burgt, Ineke; Draaisma, Jos M; Noordam, Cees; Nijhuis-van der Sanden, Maria W G
2017-09-01
Although problems with motor performance in daily life are frequently mentioned in Noonan syndrome, the motor performance profile has never been systematically investigated. The aim of this study was to examine whether a specific profile in motor performance in children with Noonan syndrome was seen using valid norm-referenced tests. The study assessed motor performance in 19 children with Noonan syndrome (12 females, mean age 9 years 4 months, range 6 years 1 month to 11 years and 11 months, SDS 1 year and 11 months). More than 60% of the parents of the children reported pain, decreased muscle strength, reduced endurance, and/or clumsiness in daily functioning. The mean standard scores on the Visual Motor Integration (VMI) test and Movement Assessment Battery for Children 2, Dutch version (MABC-2-NL) items differed significantly from the reference scores. Grip strength, muscle force, and 6 min Walking Test (6 MWT) walking distance were significantly lower, and the presence of generalized hypermobility was significantly higher. All MABC-2-NL scores (except manual dexterity) correlated significantly with almost all muscle strength tests, VMI total score, and VMI visual perception score. The 6 MWT was only significantly correlated to grip strength. This is the first study that confirms that motor performance, strength, and endurance are significantly impaired in children with Noonan syndrome. Decreased functional motor performance seems to be related to decreased visual perception and reduced muscle strength. Research on causal relationships and the effectiveness of interventions is needed. Physical and/or occupational therapy guidance should be considered to enhance participation in daily life. © 2017 Wiley Periodicals, Inc.
Lozano-Soldevilla, Diego; ter Huurne, Niels; Cools, Roshan; Jensen, Ole
2014-12-15
Impressive in vitro research in rodents and computational modeling has uncovered the core mechanisms responsible for generating neuronal oscillations. In particular, GABAergic interneurons play a crucial role for synchronizing neural populations. Do these mechanistic principles apply to human oscillations associated with function? To address this, we recorded ongoing brain activity using magnetoencephalography (MEG) in healthy human subjects participating in a double-blind pharmacological study receiving placebo, 0.5 mg and 1.5 mg of lorazepam (LZP; a benzodiazepine upregulating GABAergic conductance). Participants performed a demanding visuospatial working memory (WM) task. We found that occipital gamma power associated with WM recognition increased with LZP dosage. Importantly, the frequency of the gamma activity decreased with dosage, as predicted by models derived from the rat hippocampus. A regionally specific gamma increase correlated with the drug-related performance decrease. Despite the system-wide pharmacological intervention, gamma power drug modulations were specific to visual cortex: sensorimotor gamma power and frequency during button presses remained unaffected. In contrast, occipital alpha power modulations during the delay interval decreased parametrically with drug dosage, predicting performance impairment. Consistent with alpha oscillations reflecting functional inhibition, LZP affected alpha power strongly in early visual regions not required for the task demonstrating a regional specific occipital impairment. GABAergic interneurons are strongly implicated in the generation of gamma and alpha oscillations in human occipital cortex where drug-induced power modulations predicted WM performance. Our findings bring us an important step closer to linking neuronal dynamics to behavior by embracing established animal models. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dual processing of visual rotation for bipedal stance control.
Day, Brian L; Muller, Timothy; Offord, Joanna; Di Giulio, Irene
2016-10-01
When standing, the gain of the body-movement response to a sinusoidally moving visual scene has been shown to get smaller with faster stimuli, possibly through changes in the apportioning of visual flow to self-motion or environment motion. We investigated whether visual-flow speed similarly influences the postural response to a discrete, unidirectional rotation of the visual scene in the frontal plane. Contrary to expectation, the evoked postural response consisted of two sequential components with opposite relationships to visual motion speed. With faster visual rotation the early component became smaller, not through a change in gain but by changes in its temporal structure, while the later component grew larger. We propose that the early component arises from the balance control system minimising apparent self-motion, while the later component stems from the postural system realigning the body with gravity. The source of visual motion is inherently ambiguous such that movement of objects in the environment can evoke self-motion illusions and postural adjustments. Theoretically, the brain can mitigate this problem by combining visual signals with other types of information. A Bayesian model that achieves this was previously proposed and predicts a decreasing gain of postural response with increasing visual motion speed. Here we test this prediction for discrete, unidirectional, full-field visual rotations in the frontal plane of standing subjects. The speed (0.75-48 deg s(-1) ) and direction of visual rotation was pseudo-randomly varied and mediolateral responses were measured from displacements of the trunk and horizontal ground reaction forces. The behaviour evoked by this visual rotation was more complex than has hitherto been reported, consisting broadly of two consecutive components with respective latencies of ∼190 ms and >0.7 s. Both components were sensitive to visual rotation speed, but with diametrically opposite relationships. Thus, the early component decreased with faster visual rotation, while the later component increased. Furthermore, the decrease in size of the early component was not achieved by a simple attenuation of gain, but by a change in its temporal structure. We conclude that the two components represent expressions of different motor functions, both pertinent to the control of bipedal stance. We propose that the early response stems from the balance control system attempting to minimise unintended body motion, while the later response arises from the postural control system attempting to align the body with gravity. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Hockenberry, Marilyn J; Krull, Kevin R; Insel, Kathleen C; Harris, Lynnette L; Gundy, Patricia M; Adkins, Kristin B; Pasvogel, Alice E; Taylor, Olga A; Koerner, Kari M; Montgomery, David W; Ross, Adam K; Hill, Adam; Moore, Ida M
2015-09-01
To examine associations among oxidative stress, fine and visual-motor abilities, and behavioral adjustment in children receiving chemotherapy for acute lymphoblastic leukemia (ALL) . A prospective, repeated-measures design . Two pediatric oncology settings in the southwestern United States. 89 children with ALL were followed from diagnosis to the end of chemotherapy. Serial cerebrospinal fluid samples were collected during scheduled lumbar punctures and analyzed for oxidative stress biomarkers. Children completed fine motor dexterity, visual processing speed, and visual-motor integration measures at three time points. Parents completed child behavior ratings at the same times. Oxidative stress, fine motor dexterity, visual processing, visual-motor integration, and behavioral adjustment . Children with ALL had below-average fine motor dexterity, visual processing speed, and visual-motor integration following the induction phase of ALL therapy. By end of therapy, visual processing speed normalized, and fine motor dexterity and visual-motor integration remained below average. Oxidative stress measures correlated with fine motor dexterity and visual-motor integration. Decreased motor functioning was associated with increased hyperactivity and anxiety . Oxidative stress occurs following chemo-therapy for childhood ALL and is related to impaired fine motor skills and visual symptoms . Early intervention should be considered to prevent fine motor and visual-spatial deficits, as well as behavioral problems.
Sheremata, Summer L; Somers, David C; Shomstein, Sarah
2018-02-07
Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. While both require selection of information across the visual field, memory additionally requires the maintenance of information across time and distraction. VSTM recruits areas within human (male and female) dorsal and ventral parietal cortex that are also implicated in spatial selection; therefore, it is important to determine whether overlapping activation might reflect shared attentional demands. Here, identical stimuli and controlled sustained attention across both tasks were used to ask whether fMRI signal amplitude, functional connectivity, and contralateral visual field bias reflect memory-specific task demands. While attention and VSTM activated similar cortical areas, BOLD amplitude and functional connectivity in parietal cortex differentiated the two tasks. Relative to attention, VSTM increased BOLD amplitude in dorsal parietal cortex and decreased BOLD amplitude in the angular gyrus. Additionally, the tasks differentially modulated parietal functional connectivity. Contrasting VSTM and attention, intraparietal sulcus (IPS) 1-2 were more strongly connected with anterior frontoparietal areas and more weakly connected with posterior regions. This divergence between tasks demonstrates that parietal activation reflects memory-specific functions and consequently modulates functional connectivity across the cortex. In contrast, both tasks demonstrated hemispheric asymmetries for spatial processing, exhibiting a stronger contralateral visual field bias in the left versus the right hemisphere across tasks, suggesting that asymmetries are characteristic of a shared selection process in IPS. These results demonstrate that parietal activity and patterns of functional connectivity distinguish VSTM from more general attention processes, establishing a central role of the parietal cortex in maintaining visual information. SIGNIFICANCE STATEMENT Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. Cognitive mechanisms and neural activity underlying these tasks show a large degree of overlap. To examine whether activity within the posterior parietal cortex (PPC) reflects object maintenance across distraction or sustained attention per se, it is necessary to control for attentional demands inherent in VSTM tasks. We demonstrate that activity in PPC reflects VSTM demands even after controlling for attention; remembering items across distraction modulates relationships between parietal and other areas differently than during periods of sustained attention. Our study fills a gap in the literature by directly comparing and controlling for overlap between visual attention and VSTM tasks. Copyright © 2018 the authors 0270-6474/18/381511-09$15.00/0.
Optic nerve sheath meningiomas: visual improvement after stereotactic radiotherapy.
Liu, James K; Forman, Scott; Hershewe, Gerard L; Moorthy, Chitti R; Benzil, Deborah L
2002-05-01
The management of primary optic nerve sheath meningioma (ONSM) is controversial. Surgery often results in postoperative blindness in the affected eye and thus has been abandoned as a treatment option for most patients. When these tumors are left untreated, however, progressive visual impairment ensues, which also leads to blindness. Recently, radiation therapy has gained wider acceptance in the treatment of these lesions. Experience with stereotactic radiotherapy (SRT) in the treatment of ONSMs is limited because of the rare incidence of this tumor. We present a series of patients with ONSM who were treated with SRT. Five patients (three women, two men), ranging in age from 40 to 73 years, presented with progressive visual loss with decreased visual field, visual acuity, and color vision affecting six eyes (one patient had tumor involving both optic nerves). One patient also presented with proptosis and diplopia. Five eyes had functional residual vision (range, 20/20 to 20/40), and one eye was completely blind. All five patients were diagnosed clinically and radiographically to have an ONSM. Three were intraorbital, one was intracanalicular as well as intraorbital, and one was a left ONSM extending through the optic foramen into the intracranial space and involving the right optic nerve. The five functional eyes were treated with SRT by use of 1.8-Gy fractions to a cumulative dose of 45 to 54 Gy. Follow-up ranged from 1 to 7 years, and serial magnetic resonance imaging revealed no changes in the size of the tumor in all five patients. Four patients experienced dramatic improvement in visual acuity, visual field, and color vision within 3 months after SRT. One patient remained stable without evidence of visual deterioration or disease progression. None had radiation-induced optic neuropathy. SRT may be a viable option for treatment of primary ONSM in patients with documented progressive visual deterioration, and it may be effective in improving or stabilizing remaining functional vision.
Graf, Heiko; Metzger, Coraline D; Walter, Martin; Abler, Birgit
2016-01-06
Investigating the effects of serotonergic antidepressants on neural correlates of visual erotic stimulation revealed decreased reactivity within the dopaminergic reward network along with decreased subjective sexual functioning compared with placebo. However, a global dampening of the reward system under serotonergic drugs is not intuitive considering clinical observations of their beneficial effects in the treatment of depression. Particularly, learning signals as coded in prediction error processing within the dopaminergic reward system can be assumed to be rather enhanced as antidepressant drugs have been demonstrated to facilitate the efficacy of psychotherapeutic interventions relying on learning processes. Within the same study sample, we now explored the effects of serotonergic and dopaminergic/noradrenergic antidepressants on prediction error signals compared with placebo by functional MRI. A total of 17 healthy male participants (mean age: 25.4 years) were investigated under the administration of paroxetine, bupropion and placebo for 7 days each within a randomized, double-blind, within-subject cross-over design. During functional MRI, we used an established monetary incentive task to explore neural prediction error signals within the bilateral nucleus accumbens as region of interest within the dopaminergic reward system. In contrast to diminished neural activations and subjective sexual functioning under the serotonergic agent paroxetine under visual erotic stimulation, we revealed unaffected or even enhanced neural prediction error processing within the nucleus accumbens under this antidepressant along with unaffected behavioural processing. Our study provides evidence that serotonergic antidepressants facilitate prediction error signalling and may support suggestions of beneficial effects of these agents on reinforced learning as an essential element in behavioural psychotherapy.
Böcker, K B E; Gerritsen, J; Hunault, C C; Kruidenier, M; Mensinga, Tj T; Kenemans, J L
2010-07-01
Cannabis intake has been reported to affect cognitive functions such as selective attention. This study addressed the effects of exposure to cannabis with up to 69.4mg Delta(9)-tetrahydrocannabinol (THC) on Event-Related Potentials (ERPs) recorded during a visual selective attention task. Twenty-four participants smoked cannabis cigarettes with four doses of THC on four test days in a randomized, double blind, placebo-controlled, crossover study. Two hours after THC exposure the participants performed a visual selective attention task and concomitant ERPs were recorded. Accuracy decreased linearly and reaction times increased linearly with THC dose. However, performance measures and most of the ERP components related specifically to selective attention did not show significant dose effects. Only in relatively light cannabis users the Occipital Selection Negativity decreased linearly with dose. Furthermore, ERP components reflecting perceptual processing, as well as the P300 component, decreased in amplitude after THC exposure. Only the former effect showed a linear dose-response relation. The decrements in performance and ERP amplitudes induced by exposure to cannabis with high THC content resulted from a non-selective decrease in attentional or processing resources. Performance requiring attentional resources, such as vehicle control, may be compromised several hours after smoking cannabis cigarettes containing high doses of THC, as presently available in Europe and Northern America. Copyright 2010 Elsevier Inc. All rights reserved.
Vision after 53 years of blindness.
Sikl, Radovan; Simecček, Michal; Porubanová-Norquist, Michaela; Bezdíček, Ondřej; Kremláček, Jan; Stodůlka, Pavel; Fine, Ione; Ostrovsky, Yuri
2013-01-01
Several studies have shown that visual recovery after blindness that occurs early in life is never complete. The current study investigated whether an extremely long period of blindness might also cause a permanent impairment of visual performance, even in a case of adult-onset blindness. We examined KP, a 71-year-old man who underwent a successful sight-restoring operation after 53 years of blindness. A set of psychophysical tests designed to assess KP's face perception, object recognition, and visual space perception abilities were conducted six months and eight months after the surgery. The results demonstrate that regardless of a lengthy period of normal vision and rich pre-accident perceptual experience, KP did not fully integrate this experience, and his visual performance remained greatly compromised. This was particularly evident when the tasks targeted finer levels of perceptual processing. In addition to the decreased robustness of his memory representations, which was hypothesized as the main factor determining visual impairment, other factors that may have affected KP's performance were considered, including compromised visual functions, problems with perceptual organization, deficits in the simultaneous processing of visual information, and reduced cognitive abilities.
Spiegel, Daniel P; Reynaud, Alexandre; Ruiz, Tatiana; Laguë-Beauvais, Maude; Hess, Robert; Farivar, Reza
2016-05-01
Vision is disrupted by traumatic brain injury (TBI), with vision-related complaints being amongst the most common in this population. Based on the neural responses of early visual cortical areas, injury to the visual cortex would be predicted to affect both 1(st) order and 2(nd) order contrast sensitivity functions (CSFs)-the height and/or the cut-off of the CSF are expected to be affected by TBI. Previous studies have reported disruptions only in 2(nd) order contrast sensitivity, but using a narrow range of parameters and divergent methodologies-no study has characterized the effect of TBI on the full CSF for both 1(st) and 2(nd) order stimuli. Such information is needed to properly understand the effect of TBI on contrast perception, which underlies all visual processing. Using a unified framework based on the quick contrast sensitivity function, we measured full CSFs for static and dynamic 1(st) and 2(nd) order stimuli. Our results provide a unique dataset showing alterations in sensitivity for both 1(st) and 2(nd) order visual stimuli. In particular, we show that TBI patients have increased sensitivity for 1(st) order motion stimuli and decreased sensitivity to orientation-defined and contrast-defined 2(nd) order stimuli. In addition, our data suggest that TBI patients' sensitivity for both 1(st) order stimuli and 2(nd) order contrast-defined stimuli is shifted towards higher spatial frequencies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Decreased visual detection during subliminal stimulation.
Bareither, Isabelle; Villringer, Arno; Busch, Niko A
2014-10-17
What is the perceptual fate of invisible stimuli-are they processed at all and does their processing have consequences for the perception of other stimuli? As has been shown previously in the somatosensory system, even stimuli that are too weak to be consciously detected can influence our perception: Subliminal stimulation impairs perception of near-threshold stimuli and causes a functional deactivation in the somatosensory cortex. In a recent study, we showed that subliminal visual stimuli lead to similar responses, indicated by an increase in alpha-band power as measured with electroencephalography (EEG). In the current study, we investigated whether a behavioral inhibitory mechanism also exists within the visual system. We tested the detection of peripheral visual target stimuli under three different conditions: Target stimuli were presented alone or embedded in a concurrent train of subliminal stimuli either at the same location as the target or in the opposite hemifield. Subliminal stimuli were invisible due to their low contrast, not due to a masking procedure. We demonstrate that target detection was impaired by the subliminal stimuli, but only when they were presented at the same location as the target. This finding indicates that subliminal, low-intensity stimuli induce a similar inhibitory effect in the visual system as has been observed in the somatosensory system. In line with previous reports, we propose that the function underlying this effect is the inhibition of spurious noise by the visual system. © 2014 ARVO.
Refractive index and its impact on pseudophakic dysphotopsia.
Radmall, Bryce R; Floyd, Anne; Oakey, Zack; Olson, Randall J
2015-01-01
It has been shown that the biggest dissatisfier for uncomplicated cataract surgery patients is pseudophakic dysphotopsia (PD). While edge design of an intraocular lens (IOL) impacts this problem, refractive index is still controversial as to its impact. This retrospective cohort study was designed to determine the role of increasing refractive index in PD. This study was conducted at the John A. Moran Eye Center, University of Utah, USA. A retrospective chart review identified patients who received one of two hydrophobic acrylic single piece IOLs (AcrySof WF SP [SN60WF] or Tecnis SP [ZCB00]), which differed mainly by refractive index (1.55 versus 1.47). Eighty-seven patients who had received implantation of a one-piece hydrophobic acrylic IOL were enrolled. Patients were included if the surgery had been uncomplicated and took place at least a year before study participation. All eligible patients had 20/20 best corrected vision, without any disease known to impact visual quality. In addition to conducting a record review, the enrolled patients were surveyed for PD, using a modified National Eye Institute Visual Function questionnaire, as well as for overall satisfaction with visual quality. Statistical analysis demonstrated no difference between the two cohorts regarding PD, general visual function, and overall visual satisfaction. The study suggests that with the two IOLs assessed, increasing the refractive index does not increase incidence of PD or decrease overall visual satisfaction.
Schindler, Andreas; Bartels, Andreas
2017-05-01
Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Bagga, Deepika; Sharma, Aakansha; Kumari, Archana; Kaur, Prabhjot; Bhattacharya, Debajyoti; Garg, Mohan Lal; Khushu, Subash; Singh, Namita
2014-02-01
Chronic alcohol abuse is characterized by impaired cognitive abilities with a more severe deficit in visual than in verbal functions. Neuropathologically, it is associated with widespread brain structural compromise marked by gray matter shrinkage, ventricular enlargement, and white matter degradation. The present study sought to increase current understanding of the impairment of visual processing abilities in alcohol-dependent subjects, and its correlation with white matter microstructural alterations, using diffusion tensor imaging (DTI). To that end, a DTI study was carried out on 35 alcohol-dependent subjects and 30 healthy male control subjects. Neuropsychological tests were assessed for visual processing skills and deficits were reported as raw dysfunction scores (rDyS). Reduced FA (fractional anisotropy) and increased MD (mean diffusivity) were observed bilaterally in inferior and superior fronto-occipital fasciculus (FOF) fiber bundles. A significant inverse correlation in rDyS and FA values was observed in these fiber tracts whereas a positive correlation of these scores was found with the MD values. Our results suggest that FOF fiber bundles linking the frontal lobe to occipital lobe might be related to visual processing skills. This is the first report of an alteration of the white matter microstructure of FOF fiber bundles that might have functional consequences for visual processing in alcohol-dependent subjects who exhibit no neurological complications. Copyright © 2014 Elsevier Inc. All rights reserved.
Differential Expression Patterns of occ1-Related Genes in Adult Monkey Visual Cortex
Takahata, Toru; Komatsu, Yusuke; Watakabe, Akiya; Hashikawa, Tsutomu; Tochitani, Shiro
2009-01-01
We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins. PMID:19073625
Perceptual grouping across eccentricity.
Tannazzo, Teresa; Kurylo, Daniel D; Bukhari, Farhan
2014-10-01
Across the visual field, progressive differences exist in neural processing as well as perceptual abilities. Expansion of stimulus scale across eccentricity compensates for some basic visual capacities, but not for high-order functions. It was hypothesized that as with many higher-order functions, perceptual grouping ability should decline across eccentricity. To test this prediction, psychophysical measurements of grouping were made across eccentricity. Participants indicated the dominant grouping of dot grids in which grouping was based upon luminance, motion, orientation, or proximity. Across trials, the organization of stimuli was systematically decreased until perceived grouping became ambiguous. For all stimulus features, grouping ability remained relatively stable until 40°, beyond which thresholds significantly elevated. The pattern of change across eccentricity varied across stimulus feature, in which stimulus scale, dot size, or stimulus size interacted with eccentricity effects. These results demonstrate that perceptual grouping of such stimuli is not reliant upon foveal viewing, and suggest that selection of dominant grouping patterns from ambiguous displays operates similarly across much of the visual field. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sudden visual loss after cardiac resynchronization therapy device implantation.
De Vitis, Luigi A; Marchese, Alessandro; Giuffrè, Chiara; Carnevali, Adriano; Querques, Lea; Tomasso, Livia; Baldin, Giovanni; Maestranzi, Gisella; Lattanzio, Rosangela; Querques, Giuseppe; Bandello, Francesco
2017-03-10
To report a case of sudden decrease in visual acuity possibly due to a cardiogenic embolism in a patient who underwent cardiac resynchronization therapy (CRT) device implantation. A 62-year-old man with severe left ventricular systolic dysfunction and a left bundle branch block was referred to our department because of a sudden decrease in visual acuity. Nine days earlier, he had undergone cardiac transapical implantation of a CRT device, which was followed, 2 days later, by an inflammatory reaction. The patient underwent several general and ophthalmologic examinations, including multimodal imaging. At presentation, right eye (RE) best-corrected visual acuity (BCVA) was counting fingers and RE pupil was hyporeactive. Fundus examination revealed white-centered hemorrhagic dots suggestive of Roth spots. Fluorescein angiography showed delay in vascular perfusion during early stage, late hyperfluorescence of the macula and optic disk, and peripheral perivascular leakage. The first visual field test showed complete loss of vision RE and a normal left eye. Due to suspected giant cell arteritis, temporal artery biopsy was performed. Thirty minutes after the procedure, an ischemic stroke with right hemisyndrome and aphasia occurred. The RE BCVA worsened to hands motion. Four months later, RE BCVA did not improve, despite improvement in fluorescein angiography inflammatory sign. We report a possible cardiogenic embolism secondary to undiagnosed infective endocarditis causing monocular visual loss after CRT device implantation. It remains unclear how the embolus caused severe functional damage without altering the retinal anatomical structure.
Visual defects in a mouse model of fetal alcohol spectrum disorder.
Lantz, Crystal L; Pulimood, Nisha S; Rodrigues-Junior, Wandilson S; Chen, Ching-Kang; Manhaes, Alex C; Kalatsky, Valery A; Medina, Alexandre Esteves
2014-01-01
Alcohol consumption during pregnancy can lead to a multitude of neurological problems in offspring, varying from subtle behavioral changes to severe mental retardation. These alterations are collectively referred to as Fetal Alcohol Spectrum Disorders (FASD). Early alcohol exposure can strongly affect the visual system and children with FASD can exhibit an amblyopia-like pattern of visual acuity deficits even in the absence of optical and oculomotor disruption. Here, we test whether early alcohol exposure can lead to a disruption in visual acuity, using a model of FASD to mimic alcohol consumption in the last months of human gestation. To accomplish this, mice were exposed to ethanol (5 g/kg i.p.) or saline on postnatal days (P) 5, 7, and 9. Two to three weeks later we recorded visually evoked potentials to assess spatial frequency detection and contrast sensitivity, conducted electroretinography (ERG) to further assess visual function and imaged retinotopy using optical imaging of intrinsic signals. We observed that animals exposed to ethanol displayed spatial frequency acuity curves similar to controls. However, ethanol-treated animals showed a significant deficit in contrast sensitivity. Moreover, ERGs revealed a market decrease in both a- and b-waves amplitudes, and optical imaging suggest that both elevation and azimuth maps in ethanol-treated animals have a 10-20° greater map tilt compared to saline-treated controls. Overall, our findings suggest that binge alcohol drinking restricted to the last months of gestation in humans can lead to marked deficits in visual function.
Zhou, Zhe Charles; Yu, Chunxiu; Sellers, Kristin K.; Fröhlich, Flavio
2016-01-01
Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-alternative forced choice visual discrimination task with high- and low-contrast visual input. About two-thirds of all recorded neurons in dl-FC were modulated by at least one of the two task variables, task difficulty and target location. More neurons in dl-FC preferred the hard trials; no such preference bias was found for target location. In individual neurons, this preference for specific task types was limited to brief epochs. Finally, optogenetic stimulation confirmed the functional role of the activity in dl-FC before target touch; suppression of activity in pyramidal neurons with the ArchT silencing opsin resulted in a decrease in reaction time to touch the target but not to retrieve reward. In conclusion, dl-FC activity is differentially recruited for high perceptual difficulty in the freely-moving ferret and the resulting signal may provide top-down behavioral inhibition. PMID:27025995
Zhou, Zhe Charles; Yu, Chunxiu; Sellers, Kristin K; Fröhlich, Flavio
2016-03-30
Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-alternative forced choice visual discrimination task with high- and low-contrast visual input. About two-thirds of all recorded neurons in dl-FC were modulated by at least one of the two task variables, task difficulty and target location. More neurons in dl-FC preferred the hard trials; no such preference bias was found for target location. In individual neurons, this preference for specific task types was limited to brief epochs. Finally, optogenetic stimulation confirmed the functional role of the activity in dl-FC before target touch; suppression of activity in pyramidal neurons with the ArchT silencing opsin resulted in a decrease in reaction time to touch the target but not to retrieve reward. In conclusion, dl-FC activity is differentially recruited for high perceptual difficulty in the freely-moving ferret and the resulting signal may provide top-down behavioral inhibition.
Brain activity and connectivity changes in response to glucose ingestion.
van Opstal, A M; Hafkemeijer, A; van den Berg-Huysmans, A A; Hoeksma, M; Blonk, C; Pijl, H; Rombouts, S A R B; van der Grond, J
2018-05-27
The regulatory role of the brain in directing eating behavior becomes increasingly recognized. Although many areas in the brain have been found to respond to food cues, very little data is available after actual caloric intake. The aim of this study was to determine normal whole brain functional responses to ingestion of glucose after an overnight fast. Twenty-five normal weight, adult males underwent functional MRI on two separate visits. In a single-blind randomized study setup, participants received either glucose solution (50 g/300 ml of water) or plain water. We studied changes in Blood Oxygen Level Dependent (BOLD) signal, voxel-based connectivity by Eigenvector Centrality Mapping, and functional network connectivity. Ingestion of glucose led to increased centrality in the thalamus and to decreases in BOLD signal in various brain areas. Decreases in connectivity in the sensory-motor and dorsal visual stream networks were found. Ingestion of water resulted in increased centrality across the brain, and increases in connectivity in the medial and lateral visual cortex network. Increased BOLD intensity was found in the intracalcarine and cingulate cortex. Our data show that ingestion of glucose leads to decreased activity and connectivity in brain areas and networks linked to energy seeking and satiation. In contrast, drinking plain water leads to increased connectivity probably associated with continued food seeking and unfulfilled reward. Trail registration: This study combines data of two studies registered at clinicaltrails.gov under numbers NCT03202342 and NCT03247114.
Welker, Kirk M; De Jesus, Reordan O; Watson, Robert E; Machulda, Mary M; Jack, Clifford R
2012-10-01
To test the hypothesis that leukoaraiosis alters functional activation during a semantic decision language task. With institutional review board approval and written informed consent, 18 right-handed, cognitively healthy elderly participants with an aggregate leukoaraiosis lesion volume of more than 25 cm(3) and 18 age-matched control participants with less than 5 cm(3) of leukoaraiosis underwent functional MR imaging to allow comparison of activation during semantic decisions with that during visual perceptual decisions. Brain statistical maps were derived from the general linear model. Spatially normalized group t maps were created from individual contrast images. A cluster extent threshold of 215 voxels was used to correct for multiple comparisons. Intergroup random effects analysis was performed. Language laterality indexes were calculated for each participant. In control participants, semantic decisions activated the bilateral visual cortex, left posteroinferior temporal lobe, left posterior cingulate gyrus, left frontal lobe expressive language regions, and left basal ganglia. Visual perceptual decisions activated the right parietal and posterior temporal lobes. Participants with leukoaraiosis showed reduced activation in all regions associated with semantic decisions; however, activation associated with visual perceptual decisions increased in extent. Intergroup analysis showed significant activation decreases in the left anterior occipital lobe (P=.016), right posterior temporal lobe (P=.048), and right basal ganglia (P=.009) in particpants with leukoariosis. Individual participant laterality indexes showed a strong trend (P=.059) toward greater left lateralization in the leukoaraiosis group. Moderate leukoaraiosis is associated with atypical functional activation during semantic decision tasks. Consequently, leukoaraiosis is an important confounding variable in functional MR imaging studies of elderly individuals. © RSNA, 2012.
Davis, Zachary W.; Chapman, Barbara
2015-01-01
Visually evoked activity is necessary for the normal development of the visual system. However, little is known about the capacity for patterned spontaneous activity to drive the maturation of receptive fields before visual experience. Retinal waves provide instructive retinotopic information for the anatomical organization of the visual thalamus. To determine whether retinal waves also drive the maturation of functional responses, we increased the frequency of retinal waves pharmacologically in the ferret (Mustela putorius furo) during a period of retinogeniculate development before eye opening. The development of geniculate receptive fields after receiving these increased neural activities was measured using single-unit electrophysiology. We found that increased retinal waves accelerate the developmental reduction of geniculate receptive field sizes. This reduction is due to a decrease in receptive field center size rather than an increase in inhibitory surround strength. This work reveals an instructive role for patterned spontaneous activity in guiding the functional development of neural circuits. SIGNIFICANCE STATEMENT Patterned spontaneous neural activity that occurs during development is known to be necessary for the proper formation of neural circuits. However, it is unknown whether the spontaneous activity alone is sufficient to drive the maturation of the functional properties of neurons. Our work demonstrates for the first time an acceleration in the maturation of neural function as a consequence of driving patterned spontaneous activity during development. This work has implications for our understanding of how neural circuits can be modified actively to improve function prematurely or to recover from injury with guided interventions of patterned neural activity. PMID:26511250
Graci, Valentina; Rabuffetti, Marco; Frigo, Carlo; Ferrarin, Maurizio
2017-02-01
The importance of peripheral visual information during stair climbing and how peripheral visual information is weighted as a function of step number during step climbing is unclear. Previous authors postulated that the knowledge of predictable characteristics of the steps may decrease reliance on foveal vision and transfer the online visual guidance of stair climbing to peripheral vision. Hence the aim of this study was to investigate if and how the occlusion of the lower peripheral visual field influenced stair climbing and if peripheral visual information was weighted differently between steps. Ten young adult male participants ascended a 5-step staircase under 2 visual conditions: full vision (FV) and lower visual occlusion (LO). Kinematic data (100Hz) were collected. The effect of Vision and Step condition on vertical forefoot clearance was examined with a Repeated Measures 2-way ANOVA. Tukey's HSD test was used for post-hoc comparisons. A significant interaction Vision x Step and main effect of Step were found (p<=0.04): vertical forefoot clearance was greater in LO compared to FV condition only on the 1st and the 2nd steps (p<0.013) and on the last step compared to the other steps (p<0.01). These findings suggest that online peripheral visual information is more relevant when negotiating the first two steps, rather than the end of a staircase and that the steps subsequent the first few ones may require different information likely based on proprioception or working memory of the step height. Copyright © 2016 Elsevier B.V. All rights reserved.
Functional vision in children with perinatal brain damage.
Alimović, Sonja; Jurić, Nikolina; Bošnjak, Vlatka Mejaški
2014-09-01
Many authors have discussed the effects of visual stimulations on visual functions, but there is no research about the effects on using vision in everyday activities (i.e. functional vision). Children with perinatal brain damage can develop cerebral visual impairment with preserved visual functions (e.g. visual acuity, contrast sensitivity) but poor functional vision. Our aim was to discuss the importance of assessing and stimulating functional vision in children with perinatal brain damage. We assessed visual functions (grating visual acuity, contrast sensitivity) and functional vision (the ability of maintaining visual attention and using vision in communication) in 99 children with perinatal brain damage and visual impairment. All children were assessed before and after the visual stimulation program. Our first assessment results showed that children with perinatal brain damage had significantly more problems in functional vision than in basic visual functions. During the visual stimulation program both variables of functional vision and contrast sensitivity improved significantly, while grating acuity improved only in 2.7% of children. We also found that improvement of visual attention significantly correlated to improvement on all other functions describing vision. Therefore, functional vision assessment, especially assessment of visual attention is indispensable in early monitoring of child with perinatal brain damage.
García-Domene, M C; Luque, M J; Díez-Ajenjo, M A; Desco-Esteban, M C; Artigas, J M
2018-02-01
To analyse the relationship between the choroidal thickness and the visual perception of patients with high myopia but without retinal damage. All patients underwent ophthalmic evaluation including a slit lamp examination and dilated ophthalmoscopy, subjective refraction, best corrected visual acuity, axial length, optical coherence tomography, contrast sensitivity function and sensitivity of the visual pathways. We included eleven eyes of subjects with high myopia. There are statistical correlations between choroidal thickness and almost all the contrast sensitivity values. The sensitivity of magnocellular and koniocellular pathways is the most affected, and the homogeneity of the sensibility of the magnocellular pathway depends on the choroidal thickness; when the thickness decreases, the sensitivity impairment extends from the center to the periphery of the visual field. Patients with high myopia without any fundus changes have visual impairments. We have found that choroidal thickness correlates with perceptual parameters such as contrast sensitivity or mean defect and pattern standard deviation of the visual fields of some visual pathways. Our study shows that the magnocellular and koniocellular pathways are the most affected, so that these patients have impairment in motion perception and blue-yellow contrast perception. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Baslow, Morris H; Hu, Caixia; Guilfoyle, David N
2012-07-01
In a human magnetic resonance diffusion-weighted imaging (DWI) investigation at 3 T and high diffusion sensitivity weighting (b = 1,800 s/mm(2)), which emphasizes the contribution of water in the extra-vascular compartment and minimizes that of the vascular compartment, we observed that visual stimulation with a flashing checkerboard at 8 Hz for a period of 600 s in eight subjects resulted in significant increases in DWI signals (mean +2.70%, range +0.51 to 8.54%). The increases in DWI signals in activated areas of the visual cortex indicated that during stimulation, the apparent diffusion coefficient (ADC) of extra-vascular compartment water decreased. In response to continuous stimulation, DWI signals gradually increased from pre-stimulation controls, leveling off after 400-500 s. During recovery from stimulation, DWI signals gradually decreased, approaching control levels in 300-400 s. In this study, we show for the first time that the effects of visual stimulation on DWI signals in the human visual cortex are cumulative over an extended period of time. We propose that these relatively slow stimulation-induced changes in the ADC of water in the extra-vascular compartment are due to transient changes in the ratio of faster diffusing free water to slower diffusing bound water and reflect brain water transport processes between the vascular and extra-vascular compartments at the cellular level. The nature of these processes including possible roles of the putative glucose water import and N-acetylaspartate water export molecular water pumps in brain function are discussed.
Usefulness of Intraoperative Monitoring of Visual Evoked Potentials in Transsphenoidal Surgery
KAMIO, Yoshinobu; SAKAI, Naoto; SAMESHIMA, Tetsuro; TAKAHASHI, Goro; KOIZUMI, Shinichiro; SUGIYAMA, Kenji; NAMBA, Hiroki
2014-01-01
Postoperative visual outcome is a major concern in transsphenoidal surgery (TSS). Intraoperative visual evoked potential (VEP) monitoring has been reported to have little usefulness in predicting postoperative visual outcome. To re-evaluate its usefulness, we adapted a high-power light-stimulating device with electroretinography (ERG) to ascertain retinal light stimulation. Intraoperative VEP monitoring was conducted in TSSs in 33 consecutive patients with sellar and parasellar tumors under total venous anesthesia. The detectability rates of N75, P100, and N135 were 94.0%, 85.0%, and 79.0%, respectively. The mean latencies and amplitudes of N75, P100, and N135 were 76.8 ± 6.4 msec and 4.6 ± 1.8 μV, 98.0 ± 8.6 msec and 5.0 ± 3.4 μV, and 122.1 ± 16.3 msec and 5.7 ± 2.8 μV, respectively. The amplitude was defined as the voltage difference from N75 to P100 or P100 to N135. The criterion for amplitude changes was defined as a > 50% increase or 50% decrease in amplitude compared to the control level. The surgeon was immediately alerted when the VEP changed beyond these thresholds, and the surgical manipulations were stopped until the VEP recovered. Among the 28 cases with evaluable VEP recordings, the VEP amplitudes were stable in 23 cases and transiently decreased in 4 cases. In these 4 cases, no postoperative vision deterioration was observed. One patient, whose VEP amplitude decreased without subsequent recovery, developed vision deterioration. Intraoperative VEP monitoring with ERG to ascertain retinal light stimulation by the new stimulus device was reliable and feasible in preserving visual function in patients undergoing TSS. PMID:25070017
Barteselli, G; Gomez, M L; Doede, A L; Chhablani, J; Gutstein, W; Bartsch, D-U; Dustin, L; Azen, S P; Freeman, W R
2014-10-01
To evaluate visual function variations in eyes with age-related macular degeneration (AMD) compared to normal eyes under different light/contrast conditions using a time-dependent visual acuity testing instrument, the Central Vision Analyzer (CVA). Overall, 37 AMD eyes and 35 normal eyes were consecutively tested with the CVA after assessing best-corrected visual acuity (BCVA) using ETDRS charts. The CVA established visual thresholds for three mesopic environments (M1 (high contrast), M2 (medium contrast), and M3 (low contrast)) and three backlight-glare environments (G1 (high contrast, equivalent to ETDRS), G2 (medium contrast), and G3 (low contrast)) under timed conditions. Vision drop across environments was calculated, and repeatability of visual scores was determined. BCVA significantly reduced with decreasing contrast in all eyes. M1 scores for BCVA were greater than M2 and M3 (P<0.001); G1 scores were greater than G2 and G3 (P<0.01). BCVA dropped more in AMD eyes than in normal eyes between M1 and M2 (P=0.002) and between M1 and M3 (P=0.003). In AMD eyes, BCVA was better using ETDRS charts compared to G1 (P<0.001). The drop in visual function between ETDRS and G1 was greater in AMD eyes compared to normal eyes (P=0.004). Standard deviations of test-retest ranged from 0.100 to 0.139 logMAR. The CVA allowed analysis of the visual complaints that AMD patients experience with different lighting/contrast time-dependent conditions. BCVA changed significantly under different lighting/contrast conditions in all eyes, however, AMD eyes were more affected by contrast reduction than normal eyes. In AMD eyes, timed conditions using the CVA led to worse BCVA compared to non-timed ETDRS charts.
Fillion, Myriam; Lemire, Mélanie; Philibert, Aline; Frenette, Benoît; Weiler, Hope Alberta; Deguire, Jason Robert; Guimarães, Jean Remy Davée; Larribe, Fabrice; Barbosa, Fernando; Mergler, Donna
2013-07-01
Visual functions are known to be sensitive to toxins such as mercury (Hg) and lead (Pb), while omega-3 fatty acids (FA) and selenium (Se) may be protective. In the Tapajós region of the Brazilian Amazon, all of these elements are present in the local diet. Examine how near visual contrast sensitivity and acquired color vision loss vary with biomarkers of toxic exposures (Hg and Pb) and the nutrients Se and omega-3 FA in riverside communities of the Tapajós. Complete visuo-ocular examinations were performed. Near visual contrast sensitivity and color vision were assessed in 228 participants (≥15 years) without diagnosed age-related cataracts or ocular pathologies and with near visual acuity refracted to at least 20/40. Biomarkers of Hg (hair), Pb (blood), Se (plasma), and the omega-3 FAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in plasma phospholipids were measured. Multiple linear regressions were used to examine the relations between visual outcomes and biomarkers, taking into account age, sex, drinking and smoking. Reduced contrast sensitivity at all spatial frequencies was associated with hair Hg, while %EPA, and to a lesser extent %EPA+DHA, were associated with better visual function. The intermediate spatial frequency of contrast sensitivity (12 cycles/degree) was negatively related to blood Pb and positively associated with plasma Se. Acquired color vision loss increased with hair Hg and decreased with plasma Se and %EPA. These findings suggest that the local diet of riverside communities of the Amazon contain toxic substances that can have deleterious effects on vision as well as nutrients that are beneficial for visual function. Since remediation at the source is a long process, a better knowledge of the nutrient content and health effects of traditional foods would be useful to minimize harmful effects of Hg and Pb exposure. Copyright © 2013 Elsevier Inc. All rights reserved.
[Tanning lamp radiation-induced photochemical retinal damage].
Volkov, V V; Kharitonova, N N; Mal'tsev, D S
2014-01-01
On the basis of original clinical research a rare case of bilateral retinal damage due to tanning lamp radiation exposure is presented. Along with significant decrease of visual acuity and light sensitivity of central visual field as well as color vision impairment, bilateral macular dystrophy was found during an ophthalmoscopy and confirmed by optical coherent tomography and fluorescent angiography. Intensive retinoprotective, vascular, and antioxidant therapy was effective and led to functional improvement and stabilization of the pathologic process associated with photochemical retinal damage. A brief review of literature compares mechanisms of retinal damage by either short or long-wave near visible radiation.
Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system.
Smolders, Katrien; Vreysen, Samme; Laramée, Marie-Eve; Cuyvers, Annemie; Hu, Tjing-Tjing; Van Brussel, Leen; Eysel, Ulf T; Nys, Julie; Arckens, Lutgarde
2016-09-01
Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Poon, Cynthia; Coombes, Stephen A.; Corcos, Daniel M.; Christou, Evangelos A.
2013-01-01
When subjects perform a learned motor task with increased visual gain, error and variability are reduced. Neuroimaging studies have identified a corresponding increase in activity in parietal cortex, premotor cortex, primary motor cortex, and extrastriate visual cortex. Much less is understood about the neural processes that underlie the immediate transition from low to high visual gain within a trial. This study used 128-channel electroencephalography to measure cortical activity during a visually guided precision grip task, in which the gain of the visual display was changed during the task. Force variability during the transition from low to high visual gain was characterized by an inverted U-shape, whereas force error decreased from low to high gain. Source analysis identified cortical activity in the same structures previously identified using functional magnetic resonance imaging. Source analysis also identified a time-varying shift in the strongest source activity. Superior regions of the motor and parietal cortex had stronger source activity from 300 to 600 ms after the transition, whereas inferior regions of the extrastriate visual cortex had stronger source activity from 500 to 700 ms after the transition. Force variability and electrical activity were linearly related, with a positive relation in the parietal cortex and a negative relation in the frontal cortex. Force error was nonlinearly related to electrical activity in the parietal cortex and frontal cortex by a quadratic function. This is the first evidence that force variability and force error are systematically related to a time-varying shift in cortical activity in frontal and parietal cortex in response to enhanced visual gain. PMID:23365186
Katz, A; Awad, I A; Kong, A K; Chelune, G J; Naugle, R I; Wyllie, E; Beauchamp, G; Lüders, H
1989-01-01
We present correlations of extent of temporal lobectomy for intractable epilepsy with postoperative memory changes (20 cases) and abnormalities of visual field and neurologic examination (45 cases). Postoperative magnetic resonance imaging (MRI) in the coronal plane was used to quantify anteroposterior extent of resection of various quadrants of the temporal lobe, using a 20-compartment model of that structure. The Wechsler Memory Scale-Revised (WMS-R) was administered preoperatively and postoperatively. Postoperative decrease in percentage of retention of verbal material correlated with extent of medial resection of left temporal lobe, whereas decrease in percentage of retention of visual material correlated with extent of medial resection of right temporal lobe. These correlations approached but did not reach statistical significance. Extent of resection correlated significantly with the presence of visual field defect on perimetry testing but not with severity, denseness, or congruity of the defect. There was no correlation between postoperative dysphasia and extent of resection in any quadrant. Assessment of extent of resection after temporal lobectomy allows a rational interpretation of postoperative neurologic deficits in light of functional anatomy of the temporal lobe.
Optic nerve compression as a late complication of a hydrogel explant with silicone encircling band.
Crama, Niels; Kluijtmans, Leo; Klevering, B Jeroen
2018-06-01
To present a complication of compressive optic neuropathy caused by a swollen hydrogel explant and posteriorly displaced silicone encircling band. A 72-year-old female patient presented with progressive visual loss and a tilted optic disc. Her medical history included a retinal detachment in 1993 that was treated with a hydrogel explant under a solid silicone encircling band. Visual acuity had decreased from 6/10 to 6/20 and perimetry showed a scotoma in the temporal superior quadrant. On Magnetic Resonance Imaging (MRI), compression of the optic nerve by a displaced silicone encircling band inferior nasally in combination with a swollen episcleral hydrogel explant was observed. Surgical removal of the hydrogel explant and silicone encircling band was uneventful and resulted in improvement of visual acuity and visual field loss. This is the first report on compressive optic neuropathy caused by swelling of a hydrogel explant resulting in a dislocated silicone encircling band. The loss of visual function resolved upon removal of the explant and encircling band.
NASA Astrophysics Data System (ADS)
Li, Ting; Zhao, Yue; Sun, Yunlong; Gao, Yuan; Su, Yu; Hetian, Yiyi; Chen, Min
2015-03-01
Driver fatigue is one of the leading causes of traffic accidents. It is imperative to develop a technique to monitor fatigue of drivers in real situation. Near-infrared spectroscopy (fNIRS) is now capable of measuring brain functional activity noninvasively in terms of hemodynamic responses sensitively, which shed a light to us that it may be possible to detect fatigue-specified brain functional activity signal. We developed a sensitive, portable and absolute-measure fNIRS, and utilized it to monitor cerebral hemodynamics on car drivers during prolonged true driving. An odd-ball protocol was employed to trigger the drivers' visual divided attention, which is a critical function in safe driving. We found that oxyhemoglobin concentration and blood volume in prefrontal lobe dramatically increased with driving duration (stand for fatigue degree; 2-10 hours), while deoxyhemoglobin concentration increased to the top at 4 hours then decreased slowly. The behavior performance showed clear decrement only after 6 hours. Our study showed the strong potential of fNIRS combined with divided visual attention protocol in driving fatigue degree monitoring. Our findings indicated the fNIRS-measured hemodynamic parameters were more sensitive than behavior performance evaluation.
Gilaie-Dotan, Sharon
2016-03-01
A key question in visual neuroscience is the causal link between specific brain areas and perceptual functions; which regions are necessary for which visual functions? While the contribution of primary visual cortex and high-level visual regions to visual perception has been extensively investigated, the contribution of intermediate visual areas (e.g. V2/V3) to visual processes remains unclear. Here I review more than 20 visual functions (early, mid, and high-level) of LG, a developmental visual agnosic and prosopagnosic young adult, whose intermediate visual regions function in a significantly abnormal fashion as revealed through extensive fMRI and ERP investigations. While expectedly, some of LG's visual functions are significantly impaired, some of his visual functions are surprisingly normal (e.g. stereopsis, color, reading, biological motion). During the period of eight-year testing described here, LG trained on a perceptual learning paradigm that was successful in improving some but not all of his visual functions. Following LG's visual performance and taking into account additional findings in the field, I propose a framework for how different visual areas contribute to different visual functions, with an emphasis on intermediate visual regions. Thus, although rewiring and plasticity in the brain can occur during development to overcome and compensate for hindering developmental factors, LG's case seems to indicate that some visual functions are much less dependent on strict hierarchical flow than others, and can develop normally in spite of abnormal mid-level visual areas, thereby probably less dependent on intermediate visual regions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Henriksson, Linda; Karvonen, Juha; Salminen-Vaparanta, Niina; Railo, Henry; Vanni, Simo
2012-01-01
The localization of visual areas in the human cortex is typically based on mapping the retinotopic organization with functional magnetic resonance imaging (fMRI). The most common approach is to encode the response phase for a slowly moving visual stimulus and to present the result on an individual's reconstructed cortical surface. The main aims of this study were to develop complementary general linear model (GLM)-based retinotopic mapping methods and to characterize the inter-individual variability of the visual area positions on the cortical surface. We studied 15 subjects with two methods: a 24-region multifocal checkerboard stimulus and a blocked presentation of object stimuli at different visual field locations. The retinotopic maps were based on weighted averaging of the GLM parameter estimates for the stimulus regions. In addition to localizing visual areas, both methods could be used to localize multiple retinotopic regions-of-interest. The two methods yielded consistent retinotopic maps in the visual areas V1, V2, V3, hV4, and V3AB. In the higher-level areas IPS0, VO1, LO1, LO2, TO1, and TO2, retinotopy could only be mapped with the blocked stimulus presentation. The gradual widening of spatial tuning and an increase in the responses to stimuli in the ipsilateral visual field along the hierarchy of visual areas likely reflected the increase in the average receptive field size. Finally, after registration to Freesurfer's surface-based atlas of the human cerebral cortex, we calculated the mean and variability of the visual area positions in the spherical surface-based coordinate system and generated probability maps of the visual areas on the average cortical surface. The inter-individual variability in the area locations decreased when the midpoints were calculated along the spherical cortical surface compared with volumetric coordinates. These results can facilitate both analysis of individual functional anatomy and comparisons of visual cortex topology across studies. PMID:22590626
Photosensitive epilepsy is associated with reduced inhibition of alpha rhythm generating networks
Vaudano, Anna Elisabetta; Ruggieri, Andrea; Avanzini, Pietro; Gessaroli, Giuliana; Cantalupo, Gaetano; Coppola, Antonietta; Sisodiya, Sanjay M.
2017-01-01
Abstract See Hamandi (doi:10.1093/awx049) for a scientific commentary on this article. Photosensitivity is a condition in which lights induce epileptiform activities. This abnormal electroencephalographic response has been associated with hyperexcitability of the visuo-motor system. Here, we evaluate if intrinsic dysfunction of this network is present in brain activity at rest, independently of any stimulus and of any paroxysmal electroencephalographic activity. To address this issue, we investigated the haemodynamic correlates of the spontaneous alpha rhythm, which is considered the hallmark of the brain resting state, in photosensitive patients and in people without photosensitivity. Second, we evaluated the whole-brain functional connectivity of the visual thalamic nuclei in the various populations of subjects under investigation. Forty-four patients with epilepsy and 16 healthy control subjects underwent an electroencephalography-correlated functional magnetic resonance imaging study, during an eyes-closed condition. The following patient groups were included: (i) genetic generalized epilepsy with photosensitivity, 16 subjects (mean age 25 ± 10 years); (ii) genetic generalized epilepsy without photosensitivity, 13 patients (mean age 25 ± 11 years); (iii) focal epilepsy, 15 patients (mean age 25 ± 9 years). For each subject, the posterior alpha power variations were convolved with the standard haemodynamic response function and used as a regressor. Within- and between-groups second level analyses were performed. Whole brain functional connectivity was evaluated for two thalamic regions of interest, based on the haemodynamic findings, which included the posterior thalamus (pulvinar) and the medio-dorsal thalamic nuclei. Genetic generalized epilepsy with photosensitivity demonstrated significantly greater mean alpha-power with respect to controls and other epilepsy groups. In photosensitive epilepsy, alpha-related blood oxygen level-dependent signal changes demonstrated lower decreases relative to all other groups in the occipital, sensory-motor, anterior cingulate and supplementary motor cortices. Coherently, the same brain regions demonstrated abnormal connectivity with the visual thalamus only in epilepsy patients with photosensitivity. As predicted, our findings indicate that the cortical-subcortical network generating the alpha oscillation at rest is different in people with epilepsy and visual sensitivity. This difference consists of a decreased alpha-related inhibition of the visual cortex and sensory-motor networks at rest. These findings represent the substrate of the clinical manifestations (i.e. myoclonus) of the photoparoxysmal response. Moreover, our results provide the first evidence of the existence of a functional link between the circuits that trigger the visual sensitivity phenomenon and those that generate the posterior alpha rhythm. PMID:28334965
Huang, Huiyuan; Wang, Junjing; Seger, Carol; Lu, Min; Deng, Feng; Wu, Xiaoyan; He, Yuan; Niu, Chen; Wang, Jun; Huang, Ruiwang
2018-01-01
Long-term intensive gymnastic training can induce brain structural and functional reorganization. Previous studies have identified structural and functional network differences between world class gymnasts (WCGs) and non-athletes at the whole-brain level. However, it is still unclear how interactions within and between functional networks are affected by long-term intensive gymnastic training. We examined both intra- and inter-network functional connectivity of gymnasts relative to non-athletes using resting-state fMRI (R-fMRI). R-fMRI data were acquired from 13 WCGs and 14 non-athlete controls. Group-independent component analysis (ICA) was adopted to decompose the R-fMRI data into spatial independent components and associated time courses. An automatic component identification method was used to identify components of interest associated with resting-state networks (RSNs). We identified nine RSNs, the basal ganglia network (BG), sensorimotor network (SMN), cerebellum (CB), anterior and posterior default mode networks (aDMN/pDMN), left and right fronto-parietal networks (lFPN/rFPN), primary visual network (PVN), and extrastriate visual network (EVN). Statistical analyses revealed that the intra-network functional connectivity was significantly decreased within the BG, aDMN, lFPN, and rFPN, but increased within the EVN in the WCGs compared to the controls. In addition, the WCGs showed uniformly decreased inter-network functional connectivity between SMN and BG, CB, and PVN, BG and PVN, and pDMN and rFPN compared to the controls. We interpret this generally weaker intra- and inter-network functional connectivity in WCGs during the resting state as a result of greater efficiency in the WCGs' brain associated with long-term motor skill training.
Is improved contrast sensitivity a natural consequence of visual training?
Levi, Aaron; Shaked, Danielle; Tadin, Duje; Huxlin, Krystel R.
2015-01-01
Many studies have shown that training and testing conditions modulate specificity of visual learning to trained stimuli and tasks. In visually impaired populations, generalizability of visual learning to untrained stimuli/tasks is almost always reported, with contrast sensitivity (CS) featuring prominently among these collaterally-improved functions. To understand factors underlying this difference, we measured CS for direction and orientation discrimination in the visual periphery of three groups of visually-intact subjects. Group 1 trained on an orientation discrimination task with static Gabors whose luminance contrast was decreased as performance improved. Group 2 trained on a global direction discrimination task using high-contrast random dot stimuli previously used to recover motion perception in cortically blind patients. Group 3 underwent no training. Both forms of training improved CS with some degree of specificity for basic attributes of the trained stimulus/task. Group 1's largest enhancement was in CS around the trained spatial/temporal frequencies; similarly, Group 2's largest improvements occurred in CS for discriminating moving and flickering stimuli. Group 3 saw no significant CS changes. These results indicate that CS improvements may be a natural consequence of multiple forms of visual training in visually intact humans, albeit with some specificity to the trained visual domain(s). PMID:26305736
Visual-perceptual impairment in children with cerebral palsy: a systematic review.
Ego, Anne; Lidzba, Karen; Brovedani, Paola; Belmonti, Vittorio; Gonzalez-Monge, Sibylle; Boudia, Baya; Ritz, Annie; Cans, Christine
2015-04-01
Visual perception is one of the cognitive functions often impaired in children with cerebral palsy (CP). The aim of this systematic literature review was to assess the frequency of visual-perceptual impairment (VPI) and its relationship with patient characteristics. Eligible studies were relevant papers assessing visual perception with five common standardized assessment instruments in children with CP published from January 1990 to August 2011. Of the 84 studies selected, 15 were retained. In children with CP, the proportion of VPI ranged from 40% to 50% and the mean visual perception quotient from 70 to 90. None of the studies reported a significant influence of CP subtype, IQ level, side of motor impairment, neuro-ophthalmological outcomes, or seizures. The severity of neuroradiological lesions seemed associated with VPI. The influence of prematurity was controversial, but a lower gestational age was more often associated with lower visual motor skills than with decreased visual-perceptual abilities. The impairment of visual perception in children with CP should be considered a core disorder within the CP syndrome. Further research, including a more systematic approach to neuropsychological testing, is needed to explore the specific impact of CP subgroups and of neuroradiological features on visual-perceptual development. © 2015 The Authors. Developmental Medicine & Child Neurology © 2015 Mac Keith Press.
Anatomical Substrates of Visual and Auditory Miniature Second-language Learning
Newman-Norlund, Roger D.; Frey, Scott H.; Petitto, Laura-Ann; Grafton, Scott T.
2007-01-01
Longitudinal changes in brain activity during second language (L2) acquisition of a miniature finite-state grammar, named Wernickese, were identified with functional magnetic resonance imaging (fMRI). Participants learned either a visual sign language form or an auditory-verbal form to equivalent proficiency levels. Brain activity during sentence comprehension while hearing/viewing stimuli was assessed at low, medium, and high levels of proficiency in three separate fMRI sessions. Activation in the left inferior frontal gyrus (Broca’s area) correlated positively with improving L2 proficiency, whereas activity in the right-hemisphere (RH) homologue was negatively correlated for both auditory and visual forms of the language. Activity in sequence learning areas including the premotor cortex and putamen also correlated with L2 proficiency. Modality-specific differences in the blood oxygenation level-dependent signal accompanying L2 acquisition were localized to the planum temporale (PT). Participants learning the auditory form exhibited decreasing reliance on bilateral PT sites across sessions. In the visual form, bilateral PT sites increased in activity between Session 1 and Session 2, then decreased in left PT activity from Session 2 to Session 3. Comparison of L2 laterality (as compared to L1 laterality) in auditory and visual groups failed to demonstrate greater RH lateralization for the visual versus auditory L2. These data establish a common role for Broca’s area in language acquisition irrespective of the perceptual form of the language and suggest that L2s are processed similar to first languages even when learned after the ‘‘critical period.’’ The right frontal cortex was not preferentially recruited by visual language after accounting for phonetic/structural complexity and performance. PMID:17129186
Chen, Xin; Sun, Chao; Huang, Luoxiu; Shou, Tiande
2003-01-01
To compare the orientation column maps elicited by different spatial frequency gratings in cortical area 17 of cats before and during brief elevation of intraocular pressure (IOP). IOP was elevated by injecting saline into the anterior chamber of a cat's eye through a syringe needle. The IOP was elevated enough to cause a retinal perfusion pressure (arterial pressure minus IOP) of approximately 30 mm Hg during a brief elevation of IOP. The visual stimulus gratings were varied in spatial frequency, whereas other parameters were kept constant. The orientation column maps of the cortical area 17 were monocularly elicited by drifting gratings of different spatial frequencies and revealed by a brain intrinsic signal optical imaging system. These maps were compared before and during short-term elevation of IOP. The response amplitude of the orientation maps in area 17 decreased during a brief elevation of IOP. This decrease was dependent on the retinal perfusion pressure but not on the absolute IOP. The location of the most visible maps was spatial-frequency dependent. The blurring or loss of the pattern of the orientation maps was most severe when high-spatial-frequency gratings were used and appeared most significantly on the posterior part of the exposed cortex while IOP was elevated. However, the basic patterns of the maps remained unchanged. Changes in cortical signal were not due to changes in the optics of the eye with elevation of IOP. A stable normal IOP is essential for maintaining normal visual cortical functions. During a brief and high elevation of IOP, the cortical processing of high-spatial-frequency visual information was diminished because of a selectively functional decline of the retinogeniculocortical X pathway by a mechanism of retinal circulation origin.
Visual Cortical Representation of Whole Words and Hemifield-split Word Parts.
Strother, Lars; Coros, Alexandra M; Vilis, Tutis
2016-02-01
Reading requires the neural integration of visual word form information that is split between our retinal hemifields. We examined multiple visual cortical areas involved in this process by measuring fMRI responses while observers viewed words that changed or repeated in one or both hemifields. We were specifically interested in identifying brain areas that exhibit decreased fMRI responses as a result of repeated versus changing visual word form information in each visual hemifield. Our method yielded highly significant effects of word repetition in a previously reported visual word form area (VWFA) in occipitotemporal cortex, which represents hemifield-split words as whole units. We also identified a more posterior occipital word form area (OWFA), which represents word form information in the right and left hemifields independently and is thus both functionally and anatomically distinct from the VWFA. Both the VWFA and the OWFA were left-lateralized in our study and strikingly symmetric in anatomical location relative to known face-selective visual cortical areas in the right hemisphere. Our findings are consistent with the observation that category-selective visual areas come in pairs and support the view that neural mechanisms in left visual cortex--especially those that evolved to support the visual processing of faces--are developmentally malleable and become incorporated into a left-lateralized visual word form network that supports rapid word recognition and reading.
Zakharova, I A; Avdeev, R V; Pristavka, V A; Surnin, S N; Makhmutov, V Yu; Savrasova, I I
to investigate neuromidin effectiveness in the treatment of patients with primary glaucoma and compensated intraocular pressure (IOP). A total of 40 patients (80 eyes) were examined. Of them, 10 eyes with early glaucoma, 36 eyes with moderate-stage glaucoma, 33 eyes with advanced glaucoma, and 1 eye with end-stage glaucoma. In 19 eyes, IOP was controlled through beta-blockers, in 11 eyes - through carbonic anhydrase inhibitors, in 10 eyes - through prostaglandin analogues, and in 39 eyes - through combination drugs. Twenty-six eyes had received glaucoma surgery some time earlier. Ipidacrine was prescribed in tablets at 20 mg 2 times daily for 25 days. Treatment effectiveness was judged by visual functions, hydrodynamics, and morphometric parameters of the optic disc. In moderate-stage eyes, visual acuity improved in 66.6% of cases and remained unchanged in 33.3%. In advanced-stage eyes, visual acuity improved in 51.5% of cases and remained unchanged in 48.5%. Visual field broadened in all cases. Moreover, under the neuromidin therapy, the number of scotomas in early-stage eyes decreased, while the number of areas with normal sensitivity of the retina increased by 14.9%. In advanced-stage glaucoma, the effect was less pronounced: the number of type 1 and type 2 scotomas decreased by 3.0±0.6% and 2.9±0.8%, respectively; the number of absolute scotomas did not change; the number of areas with normal sensitivity of the retina increased by 7.4±2.0%. Also, P0 was found to be reduced and intraocular fluid outflow - activated. In early and moderate glaucoma, there was a significant reduction in the cup area as well as an increase in the neuroretinal rim area and retinal nerve fiber layer thickness. In advanced-stage cases, it was only the retinal nerve fiber layer thickness that changed. Neuromidin has a positive impact on visual function, hydrodynamics, and morphometric parameters of the optic disc.
Huang, Luoxiu; Chen, Xin; Shou, Tiande
2004-02-20
The feedback effect of activity of area 21a on orientation maps of areas 17 and 18 was investigated in cats using intrinsic signal optical imaging. A spatial frequency-dependent decrease in response amplitude of orientation maps to grating stimuli was observed in areas 17 and 18 when area 21a was inactivated by local injection of GABA, or by a lesion induced by liquid nitrogen freezing. The decrease in response amplitude of orientation maps of areas 17 and 18 after the area 21a inactivation paralleled the normal response without the inactivation. Application in area 21a of bicuculline, a GABAa receptor antagonist caused an increase in response amplitude of orientation maps of area 17. The results indicate a positive feedback from high-order visual cortical area 21a to lower-order areas underlying a spatial frequency-dependent mechanism.
Shifting Visual Perspective During Retrieval Shapes Autobiographical Memories
St Jacques, Peggy L.; Szpunar, Karl K.; Schacter, Daniel L.
2016-01-01
The dynamic and flexible nature of memories is evident in our ability to adopt multiple visual perspectives. Although autobiographical memories are typically encoded from the visual perspective of our own eyes they can be retrieved from the perspective of an observer looking at our self. Here, we examined the neural mechanisms of shifting visual perspective during long-term memory retrieval and its influence on online and subsequent memories using functional magnetic resonance imaging (fMRI). Participants generated specific autobiographical memories from the last five years and rated their visual perspective. In a separate fMRI session, they were asked to retrieve the memories across three repetitions while maintaining the same visual perspective as their initial rating or by shifting to an alternative perspective. Visual perspective shifting during autobiographical memory retrieval was supported by a linear decrease in neural recruitment across repetitions in the posterior parietal cortices. Additional analyses revealed that the precuneus, in particular, contributed to both online and subsequent changes in the phenomenology of memories. Our findings show that flexibly shifting egocentric perspective during autobiographical memory retrieval is supported by the precuneus, and suggest that this manipulation of mental imagery during retrieval has consequences for how memories are retrieved and later remembered. PMID:27989780
Vora, Urmi; Khandekar, Rajiv; Natrajan, Sarvanan; Al-Hadrami, Khalfan
2010-01-01
Background: We evaluated the refractive status and visual function of children with special needs (other handicap) in 2010 and compared them with healthy 1st grade school students in Oman. Materials and Methods: This was a cohort study. Optometrists recorded vision using a logarithm of minimum angle of resolution (LogMAR) chart. Preferential looking method was used for testing 31 children. Cycloplegic refraction was performed on all children. Contrast sensitivity was tested using 2.5%, 10%, and 100% contrast charts. Ocular movement, alignment, and anterior segment were also assessed. A pediatrician reviewed the health records of all the children at the time of their enrollment in this study to determine if the child had been diagnosed with a systemic condition or syndromes. The visual functions were assessed by study investigators. We estimated the rates and the risk of different visual function defects in children with special needs. Result: The prevalence of refractive error in 70 children (4.7 ± 0.8 years) with special needs (group 1) and 175 normal healthy first grade students (group 2) were 58.5% and 2.9%, respectively. The risk of refractive error was significantly higher in children with special needs [relative risk, 48.1 (95% confidence interval, 17.54–131.8)]. Hyperopia (>1.00 D), myopia (≥ 1.00D) and astigmatism (≥ ±1.00 D) were found in 18.6%, 24.3%, and 27.1%, respectively, in group 1. Six children in this group had defective near vision. Sixteen (80%) children with Down syndrome had refractive error. Seven (50%) children with developmental disorder showed decreased contrast sensitivity. Conclusion: Prevalence of uncorrected refractive error was much higher in children with special needs. Prevalence of strabismus, nystagmus, and reduced contrast sensitivity was also higher in children with special needs. Early vision screening, visual function assessment, correction of refractive error, and frequent follow-up are recommended. PMID:21180428
The effect of scleral search coil lens wear on the eye.
Murphy, P J; Duncan, A L; Glennie, A J; Knox, P C
2001-03-01
Scleral search coils are used to measure eye movements. A recent abstract suggests that the coil can affect the eye by decreasing visual acuity, increasing intraocular pressure, and damaging the corneal and conjunctival surface. Such findings, if repeated in all subjects, would cast doubt on the credibility of the search coil as a reliable investigative technique. The aim of this study was to reassess the effect of the scleral search coil on visual function. Six volunteer subjects were selected to undergo coil wear and baseline measurements were taken of logMAR visual acuity, non-contact tonometry, keratometry, and slit lamp examination. Four drops of 0.4% benoxinate hydrochloride were instilled before insertion of the lens by an experienced clinician. The lens then remained on the eye for 30 minutes. Measurements of the four ocular health parameters were repeated after 15 and 30 minutes of lens wear. The lens was then removed and the health of the eye reassessed. No obvious pattern of change was found in logMAR visual acuity, keratometry, or intraocular pressure. The lens did produce changes to the conjunctival and corneal surfaces, but this was not considered clinically significant. Search coils do not appear to cause any significant effects on visual function. However, thorough prescreening of subjects and post-wear checks should be carried out on all coil wearers to ensure no adverse effects have been caused.
Assessing Photoreceptor Structure in Retinitis Pigmentosa and Usher Syndrome.
Sun, Lynn W; Johnson, Ryan D; Langlo, Christopher S; Cooper, Robert F; Razeen, Moataz M; Russillo, Madia C; Dubra, Alfredo; Connor, Thomas B; Han, Dennis P; Pennesi, Mark E; Kay, Christine N; Weinberg, David V; Stepien, Kimberly E; Carroll, Joseph
2016-05-01
The purpose of this study was to examine cone photoreceptor structure in retinitis pigmentosa (RP) and Usher syndrome using confocal and nonconfocal split-detector adaptive optics scanning light ophthalmoscopy (AOSLO). Nineteen subjects (11 RP, 8 Usher syndrome) underwent ophthalmic and genetic testing, spectral-domain optical coherence tomography (SD-OCT), and AOSLO imaging. Split-detector images obtained in 11 subjects (7 RP, 4 Usher syndrome) were used to assess remnant cone structure in areas of altered cone reflectivity on confocal AOSLO. Despite normal interdigitation zone and ellipsoid zone appearance on OCT, foveal and parafoveal cone densities derived from confocal AOSLO images were significantly lower in Usher syndrome compared with RP. This was due in large part to an increased prevalence of non-waveguiding cones in the Usher syndrome retina. Although significantly correlated to best-corrected visual acuity and foveal sensitivity, cone density can decrease by nearly 38% before visual acuity becomes abnormal. Aberrantly waveguiding cones were noted within the transition zone of all eyes and corresponded to intact inner segment structures. These remnant cones decreased in density and increased in diameter across the transition zone and disappeared with external limiting membrane collapse. Foveal cone density can be decreased in RP and Usher syndrome before visible changes on OCT or a decline in visual function. Thus, AOSLO imaging may allow more sensitive monitoring of disease than current methods. However, confocal AOSLO is limited by dependence on cone waveguiding, whereas split-detector AOSLO offers unambiguous and quantifiable visualization of remnant cone inner segment structure. Confocal and split-detector thus offer complementary insights into retinal pathology.
Assessing Photoreceptor Structure in Retinitis Pigmentosa and Usher Syndrome
Sun, Lynn W.; Johnson, Ryan D.; Langlo, Christopher S.; Cooper, Robert F.; Razeen, Moataz M.; Russillo, Madia C.; Dubra, Alfredo; Connor, Thomas B.; Han, Dennis P.; Pennesi, Mark E.; Kay, Christine N.; Weinberg, David V.; Stepien, Kimberly E.; Carroll, Joseph
2016-01-01
Purpose The purpose of this study was to examine cone photoreceptor structure in retinitis pigmentosa (RP) and Usher syndrome using confocal and nonconfocal split-detector adaptive optics scanning light ophthalmoscopy (AOSLO). Methods Nineteen subjects (11 RP, 8 Usher syndrome) underwent ophthalmic and genetic testing, spectral-domain optical coherence tomography (SD-OCT), and AOSLO imaging. Split-detector images obtained in 11 subjects (7 RP, 4 Usher syndrome) were used to assess remnant cone structure in areas of altered cone reflectivity on confocal AOSLO. Results Despite normal interdigitation zone and ellipsoid zone appearance on OCT, foveal and parafoveal cone densities derived from confocal AOSLO images were significantly lower in Usher syndrome compared with RP. This was due in large part to an increased prevalence of non-waveguiding cones in the Usher syndrome retina. Although significantly correlated to best-corrected visual acuity and foveal sensitivity, cone density can decrease by nearly 38% before visual acuity becomes abnormal. Aberrantly waveguiding cones were noted within the transition zone of all eyes and corresponded to intact inner segment structures. These remnant cones decreased in density and increased in diameter across the transition zone and disappeared with external limiting membrane collapse. Conclusions Foveal cone density can be decreased in RP and Usher syndrome before visible changes on OCT or a decline in visual function. Thus, AOSLO imaging may allow more sensitive monitoring of disease than current methods. However, confocal AOSLO is limited by dependence on cone waveguiding, whereas split-detector AOSLO offers unambiguous and quantifiable visualization of remnant cone inner segment structure. Confocal and split-detector thus offer complementary insights into retinal pathology. PMID:27145477
Ghanbari, Amir; Ghareghani, Majid; Zibara, Kazem; Delaviz, Hamdallah; Ebadi, Elham; Jahantab, Mohammad Hossein
2017-05-01
Methanol-induced retinal toxicity, frequently associated with elevated free radicals and cell edema, is characterized by progressive retinal ganglion cell (RGC) death and vision loss. Previous studies investigated the effect of photomodulation on RGCs, but not the visual cortex. In this study, the effect of 670nm Light-Emitting Diode (LED) therapy on RGCs and visual cortex recovery was investigated in a seven-day methanol-induced retinal toxicity protocol in rats. Methanol administration showed a reduction in the number of RGCs, loss of neurons (neuronal nuclear antigen, NeuN+), activation of glial fibrillary acidic protein (GFAP+) expressing cells, suppression of brain-derived neurotrophic factor (BDNF+) positive cells, increase in apoptosis (caspase 3+) and enhancement of nitric oxide (NO) release in serum and brain. On the other hand, LED therapy significantly reduced RGC death, in comparison to the methanol group. In addition, the number of BDNF positive cells was significantly higher in the visual cortex of LED-treated group, in comparison to methanol-intoxicated and control groups. Moreover, LED therapy caused a significant decrease in cell death (caspase 3+ cells) and a significant reduction in the NO levels, both in serum and brain tissue, in comparison to methanol-intoxicated rats. Overall, LED therapy demonstrated a number of beneficial effects in decreasing oxidative stress and in functional recovery of RGCs and visual cortex. Our data suggest that LED therapy could be a potential condidate as a non-invasive approach for treatment of retinal damage, which needs further clinicl studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Evolution of nonspectral rhodopsin function at high altitudes.
Castiglione, Gianni M; Hauser, Frances E; Liao, Brian S; Lujan, Nathan K; Van Nynatten, Alexander; Morrow, James M; Schott, Ryan K; Bhattacharyya, Nihar; Dungan, Sarah Z; Chang, Belinda S W
2017-07-11
High-altitude environments present a range of biochemical and physiological challenges for organisms through decreases in oxygen, pressure, and temperature relative to lowland habitats. Protein-level adaptations to hypoxic high-altitude conditions have been identified in multiple terrestrial endotherms; however, comparable adaptations in aquatic ectotherms, such as fishes, have not been as extensively characterized. In enzyme proteins, cold adaptation is attained through functional trade-offs between stability and activity, often mediated by substitutions outside the active site. Little is known whether signaling proteins [e.g., G protein-coupled receptors (GPCRs)] exhibit natural variation in response to cold temperatures. Rhodopsin (RH1), the temperature-sensitive visual pigment mediating dim-light vision, offers an opportunity to enhance our understanding of thermal adaptation in a model GPCR. Here, we investigate the evolution of rhodopsin function in an Andean mountain catfish system spanning a range of elevations. Using molecular evolutionary analyses and site-directed mutagenesis experiments, we provide evidence for cold adaptation in RH1. We find that unique amino acid substitutions occur at sites under positive selection in high-altitude catfishes, located at opposite ends of the RH1 intramolecular hydrogen-bonding network. Natural high-altitude variants introduced into these sites via mutagenesis have limited effects on spectral tuning, yet decrease the stability of dark-state and light-activated rhodopsin, accelerating the decay of ligand-bound forms. As found in cold-adapted enzymes, this phenotype likely compensates for a cold-induced decrease in kinetic rates-properties of rhodopsin that mediate rod sensitivity and visual performance. Our results support a role for natural variation in enhancing the performance of GPCRs in response to cold temperatures.
Quantifying how the combination of blur and disparity affects the perceived depth
NASA Astrophysics Data System (ADS)
Wang, Junle; Barkowsky, Marcus; Ricordel, Vincent; Le Callet, Patrick
2011-03-01
The influence of a monocular depth cue, blur, on the apparent depth of stereoscopic scenes will be studied in this paper. When 3D images are shown on a planar stereoscopic display, binocular disparity becomes a pre-eminent depth cue. But it induces simultaneously the conflict between accommodation and vergence, which is often considered as a main reason for visual discomfort. If we limit this visual discomfort by decreasing the disparity, the apparent depth also decreases. We propose to decrease the (binocular) disparity of 3D presentations, and to reinforce (monocular) cues to compensate the loss of perceived depth and keep an unaltered apparent depth. We conducted a subjective experiment using a twoalternative forced choice task. Observers were required to identify the larger perceived depth in a pair of 3D images with/without blur. By fitting the result to a psychometric function, we obtained points of subjective equality in terms of disparity. We found that when blur is added to the background of the image, the viewer can perceive larger depth comparing to the images without any blur in the background. The increase of perceived depth can be considered as a function of the relative distance between the foreground and background, while it is insensitive to the distance between the viewer and the depth plane at which the blur is added.
Military readiness: an exploration of the relationship between marksmanship and visual acuity.
Wells, Kenney H; Wagner, Heidi; Reich, Lewis N; Hardigan, Patrick C
2009-04-01
The United States military relies on visual acuity standards to assess enlistment induction and military occupational specialty eligibility, as well as to monitor soldiers' combat vision readiness. However, these vision standards are not evidence based and may not accurately reflect appropriate standards for military readiness or reflect a correlation between visual acuity and occupational performance. The aim of this study was to investigate the relationship between visual acuity and marksmanship performance using a single blind trial with the Engagement Skills Trainer 2000. Marksmanship performance was evaluated in 28 subjects under simulated day and night conditions with habitual spectacle prescription and contact lenses that created visual blur. Panel Poisson regression using an independent correlation structure revealed significant differences (p < 0.001) as visual acuity decreased from 20/25 to 20/50. We conclude that marksmanship performance decreases as visual acuity decreases. We believe that this relationship supports the use of a visual acuity requirement.
Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao
2015-09-09
Classical animal visual deprivation studies and human neuroimaging studies have shown that visual experience plays a critical role in shaping the functionality and connectivity of the visual cortex. Interestingly, recent studies have additionally reported circumscribed regions in the visual cortex in which functional selectivity was remarkably similar in individuals with and without visual experience. Here, by directly comparing resting-state and task-based fMRI data in congenitally blind and sighted human subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. We found a close agreement between connectional and functional maps, pointing to a strong interdependence of connectivity and function. Visual experience (or the absence thereof) had a pronounced effect on the resting-state connectivity and functional response profile of occipital cortex and the posterior lateral fusiform gyrus. By contrast, connectional and functional fingerprints in the anterior medial and posterior lateral parts of the ventral visual cortex were statistically indistinguishable between blind and sighted individuals. These results provide a large-scale mapping of the influence of visual experience on the development of both functional and connectivity properties of visual cortex, which serves as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions. Significance statement: How is the functionality and connectivity of the visual cortex shaped by visual experience? By directly comparing resting-state and task-based fMRI data in congenitally blind and sighted subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. In addition to revealing regions that are strongly dependent on visual experience (early visual cortex and posterior fusiform gyrus), our results showed regions in which connectional and functional patterns are highly similar in blind and sighted individuals (anterior medial and posterior lateral ventral occipital temporal cortex). These results serve as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions of the visual cortex. Copyright © 2015 the authors 0270-6474/15/3512545-15$15.00/0.
ERIC Educational Resources Information Center
Riddering, Anne T.
2008-01-01
Age-related macular degeneration (AMD) is a leading cause of vision loss in Americans aged 60 and older. The loss of central vision from AMD can decrease visual acuity, contrast sensitivity, glare sensitivity, color discrimination, and the ability to adapt to changes in lighting conditions. Older adults with vision loss often have other chronic,…
Reappraising the voices of wrath
Frühholz, Sascha; Grandjean, Didier
2015-01-01
Cognitive reappraisal recruits prefrontal and parietal cortical areas. Because of the near exclusive usage in past research of visual stimuli to elicit emotions, it is unknown whether the same neural substrates underlie the reappraisal of emotions induced through other sensory modalities. Here, participants reappraised their emotions in order to increase or decrease their emotional response to angry prosody, or maintained their attention to it in a control condition. Neural activity was monitored with fMRI, and connectivity was investigated by using psychophysiological interaction analyses. A right-sided network encompassing the superior temporal gyrus, the superior temporal sulcus and the inferior frontal gyrus was found to underlie the processing of angry prosody. During reappraisal to increase emotional response, the left superior frontal gyrus showed increased activity and became functionally coupled to right auditory cortices. During reappraisal to decrease emotional response, a network that included the medial frontal gyrus and posterior parietal areas showed increased activation and greater functional connectivity with bilateral auditory regions. Activations pertaining to this network were more extended on the right side of the brain. Although directionality cannot be inferred from PPI analyses, the findings suggest a similar frontoparietal network for the reappraisal of visually and auditorily induced negative emotions. PMID:25964502
Elevated cortisol levels in Cushing's disease are associated with cognitive decrements.
Starkman, M N; Giordani, B; Berent, S; Schork, M A; Schteingart, D E
2001-01-01
The objective of this study was to use Cushing's disease as a unique human model to elucidate the cognitive deficits resulting from exposure to chronic stress-level elevations of endogenous cortisol. Forty-eight patients with a first episode of acute, untreated Cushing's disease and 38 healthy control subjects were studied. Scores for four of five verbal IQ subtests were significantly lower in patients with Cushing's disease; their scores were significantly lower for only one nonverbal performance IQ subtest (block design). Verbal, but not visual, learning and delayed recall at 30 minutes were significantly decreased among patients with Cushing's disease. Although verbal delayed recall was significantly lower in these patients, the retention index (percentage), which compares the amount of initially learned material to that recalled after the delay, was not significantly decreased. There was no significant association between depression scores and cognitive performance. A higher degree of cortisol elevation was associated with poorer performance on several subtests of learning, delayed recall, and visual-spatial ability. Chronically elevated levels of glucocorticoids have deleterious effects on particular domains of cognition. Verbal learning and other verbal functions seem more vulnerable than nonverbal functions. The results suggest that both the neocortex and hippocampus are affected.
Seo, Y; Jeong, B; Kim, J-W; Choi, J
2010-01-01
The various changes of sexuality, including decreased sexual desire and erectile dysfunction, are also accompanied with aging. To understand the effect of aging on sexuality, we explored the relationship between age and the visual erotic stimulation-related brain response in sexually active male subjects. Twelve healthy, heterosexual male subjects (age 22-47 years) were recorded the functional magnetic resonance imaging (fMRI) signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Mixed effect analysis and correlation analysis were performed to investigate the relationship between the age and the change of brain activity elicited by erotic stimuli. Our results showed age was positively correlated with the activation of right occipital fusiform gyrus and amygdala, and negatively correlated with the activation of right insula and inferior frontal gyrus. These findings suggest age might be related with functional decline in brain regions being involved in both interoceptive sensation and prefrontal modulation while it is related with the incremental activity of the brain region for early processing of visual emotional stimuli in sexually healthy men.
NASA Astrophysics Data System (ADS)
Wihardi, Y.; Setiawan, W.; Nugraha, E.
2018-01-01
On this research we try to build CBIRS based on Learning Distance/Similarity Function using Linear Discriminant Analysis (LDA) and Histogram of Oriented Gradient (HoG) feature. Our method is invariant to depiction of image, such as similarity of image to image, sketch to image, and painting to image. LDA can decrease execution time compared to state of the art method, but it still needs an improvement in term of accuracy. Inaccuracy in our experiment happen because we did not perform sliding windows search and because of low number of negative samples as natural-world images.
Sata, Yoshimi; Inagaki, Masumi; Shirane, Seiko; Kaga, Makiko
2002-07-01
In order to evaluate developmental change of visual perception, the P300 event-related potentials (ERPs) of visual oddball task were recorded in 34 healthy volunteers ranging from 7 to 37 years of age. The latency and amplitude of visual P300 in response to the Japanese ideogram stimuli (a pair of familiar Kanji characters or unfamiliar Kanji characters) and a pair of meaningless complicated figures were measured. Visual P300 was dominant at parietal area in almost all subjects. There was a significant difference of P300 latency among the three tasks. Reaction time to the both kind of Kanji tasks were significantly shorter than those to the complicated figure task. P300 latencies to the familiar Kanji, unfamiliar Kanji and figure stimuli decreased until 25.8, 26.9 and 29.4 years of age, respectively, and regression analysis revealed that a positive quadratic function could be fitted to the data. Around 9 years of age, the P300 latency/age slope was largest in the unfamiliar Kanji task. These findings suggest that visual P300 development depends on both the complexity of the tasks and specificity of the stimuli, which might reflect the variety in visual information processing.
Risk factors for treatment failure and recurrence of anisometropic amblyopia.
Kirandi, Ece Uzun; Akar, Serpil; Gokyigit, Birsen; Onmez, Funda Ebru Aksoy; Oto, Sibel
2017-08-01
The aim of this study was to identify factors associated with failed vision improvement and recurrence following occlusion therapy for anisometropic amblyopia in children aged 7-9 years. We retrospectively reviewed the medical records of 64 children aged 7-9 years who had been diagnosed as having anisometropic amblyopia and were treated with patching. Functional treatment failure was defined as final visual acuity in the amblyopic eye of worse than 20/32. Improvement of fewer than two logMAR lines was considered relative treatment failure. Recurrence was defined as the reduction of at least two logMAR levels of visual acuity after decreased or discontinued patching. Functional and relative success rates were 51.6 and 62.5 %, respectively. The most important factor for functional treatment failure [adjusted odds ratio (OR) (95 % confidence interval, CI) 11.57 (1.4-95.74)] and the only risk factor for recurrence [adjusted OR (95 % CI) 3.04 (1.13-8.12)] were the same: high spherical equivalent (SE) of the amblyopic eye. A large interocular difference in the best-corrected visual acuity was found to be a risk factor for both functional and relative failure. High SE of the amblyopic eye was the most influential risk factor for treatment failure and recurrence in compliant children aged 7-9 years.
Visual Cone Arrestin 4 Contributes to Visual Function and Cone Health.
Deming, Janise D; Pak, Joseph S; Brown, Bruce M; Kim, Moon K; Aung, Moe H; Eom, Yun Sung; Shin, Jung-A; Lee, Eun-Jin; Pardue, Machelle T; Craft, Cheryl Mae
2015-08-01
Visual arrestins (ARR) play a critical role in shutoff of rod and cone phototransduction. When electrophysiological responses are measured for a single mouse cone photoreceptor, ARR1 expression can substitute for ARR4 in cone pigment desensitization; however, each arrestin may also contribute its own, unique role to modulate other cellular functions. A combination of ERG, optokinetic tracking, immunohistochemistry, and immunoblot analysis was used to investigate the retinal phenotypes of Arr4 null mice (Arr4-/-) compared with age-matched control, wild-type mice. When 2-month-old Arr4-/- mice were compared with wild-type mice, they had diminished visual acuity and contrast sensitivity, yet enhanced ERG flicker response and higher photopic ERG b-wave amplitudes. In contrast, in older Arr4-/- mice, all ERG amplitudes were significantly reduced in magnitude compared with age-matched controls. Furthermore, in older Arr4-/- mice, the total cone numbers decreased and cone opsin protein immunoreactive expression levels were significantly reduced, while overall photoreceptor outer nuclear layer thickness was unchanged. Our study demonstrates that Arr4-/- mice display distinct phenotypic differences when compared to controls, suggesting that ARR4 modulates essential functions in high acuity vision and downstream cellular signaling pathways that are not fulfilled or substituted by the coexpression of ARR1, despite its high expression levels in all mouse cones. Without normal ARR4 expression levels, cones slowly degenerate with increasing age, making this a new model to study age-related cone dystrophy.
Visual Assessment of Brain Perfusion MRI Scans in Dementia: A Pilot Study.
Fällmar, David; Lilja, Johan; Velickaite, Vilma; Danfors, Torsten; Lubberink, Mark; Ahlgren, André; van Osch, Matthias J P; Kilander, Lena; Larsson, Elna-Marie
2016-05-01
Functional imaging is becoming increasingly important for the detection of neurodegenerative disorders. Perfusion MRI with arterial spin labeling (ASL) has been reported to provide promising diagnostic possibilities but is not yet widely used in routine clinical work. The aim of this study was to compare, in a clinical setting, the visual assessment of subtracted ASL CBF maps with and without additional smoothing, to FDG-PET data. Ten patients with a clinical diagnosis of dementia and 11 age-matched cognitively healthy controls were examined with pseudo-continuous ASL (pCASL) and 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET). Three diagnostic physicians visually assessed the pCASL maps after subtraction only, and after postprocessing using Gaussian smoothing and GLM-based beta estimate functions. The assessment scores were compared to FDG PET values. Furthermore, the ability to discriminate patients from healthy elderly controls was assessed. Smoothing improved the correlation between visually assessed regional ASL perfusion scores and the FDG PET SUV-r values from the corresponding regions. However, subtracted pCASL maps discriminated patients from healthy controls better than smoothed maps. Smoothing increased the number of false-positive patient identifications. Application of beta estimate functions had only a marginal effect. Spatial smoothing of ASL images increased false positive results in the discrimination of hypoperfusion conditions from healthy elderly. It also decreased interreader agreement. However, regional characterization and subjective perception of image quality was improved. Copyright © 2015 by the American Society of Neuroimaging.
Attention induced neural response trade-off in retinotopic cortex under load.
Torralbo, Ana; Kelley, Todd A; Rees, Geraint; Lavie, Nilli
2016-09-14
The effects of perceptual load on visual cortex response to distractors are well established and various phenomena of 'inattentional blindness' associated with elimination of visual cortex response to unattended distractors, have been documented in tasks of high load. Here we tested an account for these effects in terms of a load-induced trade-off between target and distractor processing in retinotopic visual cortex. Participants were scanned using fMRI while performing a visual-search task and ignoring distractor checkerboards in the periphery. Retinotopic responses to target and distractors were assessed as a function of search load (comparing search set-sizes two, three and five). We found that increased load not only increased activity in frontoparietal network, but also had opposite effects on retinotopic responses to target and distractors. Target-related signals in areas V2-V3 linearly increased, while distractor response linearly decreased, with increased load. Critically, the slopes were equivalent for both load functions, thus demonstrating resource trade-off. Load effects were also found in displays with the same item number in the distractor hemisphere across different set sizes, thus ruling out local intrahemispheric interactions as the cause. Our findings provide new evidence for load theory proposals of attention resource sharing between target and distractor leading to inattentional blindness.
Attention induced neural response trade-off in retinotopic cortex under load
Torralbo, Ana; Kelley, Todd A.; Rees, Geraint; Lavie, Nilli
2016-01-01
The effects of perceptual load on visual cortex response to distractors are well established and various phenomena of ‘inattentional blindness’ associated with elimination of visual cortex response to unattended distractors, have been documented in tasks of high load. Here we tested an account for these effects in terms of a load-induced trade-off between target and distractor processing in retinotopic visual cortex. Participants were scanned using fMRI while performing a visual-search task and ignoring distractor checkerboards in the periphery. Retinotopic responses to target and distractors were assessed as a function of search load (comparing search set-sizes two, three and five). We found that increased load not only increased activity in frontoparietal network, but also had opposite effects on retinotopic responses to target and distractors. Target-related signals in areas V2–V3 linearly increased, while distractor response linearly decreased, with increased load. Critically, the slopes were equivalent for both load functions, thus demonstrating resource trade-off. Load effects were also found in displays with the same item number in the distractor hemisphere across different set sizes, thus ruling out local intrahemispheric interactions as the cause. Our findings provide new evidence for load theory proposals of attention resource sharing between target and distractor leading to inattentional blindness. PMID:27625311
Geyer, Thomas; Baumgartner, Florian; Müller, Hermann J.; Pollmann, Stefan
2012-01-01
Using visual search, functional magnetic resonance imaging (fMRI) and patient studies have demonstrated that medial temporal lobe (MTL) structures differentiate repeated from novel displays—even when observers are unaware of display repetitions. This suggests a role for MTL in both explicit and, importantly, implicit learning of repeated sensory information (Greene et al., 2007). However, recent behavioral studies suggest, by examining visual search and recognition performance concurrently, that observers have explicit knowledge of at least some of the repeated displays (Geyer et al., 2010). The aim of the present fMRI study was thus to contribute new evidence regarding the contribution of MTL structures to explicit vs. implicit learning in visual search. It was found that MTL activation was increased for explicit and, respectively, decreased for implicit relative to baseline displays. These activation differences were most pronounced in left anterior parahippocampal cortex (aPHC), especially when observers were highly trained on the repeated displays. The data are taken to suggest that explicit and implicit memory processes are linked within MTL structures, but expressed via functionally separable mechanisms (repetition-enhancement vs. -suppression). They further show that repetition effects in visual search would have to be investigated at the display level. PMID:23060776
Neuronal correlates of visual and auditory alertness in the DMT and ketamine model of psychosis.
Daumann, J; Wagner, D; Heekeren, K; Neukirch, A; Thiel, C M; Gouzoulis-Mayfrank, E
2010-10-01
Deficits in attentional functions belong to the core cognitive symptoms in schizophrenic patients. Alertness is a nonselective attention component that refers to a state of general readiness that improves stimulus processing and response initiation. The main goal of the present study was to investigate cerebral correlates of alertness in the human 5HT(2A) agonist and N-methyl-D-aspartic acid (NMDA) antagonist model of psychosis. Fourteen healthy volunteers participated in a randomized double-blind, cross-over event-related functional magnetic resonance imaging (fMRI) study with dimethyltryptamine (DMT) and S-ketamine. A target detection task with cued and uncued trials in both the visual and the auditory modality was used. Administration of DMT led to decreased blood oxygenation level-dependent response during performance of an alertness task, particularly in extrastriate regions during visual alerting and in temporal regions during auditory alerting. In general, the effects for the visual modality were more pronounced. In contrast, administration of S-ketamine led to increased cortical activation in the left insula and precentral gyrus in the auditory modality. The results of the present study might deliver more insight into potential differences and overlapping pathomechanisms in schizophrenia. These conclusions must remain preliminary and should be explored by further fMRI studies with schizophrenic patients performing modality-specific alertness tasks.
Song, Inkyung; Keil, Andreas
2015-01-01
Neutral cues, after being reliably paired with noxious events, prompt defensive engagement and amplified sensory responses. To examine the neurophysiology underlying these adaptive changes, we quantified the contrast-response function of visual cortical population activity during differential aversive conditioning. Steady-state visual evoked potentials (ssVEPs) were recorded while participants discriminated the orientation of rapidly flickering grating stimuli. During each trial, luminance contrast of the gratings was slowly increased and then decreased. Right-tilted gratings (CS+) were paired with loud white noise but left-tilted gratings (CS−) were not. The contrast-following waveform envelope of ssVEPs showed selective amplification of the CS+ only during the high-contrast stage of the viewing epoch. Findings support the notion that motivational relevance, learned in a time frame of minutes, affects vision through a response gain mechanism. PMID:24981277
Habermeyer, Benedikt; Händel, Nadja; Lemoine, Patrick; Klarhöfer, Markus; Seifritz, Erich; Dittmann, Volker; Graf, Marc
2012-01-01
Pedophilia is characterized by a persistent sexual attraction to prepubescent children. Treatment with anti-androgen agents, such as luteinizing hormone-releasing hormone (LH-RH) agonists, reduces testosterone levels and thereby sexual drive and arousal. We used functional magnetic resonance imaging (fMRI) to compare visual erotic stimulation pre- and on-treatment with the LH-RH agonist leuprolide acetate in the case of homosexual pedophilia. The pre-treatment contrasts of the erotic pictures against the respective neutral pictures showed an activation of the right amygdala and adjacent parahippocampal gyrus that decreased significantly under treatment with leuprolide acetate. Our single case fMRI study supports the notion that anti-androgens may modify amygdala response to visual erotic stimulation, a hypothesis that should be further examined in larger studies.
The involvement of central attention in visual search is determined by task demands.
Han, Suk Won
2017-04-01
Attention, the mechanism by which a subset of sensory inputs is prioritized over others, operates at multiple processing stages. Specifically, attention enhances weak sensory signal at the perceptual stage, while it serves to select appropriate responses or consolidate sensory representations into short-term memory at the central stage. This study investigated the independence and interaction between perceptual and central attention. To do so, I used a dual-task paradigm, pairing a four-alternative choice task with a visual search task. The results showed that central attention for response selection was engaged in perceptual processing for visual search when the number of search items increased, thereby increasing the demand for serial allocation of focal attention. By contrast, central attention and perceptual attention remained independent as far as the demand for serial shifting of focal attention remained constant; decreasing stimulus contrast or increasing the set size of a parallel search did not evoke the involvement of central attention in visual search. These results suggest that the nature of concurrent visual search process plays a crucial role in the functional interaction between two different types of attention.
Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization.
Jung, Sang-Kyu; McDonald, Karen
2011-08-16
Direct gene synthesis is becoming more popular owing to decreases in gene synthesis pricing. Compared with using natural genes, gene synthesis provides a good opportunity to optimize gene sequence for specific applications. In order to facilitate gene optimization, we have developed a stand-alone software called Visual Gene Developer. The software not only provides general functions for gene analysis and optimization along with an interactive user-friendly interface, but also includes unique features such as programming capability, dedicated mRNA secondary structure prediction, artificial neural network modeling, network & multi-threaded computing, and user-accessible programming modules. The software allows a user to analyze and optimize a sequence using main menu functions or specialized module windows. Alternatively, gene optimization can be initiated by designing a gene construct and configuring an optimization strategy. A user can choose several predefined or user-defined algorithms to design a complicated strategy. The software provides expandable functionality as platform software supporting module development using popular script languages such as VBScript and JScript in the software programming environment. Visual Gene Developer is useful for both researchers who want to quickly analyze and optimize genes, and those who are interested in developing and testing new algorithms in bioinformatics. The software is available for free download at http://www.visualgenedeveloper.net.
Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization
2011-01-01
Background Direct gene synthesis is becoming more popular owing to decreases in gene synthesis pricing. Compared with using natural genes, gene synthesis provides a good opportunity to optimize gene sequence for specific applications. In order to facilitate gene optimization, we have developed a stand-alone software called Visual Gene Developer. Results The software not only provides general functions for gene analysis and optimization along with an interactive user-friendly interface, but also includes unique features such as programming capability, dedicated mRNA secondary structure prediction, artificial neural network modeling, network & multi-threaded computing, and user-accessible programming modules. The software allows a user to analyze and optimize a sequence using main menu functions or specialized module windows. Alternatively, gene optimization can be initiated by designing a gene construct and configuring an optimization strategy. A user can choose several predefined or user-defined algorithms to design a complicated strategy. The software provides expandable functionality as platform software supporting module development using popular script languages such as VBScript and JScript in the software programming environment. Conclusion Visual Gene Developer is useful for both researchers who want to quickly analyze and optimize genes, and those who are interested in developing and testing new algorithms in bioinformatics. The software is available for free download at http://www.visualgenedeveloper.net. PMID:21846353
Effects of maternal inhalation of gasoline evaporative ...
In order to assess potential health effects resulting from exposure to ethanol-gasoline blend vapors, we previously conducted neurophysiological assessment of sensory function following gestational exposure to 100% ethanol vapor (Herr et al., Toxicologist, 2012). For comparison purposes, the current study investigated the same measures after gestational exposure to 100% gasoline evaporative condensates (GVC). Pregnant Long-Evans rats were exposed to 0, 3K, 6K, or 9K ppm GVC vapors for 6.5 h/day over GD9 – GD20. Sensory evaluations of male offspring began around PND106. Peripheral nerve function (compound action potentials, NCV), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEP), VEP contrast sensitivity, and electroretinograms (ERG) recorded from dark-adapted (scotopic) and light-adapted (photopic) flashes, and UV and green flicker. Although some minor statistical differences were indicated for auditory and somatosensory responses, these changes were not consistently dose- or stimulus intensity-related. Scotopic ERGs had a statistically significant dose-related decrease in the b-wave implicit time. All other parameters of ERGs and VEPs were unaffected by treatment. All physiological responses showed changes related to stimulus intensity, and provided an estimate of detectable le
Motor Sequence Learning-Induced Neural Efficiency in Functional Brain Connectivity
Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M
2016-01-01
Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. PMID:27845228
Longitudinal decrease in blood oxygenation level dependent response in cerebral amyloid angiopathy.
Switzer, Aaron R; McCreary, Cheryl; Batool, Saima; Stafford, Randall B; Frayne, Richard; Goodyear, Bradley G; Smith, Eric E
2016-01-01
Lower blood oxygenation level dependent (BOLD) signal changes in response to a visual stimulus in functional magnetic resonance imaging (fMRI) have been observed in cross-sectional studies of cerebral amyloid angiopathy (CAA), and are presumed to reflect impaired vascular reactivity. We used fMRI to detect a longitudinal change in BOLD responses to a visual stimulus in CAA, and to determine any correlations between these changes and other established biomarkers of CAA progression. Data were acquired from 22 patients diagnosed with probable CAA (using the Boston Criteria) and 16 healthy controls at baseline and one year. BOLD data were generated from the 200 most active voxels of the primary visual cortex during the fMRI visual stimulus (passively viewing an alternating checkerboard pattern). In general, BOLD amplitudes were lower at one year compared to baseline in patients with CAA (p = 0.01) but were unchanged in controls (p = 0.18). The longitudinal difference in BOLD amplitudes was significantly lower in CAA compared to controls (p < 0.001). White matter hyperintensity (WMH) volumes and number of cerebral microbleeds, both presumed to reflect CAA-mediated vascular injury, increased over time in CAA (p = 0.007 and p = 0.001, respectively). Longitudinal increases in WMH (rs = 0.04, p = 0.86) or cerebral microbleeds (rs = -0.18, p = 0.45) were not associated with the longitudinal decrease in BOLD amplitudes.
Chai, Yuzhu; Yamamoto, Shuichi; Hirayama, Atsuko; Yotsukura, Jiro; Yamazaki, Hiroko
2005-01-01
To evaluate optic nerve function by pattern visual evoked potentials (VEPs) in eyes with optic disc swelling due to neuroretinitis associated with cat scratch disease (CSD). Four eyes of four patients with marked optic disc swelling resembling optic neuritis but diagnosed serologically as CSD received systemic steroid treatment. VEPs elicited by black and white checkerboard stimuli created on a TV monitor were recorded before the treatment. The visual acuity (VA) in the affected eyes was decreased to 20/50 in two eyes and finger counting in two eyes at their initial visits. Ophthalmoscopic examination revealed neuroretinitis characterized by severe optic disc swelling, chorioretinal exudates, and macular edema in all eyes. Anti-Bartonella henselae serum antibody was markedly elevated in all patients confirming the diagnosis of CSD. The P100 of the transient VEPs was only mildly reduced without a delay in the implicit times in three eyes and only slightly delayed in the other eye. The steady-state VEPs were mildly reduced in two eyes and phase-reversed in other two eyes. The VA fully recovered after systemic steroid treatment in all patients. Although all examined patients showed marked swelling of the optic disc and visual decrease, the pattern VEPs were not affected as severely as in idiopathic optic neuritis. However, the degree of change of the pattern VEPs varied among patients.
Visual and skill effects on soccer passing performance, kinematics, and outcome estimations
Basevitch, Itay; Tenenbaum, Gershon; Land, William M.; Ward, Paul
2015-01-01
The role of visual information and action representations in executing a motor task was examined from a mental representations approach. High-skill (n = 20) and low-skill (n = 20) soccer players performed a passing task to two targets at distances of 9.14 and 18.29 m, under three visual conditions: normal, occluded, and distorted vision (i.e., +4.0 corrective lenses, a visual acuity of approximately 6/75) without knowledge of results. Following each pass, participants estimated the relative horizontal distance from the target as the ball crossed the target plane. Kinematic data during each pass were also recorded for the shorter distance. Results revealed that performance on the motor task decreased as a function of visual information and task complexity (i.e., distance from target) regardless of skill level. High-skill players performed significantly better than low-skill players on both the actual passing and estimation tasks, at each target distance and visual condition. In addition, kinematic data indicated that high-skill participants were more consistent and had different kinematic movement patterns than low-skill participants. Findings contribute to the understanding of the underlying mechanisms required for successful performance in a self-paced, discrete and closed motor task. PMID:25784886
Alekseichuk, Ivan; Diers, Kersten; Paulus, Walter; Antal, Andrea
2016-10-15
The aim of this study was to investigate if the blood oxygenation level-dependent (BOLD) changes in the visual cortex can be used as biomarkers reflecting the online and offline effects of transcranial electrical stimulation (tES). Anodal transcranial direct current stimulation (tDCS) and 10Hz transcranial alternating current stimulation (tACS) were applied for 10min duration over the occipital cortex of healthy adults during the presentation of different visual stimuli, using a crossover, double-blinded design. Control experiments were also performed, in which sham stimulation as well as another electrode montage were used. Anodal tDCS over the visual cortex induced a small but significant further increase in BOLD response evoked by a visual stimulus; however, no aftereffect was observed. Ten hertz of tACS did not result in an online effect, but in a widespread offline BOLD decrease over the occipital, temporal, and frontal areas. These findings demonstrate that tES during visual perception affects the neuronal metabolism, which can be detected with functional magnetic resonance imaging (fMRI). Copyright © 2016 Elsevier Inc. All rights reserved.
Yang, Jinfang; Wang, Qian; He, Fenfen; Ding, Yanxia; Sun, Qingyan; Hua, Tianmiao; Xi, Minmin
2016-01-01
Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability.
Sun, Qingyan; Hua, Tianmiao; Xi, Minmin
2016-01-01
Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability. PMID:26863207
Liu, Zuyun; Wu, Di; Huang, Jiapin; Qian, Degui; Chen, Fei; Xu, Jun; Li, Shilin; Jin, Li; Wang, Xiaofeng
2016-01-01
Sensory impairment affects an increasing number of elderly adults, with a negative psychological impact. Our objective was to examine the associations of visual and hearing impairment with subjective well-being (SWB), an important psychological concept defined by life satisfaction [LS], positive affect [PA], negative affect [NA], and affect balance [AB] among long-lived individuals (LLIs) over 95 years of age. Data on 442 LLIs from the Rugao longevity cohort, a population-based study in Rugao, China, were analyzed. Graded classifications of visual and hearing impairment (none, mild, moderate, and severe) were constructed from self-reported items. Bivariate correlation and multiple regression analysis were performed to test the associations. Approximately 66.1% and 87.3% of the subjects reported varying degrees of visual and hearing impairment. Following the degree of vision impairment, LS, PA, and AB decreased linearly, whereas NA increased linearly (all p for trend<0.05). Vision was significantly related to LS (r=0.238, p<0.001), PA (r=0.142, p<0.01), NA (r=-0.157, p<0.001), and AB (r=0.206, p<0.001). After adjustment for multiple variables including functional ability, an important factor of SWB, the associations of vision impairment with LS, NA, and AB, while diminished, still existed. Visual impairment, but not hearing impairment, was independently associated with low SWB among LLIs, and functional ability may play a mediating role in the observed relationship. The findings indicate that rehabilitation targeted for those with reduced vision and functioning in long-lived populations may be important for promoting well-being and quality of life. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Hasanov, Samir; Demirkilinc Biler, Elif; Acarer, Ahmet; Akkın, Cezmi; Colakoglu, Zafer; Uretmen, Onder
2018-05-09
To evaluate and follow-up of functional and morphological changes of the optic nerve and ocular structures prospectively in patients with early-stage Parkinson's disease. Nineteen patients with a diagnosis of early-stage Parkinson's disease and 19 age-matched healthy controls were included in the study. All participants were examined minimum three times at the intervals of at least 6 month following initial examination. Pattern visually evoked potentials (VEP), contrast sensitivity assessments at photopic conditions, color vision tests with Ishihara cards and full-field visual field tests were performed in addition to measurement of retinal nerve fiber layer (RNFL) thickness of four quadrants (top, bottom, nasal, temporal), central and mean macular thickness and macular volumes. Best corrected visual acuity was observed significantly lower in study group within all three examinations. Contrast sensitivity values of the patient group were significantly lower in all spatial frequencies. P100 wave latency of VEP was significantly longer, and amplitude was lower in patient group; however, significant deterioration was not observed during the follow-up. Although average peripapillary RNFL thickness was not significant between groups, RNFL thickness in the upper quadrant was thinner in the patient group. While there was no difference in terms of mean macular thickness and total macular volume values between the groups initially, a significant decrease occurred in the patient group during the follow-up. During the initial and follow-up process, a significant deterioration in visual field was observed in the patient group. Structural and functional disorders shown as electro-physiologically and morphologically exist in different parts of visual pathways in early-stage Parkinson's disease.
Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke
Ramsey, Lenny E.; Metcalf, Nicholas V.; Chacko, Ravi V.; Weinberger, Kilian; Baldassarre, Antonello; Hacker, Carl D.; Shulman, Gordon L.; Corbetta, Maurizio
2016-01-01
Deficits following stroke are classically attributed to focal damage, but recent evidence suggests a key role of distributed brain network disruption. We measured resting functional connectivity (FC), lesion topography, and behavior in multiple domains (attention, visual memory, verbal memory, language, motor, and visual) in a cohort of 132 stroke patients, and used machine-learning models to predict neurological impairment in individual subjects. We found that visual memory and verbal memory were better predicted by FC, whereas visual and motor impairments were better predicted by lesion topography. Attention and language deficits were well predicted by both. Next, we identified a general pattern of physiological network dysfunction consisting of decrease of interhemispheric integration and intrahemispheric segregation, which strongly related to behavioral impairment in multiple domains. Network-specific patterns of dysfunction predicted specific behavioral deficits, and loss of interhemispheric communication across a set of regions was associated with impairment across multiple behavioral domains. These results link key organizational features of brain networks to brain–behavior relationships in stroke. PMID:27402738
Effects of the AMPA Antagonist ZK 200775 on Visual Function: A Randomized Controlled Trial
Bergholz, Richard; Staks, Thomas; Rüther, Klaus
2010-01-01
Background ZK 200775 is an antagonist at the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor and had earned attention as a possible neuroprotective agent in cerebral ischemia. Probands receiving the agent within phase I trials reported on an alteration of visual perception. In this trial, the effects of ZK 200775 on the visual system were analyzed in detail. Methodology In a randomised controlled trial we examined eyes and vision before and after the intravenous administration of two different doses of ZK 200775 and placebo. There were 3 groups of 6 probands each: Group 1 recieved 0.03 mg/kg/h, group 2 0.75 mg/kg/h of ZK 200775, the control group received 0.9% sodium chloride solution. Probands were healthy males aged between 57 and 69 years. The following methods were applied: clinical examination, visual acuity, ophthalmoscopy, colour vision, rod absolute threshold, central visual field, pattern-reversal visual evoked potentials (pVEP), ON-OFF and full-field electroretinogram (ERG). Principal Findings No effect of ZK 200775 was seen on eye position or motility, stereopsis, pupillary function or central visual field testing. Visual acuity and dark vision deteriorated significantly in both treated groups. Color vision was most remarkably impaired. The dark-adapted ERG revealed a reduction of oscillatory potentials (OP) and partly of the a- and b-wave, furthermore an alteration of b-wave morphology and an insignificantly elevated b/a-ratio. Cone-ERG modalities showed decreased amplitudes and delayed implicit times. In the ON-OFF ERG the ON-answer amplitudes increased whereas the peak times of the OFF-answer were reduced. The pattern VEP exhibited lower amplitudes and prolonged peak times. Conclusions The AMPA receptor blockade led to a strong impairment of typical OFF-pathway functions like color vision and the cone ERG. On the other hand the ON-pathway as measured by dark vision and the scotopic ERG was affected as well. This further elucidates the interdependence of both pathways. Trial Registration ClinicalTrials.gov NCT00999284 PMID:20711429
The Functional Classification of Brain Damage-Related Vision Loss
ERIC Educational Resources Information Center
Colenbrander, August
2009-01-01
This article provides a terminological framework to show the relationships among different types of visual deficits. It distinguishes between visual functions, which describe how the eye and the lower visual system function, and functional vision, which describes how a person functions. When visual functions are disturbed, the term "visual…
De Moraes, C Gustavo; Liebmann, Jeffrey M; Levin, Leonard A
2017-01-01
Glaucomatous visual field progression has both personal and societal costs and therefore has a serious impact on quality of life. At the present time, intraocular pressure (IOP) is considered to be the most important modifiable risk factor for glaucoma onset and progression. Reduction of IOP has been repeatedly demonstrated to be an effective intervention across the spectrum of glaucoma, regardless of subtype or disease stage. In the setting of approval of IOP-lowering therapies, it is expected that effects on IOP will translate into benefits in long-term patient-reported outcomes. Nonetheless, the effect of these medications on IOP and their associated risks can be consistently and objectively measured. This helps to explain why regulatory approval of new therapies in glaucoma has historically used IOP as the outcome variable. Although all approved treatments for glaucoma involve IOP reduction, patients frequently continue to progress despite treatment. It would therefore be beneficial to develop treatments that preserve visual function through mechanisms other than lowering IOP. The United States Food and Drug Administration (FDA) has stated that they will accept a clinically meaningful definition of visual field progression using Glaucoma Change Probability criteria. Nonetheless, these criteria do not take into account the time (and hence, the speed) needed to reach significant change. In this paper we provide an analysis based on the existing literature to support the hypothesis that decreasing the rate of visual field progression by 30% in a trial lasting 12-18 months is clinically meaningful. We demonstrate that a 30% decrease in rate of visual field progression can be reliably projected to have a significant effect on health-related quality of life, as defined by validated instruments designed to measure that endpoint. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Roger W.; MacKeben, Manfred; Chat, Sandy W.; Kumar, Maya; Ngo, Charlie; Levi, Dennis M.
2010-01-01
Background Much previous work on how normal aging affects visual enumeration has been focused on the response time required to enumerate, with unlimited stimulus duration. There is a fundamental question, not yet addressed, of how many visual items the aging visual system can enumerate in a “single glance”, without the confounding influence of eye movements. Methodology/Principal Findings We recruited 104 observers with normal vision across the age span (age 21–85). They were briefly (200 ms) presented with a number of well- separated black dots against a gray background on a monitor screen, and were asked to judge the number of dots. By limiting the stimulus presentation time, we can determine the maximum number of visual items an observer can correctly enumerate at a criterion level of performance (counting threshold, defined as the number of visual items at which ≈63% correct rate on a psychometric curve), without confounding by eye movements. Our findings reveal a 30% decrease in the mean counting threshold of the oldest group (age 61–85: ∼5 dots) when compared with the youngest groups (age 21–40: 7 dots). Surprisingly, despite decreased counting threshold, on average counting accuracy function (defined as the mean number of dots reported for each number tested) is largely unaffected by age, reflecting that the threshold loss can be primarily attributed to increased random errors. We further expanded this interesting finding to show that both young and old adults tend to over-count small numbers, but older observers over-count more. Conclusion/Significance Here we show that age reduces the ability to correctly enumerate in a glance, but the accuracy (veridicality), on average, remains unchanged with advancing age. Control experiments indicate that the degraded performance cannot be explained by optical, retinal or other perceptual factors, but is cortical in origin. PMID:20976149
De Moraes, C. Gustavo; Liebmann, Jeffrey M.; Levin, Leonard A.
2016-01-01
Glaucomatous visual field progression has both personal and societal costs and therefore has a serious impact on quality of life. At the present time, intraocular pressure (IOP) is considered to be the most important modifiable risk factor for glaucoma onset and progression. Reduction of IOP has been repeatedly demonstrated to be an effective intervention across the spectrum of glaucoma, regardless of subtype or disease stage. In the setting of approval of IOP-lowering therapies, it is expected that effects on IOP will translate into benefits in long-term patient-reported outcomes. Nonetheless, the effect of these medications on IOP and their associated risks can be consistently and objectively measured. This helps to explain why regulatory approval of new therapies in glaucoma has historically used IOP as the outcome variable. Although all approved treatments for glaucoma involve IOP reduction, patients frequently continue to progress despite treatment. It would therefore be beneficial to develop treatments that preserve visual function through mechanisms other than lowering IOP. The United States Food and Drug Administration (FDA) has stated that they will accept a clinically meaningful definition of visual field progression using Glaucoma Change Probability criteria. Nonetheless, these criteria do not take into account the time (and hence, the speed) needed to reach significant change. In this paper we provide an analysis based on the existing literature to support the hypothesis that decreasing the rate of visual field progression by 30% in a trial lasting 12–18 months is clinically meaningful. We demonstrate that a 30% decrease in rate of visual field progression can be reliably projected to have a significant effect on health-related quality of life, as defined by validated instruments designed to measure that endpoint. PMID:27773767
Medical and legal point of view for low-vision patients.
Bogdănici, Camelia-Margareta; Bogdănici, Ştefan Tudor; Săndulache, Diana Elena; Diaconu, Carmen-Mariana
2018-01-01
The aim of the study was to highlight the medical and legal difficulties in framing low-vision patients for certification. We performed a retrospective observational study conducted from January 2013 to January 2016, on 63 patients with the mean age of 16.37±3.34 years, evaluated at the Ophthalmology Clinic from "Sf. Spiridon" Hospital, Iași, in order to release a medical certificate required at the Expertise Board. The clinical parameters observed were visual acuity (VA) with correction, objective refraction (in Spherical Equivalent - SEq), intraocular pressure, slit lamp examination of the anterior pole, fundus examination, orthoptic eye exam, and ocular ultrasonography (in selected cases). The main causes for the decreased visual acuity found are refractive or strabic amblyopia determined by: high myopia (28.57%), esotropia (19.04%), astigmatism (17.46); congenital diseases - congenital nystagmus (12.69%), congenital cataract (7.93%), microphthalmia (7.93%); acquired diseases - retinopathy of prematurity (9.52%), optic nerve atrophy (7.93%), bandelette keratopathy (6.34); ocular trauma (7.93%). In 52.38% of the cases for the RE and 53.96% of the cases for the LE, decreased visual acuity was caused by an irreversible condition and could not be improved. Patients come every year for reevaluation in order to receive the medical certificate required at the Expertise Board. Evaluating the patient for a certificate for visual impairment is a time consuming process due to the high number of investigations necessary and, sometimes, difficult collaboration with the patient with associated general pathology. It also requires knowledge of frequently changing legislation to complete legal forms for patients with visual impairment. A medical certificate may now be issued with a validity of up to four years, given that certain diseases are irreversible and visual functional status does not change over time.
Disease Course of Patients with Unilateral Pigmentary Retinopathy
Potsidis, Emorfily; Berson, Eliot L.
2011-01-01
Purpose. To evaluate the change in ocular function by eye in patients with unilateral pigmentary retinopathy. Methods. Longitudinal regression was used to estimate mean exponential rates of change in Goldmann visual field area (V4e white test light) and in full-field electroretinogram (ERG) amplitudes to 0.5- and 30-Hz white flashes in 15 patients with unilateral pigmentary retinopathy. Snellen visual acuity was assessed case by case. Results. Mean annual rates of change for the affected eyes were −4.9% for visual field area, −4.7% for ERG amplitude to 0.5-Hz flashes, and −4.6% for ERG amplitude to 30-Hz flashes. All three rates were faster than the corresponding age-related rates of change for the fellow normal eyes (P = 0.0006, P = 0.003, P = 0.03, respectively). An initial cone ERG implicit time to 30-Hz flashes in affected eyes ≥40 ms predicted a faster mean rate of decline of visual field area and of ERG amplitude to 0.5- and 30-Hz flashes (P < 0.0001 for all three measures). The visual acuity of affected eyes was more likely to decrease in patients presenting at >35 years of age than in patients presenting at a younger age (P = 0.0004). Conclusions. The affected eye in unilateral pigmentary retinopathy shows a progressive loss of peripheral retinal function that cannot be attributed to aging alone and that is faster in eyes with a more prolonged initial cone ERG implicit time. Patients presenting at >35 years of age are at greater risk for losing visual acuity. PMID:21989720
Disease course of patients with unilateral pigmentary retinopathy.
Potsidis, Emorfily; Berson, Eliot L; Sandberg, Michael A
2011-11-29
To evaluate the change in ocular function by eye in patients with unilateral pigmentary retinopathy. Longitudinal regression was used to estimate mean exponential rates of change in Goldmann visual field area (V4e white test light) and in full-field electroretinogram (ERG) amplitudes to 0.5- and 30-Hz white flashes in 15 patients with unilateral pigmentary retinopathy. Snellen visual acuity was assessed case by case. Mean annual rates of change for the affected eyes were -4.9% for visual field area, -4.7% for ERG amplitude to 0.5-Hz flashes, and -4.6% for ERG amplitude to 30-Hz flashes. All three rates were faster than the corresponding age-related rates of change for the fellow normal eyes (P = 0.0006, P = 0.003, P = 0.03, respectively). An initial cone ERG implicit time to 30-Hz flashes in affected eyes ≥ 40 ms predicted a faster mean rate of decline of visual field area and of ERG amplitude to 0.5- and 30-Hz flashes (P < 0.0001 for all three measures). The visual acuity of affected eyes was more likely to decrease in patients presenting at >35 years of age than in patients presenting at a younger age (P = 0.0004). The affected eye in unilateral pigmentary retinopathy shows a progressive loss of peripheral retinal function that cannot be attributed to aging alone and that is faster in eyes with a more prolonged initial cone ERG implicit time. Patients presenting at >35 years of age are at greater risk for losing visual acuity.
The large-scale organization of shape processing in the ventral and dorsal pathways
Culham, Jody C; Plaut, David C; Behrmann, Marlene
2017-01-01
Although shape perception is considered a function of the ventral visual pathway, evidence suggests that the dorsal pathway also derives shape-based representations. In two psychophysics and neuroimaging experiments, we characterized the response properties, topographical organization and perceptual relevance of these representations. In both pathways, shape sensitivity increased from early visual cortex to extrastriate cortex but then decreased in anterior regions. Moreover, the lateral aspect of the ventral pathway and posterior regions of the dorsal pathway were sensitive to the availability of fundamental shape properties, even for unrecognizable images. This apparent representational similarity between the posterior-dorsal and lateral-ventral regions was corroborated by a multivariate analysis. Finally, as with ventral pathway, the activation profile of posterior dorsal regions was correlated with recognition performance, suggesting a possible contribution to perception. These findings challenge a strict functional dichotomy between the pathways and suggest a more distributed model of shape processing. PMID:28980938
Moschos, Marilita M; Nitoda, Eirini
2018-01-01
Age-related macular cegeneration (AMD) is the leading cause of visual dysfunction worldwide, affecting 9-25% of individuals between 65 and 75 years old. We have reviewed the published articles investigating the role of multifocal electroretinogram (mf-ERG) in the diagnosis and treatment of AMD. Visual evoked potentials have revealed decreased amplitudes and higher latencies in patients with AMD, while the degeneration of photoreceptors and abnormalities of retinal pigment epithelium can be identified by electro-oculogram recordings. Moreover, ERG can detect the functional abnormalities observed in AMD and evaluate each therapeutic approach. The record of local electrophysiological responses coming from different retinal areas can be accurately performed by mfERG. The accuracy of mfERG in detecting the degeneration of photoreceptors, as well the disturbances of macular function, could be useful both in the early diagnosis of AMD and the assessment of treatment efficacy.
Wang, Shuchao; Hu, Tu; Wang, Zhen; Li, Na; Zhou, Lihong; Liao, Lvshuang; Wang, Mi; Liao, Libin; Wang, Hui; Zeng, Leping; Fan, Chunling; Zhou, Hongkang; Xiong, Kun; Huang, Jufang; Chen, Dan
2017-01-01
Many studies on retinal injury and repair following elevated intraocular pressure suggest that the survival ratio of retinal neurons has been improved by various measures. However, the visual function recovery is far lower than expected. The homeostasis of retinal synapses in the visual signal pathway is the key structural basis for the delivery of visual signals. Our previous studies found that complicated changes in the synaptic structure between retinal neurons occurred much earlier than obvious degeneration of retinal ganglion cells in rat retinae. The lack of consideration of these earlier retinal synaptic changes in the rescue strategy may be partly responsible for the limited visual function recovery with the types of protective methods for retinal neurons used following elevated intraocular pressure. Thus, research on the modulatory mechanisms of the synaptic changes after elevated intraocular pressure injury may give new light to visual function rescue. In this study, we found that thrombospondin 2, an important regulator of synaptogenesis in central nervous system development, was distributed in retinal macroglia cells, and its receptor α2δ-1 was in retinal neurons. Cell cultures including mixed retinal macroglia cells/neuron cultures and retinal neuron cultures were exposed to elevated hydrostatic pressure for 2 h. The expression levels of glial fibrillary acidic protein (the marker of activated macroglia cells), thrombospondin 2, α2δ-1 and presynaptic proteins were increased following elevated hydrostatic pressure in mixed cultures, but the expression levels of postsynaptic proteins were not changed. SiRNA targeting thrombospondin 2 could decrease the upregulation of presynaptic proteins induced by the elevated hydrostatic pressure. However, in retinal neuron cultures, elevated hydrostatic pressure did not affect the expression of presynaptic or postsynaptic proteins. Rather, the retinal neuron cultures with added recombinant thrombospondin 2 protein upregulated the level of presynaptic proteins. Finally, gabapentin decreased the expression of presynaptic proteins in mixed cultures by blocking the interaction of thrombospondin 2 and α2δ-1. Taken together, these results indicate that activated macroglia cells may participate in alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure, and macroglia-derived thrombospondin 2 may modulate these changes via binding to its neuronal receptor α2δ-1.
Arrestin 1 and Cone Arrestin 4 Have Unique Roles in Visual Function in an All-Cone Mouse Retina.
Deming, Janise D; Pak, Joseph S; Shin, Jung-A; Brown, Bruce M; Kim, Moon K; Aung, Moe H; Lee, Eun-Jin; Pardue, Machelle T; Craft, Cheryl Mae
2015-12-01
Previous studies discovered cone phototransduction shutoff occurs normally for Arr1-/- and Arr4-/-; however, it is defective when both visual arrestins are simultaneously not expressed (Arr1-/-Arr4-/-). We investigated the roles of visual arrestins in an all-cone retina (Nrl-/-) since each arrestin has differential effects on visual function, including ARR1 for normal light adaptation, and ARR4 for normal contrast sensitivity and visual acuity. We examined Nrl-/-, Nrl-/-Arr1-/-, Nrl-/-Arr4-/-, and Nrl-/-Arr1-/-Arr4-/- mice with photopic electroretinography (ERG) to assess light adaptation and retinal responses, immunoblot and immunohistochemical localization analysis to measure retinal expression levels of M- and S-opsin, and optokinetic tracking (OKT) to measure the visual acuity and contrast sensitivity. Study results indicated that Nrl-/- and Nrl-/-Arr4-/- mice light adapted normally, while Nrl-/-Arr1-/- and Nrl-/-Arr1-/-Arr4-/- mice did not. Photopic ERG a-wave, b-wave, and flicker amplitudes followed a general pattern in which Nrl-/-Arr4-/- amplitudes were higher than the amplitudes of Nrl-/-, while the amplitudes of Nrl-/-Arr1-/- and Nrl-/-Arr1-/-Arr4-/- were lower. All three visual arrestin knockouts had faster implicit times than Nrl-/- mice. M-opsin expression is lower when ARR1 is not expressed, while S-opsin expression is lower when ARR4 is not expressed. Although M-opsin expression is mislocalized throughout the photoreceptor cells, S-opsin is confined to the outer segments in all genotypes. Contrast sensitivity is decreased when ARR4 is not expressed, while visual acuity was normal except in Nrl-/-Arr1-/-Arr4-/-. Based on the opposite visual phenotypes in an all-cone retina in the Nrl-/-Arr1-/- and Nrl-/-Arr4-/- mice, we conclude that ARR1 and ARR4 perform unique modulatory roles in cone photoreceptors.
Azman, Aida Rasyidah; Mahat, Naji Arafat; Abdul Wahab, Roswanira; Abdul Razak, Fazira Ilyana; Hamzah, Hafezul Helmi
2018-05-25
Waterways are popular locations for the disposition of criminal evidence because the recovery of latent fingerprints from such evidence is difficult. Currently, small particle reagent is a method often used to visualize latent fingerprints containing carcinogenic and hazardous compounds. This study proposes an eco-friendly, safranin-tinted Candida rugosa lipase (triacylglycerol ester hydrolysis EC 3.1.1.3) with functionalized carbon nanotubes (CRL-MWCNTS/GA/SAF) as an alternative reagent to the small particle reagent. The CRL-MWCNTS/GA/SAF reagent was compared with the small particle reagent to visualize groomed, full fingerprints deposited on stainless steel knives which were immersed in a natural outdoor pond for 30 days. The quality of visualized fingerprints using the new reagent was similar (modified-Centre for Applied Science and Technology grade: 4; p > 0.05) to small particle reagent, even after 15 days of immersion. Despite the slight decrease in quality of visualized fingerprints using the CRL-MWCNTS/GA/SAF on the last three immersion periods, the fingerprints remained forensically identifiable (modified-Centre for Applied Science and Technology grade: 3). The possible chemical interactions that enabled successful visualization is also discussed. Thus, this novel reagent may provide a relatively greener alternative for the visualization of latent fingerprints on immersed non-porous objects.
Frick, Kevin D; Drye, Lea T; Kempen, John H; Dunn, James P; Holland, Gary N; Latkany, Paul; Rao, Narsing A; Sen, H Nida; Sugar, Elizabeth A; Thorne, Jennifer E; Wang, Robert C; Holbrook, Janet T
2012-03-01
To evaluate the associations between visual acuity and self-reported visual function; visual acuity and health-related quality of life (QoL) metrics; a summary measure of self-reported visual function and health-related QoL; and individual domains of self-reported visual function and health-related QoL in patients with uveitis. Best-corrected visual acuity, vision-related functioning as assessed by the NEI VFQ-25, and health-related QoL as assessed by the SF-36 and EuroQoL EQ-5D questionnaires were obtained at enrollment in a clinical trial of uveitis treatments. Multivariate regression and Spearman correlations were used to evaluate associations between visual acuity, vision-related function, and health-related QoL. Among the 255 patients, median visual acuity in the better-seeing eyes was 20/25, the vision-related function score indicated impairment (median, 60), and health-related QoL scores were within the normal population range. Better visual acuity was predictive of higher visual function scores (P ≤ 0.001), a higher SF-36 physical component score, and a higher EQ-5D health utility score (P < 0.001). The vision-specific function score was predictive of all general health-related QoL (P < 0.001). The correlations between visual function score and general quality of life measures were moderate (ρ = 0.29-0.52). The vision-related function score correlated positively with visual acuity and moderately positively with general QoL measures. Cost-utility analyses relying on changes in generic healthy utility measures will be more likely to detect changes when there are clinically meaningful changes in vision-related function, rather than when there are only changes in visual acuity. (ClinicalTrials.gov number, NCT00132691.).
Chen, Zhongshan; Song, Yanping; Yao, Junping; Weng, Chuanhuang; Yin, Zheng Qin
2013-11-01
All know that retinitis pigmentosa (RP) is a group of hereditary retinal degenerative diseases characterized by progressive dysfunction of photoreceptors and associated with progressive cells loss; nevertheless, little is known about how rods and cones loss affects the surviving inner retinal neurons and networks. Retinal ganglion cells (RGCs) process and convey visual information from retina to visual centers in the brain. The healthy various ion channels determine the normal reception and projection of visual signals from RGCs. Previous work on the Royal College of Surgeons (RCS) rat, as a kind of classical RP animal model, indicated that, at late stages of retinal degeneration in RCS rat, RGCs were also morphologically and functionally affected. Here, retrograde labeling for RGCs with Fluorogold was performed to investigate the distribution, density, and morphological changes of RGCs during retinal degeneration. Then, patch clamp recording, western blot, and immunofluorescence staining were performed to study the channels of sodium and potassium properties of RGCs, so as to explore the molecular and proteinic basis for understanding the alterations of RGCs membrane properties and firing functions. We found that the resting membrane potential, input resistance, and capacitance of RGCs changed significantly at the late stage of retinal degeneration. Action potential could not be evoked in a part of RGCs. Inward sodium current and outward potassium current recording showed that sodium current was impaired severely but only slightly in potassium current. Expressions of sodium channel protein were impaired dramatically at the late stage of retinal degeneration. The results suggested that the density of RGCs decreased, process ramification impaired, and sodium ion channel proteins destructed, which led to the impairment of electrophysiological functions of RGCs and eventually resulted in the loss of visual function.
Long-term outcomes of gene therapy for the treatment of Leber's hereditary optic neuropathy.
Yang, Shuo; Ma, Si-Qi; Wan, Xing; He, Heng; Pei, Han; Zhao, Min-Jian; Chen, Chen; Wang, Dao-Wen; Dong, Xiao-Yan; Yuan, Jia-Jia; Li, Bin
2016-08-01
Leber's hereditary optic neuropathy (LHON) is a disease that leads to blindness. Gene therapy has been investigated with some success, and could lead to important advancements in treating LHON. This was a prospective, open-label trial involving 9 LHON patients at Tongji Hospital, Wuhan, China, from August 2011 to December 2015. The purpose of this study was to evaluate the long-term outcomes of gene therapy for LHON. Nine LHON patients voluntarily received an intravitreal injection of rAAV2-ND4. Systemic examinations and visual function tests were performed during the 36-month follow-up period to determine the safety and efficacy of this gene therapy. Based on successful experiments in an animal model of LHON, 1 subject also received an rAAV2-ND4 injection in the second eye 12months after gene therapy was administered in the first eye. Recovery of visual acuity was defined as the primary outcome of this study. Changes in the visual field, visual evoked potential (VEP), optical coherence tomography findings, liver and kidney function, and antibodies against AAV2 were defined as secondary endpoints. Eight patients (Patients 2-9) received unilateral gene therapy and visual function improvement was observed in both treated eyes (Patients 4, 6, 7, and 8) and untreated eyes (Patients 2, 3, 4, 6 and 8). Visual regression fluctuations, defined as changes in visual acuity greater than or equal to 0.3 logMAR, were observed in Patients 2 and 9. Age at disease onset, disease duration, and the amount of remaining optic nerve fibers did not have a significant effect on the visual function improvement. The visual field and pattern reversal VEP also improved. The patient (Patient 1) who received gene therapy in both eyes had improved visual acuity in the injected eye after the first treatment. Unfortunately, visual acuity in this eye decreased 3months after he received gene therapy in the second eye. Animal experiments suggested that ND4 expression remains stable in the contralateral eye after intravitreal injections. No serious safety problem was observed in the 3-year follow-up of the 9 participants enrolled in this virus-based gene therapy. Meanwhile, our results support the use of intravitreal rAAV2-ND4 as an aggressive maneuver in our clinical trial. Further study in additional patients and in these 9 subjects is needed to better understand the effects of rAAV2-ND4 gene therapy on LHON and to increase the applications of this technique. Copyright © 2016 The Ohio State University Wexner Medical Center. Published by Elsevier B.V. All rights reserved.
Geldof, Christiaan J A; van Hus, Janeline W P; Jeukens-Visser, Martine; Nollet, Frans; Kok, Joke H; Oosterlaan, Jaap; van Wassenaer-Leemhuis, Aleid G
2016-01-01
To extend understanding of impaired motor functioning of very preterm (VP)/very low birth weight (VLBW) children by investigating its relationship with visual attention, visual and visual-motor functioning. Motor functioning (Movement Assessment Battery for Children, MABC-2; Manual Dexterity, Aiming & Catching, and Balance component), as well as visual attention (attention network and visual search tests), vision (oculomotor, visual sensory and perceptive functioning), visual-motor integration (Beery Visual Motor Integration), and neurological status (Touwen examination) were comprehensively assessed in a sample of 106 5.5-year-old VP/VLBW children. Stepwise linear regression analyses were conducted to investigate multivariate associations between deficits in visual attention, oculomotor, visual sensory, perceptive and visual-motor integration functioning, abnormal neurological status, neonatal risk factors, and MABC-2 scores. Abnormal MABC-2 Total or component scores occurred in 23-36% of VP/VLBW children. Visual and visual-motor functioning accounted for 9-11% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Visual perceptive deficits only were associated with Aiming & Catching. Abnormal neurological status accounted for an additional 19-30% of variance in MABC-2 Total, Manual Dexterity and Balance scores, and 5% of variance in Aiming & Catching, and neonatal risk factors for 3-6% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Motor functioning is weakly associated with visual and visual-motor integration deficits and moderately associated with abnormal neurological status, indicating that motor performance reflects long term vulnerability following very preterm birth, and that visual deficits are of minor importance in understanding motor functioning of VP/VLBW children. Copyright © 2016 Elsevier Ltd. All rights reserved.
The effect of scleral search coil lens wear on the eye
Murphy, P.; Duncan, A.; Glennie, A.; Knox, P.
2001-01-01
BACKGROUND/AIM—Scleral search coils are used to measure eye movements. A recent abstract suggests that the coil can affect the eye by decreasing visual acuity, increasing intraocular pressure, and damaging the corneal and conjunctival surface. Such findings, if repeated in all subjects, would cast doubt on the credibility of the search coil as a reliable investigative technique. The aim of this study was to reassess the effect of the scleral search coil on visual function. METHODS—Six volunteer subjects were selected to undergo coil wear and baseline measurements were taken of logMAR visual acuity, non-contact tonometry, keratometry, and slit lamp examination. Four drops of 0.4% benoxinate hydrochloride were instilled before insertion of the lens by an experienced clinician. The lens then remained on the eye for 30 minutes. Measurements of the four ocular health parameters were repeated after 15 and 30 minutes of lens wear. The lens was then removed and the health of the eye reassessed. RESULTS—No obvious pattern of change was found in logMAR visual acuity, keratometry, or intraocular pressure. The lens did produce changes to the conjunctival and corneal surfaces, but this was not considered clinically significant. CONCLUSION—Search coils do not appear to cause any significant effects on visual function. However, thorough prescreening of subjects and post-wear checks should be carried out on all coil wearers to ensure no adverse effects have been caused. PMID:11222341
Empiric determination of corrected visual acuity standards for train crews.
Schwartz, Steven H; Swanson, William H
2005-08-01
Probably the most common visual standard for employment in the transportation industry is best-corrected, high-contrast visual acuity. Because such standards were often established absent empiric linkage to job performance, it is possible that a job applicant or employee who has visual acuity less than the standard may be able to satisfactorily perform the required job activities. For the transportation system that we examined, the train crew is required to inspect visually the length of the train before and during the time it leaves the station. The purpose of the inspection is to determine if an individual is in a hazardous position with respect to the train. In this article, we determine the extent to which high-contrast visual acuity can predict performance on a simulated task. Performance at discriminating hazardous from safe conditions, as depicted in projected photographic slides, was determined as a function of visual acuity. For different levels of visual acuity, which was varied through the use of optical defocus, a subject was required to label scenes as hazardous or safe. Task performance was highly correlated with visual acuity as measured under conditions normally used for vision screenings (high-illumination and high-contrast): as the acuity decreases, performance at discriminating hazardous from safe scenes worsens. This empirically based methodology can be used to establish a corrected high-contrast visual acuity standard for safety-sensitive work in transportation that is linked to the performance of a job-critical task.
Yazdanie, Mohammad; Alvarez, Jason; Agrón, Elvira; Wong, Wai T; Wiley, Henry E; Ferris, Frederick L; Chew, Emily Y; Cukras, Catherine
2017-09-01
We investigate whether responses on a Low Luminance Questionnaire (LLQ) in patients with a range of age-related macular degeneration (AMD) severity are associated with their performance on focal dark adaptation (DA) testing and with choroidal thickness. Cross-sectional, single-center, observational study. A total of 113 participants older than 50 years of age with a range of AMD severity. Participants answered the LLQ on the same day they underwent DA testing using a focal dark adaptometer measuring rod intercept time (RIT). We performed univariable and multivariable analyses of the LLQ scores and age, RIT, AMD severity, subfoveal choroidal thickness [SFCT], phakic status, and best-corrected visual acuity. The primary outcome of this study was the score on the 32-question LLQ. Each item in the LLQ is designated to 1 of 6 subscales describing functional problems in low luminance: driving, emotional distress, mobility, extreme lighting, peripheral vision, and general dim lighting. Scores were computed for each subscale, in addition to a weighted total mean score. Responses from 113 participants (mean age, 76.2±9.3 years; 58.4% were female) and 113 study eyes were analyzed. Univariable analysis demonstrated that lower scores on all LLQ subscales were correlated with prolonged DA testing (longer RIT) and decreased choroidal thickness. All associations were statistically significant except for the association of choroidal thickness and "peripheral vision." The strongest association was the LLQ subscale of driving with RIT (r =-0.97, P < 0.001). Multivariable analysis for each of the LLQ subscale outcomes, adjusted for age, included RIT, with total LLQ score, "driving," "extreme lighting," and "mobility" also including choroidal thickness. In all multivariable analyses, RIT had a stronger association than choroidal thickness. This cross-sectional analysis demonstrates associations of patient-reported functional deficits, as assessed on the LLQ, with both reduced DA and reduced choroidal thickness, in a population of older adults with varying degrees of AMD severity and good visual acuity in at least 1 eye. These analyses suggest that local functional measurements of DA testing (RIT) and choroidal thickness are associated with patient-reported functional deficits. Published by Elsevier Inc.
Functional visual fields: relationship of visual field areas to self-reported function.
Subhi, Hikmat; Latham, Keziah; Myint, Joy; Crossland, Michael D
2017-07-01
The aim of this study is to relate areas of the visual field to functional difficulties to inform the development of a binocular visual field assessment that can reflect the functional consequences of visual field loss. Fifty-two participants with peripheral visual field loss undertook binocular assessment of visual fields using the 30-2 and 60-4 SITA Fast programs on the Humphrey Field Analyser, and mean thresholds were derived. Binocular visual acuity, contrast sensitivity and near reading performance were also determined. Self-reported overall and mobility function were assessed using the Dutch ICF Activity Inventory. Greater visual field loss (0-60°) was associated with worse self-reported function both overall (R 2 = 0.50; p < 0.0001), and for mobility (R 2 = 0.64; p < 0.0001). Central (0-30°) and peripheral (30-60°) visual field areas were similarly related to mobility function (R 2 = 0.61, p < 0.0001 and R 2 = 0.63, p < 0.0001 respectively), although the peripheral (30-60°) visual field was the best predictor of mobility self-reported function in multiple regression analyses. Superior and inferior visual field areas related similarly to mobility function (R 2 = 0.56, p < 0.0001 and R 2 = 0.67, p < 0.0001 respectively). The inferior field was found to be the best predictor of mobility function in multiple regression analysis. Mean threshold of the binocular visual field to 60° eccentricity is a good predictor of self-reported function overall, and particularly of mobility function. Both the central (0-30°) and peripheral (30-60°) mean threshold are good predictors of self-reported function, but the peripheral (30-0°) field is a slightly better predictor of mobility function, and should not be ignored when considering functional consequences of field loss. The inferior visual field is a slightly stronger predictor of perceived overall and mobility function than the superior field. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Objective Measures of Visual Function in Papilledema
Moss, Heather E.
2016-01-01
Synopsis Visual function is an important parameter to consider when managing patients with papilledema. Though the current standard of care uses standard automated perimetry (SAP) to obtain this information, this test is inherently subjective and prone to patient errors. Objective visual function tests including the visual evoked potential, pattern electroretinogram, photopic negative response of the full field electroretinogram, and pupillary light response have the potential to replace or supplement subjective visual function tests in papilledema management. This article reviews the evidence for use of objective visual function tests to assess visual function in papilledema and discusses future investigations needed to develop them as clinically practical and useful measures for this purpose. PMID:28451649
Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks
Ruiz-Rizzo, Adriana L.; Neitzel, Julia; Müller, Hermann J.; Sorg, Christian; Finke, Kathrin
2018-01-01
Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity. PMID:29662444
Ruiz-Rizzo, Adriana L; Neitzel, Julia; Müller, Hermann J; Sorg, Christian; Finke, Kathrin
2018-01-01
Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's "theory of visual attention" (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity.
Vision screening in children: Is 7-9 years of age a threshold for visual impairment?
Ertekin, Yusuf Haydar; Tekin, Murat; Uludag, Aysegul; Arikan, Sedat; Sahin, Erkan Melih
2016-01-01
The present study aimed to assess the prevalence of decreased visual acuity, strabismus, and spectacle wear in children aged 5 to 13 years. A cross-sectional study was performed in primary education schools. A total of 1938 participants, including 940 females (48.5%) and 998 males (51.5%) with a mean age 8.96 ± 2.31 (5-13 years old), were screened. The comparisons were performed with gender, age, and age groups. The children attended to vision screening were assigned to three age groups as 5-6 years, 7-9 years, and 10-13 years. The prevalence of the parameters was detected as decreased visual acuity 12.4%, strabismus 2.2%, and spectacle wear 6.9%. The prevalence of decreased visual acuity was significantly higher in girls and in children aged 7-9 years old (p = 0.013, p < 0.001). The prevalence of spectacle wear was significantly higher in girls and in children aged 7-9 years old (p = 0.019, p < 0.001). There was a visual acuity decrease in 33 of 106 (31.1%) children despite wearing own spectacle. There was no significant difference among three age groups for strabismus. Increased prevalence of decreased visual acuity, as well as the higher frequency of spectacle wear in children at ages of 7-9 years old may point out a threshold for visual impairment.
Vision screening in children: Is 7-9 years of age a threshold for visual impairment?
Ertekin, Yusuf Haydar; Tekin, Murat; Uludag, Aysegul; Arikan, Sedat; Sahin, Erkan Melih
2016-01-01
Objective: The present study aimed to assess the prevalence of decreased visual acuity, strabismus, and spectacle wear in children aged 5 to 13 years. Methods: A cross-sectional study was performed in primary education schools. A total of 1938 participants, including 940 females (48.5%) and 998 males (51.5%) with a mean age 8.96 ± 2.31 (5-13 years old), were screened. The comparisons were performed with gender, age, and age groups. The children attended to vision screening were assigned to three age groups as 5-6 years, 7-9 years, and 10-13 years. Results: The prevalence of the parameters was detected as decreased visual acuity 12.4%, strabismus 2.2%, and spectacle wear 6.9%. The prevalence of decreased visual acuity was significantly higher in girls and in children aged 7-9 years old (p = 0.013, p < 0.001). The prevalence of spectacle wear was significantly higher in girls and in children aged 7-9 years old (p = 0.019, p < 0.001). There was a visual acuity decrease in 33 of 106 (31.1%) children despite wearing own spectacle. There was no significant difference among three age groups for strabismus. Conclusion: Increased prevalence of decreased visual acuity, as well as the higher frequency of spectacle wear in children at ages of 7-9 years old may point out a threshold for visual impairment. PMID:27882020
NASA Technical Reports Server (NTRS)
Oneal, Melvin R.; Task, H. Lee; Genco, Louis V.
1992-01-01
Viewgraphs on the effect of microgravity on several visual functions during STS shuttle missions are presented. The purpose, methods, results, and discussion are discussed. The visual function tester model 1 is used.
The contribution of single case studies to the neuroscience of vision.
Zihl, Josef; Heywood, Charles A
2016-03-01
Visual neuroscience is concerned with the neurobiological foundations of visual perception, that is, the morphological, physiological, and functional organization of the visual brain and its co-operative partners. One important approach for understanding the functional organization of the visual brain is the study of visual perception from the pathological perspective. The study of patients with focal injury to the visual brain allows conclusions about the representation of visual perceptual functions in the framework of association and dissociation of functions. Selective disorders have been reported for more "elementary" visual capabilities, for example, color and movement vision, but also for visuo-cognitive capacities, such as visual agnosia or the visual field of attention. Because these visual disorders occur rather seldom as selective and specific dysfunctions, single cases have always played, and still play, a significant role in gaining insights into the functional organization of the visual brain. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Manneristic behaviors of visually impaired children.
Molloy, Alysha; Rowe, Fiona J
2011-09-01
To review the literature on visual impairment in children in order to determine which manneristic behaviors are associated with visual impairment, and to establish why these behaviors occur and whether severity of visual impairment influences these behaviors. A literature search utilizing PubMed, OVID, Google Scholar, and Web of Knowledge databases was performed. The University of Liverpool ( www.liv.ac.uk/orthoptics/research ) and local library facilities were also searched. The main manneristic or stereotypic behaviors associated with visual impairment are eye-manipulatory behaviors, such as eye poking and rocking. The degree of visual impairment influences the type of behavior exhibited by visually impaired children. Totally blind children are more likely to adopt body and head movements whereas sight-impaired children tend to adopt eye-manipulatory behaviors and rocking. The mannerisms exhibited most frequently are those that provide a specific stimulation to the child. Theories to explain these behaviors include behavioral, developmental, functional, and neurobiological approaches. Although the precise etiology of these behaviors is unknown, it is recognized that each of the theories is useful in providing some explanation of why certain behaviors may occur. The age at which the frequency of these behaviors decreases is associated with the child's increasing development, thus those visually impaired children with additional disabilities, whose development is impaired, are at an increased risk of developing and maintaining these behaviors. Certain manneristic behaviors of the visually impaired child may also help indicate the cause of visual impairment. There is a wide range of manneristic behaviors exhibited by visually impaired children. Some of these behaviors appear to be particularly associated with certain causes of visual impairment or severity of visual impairment, thus they may supply the practitioner with useful information. Further research into the prevalence of these behaviors in the visually impaired child is required in order to provide effective management.
Surenkok, Ozgur; Aytar, Aydan; Baltaci, Gul
2009-11-01
The aim of this study was to evaluate the initial effects of scapular mobilization (SM) on shoulder range of motion (ROM), scapular upward rotation, pain, and function. Pretest-posttest for 3 groups (SM, sham, and control). A double-blinded, randomized, placebo-controlled trial was conducted to evaluate the initial effect of the SM at a sports physiotherapy clinic. 39 subjects (22 women, 17 men; mean age 54.30 +/- 14.16 y, age range 20-77 y). A visual analog scale, ROM, scapular upward rotation, and function were assessed before and just after SM. SM (n = 13) consisted of the application of superoinferior gliding, rotations, and distraction to the scapula. The sham (n = 13) condition replicated the treatment condition except for the hand positioning. The control group (n = 13) did not undergo any physiotherapy and rehabilitation program. Pain severity was assessed with a visual analog scale. Scapular upward rotation was measured with a baseline digital inclinometer. Constant Shoulder Score (CSS) was used to measure shoulder function. After SM, we found significant improvements for shoulder ROM, scapular upward rotation, and CSS between pretreatment and posttreatment compared with the sham and control groups. In the sham group, shoulder-ROM values increased or decreased for the shoulder and scapular upward rotation was not changed. Pain, ROM, and physical function of the shoulder were not significantly different in the sham group than in controls (P > .05). SM may be a useful manual therapy technique to apply to participants with a painful limitation of the shoulder. SM increases ROM and decreases pain intensity.
Qi, N; Cui, Y; Liu, J C; Yu, M; Teng, G J
2017-10-24
Objective: To investigate the changes of resting brain function with time in patients with type 2 diabetes mellitus (T2DM) by using regional homogeneity (ReHo) with resting-state functional magnetic resonance imaging (rs-fMRI). Methods: Multidimensional cognitive function tests and rs-fMRI scans were performed in 21 T2DM patients and 12 healthy controls in 2012 and 2015 respectively.The differences in clinical variables and the ReHo values before and after were measured by paired sample t test, and the correlation between the change of ReHo value and the change of clinical variables was measured by Pearson correlation analysis based on voxel. Results: The delayed score (14±6) of the T2DM patients in 2015 was significantly lower than that in 2012 (18±6) ( t =-2.88, P =0.009); while the value of ReHo in the bilateral occipital lobe and right middle frontal gyrus was significantly lower than that in 2012 ( P <0.01, Alphasim correction). And the decreased ReHo value in the left occipital lobe was significantly correlated with the change of complex figure test (CFT) delay score and the trail making test-B (TMT-B)( r =0.52, -0.46, both P <0.05). No significant change in cognitive function tests in the healthy control group was found between the two years, ReHo value in right cuneus decreased significantly ( P <0.01, Alphasim correction), but it increased significantly in superior frontal gyrus ( P <0.01, Alphasim correction) in 2015.No significant correlation between the changes of the ReHo values in the right cuneus and right superior frontal gyrus and the changes of cognitive function scores was found in the healthy controls. Conclusions: The visual memory is significantly declined in T2DM patients within 3 years.The reduced neural activity areas in T2DM patients are in the bilateral occipitai lobes and the right middle frontal lobe. Decreased neural activity in the left occipital area is related to visual impairment, information processing speed and attention drops.
Bezdek, Matthew A; Wenzel, William G; Schumacher, Eric H
2017-10-01
We tested the hypothesis that, during naturalistic viewing, moments of increasing narrative suspense narrow the scope of attentional focus. We also tested how changes in the emotional congruency of the music would affect brain responses to suspense, as well as subsequent memory for narrative events. In our study, participants viewed suspenseful film excerpts while brain activation was measured with functional magnetic resonance imaging. Results indicated that suspense produced a pattern of activation consistent with the attention-narrowing hypothesis. For example, we observed decreased activation in the anterior calcarine sulcus, which processes the visual periphery, and increased activity in nodes of the ventral attention network and decreased activity in nodes of the default mode network. Memory recall was more accurate for high suspense than low suspense moments, but did not differ by soundtrack congruency. These findings provide neural evidence that perceptual, attentional, and memory processes respond to suspense on a moment-by-moment basis. Copyright © 2017 Elsevier B.V. All rights reserved.
Longitudinal evaluation of fine motor skills in children with leukemia.
Hockenberry, Marilyn; Krull, Kevin; Moore, Ki; Gregurich, Mary Ann; Casey, Marissa E; Kaemingk, Kris
2007-08-01
Improved survival for children with acute lymphocytic leukemia (ALL) has allowed investigators to focus on the adverse or side effects of treatment and to develop interventions that promote cure while decreasing the long-term effects of therapy. Although much attention has been given to the significant neurocognitive sequelae that can occur after ALL therapy, limited investigation is found addressing fine motor function in these children and motor function that may contribute to neurocognitive deficits in ALL survivors. Fine motor and sensory-perceptual performances were examined in 82 children with ALL within 6-months of diagnosis and annually for 2 years (year 1 and year 2, respectively) during therapy. Purdue Pegboard assessments indicated significant slowing of fine motor speed and dexterity for the dominant hand, nondominant hand, and both hands simultaneously for children in this study. Mean Visual-Motor Integration (VMI) scores for children with low-risk and high-risk ALL decreased from the first evaluation to year 1 and again at year 2. Mean VMI scores for children with standard risk ALL increased from the first evaluation to year 1 and then decreased at year 2. Significant positive correlations were found between the Purdue and the VMI at both year 1 and year 2, suggesting that the Pegboard performance consistently predicts the later decline in visual-motor integration. Significant correlations were found between the Purdue Pegboard at baseline and the Performance IQ during year 1, though less consistently during year 2. A similar pattern was also observed between the baseline Pegboard performance and performance on the Coding and Symbol Search subtests during year 1 and year 2. In this study, children with ALL experienced significant and persistent visual-motor problems throughout therapy. These problems continued during the first and second years of treatment. These basic processing skills are necessary to the development of higher-level cognitive abilities, including nonverbal intelligence and academic achievement, particularly in arithmetic and written language.
Whole brain resting-state analysis reveals decreased functional connectivity in major depression.
Veer, Ilya M; Beckmann, Christian F; van Tol, Marie-José; Ferrarini, Luca; Milles, Julien; Veltman, Dick J; Aleman, André; van Buchem, Mark A; van der Wee, Nic J; Rombouts, Serge A R B
2010-01-01
Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always controlled for. Therefore, the aim of the current study was to investigate whole-brain functional connectivity, unbiased by a priori definition of regions or networks of interest, in medication-free depressive patients without comorbidity. We analyzed resting-state fMRI data of 19 medication-free patients with a recent diagnosis of major depression (within 6 months before inclusion) and no comorbidity, and 19 age- and gender-matched controls. Independent component analysis was employed on the concatenated data sets of all participants. Thirteen functionally relevant networks were identified, describing the entire study sample. Next, individual representations of the networks were created using a dual regression method. Statistical inference was subsequently done on these spatial maps using voxel-wise permutation tests. Abnormal functional connectivity was found within three resting-state networks in depression: (1) decreased bilateral amygdala and left anterior insula connectivity in an affective network, (2) reduced connectivity of the left frontal pole in a network associated with attention and working memory, and (3) decreased bilateral lingual gyrus connectivity within ventromedial visual regions. None of these effects were associated with symptom severity or gray matter density. We found abnormal resting-state functional connectivity not previously associated with major depression, which might relate to abnormal affect regulation and mild cognitive deficits, both associated with the symptomatology of the disorder.
Whole Brain Resting-State Analysis Reveals Decreased Functional Connectivity in Major Depression
Veer, Ilya M.; Beckmann, Christian F.; van Tol, Marie-José; Ferrarini, Luca; Milles, Julien; Veltman, Dick J.; Aleman, André; van Buchem, Mark A.; van der Wee, Nic J.; Rombouts, Serge A.R.B.
2010-01-01
Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always controlled for. Therefore, the aim of the current study was to investigate whole-brain functional connectivity, unbiased by a priori definition of regions or networks of interest, in medication-free depressive patients without comorbidity. We analyzed resting-state fMRI data of 19 medication-free patients with a recent diagnosis of major depression (within 6 months before inclusion) and no comorbidity, and 19 age- and gender-matched controls. Independent component analysis was employed on the concatenated data sets of all participants. Thirteen functionally relevant networks were identified, describing the entire study sample. Next, individual representations of the networks were created using a dual regression method. Statistical inference was subsequently done on these spatial maps using voxel-wise permutation tests. Abnormal functional connectivity was found within three resting-state networks in depression: (1) decreased bilateral amygdala and left anterior insula connectivity in an affective network, (2) reduced connectivity of the left frontal pole in a network associated with attention and working memory, and (3) decreased bilateral lingual gyrus connectivity within ventromedial visual regions. None of these effects were associated with symptom severity or gray matter density. We found abnormal resting-state functional connectivity not previously associated with major depression, which might relate to abnormal affect regulation and mild cognitive deficits, both associated with the symptomatology of the disorder. PMID:20941370
Seeing visual word forms: spatial summation, eccentricity and spatial configuration.
Kao, Chien-Hui; Chen, Chien-Chung
2012-06-01
We investigated observers' performance in detecting and discriminating visual word forms as a function of target size and retinal eccentricity. The contrast threshold of visual words was measured with a spatial two-alternative forced-choice paradigm and a PSI adaptive method. The observers were to indicate which of two sides contained a stimulus in the detection task, and which contained a real character (as opposed to a pseudo- or non-character) in the discrimination task. When the target size was sufficiently small, the detection threshold of a character decreased as its size increased, with a slope of -1/2 on log-log coordinates, up to a critical size at all eccentricities and for all stimulus types. The discrimination threshold decreased with target size with a slope of -1 up to a critical size that was dependent on stimulus type and eccentricity. Beyond that size, the threshold decreased with a slope of -1/2 on log-log coordinates before leveling out. The data was well fit by a spatial summation model that contains local receptive fields (RFs) and a summation across these filters within an attention window. Our result implies that detection is mediated by local RFs smaller than any tested stimuli and thus detection performance is dominated by summation across receptive fields. On the other hand, discrimination is dominated by a summation within a local RF in the fovea but a cross RF summation in the periphery. Copyright © 2012 Elsevier Ltd. All rights reserved.
Perceptual learning improves visual performance in juvenile amblyopia.
Li, Roger W; Young, Karen G; Hoenig, Pia; Levi, Dennis M
2005-09-01
To determine whether practicing a position-discrimination task improves visual performance in children with amblyopia and to determine the mechanism(s) of improvement. Five children (age range, 7-10 years) with amblyopia practiced a positional acuity task in which they had to judge which of three pairs of lines was misaligned. Positional noise was produced by distributing the individual patches of each line segment according to a Gaussian probability function. Observers were trained at three noise levels (including 0), with each observer performing between 3000 and 4000 responses in 7 to 10 sessions. Trial-by-trial feedback was provided. Four of the five observers showed significant improvement in positional acuity. In those four observers, on average, positional acuity with no noise improved by approximately 32% and with high noise by approximately 26%. A position-averaging model was used to parse the improvement into an increase in efficiency or a decrease in equivalent input noise. Two observers showed increased efficiency (51% and 117% improvements) with no significant change in equivalent input noise across sessions. The other two observers showed both a decrease in equivalent input noise (18% and 29%) and an increase in efficiency (17% and 71%). All five observers showed substantial improvement in Snellen acuity (approximately 26%) after practice. Perceptual learning can improve visual performance in amblyopic children. The improvement can be parsed into two important factors: decreased equivalent input noise and increased efficiency. Perceptual learning techniques may add an effective new method to the armamentarium of amblyopia treatments.
El Beltagi, Tarek A; Bowd, Christopher; Boden, Catherine; Amini, Payam; Sample, Pamela A; Zangwill, Linda M; Weinreb, Robert N
2003-11-01
To determine the relationship between areas of glaucomatous retinal nerve fiber layer thinning identified by optical coherence tomography and areas of decreased visual field sensitivity identified by standard automated perimetry in glaucomatous eyes. Retrospective observational case series. Forty-three patients with glaucomatous optic neuropathy identified by optic disc stereo photographs and standard automated perimetry mean deviations >-8 dB were included. Participants were imaged with optical coherence tomography within 6 months of reliable standard automated perimetry testing. The location and number of optical coherence tomography clock hour retinal nerve fiber layer thickness measures outside normal limits were compared with the location and number of standard automated perimetry visual field zones outside normal limits. Further, the relationship between the deviation from normal optical coherence tomography-measured retinal nerve fiber layer thickness at each clock hour and the average pattern deviation in each visual field zone was examined by using linear regression (R(2)). The retinal nerve fiber layer areas most frequently outside normal limits were the inferior and inferior temporal regions. The least sensitive visual field zones were in the superior hemifield. Linear regression results (R(2)) showed that deviation from the normal retinal nerve fiber layer thickness at optical coherence tomography clock hour positions 6 o'clock, 7 o'clock, and 8 o'clock (inferior and inferior temporal) was best correlated with standard automated perimetry pattern deviation in visual field zones corresponding to the superior arcuate and nasal step regions (R(2) range, 0.34-0.57). These associations were much stronger than those between clock hour position 6 o'clock and the visual field zone corresponding to the inferior nasal step region (R(2) = 0.01). Localized retinal nerve fiber layer thinning, measured by optical coherence tomography, is topographically related to decreased localized standard automated perimetry sensitivity in glaucoma patients.
de Sousa, Alexandra A.; Proulx, Michael J.
2014-01-01
An overall relationship between brain size and cognitive ability exists across primates. Can more specific information about neural function be gleaned from cortical area volumes? Numerous studies have found significant relationships between brain structures and behaviors. However, few studies have speculated about brain structure-function relationships from the microanatomical to the macroanatomical level. Here we address this problem in comparative neuroanatomy, where the functional relevance of overall brain size and the sizes of cortical regions have been poorly understood, by considering comparative psychology, with measures of visual acuity and the perception of visual illusions. We outline a model where the macroscopic size (volume or surface area) of a cortical region (such as the primary visual cortex, V1) is related to the microstructure of discrete brain regions. The hypothesis developed here is that an absolutely larger V1 can process more information with greater fidelity due to having more neurons to represent a field of space. This is the first time that the necessary comparative neuroanatomical research at the microstructural level has been brought to bear on the issue. The evidence suggests that as the size of V1 increases: the number of neurons increases, the neuron density decreases, and the density of neuronal connections increases. Thus, we describe how information about gross neuromorphology, using V1 as a model for the study of other cortical areas, may permit interpretations of cortical function. PMID:25009469
Barboni, Mirella Telles Salgueiro; Martins, Cristiane Maria Gomes; Nagy, Balázs Vince; Tsai, Tina; Damico, Francisco Max; da Costa, Marcelo Fernandes; de Cassia, Rita; Pavanello, M; Lourenço, Naila Cristina Vilaça; de Cerqueira, Antonia Maria Pereira; Zatz, Mayana; Kremers, Jan; Ventura, Dora Fix
2016-07-01
Visual information is processed in parallel pathways in the visual system. Parallel processing begins at the synapse between the photoreceptors and their postreceptoral neurons in the human retina. The integrity of this first neural connection is vital for normal visual processing downstream. Of the numerous elements necessary for proper functioning of this synaptic contact, dystrophin proteins in the eye play an important role. Deficiency of muscle dystrophin causes Duchenne muscular dystrophy (DMD), an X-linked disease that affects muscle function and leads to decreased life expectancy. In DMD patients, postreceptoral retinal mechanisms underlying scotopic and photopic vision and ON- and OFF-pathway responses are also altered. In this study, we recorded the electroretinogram (ERG) while preferentially activating the (red-green) opponent or the luminance pathway, and compared data from healthy participants (n = 16) with those of DMD patients (n = 10). The stimuli were heterochromatic sinusoidal modulations at a mean luminance of 200 cd/m2. The recordings allowed us also to analyze ON and OFF cone-driven retinal responses. We found significant differences in 12-Hz response amplitudes and phases between controls and DMD patients, with conditions with large luminance content resulting in larger response amplitudes in DMD patients compared to controls, whereas responses of DMD patients were smaller when pure chromatic modulation was given. The results suggest that dystrophin is required for the proper function of luminance and red-green cone opponent mechanisms in the human retina.
Visual Cone Arrestin 4 Contributes to Visual Function and Cone Health
Deming, Janise D.; Pak, Joseph S.; Brown, Bruce M.; Kim, Moon K.; Aung, Moe H.; Eom, Yun Sung; Shin, Jung-a; Lee, Eun-Jin; Pardue, Machelle T.; Craft, Cheryl Mae
2015-01-01
Purpose Visual arrestins (ARR) play a critical role in shutoff of rod and cone phototransduction. When electrophysiological responses are measured for a single mouse cone photoreceptor, ARR1 expression can substitute for ARR4 in cone pigment desensitization; however, each arrestin may also contribute its own, unique role to modulate other cellular functions. Methods A combination of ERG, optokinetic tracking, immunohistochemistry, and immunoblot analysis was used to investigate the retinal phenotypes of Arr4 null mice (Arr4−/−) compared with age-matched control, wild-type mice. Results When 2-month-old Arr4−/− mice were compared with wild-type mice, they had diminished visual acuity and contrast sensitivity, yet enhanced ERG flicker response and higher photopic ERG b-wave amplitudes. In contrast, in older Arr4−/− mice, all ERG amplitudes were significantly reduced in magnitude compared with age-matched controls. Furthermore, in older Arr4−/− mice, the total cone numbers decreased and cone opsin protein immunoreactive expression levels were significantly reduced, while overall photoreceptor outer nuclear layer thickness was unchanged. Conclusions Our study demonstrates that Arr4−/− mice display distinct phenotypic differences when compared to controls, suggesting that ARR4 modulates essential functions in high acuity vision and downstream cellular signaling pathways that are not fulfilled or substituted by the coexpression of ARR1, despite its high expression levels in all mouse cones. Without normal ARR4 expression levels, cones slowly degenerate with increasing age, making this a new model to study age-related cone dystrophy. PMID:26284544
Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.
2014-01-01
The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies. PMID:24394694
Suppression of melatonin secretion in some blind patients by exposure to bright light.
Czeisler, C A; Shanahan, T L; Klerman, E B; Martens, H; Brotman, D J; Emens, J S; Klein, T; Rizzo, J F
1995-01-05
Complete blindness generally results in the loss of synchronization of circadian rhythms to the 24-hour day and in recurrent insomnia. However, some blind patients maintain circadian entrainment. We undertook this study to determine whether some blind patients' eyes convey sufficient photic information to entrain the hypothalamic circadian pacemaker and suppress melatonin secretion, despite an apparently complete loss of visual function. We evaluated the input of light to the circadian pacemaker by testing the ability of bright light to decrease plasma melatonin concentrations in 11 blind patients with no conscious perception of light and in 6 normal subjects. We also evaluated circadian entrainment over time in the blind patients. Plasma melatonin concentrations decreased during exposure to bright light in three sightless patients by an average (+/- SD) of 69 +/- 21 percent and in the normal subjects by an average of 66 +/- 15 percent. When two of these blind patients were tested with their eyes covered during exposure to light, plasma melatonin did not decrease. The three blind patients reported no difficulty sleeping and maintained apparent circadian entrainment to the 24-hour day. Plasma melatonin concentrations did not decrease during exposure to bright light in seven of the remaining blind patients; in the eighth, plasma melatonin was undetectable. These eight patients reported a history of insomnia, and in four the circadian temperature rhythm was not entrained to the 24-hour day. The visual subsystem that mediates light-induced suppression of melatonin secretion remains functionally intact in some sightless patients. The absence of photic input to the circadian system thus constitutes a distinct form of blindness, associated with periodic insomnia, that afflicts most but not all patients with no conscious perception of light.
Contrast and assimilation in motion perception and smooth pursuit eye movements.
Spering, Miriam; Gegenfurtner, Karl R
2007-09-01
The analysis of visual motion serves many different functions ranging from object motion perception to the control of self-motion. The perception of visual motion and the oculomotor tracking of a moving object are known to be closely related and are assumed to be controlled by shared brain areas. We compared perceived velocity and the velocity of smooth pursuit eye movements in human observers in a paradigm that required the segmentation of target object motion from context motion. In each trial, a pursuit target and a visual context were independently perturbed simultaneously to briefly increase or decrease in speed. Observers had to accurately track the target and estimate target speed during the perturbation interval. Here we show that the same motion signals are processed in fundamentally different ways for perception and steady-state smooth pursuit eye movements. For the computation of perceived velocity, motion of the context was subtracted from target motion (motion contrast), whereas pursuit velocity was determined by the motion average (motion assimilation). We conclude that the human motion system uses these computations to optimally accomplish different functions: image segmentation for object motion perception and velocity estimation for the control of smooth pursuit eye movements.
Transient Retinal Dysfunctions after Acute Cannabis Use.
Schwitzer, Thomas; Robert, Matthieu P; Giersch, Anne; Angioi-Duprez, Karine; Ingster-Moati, Isabelle; Pon-Monnier, Amandine; Schwan, Raymund; Laprevote, Vincent
2016-01-01
Although cannabis is very widespread worldwide, the impact of cannabis on visual function remains poorly understood. This is partly due to numerous difficulties met in developing clinical studies in cannabis users. Here, we report the first documented case of neuroretinal dysfunction after acute cannabis smoking. This observation was favored by the need of an annual ophthalmic evaluation in the context of a chloroquine intake for a systemic lupus erythematosus in a 47-year-old heavy cannabis user. A complete ophthalmic evaluation including visual acuity tests, intraocular pressure, fundoscopic examination, automated 10° central visual field, full-field electroretinogram (ERG) and multifocal ERG was performed twice - 30 min and 5 h after cannabis smoking. A strong decrease (up to 48%) in the a-wave amplitude of the full-field ERG was measured 30 min after cannabis smoking for all scotopic responses compared with the responses 5 h after smoking. Other tests showed reproducible results between the 2 series of measurements. This clinical case suggests that acute inhalation of cannabis affects the photoreceptors functioning. This rare situation suggests further investigations are required on the impact of cannabis on retinal processing, especially since cannabis has been incriminated in car injuries. © 2016 S. Karger AG, Basel.
38 CFR 4.75 - General considerations for evaluating visual impairment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... refraction), visual field, and muscle function. (b) Examination for visual impairment. The examination must.... Examinations of visual fields or muscle function will be conducted only when there is a medical indication of disease or injury that may be associated with visual field defect or impaired muscle function. Unless...
38 CFR 4.75 - General considerations for evaluating visual impairment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... refraction), visual field, and muscle function. (b) Examination for visual impairment. The examination must.... Examinations of visual fields or muscle function will be conducted only when there is a medical indication of disease or injury that may be associated with visual field defect or impaired muscle function. Unless...
38 CFR 4.75 - General considerations for evaluating visual impairment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... refraction), visual field, and muscle function. (b) Examination for visual impairment. The examination must.... Examinations of visual fields or muscle function will be conducted only when there is a medical indication of disease or injury that may be associated with visual field defect or impaired muscle function. Unless...
van de Graaf, Elizabeth S; Despriet, Dominiek D G; Klaver, Caroline C W; Simonsz, Huibert J
2016-05-17
Utility of visual impairment caused by amblyopia is important for the cost-effectiveness of screening for amblyopia (lazy eye, prevalence 3-3.5 %). We previously measured decrease of utility in 35-year-old persons with unilateral persistent amblyopia. The current observational case-control study aimed to measure loss of utility in patients with amblyopia with recent decrease of vision in their better eye. As these patients are rare, the sample was supplemented by patients with bilateral age-related macular degeneration with similar decrease of vision. From our out-patient department, two groups of patients with recent deterioration to bilateral visual acuity less than Snellen 0.5 (bilateral visual impairment, BVI) were recruited, with either persistent amblyopia and age-related macular degeneration (AMB + AMD), or with bilateral age-related macular degeneration (BAMD). To measure utility, the time trade-off method and the standard gamble method were applied through interviews. Correlations were sought between utility values and visual acuity, age and Visual Function Questionnaire-25 scores. Seventeen AMB + AMD patients (mean age 72.9 years), and 63 BAMD patients (mean age 79.6 years) were included in the study. Among AMB + AMD, 80 % were willing to trade lifetime in exchange for cure. The overall mean time trade-off utility was 0.925. Among BAMD, 75 % were willing to trade, utility was 0.917. Among AMB + AMD, 38 % accepted risk of death in exchange for cure, overall mean standard gamble utility was 0.999. Among BAMD, 49 % accepted risk of death, utility was 0.998. Utility was not related to visual acuity but it was to age (p = 0.02). Elderly patients with BVI, caused by persistent amblyopia and age-related macular degeneration (AMD) or by bilateral AMD, had an approximately 8 % loss of TTO utility. Notably, the 8 % loss in elderly with BVI differs little from the 3.7 % loss we found previously in 35-year-old persons with unilateral amblyopia with good vision in the other eye. The moderate impact of BVI in senescence could be explained by adaptation, comorbidity, avoidance of risk and a changed percept of cure.
Lisicki, Marco; D'Ostilio, Kevin; Erpicum, Michel; Schoenen, Jean; Magis, Delphine
2017-01-01
Background Migraine is a complex multifactorial disease that arises from the interaction between a genetic predisposition and an enabling environment. Habituation is considered as a fundamental adaptive behaviour of the nervous system that is often impaired in migraine populations. Given that migraineurs are hypersensitive to light, and that light deprivation is able to induce functional changes in the visual cortex recognizable through visual evoked potentials habituation testing, we hypothesized that regional sunlight irradiance levels could influence the results of visual evoked potentials habituation studies performed in different locations worldwide. Methods We searched the literature for visual evoked potentials habituation studies comparing healthy volunteers and episodic migraine patients and correlated their results with levels of local solar radiation. Results After reviewing the literature, 26 studies involving 1291 participants matched our inclusion criteria. Deficient visual evoked potentials habituation in episodic migraine patients was reported in 19 studies. Mean yearly sunlight irradiance was significantly higher in locations of studies reporting deficient habituation. Correlation analyses suggested that visual evoked potentials habituation decreases with increasing sunlight irradiance in migraine without aura patients. Conclusion Results from this hypothesis generating analysis suggest that variations in sunlight irradiance may induce adaptive modifications in visual processing systems that could be reflected in visual evoked potentials habituation, and thus partially account for the difference in results between studies performed in geographically distant centers. Other causal factors such as genetic differences could also play a role, and therefore well-designed prospective trials are warranted.
Weiner, Kevin S.; Grill-Spector, Kalanit
2011-01-01
The prevailing view of human lateral occipitotemporal cortex (LOTC) organization suggests a single area selective for images of the human body (extrastriate body area, EBA) that highly overlaps with the human motion-selective complex (hMT+). Using functional magnetic resonance imaging with higher resolution (1.5mm voxels) than past studies (3–4mm voxels), we examined the fine-scale spatial organization of these activations relative to each other, as well as to visual field maps in LOTC. Rather than one contiguous EBA highly overlapping hMT+, results indicate three limb-selective activations organized in a crescent surrounding hMT+: (1) an activation posterior to hMT+ on the lateral occipital sulcus/middle occipital gyrus (LOS/MOG) overlapping the lower vertical meridian shared between visual field maps LO-2 and TO-1, (2) an activation anterior to hMT+ on the middle temporal gyrus (MTG) consistently overlapping the lower vertical meridian of TO-2 and extending outside presently defined visual field maps, and (3) an activation inferior to hMT+ on the inferotemporal gyrus (ITG) overlapping the parafoveal representation of the TO cluster. This crescent organization of limb-selective activations surrounding hMT+ is reproducible over a span of three years and is consistent across different image types used for localization. Further, these regions exhibit differential position properties: preference for contralateral image presentation decreases and preference for foveal presentation increases from the limb-selective LOS to the MTG. Finally, the relationship between limb-selective activations and visual field maps extends to the dorsal stream where a posterior IPS activation overlaps V7. Overall, our measurements demonstrate a series of LOTC limb-selective activations that 1) have separate anatomical and functional boundaries, 2) overlap distinct visual field maps, and 3) illustrate differential position properties. These findings indicate that category selectivity alone is an insufficient organization principle for defining brain areas. Instead, multiple properties are necessary in order to parcellate and understand the functional organization of high-level visual cortex. PMID:21439386
Issues in quantifying atrophic macular disease using retinal autofluorescence.
Sunness, Janet S; Ziegler, Matthias D; Applegate, Carol A
2006-01-01
To demonstrate the potential and limits of autofluorescence imaging in identifying and delineating areas of atrophy. Fundus photographs and infrared scanning laser ophthalmoscope (SLO) imaging, SLO macular perimetry, and SLO autofluorescence imaging results were compared for two patients with geographic atrophy (GA) from age-related macular degeneration, one patient with pigmentary alteration of the retina, and two patients with Stargardt disease. The main outcome measure in this case series was the presence of reduced autofluorescence. Drusen may become undetectable during autofluorescence imaging for some patients, allowing simple identification of areas of GA with areas of reduced autofluorescence. In other patients, drusen themselves have decreased autofluorescence, despite having intact retinal function in the retina overlying them. Some patients may have areas of reduced autofluorescence that persist for many years, without evidence of the development of atrophy. In Stargardt disease, decreased autofluorescence can easily detect and delineate areas of scotoma. Areas with mottled autofluorescence may have overlying function, but the function may not be adequate to support a fixation locus in that area. Using decreased autofluorescence to delineate areas of atrophy may be helpful in atrophic macular disorders. For GA, correlation with fundus photographs or macular perimetry findings may be necessary to differentiate between drusen and atrophy. For Stargardt disease, the nature of areas of decreased autofluorescence may help explain visual function of those areas.
A half-mile walk decreases visual acuity in active older people.
De Oliveira Filho, Ciro Winckler; Dias, Roges Ghidini; Tavares, Graziela Morgana Silva; Santos, Gilmar Moraes; Mazo, Giovana Zarpellon
2010-06-01
The influence of a half-mile walk on the visual acuity of older people who engaged in physical activity was examined. 91 elderly people of both sexes (20 men, 71 women; M age = 69 yr., SD = 6) participated. All were assessed before and after the half-mile walking test for visual acuity (Snellen Optotype Scale) and heart rate. The data indicated a significant decrease in visual acuity as a result of the half-mile test.
Anders, Silke; Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk
2009-11-01
Affective neuroscience has been strongly influenced by the view that a 'feeling' is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients' response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients' phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with different phenomenal experiences of affect, depending on the depth of cortical processing. They are in line with a model in which the left ventrolateral prefrontal cortex is a relay station that integrates information about subcortically triggered somatic responses and information resulting from in-depth cortical stimulus processing. Tentatively, we suggest that the observed decoupling of somatic responses and experienced affect, and the reduction of negative phenomenal experience, can be explained by a left ventrolateral prefrontal cortex-mediated inhibition of affect-related somatosensory activity.
Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk
2009-01-01
Affective neuroscience has been strongly influenced by the view that a ‘feeling’ is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients’ response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients’ phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with different phenomenal experiences of affect, depending on the depth of cortical processing. They are in line with a model in which the left ventrolateral prefrontal cortex is a relay station that integrates information about subcortically triggered somatic responses and information resulting from in-depth cortical stimulus processing. Tentatively, we suggest that the observed decoupling of somatic responses and experienced affect, and the reduction of negative phenomenal experience, can be explained by a left ventrolateral prefrontal cortex-mediated inhibition of affect-related somatosensory activity. PMID:19767414
Fan, Li-Ying; Chou, Tai-Li; Gau, Susan Shur-Fen
2017-10-01
Atomoxetine improves inhibitory control and visual processing in healthy volunteers and adults with attention-deficit/hyperactivity disorder (ADHD). However, little is known about the neural correlates of these two functions after chronic treatment with atomoxetine. This study aimed to use the counting Stroop task with functional magnetic resonance imaging (fMRI) and the Cambridge Neuropsychological Test Automated Battery (CANTAB) to investigate the changes related to inhibitory control and visual processing in adults with ADHD. This study is an 8-week, placebo-controlled, double-blind, randomized clinical trial of atomoxetine in 24 drug-naïve adults with ADHD. We investigated the changes of treatment with atomoxetine compared to placebo-treated counterparts using the counting Stroop fMRI and two CANTAB tests: rapid visual information processing (RVP) for inhibitory control and delayed matching to sample (DMS) for visual processing. Atomoxetine decreased activations in the right inferior frontal gyrus and anterior cingulate cortex, which were correlated with the improvement in inhibitory control assessed by the RVP. Also, atomoxetine increased activation in the left precuneus, which was correlated with the improvement in the mean latency of correct responses assessed by the DMS. Moreover, anterior cingulate activation in the pre-treatment was able to predict the improvements of clinical symptoms. Treatment with atomoxetine may improve inhibitory control to suppress interference and may enhance the visual processing to process numbers. In addition, the anterior cingulate cortex might play an important role as a biological marker for the treatment effectiveness of atomoxetine. Hum Brain Mapp 38:4850-4864, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Stoléru, Serge; Fonteille, Véronique; Cornélis, Christel; Joyal, Christian; Moulier, Virginie
2012-07-01
In the last fifteen years, functional neuroimaging techniques have been used to investigate the neuroanatomical correlates of sexual arousal in healthy human subjects. In most studies, subjects have been requested to watch visual sexual stimuli and control stimuli. Our review and meta-analysis found that in heterosexual men, sites of cortical activation consistently reported across studies are the lateral occipitotemporal, inferotemporal, parietal, orbitofrontal, medial prefrontal, insular, anterior cingulate, and frontal premotor cortices as well as, for subcortical regions, the amygdalas, claustrum, hypothalamus, caudate nucleus, thalami, cerebellum, and substantia nigra. Heterosexual and gay men show a similar pattern of activation. Visual sexual stimuli activate the amygdalas and thalami more in men than in women. Ejaculation is associated with decreased activation throughout the prefrontal cortex. We present a neurophenomenological model to understand how these multiple regional brain responses could account for the varied facets of the subjective experience of sexual arousal. Further research should shift from passive to active paradigms, focus on functional connectivity and use subliminal presentation of stimuli. Copyright © 2012 Elsevier Ltd. All rights reserved.
Oxygenation state and twilight vision at 2438 m.
Connolly, Desmond M
2011-01-01
Under twilight viewing conditions, hypoxia, equivalent to breathing air at 3048 m (10,000 ft), compromises low contrast acuity, dynamic contrast sensitivity, and chromatic sensitivity. Selected past experiments have been repeated under milder hypoxia, equivalent to altitude exposure below 2438 m (8000 ft), to further define the influence of oxygenation state on mesopic vision. To assess photopic and mesopic visual function, 12 subjects each undertook three experiments using the Contrast Acuity Assessment test, the Frequency Doubling Perimeter, and the Color Assessment and Diagnosis (CAD) test. Experiments were conducted near sea level breathing 15.2% oxygen (balance nitrogen) and 100% oxygen, representing mild hypobaric hypoxia at 2438 m (8000 ft) and the benefit of supplementary oxygen, respectively. Oxygenation state was a statistically significant determinant of visual performance on all three visual parameters at mesopic, but not photopic, luminance. Mesopic sensitivity was greater with supplementary oxygen, but the magnitude of each hypoxic decrement was slight. Hypoxia elevated mesopic contrast acuity thresholds by approximately 4%; decreased mesopic dynamic contrast sensitivity by approximately 2 dB; and extended mean color ellipse axis length by approximately one CAD unit at mesopic luminance (that is, hypoxia decreased chromatic sensitivity). The results indicate that twilight vision may be susceptible to conditions of altered oxygenation at upper-to-mid mesopic luminance with relevance to contemporary night flying, including using night vision devices. Supplementary oxygen should be considered when optimal visual performance is mission-critical during flight above 2438 m (8000 ft) in dim light.
[Methods for estimating personal costs of disease using retinal diseases as an example].
Porz, G; Scholl, H P N; Holz, F G; Finger, R P
2010-03-01
Age-related macular degeneration (AMD) and other retinal diseases, such as diabetic retinopathy (DRP) and hereditary retinal dystrophy can not only lead to a loss of visual function but also to a higher psychological and financial burden for the affected persons. Against this background a quantification of personal cost and vision-related quality of life was performed. A total of 66 patients (mean age 69 years, SD 13 years) with clinically confirmed diagnoses of AMD, DRP or retinal dystrophy were interviewed regarding costs for medicines, aids and equipment, support in everyday life and social benefits. Vision-related quality of life was recorded using the Impact of Vision Impairment profile (IVI). The average total annual cost was 751
Age and visual impairment decrease driving performance as measured on a closed-road circuit.
Wood, Joanne M
2002-01-01
In this study the effects of visual impairment and age on driving were investigated and related to visual function. Participants were 139 licensed drivers (young, middle-aged, and older participants with normal vision, and older participants with ocular disease). Driving performance was assessed during the daytime on a closed-road driving circuit. Visual performance was assessed using a vision testing battery. Age and visual impairment had a significant detrimental effect on recognition tasks (detection and recognition of signs and hazards), time to complete driving tasks (overall course time, reversing, and maneuvering), maneuvering ability, divided attention, and an overall driving performance index. All vision measures were significantly affected by group membership. A combination of motion sensitivity, useful field of view (UFOV), Pelli-Robson letter contrast sensitivity, and dynamic acuity could predict 50% of the variance in overall driving scores. These results indicate that older drivers with either normal vision or visual impairment had poorer driving performance compared with younger or middle-aged drivers with normal vision. The inclusion of tests such as motion sensitivity and the UFOV significantly improve the predictive power of vision tests for driving performance. Although such measures may not be practical for widespread screening, their application in selected cases should be considered.
Multifocal visual evoked potential and automated perimetry abnormalities in strabismic amblyopes.
Greenstein, Vivienne C; Eggers, Howard M; Hood, Donald C
2008-02-01
To compare visual field abnormalities obtained with standard automated perimetry (SAP) to those obtained with the multifocal visual evoked potential (mfVEP) technique in strabismic amblyopes. Humphrey 24-2 visual fields (HVF) and mfVEPs were obtained from each eye of 12 strabismic amblyopes. For the mfVEP, amplitudes and latencies were analyzed and probability plots were derived. Multifocal VEP and HVF hemifields were abnormal if they had clusters of two or more contiguous points at p < 0.01, or three or more contiguous points at p < 0.05 with at least one at p < 0.01. An eye was abnormal if it had an abnormal hemifield. On SAP, amblyopic eyes had significantly higher foveal thresholds (p = 0.003) and lower mean deviation values (p = 0.005) than fellow eyes. For the mfVEP, 11 amblyopic and 6 fellow eyes were abnormal. Of the 11 amblyopic eyes, 6 were abnormal on SAP. The deficits extended from the center to mid periphery. Monocular mfVEP latencies were significantly decreased for amblyopic eyes compared with control eyes (p < 0.0002). Both techniques revealed deficits in visual function across the visual field in strabismic amblyopes, but the mfVEP revealed deficits in fellow eyes and in more amblyopic eyes. In addition, mfVEP response latencies for amblyopic eyes were shorter than normal.
Effects of Horizontal Acceleration on Human Visual Acuity and Stereopsis
Horng, Chi-Ting; Hsieh, Yih-Shou; Tsai, Ming-Ling; Chang, Wei-Kang; Yang, Tzu-Hung; Yauan, Chien-Han; Wang, Chih-Hung; Kuo, Wu-Hsien; Wu, Yi-Chang
2015-01-01
The effect of horizontal acceleration on human visual acuity and stereopsis is demonstrated in this study. Twenty participants (mean age 22.6 years) were enrolled in the experiment. Acceleration from two different directions was performed at the Taiwan High-Speed Rail Laboratory. Gx and Gy (< and >0.1 g) were produced on an accelerating platform where the subjects stood. The visual acuity and stereopsis of the right eye were measured before and during the acceleration. Acceleration <0.1 g in the X- or Y-axis did not affect dynamic vision and stereopsis. Vision decreased (mean from 0.02 logMAR to 0.25 logMAR) and stereopsis declined significantly (mean from 40 s to 60.2 s of arc) when Gx > 0.1 g. Visual acuity worsened (mean from 0.02 logMAR to 0.19 logMAR) and poor stereopsis was noted (mean from 40 s to 50.2 s of arc) when Gy > 0.1 g. The effect of acceleration from the X-axis on the visual system was higher than that from the Y-axis. During acceleration, most subjects complained of ocular strain when reading. To our knowledge, this study is the first to report the exact levels of visual function loss during Gx and Gy. PMID:25607601
Gender differences in episodic memory and visual working memory including the effects of age.
Pauls, Franz; Petermann, Franz; Lepach, Anja Christina
2013-01-01
Analysing the relationship between gender and memory, and examining the effects of age on the overall memory-related functioning, are the ongoing goals of psychological research. The present study examined gender and age group differences in episodic memory with respect to the type of task. In addition, these subgroup differences were also analysed in visual working memory. A sample of 366 women and 330 men, aged between 16 and 69 years of age, participated in the current study. Results indicate that women outperformed men on auditory memory tasks, whereas male adolescents and older male adults showed higher level performances on visual episodic and visual working memory measures. However, the size of gender-linked effects varied somewhat across age groups. Furthermore, results partly support a declining performance on episodic memory and visual working memory measures with increasing age. Although age-related losses in episodic memory could not be explained by a decreasing verbal and visuospatial ability with age, women's advantage in auditory episodic memory could be explained by their advantage in verbal ability. Men's higher level visual episodic memory performance was found to result from their advantage in visuospatial ability. Finally, possible methodological, biological, and cognitive explanations for the current findings are discussed.
Electrocortical consequences of image processing: The influence of working memory load and worry.
White, Evan J; Grant, DeMond M
2017-03-30
Research suggests that worry precludes emotional processing as well as biases attentional processes. Although there is burgeoning evidence for the relationship between executive functioning and worry, more research in this area is needed. A recent theory suggests one mechanism for the negative effects of worry on neural indicators of attention may be working memory load, however few studies have examined this directly. The goal of the current study was to document the influence of both visual and verbal working memory load and worry on attention allocation during processing of emotional images in a cued image paradigm. It was hypothesized that working memory load will decrease attention allocation during processing of emotional images. This was tested among 38 participants using a modified S1-S2 paradigm. Results indicated that both the visual and verbal working memory tasks resulted in a reduction of attention allocation to the processing of images across stimulus types compared to the baseline task, although only for individuals low in worry. These data extend the literature by documenting decreased neural responding (i.e., LPP amplitude) to imagery both the visual and verbal working memory load, particularly among individuals low in worry. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Partial results after treatment of diabetic macular edema with Bevacizumab
Marius, Giurgică; Dorin, Chiseliță; Doina, Dimofte
2015-01-01
Purpose: To present the morphological and functional results after treating diabetic macular edema with Bevacizumab. Patient and method: It is a prospective trial which includes 15 patients with diabetic macular edema (proved by OCT and fluorescein angiography examination). The inclusion criteria are: central retinal thickness over 250 µm, visual acuity of the studied eye between 0.1 and 0.5, absence of a previous treatment. We excluded patients with macular edema caused by other ethiology or with any other macular disease. Every patient was treated with 3 intravitreal injections with Bevacizumab at every 6 weeks; we analyzed the results after 4 months. Results: The mean visual acuity improved from 0.33 ± 0.06 at baseline to 0.49 ± 0.13 at 4 months (or from 31±3.9 ETDRS letters to 39±5.67 letters). The central retinal thickness decreased from 457 ± 174 µm to 338 ± 139 µm. There was also an improvement of retinal sensibility on the microperimetry map. Conclusions: The treatment of diabetic macular edema produced an increase of visual acuity and a decrease of macular thickness after the first 3 injections with Avastin, but it is necessary to monitor the patients to detect the rebound of the edema and to initiate retreatment. PMID:29450315
Partial results after treatment of diabetic macular edema with Bevacizumab.
Marius, Giurgică; Dorin, Chiseliță; Doina, Dimofte
2015-01-01
Purpose: To present the morphological and functional results after treating diabetic macular edema with Bevacizumab. Patient and method: It is a prospective trial which includes 15 patients with diabetic macular edema (proved by OCT and fluorescein angiography examination). The inclusion criteria are: central retinal thickness over 250 µm, visual acuity of the studied eye between 0.1 and 0.5, absence of a previous treatment. We excluded patients with macular edema caused by other ethiology or with any other macular disease. Every patient was treated with 3 intravitreal injections with Bevacizumab at every 6 weeks; we analyzed the results after 4 months. Results: The mean visual acuity improved from 0.33 ± 0.06 at baseline to 0.49 ± 0.13 at 4 months (or from 31±3.9 ETDRS letters to 39±5.67 letters). The central retinal thickness decreased from 457 ± 174 µm to 338 ± 139 µm. There was also an improvement of retinal sensibility on the microperimetry map. Conclusions: The treatment of diabetic macular edema produced an increase of visual acuity and a decrease of macular thickness after the first 3 injections with Avastin, but it is necessary to monitor the patients to detect the rebound of the edema and to initiate retreatment.
Visual function of children with visual and other disabilities in Oman: A case series.
Gogri, Urmi; Khandekar, Rajiv; Al Harby, Salah
2016-12-01
We assessed the visual functioning of the children with special needs in Oman between 2009 and 2012. We present the methods of assessing different visual functions, outcomes, and interventions carried out to improve their functioning. Optometrists assessed visual functions of children of "Day care centres" in Oman. Experts further assessed them and provided low vision care. Ocular movements, refractive corrections, near, distance, contrast color, motion, field of vision, and cognitive visual function test results were noted. Feedback to caregivers was given to improve visual functioning of these children. We grouped 321 participants, (196 [61.1%] boys, age range of 3-18 years) into 61; Down syndrome (DS), 72 with intellectual disabilities (IDs), 67; hearing impaired and 121 with other conditions. Refractive error and lag of accommodation were 26 (42.6%) and 14 (22.6%) among children with DS. Contrast sensitivity was impaired in 8 (12.7%) among hearing impaired children. Defective distant and near vision was in 162 (70%) and 104 (42%) of our cohort. Children with ID were most difficult to assess. Children in a group of other disabilities had a higher proportion of impaired visual functioning. They were given low vision aids (telescopes [22], filters [7], and magnifiers [3]) in large numbers compared to those in other groups. Visual functioning of children with other disabilities show great variation and difficult to group. The care, therefore, should be at individual level. All visual functions cannot be assessed at one time.
Rentz, Anne M; Kowalski, Jonathan W; Walt, John G; Hays, Ron D; Brazier, John E; Yu, Ren; Lee, Paul; Bressler, Neil; Revicki, Dennis A
2014-03-01
Understanding how individuals value health states is central to patient-centered care and to health policy decision making. Generic preference-based measures of health may not effectively capture the impact of ocular diseases. Recently, 6 items from the National Eye Institute Visual Function Questionnaire-25 were used to develop the Visual Function Questionnaire-Utility Index health state classification, which defines visual function health states. To describe elicitation of preferences for health states generated from the Visual Function Questionnaire-Utility Index health state classification and development of an algorithm to estimate health preference scores for any health state. Nonintervention, cross-sectional study of the general community in 4 countries (Australia, Canada, United Kingdom, and United States). A total of 607 adult participants were recruited from local newspaper advertisements. In the United Kingdom, an existing database of participants from previous studies was used for recruitment. Eight of 15,625 possible health states from the Visual Function Questionnaire-Utility Index were valued using time trade-off technique. A θ severity score was calculated for Visual Function Questionnaire-Utility Index-defined health states using item response theory analysis. Regression models were then used to develop an algorithm to assign health state preference values for all potential health states defined by the Visual Function Questionnaire-Utility Index. Health state preference values for the 8 states ranged from a mean (SD) of 0.343 (0.395) to 0.956 (0.124). As expected, preference values declined with worsening visual function. Results indicate that the Visual Function Questionnaire-Utility Index describes states that participants view as spanning most of the continuum from full health to dead. Visual Function Questionnaire-Utility Index health state classification produces health preference scores that can be estimated in vision-related studies that include the National Eye Institute Visual Function Questionnaire-25. These preference scores may be of value for estimating utilities in economic and health policy analyses.
Lundström, Mats; Goh, Pik-Pin; Henry, Ype; Salowi, Mohamad A; Barry, Peter; Manning, Sonia; Rosen, Paul; Stenevi, Ulf
2015-01-01
The aim of this study was to describe changes over time in the indications and outcomes of cataract surgery and to discuss optimal timing for the surgery. Database study. Patients who had undergone cataract extraction in the Netherlands, Sweden, or Malaysia from 2008 through 2012. We analyzed preoperative, surgical, and postoperative data from 2 databases: the European Registry of Quality Outcomes for Cataract and Refractive Surgery (EUREQUO) and the Malaysian National Cataract Registry. The EUREQUO contains complete data from the national cataract registries in the Netherlands and Sweden. Preoperative and postoperative corrected distance visual acuity, preoperative ocular comorbidity in the surgery eye, and capsule complications during surgery. There were substantial differences in indication for surgery between the 3 national data sets. The percentage of eyes with a preoperative best-corrected visual acuity of 20/200 or worse varied from 7.1% to 72%. In all 3 data sets, the visual thresholds for cataract surgery decreased over time by 6% to 28% of the baseline values. The frequency of capsule complications varied between the 3 data sets, from 1.1% to 3.7% in 2008 and from 0.6% to 2.7% in 2012. An increasing postoperative visual acuity was also seen for all 3 data sets. A high frequency of capsule complication was related significantly to poor preoperative visual acuity, and a high frequency of decreased visual acuity after surgery was related significantly to excellent preoperative visual acuity. The 5-year trend in all 3 national data sets showed decreasing visual thresholds for surgery, decreasing surgical complication rates, and increasing visual outcomes regardless of the initial preoperative visual level. Cataract surgery on eyes with poor preoperative visual acuity was related to surgical complications, and cataract surgery on eyes with excellent preoperative visual acuity was related to adverse visual results. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Aging of Non-Visual Spectral Sensitivity to Light in Humans: Compensatory Mechanisms?
Najjar, Raymond P.; Chiquet, Christophe; Teikari, Petteri; Cornut, Pierre-Loïc; Claustrat, Bruno; Denis, Philippe; Gronfier, Claude
2014-01-01
The deterioration of sleep in the older population is a prevalent feature that contributes to a decrease in quality of life. Inappropriate entrainment of the circadian clock by light is considered to contribute to the alteration of sleep structure and circadian rhythms in the elderly. The present study investigates the effects of aging on non-visual spectral sensitivity to light and tests the hypothesis that circadian disturbances are related to a decreased light transmittance. In a within-subject design, eight aged and five young subjects were exposed at night to 60 minute monochromatic light stimulations at 9 different wavelengths (420–620 nm). Individual sensitivity spectra were derived from measures of melatonin suppression. Lens density was assessed using a validated psychophysical technique. Although lens transmittance was decreased for short wavelength light in the older participants, melatonin suppression was not reduced. Peak of non-visual sensitivity was, however, shifted to longer wavelengths in the aged participants (494 nm) compared to young (484 nm). Our results indicate that increased lens filtering does not necessarily lead to a decreased non-visual sensitivity to light. The lack of age-related decrease in non-visual sensitivity to light may involve as yet undefined adaptive mechanisms. PMID:24465738
Burnat, Kalina; Hu, Tjing-Tjing; Kossut, Małgorzata; Eysel, Ulf T; Arckens, Lutgarde
2017-09-13
Induction of a central retinal lesion in both eyes of adult mammals is a model for macular degeneration and leads to retinotopic map reorganization in the primary visual cortex (V1). Here we characterized the spatiotemporal dynamics of molecular activity levels in the central and peripheral representation of five higher-order visual areas, V2/18, V3/19, V4/21a,V5/PMLS, area 7, and V1/17, in adult cats with central 10° retinal lesions (both sexes), by means of real-time PCR for the neuronal activity reporter gene zif268. The lesions elicited a similar, permanent reduction in activity in the center of the lesion projection zone of area V1/17, V2/18, V3/19, and V4/21a, but not in the motion-driven V5/PMLS, which instead displayed an increase in molecular activity at 3 months postlesion, independent of visual field coordinates. Also area 7 only displayed decreased activity in its LPZ in the first weeks postlesion and increased activities in its periphery from 1 month onward. Therefore we examined the impact of central vision loss on motion perception using random dot kinematograms to test the capacity for form from motion detection based on direction and velocity cues. We revealed that the central retinal lesions either do not impair motion detection or even result in better performance, specifically when motion discrimination was based on velocity discrimination. In conclusion, we propose that central retinal damage leads to enhanced peripheral vision by sensitizing the visual system for motion processing relying on feedback from V5/PMLS and area 7. SIGNIFICANCE STATEMENT Central retinal lesions, a model for macular degeneration, result in functional reorganization of the primary visual cortex. Examining the level of cortical reactivation with the molecular activity marker zif268 revealed reorganization in visual areas outside V1. Retinotopic lesion projection zones typically display an initial depression in zif268 expression, followed by partial recovery with postlesion time. Only the motion-sensitive area V5/PMLS shows no decrease, and even a significant activity increase at 3 months post-retinal lesion. Behavioral tests of motion perception found no impairment and even better sensitivity to higher random dot stimulus velocities. We demonstrate that the loss of central vision induces functional mobilization of motion-sensitive visual cortex, resulting in enhanced perception of moving stimuli. Copyright © 2017 the authors 0270-6474/17/378989-11$15.00/0.
Temporal Processing Capacity in High-Level Visual Cortex Is Domain Specific.
Stigliani, Anthony; Weiner, Kevin S; Grill-Spector, Kalanit
2015-09-09
Prevailing hierarchical models propose that temporal processing capacity--the amount of information that a brain region processes in a unit time--decreases at higher stages in the ventral stream regardless of domain. However, it is unknown if temporal processing capacities are domain general or domain specific in human high-level visual cortex. Using a novel fMRI paradigm, we measured temporal capacities of functional regions in high-level visual cortex. Contrary to hierarchical models, our data reveal domain-specific processing capacities as follows: (1) regions processing information from different domains have differential temporal capacities within each stage of the visual hierarchy and (2) domain-specific regions display the same temporal capacity regardless of their position in the processing hierarchy. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. Notably, domain-specific temporal processing capacities are not apparent in V1 and have perceptual implications. Behavioral testing revealed that the encoding capacity of body images is higher than that of characters, faces, and places, and there is a correspondence between peak encoding rates and cortical capacities for characters and bodies. The present evidence supports a model in which the natural statistics of temporal information in the visual world may affect domain-specific temporal processing and encoding capacities. These findings suggest that the functional organization of high-level visual cortex may be constrained by temporal characteristics of stimuli in the natural world, and this temporal capacity is a characteristic of domain-specific networks in high-level visual cortex. Significance statement: Visual stimuli bombard us at different rates every day. For example, words and scenes are typically stationary and vary at slow rates. In contrast, bodies are dynamic and typically change at faster rates. Using a novel fMRI paradigm, we measured temporal processing capacities of functional regions in human high-level visual cortex. Contrary to prevailing theories, we find that different regions have different processing capacities, which have behavioral implications. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. These results suggest that temporal processing capacity is a characteristic of domain-specific networks in high-level visual cortex and contributes to the segregation of cortical regions. Copyright © 2015 the authors 0270-6474/15/3512412-13$15.00/0.
Functionally segregated neural substrates for arbitrary audiovisual paired-association learning.
Tanabe, Hiroki C; Honda, Manabu; Sadato, Norihiro
2005-07-06
To clarify the neural substrates and their dynamics during crossmodal association learning, we conducted functional magnetic resonance imaging (MRI) during audiovisual paired-association learning of delayed matching-to-sample tasks. Thirty subjects were involved in the study; 15 performed an audiovisual paired-association learning task, and the remainder completed a control visuo-visual task. Each trial consisted of the successive presentation of a pair of stimuli. Subjects were asked to identify predefined audiovisual or visuo-visual pairs by trial and error. Feedback for each trial was given regardless of whether the response was correct or incorrect. During the delay period, several areas showed an increase in the MRI signal as learning proceeded: crossmodal activity increased in unimodal areas corresponding to visual or auditory areas, and polymodal responses increased in the occipitotemporal junction and parahippocampal gyrus. This pattern was not observed in the visuo-visual intramodal paired-association learning task, suggesting that crossmodal associations might be formed by binding unimodal sensory areas via polymodal regions. In both the audiovisual and visuo-visual tasks, the MRI signal in the superior temporal sulcus (STS) in response to the second stimulus and feedback peaked during the early phase of learning and then decreased, indicating that the STS might be key to the creation of paired associations, regardless of stimulus type. In contrast to the activity changes in the regions discussed above, there was constant activity in the frontoparietal circuit during the delay period in both tasks, implying that the neural substrates for the formation and storage of paired associates are distinct from working memory circuits.
Tyler, Mitchell E.; Danilov, Yuri P.; Kaczmarek, Kurt A.; Meyerand, Mary E.
2013-01-01
Abstract Some individuals with balance impairment have hypersensitivity of the motion-sensitive visual cortices (hMT+) compared to healthy controls. Previous work showed that electrical tongue stimulation can reduce the exaggerated postural sway induced by optic flow in this subject population and decrease the hypersensitive response of hMT+. Additionally, a region within the brainstem (BS), likely containing the vestibular and trigeminal nuclei, showed increased optic flow-induced activity after tongue stimulation. The aim of this study was to understand how the modulation induced by tongue stimulation affects the balance-processing network as a whole and how modulation of BS structures can influence cortical activity. Four volumes of interest, discovered in a general linear model analysis, constitute major contributors to the balance-processing network. These regions were entered into a dynamic causal modeling analysis to map the network and measure any connection or topology changes due to the stimulation. Balance-impaired individuals had downregulated response of the primary visual cortex (V1) to visual stimuli but upregulated modulation of the connection between V1 and hMT+ by visual motion compared to healthy controls (p≤1E–5). This upregulation was decreased to near-normal levels after stimulation. Additionally, the region within the BS showed increased response to visual motion after stimulation compared to both prestimulation and controls. Stimulation to the tongue enters the central nervous system at the BS but likely propagates to the cortex through supramodal information transfer. We present a model to explain these brain responses that utilizes an anatomically present, but functionally dormant pathway of information flow within the processing network. PMID:23216162
Zhu, Wei; Han, Yunfei; Cui, Changxia; Xu, Wenwen; Wang, Xuan; Dou, Xiaoxiao; Xu, Linlin; Xu, Yanyun; Mu, Guoying
2018-01-01
The aim of this study was to analyze the effects of corneal crosslinking (CXL) combined with phototherapeutic keratectomy (PTK) and photorefractive keratectomy (PRK) in halting the progression and improving the visual function of corneal ectasia after laser in situ keratomileusis (LASIK). PTK-PRK-CXL was performed on 14 eyes of 14 patients who developed corneal ectasia after LASIK. The visual acuity, spherical refraction and cylinder, corneal topography indices, thinnest corneal thickness (TCT), and endothelial cell count were evaluated at baseline and at 1, 3, 6, and 12 months postoperatively. The mean uncorrected visual acuity improved significantly from 0.64 ± 0.36 logMAR preoperatively to 0.19 ± 0.12 logMAR at 12 months of follow-up (p < 0.001), while the mean best corrected visual acuity improved from 0.21 ± 0.14 logMAR at baseline to 0.04 ± 0.10 logMAR at 12 months postoperatively (p < 0.001). A significant decrease was observed in Kmax and Kmean values from 52.51 ± 6.74 and 43.55 ± 3.37 D at baseline to 45.72 ± 5.18 (p < 0.001) and 40.60 ± 3.05 D (p < 0.001) at the 1-year follow-up. The mean TCT decreased significantly from 419.07 ± 36.56 µm before treatment to 320.93 ± 39.78 µm at 12 months of follow-up (p < 0.001), and there was no significant endothelial cell loss (p > 0.05) beyond 6 months after treatment. PTK-PRK-CXL is a promising procedure to halt the progression of post-LASIK keratectasia with significant visual quality improvement. © 2018 S. Karger AG, Basel.
Brain signal complexity rises with repetition suppression in visual learning.
Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah
2016-06-21
Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual areas. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Clark, Kait; Appelbaum, L Gregory; van den Berg, Berry; Mitroff, Stephen R; Woldorff, Marty G
2015-04-01
Practice can improve performance on visual search tasks; the neural mechanisms underlying such improvements, however, are not clear. Response time typically shortens with practice, but which components of the stimulus-response processing chain facilitate this behavioral change? Improved search performance could result from enhancements in various cognitive processing stages, including (1) sensory processing, (2) attentional allocation, (3) target discrimination, (4) motor-response preparation, and/or (5) response execution. We measured event-related potentials (ERPs) as human participants completed a five-day visual-search protocol in which they reported the orientation of a color popout target within an array of ellipses. We assessed changes in behavioral performance and in ERP components associated with various stages of processing. After practice, response time decreased in all participants (while accuracy remained consistent), and electrophysiological measures revealed modulation of several ERP components. First, amplitudes of the early sensory-evoked N1 component at 150 ms increased bilaterally, indicating enhanced visual sensory processing of the array. Second, the negative-polarity posterior-contralateral component (N2pc, 170-250 ms) was earlier and larger, demonstrating enhanced attentional orienting. Third, the amplitude of the sustained posterior contralateral negativity component (SPCN, 300-400 ms) decreased, indicating facilitated target discrimination. Finally, faster motor-response preparation and execution were observed after practice, as indicated by latency changes in both the stimulus-locked and response-locked lateralized readiness potentials (LRPs). These electrophysiological results delineate the functional plasticity in key mechanisms underlying visual search with high temporal resolution and illustrate how practice influences various cognitive and neural processing stages leading to enhanced behavioral performance. Copyright © 2015 the authors 0270-6474/15/355351-09$15.00/0.
[Possibilities of magnetotherapy in stabilization of visual function in patients with glaucoma].
Bisvas Shutanto Kumar; Listopadova, N A
1996-01-01
Courses of magnetotherapy (MT) using ATOS device with 33 mT magnetic field induction were administered to 31 patients (43 eyes) with primary open-angle glaucoma with compensated intraocular pressure. The operation mode was intermittent, with 1.0 to 1.5 Hz field rotation frequency by 6 radii. The procedure is administered to a patient in a sitting posture with magnetic inductor held before the eye. The duration of a session is 10 min, a course consists of 10 sessions. Untreated eyes (n = 15) of the same patients were examined for control. The patients were examined before and 4 to 5 months after MT course. Vision acuity improved by 0.16 diopters, on an average, in 29 eyes (96.7%) out of 30 with vision acuity below 1.0 before treatment. Visocontrastometry was carried out using Visokontrastometer-DT device with spatial frequency range from 0.4 to 19 cycle/degree (12 frequencies) and 125 x 125 monitor. The orientation of lattices was horizontal and vertical. The contrasts ranged from 0.03 to 0.9 (12 levels). MT brought about an improvement of spatial contrast sensitivity by at least 7 values of 12 levels in 22 (84.6%) out of 26 eyes and was unchanged in 4 eyes. Visual field was examined using Humphry automated analyzer. A 120-point threshold test was used. After a course of MT, visual field deficit decreased by at least 10% in 31 (72%) out of 43 eyes, increased in 3, and was unchanged in 9 eyes; on an average, visual field deficit decreased by 22.4% vs. the initial value. After 4 to 5 months the changes in the vision acuity and visual field deficit were negligible. In controls these parameters did not appreciably change over the entire follow-up period.
Visual cortex in dementia with Lewy bodies: magnetic resonance imaging study
Taylor, John-Paul; Firbank, Michael J.; He, Jiabao; Barnett, Nicola; Pearce, Sarah; Livingstone, Anthea; Vuong, Quoc; McKeith, Ian G.; O’Brien, John T.
2012-01-01
Background Visual hallucinations and visuoperceptual deficits are common in dementia with Lewy bodies, suggesting that cortical visual function may be abnormal. Aims To investigate: (1) cortical visual function using functional magnetic resonance imaging (fMRI); and (2) the nature and severity of perfusion deficits in visual areas using arterial spin labelling (ASL)-MRI. Method In total, 17 participants with dementia with Lewy bodies (DLB group) and 19 similarly aged controls were presented with simple visual stimuli (checkerboard, moving dots, and objects) during fMRI and subsequently underwent ASL-MRI (DLB group n = 15, control group n = 19). Results Functional activations were evident in visual areas in both the DLB and control groups in response to checkerboard and objects stimuli but reduced visual area V5/MT (middle temporal) activation occurred in the DLB group in response to motion stimuli. Posterior cortical perfusion deficits occurred in the DLB group, particularly in higher visual areas. Conclusions Higher visual areas, particularly occipito-parietal, appear abnormal in dementia with Lewy bodies, while there is a preservation of function in lower visual areas (V1 and V2/3). PMID:22500014
Charles Bonnet syndrome: a review.
Schadlu, Anita P; Schadlu, Ramin; Shepherd, J Banks
2009-05-01
The aging of the population and the resultant increase in the number of patients with low vision due to age-related macular degeneration and other ocular diseases necessitate an increase in awareness of the Charles Bonnet syndrome among ophthalmic care providers. The clinical features of Charles Bonnet syndrome have been described by several different authors as formed visual hallucinations due to disturbances of the visual system in patients who are otherwise mentally normal. Theories regarding the causes underlying the Charles Bonnet syndrome are multifaceted and offer insight into the function of the visual system. The incidence of the Charles Bonnet syndrome varies among different population groups, but is underdiagnosed in most settings. Recent case reports of treatment options involve varied pharmacologic interventions, but visual improvement and patient reassurance remain the mainstays of treatment. As Charles Bonnet syndrome becomes more prevalent as the population ages, all physicians who care for low vision or elderly patients should be aware of its clinical characteristics and treatment options. Understanding of this syndrome by caregivers will lead to decreased anxiety among the patients who experience it. Further exploration of treatment options will be necessary in the future.
Age-related changes in selective attention and perceptual load during visual search.
Madden, David J; Langley, Linda K
2003-03-01
Three visual search experiments were conducted to test the hypothesis that age differences in selective attention vary as a function of perceptual load (E. A. Maylor & N. Lavie, 1998). Under resource-limited conditions (Experiments 1 and 2), the distraction from irrelevant display items generally decreased as display size (perceptual load) increased. This perceptual load effect was similar for younger and older adults, contrary to the findings of Maylor and Lavie. Distraction at low perceptual loads appeared to reflect both general and specific inhibitory mechanisms. Under more data-limited conditions (Experiment 3), an age-related decline in selective attention was evident, but the age difference was not attributable to capacity limitations as predicted by the perceptual load theory.
Ocular toxoplasmosis and retinal detachment: five case reports.
Kianersi, F; Naderi Beni, A; Ghanbari, H; Fazel, F
2012-10-01
Ocular toxoplasmosis is a potentially blinding cause of posterior uveitis. Retinal detachment is rare complication of ocular toxoplasmosis. To report the clinical course and prognosis of retinal breaks and detachments occurring in patients with ocular toxoplasmosis. This study was a retrospective, non-comparative case series of five patients with ocular toxoplasmosis who had consulted us with retinal detachment. All of the participants had retinal detachment after severe and treatment resistant toxoplasmic retinochoroiditis, leaving one of them with decreased visual acuity to light perception in spite of treatment and final visual acuity was 20/100 or better in four patients. The functional prognosis for the patients with retinal detachment was poor. Careful retinal examination in ocular toxoplasmosis is warranted, especially in patients with severe intraocular inflammation.
Effects of hypoglycemia on human brain activation measured with fMRI.
Anderson, Adam W; Heptulla, Rubina A; Driesen, Naomi; Flanagan, Daniel; Goldberg, Philip A; Jones, Timothy W; Rife, Fran; Sarofin, Hedy; Tamborlane, William; Sherwin, Robert; Gore, John C
2006-07-01
Functional magnetic resonance imaging (fMRI) was used to measure the effects of acute hypoglycemia caused by passive sensory stimulation on brain activation. Visual stimulation was used to generate blood-oxygen-level-dependent (BOLD) contrast, which was monitored during hyperinsulinemic hypoglycemic and euglycemic clamp studies. Hypoglycemia (50 +/- 1 mg glucose/dl) decreased the fMRI signal relative to euglycemia in 10 healthy human subjects: the fractional signal change was reduced by 28 +/- 12% (P < .05). These changes were reversed when euglycemia was restored. These data provide a basis of comparison for studies that quantify hypoglycemia-related changes in fMRI activity during cognitive tasks based on visual stimuli and demonstrate that variations in blood glucose levels may modulate BOLD signals in the healthy brain.
Reactions of animals and people under conditions of brief weightlessness
NASA Technical Reports Server (NTRS)
Kitayev-Smik, L. A.
1975-01-01
It has been shown that under brief weightlessness sensory reactions arise in a number of people, mainly those under these conditions for the first time, in the form of spatial and visual illusions, motor excitation, in which tonic and motor components can be distinguished, and vestibular-vegetative disturbances (nausea, vomiting, etc.). In repeated flights with creation of weightlessness, a decrease in the extent of expression and, then, disappearance of these reactions occurred in a significant majority of those studied. Experiments in weightlessness with the vision cut off and with the absence of vestibular functions in the subjects confirm the hypothesis that spatial conceptions of people in weightlessness depend on predominance of gravireceptor or visual afferent signals under these conditions.
2009-01-01
Autobiographical memory studies of non-trauma-exposed samples have dem- onstrated that decreased visual input reduces the recollection of autobiographical events...Rubin, Burt, & Fifeld, 2003), and damage to the occipital lobe impedes autobiographical memory (Greenberg & Rubin, 2003). Although speculative. it is...McNally, RJ .. Lasko. N.B .. Macklin. M.L.. & Pitman, RK. (1995). Autobiographical memory disturbance in combat-related post- traumatic stress disorder
Decoding Reveals Plasticity in V3A as a Result of Motion Perceptual Learning
Shibata, Kazuhisa; Chang, Li-Hung; Kim, Dongho; Náñez, José E.; Kamitani, Yukiyasu; Watanabe, Takeo; Sasaki, Yuka
2012-01-01
Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence for changes in the early visual system associated with VPL. However, results of neurophysiological studies have been highly controversial concerning whether the plasticity underlying VPL occurs within the visual cortex. The controversy may be partially due to the lack of observation of neural tuning function changes in multiple visual areas in association with VPL. Here using human subjects we systematically compared behavioral tuning function changes after global motion detection training with decoded tuning function changes for 8 visual areas using pattern classification analysis on functional magnetic resonance imaging (fMRI) signals. We found that the behavioral tuning function changes were extremely highly correlated to decoded tuning function changes only in V3A, which is known to be highly responsive to global motion with human subjects. We conclude that VPL of a global motion detection task involves plasticity in a specific visual cortical area. PMID:22952849
Motor sequence learning-induced neural efficiency in functional brain connectivity.
Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M
2017-02-15
Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Harris, Jill; Kamke, Marc R
2014-11-01
Selective attention fundamentally alters sensory perception, but little is known about the functioning of attention in individuals who use a cochlear implant. This study aimed to investigate visual and auditory attention in adolescent cochlear implant users. Event related potentials were used to investigate the influence of attention on visual and auditory evoked potentials in six cochlear implant users and age-matched normally-hearing children. Participants were presented with streams of alternating visual and auditory stimuli in an oddball paradigm: each modality contained frequently presented 'standard' and infrequent 'deviant' stimuli. Across different blocks attention was directed to either the visual or auditory modality. For the visual stimuli attention boosted the early N1 potential, but this effect was larger for cochlear implant users. Attention was also associated with a later P3 component for the visual deviant stimulus, but there was no difference between groups in the later attention effects. For the auditory stimuli, attention was associated with a decrease in N1 latency as well as a robust P3 for the deviant tone. Importantly, there was no difference between groups in these auditory attention effects. The results suggest that basic mechanisms of auditory attention are largely normal in children who are proficient cochlear implant users, but that visual attention may be altered. Ultimately, a better understanding of how selective attention influences sensory perception in cochlear implant users will be important for optimising habilitation strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G
2017-03-01
We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.
Peripheral Vision of Youths with Low Vision: Motion Perception, Crowding, and Visual Search
Tadin, Duje; Nyquist, Jeffrey B.; Lusk, Kelly E.; Corn, Anne L.; Lappin, Joseph S.
2012-01-01
Purpose. Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. Methods. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10–17) and low vision (n = 24, ages 9–18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. Results. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Conclusions. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function. PMID:22836766
Peripheral vision of youths with low vision: motion perception, crowding, and visual search.
Tadin, Duje; Nyquist, Jeffrey B; Lusk, Kelly E; Corn, Anne L; Lappin, Joseph S
2012-08-24
Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10-17) and low vision (n = 24, ages 9-18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function.
Simonsz-Tóth, B; Loudon, S E; van Kempen-du Saar, H; van de Graaf, E S; Groenewoud, J H; Simonsz, H J
2007-01-01
Opinions differ on the course of the visual acuity in the amblyopic eye after cessation of occlusion therapy. This study evaluated visual acuity in a historical cohort treated for amblyopia with occlusion therapy 30-35 years ago. Between 1968 and 1975, 1250 patients had been treated by the orthoptist in the Waterland Hospital in Purmerend, The Netherlands. Of these, 471 received occlusion treatment for amblyopia (prevalence 5.0%, after comparison with the local birth rate). We were able to contact 203 of these patients, 137 were orthoptically re-examined in 2003. We correlated the current visual acuity with the cause of amblyopia, the age at start and end of treatment, the visual acuity at start and end of treatment, fixation, binocular vision and refractive errors. Mean age at the start of treatment was 5.4 +/- 1.9 years, 7.4 +/- 1.7 years at the end and 37 +/- 2.7 years at follow-up. Current visual acuity in the amblyopic eye was correlated with a low visual acuity at the start (p < 0.0001) and end (p < 0.0001) of occlusion therapy, an eccentric fixation (p < 0.0001), and the cause of amblyopia (p = 0.005). At the end of the treatment, patients with a strabismic amblyopia (n = 98) had a visual acuity in the amblyopic eye of 0.29 logMAR +/- 0.3, and in 2003 0.27 +/- 0.3 logMAR. In patients with an anisometropic amblyopia (> 1 D, n = 16) visual acuity had decreased from 0.17 +/- 0.23 logMAR to 0.21 logMAR +/- 0.23. In patients with both strabismic and anisometropic amblyopia (n = 23), visual acuity had decreased from 0.52 logMAR +/- 0.54 to 0.65 logMAR +/- 0.54. Overall, acuity had decreased in 54 patients (39%) after cessation of treatment. Of these, 18 patients had an acuity decrease to less than 50% of their acuity at the end of treatment. In 15 of these 18 patients anisohypermetropia had increased. A decrease in visual acuity after cessation of occlusion therapy occurred in patients with a combined cause of amblyopia or with an increase in anisohypermetropia.
Terao, Yasuo; Fukuda, Hideki; Yugeta, Akihiro; Hikosaka, Okihide; Nomura, Yoshiko; Segawa, Masaya; Hanajima, Ritsuko; Tsuji, Shoji; Ugawa, Yoshikazu
2011-06-01
The cardinal pathophysiology of Parkinson's disease (PD) is considered to be the increase in the activities of basal ganglia (BG) output nuclei, which excessively inhibits the thalamus and superior colliculus (SC) and causes preferential impairment of internal over external movements. Here we recorded saccade performance in 66 patients with PD and 87 age-matched controls, and studied how the abnormality changed with disease progression. PD patients were impaired not only in memory guided saccades, but also in visually guided saccades, beginning in the relatively early stages of the disease. On the other hand, they were impaired in suppressing reflexive saccades (saccades to cue). All these changes deteriorated with disease progression. The frequency of reflexive saccades showed a negative correlation with the latency of visually guided saccades and Unified Parkinson's Disease Rating Scale motor subscores reflecting dopaminergic function. We suggest that three major drives converging on SC determine the saccade abnormalities in PD. The impairment in visually and memory guided saccades may be caused by the excessive inhibition of the SC due to the increased BG output and the decreased activity of the frontal cortex-BG circuit. The impaired suppression of reflexive saccades may be explained if the excessive inhibition of SC is "leaky." Changes in saccade parameters suggest that frontal cortex-BG circuit activity decreases with disease progression, whereas SC inhibition stays relatively mild in comparison throughout the course of the disease. Finally, SC disinhibition due to leaky suppression may represent functional compensation from neural structures outside BG, leading to hyper-reflexivity of saccades and milder clinical symptoms. Copyright © 2011 Elsevier Ltd. All rights reserved.
Landers, Merrill R; Addis, Kate A; Longhurst, Jason K; Vom Steeg, Bree-lyn; Puentedura, Emilio J; Daubs, Michael D
2013-11-01
Intractable cervical radiculopathy secondary to stenosis or herniated nucleus pulposus is commonly treated with an anterior cervical decompression and fusion (ACDF) procedure. However, there is little evidence in the literature that demonstrates the impact such surgery has on long-term range of motion (ROM) outcomes. The objective of this study was to compare cervical ROM and patient-reported outcomes in patients before and after a 1, 2, or 3 level ACDF. Prospective, nonexperimental. Forty-six patients. The following were measured preoperatively and also at 3 and 6 months after ACDF: active ROM (full and painfree) in three planes (ie, sagittal, coronal, and horizontal), pain visual analog scale, Neck Disability Index, and headache frequency. Patients undergoing an ACDF for cervical radiculopathy had their cervical ROM measured preoperatively and also at 3 and 6 months after the procedure. Neck Disability Index and pain visual analog scale values were also recorded at the same time. Both painfree and full active ROM did not change significantly from the preoperative measurement to the 3-month postoperative measurement (ps>.05); however, painfree and full active ROM did increase significantly in all three planes of motion from the preoperative measurement to the 6-month postoperative measurement regardless of the number of levels fused (ps≤.023). Visual analog scale, Neck Disability Index, and headache frequency all improved significantly over time (ps≤.017). Our results suggest that patients who have had an ACDF for cervical radiculopathy will experience improved ROM 6 months postoperatively. In addition, patients can expect a decrease in pain, an improvement in neck function, and a decrease in headache frequency. Copyright © 2013 Elsevier Inc. All rights reserved.
Vision related quality of life in spinocerebellar ataxia.
Kedar, Sachin; Ghate, Deepta; Murray, Earnest L; Corbett, James J; Subramony, S H
2015-11-15
Spinocerebellar ataxia (SCA) leads to abnormal ocular motility and alignment. The objective of this study was to quantitatively assess vision, ocular motility and alignment and its impact on vision related quality of life (VRQOL) in SCA. Nineteen genetically diagnosed SCA subjects (11 SCA type 3, 3 SCA type 1 and 5 SCA type 6) participated at two university centers. All subjects completed the National Eye Institute Visual Function Questionnaire (NEI-VFQ), 10-Item Neuro-Ophthalmic Supplement (NOS), scale for assessment and rating of ataxia (SARA) and ophthalmic examination. Twelve subjects seen at one of the 2 sites underwent quantitative ocular motility and alignment assessment. Composite scores for NEI-VFQ (mean 76.3±13) and NOS (mean 65.2±16.8) were significantly decreased in SCA subjects. NEI-VFQ subscale scores were decreased for general, near, distance and peripheral vision and driving. SCA patients had decreased low contrast sensitivity, stereoacuity and multiple ocular motility defects which included gaze limitation (9/12), nystagmus (5/12), distance esophoria (11/12), near exophoria (12/12) and receded near point of convergence. A significant negative correlation was noted between composite scores and distance convergence fusional amplitude. VRQOL is significantly decreased in SCA compared to normal population. All SCA patients should be screened for visual disability and referred for neuro-ophthalmic assessment promptly. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Dong, Zhao; Ma, Lin; Yu, Shengyuan
2017-12-01
Functional connectivity density (FCD) could identify the abnormal intrinsic and spontaneous activity over the whole brain, and a seed-based resting-state functional connectivity (RSFC) could further reveal the altered functional network with the identified brain regions. This may be an effective assessment strategy for headache research. This study is to investigate the RSFC architecture changes of the brain in the patients with medication overuse headache (MOH) using FCD and RSFC methods. 3D structure images and resting-state functional MRI data were obtained from 37 MOH patients, 18 episodic migraine (EM) patients and 32 normal controls (NCs). FCD was calculated to detect the brain regions with abnormal functional activity over the whole brain, and the seed-based RSFC was performed to explore the functional network changes in MOH and EM. The decreased FCD located in right parahippocampal gyrus, and the increased FCD located in left inferior parietal gyrus and right supramarginal gyrus in MOH compared with NC, and in right caudate and left insula in MOH compared with EM. RSFC revealed that decreased functional connectivity of the brain regions with decreased FCD anchored in the right dorsal-lateral prefrontal cortex, right frontopolar cortex in MOH, and in left temporopolar cortex and bilateral visual cortices in EM compared with NC, and in frontal-temporal-parietal pattern in MOH compared with EM. These results provided evidence that MOH and EM suffered from altered intrinsic functional connectivity architecture, and the current study presented a new perspective for understanding the neuromechanism of MOH and EM pathogenesis.
Vinck, Martin; Bosman, Conrado A.
2016-01-01
During visual stimulation, neurons in visual cortex often exhibit rhythmic and synchronous firing in the gamma-frequency (30–90 Hz) band. Whether this phenomenon plays a functional role during visual processing is not fully clear and remains heavily debated. In this article, we explore the function of gamma-synchronization in the context of predictive and efficient coding theories. These theories hold that sensory neurons utilize the statistical regularities in the natural world in order to improve the efficiency of the neural code, and to optimize the inference of the stimulus causes of the sensory data. In visual cortex, this relies on the integration of classical receptive field (CRF) data with predictions from the surround. Here we outline two main hypotheses about gamma-synchronization in visual cortex. First, we hypothesize that the precision of gamma-synchronization reflects the extent to which CRF data can be accurately predicted by the surround. Second, we hypothesize that different cortical columns synchronize to the extent that they accurately predict each other’s CRF visual input. We argue that these two hypotheses can account for a large number of empirical observations made on the stimulus dependencies of gamma-synchronization. Furthermore, we show that they are consistent with the known laminar dependencies of gamma-synchronization and the spatial profile of intercolumnar gamma-synchronization, as well as the dependence of gamma-synchronization on experience and development. Based on our two main hypotheses, we outline two additional hypotheses. First, we hypothesize that the precision of gamma-synchronization shows, in general, a negative dependence on RF size. In support, we review evidence showing that gamma-synchronization decreases in strength along the visual hierarchy, and tends to be more prominent in species with small V1 RFs. Second, we hypothesize that gamma-synchronized network dynamics facilitate the emergence of spiking output that is particularly information-rich and sparse. PMID:27199684
Simplification of Visual Rendering in Simulated Prosthetic Vision Facilitates Navigation.
Vergnieux, Victor; Macé, Marc J-M; Jouffrais, Christophe
2017-09-01
Visual neuroprostheses are still limited and simulated prosthetic vision (SPV) is used to evaluate potential and forthcoming functionality of these implants. SPV has been used to evaluate the minimum requirement on visual neuroprosthetic characteristics to restore various functions such as reading, objects and face recognition, object grasping, etc. Some of these studies focused on obstacle avoidance but only a few investigated orientation or navigation abilities with prosthetic vision. The resolution of current arrays of electrodes is not sufficient to allow navigation tasks without additional processing of the visual input. In this study, we simulated a low resolution array (15 × 18 electrodes, similar to a forthcoming generation of arrays) and evaluated the navigation abilities restored when visual information was processed with various computer vision algorithms to enhance the visual rendering. Three main visual rendering strategies were compared to a control rendering in a wayfinding task within an unknown environment. The control rendering corresponded to a resizing of the original image onto the electrode array size, according to the average brightness of the pixels. In the first rendering strategy, vision distance was limited to 3, 6, or 9 m, respectively. In the second strategy, the rendering was not based on the brightness of the image pixels, but on the distance between the user and the elements in the field of view. In the last rendering strategy, only the edges of the environments were displayed, similar to a wireframe rendering. All the tested renderings, except the 3 m limitation of the viewing distance, improved navigation performance and decreased cognitive load. Interestingly, the distance-based and wireframe renderings also improved the cognitive mapping of the unknown environment. These results show that low resolution implants are usable for wayfinding if specific computer vision algorithms are used to select and display appropriate information regarding the environment. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Karim, Helmet T; Perlman, Susan B
2017-10-01
Few studies have investigated the neural systems involved in decreasing behavioral reactivity to emotional stimuli as children age. It has been suggested that this process may interact with temperament-linked variations in neurodevelopment to better explain individual differences in the maturation of emotion regulation. In this investigation, children ages 4 to 12 (n = 30, mean age = 7.62 years, SD = 1.71 years) and adults (n = 21, mean age = 26.67 years) watched clips from popular children's films containing positive, negative, or neutral emotional content during functional magnetic resonance imaging. Compared to adults, children demonstrated greater activation in subcortical and visual regions (hippocampus, thalamus, visual cortex, fusiform) during negative clips and greater activation of subcortical and prefrontal regions during positive clips (hippocampus, thalamus, caudate, ACC, OFC, superior frontal cortex). In children only, we found an age by temperament interaction in frontal and subcortical regions indicating that activation increased as a function of age in the most irritable children, but decreased as a function of age in the least irritable children. Findings were not present in the temperament domain of fear. Findings replicate and extend the existing irritability literature, indicating that healthy children highest in irritability may develop comparatively greater activation of the lateral prefrontal cortex in order to support adaptive regulation during emotional challenges. These results are discussed within the context of the emerging literature on the utility of complex, multidimensional, and naturalistic stimuli, which present a complementary alternative to understanding ecologically valid and sustained neural responses to emotionally evocative stimuli. Hum Brain Mapp 38:5307-5321, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Visual brain plasticity induced by central and peripheral visual field loss.
Sanda, Nicolae; Cerliani, Leonardo; Authié, Colas N; Sabbah, Norman; Sahel, José-Alain; Habas, Christophe; Safran, Avinoam B; Thiebaut de Schotten, Michel
2018-06-23
Disorders that specifically affect central and peripheral vision constitute invaluable models to study how the human brain adapts to visual deafferentation. We explored cortical changes after the loss of central or peripheral vision. Cortical thickness (CoTks) and resting-state cortical entropy (rs-CoEn), as a surrogate for neural and synaptic complexity, were extracted in 12 Stargardt macular dystrophy, 12 retinitis pigmentosa (tunnel vision stage), and 14 normally sighted subjects. When compared to controls, both groups with visual loss exhibited decreased CoTks in dorsal area V3d. Peripheral visual field loss also showed a specific CoTks decrease in early visual cortex and ventral area V4, while central visual field loss in dorsal area V3A. Only central visual field loss exhibited increased CoEn in LO-2 area and FG1. Current results revealed biomarkers of brain plasticity within the dorsal and the ventral visual streams following central and peripheral visual field defects.
Dovis, Sebastiaan; Van der Oord, Saskia; Wiers, Reinout W; Prins, Pier J M
2012-07-01
Visual-spatial Working Memory (WM) is the most impaired executive function in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Some suggest that deficits in executive functioning are caused by motivational deficits. However, there are no studies that investigate the effects of motivation on the visual-spatial WM of children with- and without ADHD. Studies examining this in executive functions other than WM, show inconsistent results. These inconsistencies may be related to differences in the reinforcement used. The effects of different reinforcers on WM performance were investigated in 30 children with ADHD and 31 non-ADHD controls. A visual-spatial WM task was administered in four reinforcement conditions: Feedback-only, 1 euro, 10 euros, and a computer-game version of the task. In the Feedback-only condition, children with ADHD performed worse on the WM measure than controls. Although incentives significantly improved the WM performance of children with ADHD, even the strongest incentives (10 euros and Gaming) were unable to normalize their performance. Feedback-only provided sufficient reinforcement for controls to reach optimal performance, while children with ADHD required extra reinforcement. Only children with ADHD showed a decrease in performance over time. Importantly, the strongest incentives (10 euros and Gaming) normalized persistence of performance in these children, whereas 1 euro had no such effect. Both executive and motivational deficits give rise to visual-spatial WM deficits in ADHD. Problems with task-persistence in ADHD result from motivational deficits. In ADHD-reinforcement studies and clinical practice (e.g., assessment), reinforcement intensity can be a confounding factor and should be taken into account. Gaming can be a cost-effective way to maximize performance in ADHD.
Nguyen, Tanya T.; Ashrafi, Ashkan; Thomas, Jennifer D.; Riley, Edward P.; Simmons, Roger W.
2013-01-01
To extend our current understanding of the teratogenic effects of prenatal alcohol exposure on the control of isometric force, the present study investigated the signal characteristics of power spectral density functions resulting from sustained control of isometric force by children with and without heavy prenatal exposure to alcohol. It was predicted that the functions associated with the force signals would be fundamentally different for the two groups. Twenty-five children aged between 7 and 17 years with heavy prenatal alcohol exposure and 21 non-alcohol exposed control children attempted to duplicate a visually represented target force by pressing on a load cell. The level of target force (5 and 20% of maximum voluntary contraction) and the time interval between visual feedback (20ms, 320ms and 740ms) were manipulated. A multivariate spectral estimation method with sinusoidal windows was applied to individual isometric force-time signals. Analysis of the resulting power spectral density functions revealed that the alcohol-exposed children had a lower mean frequency, less spectral variability, greater peak power and a lower frequency at which peak power occurred. Furthermore, mean frequency and spectral variability produced by the alcohol-exposed group remained constant across target load and visual feedback interval, suggesting that these children were limited to making long-time scale corrections to the force signal. In contrast, the control group produced decreased mean frequency and spectral variability as target force and the interval between visual feedback increased, indicating that when feedback was frequently presented these children used the information to make short-time scale adjustments to the ongoing force signal. Knowledge of these differences could facilitate the design of motor rehabilitation exercises that specifically target isometric force control deficits in alcohol-exposed children. PMID:23238099
Timmermann, W; Dralle, H; Hamelmann, W; Thomusch, O; Sekulla, C; Meyer, Th; Timm, S; Thiede, A
2002-05-01
Two different aspects of the influence of neuromonitoring on the possible reduction of post-operative recurrent laryngeal nerve palsies require critical examination: the nerve identification and the monitoring of it's functions. Due to the additional information from the EMG signals, neuromonitoring is the best method for identifying the nerves as compared to visual identification alone. There are still no randomized studies available that compare the visual and electrophysiological recurrent laryngeal nerve detection in thyroid operations with respect to the postoperative nerve palsies. Nevertheless, comparisons with historical collectives show that a constant low nerve-palsy-rate was achieved with electrophysiological detection in comparison to visual detection. The rate of nerve identification is normally very high and amounts to 99 % in our own patients. The data obtained during the "Quality assurance of benign and malignant Goiter" study show that in hemithyreoidectomy and subtotal resection, lower nerve-palsy-rates are achieved with neuromonitoring as compared to solely visual detection. Following subtotal resection, this discrepancy becomes even statistically significant. While monitoring the nerve functions with the presently used neuromonitoring technique, it is possible to observe the EMG-signal remaining constant or decreasing in volume. Assuming that a constant neuromonitoring signal represents a normal vocal cord, our evaluation shows that there is a small percentage of false negative and positive results. Looking at the permanent recurrent nerve palsy rates, this method has a specificity of 98 %, a sensitivity of 100 %, a positive prognostic value of 10 %, and a negative prognostic value of 100 %. Although an altered neuromonitoring signal can be taken as a clear indication of eventual nerve damage, an absolutely reliable statement about the postoperative vocal cord function is presently not possible with intraoperative neuromonitoring.
Hu, Meng; Liang, Hualou
2013-04-01
Generalized flash suppression (GFS), in which a salient visual stimulus can be rendered invisible despite continuous retinal input, provides a rare opportunity to directly study the neural mechanism of visual perception. Previous work based on linear methods, such as spectral analysis, on local field potential (LFP) during GFS has shown that the LFP power at distinctive frequency bands are differentially modulated by perceptual suppression. Yet, the linear method alone may be insufficient for the full assessment of neural dynamic due to the fundamentally nonlinear nature of neural signals. In this study, we set forth to analyze the LFP data collected from multiple visual areas in V1, V2 and V4 of macaque monkeys while performing the GFS task using a nonlinear method - adaptive multi-scale entropy (AME) - to reveal the neural dynamic of perceptual suppression. In addition, we propose a new cross-entropy measure at multiple scales, namely adaptive multi-scale cross-entropy (AMCE), to assess the nonlinear functional connectivity between two cortical areas. We show that: (1) multi-scale entropy exhibits percept-related changes in all three areas, with higher entropy observed during perceptual suppression; (2) the magnitude of the perception-related entropy changes increases systematically over successive hierarchical stages (i.e. from lower areas V1 to V2, up to higher area V4); and (3) cross-entropy between any two cortical areas reveals higher degree of asynchrony or dissimilarity during perceptual suppression, indicating a decreased functional connectivity between cortical areas. These results, taken together, suggest that perceptual suppression is related to a reduced functional connectivity and increased uncertainty of neural responses, and the modulation of perceptual suppression is more effective at higher visual cortical areas. AME is demonstrated to be a useful technique in revealing the underlying dynamic of nonlinear/nonstationary neural signal.
Battelli, Lorella; Grossman, Emily D; Plow, Ela B
The interhemispheric competition hypothesis attributes the distribution of selective attention to a balance of mutual inhibition between homotopic, interhemispheric connections in parietal cortex (Kinsbourne 1977; Battelli et al., 2009). In support of this hypothesis, repetitive inhibitory TMS over right parietal cortex in healthy individuals rapidly induces interhemispheric imbalance in cortical activity that spreads beyond the site of stimulation (Plow et al., 2014). Behaviorally, the impacts of inhibitory rTMS may be long delayed from the onset of stimulation, as much as 30 minutes (Agosta et al., 2014; Hubl et al., 2008). In this study, we examine the temporal dynamics of inhibitory rTMS on cortical network integrity that supports sustained visual attention. Healthy individuals received 15 min of 1 Hz offline, inhibitory rTMS (or sham) over left parietal cortex, and then immediately engaged in a bilateral visual tracking task while we recorded brain activity with fMRI. We computed functional connectivity (FC) between three nodes of the attention network engaged by visual tracking: the intraparietal sulcus (IPS), frontal eye fields (FEF) and human MT+ (hMT+). FC immediately and significantly decreased between the stimulation site (left IPS) and all other regions, then recovered to normal levels within 30 minutes. rTMS increased FC between left and right FEF at approximately 36 min following stimulation, and between sites in the unstimulated hemisphere approximately 48 min after stimulation. These findings demonstrate large-scale changes in cortical organization following inhibitory rTMS. The immediate impact of rTMS on connectivity to the stimulation site dovetails with the putative role of interhemispheric balance for bilateral visual sustained attention. The delayed, compensatory increases in functional connectivity have implications for models of dynamic reorganization in networks supporting spatial and nonspatial selective attention, and compensatory mechanisms within these networks that may be stabilized in chronic stroke. Copyright © 2016 Elsevier Inc. All rights reserved.
Zepeda, Angelica; Sengpiel, Frank; Guagnelli, Miguel Angel; Vaca, Luis; Arias, Clorinda
2004-02-25
Reorganization of cortical representations after focal visual cortex lesions has been documented. It has been suggested that functional reorganization may rely on cellular mechanisms involving modifications in the excitatory/inhibitory neurotransmission balance and on morphological changes of neurons peripheral to the lesion. We explored functional reorganization of cortical retinotopic maps after a focal ischemic lesion in primary visual cortex of kittens using optical imaging of intrinsic signals. After 1, 2, and 5 weeks postlesion (wPL), we addressed whether functional reorganization correlated in time with changes in the expression of MAP-2, GAP-43, GFAP, GABA(A) receptor subunit alpha1 (GABA(A)alpha1), subunit 1 of the NMDA receptor (NMDAR1), and in neurotransmitter levels at the border of the lesion. Our results show that: (1) retinotopic maps reorganize with time after an ischemic lesion; (2) MAP-2 levels increase gradually from 1wPL to 5wPL; (3) MAP-2 upregulation is associated with an increase in dendritic-like structures surrounding the lesion and a decrease in GFAP-positive cells; (4) GAP-43 levels reach the highest point at 2wPL; (5) NMDAR1 and glutamate contents increase in parallel from 1wPL to 5wPL; (6) GABA(A)alpha1 levels increase from 1wPL to 2wPL but do not change after this time point; and (7) GABA contents remain low from 1wPL to 5wPL. This is a comprehensive study showing for the first time that functional reorganization correlates in time with dendritic sprouting and with changes in the excitatory/inhibitory neurotransmission systems previously proposed to participate in cortical remodeling and suggests mechanisms by which plasticity of cortical representations may occur.
Rannikko, Irina; Jääskeläinen, Erika; Miettunen, Jouko; Ahmed, Anthony O; Veijola, Juha; Remes, Anne M; Murray, Graham K; Husa, Anja P; Järvelin, Marjo-Riitta; Isohanni, Matti; Haapea, Marianne
2016-01-01
Several social life events and challenges have an impact on cognitive development. Our goal was to analyze the predictors of change in cognitive performance in early midlife in a general population sample. Additionally, systematic literature review was performed. The study sample was drawn from the Northern Finland Birth Cohort 1966 at the ages of 34 and 43 years. Primary school performance, sociodemographic factors and body mass index (BMI) were used to predict change in cognitive performance measured by the California Verbal Learning Test, Visual Object Learning Test, and Abstraction Inhibition and Working Memory task. Analyses were weighted by gender and education, and p-values were corrected for multiple comparisons using Benjamini-Hochberg procedure (B-H). Male gender predicted decrease in episodic memory. Poor school marks of practical subjects, having no children, and increase in BMI were associated with decrease in episodic memory, though non-significantly after B-H. Better school marks, and higher occupational class were associated with preserved performance in visual object learning. Higher vocational education predicted preserved performance in visual object learning test, though non-significantly after B-H. Likewise, having children predicted decreased performance in executive functioning but non-significantly after B-H. Adolescent cognitive ability, change in BMI and several sociodemographic factors appear to predict cognitive changes in early midlife. The key advantage of present study is the exploration of possible predictors of change in cognitive performance among general population in the early midlife, a developmental period that has been earlier overlooked.
Hood, Donald C; Anderson, Susan C; Wall, Michael; Raza, Ali S; Kardon, Randy H
2009-09-01
Retinal nerve fiber (RNFL) thickness and visual field loss data from patients with glaucoma were analyzed in the context of a model, to better understand individual variation in structure versus function. Optical coherence tomography (OCT) RNFL thickness and standard automated perimetry (SAP) visual field loss were measured in the arcuate regions of one eye of 140 patients with glaucoma and 82 normal control subjects. An estimate of within-individual (measurement) error was obtained by repeat measures made on different days within a short period in 34 patients and 22 control subjects. A linear model, previously shown to describe the general characteristics of the structure-function data, was extended to predict the variability in the data. For normal control subjects, between-individual error (individual differences) accounted for 87% and 71% of the total variance in OCT and SAP measures, respectively. SAP within-individual error increased and then decreased with increased SAP loss, whereas OCT error remained constant. The linear model with variability (LMV) described much of the variability in the data. However, 12.5% of the patients' points fell outside the 95% boundary. An examination of these points revealed factors that can contribute to the overall variability in the data. These factors include epiretinal membranes, edema, individual variation in field-to-disc mapping, and the location of blood vessels and degree to which they are included by the RNFL algorithm. The model and the partitioning of within- versus between-individual variability helped elucidate the factors contributing to the considerable variability in the structure-versus-function data.
Madden, David J.; Parks, Emily L.; Tallman, Catherine W.; Boylan, Maria A.; Hoagey, David A.; Cocjin, Sally B.; Johnson, Micah A.; Chou, Ying-hui; Potter, Guy G.; Chen, Nan-kuei; Packard, Lauren E.; Siciliano, Rachel E.; Monge, Zachary A.; Diaz, Michele T.
2016-01-01
We conducted functional magnetic resonance imaging (fMRI) with a visual search paradigm to test the hypothesis that aging is associated with increased frontoparietal involvement in both target detection and bottom-up attentional guidance (featural salience). Participants were 68 healthy adults, distributed continuously across 19-78 years of age. Frontoparietal regions of interest (ROIs) were defined from resting-state scans obtained prior to task-related fMRI. The search target was defined by a conjunction of color and orientation. Each display contained one item that was larger than the others (i.e., a size singleton) but was not informative regarding target identity. Analyses of search reaction time (RT) indicated that bottom-up attentional guidance from the size singleton (when coincident with the target) was relatively constant as a function of age. Frontoparietal fMRI activation related to target detection was constant as a function of age, as was the reduction in activation associated with salient targets. However, for individuals 35 years of age and older, engagement of the left frontal eye field (FEF) in bottom-up guidance was more prominent than for younger individuals. Further, the age-related differences in left FEF activation were a consequence of decreasing resting-state functional connectivity in visual sensory regions. These findings indicate that age-related compensatory effects may be expressed in the relation between activation and behavior, rather than in the magnitude of activation, and that relevant changes in the activation-RT relation may begin at a relatively early point in adulthood. PMID:28052456
Abnormal GABAergic function and face processing in schizophrenia: A pharmacologic-fMRI study.
Tso, Ivy F; Fang, Yu; Phan, K Luan; Welsh, Robert C; Taylor, Stephan F
2015-10-01
The involvement of the gamma-aminobutyric acid (GABA) system in schizophrenia is suggested by postmortem studies and the common use of GABA receptor-potentiating agents in treatment. In a recent study, we used a benzodiazepine challenge to demonstrate abnormal GABAergic function during processing of negative visual stimuli in schizophrenia. This study extended this investigation by mapping GABAergic mechanisms associated with face processing and social appraisal in schizophrenia using a benzodiazepine challenge. Fourteen stable, medicated schizophrenia/schizoaffective patients (SZ) and 13 healthy controls (HC) underwent functional MRI using the blood oxygenation level-dependent (BOLD) technique while they performed the Socio-emotional Preference Task (SePT) on emotional face stimuli ("Do you like this face?"). Participants received single-blinded intravenous saline and lorazepam (LRZ) in two separate sessions separated by 1-3weeks. Both SZ and HC recruited medial prefrontal cortex/anterior cingulate during the SePT, relative to gender identification. A significant drug by group interaction was observed in the medial occipital cortex, such that SZ showed increased BOLD signal to LRZ challenge, while HC showed an expected decrease of signal; the interaction did not vary by task. The altered BOLD response to LRZ challenge in SZ was significantly correlated with increased negative affect across multiple measures. The altered response to LRZ challenge suggests that abnormal face processing and negative affect in SZ are associated with altered GABAergic function in the visual cortex, underscoring the role of impaired visual processing in socio-emotional deficits in schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.
Night vision in barn owls: visual acuity and contrast sensitivity under dark adaptation.
Orlowski, Julius; Harmening, Wolf; Wagner, Hermann
2012-12-06
Barn owls are effective nocturnal predators. We tested their visual performance at low light levels and determined visual acuity and contrast sensitivity of three barn owls by their behavior at stimulus luminances ranging from photopic to fully scotopic levels (23.5 to 1.5 × 10⁻⁶). Contrast sensitivity and visual acuity decreased only slightly from photopic to scotopic conditions. Peak grating acuity was at mesopic (4 × 10⁻² cd/m²) conditions. Barn owls retained a quarter of their maximal acuity when luminance decreased by 5.5 log units. We argue that the visual system of barn owls is designed to yield as much visual acuity under low light conditions as possible, thereby sacrificing resolution at photopic conditions.
PERSPECTIVE: Is acuity enough? Other considerations in clinical investigations of visual prostheses
NASA Astrophysics Data System (ADS)
Lepri, Bernard P.
2009-06-01
Visual impairing eye diseases are the major frontier facing ophthalmic research today in light of our rapidly aging population. The visual skills necessary for improving the quality of daily function and life are inextricably linked to these impairing diseases. Both research and reimbursement programs are emphasizing outcome-based results. Is improvement in visual acuity alone enough to improve the function and quality of life of visually impaired persons? This perspective summarizes the types of effectiveness endpoints for clinical investigations of visual prostheses that go beyond visual acuity. The clinical investigation of visual prostheses should include visual function, functional vision and quality of life measures. Specifically, they encompass contrast sensitivity, orientation and mobility, activities of daily living and quality of life assessments. The perspective focuses on the design of clinical trials for visual prostheses and the methods of determining effectiveness above and beyond visual acuity that will yield outcomes that are measured by improved function in the visual world and quality of life. The visually impaired population is the primary consideration in this presentation with particular emphases on retinitis pigmentosa and age-related macular degeneration. Clinical trials for visual prostheses cannot be isolated from the need for medical rehabilitation in order to obtain measurements of effectiveness that produce outcomes/evidence-based success. This approach will facilitate improvement in daily function and quality of life of patients with diseases that cause chronic vision impairment. The views and opinions are those of the author and do not necessarily reflect those of the US Food and Drug Administration, the US Department of Health and Human Services or the Public Health Service.
Stimulation of functional vision in children with perinatal brain damage.
Alimović, Sonja; Mejaski-Bosnjak, Vlatka
2011-01-01
Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.
Visual function at 11 years of age in preterm-born children with and without fetal brain sparing.
Kok, Joke H; Prick, Liesbeth; Merckel, Elly; Everhard, Yolande; Verkerk, Gijs J Q; Scherjon, Sicco A
2007-06-01
We have demonstrated earlier an accelerated maturation of the visual evoked potential in the first year of life in preterm infants with antenatal brain sparing. We have now assessed visual functioning at 11 years of age in the same cohort and compared the groups with and without brain sparing. One hundred sixteen survivors included in a study on the outcome of preterm infants born at <33 weeks' gestation with and without fetal brain sparing and admitted to the NICU were followed extensively. Ninety-eight infants (85%) were again assessed at 11 years of age. Data were available for fetal Doppler measurements indicating brain sparing, neonatal cerebral ultrasound scanning, and developmental outcome in the first 5 years. Mean birth weight was 1303 g; mean gestational age was 29.8 weeks. The infants were divided into 2 groups with and without brain sparing. Visual functioning was estimated by measuring visual acuity, visual fields, eye position, and binocular function and by visual motor tests. Six percent of the children were found to have a visual acuity of <0.8, 12% had strabismus, and 14% to 46% showed abnormal results on the visual motor tests. No statistical differences were found between the 2 groups. However, children with severe cerebral ultrasound diagnoses in the neonatal period were found to have significantly more abnormalities on visual functioning and lower scores on visual motor tests than children without these morbidities. Children with fetal brain sparing do not demonstrate a different development of their visual functioning at late school age. However, an abnormal cerebral ultrasound in the neonatal period is associated with impaired visual function in later life.
Neural Responses to Central and Peripheral Objects in the Lateral Occipital Cortex
Wang, Bin; Guo, Jiayue; Yan, Tianyi; Ohno, Seiichiro; Kanazawa, Susumu; Huang, Qiang; Wu, Jinglong
2016-01-01
Human object recognition and classification depend on the retinal location where the object is presented and decrease as eccentricity increases. The lateral occipital complex (LOC) is thought to be preferentially involved in the processing of objects, and its neural responses exhibit category biases to objects presented in the central visual field. However, the nature of LOC neural responses to central and peripheral objects remains largely unclear. In the present study, we used functional magnetic resonance imaging (fMRI) and a wide-view presentation system to investigate neural responses to four categories of objects (faces, houses, animals, and cars) in the primary visual cortex (V1) and the lateral visual cortex, including the LOC and the retinotopic areas LO-1 and LO-2. In these regions, the neural responses to objects decreased as the distance between the location of presentation and center fixation increased, which is consistent with the diminished perceptual ability that was found for peripherally presented images. The LOC and LO-2 exhibited significantly positive neural responses to all eccentricities (0–55°), but LO-1 exhibited significantly positive responses only to central eccentricities (0–22°). By measuring the ratio relative to V1 (RRV1), we further demonstrated that eccentricity, category and the interaction between them significantly affected neural processing in these regions. LOC, LO-1, and LO-2 exhibited larger RRV1s when stimuli were presented at an eccentricity of 0° compared to when they were presented at the greater eccentricities. In LOC and LO-2, the RRV1s for images of faces, animals and cars showed an increasing trend when the images were presented at eccentricities of 11 to 33°. However, the RRV1s for houses showed a decreasing trend in LO-1 and no difference in the LOC and LO-2. We hypothesize, that when houses and the images in the other categories were presented in the peripheral visual field, they were processed via different strategies in the lateral visual cortex. PMID:26924972
Use of ultrasonic dissection in the early surgical management of periorbital haemangiomas.
Claude, O; Picard, A; O'Sullivan, N; Baccache, S; Momtchilova, M; Enjolras, O; Vazquez, M P; Diner, P A
2008-12-01
To evaluate the efficacy and safety of the early surgical excision of periorbital haemangiomas with an ultrasonic scalpel in infants at risk of visual impairment. A retrospective analysis of 67 infants diagnosed to be at risk of amblyopia from periorbital haemangiomas, treated consecutively with the Dissectron between 1994 and 2005. Ophthalmic outcome parameters included the pre- and postoperative measurement of visual axis occlusion, strabismus, astigmatism, and degree of amblyopia. Visual performance showed an overall improvement of 30% following treatment. Seventy-six patients were found to have abnormal ophthalmic examinations preoperatively, compared to 46 following surgery. After surgery, visual axis occlusion decreased from 73 to 6%; amblyopia decreased from 67 to 22%, strabismus decreased from 26 to 18% and astigmatism (>onedioptre) decreased from 66 to 31%. Mean astigmatism values decreased from 3.5 to 1.9 dioptres. No new cases of astigmatism, strabismus or amblyopia were diagnosed postoperatively. Three minor complications resolved with conservative treatment. All patients were satisfied with the outcome of their surgery. Early surgical excision of periorbital haemangiomas using the Dissectron in infants with an established risk of visual impairment is a safe and effective alternative to pharmacological therapy. The use of the Dissectron is associated with reduced operative times and a shorter hospital stay.
[Multifocal visual electrophysiology in visual function evaluation].
Peng, Shu-Ya; Chen, Jie-Min; Liu, Rui-Jue; Zhou, Shu; Liu, Dong-Mei; Xia, Wen-Tao
2013-08-01
Multifocal visual electrophysiology, consisting of multifocal electroretinography (mfERG) and multifocal visual evoked potential (mfVEP), can objectively evaluate retina function and retina-cortical conduction pathway status by stimulating many local retinal regions and obtaining each local response simultaneously. Having many advantages such as short testing time and high sensitivity, it has been widely used in clinical ophthalmology, especially in the diagnosis of retinal disease and glaucoma. It is a new objective technique in clinical forensic medicine involving visual function evaluation of ocular trauma in particular. This article summarizes the way of stimulation, the position of electrodes, the way of analysis, the visual function evaluation of mfERG and mfVEP, and discussed the value of multifocal visual electrophysiology in forensic medicine.
Predictors of driving safety in early Alzheimer disease
Dawson, J D.; Anderson, S W.; Uc, E Y.; Dastrup, E; Rizzo, M
2009-01-01
Objective: To measure the association of cognition, visual perception, and motor function with driving safety in Alzheimer disease (AD). Methods: Forty drivers with probable early AD (mean Mini-Mental State Examination score 26.5) and 115 elderly drivers without neurologic disease underwent a battery of cognitive, visual, and motor tests, and drove a standardized 35-mile route in urban and rural settings in an instrumented vehicle. A composite cognitive score (COGSTAT) was calculated for each subject based on eight neuropsychological tests. Driving safety errors were noted and classified by a driving expert based on video review. Results: Drivers with AD committed an average of 42.0 safety errors/drive (SD = 12.8), compared to an average of 33.2 (SD = 12.2) for drivers without AD (p < 0.0001); the most common errors were lane violations. Increased age was predictive of errors, with a mean of 2.3 more errors per drive observed for each 5-year age increment. After adjustment for age and gender, COGSTAT was a significant predictor of safety errors in subjects with AD, with a 4.1 increase in safety errors observed for a 1 SD decrease in cognitive function. Significant increases in safety errors were also found in subjects with AD with poorer scores on Benton Visual Retention Test, Complex Figure Test-Copy, Trail Making Subtest-A, and the Functional Reach Test. Conclusion: Drivers with Alzheimer disease (AD) exhibit a range of performance on tests of cognition, vision, and motor skills. Since these tests provide additional predictive value of driving performance beyond diagnosis alone, clinicians may use these tests to help predict whether a patient with AD can safely operate a motor vehicle. GLOSSARY AD = Alzheimer disease; AVLT = Auditory Verbal Learning Test; Blocks = Block Design subtest; BVRT = Benton Visual Retention Test; CFT = Complex Figure Test; CI = confidence interval; COWA = Controlled Oral Word Association; CS = contrast sensitivity; FVA = far visual acuity; JLO = Judgment of Line Orientation; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; NVA = near visual acuity; SFM = structure from motion; TMT = Trail-Making Test; UFOV = Useful Field of View. PMID:19204261
Spectral properties of the temporal evolution of brain network structure.
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Tran, Hang My; Mahdi, Abdull M; Sivasubramaniam, Selvaraj; Gudlavalleti, Murthy V S; Gilbert, Clare E; Shah, Shaheen P; Ezelum, C C; Abubakar, Tafida; Bankole, Olufunmilayo O
2011-12-01
To assess associations of visual function (VF) and quality of life (QOL) by visual acuity (VA), causes of blindness and types of cataract procedures in Nigeria. Multi-stage stratified cluster random sampling was used to identify a nationally representative sample of persons aged ≥ 40 years. VF/QOL questionnaires were administered to participants with VA <6/60 in one or both eyes and/or Mehra-Minassian cataract grade 2B or 3 in one or both eyes and a random sample of those with bilateral VA ≥ 6/12. VF/QOL questionnaires were administered to 2076 participants. Spearman's rank correlation showed a strong correlation between decreasing VA and VF/QOL scores (p<0.0001) with greatest impact on social (p<0.0001) and mobility-related activities (p<0.0001). People who were blind due to glaucoma had lower VF and QOL scores than those who were blind due to cataract. Mean VF and QOL scores were lower after couching compared with conventional cataract surgery (mean VF score=51.0 vs 63.0 and mean QOL score=71.3 vs 79.3). Finally, VF and QOL scores were lower among populations with specific characteristics. Populations with the following characteristics should be targeted to improve VF and QOL: people who are blind, older people, women, manual labourers, people living in rural areas, those living in the northern geopolitical zones, those practising Islamic and Traditionalism faith, those not currently married and those who have undergone couching.
Spectral properties of the temporal evolution of brain network structure
NASA Astrophysics Data System (ADS)
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Negative Correlations in Visual Cortical Networks
Chelaru, Mircea I.; Dragoi, Valentin
2016-01-01
The amount of information encoded by cortical circuits depends critically on the capacity of nearby neurons to exhibit trial-to-trial (noise) correlations in their responses. Depending on their sign and relationship to signal correlations, noise correlations can either increase or decrease the population code accuracy relative to uncorrelated neuronal firing. Whereas positive noise correlations have been extensively studied using experimental and theoretical tools, the functional role of negative correlations in cortical circuits has remained elusive. We addressed this issue by performing multiple-electrode recording in the superficial layers of the primary visual cortex (V1) of alert monkey. Despite the fact that positive noise correlations decayed exponentially with the difference in the orientation preference between cells, negative correlations were uniformly distributed across the population. Using a statistical model for Fisher Information estimation, we found that a mild increase in negative correlations causes a sharp increase in network accuracy even when mean correlations were held constant. To examine the variables controlling the strength of negative correlations, we implemented a recurrent spiking network model of V1. We found that increasing local inhibition and reducing excitation causes a decrease in the firing rates of neurons while increasing the negative noise correlations, which in turn increase the population signal-to-noise ratio and network accuracy. Altogether, these results contribute to our understanding of the neuronal mechanism involved in the generation of negative correlations and their beneficial impact on cortical circuit function. PMID:25217468
Visual Learning Alters the Spontaneous Activity of the Resting Human Brain: An fNIRS Study
Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan
2014-01-01
Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning. PMID:25243168
Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.
Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan
2014-01-01
Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.
The effects of Ramadan fasting on the health and function of the eye.
Javadi, Mohammad Ali; Assadi, Mahsan; Einollahi, Bahram; Rabei, Hossein Mohammad; Afarid, Mehrdad; Assadi, Majid
2014-08-01
Ramadan fasting may alter a variety of physiological parameters which by themselves influence ocular system. Here, we review the effects of Ramadan fasting on the health and function of the eye. Literature records in PubMed/MEDLINE, Web of Science, EMBASE, Google Scholar, and Iran Medex databases as well as proceedings of related meetings from January 1986 to March 2014 were systematically reviewed. The search key words was based on the terms "Ramadan Fasting," "Ramadan," "Islamic Fasting," "Fasting in Ramadan" accompanied with one of the eye, tear drop, myopia, intraocular pressure (IOP), tear break up time, basal tear secretion, refractive error, and visual acuity. Predawn water loading and dehydration in the evening are shown to increase and decrease IOP and tear secretion, respectively. Ocular blood flow is changed in Ramadan fasting, and patients with ocular vein occlusion may experience more frequent attacks. There are no or minimal fluctuations in visual acuity and refractive errors, but most of them are decompensated after Ramadan. Although the influence of fasting in different eye parameters is evaluated in several studies, there are no or only limited studies conducted on patients suffering from glaucoma, damage to ophthalmic vasculature, tear dysfunction, and minimal visual acuity. Such studies are required to make a definite decision before fasting is declared harmless to these patients.
NASA Astrophysics Data System (ADS)
Liao, Steve M.; Gregg, Nick M.; White, Brian R.; Zeff, Benjamin W.; Bjerkaas, Katelin A.; Inder, Terrie E.; Culver, Joseph P.
2010-03-01
The neurodevelopmental outcome of neonatal intensive care unit (NICU) infants is a major clinical concern with many infants displaying neurobehavioral deficits in childhood. Functional neuroimaging may provide early recognition of neural deficits in high-risk infants. Near-infrared spectroscopy (NIRS) has the advantage of providing functional neuroimaging in infants at the bedside. However, limitations in traditional NIRS have included contamination from superficial vascular dynamics in the scalp. Furthermore, controversy exists over the nature of normal vascular, responses in infants. To address these issues, we extend the use of novel high-density NIRS arrays with multiple source-detector distances and a superficial signal regression technique to infants. Evaluations of healthy term-born infants within the first three days of life are performed without sedation using a visual stimulus. We find that the regression technique significantly improves brain activation signal quality. Furthermore, in six out of eight infants, both oxy- and total hemoglobin increases while deoxyhemoglobin decreases, suggesting that, at term, the neurovascular coupling in the visual cortex is similar to that found in healthy adults. These results demonstrate the feasibility of using high-density NIRS arrays in infants to improve signal quality through superficial signal regression, and provide a foundation for further development of high-density NIRS as a clinical tool.
Coussa, Razek Georges; Kapusta, Michael Alton
2017-12-01
To report the first sequential cross-over treatment with the longest ophthalmic follow-up in a case of X-linked juvenile retinoschisis (XLRS) successfully treated with topical dorzolamide. A healthy 34 year-old man presented with one month history of decreased visual acuity in his left eye. Funduscopy was significant for a blunted and cystoid-like foveal reflex in both eyes. The macular OCT showed cystic foveal changes OU. The patient was diagnosed with XLRS and was observed. On two subsequent follow-ups, a significant decrease in the patient's visual acuity warranted the use of topical dorzolamide for treating the cystic foveal changes, which completely resolved two months post-treatment initiation. Previous reports showed the benefit of dorzolamide in treating foveal cystic cavities in XLRS. To our knowledge, this is the first case of XLRS demonstrating the benefits of topical dorzolamide based on a sequential cross-over treatment regimen. It may also represent a case with the longest ophthalmic follow-up providing, in consequence, long-term understanding of the natural history and complications of this rare disease After ruling out major causes of cystoid macular edema, XLRS patients presenting with worsening of their visual acuities due to larger cystic macular changes may benefit from an alternating ON/OFF regimen of topical dorzolamide, which offers a significant treatment advantage outweighing its well-known side effects. Our study consolidates the importance of "medication vacation" by showing its efficacy in providing anatomical and visual functional improvements in patients with chronic cystic macular changes.
Landim, Ricardo C.G.; Edden, Richard A.E.; Foerster, Bernd; Li, Li Min; Covolan, Roberto J.M.; Castellano, Gabriela
2017-01-01
N-acetyl-aspartate (NAA) is responsible for the majority of the most prominent peak in 1H-MR spectra, and has been used as diagnostic marker for several pathologies. However, ~10% of this peak can be attributed to N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide whose release may be triggered by intense neuronal activation. Separate measurement of NAA and NAAG using MRS is difficult due to large superposition of their spectra. Specifically, in functional MRS (fMRS) experiments, most work has evaluated the sum NAA + NAAG, which does not appear to change during experiments. The aim of this work was to design and perform an fMRS experiment using visual stimulation and a spectral editing sequence, MEGA-PRESS, to further evaluate the individual dynamics of NAA and NAAG during brain activation. The functional paradigm used consisted of three blocks, starting with a rest (baseline) block of 320 s, followed by a stimulus block (640 s) and a rest block (640 s). Twenty healthy subjects participated in this study. On average, subjects followed a pattern of NAA decrease and NAAG increase during stimulation, with a tendency to return to basal levels at the end of the paradigm, with a peak NAA decrease of −(21 ± 19)% and a peak NAAG increase of (64 ± 62)% (Wilcoxon test, p < 0.05). These results may relate to: 1) the only known NAAG synthesis pathway is from NAA and glutamate; 2) a relationship between NAAG and the BOLD response. PMID:26656908
Landim, Ricardo C G; Edden, Richard A E; Foerster, Bernd; Li, Li Min; Covolan, Roberto J M; Castellano, Gabriela
2016-04-01
N-acetyl-aspartate (NAA) is responsible for the majority of the most prominent peak in (1)H-MR spectra, and has been used as diagnostic marker for several pathologies. However, ~10% of this peak can be attributed to N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide whose release may be triggered by intense neuronal activation. Separate measurement of NAA and NAAG using MRS is difficult due to large superposition of their spectra. Specifically, in functional MRS (fMRS) experiments, most work has evaluated the sum NAA+NAAG, which does not appear to change during experiments. The aim of this work was to design and perform an fMRS experiment using visual stimulation and a spectral editing sequence, MEGA-PRESS, to further evaluate the individual dynamics of NAA and NAAG during brain activation. The functional paradigm used consisted of three blocks, starting with a rest (baseline) block of 320 s, followed by a stimulus block (640 s) and a rest block (640 s). Twenty healthy subjects participated in this study. On average, subjects followed a pattern of NAA decrease and NAAG increase during stimulation, with a tendency to return to basal levels at the end of the paradigm, with a peak NAA decrease of -(21±19)% and a peak NAAG increase of (64±62)% (Wilcoxon test, p<0.05). These results may relate to: 1) the only known NAAG synthesis pathway is from NAA and glutamate; 2) a relationship between NAAG and the BOLD response. Copyright © 2015 Elsevier Inc. All rights reserved.
Learning to Recognize Patterns: Changes in the Visual Field with Familiarity
NASA Astrophysics Data System (ADS)
Bebko, James M.; Uchikawa, Keiji; Saida, Shinya; Ikeda, Mitsuo
1995-01-01
Two studies were conducted to investigate changes which take place in the visual information processing of novel stimuli as they become familiar. Japanese writing characters (Hiragana and Kanji) which were unfamiliar to two native English speaking subjects were presented using a moving window technique to restrict their visual fields. Study time for visual recognition was recorded across repeated sessions, and with varying visual field restrictions. The critical visual field was defined as the size of the visual field beyond which further increases did not improve the speed of recognition performance. In the first study, when the Hiragana patterns were novel, subjects needed to see about half of the entire pattern simultaneously to maintain optimal performance. However, the critical visual field size decreased as familiarity with the patterns increased. These results were replicated in the second study with more complex Kanji characters. In addition, the critical field size decreased as pattern complexity decreased. We propose a three component model of pattern perception. In the first stage a representation of the stimulus must be constructed by the subject, and restricting of the visual field interferes dramatically with this component when stimuli are unfamiliar. With increased familiarity, subjects become able to reconstruct a previous representation from very small, unique segments of the pattern, analogous to the informativeness areas hypothesized by Loftus and Mackworth [J. Exp. Psychol., 4 (1978) 565].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M Pauline
2007-06-30
The VisPort visualization portal is an experiment in providing Web-based access to visualization functionality from any place and at any time. VisPort adopts a service-oriented architecture to encapsulate visualization functionality and to support remote access. Users employ browser-based client applications to choose data and services, set parameters, and launch visualization jobs. Visualization products typically images or movies are viewed in the user's standard Web browser. VisPort emphasizes visualization solutions customized for specific application communities. Finally, VisPort relies heavily on XML, and introduces the notion of visualization informatics - the formalization and specialization of information related to the process and productsmore » of visualization.« less
Huang, Kuo-Chen; Leung, Cherng-Yee; Wang, Hsiu-Feng
2010-04-01
The purpose of this study was to assess the ability of blindfolded, visually impaired, and sighted individuals to estimate object height as a function of cane length, cane diameter, and judgment type. 48 undergraduate students (ages 20 to 23 years) were recruited to participate in the study. Participants were divided into low-vision, severely myopic, and normal-vision groups. Five stimulus heights were explored with three cane lengths, varying cane diameters, and judgment types. The participants were asked to estimate the stimulus height with or without reference to a standard block. Results showed that the constant error ratio for estimated height improved with decreasing cane length and comparative judgment. The findings were unclear regarding the effect of cane length on haptic perception of height. Implications were discussed for designing environments, such as stair heights, chairs, the magnitude of apertures, etc., for visually impaired individuals.
Gombos, Ferenc; Bódizs, Róbert; Kovács, Ilona
2017-07-21
Williams syndrome (7q11.23 microdeletion) is characterized by specific alterations in neurocognitive architecture and functioning, as well as disordered sleep. Here we analyze the region, sleep state and frequency-specific EEG synchronization of whole night sleep recordings of 21 Williams syndrome and 21 typically developing age- and gender-matched subjects by calculating weighted phase lag indexes. We found broadband increases in inter- and intrahemispheric neural connectivity for both NREM and REM sleep EEG of Williams syndrome subjects. These effects consisted of increased theta, high sigma, and beta/low gamma synchronization, whereas alpha synchronization was characterized by a peculiar Williams syndrome-specific decrease during NREM states (intra- and interhemispheric centro-temporal) and REM phases of sleep (occipital intra-area synchronization). We also found a decrease in short range, occipital connectivity of NREM sleep EEG theta activity. The striking increased overall synchronization of sleep EEG in Williams syndrome subjects is consistent with the recently reported increase in synaptic and dendritic density in stem-cell based Williams syndrome models, whereas decreased alpha and occipital connectivity might reflect and underpin the altered microarchitecture of primary visual cortex and disordered visuospatial functioning of Williams syndrome subjects.
Visual impairment, visual functioning, and quality of life assessments in patients with glaucoma.
Parrish, R K
1996-01-01
BACKGROUND/PURPOSE: To determine the relation between visual impairment, visual functioning, and the global quality of life in patients with glaucoma. METHODS: Visual impairment, defined with the American Medical Association Guides to the Evaluation of Permanent Impairment; visual functioning, measured with the VF-14 and the Field Test Version of the National Eye Institute-Visual Functioning Questionnaire (NEI-VFQ); and the global quality of life, assessed with the Medical Outcomes Study 36-Item Short Form Health Survey (SF-36), were determined in 147 consecutive patients with glaucoma. RESULTS: None of the SF-36 domains demonstrated more than a weak correlation with visual impairment. The VF-14 scores were moderately correlated with visual impairment. Of the twelve NEI-VFQ scales, distance activities and vision specific dependency were moderately correlated with visual impairment. Of the twelve NEI-VFQ scales, distance activities and vision specific dependency were moderately correlated with visual field impairment; vision specific social functioning, near activities, vision specific role difficulties, general vision, vision specific mental health, color vision, and driving were modestly correlated; visual pain was weakly correlated; and two were not significantly correlated. Correcting for visual actuity weakened the strength of the correlation coefficients. CONCLUSIONS: The SF-36 is unlikely to be useful in determining visual impairment in patients with glaucoma. Based on the moderate correlation between visual field impairment and the VF-14 score, this questionnaire may be generalizable to patients with glaucoma. Several of the NEI-VFQ scales correlate with visual field impairment scores in patients with a wide range of glaucomatous damage. PMID:8981717
Segmentation decreases the magnitude of the tilt illusion
Qiu, Cheng; Kersten, Daniel; Olman, Cheryl A.
2013-01-01
In the tilt illusion, the perceived orientation of a target grating depends strongly on the orientation of a surround. When the orientations of the center and surround gratings differ by a small angle, the center grating appears to tilt away from the surround orientation (repulsion), whereas for a large difference in angle, the center appears to tilt toward the surround orientation (attraction). In order to understand how segmentation/perceptual grouping of the center and surround affect the magnitude of the tilt illusion, we conducted three psychophysical experiments in which we measured observers' perception of center orientation as a function of center-surround relative contrast, relative disparity depth, and geometric features such as occlusion and collinearity. All of these manipulations affected the strength of perceived orientation bias in the center. Our results suggest that if stronger segmentation/perceptual grouping is induced between the center and surround, the tilt repulsion bias decreases/increases. A grouping-dependent tilt illusion plays an important role in visual search and detection by enhancing the sensitivity of our visual system to feature discrepancies, especially in relatively homogenous environments. PMID:24259671
Speed tuning of motion segmentation and discrimination
NASA Technical Reports Server (NTRS)
Masson, G. S.; Mestre, D. R.; Stone, L. S.
1999-01-01
Motion transparency requires that the visual system distinguish different motion vectors and selectively integrate similar motion vectors over space into the perception of multiple surfaces moving through or over each other. Using large-field (7 degrees x 7 degrees) displays containing two populations of random-dots moving in the same (horizontal) direction but at different speeds, we examined speed-based segmentation by measuring the speed difference above which observers can perceive two moving surfaces. We systematically investigated this 'speed-segmentation' threshold as a function of speed and stimulus duration, and found that it increases sharply for speeds above approximately 8 degrees/s. In addition, speed-segmentation thresholds decrease with stimulus duration out to approximately 200 ms. In contrast, under matched conditions, speed-discrimination thresholds stay low at least out to 16 degrees/s and decrease with increasing stimulus duration at a faster rate than for speed segmentation. Thus, motion segmentation and motion discrimination exhibit different speed selectivity and different temporal integration characteristics. Results are discussed in terms of the speed preferences of different neuronal populations within the primate visual cortex.
Lobier, Muriel; Palva, J Matias; Palva, Satu
2018-01-15
Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.
Peto, Tunde; Heeren, Tjebo F C; Clemons, Traci E; Sallo, Ferenc B; Leung, Irene; Chew, Emily Y; Bird, Alan C
2018-01-01
To evaluate progression of macular telangiectasia Type 2 lesions and their correlation with visual acuity. An international multicenter prospective study with annual examinations including best-corrected visual acuity (BCVA), fundus photography, fluorescein angiography, and optical coherence tomography images graded centrally. Mixed models were used to estimate progression rates, and a generalized linear model to compute the relative risk of BCVA loss, loss of ellipsoid zone (EZ) reflectivity, development of pigment plaques, or neovascularization. One thousand and fourteen eyes of 507 participants were followed for 4.2 ± 1.6 years. Best-corrected visual acuity decreased 1.07 ± 0.05 letters (mean ± SE) per year. Of all eyes, 15% lost ≥15 letters after 5 years. Of the eyes without EZ loss, 76% developed a noncentral loss. Of the eyes with noncentral loss, 45% progressed to central EZ loss. The rate of BCVA loss in eyes with noncentral EZ loss at baseline was similar to eyes without EZ loss. The rate of BCVA loss was significantly higher in eyes with central EZ loss at baseline (-1.40 ± 0.14 letters, P < 0.001). Ellipsoid zone loss is frequently found in macular telangiectasia Type 2 and is an important structural component reflecting visual function. Its presence in the fovea significantly correlates with worse visual prognosis.
Eye guidance during real-world scene search: The role color plays in central and peripheral vision.
Nuthmann, Antje; Malcolm, George L
2016-01-01
The visual system utilizes environmental features to direct gaze efficiently when locating objects. While previous research has isolated various features' contributions to gaze guidance, these studies generally used sparse displays and did not investigate how features facilitated search as a function of their location on the visual field. The current study investigated how features across the visual field--particularly color--facilitate gaze guidance during real-world search. A gaze-contingent window followed participants' eye movements, restricting color information to specified regions. Scene images were presented in full color, with color in the periphery and gray in central vision or gray in the periphery and color in central vision, or in grayscale. Color conditions were crossed with a search cue manipulation, with the target cued either with a word label or an exact picture. Search times increased as color information in the scene decreased. A gaze-data based decomposition of search time revealed color-mediated effects on specific subprocesses of search. Color in peripheral vision facilitated target localization, whereas color in central vision facilitated target verification. Picture cues facilitated search, with the effects of cue specificity and scene color combining additively. When available, the visual system utilizes the environment's color information to facilitate different real-world visual search behaviors based on the location within the visual field.
The Puzzle of Visual Development: Behavior and Neural Limits.
Kiorpes, Lynne
2016-11-09
The development of visual function takes place over many months or years in primate infants. Visual sensitivity is very poor near birth and improves over different times courses for different visual functions. The neural mechanisms that underlie these processes are not well understood despite many decades of research. The puzzle arises because research into the factors that limit visual function in infants has found surprisingly mature neural organization and adult-like receptive field properties in very young infants. The high degree of visual plasticity that has been documented during the sensitive period in young children and animals leaves the brain vulnerable to abnormal visual experience. Abnormal visual experience during the sensitive period can lead to amblyopia, a developmental disorder of vision affecting ∼3% of children. This review provides a historical perspective on research into visual development and the disorder amblyopia. The mismatch between the status of the primary visual cortex and visual behavior, both during visual development and in amblyopia, is discussed, and several potential resolutions are considered. It seems likely that extrastriate visual areas further along the visual pathways may set important limits on visual function and show greater vulnerability to abnormal visual experience. Analyses based on multiunit, population activity may provide useful representations of the information being fed forward from primary visual cortex to extrastriate processing areas and to the motor output. Copyright © 2016 the authors 0270-6474/16/3611384-10$15.00/0.
Sánchez-Cruz, Alonso; Villarejo-Zori, Beatriz; Marchena, Miguel; Zaldivar-Díez, Josefa; Palomo, Valle; Gil, Carmen; Lizasoain, Ignacio; de la Villa, Pedro; Martínez, Ana; de la Rosa, Enrique J; Hernández-Sánchez, Catalina
2018-04-16
Retinitis pigmentosa (RP) is a group of hereditary retinal neurodegenerative conditions characterized by primary dysfunction and death of photoreceptor cells, resulting in visual loss and, eventually, blindness. To date, no effective therapies have been transferred to clinic. Given the diverse genetic etiology of RP, targeting common cellular and molecular retinal alterations has emerged as a potential therapeutic strategy. Using the Pde6b rd10/rd10 mouse model of RP, we investigated the effects of daily intraperitoneal administration of VP3.15, a small-molecule heterocyclic GSK-3 inhibitor. Gene expression was analyzed by quantitative PCR and protein expression and phosphorylation by Western blot. Photoreceptor preservation was evaluated by histological analysis and visual function was assessed by electroretinography. In rd10 retinas, increased expression of pro-inflammatory markers and reactive gliosis coincided with the early stages of retinal degeneration. Compared with wild-type controls, GSK-3β expression (mRNA and protein) remained unchanged during the retinal degeneration period. However, levels of GSK-3β Ser9 and its regulator Akt Ser473 were increased in rd10 versus wild-type retinas. In vivo administration of VP3.15 reduced photoreceptor cell loss and preserved visual function. This neuroprotective effect was accompanied by a decrease in the expression of neuroinflammatory markers. These results provide proof of concept of the therapeutic potential of VP3.15 for the treatment of retinal neurodegenerative conditions in general, and RP in particular.
Sun, Jun-Jun; Chu, Zhi-Jie; Liu, Wei-Feng; Qi, Shi-Fang; Yang, Yan-Hui; Ge, Peng-Lei; Zhang, Xiao-Hui; Li, Wen-Sheng; Yang, Cheng; Zhang, Yu-Ming
2013-01-01
AIM: To investigate effects of perirenal space blocking (PSB) on gastrointestinal function in patients with severe acute pancreatitis (SAP). METHODS: Forty patients with SAP were randomly allocated to receive PSB or no PSB (NPSB). All the SAP patients received specialized medical therapy (SMT). Patients in the PSB group received PSB + SMT when hospitalized and after diagnosis, whereas patients in the NPSB group only received SMT. A modified gastrointestinal failure (GIF) scoring system was used to assess the gastrointestinal function in SAP patients after admission. Pain severity (visual analog scale, 0 to 100) was monitored every 24 h for 72 h. RESULTS: Modified GIF score decreased in both groups during the 10-d study period. The median score decrease was initially significantly greater in the PSB group than in the NPSB group after PSB was performed. During the 72-h study period, pain intensity decreased in both groups. The median pain decrease was significantly greater in the PSB group than in the NPSB group at single time points. Patients in the PSB group had significantly lower incidences of hospital mortality, multiple organ dysfunction syndrome, systemic inflammatory response syndrome, and pancreatic infection, and stayed in the intensive care unit for a shorter duration. However, no difference in terms of operation incidence was found between the two groups. CONCLUSION: PSB could ameliorate gastrointestinal dysfunction or failure during the early stage of SAP. Moreover, PSB administration could improve prognosis and decrease the mortality of SAP patients. PMID:24379596
Ulanowski, Elizabeth A; Danzl, Megan M; Sims, Kara M
2017-01-01
There is a lack of evidence examining the role of physical therapy (PT) to address movement dysfunction for individuals with essential tremor (ET). A 61-year-old male with ET and prolonged bilateral deep brain stimulation (DBS) completed 14 sessions of outpatient PT that emphasized balance, functional movements, and proximal stability training with an integration of principles of body awareness training and visual motor coordination. Improvements were noted in all outcome measures. This report describes a novel PT approach that offers a promising means of improving functional mobility and balance while decreasing falls risk in patients with ET.
[Perception of physiological visual illusions by individuals with schizophrenia].
Ciszewski, Słowomir; Wichowicz, Hubert Michał; Żuk, Krzysztof
2015-01-01
Visual perception by individuals with schizophrenia has not been extensively researched. The focus of this review is the perception of physiological visual illusions by patients with schizophrenia, a differences of perception reported in a small number of studies. Increased or decreased susceptibility of these patients to various illusions seems to be unconnected to the location of origin in the visual apparatus, which also takes place in illusions connected to other modalities. The susceptibility of patients with schizophrenia to haptic illusions has not yet been investigated, although the need for such investigation has been is clear. The emerging picture is that some individuals with schizophrenia are "resistant" to some of the illusions and are able to assess visual phenomena more "rationally", yet certain illusions (ex. Müller-Lyer's) are perceived more intensely. Disturbances in the perception of visual illusions have neither been classified as possible diagnostic indicators of a dangerous mental condition, nor included in the endophenotype of schizophrenia. Although the relevant data are sparse, the ability to replicate the results is limited, and the research model lacks a "gold standard", some preliminary conclusions may be drawn. There are indications that disturbances in visual perception are connected to the extent of disorganization, poor initial social functioning, poor prognosis, and the types of schizophrenia described as neurodevelopmental. Patients with schizophrenia usually fail to perceive those illusions that require volitional controlled attention, and show lack of sensitivity to the contrast between shape and background.
Voluntary reduction of force variability via modulation of low-frequency oscillations.
Park, Seoung Hoon; Casamento-Moran, Agostina; Yacoubi, Basma; Christou, Evangelos A
2017-09-01
Visual feedback can influence the force output by changing the power in frequencies below 1 Hz. However, it remains unknown whether visual guidance can help an individual reduce force variability voluntarily. The purpose of this study, therefore, was to determine whether an individual can voluntarily reduce force variability during constant contractions with visual guidance, and whether this reduction is associated with a decrease in the power of low-frequency oscillations (0-1 Hz) in force and muscle activity. Twenty young adults (27.6 ± 3.4 years) matched a force target of 15% MVC (maximal voluntary contraction) with ankle dorsiflexion. Participants performed six visually unrestricted contractions, from which we selected the trial with the least variability. Following, participants performed six visually guided contractions and were encouraged to reduce their force variability within two guidelines (±1 SD of the least variable unrestricted trial). Participants decreased the SD of force by 45% (P < 0.001) during the guided condition, without changing mean force (P > 0.2). The decrease in force variability was associated with decreased low-frequency oscillations (0-1 Hz) in force (R 2 = 0.59), which was associated with decreased low-frequency oscillations in EMG bursts (R 2 = 0.35). The reduction in low-frequency oscillations in EMG burst was positively associated with power in the interference EMG from 35 to 60 Hz (R 2 = 0.47). In conclusion, voluntary reduction of force variability is associated with decreased low-frequency oscillations in EMG bursts and consequently force output. We provide novel evidence that visual guidance allows healthy young adults to reduce force variability voluntarily likely by adjusting the low-frequency oscillations in the neural drive.
ERIC Educational Resources Information Center
Newcomb, Sandra
2010-01-01
Children who are identified as visually impaired frequently have a functional vision assessment as one way to determine how their visual impairment affects their educational performance. The CVI Range is a functional vision assessment for children with cortical visual impairment. The purpose of the study presented here was to examine the…
Cortical Representations of Symbols, Objects, and Faces Are Pruned Back during Early Childhood
Pinel, Philippe; Dehaene, Stanislas; Pelphrey, Kevin A.
2011-01-01
Regions of human ventral extrastriate visual cortex develop specializations for natural categories (e.g., faces) and cultural artifacts (e.g., words). In adults, category-based specializations manifest as greater neural responses in visual regions of the brain (e.g., fusiform gyrus) to some categories over others. However, few studies have examined how these specializations originate in the brains of children. Moreover, it is as yet unknown whether the development of visual specializations hinges on “increases” in the response to the preferred categories, “decreases” in the responses to nonpreferred categories, or “both.” This question is relevant to a long-standing debate concerning whether neural development is driven by building up or pruning back representations. To explore these questions, we measured patterns of visual activity in 4-year-old children for 4 categories (faces, letters, numbers, and shoes) using functional magnetic resonance imaging. We report 2 key findings regarding the development of visual categories in the brain: 1) the categories “faces” and “symbols” doubly dissociate in the fusiform gyrus before children can read and 2) the development of category-specific responses in young children depends on cortical responses to nonpreferred categories that decrease as preferred category knowledge is acquired. PMID:20457691
McNally, Colin P.; Eng, Alexander; Noecker, Cecilia; Gagne-Maynard, William C.; Borenstein, Elhanan
2018-01-01
The abundance of both taxonomic groups and gene categories in microbiome samples can now be easily assayed via various sequencing technologies, and visualized using a variety of software tools. However, the assemblage of taxa in the microbiome and its gene content are clearly linked, and tools for visualizing the relationship between these two facets of microbiome composition and for facilitating exploratory analysis of their co-variation are lacking. Here we introduce BURRITO, a web tool for interactive visualization of microbiome multi-omic data with paired taxonomic and functional information. BURRITO simultaneously visualizes the taxonomic and functional compositions of multiple samples and dynamically highlights relationships between taxa and functions to capture the underlying structure of these data. Users can browse for taxa and functions of interest and interactively explore the share of each function attributed to each taxon across samples. BURRITO supports multiple input formats for taxonomic and metagenomic data, allows adjustment of data granularity, and can export generated visualizations as static publication-ready formatted figures. In this paper, we describe the functionality of BURRITO, and provide illustrative examples of its utility for visualizing various trends in the relationship between the composition of taxa and functions in complex microbiomes. PMID:29545787
Costa, Thiago L; Costa, Marcelo F; Magalhães, Adsson; Rêgo, Gabriel G; Nagy, Balázs V; Boggio, Paulo S; Ventura, Dora F
2015-02-19
Recent research suggests that V1 plays an active role in the judgment of size and distance. Nevertheless, no research has been performed using direct brain stimulation to address this issue. We used transcranial direct-current stimulation (tDCS) to directly modulate the early stages of cortical visual processing while measuring size and distance perception with a psychophysical scaling method of magnitude estimation in a repeated-measures design. The subjects randomly received anodal, cathodal, and sham tDCS in separate sessions starting with size or distance judgment tasks. Power functions were fit to the size judgment data, whereas logarithmic functions were fit to distance judgment data. Slopes and R(2) were compared with separate repeated-measures analyses of variance with two factors: task (size vs. distance) and tDCS (anodal vs. cathodal vs. sham). Anodal tDCS significantly decreased slopes, apparently interfering with size perception. No effects were found for distance perception. Consistent with previous studies, the results of the size task appeared to reflect a prothetic continuum, whereas the results of the distance task seemed to reflect a metathetic continuum. The differential effects of tDCS on these tasks may support the hypothesis that different physiological mechanisms underlie judgments on these two continua. The results further suggest the complex involvement of the early visual cortex in size judgment tasks that go beyond the simple representation of low-level stimulus properties. This supports predictive coding models and experimental findings that suggest that higher-order visual areas may inhibit incoming information from the early visual cortex through feedback connections when complex tasks are performed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Levodopa-carbidopa with occlusion in older children with amblyopia.
Bhartiya, Prashant; Sharma, Pradeep; Biswas, Nihar R; Tandon, Radhika; Khokhar, Sudarshan K
2002-12-01
To study the role of levodopa-carbidopa in supplementing occlusion therapy in older children with strabismic or anisometropic amblyopia. A clinical study was performed on 40 amblyopic children (19 strabismic and 21 anisometropic), 6 to 18 years old (mean age, 10.9 years). They received an average dose of 1.86 mg/kg/day (1.33-2.36 mg/kg/day) of levodopa and carbidopa (4:1 ratio) or a placebo in 3 divided doses over a 4-week period, combined with full-time occlusion. The occlusion was continued for the study duration of 3 months. Early Treatment Diabetic Retinopathy Study visual acuity charts and Cambridge low-contrast gratings for contrast sensitivity (CS) were used to assess visual functions. Tolerance and compliance with occlusion and capsule consumption were assessed. Visual acuity of the nonamblyopic eye did not deteriorate during the study in either group. CS decreased by 22 units in the levodopa group and increased in the placebo group by 53 units at the first month. The CS in the levodopa group recovered later by the third month of follow-up. Both the levodopa and the placebo groups showed significant improvement in visual function in the amblyopic eye (P <.001). Overall changes in logarithm of minimum angle of resolution values and CS in the amblyopic eyes were similar in both groups (P >.05). Strabismic and anisometropic amblyopes did not behave differently. Drug tolerance, occlusion compliance, and capsule ingestion compliance were similar between the groups, with no significant side effects. Clinically, levodopa supplementation does not offer any advantage over occlusion alone. Moreover, the risk of occlusion amblyopia could increase with the use of drugs like levodopa that might affect the plasticity of the visual cortex.
Division of attention as a function of the number of steps, visual shifts, and memory load
NASA Technical Reports Server (NTRS)
Chechile, R. A.; Butler, K.; Gutowski, W.; Palmer, E. A.
1986-01-01
The effects on divided attention of visual shifts and long-term memory retrieval during a monitoring task are considered. A concurrent vigilance task was standardized under all experimental conditions. The results show that subjects can perform nearly perfectly on all of the time-shared tasks if long-term memory retrieval is not required for monitoring. With the requirement of memory retrieval, however, there was a large decrease in accuracy for all of the time-shared activities. It was concluded that the attentional demand of longterm memory retrieval is appreciable (even for a well-learned motor sequence), and thus memory retrieval results in a sizable reduction in the capability of subjects to divide their attention. A selected bibliography on the divided attention literature is provided.
Freezing behavior as a response to sexual visual stimuli as demonstrated by posturography.
Mouras, Harold; Lelard, Thierry; Ahmaidi, Said; Godefroy, Olivier; Krystkowiak, Pierre
2015-01-01
Posturographic changes in motivational conditions remain largely unexplored in the context of embodied cognition. Over the last decade, sexual motivation has been used as a good canonical working model to study motivated social interactions. The objective of this study was to explore posturographic variations in response to visual sexual videos as compared to neutral videos. Our results support demonstration of a freezing-type response in response to sexually explicit stimuli compared to other conditions, as demonstrated by significantly decreased standard deviations for (i) the center of pressure displacement along the mediolateral and anteroposterior axes and (ii) center of pressure's displacement surface. These results support the complexity of the motor correlates of sexual motivation considered to be a canonical functional context to study the motor correlates of motivated social interactions.
Global motion perception deficits in autism are reflected as early as primary visual cortex
Thomas, Cibu; Kravitz, Dwight J.; Wallace, Gregory L.; Baron-Cohen, Simon; Martin, Alex; Baker, Chris I.
2014-01-01
Individuals with autism are often characterized as ‘seeing the trees, but not the forest’—attuned to individual details in the visual world at the expense of the global percept they compose. Here, we tested the extent to which global processing deficits in autism reflect impairments in (i) primary visual processing; or (ii) decision-formation, using an archetypal example of global perception, coherent motion perception. In an event-related functional MRI experiment, 43 intelligence quotient and age-matched male participants (21 with autism, age range 15–27 years) performed a series of coherent motion perception judgements in which the amount of local motion signals available to be integrated into a global percept was varied by controlling stimulus viewing duration (0.2 or 0.6 s) and the proportion of dots moving in the correct direction (coherence: 4%, 15%, 30%, 50%, or 75%). Both typical participants and those with autism evidenced the same basic pattern of accuracy in judging the direction of motion, with performance decreasing with reduced coherence and shorter viewing durations. Critically, these effects were exaggerated in autism: despite equal performance at the long duration, performance was more strongly reduced by shortening viewing duration in autism (P < 0.015) and decreasing stimulus coherence (P < 0.008). To assess the neural correlates of these effects we focused on the responses of primary visual cortex and the middle temporal area, critical in the early visual processing of motion signals, as well as a region in the intraparietal sulcus thought to be involved in perceptual decision-making. The behavioural results were mirrored in both primary visual cortex and the middle temporal area, with a greater reduction in response at short, compared with long, viewing durations in autism compared with controls (both P < 0.018). In contrast, there was no difference between the groups in the intraparietal sulcus (P > 0.574). These findings suggest that reduced global motion perception in autism is driven by an atypical response early in visual processing and may reflect a fundamental perturbation in neural circuitry. PMID:25060095
Bertone, Armando; Mottron, Laurent; Jelenic, Patricia; Faubert, Jocelyn
2005-10-01
Visuo-perceptual processing in autism is characterized by intact or enhanced performance on static spatial tasks and inferior performance on dynamic tasks, suggesting a deficit of dorsal visual stream processing in autism. However, previous findings by Bertone et al. indicate that neuro-integrative mechanisms used to detect complex motion, rather than motion perception per se, may be impaired in autism. We present here the first demonstration of concurrent enhanced and decreased performance in autism on the same visuo-spatial static task, wherein the only factor dichotomizing performance was the neural complexity required to discriminate grating orientation. The ability of persons with autism was found to be superior for identifying the orientation of simple, luminance-defined (or first-order) gratings but inferior for complex, texture-defined (or second-order) gratings. Using a flicker contrast sensitivity task, we demonstrated that this finding is probably not due to abnormal information processing at a sub-cortical level (magnocellular and parvocellular functioning). Together, these findings are interpreted as a clear indication of altered low-level perceptual information processing in autism, and confirm that the deficits and assets observed in autistic visual perception are contingent on the complexity of the neural network required to process a given type of visual stimulus. We suggest that atypical neural connectivity, resulting in enhanced lateral inhibition, may account for both enhanced and decreased low-level information processing in autism.
Active eye fixation performance in 940 young men: effects of IQ, schizotypy, anxiety and depression.
Smyrnis, N; Kattoulas, E; Evdokimidis, I; Stefanis, N C; Avramopoulos, D; Pantes, G; Theleritis, C; Stefanis, C N
2004-05-01
A total of 940 young men performed a task in which they actively maintained fixation for 50 s in three conditions: a). on a visual target, b). on a visual target while distracting targets appeared briefly on the periphery and c). with no visual target present. The same individuals completed psychometric evaluation tests measuring IQ, schizotypy and current state-dependent psychopathology. The proportion of fixation time decreased and saccade frequency increased in condition b compared wih condition a, and sequentially in condition c compared with condition b. A trend towards a decrease in proportion of fixation time and increase in saccade frequency was found as the subjects maintained fixation during the task and this time-dependent deterioration of performance was again most pronounced in condition c, less so in condition b and absent in condition a. Psychometric test scores were significantly correlated with fixation performance in the population. Worse performance in all three fixation conditions was observed for individuals with lower IQ scores. A deterioration of fixation performance with time in condition b was correlated with disorganization characteristics of schizotypy, suggesting that these individuals had difficulty maintaining active fixation in the presence of increased inhibitory load. A connection of such a difficulty with the frontal lobes and their role in the control of voluntary inhibitory functions is discussed.
Simulation of thalamic prosthetic vision: reading accuracy, speed, and acuity in sighted humans.
Vurro, Milena; Crowell, Anne Marie; Pezaris, John S
2014-01-01
The psychophysics of reading with artificial sight has received increasing attention as visual prostheses are becoming a real possibility to restore useful function to the blind through the coarse, pseudo-pixelized vision they generate. Studies to date have focused on simulating retinal and cortical prostheses; here we extend that work to report on thalamic designs. This study examined the reading performance of normally sighted human subjects using a simulation of three thalamic visual prostheses that varied in phosphene count, to help understand the level of functional ability afforded by thalamic designs in a task of daily living. Reading accuracy, reading speed, and reading acuity of 20 subjects were measured as a function of letter size, using a task based on the MNREAD chart. Results showed that fluid reading was feasible with appropriate combinations of letter size and phosphene count, and performance degraded smoothly as font size was decreased, with an approximate doubling of phosphene count resulting in an increase of 0.2 logMAR in acuity. Results here were consistent with previous results from our laboratory. Results were also consistent with those from the literature, despite using naive subjects who were not trained on the simulator, in contrast to other reports.
NASA Astrophysics Data System (ADS)
Reddy, G. Janardhana; Hiremath, Ashwini; Kumar, Mahesh
2018-03-01
The present paper aims to investigate the effect of Prandtl number for unsteady third-grade fluid flow over a uniformly heated vertical cylinder using Bejan's heat function concept. The mathematical model of this problem is given by highly time-dependent non-linear coupled equations and are resolved by an efficient unconditionally stable implicit scheme. The time histories of average values of momentum and heat transport coefficients as well as the steady-state flow variables are displayed graphically for distinct values of non-dimensional control parameters arising in the system. As the non-dimensional parameter value gets amplified, the time taken for the fluid flow variables to attain the time-independent state is decreasing. The dimensionless heat function values are closely associated with an overall rate of heat transfer. Thermal energy transfer visualization implies that the heat function contours are compact in the neighborhood of the leading edge of the hot cylindrical wall. It is noticed that the deviations of flow-field variables from the hot wall for a non-Newtonian third-grade fluid flow are significant compared to the usual Newtonian fluid flow.
Rogé, Joceline; Gabaude, Catherine
2009-08-01
The goal of this study was to establish whether the deterioration of the useful visual field due to sleep deprivation and age in a screen monitoring activity could be explained by a decrease in perceptual sensitivity and/or a modification of the participant's decision criterion (two indices derived from signal detection theory). In the first experiment, a comparison of three age groups (young, middle-aged, elderly) showed that perceptual sensitivity decreased with age and that the decision criterion became more conservative. In the second experiment, measurement of the useful visual field was carried out on participants who had been deprived of sleep the previous night or had a complete night of sleep. Perceptual sensitivity significantly decreased with sleep debt, and sleep deprivation provoked an increase in the participants' decision criterion. Moreover, the comparison of two age groups (young, middle-aged) indicated that sensitivity decreased with age. The value of using these two indices to explain the deterioration of useful visual field is discussed.
[Importance of family examination in juvenile X-linked retinoschisis].
Kłosowska-Zawadka, A; Bernardczyk-Meller, J; Gotz-Wieckowska, A; Krawczyński, M
2005-12-01
Congenital (juvenile) retinoschisis belongs to the group of hereditary vitreoretinopathies. This disorder is inherited in an X-linked recessive pattern and its onset usually occurs in 5- to 10-year-old boys. Presenting clinical signs include decreased visual acuity due to maculopathy. The authors present a case of a 17-year-old boy with decreased visual acuity, hypermetropia, and bilateral retinoschisis with maculopathy upon fundus examination. In view of a 50% risk of the disorder occurring in the brothers of the affected male, they underwent full ophthalmological and electrophysiological examinations (until then asymptomatic). In one of them decreased visual acuity, mixed astigmatism, and maculopathy were present, without any changes of the peripheral retina. In the youngest brother decreased visual acuity, hypermetropia, and maculopathy were diagnosed. Genetic counseling and ophthalmological examination of family members at risk facilitated early recognition of the pathological changes in the siblings. Genetic counseling with pedigree analysis and genetic analysis, if possible, should be offered to all affected patients and family members.
NASA Astrophysics Data System (ADS)
Rieder, Christian; Schwier, Michael; Weihusen, Andreas; Zidowitz, Stephan; Peitgen, Heinz-Otto
2009-02-01
Image guided radiofrequency ablation (RFA) is becoming a standard procedure as a minimally invasive method for tumor treatment in the clinical routine. The visualization of pathological tissue and potential risk structures like vessels or important organs gives essential support in image guided pre-interventional RFA planning. In this work our aim is to present novel visualization techniques for interactive RFA planning to support the physician with spatial information of pathological structures as well as the finding of trajectories without harming vitally important tissue. Furthermore, we illustrate three-dimensional applicator models of different manufactures combined with corresponding ablation areas in homogenous tissue, as specified by the manufacturers, to enhance the estimated amount of cell destruction caused by ablation. The visualization techniques are embedded in a workflow oriented application, designed for the use in the clinical routine. To allow a high-quality volume rendering we integrated a visualization method using the fuzzy c-means algorithm. This method automatically defines a transfer function for volume visualization of vessels without the need of a segmentation mask. However, insufficient visualization results of the displayed vessels caused by low data quality can be improved using local vessel segmentation in the vicinity of the lesion. We also provide an interactive segmentation technique of liver tumors for the volumetric measurement and for the visualization of pathological tissue combined with anatomical structures. In order to support coagulation estimation with respect to the heat-sink effect of the cooling blood flow which decreases thermal ablation, a numerical simulation of the heat distribution is provided.
Selective transfer of visual working memory training on Chinese character learning.
Opitz, Bertram; Schneiders, Julia A; Krick, Christoph M; Mecklinger, Axel
2014-01-01
Previous research has shown a systematic relationship between phonological working memory capacity and second language proficiency for alphabetic languages. However, little is known about the impact of working memory processes on second language learning in a non-alphabetic language such as Mandarin Chinese. Due to the greater complexity of the Chinese writing system we expect that visual working memory rather than phonological working memory exerts a unique influence on learning Chinese characters. This issue was explored in the present experiment by comparing visual working memory training with an active (auditory working memory training) control condition and a passive, no training control condition. Training induced modulations in language-related brain networks were additionally examined using functional magnetic resonance imaging in a pretest-training-posttest design. As revealed by pre- to posttest comparisons and analyses of individual differences in working memory training gains, visual working memory training led to positive transfer effects on visual Chinese vocabulary learning compared to both control conditions. In addition, we found sustained activation after visual working memory training in the (predominantly visual) left infero-temporal cortex that was associated with behavioral transfer. In the control conditions, activation either increased (active control condition) or decreased (passive control condition) without reliable behavioral transfer effects. This suggests that visual working memory training leads to more efficient processing and more refined responses in brain regions involved in visual processing. Furthermore, visual working memory training boosted additional activation in the precuneus, presumably reflecting mental image generation of the learned characters. We, therefore, suggest that the conjoint activity of the mid-fusiform gyrus and the precuneus after visual working memory training reflects an interaction of working memory and imagery processes with complex visual stimuli that fosters the coherent synthesis of a percept from a complex visual input in service of enhanced Chinese character learning. © 2013 Published by Elsevier Ltd.
[11C]Flumazenil PET in patients with epilepsy with dual pathology.
Juhász, C; Nagy, F; Muzik, O; Watson, C; Shah, J; Chugani, H T
1999-05-01
Coexistence of hippocampal sclerosis and a potentially epileptogenic cortical lesion is referred to as dual pathology and can be responsible for poor surgical outcome in patients with medically intractable partial epilepsy. [11C]Flumazenil (FMZ) positron emission tomography (PET) is a sensitive method for visualizing epileptogenic foci. In this study of 12 patients with dual pathology, we addressed the sensitivity of FMZ PET to detect hippocampal abnormalities and compared magnetic resonance imaging (MRI) with visual as well as quantitative FMZ PET findings. All patients underwent volumetric MRI, prolonged video-EEG monitoring, and glucose metabolism PET before the FMZ PET. MRI-coregistered partial volume-corrected PET images were used to measure FMZ-binding asymmetries by using asymmetry indices (AIs) in the whole hippocampus and in three (anterior, middle, and posterior) hippocampal subregions. Cortical sites of decreased FMZ binding also were evaluated by using AIs for regions with MRI-verified cortical lesions as well as for non-lesional areas with visually detected asymmetry. Abnormally decreased FMZ binding could be detected by quantitative analysis in the atrophic hippocampus of all 12 patients, including three patients with discordant or inconclusive EEG findings. Decreased FMZ binding was restricted to only one subregion of the hippocampus in three patients. Areas of decreased cortical FMZ binding were obvious visually in all patients. Decreased FMZ binding was detected visually in nonlesional cortical areas in four patients. The AIs for these nonlesional regions with visual asymmetry were significantly lower than those for regions showing MRI lesions (paired t test, p = 0.0075). Visual as well as quantitative analyses of FMZ-binding asymmetry are sensitive methods to detect decreased benzodiazepine-receptor binding in the hippocampus and neocortex of patients with dual pathology. MRI-defined hippocampal atrophy is always associated with decreased FMZ binding, although the latter may be localized to only one sub-region within the hippocampus. FMZ PET abnormalities can occur in areas with normal appearance on MRI, but FMZ-binding asymmetry of these regions is lower when compared with that of lesional areas. FMZ PET can be especially helpful when MRI and EEG findings of patients with intractable epilepsy are discordant.
Critical periods and amblyopia.
Daw, N W
1998-04-01
During the past 20 years, basic science has shown that there are different critical periods for different visual functions during the development of the visual system. Visual functions processed at higher anatomical levels within the system have a later critical period than functions processed at lower levels. This general principle suggests that treatments for amblyopia should be followed in a logical sequence, with treatment for each visual function to be started before its critical period is over. However, critical periods for some visual functions, such as stereopsis, are not yet fully determined, and the optimal treatment is, therefore, unknown. This article summarizes the current extent of our knowledge and points to the gaps that need to be filled.
NASA Astrophysics Data System (ADS)
Yao, Xiuya; Chaganti, Shikha; Nabar, Kunal P.; Nelson, Katrina; Plassard, Andrew; Harrigan, Rob L.; Mawn, Louise A.; Landman, Bennett A.
2017-02-01
Eye diseases and visual impairment affect millions of Americans and induce billions of dollars in annual economic burdens. Expounding upon existing knowledge of eye diseases could lead to improved treatment and disease prevention. This research investigated the relationship between structural metrics of the eye orbit and visual function measurements in a cohort of 470 patients from a retrospective study of ophthalmology records for patients (with thyroid eye disease, orbital inflammation, optic nerve edema, glaucoma, intrinsic optic nerve disease), clinical imaging, and visual function assessments. Orbital magnetic resonance imaging (MRI) and computed tomography (CT) images were retrieved and labeled in 3D using multi-atlas label fusion. Based on the 3D structures, both traditional radiology measures (e.g., Barrett index, volumetric crowding index, optic nerve length) and novel volumetric metrics were computed. Using stepwise regression, the associations between structural metrics and visual field scores (visual acuity, functional acuity, visual field, functional field, and functional vision) were assessed. Across all models, the explained variance was reasonable (R2 0.1-0.2) but highly significant (p < 0.001). Instead of analyzing a specific pathology, this study aimed to analyze data across a variety of pathologies. This approach yielded a general model for the connection between orbital structural imaging biomarkers and visual function.
Plow, Ela B; Obretenova, Souzana N; Halko, Mark A; Kenkel, Sigrid; Jackson, Mary Lou; Pascual-Leone, Alvaro; Merabet, Lotfi B
2011-09-01
To standardize a protocol for promoting visual rehabilitative outcomes in post-stroke hemianopia by combining occipital cortical transcranial direct current stimulation (tDCS) with Vision Restoration Therapy (VRT). A comparative case study assessing feasibility and safety. A controlled laboratory setting. Two patients, both with right hemianopia after occipital stroke damage. METHODS AND OUTCOME MEASUREMENTS: Both patients underwent an identical VRT protocol that lasted 3 months (30 minutes, twice a day, 3 days per week). In patient 1, anodal tDCS was delivered to the occipital cortex during VRT training, whereas in patient 2 sham tDCS with VRT was performed. The primary outcome, visual field border, was defined objectively by using high-resolution perimetry. Secondary outcomes included subjective characterization of visual deficit and functional surveys that assessed performance on activities of daily living. For patient 1, the neural correlates of visual recovery were also investigated, by using functional magnetic resonance imaging. Delivery of combined tDCS with VRT was feasible and safe. High-resolution perimetry revealed a greater shift in visual field border for patient 1 versus patient 2. Patient 1 also showed greater recovery of function in activities of daily living. Contrary to the expectation, patient 2 perceived greater subjective improvement in visual field despite objective high-resolution perimetry results that indicated otherwise. In patient 1, visual function recovery was associated with functional magnetic resonance imaging activity in surviving peri-lesional and bilateral higher-order visual areas. Results of preliminary case comparisons suggest that occipital cortical tDCS may enhance recovery of visual function associated with concurrent VRT through visual cortical reorganization. Future studies may benefit from incorporating protocol refinements such as those described here, which include global capture of function, control for potential confounds, and investigation of underlying neural substrates of recovery. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Zebehazy, Kim T.
2014-01-01
This study reports opinions and practices of teachers of students with visual impairments (TSVIs) in 34 states regarding functional literacy for students with visual impairments (VIs) and significant cognitive disabilities (SCDs). The survey asked TSVIs to select a definition of functional literacy, indicate agreement with a series of literacy…
van Boxtel, M P; ten Tusscher, M P; Metsemakers, J F; Willems, B; Jolles, J
2001-10-01
It is unknown to what extent the performance on the Stroop color-word test is affected by reduced visual function in older individuals. We tested the impact of common deficiencies in visual function (reduced distant and close acuity, reduced contrast sensitivity, and color weakness) on Stroop performance among 821 normal individuals aged 53 and older. After adjustment for age, sex, and educational level, low contrast sensitivity was associated with more time needed on card I (word naming), red/green color weakness with slower card 2 performance (color naming), and reduced distant acuity with slower performance on card 3 (interference). Half of the age-related variance in speed performance was shared with visual function. The actual impact of reduced visual function may be underestimated in this study when some of this age-related variance in Stroop performance is mediated by visual function decrements. It is suggested that reduced visual function has differential effects on Stroop performance which need to be accounted for when the Stroop test is used both in research and in clinical settings. Stroop performance measured from older individuals with unknown visual status should be interpreted with caution.
Duarte, João V; Pereira, João M S; Quendera, Bruno; Raimundo, Miguel; Moreno, Carolina; Gomes, Leonor; Carrilho, Francisco; Castelo-Branco, Miguel
2015-10-01
Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.
2008-01-01
Objective To compare optical coherence tomography (OCT)-measured retinal thickness and visual acuity in eyes with diabetic macular edema (DME) both before and after macular laser photocoagulation. Design Cross-sectional and longitudinal study. Participants 210 subjects (251 eyes) with DME enrolled in a randomized clinical trial of laser techniques. Methods Retinal thickness was measured with OCT and visual acuity was measured with the electronic-ETDRS procedure. Main Outcome Measures OCT-measured center point thickness and visual acuity Results The correlation coefficients for visual acuity versus OCT center point thickness were 0.52 at baseline and 0.49, 0.36, and 0.38 at 3.5, 8, and 12 months post-laser photocoagulation. The slope of the best fit line to the baseline data was approximately 4.4 letters (95% C.I.: 3.5, 5.3) better visual acuity for every 100 microns decrease in center point thickness at baseline with no important difference at follow-up visits. Approximately one-third of the variation in visual acuity could be predicted by a linear regression model that incorporated OCT center point thickness, age, hemoglobin A1C, and severity of fluorescein leakage in the center and inner subfields. The correlation between change in visual acuity and change in OCT center point thickening 3.5 months after laser treatment was 0.44 with no important difference at the other follow-up times. A subset of eyes showed paradoxical improvements in visual acuity with increased center point thickening (7–17% at the three time points) or paradoxical worsening of visual acuity with a decrease in center point thickening (18%–26% at the three time points). Conclusions There is modest correlation between OCT-measured center point thickness and visual acuity, and modest correlation of changes in retinal thickening and visual acuity following focal laser treatment for DME. However, a wide range of visual acuity may be observed for a given degree of retinal edema and paradoxical increases in center point thickening with increases in visual acuity as well as paradoxical decreases in center point thickening with decreases in visual acuity were not uncommon. Thus, although OCT measurements of retinal thickness represent an important tool in clinical evaluation, they cannot reliably substitute as a surrogate for visual acuity at a given point in time. This study does not address whether short-term changes on OCT are predictive of long-term effects on visual acuity. PMID:17123615
Goldstein, Judith E; Jackson, Mary Lou; Fox, Sandra M; Deremeik, James T; Massof, Robert W
2015-07-01
To facilitate comparative clinical outcome research in low vision rehabilitation, we must use patient-centered measurements that reflect clinically meaningful changes in visual ability. To quantify the effects of currently provided low vision rehabilitation (LVR) on patients who present for outpatient LVR services in the United States. Prospective, observational study of new patients seeking outpatient LVR services. From April 2008 through May 2011, 779 patients from 28 clinical centers in the United States were enrolled in the Low Vision Rehabilitation Outcomes Study. The Activity Inventory, a visual function questionnaire, was administered to measure overall visual ability and visual ability in 4 functional domains (reading, mobility, visual motor function, and visual information processing) at baseline and 6 to 9 months after usual LVR care. The Geriatric Depression Scale, Telephone Interview for Cognitive Status, and Medical Outcomes Study 36-Item Short-Form Health Survey physical functioning questionnaires were also administered to measure patients' psychological, cognitive, and physical health states, respectively, and clinical findings of patients were provided by study centers. Mean changes in the study population and minimum clinically important differences in the individual in overall visual ability and in visual ability in 4 functional domains as measured by the Activity Inventory. Baseline and post-rehabilitation measures were obtained for 468 patients. Minimum clinically important differences (95% CIs) were observed in nearly half (47% [95% CI, 44%-50%]) of patients in overall visual ability. The prevalence rates of patients with minimum clinically important differences in visual ability in functional domains were reading (44% [95% CI, 42%-48%]), visual motor function (38% [95% CI, 36%-42%]), visual information processing (33% [95% CI, 31%-37%]), and mobility (27% [95% CI, 25%-31%]). The largest average effect size (Cohen d = 0.87) for the population was observed in overall visual ability. Age (P = .006) was an independent predictor of changes in overall visual ability, and logMAR visual acuity (P = .002) was predictive of changes in visual information processing. Forty-four to fifty percent of patients presenting for outpatient LVR show clinically meaningful differences in overall visual ability after LVR, and the average effect sizes in overall visual ability are large, close to 1 SD.
Demura, Tomohiro; Demura, Shin-ichi; Uchiyama, Masanobu; Sugiura, Hiroki
2014-01-01
Gait properties change with age because of a decrease in lower limb strength and visual acuity or knee joint disorders. Gait changes commonly result from these combined factors. This study aimed to examine the effects of knee extension strength, visual acuity, and knee joint pain on gait properties of for 181 healthy female older adults (age: 76.1 (5.7) years). Walking speed, cadence, stance time, swing time, double support time, step length, step width, walking angle, and toe angle were selected as gait parameters. Knee extension strength was measured by isometric dynamometry; and decreased visual acuity and knee joint pain were evaluated by subjective judgment whether or not such factors created a hindrance during walking. Among older adults without vision problems and knee joint pain that affected walking, those with superior knee extension strength had significantly greater walking speed and step length than those with inferior knee extension strength (P < .05). Persons with visual acuity problems had higher cadence and shorter stance time. In addition, persons with pain in both knees showed slower walking speed and longer stance time and double support time. A decrease of knee extension strength and visual acuity and knee joint pain are factors affecting gait in the female older adults. Decreased knee extension strength and knee joint pain mainly affect respective distance and time parameters of the gait.
Functional and visual acuity outcomes of cataract surgery in Timor-Leste (East Timor).
Naidu, Girish; Correia, Marcelino; Nirmalan, Praveen; Verma, Nitin; Thomas, Ravi
2014-12-01
To report functional outcomes following cataract surgery in Timor-Leste. Pre- and post-intervention study measuring visual function improvement following cataract surgery. Presenting visual acuity (VA) was measured and visual function documented using the Indian vision function questionnaire (IND-VFQ). All 174 persons undergoing cataract surgery from November 2009 to January 2011 in Timor-Leste were included. Mean age was 65.4 years; 113 (64.9%) were male, 143 (82.1%) were from a rural background and 151 (86.8%) were illiterate. Pre-operatively, 77 of 174 patients (44.3%, 95% confidence interval, CI, 37.0-51.7%) were blind (VA ≤3/60), 77 (44.3%, 95% CI 37.0-51.7%) were visually impaired (VA <6/18->3/60), while 20 (11.5%, 95% CI 7.4-16.9%) had presenting acuity ≥6/18 in the better eye. Following surgery, significant improvement in visual function was demonstrated by an effect size of 2.8, 3.7 and 3.9 in the domains of general functioning, psychosocial impact and visual symptoms, respectively. Four weeks following surgery, 85 patients (48.9%, 95% CI 41.5-66.3%) had a presenting VA ≥6/18, 74 (42.5%, 95% CI 35.3-45.9%) were visually impaired and 15 (8.6%, 95% CI 5.0-13.6%) were blind. IND-VFQ improvement occurred even in patients remaining visually impaired or blind following surgery. In this setting, cataract surgery led to a significant improvement in visual function but the VA results did not meet World Health Organization quality criteria. IND-VFQ results, although complementary to clinical VA outcomes did not, in isolation, reflect the need to improve program quality.
3D visualization of movements can amplify motor cortex activation during subsequent motor imagery
Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele
2015-01-01
A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10–12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant’s MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation. PMID:26347642
3D visualization of movements can amplify motor cortex activation during subsequent motor imagery.
Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele
2015-01-01
A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.
Kulmala, Jenni; Sipilä, Sarianna; Tiainen, Kristina; Pärssinen, Olavi; Koskenvuo, Markku; Kaprio, Jaakko; Rantanen, Taina
2012-10-01
Vision problems are common experiences within the older population. This study aimed to examine the association between vision and lower extremity impairment. 434 women aged 63-75 participated in visual acuity (VA) measurements at baseline and 313 persons at three-year follow-up. Measurements of lower extremity function included maximal isometric knee extension strength, leg extension power, maximal walking speed and standing balance. At baseline, knee extension strength was lower among participants with visual impairment (VI) (273.2±6.4 N) compared to those with good vision (306.5±5.9 N, p<0.001) as well as leg extension power (95.2±2.7 W vs 104.2±2.6 W, p=0.009) and maximal walking speed (1.6±0.02 m/s vs 1.8±0.03 m/s, p<0.001). Higher velocity moment among persons with VI (53.5±2.7 mm²/s vs 42.7±1.4 mm²/s, p<0.001) indicated that persons with VI had poorer balance compared to persons with good vision. Decreased isometric knee extension strength (OR 1.26, 95% CI 1.09-1.45), poorer standing balance (OR 1.16, 95% CI 1.00-1.35) as well as lower maximal walking speed (OR 1.34, 95% CI 1.13-1.59) were associated with VI in the logistic regression models. Additionally, the association between poorer leg extension power and VI (OR 1.14, 95% CI 0.99-1.31) was of borderline statistical significance. In longitudinal analyses, VI did not predict decline in lower extremity function. Lower extremity impairment was associated with VI among relatively healthy older women. However, change in lower extremity function was quite similar between the vision groups. It is possible that decreased VA may be a marker of underlying systemic factors or the aging process, which lead to poorer functional capacity, or there may be shared background factors, which lead to decreased vision and lower extremity impairment.
Altered Functional Connectivity of the Primary Visual Cortex in Subjects with Amblyopia
Ding, Kun; Liu, Yong; Yan, Xiaohe; Lin, Xiaoming; Jiang, Tianzi
2013-01-01
Amblyopia, which usually occurs during early childhood and results in poor or blurred vision, is a disorder of the visual system that is characterized by a deficiency in an otherwise physically normal eye or by a deficiency that is out of proportion with the structural or functional abnormalities of the eye. Our previous study demonstrated alterations in the spontaneous activity patterns of some brain regions in individuals with anisometropic amblyopia compared to subjects with normal vision. To date, it remains unknown whether patients with amblyopia show characteristic alterations in the functional connectivity patterns in the visual areas of the brain, particularly the primary visual area. In the present study, we investigated the differences in the functional connectivity of the primary visual area between individuals with amblyopia and normal-sighted subjects using resting functional magnetic resonance imaging. Our findings demonstrated that the cerebellum and the inferior parietal lobule showed altered functional connectivity with the primary visual area in individuals with amblyopia, and this finding provides further evidence for the disruption of the dorsal visual pathway in amblyopic subjects. PMID:23844297
Resolving ability and image discretization in the visual system.
Shelepin, Yu E; Bondarko, V M
2004-02-01
Psychophysiological studies were performed to measure the spatial threshold for resolution of two "points" and the thresholds for discriminating their orientations depending on the distance between the two points. Data were compared with the scattering of the "point" by the eye's optics, the packing density of cones in the fovea, and the characteristics of the receptive fields of ganglion cells in the foveal area of the retina and neurons in the corresponding projection zones of the primary visual cortex. The effective zone was shown to have to contain a scattering function for several receptors, as this allowed preliminary blurring of the image by the eye's optics to decrease the subsequent (at the level of receptors) discretization noise created by a matrix of receptors. The concordance of these parameters supports the optical operation of the spatial elements of the neural network determining the resolving ability of the visual system at different levels of visual information processing. It is suggested that the special geometry of the receptive fields of neurons in the striate cortex, which are concordant with the statistics of natural scenes, results in a further increase in the signal:noise ratio.
Post-Activation Brain Warming: A 1-H MRS Thermometry Study
Rango, Mario; Bonifati, Cristiana; Bresolin, Nereo
2015-01-01
Purpose Temperature plays a fundamental role for the proper functioning of the brain. However, there are only fragmentary data on brain temperature (Tbr) and its regulation under different physiological conditions. Methods We studied Tbr in the visual cortex of 20 normal subjects serially with a wide temporal window under different states including rest, activation and recovery by a visual stimulation-Magnetic Resonance Spectroscopy Thermometry combined approach. We also studied Tbr in a control region, the centrum semiovale, under the same conditions. Results Visual cortex mean baseline Tbr was higher than mean body temperature (37.38 vs 36.60, P<0.001). During activation Tbr remained unchanged at first and then showed a small decrease (-0.20 C°) around the baseline value. After the end of activation Tbr increased consistently (+0.60 C°) and then returned to baseline values after some minutes. Centrum semiovale Tbr remained unchanged through rest, visual stimulation and recovery. Conclusion These findings have several implications, among them that neuronal firing itself is not a major source of heat release in the brain and that there is an aftermath of brain activation that lasts minutes before returning to baseline conditions. PMID:26011731
NASA Technical Reports Server (NTRS)
Oneal, Melvin R.; Task, H. Lee; Genco, Louis V.
1992-01-01
Viewgraphs on effect of microgravity on visual contrast threshold during STS shuttle missions are presented. The purpose, methods, and results are discussed. The visual function tester model 2 is used.
Child behavior check list and Korean personality inventory for children with functional visual loss.
Kyung, Sung Eun; Lee, Sang Mi; Lim, Myung Ho
2014-08-01
To investigate the clinical psychiatric characteristics of children with the main complaint of functional visual loss, their behavior and personality were evaluated by the means of the Korean child behavior check list (K-CBCL), and the Korean personality inventory for children (KPI-C). The evaluation was carried out by the K-CBCL and the KPI-C, the domestically standardized tools, with 20 child subjects suspected of functional visual loss, among the patients who visited our hospital, between August, 2005 and December, 2012. The control group included 160 children in general schools of the same region. The 20 patients whose main complaint was functional visual loss were diagnosed as having a functional visual disorder. The child patient group showed a higher score for the K-CBCL and KPI-C sub-scales of somatic complaints, social problems, aggressive behavior, internalizing problems, externalizing problems, total behavioral problems, somatization and hyperactivity, than that of the control group. The results of the K-CBCL and KPI-C tests among children with functional visual loss, were significantly different from those of the normal control group. This result suggested that psychological factors may influence children with a main complaint of functional visual loss.
Rose-Nussbaumer, Jennifer; Prajna, N Venkatesh; Krishnan, Tiruvengada; Mascarenhas, Jeena; Rajaraman, Revathi; Srinivasan, Muthiah; Raghavan, Anita; Oldenburg, Catherine E; O’Brien, Kieran S; Ray, Kathryn J; Porco, Travis C; McLeod, Stephen D; Acharya, Nisha R; Keenan, Jeremy D; Lietman, Thomas M
2016-01-01
Background/aims The Mycotic Ulcer Treatment Trial I (MUTT I) was a double-masked, multicentre, randomised controlled trial, which found that topical natamycin is superior to voriconazole for the treatment of filamentous fungal corneal ulcers. In this study, we determine risk factors for low vision-related quality of life in patients with fungal keratitis. Methods The Indian visual function questionnaire (IND-VFQ) was administered to MUTT I study participants at 3 months. Associations between patient and ulcer characteristics and IND-VFQ subscale score were assessed using generalised estimating equations. Results 323 patients were enrolled in the trial, and 292 (90.4%) completed the IND-VFQ at 3 months. Out of a total possible score of 100, the average VFQ score for all participants was 81.3 (range 0–100, SD 23.6). After correcting for treatment arm, each logMAR line of worse baseline visual acuity in the affected eye resulted in an average 1.2 points decrease on VFQ at 3 months (95% CI −1.8 to 0.6, p<0.001). Those who required therapeutic penetrating keratoplasty had an average of 25.2 points decrease on VFQ after correcting for treatment arm (95% CI −31.8 to −18.5, p<0.001). Study participants who were unemployed had on average 28.5 points decrease on VFQ (95% CI −46.9 to −10.2, p=0.002) after correcting for treatment arm. Conclusions Monocular vision loss from corneal opacity due to fungal keratitis reduced vision-related quality of life. Given the relatively high worldwide burden of corneal opacity, improving treatment outcomes of corneal infections should be a public health priority. Trial registration number Clinicaltrials.gov Identifier: NCT00996736. PMID:26531051
Zabierek, Kristina C; Gabor, Caitlin R
2016-09-01
Prey may use multiple sensory channels to detect predators, whose cues may differ in altered sensory environments, such as turbid conditions. Depending on the environment, prey may use cues in an additive/complementary manner or in a compensatory manner. First, to determine whether the purely aquatic Barton Springs salamander, Eurycea sosorum, show an antipredator response to visual cues, we examined their activity when exposed to either visual cues of a predatory fish (Lepomis cyanellus) or a non-predatory fish (Etheostoma lepidum). Salamanders decreased activity in response to predator visual cues only. Then, we examined the antipredator response of these salamanders to all matched and mismatched combinations of chemical and visual cues of the same predatory and non-predatory fish in clear and low turbidity conditions. Salamanders decreased activity in response to predator chemical cues matched with predator visual cues or mismatched with non-predator visual cues. Salamanders also increased latency to first move to predator chemical cues mismatched with non-predator visual cues. Salamanders decreased activity and increased latency to first move more in clear as opposed to turbid conditions in all treatment combinations. Our results indicate that salamanders under all conditions and treatments preferentially rely on chemical cues to determine antipredator behavior, although visual cues are potentially utilized in conjunction for latency to first move. Our results also have potential conservation implications, as decreased antipredator behavior was seen in turbid conditions. These results reveal complexity of antipredator behavior in response to multiple cues under different environmental conditions, which is especially important when considering endangered species. Copyright © 2016 Elsevier B.V. All rights reserved.
Hajek, A; Brettschneider, C; Lühmann, D; Eisele, M; Mamone, S; Wiese, B; Weyerer, S; Werle, J; Pentzek, M; Fuchs, A; Stein, J; Luck, T; Bickel, H; Weeg, D; Heser, K; Jessen, F; Maier, W; Scherer, M; Riedel-Heller, S G; König, H-H
2017-01-01
To investigate how visual impairment affects social ties in late life longitudinally. Population-based prospective cohort study. Individuals in old age were recruited via general practitioners' offices (at six study centers) in Germany. They were interviewed every 18 months. Individuals aged 75 years and above at baseline. Follow-up wave 2 (36 months after baseline, n=2,443) and wave 4 (72 months after baseline, n=1,618) were used for the analyses presented here. Social ties were assessed using the 14-item form of the questionnaire for social support (F-SozU K-14). Visual impairment was self-rated on a three level Likert scale (no impairment, mild visual impairment, or severe/profound visual impairment). Adjusting for sociodemographic factors, hearing impairment and comorbidity, fixed effects regressions revealed that the onset of mild visual impairment decreased the social support score, in particular the emotional support score. Additionally, the onset of mild hearing impairment decreased the social support score in men. Moreover, increasing age decreased the social support score in the total sample and in both sexes. Loss of spouse and increasing comorbidity did not affect the social support score. Our results highlight the importance of visual impairment for social ties in late life. Consequently, appropriate strategies in order to delay visual impairment might help to maintain social ties in old age.
Visual Vestibular Interaction in the Dynamic Visual Acuity Test during Voluntary Head Rotation
NASA Technical Reports Server (NTRS)
Lee, Moo Hoon; Durnford, Simon; Crowley, John; Rupert, Angus
1996-01-01
Although intact vestibular function is essential in maintaining spatial orientation, no good screening tests of vestibular function are available to the aviation community. High frequency voluntary head rotation was selected as a vestibular stimulus to isolate the vestibulo-ocular reflex (VOR) from visual influence. A dynamic visual acuity test that incorporates voluntary head rotation was evaluated as a potential vestibular function screening tool. Twenty-seven normal subjects performed voluntary sinusoidal head rotation at frequencies from 0.7-4.0 Hz under three different visual conditions: visually-enhanced VOR, normal VOR, and visually suppressed VOR. Standardized Baily-Lovie chart letters were presented on a computer monitor in front of the subject, who then was asked to read the letters while rotating his head horizontally. The electro-oculogram and dynamic visual acuity score were recorded and analyzed. There were no significant differences in gain or phase shift among three visual conditions in the frequency range of 2.8 to 4.0 Hz. The dynamic visual acuity score shifted less than 0.3 logMAR at frequencies under 2.0 Hz. The dynamic visual acuity test at frequencies a round 2.0 Hz can be recommended for evaluating vestibular function.
The role of vestibular and support-tactile-proprioceptive inputs in visual-manual tracking
NASA Astrophysics Data System (ADS)
Kornilova, Ludmila; Naumov, Ivan; Glukhikh, Dmitriy; Khabarova, Ekaterina; Pavlova, Aleksandra; Ekimovskiy, Georgiy; Sagalovitch, Viktor; Smirnov, Yuriy; Kozlovskaya, Inesa
Sensorimotor disorders in weightlessness are caused by changes of functioning of gravity-dependent systems, first of all - vestibular and support. The question arises, what’s the role and the specific contribution of the support afferentation in the development of observed disorders. To determine the role and effects of vestibular, support, tactile and proprioceptive afferentation on characteristics of visual-manual tracking (VMT) we conducted a comparative analysis of the data obtained after prolonged spaceflight and in a model of weightlessness - horizontal “dry” immersion. Altogether we examined 16 Russian cosmonauts before and after prolonged spaceflights (129-215 days) and 30 subjects who stayed in immersion bath for 5-7 days to evaluate the state of the vestibular function (VF) using videooculography and characteristics of the visual-manual tracking (VMT) using electrooculography & joystick with biological visual feedback. Evaluation of the VF has shown that both after immersion and after prolonged spaceflight there were significant decrease of the static torsional otolith-cervical-ocular reflex (OCOR) and simultaneous significant increase of the dynamic vestibular-cervical-ocular reactions (VCOR) with a revealed negative correlation between parameters of the otoliths and canals reactions, as well as significant changes in accuracy of perception of the subjective visual vertical which correlated with changes in OCOR. Analyze of the VMT has shown that significant disorders of the visual tracking (VT) occurred from the beginning of the immersion up to 3-4 day after while in cosmonauts similar but much more pronounced oculomotor disorders and significant changes from the baseline were observed up to R+9 day postflight. Significant changes of the manual tracking (MT) were revealed only for gain and occurred on 1 and 3 days in immersion while after spaceflight such changes were observed up to R+5 day postflight. We found correlation between characteristics of the VT and MT, between characteristics of the VF and VT and no correlation between VF and MT. It was found that removal of the support and minimization of the proprioceptive afferentation has a greater impact upon accuracy of the VT then accuracy of the MT. Hand tracking accuracy was higher than the eyes for all subjects. The hand’ motor coordination was more stable to changes in support-proprioceptive afferentation then visual tracking. The observed changes in and after immersion are similar but less pronounced with changes observed on cosmonauts after prolonged spaceflight. Keywords: visual-manual tracking, vestibular function, weightlessness, immersion.
Effects of Spatio-Temporal Aliasing on Pilot Performance in Active Control Tasks
NASA Technical Reports Server (NTRS)
Zaal, Peter; Sweet, Barbara
2010-01-01
Spatio-temporal aliasing affects pilot performance and control behavior. For increasing refresh rates: 1) Significant change in control behavior: a) Increase in visual gain and neuromuscular frequency. b) Decrease in visual time delay. 2) Increase in tracking performance: a) Decrease in RMSe. b) Increase in crossover frequency.
Tohmi, Manavu; Kitaura, Hiroki; Komagata, Seiji; Kudoh, Masaharu; Shibuki, Katsuei
2006-11-08
Experience-dependent plasticity in the visual cortex was investigated using transcranial flavoprotein fluorescence imaging in mice anesthetized with urethane. On- and off-responses in the primary visual cortex were elicited by visual stimuli. Fluorescence responses and field potentials elicited by grating patterns decreased similarly as contrasts of visual stimuli were reduced. Fluorescence responses also decreased as spatial frequency of grating stimuli increased. Compared with intrinsic signal imaging in the same mice, fluorescence imaging showed faster responses with approximately 10 times larger signal changes. Retinotopic maps in the primary visual cortex and area LM were constructed using fluorescence imaging. After monocular deprivation (MD) of 4 d starting from postnatal day 28 (P28), deprived eye responses were suppressed compared with nondeprived eye responses in the binocular zone but not in the monocular zone. Imaging faithfully recapitulated a critical period for plasticity with maximal effects of MD observed around P28 and not in adulthood even under urethane anesthesia. Visual responses were compared before and after MD in the same mice, in which the skull was covered with clear acrylic dental resin. Deprived eye responses decreased after MD, whereas nondeprived eye responses increased. Effects of MD during a critical period were tested 2 weeks after reopening of the deprived eye. Significant ocular dominance plasticity was observed in responses elicited by moving grating patterns, but no long-lasting effect was found in visual responses elicited by light-emitting diode light stimuli. The present results indicate that transcranial flavoprotein fluorescence imaging is a powerful tool for investigating experience-dependent plasticity in the mouse visual cortex.
Changes in apparent duration follow shifts in perceptual timing
Bruno, Aurelio; Ayhan, Inci; Johnston, Alan
2015-01-01
It is well established that the apparent duration of moving visual objects is greater at higher as compared to slower speeds. Here we report the effects of acceleration and deceleration on the perceived duration of a drifting grating with average speed kept constant (10°/s).For acceleration, increasing the speed range progressively reduced perceived duration. The magnitude of apparent duration compression was determined by speed rather than temporal frequency and was proportional to speed range (independent of standard duration) rather than acceleration. The perceived duration reduction was also proportional to the standard length. The effects of increases and decreases in speed were highly asymmetric. Reducing speed through the interval induced a moderate increase in perceived duration. These results could not be explained by changes in apparent onset or offset or differences in perceived average speed between intervals containing increasing speed and intervals containing decreasing speed. Paradoxically, for intervals combining increasing speed and decreasing speed, compression only occurred when increasing speed occurred in the second half of the interval. We show that this pattern of results in the duration domain was concomitant with changes in the reported direction of apparent motion of Gaussian blobs, embedded in intervals of increasing or decreasing speed, that could be predicted from adaptive changes in the temporal impulse response function. We detected similar changes after flicker adaptation, suggesting that the two effects might be linked through changes in the temporal tuning of visual filters. PMID:26024450
Visual food stimulus changes resting oscillatory brain activities related to appetitive motive.
Yoshikawa, Takahiro; Tanaka, Masaaki; Ishii, Akira; Yamano, Yoko; Watanabe, Yasuyoshi
2016-09-26
Changes of resting brain activities after visual food stimulation might affect the feeling of pleasure in eating food in daily life and spontaneous appetitive motives. We used magnetoencephalography (MEG) to identify brain areas related to the activity changes. Fifteen healthy, right-handed males [age, 25.4 ± 5.5 years; body mass index, 22.5 ± 2.7 kg/m 2 (mean ± SD)] were enrolled. They were asked to watch food or mosaic pictures for 5 min and to close their eyes for 3 min before and after the picture presentation without thinking of anything. Resting brain activities were recorded during two eye-closed sessions. The feeling of pleasure in eating food in daily life and appetitive motives in the study setting were assessed by visual analogue scale (VAS) scores. The γ-band power of resting oscillatory brain activities was decreased after the food picture presentation in the right insula [Brodmann's area (BA) 13], the left orbitofrontal cortex (OFC) (BA11), and the left frontal pole (BA10). Significant reductions of the α-band power were observed in the dorsolateral prefrontal cortex (DLPFC) (BA46). Particularly, the feeling of pleasure in eating food was positively correlated with the power decrease in the insula and negatively with that in the DLPFC. The changes in appetitive motives were associated with the power decrease in the frontal pole. These findings suggest automatic brain mechanics whereby changes of the resting brain activity might be associated with positive feeling in dietary life and have an impact on the irresistible appetitive motives through emotional and cognitive brain functions.
Small-spot laser-exposure effects on visual function
NASA Astrophysics Data System (ADS)
Zwick, Harry; Robbins, David O.; Stuck, Bruce E.; Lund, David J.; Reynolds, Scottie B.; Nawim, Maqsood; Schuschereba, Steven T.
1990-07-01
Laser field exposure effects on visual function involve produc tJon of minimal spot irradiation on or near the huntan fovea. Functional effects of such exposure may involve transient or perinanent change in visual function depending upon exposure dose. While Maximun Permissible Exposure (MPE) lirrtits define exposure in terins of threshold retinal niorphological change such limits are not applicable with regard to transient changes in visual function below MPE limits induced by alteration in retinal physiological processes. Mechanisms of transient and permanent functional change reported in these exper iments point out the need to examine laser safety limits in terms of both the functional as well as the morphological disturbance induced in retinal tissue. L
Rapid Recovery of Visual Function Associated with Blue Cone Ablation in Zebrafish
Hagerman, Gordon F.; Noel, Nicole C. L.; Cao, Sylvia Y.; DuVal, Michèle G.; Oel, A. Phillip; Allison, W. Ted
2016-01-01
Hurdles in the treatment of retinal degeneration include managing the functional rewiring of surviving photoreceptors and integration of any newly added cells into the remaining second-order retinal neurons. Zebrafish are the premier genetic model for such questions, and we present two new transgenic lines allowing us to contrast vision loss and recovery following conditional ablation of specific cone types: UV or blue cones. The ablation of each cone type proved to be thorough (killing 80% of cells in each intended cone class), specific, and cell-autonomous. We assessed the loss and recovery of vision in larvae via the optomotor behavioural response (OMR). This visually mediated behaviour decreased to about 5% or 20% of control levels following ablation of UV or blue cones, respectively (P<0.05). We further assessed ocular photoreception by measuring the effects of UV light on body pigmentation, and observed that photoreceptor deficits and recovery occurred (p<0.01) with a timeline coincident to the OMR results. This corroborated and extended previous conclusions that UV cones are required photoreceptors for modulating body pigmentation, addressing assumptions that were unavoidable in previous experiments. Functional vision recovery following UV cone ablation was robust, as measured by both assays, returning to control levels within four days. In contrast, robust functional recovery following blue cone ablation was unexpectedly rapid, returning to normal levels within 24 hours after ablation. Ablation of cones led to increased proliferation in the retina, though the rapid recovery of vision following blue cone ablation was demonstrated to not be mediated by blue cone regeneration. Thus rapid visual recovery occurs following ablation of some, but not all, cone subtypes, suggesting an opportunity to contrast and dissect the sources and mechanisms of outer retinal recovery during cone photoreceptor death and regeneration. PMID:27893779
Teramoto, Wataru; Honda, Keito; Furuta, Kento; Sekiyama, Kaoru
2017-08-01
Spatial proximity of signals from different sensory modalities is known to be a crucial factor in facilitating efficient multisensory processing in young adults. However, recent studies have demonstrated that older adults exhibit strong visuotactile interactions even when the visual stimuli were presented in a spatially disparate position from a tactile stimulus. This suggests that visuotactile peripersonal space differs between older and younger adults. In the present study, we investigated to what extent peripersonal space expands in the sagittal direction and whether this expansion was linked to the decline in sensorimotor functions in older adults. Vibrotactile stimuli were delivered either to the left or right index finger, while visual stimuli were presented at a distance of 5 cm (near), 37.5 cm (middle), or 70 cm (far) from each finger. The participants had to respond rapidly to a randomized sequence of unimodal (visual or tactile) and simultaneous visuotactile targets (i.e., a redundant target paradigm). Sensorimotor functions were independently assessed by the Timed Up and Go (TUG) and postural stability tests. Results showed that reaction times to the visuotactile bimodal stimuli were significantly faster than those to the unimodal stimuli, irrespective of age group [younger adults: 22.0 ± 0.6 years, older adults: 75.0 ± 3.3 years (mean ± SD)] and target distance. Of importance, a race model analysis revealed that the co-activation model (i.e., visuotactile multisensory integrative process) is supported in the far condition especially for older adults with relatively poor performance on the TUG or postural stability tests. These results suggest that aging can change visuotactile peripersonal space and that it may be closely linked to declines in sensorimotor functions related to gait and balance in older adults.
Lu, Feng-Mei; Zhou, Jian-Song; Zhang, Jiang; Xiang, Yu-Tao; Zhang, Jian; Liu, Qi; Wang, Xiao-Ping; Yuan, Zhen
2015-01-01
Conduct disorder (CD) is characterized by a persistent pattern of antisocial behavior and aggression in childhood and adolescence. Previous task-based and resting-state functional magnetic resonance imaging (fMRI) studies have revealed widespread brain regional abnormalities in adolescents with CD. However, whether the resting-state networks (RSNs) are altered in adolescents with CD remains unknown. In this study, resting-state fMRI data were first acquired from eighteen male adolescents with pure CD and eighteen age- and gender-matched typically developing (TD) individuals. Independent component analysis (ICA) was implemented to extract nine representative RSNs, and the generated RSNs were then compared to show the differences between the CD and TD groups. Interestingly, it was observed from the brain mapping results that compared with the TD group, the CD group manifested decreased functional connectivity in four representative RSNs: the anterior default mode network (left middle frontal gyrus), which is considered to be correlated with impaired social cognition, the somatosensory network (bilateral supplementary motor area and right postcentral gyrus), the lateral visual network (left superior occipital gyrus), and the medial visual network (right fusiform, left lingual gyrus and right calcarine), which are expected to be relevant to the perceptual systems responsible for perceptual dysfunction in male adolescents with CD. Importantly, the novel findings suggested that male adolescents with pure CD were identified to have dysfunctions in both low-level perceptual networks (the somatosensory network and visual network) and a high-order cognitive network (the default mode network). Revealing the changes in the functional connectivity of these RSNs enhances our understanding of the neural mechanisms underlying the modulation of emotion and social cognition and the regulation of perception in adolescents with CD. PMID:26713867
[Visual perception and its disorders].
Ruf-Bächtiger, L
1989-11-21
It's the brain and not the eye that decides what is perceived. In spite of this fact, quite a lot is known about the functioning of the eye and the first sections of the optic tract, but little about the actual process of perception. Examination of visual perception and its malfunctions relies therefore on certain hypotheses. Proceeding from the model of functional brain systems, variant functional domains of visual perception can be distinguished. Among the more important of these domains are: digit span, visual discrimination and figure-ground discrimination. Evaluation of these functional domains allows us to understand those children with disorders of visual perception better and to develop more effective treatment methods.
Reliability of VEP Recordings Using Chronically Implanted Screw Electrodes in Mice
Makowiecki, Kalina; Garrett, Andrew; Clark, Vince; Graham, Stuart L.; Rodger, Jennifer
2015-01-01
Purpose: Visual evoked potentials (VEPs) are widely used to objectively assess visual system function in animal models of ophthalmological diseases. Although use of chronically implanted electrodes is common in longitudinal VEP studies using rodent models, reliability of recordings over time has not been assessed. We compared VEPs 1 and 7 days after electrode implantation in the adult mouse. We also examined stimulus-independent changes over time, by assessing electroencephalogram (EEG) power and approximate entropy of the EEG signal. Methods: Stainless steel screws (600-μm diameter) were implanted into the skull overlying the right visual cortex and the orbitofrontal cortex of adult mice (C57Bl/6J, n = 7). Animals were reanesthetized 1 and 7 days after implantation to record VEP responses (flashed gratings) and EEG activity. Brain sections were stained for glial activation (GFAP) and cell death (TUNEL). Results: Reliability analysis, using intraclass correlation coefficients, showed VEP recordings had high reliability within the same session, regardless of time after electrode implantation and peak latencies and approximate entropy of the EEG did not change significantly with time. However, there was poorer reliability between recordings obtained on different days, and a significant decrease in VEP amplitudes and EEG power. This amplitude decrease could be normalized by scaling to EEG power (within-subjects). Furthermore, glial activation was present at both time points but there was no evidence of cell death. Conclusions: These results indicate that VEP responses can be reliably recorded even after a relatively short recovery period but decrease response peak amplitude over time. Although scaling the VEP trace to EEG power normalized this decrease, our results highlight that time-dependent cortical excitability changes are an important consideration in longitudinal VEP studies. Translational Relevance: This study shows changes in VEP characteristics over time in chronically implanted mice. Thus, future preclinical longitudinal studies should consider time in addition to amplitude and latency when designing and interpreting research. PMID:25938003
The Role of Eye Movement Driven Attention in Functional Strabismic Amblyopia
2015-01-01
Strabismic amblyopia “blunt vision” is a developmental anomaly that affects binocular vision and results in lowered visual acuity. Strabismus is a term for a misalignment of the visual axes and is usually characterized by impaired ability of the strabismic eye to take up fixation. Such impaired fixation is usually a function of the temporally and spatially impaired binocular eye movements that normally underlie binocular shifts in visual attention. In this review, we discuss how abnormal eye movement function in children with misaligned eyes influences the development of normal binocular visual attention and results in deficits in visual function such as depth perception. We also discuss how eye movement function deficits in adult amblyopia patients can also lead to other abnormalities in visual perception. Finally, we examine how the nonamblyopic eye of an amblyope is also affected in strabismic amblyopia. PMID:25838941
Memisevic, Haris; Sinanovic, Osman
2013-12-01
The goal of this study was to assess the relationship between visual-motor integration and executive functions, and in particular, the extent to which executive functions can predict visual-motor integration skills in children with intellectual disability. The sample consisted of 90 children (54 boys, 36 girls; M age = 11.3 yr., SD = 2.7, range 7-15) with intellectual disabilities of various etiologies. The measure of executive functions were 8 subscales of the Behavioral Rating Inventory of Executive Function (BRIEF) consisting of Inhibition, Shifting, Emotional Control, Initiating, Working memory, Planning, Organization of material, and Monitoring. Visual-motor integration was measured with the Acadia test of visual-motor integration (VMI). Regression analysis revealed that BRIEF subscales explained 38% of the variance in VMI scores. Of all the BRIEF subscales, only two were statistically significant predictors of visual-motor integration: Working memory and Monitoring. Possible implications of this finding are further elaborated.
O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C
2016-11-09
Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.
Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X
2013-06-19
Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.
Haltere mechanosensory influence on tethered flight behavior in Drosophila.
Mureli, Shwetha; Fox, Jessica L
2015-08-01
In flies, mechanosensory information from modified hindwings known as halteres is combined with visual information for wing-steering behavior. Haltere input is necessary for free flight, making it difficult to study the effects of haltere ablation under natural flight conditions. We thus used tethered Drosophila melanogaster flies to examine the relationship between halteres and the visual system, using wide-field motion or moving figures as visual stimuli. Haltere input was altered by surgically decreasing its mass, or by removing it entirely. Haltere removal does not affect the flies' ability to flap or steer their wings, but it does increase the temporal frequency at which they modify their wingbeat amplitude. Reducing the haltere mass decreases the optomotor reflex response to wide-field motion, and removing the haltere entirely does not further decrease the response. Decreasing the mass does not attenuate the response to figure motion, but removing the entire haltere does attenuate the response. When flies are allowed to control a visual stimulus in closed-loop conditions, haltereless flies fixate figures with the same acuity as intact flies, but cannot stabilize a wide-field stimulus as accurately as intact flies can. These manipulations suggest that the haltere mass is influential in wide-field stabilization, but less so in figure tracking. In both figure and wide-field experiments, we observe responses to visual motion with and without halteres, indicating that during tethered flight, intact halteres are not strictly necessary for visually guided wing-steering responses. However, the haltere feedback loop may operate in a context-dependent way to modulate responses to visual motion. © 2015. Published by The Company of Biologists Ltd.
Madden, David J.
2007-01-01
Older adults are often slower and less accurate than are younger adults in performing visual-search tasks, suggesting an age-related decline in attentional functioning. Age-related decline in attention, however, is not entirely pervasive. Visual search that is based on the observer’s expectations (i.e., top-down attention) is relatively preserved as a function of adult age. Neuroimaging research suggests that age-related decline occurs in the structure and function of brain regions mediating the visual sensory input, whereas activation of regions in the frontal and parietal lobes is often greater for older adults than for younger adults. This increased activation may represent an age-related increase in the role of top-down attention during visual tasks. To obtain a more complete account of age-related decline and preservation of visual attention, current research is beginning to explore the relation of neuroimaging measures of brain structure and function to behavioral measures of visual attention. PMID:18080001
Akuffo, Kwadwo Owusu; Nolan, John M; Peto, Tunde; Stack, Jim; Leung, Irene; Corcoran, Laura; Beatty, Stephen
2017-02-01
To investigate the relationship between macular pigment (MP) and visual function in subjects with early age-related macular degeneration (AMD). 121 subjects with early AMD enrolled as part of the Central Retinal Enrichment Supplementation Trial (CREST; ISRCTN13894787) were assessed using a range of psychophysical measures of visual function, including best corrected visual acuity (BCVA), letter contrast sensitivity (CS), mesopic and photopic CS, mesopic and photopic glare disability (GD), photostress recovery time (PRT), reading performance and subjective visual function, using the National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25). MP was measured using customised heterochromatic flicker photometry. Letter CS, mesopic and photopic CS, photopic GD and mean reading speed were each significantly (p<0.05) associated with MP across a range of retinal eccentricities, and these statistically significant relationships persisted after controlling for age, sex and cataract grade. BCVA, NEI VFQ-25 score, PRT and mesopic GD were unrelated to MP after controlling for age, sex and cataract grade (p>0.05, for all). MP relates positively to many measures of visual function in unsupplemented subjects with early AMD. The CREST trial will investigate whether enrichment of MP influences visual function among those afflicted with this condition. ISRCTN13894787. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Aberrant ocular architecture and function in patients with Klinefelter syndrome.
Brand, Cristin; Zitzmann, Michael; Eter, Nicole; Kliesch, Sabine; Wistuba, Joachim; Alnawaiseh, Maged; Heiduschka, Peter
2017-10-13
Klinefelter Syndrome (KS), the most common chromosomal disorder in men (47,XXY), is associated with numerous comorbidities. Based on a number of isolated case reports, we performed the first systematic and comprehensive evaluation of eye health in KS patients with a focus on ocular structure and vascularization. Twenty-one KS patients and 26 male and 38 female controls underwent a variety of non-invasive examinations investigating ocular morphology (examination of retinal thickness, optic nerve head, and cornea) and function (visual field testing and quantification of ocular vessel density by optical coherence tomography angiography). In comparison to healthy controls, KS patients exhibited a smaller foveal avascular zone and a decreased retinal thickness due to a drastically thinner outer nuclear layer. The cornea of KS patients showed a decreased peripheral thickness and volume. In perimetry evaluation, KS patients required brighter stimuli and gave more irregular values. KS patients show an ocular phenotype including morphological and functional features, which is very likely caused by the supernumerary X chromosome. Thus, KS should not be limited to infertility, endocrine dysfunction, neurocognitive and psychosocial comorbidities. Defining an aberrant ocular morphology and function, awareness for possible eye problems should be raised.
Zhu, Jiajia; Zhuo, Chuanjun; Xu, Lixue; Liu, Feng; Qin, Wen; Yu, Chunshui
2017-10-21
Respective changes in resting-state cerebral blood flow (CBF) and functional connectivity in schizophrenia have been reported. However, their coupling alterations in schizophrenia remain largely unknown. 89 schizophrenia patients and 90 sex- and age-matched healthy controls underwent resting-state functional MRI to calculate functional connectivity strength (FCS) and arterial spin labeling imaging to compute CBF. The CBF-FCS coupling of the whole gray matter and the CBF/FCS ratio (the amount of blood supply per unit of connectivity strength) of each voxel were compared between the 2 groups. Whole gray matter CBF-FCS coupling was decreased in schizophrenia patients relative to healthy controls. In schizophrenia patients, the decreased CBF/FCS ratio was predominantly located in cognitive- and emotional-related brain regions, including the dorsolateral prefrontal cortex, insula, hippocampus and thalamus, whereas an increased CBF/FCS ratio was mainly identified in the sensorimotor regions, including the putamen, and sensorimotor, mid-cingulate and visual cortices. These findings suggest that the neurovascular decoupling in the brain may be a possible neuropathological mechanism of schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com
Moderate perinatal thyroid hormone insufficiency alters visual system function in adult rats.
Boyes, William K; Degn, Laura; George, Barbara Jane; Gilbert, Mary E
2018-04-21
Thyroid hormone (TH) is critical for many aspects of neurodevelopment and can be disrupted by a variety of environmental contaminants. Sensory systems, including audition and vision are vulnerable to TH insufficiencies, but little data are available on visual system development at less than severe levels of TH deprivation. The goal of the current experiments was to explore dose-response relations between graded levels of TH insufficiency during development and the visual function of adult offspring. Pregnant Long Evans rats received 0 or 3 ppm (Experiment 1), or 0, 1, 2, or 3 ppm (Experiment 2) of propylthiouracil (PTU), an inhibitor of thyroid hormone synthesis, in drinking water from gestation day (GD) 6 to postnatal day (PN) 21. Treatment with PTU caused dose-related reductions of serum T4, with recovery on termination of exposure, and euthyroidism by the time of visual function testing. Tests of retinal (electroretinograms; ERGs) and visual cortex (visual evoked potentials; VEPs) function were assessed in adult offspring. Dark-adapted ERG a-waves, reflecting rod photoreceptors, were increased in amplitude by PTU. Light-adapted green flicker ERGs, reflecting M-cone photoreceptors, were reduced by PTU exposure. UV-flicker ERGs, reflecting S-cones, were not altered. Pattern-elicited VEPs were significantly reduced by 2 and 3 ppm PTU across a range of stimulus contrast values. The slope of VEP amplitude-log contrast functions was reduced by PTU, suggesting impaired visual contrast gain. Visual contrast gain primarily reflects function of visual cortex, and is responsible for adjusting sensitivity of perceptual mechanisms in response to changing visual scenes. The results indicate that moderate levels of pre-and post-natal TH insufficiency led to alterations in visual function of adult rats, including both retinal and visual cortex sites of dysfunction. Copyright © 2018. Published by Elsevier B.V.
Luo, Furong; Bao, Xuan; Qin, Yingyan; Hou, Min; Wu, Mingxing
2018-06-01
To evaluate the long-term effect of glistenings and surface light scattering of intraocular lenses (IOLs) on visual and optical performance after cataract surgery. Pseudophakic eyes that underwent standard phacoemulsification and two types of hydrophobic acrylic spherical IOL implantation without complications for at least 5 years were included in this retrospective study. Participants were divided into the glistenings, surface light scattering, and control groups according to the current condition of the IOLs. Then participants received a follow-up examination including uncorrected and corrected distance visual acuity (UDVA and CDVA), contrast sensitivity, straylight, and intraocular higher order aberrations, as well as point spread function (PSF) and modulation transfer function (MTF). A total of 140 eyes were included in the study. UDVA, CDVA, and glare sensitivity were not significantly different among the three groups (P > .05). However, compared with the control group, the IOLs of the glistenings and surface light scattering groups were associated with significantly lower contrast sensitivity under no glare conditions. Furthermore, eye with glistenings exhibited the highest straylight value (P < .05), whereas no difference was found between the surface light scattering and control groups. In contrast to the control group, the spherical aberration increased and the mean values of PSF and MTF decreased in the glistenings and surface light scattering groups. Both glistenings and surface light scattering tend to impair subjective visual performance, such as contrast sensitivity, and potentially affect objective optical quality, including straylight, spherical aberration, PSF, and MTF. [J Refract Surg. 2018;34(6):372-378.]. Copyright 2018, SLACK Incorporated.
2011-01-01
Background Fatigue is a common complaint among elementary and junior high school students, and is known to be associated with reduced academic performance. Recently, we demonstrated that fatigue was correlated with decreased cognitive function in these students. However, no studies have identified cognitive predictors of fatigue. Therefore, we attempted to determine independent cognitive predictors of fatigue in these students. Methods We performed a prospective cohort study. One hundred and forty-two elementary and junior high school students without fatigue participated. They completed a variety of paper-and-pencil tests, including list learning and list recall tests, kana pick-out test, semantic fluency test, figure copying test, digit span forward test, and symbol digit modalities test. The participants also completed computerized cognitive tests (tasks A to E on the modified advanced trail making test). These cognitive tests were used to evaluate motor- and information-processing speed, immediate and delayed memory function, auditory and visual attention, divided and switching attention, retrieval of learned material, and spatial construction. One year after the tests, a questionnaire about fatigue (Japanese version of the Chalder Fatigue Scale) was administered to all the participants. Results After the follow-up period, we confirmed 40 cases of fatigue among 118 students. In multivariate logistic regression analyses adjusted for grades and gender, poorer performance on visual information-processing speed and attention tasks was associated with increased risk of fatigue. Conclusions Reduced visual information-processing speed and poor attention are independent predictors of fatigue in elementary and junior high school students. PMID:21672212
Photoreceptor Cells With Profound Structural Deficits Can Support Useful Vision in Mice
Thompson, Stewart; Blodi, Frederick R.; Lee, Swan; Welder, Chris R.; Mullins, Robert F.; Tucker, Budd A.; Stasheff, Steven F.; Stone, Edwin M.
2014-01-01
Purpose. In animal models of degenerative photoreceptor disease, there has been some success in restoring photoreception by transplanting stem cell–derived photoreceptor cells into the subretinal space. However, only a small proportion of transplanted cells develop extended outer segments, considered critical for photoreceptor cell function. The purpose of this study was to determine whether photoreceptor cells that lack a fully formed outer segment could usefully contribute to vision. Methods. Retinal and visual function was tested in wild-type and Rds mice at 90 days of age (RdsP90). Photoreceptor cells of mice homozygous for the Rds mutation in peripherin 2 never develop a fully formed outer segment. The electroretinogram and multielectrode recording of retinal ganglion cells were used to test retinal responses to light. Three distinct visual behaviors were used to assess visual capabilities: the optokinetic tracking response, the discrimination-based visual water task, and a measure of the effect of vision on wheel running. Results. RdsP90 mice had reduced but measurable electroretinogram responses to light, and exhibited light-evoked responses in multiple types of retinal ganglion cells, the output neurons of the retina. In optokinetic and discrimination-based tests, acuity was measurable but reduced, most notably when contrast was decreased. The wheel running test showed that RdsP90 mice needed 3 log units brighter luminance than wild type to support useful vision (10 cd/m2). Conclusions. Photoreceptors that lack fully formed outer segments can support useful vision. This challenges the idea that normal cellular structure needs to be completely reproduced for transplanted cells to contribute to useful vision. PMID:24569582
NASA Technical Reports Server (NTRS)
Jasdzewski, G.; Strangman, G.; Wagner, J.; Kwong, K. K.; Poldrack, R. A.; Boas, D. A.; Sutton, J. P. (Principal Investigator)
2003-01-01
Several current brain imaging techniques rest on the assumption of a tight coupling between neural activity and hemodynamic response. The nature of this neurovascular coupling, however, is not completely understood. There is some evidence for a decoupling of these processes at the onset of neural activity, which manifests itself as a momentary increase in the relative concentration of deoxyhemoglobin (HbR). The existence of this early component of the hemodynamic response function, however, is controversial, as it is inconsistently found. Near infrared spectroscopy (NIRS) allows quantification of levels of oxyhemoglobin (HbO(2)) and HbR during task performance in humans. We acquired NIRS data during performance of simple motor and visual tasks, using rapid-presentation event-related paradigms. Our results demonstrate that rapid, event-related NIRS can provide robust estimates of the hemodynamic response without artifacts due to low-frequency signal components, unlike data from blocked designs. In both the motor and visual data the onset of the increase in HbO(2) occurs before HbR decreases, and there is a poststimulus undershoot. Our results also show that total blood volume (HbT) drops before HbO(2) and undershoots baseline, raising a new issue for neurovascular models. We did not find early deoxygenation in the motor data using physiologically plausible values for the differential pathlength factor, but did find one in the visual data. We suggest that this difference, which is consistent with functional magnetic resonance imaging (fMRI) data, may be attributable to different capillary transit times in these cortices.
Mizuno, Kei; Tanaka, Masaaki; Fukuda, Sanae; Yamano, Emi; Shigihara, Yoshihito; Imai-Matsumura, Kyoko; Watanabe, Yasuyoshi
2011-06-14
Fatigue is a common complaint among elementary and junior high school students, and is known to be associated with reduced academic performance. Recently, we demonstrated that fatigue was correlated with decreased cognitive function in these students. However, no studies have identified cognitive predictors of fatigue. Therefore, we attempted to determine independent cognitive predictors of fatigue in these students. We performed a prospective cohort study. One hundred and forty-two elementary and junior high school students without fatigue participated. They completed a variety of paper-and-pencil tests, including list learning and list recall tests, kana pick-out test, semantic fluency test, figure copying test, digit span forward test, and symbol digit modalities test. The participants also completed computerized cognitive tests (tasks A to E on the modified advanced trail making test). These cognitive tests were used to evaluate motor- and information-processing speed, immediate and delayed memory function, auditory and visual attention, divided and switching attention, retrieval of learned material, and spatial construction. One year after the tests, a questionnaire about fatigue (Japanese version of the Chalder Fatigue Scale) was administered to all the participants. After the follow-up period, we confirmed 40 cases of fatigue among 118 students. In multivariate logistic regression analyses adjusted for grades and gender, poorer performance on visual information-processing speed and attention tasks was associated with increased risk of fatigue. Reduced visual information-processing speed and poor attention are independent predictors of fatigue in elementary and junior high school students. © 2011 Mizuno et al; licensee BioMed Central Ltd.
Alasil, Tarek; Wang, Kaidi; Yu, Fei; Field, Matthew G.; Lee, Hang; Baniasadi, Neda; de Boer, Johannes F.; Coleman, Anne L.; Chen, Teresa C.
2015-01-01
Purpose To determine the retinal nerve fiber layer (RNFL) thickness at which visual field (VF) damage becomes detectable and associated with structural loss. Design Retrospective cross-sectional study. Methods Eighty seven healthy and 108 glaucoma subjects (one eye per subject) were recruited from an academic institution. All patients had VF examinations (Swedish Interactive Threshold Algorithm 24-2 test of the Humphrey visual field analyzer 750i; Carl Zeiss Meditec, Dublin, CA) and spectral domain optical coherence tomography RNFL scans (Spectralis, Heidelberg Engineering, Heidelberg, Germany). Comparison of RNFL thicknesses values with VF threshold values showed a plateau of VF threshold values at high RNFL thickness values and then a sharp decrease at lower RNFL thickness values. A broken stick statistical analysis was utilized to estimate the tipping point at which RNFL thickness values are associated with VF defects. The slope for the association between structure and function was computed for data above and below the tipping point. Results The mean RNFL thickness value that was associated with initial VF loss was 89 μm. The superior RNFL thickness value that was associated with initial corresponding inferior VF loss was 100 μm. The inferior RNFL thickness value that was associated with initial corresponding superior VF loss was 73 μm. The differences between all the slopes above and below the aforementioned tipping points were statistically significant (p<0.001). Conclusions In open angle glaucoma, substantial RNFL thinning or structural loss appears to be necessary before functional visual field defects become detectable. PMID:24487047
Arrestin 1 and Cone Arrestin 4 Have Unique Roles in Visual Function in an All-Cone Mouse Retina
Deming, Janise D.; Pak, Joseph S.; Shin, Jung-a; Brown, Bruce M.; Kim, Moon K.; Aung, Moe H.; Lee, Eun-Jin; Pardue, Machelle T.; Craft, Cheryl Mae
2015-01-01
Purpose Previous studies discovered cone phototransduction shutoff occurs normally for Arr1−/− and Arr4−/−; however, it is defective when both visual arrestins are simultaneously not expressed (Arr1−/−Arr4−/−). We investigated the roles of visual arrestins in an all-cone retina (Nrl−/−) since each arrestin has differential effects on visual function, including ARR1 for normal light adaptation, and ARR4 for normal contrast sensitivity and visual acuity. Methods We examined Nrl−/−, Nrl−/−Arr1−/−, Nrl−/−Arr4−/−, and Nrl−/−Arr1−/−Arr4−/− mice with photopic electroretinography (ERG) to assess light adaptation and retinal responses, immunoblot and immunohistochemical localization analysis to measure retinal expression levels of M- and S-opsin, and optokinetic tracking (OKT) to measure the visual acuity and contrast sensitivity. Results Study results indicated that Nrl−/− and Nrl−/−Arr4−/− mice light adapted normally, while Nrl−/−Arr1−/− and Nrl−/−Arr1−/−Arr4−/− mice did not. Photopic ERG a-wave, b-wave, and flicker amplitudes followed a general pattern in which Nrl−/−Arr4−/− amplitudes were higher than the amplitudes of Nrl−/−, while the amplitudes of Nrl−/−Arr1−/− and Nrl−/−Arr1−/−Arr4−/− were lower. All three visual arrestin knockouts had faster implicit times than Nrl−/− mice. M-opsin expression is lower when ARR1 is not expressed, while S-opsin expression is lower when ARR4 is not expressed. Although M-opsin expression is mislocalized throughout the photoreceptor cells, S-opsin is confined to the outer segments in all genotypes. Contrast sensitivity is decreased when ARR4 is not expressed, while visual acuity was normal except in Nrl−/−Arr1−/−Arr4−/−. Conclusions Based on the opposite visual phenotypes in an all-cone retina in the Nrl−/−Arr1−/− and Nrl−/−Arr4−/− mice, we conclude that ARR1 and ARR4 perform unique modulatory roles in cone photoreceptors. PMID:26624493
A method to determine the impact of reduced visual function on nodule detection performance.
Thompson, J D; Lança, C; Lança, L; Hogg, P
2017-02-01
In this study we aim to validate a method to assess the impact of reduced visual function and observer performance concurrently with a nodule detection task. Three consultant radiologists completed a nodule detection task under three conditions: without visual defocus (0.00 Dioptres; D), and with two different magnitudes of visual defocus (-1.00 D and -2.00 D). Defocus was applied with lenses and visual function was assessed prior to each image evaluation. Observers evaluated the same cases on each occasion; this comprised of 50 abnormal cases containing 1-4 simulated nodules (5, 8, 10 and 12 mm spherical diameter, 100 HU) placed within a phantom, and 25 normal cases (images containing no nodules). Data was collected under the free-response paradigm and analysed using Rjafroc. A difference in nodule detection performance would be considered significant at p < 0.05. All observers had acceptable visual function prior to beginning the nodule detection task. Visual acuity was reduced to an unacceptable level for two observers when defocussed to -1.00 D and for one observer when defocussed to -2.00 D. Stereoacuity was unacceptable for one observer when defocussed to -2.00 D. Despite unsatisfactory visual function in the presence of defocus we were unable to find a statistically significant difference in nodule detection performance (F(2,4) = 3.55, p = 0.130). A method to assess visual function and observer performance is proposed. In this pilot evaluation we were unable to detect any difference in nodule detection performance when using lenses to reduce visual function. Copyright © 2016 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
Kalyani, Partho S; Fawzi, Amani A; Gangaputra, Sapna; van Natta, Mark L; Hubbard, Larry D; Danis, Ronald P; Thorne, Jennifer E; Holland, Gary N
2012-03-01
To evaluate relationships between retinal vessel caliber and tests of visual function among people with AIDS. Longitudinal, observational cohort study. We evaluated data for participants without ocular opportunistic infections at initial examination (baseline) in the Longitudinal Studies of the Ocular Complications of AIDS (1998-2008). Visual function was evaluated with best-corrected visual acuity, Goldmann perimetry, automated perimetry (Humphrey Field Analyzer), and contrast sensitivity (CS) testing. Semi-automated grading of fundus photographs (1 eye/participant) determined central retinal artery equivalent (CRAE), central retinal vein equivalent (CRVE), and arteriole-to-venule ratio (AVR) at baseline. Multiple linear regression models, using forward selection, sought independent relationships between indices and visual function variables. Included were 1250 participants. Smaller AVR was associated with reduced visual field by Goldmann perimetry (P = .003) and worse mean deviation (P = .02) on automated perimetry and possibly with worse pattern standard deviation (PSD) on automated perimetry (P = .06). There was a weak association between smaller AVR and worse CS (P = .07). Relationships were independent of antiretroviral therapy and level of immunodeficiency (CD4+ T lymphocyte count, human immunodeficiency virus [HIV] RNA blood level). On longitudinal analysis, retinal vascular indices at baseline did not predict changes in visual function. Variation in retinal vascular indices is associated with abnormal visual function in people with AIDS, manifested by visual field loss and possibly by reduced CS. Relationships are consistent with the hypothesis that HIV-related retinal vasculopathy is a contributing factor to vision dysfunction among HIV-infected individuals. Longitudinal studies are needed to determine whether changes in indices predict change in visual function. Copyright © 2012 Elsevier Inc. All rights reserved.
Supplementation with macular carotenoids improves visual performance of transgenic mice.
Li, Binxing; Rognon, Gregory T; Mattinson, Ty; Vachali, Preejith P; Gorusupudi, Aruna; Chang, Fu-Yen; Ranganathan, Arunkumar; Nelson, Kelly; George, Evan W; Frederick, Jeanne M; Bernstein, Paul S
2018-07-01
Carotenoid supplementation can improve human visual performance, but there is still no validated rodent model to test their effects on visual function in laboratory animals. We recently showed that mice deficient in β-carotene oxygenase 2 (BCO2) and/or β-carotene oxygenase 1 (BCO1) enzymes can accumulate carotenoids in their retinas, allowing us to investigate the effects of carotenoids on the visual performance of mice. Using OptoMotry, a device to measure visual function in rodents, we examined the effect of zeaxanthin, lutein, and β-carotene on visual performance of various BCO knockout mice. We then transgenically expressed the human zeaxanthin-binding protein GSTP1 (hGSTP1) in the rods of bco2 -/- mice to examine if delivering more zeaxanthin to retina will improve their visual function further. The visual performance of bco2 -/- mice fed with zeaxanthin or lutein was significantly improved relative to control mice fed with placebo beadlets. β-Carotene had no significant effect in bco2 -/- mice but modestly improved cone visual function of bco1 -/- mice. Expression of hGSTP1 in the rods of bco2 -/- mice resulted in a 40% increase of retinal zeaxanthin and further improvement of visual performance. This work demonstrates that these "macular pigment mice" may serve as animal models to study carotenoid function in the retina. Copyright © 2018 Elsevier Inc. All rights reserved.
Neonatal Restriction of Tactile Inputs Leads to Long-Lasting Impairments of Cross-Modal Processing
Röder, Brigitte; Hanganu-Opatz, Ileana L.
2015-01-01
Optimal behavior relies on the combination of inputs from multiple senses through complex interactions within neocortical networks. The ontogeny of this multisensory interplay is still unknown. Here, we identify critical factors that control the development of visual-tactile processing by combining in vivo electrophysiology with anatomical/functional assessment of cortico-cortical communication and behavioral investigation of pigmented rats. We demonstrate that the transient reduction of unimodal (tactile) inputs during a short period of neonatal development prior to the first cross-modal experience affects feed-forward subcortico-cortical interactions by attenuating the cross-modal enhancement of evoked responses in the adult primary somatosensory cortex. Moreover, the neonatal manipulation alters cortico-cortical interactions by decreasing the cross-modal synchrony and directionality in line with the sparsification of direct projections between primary somatosensory and visual cortices. At the behavioral level, these functional and structural deficits resulted in lower cross-modal matching abilities. Thus, neonatal unimodal experience during defined developmental stages is necessary for setting up the neuronal networks of multisensory processing. PMID:26600123
Santhi, Nayantara; Horowitz, Todd S.; Duffy, Jeanne F.; Czeisler, Charles A.
2007-01-01
Background Overnight operations pose a challenge because our circadian biology promotes sleepiness and dissipates wakefulness at night. Since the circadian effect on cognitive functions magnifies with increasing sleep pressure, cognitive deficits associated with night work are likely to be most acute with extended wakefulness, such as during the transition from a day shift to night shift. Methodology/Principal Findings To test this hypothesis we measured selective attention (with visual search), vigilance (with Psychomotor Vigilance Task [PVT]) and alertness (with a visual analog scale) in a shift work simulation protocol, which included four day shifts followed by three night shifts. There was a nocturnal decline in cognitive processes, some of which were most pronounced on the first night shift. The nighttime decrease in visual search sensitivity was most pronounced on the first night compared with subsequent nights (p = .04), and this was accompanied by a trend towards selective attention becoming ‘fast and sloppy’. The nighttime increase in attentional lapses on the PVT was significantly greater on the first night compared to subsequent nights (p<.05) indicating an impaired ability to sustain focus. The nighttime decrease in subjective alertness was also greatest on the first night compared with subsequent nights (p<.05). Conclusions/Significance These nocturnal deficits in attention and alertness offer some insight into why occupational errors, accidents, and injuries are pronounced during night work compared to day work. Examination of the nighttime vulnerabilities underlying the deployment of attention can be informative for the design of optimal work schedules and the implementation of effective countermeasures for performance deficits during night work. PMID:18043740
Gorbet, Diana J; Sergio, Lauren E
2018-01-01
A history of action video game (AVG) playing is associated with improvements in several visuospatial and attention-related skills and these improvements may be transferable to unrelated tasks. These facts make video games a potential medium for skill-training and rehabilitation. However, examinations of the neural correlates underlying these observations are almost non-existent in the visuomotor system. Further, the vast majority of studies on the effects of a history of AVG play have been done using almost exclusively male participants. Therefore, to begin to fill these gaps in the literature, we present findings from two experiments. In the first, we use functional MRI to examine brain activity in experienced, female AVG players during visually-guided reaching. In the second, we examine the kinematics of visually-guided reaching in this population. Imaging data demonstrate that relative to women who do not play, AVG players have less motor-related preparatory activity in the cuneus, middle occipital gyrus, and cerebellum. This decrease is correlated with estimates of time spent playing. Further, these correlations are strongest during the performance of a visuomotor mapping that spatially dissociates eye and arm movements. However, further examinations of the full time-course of visuomotor-related activity in the AVG players revealed that the decreased activity during motor preparation likely results from a later onset of activity in AVG players, which occurs closer to beginning motor execution relative to the non-playing group. Further, the data presented here suggest that this later onset of preparatory activity represents greater neural efficiency that is associated with faster visually-guided responses.
Gorbet, Diana J.; Sergio, Lauren E.
2018-01-01
A history of action video game (AVG) playing is associated with improvements in several visuospatial and attention-related skills and these improvements may be transferable to unrelated tasks. These facts make video games a potential medium for skill-training and rehabilitation. However, examinations of the neural correlates underlying these observations are almost non-existent in the visuomotor system. Further, the vast majority of studies on the effects of a history of AVG play have been done using almost exclusively male participants. Therefore, to begin to fill these gaps in the literature, we present findings from two experiments. In the first, we use functional MRI to examine brain activity in experienced, female AVG players during visually-guided reaching. In the second, we examine the kinematics of visually-guided reaching in this population. Imaging data demonstrate that relative to women who do not play, AVG players have less motor-related preparatory activity in the cuneus, middle occipital gyrus, and cerebellum. This decrease is correlated with estimates of time spent playing. Further, these correlations are strongest during the performance of a visuomotor mapping that spatially dissociates eye and arm movements. However, further examinations of the full time-course of visuomotor-related activity in the AVG players revealed that the decreased activity during motor preparation likely results from a later onset of activity in AVG players, which occurs closer to beginning motor execution relative to the non-playing group. Further, the data presented here suggest that this later onset of preparatory activity represents greater neural efficiency that is associated with faster visually-guided responses. PMID:29364891
Hajek, André; Brettschneider, Christian; Lühmann, Dagmar; Eisele, Marion; Mamone, Silke; Wiese, Birgitt; Weyerer, Siegfried; Werle, Jochen; Pentzek, Michael; Fuchs, Angela; Riedel-Heller, Steffi G; Luck, Tobias; Bickel, Horst; Weeg, Dagmar; Koppara, Alexander; Wagner, Michael; Scherer, Martin; Maier, Wolfgang; König, Hans-Helmut
2016-11-01
To examine how visual impairment affects physical and cognitive function in old age. A longitudinal population-based prospective cohort study. General practitioner offices at six study centers in Germany. They were observed every 1.5 years over four waves. Individuals aged 77-101 at follow-up Wave 2 (N = 2,394). Physical and cognitive function were assessed using an adapted scale that had been previously developed, and visual impairment was rated on a Likert scale (none, mild, severe or profound). Adjusting for sociodemographic factors and comorbidity, linear fixed-effects regression showed that the onset of severe visual impairment was associated with a decline in physical function score in the total sample (β = -0.15, P = .01) and in women (β = -.15, P = .03). Moreover, the onset of severe visual impairment was associated with decline in cognitive function score in the total sample (β = -0.38, P < .001) and in women (β = -0.38, P < .001) and men (β = -0.37, P = .001). Visual impairment affects physical and cognitive function in old age. Interventional strategies to postpone visual impairment may contribute to maintaining physical and cognitive function. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.
2014-01-01
Background DNA repeats, such as transposable elements, minisatellites and palindromic sequences, are abundant in sequences and have been shown to have significant and functional roles in the evolution of the host genomes. In a previous study, we introduced the concept of a repeat DNA module, a flexible motif present in at least two occurences in the sequences. This concept was embedded into ModuleOrganizer, a tool allowing the detection of repeat modules in a set of sequences. However, its implementation remains difficult for larger sequences. Results Here we present Visual ModuleOrganizer, a Java graphical interface that enables a new and optimized version of the ModuleOrganizer tool. To implement this version, it was recoded in C++ with compressed suffix tree data structures. This leads to less memory usage (at least 120-fold decrease in average) and decreases by at least four the computation time during the module detection process in large sequences. Visual ModuleOrganizer interface allows users to easily choose ModuleOrganizer parameters and to graphically display the results. Moreover, Visual ModuleOrganizer dynamically handles graphical results through four main parameters: gene annotations, overlapping modules with known annotations, location of the module in a minimal number of sequences, and the minimal length of the modules. As a case study, the analysis of FoldBack4 sequences clearly demonstrated that our tools can be extended to comparative and evolutionary analyses of any repeat sequence elements in a set of genomic sequences. With the increasing number of sequences available in public databases, it is now possible to perform comparative analyses of repeated DNA modules in a graphic and friendly manner within a reasonable time period. Availability Visual ModuleOrganizer interface and the new version of the ModuleOrganizer tool are freely available at: http://lcb.cnrs-mrs.fr/spip.php?rubrique313. PMID:24678954
Vigilance and iconic memory in children at high risk for alcoholism.
Steinhauer, S R; Locke, J; Hill, S Y
1997-07-01
Previous studies report reduced visual event-related potential (ERP) amplitudes in young males at high risk for alcoholism. These findings could involve difficulties at several stages of visual processing. This study was aimed at examining vigilance performance and iconic memory functions in children at high risk or low risk for alcoholism. Sustained vigilance and retrieval from iconic memory were evaluated in 54 (29 male) white children at high risk and 47 (25 male) white children at low risk for developing alcoholism. Children were also grouped according to gender and age (younger: 8-12 years; older: 13-18 years). No differences is visual sensitivity, response criterion or reaction time were associated with risk status on the degraded visual stimulus version of the Continuous Performance Test. For the Span of Apprehension, no differences were found due to risk status when only 1 or 5 distractors were presented, although with 9 distractors a significant effect of risk status was found when it was tested as an interaction with gender and age (decreased accuracy for older high-risk boys compared to older low-risk boys). These findings suggest that ERP deviations are not attributable to stages of visual processing deficits, but represent difficulty involving more complex utilization of information. Implications of these results are that the differences between high- and low-risk children that have been reported previously for visual ERP components (e.g., P300) are not attributable to deficits of attentional or iconic memory mechanisms.
Multimodal representation of limb endpoint position in the posterior parietal cortex.
Shi, Ying; Apker, Gregory; Buneo, Christopher A
2013-04-01
Understanding the neural representation of limb position is important for comprehending the control of limb movements and the maintenance of body schema, as well as for the development of neuroprosthetic systems designed to replace lost limb function. Multiple subcortical and cortical areas contribute to this representation, but its multimodal basis has largely been ignored. Regarding the parietal cortex, previous results suggest that visual information about arm position is not strongly represented in area 5, although these results were obtained under conditions in which animals were not using their arms to interact with objects in their environment, which could have affected the relative weighting of relevant sensory signals. Here we examined the multimodal basis of limb position in the superior parietal lobule (SPL) as monkeys reached to and actively maintained their arm position at multiple locations in a frontal plane. On half of the trials both visual and nonvisual feedback of the endpoint of the arm were available, while on the other trials visual feedback was withheld. Many neurons were tuned to arm position, while a smaller number were modulated by the presence/absence of visual feedback. Visual modulation generally took the form of a decrease in both firing rate and variability with limb vision and was associated with more accurate decoding of position at the population level under these conditions. These findings support a multimodal representation of limb endpoint position in the SPL but suggest that visual signals are relatively weakly represented in this area, and only at the population level.
Visual context processing deficits in schizophrenia: effects of deafness and disorganization.
Horton, Heather K; Silverstein, Steven M
2011-07-01
Visual illusions allow for strong tests of perceptual functioning. Perceptual impairments can produce superior task performance on certain tasks (i.e., more veridical perception), thereby avoiding generalized deficit confounds while tapping mechanisms that are largely outside of conscious control. Using a task based on the Ebbinghaus illusion, a perceptual phenomenon where the perceived size of a central target object is affected by the size of surrounding inducers, we tested hypotheses related to visual integration in deaf (n = 31) and hearing (n = 34) patients with schizophrenia. In past studies, psychiatrically healthy samples displayed increased visual integration relative to schizophrenia samples and thus were less able to correctly judge target sizes. Deafness, and especially the use of sign language, leads to heightened sensitivity to peripheral visual cues and increased sensitivity to visual context. Therefore, relative to hearing subjects, deaf subjects were expected to display increased context sensitivity (ie, a more normal illusion effect as evidenced by a decreased ability to correctly judge central target sizes). Confirming the hypothesis, deaf signers were significantly more sensitive to the illusion than nonsigning hearing patients. Moreover, an earlier age of sign language acquisition, higher levels of linguistic ability, and shorter illness duration were significantly related to increased context sensitivity. As predicted, disorganization was associated with reduced context sensitivity for all subjects. The primary implications of these data are that perceptual organization impairment in schizophrenia is plastic and that it is related to a broader failure in coordinating cognitive activity.
Weimer, Jill M.; Custer, Andrew W.; Benedict, Jared W.; Alexander, Noreen A.; Kingsley, Evan; Federoff, Howard J.; Cooper, Jonathan D.; Pearce, David A.
2013-01-01
Juvenile neuronal ceroid lipofuscinosis (JNCL) is an autosomal recessive disorder of childhood caused by mutations in CLN3. Although visual deterioration is typically the first clinical sign to manifest in affected children, loss of Cln3 in a mouse model of JNCL does not recapitulate this retinal deterioration. This suggests that either the loss of CLN3 does not directly affect retinal cell survival or that nuclei involved in visual processing are affected prior to retinal degeneration. Having previously demonstrated that Cln3−/− mice have decreased optic nerve axonal density, we now demonstrate a decrease in nerve conduction. Examination of retino-recipient regions revealed a decreased number of neurons within the dorsal lateral geniculate nucleus (LGNd). We demonstrate decreased transport of amino acids from the retina to the LGN, suggesting an impediment in communication between the retina and projection nuclei. This study defines a novel path of degeneration within the LGNd, providing a mechanism for causation of JNCL visual deficits. PMID:16412658
How the blind "see" Braille: lessons from functional magnetic resonance imaging.
Sadato, Norihiro
2005-12-01
What does the visual cortex of the blind do during Braille reading? This process involves converting simple tactile information into meaningful patterns that have lexical and semantic properties. The perceptual processing of Braille might be mediated by the somatosensory system, whereas visual letter identity is accomplished within the visual system in sighted people. Recent advances in functional neuroimaging techniques, such as functional magnetic resonance imaging, have enabled exploration of the neural substrates of Braille reading. The primary visual cortex of early-onset blind subjects is functionally relevant to Braille reading, suggesting that the brain shows remarkable plasticity that potentially permits the additional processing of tactile information in the visual cortical areas.
Freezing Behavior as a Response to Sexual Visual Stimuli as Demonstrated by Posturography
Mouras, Harold; Lelard, Thierry; Ahmaidi, Said; Godefroy, Olivier; Krystkowiak, Pierre
2015-01-01
Posturographic changes in motivational conditions remain largely unexplored in the context of embodied cognition. Over the last decade, sexual motivation has been used as a good canonical working model to study motivated social interactions. The objective of this study was to explore posturographic variations in response to visual sexual videos as compared to neutral videos. Our results support demonstration of a freezing-type response in response to sexually explicit stimuli compared to other conditions, as demonstrated by significantly decreased standard deviations for (i) the center of pressure displacement along the mediolateral and anteroposterior axes and (ii) center of pressure’s displacement surface. These results support the complexity of the motor correlates of sexual motivation considered to be a canonical functional context to study the motor correlates of motivated social interactions. PMID:25992571
New insights into amblyopia: binocular therapy and noninvasive brain stimulation.
Hess, Robert F; Thompson, Benjamin
2013-02-01
The current approach to the treatment of amblyopia is problematic for a number of reasons. First, it promotes recovery of monocular vision but because it is not designed to promote binocularity, its binocular outcomes often are disappointing. Second, compliance is poor and variable. Third, the effectiveness of the treatment is thought to decrease with increasing age. We discuss 2 new approaches aimed at recovering visual function in adults with amblyopia. The first is a binocular approach to amblyopia treatment that is showing promise in initial clinical studies. The second is still in development and involves the use of well-established noninvasive brain stimulation techniques to temporarily alter the balance of excitation and inhibition in the visual cortex. Copyright © 2013 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.
Measurement of visual contrast sensitivity
NASA Astrophysics Data System (ADS)
Vongierke, H. E.; Marko, A. R.
1985-04-01
This invention involves measurement of the visual contrast sensitivity (modulation transfer) function of a human subject by means of linear or circular spatial frequency pattern on a cathode ray tube whose contrast is automatically decreasing or increasing depending on the subject pressing or releasing a hand-switch button. The threshold of detection of the pattern modulation is found by the subject by adjusting the contrast to values which vary about the subject's threshold thereby determining the threshold and also providing by the magnitude of the contrast fluctuations between reversals some estimate of the variability of the subject's absolute threshold. The invention also involves the slow automatic sweeping of the spatial frequency of the pattern over the spatial frequencies after preset time intervals or after threshold has been defined at each frequency by a selected number of subject-determined threshold crossings; i.e., contrast reversals.
Congdon, Nathan; Wang, Yunfei; Song, Yue; Choi, Kai; Zhang, Mingzhi; Zhou, Zhongxia; Xie, Zhenling; Li, Liping; Liu, Xueyu; Sharma, Abhishek; Wu, Bin; Lam, Dennis S C
2008-07-01
To evaluate visual acuity, visual function, and prevalence of refractive error among Chinese secondary-school children in a cross-sectional school-based study. Uncorrected, presenting, and best corrected visual acuity, cycloplegic autorefraction with refinement, and self-reported visual function were assessed in a random, cluster sample of rural secondary school students in Xichang, China. Among the 1892 subjects (97.3% of the consenting children, 84.7% of the total sample), mean age was 14.7 +/- 0.8 years, 51.2% were female, and 26.4% were wearing glasses. The proportion of children with uncorrected, presenting, and corrected visual disability (< or = 6/12 in the better eye) was 41.2%, 19.3%, and 0.5%, respectively. Myopia < -0.5, < -2.0, and < -6.0 D in both eyes was present in 62.3%, 31.1%, and 1.9% of the subjects, respectively. Among the children with visual disability when tested without correction, 98.7% was due to refractive error, while only 53.8% (414/770) of these children had appropriate correction. The girls had significantly (P < 0.001) more presenting visual disability and myopia < -2.0 D than did the boys. More myopic refractive error was associated with worse self-reported visual function (ANOVA trend test, P < 0.001). Visual disability in this population was common, highly correctable, and frequently uncorrected. The impact of refractive error on self-reported visual function was significant. Strategies and studies to understand and remove barriers to spectacle wear are needed.
Neely, David; Zarubina, Anna V; Clark, Mark E; Huisingh, Carrie E; Jackson, Gregory R; Zhang, Yuhua; McGwin, Gerald; Curcio, Christine A; Owsley, Cynthia
2017-07-01
To examine the association between subretinal drusenoid deposits (SDDs) identified by multimodal retinal imaging and visual function in older eyes with normal macular health or in the earliest phases of age-related macular degeneration (AMD). Age-related macular degeneration status for each eye was defined according to the Age-Related Eye Disease Study (AREDS) 9-step classification system (normal = Step 1, early AMD = Steps 2-4) based on color fundus photographs. Visual functions measured were best-corrected photopic visual acuity, contrast and light sensitivity, mesopic visual acuity, low-luminance deficit, and rod-mediated dark adaptation. Subretinal drusenoid deposits were identified through multimodal imaging (color fundus photographs, infrared reflectance and fundus autofluorescence images, and spectral domain optical coherence tomography). The sample included 1,202 eyes (958 eyes with normal health and 244 eyes with early AMD). In normal eyes, SDDs were not associated with any visual function evaluated. In eyes with early AMD, dark adaptation was markedly delayed in eyes with SDDs versus no SDD (a 4-minute delay on average), P = 0.0213. However, this association diminished after age adjustment, P = 0.2645. Other visual functions in early AMD eyes were not associated with SDDs. In a study specifically focused on eyes in normal macular health and in the earliest phases of AMD, early AMD eyes with SDDs have slower dark adaptation, largely attributable to the older ages of eyes with SDD; they did not exhibit deficits in other visual functions. Subretinal drusenoid deposits in older eyes in normal macular health are not associated with any visual functions evaluated.
Dogru, Murat; Ward, Samantha K; Wakamatsu, Tais; Ibrahim, Osama; Schnider, Cristina; Kojima, Takashi; Matsumoto, Yukihiro; Ogawa, Junko; Shimazaki, Jun; Tsubota, Kazuo
2011-04-01
To prospectively investigate the effects of 2 week senofilcon A contact lens (CL) daily wear on the functional visual acuity (VA), ocular surface and tear film. Seventeen right eyes of 17 senofilcon A CL wearers without any ocular or systemic diseases were examined before and 2 weeks after lens wear. Visual acuity measurements, tear evaporation rate, ELISA for tear cytokines, strip meniscometry, tear lipid layer interferometry, tear film break-up time (BUT), in vivo confocal microscopy, corneal sensitivity, ocular surface vital staining, Schirmer I test and brush cytology for MUC5AC mRNA expression were performed before and after CL wear. The best corrected Landolt VA, functional VA parameters, the mean lipid layer interferometry grades, tear evaporation rates, Schirmer test values, vital staining scores and in vivo confocal microscopy parameters did not show any significant differences after 2 weeks of CL wear. The tear film BUT showed a significant decrease together with a significant down regulation of MUC5 AC mRNA expression after CL wear. A statistically significant elevation in the mean tear interleukin (IL)-6 concentration was also observed after 2 weeks of CL wear. Two week senofilcon A daily CL wear seems to be associated with tear instability, a decrease in MUC5AC expression, and elevation of IL-6 in tears without significant alterations in epithelial damage scores or in the morphology or density of in vivo keratoconjunctival cells and nerves. Alterations associated with long term wear and patients with dry eye disease need to be studied in future trials. Copyright © 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Kirsch, Muriëlle; Guldenmund, Pieter; Ali Bahri, Mohamed; Demertzi, Athena; Baquero, Katherine; Heine, Lizette; Charland-Verville, Vanessa; Vanhaudenhuyse, Audrey; Bruno, Marie-Aurélie; Gosseries, Olivia; Di Perri, Carol; Ziegler, Erik; Brichant, Jean-François; Soddu, Andrea; Bonhomme, Vincent; Laureys, Steven
2017-02-01
To reduce head movement during resting state functional magnetic resonance imaging, post-coma patients with disorders of consciousness (DOC) are frequently sedated with propofol. However, little is known about the effects of this sedation on the brain connectivity patterns in the damaged brain essential for differential diagnosis. In this study, we aimed to assess these effects. Using resting state functional magnetic resonance imaging 3T data obtained over several years of scanning patients for diagnostic and research purposes, we employed a seed-based approach to examine resting state connectivity in higher-order (default mode, bilateral external control, and salience) and lower-order (auditory, sensorimotor, and visual) resting state networks and connectivity with the thalamus, in 20 healthy unsedated controls, 8 unsedated patients with DOC, and 8 patients with DOC sedated with propofol. The DOC groups were matched for age at onset, etiology, time spent in DOC, diagnosis, standardized behavioral assessment scores, movement intensities, and pattern of structural brain injury (as assessed with T1-based voxel-based morphometry). DOC were associated with severely impaired resting state network connectivity in all but the visual network. Thalamic connectivity to higher-order network regions was also reduced. Propofol administration to patients was associated with minor further decreases in thalamic and insular connectivity. Our findings indicate that connectivity decreases associated with propofol sedation, involving the thalamus and insula, are relatively small compared with those already caused by DOC-associated structural brain injury. Nonetheless, given the known importance of the thalamus in brain arousal, its disruption could well reflect the diminished movement obtained in these patients. However, more research is needed on this topic to fully address the research question.
Huisingh, Carrie; McGwin, Gerald; Owsley, Cynthia
2017-01-01
Background Many studies on vision and driving cessation have relied on measures of sensory function, which are insensitive to the higher order cognitive aspects of visual processing. The purpose of this study was to examine the association between traditional measures of visual sensory function and higher order visual processing skills with incident driving cessation in a population-based sample of older drivers. Methods Two thousand licensed drivers aged ≥70 were enrolled and followed-up for three years. Tests for central vision and visual processing were administered at baseline and included visual acuity, contrast sensitivity, sensitivity in the driving visual field, visual processing speed (Useful Field of View (UFOV) Subtest 2 and Trails B), and spatial ability measured by the Visual Closure Subtest of the Motor-free Visual Perception Test. Participants self-reported the month and year of driving cessation and provided a reason for cessation. Cox proportional hazards models were used to generate crude and adjusted hazard ratios with 95% confidence intervals between visual functioning characteristics and risk of driving cessation over a three-year period. Results During the study period, 164 participants stopped driving which corresponds to a cumulative incidence of 8.5%. Impaired contrast sensitivity, visual fields, visual processing speed (UFOVand Trails B), and spatial ability were significant risk factors for subsequent driving cessation after adjusting for age, gender, marital status, number of medical conditions, and miles driven. Visual acuity impairment was not associated with driving cessation. Medical problems (63%), specifically musculoskeletal and neurological problems, as well as vision problems (17%) were cited most frequently as the reason for driving cessation. Conclusion Assessment of cognitive and visual functioning can provide useful information about subsequent risk of driving cessation among older drivers. In addition, a variety of factors, not just vision, influenced the decision to stop driving and may be amenable to intervention. PMID:27353969
Visual functioning and quality of life among the older people in Hong Kong.
Leung, Jason C S; Kwok, Timothy C Y; Chan, Dicken C C; Yuen, Kay W K; Kwok, Anthony W L; Choy, Dicky T K; Lau, Edith M C; Leung, P C
2012-08-01
This study aimed to examine the association of visual functioning and health-related quality of life (HRQOL) among the older community in Hong Kong. This study used the baseline examination of a cohort study MrOs and MsOs (a large study for osteoporosis in men and women). This study was set in the Hong Kong community. A total of 4000 ambulatory community-dwelling Chinese men and women aged 65 years or above participated in this study. Health-related quality of life was assessed by Medical Outcomes Study Short Form-12 (SF-12), with physical component summary (PCS) and mental component summary (MCS) scores. Demographics, medical history, mental status, and quality of life were obtained from face-to-face interviews, using standard structured questionnaire. Visual functions (i.e., binocular visual acuity, contrast sensitivity, and stereopsis) were assessed by different visual tests after refraction corrections. Different visual functions were tested simultaneously in multiple ordinal logistic regression models. Better binocular visual acuity, contrast sensitivity, and stereopsis were associated with higher PCS. Visual acuity and contrast sensitivity was associated with PCS after adjustment of different visual functions and sex, age, education level, cognitive status, and history of diabetes in multivariate analysis, (OR = 0.73, 95% CI = 0.54 0.98) for low vision (≤6/24) compared with ≥6/9 in visual acuity and (OR = 1.34, 95% CI = 1.09 1.64) for contrast sensitivity row b 5-8 (best) compared with 0-1 (worst). MCS was only associated with visual acuity and contrast sensitivity, but no association was found after adjustment. Apparent association was found between visual functions and HRQOL among older community in Hong Kong. In addition to visual acuity, contrast sensitivity is also important, so eye care should also cover. Copyright © 2011 John Wiley & Sons, Ltd.
Hilgen, Gerrit; Huebner, Antje K.; Tanimoto, Naoyuki; Sothilingam, Vithiyanjali; Seide, Christina; Garrido, Marina Garcia; Schmidt, Karl-Friedrich; Seeliger, Mathias W.; Löwel, Siegrid; Weiler, Reto
2012-01-01
Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10), a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pHi) and chloride concentration ([Cl−]i) in neurons. Here we show that NCBE is strongly expressed in the retina. As GABAA receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pHi regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function. PMID:23056253
Xu, Renfeng; Wang, Huachun; Thibos, Larry N; Bradley, Arthur
2017-04-01
Our purpose is to develop a computational approach that jointly assesses the impact of stimulus luminance and pupil size on visual quality. We compared traditional optical measures of image quality and those that incorporate the impact of retinal illuminance dependent neural contrast sensitivity. Visually weighted image quality was calculated for a presbyopic model eye with representative levels of chromatic and monochromatic aberrations as pupil diameter was varied from 7 to 1 mm, stimulus luminance varied from 2000 to 0.1 cd/m2, and defocus varied from 0 to -2 diopters. The model included the effects of quantal fluctuations on neural contrast sensitivity. We tested the model's predictions for five cycles per degree gratings by measuring contrast sensitivity at 5 cyc/deg. Unlike the traditional Strehl ratio and the visually weighted area under the modulation transfer function, the visual Strehl ratio derived from the optical transfer function was able to capture the combined impact of optics and quantal noise on visual quality. In a well-focused eye, provided retinal illuminance is held constant as pupil size varies, visual image quality scales approximately as the square root of illuminance because of quantum fluctuations, but optimum pupil size is essentially independent of retinal illuminance and quantum fluctuations. Conversely, when stimulus luminance is held constant (and therefore illuminance varies with pupil size), optimum pupil size increases as luminance decreases, thereby compensating partially for increased quantum fluctuations. However, in the presence of -1 and -2 diopters of defocus and at high photopic levels where Weber's law operates, optical aberrations and diffraction dominate image quality and pupil optimization. Similar behavior was observed in human observers viewing sinusoidal gratings. Optimum pupil size increases as stimulus luminance drops for the well-focused eye, and the benefits of small pupils for improving defocused image quality remain throughout the photopic and mesopic ranges. However, restricting pupils to <2 mm will cause significant reductions in the best focus vision at low photopic and mesopic luminances.
Covert spatial attention is functionally intact in amblyopic human adults.
Roberts, Mariel; Cymerman, Rachel; Smith, R Theodore; Kiorpes, Lynne; Carrasco, Marisa
2016-12-01
Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention-the selective processing of visual information in the absence of eye movements-to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults.
Differences in gaze anticipation for locomotion with and without vision
Authié, Colas N.; Hilt, Pauline M.; N'Guyen, Steve; Berthoz, Alain; Bennequin, Daniel
2015-01-01
Previous experimental studies have shown a spontaneous anticipation of locomotor trajectory by the head and gaze direction during human locomotion. This anticipatory behavior could serve several functions: an optimal selection of visual information, for instance through landmarks and optic flow, as well as trajectory planning and motor control. This would imply that anticipation remains in darkness but with different characteristics. We asked 10 participants to walk along two predefined complex trajectories (limaçon and figure eight) without any cue on the trajectory to follow. Two visual conditions were used: (i) in light and (ii) in complete darkness with eyes open. The whole body kinematics were recorded by motion capture, along with the participant's right eye movements. We showed that in darkness and in light, horizontal gaze anticipates the orientation of the head which itself anticipates the trajectory direction. However, the horizontal angular anticipation decreases by a half in darkness for both gaze and head. In both visual conditions we observed an eye nystagmus with similar properties (frequency and amplitude). The main difference comes from the fact that in light, there is a shift of the orientations of the eye nystagmus and the head in the direction of the trajectory. These results suggest that a fundamental function of gaze is to represent self motion, stabilize the perception of space during locomotion, and to simulate the future trajectory, regardless of the vision condition. PMID:26106313
The effects of Ramadan fasting on the health and function of the eye
Javadi, Mohammad Ali; Assadi, Mahsan; Einollahi, Bahram; Rabei, Hossein Mohammad; Afarid, Mehrdad; Assadi, Majid
2014-01-01
Background: Ramadan fasting may alter a variety of physiological parameters which by themselves influence ocular system. Here, we review the effects of Ramadan fasting on the health and function of the eye. Materials and Methods: Literature records in PubMed/MEDLINE, Web of Science, EMBASE, Google Scholar, and Iran Medex databases as well as proceedings of related meetings from January 1986 to March 2014 were systematically reviewed. The search key words was based on the terms “Ramadan Fasting,” “Ramadan,” “Islamic Fasting,” “Fasting in Ramadan” accompanied with one of the eye, tear drop, myopia, intraocular pressure (IOP), tear break up time, basal tear secretion, refractive error, and visual acuity. Results: Predawn water loading and dehydration in the evening are shown to increase and decrease IOP and tear secretion, respectively. Ocular blood flow is changed in Ramadan fasting, and patients with ocular vein occlusion may experience more frequent attacks. There are no or minimal fluctuations in visual acuity and refractive errors, but most of them are decompensated after Ramadan. Conclusion: Although the influence of fasting in different eye parameters is evaluated in several studies, there are no or only limited studies conducted on patients suffering from glaucoma, damage to ophthalmic vasculature, tear dysfunction, and minimal visual acuity. Such studies are required to make a definite decision before fasting is declared harmless to these patients. PMID:25422666
Recoding between two types of STM representation revealed by the dynamics of memory search.
Leszczyński, Marcin; Myers, Nicholas E; Akyürek, Elkan G; Schubö, Anna
2012-03-01
Visual STM (VSTM) is thought to be related to visual attention in several ways. Attention controls access to VSTM during memory encoding and plays a role in the maintenance of stored information by strengthening memorized content. We investigated the involvement of visual attention in recall from VSTM. In two experiments, we measured electrophysiological markers of attention in a memory search task with varying intervals between VSTM encoding and recall, and so we were able to track recoding of representations in memory. Results confirmed the involvement of attention in VSTM recall. However, the amplitude of the N2pc and N3rs components, which mark orienting of attention and search within VSTM, decreased as a function of delay. Conversely, the amplitude of the P3 and sustained posterior contralateral negativity components increased as a function of delay, effectively the opposite of the N2pc and N3rs modulations. These effects were only observed when verbal memory was not taxed. Thus, the results suggested that gradual recoding from visuospatial orienting of attention into verbal recall mechanisms takes place from short to long retention intervals. Interestingly, recall at longer delays was faster than at short delays, indicating that verbal representation is coupled with faster responses. These results extend the orienting-of-attention hypothesis by including an account of representational recoding during short-term consolidation and its consequences for recall from VSTM.
Visual dysfunction in Parkinson’s disease
Weil, Rimona S.; Schrag, Anette E.; Warren, Jason D.; Crutch, Sebastian J.; Lees, Andrew J.; Morris, Huw R.
2016-01-01
Patients with Parkinson’s disease have a number of specific visual disturbances. These include changes in colour vision and contrast sensitivity and difficulties with complex visual tasks such as mental rotation and emotion recognition. We review changes in visual function at each stage of visual processing from retinal deficits, including contrast sensitivity and colour vision deficits to higher cortical processing impairments such as object and motion processing and neglect. We consider changes in visual function in patients with common Parkinson’s disease-associated genetic mutations including GBA and LRRK2. We discuss the association between visual deficits and clinical features of Parkinson’s disease such as rapid eye movement sleep behavioural disorder and the postural instability and gait disorder phenotype. We review the link between abnormal visual function and visual hallucinations, considering current models for mechanisms of visual hallucinations. Finally, we discuss the role of visuo-perceptual testing as a biomarker of disease and predictor of dementia in Parkinson’s disease. PMID:27412389
Occipitoparietal alpha-band responses to the graded allocation of top-down spatial attention.
Dombrowe, Isabel; Hilgetag, Claus C
2014-09-15
The voluntary, top-down allocation of visual spatial attention has been linked to changes in the alpha-band of the electroencephalogram (EEG) signal measured over occipital and parietal lobes. In the present study, we investigated how occipitoparietal alpha-band activity changes when people allocate their attentional resources in a graded fashion across the visual field. We asked participants to either completely shift their attention into one hemifield, to balance their attention equally across the entire visual field, or to attribute more attention to one-half of the visual field than to the other. As expected, we found that alpha-band amplitudes decreased stronger contralaterally than ipsilaterally to the attended side when attention was shifted completely. Alpha-band amplitudes decreased bilaterally when attention was balanced equally across the visual field. However, when participants allocated more attentional resources to one-half of the visual field, this was not reflected in the alpha-band amplitudes, which just decreased bilaterally. We found that the performance of the participants was more strongly reflected in the coherence between frontal and occipitoparietal brain regions. We conclude that low alpha-band amplitudes seem to be necessary for stimulus detection. Furthermore, complete shifts of attention are directly reflected in the lateralization of alpha-band amplitudes. In the present study, a gradual allocation of visual attention across the visual field was only indirectly reflected in the alpha-band activity over occipital and parietal cortexes. Copyright © 2014 the American Physiological Society.
Visual function, driving safety, and the elderly.
Keltner, J L; Johnson, C A
1987-09-01
The authors have conducted a survey of the Departments of Motor Vehicles in all 50 states, the District of Columbia, and Puerto Rico requesting information about the visual standards, accidents, and conviction rates for different age groups. In addition, we have reviewed the literature on visual function and traffic safety. Elderly drivers have a greater number of vision problems that affect visual acuity and/or peripheral visual fields. Although the elderly are responsible for a small percentage of the total number of traffic accidents, the types of accidents they are involved in (e.g., failure to yield the right-of-way, intersection collisions, left turns onto crossing streets) may be related to peripheral and central visual field problems. Because age-related changes in performance occur at different rates for various individuals, licensing of the elderly driver should be based on functional abilities rather than age. Based on information currently available, we can make the following recommendations: (1) periodic evaluations of visual acuity and visual fields should be performed every 1 to 2 years in the population over age 65; (2) drivers of any age with multiple accidents or moving violations should have visual acuity and visual fields evaluated; and (3) a system should be developed for physicians to report patients with potentially unsafe visual function. The authors believe that these recommendations may help to reduce the number of traffic accidents that result from peripheral visual field deficits.
O’Connell, Caitlin; Ho, Leon C.; Murphy, Matthew C.; Conner, Ian P.; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C.
2016-01-01
Human visual performance has been observed to exhibit superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine if the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI (DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not fractional anisotropy or mean diffusivity when compared to the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing. PMID:27631541
ERIC Educational Resources Information Center
Lam, Fook Chang; Lovett, Fiona; Dutton, Gordon N.
2010-01-01
Damage to the areas of the brain that are responsible for higher visual processing can lead to severe cerebral visual impairment (CVI). The prognosis for higher cognitive visual functions in children with CVI is not well described. We therefore present our six-year follow-up of a boy with CVI and highlight intervention approaches that have proved…
Attitudes towards and perceptions of visual loss and its causes among Hong Kong Chinese adults.
Lau, Joseph Tak Fai; Lee, Vincent; Fan, Dorothy; Lau, Mason; Michon, John
2004-06-01
As part of a study of visual function among Hong Kong Chinese adults, their attitudes and perceptions related to visual loss were examined. These included fear of visual loss, negative functional impacts of visual loss, the relationship between ageing and visual loss and help-seeking behaviours related to visual loss. Demographic factors associated with these variables were also studied. The study population were people aged 40 and above randomly selected from the Shatin district of Hong Kong. The participants underwent eye examinations that included visual acuity, intraocular pressure measurement, visual field, slit-lamp biomicroscopy and ophthalmoscopy. The primary cause of visual disability was recorded. The participants were also asked about their attitudes and perceptions regarding visual loss using a structured questionnaire. The prevalence of bilateral visual disability was 2.2% among adults aged 40 or above and 6.4% among adults aged 60 or above. Nearly 36% of the participants selected blindness as the most feared disabling medical condition, which was substantially higher than conditions such as dementia, loss of limbs, deafness or aphasia. Inability to take care of oneself (21.0%), inconvenience related to mobility (20.2%) and inability to work (14.8%) were the three most commonly mentioned 'worst impact' effects of visual loss. Fully 68% of the participants believed that loss of vision is related to ageing. A majority of participants would seek help and advice from family members in case of visual loss. Visual function is perceived to be very important by Hong Kong Chinese adults. The fear of visual loss is widespread and particularly affects self-care and functional abilities. Visual loss is commonly seen as related to ageing. Attitudes and perceptions in this population may be modified by educational and outreach efforts in order to take advantage of preventive measures.
Long-term follow-up of two patients with oligocone trichromacy.
Smirnov, Vasily; Drumare, Isabelle; Bouacha, Ikram; Puech, Bernard; Defoort-Dhellemmes, Sabine
2015-10-01
Oligocone trichromacy (OT) is an uncommon cone dysfunction disorder, the mechanism of which remains poorly understood. OT has been thought to be non-progressive, but its long-term visual outcome has been seldom reported in the literature. Our aim was to present two OT patients followed at our institution over 18 years. Complete ocular examination, color vision, visual fields, and full-field electroretinography (ERG) were performed at initial presentation and follow-up. Spectral-domain optical coherence tomography (OCT) was performed during follow-up when available at our institution. Initial ocular examination showed satisfactory visual acuities with normal fundus examination and near-to-normal color vision. However, computerized perimetry demonstrated a ring-shaped scotoma around fixation, and ERG showed a profound cone dysfunction. The discrepancy between preserved color vision and profound cone dysfunction leads to the diagnosis of OT. Subsequent follow-ups over 18 years showed subtle degradation of visual acuities along with progression of the myopia in both patients and slight worsening of color vision in one patient. Initial OCT revealed a focal interruption of the ellipsoid line along with decreased thickness of the perifoveal macula. Subsequent OCT imaging performed 2 years later did not show any macular changes. Although OT is known to be a non-progressive cone dysfunction, our results suggest that subtle degradation of the visual function might happen over time.
Zhang, Dan; Hong, Bo; Gao, Shangkai; Röder, Brigitte
2017-05-01
While the behavioral dynamics as well as the functional network of sustained and transient attention have extensively been studied, their underlying neural mechanisms have most often been investigated in separate experiments. In the present study, participants were instructed to perform an audio-visual spatial attention task. They were asked to attend to either the left or the right hemifield and to respond to deviant transient either auditory or visual stimuli. Steady-state visual evoked potentials (SSVEPs) elicited by two task irrelevant pattern reversing checkerboards flickering at 10 and 15 Hz in the left and the right hemifields, respectively, were used to continuously monitor the locus of spatial attention. The amplitude and phase of the SSVEPs were extracted for single trials and were separately analyzed. Sustained attention to one hemifield (spatial attention) as well as to the auditory modality (intermodal attention) increased the inter-trial phase locking of the SSVEP responses, whereas briefly presented visual and auditory stimuli decreased the single-trial SSVEP amplitude between 200 and 500 ms post-stimulus. This transient change of the single-trial amplitude was restricted to the SSVEPs elicited by the reversing checkerboard in the spatially attended hemifield and thus might reflect a transient re-orienting of attention towards the brief stimuli. Thus, the present results demonstrate independent, but interacting neural mechanisms of sustained and transient attentional orienting.
Rogé, Joceline; Pébayle, Thierry; Lambilliotte, Elina; Spitzenstetter, Florence; Giselbrecht, Danièle; Muzet, Alain
2004-10-01
Recent research has shown that the useful visual field deteriorates in simulated car driving when the latter can induce a decrease in the level of activation. The first aim of this study was to verify if the same phenomenon occurs when driving is performed in a simulated road traffic situation. The second aim was to discover if this field also deteriorates as a function of the driver's age and of the vehicle's speed. Nine young drivers (from 22 to 34 years) and nine older drivers (from 46 to 59 years) followed a vehicle in road traffic during two two-hour sessions. The car-following task involved driving at 90 km.h(-1) (speed limit on road in France) in one session and at 130 km.h(-1) (speed limit on motorway in France) in the other session. While following the vehicle, the driver had to detect the changes in colour of a luminous signal located in the central part of his/her visual field and a visual signal that appeared at different eccentricities on the rear lights of the vehicles in the traffic. The analysis of the data indicates that the useful visual field deteriorates with the prolongation of the monotonous simulated driving task, with the driver's age and with the vehicle's speed. The results are discussed in terms of general interference and tunnel vision.
What explains health in persons with visual impairment?
2014-01-01
Background Visual impairment is associated with important limitations in functioning. The International Classification of Functioning, Disability and Health (ICF) adopted by the World Health Organisation (WHO) relies on a globally accepted framework for classifying problems in functioning and the influence of contextual factors. Its comprehensive perspective, including biological, individual and social aspects of health, enables the ICF to describe the whole health experience of persons with visual impairment. The objectives of this study are (1) to analyze whether the ICF can be used to comprehensively describe the problems in functioning of persons with visual impairment and the environmental factors that influence their lives and (2) to select the ICF categories that best capture self-perceived health of persons with visual impairment. Methods Data from 105 persons with visual impairment were collected, including socio-demographic data, vision-related data, the Extended ICF Checklist and the visual analogue scale of the EuroQoL-5D, to assess self-perceived health. Descriptive statistics and a Group Lasso regression were performed. The main outcome measures were functioning defined as impairments in Body functions and Body structures, limitations in Activities and restrictions in Participation, influencing Environmental factors and self-perceived health. Results In total, 120 ICF categories covering a broad range of Body functions, Body structures, aspects of Activities and Participation and Environmental factors were identified. Thirteen ICF categories that best capture self-perceived health were selected based on the Group Lasso regression. While Activities-and-Participation categories were selected most frequently, the greatest impact on self-perceived health was found in Body-functions categories. The ICF can be used as a framework to comprehensively describe the problems of persons with visual impairment and the Environmental factors which influence their lives. Conclusions There are plenty of ICF categories, Environmental-factors categories in particular, which are relevant to persons with visual impairment, but have hardly ever been taken into consideration in literature and visual impairment-specific patient-reported outcome measures. PMID:24886326
ERIC Educational Resources Information Center
Jacobson, Lena; Rydberg, Agneta; Eliasson, Ann-Christin; Kits, Annika; Flodmark, Olof
2010-01-01
Aim: To relate visual field function to brain morphology in children with unilateral cerebral palsy (CP). Method: Visual field function was assessed using the confrontation technique and Goldmann perimetry in 29 children (15 males, 14 females; age range 7-17y, median age 11y) with unilateral CP classified at Gross Motor Function Classification…
Kaido, Minako; Toda, Ikuko; Oobayashi, Tomoo; Kawashima, Motoko; Katada, Yusaku; Tsubota, Kazuo
2016-01-01
To investigate whether suppression of blue light can improve visual function in patients with short tear break up time (BUT) dry eye (DE). Twenty-two patients with short BUT DE (10 men, 12 women; mean age, 32.4 ± 6.4 years; age range, 23-43 years) and 18 healthy controls (10 men, 8 women; mean age, 30.1 ± 7.4 years; age range, 20-49 years) underwent functional visual acuity (VA) examinations with and without wearing eyeglasses with 50% blue light blocked lenses. The functional VA parameters were starting VA, functional VA, and visual maintenance ratio. The baseline mean values (logarithm of the minimum angle of resolution, logMAR) of functional VA and the visual maintenance ratio were significantly worse in the DE patients than in the controls (P < 0.05), while no significant difference was observed in the baseline starting VA (P > 0.05). The DE patients had significant improvement in mean functional VA and visual maintenance ratio while wearing the glasses (P < 0.05), while there were no significant changes with and without the glasses in the control group (P > 0.05). Protecting the eyes from short-wavelength blue light may help to ameliorate visual impairment associated with tear instability in patients with DE. This finding represents a new concept, which is that the blue light exposure might be harmful to visual function in patients with short BUT DE.
Kaido, Minako
2016-01-01
Purpose To investigate whether suppression of blue light can improve visual function in patients with short tear break up time (BUT) dry eye (DE). Methods Twenty-two patients with short BUT DE (10 men, 12 women; mean age, 32.4 ± 6.4 years; age range, 23–43 years) and 18 healthy controls (10 men, 8 women; mean age, 30.1 ± 7.4 years; age range, 20–49 years) underwent functional visual acuity (VA) examinations with and without wearing eyeglasses with 50% blue light blocked lenses. The functional VA parameters were starting VA, functional VA, and visual maintenance ratio. Results The baseline mean values (logarithm of the minimum angle of resolution, logMAR) of functional VA and the visual maintenance ratio were significantly worse in the DE patients than in the controls (P < 0.05), while no significant difference was observed in the baseline starting VA (P > 0.05). The DE patients had significant improvement in mean functional VA and visual maintenance ratio while wearing the glasses (P < 0.05), while there were no significant changes with and without the glasses in the control group (P > 0.05), Conclusions Protecting the eyes from short-wavelength blue light may help to ameliorate visual impairment associated with tear instability in patients with DE. This finding represents a new concept, which is that the blue light exposure might be harmful to visual function in patients with short BUT DE. PMID:27045760