Sample records for decreases coupling efficiency

  1. The efficiency of cellular energy transduction and its implications for obesity.

    PubMed

    Harper, Mary-Ellen; Green, Katherine; Brand, Martin D

    2008-01-01

    We assess the existence, mechanism, and functions of less-than-maximal coupling efficiency of mitochondrial oxidative phosphorylation and its potential as a target for future antiobesity interventions. Coupling efficiency is the proportion of oxygen consumption used to make adenosine triphosphate (ATP) and do useful work. High coupling efficiency may lead to fat deposition; low coupling efficiency to a decrease in fat stores. We review obligatory and facultative energy expenditure and the role of a futile cycle of proton pumping and proton leak across the mitochondrial inner membrane in dissipating energy. Basal proton conductance is catalyzed primarily by the adenine nucleotide translocase but can be mimicked by chemical uncouplers. Inducible proton conductance is catalyzed by specific uncoupling proteins. We discuss the opportunities and pitfalls of targeting these processes as a treatment for obesity by decreasing coupling efficiency and increasing energy expenditure, either directly or through central mechanisms of energy homeostasis.

  2. Bioinspired model of mechanical energy harvesting based on flexoelectric membranes.

    PubMed

    Rey, Alejandro D; Servio, P; Herrera-Valencia, E E

    2013-02-01

    Membrane flexoelectricity is an electromechanical coupling process that describes membrane electrical polarization due to bending and membrane bending under electric fields. In this paper we propose, formulate, and characterize a mechanical energy harvesting system consisting of a deformable soft flexoelectric thin membrane subjected to harmonic forcing from contacting bulk fluids. The key elements of the energy harvester are formulated and characterized, including (i) the mechanical-to-electrical energy conversion efficiency, (ii) the electromechanical shape equation connecting fluid forces with membrane curvature and electric displacement, and (iii) the electric power generation and efficiency. The energy conversion efficiency is cast as the ratio of flexoelectric coupling to the product of electric and bending elasticity. The device is described by a second-order curvature dynamics coupled to the electric displacement equation and as such results in mechanical power absorption with a resonant peak whose amplitude decreases with bending viscosity. The electric power generation is proportional to the conversion factor and the power efficiency decreases with frequency. Under high bending viscosity, the power efficiency increases with the conversion factor and under low viscosities it decreases with the conversion factor. The theoretical results presented contribute to the ongoing experimental efforts to develop mechanical energy harvesting from fluid flow energy through solid-fluid interactions and electromechanical transduction.

  3. Single-mode fibers to single-mode waveguides coupling with minimum Fresnel back-reflection

    NASA Astrophysics Data System (ADS)

    Sneh, Anat; Ruschin, Shlomo; Marom, Emanuel

    1991-04-01

    Slantly polished fibers and waveguides coupling as a means for achieving both low optical power reflection and efficient power transmission is proposed. Return losses exceeding -70 dB can be obtained in fiber-to-Lithium Niobate waveguides operating at ) = 0.633 jm and ) = 1.3 pm by polishing the fiber at an angle of 6°. A phase matching condition between the propagation constants ,8 and the polishing angles in the fiber and the waveguide: fl(fiber)sincx(fiber) = fl(waveguide)sina(waveguide) must be fulifiled in order to enable efficient power coupling. Polishing angle tolerances of approximately lO are allowed for a maximum of 1 dB decrease in the coupling efficiency.

  4. A study on improvement of discharge characteristic by using a transformer in a capacitively coupled plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Cheol; Kim, Hyun-Jun; Lee, Hyo-Chang

    In a plasma discharge system, the power loss at powered line, matching network, and other transmission line can affect the discharge characteristics such as the power transfer efficiency, voltage and current at powered electrode, and plasma density. In this paper, we propose a method to reduce power loss by using a step down transformer mounted between the matching network and the powered electrode in a capacitively coupled argon plasma. This step down transformer decreases the power loss by reducing the current flowing through the matching network and transmission line. As a result, the power transfer efficiency was increased about 5%–10%more » by using a step down transformer. However, the plasma density was dramatically increased compared to no transformer. This can be understood by the increase in ohmic heating and the decrease in dc-self bias. By simply mounting a transformer, improvement of discharge efficiency can be achieved in capacitively coupled plasmas.« less

  5. Assessing the relationship between the inter-rod coupling and the efficiency of piezocomposite high-intensity focused ultrasound transducers.

    PubMed

    Chen, Gin-Shin; Pan, Chia-Ching; Lin, Yu-Li; Cheng, Jung-Sung

    2014-03-01

    The electroacoustic conversion efficiency of the ultrasonic transducer is a critical performance index for high-power applications. The material properties, volume fraction (VF) and aspect ratio (AR) are typically regarded as the design parameters of the piezocomposite transducer. We hypothesized that the spacing between piezoelectric rods was also a dominant factor. Therefore, the inter-rod coupling effects on the efficiency of 1-3 piezocomposite ultrasonic transducers were investigated in this study. The efficiencies of six flat and three curved 1.0 MHz PZT4 epoxy composite transducers with different geometric parameters were measured. Finite element transient analyses of the inter-rod electrical-mechanical coupling in the composites were carried out to explain the measured results. The experimental results showed that for 0.47 AR, the 79% VF transducers had lower efficiency than the 64% VF and 53% VF transducers. For 0.19 AR, the efficiency of the 59% VF transducer was not greater than the efficiency of the 39% VF transducer. Numerical analyses demonstrated that the positive peak voltage induced by the coupling of the side rods was more than twice the level induced by the coupling of the diagonal rods for any spacing. The diagonal coupling voltage peak did not change for spacings larger than 0.2 mm. Moreover, for spacings of 0.05 and 0.1 mm, the inter-rod coupling caused 24% and 20% waveform shifts of the driving voltage, respectively, while the 0.2 mm spacing coupling caused a 14% reduction in the amplitude of the driving voltage. As a result, the asymmetry of the driving voltage degraded the efficiency of the composite transducers and became more severe when the spacing was decreased. We concluded that the efficiency loss induced by inter-rod coupling as a function of spacing should be considered when designing piezocomposite transducers. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Effects of curcumin and ursolic acid on the mitochondrial coupling efficiency and hydrogen peroxide emission of intact skeletal myoblasts.

    PubMed

    Tueller, Daniel J; Harley, Jackson S; Hancock, Chad R

    2017-10-21

    Curcumin may improve blood glucose management, but the mechanism is not fully established. We demonstrated that curcumin (40 μM) reduced the mitochondrial coupling efficiency (percentage of oxygen consumption coupled to ATP synthesis) of intact skeletal muscle cells. A 30-minute pretreatment with curcumin reduced mitochondrial coupling efficiency by 17.0 ± 0.4% relative to vehicle (p < 0.008). Curcumin pretreatment also decreased the rate of hydrogen peroxide emission by 43 ± 13% compared to vehicle (p < 0.05). Analysis of cell respiration in the presence of curcumin revealed a 40 ± 4% increase in the rate of oxygen consumption upon curcumin administration (p < 0.05 compared to vehicle). No difference in mitochondrial coupling efficiency was observed between vehicle- and curcumin-pretreated cells after permeabilization of cell membranes (p > 0.7). The interaction between curcumin and ursolic acid, another natural compound that may improve blood glucose management, was also examined. Pretreatment with ursolic acid (0.12 μM) increased the mitochondrial coupling efficiency of intact cells by 4.1 ± 1.1% relative to vehicle (p < 0.008) and attenuated the effect of curcumin when the two compounds were used in combination. The observed changes to mitochondrial coupling efficiency and hydrogen peroxide emission were consistent with the established effects of curcumin on blood glucose control. Our findings also show that changes to mitochondrial coupling efficiency after curcumin pretreatment may go undetected unless cells are assessed in the intact condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications.

    PubMed

    Bellei, Francesco; Cartwright, Alyssa P; McCaughan, Adam N; Dane, Andrew E; Najafi, Faraz; Zhao, Qingyuan; Berggren, Karl K

    2016-02-22

    This paper describes the construction of a cryostat and an optical system with a free-space coupling efficiency of 56.5% ± 3.4% to a superconducting nanowire single-photon detector (SNSPD) for infrared quantum communication and spectrum analysis. A 1K pot decreases the base temperature to T = 1.7 K from the 2.9 K reached by the cold head cooled by a pulse-tube cryocooler. The minimum spot size coupled to the detector chip was 6.6 ± 0.11 µm starting from a fiber source at wavelength, λ = 1.55 µm. We demonstrated photon counting on a detector with an 8 × 7.3 µm2 area. We measured a dark count rate of 95 ± 3.35 kcps and a system detection efficiency of 1.64% ± 0.13%. We explain the key steps that are required to improve further the coupling efficiency.

  8. Electrically driven plasmon-exciton coupled random lasing in ZnO metal-semiconductor-metal devices

    NASA Astrophysics Data System (ADS)

    Suja, Mohammad; Debnath, Bishwajit; Bashar, Sunayna B.; Su, Longxing; Lake, Roger; Liu, Jianlin

    2018-05-01

    Electrically driven plasmon-exciton coupled random lasing is demonstrated by incorporating Ag nanoparticles on Cu-doped ZnO metal-semiconductor-metal (MSM) devices. Both photoluminescence and electroluminescence studies show that emission efficiencies have been enhanced significantly due to coupling between ZnO excitons and Ag surface plasmons. With the incorporation of Ag nanoparticles on ZnO MSM structures, internal quantum efficiency up to 6 times is demonstrated. Threshold current for lasing is decreased by as much as 30% while the output power is increased up to 350% at an injection current of 40 mA. A numerical simulation study reveals that hole carriers are generated in the ZnO MSM devices from impact ionization processes for subsequent plasmon-exciton coupled lasing.

  9. Laser-Material Interactions

    DTIC Science & Technology

    1989-09-01

    energy polarized in the TE direction is couple ,’ out of the zero-order reflected beam . Careful variations of grating depth and profile must be...the necessary decrease in the ,ero-order reflected and transmitted beams . Yamashita et al. [22] treated the coupling prob~em wli:hin the Rayleigh...OC(koh) 2, increase in the SPW intensity with grating depth for shallow gratings, saturation of the SPW intensity at a coupling efficiency near 100

  10. A coupled system of half-nitritation and ANAMMOX for mature landfill leachate nitrogen removal.

    PubMed

    Li, Yun; Li, Jun; Zhao, Baihang; Wang, Xiujie; Zhang, Yanzhuo; Wei, Jia; Bian, Wei

    2017-09-01

    A coupled system of membrane bioreactor-nitritation (MBR-nitritation) and up-flow anaerobic sludge blanket-anaerobic ammonium oxidation (UASB-ANAMMOX) was employed to treat mature landfill leachate containing high ammonia nitrogen and low C/N. MBR-nitritation was successfully realized for undiluted mature landfill leachate with initial concentrations of 900-1500 mg/L [Formula: see text] and 2000-4000 mg/L chemical oxygen demand. The effluent [Formula: see text] concentration and the [Formula: see text] accumulation efficiency were 889 mg/L and 97% at 125 d, respectively. Half-nitritation was quickly realized by adjustment of hydraulic retention time and dissolved oxygen (DO), and a low DO control strategy could allow long-term stable operation. The UASB-ANAMMOX system showed high effective nitrogen removal at a low concentration of mature landfill leachate. The nitrogen removal efficiency was inhibited at excessive influent substrate concentration and the nitrogen removal efficiency of the system decreased as the concentration of mature landfill leachate increased. The MBR-nitritation and UASB-ANAMMOX processes were coupled for mature landfill leachate treatment and together resulted in high effective nitrogen removal. The effluent average total nitrogen concentration and removal efficiency values were 176 mg/L and 83%, respectively. However, the average nitrogen removal load decreased from 2.16 to 0.77 g/(L d) at higher concentrations of mature landfill leachate.

  11. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine

    NASA Astrophysics Data System (ADS)

    Xu, Y. Y.; Chen, B.; Liu, J.

    2018-02-01

    Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model—a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.

  12. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.

    PubMed

    Xu, Y Y; Chen, B; Liu, J

    2018-02-01

    Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model-a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.

  13. Behavior of microorganisms in drinking water treatment by inductively coupled plasma system: Case study in ground water

    NASA Astrophysics Data System (ADS)

    Desmiarti, Reni; Hazmi, Ariadi; Martynis, Munas; Sutopo, Ulung Muhammad; Li, Fusheng

    2018-02-01

    Pathogenic bacteria, such as total coliforms (TC), fecal coliforms (FC) and other coliforms (OC), were removed from groundwater by inductively coupled plasma system treatment in continuous flow experiments. The objective of this study is to investigate the effect of flowrate and frequency on the behavior of microorganisms in drinking water treatment using inductively coupled plasma system (ICPS). The results showed that after 120 minutes of ICPS treatment, the removal efficiency with respect to TC, FC and OC decreased with increasing flowrate. The removal efficiency of FC was achieved at 100% in all runs. Compared to FC, the removal efficiencies with respect to TC and FC were lower than those with respect to TC and OC in the following order: FC >OC> TC. The disinfection yield of TC and OC significantly increased when the removal efficiency increased. The electromagnetic flux varied from 8.08±0.46 to 10.54±0.19 W/cm2. The results in the present work can be used to design a new technology for drinking water treatment to remove all pathogenic bacteria without using hazardous chemicals.

  14. Exploring Different Forms of Base Stabilization

    DOT National Transportation Integrated Search

    2012-07-24

    Our nations roadways have experienced a growing demand over the past couple of decades. With decreasing funds and the need to provide the public with an efficient, safe, and cost effective roadway system, there has been a remarkable increase in th...

  15. The Virtual Brain: Modeling Biological Correlates of Recovery after Chronic Stroke

    PubMed Central

    Falcon, Maria Inez; Riley, Jeffrey D.; Jirsa, Viktor; McIntosh, Anthony R.; Shereen, Ahmed D.; Chen, E. Elinor; Solodkin, Ana

    2015-01-01

    There currently remains considerable variability in stroke survivor recovery. To address this, developing individualized treatment has become an important goal in stroke treatment. As a first step, it is necessary to determine brain dynamics associated with stroke and recovery. While recent methods have made strides in this direction, we still lack physiological biomarkers. The Virtual Brain (TVB) is a novel application for modeling brain dynamics that simulates an individual’s brain activity by integrating their own neuroimaging data with local biophysical models. Here, we give a detailed description of the TVB modeling process and explore model parameters associated with stroke. In order to establish a parallel between this new type of modeling and those currently in use, in this work we establish an association between a specific TVB parameter (long-range coupling) that increases after stroke with metrics derived from graph analysis. We used TVB to simulate the individual BOLD signals for 20 patients with stroke and 10 healthy controls. We performed graph analysis on their structural connectivity matrices calculating degree centrality, betweenness centrality, and global efficiency. Linear regression analysis demonstrated that long-range coupling is negatively correlated with global efficiency (P = 0.038), but is not correlated with degree centrality or betweenness centrality. Our results suggest that the larger influence of local dynamics seen through the long-range coupling parameter is closely associated with a decreased efficiency of the system. We thus propose that the increase in the long-range parameter in TVB (indicating a bias toward local over global dynamics) is deleterious because it reduces communication as suggested by the decrease in efficiency. The new model platform TVB hence provides a novel perspective to understanding biophysical parameters responsible for global brain dynamics after stroke, allowing the design of focused therapeutic interventions. PMID:26579071

  16. Reduced haemodynamic coupling and exercise are associated with vascular stiffening in pulmonary arterial hypertension.

    PubMed

    Bellofiore, Alessandro; Dinges, Eric; Naeije, Robert; Mkrdichian, Hamorabi; Beussink-Nelson, Lauren; Bailey, Melissa; Cuttica, Michael J; Sweis, Ranya; Runo, James R; Keevil, Jon G; Francois, Christopher J; Shah, Sanjiv J; Chesler, Naomi C

    2017-03-01

    Inadequate right ventricular (RV) and pulmonary arterial (PA) functional responses to exercise are important yet poorly understood features of pulmonary arterial hypertension (PAH). This study combined invasive catheterisation with echocardiography to assess RV afterload, RV function and ventricular-vascular coupling in subjects with PAH. Twenty-six subjects with PAH were prospectively recruited to undergo right heart catheterisation and Doppler echocardiography at rest and during incremental exercise, and cardiac MRI at rest. Measurements at rest included basic haemodynamics, RV function and coupling efficiency (η). Measurements during incremental exercise included pulmonary vascular resistance (Z 0 ), characteristic impedance (Z C , a measure of proximal PA stiffness) and proximal and distal PA compliance (C PA ). In patients with PAH, the proximal PAs were significantly stiffer at maximum exercise (Z C =2.31±0.38 vs 1.33±0.15 WU×m 2 at rest; p=0.003) and PA compliance was decreased (C PA =0.88±0.10 vs 1.32±0.17 mL/mm Hg/m 2 at rest; p=0.0002). Z 0 did not change with exercise. As a result, the resistance-compliance (RC) time decreased with exercise (0.67±0.05 vs 1.00±0.07 s at rest; p<10 -6 ). When patients were grouped according to resting coupling efficiency, those with poorer η exhibited stiffer proximal PAs at rest, a lower maximum exercise level, and more limited C PA reduction at maximum exercise. In PAH, exercise causes proximal and distal PA stiffening, which combined with preserved Z 0 results in decreased RC time with exercise. Stiff PAs at rest may also contribute to poor haemodynamic coupling, reflecting reduced pulmonary vascular reserve that contributes to limit the maximum exercise level tolerated. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Mitochondrial oxidative phosphorylation efficiency is upregulated during fasting in two major oxidative tissues of ducklings.

    PubMed

    Monternier, Pierre-Axel; Teulier, Loïc; Drai, Jocelyne; Bourguignon, Aurore; Collin-Chavagnac, Delphine; Hervant, Frédéric; Rouanet, Jean-Louis; Roussel, Damien

    2017-10-01

    Fasted endothermic vertebrates must develop physiological responses to maximize energy conservation and survival. The aim of this study was to determine the effect of 1-wk. fasting in 5-wk. old ducklings (Cairina moschata) from whole-body resting metabolic rate and body temperature to metabolic phenotype of tissues and mitochondrial coupling efficiency. At the level of whole organism, the mass-specific metabolic rate of ducklings was decreased by 40% after 1-wk. of fasting, which was associated with nocturnal Tb declines and shallow diurnal hypothermia during fasting. At the cellular level, fasting induced a large reduction in liver, gastrocnemius (oxidative) and pectoralis (glycolytic) muscle masses together with a fuel selection towards lipid oxidation and ketone body production in liver and a lower glycolytic phenotype in skeletal muscles. At the level of mitochondria, fasting induced a reduction of oxidative phosphorylation activities and an up-regulation of coupling efficiency (+30% on average) in liver and skeletal muscles. The present integrative study shows that energy conservation in fasted ducklings is mainly achieved by an overall reduction in mitochondrial activity and an increase in mitochondrial coupling efficiency, which would, in association with shallow hypothermia, increase the conservation of endogenous fuel stores during fasting. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Integrated nanoplasmonic quantum interfaces for room-temperature single-photon sources

    NASA Astrophysics Data System (ADS)

    Peyskens, Frédéric; Englund, Dirk; Chang, Darrick

    2017-12-01

    We describe a general analytical framework of a nanoplasmonic cavity-emitter system interacting with a dielectric photonic waveguide. Taking into account emitter quenching and dephasing, our model directly reveals the single-photon extraction efficiency η as well as the indistinguishability I of photons coupled into the waveguide mode. Rather than minimizing the cavity modal volume, our analysis predicts an optimum modal volume to maximize η that balances waveguide coupling and spontaneous emission rate enhancement. Surprisingly, our model predicts that near-unity indistinguishability is possible, but this requires a much smaller modal volume, implying a fundamental performance trade-off between high η and I at room temperature. Finally, we show that maximizing η I requires that the system has to be driven in the weak coupling regime because quenching effects and decreased waveguide coupling drastically reduce η in the strong coupling regime.

  19. Radiative decay engineering 3. Surface plasmon-coupled directional emission

    PubMed Central

    Lakowicz, Joseph R.

    2009-01-01

    A new method of fluorescence detection that promises to increase sensitivity by 20- to 1000-fold is described. This method will also decrease the contribution of sample autofluorescence to the detected signal. The method depends on the coupling of excited fluorophores with the surface plasmon resonance present in thin metal films, typically silver and gold. The phenomenon of surface plasmon-coupled emission (SPCE) occurs for fluorophores 20–250 nm from the metal surface, allowing detection of fluorophores over substantial distances beyond the metal–sample interface. SPCE depends on interactions of the excited fluorophore with the metal surface. This interaction is independent of the mode of excitation; that is, it does not require evanescent wave or surface-plasmon excitation. In a sense, SPCE is the inverse process of the surface plasmon resonance absorption of thin metal films. Importantly, SPCE occurs over a narrow angular distribution, converting normally isotropic emission into easily collected directional emission. Up to 50% of the emission from unoriented samples can be collected, much larger than typical fluorescence collection efficiencies near 1% or less. SPCE is due only to fluorophores near the metal surface and may be regarded as emission from the induced surface plasmons. Autofluorescence from more distal parts of the sample is decreased due to decreased coupling. SPCE is highly polarized and autofluorescence can be further decreased by collecting only the polarized component or only the light propagating with the appropriate angle. Examples showing how simple optical configurations can be used in diagnostics, sensing, or biotechnology applications are presented. Surface plasmon-coupled emission is likely to find widespread applications throughout the biosciences. PMID:14690679

  20. The stoichiometry of the cytochrome P-450-catalyzed metabolism of methoxyflurane and benzphetamine in the presence and absence of cytochrome b5.

    PubMed

    Gruenke, L D; Konopka, K; Cadieu, M; Waskell, L

    1995-10-20

    The complete stoichiometry of the metabolism of the cytochrome b5 (cyt b5)-requiring substrate, methoxyflurane, by purified cytochrome P-450 2B4 was compared to that of another substrate, benzphetamine, which does not require cyt b5 for its metabolism. Cyt b5 invariably improved the efficiency of product formation. That is, in the presence of cyt b5 a greater percentage of the reducing equivalents from NADPH were utilized to generate substrate metabolites, primarily at the expense of the side product, superoxide. With methoxyflurane, cyt b5 addition always resulted in an increased rate of product formation, while with benzphetamine the rate of product formation remained unchanged, increased or decreased. The apparently contradictory observations of increased reaction efficiency but decrease in total product formation for benzphetamine can be explained by a second effect of cyt b5. Under some experimental conditions cyt b5 inhibits total NADPH consumption. Whether stimulation, inhibition, or no change in product formation is observed in the presence of cyt b5 depends on the net effect of the stimulatory and inhibitory effects of cyt b5. When total NADPH consumption is inhibited by cyt b5, the rapidly metabolized, highly coupled (approximately equal to 50%) substrate, benzphetamine, undergoes a net decrease in metabolism not counterbalanced by the increase in the efficiency (2-20%) of the reaction. In contrast, in the presence of the slowly metabolized, poorly coupled (approximately equal to 0.5-3%) substrate, methoxyflurane, inhibition of total NADPH consumption by cyt b5 was never sufficient to overcome the stimulation of product formation due to an increase in efficiency of the reaction.

  1. Surface Plasmon Polariton Dependence on Metal Surface Morphology

    DTIC Science & Technology

    2007-11-13

    is equipped with a high efficiency collector consisting of a parabolic mirror and light guide (2, Fig. 8), which is directly coupled to the... compound of bφ = 0.7 eV and all other values as previously defined, a linear decrease in sheet charge is expected with a maximum value at Vg=0 and

  2. Cortical Amyloid Beta in Cognitively Normal Elderly Adults is Associated with Decreased Network Efficiency within the Cerebro-Cerebellar System

    PubMed Central

    Steininger, Stefanie C.; Liu, Xinyang; Gietl, Anton; Wyss, Michael; Schreiner, Simon; Gruber, Esmeralda; Treyer, Valerie; Kälin, Andrea; Leh, Sandra; Buck, Alfred; Nitsch, Roger M.; Prüssmann, Klaas P.; Hock, Christoph; Unschuld, Paul G.

    2014-01-01

    Background: Deposition of cortical amyloid beta (Aβ) is a correlate of aging and a risk factor for Alzheimer disease (AD). While several higher order cognitive processes involve functional interactions between cortex and cerebellum, this study aims to investigate effects of cortical Aβ deposition on coupling within the cerebro-cerebellar system. Methods: We included 15 healthy elderly subjects with normal cognitive performance as assessed by neuropsychological testing. Cortical Aβ was quantified using (11)carbon-labeled Pittsburgh compound B positron-emission-tomography late frame signals. Volumes of brain structures were assessed by applying an automated parcelation algorithm to three dimensional magnetization-prepared rapid gradient-echo T1-weighted images. Basal functional network activity within the cerebro-cerebellar system was assessed using blood-oxygen-level dependent resting state functional magnetic resonance imaging at the high field strength of 7 T for measuring coupling between cerebellar seeds and cerebral gray matter. A bivariate regression approach was applied for identification of brain regions with significant effects of individual cortical Aβ load on coupling. Results: Consistent with earlier reports, a significant degree of positive and negative coupling could be observed between cerebellar seeds and cerebral voxels. Significant positive effects of cortical Aβ load on cerebro-cerebellar coupling resulted for cerebral brain regions located in inferior temporal lobe, prefrontal cortex, hippocampus, parahippocampal gyrus, and thalamus. Conclusion: Our findings indicate that brain amyloidosis in cognitively normal elderly subjects is associated with decreased network efficiency within the cerebro-cerebellar system. While the identified cerebral regions are consistent with established patterns of increased sensitivity for Aβ-associated neurodegeneration, additional studies are needed to elucidate the relationship between dysfunction of the cerebro-cerebellar system and risk for AD. PMID:24672483

  3. Cortical Amyloid Beta in Cognitively Normal Elderly Adults is Associated with Decreased Network Efficiency within the Cerebro-Cerebellar System.

    PubMed

    Steininger, Stefanie C; Liu, Xinyang; Gietl, Anton; Wyss, Michael; Schreiner, Simon; Gruber, Esmeralda; Treyer, Valerie; Kälin, Andrea; Leh, Sandra; Buck, Alfred; Nitsch, Roger M; Prüssmann, Klaas P; Hock, Christoph; Unschuld, Paul G

    2014-01-01

    Deposition of cortical amyloid beta (Aβ) is a correlate of aging and a risk factor for Alzheimer disease (AD). While several higher order cognitive processes involve functional interactions between cortex and cerebellum, this study aims to investigate effects of cortical Aβ deposition on coupling within the cerebro-cerebellar system. We included 15 healthy elderly subjects with normal cognitive performance as assessed by neuropsychological testing. Cortical Aβ was quantified using (11)carbon-labeled Pittsburgh compound B positron-emission-tomography late frame signals. Volumes of brain structures were assessed by applying an automated parcelation algorithm to three dimensional magnetization-prepared rapid gradient-echo T1-weighted images. Basal functional network activity within the cerebro-cerebellar system was assessed using blood-oxygen-level dependent resting state functional magnetic resonance imaging at the high field strength of 7 T for measuring coupling between cerebellar seeds and cerebral gray matter. A bivariate regression approach was applied for identification of brain regions with significant effects of individual cortical Aβ load on coupling. Consistent with earlier reports, a significant degree of positive and negative coupling could be observed between cerebellar seeds and cerebral voxels. Significant positive effects of cortical Aβ load on cerebro-cerebellar coupling resulted for cerebral brain regions located in inferior temporal lobe, prefrontal cortex, hippocampus, parahippocampal gyrus, and thalamus. Our findings indicate that brain amyloidosis in cognitively normal elderly subjects is associated with decreased network efficiency within the cerebro-cerebellar system. While the identified cerebral regions are consistent with established patterns of increased sensitivity for Aβ-associated neurodegeneration, additional studies are needed to elucidate the relationship between dysfunction of the cerebro-cerebellar system and risk for AD.

  4. Observation of reflected waves on the SABRE positive polarity inductive adder MITL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, M.E.; Poukey, J.W.; Mendel, C.W.

    We are studying the coupling of extraction applied-B ion diodes to Magnetically Insulated Transmission Line (MITLs) on the SABRE (Sandia Accelerator and Beam Research Experiment, 6 MV, 300 kA) positive polarity inductive voltage adder. Our goal is to determine conditions under which efficient coupling occurs. The best total power efficiency for an ideal ion diode load (i.e., without parasitic losses) is obtained by maximizing the product of cathode current and gap voltage. MITLs require that the load impedance be undermatched to the self-limited line operating impedance for efficient transfer of power to ion diodes, independent of transit time isolation, andmore » even in the case of multiple cathode system with significant vacuum electron flow. We observe that this undermatched condition results in a reflected wave which decreases the line voltage and gap electron sheath current, and increases the anode and cathode current in a time-dependent way. The MITL diode coupling is determined by the flow impedance at the adder exit. We also show that the flow impedance increases along the extension MITL on SABRE. Experimental measurements of current and peak voltage are compared to analytical models and TWOQUICK 2.5-D PIC code simulations.« less

  5. Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells

    PubMed Central

    Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin

    2017-01-01

    Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na+ entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na+ entry efficiency of somatic AP. Activating inward Ca2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca2+-activated outward K+ current in dendrites, however, decreases Na+ entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na+ influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption. PMID:28919852

  6. Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells.

    PubMed

    Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin

    2017-01-01

    Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na + entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na + entry efficiency of somatic AP. Activating inward Ca 2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca 2+ -activated outward K + current in dendrites, however, decreases Na + entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na + influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption.

  7. A resolved two-way coupled CFD/6-DOF approach for predicting embolus transport and the embolus-trapping efficiency of IVC filters.

    PubMed

    Aycock, Kenneth I; Campbell, Robert L; Manning, Keefe B; Craven, Brent A

    2017-06-01

    Inferior vena cava (IVC) filters are medical devices designed to provide a mechanical barrier to the passage of emboli from the deep veins of the legs to the heart and lungs. Despite decades of development and clinical use, IVC filters still fail to prevent the passage of all hazardous emboli. The objective of this study is to (1) develop a resolved two-way computational model of embolus transport, (2) provide verification and validation evidence for the model, and (3) demonstrate the ability of the model to predict the embolus-trapping efficiency of an IVC filter. Our model couples computational fluid dynamics simulations of blood flow to six-degree-of-freedom simulations of embolus transport and resolves the interactions between rigid, spherical emboli and the blood flow using an immersed boundary method. Following model development and numerical verification and validation of the computational approach against benchmark data from the literature, embolus transport simulations are performed in an idealized IVC geometry. Centered and tilted filter orientations are considered using a nonlinear finite element-based virtual filter placement procedure. A total of 2048 coupled CFD/6-DOF simulations are performed to predict the embolus-trapping statistics of the filter. The simulations predict that the embolus-trapping efficiency of the IVC filter increases with increasing embolus diameter and increasing embolus-to-blood density ratio. Tilted filter placement is found to decrease the embolus-trapping efficiency compared with centered filter placement. Multiple embolus-trapping locations are predicted for the IVC filter, and the trapping locations are predicted to shift upstream and toward the vessel wall with increasing embolus diameter. Simulations of the injection of successive emboli into the IVC are also performed and reveal that the embolus-trapping efficiency decreases with increasing thrombus load in the IVC filter. In future work, the computational tool could be used to investigate IVC filter design improvements, the effect of patient anatomy on embolus transport and IVC filter embolus-trapping efficiency, and, with further development and validation, optimal filter selection and placement on a patient-specific basis.

  8. Energy Analysis of n-Dodecane Combustion in a Hetero/Homogeneous Heat-Recirculating Microreactor for Portable Power Applications

    NASA Astrophysics Data System (ADS)

    Waits, C. M.; Tolmachoff, E. D.; Allmon, W. R.; Zecher-Freeman, N. E.

    2016-11-01

    An energy analysis is presented for n-dodecane/air combustion in a heat recirculating Inconel microreactor under vacuum conditions. Microreactor channels are partially coated with platinum enabling operating with coupled heterogeneous and homogeneous reactions. The radiant efficiency, important for thermophotovoltaic energy conversion, was found to decrease from 57% to 52% over 5 different runs covering 377 min of operation. A similar decrease in combustion efficiency was observed with 6%-8% energy lost to incomplete combustion and 5%- 6% lost through sensible heat in the exhaust. The remaining thermal loss is from unusable radiation and conduction through inlet and outlet tubing. Changes in the Inconel microreactor geometry and emissivity properties were observed.

  9. Homonuclear Hartmann-Hahn transfer with reduced relaxation losses by use of the MOCCA-XY16 multiple pulse sequence

    NASA Astrophysics Data System (ADS)

    Furrer, Julien; Kramer, Frank; Marino, John P.; Glaser, Steffen J.; Luy, Burkhard

    2004-01-01

    Homonuclear Hartmann-Hahn transfer is one of the most important building blocks in modern high-resolution NMR. It constitutes a very efficient transfer element for the assignment of proteins, nucleic acids, and oligosaccharides. Nevertheless, in macromolecules exceeding ˜10 kDa TOCSY-experiments can show decreasing sensitivity due to fast transverse relaxation processes that are active during the mixing periods. In this article we propose the MOCCA-XY16 multiple pulse sequence, originally developed for efficient TOCSY transfer through residual dipolar couplings, as a homonuclear Hartmann-Hahn sequence with improved relaxation properties. A theoretical analysis of the coherence transfer via scalar couplings and its relaxation behavior as well as experimental transfer curves for MOCCA-XY16 relative to the well-characterized DIPSI-2 multiple pulse sequence are given.

  10. Homonuclear Hartmann-Hahn transfer with reduced relaxation losses by use of the MOCCA-XY16 multiple pulse sequence.

    PubMed

    Furrer, Julien; Kramer, Frank; Marino, John P; Glaser, Steffen J; Luy, Burkhard

    2004-01-01

    Homonuclear Hartmann-Hahn transfer is one of the most important building blocks in modern high-resolution NMR. It constitutes a very efficient transfer element for the assignment of proteins, nucleic acids, and oligosaccharides. Nevertheless, in macromolecules exceeding approximately 10 kDa TOCSY-experiments can show decreasing sensitivity due to fast transverse relaxation processes that are active during the mixing periods. In this article we propose the MOCCA-XY16 multiple pulse sequence, originally developed for efficient TOCSY transfer through residual dipolar couplings, as a homonuclear Hartmann-Hahn sequence with improved relaxation properties. A theoretical analysis of the coherence transfer via scalar couplings and its relaxation behavior as well as experimental transfer curves for MOCCA-XY16 relative to the well-characterized DIPSI-2 multiple pulse sequence are given.

  11. Strengthening and Improving Yield Asymmetry of Magnesium Alloys by Second Phase Particle Refinement Under the Guidance of Integrated Computational Materials Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Lavender, Curt

    2015-05-08

    Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO 2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size andmore » volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.« less

  12. Critical Coupling Between Optical Fibers and WGM Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Savchenkov, Anatoliy

    2009-01-01

    Two recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:

  13. Iron control on global productivity: an efficient inverse model of the ocean's coupled phosphate and iron cycles.

    NASA Astrophysics Data System (ADS)

    Pasquier, B.; Holzer, M.; Frants, M.

    2016-02-01

    We construct a data-constrained mechanistic inverse model of the ocean's coupled phosphorus and iron cycles. The nutrient cycling is embedded in a data-assimilated steady global circulation. Biological nutrient uptake is parameterized in terms of nutrient, light, and temperature limitations on growth for two classes of phytoplankton that are not transported explicitly. A matrix formulation of the discretized nutrient tracer equations allows for efficient numerical solutions, which facilitates the objective optimization of the key biogeochemical parameters. The optimization minimizes the misfit between the modelled and observed nutrient fields of the current climate. We systematically assess the nonlinear response of the biological pump to changes in the aeolian iron supply for a variety of scenarios. Specifically, Green-function techniques are employed to quantify in detail the pathways and timescales with which those perturbations are propagated throughout the world oceans, determining the global teleconnections that mediate the response of the global ocean ecosystem. We confirm previous findings from idealized studies that increased iron fertilization decreases biological production in the subtropical gyres and we quantify the counterintuitive and asymmetric response of global productivity to increases and decreases in the aeolian iron supply.

  14. Effect of granular activated carbon addition on the effluent properties and fouling potentials of membrane-coupled expanded granular sludge bed process.

    PubMed

    Ding, An; Liang, Heng; Qu, Fangshu; Bai, Langming; Li, Guibai; Ngo, Huu Hao; Guo, Wenshan

    2014-11-01

    To mitigate membrane fouling of membrane-coupled anaerobic process, granular activated carbon (GAC: 50 g/L) was added into an expanded granular sludge bed (EGSB). A short-term ultrafiltration test was investigated for analyzing membrane fouling potential and underlying fouling mechanisms. The results showed that adding GAC into the EGSB not only improved the COD removal efficiency, but also alleviated membrane fouling efficiently because GAC could help to reduce soluble microbial products, polysaccharides and proteins by 26.8%, 27.8% and 24.7%, respectively, compared with the control system. Furthermore, excitation emission matrix (EEM) fluorescence spectroscopy analysis revealed that GAC addition mainly reduced tryptophan protein-like, aromatic protein-like and fulvic-like substances. In addition, the resistance distribution analysis demonstrated that adding GAC primarily decreased the cake layer resistance by 53.5%. The classic filtration mode analysis showed that cake filtration was the major fouling mechanism for membrane-coupled EGSB process regardless of the GAC addition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Lifetime enhancement for multiphoton absorption in intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Bezerra, Anibal T.; Studart, Nelson

    2017-08-01

    A semiconductor structure consisting of two coupled quantum wells embedded into the intrinsic region of a p-i-n junction is proposed as an intermediate band solar cell with a photon ratchet state, which would lead to increasing the cell efficiency. The conduction subband of the right-hand side quantum well works as the intermediated band, whereas the excited conduction subband of the left-hand side quantum well operates as the ratchet state. The photoelectrons in the intermediate band are scattered through the thin wells barrier and accumulated into the ratchet subband. A rate equation model for describing the charge transport properties is presented. The efficiency of the current generation is analyzed by studying the occupation of the wells subbands, taking into account the charge dynamic behavior provided by the electrical contacts connected to the cell. The current generation efficiency depends essentially from the relations between the generation, recombination rates and the scattering rate to the ratchet state. The inclusion of the ratchet states led to both an increase and a decrease in the cell current depending on the transition rates. This suggests that the coupling between the intermediate band and the ratchet state is a key point in developing an efficient solar cell.

  16. Impact of vegetation on land-atmosphere coupling strength and its implication for desertification mitigation over East Asia

    NASA Astrophysics Data System (ADS)

    Myoung, Boksoon; Choi, Yong-Sang; Choi, Suk-Jin; Park, Seon Ki

    2012-06-01

    Desertification of the East Asian drylands and the consequent dust transport have been serious concerns for adjacent Asian countries as well as the western United States. Tree planting has been considered one applicable strategy to mitigate the desertification. However, the desired effect of the tree planting would not be brought to fruition unless the newly planted trees change the coupling characteristics between the land and the atmosphere. Based on this perception, we attempt to clarify the effects of vegetation on the coupling strength between the atmosphere and land surface, and we suggest the most efficient areas of tree planting for desertification mitigation in East Asia. Using regional vegetation-atmosphere coupled model simulations, coupling strength with and without vegetation was computed and compared with each other. An increased vegetation fraction reduces the coupling strength in June, July, and August (JJA), primarily due to decreased evapotranspiration variability. This effect is pronounced over the Manchurian Plains and the highly populated areas of Beijing and Tianjin. The reduced coupling strength tends to weaken feedback between soil moisture and precipitation as a maintenance mechanism of warm season droughts in the midlatitudes and subsequently decrease the probability of droughts, a finding that is reflected in the enhanced JJA mean soil moisture. However, some drylands like the eastern edges of the Gobi desert present marginal or even opposite changes in coupling strength, meaning a limited effect of vegetation on relieving droughts. Therefore, given limited financial and human resources, acupuncture-like afforestation, i.e., concentrated tree planting in a particular region where the coupling strength can be substantially reduced by vegetation, is an effective strategy to secure long-standing desertification mitigation.

  17. Heralding efficiency and correlated-mode coupling of near-IR fiber-coupled photon pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, P. Ben; Rosenberg, Danna; Stelmakh, Veronika

    We report on a systematic experimental study of heralding efficiency and generation rate of telecom-band infrared photon pairs generated by spontaneous parametric down-conversion and coupled to single mode optical fibers. We define the correlated-mode coupling efficiency--an inherent source efficiency--and explain its relation to heralding efficiency. For our experiment, we developed a reconfigurable computer controlled pump-beam and collection-mode optical apparatus which we used to measure the generation rate and correlated-mode coupling efficiency. The use of low-noise, high-efficiency superconducting-nanowire single-photon-detectors in this setup allowed us to explore focus configurations with low overall photon flux. The measured data agree well with theory andmore » we demonstrated a correlated-mode coupling efficiency of 97%±2%, which is the highest efficiency yet achieved for this type of system. These results confirm theoretical treatments and demonstrate that very high overall heralding efficiencies can, in principle, be achieved in quantum optical systems. We expect that these results and techniques will be widely incorporated into future systems that require, or benefit from, a high heralding efficiency.« less

  18. Heralding efficiency and correlated-mode coupling of near-IR fiber-coupled photon pairs

    DOE PAGES

    Dixon, P. Ben; Rosenberg, Danna; Stelmakh, Veronika; ...

    2014-10-06

    We report on a systematic experimental study of heralding efficiency and generation rate of telecom-band infrared photon pairs generated by spontaneous parametric down-conversion and coupled to single mode optical fibers. We define the correlated-mode coupling efficiency--an inherent source efficiency--and explain its relation to heralding efficiency. For our experiment, we developed a reconfigurable computer controlled pump-beam and collection-mode optical apparatus which we used to measure the generation rate and correlated-mode coupling efficiency. The use of low-noise, high-efficiency superconducting-nanowire single-photon-detectors in this setup allowed us to explore focus configurations with low overall photon flux. The measured data agree well with theory andmore » we demonstrated a correlated-mode coupling efficiency of 97%±2%, which is the highest efficiency yet achieved for this type of system. These results confirm theoretical treatments and demonstrate that very high overall heralding efficiencies can, in principle, be achieved in quantum optical systems. We expect that these results and techniques will be widely incorporated into future systems that require, or benefit from, a high heralding efficiency.« less

  19. Nonlinear digital out-of-plane waveguide coupler based on nonlinear scattering of a single graphene layer

    NASA Astrophysics Data System (ADS)

    Asadi, Reza; Ouyang, Zhengbiao

    2018-03-01

    A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.

  20. Temperature influence on luminescent coupling efficiency in concentrator MJ SCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvarts, Maxim, E-mail: shvarts@scell.ioffe.ru; Emelyanov, Viktor; Mintairov, Mikhail

    2015-09-28

    In the work, presented are the results of investigation of temperature dependencies of the luminescent coupling effectiveness in lattice-matched (LM) GaInP/GaAs/Ge and metamorphic (MM) GaInP/GaInAs/Ge solar cells. The “ordinary” luminescent coupling effectiveness rise has been observed with temperature decrease for GaAs-Ge, GaInP-GaInAs and GaInAs-Ge pairs of subcells, and its limiting values have been defined. A “reverse” behavior of the luminescent coupling effectiveness for the GaInP-GaAs pair has been found, determined emittance potential drop of wideband GaInP p-n junction. It is shown that the established “unusual” behavior of the LC efficiency may be determined by the presence of thermalized centers ofmore » non-radiative recombination of charge carriers for the GaInP subcell in GaInP/GaAs/Ge LM structure. Estimation of characteristic parameters for the nonradiative recombination processes in wideband GaInP p-n junction has been carried out, and values for the energy of the nonradiative center thermalization (E{sub nrad2} =79.42meV) and for the activation energy of nonradiative band-to-band recombination (E{sub A}=33.4meV) have been obtained.« less

  1. First cytoplasmic loop of glucagon-like peptide-1 receptor can function at the third cytoplasmic loop position of rhodopsin.

    PubMed

    Yamashita, Takahiro; Tose, Koji; Shichida, Yoshinori

    2008-01-01

    G protein-coupled receptors (GPCRs) are classified into several families based on their amino acid sequences. In family 1, GPCRs such as rhodopsin and adrenergic receptor, the structure-function relationship has been extensively investigated to demonstrate that exposure of the third cytoplasmic loop is essential for selective G protein activation. In contrast, much less is known about other families. Here we prepared chimeric mutants between Gt-coupled rhodopsin and Gi/Go- and Gs-coupled glucagon-like peptide-1 (GLP-1) receptor of family 2 and tried to identify the loop region that functions at the third cytoplasmic loop position of rhodopsin. We succeeded in expressing a mutant having the first cytoplasmic loop of GLP-1 receptor and found that this mutant activated Gi and Go efficiently but did not activate Gt. Moreover, the rhodopsin mutant having the first loop of Gs-coupled secretin receptor of family 2 decreased the Gi and Go activation efficiencies. Therefore, the first loop of GLP-1 receptor would share a similar role to the third loop of rhodopsin in G protein activation. This result strongly suggested that different families of GPCRs have maintained molecular architectures of their ancestral types to generate a common mechanism, namely exposure of the cytoplasmic loop, to activate peripheral G protein.

  2. Theoretical Analysis of Two Novel Hybrid Thermoelectric-Photovoltaic Systems Based on Cu₂ZnSnS₄ Solar Cells.

    PubMed

    Lorenzi, Bruno; Contento, Gaetano; Sabatelli, Vincenzo; Rizzo, Antonella; Narducci, Dario

    2017-03-01

    The development and commercialization of Photovoltaic (PV) cells with good cost-efficiency trade-off not using critical raw materials (CRMs) is one of the strategies chosen by the European Community (EC) to address the Energy Roadmap 2050. In this context Cu2ZnSnS4 (CZTS) solar cells are attracting a major interest since they have the potential to combine low price with relatively high conversion efficiencies. Although a ≈9% lab scale efficiency has already been reported for CZTS this technology is still far from being competitive in terms of cost per peak-power (€/Wp) with other common materials. One possible near-future solution to increase the CZTS competiveness comes from thermoelectrics. Actually it has already been shown that Hybrid Thermoelectric-Photovoltaic Systems (HTEPVs) based on CIGS, another kesterite very similar to CZTS, can lead to a significant efficiency improvement. However it has been also clarified how the optimal hybridization strategy cannot come from the simple coupling of solar cells with commercial TEGs, but special layouts have to be implemented. Furthermore, since solar cell performances are well known to decrease with temperature, thermal decoupling strategies of the PV and TEG sections have to be taken. To address these issues, we developed a model for two different HTEPV solutions, both coupled with CZTS solar cells. In the first case we considered a Thermally-Coupled HTEPV device (TC-HTEPV) in which the TEG is placed underneath the solar cell and in thermal contact with it. The second system consists instead of an Optically-Coupled but thermally decoupled device (OC-HTEPV) in which part of the solar spectrum is focused by a non-imaging optical concentrator on the TEG hot side. For both solutions the model returns conversion efficiencies higher than that of the CZTS solar cell alone. Specifically, increases of ≈30% are predicted for both kind of systems considered.

  3. Critical analysis of fragment-orbital DFT schemes for the calculation of electronic coupling values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schober, Christoph; Reuter, Karsten; Oberhofer, Harald, E-mail: harald.oberhofer@ch.tum.de

    2016-02-07

    We present a critical analysis of the popular fragment-orbital density-functional theory (FO-DFT) scheme for the calculation of electronic coupling values. We discuss the characteristics of different possible formulations or “flavors” of the scheme which differ by the number of electrons in the calculation of the fragments and the construction of the Hamiltonian. In addition to two previously described variants based on neutral fragments, we present a third version taking a different route to the approximate diabatic state by explicitly considering charged fragments. In applying these FO-DFT flavors to the two molecular test sets HAB7 (electron transfer) and HAB11 (hole transfer),more » we find that our new scheme gives improved electronic couplings for HAB7 (−6.2% decrease in mean relative signed error) and greatly improved electronic couplings for HAB11 (−15.3% decrease in mean relative signed error). A systematic investigation of the influence of exact exchange on the electronic coupling values shows that the use of hybrid functionals in FO-DFT calculations improves the electronic couplings, giving values close to or even better than more sophisticated constrained DFT calculations. Comparing the accuracy and computational cost of each variant, we devise simple rules to choose the best possible flavor depending on the task. For accuracy, our new scheme with charged-fragment calculations performs best, while numerically more efficient at reasonable accuracy is the variant with neutral fragments.« less

  4. Fiber-coupling efficiency of Gaussian-Schell model beams through an ocean to fiber optical communication link

    NASA Astrophysics Data System (ADS)

    Hu, Beibei; Shi, Haifeng; Zhang, Yixin

    2018-06-01

    We theoretically study the fiber-coupling efficiency of Gaussian-Schell model beams propagating through oceanic turbulence. The expression of the fiber-coupling efficiency is derived based on the spatial power spectrum of oceanic turbulence and the cross-spectral density function. Our work shows that the salinity fluctuation has a greater impact on the fiber-coupling efficiency than temperature fluctuation does. We can select longer λ in the "ocean window" and higher spatial coherence of light source to improve the fiber-coupling efficiency of the communication link. We also can achieve the maximum fiber-coupling efficiency by choosing design parameter according specific oceanic turbulence condition. Our results are able to help the design of optical communication link for oceanic turbulence to fiber sensor.

  5. Coupling efficiency of laser beam to multimode fiber

    NASA Astrophysics Data System (ADS)

    Niu, Jinfu; Xu, Jianqiu

    2007-06-01

    The coupling efficiency of laser beam to multimode fiber is given by geometrical optics, and the relation between the maximum coupling efficiency and the beam propagation factor M2 is analyzed. An equivalent factor MF2 for the multimode fiber is introduced to characterize the fiber coupling capability. The coupling efficiency of laser beam to multimode fiber is calculated in respect of the ratio M2/MF2 by the overlapping integral theory. The optimal coupling efficiency can be roughly estimated by the ratio of M2 to MF2 but with a large error range. The deviation comes from the lacks of information on the detail of phase and intensity profile in the beam factor M2.

  6. Minimal evolution time and quantum speed limit of non-Markovian open systems

    PubMed Central

    Meng, Xiangyi; Wu, Chengjun; Guo, Hong

    2015-01-01

    We derive a sharp bound as the quantum speed limit (QSL) for the minimal evolution time of quantum open systems in the non-Markovian strong-coupling regime with initial mixed states by considering the effects of both renormalized Hamiltonian and dissipator. For a non-Markovian quantum open system, the possible evolution time between two arbitrary states is not unique, among the set of which we find that the minimal one and its QSL can decrease more steeply by adjusting the coupling strength of the dissipator, which thus provides potential improvements of efficiency in many quantum physics and quantum information areas. PMID:26565062

  7. Whispering gallery effect in relativistic optics

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Law, K. F. F.; Korneev, Ph.; Fujioka, S.; Kojima, S.; Lee, S.-H.; Sakata, S.; Matsuo, K.; Oshima, A.; Morace, A.; Arikawa, Y.; Yogo, A.; Nakai, M.; Norimatsu, T.; d'Humières, E.; Santos, J. J.; Kondo, K.; Sunahara, A.; Gus'kov, S.; Tikhonchuk, V.

    2018-03-01

    relativistic laser pulse, confined in a cylindrical-like target, under specific conditions may perform multiple scattering along the internal target surface. This results in the confinement of the laser light, leading to a very efficient interaction. The demonstrated propagation of the laser pulse along the curved surface is just yet another example of the "whispering gallery" effect, although nonideal due to laser-plasma coupling. In the relativistic domain its important feature is a gradual intensity decrease, leading to changes in the interaction conditions. The proccess may pronounce itself in plenty of physical phenomena, including very efficient electron acceleration and generation of relativistic magnetized plasma structures.

  8. Coupling of laser energy into plasma channels

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2007-04-01

    Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length, allowing for efficient use of channels with long ramps.

  9. Beetroot juice supplementation reduces whole body oxygen consumption but does not improve indices of mitochondrial efficiency in human skeletal muscle.

    PubMed

    Whitfield, J; Ludzki, A; Heigenhauser, G J F; Senden, J M G; Verdijk, L B; van Loon, L J C; Spriet, L L; Holloway, G P

    2016-01-15

    Oral consumption of nitrate (NO3(-)) in beetroot juice has been shown to decrease the oxygen cost of submaximal exercise; however, the mechanism of action remains unresolved. We supplemented recreationally active males with beetroot juice to determine if this altered mitochondrial bioenergetics. Despite reduced submaximal exercise oxygen consumption, measures of mitochondrial coupling and respiratory efficiency were not altered in muscle. In contrast, rates of mitochondrial hydrogen peroxide (H2O2) emission were increased in the absence of markers of lipid or protein oxidative damage. These results suggest that improvements in mitochondrial oxidative metabolism are not the cause of beetroot juice-mediated improvements in whole body oxygen consumption. Ingestion of sodium nitrate (NO3(-)) simultaneously reduces whole body oxygen consumption (V̇O2) during submaximal exercise while improving mitochondrial efficiency, suggesting a causal link. Consumption of beetroot juice (BRJ) elicits similar decreases in V̇O2 but potential effects on the mitochondria remain unknown. Therefore we examined the effects of 7-day supplementation with BRJ (280 ml day(-1), ∼26 mmol NO3(-)) in young active males (n = 10) who had muscle biopsies taken before and after supplementation for assessments of mitochondrial bioenergetics. Subjects performed 20 min of cycling (10 min at 50% and 70% V̇O2 peak) 48 h before 'Pre' (baseline) and 'Post' (day 5 of supplementation) biopsies. Whole body V̇O2 decreased (P < 0.05) by ∼3% at 70% V̇O2 peak following supplementation. Mitochondrial respiration in permeabilized muscle fibres showed no change in leak respiration, the content of proteins associated with uncoupling (UCP3, ANT1, ANT2), maximal substrate-supported respiration, or ADP sensitivity (apparent Km). In addition, isolated subsarcolemmal and intermyofibrillar mitochondria showed unaltered assessments of mitochondrial efficiency, including ADP consumed/oxygen consumed (P/O ratio), respiratory control ratios and membrane potential determined fluorometrically using Safranine-O. In contrast, rates of mitochondrial hydrogen peroxide (H2O2) emission were increased following BRJ. Therefore, in contrast to sodium nitrate, BRJ supplementation does not alter key parameters of mitochondrial efficiency. This occurred despite a decrease in exercise V̇O2, suggesting that the ergogenic effects of BRJ ingestion are not due to a change in mitochondrial coupling or efficiency. It remains to be determined if increased mitochondrial H2O2 contributes to this response. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  10. Effect of sodium lauryl sulfate-fumaric Acid coupled addition on the in vitro rumen fermentation with special regard to methanogenesis.

    PubMed

    Abdl-Rahman, M A; Sawiress, F A R; Abd El-Aty, A M

    2010-01-01

    The aim of the current study was to evaluate the effect of sodium lauryl sulfate-fumaric acid coupled addition on in vitro methangenesis and rumen fermentation. Evaluation was carried out using in vitro gas production technique. Ruminal contents were collected from five steers immediately after slaughtering and used for preparation of inoculums of mixed rumen microorganisms. Rumen fluid was then mixed with the basal diet of steers and used to generate four treatments, negative control (no additives), sodium lauryl sulfate (SLS) treated, fumaric acid treated, and SLS-fumaric acid coupled addition treated. The results revealed that, relative to control, efficiency in reduction of methanogenesis was as follows: coupled addition > SLS-addition > fumaric acid addition. Both SLS-addition and SLS-fumaric acid coupled addition demonstrated a decremental effect on ammonia nitrogen (NH(3)-N), total short chain volatile fatty acids (SCVFAs) concentrations and the amount of substrate degraded, and an increment effect on microbial mass and microbial yield (Y(ATP)). Nevertheless, fumaric acid did not alter any of the previously mentioned parameters but induced a decremental effect on NH(3)-N. Furthermore, both fumaric acid and SLS-fumaric acid coupled addition increased propionate at the expense of acetate and butyrate, while, defaunation increased acetate at the expense of propionate and butyrate. The pH value was decreased by all treatments relative to control, while, cellulase activity did not differ by different treatments. The current study can be promising strategies for suppressing ruminal methane emissions and improving ruminants feed efficiency.

  11. Effect of Sodium Lauryl Sulfate-Fumaric Acid Coupled Addition on the In Vitro Rumen Fermentation with Special Regard to Methanogenesis

    PubMed Central

    Abdl-Rahman, M. A.; Sawiress, F. A. R.; Abd El-Aty, A. M.

    2010-01-01

    The aim of the current study was to evaluate the effect of sodium lauryl sulfate-fumaric acid coupled addition on in vitro methangenesis and rumen fermentation. Evaluation was carried out using in vitro gas production technique. Ruminal contents were collected from five steers immediately after slaughtering and used for preparation of inoculums of mixed rumen microorganisms. Rumen fluid was then mixed with the basal diet of steers and used to generate four treatments, negative control (no additives), sodium lauryl sulfate (SLS) treated, fumaric acid treated, and SLS-fumaric acid coupled addition treated. The results revealed that, relative to control, efficiency in reduction of methanogenesis was as follows: coupled addition > SLS-addition > fumaric acid addition. Both SLS-addition and SLS-fumaric acid coupled addition demonstrated a decremental effect on ammonia nitrogen (NH3–N), total short chain volatile fatty acids (SCVFAs) concentrations and the amount of substrate degraded, and an increment effect on microbial mass and microbial yield (YATP). Nevertheless, fumaric acid did not alter any of the previously mentioned parameters but induced a decremental effect on NH3–N. Furthermore, both fumaric acid and SLS-fumaric acid coupled addition increased propionate at the expense of acetate and butyrate, while, defaunation increased acetate at the expense of propionate and butyrate. The pH value was decreased by all treatments relative to control, while, cellulase activity did not differ by different treatments. The current study can be promising strategies for suppressing ruminal methane emissions and improving ruminants feed efficiency. PMID:20445794

  12. Coupling of anodic oxidation and adsorption by granular activated carbon for chemical oxygen demand removal from 4,4'-diaminostilbene-2,2'-disulfonic acid wastewater.

    PubMed

    Wang, Lizhang; Zhao, Yuemin

    2010-01-01

    Experiments were performed to reduce chemical oxygen demand (COD) from 4,4'-diaminostilbene-2,2'-disulfonic (DSD) acid manufacturing wastewater using electrochemical oxidation coupled with adsorption by granular activated carbon. The COD removal is affected by the residence time and applied voltage. When the residence time is increased, lower value of COD effluent could be obtained, however, the average current efficiency (ACE) decreased rapidly, and so does the applied voltage. In addition, aeration could effectively enhance COD removal efficiency and protect anodes from corrosion. Furthermore, the acidic condition is beneficial to the rapid decrease of COD and the values of pH effluent are independent of the initial solution pH. The optimization conditions obtained from these experiments are applied voltage of 4.8 V, residence time of 180 min and air-liquid ratio of 4.2 with the COD effluent of about 690 mg L⁻¹. In these cases, the ACE and energy consumption are 388% and 4.144 kW h kg⁻¹ COD, respectively. These perfect results from the experiments illustrate that the combined process is a considerable alternative for the treatment of industrial wastewater containing high concentration of organic pollutants and salinity.

  13. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics.

    PubMed

    Chen, Mo; Liu, Chao; Xian, Hao

    2015-10-10

    High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r0=15.1.

  14. Single-mode annular chirally-coupled core fibers for fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Haitao; Hao, He; He, Linlu; Gong, Mali

    2018-03-01

    Chirally-coupled core (CCC) fiber can transmit single fundamental mode and effectively suppresses higher-order mode (HOM) propagation, thus improve the beam quality. However, the manufacture of CCC fiber is complicated due to its small side core. To decrease the manufacture difficulty in China, a novel fiber structure is presented, defined as annular chirally-coupled core (ACCC) fiber, replacing the small side core by a larger side annulus. In this paper, we designed the fiber parameters of this new structure, and demonstrated that the new structure has a similar property of single mode with traditional CCC fiber. Helical coordinate system was introduced into the finite element method (FEM) to analyze the mode field in the fiber, and the beam propagation method (BPM) was employed to analyze the influence of the fiber parameters on the mode loss. Based on the result above, the fiber structure was optimized for efficient single-mode transmission, in which the core diameter is 35 μm with beam quality M2 value of 1.04 and an optical to optical conversion efficiency of 84%. In this fiber, fundamental mode propagates in an acceptable loss, while the HOMs decay rapidly.

  15. Cardiac function, myocardial mechano-energetic efficiency, and ventricular-arterial coupling in normal pregnancy.

    PubMed

    Iacobaeus, Charlotte; Andolf, Ellika; Thorsell, Malin; Bremme, Katarina; Östlund, Eva; Kahan, Thomas

    2018-04-01

    To assess cardiac function, myocardial mechanoenergetic efficiency (MEE), and ventricular-arterial coupling (VAC) longitudinally during normal pregnancy, and to study if there was an association between cardiac structure and function, and fetal growth. Cardiac structure and function, MEE, and ventricular-arterial coupling was assessed longitudinally in 52 healthy nulliparous women at 14, 24, and 34 weeks' gestation and 9-month postpartum. Left atrial diameter increased during pregnancy (30.41 ± 3.59 mm in the nonpregnant state and 31.02 ± 3.91, 34.06 ± 3.58, and 33.9 ± 2.97 mm in the first, second, and third trimesters, P < 0.001). Left ventricular mass increased 117.12 ± 45.0 g in the nonpregnant state and 116.5 ± 33.0, 126.9 ± 34.5, 128.4 ± 36 g in the first, second, and third trimesters (P < 0.001). Cardiac output increased from 3.4 ± 1.2 l/min to 4.3 ± 0.7 l/min in the second and third trimesters (P < 0.001). Diastolic function decreased as both E/A and e'/a' decreased during pregnancy (P < 0.05 and P < 0.001, respectively). MEE and VAC were retained during pregnancy. Heart rate was associated with birth weight centile in the first (r = 0.41, P = 0.002) and second (r = 0.46, P = 0.002) trimester. The increase in cardiac output during normal pregnancy is obtained by an increase in heart rate, followed by structural cardiac changes. The impaired systolic function is accomplished by a deteriorated diastolic function. Despite these rapid changes, the myocardium manages to work efficient with a preserved MEE. Cardiac and arterial adaption to pregnancy seems to appear parallel as evidenced by a preserved VAC.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonenko, A A; Dorogush, E S; Malyshev, S A

    Using a system of coupled travelling wave equations, in the small-signal regime we analyse frequency and noise characteristics of index- or absorption-coupled distributed feedback laser diodes, as well as of Fabry – Perot (FP) laser diodes. It is shown that the weakest dependence of the direct modulation efficiency on the locking frequency in the regime of strong external optical injection locking is exhibited by a FP laser diode formed by highly reflective and antireflective coatings on the end faces of a laser structure. A reduction in the dependence of output characteristics of the laser diode on the locking frequency canmore » be attained by decreasing the reflection coefficient of the antireflective FP mirror. (control of laser radiation parameters)« less

  17. Calculated Coupling Efficiency Between an Elliptical-Core Optical Fiber and a Silicon Oxynitride Rib Waveguide [Corrected Copy

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Beheim, Glenn

    1995-01-01

    The effective-index method and Marcatili's technique were utilized independently to calculate the electric field profile of a rib channel waveguide. Using the electric field profile calculated from each method, the theoretical coupling efficiency between a single-mode optical fiber and a rib waveguide was calculated using the overlap integral. Perfect alignment was assumed and the coupling efficiency calculated. The coupling efficiency calculation was then repeated for a range of transverse offsets.

  18. Electrical Stimulation Decreases Coupling Efficiency Between Beta-Adrenergic Receptors and Cyclic AMP Production in Cultured Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    1999-01-01

    Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.

  19. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency-Development of a new canopy photosynthesis model scaling from metabolism to canopy level processes.

    PubMed

    Song, Qingfeng; Wang, Yu; Qu, Mingnan; Ort, Donald R; Zhu, Xin-Guang

    2017-12-01

    Canopy photosynthesis (A c ) describes photosynthesis of an entire crop field and the daily and seasonal integrals of A c positively correlate with daily and seasonal biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis model including canopy architecture, a ray tracing algorithm, and C 3 photosynthetic metabolism to explore the option of manipulating leaf chlorophyll concentration ([Chl]) for greater A c and nitrogen use efficiency (NUE). Model simulation results show that (a) efficiency of photosystem II increased when [Chl] was decreased by decreasing antenna size and (b) the light received by leaves at the bottom layers increased when [Chl] throughout the canopy was decreased. Furthermore, the modelling revealed a modest ~3% increase in A c and an ~14% in NUE was accompanied when [Chl] reduced by 60%. However, if the leaf nitrogen conserved by this decrease in leaf [Chl] were to be optimally allocated to other components of photosynthesis, both A c and NUE can be increased by over 30%. Optimizing [Chl] coupled with strategic reinvestment of conserved nitrogen is shown to have the potential to support substantial increases in A c , biomass production, and crop yields. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  20. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.

    PubMed

    Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H

    2016-01-13

    Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.

  1. Enhanced emission of charged-exciton polaritons from colloidal quantum dots on a SiN/SiO2 slab waveguide

    PubMed Central

    Xu, Xingsheng; Li, Xingyun

    2015-01-01

    We investigate the photoluminescence (PL) spectra and the time-resolved PL decay process from colloidal quantum dots on SiN/SiO2 wet etched via BOE (HF:NH4F:H2O). The spectrum displays multi-peak shapes that vary with irradiation time. The evolution of the spectral peaks with irradiation time and collection angle demonstrates that the strong coupling of the charged-exciton emission to the leaky modes of the SiN/SiO2 slab waveguide predominantly produces short-wavelength spectral peaks, resulting in multi-peak spectra. We conclude that BOE etching enhances the charged-exciton emission efficiency and its contribution to the total emission compared with the unetched case. BOE etching smoothes the electron confinement potential, thus decreasing the Auger recombination rate. Therefore, the charged-exciton emission efficiency is high, and the charged-exciton-polariton emission can be further enhanced through strong coupling to the leaky mode of the slab waveguide. PMID:25988709

  2. Large enhancement of thermoelectric effects in a tunneling-coupled parallel DQD-AB ring attached to one normal and one superconducting lead

    NASA Astrophysics Data System (ADS)

    Yao, Hui; Zhang, Chao; Li, Zhi-Jian; Nie, Yi-Hang; Niu, Peng-bin

    2018-05-01

    We theoretically investigate the thermoelectric properties in a tunneling-coupled parallel DQD-AB ring attached to one normal and one superconducting lead. The role of the intrinsic and extrinsic parameters in improving thermoelectric properties is discussed. The peak value of figure of merit near gap edges increases with the asymmetry parameter decreasing, particularly, when asymmetry parameter is less than 0.5, the figure of merit near gap edges rapidly rises. When the interdot coupling strengh is less than the superconducting gap the thermopower spectrum presents a single-platform structure. While when the interdot coupling strengh is larger than the gap, a double-platform structure appears in thermopower spectrum. Outside the gap the peak values of figure of merit might reach the order of 102. On the basis of optimizing internal parameters the thermoelectric conversion efficiency of the device can be further improved by appropriately matching the total magnetic flux and the flux difference between two subrings.

  3. Development and validation of a new kind of coupling element for wheel-hub motors

    NASA Astrophysics Data System (ADS)

    Perekopskiy, Sergey; Kasper, Roland

    2018-05-01

    For the automotive industry, electric powered vehicles are becoming an increasingly relevant factor in the competition against climate change. Application of one special example - a wheel-hub motor, for electric powered vehicle can support this challenge. Patented slotless air gap winding invented at the chair of mechatronics of the Otto von Guericke University Magdeburg has great application potential in constantly growing e-mobility field, especially for wheel-hub motors based on this technology due to its advantages, such as a high gravimetric power density and high efficiency. However, advantages of this technology are decreased by its sensibility to the loads out of driving maneuvers by dimensional variations of air gap consistency. This article describes the development and validation of a coupling element for the designed wheel-hub motor. To find a suitable coupling concept first the assembly structure of the motor was analyzed and developed design of the coupling element was checked. Based on the geometry of the motor and wheel a detailed design of the coupling element was generated. The analytical approach for coupling element describes a potential of the possible loads on the coupling element. The FEM simulation of critical load cases for the coupling element validated results of the analytical approach.

  4. Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process.

    PubMed

    Li, Jing; Chen, Xiangrong; Qi, Benkun; Luo, Jianquan; Zhang, Yuming; Su, Yi; Wan, Yinhua

    2014-10-01

    Production of acetone-butanol-ethanol (ABE) from cassava was investigated with a fermentation-pervaporation (PV) coupled process. ABE products were in situ removed from fermentation broth to alleviate the toxicity of solvent to the Clostridium acetobutylicum DP217. Compared to the batch fermentation without PV, glucose consumption rate and solvent productivity increased by 15% and 21%, respectively, in batch fermentation-PV coupled process, while in continuous fermentation-PV coupled process running for 304 h, the substrate consumption rate, solvent productivity and yield increased by 58%, 81% and 15%, reaching 2.02 g/Lh, 0.76 g/Lh and 0.38 g/g, respectively. Silicalite-1 filled polydimethylsiloxane (PDMS)/polyacrylonitrile (PAN) membrane modules ensured media recycle without significant fouling, steadily generating a highly concentrated ABE solution containing 201.8 g/L ABE with 122.4 g/L butanol. After phase separation, a final product containing 574.3g/L ABE with 501.1g/L butanol was obtained. Therefore, the fermentation-PV coupled process has the potential to decrease the cost in ABE production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence.

    PubMed

    Dikmelik, Yamaç; Davidson, Frederic M

    2005-08-10

    High-speed free-space optical communication systems have recently used fiber-optic components. The received laser beam in such a system must be coupled into a single-mode fiber at the input of the receiver module. However, propagation through atmospheric turbulence degrades the spatial coherence of a laser beam and limits the fiber-coupling efficiency. We numerically evaluate the fiber-coupling efficiency for laser light distorted by atmospheric turbulence. We also investigate the use of a coherent fiber array as a receiver structure and find that a coherent fiber array that consists of seven subapertures would significantly increase the fiber-coupling efficiency.

  6. Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II.

    PubMed

    Ho, Hsiang-Ting; Belevych, Andriy E; Liu, Bin; Bonilla, Ingrid M; Radwański, Przemysław B; Kubasov, Igor V; Valdivia, Héctor H; Schober, Karsten; Carnes, Cynthia A; Györke, Sándor

    2016-11-01

    Although the effects and the underlying mechanism of sympathetic stimulation on cardiac Ca handling are relatively well established both in health and disease, the modes of action and mechanisms of parasympathetic modulation are poorly defined. Here, we demonstrate that parasympathetic stimulation initiates a novel mode of excitation-contraction coupling that enhances the efficiency of cardiac sarcoplasmic reticulum Ca store utilization. This efficient mode of excitation-contraction coupling involves reciprocal changes in the phosphorylation of ryanodine receptor 2 at Ser-2808 and Ser-2814. Specifically, Ser-2808 phosphorylation was mediated by muscarinic receptor subtype 2 and activation of PKG (protein kinase G), whereas dephosphorylation of Ser-2814 involved activation of muscarinic receptor subtype 3 and decreased reactive oxygen species-dependent activation of CaMKII (Ca/calmodulin-dependent protein kinase II). The overall effect of these changes in phosphorylation of ryanodine receptor 2 is an increase in systolic Ca release at the low sarcoplasmic reticulum Ca content and a paradoxical reduction in aberrant Ca leak. Accordingly, cholinergic stimulation of cardiomyocytes isolated from failing hearts improved Ca cycling efficiency by restoring altered ryanodine receptor 2 phosphorylation balance. © 2016 American Heart Association, Inc.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jin; Prezhdo, Oleg V.

    Rapid development in lead halide perovskites has led to solution-processable thin film solar cells with power conversion efficiencies close to 20%. Nonradiative electron–hole recombination within perovskites has been identified as the main pathway of energy losses, competing with charge transport and limiting the efficiency. Using nonadiabatic (NA) molecular dynamics, combined with time-domain density functional theory, we show that nonradiative recombination happens faster than radiative recombination and long-range charge transfer to an acceptor material. Doping of lead iodide perovskites with chlorine atoms reduces charge recombination. On the one hand, chlorines decrease the NA coupling because they contribute little to the wavemore » functions of the valence and conduction band edges. On the other hand, chlorines shorten coherence time because they are lighter than iodines and introduce high-frequency modes. Both factors favor longer excited-state lifetimes. The simulation shows good agreement with the available experimental data and contributes to the comprehensive understanding of electronic and vibrational dynamics in perovskites. The generated insights into design of higher-efficiency solar cells range from fundamental scientific principles, such as the role of electron–vibrational coupling and quantum coherence, to practical guidelines, such as specific suggestions for chemical doping.« less

  8. A Linear Electromagnetic Piston Pump

    NASA Astrophysics Data System (ADS)

    Hogan, Paul H.

    Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.

  9. Biological degradation of dense nonaqueous phase liquids (DNAPLs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ensley, B.; Strong-Gunderson, J.M.; Palumbo, A.V.

    1996-08-01

    In situ bioremediation is a very attractive, safe and efficient method of not only removing, but eliminating hazardous compounds from the environment. However, the quickest and most efficient method of restoring a hazardous waste site would be to link several remediation processes. In situ biodegradation can involve the addition of nutrients, oxygen, electron donors, electron acceptors, organisms or all the above. These amendments can be introduced and coupled to a variety of other technologies such as permeability enhancements, chemical treatments and/or physical processes. In addition to in situ technologies, bioremediation in bioreactors is an efficient tool facilitating mineralization of contaminants.more » Overall, biodegradation has a significant potential to increase the rate of site restoration and decrease overall costs. 37 refs., 2 figs.« less

  10. Tuning the Quantum Efficiency of Random Lasers - Intrinsic Stokes-Shift and Gain

    PubMed Central

    Lubatsch, Andreas; Frank, Regine

    2015-01-01

    We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the stationary state is found due to the increase of non-radiative losses. The coherently emitted photon number per unit of modal surface is also strongly reduced. This result allows for the conclusion that Stokes-shifts are not sufficient to explain confined and extended mode regimes. PMID:26593237

  11. Tuning the Quantum Efficiency of Random Lasers - Intrinsic Stokes-Shift and Gain.

    PubMed

    Lubatsch, Andreas; Frank, Regine

    2015-11-23

    We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the stationary state is found due to the increase of non-radiative losses. The coherently emitted photon number per unit of modal surface is also strongly reduced. This result allows for the conclusion that Stokes-shifts are not sufficient to explain confined and extended mode regimes.

  12. Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland

    NASA Astrophysics Data System (ADS)

    Gao, Yao; Markkanen, Tiina; Aurela, Mika; Mammarella, Ivan; Thum, Tea; Tsuruta, Aki; Yang, Huiyi; Aalto, Tuula

    2017-09-01

    The influence of drought on plant functioning has received considerable attention in recent years, however our understanding of the response of carbon and water coupling to drought in terrestrial ecosystems still needs to be improved. A severe soil moisture drought occurred in southern Finland in the late summer of 2006. In this study, we investigated the response of water use efficiency to summer drought in a boreal Scots pine forest (Pinus sylvestris) on the daily time scale mainly using eddy covariance flux data from the Hyytiälä (southern Finland) flux site. In addition, simulation results from the JSBACH land surface model were evaluated against the observed results. Based on observed data, the ecosystem level water use efficiency (EWUE; the ratio of gross primary production, GPP, to evapotranspiration, ET) showed a decrease during the severe soil moisture drought, while the inherent water use efficiency (IWUE; a quantity defined as EWUE multiplied with mean daytime vapour pressure deficit, VPD) increased and the underlying water use efficiency (uWUE, a metric based on IWUE and a simple stomatal model, is the ratio of GPP multiplied with a square root of VPD to ET) was unchanged during the drought. The decrease in EWUE was due to the stronger decline in GPP than in ET. The increase in IWUE was because of the decreased stomatal conductance under increased VPD. The unchanged uWUE indicates that the trade-off between carbon assimilation and transpiration of the boreal Scots pine forest was not disturbed by this drought event at the site. The JSBACH simulation showed declines of both GPP and ET under the severe soil moisture drought, but to a smaller extent compared to the observed GPP and ET. Simulated GPP and ET led to a smaller decrease in EWUE but a larger increase in IWUE because of the severe soil moisture drought in comparison to observations. As in the observations, the simulated uWUE showed no changes in the drought event. The model deficiencies exist mainly due to the lack of the limiting effect of increased VPD on stomatal conductance during the low soil moisture condition. Our study provides a deeper understanding of the coupling of carbon and water cycles in the boreal Scots pine forest ecosystem and suggests possible improvements to land surface models, which play an important role in the prediction of biosphere-atmosphere feedbacks in the climate system.

  13. Experimental Investigation of the Influence of Confining Stress on Hard Rock Fragmentation Using a Conical Pick

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Wang, Shaofeng; Wang, Shanyong

    2018-01-01

    High geostress is a prominent condition in deep excavations and affects the cuttability of deep hard rock. This study aims to determine the influence of confining stress on hard rock fragmentation as applied by a conical pick. Using a true triaxial test apparatus, static and coupled static and dynamic loadings from pick forces were applied to end faces of cubic rock specimens to break them under biaxial, uniaxial and stress-free confining stress conditions. The cuttability indices (peak pick force, insertion depth and disturbance duration), failure patterns and fragment sizes were measured and compared to estimate the effects of confining stress. The results show that the rock cuttabilities decreased in order from rock breakages under stress-free conditions to uniaxial confining stress and then to biaxial confining stress. Under biaxial confining stress, only flake-shaped fragments were stripped from the rock surfaces under the requirements of large pick forces or disturbance durations. As the level of uniaxial confining stress increased, the peak pick force and the insertion depth initially increased and then decreased, and the failure patterns varied from splitting to partial splitting and then to rock bursts with decreasing average fragment sizes. Rock bursts will occur under elastic compression via ultra-high uniaxial confining stresses. There are two critical uniaxial confining stress levels, namely stress values at which peak pick forces begin to decrease and improve rock cuttability, and those at which rock bursts initially occur and cutting safety decreases. In particular, hard rock is easiest to split safely and efficiently under stress-free conditions. Moreover, coupled static preloading and dynamic disturbance can increase the efficiency of rock fragmentation with increasing preloading levels and disturbance amplitudes. The concluding remarks confirm hard rock cuttability using conical pick, which can improve the applicability of mechanical excavation in deep hard rock masses.

  14. Adsorption-photodegradation of humic acid in water by using ZnO coupled TiO2/bamboo charcoal under visible light irradiation.

    PubMed

    Wang, Xuejiang; Wu, Zhen; Wang, Yin; Wang, Wei; Wang, Xin; Bu, Yunjie; Zhao, Jianfu

    2013-11-15

    ZnO coupled TiO2/bamboo charcoal (ZnO-TiO2/BC) was prepared using the sol-gel method combined with microwave irradiation. The ZnO-TiO2/BC and TiO2/BC were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N2 adsorption (BET), and UV-vis diffuse reflectance spectroscopy (UV-vis-DRS). The ZnO dopant promoted the transformation of anatase TiO2 to rutile phase, and a significant red shift of absorption edge was brought out due to the interfacial coupling effect between ZnO and TiO2 particles. The BET specific surface area and total pore volume decreased with ZnO doping, indicating that some micropores were blocked. SEM studies indicated that ZnO was almost uniformly deposited on the surface of the ZnO-TiO2/BC. The adsorption and photocatalytic degradation experiments showed that the photo-degrade efficiency for Zno-TiO2/BC was higher than that of TiO2/BC, and for both composites, the removal efficiency of HA increased as pH decreased from 10.0 to 2.0. The degradation of HA by ZnO-TiO2/BC and TiO2/BC fitted well with the Langmuir-Hinshelwood kinetics model, and HA degradation was achieved through a synergistic mechanism of adsorption and photocatalysis. ZnO-TiO2/BC could be used as an effective and alternative photocatalyst for the treatment of water contaminated by organic pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    PubMed Central

    DAVEAU, RAPHAËL S.; BALRAM, KRISHNA C.; PREGNOLATO, TOMMASO; LIU, JIN; LEE, EUN H.; SONG, JIN D.; VERMA, VARUN; MIRIN, RICHARD; NAM, SAE WOO; MIDOLO, LEONARDO; STOBBE, SØREN; SRINIVASAN, KARTIK; LODAHL, PETER

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ± 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources. PMID:28584859

  16. Insights into electron leakage in the reaction cycle of cytochrome P450 BM3 revealed by kinetic modeling and mutagenesis

    PubMed Central

    Lim, Joseph B; Barker, Kimberly A; Eller, Kristen A; Jiang, Linda; Molina, Veronica; Saifee, Jessica F; Sikes, Hadley D

    2015-01-01

    As a single polypeptide, cytochrome P450 BM3 fuses oxidase and reductase domains and couples each domain's function to perform catalysis with exceptional activity upon binding of substrate for hydroxylation. Mutations introduced into the enzyme to change its substrate specificity often decrease coupling efficiency between the two domains, resulting in unproductive consumption of cofactors and formation of water and/or reactive species. This phenomenon can correlate with leakage, in which P450 BM3 uses electrons from NADPH to reduce oxygen to water and/or reactive species even without bound substrate. The physical basis for leakage is not yet well understood in this particular member of the cytochrome P450 family. To clarify the relationship between leakage and coupling, we used simulations to illustrate how different combinations of kinetic parameters related to substrate-free consumption of NADPH and substrate hydroxylation can lead to either minimal effects on coupling or a dramatic decrease in coupling as a result of leakage. We explored leakage in P450 BM3 by introducing leakage-enhancing mutations and combining these mutations to assess whether doing so increases leakage further. The variants in this study provide evidence that while a transition to high spin may be vital for coupled hydroxylation, it is not required for enhanced leakage; substrate binding and the consequent shift in spin state are not necessary as a redox switch for catalytic oxidation of NADPH. Additionally, the variants in this study suggest a tradeoff between leakage and stability and thus evolvability, as the mutations we investigated were far more deleterious than other mutations that have been used to change substrate specificity. PMID:26311413

  17. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musculus, Mark P.

    Regulatory drivers and market demands for lower pollutant emissions, lower carbon dioxide emissions, and lower fuel consumption motivate the development of clean and fuel-efficient engine operating strategies. Most current production engines use a combination of both in-cylinder and exhaust emissions-control strategies to achieve these goals. The emissions and efficiency performance of in-cylinder strategies depend strongly on flow and mixing processes associated with fuel injection. Various diesel engine manufacturers have adopted close-coupled post-injection combustion strategies to both reduce pollutant emissions and to increase engine efficiency for heavy-duty applications, as well as for light- and medium-duty applications. Close-coupled post-injections are typically shortmore » injections that follow a larger main injection in the same cycle after a short dwell, such that the energy conversion efficiency of the post-injection is typical of diesel combustion. Of the various post-injection schedules that have been reported in the literature, effects on exhaust soot vary by roughly an order of magnitude in either direction of increasing or decreasing emissions relative to single injections (O’Connor et al., 2015). While several hypotheses have been offered in the literature to help explain these observations, no clear consensus has been established. For new engines to take full advantage of the benefits that post-injections can offer, the in-cylinder mechanisms that affect emissions and efficiency must be identified and described to provide guidance for engine design.« less

  18. From quantum heat engines to laser cooling: Floquet theory beyond the Born–Markov approximation

    NASA Astrophysics Data System (ADS)

    Restrepo, Sebastian; Cerrillo, Javier; Strasberg, Philipp; Schaller, Gernot

    2018-05-01

    We combine the formalisms of Floquet theory and full counting statistics with a Markovian embedding strategy to access the dynamics and thermodynamics of a periodically driven thermal machine beyond the conventional Born–Markov approximation. The working medium is a two-level system and we drive the tunneling as well as the coupling to one bath with the same period. We identify four different operating regimes of our machine which include a heat engine and a refrigerator. As the coupling strength with one bath is increased, the refrigerator regime disappears, the heat engine regime narrows and their efficiency and coefficient of performance decrease. Furthermore, our model can reproduce the setup of laser cooling of trapped ions in a specific parameter limit.

  19. Modulating emission intensity of GaN-based green light emitting diodes on c-plane sapphire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming

    2014-04-14

    The asymmetric dual-wavelength (green/blue) coupled InGaN/GaN multiple quantum wells were proposed to modulate the green emission intensity. Electroluminescent measurements demonstrate the conspicuous increment of the green light intensity by decreasing the coupled barrier thickness. This was partly attributed to capture of more carriers when holes tunnel across the thinner barrier from the blue quantum wells, as a hole reservoir, to the green quantum wells. While lower effective barrier height of the blue quantum wells benefits improved hole transportation from p-GaN to the active region. Efficiency droop of the green quantum wells was partially alleviated due to the enhanced injection efficiencymore » of holes.« less

  20. Lewis Acid-Assisted Photoinduced Intermolecular Coupling between Acylsilanes and Aldehydes: A Formal Cross Benzoin-Type Condensation.

    PubMed

    Ishida, Kento; Tobita, Fumiya; Kusama, Hiroyuki

    2018-01-12

    Intermolecular carbon-carbon bond-forming reaction between readily available acylsilanes and aldehydes was achieved under photoirradiation conditions with assistance of a catalytic amount of Lewis acid. Nucleophilic addition of photochemically generated siloxycarbenes to aldehydes followed by 1,4-silyl migration afforded synthetically useful α-siloxyketones. Electrophilic activation of aldehydes by Lewis acid is highly important to realize this reaction efficiently, otherwise the yield of the desired coupling products were significantly decreased. Noteworthy is that a formal cross benzoin-type reaction using acylsilanes was achieved under Lewis acidic conditions. This is the first example of Lewis acid-catalyzed reaction of photochemically generated siloxycarbenes with electrophiles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Modification of land-atmosphere interactions by CO2 effects

    NASA Astrophysics Data System (ADS)

    Lemordant, Leo; Gentine, Pierre

    2017-04-01

    Plant stomata couple the energy, water and carbon cycles. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the impact of potential heat waves. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels, and of the coupling between the carbon and water cycles are therefore critical to forecasting seasonal climate, water cycle dynamics and to enhance the accuracy of extreme event prediction under future climate.

  2. Implementationof a modular software system for multiphysical processes in porous media

    NASA Astrophysics Data System (ADS)

    Naumov, Dmitri; Watanabe, Norihiro; Bilke, Lars; Fischer, Thomas; Lehmann, Christoph; Rink, Karsten; Walther, Marc; Wang, Wenqing; Kolditz, Olaf

    2016-04-01

    Subsurface georeservoirs are a candidate technology for large scale energy storage required as part of the transition to renewable energy sources. The increased use of the subsurface results in competing interests and possible impacts on protected entities. To optimize and plan the use of the subsurface in large scale scenario analyses,powerful numerical frameworks are required that aid process understanding and can capture the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes with high computational efficiency. Due to having a multitude of different couplings between basic T, H, M, or C processes and the necessity to implement new numerical schemes the development focus has moved to software's modularity. The decreased coupling between the components results in two major advantages: easier addition of specialized processes and improvement of the code's testability and therefore its quality. The idea of modularization is implemented on several levels, in addition to library based separation of the previous code version, by using generalized algorithms available in the Standard Template Library and the Boost library, relying on efficient implementations of liner algebra solvers, using concepts when designing new types, and localization of frequently accessed data structures. This procedure shows certain benefits for a flexible high-performance framework applied to the analysis of multipurpose georeservoirs.

  3. [Degradation of styrene by coupling ultraviolet and biofiltration].

    PubMed

    Sha, Hao-Lei; Yang, Guo-Jing; Xia, Jing-Fen

    2013-12-01

    Purification of styrene by ultraviolet (UV)-biofiltration was studied in this paper. The light source and the biofilm carrier were ozone producing lamp at 185 nm and the peat, palm fiber, porous acticarbon, respectively. Styrene inlet concentration was controlled between 320-583 mg x m(-3), and the removal efficiency remained above 95% after stabilization. The UV converted styrene into more soluble and biodegradable intermediates, such as alcohol, aldehyde and acid, thus the performance of biofilter can be improved. In the stable operation stage, the variation of inlet concentration did not affect the removal efficiency when the total residence time (TRT) was long, however, the inlet concentration obviously affected the removal efficiency when the TRT decreased. The removal load of coupling system increased linearly with increasing inlet load, and the removal efficiency was higher than 95% under a TRT of 102 s. When TRT was 68 s and the inlet load was low, the variation of removal load complied with the law described above, but it gradually deviated from the straight line and tended to stabilized at a certain value when the inlet load became higher than 30 g x (m3 x h)(-). If considering the fluctuation of styrene concentration only, the contribution rate of ultraviolet photolysis to styrene removal was greater than that of the biofilter, and the removal effect could be restored on the fourth day, after closing the system for ten days and restarting.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yukun; Solid-State Lighting Engineering Research Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049; Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ

    Size-tunable bimetallic bowtie nanoantennas have been utilized to suppress the efficiency roll-off characteristics in organic light-emitting diodes (OLEDs) using both the numerical and experimental approaches. The resonant range can be widened by the strong dual-atomic couplings in bimetallic bowtie nanoantennas. Compared with the green OLED with conventional bowtie nanoantennas at a high current density of 800 mA/cm{sup 2}, the measured efficiency roll-off ratio of the OLED with size-modulated bowtie nanoantennas is decreased from 53.2% to 41.8%, and the measured current efficiency is enhanced by 29.9%. When the size-modulated bowtie nanoantennas are utilized in blue phosphorescent OLEDs, the experimental roll-off ratio ismore » suppressed from 43.6% to 25.9% at 250 mA/cm{sup 2}, and the measured current efficiency is also enhanced significantly. It is proposed that the efficiency roll-off suppression is mainly related to the enhanced localized surface plasmon effect, which leads to a shorter radiative lifetime.« less

  5. [Estimation of net primary productivity in arid region based on coupling model.

    PubMed

    Yang, Hui Jin; Li, Xiao Yu; Liu, Li Juan; Ma, Jin Long; Wang, Jin

    2016-06-01

    Net primary productivity (NPP), as the base for the research of matter recycling and energy flow in terrestrial ecosystem, is sensitive to the changes of environment and climate in arid region, and also is an important indicator of eco-environmental characteristics. Based on remote sensing (RS) and geographic information system (GIS), using meteorological data, eddy cova-riance data, Landsat 8 and MODIS data, this study coupled SEBAL model and light utility efficiency model to estimate the NPP of vegetation in Manas River Watershed, and the spatial pattern of NPP and the relationships between NPP and terrain factors (elevation and slope) were analyzed. Results showed that the estimated result of NPP in Manas River Watershed by coupling model was reasonable and could actually reflect the NPP of vegetation. The total annual NPP of vegetation and the mean annual NPP in Manas River Watershed in 2013 were 7066.72 Tg C·a -1 and 278.06 g C·m -2 ·a -1 respectively. With the variation of geomorphic type and land cover, the NPP changed remarkably from south to north in a trend of increase-decrease-increase-decrease pattern. The temporal variations of NPP were also obvious, with the NPP in July and August accounting for 52.2% of total annual NPP. With the increase of the elevation and slope, the mean annual NPP decreased as a whole with fluctuations induced by different land covers and environmental factors.

  6. Significance of size dependent and material structure coupling on the characteristics and performance of nanocrystalline micro/nano gyroscopes

    NASA Astrophysics Data System (ADS)

    Larkin, K.; Ghommem, M.; Abdelkefi, A.

    2018-05-01

    Capacitive-based sensing microelectromechanical (MEMS) and nanoelectromechanical (NEMS) gyroscopes have significant advantages over conventional gyroscopes, such as low power consumption, batch fabrication, and possible integration with electronic circuits. However, inadequacies in the modeling of these inertial sensors have presented issues of reliability and functionality of micro-/nano-scale gyroscopes. In this work, a micromechanical model is developed to represent the unique microstructure of nanocrystalline materials and simulate the response of micro-/nano-gyroscope comprising an electrostatically-actuated cantilever beam with a tip mass at the free end. Couple stress and surface elasticity theories are integrated into the classical Euler-Bernoulli beam model in order to derive a size-dependent model. This model is then used to investigate the influence of size-dependent effects on the static pull-in instability, the natural frequencies and the performance output of gyroscopes as the scale decreases from micro-to nano-scale. The simulation results show significant changes in the static pull-in voltage and the natural frequency as the scale of the system is decreased. However, the differential frequency between the two vibration modes of the gyroscope is observed to drastically decrease as the size of the gyroscope is reduced. As such, the frequency-based operation mode may not be an efficient strategy for nano-gyroscopes. The results show that a strong coupling between the surface elasticity and material structure takes place when smaller grain sizes and higher void percentages are considered.

  7. Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Victor; Montalbo, Trisha; Manolatou, Christina; Agarwal, Anu; Hong, Ching-yin; Yasaitis, John; Kimerling, L. C.; Michel, Jurgen

    2006-02-01

    A coupler to efficiently transfer broadband light from a single-mode optical fiber to a single-mode high-index contrast waveguide has been fabricated on a silicon substrate. We utilized a novel coupling scheme, with a vertically asymmetric design consisting of a stepwise parabolic graded index profile combined with a horizontal taper, to simultaneously confine light in both directions. Coupling efficiency has been measured as a function of the device dimensions. The optimal coupling efficiency is achieved for structures whose length equals the focal distance of the graded index and whose input width is close to the mode field diameter of the fiber. The fabricated structure is compact, robust and highly efficient, with an insertion loss of 2.2dB at 1550nm. The coupler exhibits less than 1dB variation in coupling efficiency in the measured spectral range from 1520nmto1620nm. The lowest insertion loss of 1.9dB is measured at 1540nm. The coupler design offers highly efficient coupling for single mode waveguides of core indices up to 2.2.

  8. Role of coupled dynamics in the catalytic activity of prokaryotic-like prolyl-tRNA synthetases.

    PubMed

    Sanford, Brianne; Cao, Bach; Johnson, James M; Zimmerman, Kurt; Strom, Alexander M; Mueller, Robyn M; Bhattacharyya, Sudeep; Musier-Forsyth, Karin; Hati, Sanchita

    2012-03-13

    Prolyl-tRNA synthetases (ProRSs) have been shown to activate both cognate and some noncognate amino acids and attach them to specific tRNA(Pro) substrates. For example, alanine, which is smaller than cognate proline, is misactivated by Escherichia coli ProRS. Mischarged Ala-tRNA(Pro) is hydrolyzed by an editing domain (INS) that is distinct from the activation domain. It was previously shown that deletion of the INS greatly reduced cognate proline activation efficiency. In this study, experimental and computational approaches were used to test the hypothesis that deletion of the INS alters the internal protein dynamics leading to reduced catalytic function. Kinetic studies with two ProRS variants, G217A and E218A, revealed decreased amino acid activation efficiency. Molecular dynamics studies showed motional coupling between the INS and protein segments containing the catalytically important proline-binding loop (PBL, residues 199-206). In particular, the complete deletion of INS, as well as mutation of G217 or E218 to alanine, exhibited significant effects on the motion of the PBL. The presence of coupled dynamics between neighboring protein segments was also observed through in silico mutations and essential dynamics analysis. Altogether, this study demonstrates that structural elements at the editing domain-activation domain interface participate in coupled motions that facilitate amino acid binding and catalysis by bacterial ProRSs, which may explain why truncated or defunct editing domains have been maintained in some systems, despite the lack of catalytic activity.

  9. Role of Coupled-Dynamics in the Catalytic Activity of Prokaryotic-like Prolyl-tRNA Synthetases

    PubMed Central

    Sanford, Brianne; Cao, Bach; Johnson, James M.; Zimmerman, Kurt; Strom, Alexander M.; Mueller, Robyn M.; Bhattacharyya, Sudeep; Musier-Forsyth, Karin; Hati, Sanchita

    2012-01-01

    Prolyl-tRNA synthetases (ProRSs) have been shown to activate both cognate and some noncognate amino acids and attach them to specific tRNAPro substrates. For example, alanine, which is smaller than cognate proline, is misactivated by Escherichia coli ProRS. Mischarged Ala-tRNAPro is hydrolyzed by an editing domain (INS) that is distinct from the activation domain. It was previously shown that deletion of the INS greatly reduced cognate proline activation efficiency. In the present study, experimental and computational approaches were used to test the hypothesis that INS deletion alters the internal protein dynamics leading to reduce catalytic function. Kinetic studies with two ProRS variants, G217A and E218A, revealed decreased amino acid activation efficiency. Molecular dynamics studies showed motional coupling between the INS and protein segments containing the catalytically important proline-binding loop (PBL, residues 199–206). In particular, the complete deletion of INS, as well as mutation of G217 or E218 to alanine, exhibited significant effects on the motion of the PBL. The presence of coupled-dynamics between neighboring protein segments was also observed through in silico mutations and essential dynamics analysis. Taken together, the present study demonstrates that structural elements at the editing domain-activation domain interface participate in coupled motions that facilitate amino acid binding and catalysis by bacterial ProRSs, which may explain why truncated or defunct editing domains have been maintained in some systems, despite the lack of catalytic activity. PMID:22356126

  10. Generation and Transport of Hot Electrons in Cone-Wire Targets

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2009-11-01

    We present results from a series of experiments where cone-wire targets in various configurations were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Initial experiments were performed on the Vulcan petawatt laser at the Rutherford Appleton Laboratory and Titan laser at the Lawrence Livermore National Laboratory. Results with aluminum cones joined to Cu wires of diameters from 10 to 40 μm show that the laser coupling efficiency to electron energy within the wire is proportional to the cross sectional area of the wire. In addition, coupling into the wire was observed to decrease with the laser prepulse and cone-wall thickness. More recently, this study was extended, using the OMEGA EP laser. The resulting changes in coupling energy give indications of the scaling as we approach FI-relevant conditions. Requirements for FI scale fast ignition cone parameters: tip thickness, wall thickness, laser prepulse and laser pulse length, will be discussed. In collaboration with T. Yabuuchi, T. Ma, D. Higginson, H. Sawada, J. King, M.H. Key, K.U. Akli, Al Elsholz, D. Batani, H. Chen, R.R. Freeman, L. Gizzi, J. Green, S. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, D.Larson, A.J. MacKinnon, H. McLean, A. MacPhee, P.A. Norreys, P.K Patel, R. B. Stephens, W. Theobald, R. Town, M. Wei, S. Wilks, Roger Van Maren, B. Westover and L. VanWoerkom.

  11. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    PubMed

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel-to-neuron communication in the brain slice defined here as vasculo-neuronal coupling. We showed that, in response to increases in parenchymal arteriole tone, astrocyte intracellular Ca 2+ increased and cortical neuronal activity decreased. On the other hand, decreasing parenchymal arteriole tone increased resting cortical pyramidal neuron activity. Vasculo-neuronal coupling was partly mediated by TRPV4 channels as genetic ablation, or pharmacological blockade impaired increased flow/pressure-evoked neuronal inhibition. Increased flow/pressure-evoked neuronal inhibition was blocked in the presence of adenosine A1 receptor and GABA B receptor blockade. Results provide evidence for the concept of vasculo-neuronal coupling and highlight the importance of understanding the interplay between basal CBF and resting neuronal activity. Copyright © 2016 the authors 0270-6474/16/3612624-16$15.00/0.

  12. Modeling and Optimization of Sub-Wavelength Grating Nanostructures on Cu(In,Ga)Se2 Solar Cell

    NASA Astrophysics Data System (ADS)

    Kuo, Shou-Yi; Hsieh, Ming-Yang; Lai, Fang-I.; Liao, Yu-Kuang; Kao, Ming-Hsuan; Kuo, Hao-Chung

    2012-10-01

    In this study, an optical simulation of Cu(In,Ga)Se2 (CIGS) solar cells by the rigorous coupled-wave analysis (RCWA) method is carried out to investigate the effects of surface morphology on the light absorption and power conversion efficiencies. Various sub-wavelength grating (SWG) nanostructures of periodic ZnO:Al (AZO) on CIGS solar cells were discussed in detail. SWG nanostructures were used as efficient antireflection layers. From the simulation results, AZO structures with nipple arrays effectively suppress the Fresnel reflection compared with nanorod- and cone-shaped AZO structures. The optimized reflectance decreased from 8.44 to 3.02% and the efficiency increased from 14.92 to 16.11% accordingly. The remarkable enhancement in light harvesting is attributed to the gradient refractive index profile between the AZO nanostructures and air.

  13. Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells.

    PubMed

    Fang, Chaolong; Zheng, Jun; Zhang, Yaoju; Li, Yijie; Liu, Siyuan; Wang, Weiji; Jiang, Tao; Zhao, Xuesong; Li, Zhihong

    2018-06-21

    Microlens arrays can improve light transmittance in optical devices or enhance the photoelectrical conversion efficiency of photovoltaic devices. Their surface morphology (aspect ratio and packed density) is vital to photon management in solar cells. Here, we report a 100% packed density paraboloidal microlens array (PMLA), with a large aspect ratio, fabricated by direct-write UV laser photolithography coupled with soft imprint lithography. Optical characterization shows that the PMLA structure can remarkably decrease the front-side reflectance of solar cell device. The measured electrical parameters of the solar cell device clearly and consistently demonstrate that the PMLA film can considerably improve the photoelectrical conversion efficiency. In addition, the PMLA film has superhydrophobic properties, verified by measurement of a large water contact angle, and can enhance the self-cleaning capability of solar cell devices.

  14. Factors affecting the open-circuit voltage and electrode kinetics of some iron/titanium/redox flow cells

    NASA Technical Reports Server (NTRS)

    Reid, M. A.; Gahn, R. F.

    1977-01-01

    The effect of acid concentration on the performance of the iron-titanium redox flow cell was studied. When the acidity was increased, open-circuit voltages decreased on the titanium side but load voltages increased due to decreased polarization. The best load voltage occurs when there is high acidity on the titanium side coupled with low acidity on the iron side, but such cells show voltage losses with repeated cycling because of the diffusion of acid through the membrane. No membrane tested has been found capable of maintaining the differences in acidity. Chelating agents show some promise in reducing polarization at the Ti electrode and thus improving energy efficiency.

  15. An analysis of the surface-normal coupling efficiency of a metal grating coupler embedded in a Scotch tape optical waveguide

    NASA Astrophysics Data System (ADS)

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor

    2017-01-01

    The coupling efficiency at normal incidence of recently demonstrated aluminum grating couplers integrated in flexible Scotch tape waveguides has been analyzed theoretically and experimentally. Finite difference time domain (FDTD) and rigorously coupled wave analysis (RCWA) methods have been used to optimize the dimensions (duty cycle and metal thickness) of Scotch tape-embedded 1D Al gratings for maximum coupling at 635 nm wavelength. Good dimension and tape refractive index tolerances are predicted. FDTD simulations reveal the incident beam width and impinging position (alignment) values that avoid rediffraction and thus maximize the coupling efficiency. A 1D Al diffraction grating integrated into a Scotch tape optical waveguide has been fabricated and characterized. The fabrication process, based on pattern transfer, has been optimized to allow complete Al grating transfer onto the Scotch tape waveguide. A maximum coupling efficiency of 20% for TM-polarized normal incidence has been measured, which is in good agreement with the theoretical predictions. The measured coupling efficiency is further increased up to 28% for TM polarization under oblique incidence. Temperature dependence measurements have been also achieved and related to the simulations results and fabrication procedure.

  16. Effect of proton transfer on the electronic coupling in DNA

    NASA Astrophysics Data System (ADS)

    Rak, Janusz; Makowska, Joanna; Voityuk, Alexander A.

    2006-06-01

    The effects of single and double proton transfer within Watson-Crick base pairs on donor-acceptor electronic couplings, Vda, in DNA are studied on the bases of quantum chemical calculations. Four dimers [AT,AT], [GC,GC], [GC,AT] and [GC,TA)] are considered. Three techniques - the generalized Mulliken-Hush scheme, the fragment charge method and the diabatic states method - are employed to estimate Vda for hole transfer between base pairs. We show that both single- and double proton transfer (PT) reactions may substantially affect the electronic coupling in DNA. The electronic coupling in [AT,AT] is predicted to be most sensitive to PT. Single PT within the first base pair in the dimer leads to increase in the hole transfer efficiency by a factor of 4, while proton transfer within the second pair should substantially, by 2.7 times, decrease the rate of charge transfer. Thus, directional asymmetry of the PT effects on the electronic coupling is predicted. The changes in the Vda matrix elements correlate with the topological properties of orbitals of donor and acceptor and can be qualitatively rationalized in terms of resonance structures of donor and acceptor. Atomic pair contributions to the Vda matrix elements are also analyzed.

  17. High-efficiency resonant coupled wireless power transfer via tunable impedance matching

    NASA Astrophysics Data System (ADS)

    Anowar, Tanbir Ibne; Barman, Surajit Das; Wasif Reza, Ahmed; Kumar, Narendra

    2017-10-01

    For magnetic resonant coupled wireless power transfer (WPT), the axial movement of near-field coupled coils adversely degrades the power transfer efficiency (PTE) of the system and often creates sub-resonance. This paper presents a tunable impedance matching technique based on optimum coupling tuning to enhance the efficiency of resonant coupled WPT system. The optimum power transfer model is analysed from equivalent circuit model via reflected load principle, and the adequate matching are achieved through the optimum tuning of coupling coefficients at both the transmitting and receiving end of the system. Both simulations and experiments are performed to evaluate the theoretical model of the proposed matching technique, and results in a PTE over 80% at close coil proximity without shifting the original resonant frequency. Compared to the fixed coupled WPT, the extracted efficiency shows 15.1% and 19.9% improvements at the centre-to-centre misalignment of 10 and 70 cm, respectively. Applying this technique, the extracted S21 parameter shows more than 10 dB improvements at both strong and weak couplings. Through the developed model, the optimum coupling tuning also significantly improves the performance over matching techniques using frequency tracking and tunable matching circuits.

  18. Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers.

    PubMed

    Lin, Shuyu; Xu, Jie

    2017-02-10

    The input electrical impedance behaves as a capacitive when a piezoelectric transducer is excited near its resonance frequency. In order to increase the energy transmission efficiency, a series or parallel inductor should be used to compensate the capacitive impedance of the piezoelectric transducer. In this paper, the effect of the series matching inductor on the electromechanical characteristics of the piezoelectric transducer is analyzed. The dependency of the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient, the electrical quality factor and the electro-acoustical efficiency on the matching inductor is obtained. It is shown that apart from compensating the capacitive impedance of the piezoelectric transducer, the series matching inductor can also change the electromechanical characteristics of the piezoelectric transducer. When series matching inductor is increased, the resonance frequency is decreased and the anti-resonance unchanged; the effective electromechanical coupling coefficient is increased. For the electrical quality factor and the electroacoustic efficiency, the dependency on the matching inductor is different when the transducer is operated at the resonance and the anti-resonance frequency. The electromechanical characteristics of the piezoelectric transducer with series matching inductor are measured. It is shown that the theoretically predicted relationship between the electromechanical characteristics and the series matching inductor is in good agreement with the experimental results.

  19. Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers

    PubMed Central

    Lin, Shuyu; Xu, Jie

    2017-01-01

    The input electrical impedance behaves as a capacitive when a piezoelectric transducer is excited near its resonance frequency. In order to increase the energy transmission efficiency, a series or parallel inductor should be used to compensate the capacitive impedance of the piezoelectric transducer. In this paper, the effect of the series matching inductor on the electromechanical characteristics of the piezoelectric transducer is analyzed. The dependency of the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient, the electrical quality factor and the electro-acoustical efficiency on the matching inductor is obtained. It is shown that apart from compensating the capacitive impedance of the piezoelectric transducer, the series matching inductor can also change the electromechanical characteristics of the piezoelectric transducer. When series matching inductor is increased, the resonance frequency is decreased and the anti-resonance unchanged; the effective electromechanical coupling coefficient is increased. For the electrical quality factor and the electroacoustic efficiency, the dependency on the matching inductor is different when the transducer is operated at the resonance and the anti-resonance frequency. The electromechanical characteristics of the piezoelectric transducer with series matching inductor are measured. It is shown that the theoretically predicted relationship between the electromechanical characteristics and the series matching inductor is in good agreement with the experimental results. PMID:28208583

  20. Experimental investigation and modeling of a direct-coupled PV/T air collector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahsavar, A.; Ameri, M.; Energy and Environmental Engineering Research Center, Shahid Bahonar University, Kerman

    2010-11-15

    Photovoltaic/thermal (PV/T) systems refer to the integration of photovoltaic and solar thermal technologies into one single system, in that both useful heat energy and electricity are produced. The impetus of this paper is to model a direct-coupled PV/T air collector which is designed, built, and tested at a geographic location of Kerman, Iran. In this system, a thin aluminum sheet suspended at the middle of air channel is used to increase the heat exchange surface and consequently improve heat extraction from PV panels. This PV/T system is tested in natural convection and forced convection (with two, four and eight fansmore » operating) and its unsteady results are presented in with and without glass cover cases. A theoretical model is developed and validated against experimental data, where good agreement between the measured values and those calculated by the simulation model were achieved. Comparisons are made between electrical performance of the different modes of operation, and it is concluded that there is an optimum number of fans for achieving maximum electrical efficiency. Also, results show that setting glass cover on photovoltaic panels leads to an increase in thermal efficiency and decrease in electrical efficiency of the system. (author)« less

  1. Chlorine Doping Reduces Electron–Hole Recombination in Lead Iodide Perovskites: Time-Domain Ab Initio Analysis

    DOE PAGES

    Liu, Jin; Prezhdo, Oleg V.

    2015-10-27

    Rapid development in lead halide perovskites has led to solution-processable thin film solar cells with power conversion efficiencies close to 20%. Nonradiative electron–hole recombination within perovskites has been identified as the main pathway of energy losses, competing with charge transport and limiting the efficiency. Using nonadiabatic (NA) molecular dynamics, combined with time-domain density functional theory, we show that nonradiative recombination happens faster than radiative recombination and long-range charge transfer to an acceptor material. Doping of lead iodide perovskites with chlorine atoms reduces charge recombination. On the one hand, chlorines decrease the NA coupling because they contribute little to the wavemore » functions of the valence and conduction band edges. On the other hand, chlorines shorten coherence time because they are lighter than iodines and introduce high-frequency modes. Both factors favor longer excited-state lifetimes. The simulation shows good agreement with the available experimental data and contributes to the comprehensive understanding of electronic and vibrational dynamics in perovskites. The generated insights into design of higher-efficiency solar cells range from fundamental scientific principles, such as the role of electron–vibrational coupling and quantum coherence, to practical guidelines, such as specific suggestions for chemical doping.« less

  2. Solar Thermo-coupled Electrochemical Oxidation of Aniline in Wastewater for the Complete Mineralization Beyond an Anodic Passivation Film.

    PubMed

    Yuan, Dandan; Tian, Lei; Li, Zhida; Jiang, Hong; Yan, Chao; Dong, Jing; Wu, Hongjun; Wang, Baohui

    2018-02-15

    Herein, we report the solar thermal electrochemical process (STEP) aniline oxidation in wastewater for totally solving the two key obstacles of the huge energy consumption and passivation film in the electrochemical treatment. The process, fully driven by solar energy without input of any other energies, sustainably serves as an efficient thermoelectrochemical oxidation of aniline by the control of the thermochemical and electrochemical coordination. The thermocoupled electrochemical oxidation of aniline achieved a fast rate and high efficiency for the full minimization of aniline to CO 2 with the stability of the electrode and without formation of polyaniline (PAN) passivation film. A clear mechanism of aniline oxidation indicated a switching of the reactive pathway by the STEP process. Due to the coupling of solar thermochemistry and electrochemistry, the electrochemical current remained stable, significantly improving the oxidation efficiency and mineralization rate by apparently decreasing the electrolytic potential when applied with high temperature. The oxidation rate of aniline and chemical oxygen demand (COD) removal rate could be lifted up to 2.03 and 2.47 times magnification compared to conventional electrolysis, respectively. We demonstrate that solar-driven STEP processes are capable of completely mineralizing aniline with high utilization of solar energy. STEP aniline oxidation can be utilized as a green, sustainable water treatment.

  3. A model for Entropy Production, Entropy Decrease and Action Minimization in Self-Organization

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi; Chatterjee, Atanu; Vu, Thanh; Iannacchione, Germano

    In self-organization energy gradients across complex systems lead to change in the structure of systems, decreasing their internal entropy to ensure the most efficient energy transport and therefore maximum entropy production in the surroundings. This approach stems from fundamental variational principles in physics, such as the principle of least action. It is coupled to the total energy flowing through a system, which leads to increase the action efficiency. We compare energy transport through a fluid cell which has random motion of its molecules, and a cell which can form convection cells. We examine the signs of change of entropy, and the action needed for the motion inside those systems. The system in which convective motion occurs, reduces the time for energy transmission, compared to random motion. For more complex systems, those convection cells form a network of transport channels, for the purpose of obeying the equations of motion in this geometry. Those transport networks are an essential feature of complex systems in biology, ecology, economy and society.

  4. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation.

    PubMed

    Nisr, Raid B; Affourtit, Charles

    2014-02-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. © 2013.

  5. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation☆

    PubMed Central

    Nisr, Raid B.; Affourtit, Charles

    2014-01-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. PMID:24212054

  6. Two-Dimensional Electronic Spectroscopy of Benzene, Phenol, and Their Dimer: An Efficient First-Principles Simulation Protocol.

    PubMed

    Nenov, Artur; Mukamel, Shaul; Garavelli, Marco; Rivalta, Ivan

    2015-08-11

    First-principles simulations of two-dimensional electronic spectroscopy in the ultraviolet region (2DUV) require computationally demanding multiconfigurational approaches that can resolve doubly excited and charge transfer states, the spectroscopic fingerprints of coupled UV-active chromophores. Here, we propose an efficient approach to reduce the computational cost of accurate simulations of 2DUV spectra of benzene, phenol, and their dimer (i.e., the minimal models for studying electronic coupling of UV-chromophores in proteins). We first establish the multiconfigurational recipe with the highest accuracy by comparison with experimental data, providing reference gas-phase transition energies and dipole moments that can be used to construct exciton Hamiltonians involving high-lying excited states. We show that by reducing the active spaces and the number of configuration state functions within restricted active space schemes, the computational cost can be significantly decreased without loss of accuracy in predicting 2DUV spectra. The proposed recipe has been successfully tested on a realistic model proteic system in water. Accounting for line broadening due to thermal and solvent-induced fluctuations allows for direct comparison with experiments.

  7. Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production

    NASA Astrophysics Data System (ADS)

    Mingyi, Liu; Bo, Yu; Jingming, Xu; Jing, Chen

    High-temperature steam electrolysis (HTSE), a reversible process of solid oxide fuel cell (SOFC) in principle, is a promising method for highly efficient large-scale hydrogen production. In our study, the overall efficiency of the HTSE system was calculated through electrochemical and thermodynamic analysis. A thermodynamic model in regards to the efficiency of the HTSE system was established and the quantitative effects of three key parameters, electrical efficiency (η el), electrolysis efficiency (η es), and thermal efficiency (η th) on the overall efficiency (η overall) of the HTSE system were investigated. Results showed that the contribution of η el, η es, η th to the overall efficiency were about 70%, 22%, and 8%, respectively. As temperatures increased from 500 °C to 1000 °C, the effect of η el on η overall decreased gradually and the η es effect remained almost constant, while the η th effect increased gradually. The overall efficiency of the high-temperature gas-cooled reactor (HTGR) coupled with the HTSE system under different conditions was also calculated. With the increase of electrical, electrolysis, and thermal efficiency, the overall efficiencies were anticipated to increase from 33% to a maximum of 59% at 1000 °C, which is over two times higher than that of the conventional alkaline water electrolysis.

  8. Calculated coupling efficiency between an elliptical-core optical fiber and an optical waveguide over temperature

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Weisshaar, Andreas; Li, Jian; Beheim, Glenn

    1995-01-01

    To determine the feasibility of coupling the output of a single-mode optical fiber into a single-mode rib waveguide in a temperature varying environment, a theoretical calculation of the coupling efficiency between the two was investigated. Due to the complex geometry of the rib guide, there is no analytical solution to the wave equation for the guided modes, thus, approximation and/or numerical techniques must be utilized to determine the field patterns of the guide. In this study, three solution methods were used for both the fiber and guide fields; the effective-index method (EIM), Marcatili's approximation, and a Fourier method. These methods were utilized independently to calculate the electric field profile of each component at two temperatures, 20 C and 300 C, representing a nominal and high temperature. Using the electric field profile calculated from each method, the theoretical coupling efficiency between an elliptical-core optical fiber and a rib waveguide was calculated using the overlap integral and the results were compared. It was determined that a high coupling efficiency can be achieved when the two components are aligned. The coupling efficiency was more sensitive to alignment offsets in the y direction than the x, due to the elliptical modal field profile of both components. Changes in the coupling efficiency over temperature were found to be minimal.

  9. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency—Development of a new canopy photosynthesis model scaling from metabolism to canopy level processes

    PubMed Central

    Song, Qingfeng; Wang, Yu; Qu, Mingnan; Ort, Donald R.

    2017-01-01

    Abstract Canopy photosynthesis (Ac) describes photosynthesis of an entire crop field and the daily and seasonal integrals of Ac positively correlate with daily and seasonal biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis model including canopy architecture, a ray tracing algorithm, and C3 photosynthetic metabolism to explore the option of manipulating leaf chlorophyll concentration ([Chl]) for greater Ac and nitrogen use efficiency (NUE). Model simulation results show that (a) efficiency of photosystem II increased when [Chl] was decreased by decreasing antenna size and (b) the light received by leaves at the bottom layers increased when [Chl] throughout the canopy was decreased. Furthermore, the modelling revealed a modest ~3% increase in Ac and an ~14% in NUE was accompanied when [Chl] reduced by 60%. However, if the leaf nitrogen conserved by this decrease in leaf [Chl] were to be optimally allocated to other components of photosynthesis, both Ac and NUE can be increased by over 30%. Optimizing [Chl] coupled with strategic reinvestment of conserved nitrogen is shown to have the potential to support substantial increases in Ac, biomass production, and crop yields. PMID:28755407

  10. Impaired Right Ventricular-Pulmonary Arterial Coupling and Effect of Sildenafil in Heart Failure With Preserved Ejection Fraction: An Ancillary Analysis From the Phosphodiesterase-5 Inhibition to Improve Clinical Status And Exercise Capacity in Diastolic Heart Failure (RELAX) Trial.

    PubMed

    Hussain, Imad; Mohammed, Selma F; Forfia, Paul R; Lewis, Gregory D; Borlaug, Barry A; Gallup, Dianne S; Redfield, Margaret M

    2016-04-01

    Right ventricular (RV) dysfunction (RVD) is a poor prognostic factor in heart failure with preserved ejection fraction (HFpEF). The physiological perturbations associated with RVD or RV function indexed to load (RV-pulmonary arterial [PA] coupling) in HFpEF have not been defined. HFpEF patients with marked impairment in RV-PA coupling may be uniquely sensitive to sildenafil. In a subset of HFpEF patients enrolled in the Phosphodiesteas-5 Inhibition to Improve Clinical Status And Exercise Capacity in Diastolic Heart Failure (RELAX) trial, physiological variables and therapeutic effect of sildenafil were examined relative to the severity of RVD (tricuspid annular plane systolic excursion [TAPSE]) and according to impairment in RV-PA coupling (TAPSE/pulmonary artery systolic pressure) ratio. The prevalence of atrial fibrillation and diuretic use, n-terminal probrain natriuretic peptide levels, renal dysfunction, neurohumoral activation, myocardial necrosis and fibrosis biomarkers, and the severity of diastolic dysfunction all increased with severity of RVD. Peak oxygen consumption decreased and ventilatory inefficiency (VE/VCO2 slope) increased with increasing severity of RVD. Many but not all physiological derangements were more closely associated with the TAPSE/pulmonary artery systolic pressure ratio. Compared with placebo, at 24 weeks, TAPSE decreased, and peak oxygen consumption and VE/CO2 slope were unchanged with sildenafil. There was no interaction between RV-PA coupling and treatment effect, and sildenafil did not improve TAPSE, peak oxygen consumption, or VE/VCO2 in patients with pulmonary hypertension and RVD. HFpEF patients with RVD and impaired RV-PA coupling have more advanced heart failure. In RELAX patients with RVD and impaired RV-PA coupling, sildenafil did not improve RV function, exercise capacity, or ventilatory efficiency. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00763867. © 2016 American Heart Association, Inc.

  11. Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters

    PubMed Central

    Miura, R.; Imamura, S.; Ohta, R.; Ishii, A.; Liu, X.; Shimada, T.; Iwamoto, S.; Arakawa, Y.; Kato, Y. K.

    2014-01-01

    The unique emission properties of single-walled carbon nanotubes are attractive for achieving increased functionality in integrated photonics. In addition to being room-temperature telecom-band emitters that can be directly grown on silicon, they are ideal for coupling to nanoscale photonic structures. Here we report on high-efficiency coupling of individual air-suspended carbon nanotubes to silicon photonic crystal nanobeam cavities. Photoluminescence images of dielectric- and air-mode cavities reflect their distinctly different mode profiles and show that fields in the air are important for coupling. We find that the air-mode cavities couple more efficiently, and estimated spontaneous emission coupling factors reach a value as high as 0.85. Our results demonstrate advantages of ultralow mode-volumes in air-mode cavities for coupling to low-dimensional nanoscale emitters. PMID:25420679

  12. Feasibility of Coupling Between a Single-Mode Elliptical-Core Fiber and a Single Mode Rib Waveguide Over Temperature. Ph.D. Thesis - Akron Univ., Aug. 1995

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.

    1995-01-01

    To determine the feasibility of coupling the output of an optical fiber to a rib waveguide in a temperature environment ranging from 20 C to 300 C, a theoretical calculation of the coupling efficiency between the two was investigated. This is a significant problem which needs to be addressed to determine whether an integrated optic device can function in a harsh temperature environment. Because the behavior of the integrated-optic device is polarization sensitive, a polarization-preserving optic fiber, via its elliptical core, was used to couple light with a known polarization into the device. To couple light energy efficiently from an optical fiber into a channel waveguide, the design of both components should provide for well-matched electric field profiles. The rib waveguide analyzed was the light input channel of an integrated-optic pressure sensor. Due to the complex geometry of the rib waveguide, there is no analytical solution to the wave equation for the guided modes. Approximation or numerical techniques must be utilized to determine the propagation constants and field patterns of the guide. In this study, three solution methods were used to determine the field profiles of both the fiber and guide: the effective-index method (EIM), Marcatili's approximation, and a Fourier method. These methods were utilized independently to calculate the electric field profile of a rib channel waveguide and elliptical fiber at two temperatures, 20 C and 300 C. These temperatures were chosen to represent a nominal and a high temperature that the device would experience. Using the electric field profile calculated from each method, the theoretical coupling efficiency between the single-mode optical fiber and rib waveguide was calculated using the overlap integral and results of the techniques compared. Initially, perfect alignment was assumed and the coupling efficiency calculated. Then, the coupling efficiency calculation was repeated for a range of transverse offsets at both temperatures. Results of the calculation indicate a high coupling efficiency can be achieved when the two components were properly aligned. The coupling efficiency was more sensitive to alignment offsets in the y direction than the x, due to the elliptical modal profile of both components. Changes in the coupling efficiency over temperature were found to be minimal.

  13. Hypoxia-induced decrease of UCP3 gene expression in rat heart parallels metabolic gene switching but fails to affect mitochondrial respiratory coupling.

    PubMed

    Essop, M Faadiel; Razeghi, Peter; McLeod, Chris; Young, Martin E; Taegtmeyer, Heinrich; Sack, Michael N

    2004-02-06

    Mitochondrial uncoupling proteins 2 and 3 (UCP2 and UCP3) are postulated to contribute to antioxidant defense, nutrient partitioning, and energy efficiency in the heart. To distinguish isotype function in response to metabolic stress we measured cardiac mitochondrial function and cardiac UCP gene expression following chronic hypobaric hypoxia. Isolated mitochondrial O(2) consumption and ATP synthesis rate were reduced but respiratory coupling was unchanged compared to normoxic groups. Concurrently, left ventricular UCP3 mRNA levels were significantly decreased with hypoxia (p<0.05) while UCP2 levels remained unchanged versus controls. Diminished UCP3 expression was associated with coordinate regulation of counter-regulatory metabolic genes. From these data, we propose a role for UCP3 in the regulation of fatty acid oxidation in the heart as opposed to uncoupling of mitochondria. Moreover, the divergent hypoxia-induced regulation of UCP2 and UCP3 supports distinct mitochondrial regulatory functions of these inner mitochondrial membrane proteins in the heart in response to metabolic stress.

  14. Qubit absorption refrigerator at strong coupling

    NASA Astrophysics Data System (ADS)

    Mu, Anqi; Agarwalla, Bijay Kumar; Schaller, Gernot; Segal, Dvira

    2017-12-01

    We demonstrate that a quantum absorption refrigerator (QAR) can be realized from the smallest quantum system, a qubit, by coupling it in a non-additive (strong) manner to three heat baths. This function is un-attainable for the qubit model under the weak system-bath coupling limit, when the dissipation is additive. In an optimal design, the reservoirs are engineered and characterized by a single frequency component. We then obtain closed expressions for the cooling window and refrigeration efficiency, as well as bounds for the maximal cooling efficiency and the efficiency at maximal power. Our results agree with macroscopic designs and with three-level models for QARs, which are based on the weak system-bath coupling assumption. Beyond the optimal limit, we show with analytical calculations and numerical simulations that the cooling efficiency varies in a non-universal manner with model parameters. Our work demonstrates that strongly-coupled quantum machines can exhibit function that is un-attainable under the weak system-bath coupling assumption.

  15. Engineering the quantum anomalous Hall effect in graphene with uniaxial strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diniz, G. S., E-mail: ginetom@gmail.com; Guassi, M. R.; Qu, F.

    2013-12-28

    We theoretically investigate the manipulation of the quantum anomalous Hall effect (QAHE) in graphene by means of the uniaxial strain. The values of Chern number and Hall conductance demonstrate that the strained graphene in presence of Rashba spin-orbit coupling and exchange field, for vanishing intrinsic spin-orbit coupling, possesses non-trivial topological phase, which is robust against the direction and modulus of the strain. Besides, we also find that the interplay between Rashba and intrinsic spin-orbit couplings results in a topological phase transition in the strained graphene. Remarkably, as the strain strength is increased beyond approximately 7%, the critical parameters of themore » exchange field for triggering the quantum anomalous Hall phase transition show distinct behaviors—decrease (increase) for strains along zigzag (armchair) direction. Our findings open up a new platform for manipulation of the QAHE by an experimentally accessible strain deformation of the graphene structure, with promising application on novel quantum electronic devices with high efficiency.« less

  16. Enhanced coupling of terahertz radiation to cylindrical wire waveguides.

    PubMed

    Deibel, Jason A; Wang, Kanglin; Escarra, Matthew D; Mittleman, Daniel

    2006-01-09

    Wire waveguides have recently been shown to be valuable for transporting pulsed terahertz radiation. This technique relies on the use of a scattering mechanism for input coupling. A radially polarized surface wave is excited when a linearly polarized terahertz pulse is focused on the gap between the wire waveguide and another metal structure. We calculate the input coupling efficiency using a simulation based on the Finite Element Method (FEM). Additional FEM results indicate that enhanced coupling efficiency can be achieved through the use of a radially symmetric photoconductive antenna. Experimental results confirm that such an antenna can generate terahertz radiation which couples to the radial waveguide mode with greatly improved efficiency.

  17. Microbial battery for efficient energy recovery.

    PubMed

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi

    2013-10-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power.

  18. Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator.

    PubMed

    Wang, Sha; Wang, Yan-Biao; Feng, Guo-Ying; Zhou, Shou-Huan

    2016-02-01

    We theoretically and experimentally report and evaluate a novel split laser-diode (LD) double-end pumped Yb:KYW ultrafast oscillator aimed at improving the performance of an ultrafast laser. Compared to a conventional unpolarized single-LD end-pumped ultrafast laser system, we improve the laser performance such as absorption efficiency, slope efficiency, cw mode-locking threshold, and output power by this new structure LD-pumped Yb:KYW ultrafast laser. Experiments were carried out with a 1 W output fiber-coupled LD. Experimental results show that the absorption increases from 38.7% to 48.4%, laser slope efficiency increases from 18.3% to 24.2%, cw mode-locking threshold decreases 12.7% from 630 to 550 mW in cw mode-locking threshold, and maximum output-power increases 28.5% from 158.4 to 221.5 mW when we switch the pump scheme from an unpolarized single-end pumping structure to a split LD double-end pumping structure.

  19. Microbial battery for efficient energy recovery

    PubMed Central

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S.; Cui, Yi

    2013-01-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs—a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power. PMID:24043800

  20. Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states

    NASA Astrophysics Data System (ADS)

    Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil McN.; Kay, Christopher W. M.

    2017-09-01

    The strong coupling regime is essential for efficient transfer of excitations between states in different quantum systems on timescales shorter than their lifetimes. The coupling of single spins to microwave photons is very weak but can be enhanced by increasing the local density of states by reducing the magnetic mode volume of the cavity. In practice, it is difficult to achieve both small cavity mode volume and low cavity decay rate, so superconducting metals are often employed at cryogenic temperatures. For an ensembles of N spins, the spin-photon coupling can be enhanced by √{N } through collective spin excitations known as Dicke states. For sufficiently large N the collective spin-photon coupling can exceed both the spin decoherence and cavity decay rates, making the strong-coupling regime accessible. Here we demonstrate strong coupling and cavity quantum electrodynamics in a solid-state system at room-temperature. We generate an inverted spin-ensemble with N 1015 by photo-exciting pentacene molecules into spin-triplet states with spin dephasing time T2* 3 μs. When coupled to a 1.45 GHz TE01δ mode supported by a high Purcell factor strontium titanate dielectric cavity (Vm 0.25 cm3, Q 8,500), we observe Rabi oscillations in the microwave emission from collective Dicke states and a 1.8 MHz normal-mode splitting of the resultant collective spin-photon polariton. We also observe a cavity protection effect at the onset of the strong-coupling regime which decreases the polariton decay rate as the collective coupling increases.

  1. Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration.

    PubMed

    Cai, M; Vahala, K

    2000-02-15

    We report that greater than 99.8% optical power transfer to whispering-gallery modes was achieved in fused-silica microspheres by use of a dual-tapered-fiber coupling method. The intrinsic cavity loss and the taper-to-sphere coupling coefficient are inferred from the experimental data. It is shown that the low intrinsic cavity loss and the symmetrical dual-coupling structure are crucial for obtaining the high coupling efficiency.

  2. Estimation of coupling efficiency of optical fiber by far-field method

    NASA Astrophysics Data System (ADS)

    Kataoka, Keiji

    2010-09-01

    Coupling efficiency to a single-mode optical fiber can be estimated with the field amplitudes at far-field of an incident beam and optical fiber mode. We call it the calculation by far-field method (FFM) in this paper. The coupling efficiency by FFM is formulated including effects of optical aberrations, vignetting of the incident beam, and misalignments of the optical fiber such as defocus, lateral displacements, and angle deviation in arrangement of the fiber. As the results, it is shown the coupling efficiency is proportional to the central intensity of the focused spot, i.e., Strehl intensity of a virtual beam determined by the incident beam and mode of the optical fiber. Using the FFM, a typical optics in which a laser beam is coupled to an optical fiber with a lens of finite numerical aperture (NA) is analyzed for several cases of amplitude distributions of the incident light.

  3. Influence of the frequency detuning on the four-wave mixing efficiency in three-level system coupled by standing-wave

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-Tao; Che, Shao-Na; Han, Yu-Hong; Wang, Dan

    2018-05-01

    In a Λ-type three-level atomic system coupled by an off-resonant standing-wave, the reflected four-wave mixing (FWM) spectrum is studied. It shows that the maximum reflection efficiency occurs when both of the coupling and probe fields are tuned off resonances from the atomic transitions. The essence of enhanced reflection is that the nonlinear efficiency of the FWM based on coherent atoms is improved due to the significant reduction of phase mismatch. The theoretical analysis shows good agreement with the experimental results. Furthermore, the influence of the atomic number density on the coupling frequency detuning of the optimum reflection efficiency and the linewidth are also investigated.

  4. Coupling Effects of Melt Treatment and Ultrasonic Treatment on Solidifying Microstructure and Mechanical Performance of Ti44Al6Nb1Cr Alloy

    NASA Astrophysics Data System (ADS)

    Deshuang, Zheng; Ruirun, Chen; Tengfei, Ma; Hongsheng, Ding; Yanqing, Su; Jingjie, Guo; Hengzhi, Fu

    2018-02-01

    The coupling effects of melt treatment and ultrasonic treatment on the solidifying microstructure and mechanical performance of Ti44Al6Nb1Cr alloy are investigated. During melt treatment, a low superheat degree is beneficial for microstructure refinement, with the lamellar colony size decreasing from 512 to 243 μm, while a low cooling rate leads to the microstructure coarsening as the lamellar colony size enlarges from 458 to 615 μm. After coupling with ultrasonic treatment, under moderate superheat degree and cooling rate, the original coarse lamellar colony size is significantly refined to 56 and 38 μm, the compressive strength is improved by 60.71 and 47.89 pct, and the compressive strain is enlarged by 80.19 and 112.33 pct, respectively. It is found that the ultrasonic refining efficiency is dominated by the melt temperature, and there is an optimum temperature range near the crystallization temperature: a too-high temperature leads to the remelting of crystal nuclei, impairing the refining efficiency, whereas a too-low temperature results in high viscosity, hindering the ultrasonic effects. Under ultrasonic treatment, the melt supercooling is increased, leading to an extended constitutional supercooling region, which will enlarge the crystal nucleation; the solute enrichment is enhanced, forming a quasi-steady state with a higher solution concentration gradient, which improves the crystal growth velocity.

  5. Functional Coupling between HIV-1 Integrase and the SWI/SNF Chromatin Remodeling Complex for Efficient in vitro Integration into Stable Nucleosomes

    PubMed Central

    Lesbats, Paul; Botbol, Yair; Chevereau, Guillaume; Vaillant, Cédric; Calmels, Christina; Arneodo, Alain; Andreola, Marie-Line; Lavigne, Marc; Parissi, Vincent

    2011-01-01

    Establishment of stable HIV-1 infection requires the efficient integration of the retroviral genome into the host DNA. The molecular mechanism underlying the control of this process by the chromatin structure has not yet been elucidated. We show here that stably associated nucleosomes strongly inhibit in vitro two viral-end integration by decreasing the accessibility of DNA to integrase. Remodeling of the chromatinized template by the SWI/SNF complex, whose INI1 major component interacts with IN, restores and redirects the full-site integration into the stable nucleosome region. These effects are not observed after remodeling by other human remodeling factors such as SNF2H or BRG1 lacking the integrase binding protein INI1. This suggests that the restoration process depends on the direct interaction between IN and the whole SWI/SNF complex, supporting a functional coupling between the remodeling and integration complexes. Furthermore, in silico comparison between more than 40,000 non-redundant cellular integration sites selected from literature and nucleosome occupancy predictions also supports that HIV-1 integration is promoted in the genomic region of weaker intrinsic nucleosome density in the infected cell. Our data indicate that some chromatin structures can be refractory for integration and that coupling between nucleosome remodeling and HIV-1 integration is required to overcome this natural barrier. PMID:21347347

  6. Local residue coupling strategies by neural network for InSAR phase unwrapping

    NASA Astrophysics Data System (ADS)

    Refice, Alberto; Satalino, Giuseppe; Chiaradia, Maria T.

    1997-12-01

    Phase unwrapping is one of the toughest problems in interferometric SAR processing. The main difficulties arise from the presence of point-like error sources, called residues, which occur mainly in close couples due to phase noise. We present an assessment of a local approach to the resolution of these problems by means of a neural network. Using a multi-layer perceptron, trained with the back- propagation scheme on a series of simulated phase images, fashion the best pairing strategies for close residue couples. Results show that god efficiencies and accuracies can have been obtained, provided a sufficient number of training examples are supplied. Results show that good efficiencies and accuracies can be obtained, provided a sufficient number of training examples are supplied. The technique is tested also on real SAR ERS-1/2 tandem interferometric images of the Matera test site, showing a good reduction of the residue density. The better results obtained by use of the neural network as far as local criteria are adopted appear justified given the probabilistic nature of the noise process on SAR interferometric phase fields and allows to outline a specifically tailored implementation of the neural network approach as a very fast pre-processing step intended to decrease the residue density and give sufficiently clean images to be processed further by more conventional techniques.

  7. Using lean principles to improve outpatient adult infusion clinic chemotherapy preparation turnaround times.

    PubMed

    Lamm, Matthew H; Eckel, Stephen; Daniels, Rowell; Amerine, Lindsey B

    2015-07-01

    The workflow and chemotherapy preparation turnaround times at an adult infusion clinic were evaluated to identify opportunities to optimize workflow and efficiency. A three-phase study using Lean Six Sigma methodology was conducted. In phase 1, chemotherapy turnaround times in the adult infusion clinic were examined one year after the interim goal of a 45-minute turnaround time was established. Phase 2 implemented various experiments including a five-day Kaizen event, using lean principles in an effort to decrease chemotherapy preparation turnaround times in a controlled setting. Phase 3 included the implementation of process-improvement strategies identified during the Kaizen event, coupled with a final refinement of operational processes. In phase 1, the mean turnaround time for all chemotherapy preparations decreased from 60 to 44 minutes, and a mean of 52 orders for adult outpatient chemotherapy infusions was received each day. After installing new processes, the mean turnaround time had improved to 37 minutes for each chemotherapy preparation in phase 2. In phase 3, the mean turnaround time decreased from 37 to 26 minutes. The overall mean turnaround time was reduced by 26 minutes, representing a 57% decrease in turnaround times in 19 months through the elimination of waste and the implementation of lean principles. This reduction was accomplished through increased efficiencies in the workplace, with no addition of human resources. Implementation of Lean Six Sigma principles improved workflow and efficiency at an adult infusion clinic and reduced the overall chemotherapy turnaround times from 60 to 26 minutes. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  8. From non-linear magnetoacoustics and spin reorientation transition to magnetoelectric micro/nano-systems

    NASA Astrophysics Data System (ADS)

    Tiercelin, Nicolas; Preobrazhensky, Vladimir; BouMatar, Olivier; Talbi, Abdelkrim; Giordano, Stefano; Dusch, Yannick; Klimov, Alexey; Mathurin, Théo.; Elmazria, Omar; Hehn, Michel; Pernod, Philippe

    2017-09-01

    The interaction of a strongly nonlinear spin system with a crystalline lattice through magnetoelastic coupling results in significant modifications of the acoustic properties of magnetic materials, especially in the vicinity of magnetic instabilities associated with the spin-reorientation transition (SRT). The magnetoelastic coupling transfers the critical properties of the magnetic subsystem to the elastic one, which leads to a strong decrease of the sound velocity in the vicinity of the SRT, and allows a large control over acoustic nonlinearities. The general principles of the non-linear magneto-acoustics (NMA) will be introduced and illustrated in `bulk' applications such as acoustic wave phase conjugation, multi-phonon coupling, explosive instability of magneto-elastic vibrations, etc. The concept of the SRT coupled to magnetoelastic interaction has been transferred into nanostructured magnetoelastic multilayers with uni-axial anisotropy. The high sensitivity and the non-linear properties have been demonstrated in cantilever type actuators, and phenomena such as magneto-mechanical RF demodulation have been observed. The combination of the magnetic layers with piezoelectric materials also led to stress-mediated magnetoelectric (ME) composites with high ME coefficients, thanks to the SRT. The magnetoacoustic effects of the SRT have also been studied for surface acoustic waves propagating in the magnetoelastic layers and found to be promising for highly sensitive magnetic field sensors working at room temperature. On the other hand, mechanical stress is a very efficient way to control the magnetic subsystem. The principle of a very energy efficient stress-mediated magnetoelectric writing and reading in a magnetic memory is described.

  9. Evaluation of slot-to-slot coupling between dielectric slot waveguides and metal-insulator-metal slot waveguides.

    PubMed

    Kong, Deqing; Tsubokawa, Makoto

    2015-07-27

    We numerically analyzed the power-coupling characteristics between a high-index-contrast dielectric slot waveguide and a metal-insulator-metal (MIM) plasmonic slot waveguide as functions of structural parameters. Couplings due mainly to the transfer of evanescent components in two waveguides generated high transmission efficiencies of 62% when the slot widths of the two waveguides were the same and 73% when the waveguides were optimized by slightly different widths. The maximum transmission efficiency in the slot-to-slot coupling was about 10% higher than that in the coupling between a normal slab waveguide and an MIM waveguide. Large alignment tolerance of the slot-to-slot coupling was also proved. Moreover, a small gap inserted into the interface between two waveguides effectively enhances the transmission efficiency, as in the case of couplings between a normal slab waveguide and an MIM waveguide. In addition, couplings with very wideband transmissions over a wavelength region of a few hundred nanometers were validated.

  10. Contraction coupling efficiency of human first dorsal interosseous muscle.

    PubMed

    Jubrias, Sharon A; Vollestad, Nina K; Gronka, Rod K; Kushmerick, Martin J

    2008-04-01

    During working contractions, chemical energy in the form of ATP is converted to external work. The efficiency of this conversion, called 'contraction coupling efficiency', is calculated by the ratio of work output to energy input from ATP splitting. Experiments on isolated muscles and permeabilized fibres show the efficiency of this conversion has a wide range, 0.2-0.7. We measured the work output in contractions of a single human hand muscle in vivo and of the ATP cost of that work to calculate the contraction coupling efficiency of the muscle. Five subjects performed six bouts of rapid voluntary contractions every 1.5 s for 42 s (28 contractions, each with time to peak force < 150 ms). The bouts encompassed a 7-fold range of workloads. The ATP cost during work was quantified by measuring the extent of chemical changes within the muscle from (31)P magnetic resonance spectra. Contraction coupling efficiency was determined as the slope of paired measurements of work output and ATP cost at the five graded work loads. The results show that 0.68 of the chemical energy available from ATP splitting was converted to external work output. A plausible mechanism to account for this high value is a substantially lower efficiency for mitochondrial ATP synthesis. The method described here can be used to analyse changes in the overall efficiency determined from oxygen consumption during exercise that can occur in disease or with age, and to test the hypothesis that such changes are due to reduced contraction coupling efficiency.

  11. Methods for measuring right ventricular function and hemodynamic coupling with the pulmonary vasculature.

    PubMed

    Bellofiore, Alessandro; Chesler, Naomi C

    2013-07-01

    The right ventricle (RV) is a pulsatile pump, the efficiency of which depends on proper hemodynamic coupling with the compliant pulmonary circulation. The RV and pulmonary circulation exhibit structural and functional differences with the more extensively investigated left ventricle (LV) and systemic circulation. In light of these differences, metrics of LV function and efficiency of coupling to the systemic circulation cannot be used without modification to characterize RV function and efficiency of coupling to the pulmonary circulation. In this article, we review RV physiology and mechanics, established and novel methods for measuring RV function and hemodynamic coupling, and findings from application of these methods to RV function and coupling changes with pulmonary hypertension. We especially focus on non-invasive measurements, as these may represent the future for clinical monitoring of disease progression and the effect of drug therapies.

  12. Efficient photocatalytic performance enhancement in Co-doped ZnO nanowires coupled with CuS nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Guojing; Feng, Yimeng; Li, Zhengcao

    2018-01-01

    In this research, a kind of highly efficient semiconductor photocatalyst was fabricated by depositing CuS nanoparticles uniformly on the surface of Co-doped ZnO nanowires. ZnO nanowires were synthesized by hydrothermal method and CuS nanoparticles were modified by successive ionic layer adsorption and reaction (SILAR). By conducting methyl orange (MO) degradation experiments under the illumination of visible light, the photocatalytic activity of Co-doped ZnO nanowires modified with CuS nanoparticles was found to be nearly three times active when compared to bare ZnO nanowires. Its superior photocatalytic performance has two main reasons. The doped Co2+ ions can inhibit the recombination of photo-generated electron-hole pairs and decrease the optical bandgap, while the p-n heterostructure can enhance the visible light absorption ability and promote the separation of photo-excited charge carriers. Furthermore, the effect of the amount of deposited CuS nanoparticles on the photocatalysis was also investigated. The photocatalytic efficiency firstly raised along with the increment of SILAR cycle times and reached a maximum at 10 cycles but then decreased as the cycle times continue to increase. This originates from that an excessive amount of CuS would not only cover the active reacting sites, but also serve as recombination centers. Overall, this new nanostructure is expected to work as an efficient photocatalyst.

  13. Exploiting One-Dimensional Exciton-Phonon Coupling for Tunable and Efficient Single-Photon Generation with a Carbon Nanotube.

    PubMed

    Jeantet, A; Chassagneux, Y; Claude, T; Roussignol, P; Lauret, J S; Reichel, J; Voisin, C

    2017-07-12

    Condensed-matter emitters offer enriched cavity quantum electrodynamical effects due to the coupling to external degrees of freedom. In the case of carbon nanotubes, a very peculiar coupling between localized excitons and the one-dimensional acoustic phonon modes can be achieved, which gives rise to pronounced phonon wings in the luminescence spectrum. By coupling an individual nanotube to a tunable optical microcavity, we show that this peculiar exciton-phonon coupling is a valuable resource to enlarge the tuning range of the single-photon source while keeping an excellent exciton-photon coupling efficiency and spectral purity. Using the unique flexibility of our scanning fiber cavity, we are able to measure the efficiency spectrum of the very same nanotube in the Purcell regime for several mode volumes. Whereas this efficiency spectrum looks very much like the free-space luminescence spectrum when the Purcell factor is small (large mode volume), we show that the deformation of this spectrum at lower mode volumes can be traced back to the strength of the exciton-photon coupling. It shows an enhanced efficiency on the red wing that arises from the asymmetry of the incoherent energy exchange processes between the exciton and the cavity. This allows us to obtain a tuning range up to several hundred times the spectral width of the source.

  14. Effect of upright tilt on ventricular/vascular coupling in chronically instrumented primates

    NASA Technical Reports Server (NTRS)

    Tran, C. C.; Latham, R. D.; Self, D. A.; Fanton, J. W.; White, C. D.; Owens, R. W.

    1993-01-01

    Studies of the hydraulic loading conditions on the heart in humans, especially pulsatile load, have primarily been limited to the supine state. Therefore, we have chosen a nonhuman primate model, the baboon, to assess left ventricular/vascular coupling in both supine and upright positions. Primate subjects were studied by catheterization under sedation and then after surgical implantation of transducers. This allowed the evaluation of postural stress in the chronically instrumented conscious baboon and then after light dissociative doses of ketamine. Basic hemodynamic variables were evaluated for baboons in supine and upright positions. Fourier analysis was applied to aortic pressure and flow to obtain input and characteristic impedance and the ratio of pulsatile (Wp) to total (Wt) left ventricular power (Wp/Wt). The aortic reflected, or backward, pressure was also calculated. Peripheral resistance increased (P = 0.01) and reflected pressure decreased (17.74 +/- 1.50 vs. 15.21 +/- 2 mmHg; P < 0.01) in upright subjects. Characteristic impedance and Wp/Wt were unchanged. Postoperatively, peripheral resistance increased (2,651 +/- 311 vs. 3,667 +/- 276; P < 0.05) and mean power and Wt decreased (P < 0.01) without changes in reflected pressure. All variables were unchanged after light dissociative doses of ketamine. Thus there is no significant change in efficiency of left ventricular/vascular coupling formulated in terms of Wp/Wt or input impedance with postural stress.

  15. Enhanced out-coupling efficiency of organic light-emitting diodes using an nanostructure imprinted by an alumina nanohole array

    NASA Astrophysics Data System (ADS)

    Endo, Kuniaki; Adachi, Chihaya

    2014-03-01

    We demonstrate organic light-emitting diodes (OLEDs) with enhanced out-coupling efficiency containing nanostructures imprinted by an alumina nanohole array template that can be applied to large-emitting-area and flexible devices using a roll-to-roll process. The nanostructures are imprinted on a glass substrate by an ultraviolet nanoimprint process using an alumina nanohole array mold and then an OLED is fabricated on the nanostructures. The enhancement of out-coupling efficiency is proportional to the root-mean-square roughness of the nanostructures, and a maximum improvement of external electroluminescence quantum efficiency of 17% is achieved. The electroluminescence spectra of the OLEDs indicate that this improvement is caused by enhancement of the out-coupling of surface plasmon polaritons.

  16. An efficient matrix-matrix multiplication based antisymmetric tensor contraction engine for general order coupled cluster.

    PubMed

    Hanrath, Michael; Engels-Putzka, Anna

    2010-08-14

    In this paper, we present an efficient implementation of general tensor contractions, which is part of a new coupled-cluster program. The tensor contractions, used to evaluate the residuals in each coupled-cluster iteration are particularly important for the performance of the program. We developed a generic procedure, which carries out contractions of two tensors irrespective of their explicit structure. It can handle coupled-cluster-type expressions of arbitrary excitation level. To make the contraction efficient without loosing flexibility, we use a three-step procedure. First, the data contained in the tensors are rearranged into matrices, then a matrix-matrix multiplication is performed, and finally the result is backtransformed to a tensor. The current implementation is significantly more efficient than previous ones capable of treating arbitrary high excitations.

  17. A socio-hydrologic model of coupled water-agriculture dynamics with emphasis on farm size.

    NASA Astrophysics Data System (ADS)

    Brugger, D. R.; Maneta, M. P.

    2015-12-01

    Agricultural land cover dynamics in the U.S. are dominated by two trends: 1) total agricultural land is decreasing and 2) average farm size is increasing. These trends have important implications for the future of water resources because 1) growing more food on less land is due in large part to increased groundwater withdrawal and 2) larger farms can better afford both more efficient irrigation and more groundwater access. However, these large-scale trends are due to individual farm operators responding to many factors including climate, economics, and policy. It is therefore difficult to incorporate the trends into watershed-scale hydrologic models. Traditional scenario-based approaches are valuable for many applications, but there is typically no feedback between the hydrologic model and the agricultural dynamics and so limited insight is gained into the how agriculture co-evolves with water resources. We present a socio-hydrologic model that couples simplified hydrologic and agricultural economic dynamics, accounting for many factors that depend on farm size such as irrigation efficiency and returns to scale. We introduce an "economic memory" (EM) state variable that is driven by agricultural revenue and affects whether farms are sold when land market values exceed expected returns from agriculture. The model uses a Generalized Mixture Model of Gaussians to approximate the distribution of farm sizes in a study area, effectively lumping farms into "small," "medium," and "large" groups that have independent parameterizations. We apply the model in a semi-arid watershed in the upper Columbia River Basin, calibrating to data on streamflow, total agricultural land cover, and farm size distribution. The model is used to investigate the sensitivity of the coupled system to various hydrologic and economic scenarios such as increasing market value of land, reduced surface water availability, and increased irrigation efficiency in small farms.

  18. Theoretical z -pinch scaling relations for thermonuclear-fusion experiments.

    PubMed

    Stygar, W A; Cuneo, M E; Vesey, R A; Ives, H C; Mazarakis, M G; Chandler, G A; Fehl, D L; Leeper, R J; Matzen, M K; McDaniel, D H; McGurn, J S; McKenney, J L; Muron, D J; Olson, C L; Porter, J L; Ramirez, J J; Seamen, J F; Speas, C S; Spielman, R B; Struve, K W; Torres, J A; Waisman, E M; Wagoner, T C; Gilliland, T L

    2005-08-01

    We have developed wire-array z -pinch scaling relations for plasma-physics and inertial-confinement-fusion (ICF) experiments. The relations can be applied to the design of z -pinch accelerators for high-fusion-yield (approximately 0.4 GJ/shot) and inertial-fusion-energy (approximately 3 GJ/shot) research. We find that (delta(a)/delta(RT)) proportional (m/l)1/4 (Rgamma)(-1/2), where delta(a) is the imploding-sheath thickness of a wire-ablation-dominated pinch, delta(RT) is the sheath thickness of a Rayleigh-Taylor-dominated pinch, m is the total wire-array mass, l is the axial length of the array, R is the initial array radius, and gamma is a dimensionless functional of the shape of the current pulse that drives the pinch implosion. When the product Rgamma is held constant the sheath thickness is, at sufficiently large values of m/l, determined primarily by wire ablation. For an ablation-dominated pinch, we estimate that the peak radiated x-ray power P(r) proportional (I/tau(i))(3/2)Rlphigamma, where I is the peak pinch current, tau(i) is the pinch implosion time, and phi is a dimensionless functional of the current-pulse shape. This scaling relation is consistent with experiment when 13 MA < or = I < or = 20 MA, 93 ns < or = tau(i) < or = 169 ns, 10 mm < or = R < or = 20 mm, 10 mm < or = l < or = 20 mm, and 2.0 mg/cm < or = m/l < or = 7.3 mg/cm. Assuming an ablation-dominated pinch and that Rlphigamma is held constant, we find that the x-ray-power efficiency eta(x) congruent to P(r)/P(a) of a coupled pinch-accelerator system is proportional to (tau(i)P(r)(7/9 ))(-1), where P(a) is the peak accelerator power. The pinch current and accelerator power required to achieve a given value of P(r) are proportional to tau(i), and the requisite accelerator energy E(a) is proportional to tau2(i). These results suggest that the performance of an ablation-dominated pinch, and the efficiency of a coupled pinch-accelerator system, can be improved substantially by decreasing the implosion time tau(i). For an accelerator coupled to a double-pinch-driven hohlraum that drives the implosion of an ICF fuel capsule, we find that the accelerator power and energy required to achieve high-yield fusion scale as tau(i)0.36 and tau(i)1.36, respectively. Thus the accelerator requirements decrease as the implosion time is decreased. However, the x-ray-power and thermonuclear-yield efficiencies of such a coupled system increase with tau(i). We also find that increasing the anode-cathode gap of the pinch from 2 to 4 mm increases the requisite values of P(a) and E(a) by as much as a factor of 2.

  19. Radiation characteristics of Leaky Surface Plasmon polaritons of graphene

    NASA Astrophysics Data System (ADS)

    Mohadesi, V.; Asgari, A.; Siahpoush, V.

    2018-07-01

    High efficient coupling of graphene surface plasmons to far field radiation is possible by some techniques and can be used in the radiating applications. Besides of the coupling efficiency, the angular distribution of the radiated power is an important parameter in the radiating devices performance. In this paper we investigate the gain of the far field radiation related to the coupling of graphene surface plasmons via a high permittivity medium located close to the graphene. Our results show that high directive radiation and high coupling efficiency can be obtained by this technique and gain and directivity of radiation can be modified by graphene characteristics such as chemical potential and also quality of the graphene. Raising the chemical potential of graphene leads to increase the gain of the radiation as the result of amplifying the directivity of the radiation. Furthermore, high values of relaxation time lead to high directive and strong coupling which raises the maximum value of gain in efficient coupling angle. Tunable characteristics of gain and directivity in this structure can be important designing reconfigurable THz radiating devices.

  20. Advanced Micro Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy Security, and Power Quality at DoD Installations

    DTIC Science & Technology

    2016-10-28

    assumptions. List of Assumptions: Price of electrical energy : $0.07/kWh flat rate for energy at the base Price of peak power: $15/MW peak power...EW-201147) Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy Security, and...12-C-0002 5b. GRANT NUMBER Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy

  1. Short tests to couple N₂O emission mitigation and nitrogen removal strategies for landfill leachate recirculation.

    PubMed

    Wu, Dong; Wang, Chao; Dolfing, Jan; Xie, Bing

    2015-04-15

    Landfills implemented with onsite leachate recirculation can efficiently remove pollutants, but currently they are reckoned as N2O emission hot spots. In this project, we evaluated the relationship between N2O emission and nitrogen (N) removal efficiency with different types of leachate recirculated. Nitrate supplemented leachate showed low N2O emission rates with the highest N removal efficiency (~70%), which was equivalent to ~1% nitrogen emitted as N2O. Although in nitrite containing leachates' N removal efficiencies also reached to ~60%, their emitted N2O comprised ~40% of total removed nitrogen. Increasing nitrogen load promoted N2O emission and N removal efficiency, except in ammonia type leachate. When the ratio of BOD to total nitrogen increased from 0.2 to 0.4, the N2O emission flux from nitrate supplemented leachate decreased from ~25 to <0.5 μg N/kg-soil·h. We argue prior to leachate in situ recirculation, sufficient pre-aeration is critical to mitigate N2O surges and simultaneously enhance nitrogen removal efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Feedback effects in optical communication systems: characteristic curve for single-mode InGaAsP lasers.

    PubMed

    Brivio, F; Reverdito, C; Sacchi, G; Chiaretti, G; Milani, M

    1992-08-20

    An experimental analysis of InGaAsP injection lasers shows an unexpected decrease of the differential quantum efficiency as a function of injected current when optical power is fed back into the active cavity of a diode inserted into a long transmission line. To investigate the response of laser diodes to optical feedback, we base our analysis on a microscopic model, resulting in a set of coupled equations that include the microscopic parameters that characterize the material and the device. This description takes into account the nonlinear dependence of the interband carrier lifetime on the level of optical feedback. Good agreement between the analytical description and experimental data is obtained for threshold current and differential quantum efficiency as functions of the feedback ratio.

  3. Multiresolution molecular mechanics: Implementation and efficiency

    NASA Astrophysics Data System (ADS)

    Biyikli, Emre; To, Albert C.

    2017-01-01

    Atomistic/continuum coupling methods combine accurate atomistic methods and efficient continuum methods to simulate the behavior of highly ordered crystalline systems. Coupled methods utilize the advantages of both approaches to simulate systems at a lower computational cost, while retaining the accuracy associated with atomistic methods. Many concurrent atomistic/continuum coupling methods have been proposed in the past; however, their true computational efficiency has not been demonstrated. The present work presents an efficient implementation of a concurrent coupling method called the Multiresolution Molecular Mechanics (MMM) for serial, parallel, and adaptive analysis. First, we present the features of the software implemented along with the associated technologies. The scalability of the software implementation is demonstrated, and the competing effects of multiscale modeling and parallelization are discussed. Then, the algorithms contributing to the efficiency of the software are presented. These include algorithms for eliminating latent ghost atoms from calculations and measurement-based dynamic balancing of parallel workload. The efficiency improvements made by these algorithms are demonstrated by benchmark tests. The efficiency of the software is found to be on par with LAMMPS, a state-of-the-art Molecular Dynamics (MD) simulation code, when performing full atomistic simulations. Speed-up of the MMM method is shown to be directly proportional to the reduction of the number of the atoms visited in force computation. Finally, an adaptive MMM analysis on a nanoindentation problem, containing over a million atoms, is performed, yielding an improvement of 6.3-8.5 times in efficiency, over the full atomistic MD method. For the first time, the efficiency of a concurrent atomistic/continuum coupling method is comprehensively investigated and demonstrated.

  4. High heralding-efficiency of near-IR fiber coupled photon pairs for quantum technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, P. Ben; Murphy, Ryan; Rosenberg, Danna

    We report on the development and use of a high heralding-efficiency, single-mode-fiber coupled telecom-band source of entangled photons for quantum technology applications. The source development efforts consisted of theoretical and experimental efforts and we demonstrated a correlated-mode coupling efficiency of 97% 2%, the highest efficiency yet achieved for this type of system. We then incorporated these beneficial source development techniques in a Sagnac configured telecom-band entangled photon source that generates photon pairs entangled in both time/energy and polarization degrees of freedom. We made use of these highly desirable entangled states to investigate several promising quantum technologies.

  5. Highly efficient coupler for dielectric slot waveguides and hybrid plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Yu, Jiyao; Ohtera, Yasuo; Yamada, Hirohito

    2018-05-01

    A compact, highly efficient optical coupler for dielectric slot waveguides and hybrid plasmonic waveguides based on transition layers (air slot grooves) was investigated. The power-coupling efficiency of 75% for the direct coupling case increased to 90% following the insertion of an intermediate section. By performing time-averaged Poynting vector analysis, we successfully separated the factors of transmission, reflection, and radiation at the coupler interface. We found that the insertion of optimal air grooves into the coupler structure contributed to the improvement of coupling performance. The proposed compact structure is characterized by a high transmission efficiency, low reflection, small length, and broad-band spectrum response.

  6. Irreversible Brownian Heat Engine

    NASA Astrophysics Data System (ADS)

    Taye, Mesfin Asfaw

    2017-10-01

    We model a Brownian heat engine as a Brownian particle that hops in a periodic ratchet potential where the ratchet potential is coupled with a linearly decreasing background temperature. We show that the efficiency of such Brownian heat engine approaches the efficiency of endoreversible engine η =1-√{{Tc/Th}} [23]. On the other hand, the maximum power efficiency of the engine approaches η ^{MAX}=1-({Tc/Th})^{1\\over 4}. It is shown that the optimized efficiency always lies between the efficiency at quasistatic limit and the efficiency at maximum power while the efficiency at maximum power is always less than the optimized efficiency since the fast motion of the particle comes at the expense of the energy cost. If the heat exchange at the boundary of the heat baths is included, we show that such a Brownian heat engine has a higher performance when acting as a refrigerator than when operating as a device subjected to a piecewise constant temperature. The role of time on the performance of the motor is also explored via numerical simulations. Our numerical results depict that the time t and the external load dictate the direction of the particle velocity. Moreover, the performance of the heat engine improves with time. At large t (steady state), the velocity, the efficiency and the coefficient of performance of the refrigerator attain their maximum value. Furthermore, we study the effect of temperature by considering a viscous friction that decreases exponentially as the background temperature increases. Our result depicts that the Brownian particle exhibits a fast unidirectional motion when the viscous friction is temperature dependent than that of constant viscous friction. Moreover, the efficiency of this motor is considerably enhanced when the viscous friction is temperature dependent. On the hand, the motor exhibits a higher performance of the refrigerator when the viscous friction is taken to be constant.

  7. On the advantages of spring magnets compared to pure FePt: Strategy for rare-earth free permanent magnets following a bottom-up approach

    NASA Astrophysics Data System (ADS)

    Pousthomis, M.; Garnero, C.; Marcelot, C. G.; Blon, T.; Cayez, S.; Cassignol, C.; Du, V. A.; Krispin, M.; Arenal, R.; Soulantica, K.; Viau, G.; Lacroix, L.-M.

    2017-02-01

    Nanostructured magnets benefiting from efficient exchange-coupling between hard and soft grains represent an appealing approach for integrated miniaturized magnetic power sources. Using a bottom-up approach, nanostructured materials were prepared from binary assemblies of bcc FeCo and fcc FePt nanoparticles and compared with pure L10-FePt materials. The use of a bifunctional mercapto benzoic acid yields homogeneous assemblies of the two types of particles while reducing the organic matter amount. The 650 °C thermal annealing, mandatory to allow the L10-FePt phase transition, led to an important interdiffusion and thus decreased drastically the amount of soft phase present in the final composites. The analysis of recoil curves however evidenced the presence of an efficient interphase exchange coupling, which allows obtaining better magnetic performances than pure L10 FePt materials, energy product above 100 kJ m-3 being estimated for a Pt content of only 33%. These results clearly evidenced the interest of chemically grown nanoparticles for the preparation of performant spring-magnets, opening promising perspective for integrated subcentimetric magnets with optimized properties.

  8. Novel spherical hohlraum with cylindrical laser entrance holes and shields

    NASA Astrophysics Data System (ADS)

    Lan, Ke; Zheng, Wudi

    2014-09-01

    Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.

  9. Sensitizing properties of luminescence centers on the emission of Er3+ in Si-rich SiO2 film

    NASA Astrophysics Data System (ADS)

    Fu, Qianyu; Gao, Yuhan; Li, Dongsheng; Yang, Deren

    2016-05-01

    In this paper, we report on the luminescence-center (LC)-mediated excitation of Er3+ as a function of annealing temperature in Er-doped Si-rich SiO2 (SRO) films fabricated by electron beam evaporation. It is found that the annealing temperature has significant effects on the emission of Er3+ and the specific optical-active point-defects called LCs within Er-doped SRO films. Different luminescence centers generated by the evolution of microstructures during annealing process act as efficient sensitizers for Er3+ in the films when the annealing temperature is below 1100 °C. Moreover, the temperature dependence of the energy coupling between LCs and Er3+ demonstrates the effective phonon-mediated energy transfer process. In addition, when the annealing temperature reaches 1100 °C, the decreased density of activable erbium ions induced by the aggregation of Er will bring detrimental effects on the emission of Er3+. It is demonstrated that an appropriate annealing process can be designed to achieve efficiently enhanced emissions from Er3+ ions by optimizing the density of LCs and the coupling between Er3+ and LCs.

  10. Characteristics of pulsed dual frequency inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Seo, Jin Seok; Kim, Kyoung Nam; Kim, Ki Seok; Kim, Tae Hyung; Yeom, Geun Young

    2015-01-01

    To control the plasma characteristics more efficiently, a dual antenna inductively coupled plasma (DF-ICP) source composed of a 12-turn inner antenna operated at 2 MHz and a 3-turn outer antenna at 13.56 MHz was pulsed. The effects of pulsing to each antenna on the change of plasma characteristics and SiO2 etch characteristics using Ar/C4F8 gas mixtures were investigated. When the duty percentage was decreased from continuous wave (CW) mode to 30% for the inner or outer ICP antenna, decrease of the average electron temperature was observed for the pulsing of each antenna. Increase of the CF2/F ratio was also observed with decreasing duty percentage of each antenna, indicating decreased dissociation of the C4F8 gas due to the decreased average electron temperature. When SiO2 etching was investigated as a function of pulse duty percentage, increase of the etch selectivity of SiO2 over amorphous carbon layer (ACL) was observed while decreasing the SiO2 etch rate. The increase of etch selectivity was related to the change of gas dissociation characteristics, as observed by the decrease of average electron temperature and consequent increase of the CF2/F ratio. The decrease of the SiO2 etch rate could be compensated for by using the rf power compensated mode, that is, by maintaining the same time-average rf power during pulsing, instead of using the conventional pulsing mode. Through use of the power compensated mode, increased etch selectivity of SiO2/ACL similar to the conventional pulsing mode could be observed without significant decrease of the SiO2 etch rate. Finally, by using the rf power compensated mode while pulsing rf powers to both antennas, the plasma uniformity over the 300 mm diameter substrate could be improved from 7% for the CW conditions to about around 3.3% with the duty percentage of 30%.

  11. Enhancement of anaerobic acidogenesis by integrating an electrochemical system into an acidogenic reactor: effect of hydraulic retention times (HRT) and role of bacteria and acidophilic methanogenic Archaea.

    PubMed

    Zhang, Jingxin; Zhang, Yaobin; Quan, Xie; Chen, Shuo

    2015-03-01

    In this study, an acidogenic reactor packed with a pair of Fe-carbon electrodes (R1) was developed to enhance anaerobic acidogenesis of organic wastewater at short hydraulic retention times. The results indicated that the acidogenic efficiency was improved by settling a bio-electrochemical system. When hydraulic retention times decreased from 12 to 3h, R1 showed 18.9% more chemical oxygen demand removal and 13.8% more acidification efficiency. After cutting off the voltage of R1, the COD removal decreased by about 5%. Coupling of Fe(2+) leaching and electric field accelerated the hydrolysis of polysaccharide, relieving its accumulation in the sludge phase. Several acidophilic methanogenic Archaea such as Methanosarcina sp. were enriched in R1, which was favorable for consuming organic acids and preventing excessive pH decline. Thus, the developed acidogenic reactor with Fe-carbon electrodes is expected to be potentially effective and useful for wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Optimization of top coupling grating for very long wavelength QWIP based on surface plasmon

    NASA Astrophysics Data System (ADS)

    Wang, Guodong; Shen, Junling; Liu, Xiaolian; Ni, Lu; Wang, Saili

    2017-09-01

    The relative coupling efficiency of two-dimensional (2D) grating based on surface plasmon for very long wavelength quantum well infrared detector is analyzed by using the three-dimensional finite-difference time domain (3D-FDTD) method algorithm. The relative coupling efficiency with respect to the grating parameters, such as grating pitch, duty ratio, and grating thickness, is analyzed. The calculated results show that the relative coupling efficiency would reach the largest value for the 14.5 μm incident infrared light when taking the grating pitch as 4.4 μm, the duty ratio as 0.325, and the grating thickness as 0.07 μm, respectively.

  13. Instantaneous-to-daily GPP upscaling schemes based on a coupled photosynthesis-stomatal conductance model: correcting the overestimation of GPP by directly using daily average meteorological inputs.

    PubMed

    Wang, Fumin; Gonsamo, Alemu; Chen, Jing M; Black, T Andrew; Zhou, Bin

    2014-11-01

    Daily canopy photosynthesis is usually temporally upscaled from instantaneous (i.e., seconds) photosynthesis rate. The nonlinear response of photosynthesis to meteorological variables makes the temporal scaling a significant challenge. In this study, two temporal upscaling schemes of daily photosynthesis, the integrated daily model (IDM) and the segmented daily model (SDM), are presented by considering the diurnal variations of meteorological variables based on a coupled photosynthesis-stomatal conductance model. The two models, as well as a simple average daily model (SADM) with daily average meteorological inputs, were validated using the tower-derived gross primary production (GPP) to assess their abilities in simulating daily photosynthesis. The results showed IDM closely followed the seasonal trend of the tower-derived GPP with an average RMSE of 1.63 g C m(-2) day(-1), and an average Nash-Sutcliffe model efficiency coefficient (E) of 0.87. SDM performed similarly to IDM in GPP simulation but decreased the computation time by >66%. SADM overestimated daily GPP by about 15% during the growing season compared to IDM. Both IDM and SDM greatly decreased the overestimation by SADM, and improved the simulation of daily GPP by reducing the RMSE by 34 and 30%, respectively. The results indicated that IDM and SDM are useful temporal upscaling approaches, and both are superior to SADM in daily GPP simulation because they take into account the diurnally varying responses of photosynthesis to meteorological variables. SDM is computationally more efficient, and therefore more suitable for long-term and large-scale GPP simulations.

  14. Elimination of radiocontrast agent diatrizoic acid by photo-Fenton process and enhanced treatment by coupling with electro-Fenton process.

    PubMed

    Bocos, Elvira; Oturan, Nihal; Pazos, Marta; Sanromán, M Ángeles; Oturan, Mehmet A

    2016-10-01

    The removal of radiocontrast agent diatrizoic acid (DIA) from water was performed using photo-Fenton (PF) process. First, the effect of H2O2 dosage on mineralization efficiency was determined using ultraviolet (UV) irradiation. The system reached a maximum mineralization degree of 60 % total organic carbon (TOC) removal at 4 h with 20 mM initial H2O2 concentration while further concentration values led to a decrease in TOC abatement efficiency. Then, the effect of different concentrations of Fenton's reagents was studied for homogeneous Fenton process. Obtained results revealed that 0.25 mM Fe(3+) and 20 mM H2O2 were the best conditions, achieving 80 % TOC removal efficiency at 4 h treatment. Furthermore, heterogeneous PF treatment was developed using iron-activated carbon as catalyst. It was demonstrated that this catalyst is a promising option, reaching 67 % of TOC removal within 4 h treatment without formation of iron leachate in the medium. In addition, two strategies of enhancement for process efficiency are proposed: coupling of PF with electro-Fenton (EF) process in two ways: photoelectro-Fenton (PEF) or PF followed by EF (PF-EF) treatments, achieving in both cases the complete mineralization of DIA solution within only 2 h. Finally, the Microtox tests revealed the formation of more toxic compounds than the initial DIA during PF process, while, it was possible to reach total mineralization by both proposed alternatives (PEF or PF-EF) and thus to remove the toxicity of DIA solution.

  15. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk

    2016-08-14

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on themore » adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.« less

  16. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    NASA Astrophysics Data System (ADS)

    Spencer, J.; Gajdos, F.; Blumberger, J.

    2016-08-01

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  17. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes.

    PubMed

    Velasco, Antonio; Ramírez, Martha; Hernández, Sergio; Schmidt, Winfried; Revah, Sergio

    2012-03-15

    Single Cr(VI) reduction and coupled reduction/stabilization (R/S) processes were evaluated at pilot scale to determine their effectiveness to treat chromite ore processing residue (COPR). Sodium sulfide was used as the reducing agent and cement, gypsum and lime were tested as the stabilizing agents. The pilot experiments were performed in a helical ribbon blender mixer with batches of 250 kg of COPR and mixing time up to 30 min. Na2S/Cr(VI) mass ratios of 4.6, 5.7 and 6.8 were evaluated in the single reduction process to treat COPR with Cr(VI) concentration of ≈4.2 g/kg. The R/S process was tested with a Na2S/Cr(VI) mass ratio of 5.7 and including stabilizing agents not exceeding 5% (w/w(COPR)), to treat COPR with a Cr(VI) content of ≈5.1g/kg. The single reduction process with a ratio of 6.8, reached Cr(VI) reduction efficiencies up to 97.6% in the first days, however these values decreased to around 93% after 380 days of storage. At this point the total Cr level was around 12.5 mg/L. Cr(VI) removal efficiencies exceeding 96.5% were reached and maintained during 380 days when the coupled R/S process was evaluated. Total Cr levels lower than 5 mg/l were attained at the initials days in all R/S batch tested, however after 380 days, concentrations below the regulatory limit were only found with gypsum (2%) as single agent and with a blend of cement (4%) and lime (1%). These results indicated that the coupled R/S process is an excellent alternative to stabilize COPR. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene

    PubMed Central

    Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2014-01-01

    Using first-principles calculations, we study the electronic properties of few-layer phosphorene focusing on layer-dependent behavior of band gap, work function band alignment and carrier effective mass. It is found that few-layer phosphorene shows a robust direct band gap character, and its band gap decreases with the number of layers following a power law. The work function decreases rapidly from monolayer (5.16 eV) to trilayer (4.56 eV), and then slowly upon further increasing the layer number. Compared to monolayer phosphorene, there is a drastic decrease of hole effective mass along the ridge (zigzag) direction for bilayer phosphorene, indicating a strong interlayer coupling and screening effect. Our study suggests that 1). Few-layer phosphorene with a layer-dependent band gap and a robust direct band gap character is promising for efficient solar energy harvest. 2). Few-layer phosphorene outperforms monolayer counterpart in terms of a lighter carrier effective mass, a higher carrier density and a weaker scattering due to enhanced screening. 3). The layer-dependent band edges and work functions of few-layer phosphorene allow for modification of Schottky barrier with enhanced carrier injection efficiency. It is expected that few-layer phosphorene will present abundant opportunities for a plethora of new electronic applications. PMID:25327586

  19. Mitochondrial energy metabolism in a model of undernutrition induced by dexamethasone

    PubMed Central

    Dumas, Jean-François; Simard, Gilles; Roussel, Damien; Douay, Olivier; Foussard, Françoise; Malthiery, Yves; Ritz, Patrick

    2003-01-01

    This investigation was undertaken to evaluate whether mitochondrial energy metabolism is altered in a malnutrition model associated with dexamethasone treatment (1.5mg/kg/day for 5 days). Gastrocnemius and liver mitochondria were isolated from dexamethasone (DEX)-treated, pair-fed (PF) and control (CON) rats. Body weight was significantly more reduced in DEX-treated group (−16%) than in PF group (−9%). Dexamethasone increased the liver mass (+59% vs. PF and +23% vs. CON) and decreased gastrocnemius mass. Moreover, in DEX-treated rats, liver mitochondria exhibited an increased rate of non-phosphorylative oxygen consumption with all substrates (approximately +42%). There was no difference in enzymatic complex activities in liver mitochondria between rat groups. Collectively, these results suggest an increased proton leak and/or redox slipping in liver mitochondria of DEX-treated rats. In addition, dexamethasone decreased the thermodynamic coupling and efficiency of oxidative phosphorylation. We therefore suggest that this increase in the proton leak and/or of redox slip in liver is responsible for the decrease in the thermodynamic efficiency of energy conversion. In contrast, none of the determined parameters of energy metabolism were altered by dexamethasone in gastrocnemius mitochondria. Therefore, it appears that dexamethasone specifically affects mitochondrial energy metabolism in liver. PMID:14667190

  20. Analysis on the power and efficiency in wireless power transfer system via coupled magnetic resonances

    NASA Astrophysics Data System (ADS)

    Liu, Mingjie

    2018-06-01

    The analysis of characteristics of the power and efficiency in wireless power transmission (WPT) system is the theoretical basis of magnetic coupling resonant wireless power transmission (MCR-WPT) technology. The electromagnetic field theory was employed to study the variation of the coupling degree of the two electromagnetic coils with the parameters of the coils. The equivalent circuit was used to analyze the influence of different factors on the transmission power and efficiency of the WPT system. The results show that there is an optimal radius ratio between the two coils, which makes the mutual inductance of the coils the largest. Moreover, when the WPT system operates in the under-coupling state, the transmission power of the system drops sharply, and there is a frequency splitting of the power when in the over-coupling state.

  1. Theoretical analysis of phase locking in an array of globally coupled lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vysotskii, D V; Elkin, N N; Napartovich, A P

    2013-09-30

    A model of an array of globally coupled fibre lasers, with the same fraction of the total output beam power injected into each laser, is considered. Phase self-locking of the laser array makes it possible to increase the brightness of the total output beam without any devices for controlling the phases of output beams, which significantly complicate the laser system. The spread of the laser optical lengths is several hundreds of wavelengths (or even more); within the theory of hollow cavities, this spread should lead to a fast decrease in the total power with an increase in the number ofmore » lasers. The presence of the active medium may reduce this drop to a great extent due to the self-tuning of the laser array radiation wavelength to a value providing a maximum gain for the array lasing mode. The optical length of each element is assumed to be random. The increase in the phase-locking efficiency due to the gain saturation is explained based on the probabilistic approach. An iterative procedure is developed to find the array output power in the presence of steady-state phase locking. Calculations for different values of small-signal gain and the output-power fraction spent on global coupling are performed. It is shown that, when this fraction amounts to ∼20 % – 30 %, phase locking of up to 20 fibre lasers can be implemented with an efficiency as high as 70 %. (control of laser radiation parameters)« less

  2. Understanding complexities in coupled dynamics of human-water and food security

    NASA Astrophysics Data System (ADS)

    Usmani, M.; Kondal, A.; Lin, L.; Colwell, R. R.; Jutla, A.

    2017-12-01

    Traditional premise of food security is associated with satisfying human hunger by providing sufficient calories to population. Water is the key variable associated with the growth of crops, which is then used as a metric of success for abundance of food across globe. The current framework often negates complex coupled interaction between availability of food nutrients and human well-being (such as productivity, work efficiency, low birth weight, physical and mental growth). Our analysis suggests that 1 in 3 humans suffer from malnutrition across the globe. In last five decades, most of the countries have a decreasing availability trend in at least one of the twenty-three essential food nutrients required for human well-being. We argue that food security can only be achieved if information on use of water for crops and consumption of food must include availability of nutrients for humans. Here, we propose a new concept of "consumptive nutrients" that include constant feedback mechanism between water-human and societal processes- essential for growth, distribution and consumption of food nutrients. Using Ethiopia as a signature rain-fed agricultural region, we will show how decreasing precipitation has led to an increase in crop productivity, but decreased availability of nutrients for humans. This in turn has destabilizing impact on overall regional economy. We will demonstrate why inclusion of nutrients must be a part of discussion for ensuring food security to human population.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biyikli, Emre; To, Albert C., E-mail: albertto@pitt.edu

    Atomistic/continuum coupling methods combine accurate atomistic methods and efficient continuum methods to simulate the behavior of highly ordered crystalline systems. Coupled methods utilize the advantages of both approaches to simulate systems at a lower computational cost, while retaining the accuracy associated with atomistic methods. Many concurrent atomistic/continuum coupling methods have been proposed in the past; however, their true computational efficiency has not been demonstrated. The present work presents an efficient implementation of a concurrent coupling method called the Multiresolution Molecular Mechanics (MMM) for serial, parallel, and adaptive analysis. First, we present the features of the software implemented along with themore » associated technologies. The scalability of the software implementation is demonstrated, and the competing effects of multiscale modeling and parallelization are discussed. Then, the algorithms contributing to the efficiency of the software are presented. These include algorithms for eliminating latent ghost atoms from calculations and measurement-based dynamic balancing of parallel workload. The efficiency improvements made by these algorithms are demonstrated by benchmark tests. The efficiency of the software is found to be on par with LAMMPS, a state-of-the-art Molecular Dynamics (MD) simulation code, when performing full atomistic simulations. Speed-up of the MMM method is shown to be directly proportional to the reduction of the number of the atoms visited in force computation. Finally, an adaptive MMM analysis on a nanoindentation problem, containing over a million atoms, is performed, yielding an improvement of 6.3–8.5 times in efficiency, over the full atomistic MD method. For the first time, the efficiency of a concurrent atomistic/continuum coupling method is comprehensively investigated and demonstrated.« less

  4. Continuous microcellular foaming of polyvinyl chloride and compatibilization of polyvinyl chloride and polylactide composites

    NASA Astrophysics Data System (ADS)

    Shah, Bhavesh

    This dissertation focuses on overcoming existing limitations of WPCs which prevent them from realizing their full market potential. These limitations include: (i) lack of a continuous extrusion process for microcellular foaming of polyvinyl chloride (PVC) and its composites using supercritical fluids to reduce the high density of the WPCs, (ii) need for an efficient coupling agent for WPCs to overcome the poor compatibility between wood and plastic, and (iii) unproven use of wood as a filler for the biopolymer polylactide (PLA) to make "green" composites. These limitations were addressed through experimentation to develop a continuous extrusion process for microcellular foaming, and through surface modification of wood flour using natural coupling agents. The effects of wood flour, acrylic modifier and plasticizer content on the rheological properties of PVC based WPCs were studied using an extrusion capillary rheometer and a two-level factorial design. Wood flour content and acrylic modifier content were the major factors affecting the die swell ratio. Addition of plasticizer decreased the true viscosity of unfilled and filled PVC, irrespective of the acrylic modifier content. However, the addition of acrylic modifier significantly increased the viscosity of unfilled PVC but decreased the composite viscosity. Results of the rheological study were used to set baseline conditions for the continuous extrusion foaming of PVC WPCs using supercritical CO 2. Effects of material composition and processing conditions on the morphology of foamed samples were investigated. Foamed samples were produced using various material compositions and processing conditions, but steady-state conditions could not be obtained for PVC. Thus the relationships could not be determined. Incompatibility between wood flour and PVC was the focus of another study. The natural polymers chitin and chitosan were used as novel coupling agents to improve interfacial adhesion between the polymer matrix and wood fiber. Results indicated that addition of chitin and chitosan significantly increased the flexural properties and storage modulus of PVC WPCs, compared to composites without coupling agent. Significant improvements were attained with 0.5 wt. % chitosan and with 6.67 wt. % chitin. Based on the efficiency of chitosan as a coupling agent for PVC based WPCs, a biodegradable composite using polylactide (PLA) and chitosan was developed. Wood flour (0--40 wt. %) was evaluated as a filler for PLA composites and its effect on mechanical, thermal and chemical properties was studied with and without chitosan (0--10 wt. %). Addition of wood flour significantly increased the flexural and storage moduli of PLA-wood flour composites, but had no effect on glass transition temperature (Tg). Chitosan had no significant effect on any of the properties of the composites studied. Development of an efficient and effective coupling agent for PVC wood composite is a significant development which will increase performance while reducing cost. Wood filled PLA composites can further expand WPCs into applications such as packaging and automotive. Results from these studies have broadened the current knowledge base for WPC products and will be useful in the continued expansion of wood composites technology into a variety of industries.

  5. Thiolate/disulfide organic redox couples for efficient organic dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Wen-Yan; Zheng, Hai-Kuo; Wang, Jian-Wen; Zhang, Le-Le; Han, Hui-Min; Wu, Ming-Xing

    2017-08-01

    A series of organic thiolate/disulfide redox couples based on benz-imidazole/othiazole/oxazole have been synthesized and applied to dye-sensitized solar cells (DSCs). Platinum (Pt) and carbon material are introduced as counter electrode (CE) catalysts towards this kind of organic redox couples regeneration and the photovoltaic performance of the DSCs using this organic redox couples has been investigated. The carbon CE shows high catalytic activity than Pt for the organic redox couples and the DSCs using carbon CE exhibit much higher efficiencies than those of the Pt CE-based devices.

  6. Thermal coupling and effect of subharmonic synchronization in a system of two VO2 based oscillators

    NASA Astrophysics Data System (ADS)

    Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim; Perminov, Valentin; Pergament, Alexander

    2018-03-01

    We explore a prototype of an oscillatory neural network (ONN) based on vanadium dioxide switching devices. The model system under study represents two oscillators based on thermally coupled VO2 switches. Numerical simulation shows that the effective action radius RTC of coupling depends both on the total energy released during switching and on the average power. It is experimentally and numerically proved that the temperature change ΔT commences almost synchronously with the released power peak and T-coupling reveals itself up to a frequency of about 10 kHz. For the studied switching structure configuration, the RTC value varies over a wide range from 4 to 45 μm, depending on the external circuit capacitance C and resistance Ri, but the variation of Ri is more promising from the practical viewpoint. In the case of a "weak" coupling, synchronization is accompanied by attraction effect and decrease of the main spectra harmonics width. In the case of a "strong" coupling, the number of effects increases, synchronization can occur on subharmonics resulting in multilevel stable synchronization of two oscillators. An advanced algorithm for synchronization efficiency and subharmonic ratio calculation is proposed. It is shown that of the two oscillators the leading one is that with a higher main frequency, and, in addition, the frequency stabilization effect is observed. Also, in the case of a strong thermal coupling, the limit of the supply current parameters, for which the oscillations exist, expands by ∼10%. The obtained results have a universal character and open up a new kind of coupling in ONNs, namely, T-coupling, which allows for easy transition from 2D to 3D integration. The effect of subharmonic synchronization hold promise for application in classification and pattern recognition.

  7. Cardiorespiratory Coupling: Common Rhythms in Cardiac, Sympathetic, and Respiratory Activities

    PubMed Central

    Dick, Thomas E.; Hsieh, Yee-Hsee; Dhingra, Rishi R.; Baekey, David M.; Galán, Roberto F.; Wehrwein, Erica; Morris, Kendall F.

    2014-01-01

    Cardiorespiratory coupling is an encompassing term describing more than the well-recognized influences of respiration on heart rate and blood pressure. Our data indicate that cardiorespiratory coupling reflects a reciprocal interaction between autonomic and respiratory control systems, and the cardiovascular system modulates the ventilatory pattern as well. For example, cardioventilatory coupling refers to the influence of heart beats and arterial pulse pressure on respiration and is the tendency for the next inspiration to start at a preferred latency after the last heart beat in expiration. Multiple complementary, well-described mechanisms mediate respiration’s influence on cardiovascular function, whereas mechanisms mediating the cardiovascular system’s influence on respiration may only be through the baroreceptors but are just being identified. Our review will describe a differential effect of conditioning rats with either chronic intermittent or sustained hypoxia on sympathetic nerve activity but also on ventilatory pattern variability. Both intermittent and sustained hypoxia increase sympathetic nerve activity after 2 weeks but affect sympatho-respiratory coupling differentially. Intermittent hypoxia enhances sympatho-respiratory coupling, which is associated with low variability in the ventilatory pattern. In contrast, after constant hypobaric hypoxia, 1-to-1 coupling between bursts of sympathetic and phrenic nerve activity is replaced by 2-to-3 coupling. This change in coupling pattern is associated with increased variability of the ventilatory pattern. After baro-denervating hypobaric hypoxic-conditioned rats, splanchnic sympathetic nerve activity becomes tonic (distinct bursts are absent) with decreases during phrenic nerve bursts and ventilatory pattern becomes regular. Thus, conditioning rats to either intermittent or sustained hypoxia accentuates the reciprocal nature of cardiorespiratory coupling. Finally, identifying a compelling physiologic purpose for cardiorespiratory coupling is the biggest barrier for recognizing its significance. Cardiorespiratory coupling has only a small effect on the efficiency of gas exchange; rather, we propose that cardiorespiratory control system may act as weakly coupled oscillator to maintain rhythms within a bounded variability. PMID:24746049

  8. Rapid Synthesis of Thiophene-Based, Organic Dyes for Dye-Sensitized Solar Cells (DSSCs) by a One-Pot, Four-Component Coupling Approach.

    PubMed

    Matsumura, Keisuke; Yoshizaki, Soichi; Maitani, Masato M; Wada, Yuji; Ogomi, Yuhei; Hayase, Shuzi; Kaiho, Tatsuo; Fuse, Shinichiro; Tanaka, Hiroshi; Takahashi, Takashi

    2015-06-26

    This one-pot, four-component coupling approach (Suzuki-Miyaura coupling/C-H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene-based organic dyes for dye-sensitized solar cells (DSSCs). Seven thiophene-based, organic dyes of various donor structures with/without the use of a 3,4-ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one-pot, 3-step, 35-61%). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short-circuit current (Jsc) while decreasing the fill factor (FF). The donor structure significantly influenced the open-circuit voltage (Voc), the FF, and the power conversion efficiency (PCE). The use of a n-hexyloxyphenyl amine donor, and our originally developed, rigid, and nonplanar donor, both promoted good cell performance (η=5.2-5.6%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Sustainable water desalination and electricity generation in a separator coupled stacked microbial desalination cell with buffer free electrolyte circulation.

    PubMed

    Chen, Xi; Liang, Peng; Wei, Zhimou; Zhang, Xiaoyuan; Huang, Xia

    2012-09-01

    A separator coupled circulation stacked microbial desalination cell (c-SMDC-S) was constructed to stabilize the pH imbalances in MDCs without buffer solution and achieved the stable desalination. The long-term operation of c-SMDC-S, regular stacked MDC (SMDC) and no separator coupled circulation SMDC (c-SMDC) were tested. The SMDC and c-SMDC could only stably operate for 1 week and 1 month owing to dramatic anolyte pH decrease and serious biofilm growth on the air cathode, respectively. The c-SMDC-S gained in anolyte alkalinity and operated stably for about 60 days without the thick biofilm growth on cathode. Besides, the chemical oxygen demand removal and coulombic efficiency were 64 ± 6% and 30 ± 2%, higher than that of SMDC and c-SMDC, respectively. It was concluded that the circulation of alkalinity could remove pH imbalance while the separator could expand the operation period and promote the conversion of organic matter to electricity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face

    NASA Astrophysics Data System (ADS)

    Zhang, W. J.; Yang, X. Y.; Li, H.; You, L. X.; Lv, C. L.; Zhang, L.; Zhang, C. J.; Liu, X. Y.; Wang, Z.; Xie, X. M.

    2018-07-01

    Superconducting nanowire single-photon detectors (SNSPDs) with both high system detection efficiency (SDE) and low dark count rate (DCR) play significant roles in quantum information processes and various applications. The background dark counts of SNSPDs originate from the room temperature blackbody radiation coupled to the device via a fiber. Therefore, a bandpass filter (BPF) operated at low temperature with minimal insert loss is necessary to suppress the background DCR. Herein, a low-loss BPF integrated on a single-mode fiber end-face was designed, fabricated and verified for the low temperature implement. The fiber end-face BPF was featured with a typical passband width about 40 nm in the 1550 nm telecom band and a peak transmittance of over 0.98. SNSPD with high SDE fabricated on a distributed Bragg reflector was coupled to the BPF. The device with such a BPF showed an SDE of 80% at a DCR of 0.5 Hz, measured at 2.1 K. Compared the same device without a BPF, the DCR was reduced by over 13 dB with an SDE decrease of <3%.

  11. Energy transport in the three coupled α-polypeptide chains of collagen molecule with long-range interactions effect

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Ben-Bolie, G. H.; Kofané, T. C.

    2015-06-01

    The dynamics of three coupled α-polypeptide chains of a collagen molecule is investigated with the influence of power-law long-range exciton-exciton interactions. The continuum limit of the discrete equations reveal that the collagen dynamics is governed by a set of three coupled nonlinear Schrödinger equations, whose dispersive coefficient depends on the LRI parameter r. We construct the analytic symmetric and asymmetric (antisymmetric) soliton solutions, which match with the structural features of collagen related with the acupuncture channels. These solutions are used as initial conditions for the numerical simulations of the discrete equations, which reveal a coherent transport of energy in the molecule for r > 3. The results also indicate that the width of the solitons is a decreasing function of r, which help to stabilize the solitons propagating in the molecule. To confirm further the efficiency of energy transport in the molecule, the modulational instability of the system is performed and the numerical simulations show that the energy can flow from one polypeptide chain to another in the form of nonlinear waves.

  12. Mitochondrial Genome Integrity Mutations Uncouple the Yeast Saccharomyces cerevisiae ATP Synthase*║

    PubMed Central

    Wang, Yamin; Singh, Usha; Mueller, David M.

    2013-01-01

    The mitochondrial ATP synthase is a molecular motor, which couples the flow of rotons with phosphorylation of ADP. Rotation of the central stalk within the core of ATP synthase effects conformational changes in the active sites driving the synthesis of ATP. Mitochondrial genome integrity (mgi) mutations have been previously identified in the α-, β-, and γ-subunits of ATP synthase in yeast Kluyveromyces lactis and trypanosome Trypanosoma brucei. These mutations reverse the lethality of the loss of mitochondrial DNA in petite negative strains. Introduction of the homologous mutations in Saccharomyces cerevisiae results in yeast strains that lose mitochondrial DNA at a high rate and accompanied decreases in the coupling of the ATP synthase. The structure of yeast F1-ATPase reveals that the mgi residues cluster around the γ-subunit and selectively around the collar region of F1. These results indicate that residues within the mgi complementation group are necessary for efficient coupling of ATP synthase, possibly acting as a support to fix the axis of rotation of the central stalk. PMID:17244612

  13. Round window stimulation with the Vibrant Soundbridge: Comparison of direct and indirect coupling.

    PubMed

    Olszewski, Lukasz; Jedrzejczak, W Wiktor; Piotrowska, Anna; Skarzynski, Henryk

    2017-12-01

    The purpose of this study was to measure the degree of coupling between the floating mass transducer (FMT) and the round window membrane (RWM) in patients with conductive and mixed hearing loss implanted with the Vibrant Soundbridge (VSB) device. The efficiency of direct and indirect coupling of the FMT to the RWM was compared by measuring differences between the initial prescription targets and the final settings of the VSB audio processor after fine-tuning. Retrospective study. Investigation of a group of subjects with either conductive or mixed hearing loss implanted with the VSB, a device that uses a FMT coupled to the RWM. There were two subgroups: subjects in which coupling was direct (no interposed material) or indirect (interposed material). The functional gain, insertion gain, and compression characteristics of the device were measured to assess the efficiency of coupling and to investigate the proximity of the fitting to prescriptive targets. Coupling for the subgroup with indirect coupling of the RWM was higher (better) than for the subgroup with direct coupling. The gain deviation from prescriptive targets was smaller for the subgroup with indirect coupling. The coupling method can have an effect on the coupling efficiency and the final electroacoustic settings of the device. The prescription targets were not accurate for the majority of subjects from either subgroup. Indirect coupling appears to provide more effective stimulation of the cochlea. 4. Laryngoscope, 127:2843-2849, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Magnetic and optical effects in TiO2 based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kannan U., M.; Jammalamadaka, S. Narayana

    2018-04-01

    We report on the magnetic effects on the solar cell efficiency of TiO2 based dye sensitized solar cells (DSSC). The strong spin orbit coupling of rare earth Ho3+ ions introduced by the addition of Ho2O3 into the photoanode resulted in a 28% enhancement in the power conversion efficiency of DSSC. Such an enhancement in the efficiency may be attributed to the improved lifetime of photo generated excitons as a result of the accelerated intersystem crossing phenomenon. This observation is supported by our photoluminescence (PL) measurements where we could observe a decrease in the photo emission intensity with the addition of Ho2O3. In addition, we have used a low magnetic field of 100 Oe to further enhance the overall efficiency to 5.6%, which in turn proves that the Lorentz force plays a significant role in magnetic field controlled charge transport in DSSC. Finally, we have carried out a transfer matrix model based theoretical simulation for studying the optical properties of the multilayer device stack.

  15. Study on efficiency of different topologies of magnetic coupled resonant wireless charging system

    NASA Astrophysics Data System (ADS)

    Cui, S.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Liang, L. H.

    2017-11-01

    This paper analyses the relationship between the output power, the transmission efficiency and the frequency, load and coupling coefficient of the four kinds of magnetic coupled resonant wireless charging system topologies. Based on mutual inductance principle, four kinds of circuit models are established, and the expressions of output power and transmission efficiency of different structures are calculated. The difference between the two power characteristics and efficiency characteristics is compared by simulating the SS (series-series) and SP (series-parallel) type wireless charging systems. With the same parameters of circuit components, the SS structure is usually suitable for small load resistance. The SP structure can be applied to large load resistors, when the transmission efficiency of the system is required to keep high. If the operating frequency deviates from the system resonance frequency, the SS type system has higher transmission efficiency than the SP type system.

  16. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but evaporative phenomena were not sufficient to explain the dependence of aerosol detection on particle diameter. Additional work is needed to correlate experimental data with theory for metal-oxides where thermodynamic property data are sparse relative to pure elements. Lastly, when matrix effects and the diffusion of ions inside the plasma were considered, mass loading was concluded to have had an effect on the dependence of detection efficiency on particle diameter.

  17. Pd Nanoparticles Coupled to WO 2.72 Nanorods for Enhanced Electrochemical Oxidation of Formic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Zheng; Erdosy, Daniel P.; Mendoza-Garcia, Adriana

    We synthesize a new type of hybrid Pd/WO2.72 structure with 5 nm Pd nanoparticles (NPs) anchored on 50 × 5 nm WO2.72 nanorods. The strong Pd/WO2.72 coupling results in the lattice expansion of Pd from 0.23 to 0.27 nm and the decrease of Pd surface electron density. As a result, the Pd/WO2.72 shows much enhanced catalysis toward electrochemical oxidation of formic acid in 0.1 M HClO4; it has a mass activity of ~1600 mA/mgPd in a broad potential range of 0.4–0.85 V (vs RHE) and shows no obvious activity loss after a 12 h chronoamperometry test at 0.4 V. Ourmore » work demonstrates an important strategy to enhance Pd NP catalyst efficiency for energy conversion reactions.« less

  18. Numerical analysis of the shifting slabs applied in a wireless power transfer system to enhance magnetic coupling

    NASA Astrophysics Data System (ADS)

    Dong, Yayun; Yang, Xijun; Jin, Nan; Li, Wenwen; Yao, Chen; Tang, Houjun

    2017-05-01

    Shifting medium is a kind of metamaterial, which can optically shift a space or an object a certain distance away from its original position. Based on the shifting medium, we propose a concise pair of shifting slabs covering the transmitting or receiving coil in a two-coil wireless power transfer system to decrease the equivalent distance between the coils. The electromagnetic parameters of the shifting slabs are calculated by transformation optics. Numerical simulations validate that the shifting slabs can approximately shift the electromagnetic fields generated by the covered coil; thus, the magnetic coupling and the efficiency of the system are enhanced while remaining the physical transmission distance unchanged. We also verify the advantages of the shifting slabs over the magnetic superlens. Finally, we provide two methods to fabricate shifting slabs based on split-ring resonators.

  19. Development of InSb charge-coupled infrared imaging devices: Linear imager

    NASA Technical Reports Server (NTRS)

    Phillips, J. D.

    1976-01-01

    The following results were accomplished in the development of charge coupled infrared imaging devices: (1) a four-phase overlapping gate with 9 transfers (2-bits) and 1.0-mil gate lengths was successfully operated, (2) the measured transfer efficiency of 0.975 for this device is in excellent agreement with predictions for the reduced gate length device, (3) mask revisions of the channel stop metal on the 8582 mask have been carried out with the result being a large increase in the dc yield of the tested devices, (4) partial optical sensitivity to chopped blackbody radiation was observed for an 8582 9-bit imager, (5) analytical consideration of the modulation transfer function degradation caused by transfer inefficiency in the CCD registers was presented, and (6) for larger array lengths or for the insertion of isolated bits between sensors, improvements in InSb fabrication technology with corresponding decrease in the interface state density are required.

  20. Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures

    PubMed Central

    Golmakaniyoon, Sepideh; Hernandez-Martinez, Pedro Ludwig; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-01-01

    Surface plasmon (SP) coupling has been successfully applied to nonradiative energy transfer via exciton-plasmon-exciton coupling in conventionally sandwiched donor-metal film-acceptor configurations. However, these structures lack the desired efficiency and suffer poor photoemission due to the high energy loss. Here, we show that the cascaded exciton-plasmon-plasmon-exciton coupling in stratified architecture enables an efficient energy transfer mechanism. The overlaps of the surface plasmon modes at the metal-dielectric and dielectric-metal interfaces allow for strong cross-coupling in comparison with the single metal film configuration. The proposed architecture has been demonstrated through the analytical modeling and numerical simulation of an oscillating dipole near the stratified nanostructure of metal-dielectric-metal-acceptor. Consistent with theoretical and numerical results, experimental measurements confirm at least 50% plasmon resonance energy transfer enhancement in the donor-metal-dielectric-metal-acceptor compared to the donor-metal-acceptor structure. Cascaded plasmon-plasmon coupling enables record high efficiency for exciton transfer through metallic structures. PMID:27698422

  1. Slot-coupled CW standing wave accelerating cavity

    DOEpatents

    Wang, Shaoheng; Rimmer, Robert; Wang, Haipeng

    2017-05-16

    A slot-coupled CW standing wave multi-cell accelerating cavity. To achieve high efficiency graded beta acceleration, each cell in the multi-cell cavity may include different cell lengths. Alternatively, to achieve high efficiency with acceleration for particles with beta equal to 1, each cell in the multi-cell cavity may include the same cell design. Coupling between the cells is achieved with a plurality of axially aligned kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface. The slots are non-resonant, thereby enabling shorter slots and less power loss.

  2. A grating coupler with a trapezoidal hole array for perfectly vertical light coupling between optical fibers and waveguides

    NASA Astrophysics Data System (ADS)

    Mizutani, Akio; Eto, Yohei; Kikuta, Hisao

    2017-12-01

    A grating coupler with a trapezoidal hole array was designed and fabricated for perfectly vertical light coupling between a single-mode optical fiber and a silicon waveguide on a silicon-on-insulator (SOI) substrate. The grating coupler with an efficiency of 53% was computationally designed at a 1.1-µm-thick buried oxide (BOX) layer. The grating coupler and silicon waveguide were fabricated on the SOI substrate with a 3.0-µm-thick BOX layer by a single full-etch process. The measured coupling efficiency was 24% for TE-polarized light at 1528 nm wavelength, which was 0.69 times of the calculated coupling efficiency for the 3.0-µm-thick BOX layer.

  3. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 2: model coupling, application, factor importance, and uncertainty

    NASA Astrophysics Data System (ADS)

    Lauvernet, Claire; Muñoz-Carpena, Rafael

    2018-01-01

    Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018), we developed a physically based numerical algorithm (SWINGO) that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate), where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA) was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil) and hydraulic loading (rainfall + incoming runoff) at each site. The presence of WT introduced more complex responses dominated by strong interactions in the modeled system response, reducing the typical predominance of saturated hydraulic conductivity on infiltration under deep water table conditions. This study demonstrates that when present, the WT should be considered as a key hydrologic factor in buffer design and evaluation as a water quality mitigation practice.

  4. Waveguide-loaded silica fibers for coupling to high-index micro-resonators

    NASA Astrophysics Data System (ADS)

    Latawiec, P.; Burek, M. J.; Venkataraman, V.; Lončar, M.

    2016-01-01

    Tapered silica fibers are often used to rapidly probe the optical properties of micro-resonators. However, their low refractive index precludes phase-matching when coupling to high-index micro-resonators, reducing efficiency. Here, we demonstrate efficient optical coupling from tapered fibers to high-index micro-resonators by loading the fibers with an ancillary adiabatic waveguide-coupler fabricated via angled-etching. We demonstrate greatly enhanced coupling to a silicon multimode micro-resonator when compared to coupling via the bare fiber only. Signatures of resonator optical bistability are observed at high powers. This scheme can be applied to resonators of any size and material, increasing the functional scope of fiber coupling.

  5. Simulation of photobioreaction for hydrogen production in membrane bioreactor with an optical fiber

    NASA Astrophysics Data System (ADS)

    Yang, Yanxia; Li, Jing

    2018-05-01

    A generalized lattice Boltzmann (LB) model for porous media is adopted to simulate the hydrodynamics and mass transport combined with biodegradation in membrane bioreactor with a circular optical fiber. The LB model is coupled with a multi-block scheme, as well as non-equilibrium extrapolation method for boundary condition treatment. The effect of porosity and permeability (represented by Darcy number Da) of biofilm on flow and concentration fields are investigated. The performance of biodegradation is evaluated by substrate consumption efficiency. Higher porosity and permeability of biofilm facilitate mass transport of substance and enhance the metabolic activity of bacteria in biofilm, which results in the optimal biodegradation performance is obtained under the condition of Da = 0.001 and ɛ =0.3. For further increasing of these parameters, the substrate consumption efficiency decreases due to the inhibition effect of substrate and shorter hydraulic retention time. Furthermore, the LB results coincide with experimental results, demonstrating that the LB model for porous media is available to optimize the membrane bioreactor for efficient biodegradation.

  6. Development of cellulase-nanoconjugates with enhanced ionic liquid and thermal stability for in situ lignocellulose saccharification.

    PubMed

    Grewal, Jasneet; Ahmad, Razi; Khare, S K

    2017-10-01

    The present work aimed to improve catalytic efficiency of Trichoderma reesei cellulase for enhanced saccharification. The cellulase was immobilized on two nanomatrices i.e. magnetic and silica nanoparticles with immobilization efficiency of 85% and 76% respectively. The nanobioconjugates exhibited increase in V max , temperature optimum, pH and thermal stability as compared with free enzyme. These could be efficiently reused for five repeated cycles and were stable in 1-ethyl-3-methylimidazoliumacetate [EMIM][Ac], an ionic liquid. Ionic liquids (IL) are used as green solvents to dissolve lignocellulosic biomass and facilitate better saccharification. The cellulase immobilized on magnetic nanoparticles was used for in situ saccharification of [EMIM][Ac] pretreated sugarcane bagasse and wheat straw for two cycles. The structural deconstruction and decrease in biomass crystallinity was confirmed by SEM, XRD and FTIR. The high hydrolysis yields (∼89%) obtained in this one-pot process coupled with IL stability and recycled use of immobilized cellulase, potentiates its usefulness in biorefineries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Efficiency droop suppression of distance-engineered surface plasmon-coupled photoluminescence in GaN-based quantum well LEDs

    NASA Astrophysics Data System (ADS)

    Li, Yufeng; Wang, Shuai; Su, Xilin; Tang, Weihan; Li, Qiang; Guo, Maofeng; Zhang, Ye; Zhang, Minyan; Yun, Feng; Hou, Xun

    2017-11-01

    Ag coated microgroove with extreme large aspect-ratio of 500:1 was fabricated on p-GaN capping layer to investigate the coupling behavior between quantum wells and surface plasmon in highly spatial resolution. Significant photoluminescence enhancement was observed when the distance between Ag film and QWs was reduced from 220 nm to about 20 nm. A maximum enhancement ratio of 18-fold was achieved at the groove bottom where the surface plasmonic coupling was considered the strongest. Such enhancement ratio was found highly affected by the excitation power density. It also shows high correlation to the internal quantum efficiency as a function of coupling effect and a maximum Purcell Factor of 1.75 was estimated at maximum coupling effect, which matches number calculated independently from the time-resolved photoluminescence measurement. With such Purcell Factor, the efficiency was greatly enhanced and the droop was significantly suppressed.

  8. Inverse design of near unity efficiency perfectly vertical grating couplers.

    PubMed

    Michaels, Andrew; Yablonovitch, Eli

    2018-02-19

    Efficient coupling between integrated optical waveguides and optical fibers is essential to the success of silicon photonics. While many solutions exist, perfectly vertical grating couplers that scatter light out of a waveguide in the direction normal to the waveguide's top surface are an ideal candidate due to their potential to reduce packaging complexity. Designing such couplers with high efficiencies, however, has proven difficult. In this paper, we use inverse electromagnetic design techniques to optimize a high efficiency two-layer perfectly vertical silicon grating coupler. Our base design achieves a chip-to-fiber coupling efficiency of 99.2% (-0.035 dB) at 1550 nm. Using this base design as a starting point, we run subsequent constrained optimizations to realize vertical couplers with coupling efficiencies over 96% and back reflections of less than -40 dB which can be fabricated using 65 nm-resolution lithography. These results demonstrate a new path forward for designing fabrication-tolerant ultra high efficiency grating couplers.

  9. Modelling irrigated maize with a combination of coupled-model simulation and uncertainty analysis, in the northwest of China

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kinzelbach, W.; Zhou, J.; Cheng, G. D.; Li, X.

    2012-05-01

    The hydrologic model HYDRUS-1-D and the crop growth model WOFOST are coupled to efficiently manage water resources in agriculture and improve the prediction of crop production. The results of the coupled model are validated by experimental studies of irrigated-maize done in the middle reaches of northwest China's Heihe River, a semi-arid to arid region. Good agreement is achieved between the simulated evapotranspiration, soil moisture and crop production and their respective field measurements made under current maize irrigation and fertilization. Based on the calibrated model, the scenario analysis reveals that the most optimal amount of irrigation is 500-600 mm in this region. However, for regions without detailed observation, the results of the numerical simulation can be unreliable for irrigation decision making owing to the shortage of calibrated model boundary conditions and parameters. So, we develop a method of combining model ensemble simulations and uncertainty/sensitivity analysis to speculate the probability of crop production. In our studies, the uncertainty analysis is used to reveal the risk of facing a loss of crop production as irrigation decreases. The global sensitivity analysis is used to test the coupled model and further quantitatively analyse the impact of the uncertainty of coupled model parameters and environmental scenarios on crop production. This method can be used for estimation in regions with no or reduced data availability.

  10. Mutation breeding of Saccharomyces cerevisiae with lower methanol content and the effects of pectinase, cellulase and glycine in sugar cane spirits.

    PubMed

    Liang, Ming-Hua; Liang, Ying-Jie; Wu, Xiao-Na; Zhou, Shi-Shui; Jiang, Jian-Guo

    2015-07-01

    To decrease the methanol content of the sugar cane sprits, mutagenesis of ultraviolet (UV) coupled with diethyl sulfate (DES) was used to generate a mutant of Saccharomyces cerevisiae with lower methanol content. Meanwhile, the effects of the additions of pectinase, cellulase and glycine on the production of methanol in sugar cane spirits were evaluated. After mutagenesis of UV coupled with DES, a mutant S. cerevisiae DU9 with low production of methanol (97.3 ± 1.7 mg/L) was selected, with a 12.3% decrease of that of S. cerevisiae D4 only with DES treatment, and with a 27.8% reduction of that of the strain without any treatment. Pectinase and cellulase significantly increased the methanol levels of the sugar cane spirits. The results showed that there was linear relationship between glycine (concentration within 0∼0.9 g/L) and methanol in sugar cane sprits and the linear equation was y = 104.7 × -4.79 with the conversion rate of glycine conversion to methanol as 24.56%. Mutagenesis of UV coupled with DES is an efficient way to generate a mutant of S. cerevisiae with lower methanol content. Also, it is necessary to control the additions of pectinase, cellulase and glycine in the fermentation medium, and other unknown ways to generate methanol metabolic pathway in yeasts may need further study. © 2014 Society of Chemical Industry.

  11. Myeloid-derived suppressor cells

    PubMed Central

    Chandra, Dinesh; Gravekamp, Claudia

    2013-01-01

    While conventional anticancer therapies, including surgical resection, radiotherapy, and/or chemotherapy, are relatively efficient at eliminating primary tumors, these treatment modalities are largely ineffective against metastases. At least in part, this reflects the rather inefficient delivery of conventional anticancer agents to metastatic lesions. We have recently demonstrated that myeloid-derived suppressor cells (MDSCs) can be used as cellular missiles to selectively deliver a radioisotope-coupled attenuated variant of Listeria monocytogenes to both primary and metastatic neoplastic lesions in mice with pancreatic cancer. This novel immunotherapeutic intervention robustly inhibited tumor growth while promoting a dramatic decrease in the number of metastases. PMID:24427545

  12. Myeloid-derived suppressor cells: Cellular missiles to target tumors.

    PubMed

    Chandra, Dinesh; Gravekamp, Claudia

    2013-11-01

    While conventional anticancer therapies, including surgical resection, radiotherapy, and/or chemotherapy, are relatively efficient at eliminating primary tumors, these treatment modalities are largely ineffective against metastases. At least in part, this reflects the rather inefficient delivery of conventional anticancer agents to metastatic lesions. We have recently demonstrated that myeloid-derived suppressor cells (MDSCs) can be used as cellular missiles to selectively deliver a radioisotope-coupled attenuated variant of Listeria monocytogenes to both primary and metastatic neoplastic lesions in mice with pancreatic cancer. This novel immunotherapeutic intervention robustly inhibited tumor growth while promoting a dramatic decrease in the number of metastases.

  13. An electromagnetic induced transparency-like scheme for wireless power transfer using dielectric resonators

    NASA Astrophysics Data System (ADS)

    Elnaggar, Sameh Y.

    2017-02-01

    Similar to the hybridization of three atoms, three coupled resonators interact to form bonding, anti-bonding, and non-bonding modes. The non-bonding mode enables an electromagnetic induced transparency like transfer of energy. Here, the non-bonding mode, resulting from the strong electric coupling of two dielectric resonators and an enclosure, is exploited to show that it is feasible to transfer power over a distance comparable to the operating wavelength. In this scheme, the enclosure acts as a mediator. The strong coupling permits the excitation of the non-bonding mode with high purity. This approach is different from resonant inductive coupling, which works in the sub-wavelength regime. Optimal loads and the corresponding maximum efficiency are determined using two independent methods: Coupled Mode Theory and Circuit modelling. It is shown that, unlike resonant inductive coupling, the figure of merit depends on the enclosure quality and not on the load, which emphasizes the role of the enclosure as a mediator. Briefly after the input excitation is turned on, the energy in the receiver builds up via all coupled and spurious modes. As time elapses, all modes except the non-bonding cease to sustain. Due to the strong coupling between the dielectrics and the enclosure, such systems have unique properties such as high and uniform efficiency over large distances and minimal fringing fields. These properties suggest that electromagnetic induced transparency like schemes that rely on the use of dielectric resonators can be used to power autonomous systems inside an enclosure or find applications when exposure to the fields needs to be minimal. Finite Element computations are used to verify the theoretical predictions by determining the transfer efficiency, field profile, and coupling coefficients for two different systems. It is shown that the three resonators must be present for efficient power transfer; if one or more are removed, the transfer efficiency reduces significantly.

  14. Modeling and simulation of radiation from hypersonic flows with Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Sohn, Ilyoup

    During extreme-Mach number reentry into Earth's atmosphere, spacecraft experience hypersonic non-equilibrium flow conditions that dissociate molecules and ionize atoms. Such situations occur behind a shock wave leading to high temperatures, which have an adverse effect on the thermal protection system and radar communications. Since the electronic energy levels of gaseous species are strongly excited for high Mach number conditions, the radiative contribution to the total heat load can be significant. In addition, radiative heat source within the shock layer may affect the internal energy distribution of dissociated and weakly ionized gas species and the number density of ablative species released from the surface of vehicles. Due to the radiation total heat load to the heat shield surface of the vehicle may be altered beyond mission tolerances. Therefore, in the design process of spacecrafts the effect of radiation must be considered and radiation analyses coupled with flow solvers have to be implemented to improve the reliability during the vehicle design stage. To perform the first stage for radiation analyses coupled with gas-dynamics, efficient databasing schemes for emission and absorption coefficients were developed to model radiation from hypersonic, non-equilibrium flows. For bound-bound transitions, spectral information including the line-center wavelength and assembled parameters for efficient calculations of emission and absorption coefficients are stored for typical air plasma species. Since the flow is non-equilibrium, a rate equation approach including both collisional and radiatively induced transitions was used to calculate the electronic state populations, assuming quasi-steady-state (QSS). The Voigt line shape function was assumed for modeling the line broadening effect. The accuracy and efficiency of the databasing scheme was examined by comparing results of the databasing scheme with those of NEQAIR for the Stardust flowfield. An accuracy of approximately 1 % was achieved with an efficiency about three times faster than the NEQAIR code. To perform accurate and efficient analyses of chemically reacting flowfield - radiation interactions, the direct simulation Monte Carlo (DSMC) and the photon Monte Carlo (PMC) radiative transport methods are used to simulate flowfield - radiation coupling from transitional to peak heating freestream conditions. The non-catalytic and fully catalytic surface conditions were modeled and good agreement of the stagnation-point convective heating between DSMC and continuum fluid dynamics (CFD) calculation under the assumption of fully catalytic surface was achieved. Stagnation-point radiative heating, however, was found to be very different. To simulate three-dimensional radiative transport, the finite-volume based PMC (FV-PMC) method was employed. DSMC - FV-PMC simulations with the goal of understanding the effect of radiation on the flow structure for different degrees of hypersonic non-equilibrium are presented. It is found that except for the highest altitudes, the coupling of radiation influences the flowfield, leading to a decrease in both heavy particle translational and internal temperatures and a decrease in the convective heat flux to the vehicle body. The DSMC - FV-PMC coupled simulations are compared with the previous coupled simulations and correlations obtained using continuum flow modeling and one-dimensional radiative transport. The modeling of radiative transport is further complicated by radiative transitions occurring during the excitation process of the same radiating gas species. This interaction affects the distribution of electronic state populations and, in turn, the radiative transport. The radiative transition rate in the excitation/de-excitation processes and the radiative transport equation (RTE) must be coupled simultaneously to account for non-local effects. The QSS model is presented to predict the electronic state populations of radiating gas species taking into account non-local radiation. The definition of the escape factor which is dependent on the incoming radiative intensity from over all directions is presented. The effect of the escape factor on the distribution of electronic state populations of the atomic N and O radiating species is examined in a highly non-equilibrium flow condition using DSMC and PMC methods and the corresponding change of the radiative heat flux due to the non-local radiation is also investigated.

  15. Evaluation of high-perimeter electrode designs for deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; Grill, Warren M.

    2014-08-01

    Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, complications including infections and mis-programing following surgical replacement of the battery-powered implantable pulse generator adversely impact the safety profile of this therapy. We sought to decrease power consumption and extend battery life by modifying the electrode geometry to increase stimulation efficiency. The specific goal of this study was to determine whether electrode contact perimeter or area had a greater effect on increasing stimulation efficiency. Approach. Finite-element method (FEM) models of eight prototype electrode designs were used to calculate the electrode access resistance, and the FEM models were coupled with cable models of passing axons to quantify stimulation efficiency. We also measured in vitro the electrical properties of the prototype electrode designs and measured in vivo the stimulation efficiency following acute implantation in anesthetized cats. Main results. Area had a greater effect than perimeter on altering the electrode access resistance; electrode (access or dynamic) resistance alone did not predict stimulation efficiency because efficiency was dependent on the shape of the potential distribution in the tissue; and, quantitative assessment of stimulation efficiency required consideration of the effects of the electrode-tissue interface impedance. Significance. These results advance understanding of the features of electrode geometry that are important for designing the next generation of efficient DBS electrodes.

  16. Education and Asset Composition.

    ERIC Educational Resources Information Center

    Bradley, Michael G.; Graham, John W.

    1988-01-01

    Investigates the relationship between educational attainment and married couples' efficiency at managing their assets. Using 1976 data, this study of over 750 Illinois couples disclosed little empirical evidence that education imparts efficiency to the realm of personal finance. Includes 6 tables, 5 notes, and 17 references. (MLH)

  17. Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems.

    PubMed

    Dietrich, Philipp-Immanuel; Harris, Robert J; Blaicher, Matthias; Corrigan, Mark K; Morris, Tim M; Freude, Wolfgang; Quirrenbach, Andreas; Koos, Christian

    2017-07-24

    Coupling of light into multi-core fibers (MCF) for spatially resolved spectroscopy is of great importance to astronomical instrumentation. To achieve high coupling efficiencies along with fill-fractions close to unity, micro-optical elements are required to concentrate the incoming light to the individual cores of the MCF. In this paper we demonstrate facet-attached lens arrays (LA) fabricated by two-photon polymerization. The LA provide close to 100% fill-fraction along with efficiencies of up to 73% (down to 1.4 dB loss) for coupling of light from free space into an MCF core. We show the viability of the concept for astrophotonic applications by integrating an MCF-LA assembly in an adaptive-optics test bed and by assessing its performance as a tip/tilt sensor.

  18. Exercise in claudicants increase or decrease walking ability and the response relates to mitochondrial function.

    PubMed

    van Schaardenburgh, Michel; Wohlwend, Martin; Rognmo, Øivind; Mattsson, Erney J R

    2017-06-07

    Exercise of patients with intermittent claudication improves walking performance. Exercise does not usually increase blood flow, but seems to increase muscle mitochondrial enzyme activities. Although exercise is beneficial in most patients, it might be harmful in some. The mitochondrial response to exercise might therefore differ between patients. Our hypothesis was that changes in walking performance relate to changes in mitochondrial function after 8 weeks of exercise. At a subgroup level, negative responders decrease and positive responders increase mitochondrial capacity. Two types of exercise were studied, calf raising and walking (n = 28). We wanted to see whether there were negative and positive responders, independent of type of exercise. Measurements of walking performance, peripheral hemodynamics, mitochondrial respiration and content (citrate synthase activity) were obtained on each patient before and after the intervention period. Multiple linear regression was used to test whether changes in peak walking time relate to mitochondrial function. Subgroups of negative (n = 8) and positive responders (n = 8) were defined as those that either decreased or increased peak walking time following exercise. Paired t test and analysis of covariance was used to test changes within and between subgroups. Changes in peak walking time were related to changes in mitochondrial respiration supported by electron transferring flavoprotein (ETF + CI) P (p = 0.004), complex I (CI + ETF) P (p = 0.003), complex I + complex II (CI + CII + ETF) P (p = 0.037) and OXPHOS coupling efficiency (p = 0.046) in the whole group. Negative responders had more advanced peripheral arterial disease. Mitochondrial respiration supported by electron transferring flavoprotein (ETF + CI) P (p = 0.0013), complex I (CI + ETF) P (p = 0.0005), complex I + complex II (CI + CII + ETF) P (p = 0.011) and electron transfer system capacity (CI + CII + ETF) E (p = 0.021) and OXPHOS coupling efficiency decreased in negative responders (p = 0.0007) after exercise. Positive responders increased citrate synthase activity (p = 0.010). Changes in walking performance seem to relate to changes in mitochondrial function after exercise. Negative responders have more advanced peripheral arterial disease and decrease, while positive responders increase mitochondrial capacity. Trial registration ClinicalTrials.gov ID: NCT023110256.

  19. Highly Efficient Segmented p-type Thermoelectric Leg

    NASA Astrophysics Data System (ADS)

    Sadia, Yatir; Ben-Yehuda, Ohad; Gelbstein, Yaniv

    In the past years, energy demands in the entire world have been constantly increasing. This fact, coupled with the requirement for decreasing the world's dependence on fossil fuels, has given rise to the need for alternative energy sources. While no single alternative energy source can solely replace the traditional fossil fuels, the combination of several alternative power sources can greatly decrease their usage. Thermoelectricity is one way to produce such energy via the harvesting of waste heat into electricity. One common example is the automobile industry which in the past few years had been looking into the option of harvesting the waste heat created by the engine, around the exhaust pipe and in the catalytic converter. Thermoelectricity is ideal for such application since it can convert the energy directly into electric current without any moving parts, thereby extending the life cycle of the operation.

  20. Sliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additive

    NASA Astrophysics Data System (ADS)

    Zhang, Baosen; Xu, Yi; Gao, Fei; Shi, Peijing; Xu, Binshi; Wu, Yixiong

    2011-01-01

    This work aims to investigate the friction and wear properties of surface-coated natural serpentine powders (SP) suspended in diesel engine oil using an Optimal SRV oscillating friction and wear tester. The worn surface was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). Results indicated that the additives can improve the wear resistance and decrease friction coefficient of carbon steel friction couples. The 0.5 wt% content of serpentine powders is found most efficient in reducing friction and wear at the load of 50 N. The SEM and XPS analysis results demonstrate that a tribofilm forms on the worn surface, which is responsible for the decrease in friction and wear, mainly with iron oxides, silicon oxides, graphite and organic compounds.

  1. Integrated fiber-coupled launcher for slow plasmon-polariton waves.

    PubMed

    Della Valle, Giuseppe; Longhi, Stefano

    2012-01-30

    We propose and numerically demonstrate an integrated fiber-coupled launcher for slow surface plasmon-polaritons. The device is based on a novel plasmonic mode-converter providing efficient power transfer from the fast to the slow modes of a metallic nanostripe. Total coupling efficiency with standard single-mode fiber approaching 30% (including ohmic losses) has been numerically predicted for a 25-µm long gold-based device operating at 1.55 µm telecom wavelength.

  2. Study of imaging fiber bundle coupling technique in IR system

    NASA Astrophysics Data System (ADS)

    Chen, Guoqing; Yang, Jianfeng; Yan, Xingtao; Song, Yansong

    2017-02-01

    Due to its advantageous imaging characteristic and banding flexibility, imaging fiber bundle can be used for line-plane-switching push-broom infrared imaging. How to precisely couple the fiber bundle in the optics system is the key to get excellent image for transmission. After introducing the basic system composition and structural characteristics of the infrared systems coupled with imaging fiber bundle, this article analysis the coupling efficiency and the design requirements of its relay lenses with the angle of the numerical aperture selecting in the system and cold stop matching of the refrigerant infrared detector. For an actual need, one relay coupling system has been designed with the magnification is -0.6, field of objective height is 4mm, objective numerical aperture is 0.15, which has excellent image quality and enough coupling efficiency. In the end, the push broom imaging experiment is carried out. The results show that the design meets the requirements of light energy efficiency and image quality. This design has a certain reference value for the design of the infrared fiber optical system.

  3. MHz rate and efficient synchronous heralding of single photons at telecom wavelengths.

    PubMed

    Pomarico, Enrico; Sanguinetti, Bruno; Guerreiro, Thiago; Thew, Rob; Zbinden, Hugo

    2012-10-08

    We report on the realization of a synchronous source of heralded single photons at telecom wavelengths with MHz heralding rates and high heralding efficiency. This source is based on the generation of photon pairs at 810 and 1550 nm via Spontaneous Parametric Down Conversion (SPDC) in a 1 cm periodically poled lithium niobate (PPLN) crystal pumped by a 532 nm pulsed laser. As high rates are fundamental for multi-photon experiments, we show that single telecom photons can be announced at 4.4 MHz rate with 45% heralding efficiency. When we focus only on the optimization of the coupling of the heralded photon, the heralding efficiency can be increased up to 80%. Furthermore, we experimentally observe that group velocity mismatch inside long crystals pumped in a pulsed mode affects the spectrum of the emitted photons and their fibre coupling efficiency. The length of the crystal in this source has been chosen as a trade off between high brightness and high coupling efficiency.

  4. Simulating Salt Movement and Transformation using a Coupled Reactive Transport Model in Variably-Saturated Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T.

    2016-12-01

    Salinization is one of the major concerns in irrigated agricultural landscapes. Increasing salinity concentrations are due principally to evaporative concentration; dissolution of salts from weathered minerals and bedrock; and a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems; leading to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. In this study, a solute transport model coupled with equilibrium chemistry reactions has been developed to simulate transport of individual salt ions in regional-scale aquifer systems and thereby investigate strategies for salinity remediation. The physically-based numerical model is based on the UZF-RT3D variably-saturated, multi-species groundwater reactive transport modeling code, and accounts for advection, dispersion, carbon and nitrogen cycling, oxidation-reduction reactions, and salt ion equilibrium chemistry reactions such as complexation, ion exchange, and precipitation/dissolution. Each major salt ion (sulfate, chloride, bicarbonate, calcium, sodium, magnesium, potassium) is included. The model has been tested against measured soil salinity at a small scale (soil profile) and against soil salinity, groundwater salinity, and groundwater salinity loading to surface water at the regional scale (500 km2) in the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization for many decades and greatly influenced by gypsum deposits. Preliminary results of using the model in scenario analysis suggest that increasing irrigation efficiency, sealing earthen canals, and rotational fallowing of land can decrease the groundwater salt load to the Arkansas River by 50 to 70% and substantially lower soil salinity in the root zone.

  5. Sensitizing properties of luminescence centers on the emission of Er{sup 3+} in Si-rich SiO{sub 2} film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Qianyu; Gao, Yuhan; Li, Dongsheng, E-mail: mselds@zju.edu.cn

    2016-05-28

    In this paper, we report on the luminescence-center (LC)-mediated excitation of Er{sup 3+} as a function of annealing temperature in Er-doped Si-rich SiO{sub 2} (SRO) films fabricated by electron beam evaporation. It is found that the annealing temperature has significant effects on the emission of Er{sup 3+} and the specific optical-active point-defects called LCs within Er-doped SRO films. Different luminescence centers generated by the evolution of microstructures during annealing process act as efficient sensitizers for Er{sup 3+} in the films when the annealing temperature is below 1100 °C. Moreover, the temperature dependence of the energy coupling between LCs and Er{sup 3+}more » demonstrates the effective phonon-mediated energy transfer process. In addition, when the annealing temperature reaches 1100 °C, the decreased density of activable erbium ions induced by the aggregation of Er will bring detrimental effects on the emission of Er{sup 3+}. It is demonstrated that an appropriate annealing process can be designed to achieve efficiently enhanced emissions from Er{sup 3+} ions by optimizing the density of LCs and the coupling between Er{sup 3+} and LCs.« less

  6. Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths.

    PubMed

    You, Lixing; Wu, Junjie; Xu, Yingxin; Hou, Xintong; Fang, Wei; Li, Hao; Zhang, Weijun; Zhang, Lu; Liu, Xiaoyu; Tong, Limin; Wang, Zhen; Xie, Xiaoming

    2017-12-11

    High-performance superconducting nanowire single-photon detectors (SNSPDs) have facilitated numerous experiments and applications, particularly in the fields of modern quantum optics and quantum communication. Two kinds of optical coupling methods have thus far been developed for SNSPDs: one produces standard fiber-coupled SNSPDs in which the fibers vertically illuminate the meandered nanowires; the other produces waveguide-coupled SNSPDs in which nanowires are fabricated on the surface of a waveguide that guides photons, and the fibers are coupled to the waveguide. In this paper, we report on first experimental demonstration of a new type of SNSPD that is coupled with a microfiber (MF). Photons are guided by the MF and are evanescently absorbed by the nanowires of the SNSPD when the MF is placed on top of superconducting NbN nanowires. Room-temperature optical experiments indicated that this device has a coupling efficiency of up to 90% when a 1.3 μm-diameter MF is used for light with wavelength of 1550 nm. We were also able to demonstrate that our MF-coupled detector achieved system detection efficiencies of 50% and 20% at incident wavelengths of 1064 and 1550 nm, respectively, for a 2 μm-diameter MF at 2.2K. We expect that MF-coupled SNSPDs may show both high efficiency and broadband characteristics upon optimization and will be used for various novel applications, such as micro/nano-fiber optics.

  7. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light.

    PubMed

    Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei

    2016-01-01

    Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.'s study), although the metal's ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell's law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process.

  8. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light

    PubMed Central

    Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei

    2016-01-01

    Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.’s study), although the metal’s ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell’s law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process. PMID:26767195

  9. Chemical waste disposal in space by plasma discharge

    NASA Technical Reports Server (NTRS)

    Baird, James K.

    1991-01-01

    An inductively coupled plasma discharge apparatus operating at 13.56 MHz and with electrical power up to 2.5 kW was constructed. The efficiency of this device to destroy various gases expected to be carried aboard the Space Station was tested. By expressing the efficiency of the device in terms of G-value (the number of molecules decomposed per 100 eV of energy absorbed), the results are compared with known efficiencies of ionizing radiation to destroy these same gases. In the case of ammonia, it was found that in the inductively coupled device, the destruction efficiency, G(-NH3) varied from 6.0 to 32.0 molecules/100 eV, depending on conditions. It was also found that capacitatively coupled discharges were less efficient in destroying NH2 than the inductively coupled discharge. In the case NH2 destruction, it was found that the G(-NH3) was a qualitative guide to the efficiencies of plasmas. The plasma device was also used to destroy nitrous oxide and methane. It is shown how the G-value for the destruction of any gas can be computed theoretically from a knowledge of the electron velocity distribution, the various electron molecule scattering cross sections, and the rate constants for the reactions of secondary species.

  10. Highly efficient all-fiber tunable polarization filter using torsional acoustic wave.

    PubMed

    Lee, Kwang Jo; Park, Hyun Chul; Kim, Byoung Yoon

    2007-09-17

    We demonstrate an all-fiber tunable polarization filter with high coupling efficiency based on acousto-optic coupling between two optical polarization modes of the LP(01) mode propagating in a highly birefringent single mode optical fiber. An over-coupling between the two polarization modes is realized over the wavelength range from 1530 nm to 1610 nm using traveling torsional acoustic wave. The measured 3-dB optical bandwidth of the filter was 4.8 nm at the wavelength around 1550 nm. The details of the filter transmission and the coupling characteristics are discussed.

  11. Holograms for laser diode: Single mode optical fiber coupling

    NASA Technical Reports Server (NTRS)

    Fuhr, P. L.

    1982-01-01

    The low coupling efficiency of semiconductor laser emissions into a single mode optical fibers place a severe restriction on their use. Associated with these conventional optical coupling techniques are stringent alignment sensitivities. Using holographic elements, the coupling efficiency may be increased and the alignment sensitivity greatly reduced. Both conventional and computer methods used in the generation of the holographic couplers are described and diagrammed. The reconstruction geometries used are shown to be somewhat restrictive but substantially less rigid than their conventional optical counterparts. Single and double hologram techniques are examined concerning their respective ease of fabrication and relative merits.

  12. Development of Electrospun Nanomaterials and their Applications in Separation Science

    NASA Astrophysics Data System (ADS)

    Newsome, Toni Elwell

    In separations, efficiency is inversely related to the diameter of the sorbent particles of the stationary phase. Thus, materials research in separation science has primarily been directed towards reducing the diameter of the sorbent particle used in the stationary phase. In this dissertation, innovative methods designed for the fabrication and application of electrospun sorbent nanomaterials for separation science are described. Electrospinning is a facile, cost-effective technique that relies on repulsive electrostatic forces to produce nanofibers from a viscoelastic solution. Here, electrospinning is used to generate polymer, carbon, and silica-based nanofibers which are employed as sorbent nanomaterials in extractions and separations. Electrospun carbon nanofibers have proven to be ideal extractive phases for solid-phase microextraction (SPME) when coupled to gas chromatography (GC) for headspace sampling of volatile analytes. Herein, these carbon nanofibers were employed in the direct extraction of nonvolatile analytes and coupled to liquid chromatography (LC) for the first time. The high surface area of the coatings led to enhanced extraction efficiencies; they offered a 3-33 fold increase in efficiency relative to a commercial SPME phase. Carbon nanofibers proved to be stable when immersed in liquids common to LC demonstrating the enhanced stability of these coatings in SPME coupled to LC relative to conventional SPME fibers. The enhanced chemical and mechanical stability of the carbon SPME coatings considerably expanded the range of compounds applicable to SPME and extended the lifetimes of the fibers. Electrospun nanofibers have also proven to be ideal stationary phases in ultra-thin layer chromatography (UTLC). Nanofibers provide faster separations and enhanced separation efficiencies compared to commercial particle-based stationary phases in a relatively short distance. Here, the electrospun-UTLC technology was extended for the first time to nanofibers composed of silica, the most commonly used surface for TLC. An electrospinning method was optimized to produce silica-based nanofibers with the smallest diameter possible (300-380 nm) while maintaining homogenous nanofiber morphology. Highly efficient separations were performed in 15 mm with observed plate heights as low as 8.6 mum. Silica-based nanofibers proved to be chemically stable with a wide variety of TLC reagents demonstrating the enhanced compatibility of these phases with common TLC methods relative to polymer and carbon nanofiber UTLC plates. The extension of electrospun UTLC to silica-based nanofibers vastly expanded the range of analytes and TLC methods which can be used with this technology. The main disadvantage of conventional TLC development methods is that the mobile phase velocity decreases with increasing separation distance. Here, the chromatographic performance of electrospun polymer stationary phases was further improved by using a forced-flow mobile phase in planar electrochromatography (PEC) in which mobile phase velocity does not diminish with increasing distance. Separations were performed on polymer nanofiber UTLC plates in 1-2 min. Compared to UTLC, PEC offered unique selectivity, decreased analysis times (> 4 times faster), and enhanced efficiency (2-3 times lower plate height). In addition, two-dimensional (2D) separations of a complex analyte mixture using UTLC followed by PEC required only 11 min and exhibited a significant increase in separation number (70-77).

  13. Embeded photonic crystal at the interface of p-GaN and Ag reflector to improve light extraction of GaN-based flip-chip light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, Aigong; Ma, Ping, E-mail: maping@semi.ac.cn; Zhang, Yonghui

    2014-12-22

    In this experiment, a flip-chip light-emitting diode with photonic crystal was fabricated at the interface of p-GaN and Ag reflector via nanospheres lithography technique. In this structure, photonic crystal could couple with the guide-light efficiently by reason of the little distance between photonic crystal and active region. The light output power of light emitting diode with embedded photonic crystal was 1.42 times larger than that of planar flip-chip light-emitting diode. Moreover, the embedded photonic crystal structure makes the far-field divergence angle decreased by 18° without spectra shift. The three-dimensional finite difference time domain simulation results show that photonic crystal couldmore » improve the light extraction, and enhance the light absorption caused by Ag reflector simultaneously, because of the roughed surface. The depth of photonic crystal is the key parameter affecting the light extraction and absorption. Light extraction efficiency increases with the depth photonic crystal structure rapidly, and reaches the maximum at the depth 80 nm, beyond which light extraction decrease drastically.« less

  14. Babinet to the half: coupling of solid and inverse plasmonic structures.

    PubMed

    Hentschel, Mario; Weiss, Thomas; Bagheri, Shahin; Giessen, Harald

    2013-09-11

    We study the coupling between the plasmonic resonances of solid and inverse metallic nanostructures. While the coupling between solid-solid and inverse-inverse plasmonic structures is well-understood, mixed solid-inverse systems have not yet been studied in detail. In particular, it remains unclear whether or not an efficient coupling is even possible and which prerequisites have to be met. We find that an efficient coupling between inverse and solid resonances is indeed possible, identify the necessary geometrical prerequisites, and demonstrate a novel solid-inverse plasmonic electromagnetically induced transparency (EIT) structure as well as a mixed chiral system. We furthermore show that for the coupling of asymmetric rod-shaped inverse and solid structures symmetry breaking is crucial. In contrast, highly symmetric structures such as nanodisks and nanoholes are straightforward to couple. Our results constitute a significant extension of the plasmonic coupling toolkit, and we thus envision the emergence of a large number of intriguing novel plasmonic coupling phenomena in mixed solid-inverse structures.

  15. Coupling of individual quantum emitters to channel plasmons.

    PubMed

    Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain

    2015-08-07

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.

  16. Distinct properties of the triplet pair state from singlet fission

    DOE PAGES

    Trinh, M. Tuan; Pinkard, Andrew; Pun, Andrew B.; ...

    2017-07-14

    Singlet fission, the conversion of a singlet exciton (S 1) to two triplets (2 × T 1), may increase the solar energy conversion efficiency beyond the Shockley-Queisser limit. This process is believed to involve the correlated triplet pair state 1(TT). Despite extensive research, the nature of the 1(TT) state and its spectroscopic signature remain actively debated. We use an end-connected pentacene dimer (BP0) as a model system and show evidence for a tightly bound 1(TT) state. It is characterized in the near-infrared (IR) region (~1.0 eV) by a distinct excited-state absorption (ESA) spectral feature, which closely resembles that of themore » S 1 state; both show vibronic progressions of the aromatic ring breathing mode. We assign these near-IR spectra to 1(TT)→S n and S 1→S n' transitions; S n and S n' likely come from the antisymmetric and symmetric linear combinations, respectively, of the S 2 state localized on each pentacene unit in the dimer molecule. The 1(TT)→S n transition is an indicator of the intertriplet electronic coupling strength, because inserting a phenylene spacer or twisting the dihedral angle between the two pentacene chromophores decreases the intertriplet electronic coupling and diminishes this ESA peak. In addition to spectroscopic signature, the tightly bound 1(TT) state also shows chemical reactivity that is distinctively different from that of an individual T 1 state. Using an electron-accepting iron oxide molecular cluster [Fe 8O 4] linked to the pentacene or pentacene dimer (BP0), we show that electron transfer to the cluster occurs efficiently from an individual T 1 in pentacene but not from the tightly bound 1(TT) state. Thus, reducing intertriplet electronic coupling in 1(TT) via molecular design might be necessary for the efficient harvesting of triplets from intramolecular singlet fission.« less

  17. Distinct properties of the triplet pair state from singlet fission.

    PubMed

    Trinh, M Tuan; Pinkard, Andrew; Pun, Andrew B; Sanders, Samuel N; Kumarasamy, Elango; Sfeir, Matthew Y; Campos, Luis M; Roy, Xavier; Zhu, X-Y

    2017-07-01

    Singlet fission, the conversion of a singlet exciton (S 1 ) to two triplets (2 × T 1 ), may increase the solar energy conversion efficiency beyond the Shockley-Queisser limit. This process is believed to involve the correlated triplet pair state 1 (TT). Despite extensive research, the nature of the 1 (TT) state and its spectroscopic signature remain actively debated. We use an end-connected pentacene dimer (BP0) as a model system and show evidence for a tightly bound 1 (TT) state. It is characterized in the near-infrared (IR) region (~1.0 eV) by a distinct excited-state absorption (ESA) spectral feature, which closely resembles that of the S 1 state; both show vibronic progressions of the aromatic ring breathing mode. We assign these near-IR spectra to 1 (TT)→S n and S 1 →S n' transitions; S n and S n' likely come from the antisymmetric and symmetric linear combinations, respectively, of the S 2 state localized on each pentacene unit in the dimer molecule. The 1 (TT)→S n transition is an indicator of the intertriplet electronic coupling strength, because inserting a phenylene spacer or twisting the dihedral angle between the two pentacene chromophores decreases the intertriplet electronic coupling and diminishes this ESA peak. In addition to spectroscopic signature, the tightly bound 1 (TT) state also shows chemical reactivity that is distinctively different from that of an individual T 1 state. Using an electron-accepting iron oxide molecular cluster [Fe 8 O 4 ] linked to the pentacene or pentacene dimer (BP0), we show that electron transfer to the cluster occurs efficiently from an individual T 1 in pentacene but not from the tightly bound 1 (TT) state. Thus, reducing intertriplet electronic coupling in 1 (TT) via molecular design might be necessary for the efficient harvesting of triplets from intramolecular singlet fission.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trinh, M. Tuan; Pinkard, Andrew; Pun, Andrew B.

    Singlet fission, the conversion of a singlet exciton (S 1) to two triplets (2 × T 1), may increase the solar energy conversion efficiency beyond the Shockley-Queisser limit. This process is believed to involve the correlated triplet pair state 1(TT). Despite extensive research, the nature of the 1(TT) state and its spectroscopic signature remain actively debated. We use an end-connected pentacene dimer (BP0) as a model system and show evidence for a tightly bound 1(TT) state. It is characterized in the near-infrared (IR) region (~1.0 eV) by a distinct excited-state absorption (ESA) spectral feature, which closely resembles that of themore » S 1 state; both show vibronic progressions of the aromatic ring breathing mode. We assign these near-IR spectra to 1(TT)→S n and S 1→S n' transitions; S n and S n' likely come from the antisymmetric and symmetric linear combinations, respectively, of the S 2 state localized on each pentacene unit in the dimer molecule. The 1(TT)→S n transition is an indicator of the intertriplet electronic coupling strength, because inserting a phenylene spacer or twisting the dihedral angle between the two pentacene chromophores decreases the intertriplet electronic coupling and diminishes this ESA peak. In addition to spectroscopic signature, the tightly bound 1(TT) state also shows chemical reactivity that is distinctively different from that of an individual T 1 state. Using an electron-accepting iron oxide molecular cluster [Fe 8O 4] linked to the pentacene or pentacene dimer (BP0), we show that electron transfer to the cluster occurs efficiently from an individual T 1 in pentacene but not from the tightly bound 1(TT) state. Thus, reducing intertriplet electronic coupling in 1(TT) via molecular design might be necessary for the efficient harvesting of triplets from intramolecular singlet fission.« less

  19. Distinct properties of the triplet pair state from singlet fission

    PubMed Central

    Trinh, M. Tuan; Pinkard, Andrew; Pun, Andrew B.; Sanders, Samuel N.; Kumarasamy, Elango; Sfeir, Matthew Y.; Campos, Luis M.; Roy, Xavier; Zhu, X.-Y.

    2017-01-01

    Singlet fission, the conversion of a singlet exciton (S1) to two triplets (2 × T1), may increase the solar energy conversion efficiency beyond the Shockley-Queisser limit. This process is believed to involve the correlated triplet pair state 1(TT). Despite extensive research, the nature of the 1(TT) state and its spectroscopic signature remain actively debated. We use an end-connected pentacene dimer (BP0) as a model system and show evidence for a tightly bound 1(TT) state. It is characterized in the near-infrared (IR) region (~1.0 eV) by a distinct excited-state absorption (ESA) spectral feature, which closely resembles that of the S1 state; both show vibronic progressions of the aromatic ring breathing mode. We assign these near-IR spectra to 1(TT)→Sn and S1→Sn′ transitions; Sn and Sn′ likely come from the antisymmetric and symmetric linear combinations, respectively, of the S2 state localized on each pentacene unit in the dimer molecule. The 1(TT)→Sn transition is an indicator of the intertriplet electronic coupling strength, because inserting a phenylene spacer or twisting the dihedral angle between the two pentacene chromophores decreases the intertriplet electronic coupling and diminishes this ESA peak. In addition to spectroscopic signature, the tightly bound 1(TT) state also shows chemical reactivity that is distinctively different from that of an individual T1 state. Using an electron-accepting iron oxide molecular cluster [Fe8O4] linked to the pentacene or pentacene dimer (BP0), we show that electron transfer to the cluster occurs efficiently from an individual T1 in pentacene but not from the tightly bound 1(TT) state. Thus, reducing intertriplet electronic coupling in 1(TT) via molecular design might be necessary for the efficient harvesting of triplets from intramolecular singlet fission. PMID:28740866

  20. Recombinant thermoactive phosphoenolpyruvate carboxylase (PEPC) from Thermosynechococcus elongatus and its coupling with mesophilic/thermophilic bacterial carbonic anhydrases (CAs) for the conversion of CO2 to oxaloacetate.

    PubMed

    Del Prete, Sonia; De Luca, Viviana; Capasso, Clemente; Supuran, Claudiu T; Carginale, Vincenzo

    2016-01-15

    With the continuous increase of atmospheric CO2 in the last decades, efficient methods for carbon capture, sequestration, and utilization are urgently required. The possibility of converting CO2 into useful chemicals could be a good strategy to both decreasing the CO2 concentration and for achieving an efficient exploitation of this cheap carbon source. Recently, several single- and multi-enzyme systems for the catalytic conversion of CO2 mainly to bicarbonate have been implemented. In order to design and construct a catalytic system for the conversion of CO2 to organic molecules, we implemented an in vitro multienzyme system using mesophilic and thermophilic enzymes. The system, in fact, was constituted by a recombinant phosphoenolpyruvate carboxylase (PEPC) from the thermophilic cyanobacterium Thermosynechococcus elongatus, in combination with mesophilic/thermophilic bacterial carbonic anhydrases (CAs), for converting CO2 into oxaloacetate, a compound of potential utility in industrial processes. The catalytic procedure is in two steps: the conversion of CO2 into bicarbonate by CA, followed by the carboxylation of phosphoenolpyruvate with bicarbonate, catalyzed by PEPC, with formation of oxaloacetate (OAA). All tested CAs, belonging to α-, β-, and γ-CA classes, were able to increase OAA production compared to procedures when only PEPC was used. Interestingly, the efficiency of the CAs tested in OAA production was in good agreement with the kinetic parameters for the CO2 hydration reaction of these enzymes. This PEPC also revealed to be thermoactive and thermostable, and when coupled with the extremely thermostable CA from Sulphurhydrogenibium azorense (SazCA) the production of OAA was achieved even if the two enzymes were exposed to temperatures up to 60 °C, suggesting a possible role of the two coupled enzymes in biotechnological processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants.

    PubMed

    Ramrakhyani, A K; Mirabbasi, S; Mu Chiao

    2011-02-01

    Resonance-based wireless power delivery is an efficient technique to transfer power over a relatively long distance. This technique typically uses four coils as opposed to two coils used in conventional inductive links. In the four-coil system, the adverse effects of a low coupling coefficient between primary and secondary coils are compensated by using high-quality (Q) factor coils, and the efficiency of the system is improved. Unlike its two-coil counterpart, the efficiency profile of the power transfer is not a monotonically decreasing function of the operating distance and is less sensitive to changes in the distance between the primary and secondary coils. A four-coil energy transfer system can be optimized to provide maximum efficiency at a given operating distance. We have analyzed the four-coil energy transfer systems and outlined the effect of design parameters on power-transfer efficiency. Design steps to obtain the efficient power-transfer system are presented and a design example is provided. A proof-of-concept prototype system is implemented and confirms the validity of the proposed analysis and design techniques. In the prototype system, for a power-link frequency of 700 kHz and a coil distance range of 10 to 20 mm, using a 22-mm diameter implantable coil resonance-based system shows a power-transfer efficiency of more than 80% with an enhanced operating range compared to ~40% efficiency achieved by a conventional two-coil system.

  2. p-Aminophenol degradation by ozonation combined with sonolysis: operating conditions influence and mechanism.

    PubMed

    He, Zhiqiao; Song, Shuang; Ying, Haiping; Xu, Lejin; Chen, Jianmeng

    2007-07-01

    The degradation of p-aminophenol (PAP) in aqueous solution by sonolysis, by ozonation, and by a combination of both was investigated in laboratory-scale experiments. Operation parameters such as pH, temperature, ultrasonic energy density and ozone dose were optimized with regard to the efficiency of PAP removal. The concentration of PAP during the reaction was detected by high-pressure liquid chromatography. The concentrations of ammonium ions and nitrate ions were monitored during the degradation. Intermediate products such as 4-iminocyclohexa-2,5-dien-1-one, phenol, but-2-enedioic acid, and acetic acid were detected by gas chromatography coupled with mass spectrometry. The degradation rate of PAP was higher in the combined system than in the linear combination of separate experiments. The degradation efficiency was decreased rapidly when n-butanol was added to the combined reaction system, which showed that some radical reaction might proceed during the laboratory experiments.

  3. Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas.

    PubMed

    de Ceglia, Domenico; Vincenti, Maria Antonietta; De Angelis, Costantino; Locatelli, Andrea; Haus, Joseph W; Scalora, Michael

    2015-01-26

    We study optical second harmonic generation from metallic dipole antennas with narrow gaps. Enhancement of the fundamental-frequency field in the gap region plays a marginal role on conversion efficiency. In the symmetric configuration, i.e., with the gap located at the center of the antenna axis, reducing gap size induces a significant red-shift of the maximum conversion efficiency peak. Either enhancement or inhibition of second-harmonic emission may be observed as gap size is decreased, depending on the antenna mode excited at the harmonic frequency. The second-harmonic signal is extremely sensitive to the asymmetry introduced by gap's displacements with respect to the antenna center. In this situation, second-harmonic light can couple to all the available antenna modes. We perform a multipolar analysis that allows engineering the far-field SH emission and find that the interaction with quasi-odd-symmetry modes generates radiation patterns with a strong dipolar component.

  4. Manganese porphyrin immobilized on magnetic MCM-41 nanoparticles as an efficient and reusable catalyst for alkene oxidations with sodium periodate

    NASA Astrophysics Data System (ADS)

    Hajian, Robabeh; Ehsanikhah, Amin

    2018-01-01

    This study describes the immobilization of tetraphenylporphyrinatomanganese(III) chloride, (MnPor), onto imidazole functionalized MCM-41 with magnetite nanoparticle core (Fe3O4@MCM-41-Im). The resultant material (Fe3O4@MCM-41-Im@MnPor) was characterized by X-ray diffractometry (XRD), Fourier transform infra-red (FT-IR), diffuse reflectance UV-Vis spectrophotometry (DR UV-Vis), field emission scanning electron microscopy (FESEM), Inductively coupled plasma (ICP), analyzer transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area. This new heterogenized catalyst was applied as an efficient catalyst for the epoxidation of a variety of cyclic and linear olefins with NaIO4 under mild conditions. The prepared catalyst can be easily recovered through the application of an external magnet, and reused several times without any significant decrease in activity and magnetic properties.

  5. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform.

    PubMed

    Vermeulen, D; Selvaraja, S; Verheyen, P; Lepage, G; Bogaerts, W; Absil, P; Van Thourhout, D; Roelkens, G

    2010-08-16

    A new generation of Silicon-on-Insulator fiber-to-chip grating couplers which use a silicon overlay to enhance the directionality and thereby the coupling efficiency is presented. Devices are realized on a 200 mm wafer in a CMOS pilot line. The fabricated fiber couplers show a coupling efficiency of -1.6 dB and a 3 dB bandwidth of 80 nm.

  6. Effects of Aluminium on Rat Brain Mitochondria Bioenergetics: an In vitro and In vivo Study.

    PubMed

    Iglesias-González, Javier; Sánchez-Iglesias, Sofía; Beiras-Iglesias, Andrés; Méndez-Álvarez, Estefanía; Soto-Otero, Ramón

    2017-01-01

    Numerous studies have highlighted the potential of aluminium as an aetiological factor for some neurodegenerative disorders, particularly Alzheimer's disease and Parkinson's disease. Our previous studies have shown that aluminium can cause oxidative stress, reduce the activity of some antioxidant enzymes, and enhance the dopaminergic neurodegeneration induced by 6-hydroxydopamine in an experimental model of Parkinson's disease in rats. We now report a study on the effects caused by aluminium on mitochondrial bioenergetics following aluminium addition and after its chronic administration to rats. To develop our study, we used a high-resolution respirometry to test the mitochondrial respiratory capacities under the conditions of coupling, uncoupling, and non-coupling. Our study showed alterations in leakiness, a reduction in the maximum capacity of complex II-linked respiratory pathway, a decline in the respiration efficiency, and a decrease in the activities of complexes III and V in both models studied. The observed effects also included both an alteration in mitochondrial transmembrane potential and a decrease in oxidative phosphorylation capacity when relatively high concentrations of aluminium were added to the isolated mitochondria. These findings contribute to explain both the ability of aluminium to generate oxidative stress and its suggested potential to act as an etiological factor by promoting the progression of neurodegenerative disorders such as Parkinson's disease.

  7. Spatial layout optimization design of multi-type LEDs lighting source based on photoelectrothermal coupling theory

    NASA Astrophysics Data System (ADS)

    Xue, Lingyun; Li, Guang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Multiple LED-based spectral synthesis technology has been widely used in the fields of solar simulator, color mixing, and artificial lighting of plant factory and so on. Generally, amounts of LEDs are spatially arranged with compact layout to obtain the high power density output. Mutual thermal spreading among LEDs will produce the coupled thermal effect which will additionally increase the junction temperature of LED. Affected by the Photoelectric thermal coupling effect of LED, the spectrum of LED will shift and luminous efficiency will decrease. Correspondingly, the spectral synthesis result will mismatch. Therefore, thermal management of LED spatial layout plays an important role for multi-LEDs light source system. In the paper, the thermal dissipation network topology model considering the mutual thermal spreading effect among the LEDs is proposed for multi-LEDs system with various types of power. The junction temperature increment cased by the thermal coupling has the great relation with the spatial arrangement. To minimize the thermal coupling effect, an optimized method of LED spatial layout for the specific light source structure is presented and analyzed. The results showed that layout of LED with high-power are arranged in the corner and low-power in the center. Finally, according to this method, it is convenient to determine the spatial layout of LEDs in a system having any kind of light source structure, and has the advantages of being universally applicable to facilitate adjustment.

  8. An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.

    PubMed

    Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min

    2017-06-11

    The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.

  9. Collection efficiency of a single optical fiber in turbid media.

    PubMed

    Bargo, Paulo R; Prahl, Scott A; Jacques, Steven L

    2003-06-01

    If a single optical fiber is used for both delivery and collection of light, two major factors affect the measurement of collected light: (1) the light transport in the medium that describes the amount of light that returns to the fiber and (2) the light coupling to the optical fiber that depends on the angular distribution of photons entering the fiber. We focus on the importance of the latter factor and describe how the efficiency of the coupling depends on the optical properties of the medium. For highly scattering tissues, the efficiency is well predicted by the numerical aperture (NA) of the fiber. For lower scattering, such as in soft tissues, photons arrive at the fiber from deeper depths, and the coupling efficiency could increase twofold to threefold above that predicted by the NA.

  10. First application of an efficient and versatile ligand for copper-catalyzed cross-coupling reactions of vinyl halides with N-heterocycles and phenols.

    PubMed

    Kabir, M Shahjahan; Lorenz, Michael; Namjoshi, Ojas A; Cook, James M

    2010-02-05

    2-Pyridin-2-yl-1H-benzoimidazole L3 is presented as a new, efficient, and versatile bidentate N-donor ligand suitable for the copper-catalyzed formation of vinyl C-N and C-O bonds. This inexpensive and easily prepared ligand facilitates copper-catalyzed cross-coupling reactions of alkenyl bromides and iodides with N-heterocycles and phenols to afford the desired cross-coupled products in good to excellent yields with full retention of stereochemistry. This method is particularly noteworthy given its efficiency, that is, mild reaction conditions, low catalyst loading, simplicity, versatility, and exceptional level of functional group tolerance.

  11. First Application of An Efficient and Versatile Ligand for Copper-Catalyzed Cross-Coupling Reactions of Vinyl Halides with N-Heterocycles and Phenols

    PubMed Central

    Kabir, M. Shahjahan; Lorenz, Michael; Namjoshi, Ojas A.; Cook, James M.

    2010-01-01

    2-Pyridin-2-yl-1H-benzoimidazole L3 is presented as a new, efficient, and versatile bidentate N-donor ligand suitable for the copper-catalyzed formation of vinyl C-N and C-O bonds. This inexpensive and easily prepared ligand facilitates copper-catalyzed cross-coupling reactions of alkenyl bromides and iodides with N-heterocycles and phenols to afford the desired cross-coupled products in good to excellent yields with full retention of stereochemistry. This method is particularly noteworthy given its efficiency i.e., mild reaction conditions, low catalyst loading, simplicity, versatility, and exceptional level of functional group tolerance. PMID:20039699

  12. Improved out-coupling efficiency of organic light emitting diodes fabricated on a TiO2 planarization layer with embedded Si oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Sung, Young Hoon; Jung, Pil-Hoon; Han, Kyung-Hoon; Kim, Yang Doo; Kim, Jang-Joo; Lee, Heon

    2017-10-01

    In order to increase the out-coupling efficiency of organic light emitting diodes, conical Si oxide nanostructures were formed on a glass substrate using nanoimprint lithography with hydrogen silsesquioxane. Then, the substrate was planarized with TiO2 nanoparticles. Since TiO2 nanoparticles have a higher refractive index than Si oxide, the surface of substrate is physically flat, but optically undulated in a manner that enables optical scattering and suppression of total internal reflection. Subsequently, OLEDs formed on a substrate with nanostructured Si oxide and a TiO2 planarization layer exhibit a 25% increase in out-coupling efficiency by suppressing total internal reflection.

  13. Particle capture device

    DOEpatents

    Jayne, John T.; Worsnop, Douglas R.

    2016-02-23

    In example embodiments, particle collection efficiency in aerosol analyzers and other particle measuring instruments is improved by a particle capture device that employs multiple collisions to decrease momentum of particles until the particles are collected (e.g., vaporized or come to rest). The particle collection device includes an aperture through which a focused particle beam enters. A collection enclosure is coupled to the aperture and has one or more internal surfaces against which particles of the focused beam collide. One or more features are employed in the collection enclosure to promote particles to collide multiple times within the enclosure, and thereby be vaporized or come to rest, rather than escape through the aperture.

  14. Continuous flow photochemistry.

    PubMed

    Gilmore, Kerry; Seeberger, Peter H

    2014-06-01

    Due to the narrow width of tubing/reactors used, photochemistry performed in micro- and mesoflow systems is significantly more efficient than when performed in batch due to the Beer-Lambert Law. Owing to the constant removal of product and facility of flow chemical scalability, the degree of degradation observed is generally decreased and the productivity of photochemical processes is increased. In this Personal Account, we describe a wide range of photochemical transformations we have examined using both visible and UV light, covering cyclizations, intermolecular couplings, radical polymerizations, as well as singlet oxygen oxygenations. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Gas core reactors for actinide transmutation and breeder applications

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1978-01-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions.

  16. Preliminary thermodynamic study for an efficient turbo-blower external combustion Rankine cycle

    NASA Astrophysics Data System (ADS)

    Romero Gómez, Manuel; Romero Gómez, Javier; Ferreiro Garcia, Ramón; Baaliña Insua, Álvaro

    2014-08-01

    This research paper presents a preliminary thermodynamic study of an innovative power plant operating under a Rankine cycle fed by an external combustion system with turbo-blower (TB). The power plant comprises an external combustion system for natural gas, where the combustion gases yield their thermal energy, through a heat exchanger, to a carbon dioxide Rankine cycle operating under supercritical conditions and with quasi-critical condensation. The TB exploits the energy from the pressurised exhaust gases for compressing the combustion air. The study is focused on the comparison of the combustion system's conventional technology with that of the proposed. An energy analysis is carried out and the effect of the flue gas pressure on the efficiency and on the heat transfer in the heat exchanger is studied. The coupling of the TB results in an increase in efficiency and of the convection coefficient of the flue gas with pressure, favouring a reduced volume of the heat exchanger. The proposed innovative system achieves increases in efficiency of around 12 % as well as a decrease in the heat exchanger volume of 3/5 compared with the conventional technology without TB.

  17. Optimal dephasing for ballistic energy transfer in disordered linear chains

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Celardo, G. Luca; Borgonovi, Fausto; Kaplan, Lev

    2017-11-01

    We study the interplay between dephasing, disorder, and coupling to a sink on transport efficiency in a one-dimensional chain of finite length N , and in particular the beneficial or detrimental effect of dephasing on transport. The excitation moves along the chain by coherent nearest-neighbor hopping Ω , under the action of static disorder W and dephasing γ . The last site is coupled to an external acceptor system (sink), where the excitation can be trapped with a rate Γtrap. While it is known that dephasing can help transport in the localized regime, here we show that dephasing can enhance energy transfer even in the ballistic regime. Specifically, in the localized regime we recover previous results, where the optimal dephasing is independent of the chain length and proportional to W or W2/Ω . In the ballistic regime, the optimal dephasing decreases as 1 /N or 1 /√{N } , respectively, for weak and moderate static disorder. When focusing on the excitation starting at the beginning of the chain, dephasing can help excitation transfer only above a critical value of disorder Wcr, which strongly depends on the sink coupling strength Γtrap. Analytic solutions are obtained for short chains.

  18. Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback

    NASA Astrophysics Data System (ADS)

    Zhu, Peng; Zhuang, Qianlai; Ciais, Philippe; Welp, Lisa; Li, Wenyu; Xin, Qinchuan

    2017-02-01

    Increasing atmospheric CO2 affects photosynthesis involving directly increasing leaf carboxylation rates, stomatal closure, and climatic effects. The direct effects are generally thought to be positive leading to increased photosynthesis, while its climatic effects can be regionally positive or negative. These effects are usually considered to be independent from each other, but they are in fact coupled through interactions between land surface exchanges of gases and heat and the physical climate system. In particular, stomatal closure reduces evapotranspiration and increases sensible heat emissions from ecosystems, leading to decreased atmospheric moisture and precipitation and local warming. We use a coupled earth system model to attribute the influence of the increase in CO2 on gross primary productivity (GPP) during the period of 1930-2011. In our model, CO2 radiative effects cause climate change that has only a negligible effect on global GPP (a reduction of 0.9 ± 2% during the last 80 years) because of opposite responses between tropical and northern biomes. On the other hand, CO2 physiological effects on GPP are both positive, by increased carboxylation rates and water use efficiency (7.1 ± 0.48% increase), and negative, by vegetation-climate feedback reducing precipitation, as a consequence of decreased transpiration and increased sensible heat in areas without water limitation (2.7 ± 1.76% reduction).When considering the coupled atmosphere-vegetation system, negative climate feedback on photosynthesis and plant growth due to the current level of CO2 opposes 29-38% of the gains from direct fertilization effects.

  19. A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol

    PubMed Central

    2014-01-01

    Background Bioethanol production from biomass is becoming a hot topic internationally. Traditional static solid state fermentation (TS-SSF) for bioethanol production is similar to the traditional method of intermittent operation. The main problems of its large-scale intensive production are the low efficiency of mass and heat transfer and the high ethanol inhibition effect. In order to achieve continuous production and high conversion efficiency, gas stripping solid state fermentation (GS-SSF) for bioethanol production from sweet sorghum stalk (SSS) was systematically investigated in the present study. Results TS-SSF and GS-SSF were conducted and evaluated based on different SSS particle thicknesses under identical conditions. The ethanol yield reached 22.7 g/100 g dry SSS during GS-SSF, which was obviously higher than that during TS-SSF. The optimal initial gas stripping time, gas stripping temperature, fermentation time, and particle thickness of GS-SSF were 10 h, 35°C, 28 h, and 0.15 cm, respectively, and the corresponding ethanol stripping efficiency was 77.5%. The ethanol yield apparently increased by 30% with the particle thickness decreasing from 0.4 cm to 0.05 cm during GS-SSF. Meanwhile, the ethanol yield increased by 6% to 10% during GS-SSF compared with that during TS-SSF under the same particle thickness. The results revealed that gas stripping removed the ethanol inhibition effect and improved the mass and heat transfer efficiency, and hence strongly enhanced the solid state fermentation (SSF) performance of SSS. GS-SSF also eliminated the need for separate reactors and further simplified the bioethanol production process from SSS. As a result, a continuous conversion process of SSS and online separation of bioethanol were achieved by GS-SSF. Conclusions SSF coupled with gas stripping meet the requirements of high yield and efficient industrial bioethanol production. It should be a novel bioconversion process for bioethanol production from SSS biomass. PMID:24713041

  20. Study on power coupling of annular vortex beam propagating through a two-Cassegrain-telescope optical system in turbulent atmosphere.

    PubMed

    Wu, Huiyun; Sheng, Shen; Huang, Zhisong; Zhao, Siqing; Wang, Hua; Sun, Zhenhai; Xu, Xiegu

    2013-02-25

    As a new attractive application of the vortex beams, power coupling of annular vortex beam propagating through a two- Cassegrain-telescope optical system in turbulent atmosphere has been investigated. A typical model of annular vortex beam propagating through a two-Cassegrain-telescope optical system is established, the general analytical expression of vortex beams with limited apertures and the analytical formulas for the average intensity distribution at the receiver plane are derived. Under the H-V 5/7 turbulence model, the average intensity distribution at the receiver plane and power coupling efficiency of the optical system are numerically calculated, and the influences of the optical topological charge, the laser wavelength, the propagation path and the receiver apertures on the power coupling efficiency are analyzed. These studies reveal that the average intensity distribution at the receiver plane presents a central dark hollow profile, which is suitable for power coupling by the Cassegrain telescope receiver. In the optical system with optimized parameters, power coupling efficiency can keep in high values with the increase of the propagation distance. Under the atmospheric turbulent conditions, great advantages of vortex beam in power coupling of the two-Cassegrain-telescope optical system are shown in comparison with beam without vortex.

  1. Sub-wavelength grating structure on the planar waveguide (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qing-Song, Zhu; Sheng-Hui, Chen

    2016-10-01

    Making progress in recent years, with the technology of the grating, the grating period can be reduced to shrink the size of the light coupler on a waveguide. The working wavelength of the light coupler can be in the range from the near-infrared to visible. In this study , we used E-gun evaporation system with ion-beam-assisted deposition system to fabricate bottom cladding (SiO2), guiding layer (Ta2O5) and Distributed Bragg Reflector(DBR) of the waveguide on the silicon substrate. Electron-beam lithography is used to make sub-wavelength gratings and reflector grating on the planar waveguide which is a coupling device on the guiding layer. The best fabrication parameters were analyzed to deposit the film. The exposure and development times also influenced to fabricate the grating quality. The purpose is to reduce the device size and enhance coupling efficiency which maintain normal incidence of the light . We designed and developed the device using the Finite-Difference Time-Domain (FDTD) method. The grating period, depth, fill factor, film thickness, Distributed Bragg Reflector(DBR) numbers and reflector grating period have been discussed to enhance coupling efficiency and maintained normal incidence of the light. According to the simulation results, when the wavelength is 1300 nm, the coupling grating period is 720 nm and the Ta2O5 film is 460 nm with 360 nm of reflector grating period and 2 layers of Distributed Bragg Reflector, which had the optimum coupling efficiency and normal incidence angle. In the measurement, We successfully measured the TE wave coupling efficiency of the photoresist grating coupling device.

  2. Optimization of concentrator photovoltaic solar cell performance through photonic engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, James

    The goal of this program was to incorporate two new and innovative design concepts into the design and production of CPV cells that have near zero added cost, yet significantly increase the operational efficiency of CPV modules. The program focused developing luminescent coupling effects and radiative cooling layers to increase efficiency and suppress CPV module power losses due to spectral variations and heating. The major results of the program were: 1) The optics of three commercial refractive (Fresnel) concentrators were characterized and prevent application of radiative cooling concepts due to strong mid-IR absorption (4-12µm) required to effectively radiate blackbody radiationmore » from the cells and provide cooling. Investigation of alternative materials for the concentrator lenses produced only undesirable options—materials with reasonable mid-IR transmission for cooling only had about 30-40 visible transmission, thus reducing incident sunlight by >50%. While our investigation was somewhat limited, our work suggests that the only viable concentrator system that can incorporate radiative cooling utilizes reflective optics. 2) With limited ability to test high concentration CPV cells (requires outdoor testing), we acquired both semi-crystalline and crystalline Si cells and tested them in our outdoor facility and demonstrated 4°C cooling using a simple silica layer coating on the cells. 3) Characterizing Si cells in the IR associated with radiative cooling, we observed very significant near-IR absorption that increases the cell operating temperature by a similar amount, 4-5°C. By appropriate surface layer design, one can produce a layer that is highly reflective in the near-IR (1.5-4µm) and highly emissive in the mid-IR (5-15µm), thus reducing cell operational temperature by 10°C and increasing efficiency by ~1% absolute. The radiative cooling effect in c-Si solar cells might be further improved by providing a higher thermal conductive elastomer for securing the cover glass on top of the AR-coating. Since it was never imagined that the front surface would provide any cooling for solar cells, thermal conductivity of this elastomer was never a design consideration, but, improving the conductivity could decrease cell temperature by another 3-4°C. The combined effect could be an ~1.5% absolute increase in cell and module efficiency, a very significant improvement. 4) Developed a numerical model to explore dependence of luminescent coupling efficiency over a broad range of operating conditions. We developed a novel method and facility to experimentally measure the luminescent coupling that can be used to confirm the dependence of luminescent coupling on multi-junction cell design parameters.« less

  3. Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods

    PubMed Central

    Cocco, Simona; Leibler, Stanislas; Monasson, Rémi

    2009-01-01

    Complexity of neural systems often makes impracticable explicit measurements of all interactions between their constituents. Inverse statistical physics approaches, which infer effective couplings between neurons from their spiking activity, have been so far hindered by their computational complexity. Here, we present 2 complementary, computationally efficient inverse algorithms based on the Ising and “leaky integrate-and-fire” models. We apply those algorithms to reanalyze multielectrode recordings in the salamander retina in darkness and under random visual stimulus. We find strong positive couplings between nearby ganglion cells common to both stimuli, whereas long-range couplings appear under random stimulus only. The uncertainty on the inferred couplings due to limitations in the recordings (duration, small area covered on the retina) is discussed. Our methods will allow real-time evaluation of couplings for large assemblies of neurons. PMID:19666487

  4. Efficient and Selective Electrochemical and Photoelectrochemical Reduction of 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)furan using Water as the Hydrogen Source

    DOE PAGES

    Roylance, John J.; Kim, Tae Woo; Choi, Kyoung-Shin

    2016-02-17

    Reductive biomass conversion has been conventionally conducted using H 2 gas under high-temperature and-pressure conditions. Here, efficient electrochemical reduction of 5-hydroxymethylfurfural (HMF), a key intermediate for biomass conversion, to 2,5-bis(hydroxymethyl)furan (BHMF), an important monomer for industrial processes, was demonstrated using Ag catalytic electrodes. This process uses water as the hydrogen source under ambient conditions and eliminates the need to generate and consume H 2 for hydrogenation, providing a practical and efficient route for BHMF production. By systematic investigation of HMF reduction on the Ag electrode surface, BHMF production was achieved with the Faradaic efficiency and selectivity nearing 100%, and plausiblemore » reduction mechanisms were also elucidated. Furthermore, construction of a photoelectrochemical cell (PEC) composed of an n-type BiVO 4 semiconductor anode, which uses photogenerated holes for water oxidation, and a catalytic Ag cathode, which uses photoexcited electrons from BiVO 4 for the reduction of HMF to BHMF, was demonstrated to utilize solar energy to significantly decrease the external voltage necessary for HMF reduction. This shows the possibility of coupling electrochemical HMF reduction and solar energy conversion, which can provide more efficient and environmentally benign routes for reductive biomass conversion.« less

  5. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels.

    PubMed

    Luo, J; Chen, M; Wu, W Y; Weng, S M; Sheng, Z M; Schroeder, C B; Jaroszynski, D A; Esarey, E; Leemans, W P; Mori, W B; Zhang, J

    2018-04-13

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  6. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels

    NASA Astrophysics Data System (ADS)

    Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.

    2018-04-01

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  7. Measurements of rates of cooling of a manikin insulated with different mountain rescue casualty bags.

    PubMed

    Press, Christopher; Duffy, Christopher; Williams, Jonathan; Cooper, Ben; Chapman, Neil

    2017-01-01

    Accidental hypothermia is common in those who sustain injuries in remote environments. This is unpleasant and associated with adverse effects on subsequent patient outcomes. To minimise further heat loss, a range of insulating systems are available to mountain rescue teams although the most effective and cost-efficient have yet to be determined. Under ambient, still, dry, air conditions, a thermal manikin was filled with water at a temperature of 42 °C and then placed into a given insulation system. Water temperature was then continuously observed via an in-dwelling temperature sensor linked to a PROPAQ 100 series monitor and recorded every 10 min for 130 min. This method was repeated for each insulating package. The vacuum mattress/Pertex©/fibrepile blanket system, either on its own or coupled with the Wiggy bag, was the most efficient with water temperatures only decreasing by 3.2 °C over 130 min. This was followed by the heavy-weight casualty bags without the vacuum mattress/Pertex©/fibrepile blanket system, decreasing by 4.2-4.3 °C. With the Blizzard bag, a decline in water temperature of 5.4 °C was seen over the study duration while a decrease of 9.5 °C was noted when the plastic survival bag was employed. Under the still-air conditions of the study, the vacuum mattress/Pertex©/fibrepile blanket was seen to offer comparable insulation effectiveness compared to be both heavy-weight casualty bags. In turn, these three systems appeared more efficient at insulating the manikin than the Blizzard bag or plastic survival bag.

  8. Impact of Extensive Urbanization on Summertime Rainfall in the Beijing Region and the Role of Local Precipitation Recycling

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei

    2018-04-01

    In this study, we conducted nested high-resolution simulations using the Weather Research and Forecasting model coupled with a single-layer urban canopy model to investigate the impact of extensive urbanization on regional precipitation over the Beijing-Tianjin-Hebei region in China. The results showed that extensive urbanization decreased precipitation considerably over and downwind of Beijing city. The prevalence of impermeable urban land inhibits local evaporation that feeds moisture into the overlying atmosphere, decreasing relative humidity and atmospheric instability. The dynamic precipitation recycling model was employed to estimate the precipitation that originates from local surface evaporation and large-scale advection of moisture. Results showed that about 11% of the urbanization-induced decrease in total precipitation over the Greater Beijing Region and its surroundings was contributed by the decrease in local recycled precipitation, while the other part (89%) was due to decreasing large-scale advected precipitation. Results suggest that the low evaporation from urban land surfaces not only reduces the supply of water vapor for local recycled precipitation directly but also decreases the convective available potential energy and hence the conversion efficiency of atmospheric moisture into rainfall. The urbanization-induced variations in local recycled precipitation were found to be correlated with the net atmospheric moisture flux on a monthly time scale.

  9. IOMIDAZOLIUM-BASED INDIUM(III) TETRAHIDES: RECYCLABLE CATALYSTS FOR EFFICIENT COUPLING OF CARBON DIOXIDE WITH EXPOXIDES TO FORM CYCLIC CARBONATES

    EPA Science Inventory

    The transformation of CO2 an abundant greenhouse gas, into cyclic carbonates by coupling reaction with epoxides is receiving well-deserved attention. A series of imidazolium-based indium tetrahalides, prepared efficiently via microwave assisted reaction of InX3 with [1-R-3-metht...

  10. Multiscale Reactive Molecular Dynamics

    DTIC Science & Technology

    2012-08-15

    biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system ...coupling to slower, cooperative motions of the system . These inherently multiscale problems require computationally efficient and accurate methods to...condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus

  11. Dark states and delocalization: Competing effects of quantum coherence on the efficiency of light harvesting systems.

    PubMed

    Hu, Zixuan; Engel, Gregory S; Alharbi, Fahhad H; Kais, Sabre

    2018-02-14

    Natural light harvesting systems exploit electronic coupling of identical chromophores to generate efficient and robust excitation transfer and conversion. Dark states created by strong coupling between chromophores in the antenna structure can significantly reduce radiative recombination and enhance energy conversion efficiency. Increasing the number of the chromophores increases the number of dark states and the associated enhanced energy conversion efficiency yet also delocalizes excitations away from the trapping center and reduces the energy conversion rate. Therefore, a competition between dark state protection and delocalization must be considered when designing the optimal size of a light harvesting system. In this study, we explore the two competing mechanisms in a chain-structured antenna and show that dark state protection is the dominant mechanism, with an intriguing dependence on the parity of the number of chromophores. This dependence is linked to the exciton distribution among eigenstates, which is strongly affected by the coupling strength between chromophores and the temperature. Combining these findings, we propose that increasing the coupling strength between the chromophores can significantly increase the power output of the light harvesting system.

  12. L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography.

    PubMed

    Benedikovic, Daniel; Alonso-Ramos, Carlos; Pérez-Galacho, Diego; Guerber, Sylvain; Vakarin, Vladyslav; Marcaud, Guillaume; Le Roux, Xavier; Cassan, Eric; Marris-Morini, Delphine; Cheben, Pavel; Boeuf, Frédéric; Baudot, Charles; Vivien, Laurent

    2017-09-01

    Grating couplers enable position-friendly interfacing of silicon chips by optical fibers. The conventional coupler designs call upon comparatively complex architectures to afford efficient light coupling to sub-micron silicon-on-insulator (SOI) waveguides. Conversely, the blazing effect in double-etched gratings provides high coupling efficiency with reduced fabrication intricacy. In this Letter, we demonstrate for the first time, to the best of our knowledge, the realization of an ultra-directional L-shaped grating coupler, seamlessly fabricated by using 193 nm deep-ultraviolet (deep-UV) lithography. We also include a subwavelength index engineered waveguide-to-grating transition that provides an eight-fold reduction of the grating reflectivity, down to 1% (-20  dB). A measured coupling efficiency of -2.7  dB (54%) is achieved, with a bandwidth of 62 nm. These results open promising prospects for the implementation of efficient, robust, and cost-effective coupling interfaces for sub-micrometric SOI waveguides, as desired for large-volume applications in silicon photonics.

  13. Coupling of ultrasound-assisted extraction and expanded bed adsorption for simplified medicinal plant processing and its theoretical model: extraction and enrichment of ginsenosides from Radix Ginseng as a case study.

    PubMed

    Mi, Jianing; Zhang, Min; Zhang, Hongyang; Wang, Yuerong; Wu, Shikun; Hu, Ping

    2013-02-01

    A high-efficient and environmental-friendly method for the preparation of ginsenosides from Radix Ginseng using the method of coupling of ultrasound-assisted extraction with expanded bed adsorption is described. Based on the optimal extraction conditions screened by surface response methodology, ginsenosides were extracted and adsorbed, then eluted by the two-step elution protocol. The comparison results between the coupling of ultrasound-assisted extraction with expanded bed adsorption method and conventional method showed that the former was better than the latter in both process efficiency and greenness. The process efficiency and energy efficiency of the coupling of ultrasound-assisted extraction with expanded bed adsorption method rapidly increased by 1.4-fold and 18.5-fold of the conventional method, while the environmental cost and CO(2) emission of the conventional method were 12.9-fold and 17.0-fold of the new method. Furthermore, the theoretical model for the extraction of targets was derived. The results revealed that the theoretical model suitably described the process of preparing ginsenosides by the coupling of ultrasound-assisted extraction with expanded bed adsorption system. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Induction-heating MOCVD reactor with significantly improved heating efficiency and reduced harmful magnetic coupling

    NASA Astrophysics Data System (ADS)

    Li, Kuang-Hui; Alotaibi, Hamad S.; Sun, Haiding; Lin, Ronghui; Guo, Wenzhe; Torres-Castanedo, Carlos G.; Liu, Kaikai; Valdes-Galán, Sergio; Li, Xiaohang

    2018-04-01

    In a conventional induction-heating III-nitride metalorganic chemical vapor deposition (MOCVD) reactor, the induction coil is outside the chamber. Therefore, the magnetic field does not couple with the susceptor well, leading to compromised heating efficiency and harmful coupling with the gas inlet and thus possible overheating. Hence, the gas inlet has to be at a minimum distance away from the susceptor. Because of the elongated flow path, premature reactions can be more severe, particularly between Al- and B-containing precursors and NH3. Here, we propose a structure that can significantly improve the heating efficiency and allow the gas inlet to be closer to the susceptor. Specifically, the induction coil is designed to surround the vertical cylinder of a T-shaped susceptor comprising the cylinder and a top horizontal plate holding the wafer substrate within the reactor. Therefore, the cylinder coupled most magnetic field to serve as the thermal source for the plate. Furthermore, the plate can block and thus significantly reduce the uncoupled magnetic field above the susceptor, thereby allowing the gas inlet to be closer. The results show approximately 140% and 2.6 times increase in the heating and susceptor coupling efficiencies, respectively, as well as a 90% reduction in the harmful magnetic flux on the gas inlet.

  15. Experimental investigation of the hydraulic and heat-transfer properties of artificially fractured granite.

    PubMed

    Luo, Jin; Zhu, Yongqiang; Guo, Qinghai; Tan, Long; Zhuang, Yaqin; Liu, Mingliang; Zhang, Canhai; Xiang, Wei; Rohn, Joachim

    2017-01-05

    In this paper, the hydraulic and heat-transfer properties of two sets of artificially fractured granite samples are investigated. First, the morphological information is determined using 3D modelling technology. The area ratio is used to describe the roughness of the fracture surface. Second, the hydraulic properties of fractured granite are tested by exposing samples to different confining pressures and temperatures. The results show that the hydraulic properties of the fractures are affected mainly by the area ratio, with a larger area ratio producing a larger fracture aperture and higher hydraulic conductivity. Both the hydraulic apertureand the hydraulic conductivity decrease with an increase in the confining pressure. Furthermore, the fracture aperture decreases with increasing rock temperature, but the hydraulic conductivity increases owing to a reduction of the viscosity of the fluid flowing through. Finally, the heat-transfer efficiency of the samples under coupled hydro-thermal-mechanical conditions is analysed and discussed.

  16. Experimental investigation of the hydraulic and heat-transfer properties of artificially fractured granite

    PubMed Central

    Luo, Jin; Zhu, Yongqiang; Guo, Qinghai; Tan, Long; Zhuang, Yaqin; Liu, Mingliang; Zhang, Canhai; Xiang, Wei; Rohn, Joachim

    2017-01-01

    In this paper, the hydraulic and heat-transfer properties of two sets of artificially fractured granite samples are investigated. First, the morphological information is determined using 3D modelling technology. The area ratio is used to describe the roughness of the fracture surface. Second, the hydraulic properties of fractured granite are tested by exposing samples to different confining pressures and temperatures. The results show that the hydraulic properties of the fractures are affected mainly by the area ratio, with a larger area ratio producing a larger fracture aperture and higher hydraulic conductivity. Both the hydraulic apertureand the hydraulic conductivity decrease with an increase in the confining pressure. Furthermore, the fracture aperture decreases with increasing rock temperature, but the hydraulic conductivity increases owing to a reduction of the viscosity of the fluid flowing through. Finally, the heat-transfer efficiency of the samples under coupled hydro-thermal-mechanical conditions is analysed and discussed. PMID:28054594

  17. Quantum-circuit refrigerator

    NASA Astrophysics Data System (ADS)

    Tan, Kuan Yen; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Masuda, Shumpei; Möttönen, Mikko

    2017-05-01

    Quantum technology promises revolutionizing applications in information processing, communications, sensing and modelling. However, efficient on-demand cooling of the functional quantum degrees of freedom remains challenging in many solid-state implementations, such as superconducting circuits. Here we demonstrate direct cooling of a superconducting resonator mode using voltage-controllable electron tunnelling in a nanoscale refrigerator. This result is revealed by a decreased electron temperature at a resonator-coupled probe resistor, even for an elevated electron temperature at the refrigerator. Our conclusions are verified by control experiments and by a good quantitative agreement between theory and experimental observations at various operation voltages and bath temperatures. In the future, we aim to remove spurious dissipation introduced by our refrigerator and to decrease the operational temperature. Such an ideal quantum-circuit refrigerator has potential applications in the initialization of quantum electric devices. In the superconducting quantum computer, for example, fast and accurate reset of the quantum memory is needed.

  18. Frail elderly patients. New model for integrated service delivery.

    PubMed Central

    Hébert, Rejean; Durand, Pierre J.; Dubuc, Nicole; Tourigny, André

    2003-01-01

    PROBLEM BEING ADDRESSED: Given the complex needs of frail older people and the multiplicity of care providers and services, care for this clientele lacks continuity. OBJECTIVE OF PROGRAM: Integrated service delivery (ISD) systems have been developed to improve continuity and increase the efficacy and efficiency of services. PROGRAM DESCRIPTION: The Program of Research to Integrate Services for the Maintenance of Autonomy (PRISMA) is an innovative ISD model based on coordination. It includes coordination between decision makers and managers of different organizations and services; a single entry point; a case-management process; individualized service plans; a single assessment instrument based on clients' functional autonomy, coupled with a case-mix classification system; and a computerized clinical chart for communicating between institutions and professionals for client monitoring. CONCLUSION: Preliminary results on the efficacy of this model showed a decreased incidence of functional decline, a decreased burden for caregivers, and a smaller proportion of older people wishing to enter institutions. PMID:12943358

  19. Effect of sudden addition of PCE and bioreactor coupling to ZVI filters on performance of fluidized bed bioreactors operated in simultaneous electron acceptor modes.

    PubMed

    Moreno-Medina, C U; Poggi-Varaldo, Hector M; Breton-Deval, L; Rinderknecht-Seijas, N

    2017-11-01

    The present work evaluated the effects of (i) feeding a water contaminated with 80 mg/L PCE to bioreactors seeded with inoculum not acclimated to PCE, (ii) coupling ZVI side filters to bioreactors, and (iii) working in different biological regimes, i.e., simultaneous methanogenic aeration and simultaneous methanogenic-denitrifying regimes, on fluidized bed bioreactor performance. Simultaneous electron acceptors refer to the simultaneous presence of two compounds operating as final electron acceptors in the biological respiratory chain (e.g., use of either O 2 or NO 3 - in combination with a methanogenic environment) in a bioreactor or environmental niche. Four lab-scale, mesophilic, fluidized bed bioreactors (bioreactors) were implemented. Two bioreactors were operated as simultaneous methanogenic-denitrifying (MD) units, whereas the other two were operated in partially aerated methanogenic (PAM) mode. In the first period, all bioreactors received a wastewater with 1 g chemical oxygen demand of methanol per liter (COD-methanol/L). In a second period, all the bioreactors received the wastewater plus 80 mg perchloroethylene (PCE)/L; at the start of period 2, one MD and one PAM were coupled to side sand-zero valent iron filters (ZVI). All bioreactors were inoculated with a microbial consortium not acclimated to PCE. In this work, the performance of the full period 1 and the first 60 days of period 2 is reported and discussed. The COD removal efficiency and the nitrate removal efficiency of the bioreactors essentially did not change between period 1 and period 2, i.e., upon PCE addition. On the contrary, specific methanogenic activity in PAM bioreactors (both with and without coupled ZVI filter) significantly decreased. This was consistent with a sharp fall of methane productivity in those bioreactors in period 2. During period 2, PCE removals in the range 86 to 97 % were generally observed; the highest removal corresponded to PAM bioreactors along with the highest dehalogenation efficiency (94 %). Principal component analysis as well as cluster analysis confirmed the trends mentioned above, i.e., the better performance of PAM over MD, and the unexpected no effect of the ZVI side filters on PCE removal and dehalogenation efficiencies. To the best of our knowledge, this is the first report on the combined treatment ZVI-biological of a water polluted with PCE, where the biological operation relied on simultaneous electron acceptors.

  20. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGES

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10 -5 to 10 -11. Free molecular heat and mass transfer theory was applied, but evaporative phenomena were not sufficient to explain the dependence of aerosol detection on particle diameter. Additional work is needed to correlate experimental data with theory for metal-oxides where thermodynamic property data are sparse relative to pure elements. Finally, when matrix effects and the diffusion of ions inside the plasma were considered, mass loading was concluded to have had an effect on the dependence of detection efficiency on particle diameter.« less

  1. Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures

    PubMed Central

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2015-01-01

    Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ3/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers. PMID:26620270

  2. Effects of Kaolin Application on Light Absorption and Distribution, Radiation Use Efficiency and Photosynthesis of Almond and Walnut Canopies

    PubMed Central

    Rosati, Adolfo; Metcalf, Samuel G.; Buchner, Richard P.; Fulton, Allan E.; Lampinen, Bruce D.

    2007-01-01

    Background and Aims Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. Methods Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. Key Results Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6·3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on inner-canopy leaves, resulted in an estimated increase in modelled photosynthesis of the canopy (+9 % in both walnut and almond). The small loss in PRUE (per unit of incident PAR) resulted in an increase in radiation use efficiency per unit of absorbed PAR, which more than compensated for the minor (7 %) reduction in canopy PAR absorption. Conclusions The results explain the apparently contradictory findings in the literature of positive or no effects of kaolin applications on canopy photosynthesis and yield, despite the decrease in photosynthesis by individual leaves when measured at the same PAR. PMID:17138580

  3. Effects of kaolin application on light absorption and distribution, radiation use efficiency and photosynthesis of almond and walnut canopies.

    PubMed

    Rosati, Adolfo; Metcalf, Samuel G; Buchner, Richard P; Fulton, Allan E; Lampinen, Bruce D

    2007-02-01

    Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6.3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on inner-canopy leaves, resulted in an estimated increase in modelled photosynthesis of the canopy (+9 % in both walnut and almond). The small loss in PRUE (per unit of incident PAR) resulted in an increase in radiation use efficiency per unit of absorbed PAR, which more than compensated for the minor (7 %) reduction in canopy PAR absorption. The results explain the apparently contradictory findings in the literature of positive or no effects of kaolin applications on canopy photosynthesis and yield, despite the decrease in photosynthesis by individual leaves when measured at the same PAR.

  4. Further Examination of Biogeochemical Consequences of Mesoscale Eddies in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Marquez, I. A., Jr.; Krause, J. W.; Lomas, M. W.

    2016-02-01

    The Bermuda Atlantic Time Series (BATS) is an ongoing 25-year biogeochemical record in the North Atlantic subtropical gyre. Contemporaneous data on the particulate phases of four major bioreactive elements, C, N, P, and Si only exist during two years and also for a companion project (Trophic BATS, i.e. TBATS). A combined dataset from BATS and TBATS was used to better understand the coupling of C, N, P, and Si in the Sargasso Sea by analyzing particulate phases of each element in the water column and exported material. Three conclusions are inferred: first, the effect of mesoscale eddies on standing stocks, export rates, and elemental coupling of C, N, P, and Si displays strong seasonality. Statistically significant differences between particulate water column and export ratios using internal and between site comparisons were robust in the summer only. Second, N, Si and particularly P were more efficiently recycled within the euphotic zones of eddies as elemental ratios in export material were greater than the corresponding ratios in the water column. This suggests that P may have a more critical biogeochemical role and its supply rate to the euphotic zone may control primary production in these closed systems. Third, the trends seen in these eddies do not support that export production was enhanced, instead these features had more efficient recycling of N, P, and Si relative to the BATS site. This decrease in export efficiency suggests a stimulation of export production above 'normal' BATS conditions within eddies would require significantly higher autotrophic standing stock and correspondingly high rates of organic matter production.

  5. Electromechanical conversion efficiency for dielectric elastomer generator in different energy harvesting cycles

    NASA Astrophysics Data System (ADS)

    Cao, Jian-Bo; E, Shi-Ju; Guo, Zhuang; Gao, Zhao; Luo, Han-Pin

    2017-11-01

    In order to improve electromechanical conversion efficiency for dielectric elastomer generators (DEG), on the base of studying DEG energy harvesting cycles of constant voltage, constant charge and constant electric field intensity, a new combined cycle mode and optimization theory in terms of the generating mechanism and electromechanical coupling process have been built. By controlling the switching point to achieve the best energy conversion cycle, the energy loss in the energy conversion process is reduced. DEG generating test bench which was used to carry out comparative experiments has been established. Experimental results show that the collected energy in constant voltage cycle, constant charge cycle and constant electric field intensity energy harvesting cycle decreases in turn. Due to the factors such as internal resistance losses, electrical losses and so on, actual energy values are less than the theoretical values. The electric energy conversion efficiency by combining constant electric field intensity cycle with constant charge cycle is larger than that of constant electric field intensity cycle. The relevant conclusions provide a basis for the further applications of DEG.

  6. Reduced Graphene Oxide-Immobilized Tris(bipyridine)ruthenium(II) Complex for Efficient Visible-Light-Driven Reductive Dehalogenation Reaction.

    PubMed

    Li, Xiaoyan; Hao, Zhongkai; Zhang, Fang; Li, Hexing

    2016-05-18

    A sodium benzenesulfonate (PhSO3Na)-functionalized reduced graphene oxide was synthesized via a two-step aryl diazonium coupling and subsequent NaCl ion-exchange procedure, which was used as a support to immobilize tris(bipyridine)ruthenium(II) complex (Ru(bpy)3Cl2) by coordination reaction. This elaborated Ru(bpy)3-rGO catalyst exhibited excellent catalytic efficiency in visible-light-driven reductive dehalogenation reactions under mild conditions, even for ary chloride. Meanwhile, it showed the comparable reactivity with the corresponding homogeneous Ru(bpy)3Cl2 catalyst. This high catalytic performance could be attributed to the unique two-dimensional sheet-like structure of Ru(bpy)3-rGO, which efficiently diminished diffusion resistance of the reactants. Meanwhile, the nonconjugated PhSO3Na-linkage between Ru(II) complex and the support and the very low electrical conductivity of the catalyst inhibited energy/electron transfer from Ru(II) complex to rGO support, resulting in the decreased support-induced quenching effect. Furthermore, it could be easily recycled at least five times without significant loss of catalytic reactivity.

  7. Heat pump/refrigerator using liquid working fluid

    DOEpatents

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.; Knight, William R.; Warkentin, Paul A.

    1982-01-01

    A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.

  8. Efficient Interlayer Relaxation and Transition of Excitons in Epitaxial and Non-epitaxial MoS2/WS2 Heterostructures

    DOE PAGES

    Yu, Yifei; Hu, Shi; Su, Liqin; ...

    2014-12-03

    Semiconductor heterostructurs provide a powerful platform for the engineering of excitons. Here we report on the excitonic properties of two-dimensional (2D) heterostructures that consist of monolayer MoS2 and WS2 stacked epitaxially or non-epitaxially in the vertical direction. We find similarly efficient interlayer relaxation and transition of excitons in both the epitaxial and non-epitaxial heterostructures. This is manifested by a two orders of magnitude decrease in the photoluminescence and an extra absorption peak at low energy region of both heterostructures. The MoS2/WS2 heterostructures show weak interlayer coupling and essentially act as an atomic-scale heterojunction with the intrinsic band structures of themore » two monolayers largely preserved. They are particularly promising for the applications that request efficient dissociation of excitons and strong light absorption, including photovoltaics, solar fuels, photodetectors, and optical modulators. Our results also indicate that 2D heterostructures promise to provide capabilities to engineer excitons from the atomic level without concerns of interfacial imperfection.« less

  9. Investigation of the RF efficiency of inductively coupled hydrogen plasmas at 1 MHz

    NASA Astrophysics Data System (ADS)

    Rauner, D.; Mattei, S.; Briefi, S.; Fantz, U.; Hatayama, A.; Lettry, J.; Nishida, K.; Tran, M. Q.

    2017-08-01

    The power requirements of RF heated sources for negative hydrogen ions in fusion are substantial, which poses strong demands on the generators and components of the RF circuit. Consequently, an increase of the RF coupling efficiency would be highly beneficial. Fundamental investigations of the RF efficiency in inductively coupled hydrogen and deuterium discharges in cylindrical symmetry are conducted at the lab experiment CHARLIE. The experiment is equipped with several diagnostics including optical emission spectroscopy and a movable floating double probe to monitor the plasma parameters. The presented investigations are performed in hydrogen at a varying pressure between 0.3 and 10 Pa, utilizing a conventional helical ICP coil driven at a frequency of 1 MHz and a fixed power of 520 W for plasma generation. The coupling efficiency is strongly affected by the variation in pressure, reaching up to 85 % between 1 and 3 Pa while dropping down to only 50 % at 0.3 Pa, which is the relevant operating pressure for negative hydrogen ion sources for fusion. Due to the lower power coupling, also the measured electron density at 0.3 Pa is only 5 . 1016 m-3, while it reaches up to 2.5 . 1017 m-3 with increasing coupling efficiency. In order to gain information on the spatially resolved aspects of RF coupling and plasma heating which are not diagnostically accessible, first simulations of the discharge by an electromagnetic Particle-In-Cell Monte Carlo collision method have been conducted and are compared to the measurement data. At 1 Pa, the simulated data corresponds well to the results of both axially resolved probe measurements and radially resolved emission profiles obtained via OES. Thereby, information regarding the radial distribution of the electron density and mean energy is provided, revealing a radial distribution of the electron density which is well described by a Bessel profile.

  10. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    NASA Astrophysics Data System (ADS)

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  11. Lattice model of ionic liquid confined by metal electrodes

    NASA Astrophysics Data System (ADS)

    Girotto, Matheus; Malossi, Rodrigo M.; dos Santos, Alexandre P.; Levin, Yan

    2018-05-01

    We study, using Monte Carlo simulations, the density profiles and differential capacitance of ionic liquids confined by metal electrodes. To compute the electrostatic energy, we use the recently developed approach based on periodic Green's functions. The method also allows us to easily calculate the induced charge on the electrodes permitting an efficient implementation of simulations in a constant electrostatic potential ensemble. To speed up the simulations further, we model the ionic liquid as a lattice Coulomb gas and precalculate the interaction potential between the ions. We show that the lattice model captures the transition between camel-shaped and bell-shaped capacitance curves—the latter characteristic of ionic liquids (strong coupling limit) and the former of electrolytes (weak coupling). We observe the appearance of a second peak in the differential capacitance at ≈0.5 V for 2:1 ionic liquids, as the packing fraction is increased. Finally, we show that ionic size asymmetry decreases substantially the capacitance maximum, when all other parameters are kept fixed.

  12. Modification of land-atmosphere interactions by CO2 effects: Implications for summer dryness and heat wave amplitude

    NASA Astrophysics Data System (ADS)

    Lemordant, Léo.; Gentine, Pierre; Stéfanon, Marc; Drobinski, Philippe; Fatichi, Simone

    2016-10-01

    Plant stomata couple the energy, water, and carbon cycles. We use the framework of Regional Climate Modeling to simulate the 2003 European heat wave and assess how higher levels of surface CO2 may affect such an extreme event through land-atmosphere interactions. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the heat wave impact. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels and of the coupling between the carbon and water cycles is therefore critical to forecasting seasonal climate, water cycle dynamics, and to enhance the accuracy of extreme event prediction under future climate.

  13. Enhanced spin pumping into superconductors provides evidence for superconducting pure spin currents

    NASA Astrophysics Data System (ADS)

    Jeon, Kun-Rok; Ciccarelli, Chiara; Ferguson, Andrew J.; Kurebayashi, Hidekazu; Cohen, Lesley F.; Montiel, Xavier; Eschrig, Matthias; Robinson, Jason W. A.; Blamire, Mark G.

    2018-06-01

    Unlike conventional spin-singlet Cooper pairs, spin-triplet pairs can carry spin1,2. Triplet supercurrents were discovered in Josephson junctions with metallic ferromagnet spacers, where spin transport can occur only within the ferromagnet and in conjunction with a charge current. Ferromagnetic resonance injects a pure spin current from a precessing ferromagnet into adjacent non-magnetic materials3,4. For spin-singlet pairing, the ferromagnetic resonance spin pumping efficiency decreases below the critical temperature (Tc) of a coupled superconductor5,6. Here we present ferromagnetic resonance experiments in which spin sink layers with strong spin-orbit coupling are added to the superconductor. Our results show that the induced spin currents, rather than being suppressed, are substantially larger in the superconducting state compared with the normal state; although further work is required to establish the details of the spin transport process, we show that this cannot be mediated by quasiparticles and is most likely a triplet pure spin supercurrent.

  14. Band edge tailoring of InGaAs/AlAsSb coupled double quantum wells for a monolithically integrated all-optical switch.

    PubMed

    Feng, Jijun; Akimoto, Ryoichi; Gozu, Shin-ichiro; Mozume, Teruo; Hasama, Toshifumi; Ishikawa, Hiroshi

    2013-07-01

    We demonstrate a compact all-optical Michelson interferometer (MI) gating switch with monolithic integration of two different bandgap energies. Based on the ion-induced intermixing in InGaAs/AlAsSb coupled double quantum wells, the blueshift of the band edge can be tailored. Through phosphorus ion implantation with a dose of 5 × 10(14) cm(-2) and subsequent annealing at 720 °C for 60 s, an implanted sample can acquire a high transmittance compared with the as-grown one. Meanwhile, the cross-phase modulation (XPM) efficiency of a non-implanted sample undergoing the same annealing process decreases little. An implanted part for signal propagation and a non-implanted section for XPM are thus monolithically integrated for an MI switch by an area-selective manner. Full switching of a π-rad nonlinear phase shift is achieved with pump pulse energy of 5.6 pJ at a 10-GHz repetition rate.

  15. Increasing the magnetic-field capability of the magneto-inertial fusion electrical discharge system using an inductively coupled coil

    NASA Astrophysics Data System (ADS)

    Barnak, D. H.; Davies, J. R.; Fiksel, G.; Chang, P.-Y.; Zabir, E.; Betti, R.

    2018-03-01

    Magnetized high energy density physics (HEDP) is a very active and relatively unexplored field that has applications in inertial confinement fusion, astrophysical plasma science, and basic plasma physics. A self-contained device, the Magneto-Inertial Fusion Electrical Discharge System, MIFEDS [G. Fiksel et al., Rev. Sci. Instrum. 86, 016105 (2015)], was developed at the Laboratory for Laser Energetics to conduct magnetized HEDP experiments on both the OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495-506 (1997)] and OMEGA EP [J. H. Kelly et al., J. Phys. IV France 133, 75 (2006) and L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)] laser systems. Extremely high magnetic fields are a necessity for magnetized HEDP, and the need for stronger magnetic fields continues to drive the redevelopment of the MIFEDS device. It is proposed in this paper that a magnetic coil that is inductively coupled rather than directly connecting to the MIFEDS device can increase the overall strength of the magnetic field for HEDP experiments by increasing the efficiency of energy transfer while decreasing the effective magnetized volume. A brief explanation of the energy delivery of the MIFEDS device illustrates the benefit of inductive coupling and is compared to that of direct connection for varying coil size and geometry. A prototype was then constructed to demonstrate a 7-fold increase in energy delivery using inductive coupling.

  16. Turbulent Water Coupling in Shock Wave Lithotripsy

    PubMed Central

    Lautz, Jaclyn; Sankin, Georgy; Zhong, Pei

    2013-01-01

    Previous studies have demonstrated that stone comminution decreases with increased pulse repetition frequency as a result of bubble proliferation in the cavitation field of a shock wave lithotripter (Pishchalnikov et al., 2011). If cavitation nuclei remain in the propagation path of successive lithotripter pulses, especially in the acoustic coupling cushion of the shock wave source, they will consume part of the incident wave energy, leading to reduced tensile pressure in the focal region and thus lower stone comminution efficiency. We introduce a method to remove cavitation nuclei from the coupling cushion between successive shock exposures using a jet of degassed water. As a result, pre-focal bubble nuclei lifetime quantified by B-mode ultrasound imaging was reduced from 7 s to 0.3 s by a jet with an exit velocity of 62 cm/s. Stone fragmentation (percent mass < 2 mm) after 250 shocks delivered at 1 Hz was enhanced from 22 ± 6% to 33 ± 5% (p = 0.007) in water without interposing tissue mimicking materials. Stone fragmentation after 500 shocks delivered at 2 Hz was increased from 18 ± 6% to 28 ± 8% (p = 0.04) with an interposing tissue phantom of 8 cm thick. These results demonstrate the critical influence of cavitation bubbles in the coupling cushion on stone comminution and suggest a potential strategy to improve the efficacy of contemporary shock wave lithotripters. PMID:23322027

  17. Efficiency of autonomous soft nanomachines at maximum power.

    PubMed

    Seifert, Udo

    2011-01-14

    We consider nanosized artificial or biological machines working in steady state enforced by imposing nonequilibrium concentrations of solutes or by applying external forces, torques, or electric fields. For unicyclic and strongly coupled multicyclic machines, efficiency at maximum power is not bounded by the linear response value 1/2. For strong driving, it can even approach the thermodynamic limit 1. Quite generally, such machines fall into three different classes characterized, respectively, as "strong and efficient," "strong and inefficient," and "balanced." For weakly coupled multicyclic machines, efficiency at maximum power has lost any universality even in the linear response regime.

  18. Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping

    NASA Astrophysics Data System (ADS)

    Arbabzadah, E. A.; Damzen, M. J.

    2016-06-01

    We report the investigation of an Alexandrite laser end-pumped by a fibre-coupled red diode laser module. Power, efficiency, spatial, spectral, and wavelength tuning performance are studied as a function of pump and laser cavity parameters. It is the first demonstration, to our knowledge, of greater than 1 W power and also highest laser slope efficiency (44.2%) in a diode-pumped Alexandrite laser with diffraction-limited TEM00 mode operation. Spatial quality was excellent with beam propagation parameter M 2 ~ 1.05. Wavelength tuning from 737-796 nm was demonstrated using an intracavity birefringent tuning filter. Using a novel double pass end-pumping scheme to get efficient absorption of both polarisation states of the scrambled fibre-delivered diode pump, a total output coupled power of 1.66 W is produced in TEM00 mode with 40% slope efficiency.

  19. Polaron effects on the performance of light-harvesting systems: a quantum heat engine perspective

    NASA Astrophysics Data System (ADS)

    Xu, Dazhi; Wang, Chen; Zhao, Yang; Cao, Jianshu

    2016-02-01

    We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the reaction center. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus the entire range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady state coherence disappears and the efficiency recovers the heat engine limit given by Scovil and Schultz-Dubois (1959 Phys. Rev. Lett. 2 262).

  20. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    DOE PAGES

    Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; ...

    2015-01-26

    We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstratingmore » the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.« less

  1. A study of diazonium couplings with aromatic nucleophiles both in solution and on a polymer surface

    NASA Astrophysics Data System (ADS)

    Chng, Shuyun; Parker, Emily M.; Griffiths, Jon-Paul; Moloney, Mark G.; Wu, Linda Y. L.

    2017-04-01

    Diazonium coupling is a technique finding wider application to materials and biological science, for hybridization and linking processes, and for the construction of responsive surface functionality. For this reason, detailed examination of solution and surface processes was warranted, and results of such a study are reported here. The modification of polystyrene surfaces was examined as a model, and the process compared to a solution mimic using N,N-dimethylaniline. It was confirmed that solution and solid surface reactions proceed in a similar manner in terms of the chemical functionality generated, but with lower chemical efficiency and reaction times slower for the latter, in a reaction which was pH dependent. The solution process was shown to give only the trans-azo para- coupled products. Whilst there are clear similarities between the solution and surface chemistry, the efficiency of coupling at a surface is not necessarily replicated in the chemical yield of the mimicking solution processes, but nonetheless provides an alternative to other Click-type surface modifications. It should not be assumed that such couplings occur with quantitative efficiency at the surface.

  2. Low Level Pro-inflammatory Cytokines Decrease Connexin36 Gap Junction Coupling in Mouse and Human Islets through Nitric Oxide-mediated Protein Kinase Cδ*

    PubMed Central

    Farnsworth, Nikki L.; Walter, Rachelle L.; Hemmati, Alireza; Westacott, Matthew J.; Benninger, Richard K. P.

    2016-01-01

    Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. PMID:26668311

  3. Effective way of reducing coupling loss between rectangular microwaveguide and fiber.

    PubMed

    Zhou, Hang; Chen, Zilun; Xi, Xiaoming; Hou, Jing; Chen, Jinbao

    2012-01-20

    We introduce an anamorphic photonic crystal fiber (PCF) produced by postprocessing techniques to improve the coupling loss between a conventional single-mode fiber and rectangular microwaveguide. One end of the round core is connected with the conventional fiber, and the other end of the rectangular core is connected with the rectangular microwaveguide, then the PCF is tapered pro rata. In this way, the loss of mode mismatch between the output of the conventional fiber and the input of the waveguide would be reduced, which results in enhanced coupling efficiency. The conclusion was confirmed by numerical simulation: the new method is better than straight coupling between the optical fiber and the rectangular microwaveguide, and more than 2.8 dB improvement of coupling efficiency is achieved. © 2012 Optical Society of America

  4. On the analysis of using 3-coil wireless power transfer system in retinal prosthesis.

    PubMed

    Bai, Shun; Skafidas, Stan

    2014-01-01

    Designing a wireless power transmission system(WPTS) using inductive coupling has been investigated extensively in the last decade. Depending on the different configurations of the coupling system, there have been various designing methods to optimise the power transmission efficiency based on the tuning circuitry, quality factor optimisation and geometrical configuration. Recently, a 3-coil WPTS was introduced in retinal prosthesis to overcome the low power transferring efficiency due to low coupling coefficient. Here we present a method to analyse this 3-coil WPTS using the S-parameters to directly obtain maximum achievable power transferring efficiency. Through electromagnetic simulation, we brought a question on the condition of improvement using 3-coil WPTS in powering retinal prosthesis.

  5. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.

    PubMed

    Pennanen, Antti M; Toppari, J Jussi

    2013-01-14

    Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).

  6. 3D micro-lenses for free space intra-chip coupling in photonic-integrated circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thomas, Robert; Williams, Gwilym I.; Ladak, Sam; Smowton, Peter M.

    2017-02-01

    The integration of multiple optical elements on a common substrate to create photonic integrated circuits (PIC) has been successfully applied in: fibre-optic communications, photonic computing and optical sensing. The push towards III-Vs on silicon promises a new generation of integrated devices that combine the advantages of both integrated electronics and optics in a single substrate. III-V edge emitting laser diodes offer high efficiency and low threshold currents making them ideal candidates for the optically active elements of the next generation of PICs. Nevertheless, the highly divergent and asymmetric beam shapes intrinsic to these devices limits the efficiency with which optical elements can be free space coupled intra-chip; a capability particularly desirable for optical sensing applications e.g. [1]. Furthermore, the monolithic nature of the integrated approach prohibits the use of macroscopic lenses to improve coupling. However, with the advent of 3D direct laser writing, three dimensional lenses can now be manufactured on a microscopic-scale [2], making the use of micro-lens technology for enhanced free space coupling of integrated optical elements feasible. Here we demonstrate the first use of 3D micro-lenses to improve the coupling efficiency of monolithically integrated lasers. Fabricated from IP-dip photoresist using a Nanoscribe GmbH 3D lithography tool, the lenses are embedded directly onto a structured GaInP/AlGaInP substrate containing arrays of ridge lasers free space coupled to one another via a 200 μm air gap. We compare the coupling efficiency of these lasers with and without micro-lenses through photo-voltage and beam profile measurements and discuss optimisation of lens design.

  7. Topography alters tree growth–climate relationships in a semi-arid forested catchment

    DOE PAGES

    Adams, Hallie R.; Barnard, Holly R.; Loomis, Alexander K.

    2014-11-26

    Topography and climate play an integral role in the spatial variability and annual dynamics of aboveground carbon sequestration. Despite knowledge of vegetation–climate–topography relationships on the landscape and hillslope scales, little is known about the influence of complex terrain coupled with hydrologic and topoclimatic variation on tree growth and physiology at the catchment scale. Climate change predictions for the semi-arid, western United States include increased temperatures, more frequent and extreme drought events, and decreases in snowpack, all of which put forests at risk of drought induced mortality and enhanced susceptibility to disturbance events. In this study, we determine how species-specific treemore » growth patterns and water use efficiency respond to interannual climate variability and how this response varies with topographic position. We found that Pinus contorta and Pinus ponderosa both show significant decreases in growth with water-limiting climate conditions, but complex terrain mediates this response by controlling moisture conditions in variable topoclimates. Foliar carbon isotope analyses show increased water use efficiency during drought for Pinus contorta, but indicate no significant difference in water use efficiency of Pinus ponderosa between a drought year and a non-drought year. The responses of the two pine species to climate indicate that semi-arid forests are especially susceptible to changes and risks posed by climate change and that topographic variability will likely play a significant role in determining the future vegetation patterns of semi-arid systems.« less

  8. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber.

    PubMed

    Hanson, Frank; Lasher, Mark

    2010-06-01

    We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.

  9. Synthesis of a Monophosphoryl Derivative of Escherichia coli Lipid A and Its Efficient Coupling to a Tumor-Associated Carbohydrate Antigen

    PubMed Central

    Tang, Shouchu; Wang, Qianli

    2010-01-01

    Monophosphoryl lipid A is a safe and potent immunostimulant and vaccine adjuvant, which is potentially useful for the development of effective carbohydrate-based conjugate vaccines. This paper presented a convergent and efficient synthesis of a monophosphoryl derivative of E. coli lipid A having an alkyne functionality at the reducing end, which is suitable for the coupling with various molecules. The coupling of this derivative to an N-modified analog of tumor-associated antigen GM3 by click chemistry is also presented. PMID:19943286

  10. Using the Model Coupling Toolkit to couple earth system models

    USGS Publications Warehouse

    Warner, J.C.; Perlin, N.; Skyllingstad, E.D.

    2008-01-01

    Continued advances in computational resources are providing the opportunity to operate more sophisticated numerical models. Additionally, there is an increasing demand for multidisciplinary studies that include interactions between different physical processes. Therefore there is a strong desire to develop coupled modeling systems that utilize existing models and allow efficient data exchange and model control. The basic system would entail model "1" running on "M" processors and model "2" running on "N" processors, with efficient exchange of model fields at predetermined synchronization intervals. Here we demonstrate two coupled systems: the coupling of the ocean circulation model Regional Ocean Modeling System (ROMS) to the surface wave model Simulating WAves Nearshore (SWAN), and the coupling of ROMS to the atmospheric model Coupled Ocean Atmosphere Prediction System (COAMPS). Both coupled systems use the Model Coupling Toolkit (MCT) as a mechanism for operation control and inter-model distributed memory transfer of model variables. In this paper we describe requirements and other options for model coupling, explain the MCT library, ROMS, SWAN and COAMPS models, methods for grid decomposition and sparse matrix interpolation, and provide an example from each coupled system. Methods presented in this paper are clearly applicable for coupling of other types of models. ?? 2008 Elsevier Ltd. All rights reserved.

  11. Coupling of free space sub-terahertz waves into dielectric slabs using PC waveguides.

    PubMed

    Ghattan, Z; Hasek, T; Shahabadi, M; Koch, M

    2008-04-28

    The paper presents theoretical and experimental results on photonic crystal structures which work under the self-collimation condition to couple free space waves into dielectric slabs in the sub-terahertz range. Using a standard machining process, two-dimensional photonic crystal structures consisting of a square array of air holes in the dielectric medium are fabricated. One of the structures has two adjacent parallel line-defects that improve the coupling efficiency. This leads to a combination of self-collimation and directional emission of electromagnetic waves. The experimental results are in good agreement with those of the Finite- Element-Method calculations. Experimentally we achieve a coupling efficiency of 63%.

  12. Efficiency for preforming molecules from mixtures of light Fermi and heavy Bose atoms in optical lattices: The strong-coupling-expansion method

    NASA Astrophysics Data System (ADS)

    Hu, Anzi; Freericks, J. K.; Maśka, M. M.; Williams, C. J.

    2011-04-01

    We discuss the application of a strong-coupling expansion (perturbation theory in the hopping) for studying light-Fermi-heavy-Bose (like K40-Rb87) mixtures in optical lattices. We use the strong-coupling method to evaluate the efficiency for preforming molecules, the entropy per particle, and the thermal fluctuations. We show that within the strong interaction regime (and at high temperature), the strong-coupling expansion is an economical way to study this problem. In some cases, it remains valid even down to low temperatures. Because the computational effort is minimal, the strong-coupling approach allows us to work with much larger system sizes, where boundary effects can be eliminated, which is particularly important at higher temperatures. Since the strong-coupling approach is so efficient and accurate, it allows one to rapidly scan through parameter space in order to optimize the preforming of molecules on a lattice (by choosing the lattice depth and interspecies attraction). Based on the strong-coupling calculations, we test the thermometry scheme based on the fluctuation-dissipation theorem and find the scheme gives accurate temperature estimation even at very low temperature. We believe this approach and the calculation results will be useful in the design of the next generation of experiments and will hopefully lead to the ability to form dipolar matter in the quantum degenerate regime.

  13. Studies on low-loss coupling of non-node anti-resonant hollow-core fiber and tapered fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Naiqian; Wang, Zefeng; Liu, Wenbo; Xi, Xiaoming

    2017-10-01

    Up to now, near almost optical fiber gas lasers employ/adopt the scheme of free-space coupling, which increases the difficulty to adjust the optical path, and has poor stability. All-fiber structure fiber-gas lasers are important development directions in the future. We established the numerical model of SMF-28 type tapered single-mode fiber and non-node hollow-core fiber. When the SMF-28 type single-mode fiber has a waist diameter of 40μm when the light source is LP01 fundamental mode with 1550nm wavelength, the mode field diameter is the largest. Meanwhile, we simulated that the equivalent mode field diameter of non-node anti-resonant hollow-core fiber is about 75μm at the same 1550nm wavelength light source. Then, we use different waist diameters of SMF-28 type tapered fibers injected to the non-node anti-resonant hollow-core fiber in simulation and experiments. In the scheme of the single-ended low-loss coupling, the simulation results indicate that the best waist diameter of tapered fiber is 40μm, and the calculated maximum coupling efficiency is 83.55%. Meanwhile, the experimental result of maximum coupling efficiency is 80.74% when the best waist diameter of tapered fiber is also 40μm. As for the double-ended low-loss coupling, the calculated maximum coupling efficiency is near 83.38%.

  14. Electrokinetic framework of dielectrophoretic deposition devices

    NASA Astrophysics Data System (ADS)

    Burg, Brian R.; Bianco, Vincenzo; Schneider, Julian; Poulikakos, Dimos

    2010-06-01

    Numerical modeling and experiments are performed investigating the properties of a dielectrophoresis-based deposition device, in order to establish the electrokinetic framework required to understand the effects of applied inhomogeneous electric fields while moving particles to desired locations. By capacitively coupling electrodes to a conductive substrate, the controlled large-scale parallel dielectrophoretic assembly of nanostructures in individually accessible devices at a high integration density is accomplished. Thermal gradients in the solution, which give rise to local permittivity and conductivity changes, and velocity fields are solved by coupling electric, thermal, and fluid-mechanical equations. The induced electrothermal flow (ETF) causes vortices above the electrode gap, attracting particles, such as single-walled carbon nanotubes (SWNTs), before they are trapped by the dielectrophoretic force and deposit across the electrodes. Long-range carbon nanotube transport is governed by hydrodynamic effects, while local trapping is dominated by dielectrophoretic forces in low concentration SWNT dispersions. Results show that by decreasing the ac frequency ac electroosmosis on the metallic electrodes occurs due to the emergence of an electric double layer, disturbing the initial flow pattern of the system. By superimposing a dc potential offset, a generated tangential electroosmotic fluid flow in the dielectric electrode gap also disrupts the ETF. Capacitive coupling is most efficient in the high frequency regime where it is the dominating impedance contribution. Understanding the occurrence and interaction of these different effects, including a self-limiting integration mechanism for individual nanostructures, allows an increased deposition yield at overall lower electric field strengths through a prudent choice of electric field parameters. The findings provide important avenues toward gentler particle handling, without direct current throughput, a relevant aspect for limiting process effects during device fabrication, all while increasing dielectrophoretic deposition efficiency in nanostructured networks.

  15. Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent.

    PubMed

    Santiago-Morales, Javier; Gómez, María José; Herrera-López, Sonia; Fernández-Alba, Amadeo R; García-Calvo, Eloy; Rosal, Roberto

    2013-10-01

    This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE-CG × GC-TOF-MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 μM ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce-TiO2 photocatalysis reached ~70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ(-1), the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce-TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m(2) m(-3) order(-1) for visible light irradiation to 0.16 ± 0.03 m(2) m(-3) order(-1) for Ce-TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20-25% the algal growth due to the accumulation of reaction by-products. Three transformation products were identified and tracked along the treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Modelling coupled turbulence - dissolved oxygen dynamics near the sediment-water interface under wind waves and sea swell.

    PubMed

    Chatelain, Mathieu; Guizien, Katell

    2010-03-01

    A one-dimensional vertical unsteady numerical model for diffusion-consumption of dissolved oxygen (DO) above and below the sediment-water interface was developed to investigate DO profile dynamics under wind waves and sea swell (high-frequency oscillatory flows with periods ranging from 2 to 30s). We tested a new approach to modelling DO profiles that coupled an oscillatory turbulent bottom boundary layer model with a Michaelis-Menten based consumption model. The flow regime controls both the mean value and the fluctuations of the oxygen mass transfer efficiency during a wave cycle, as expressed by the non-dimensional Sherwood number defined with the maximum shear velocity (Sh). The Sherwood number was found to be non-dependent on the sediment biogeochemical activity (mu). In the laminar regime, both cycle-averaged and variance of the Sherwood number are very low (Sh <0.05, VAR(Sh)<0.1%). In the turbulent regime, the cycle-averaged Sherwood number is larger (Sh approximately 0.2). The Sherwood number also has intra-wave cycle fluctuations that increase with the wave Reynolds number (VAR(Sh) up to 30%). Our computations show that DO mass transfer efficiency under high-frequency oscillatory flows in the turbulent regime are water-side controlled by: (a) the diffusion time across the diffusive boundary layer and (b) diffusive boundary layer dynamics during a wave cycle. As a result of these two processes, when the wave period decreases, the Sh minimum increases and the Sh maximum decreases. Sh values vary little, ranging from 0.17 to 0.23. For periods up to 30s, oxygen penetration depth into the sediment did not show any intra-wave fluctuations. Values for the laminar regime are small (

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlowski, Alexander; Splitter, Derek A

    It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. Themore » results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number. However, over the last 15 years the sales weighted averages of compression ratios, specific output, and fuel economy have increased, while the fuel octane number requirement has remained largely unchanged. Using the developed correlations, 10-year-out projections of engine performance, design, and fuel economy are estimated for various fuel octane numbers, both with and without turbocharging. The 10-year-out projection shows that only by keeping power neutral while using 105 RON fuel will allow the vehicle fleet to meet CAFE targets if only the engine is relied upon to decrease fuel consumption. If 98 RON fuel is used, a power neutral fleet will have to reduce vehicle weight by 5%.« less

  18. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems

    PubMed Central

    Yang, Yuting; Guan, Huade; Batelaan, Okke; McVicar, Tim R.; Long, Di; Piao, Shilong; Liang, Wei; Liu, Bing; Jin, Zhao; Simmons, Craig T.

    2016-01-01

    Drought is an intermittent disturbance of the water cycle that profoundly affects the terrestrial carbon cycle. However, the response of the coupled water and carbon cycles to drought and the underlying mechanisms remain unclear. Here we provide the first global synthesis of the drought effect on ecosystem water use efficiency (WUE = gross primary production (GPP)/evapotranspiration (ET)). Using two observational WUE datasets (i.e., eddy-covariance measurements at 95 sites (526 site-years) and global gridded diagnostic modelling based on existing observation and a data-adaptive machine learning approach), we find a contrasting response of WUE to drought between arid (WUE increases with drought) and semi-arid/sub-humid ecosystems (WUE decreases with drought), which is attributed to different sensitivities of ecosystem processes to changes in hydro-climatic conditions. WUE variability in arid ecosystems is primarily controlled by physical processes (i.e., evaporation), whereas WUE variability in semi-arid/sub-humid regions is mostly regulated by biological processes (i.e., assimilation). We also find that shifts in hydro-climatic conditions over years would intensify the drought effect on WUE. Our findings suggest that future drought events, when coupled with an increase in climate variability, will bring further threats to semi-arid/sub-humid ecosystems and potentially result in biome reorganization, starting with low-productivity and high water-sensitivity grassland. PMID:26983909

  19. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.

    PubMed

    Altintas, Ferdi; Müstecaplıoğlu, Özgür E

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1/2 and the other with an arbitrary spin (spin s), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

  20. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1 /2 coupled to an arbitrary spin

    NASA Astrophysics Data System (ADS)

    Altintas, Ferdi; Müstecaplıoǧlu, Ã.-zgür E.

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1 /2 and the other with an arbitrary spin (spin s ), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

  1. Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold's beech (Fagus crenata)

    PubMed Central

    Hoshika, Yasutomo; Watanabe, Makoto; Inada, Naoki; Koike, Takayoshi

    2013-01-01

    Background and Aims Resistance of plants to ozone stress can be classified as either avoidance or tolerance. Avoidance of ozone stress may be explained by decreased stomatal conductance during ozone exposure because stomata are the principal interface for entry of ozone into plants. In this study, a coupled photosynthesis–stomatal model was modified to test whether the presence of ozone can induce avoidance of ozone stress by stomatal closure. Methods The response of Siebold's beech (Fagus crenata), a representative deciduous tree species, to ozone was studied in a free-air ozone exposure experiment in Japan. Photosynthesis and stomatal conductance were measured under ambient and elevated ozone. An optimization model of stomata involving water, CO2 and ozone flux was tested using the leaf gas exchange data. Key Results The data suggest that there are two phases in the avoidance of ozone stress via stomatal closure for Siebold's beech: (1) in early summer ozone influx is efficiently limited by a reduction in stomatal conductance, without any clear effect on photosynthetic capacity; and (2) in late summer and autumn the efficiency of ozone stress avoidance was decreased because the decrease in stomatal conductance was small and accompanied by an ozone-induced decline of photosynthetic capacity. Conclusions Ozone-induced stomatal closure in Siebold's beech during early summer reduces ozone influx and allows the maximum photosynthetic capacity to be reached, but is not sufficient in older leaves to protect the photosynthetic system. PMID:23904447

  2. Inverse design of near unity efficiency perfectly vertical grating couplers

    NASA Astrophysics Data System (ADS)

    Michaels, Andrew; Yablonovitch, Eli

    2018-02-01

    Efficient coupling between integrated optical waveguides and optical fibers is essential to the success of integrated photonics. While many solutions exist, perfectly vertical grating couplers which scatter light out of a waveguide in the direction normal to the waveguide's top surface are an ideal candidate due to their potential to reduce packaging complexity. Designing such couplers with high efficiency, however, has proven difficult. In this paper, we use electromagnetic inverse design techniques to optimize a high efficiency two-layer perfectly vertical silicon grating coupler. Our base design achieves a chip-to-fiber coupling efficiency of over 99% (-0.04 dB) at 1550 nm. Using this base design, we apply subsequent constrained optimizations to achieve vertical couplers with over 96% efficiency which are fabricable using a 65 nm process.

  3. Efficient preparation of terminal conjugated dienes by coupling of dienol phosphates with grignard reagents under iron catalysis.

    PubMed

    Cahiez, Gérard; Habiak, Vanessa; Gager, Olivier

    2008-06-19

    An efficient new route to prepare stereoselectively terminal conjugated dienes by coupling Grignard reagents and dienol phosphates in the presence of Fe(acac)3 is described. The synthetic utility of this new iron-catalyzed procedure is illustrated by the synthesis of the pheromone of Diparopsis castanea according to a very expeditious strategy.

  4. Making Optical-Fiber Chemical Detectors More Sensitive

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Egalon, Claudio O.

    1993-01-01

    Calculations based on exact theory of optical fiber shown how to increase optical efficiency and sensitivity of active-cladding step-index-profile optical-fiber fluorosensor using evanescent wave coupling. Optical-fiber fluorosensor contains molecules fluorescing when illuminated by suitable light in presence of analyte. Fluorescence coupled into and launched along core by evanescent-wave interaction. Efficiency increases with difference in refractive indices.

  5. Interface COMSOL-PHREEQC (iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry

    NASA Astrophysics Data System (ADS)

    Nardi, Albert; Idiart, Andrés; Trinchero, Paolo; de Vries, Luis Manuel; Molinero, Jorge

    2014-08-01

    This paper presents the development, verification and application of an efficient interface, denoted as iCP, which couples two standalone simulation programs: the general purpose Finite Element framework COMSOL Multiphysics® and the geochemical simulator PHREEQC. The main goal of the interface is to maximize the synergies between the aforementioned codes, providing a numerical platform that can efficiently simulate a wide number of multiphysics problems coupled with geochemistry. iCP is written in Java and uses the IPhreeqc C++ dynamic library and the COMSOL Java-API. Given the large computational requirements of the aforementioned coupled models, special emphasis has been placed on numerical robustness and efficiency. To this end, the geochemical reactions are solved in parallel by balancing the computational load over multiple threads. First, a benchmark exercise is used to test the reliability of iCP regarding flow and reactive transport. Then, a large scale thermo-hydro-chemical (THC) problem is solved to show the code capabilities. The results of the verification exercise are successfully compared with those obtained using PHREEQC and the application case demonstrates the scalability of a large scale model, at least up to 32 threads.

  6. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nad, Shreya; Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824; Gu, Yajun

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficienciesmore » (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.« less

  7. Scaling of electromagnetic transducers for shunt damping and energy harvesting

    NASA Astrophysics Data System (ADS)

    Elliott, Stephen J.; Zilletti, Michele

    2014-04-01

    In order for an electromagnetic transducer to operate well as either a mechanical shunt damper or as a vibration energy harvester, it must have good electromechanical coupling. A simple two-port analysis is used to derive a non-dimensional measure of electromechanical coupling, which must be large compared with unity for efficient operation in both of these applications. The two-port parameters for an inertial electromagnetic transducer are derived, from which this non-dimensional coupling parameter can be evaluated. The largest value that this parameter takes is approximately equal to the square of the magnetic flux density times the length of wire in the field, divided by the mechanical damping times the electrical resistance. This parameter is found to be only of the order of one for voice coil devices that weigh approximately 1 kg, and so such devices are generally not efficient, within the definition used here, in either of these applications. The non-dimensional coupling parameter is found to scale in approximate proportion to the device's characteristic length, however, and so although miniaturised devices are less efficient, greater efficiency can be obtained with large devices, such as those used to control civil engineering structures.

  8. Optimal network modification for spectral radius dependent phase transitions

    NASA Astrophysics Data System (ADS)

    Rosen, Yonatan; Kirsch, Lior; Louzoun, Yoram

    2016-09-01

    The dynamics of contact processes on networks is often determined by the spectral radius of the networks adjacency matrices. A decrease of the spectral radius can prevent the outbreak of an epidemic, or impact the synchronization among systems of coupled oscillators. The spectral radius is thus tightly linked to network dynamics and function. As such, finding the minimal change in network structure necessary to reach the intended spectral radius is important theoretically and practically. Given contemporary big data resources such as large scale communication or social networks, this problem should be solved with a low runtime complexity. We introduce a novel method for the minimal decrease in weights of edges required to reach a given spectral radius. The problem is formulated as a convex optimization problem, where a global optimum is guaranteed. The method can be easily adjusted to an efficient discrete removal of edges. We introduce a variant of the method which finds optimal decrease with a focus on weights of vertices. The proposed algorithm is exceptionally scalable, solving the problem for real networks of tens of millions of edges in a short time.

  9. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators.

    PubMed

    Khan, Sadeque Reza; Choi, GoangSeog

    2016-08-03

    High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8%) than circular resonators (78.43%) when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW) to the load than the square coils (396 mW) under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation.

  10. Low Level Pro-inflammatory Cytokines Decrease Connexin36 Gap Junction Coupling in Mouse and Human Islets through Nitric Oxide-mediated Protein Kinase Cδ.

    PubMed

    Farnsworth, Nikki L; Walter, Rachelle L; Hemmati, Alireza; Westacott, Matthew J; Benninger, Richard K P

    2016-02-12

    Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Evaluation and analysis on the coupling performance of a high-speed turboexpander compressor

    NASA Astrophysics Data System (ADS)

    Chen, Shuangtao; Fan, Yufeng; Yang, Shanju; Chen, Xingya; Hou, Yu

    2017-12-01

    A high-speed turboexpander compressor (TEC) for small reverse Brayton air refrigerator is tested and analyzed in the present work. A TEC consists of an expander and a compressor, which are coupled together and interact with each other directly. Meanwhile, the expander and compressor have different effects on the refrigerator. The TEC overall efficiency, which contains effects of the expander's expansion, the compressor's pre-compression, and the pressure drop between them, was proved. It unifies influences of both compression and expansion processes on the COP of refrigerator and could be used to evaluate the TEC overall performance. Then, the coupling parameters were analyzed, which shows that for a TEC, the expander efficiency should be fully utilized first, followed by the compressor pressure ratio. Experiments were carried out to test the TEC coupling performances. The results indicated that, the TEC overall efficiency could reach 67.2%, and meanwhile 22.3% of the energy output was recycled.

  12. Methods and apparatus for vertical coupling from dielectric waveguides

    DOEpatents

    Yaacobi, Ami; Cordova, Brad Gilbert

    2014-06-17

    A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a SiYV.sub.4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., >300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging. Like the diffractive optical element, the negative lens element includes unevenly shaped regions of high- and low-index dielectric material that can be designed to compensate for aberrations in the beam emitted by the nano-antenna.

  13. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, J.; Chen, M.; Wu, W. Y.

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors, while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize simultaneous coupling of the electron beam and the laser pulse into a second stage. Furthermore, a curved channel with transition segment is used to guide a fresh laser pulse into a subsequent straight channel, while allowing the electrons to propagate in a straight channel. This scheme then benefitsmore » from a shorter coupling distance and continuous guiding of the electrons in plasma, while suppressing transverse beam dispersion. Within moderate laser parameters, particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration, while maintaining high capture efficiency, stability, and beam quality.« less

  14. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channel

    DOE PAGES

    Luo, J.; Chen, M.; Wu, W. Y.; ...

    2018-04-10

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors, while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize simultaneous coupling of the electron beam and the laser pulse into a second stage. Furthermore, a curved channel with transition segment is used to guide a fresh laser pulse into a subsequent straight channel, while allowing the electrons to propagate in a straight channel. This scheme then benefitsmore » from a shorter coupling distance and continuous guiding of the electrons in plasma, while suppressing transverse beam dispersion. Within moderate laser parameters, particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration, while maintaining high capture efficiency, stability, and beam quality.« less

  15. Optical loss analysis and parameter optimization for fan-shaped single-polarization grating coupler at wavelength of 1.3 µm band

    NASA Astrophysics Data System (ADS)

    Ushida, Jun; Tokushima, Masatoshi; Sobu, Yohei; Shimura, Daisuke; Yashiki, Kenichiro; Takahashi, Shigeki; Kurata, Kazuhiko

    2018-05-01

    Fan-shaped grating couplers (F-GCs) can be smaller than straight ones but are less efficient in general in coupling to single-mode fibers. To find a small F-GC with sufficiently high fiber-coupling characteristics, we numerically compared the dependencies of coupling efficiencies on wavelengths, the starting width of gratings, and misalignment distances among 25, 45, and 60° tapered angles of fan shape by using the three-dimensional finite-difference time domain method. A F-GC with a tapered angle of 25° exhibited the highest performances for all dependencies. The optical loss origins of F-GCs were discussed in terms of the electric field structures in them and scattering at the joint between the fan-shaped slab and channel waveguide. We fabricated an optimized 25° F-GC by using ArF photolithography, which almost exactly reproduced the optical coupling efficiency and radiation angle characteristics that were numerically expected.

  16. Coupled Modeling of Flow, Transport, and Deformation during Hydrodynamically Unstable Displacement in Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Jha, B.; Juanes, R.

    2015-12-01

    Coupled processes of flow, transport, and deformation are important during production of hydrocarbons from oil and gas reservoirs. Effective design and implementation of enhanced recovery techniques such as miscible gas flooding and hydraulic fracturing requires modeling and simulation of these coupled proceses in geologic porous media. We develop a computational framework to model the coupled processes of flow, transport, and deformation in heterogeneous fractured rock. We show that the hydrocarbon recovery efficiency during unstable displacement of a more viscous oil with a less viscous fluid in a fractured medium depends on the mechanical state of the medium, which evolves due to permeability alteration within and around fractures. We show that fully accounting for the coupling between the physical processes results in estimates of the recovery efficiency in agreement with observations in field and lab experiments.

  17. Efficient shortcut techniques in evanescently coupled waveguides

    NASA Astrophysics Data System (ADS)

    Paul, Koushik; Sarma, Amarendra K.

    2016-10-01

    Shortcut to Adiabatic Passage (SHAPE) technique, in the context of coherent control of atomic systems has gained considerable attention in last few years. It is primarily because of its ability to manipulate population among the quantum states infinitely fast compared to the adiabatic processes. Two methods in this regard have been explored rigorously, namely the transitionless quantum driving and the Lewis-Riesenfeld invariant approach. We have applied these two methods to realize SHAPE in adiabatic waveguide coupler. Waveguide couplers are integral components of photonic circuits, primarily used as switching devices. Our study shows that with appropriate engineering of the coupling coefficient and propagation constants of the coupler it is possible to achieve efficient and complete power switching. We also observed that the coupler length could be reduced significantly without affecting the coupling efficiency of the system.

  18. Efficient coupling of double-metal terahertz quantum cascade lasers to flexible dielectric-lined hollow metallic waveguides.

    PubMed

    Wallis, R; Degl'Iinnocenti, R; Jessop, D S; Ren, Y; Klimont, A; Shah, Y D; Mitrofanov, O; Bledt, C M; Melzer, J E; Harrington, J A; Beere, H E; Ritchie, D A

    2015-10-05

    The growth in terahertz frequency applications utilising the quantum cascade laser is hampered by a lack of targeted power delivery solutions over large distances (>100 mm). Here we demonstrate the efficient coupling of double-metal quantum cascade lasers into flexible polystyrene lined hollow metallic waveguides via the use of a hollow copper waveguide integrated into the laser mounting block. Our approach exhibits low divergence, Gaussian-like emission, which is robust to misalignment error, at distances > 550 mm, with a coupling efficiency from the hollow copper waveguide into the flexible waveguide > 90%. We also demonstrate the ability to nitrogen purge the flexible waveguide, increasing the power transmission by up to 20% at 2.85 THz, which paves the way for future fibre based terahertz sensing and spectroscopy applications.

  19. Role of Surface-Capping Ligands in Photoexcited Electron Transfer between CdS Nanorods and [FeFe] Hydrogenase and the Subsequent H 2 Generation

    DOE PAGES

    Wilker, Molly B.; Utterback, James K.; Greene, Sophie; ...

    2017-12-08

    Complexes of CdS nanorods and [FeFe] hydrogenase from Clostridium acetobutylicum have been shown to photochemically produce H 2. This study examines the role of the ligands that passivate the nanocrystal surfaces in the electron transfer from photoexcited CdS to hydrogenase and the H 2 generation that follows. We functionalized CdS nanorods with a series of mercaptocarboxylate surface-capping ligands of varying lengths and measured their photoexcited electron relaxation by transient absorption (TA) spectroscopy before and after hydrogenase adsorption. Rate constants for electron transfer from the nanocrystals to the enzyme, extracted by modeling of TA kinetics, decrease exponentially with ligand length, suggestingmore » that the ligand layer acts as a barrier to charge transfer and controls the degree of electronic coupling. Relative light-driven H 2 production efficiencies follow the relative quantum efficiencies of electron transfer, revealing the critical role of surface-capping ligands in determining the photochemical activity of these nanocrystal-enzyme complexes. Our results suggest that the H 2 production in this system could be maximized with a choice of a surface-capping ligand that decreases the distance between the nanocrystal surface and the electron injection site of the enzyme.« less

  20. Performance and Emissions of a Small Compression Ignition Engine Run on Dual-fuel Mode (Diesel-Raw biogas)

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Sinulingga, E. P.; Nasution, M. KM; Kawai, H.

    2017-03-01

    In this work, a compression ignition (CI) engine is tested in dual-fuel mode (Diesel-Raw biogas). The objective is to examine the performance and emission characteristics of the engine when some of the diesel oil is replaced by biogas. The specifications of the CI engine are air cooled single horizontal cylinder, four strokes, and maximum output power of 4.86 kW. It is coupled with a synchronous three phase generator. The load, engine revolution, and biogas flow rate are varied from 600 W to 1500 W, 1000 rpm to 1500 rpm, 0 to 6 L/minute, respectively. The electric power, specific fuel consumption, thermal efficiency, gas emission, and diesel replacement ratio are analyzed. The results show that there is no significant difference of the power resulted by CI run on dual-fuel mode in comparison with pure diesel mode. However, the specific fuel consumption and efficiency decrease significantly as biogas flow rate increases. On the other hand, emission of the engine on dual-fuel mode is better. The main conclusion can be drawn is that CI engine without significant modification can be operated perfectly in dual-fuel mode and diesel oil consumption can be decreased up to 87.5%.

  1. Role of Surface-Capping Ligands in Photoexcited Electron Transfer between CdS Nanorods and [FeFe] Hydrogenase and the Subsequent H 2 Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilker, Molly B.; Utterback, James K.; Greene, Sophie

    Complexes of CdS nanorods and [FeFe] hydrogenase from Clostridium acetobutylicum have been shown to photochemically produce H 2. This study examines the role of the ligands that passivate the nanocrystal surfaces in the electron transfer from photoexcited CdS to hydrogenase and the H 2 generation that follows. We functionalized CdS nanorods with a series of mercaptocarboxylate surface-capping ligands of varying lengths and measured their photoexcited electron relaxation by transient absorption (TA) spectroscopy before and after hydrogenase adsorption. Rate constants for electron transfer from the nanocrystals to the enzyme, extracted by modeling of TA kinetics, decrease exponentially with ligand length, suggestingmore » that the ligand layer acts as a barrier to charge transfer and controls the degree of electronic coupling. Relative light-driven H 2 production efficiencies follow the relative quantum efficiencies of electron transfer, revealing the critical role of surface-capping ligands in determining the photochemical activity of these nanocrystal-enzyme complexes. Our results suggest that the H 2 production in this system could be maximized with a choice of a surface-capping ligand that decreases the distance between the nanocrystal surface and the electron injection site of the enzyme.« less

  2. A novel solid-state fractionation of naphthenic acid fraction components from oil sands process-affected water.

    PubMed

    Mohamed, Mohamed H; Wilson, Lee D; Shah, Jaimin R; Bailey, Jon; Peru, Kerry M; Headley, John V

    2015-10-01

    Various sorbent materials were evaluated for the fractionation of naphthenic acid fraction components (NAFCs) from oil sand process-affected water (OSPW). The solid phase materials include activated carbon (AC), cellulose, iron oxides (magnetite and goethite), polyaniline (PANI) and three types of biochar derived from biomass (BC-1; rice husks, BC-2; acacia low temperature and BC-3; acacia high temperature). NAFCs were semi-quantified using electrospray ionization high resolution Orbitrap mass spectrometry (ESI-MS) and the metals were assessed by inductively coupled plasma optical emission spectrometry (ICP-OES). The average removal efficacy of NAFCs by AC was 95%. The removal efficacy decreased in the following order: AC, BC-1>BC-2, BC-3, goethite>PANI>cellulose, magnetite. The removal of metals did not follow a clear trend; however, there was notable leaching of potassium by AC and biochar samples. The bound NAFCs by AC were desorbed efficiently with methanol. Methanol regeneration and recycling of AC revealed 88% removal on the fourth cycle; a 4.4% decrease from the first cycle. This fractionation method represents a rapid, cost-effective, efficient, and green strategy for NAFCs from OSPW, as compared with conventional solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling

    PubMed Central

    Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min

    2017-01-01

    The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10−7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications. PMID:28604610

  4. Comparison between Phase-Shift Full-Bridge Converters with Noncoupled and Coupled Current-Doubler Rectifier

    PubMed Central

    Tsai, Cheng-Tao; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications. PMID:24381521

  5. Comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier.

    PubMed

    Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.

  6. High power, diffraction limited picosecond oscillator based on Nd:GdVO4 bulk crystal with σ polarized in-band pumping.

    PubMed

    Lin, Hua; Guo, Jie; Gao, Peng; Yu, Hai; Liang, Xiaoyan

    2016-06-27

    We report on a high power passively mode-locked picosecond oscillator based on Nd:GdVO4 crystal with σ polarized in-band pumping. Thermal gradient and thermal aberration was greatly decreased with proposed configuration. Maximum output power of 37 W at 81 MHz repetition rate with 19.3 ps pulse duration was achieved directly from Nd:GdVO4 oscillator, corresponding to 51% optical efficiency. The oscillator maintained diffraction limited beam quality of M2 < 1.05 at different output coupling with pulse duration between 11.2 ps to 19.3 ps.

  7. Flow profiling of a surface-acoustic-wave nanopump.

    PubMed

    Guttenberg, Z; Rathgeber, A; Keller, S; Rädler, J O; Wixforth, A; Kostur, M; Schindler, M; Talkner, P

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  8. Flow profiling of a surface-acoustic-wave nanopump

    NASA Astrophysics Data System (ADS)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  9. Numerical aperture limits on efficient ball lens coupling of laser diodes to single-mode fibers with defocus to balance spherical aberration

    NASA Technical Reports Server (NTRS)

    Wilson, R. Gale

    1994-01-01

    The potential capabilities and limitations of single ball lenses for coupling laser diode radiation to single-mode optical fibers have been analyzed; parameters important to optical communications were specifically considered. These parameters included coupling efficiency, effective numerical apertures, lens radius, lens refractive index, wavelength, magnification in imaging the laser diode on the fiber, and defocus to counterbalance spherical aberration of the lens. Limiting numerical apertures in object and image space were determined under the constraint that the lens perform to the Rayleigh criterion of 0.25-wavelength (Strehl ratio = 0.80). The spherical aberration-defocus balance to provide an optical path difference of 0.25 wavelength units was shown to define a constant coupling efficiency (i.e., 0.56). The relative numerical aperture capabilities of the ball lens were determined for a set of wavelengths and associated fiber-core diameters of particular interest for single-mode fiber-optic communication. The results support general continuing efforts in the optical fiber communications industry to improve coupling links within such systems with emphasis on manufacturing simplicity, system packaging flexibility, relaxation of assembly alignment tolerances, cost reduction of opto-electronic components and long term reliability and stability.

  10. Combined remediation of pyrene-contaminated soil with a coupled system of persulfate oxidation and phytoremediation with ryegrass.

    PubMed

    Chen, Xiao; Li, Hongbing; Liu, Xiaoyan; Zhang, Xinying; Liang, Xia; He, Chiquan; Cao, Liya

    2016-10-01

    The in situ chemical oxidation technology (ISCO) and phytoremediation for PAHs have been studied respectively, but few focus on the feasibility of combining persulfate with ryegrass. This literature revealed the effect of persulfate oxidation on the growth of ryegrass and the removal ratios of pyrene in the couple system of persulfate oxidation and phytoremediation. The results demonstrated that half of pyrene in test soil was oxidized by persulfate in 7 days and then the residual pyrene concentration was decreased to a lower level by ryegrass in the following 2 months in oxidation treatment and drip washing and plants (OWP) and oxidation treatment and drip washing and plants and fertilization (OWFP) treatment. Ryegrass could grow well after persulfate oxidation with the oxidized soil washed by water. Ryegrass in OWP and OWFP treatments had higher ratios of overground and underground biomass. However, the seeds of ryegrass cannot germinate when drip washing was omitted. Pyrene together with residual persulfate changed soil enzyme activities. Drip washing and the growth of ryegrass made soil enzyme activities tend to returned to normal levels. Persulfate oxidation and phytoremediation were compatible to make contributions to the dissipation of pyrene. Persulfate oxidation activated by heat had higher removal efficiency of PAHs and phytoremediation could further decrease the pyrene concentration in spiked soil.

  11. Life Testing of Yb14MnSb11 for High Performance Thermoelectric Couples

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Brandon, Erik; Caillat, Thierry; Ewell, Richard; Fleurial, Jean-Pierre

    2011-01-01

    The goal of this study is to verify the long term stability of Yb14MnSb11 for high performance thermoelectric (TE) couples. Three main requirements need to be satisfied to ensure the long term stability of thermoelectric couples: 1) stable thermoelectric properties, 2) stable bonding interfaces, and 3) adequate sublimation suppression. The efficiency of the couple is primarily based on the thermoelectric properties of the materials selected for the couple. Therefore, these TE properties should exhibit minimal degradation during the operating period of the thermoelectric couples. The stability of the bonding is quantified by low contact resistances of the couple interfaces. In order to ensure high efficiency, the contact resistances of the bonding interfaces should be negligible. Sublimation suppression is important because the majority of thermoelectric materials used for power generation have peak figures of merit at temperatures where sublimation rates are high. Controlling sublimation is also essential to preserve the efficiency of the couple. During the course of this research, three different life tests were performed with Yb14MnSb11 coupons. TE properties of Yb14MnSb11 exhibited no degradation after 6 months of aging at 1273K, and the electrical contact resistance between a thin metallization layer and the Yb14MnSb11 remained negligible after 1500hr aging at 1273K. A sublimation suppression layer for Yb14MnSb11 was developed and demonstrated for more than 18 months with coupon testing at 1273K. These life test data indicate that thermoelectric elements based on Yb14MnSb11 are a promising technology for use in future high performance thermoelectric power generating couples.

  12. Efficient Steplike Carrier Multiplication in Percolative Networks of Epitaxially Connected PbSe Nanocrystals.

    PubMed

    Kulkarni, Aditya; Evers, Wiel H; Tomić, Stanko; Beard, Matthew C; Vanmaekelbergh, Daniel; Siebbeles, Laurens D A

    2018-01-23

    Carrier multiplication (CM) is a process in which a single photon excites two or more electrons. CM is of interest to enhance the efficiency of a solar cell. Until now, CM in thin films and solar cells of semiconductor nanocrystals (NCs) has been found at photon energies well above the minimum required energy of twice the band gap. The high threshold of CM strongly limits the benefits for solar cell applications. We show that CM is more efficient in a percolative network of directly connected PbSe NCs. The CM threshold is at twice the band gap and increases in a steplike fashion with photon energy. A lower CM efficiency is found for a solid of weaker coupled NCs. This demonstrates that the coupling between NCs strongly affects the CM efficiency. According to device simulations, the measured CM efficiency would significantly enhance the power conversion efficiency of a solar cell.

  13. Locomotor-Respiratory Coupling in Wheelchair Racing Athletes: A Pilot Study.

    PubMed

    Perret, Claudio; Wenger, Martin; Leicht, Christof A; Goosey-Tolfrey, Victoria L

    2016-01-01

    In wheelchair racing, respiratory muscles of the rib cage are concomitantly involved in non-ventilatory functions during wheelchair propulsion. However, the relationship between locomotor-respiratory coupling (LRC: the ratio between push and breathing frequency), respiratory parameters and work efficiency is unknown. Therefore, the aim of the present study was to investigate the LRC in wheelchair racers over different race distances. Eight trained and experienced wheelchair racers completed three time-trials over the distances of 400, 800, and 5000 m on a training roller in randomized order. During the time trials, ventilatory and gas exchange variables as well as push frequency were continuously registered to determine possible LRC strategies. Four different coupling ratios were identified, namely 1:1; 2:1, 3:1 as well as a 1:1/2:1 alternating type, respectively. The 2:1 coupling was the most dominant type. The 1:1/2:1 alternating coupling type was found predominantly during the 400 m time-trial. Longer race distances tended to result in an increased coupling ratio (e.g., from 1:1 toward 2:1), and an increase in coupling ratio toward a more efficient respiration was found over the 5000 m distance. A significant correlation (r = 0.80, p < 0.05) between respiratory frequency and the respiratory equivalent for oxygen was found for the 400 m and the 800 m time-trials. These findings suggest that a higher coupling ratio indicates enhanced breathing work efficiency with a concomitant deeper and slower respiration during wheelchair racing. Thus, the selection of an appropriate LRC strategy may help to optimize wheelchair racing performance.

  14. Synthesis of Ce doped ZnO nanoparticles coupled with graphene oxide as efficient photocatalyst for the degradation of dye under day light

    NASA Astrophysics Data System (ADS)

    Labhane, P. K.; Patle, L. B.; Huse, V. R.; Sonawane, G. H.

    2018-05-01

    Ce doped ZnO nanoparticles coupled with graphene oxide (Ce-ZnO/GO) photocatalyst was prepared by co-precipitation and wet impregnation method. The effect of Ce doping on ZnO and ZnO-GO composite has been evaluated by using XRD, Williamson-Hall Plot, FESEM and EDX data. Solar light photocatalytic activities of samples were evaluated spectrophotometrically by the degradation of methylene blue (MB). Ce doped ZnO coupled with GO shows excellent catalytic efficiency compared to other samples, degrading MB completely within 120 min under day light.

  15. On-Chip Strong Coupling and Efficient Frequency Conversion between Telecom and Visible Optical Modes.

    PubMed

    Guo, Xiang; Zou, Chang-Ling; Jung, Hojoong; Tang, Hong X

    2016-09-16

    While the frequency conversion of photons has been realized with various approaches, the realization of strong coupling between optical modes of different colors has never been reported. Here, we present an experimental demonstration of strong coupling between telecom (1550 nm) and visible (775 nm) optical modes on an aluminum nitride photonic chip. The nonreciprocal normal-mode splitting is demonstrated as a result of the coherent interference between photons with different colors. Furthermore, a wideband, bidirectional frequency conversion with 0.14 on-chip conversion efficiency and a bandwidth up to 1.2 GHz is demonstrated.

  16. Noise-assisted energy transport in electrical oscillator networks with off-diagonal dynamical disorder.

    PubMed

    León-Montiel, Roberto de J; Quiroz-Juárez, Mario A; Quintero-Torres, Rafael; Domínguez-Juárez, Jorge L; Moya-Cessa, Héctor M; Torres, Juan P; Aragón, José L

    2015-11-27

    Noise is generally thought as detrimental for energy transport in coupled oscillator networks. However, it has been shown that for certain coherently evolving systems, the presence of noise can enhance, somehow unexpectedly, their transport efficiency; a phenomenon called environment-assisted quantum transport (ENAQT) or dephasing-assisted transport. Here, we report on the experimental observation of such effect in a network of coupled electrical oscillators. We demonstrate that by introducing stochastic fluctuations in one of the couplings of the network, a relative enhancement in the energy transport efficiency of 22.5 ± 3.6% can be observed.

  17. Near-Field Based Communication and Electrical Systems

    NASA Astrophysics Data System (ADS)

    Azad, Umar

    A near-field power transfer equation for an inductively coupled near-field system is derived based on the equivalent circuit model of the coupled resonant loops. Experimental results show that the proposed near-field coupling equation is trustworthy as it correctly predicts the transferred power versus distance relationship for different values of loaded quality factors at the transmitter and the receiver. Capacity performance of near-field communication (NFC) links is analyzed for noise limited and interference limited scenarios based on information theory. The analytical results provide guidelines for design of inductively coupled antenna systems as the power and capacity budget of the link is carried out. Examples of inductively coupled VLF NFC links are evaluated for different operating scenarios, demonstrating the efficacy and importance of the proposed near-field link budget. However, in a conventional setup of inductively coupled NFC link, the power coupled through and the bandwidth must be traded off. Direct Antenna Modulation (DAM) is a feasible scheme to break this dilemma. With DAM utilized in NFC link, the power and bandwidth product limit in a high Q system can be circumvented because the non-linear/time-varying nature of the operation allows high speed modulations decoupled from the charging and discharging process of the high-Q resonator. In this work, the theory of NFC link with DAM on the transmitter is presented and validated with an experimental setup. Improvement in reception of the high-speed modulation information is observed in the experiment, implying that a superior capacity performance of a NFC link is achieved through DAM versus the traditional scheme. The resonant coupling efficiency is limited by the product of the quality factors Q, of the transmitter and receiver and the coupling coefficient k. We observe that in order to achieve maximum efficiency, the ratio of the load-to-loss impedances at both the source and load should be equal to a prescribed value. This is the same condition that yields simultaneous impedance matching at source and load. The efficiency limit is then calculated for single transmitter and two uncoupled receivers. In that case, optimal efficiency is obtained when the load-to-loss impedance ratio is equal to the same prescribed value for all devices simultaneously. However, this condition does not provide for simultaneous matching at the source and loads, which turns out to be impossible. The analysis is then generalized for a single transmitter and N uncoupled receivers and we find that as the number of receivers increases, the total efficiency limit also increases. Finally, we present the efficiency limits and optimal conditions for a system consisting of single and multiple repeaters between transmitter and receiver, which have been shown previously to relay power to larger distances.

  18. Light Extraction From Solution-Based Processable Electrophosphorescent Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Krummacher, Benjamin C.; Mathai, Mathew; So, Franky; Choulis, Stelios; Choong, And-En, Vi

    2007-06-01

    Molecular dye dispersed solution processable blue emitting organic light-emitting devices have been fabricated and the resulting devices exhibit efficiency as high as 25 cd/A. With down-conversion phosphors, white emitting devices have been demonstrated with peak efficiency of 38 cd/A and luminous efficiency of 25 lm/W. The high efficiencies have been a product of proper tuning of carrier transport, optimization of the location of the carrier recombination zone and, hence, microcavity effect, efficient down-conversion from blue to white light, and scattering/isotropic remission due to phosphor particles. An optical model has been developed to investigate all these effects. In contrast to the common misunderstanding that light out-coupling efficiency is about 22% and independent of device architecture, our device data and optical modeling results clearly demonstrated that the light out-coupling efficiency is strongly dependent on the exact location of the recombination zone. Estimating the device internal quantum efficiencies based on external quantum efficiencies without considering the device architecture could lead to erroneous conclusions.

  19. Microwave: An Important and Efficient Tool for the Synthesis of Biological Potent Organic Compounds.

    PubMed

    Kumari, Kamlesh; Vishvakarma, Vijay K; Singh, Prashant; Patel, Rajan; Chandra, Ramesh

    2017-01-01

    Green Chemistry is an interdisciplinary science or it can also be explained as a branch of chemistry. It is generally described as the chemistry to aim to synthesize chemical compounds to trim down the utilization of harmful chemicals proposed by the Environmental Protection Agency (EPA). Recently, the plan of academicians, researchers, industrialists is to generate greener and more efficient methodologies to carry out various organic syntheses. In the present scenario, green chemistry utilizes the raw materials economically, minimizes the waste and prevents the uses of harmful or hazardous chemicals to make the organic reactions simple and efficient. Microwave technique is a new, simple and efficient technology which opens new prospects to the chemists to carry out various organic and inorganic reactions, which are difficult via conventional methodology. It is used to decrease the duration of time to carry various organic transformation along with maximum yield, minimum by-products, minimum energy utilization, less manpower etc. e.g. various famous organic reactions have been carried out by various research groups like Aldol condensation, Knoevenagel condensation, Beckmann rearrangement, Vilsmeier reaction, Perkin reaction, Benzil-Benzilic acid rearrangement, Fischer cyclization, Mannich reaction, Claisen-Schmidt condensation, etc. Further, reduction, oxidation, coupling, condensation reaction were also performed using microwave technology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Copper-catalyzed oxidative homo- and cross-coupling of Grignard reagents using diaziridinone.

    PubMed

    Zhu, Yingguang; Xiong, Tao; Han, Wenyong; Shi, Yian

    2014-12-05

    Transition-metal-catalyzed cross-coupling reactions are among the most powerful synthetic transformations. This paper describes an efficient copper-catalyzed homo- and cross-coupling of Grignard reagents with di-tert-butyldiaziridinone as oxidant under mild conditions, giving the coupling products in good to excellent yields. The reaction process has a broad substrate scope and is also effective for the C(sp)-C(sp(3)) coupling.

  1. Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium

    NASA Astrophysics Data System (ADS)

    Majumder, Rupamanjari; Engels, Marc C.; de Vries, Antoine A. F.; Panfilov, Alexander V.; Pijnappels, Daniël A.

    2016-04-01

    Fibrosis and altered gap junctional coupling are key features of ventricular remodelling and are associated with abnormal electrical impulse generation and propagation. Such abnormalities predispose to reentrant electrical activity in the heart. In the absence of tissue heterogeneity, high-frequency impulse generation can also induce dynamic electrical instabilities leading to reentrant arrhythmias. However, because of the complexity and stochastic nature of such arrhythmias, the combined effects of tissue heterogeneity and dynamical instabilities in these arrhythmias have not been explored in detail. Here, arrhythmogenesis was studied using in vitro and in silico monolayer models of neonatal rat ventricular tissue with 30% randomly distributed cardiac myofibroblasts and systematically lowered intercellular coupling achieved in vitro through graded knockdown of connexin43 expression. Arrhythmia incidence and complexity increased with decreasing intercellular coupling efficiency. This coincided with the onset of a specialized type of spatially discordant action potential duration alternans characterized by island-like areas of opposite alternans phase, which positively correlated with the degree of connexinx43 knockdown and arrhythmia complexity. At higher myofibroblast densities, more of these islands were formed and reentrant arrhythmias were more easily induced. This is the first study exploring the combinatorial effects of myocardial fibrosis and dynamic electrical instabilities on reentrant arrhythmia initiation and complexity.

  2. Novel insights into anoxic/aerobic(1)/aerobic(2) biological fluidized-bed system for coke wastewater treatment by fluorescence excitation-emission matrix spectra coupled with parallel factor analysis.

    PubMed

    Ou, Hua-Se; Wei, Chao-Hai; Mo, Ce-Hui; Wu, Hai-Zhen; Ren, Yuan; Feng, Chun-Hua

    2014-10-01

    Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) was applied to investigate the contaminant removal efficiency and fluorescent characteristic variations in a full scale coke wastewater (CWW) treatment plant with a novel anoxic/aerobic(1)/aerobic(2) (A/O(1)/O(2)) process, which combined with internal-loop fluidized-bed reactor. Routine monitoring results indicated that primary contaminants in CWW, such as phenols and free cyanide, were removed efficiently in A/O(1)/O(2) process (removal efficiency reached 99% and 95%, respectively). Three-dimensional excitation-emission matrix fluorescence spectroscopy and PARAFAC identified three fluorescent components, including two humic-like fluorescence components (C1 and C3) and one protein-like component (C2). Principal component analysis revealed that C1 and C2 correlated with COD (correlation coefficient (r)=0.782, p<0.01 and r=0.921, p<0.01), respectively) and phenols (r=0.796, p<0.01 and r=0.914, p<0.01, respectively), suggesting that C1 and C2 might be associated with the predominating aromatic contaminants in CWW. C3 correlated with mixed liquor suspended solids (r=0.863, p<0.01) in fluidized-bed reactors, suggesting that it might represent the biological dissolved organic matter. In A/O(1)/O(2) process, the fluorescence intensities of C1 and C2 consecutively decreased, indicating the degradation of aromatic contaminants. Correspondingly, the fluorescence intensity of C3 increased in aerobic(1) stage, suggesting an increase of biological dissolved organic matter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM--role of satellite cells in anabolic steroid-induced muscle growth in feedlot steers.

    PubMed

    Dayton, W R; White, M E

    2014-01-01

    Both androgenic and estrogenic steroids are widely used as growth promoters in feedlot steers because they significantly enhance feed efficiency, rate of gain, and muscle growth. However, despite their widespread use relatively little is known about the biological mechanism by which androgenic and estrogenic steroids enhance rate and efficiency of muscle growth in cattle. Treatment of feedlot steers with a combined estradiol (E2) and trenbolone acetate (TBA) implant results in an increased number of muscle satellite cells, increased expression of IGF-1 mRNA in muscle tissue, and increased levels of circulating IGF-1. Similarly, treatment of bovine satellite cell (BSC) cultures with either TBA or E2 results in increased expression of IGF-1 mRNA, increased rates of proliferation and protein synthesis, and decreased rates of protein degradation. Effects of E2 on BSC are mediated at least in part through the classical E2 receptor, estrogen receptor-α (ESR1), the IGF-1 receptor (IGFR1), and the G protein-coupled estrogen receptor-1 (GPER-1), formerly known as G protein-coupled receptor-30 (GPR30). The effects of TBA appear to be primarily mediated through the androgen receptor. Based on current research results, it is becoming clear that anabolic steroid-enhanced bovine muscle growth involves a complex interaction of numerous pathways and receptors. Consequently, additional in vivo and in vitro studies are necessary to understand the mechanisms involved in this complex process. The fundamental information generated by this research will help in developing future, safe, and effective strategies to increase rate and efficiency of muscle growth in beef cattle.

  4. "Non-Contact Ultrasonic Treatment of Metals in a Magnetic Field"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludtka, Gerard Michael; Wilgen, John B; Kisner, Roger A

    2007-01-01

    A concept has been originated for non-contact ultrasonic treatment of metals based on the use of an induction coil located in a high-field superconducting magnet. An advantage of using a high magnetic field environment (> 9 T) is that this allows the induced surface current in the sample to be decreased proportionately. As a result, the incidental induction heating associated with the use of the EMAT (Electromagnetic Acoustical Transducer) is greatly reduced, which improves the energy efficiency of the EMAT approach. The method can be coupled with high-field magnetic processing, but can also be used where only ultrasonic treatment ismore » beneficial. In the proof-of-principle experiments, a high-field EMAT was used for non-contact ultrasonic processing of aluminum samples during solidification. The magnetic field for the EMAT was supplied by a high-field (20 Tesla) resistive magnet, and the current was provided by an induction coil. This resulted in a highly efficient EMAT that delivered 0.5 MPa (~5 atmospheres) of acoustic drive to the surface of the sample while coupling less than 100 watts of incidental induction heating. The exceptionally high energy efficiency of the electromagnetic transducer is due to the use of the high magnetic field, which reduces the current needed to achieve the same acoustic pressure. In these initial experiments, aluminum samples of A356 alloy were heated to the liquid state and allowed to solidify at a controlled cooling rate while subjected to the non-contact ultrasonic stimulation (0.5 MPa @ 165 kHz) provided by an induction coil located within the 200 mm (~8-inch) bore of a 20-T Bitter resistive magnet.« less

  5. Improved efficiency and precise temperature control of low-frequency induction-heating pure iron vapor source on ECR ion source

    NASA Astrophysics Data System (ADS)

    Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T.

    2012-11-01

    Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control ±10K around 1500°C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.

  6. An intelligent decomposition approach for efficient design of non-hierarchic systems

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.

    1992-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex systems into subsystem modules which are coupled through transference of output data. The implementation of such a decomposition approach assumes the ability exists to determine what subsystems and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is quite often an extremely complex task which may be beyond human ability to efficiently achieve. Further, in optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the optimal solution. The ability to determine 'weak' versus 'strong' coupling strengths would aid the designer in deciding which couplings could be permanently removed from consideration or which could be temporarily suspended so as to achieve computational savings with minimal loss in solution accuracy. An approach that uses normalized sensitivities to quantify coupling strengths is presented. The approach is applied to a coupled system composed of analysis equations for verification purposes.

  7. Efficient interface for online coupling of capillary electrophoresis with inductively coupled plasma-mass spectrometry and its application in simultaneous speciation analysis of arsenic and selenium.

    PubMed

    Liu, Lihong; Yun, Zhaojun; He, Bin; Jiang, Guibin

    2014-08-19

    A simple and highly efficient online system coupling of capillary electrophoresis to inductively coupled plasma-mass spectrometry (CE-ICP-MS) for simultaneous separation and determination of arsenic and selenium compounds was developed. CE was coupled to an ICP-MS system by a sprayer with a novel direct-injection high-efficiency nebulizer (DIHEN) chamber as the interface. By using this interface, six arsenic species, including arsenite (As(III), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC) and five selenium species (such as sodium selenite (Se(IV)), sodium selenate (Se(VI)), selenocysteine (SeCys), selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys)) were baseline-separated and determined in a single run within 9 min under the optimized conditions. Minimum dead volume, low and steady sheath flow liquid, high nebulization efficiency, and high sample transport efficiency were obtained by using this interface. Detection limits were in the range of 0.11-0.37 μg L(-1) for the six arsenic compounds (determined as (75)As at m/z 75) and 1.33-2.31 μg L(-1) for the five selenium species (determined as (82)Se at m/z 82). Repeatability expressed as the relative standard deviations (RSD, n = 6) of both migration time and peak area were better than 2.68% for arsenic compounds and 3.28% for selenium compounds, respectively. The proposed method had been successfully applied for the determination of arsenic and selenium species in the certified reference materials DORM-3, water, urine, and fish samples.

  8. A transcutaneous energy transmission system for artificial heart adapting to changing impedance.

    PubMed

    Fu, Yang; Hu, Liang; Ruan, Xiaodong; Fu, Xin

    2015-04-01

    This article presents a coil-coupling-based transcutaneous energy transmission system (TETS) for wirelessly powering an implanted artificial heart. Keeping high efficiency is especially important for TETS, which is usually difficult due to transmission impedance changes in practice, which are commonly caused by power requirement variation for different body movements and coil-couple malposition accompanying skin peristalsis. The TETS introduced in this article is designed based on a class-E power amplifier (E-PA), of which efficiency is over 95% when its load is kept in a certain range. A resonance matching and impedance compressing functions coupled network based on parallel-series capacitors is proposed in the design, to enhance the energy transmission efficiency and capacity of the coil-couple through resonating, and meanwhile compress the changing range of the transmission impedance to meet the load requirements of the E-PA and thus keep the high efficiency of TETS. An analytical model of the designed TETS is built to analyze the effect of the network and also provide bases for following parameters determination. Then, according algorithms are provided to determine the optimal parameters required in the TETS for good performance both in resonance matching and impedance compressing. The design is tested by a series of experiments, which validate that the TETS can transmit a wide range of power with a total efficiency of at least 70% and commonly beyond 80%, even when the coil-couple is seriously malpositioned. The design methodology proposed in this article can be applied to any existing TETS based on E-PA to improve their performance in actual applications. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Impact of the ocean diurnal cycle on the North Atlantic mean sea surface temperatures in a regionally coupled model

    NASA Astrophysics Data System (ADS)

    Guemas, Virginie; Salas-Mélia, David; Kageyama, Masa; Giordani, Hervé; Voldoire, Aurore

    2013-03-01

    This study investigates the mechanisms by which the ocean diurnal cycle can affect the ocean mean state in the North Atlantic region. We perform two ocean-atmosphere regionally coupled simulations (20°N-80°N, 80°W-40°E) using the CNRMOM1D ocean model coupled to the ARPEGE4 atmospheric model: one with a 1 h coupling frequency (C1h) and another with a 24 h coupling frequency (C24h). The comparison between both experiments shows that accounting for the ocean diurnal cycle tends to warm up the surface ocean at high latitudes and cool it down in the subtropics during the boreal summer season (June-August). In the subtropics, the leading cause for the formation of the negative surface temperature anomalies is the fact that the nocturnal entrainment heat flux overcompensates the diurnal absorption of solar heat flux. Both in the subtropics and in the high latitudes, the surface temperature anomalies are involved in a positive feedback loop: the cold (warm) surface anomalies favour a decrease (increase) in evaporation, a decrease (increase) in tropospheric humidity, a decrease (increase) in downwelling longwave radiative flux which in turn favours the surface cooling (warming). Furthermore, the decrease in meridional sea surface temperature gradient affects the large-scale atmospheric circulation by a decrease in the zonal mean flow.

  10. Hierarchical and coupling model of factors influencing vessel traffic flow.

    PubMed

    Liu, Zhao; Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi

    2017-01-01

    Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.

  11. Hierarchical and coupling model of factors influencing vessel traffic flow

    PubMed Central

    Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi

    2017-01-01

    Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system. PMID:28414747

  12. A four-port vertical-coupling optical interface based on two-dimensional grating coupler

    NASA Astrophysics Data System (ADS)

    Zhang, Zan; Zhang, Zanyun; Huang, Beiju; Cheng, Chuantong; Gao, Tianxi; Hu, Xiaochuan; Zhang, Lin; Chen, Hongda

    2016-10-01

    In this work, a fiber-to-chip optical interface with four output ports is proposed. External lights irradiate vertically from single mode fiber to the center of optical interface can be coupled into silicon photonic chips and split into four siliconon- insulator (SOI) waveguides. If the light is circular polarized, the power of light will be equally split into four ports. Meanwhile, all lights travel in the four channel will be converted into TE polarization. The optical interface is based on a two-dimensional grating coupler with carefully designed duty cycle and period. Simulation results show that the coupling efficiency of each port can reach 11.6% so that the total coupling efficiency of the interface is 46.4%. And Lights coupled into four waveguides are all converted into TE polarization. Further, the optical interface has a simple grating structure allowing for easy fabrication.

  13. Adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope

    NASA Astrophysics Data System (ADS)

    Ma, Haotong; Hu, Haojun; Xie, Wenke; Zhao, Haichuan; Xu, Xiaojun; Chen, Jinbao

    2013-08-01

    We demonstrate the adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope based on the stochastic parallel gradient descent (SPGD) algorithm and dual phase only liquid crystal spatial light modulators (LC-SLMs). Adaptive pre-compensation the wavefront of projected laser beam at the transmitter telescope is chosen to improve the power coupling efficiency. One phase only LC-SLM adaptively optimizes phase distribution of the projected laser beam and the other generates turbulence phase screen. The intensity distributions of the dark hollow beam after passing through the turbulent atmosphere with and without adaptive beam shaping are analyzed in detail. The influence of propagation distance and aperture size of the Cassegrain-telescope on coupling efficiency are investigated theoretically and experimentally. These studies show that the power coupling can be significantly improved by adaptive beam shaping. The technique can be used in optical communication, deep space optical communication and relay mirror.

  14. Maximizing coupling-efficiency of high-power diode lasers utilizing hybrid assembly technology

    NASA Astrophysics Data System (ADS)

    Zontar, D.; Dogan, M.; Fulghum, S.; Müller, T.; Haag, S.; Brecher, C.

    2015-03-01

    In this paper, we present hybrid assembly technology to maximize coupling efficiency for spatially combined laser systems. High quality components, such as center-turned focusing units, as well as suitable assembly strategies are necessary to obtain highest possible output ratios. Alignment strategies are challenging tasks due to their complexity and sensitivity. Especially in low-volume production fully automated systems are economically at a disadvantage, as operator experience is often expensive. However reproducibility and quality of automatically assembled systems can be superior. Therefore automated and manual assembly techniques are combined to obtain high coupling efficiency while preserving maximum flexibility. The paper will describe necessary equipment and software to enable hybrid assembly processes. Micromanipulator technology with high step-resolution and six degrees of freedom provide a large number of possible evaluation points. Automated algorithms are necess ary to speed-up data gathering and alignment to efficiently utilize available granularity for manual assembly processes. Furthermore, an engineering environment is presented to enable rapid prototyping of automation tasks with simultaneous data ev aluation. Integration with simulation environments, e.g. Zemax, allows the verification of assembly strategies in advance. Data driven decision making ensures constant high quality, documents the assembly process and is a basis for further improvement. The hybrid assembly technology has been applied on several applications for efficiencies above 80% and will be discussed in this paper. High level coupling efficiency has been achieved with minimized assembly as a result of semi-automated alignment. This paper will focus on hybrid automation for optimizing and attaching turning mirrors and collimation lenses.

  15. Computational Validation of a Two-Dimensional Semi-Empirical Model for Inductive Coupling in a Conical Pulsed Inductive Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2011-01-01

    A two-dimensional semi-empirical model of pulsed inductive thrust efficiency is developed to predict the effect of such a geometry on thrust efficiency. The model includes electromagnetic and gas-dynamic forces but excludes energy conversion from radial motion to axial motion, with the intention of characterizing thrust efficiency loss mechanisms that result from a conical versus a at inductive coil geometry. The range of conical pulsed inductive thruster geometries to which this model can be applied is explored with the use of finite element analysis. A semi-empirical relation for inductance as a function of current sheet radial and axial position is the limiting feature of the model, restricting the applicability as a function of half cone angle to a range from ten degrees to about 60 degrees. The model is nondimensionalized, yielding a set of dimensionless performance scaling parameters. Results of the model indicate that radial current sheet motion changes the axial dynamic impedance parameter at which thrust efficiency is maximized. This shift indicates that when radial current sheet motion is permitted in the model longer characteristic circuit timescales are more efficient, which can be attributed to a lower current sheet axial velocity as the plasma more rapidly decouples from the coil through radial motion. Thrust efficiency is shown to increase monotonically for decreasing values of the radial dynamic impedance parameter. This trend indicates that to maximize the radial decoupling timescale should be long compared to the characteristic circuit timescale.

  16. Integration and segregation of large-scale brain networks during short-term task automatization

    PubMed Central

    Mohr, Holger; Wolfensteller, Uta; Betzel, Richard F.; Mišić, Bratislav; Sporns, Olaf; Richiardi, Jonas; Ruge, Hannes

    2016-01-01

    The human brain is organized into large-scale functional networks that can flexibly reconfigure their connectivity patterns, supporting both rapid adaptive control and long-term learning processes. However, it has remained unclear how short-term network dynamics support the rapid transformation of instructions into fluent behaviour. Comparing fMRI data of a learning sample (N=70) with a control sample (N=67), we find that increasingly efficient task processing during short-term practice is associated with a reorganization of large-scale network interactions. Practice-related efficiency gains are facilitated by enhanced coupling between the cingulo-opercular network and the dorsal attention network. Simultaneously, short-term task automatization is accompanied by decreasing activation of the fronto-parietal network, indicating a release of high-level cognitive control, and a segregation of the default mode network from task-related networks. These findings suggest that short-term task automatization is enabled by the brain's ability to rapidly reconfigure its large-scale network organization involving complementary integration and segregation processes. PMID:27808095

  17. Thermal analysis of a multi-layer microchannel heat sink for cooling concentrator photovoltaic (CPV) cells

    NASA Astrophysics Data System (ADS)

    Siyabi, Idris Al; Shanks, Katie; Mallick, Tapas; Sundaram, Senthilarasu

    2017-09-01

    Concentrator Photovoltaic (CPV) technology is increasingly being considered as an alternative option for solar electricity generation. However, increasing the light concentration ratio could decrease the system output power due to the increase in the temperature of the cells. The performance of a multi-layer microchannel heat sink configuration was evaluated using numerical analysis. In this analysis, three dimensional incompressible laminar steady flow model was solved numerically. An electrical and thermal solar cell model was coupled for solar cell temperature and efficiency calculations. Thermal resistance, solar cell temperature and pumping power were used for the system efficiency evaluation. An increase in the number of microchannel layers exhibited the best overall performance in terms of the thermal resistance, solar cell temperature uniformity and pressure drop. The channel height and width has no effect on the solar cell maximum temperature. However, increasing channel height leads to a reduction in the pressure drop and hence less fluid pumping power.

  18. Effect of Li and NH4 doping on the crystal perfection, second harmonic generation efficiency and laser damage threshold of potassium pentaborate crystals

    NASA Astrophysics Data System (ADS)

    Vigneshwaran, A. N.; Kalainathan, S.; Raja, C. Ramachandra

    2018-03-01

    Potassium pentaborate (KB5) is an excellent nonlinear optical material especially in the UV region. In this work, Li and NH4 doped KB5 crystals were grown using slow evaporation solution growth method. The incorporation of dopant has been confirmed and analysed by Energy dispersive X-ray analysis (EDAX), Inductively coupled plasma (ICP) analysis and Raman spectroscopy. The crystalline perfection of pure and doped KB5 crystals was studied by High resolution X-ray diffraction (HRXRD) analysis. Structural grain boundaries were observed in doped crystals. Second harmonic generation was confirmed for pure and doped crystals and output values revealed the enhancement of SHG efficiency in doped crystals. Resistance against laser damage was carried out using 1064 nm Nd-YAG laser of pulse width 10 ns. The laser damage threshold value is increased in Li doped crystal and decreased in NH4 doped crystal when compared to pure KB5 crystal.

  19. Chromato-panning: an efficient new mode of identifying suitable ligands from phage display libraries

    PubMed Central

    Noppe, Wim; Plieva, Fatima; Galaev, Igor Yu; Pottel, Hans; Deckmyn, Hans; Mattiasson, Bo

    2009-01-01

    Background Phage Display technology is a well established technique for high throughput screening of affinity ligands. Here we describe a new compact chromato-panning procedure for selection of suitable binders from a phage peptide display library. Results Both phages and E. coli cells pass non-hindered through the interconnected pores of macroporous gel, so called cryogel. After coupling a ligand to a monolithic cryogel column, the phage library was applied on the column and non-bound phages were washed out. The selection of strong phage-binders was achieved already after the first panning cycle due to the efficient separation of phage-binders from phage-non-binders in chromatographic mode rather than in batch mode as in traditional biopanning procedures. E. coli cells were applied on the column for infection with the specifically bound phages. Conclusion Chromato-panning allows combining several steps of the panning procedure resulting in 4–8 fold decrease of total time needed for phage selection. PMID:19292898

  20. The Effects of a Couples-Based Health Behavior Intervention During Pregnancy on Latino Couples' Dyadic Satisfaction Postpartum.

    PubMed

    Coop Gordon, Kristina; Roberson, Patricia N E; Hughes, Jessica A; Khaddouma, Alexander M; Swamy, Geeta K; Noonan, Devon; Gonzalez, Alicia M; Fish, Laura; Pollak, Kathryn I

    2018-03-30

    Many couples tend to report steadily decreasing relationship quality following the birth of a child. However, little is known about the postpartum period for Latino couples, a rapidly growing ethnic group who are notably underserved by mental and physical health caregivers in the United States. Thus, this study investigated whether a brief couples' intervention focused on helping couples support each other while increasing healthy behaviors might improve dyadic functioning postpartum. This study presents secondary analyses of data regarding couple functioning from a larger randomized controlled trial with 348 Latino couples to promote smoking cessation. Portions of the intervention taught the couple communication and problem-solving skills to increase healthy behavior. Couples participated in four face-to-face assessments across 1 year starting at the end of the first trimester. Latent growth curve analyses revealed that the treatment group reported an increase in relationship satisfaction and constructive communication after the intervention, which diminished by 1-year follow-up, returning couples to their baseline levels of satisfaction. Results suggest that incorporating a brief couple intervention as part of a larger health intervention for Latinos may prevent postpartum decreases in relationship satisfaction. © 2018 Family Process Institute.

  1. High coupling efficiency of foam spherical hohlraum driven by 2ω laser light

    NASA Astrophysics Data System (ADS)

    Chen, Yao-Hua; Lan, Ke; Zheng, Wanguo; Campbell, E. M.

    2018-02-01

    The majority of solid state laser facilities built for laser fusion research irradiate targets with third harmonic light (0.35 μm) up-converted from the fundamental Nd wavelength at 1.05 μm. The motivation for this choice of wavelength is improved laser-plasma coupling. Significant disadvantages to this choice of wavelength are the reduced damage threshold of optical components and the efficiency of energy conversion to third harmonic light. Both these issues are significantly improved if second harmonic (0.53 μm) radiation is used, but theory and experiments have shown lower optical to x-ray energy conversion efficiency and increased levels of laser-plasma instabilities, resulting in reduced laser-target coupling. In this letter, we propose to use a 0.53 μm laser for the laser ignition facilities and use a low density foam wall to increase the coupling efficiency from the laser to the capsule and present two-dimensional radiation-hydrodynamic simulations of 0.53 μm laser light irradiating an octahedral-spherical hohlraum with a low density foam wall. The simulations show that the reduced optical depth of the foam wall leads to an increased laser-light conversion into thermal x-rays and about 10% higher radiation flux on the capsule than that achieved with 0.35 μm light irradiating a solid density wall commonly used in laser indirect drive fusion research. The details of the simulations and their implications and suggestions for wavelength scaling coupled with innovative hohlraum designs will be discussed.

  2. Influence of vibration on the coupling efficiency in spatial receiver and its compensation method

    NASA Astrophysics Data System (ADS)

    Hu, Qinggui; Mu, Yining

    2018-04-01

    In order to analyze the loss of the free-space optical receiver caused by the vibration, we set up the coordinate systems on both the receiving lens surface and the receiving fiber surface, respectively. Then, with Gauss optics theory, the coupling efficiency equation is obtained. And the solution is calculated with MATLAB® software. To lower the impact of the vibration, the directional tapered communication fiber receiver is proposed. In the next step, the sample was produced and two experiments were done. The first experiment shows that the coupling efficiency of the receiver is higher than that of the traditional one. The second experiment shows the bit error rate of the new receiver is lower. Both of the experiments show the new receiver could improve the receiving system's tolerance with the vibration.

  3. AGN outflows and feedback twenty years on

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Costa, T.; Tadhunter, C. N.; Flütsch, A.; Kakkad, D.; Perna, M.; Vietri, G.

    2018-03-01

    It is twenty years since the seminal works by Magorrian and co-authors and by Silk and Rees, which, along with other related work, ignited an explosion of publications connecting active galactic nucleus (AGN)-driven outflows to galaxy evolution. With a surge in observations of AGN outflows, studies are attempting to test AGN feedback models directly using the outflow properties. With a focus on outflows traced by optical and CO emission lines, we discuss significant challenges that greatly complicate this task, from both an observational and theoretical perspective. We highlight the observational uncertainties involved and the assumptions required when deriving kinetic coupling efficiencies (that is, outflow kinetic power as a fraction of AGN luminosity) from typical observations. Based on recent models we demonstrate that extreme caution should be taken when comparing observationally derived kinetic coupling efficiencies to coupling efficiencies from fiducial feedback models.

  4. Scattering theory of efficient quantum transport across finite networks

    NASA Astrophysics Data System (ADS)

    Walschaers, Mattia; Mulet, Roberto; Buchleitner, Andreas

    2017-11-01

    We present a scattering theory for the efficient transmission of an excitation across a finite network with designed disorder. We show that the presence of randomly positioned network sites allows significant acceleration of the excitation transfer processes as compared to a dimer structure, but only if the disordered Hamiltonians are constrained to be centrosymmetric and exhibit a dominant doublet in their spectrum. We identify the cause of this efficiency enhancement to be the constructive interplay between disorder-induced fluctuations of the dominant doublet’s splitting and the coupling strength between the input and output sites to the scattering channels. We find that the characteristic strength of these fluctuations together with the channel coupling fully control the transfer efficiency.

  5. Transition from edge-localized to center-localized power deposition in helicon discharges

    NASA Astrophysics Data System (ADS)

    Curreli, D.

    2011-11-01

    In radiofrequency (RF) helicon discharges the electromagnetic power is transferred from the RF field irradiated by the antenna to the plasma medium by means of plasma-wave coupling of the electromagnetic wave with the electrons. For the common industrial frequencies of tens of MHz, and for typical pressures of few Pascals, the power deposition occurs mostly at the edge of the discharge. In these conditions, ionization and electron heating occur in a layer close to the chamber walls, where a consistent fraction of the plasma is rapidly lost by diffusion toward the surface. The remaining fraction of plasma diffuses inward toward the center of the discharge, setting up a uniform and almost flat density profile, used in applications. A one-dimensional model considering both the plasma-wave coupling of the electrons with the RF wave and the macroscopic transport of ions and neutrals along the radial dimension of a cylindrical processing chamber has been derived and used to evaluate the profiles at equilibrium. The model has been validated through Langmuir probe measurements in helicon processing chambers. The numerical model has then been used to study the power-coupling behavior of the discharge when the pressure of the neutral gas is decreased. When the Knudsen number of the neutral gas approaches unity and in conditions of slightly magnetized discharge, the power deposition shifts from being edge-localized to center-localized, thus reducing the particle fluxes toward the walls and increasing the efficiency of the coupling.

  6. Temperature-Dependent Function of the Glutamine Phosphoribosylpyrophosphate Amidotransferase Ammonia Channel and Coupling with Glycinamide Ribonucleotide Synthetase in a Hyperthermophile†

    PubMed Central

    Bera, Aloke Kumar; Chen, Sihong; Smith, Janet L.; Zalkin, Howard

    2000-01-01

    Genes encoding glutamine phosphoribosylpyrophosphate amidotransferase (GPAT) and glycinamide ribonucleotide synthetase (GARS) from Aquifex aeolicus were expressed in Escherichia coli, and the enzymes were purified to near homogeneity. Both enzymes were maximally active at a temperature of at least 90°C, with half-lives of 65 min for GPAT and 60 h for GARS at 80°C. GPAT activity is known to depend upon channeling of NH3 from a site in an N-terminal glutaminase domain to a distal phosphoribosylpyrophosphate site in a C-terminal domain where synthesis of phosphoribosylamine (PRA) takes place. The efficiency of channeling of NH3 for synthesis of PRA was found to increase from 34% at 37°C to a maximum of 84% at 80°C. The mechanism for transfer of PRA to GARS is not established, but diffusion between enzymes as a free intermediate appears unlikely based on a calculated PRA half-life of approximately 0.6 s at 90°C. Evidence was obtained for coupling between GPAT and GARS for PRA transfer. The coupling was temperature dependent, exhibiting a transition between 37 and 50°C, and remained relatively constant up to 90°C. The calculated PRA chemical half-life, however, decreased by a factor of 20 over this temperature range. These results provide evidence that coupling involves direct PRA transfer through GPAT-GARS interaction rather than free diffusion. PMID:10850988

  7. Temperature-dependent function of the glutamine phosphoribosylpyrophosphate amidotransferase ammonia channel and coupling with glycinamide ribonucleotide synthetase in a hyperthermophile.

    PubMed

    Bera, A K; Chen, S; Smith, J L; Zalkin, H

    2000-07-01

    Genes encoding glutamine phosphoribosylpyrophosphate amidotransferase (GPAT) and glycinamide ribonucleotide synthetase (GARS) from Aquifex aeolicus were expressed in Escherichia coli, and the enzymes were purified to near homogeneity. Both enzymes were maximally active at a temperature of at least 90 degrees C, with half-lives of 65 min for GPAT and 60 h for GARS at 80 degrees C. GPAT activity is known to depend upon channeling of NH(3) from a site in an N-terminal glutaminase domain to a distal phosphoribosylpyrophosphate site in a C-terminal domain where synthesis of phosphoribosylamine (PRA) takes place. The efficiency of channeling of NH(3) for synthesis of PRA was found to increase from 34% at 37 degrees C to a maximum of 84% at 80 degrees C. The mechanism for transfer of PRA to GARS is not established, but diffusion between enzymes as a free intermediate appears unlikely based on a calculated PRA half-life of approximately 0.6 s at 90 degrees C. Evidence was obtained for coupling between GPAT and GARS for PRA transfer. The coupling was temperature dependent, exhibiting a transition between 37 and 50 degrees C, and remained relatively constant up to 90 degrees C. The calculated PRA chemical half-life, however, decreased by a factor of 20 over this temperature range. These results provide evidence that coupling involves direct PRA transfer through GPAT-GARS interaction rather than free diffusion.

  8. Surface normal coupling to multiple-slot and cover-slotted silicon nanocrystalline waveguides and ring resonators

    NASA Astrophysics Data System (ADS)

    Covey, John; Chen, Ray T.

    2014-03-01

    Grating couplers are ideal for coupling into the tightly confined propagation modes of semiconductor waveguides. In addition, nonlinear optics has benefited from the sub-diffraction limit confinement of horizontal slot waveguides. By combining these two advancements, slot-based nonlinear optics with mode areas less than 0.02 μm2 can become as routine as twisting fiber connectors together. Surface normal fiber alignment to a chip is also highly desirable from time, cost, and manufacturing considerations. To meet these considerable design challenges, a custom genetic algorithm is created which, starting from purely random designs, creates a unique four stage grating coupler for two novel horizontal slot waveguide platforms. For horizontal multiple-slot waveguides filled with silicon nanocrystal, a theoretical fiber-towaveguide coupling efficiency of 68% is obtained. For thin silicon waveguides clad with optically active silicon nanocrystal, known as cover-slot waveguides, a theoretical fiber-to-waveguide coupling efficiency of 47% is obtained, and 1 dB and 3 dB theoretical bandwidths of 70 nm and 150 nm are obtained, respectively. Both waveguide platforms are fabricated from scratch, and their respective on-chip grating couplers are experimentally measured from a standard single mode fiber array that is mounted surface normally. The horizontal multiple-slot grating coupler achieved an experimental 60% coupling efficiency, and the horizontal cover-slot grating coupler achieved an experimental 38.7% coupling efficiency, with an extrapolated 1 dB bandwidth of 66 nm. This report demonstrates the promise of genetic algorithm-based design by reducing to practice the first large bandwidth vertical grating coupler to a novel silicon nanocrystal horizontal cover-slot waveguide.

  9. Regioselective Cu(I)-catalyzed tandem A3-coupling/decarboxylative coupling to 3-amino-1,4-enynes.

    PubMed

    Feng, Huangdi; Ermolat'ev, Denis S; Song, Gonghua; Van der Eycken, Erik V

    2012-04-06

    An efficient and novel copper-mediated protocol for the synthesis of 3-amino-1,4-enynes from glyoxylic acid, an amine, and an alkyne was developed. This new reaction involving two sequential C-C bond formations is air and moisture tolerant and proceeds via a tandem A(3)-coupling and a selective decarboxylative coupling.

  10. Masturbation and Pornography Use Among Coupled Heterosexual Men With Decreased Sexual Desire: How Many Roles of Masturbation?

    PubMed

    Carvalheira, Ana; Træen, Bente; Stulhofer, Aleksandar

    2015-01-01

    The relation between masturbation and sexual desire has not been systematically studied. The present study assessed the association between masturbation and pornography use and the predictors and correlates of frequent masturbation (several times a week or more often) among coupled heterosexual men who reported decreased sexual desire. Analyses were carried out on a subset of 596 men with decreased sexual desire (mean age = 40.2 years) who were recruited as part of a large online study on male sexual health in 3 European countries. A majority of the participants (67%) reported masturbating at least once a week. Among men who masturbated frequently, 70% used pornography at least once a week. A multivariate assessment showed that sexual boredom, frequent pornography use, and low relationship intimacy significantly increased the odds of reporting frequent masturbation among coupled men with decreased sexual desire. These findings point to a pattern of pornography-related masturbation that can be dissociated from partnered sexual desire and can fulfill diverse purposes. Clinical implications include the importance of exploring specific patterns of masturbation and pornography use in the evaluation of coupled men with decreased sexual desire.

  11. A beta-keto ester as a novel, efficient, and versatile ligand for copper(I)-catalyzed C-N, C-O, and C-S coupling reactions.

    PubMed

    Lv, Xin; Bao, Weiliang

    2007-05-11

    Employing ethyl 2-oxocyclohexanecarboxylate as a novel, efficient, and versatile ligand, the copper-catalyzed coupling reactions of various N/O/S nucleophilic reagents with aryl halides could be successfully carried out under mild conditions. A variety of products including N-arylamides, N-arylimidazoles, aryl ethers, and aryl thioethers were synthesized in good to excellent yields.

  12. Highly efficient preparation of selectively isotope cluster-labeled long chain fatty acids via two consecutive C(sp3)-C(sp3) cross-coupling reactions.

    PubMed

    Lethu, Sébastien; Matsuoka, Shigeru; Murata, Michio

    2014-02-07

    An efficient synthesis involving two copper-catalyzed alkyl-alkyl coupling reactions has been designed to easily access doubly isotope-labeled fatty acids. Such NMR- and IR-active compounds were obtained in excellent overall yields and will be further used for determining the conformation of an alkyl chain of lipidic biomolecules upon interaction with proteins.

  13. Highly Efficient Wireless Powering for Autonomous Structural Health Monitoring and Test/Evaluation Systems

    DTIC Science & Technology

    2016-07-27

    ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Wireless Power Transfer , Structural Health Monitoring...efficient strongly coupled magnetic resonant systems, Wireless Power Transfer , (03 2014): 0. doi: 10.1017/wpt.2014.3 TOTAL: 1 Received Paper TOTAL...2016 Received Paper . Miniaturized Strongly Coupled Magnetic Resonant Systems for Wireless Power Transfer , 2016 IEEE Antennas Propagat. Society

  14. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  15. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    PubMed

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  16. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    PubMed Central

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-01-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices. PMID:26954833

  17. Organocatalytic upgrading of furfural and 5-hydroxymethyl furfural to C10 and C12 furoins with quantitative yield and atom-efficiency.

    PubMed

    Zang, Hongjun; Chen, Eugene Y X

    2015-03-30

    There is increasing interest in the upgrading of C5 furfural (FF) and C6 5-hydroxymethyl furfural (HMF) into C10 and C12 furoins as higher energy-density intermediates for renewable chemicals, materials, and biofuels. This work utilizes the organocatalytic approach, using the in situ generated N,S-heterocyclic carbene catalyst derived from thiazolium ionic liquids (ILs), to achieve highly efficient self-coupling reactions of FF and HMF. Specifically, variations of the thiazolium IL structure have led to the most active and efficient catalyst system of the current series, which is derived from a new thiazolium IL carrying the electron-donating acetate group at the 5-ring position. For FF coupling by this IL (0.1 mol %, 60 °C, 1 h), when combined with Et3N, furoin was obtained in >99% yield. A 97% yield of the C12 furoin was also achieved from the HMF coupling by this catalyst system (10 mol % loading, 120 °C, 3 h). On the other hand, the thiazolium IL bearing the electron-withdrawing group at the 5-ring position is the least active and efficient catalyst. The mechanistic aspects of the coupling reaction by the thiazolium catalyst system have also been examined and a mechanism has been proposed.

  18. Copper-Catalyzed Oxidative Homo- and Cross-Coupling of Grignard Reagents Using Diaziridinone

    PubMed Central

    2015-01-01

    Transition-metal-catalyzed cross-coupling reactions are among the most powerful synthetic transformations. This paper describes an efficient copper-catalyzed homo- and cross-coupling of Grignard reagents with di-tert-butyldiaziridinone as oxidant under mild conditions, giving the coupling products in good to excellent yields. The reaction process has a broad substrate scope and is also effective for the C(sp)–C(sp3) coupling. PMID:25420218

  19. The effects of negative racial stereotypes and afrocentricity on black couple relationships.

    PubMed

    Kelly, S; Floyd, F J

    2001-03-01

    This questionnaire study investigated the relationship between internalized negative stereotypes, Afrocentricity, and dyadic trust and adjustment for 73 Black couples. Internalized negative stereotypes alone generally did not predict relationship problems, however, the combination of internalized negative stereotypes and high Afrocentricity for the men was associated with decreased perceptions of partner dependability, an aspect of relationship trust, and decreased dyadic adjustment for both partners. Contrary to predictions, Afrocentricity was associated with less perceived partner dependability and satisfaction for the couples. Controlling for socioeconomic status failed to alter these associations. Findings imply that racial perspectives are important predictors of Black couple outcomes and that complex and conflicting racial attitudes held by Afrocentric Black men may cause deterioration in Black couple relationships.

  20. Synthesis of adriamycin-coupled polyglutaraldehyde microspheres and evaluation of their cytostatic activity

    NASA Technical Reports Server (NTRS)

    Tokes, Z. A.; Rogers, K. E.; Rembaum, A.

    1982-01-01

    Adriamycin was coupled to polyglutaraldehyde microspheres having an average diameter of 4500 A. The coupled microspheres remained stable during incubation with cells. Full cytostatic activity was observed when the coupled adriamycin was tested with murine or human leukemia and murine sarcoma cell lines. A 10-fold increase in sensitivity was obtained with drug-resistant human leukemia cell lines. Repeated use of the coupled microspheres in the cytostatic assays did not decrease their activity, indicating that these complexes can be recycled. The results suggest that coupled adriamycin sufficiently perturbs the plasma membrane to lead to cytostatic activity. It is proposed that this mode of drug delivery provides multiple and repetitious sites for drug-cell interactions. In addition, the drug-polymer complexes may overcome those forms of resistance that are the result of decreased drug binding at the cell surface.

  1. Beam collimation and focusing and error analysis of LD and fiber coupling system based on ZEMAX

    NASA Astrophysics Data System (ADS)

    Qiao, Lvlin; Zhou, Dejian; Xiao, Lei

    2017-10-01

    Laser diodde has many advantages, such as high efficiency, small volume, low cost and easy integration, so it is widely used. Because of its poor beam quality, the application of semiconductor laser has also been seriously hampered. In view of the poor beam quality, the ZEMAX optical design software is used to simulate the far field characteristics of the semiconductor laser beam, and the coupling module of the semiconductor laser and the optical fiber is designed and optimized. And the beam is coupled into the fiber core diameter d=200µm, the numerical aperture NA=0.22 optical fiber, the output power can reach 95%. Finally, the influence of the three docking errors on the coupling efficiency during the installation process is analyzed.

  2. Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR-BES): a design suitable for scaling-up.

    PubMed

    Cui, Dan; Guo, Yu-Qi; Lee, Hyung-Sool; Wu, Wei-Min; Liang, Bin; Wang, Ai-Jie; Cheng, Hao-Yi

    2014-07-01

    A four-compartment anaerobic baffled reactor (ABR) incorporated with membrane-less biocatalyzed electrolysis system (BES) was tested for the treatment of azo dye (alizarin yellow R, AYR) wastewater (AYR, 200 mg L(-1); glucose, 1000 mg L(-1)). The ABR-BES was operated without and with external power supply to examine AYR reduction process and reductive intermediates with different external voltages (0.3, 0.5 and 0.7 V) and hydraulic retention times (HRT: 8, 6 and 4h). The decolorization efficiency in the ABR-BES (8h HRT, 0.5 V) was higher than that in ABR-BES without electrolysis, i.e. 95.1 ± 1.5% versus 86.9 ± 6.3%. Incorporation of BES with ABR accelerated the consumption of VFAs (mainly acetate) and attenuated biogas (methane) production. Higher power supply (0.7 V) enhanced AYR decolorization efficiency (96.4 ± 1.8%), VFAs removal, and current density (24.1 Am(-3) TCV). Shorter HRT increased volumetric AYR decolorization rates, but decreased AYR decolorization efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Wiggler magnetic field assisted third harmonic generation in expanding clusters

    NASA Astrophysics Data System (ADS)

    Vij, Shivani

    2018-04-01

    A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.

  4. Simulation of value stream mapping and discrete optimization of energy consumption in modular construction

    NASA Astrophysics Data System (ADS)

    Chowdhury, Md Mukul

    With the increased practice of modularization and prefabrication, the construction industry gained the benefits of quality management, improved completion time, reduced site disruption and vehicular traffic, and improved overall safety and security. Whereas industrialized construction methods, such as modular and manufactured buildings, have evolved over decades, core techniques used in prefabrication plants vary only slightly from those employed in traditional site-built construction. With a focus on energy and cost efficient modular construction, this research presents the development of a simulation, measurement and optimization system for energy consumption in the manufacturing process of modular construction. The system is based on Lean Six Sigma principles and loosely coupled system operation to identify the non-value adding tasks and possible causes of low energy efficiency. The proposed system will also include visualization functions for demonstration of energy consumption in modular construction. The benefits of implementing this system include a reduction in the energy consumption in production cost, decrease of energy cost in the production of lean-modular construction, and increase profit. In addition, the visualization functions will provide detailed information about energy efficiency and operation flexibility in modular construction. A case study is presented to validate the reliability of the system.

  5. Few-layer MoSe₂ possessing high catalytic activity towards iodide/tri-iodide redox shuttles.

    PubMed

    Lee, Lawrence Tien Lin; He, Jian; Wang, Baohua; Ma, Yaping; Wong, King Young; Li, Quan; Xiao, Xudong; Chen, Tao

    2014-02-14

    Due to the two-dimensional confinement of electrons, single- and few-layer MoSe₂ nanostructures exhibit unusual optical and electrical properties and have found wide applications in catalytic hydrogen evolution reaction, field effect transistor, electrochemical intercalation, and so on. Here we present a new application in dye-sensitized solar cell as catalyst for the reduction of I₃(-) to I(-) at the counter electrode. The few-layer MoSe₂ is fabricated by surface selenization of Mo-coated soda-lime glass. Our results show that the few-layer MoSe₂ displays high catalytic efficiency for the regeneration of I(-) species, which in turn yields a photovoltaic energy conversion efficiency of 9.00%, while the identical photoanode coupling with "champion" electrode based on Pt nanoparticles on FTO glass generates efficiency only 8.68%. Thus, a Pt- and FTO-free counter electrode outperforming the best conventional combination is obtained. In this electrode, Mo film is found to significantly decrease the sheet resistance of the counter electrode, contributing to the excellent device performance. Since all of the elements in the electrode are of high abundance ratios, this type of electrode is promising for the fabrication of large area devices at low materials cost.

  6. Core-shell AgSiO2-protoporphyrin IX nanoparticle: Effect of the Ag core on reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Lismont, M.; Pá; ez-Martinez, C.; Dreesen, L.

    2015-03-01

    Photodynamic therapy (PDT) for cancer is based on the use of a light sensitive molecule to produce, under specific irradiation, toxic reactive oxygen species (ROS). A way to improve the therapy efficiency is to increase the amount of produced ROS near cancer cells. This aim can be achieved by using a metal enhanced process arising when an optically active molecule is located near a metallic nanoparticle (NP). Here, the coupling effect between silver (Ag) NPs and protoporphyrin IX (PpIX) molecules, a clinically approved photosensitizer, is studied compared first, to PpIX fluorescence yield and second, to ROS production efficiency. By applying a modified Stöber process, PpIX was encapsulated into a silica (SiO2) shell, surrounding a 60 nm sized Ag core. We showed that, compared to SiO2-PpIX NPs, Ag coated SiO2-PpIX NPs dramatically decreased PpIX fluorescence together with singlet oxygen production efficiency. However, after incubation time in the dark, the amount of superoxide anions generated by the Ag doped sample was higher than the control sample one.

  7. Improving the efficiency and directivity of THz photoconductive antennas by using a defective photonic crystal substrate

    NASA Astrophysics Data System (ADS)

    Rahmati, Ehsan; Ahmadi-Boroujeni, Mehdi

    2018-04-01

    One of the shortcomings of photoconductive (PC) antennas in terahertz (THz) generation is low effective radiated power in the desirable direction. In this paper, we propose a defective photonic crystal (DPC) substrate consisting of a customized 2D array of air holes drilled into a solid substrate in order to improve the radiation characteristics of THz PC antennas. The effect of the proposed structure on the performance of a conventional THz PC antenna has been examined from several aspects including radiation efficiency, directivity, and field distribution. By comparing the radiation performance of the THz antenna on the proposed DPC substrate to that of the conventional solid substrate, it is shown that the proposed technique can significantly improve the efficiency and directivity of the THz PC antenna over a wide frequency range. It is achieved by reducing the amount of power coupled to the substrate surface waves and limiting the radiation in undesirable directions. In addition, it is found that the sensitivity of directivity to the substrate thickness is considerably decreased and the adverse Fabry-Perot effects of the thick substrate are reduced by the application of the proposed DPC substrate.

  8. Palladium-Catalyzed Dehydrogenative Coupling: An Efficient Synthetic Strategy for the Construction of the Quinoline Core

    PubMed Central

    Carral-Menoyo, Asier; Ortiz-de-Elguea, Verónica; Martinez-Nunes, Mikel; Sotomayor, Nuria; Lete, Esther

    2017-01-01

    Palladium-catalyzed dehydrogenative coupling is an efficient synthetic strategy for the construction of quinoline scaffolds, a privileged structure and prevalent motif in many natural and biologically active products, in particular in marine alkaloids. Thus, quinolines and 1,2-dihydroquinolines can be selectively obtained in moderate-to-good yields via intramolecular C–H alkenylation reactions, by choosing the reaction conditions. This methodology provides a direct method for the construction of this type of quinoline through an efficient and atom economical procedure, and constitutes significant advance over the existing procedures that require preactivated reaction partners. PMID:28867803

  9. Design of multi-energy Helds coupling testing system of vertical axis wind power system

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Yang, Z. X.; Li, G. S.; Song, L.; Ma, C.

    2016-08-01

    The conversion efficiency of wind energy is the focus of researches and concerns as one of the renewable energy. The present methods of enhancing the conversion efficiency are mostly improving the wind rotor structure, optimizing the generator parameters and energy storage controller and so on. Because the conversion process involves in energy conversion of multi-energy fields such as wind energy, mechanical energy and electrical energy, the coupling effect between them will influence the overall conversion efficiency. In this paper, using system integration analysis technology, a testing system based on multi-energy field coupling (MEFC) of vertical axis wind power system is proposed. When the maximum efficiency of wind rotor is satisfied, it can match to the generator function parameters according to the output performance of wind rotor. The voltage controller can transform the unstable electric power to the battery on the basis of optimizing the parameters such as charging times, charging voltage. Through the communication connection and regulation of the upper computer system (UCS), it can make the coupling parameters configure to an optimal state, and it improves the overall conversion efficiency. This method can test the whole wind turbine (WT) performance systematically and evaluate the design parameters effectively. It not only provides a testing method for system structure design and parameter optimization of wind rotor, generator and voltage controller, but also provides a new testing method for the whole performance optimization of vertical axis wind energy conversion system (WECS).

  10. Intimate Partner Violence in Interracial Couples: A Comparison to White and Ethnic Minority Monoracial Couples

    ERIC Educational Resources Information Center

    Fusco, Rachel A.

    2010-01-01

    The number of interracial couples in the U.S. is growing, but they often receive little support. Although previous studies have explored the relationship between low social support and decreased relationship satisfaction in interracial couples, there are few studies on intimate partner violence (IPV) in these couples. To better understand IPV in…

  11. A soft-switching coupled inductor bidirectional DC-DC converter with high-conversion ratio

    NASA Astrophysics Data System (ADS)

    Chao, Kuei-Hsiang; Jheng, Yi-Cing

    2018-01-01

    A soft-switching bidirectional DC-DC converter is presented herein as a way to improve the conversion efficiency of a photovoltaic (PV) system. Adoption of coupled inductors enables the presented converter not only to provide a high-conversion ratio but also to suppress the transient surge voltage via the release of the energy stored in leakage flux of the coupled inductors, and the cost can kept down consequently. A combined use of a switching mechanism and an auxiliary resonant branch enables the converter to successfully perform zero-voltage switching operations on the main switches and improves the efficiency accordingly. It was testified by experiments that our proposed converter works relatively efficiently in full-load working range. Additionally, the framework of the converter intended for testifying has high-conversion ratio. The results of a test, where a generating system using PV module array coupled with batteries as energy storage device was used as the low-voltage input side, and DC link was used as high-voltage side, demonstrated our proposed converter framework with high-conversion ratio on both high-voltage and low-voltage sides.

  12. Light coupling for on-chip optical interconnects

    NASA Astrophysics Data System (ADS)

    Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Li, Yuanhang; Cai, Wei; Li, Xin; Wang, Yongjin

    2017-12-01

    An on-chip optical interconnect of a light emitter, waveguide and photodetector based on p-n junction InGaN/GaN multiple quantum wells (MQWs) is fabricated to investigate the light coupling efficiency of suspended waveguides connecting the light emitter and photodetector. Optical characterizations indicate that the photocurrent of the photodetector is mainly induced by the emitted light that is transmitted through the waveguides. Suspended waveguides with and without air gaps are reported in this paper. A 1 mA current injection into the light emitter induces a photocurrent of 17.3 nA and 205.5 nA for the photodetector connected to the waveguides that with 10 μm air gaps and without air gaps, respectively. Finite-difference time-domain simulations are performed to analyze the gap effect on the coupling efficiency of the light transmission. Both the gap distance and the index variation of the gap materials are analyzed to verify the potential optical sensing functions of the on-chip optical interconnect. A possible strategy for increasing the light coupling efficiency is proven by simulations.

  13. Basic experimental study of the coupling between flow instabilities and incident sound

    NASA Astrophysics Data System (ADS)

    Ahuja, K. K.

    1984-03-01

    Whether a solid trailing edge is required to produce efficient coupling between sound and instability waves in a shear layer was investigated. The differences found in the literature on the theoretical notions about receptivity, and a need to resolve them by way of well-planned experiments are discussed. Instability waves in the shear layer of a subsonic jet, excited by a point sound source located external to the jet, were first visualized using an ensemble averaging technique. Various means were adopted to shield the sound reaching the nozzle lip. It was found that the low frequency sound couples more efficiently at distances downstream of the nozzle. To substantiate the findings further, a supersonic screeching jet was tested such that it passed through a small opening in a baffle placed parallel to the exit plane. The measured feedback or screech frequencies and also the excited flow disturbances changed drastically on traversing the baffle axially thus providing a strong indication that a trailing edge is not necessary for efficient coupling between sound and flow.

  14. Basic experimental study of the coupling between flow instabilities and incident sound

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.

    1984-01-01

    Whether a solid trailing edge is required to produce efficient coupling between sound and instability waves in a shear layer was investigated. The differences found in the literature on the theoretical notions about receptivity, and a need to resolve them by way of well-planned experiments are discussed. Instability waves in the shear layer of a subsonic jet, excited by a point sound source located external to the jet, were first visualized using an ensemble averaging technique. Various means were adopted to shield the sound reaching the nozzle lip. It was found that the low frequency sound couples more efficiently at distances downstream of the nozzle. To substantiate the findings further, a supersonic screeching jet was tested such that it passed through a small opening in a baffle placed parallel to the exit plane. The measured feedback or screech frequencies and also the excited flow disturbances changed drastically on traversing the baffle axially thus providing a strong indication that a trailing edge is not necessary for efficient coupling between sound and flow.

  15. Improving the fiber coupling efficiency for DARWIN by loss-less shaping of the receive beams

    NASA Astrophysics Data System (ADS)

    Voland, Ch.; Weigel, Th.; Dreischer, Th.; Wallner, O.; Ergenzinger, K.; Ries, H.; Jetter, R.; Vosteen, A.

    2017-11-01

    For the DARWIN mission the extremely low planet signal levels require an optical instrument design with utmost efficiency to guarantee the required science performance. By shaping the transverse amplitude and phase distributions of the receive beams, the singlemode fibre coupling efficiency can be increased to almost 100%, thus allowing for a gain of more than 20% compared to conventional designs. We show that the use of "tailored freeform surfaces" for purpose of beam shaping dramatically reduces the coupling degradations, which otherwise result from mode mismatch between the Airy pattern of the image and the fibre mode, and therefore allows for achieving a performance close to the physical limitations. We present an application of tailored surfaces for building a beam shaping optics that shall enhance fibre coupling performance as core part of a space based interferometer in the future DARWIN mission and present performance predictions by wave-optical simulations. We assess the feasibility of manufacturing the corresponding tailored surfaces and describe the proof of concept demonstrator we use for experimental performance verification.

  16. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.

    PubMed

    Harne, Ryan L

    2012-07-01

    Conversion of ambient vibrational energy into electric power has been the impetus of much modern research. The traditional analysis has focused on absolute electrical power output from the harvesting devices and efficiency defined as the convertibility of an infinite resource of vibration excitation into power. This perspective has limited extensibility when applying resonant harvesters to host resonant structures when the inertial influence of the harvester is more significant. Instead, this work pursues a fundamental understanding of the coupled dynamics of a main mass-spring-damper system to which an electromagnetic or piezoelectric mass-spring-damper is attached. The governing equations are derived, a metric of efficiency is presented, and analysis is undertaken. It is found that electromagnetic energy harvesting efficiency and maximum power output is limited by the strength of the coupling such that no split system resonances are induced for a given mass ratio. For piezoelectric harvesters, only the coupling strength and certain design requirements dictate maximum power and efficiency achievable. Since the harvesting circuitry must "follow" the split resonances as the piezoelectric harvesters become more massive, the optimum design of piezoelectric harvesters appears to be more involved than for electromagnetic devices.

  17. Efficient self-consistent viscous-inviscid solutions for unsteady transonic flow

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.

    1985-01-01

    An improved method is presented for coupling a boundary layer code with an unsteady inviscid transonic computer code in a quasi-steady fashion. At each fixed time step, the boundary layer and inviscid equations are successively solved until the process converges. An explicit coupling of the equations is described which greatly accelerates the convergence process. Computer times for converged viscous-inviscid solutions are about 1.8 times the comparable inviscid values. Comparison of the results obtained with experimental data on three airfoils are presented. These comparisons demonstrate that the explicitly coupled viscous-inviscid solutions can provide efficient predictions of pressure distributions and lift for unsteady two-dimensional transonic flows.

  18. Efficient self-consistent viscous-inviscid solutions for unsteady transonic flow

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.

    1985-01-01

    An improved method is presented for coupling a boundary layer code with an unsteady inviscid transonic computer code in a quasi-steady fashion. At each fixed time step, the boundary layer and inviscid equations are successively solved until the process converges. An explicit coupling of the equations is described which greatly accelerates the convergence process. Computer times for converged viscous-inviscid solutions are about 1.8 times the comparable inviscid values. Comparison of the results obtained with experimental data on three airfoils are presented. These comparisons demonstrate that the explicitly coupled viscous-inviscid solutions can provide efficient predictions of pressure distributions and lift for unsteady two-dimensional transonic flow.

  19. Coupling Single-Mode Fiber to Uniform and Symmetrically Tapered Thin-Film Waveguide Structures Using Gadolinium Gallium Garnet

    NASA Technical Reports Server (NTRS)

    Gadi, Jagannath; Yalamanchili, Raj; Shahid, Mohammad

    1995-01-01

    The need for high efficiency components has grown significantly due to the expanding role of fiber optic communications for various applications. Integrated optics is in a state of metamorphosis and there are many problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of coupling single-mode fibers to thin-film devices for integrated optics. In this paper, optical coupling between a single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel tapered structure presented in this paper is shown to produce perfect match for power transfer.

  20. Efficient multi-mode to single-mode coupling in a photonic lantern.

    PubMed

    Noordegraaf, Danny; Skovgaard, Peter M W; Nielsen, Martin D; Bland-Hawthorn, Joss

    2009-02-02

    We demonstrate the fabrication of a high performance multi-mode (MM) to single-mode (SM) splitter or "photonic lantern", first described by Leon-Saval et al. (2005). Our photonic lantern is a solid all-glass version, and we show experimentally that this device can be used to achieve efficient and reversible coupling between a MM fiber and a number of SM fibers, when perfectly matched launch conditions into the MM fiber are ensured. The fabricated photonic lantern has a coupling loss for a MM to SM tapered transition of only 0.32 dB which proves the feasibility of the technology.

  1. Noise-assisted energy transport in electrical oscillator networks with off-diagonal dynamical disorder

    PubMed Central

    León-Montiel, Roberto de J.; Quiroz-Juárez, Mario A.; Quintero-Torres, Rafael; Domínguez-Juárez, Jorge L.; Moya-Cessa, Héctor M.; Torres, Juan P.; Aragón, José L.

    2015-01-01

    Noise is generally thought as detrimental for energy transport in coupled oscillator networks. However, it has been shown that for certain coherently evolving systems, the presence of noise can enhance, somehow unexpectedly, their transport efficiency; a phenomenon called environment-assisted quantum transport (ENAQT) or dephasing-assisted transport. Here, we report on the experimental observation of such effect in a network of coupled electrical oscillators. We demonstrate that by introducing stochastic fluctuations in one of the couplings of the network, a relative enhancement in the energy transport efficiency of 22.5 ± 3.6% can be observed. PMID:26610864

  2. Aeromechanical stability of helicopters with composite rotor blades in forward flight

    NASA Technical Reports Server (NTRS)

    Smith, Edward C.; Chopra, Inderjit

    1992-01-01

    The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forward flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.

  3. Air and ground resonance of helicopters with elastically tailored composite rotor blades

    NASA Technical Reports Server (NTRS)

    Smith, Edward C.; Chopra, Inderjit

    1993-01-01

    The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forwrad flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.

  4. Fine-tuning device performances of small molecule solar cells via the more polarized DPP-attached donor units.

    PubMed

    Huang, Jianhua; Jia, Hui; Li, Liangjie; Lu, Zhenhuan; Zhang, Wenqing; He, Weiwei; Jiang, Bo; Tang, Ailing; Tan, Zhan'ao; Zhan, Chuanlang; Li, Yongfang; Yao, Jiannian

    2012-11-07

    Three solution-processable small molecules of DPPT, DPPSe and DPPTT were synthesized by Stille coupling through attaching donor units of thiophene (T), selenophene (Se) and thieno[3,2-b]thiophene (TT) to the diketopyrrolopyrrole (DPP) core, respectively. Replacement of the T donors with the more polarized Se units results in a balance between the a and b direction packing and an obvious increase of the power conversion efficiency (PCE) from 1.90% to 2.33% with the increase of the short-circuit current (I(sc)) from 5.59 to 5.81 mA cm(-2) and the open-circuit voltage (V(oc)) from 0.78 V to 0.86 under the small molecule/acceptor ratio of 3 : 1. However, introduction of the conjugation-enlarged TT groups (versus the T units) leads to a decrease of the PCE, down to 1.70%, with a significant decrease of the fill factor (FF) (38% versus 44%), due to its poor film-forming characteristics.

  5. [Coupling effects of periodic rewatering after drought stress and nitrogen fertilizer on growth and water and nitrogen productivity of Coffea arabica].

    PubMed

    Hao, Kun; Liu, Xiao Gang; Zhang, Yan; Han, Zhi Hui; Yu, Ning; Yang, Qi Liang; Liu, Yan Wei

    2017-12-01

    The effects of periodic rewatering after drought stress and nitrogen fertilizer on growth, yield, photosynthetic characteristics of leaves and water and nitrogen productivity of Coffea arabica (Katim P7963) were studied under different nitrogen application levels in 2.5 consecutive years. Irrigation (periodic rewatering after drought stress) and nitrogen were designed as two factors, with four modes of irrigation, namely, full irrigation (I F-F : 100%ET 0 +100%ET 0 , ET 0 was reference crop evapotranspiration), rewatering after light drought stress (I L-F : 80%ET 0 +100%ET 0 ), rewatering after moderate drought stress (I M-F : 60%ET 0 +100%ET 0 ) and rewatering after severe drought stress (I S-F : 40%ET 0 +100%ET 0 ), and three levels of nitrogen, namely, high nitrogen (N H : 750 kg N·hm -2 each time), middle nitrogen (N M : 500 kg N·hm -2 each time), low nitrogen (N L : 250 kg N·hm -2 each time), and nitrogen was equally applied for 4 times. The results showed that irrigation and nitrogen had significant effect on plant height, stem diameter, yield and water and nitrogen productivity of C. arabica, and plant height and stem diameter showed S-curve with the day ordinal number, and leaf photosynthesis decreased significantly under drought stress but most photosynthesis index recovered somewhat after rewatering. Compared with I F-F , I L-F increased dry bean yield by 6.9%, while I M-F and I S-F decreased dry bean yield by 15.2% and 38.5%, respectively; I L-F and I M-F increased water use efficiency by 18.8% and 6.0%, respectively, while I S-F decreased water use efficiency by 12.1%; I L-F increased nitrogen partial productivity by 6.1%, while I M-F and I S-F decreased nitrogen partial productivity by 14.0% and 36.0%, respectively. Compared with N H , N M increased dry bean yield and water use efficiency by 20.9% and 19.3%, while N L decreased dry bean yield and water use efficiency by 42.4% and 41.9%, respectively; N M and N L increased nitrogen partial productivity by 81.4% and 72.9%, respectively. Compared with I F-F N H , I L-F N M increased dry bean yield, water use efficiency and nitrogen partial productivity by 37.6%, 52.9% and 106.4%, respectively. Regression analysis showed that the yield of dry bean was the maximum (2362 kg·hm -2 ) when the irrigation amount was 318 mm and the nitrogen application amount was 583 kg·hm -2 ; the water use efficiency was the maximum (0.78 kg·m -3 ) when the irrigationamount was 295 mm and the nitrogen application amount was 584 kg·hm -2 , that's to say when yield of dry bean and water use efficiency reach the maximum value at the same time, the combination was the closest to I L-F N M . Therefore, the best combination of water and nitrogen model for C. arabica was I L-F N M .

  6. Palladium-catalyzed domino C,N-coupling/carbonylation/Suzuki coupling reaction: an efficient synthesis of 2-aroyl-/heteroaroylindoles.

    PubMed

    Arthuis, Martin; Pontikis, Renée; Florent, Jean-Claude

    2009-10-15

    A convenient one-pot synthesis of 2-aroylindoles using a domino palladium-catalyzed C,N-coupling/carbonylation/C,C-coupling sequence is described. The reaction involved easily prepared 2-gem-dibromovinylanilines and boronic acids under carbon monoxide. Optimized reaction conditions allowed the construction of a wide variety of highly functionalized 2-aroyl-/heteroaroylindoles in satisfactory yields.

  7. Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions

    PubMed Central

    Kolenda, Stefan; Machon, Peter

    2016-01-01

    Background: Thermoelectric effects result from the coupling of charge and heat transport and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron–hole symmetry, which is usually quite small in metal structures. In addition, thermoelectric effects decrease towards low temperatures, which usually makes them vanishingly small in metal nanostructures in the sub-Kelvin regime. Results: We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybrid structures. We investigate the dependence of thermoelectric currents on the thermal excitation, as well as on the presence of a dc bias voltage across the junction. Conclusion: Large thermoelectric effects are observed in superconductor/ferromagnet and superconductor/normal-metal hybrid structures. The spin-independent signals observed under finite voltage bias are shown to be reciprocal to the physics of superconductor/normal-metal microrefrigerators. The spin-dependent thermoelectric signals in the linear regime are due to the coupling of spin and heat transport, and can be used to design more efficient refrigerators. PMID:28144509

  8. Concerted One-Electron Two-Proton Transfer Processes in Models Inspired by the Tyr-His Couple of Photosystem II

    DOE PAGES

    Huynh, Mioy T.; Mora, S. Jimena; Villalba, Matias; ...

    2017-05-09

    Nature employs a TyrZ-His pair as a redox relay that couples proton transfer to the redox process between P680 and the water oxidizing catalyst in photosystem II. Artificial redox relays composed of different benzimidazole–phenol dyads (benzimidazole models His and phenol models Tyr) with substituents designed to simulate the hydrogen bond network surrounding the TyrZ-His pair have been prepared. Furthermore, when the benzimidazole substituents are strong proton acceptors such as primary or tertiary amines, theory predicts that a concerted two proton transfer process associated with the electrochemical oxidation of the phenol will take place. Furthermore, theory predicts a decrease in themore » redox potential of the phenol by ~300 mV and a small kinetic isotope effect (KIE). Indeed, electrochemical, spectroelectrochemical, and KIE experimental data are consistent with these predictions. Our results were obtained by using theory to guide the rational design of artificial systems and have implications for managing proton activity to optimize efficiency at energy conversion sites involving water oxidation and reduction.« less

  9. Synthesis of 1,1-diarylethylenes via efficient iron/copper co-catalyzed coupling of 1-arylvinyl halides with Grignard reagents.

    PubMed

    Hamze, Abdallah; Brion, Jean-Daniel; Alami, Mouad

    2012-06-01

    An efficient access to 1,1-diarylethylenes of biological interest by coupling functionalized aryl Grignard reagents and 1-arylvinyl halides in the presence of FeCl(3)/CuTC is described. This bimetallic system proved to be superior to the use of Fe or Cu catalyst alone. The synthetic utility of this protocol is illustrated in the field of steroid chemistry.

  10. [Pd(μ-Cl)Cl(IPr*)]2: a highly hindered pre-catalyst for the synthesis of tetra-ortho-substituted biaryls via Grignard reagent cross-coupling.

    PubMed

    Lesieur, Mathieu; Slawin, Alexandra M Z; Cazin, Catherine S J

    2014-08-14

    The new well-defined catalyst [Pd(μ-Cl)Cl(IPr*)]2 enables the efficient Grignard reagent cross-coupling for the synthesis of tetra-ortho-substituted biaryls. The high reactivity of the complex is associated with the important bulkiness of the IPr* ligand. The dimer represents the most efficient catalyst reported to date for this challenging transformation.

  11. Simulation of laser radar tooling ball measurements: focus dependence

    NASA Astrophysics Data System (ADS)

    Smith, Daniel G.; Slotwinski, Anthony; Hedges, Thomas

    2015-10-01

    The Nikon Metrology Laser Radar system focuses a beam from a fiber to a target object and receives the light scattered from the target through the same fiber. The system can, among other things, make highly accurate measurements of the position of a tooling ball by locating the angular position of peak signal quality, which is related to the fiber coupling efficiency. This article explores the relationship between fiber coupling efficiency and focus condition.

  12. Technology Assessment for Future MILSATCOM Systems: The EHF Bands

    DTIC Science & Technology

    1979-04-01

    improvements must be pursued to provide long life (7 to 10 years), higher efficiencies and higher power. 1. Current Availability A 4-watt helix TWT ... helix TWT ), adequate bandwidth for communications applications and efficiencies of 40-50%. An example is the 200-watt tube operating at 12 GHz with an...costly than its helix counterpart. In addition, experience with coupled-cavity tubes in space is rare. Consequently, coupled-cavity TWTs will only be

  13. An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy.

    PubMed

    Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Ziqiang; Wang, Zhihua

    2010-01-01

    This paper investigates the design and optimization of a wireless power transmission link targeting Micro-Ball Endoscopy applications. A novel asymmetric resonant coupling structure is proposed to deliver power to an endoscopic Micro-Ball system for image read-out after it is excreted. Such a technology enables many key medical applications with stringent requirements for small system volume and high power delivery efficiency. A prototyping power transmission sub-system of the Micro-Ball system was implemented. It consists of primary coil, middle resonant coil, and cube-like full-direction secondary receiving coils. Our experimental results proved that 200mW of power can be successfully delivered. Such a wireless power transmission capability could satisfy the requirements of the Micro-Ball based endoscopy application. The transmission efficiency is in the range of 41% (worst working condition) to 53% (best working condition). Comparing to conventional structures, Asymmetric Resonant Coupling Structure improves power efficiency by 13%.

  14. High Step-Up DC—DC Converter for AC Photovoltaic Module with MPPT Control

    NASA Astrophysics Data System (ADS)

    Sundar, Govindasamy; Karthick, Narashiman; Rama Reddy, Sasi

    2014-08-01

    This paper presents the high gain step-up BOOST converter which is essential to step up the low output voltage from PV panel to the high voltage according to the requirement of the application. In this paper a high gain BOOST converter with coupled inductor technique is proposed with the MPPT control. Without extreme duty ratios and the numerous turns-ratios of a coupled inductor this converter achieves a high step-up voltage-conversion ratio and the leakage energy of the coupled inductor is efficiently recycled to the load. MPPT control used to extract the maximum power from PV panel by controlling the Duty ratio of the converter. The PV panel, BOOST converter and the MPPT are modeled using Sim Power System blocks in MATLAB/SIMULINK environment. The prototype model of the proposed converter has been implemented with the maximum measured efficiency is up to 95.4% and full-load efficiency is 93.1%.

  15. Cos-Gaussian modal field of a terahertz rectangular metal waveguide filled with multiple slices of dielectric

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Cao, Qing; Zhang, Huifang; Shen, Pengcheng; Xing, Lujing

    2018-06-01

    Based on the TE01 mode of a rectangular metal waveguide and the Gaussian mode of a fiber, we propose the cos-Gaussian mode of a terahertz rectangular metal waveguide filled with multiple slices of dielectric. First, we consider a rectangular metal waveguide filled with an ideal graded-index dielectric along one direction. Furthermore, we replace the graded-index dielectric with multiple slices of dielectric according to the effective medium theory. The modal field, the effective index, and the coupling efficiency of this waveguide are investigated. It is found that the approximately linearly polarized electric field is Gaussian along one dimensionality and cosine along the other one. In addition, the low loss and high coupling efficiency with a Gaussian beam can be acquired at 0.9 THz. By optimization, the coupling efficiency could reach 88.5%.

  16. Transport properties and efficiency of elastically coupled particles in asymmetric periodic potentials

    NASA Astrophysics Data System (ADS)

    Igarashi, Akito; Tsukamoto, Shinji

    2000-02-01

    Biological molecular motors drive unidirectional transport and transduce chemical energy to mechanical work. In order to identify this energy conversion which is a common feature of molecular motors, many workers have studied various physical models, which consist of Brownian particles in spatially periodic potentials. Most of the models are, however, based on "single-particle" dynamics and too simple as models for biological motors, especially for actin-myosin motors, which cause muscle contraction. In this paper, particles coupled by elastic strings in an asymmetric periodic potential are considered as a model for the motors. We investigate the dynamics of the model and calculate the efficiency of energy conversion with the use of molecular dynamical method. In particular, we find that the velocity and efficiency of the elastically coupled particles where the natural length of the springs is incommensurable with the period of the periodic potential are larger than those of the corresponding single particle model.

  17. Magnetic-activated cell sorting for sperm preparation reduces spermatozoa with apoptotic markers and improves the acrosome reaction in couples with unexplained infertility.

    PubMed

    Lee, Tsung-Hsien; Liu, Chung-Hsien; Shih, Yang-Tse; Tsao, Hui-Mei; Huang, Chun-Chia; Chen, Hsiu-Hui; Lee, Maw-Sheng

    2010-04-01

    Couples with unexplained infertility (UI) tend to have low fertilization rates with current IVF procedures. Here, we attempted to identify spermatozoa with apoptotic markers in couples with UI and unsuccessful intrauterine insemination (IUI) and we investigated the efficiency and benefit of magnetic-activated cell sorting (MACS) for sperm preparation in such patients. Sixty couples with UI and two IUI failures were recruited. The sperm were prepared by conventional density gradient centrifugation (DGC) and divided into two aliquots. One aliquot was used as a control and the other was further processed by MACS (D + M). Apoptotic markers were identified using fluorescence-labeled dye and flow cytometry, including externalization of phosphatidylserine (EPS), disrupted mitochondrial membrane potential (MMP) and DNA fragmentation. The fertilization potential of prepared spermatozoa was analyzed by basic semen analysis, computer-aided sperm analysis and the induced acrosome reaction test (IART). After DGC, spermatozoa showed 18.6% EPS, 28.3% disrupted MMP and 13.5% DNA fragmentation. Numbers of spermatozoa with apoptotic markers were significantly reduced by D + M, versus DGC alone (P < 0.001). Although the motility of spermatozoa was slightly decreased after MACS, most sperm motion characteristics were not impaired. Interestingly, the IART significantly improved after D + M, versus DGC alone, especially for the couples with a normal hemizona assay (P < 0.001). The spermatozoa prepared by D + M showed a reduced level of apoptotic markers. Improvement in the IART suggests a high fertilization potential of the processed spermatozoa. The identification of apoptotic markers and use of MACS may be helpful in directing the management plan for patients with UI and multiple IUI failures.

  18. Friction and wear study of NR/SBR blends with Si3N4Filler

    NASA Astrophysics Data System (ADS)

    GaneshKumar, A.; Balaganesan, G.; Sivakumar, M. S.

    2018-04-01

    The aim of this paper is to investigate mechanical and frictional properties of natural rubber/styrene butadiene rubber (NR/SBR) blends with and without silicon nitride (Si3N4) filler. The rubber is surface modified by silane coupling agent (Si-69) for enhancing hydrophobic property. The Si3N4of percentage 0 1, 3, 5 and 7, is incorporated into NR/SBR rubber compounds with 20% precipitated silica. The specimens with and without fillers are prepared as per standard for tensile and friction testing. Fourier transform infrared (FTIR) spectroscopy test is conducted and it is inferred that the coupling agent is covalently bonded on the surface of Si3N4 particles and an organic coating layer is formed. The co-efficient of friction and specific wear rate of NR/SBR blends are examined using an in-house built friction tester in a disc-on-plate (DOP) configuration. The specimens are tested to find coefficient of friction (COF) against steel grip antiskid plate under dry, mud, wet and oil environmental conditions. It is found that the increase in tensile strength and modulus at low percentage of Si3N4 dispersion. It is also observed that increase in sliding friction co-efficient and decrease in wear rate for 1% of Si3N4 dispersion in NR/SBR blends. The friction tested surfaces are inspected using Scanning Electron Microscope (SEM) and 3D non contact surface profiler.

  19. Development and optimization of transferrin-conjugated nanostructured lipid carriers for brain delivery of paclitaxel using Box-Behnken design.

    PubMed

    Emami, Jaber; Rezazadeh, Mahboubeh; Sadeghi, Hojjat; Khadivar, Khashayar

    2017-05-01

    The treatment of brain cancer remains one of the most difficult challenges in oncology. The purpose of this study was to develop transferrin-conjugated nanostructured lipid carriers (Tf-NLCs) for brain delivery of paclitaxel (PTX). PTX-loaded NLCs (PTX-NLCs) were prepared using solvent evaporation method and the impact of various formulation variables were assessed using Box-Behnken design. Optimized PTX-NLC was coupled with transferrin as targeting ligand and in vitro cytotoxicity of it was investigated against U-87 brain cancer cell line. As a result, 14.1 mg of cholesterol, 18.5 mg of triolein, and 0.5% poloxamer were used to prepare the optimal formulation. Mean particle size (PS), zeta potential (ZP), entrapment efficiency (EE), drug loading (DL), mean release time (MRT) of adopted formulation were confirmed to be 205.4 ± 11 nm, 25.7 ± 6.22 mV, 91.8 ± 0.5%, 5.38 ± 0.03% and 29.3 h, respectively. Following conjugation of optimized PTX-NLCs with transferrin, coupling efficiency was 21.3 mg transferrin per mmol of stearylamine; PS and MRT were increased while ZP, EE and DL decreased non-significantly. Tf-PTX-NLCs showed higher cytotoxic activity compared to non-targeted NLCs and free drug. These results indicated that the Tf-PTX-NLCs could potentially be exploited as a delivery system in brain cancer cells.

  20. Interparticle coupling effect of silver-gold heterodimer to enhance light harvesting in ultrathin perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Hu, Zhaosheng; Ma, Tingli; Hayase, Shuzi

    2018-01-01

    Thin perovskite solar cells are under intensive interest since they reduce the amount of absorber layer, especially toxic lead in methylammonium lead iodide (MAPbI3) devices and have wide application in semitransparent and tandem solar cells. However, due to the decrease of the layer thickness, thin perovskite devices with weak light-harvesting have poor performance. Moreover, the performance of plasmonic thin perovskite devices by incorporating noncoupling metal NPs cannot give comparable performance with normal devices. In this perspective, we discuss the implication of employing random silver-gold heterodimers in MAPbI3 solar cells with the aim of establishing some guidelines for the efficient ultrathin perovskite solar cells. This method induces an extraordinarily high light-harvesting for ultrathin perovskite film. And the underlying physical mechanism behind the enhanced absorption is deeply investigated by plasmon hybridization, dipolar-dipolar coupling method and FDTD simulation. We notice that perovskite embedded silver-gold heterodimer overcomes the vanished antibonding plasmon resononse (σ * ) in nonjunction area of gold/silver homodimer. A 150-nm perovskite film with embedded random silver-gold heterodimers with 80 nm size and 25 nm gap distance processes 28.15% absorption enhancement compared to the reference film, which is higher than the reported 10% for gold homodimers. And we also predict a realistic solution-processed, easy, and low-cost fabrication method, which provide a means to realize highly efficient ultrathin perovskite solar cell including other absorber-based photovoltaics.

  1. Light manipulation for organic optoelectronics using bio-inspired moth's eye nanostructures.

    PubMed

    Zhou, Lei; Ou, Qing-Dong; Chen, Jing-De; Shen, Su; Tang, Jian-Xin; Li, Yan-Qing; Lee, Shuit-Tong

    2014-02-10

    Organic-based optoelectronic devices, including light-emitting diodes (OLEDs) and solar cells (OSCs) hold great promise as low-cost and large-area electro-optical devices and renewable energy sources. However, further improvement in efficiency remains a daunting challenge due to limited light extraction or absorption in conventional device architectures. Here we report a universal method of optical manipulation of light by integrating a dual-side bio-inspired moth's eye nanostructure with broadband anti-reflective and quasi-omnidirectional properties. Light out-coupling efficiency of OLEDs with stacked triple emission units is over 2 times that of a conventional device, resulting in drastic increase in external quantum efficiency and current efficiency to 119.7% and 366 cd A(-1) without introducing spectral distortion and directionality. Similarly, the light in-coupling efficiency of OSCs is increased 20%, yielding an enhanced power conversion efficiency of 9.33%. We anticipate this method would offer a convenient and scalable way for inexpensive and high-efficiency organic optoelectronic designs.

  2. Efficient Steplike Carrier Multiplication in Percolative Networks of Epitaxially Connected PbSe Nanocrystals

    DOE PAGES

    Kulkarni, Aditya; Evers, Wiel H.; Tomic, Stanko; ...

    2017-12-14

    Here, carrier multiplication (CM) is a process in which a single photon excites two or more electrons. CM is of interest to enhance the efficiency of a solar cell. Until now, CM in thin films and solar cells of semiconductor nanocrystals (NCs) has been found at photon energies well above the minimum required energy of twice the band gap. The high threshold of CM strongly limits the benefits for solar cell applications. We show that CM is more efficient in a percolative network of directly connected PbSe NCs. The CM threshold is at twice the band gap and increases inmore » a steplike fashion with photon energy. A lower CM efficiency is found for a solid of weaker coupled NCs. This demonstrates that the coupling between NCs strongly affects the CM efficiency. According to device simulations, the measured CM efficiency would significantly enhance the power conversion efficiency of a solar cell.« less

  3. Membrane treatment of liquid wastes from radiological decontamination operations.

    PubMed

    Svittsov, A A; Khubetsov, S B; Volchek, K

    2011-01-01

    The paper focuses on the evaluation of membrane filtration for the treatment of liquid radioactive streams generated in area decontamination operations. In this work, semi-permeable membranes were demonstrated to be effective reducing the volume of wastewater containing cesium and cobalt by two orders of a magnitude. The efficiency of membrane separation was enhanced by employing additives that enlarged the size of target radionuclide species and improved their rejection by the membranes. This was achieved by chelation with synthetic water-soluble polymers and by adsorption on micro particles of adsorbent coupled with micelle formation. The effect of wastewater composition and that of the radionuclide-binding additives on the volume reduction was investigated. Membrane treatment is expected to help simplify further processing and decrease disposal costs.

  4. Progress on LMJ targets for ignition

    NASA Astrophysics Data System (ADS)

    Cherfils-Clérouin, C.; Boniface, C.; Bonnefille, M.; Fremerye, P.; Galmiche, D.; Gauthier, P.; Giorla, J.; Lambert, F.; Laffite, S.; Liberatore, S.; Loiseau, P.; Malinie, G.; Masse, L.; Masson-Laborde, P. E.; Monteil, M. C.; Poggi, F.; Seytor, P.; Wagon, F.; Willien, J. L.

    2010-08-01

    Targets designed to produce ignition on the Laser MegaJoule are presented. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-shaped cocktail hohlraum. 1D and 2D robustness evaluations of these different targets shed light on critical points for ignition, that can be traded off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  5. Two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers and their vertical input coupling properties

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Mu, Xiaoyu; Wang, Gang; Liu, Changlong

    2017-11-01

    By etching two SiO2 optical waveguide slabs separately implanted with 90 keV Ag ions and 60 keV Cu ions at the same dose of 6 × 1016 cm-2, two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers with 600-nm periodicity and 100-nm thickness were fabricated, and their structural and vertical input coupling properties were investigated. Experimental results revealed that the two couplers could convert light beams at wavelengths of 620-880 nm into guided waves with different efficiencies, highlighting the special importance of metal nanoparticles (NPs). Further discussions also revealed that owing to the introduction of periodically distributed metal NPs, the periodical phase modification of the transmitted beam was enhanced drastically, and the nanocomposite veins could behave as efficient light scatterers. As a result, the two couplers were much larger in coupling efficiency than the NP-free one with identical morphological parameters. The above findings may be useful to construct thin and short but efficient surface-relief grating couplers on glass optical waveguides.

  6. A system-level mathematical model for evaluation of power train performance of load-leveled electric-vehicles

    NASA Technical Reports Server (NTRS)

    Purohit, G. P.; Leising, C. J.

    1984-01-01

    The power train performance of load leveled electric vehicles can be compared with that of nonload leveled systems by use of a simple mathematical model. This method of measurement involves a number of parameters including the degree of load leveling and regeneration, the flywheel mechanical to electrical energy fraction, and efficiencies of the motor, generator, flywheel, and transmission. Basic efficiency terms are defined and representative comparisons of a variety of systems are presented. Results of the study indicate that mechanical transfer of energy into and out of the flywheel is more advantageous than electrical transfer. An optimum degree of load leveling may be achieved in terms of the driving cycle, battery characteristics, mode of mechanization, and the efficiency of the components. For state of the art mechanically coupled flyheel systems, load leveling losses can be held to a reasonable 10%; electrically coupled systems can have losses that are up to six times larger. Propulsion system efficiencies for mechanically coupled flywheel systems are predicted to be approximately the 60% achieved on conventional nonload leveled systems.

  7. Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results

    NASA Technical Reports Server (NTRS)

    Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.

    1999-01-01

    The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.

  8. A minimal model of an autonomous thermal motor

    NASA Astrophysics Data System (ADS)

    Fogedby, Hans C.; Imparato, Alberto

    2017-09-01

    We consider a model of a Brownian motor composed of two coupled overdamped degrees of freedom moving in periodic potentials and driven by two heat reservoirs. This model exhibits a spontaneous breaking of symmetry and gives rise to directed transport in the case of a non-vanishing interparticle interaction strength. For strong coupling between the particles we derive an expression for the propagation velocity valid for arbitrary periodic potentials. In the limit of strong coupling the model is equivalent to the Büttiker-Landauer model for a single particle diffusing in an environment with position-dependent temperature. By using numerical calculations of the Fokker-Planck equation and simulations of the Langevin equations we study the model for arbitrary coupling, retrieving many features of the strong-coupling limit. In particular, directed transport emerges even for symmetric potentials. For distinct heat reservoirs the heat currents are well-defined quantities allowing a study of the motor efficiency. We show that the optimal working regime occurs for moderate coupling. Finally, we introduce a model with discrete phase space which captures the essential features of the continuous model, can be solved in the limit of weak coupling, and exhibits a larger efficiency than the continuous counterpart.

  9. Polymer taper bridge for silicon waveguide to single mode waveguide coupling

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Middlebrook, Christopher T.

    2016-03-01

    Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.

  10. Mechanical design of walking machines.

    PubMed

    Arikawa, Keisuke; Hirose, Shigeo

    2007-01-15

    The performance of existing actuators, such as electric motors, is very limited, be it power-weight ratio or energy efficiency. In this paper, we discuss the method to design a practical walking machine under this severe constraint with focus on two concepts, the gravitationally decoupled actuation (GDA) and the coupled drive. The GDA decouples the driving system against the gravitational field to suppress generation of negative power and improve energy efficiency. On the other hand, the coupled drive couples the driving system to distribute the output power equally among actuators and maximize the utilization of installed actuator power. First, we depict the GDA and coupled drive in detail. Then, we present actual machines, TITAN-III and VIII, quadruped walking machines designed on the basis of the GDA, and NINJA-I and II, quadruped wall walking machines designed on the basis of the coupled drive. Finally, we discuss walking machines that travel on three-dimensional terrain (3D terrain), which includes the ground, walls and ceiling. Then, we demonstrate with computer simulation that we can selectively leverage GDA and coupled drive by walking posture control.

  11. Splicing Efficiently Couples Optical Fibers

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.

    1985-01-01

    Method of splicing single-mode optical fibers results in very low transmission losses through joined fiber ends. Coupling losses between joined optical-fiber ends only 0.1 dB. Method needs no special operator training.

  12. Impact of the coupling effect and the configuration on a compact rectenna array

    NASA Astrophysics Data System (ADS)

    Rivière, J.; Douyere, A.; Luk, J. D. Lan Sun

    2014-10-01

    This paper proposes an experimental study of the coupling effect of a rectenna array. The rectifying antenna consists of a compact and efficient rectifying circuit in a series topology, coupled with a small metamaterial-inspired antenna. The measurements are investigated in the X plane on the rectenna array's behavior, with series and parallel DC- combining configuration of two and three spaced rectennas from 3 cm to 10 cm. This study shows that the maximum efficiency is reached for the series configuration, with a resistive load of 10 kQ. The optimal distance is not significant for series or parallel configuration. Then, a comparison between a rectenna array with non-optimal mutual coupling and a more traditional patch rectenna is performed. Finally, a practical application is tested to demonstrate the effectiveness of such small rectenna array.

  13. [Modeling and analysis of volume conduction based on field-circuit coupling].

    PubMed

    Tang, Zhide; Liu, Hailong; Xie, Xiaohui; Chen, Xiufa; Hou, Deming

    2012-08-01

    Numerical simulations of volume conduction can be used to analyze the process of energy transfer and explore the effects of some physical factors on energy transfer efficiency. We analyzed the 3D quasi-static electric field by the finite element method, and developed A 3D coupled field-circuit model of volume conduction basing on the coupling between the circuit and the electric field. The model includes a circuit simulation of the volume conduction to provide direct theoretical guidance for energy transfer optimization design. A field-circuit coupling model with circular cylinder electrodes was established on the platform of the software FEM3.5. Based on this, the effects of electrode cross section area, electrode distance and circuit parameters on the performance of volume conduction system were obtained, which provided a basis for optimized design of energy transfer efficiency.

  14. Comparison of efficiency and feedback characteristics of techniques of coupling semiconductor lasers into single-mode fiber.

    PubMed

    Wenke, G; Zhu, Y

    1983-12-01

    The coupling of CSP lasers to single-mode fibers with different coupling structures made on the fiber face is investigated. In this case easy to make coupling arrangements such as tapers and microlenses, result in a high launching efficiency (approximately 2-dB loss), in contrast to launching from gain-guided lasers with strong astigmatism and a broader far-field pattern. Index-guiding lasers exhibit, however, a higher sensitivity to optical feedback. Laser output power and wavelength are changed due to reflections from the fiber tip. Critical distances exist which lead to a highly unstable laser spectrum. A comparison of the influence of various fiber faces on laser power and wavelength stability is presented. It is concluded that a tapered fiber end with a large working distance reduces the influence on the laser's performance.

  15. Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations

    PubMed Central

    Brocke, Ekaterina; Bhalla, Upinder S.; Djurfeldt, Mikael; Hellgren Kotaleski, Jeanette; Hanke, Michael

    2016-01-01

    Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. First, the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. Then, the components can be defined by different mathematical formalisms. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, in neuroscience, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components comprising a multiscale test problem in neuroscience. We introduce an efficient coupling method based on the second-order backward differentiation formula (BDF2) numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000). The method shows a significant advantage over conventional fixed step size solvers used in neuroscience for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the importance of an appropriate approximation of exchanged variables during the simulation. The analysis shows a substantial impact of these aspects on the solution accuracy in the application to our multiscale neuroscientific test problem. We believe that the ideas presented in the paper may essentially contribute to the development of a robust and efficient framework for multiscale brain modeling and simulations in neuroscience. PMID:27672364

  16. Advanced Silicon Photonic Device Architectures for Optical Communications: Proposals and Demonstrations

    NASA Astrophysics Data System (ADS)

    Sacher, Wesley David

    Photonic integrated circuits implemented on silicon (Si) hold the potential for densely integrated electro-optic and passive devices manufactured by the high-volume fabrication and sophisticated assembly processes used for complementary metal-oxide-semiconductor (CMOS) electronics. However, high index contrast Si photonics has a number of functional limitations. In this thesis, several devices are proposed, designed, and experimentally demonstrated to overcome challenges in the areas of resonant modulation, waveguide loss, fiber-to-chip coupling, and polarization control. The devices were fabricated using foundry services at IBM and A*STAR Institute of Microelectronics (IME). First, we describe coupling modulated microrings, in which the coupler between a microring and the bus waveguide is modulated. The device circumvents the modulation bandwidth vs. resonator linewidth trade-off of conventional intracavity modulated microrings. We demonstrate a Si coupling modulated microring with a small-signal modulation response free of the parasitic resonator linewidth limitations at frequencies up to about 6x the linewidth. Comparisons of eye diagrams show that coupling modulation achieved data rates > 2x the rate attainable with intracavity modulation. Second, we demonstrate a silicon nitride (Si3N4)-on-Si photonic platform with independent Si3N4 and Si waveguides and taper transitions to couple light between the layers. The platform combines the excellent passive waveguide properties of Si3N4 and the compatibility of Si waveguides with electro-optic devices. Within the platform, we propose and demonstrate dual-level, Si3N 4-on-Si, fiber-to-chip grating couplers that simultaneously have wide bandwidths and high coupling efficiencies. Conventional Si and Si3N 4 grating couplers suffer from a trade-off between bandwidth and coupling efficiency. The dual-level grating coupler achieved a peak coupling efficiency of -1.3 dB and a 1-dB bandwidth of 80 nm, a record for the coupling efficiency-bandwidth product. Finally, we describe polarization rotator-splitters and controllers based on mode conversion between the fundamental transverse magnetic polarized mode and a high order transverse electric polarized mode in vertically asymmetric waveguides. We demonstrate the first polarization rotator-splitters and controllers that are fully compatible with standard active Si photonic platforms and extend the concept to our Si3N4-on-Si photonic platform.

  17. Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations.

    PubMed

    Brocke, Ekaterina; Bhalla, Upinder S; Djurfeldt, Mikael; Hellgren Kotaleski, Jeanette; Hanke, Michael

    2016-01-01

    Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. First, the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. Then, the components can be defined by different mathematical formalisms. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, in neuroscience, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components comprising a multiscale test problem in neuroscience. We introduce an efficient coupling method based on the second-order backward differentiation formula (BDF2) numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000). The method shows a significant advantage over conventional fixed step size solvers used in neuroscience for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the importance of an appropriate approximation of exchanged variables during the simulation. The analysis shows a substantial impact of these aspects on the solution accuracy in the application to our multiscale neuroscientific test problem. We believe that the ideas presented in the paper may essentially contribute to the development of a robust and efficient framework for multiscale brain modeling and simulations in neuroscience.

  18. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less

  19. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE PAGES

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    2016-04-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less

  20. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies.

    PubMed

    Sahinkaya, Erkan

    2009-05-15

    Sulfidogenic treatment of sulfate (2-10g/L) and zinc (65-677mg/L) containing simulated wastewater was studied in a mesophilic (35 degrees C) CSTR. Ethanol was supplemented (COD/sulfate=0.67) as carbon and energy source for sulfate-reducing bacteria (SRB). The robustness of the system was studied by increasing Zn, COD and sulfate loadings. Sulfate removal efficiency, which was 70% at 2g/L feed sulfate concentration, steadily decreased with increasing feed sulfate concentration and reached 40% at 10g/L. Over 99% Zn removal was attained due to the formation of zinc-sulfide precipitate. COD removal efficiency at 2g/L feed sulfate concentration was over 94%, whereas, it steadily decreased due to the accumulation of acetate at higher loadings. Alkalinity produced from acetate oxidation increased wastewater pH remarkably when feed sulfate concentration was 5g/L or lower. Electron flow from carbon oxidation to sulfate reduction averaged 83+/-13%. The rest of the electrons were most likely coupled with fermentative reactions as the amount of methane production was insignificant. The developed ANN model was very successful as an excellent to reasonable match was obtained between the measured and the predicted concentrations of sulfate (R=0.998), COD (R=0.993), acetate (R=0.976) and zinc (R=0.827) in the CSTR effluent.

  1. Efficiency of broadband terahertz rectennas based on self-switching nanodiodes

    NASA Astrophysics Data System (ADS)

    Briones, Edgar; Cortes-Mestizo, Irving E.; Briones, Joel; Droopad, Ravindranath; Espinosa-Vega, Leticia I.; Vilchis, Heber; Mendez-Garcia, Victor H.

    2017-04-01

    The authors investigate the efficiency of a series of broadband rectennas designed to harvest the free-propagating electromagnetic energy at terahertz frequencies. We analyze by simulations the case of self-complementary square- and Archimedean-spiral antennas coupled to L-shaped self-switching diodes (L-SSDs). First, the geometry (i.e., the width and length of the channel) of the L-SSD was optimized to obtain a remarkable diode-like I-V response. Subsequently, the optimized L-SSD geometry was coupled to both types of spiral antennas and their characteristic impedance was studied. Finally, the energy conversion efficiency was evaluated for both rectenna architectures.

  2. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Lesne, E.; Fu, Yu; Oyarzun, S.; Rojas-Sánchez, J. C.; Vaz, D. C.; Naganuma, H.; Sicoli, G.; Attané, J.-P.; Jamet, M.; Jacquet, E.; George, J.-M.; Barthélémy, A.; Jaffrès, H.; Fert, A.; Bibes, M.; Vila, L.

    2016-12-01

    The spin-orbit interaction couples the electrons’ motion to their spin. As a result, a charge current running through a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice versa (inverse spin Hall effect, ISHE). The emergence of SHE and ISHE as charge-to-spin interconversion mechanisms offers a variety of novel spintronic functionalities and devices, some of which do not require any ferromagnetic material. However, the interconversion efficiency of SHE and ISHE (spin Hall angle) is a bulk property that rarely exceeds ten percent, and does not take advantage of interfacial and low-dimensional effects otherwise ubiquitous in spintronic hetero- and mesostructures. Here, we make use of an interface-driven spin-orbit coupling mechanism--the Rashba effect--in the oxide two-dimensional electron system (2DES) LaAlO3/SrTiO3 to achieve spin-to-charge conversion with unprecedented efficiency. Through spin pumping, we inject a spin current from a NiFe film into the oxide 2DES and detect the resulting charge current, which can be strongly modulated by a gate voltage. We discuss the amplitude of the effect and its gate dependence on the basis of the electronic structure of the 2DES and highlight the importance of a long scattering time to achieve efficient spin-to-charge interconversion.

  3. Organocatalytic Upgrading of Furfural and 5-Hydroxymethyl Furfural to C10 and C12 Furoins with Quantitative Yield and Atom-Efficiency

    PubMed Central

    Zang, Hongjun; Chen, Eugene Y. X.

    2015-01-01

    There is increasing interest in the upgrading of C5 furfural (FF) and C6 5-hydroxymethyl furfural (HMF) into C10 and C12 furoins as higher energy-density intermediates for renewable chemicals, materials, and biofuels. This work utilizes the organocatalytic approach, using the in situ generated N,S-heterocyclic carbene catalyst derived from thiazolium ionic liquids (ILs), to achieve highly efficient self-coupling reactions of FF and HMF. Specifically, variations of the thiazolium IL structure have led to the most active and efficient catalyst system of the current series, which is derived from a new thiazolium IL carrying the electron-donating acetate group at the 5-ring position. For FF coupling by this IL (0.1 mol %, 60 °C, 1 h), when combined with Et3N, furoin was obtained in >99% yield. A 97% yield of the C12 furoin was also achieved from the HMF coupling by this catalyst system (10 mol % loading, 120 °C, 3 h). On the other hand, the thiazolium IL bearing the electron-withdrawing group at the 5-ring position is the least active and efficient catalyst. The mechanistic aspects of the coupling reaction by the thiazolium catalyst system have also been examined and a mechanism has been proposed. PMID:25830482

  4. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    PubMed

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  5. Highly selective and sensitive method for Cu2 + detection based on chiroptical activity of L-Cysteine mediated Au nanorod assemblies

    NASA Astrophysics Data System (ADS)

    Abbasi, Shahryar; Khani, Hamzeh

    2017-11-01

    Herein, we demonstrated a simple and efficient method to detect Cu2 + based on amplified optical activity in the chiral nanoassemblies of gold nanorods (Au NRs). L-Cysteine can induce side-by-side or end-to-end assembly of Au NRs with an evident plasmonic circular dichroism (PCD) response due to coupling between surface plasmon resonances (SPR) of Au NRs and the chiral signal of L-Cys. Because of the obvious stronger plasmonic circular dichrosim (CD) response of the side-by-side assembly compared with the end-to-end assemblies, SS assembled Au NRs was selected as a sensitive platform and used for Cu2 + detection. In the presence of Cu2 +, Cu2 + can catalyze O2 oxidation of cysteine to cystine. With an increase in Cu2 + concentration, the L-Cysteine-mediated assembly of Au NRs decreased because of decrease in the free cysteine thiol groups, and the PCD signal decreased. Taking advantage of this method, Cu2 + could be detected in the concentration range of 20 pM-5 nM. Under optimal conditions, the calculated detection limit was found to be 7 pM.

  6. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover.

    PubMed

    Feng, S; Ng, C W W; Leung, A K; Liu, H W

    2017-10-01

    Microbial aerobic methane oxidation in unsaturated landfill cover involves coupled water, gas and heat reactive transfer. The coupled process is complex and its influence on methane oxidation efficiency is not clear, especially in steep covers where spatial variations of water, gas and heat are significant. In this study, two-dimensional finite element numerical simulations were carried out to evaluate the performance of unsaturated sloping cover. The numerical model was calibrated using a set of flume model test data, and was then subsequently used for parametric study. A new method that considers transient changes of methane concentration during the estimation of the methane oxidation efficiency was proposed and compared against existing methods. It was found that a steeper cover had a lower oxidation efficiency due to enhanced downslope water flow, during which desaturation of soil promoted gas transport and hence landfill gas emission. This effect was magnified as the cover angle and landfill gas generation rate at the bottom of the cover increased. Assuming the steady-state methane concentration in a cover would result in a non-conservative overestimation of oxidation efficiency, especially when a steep cover was subjected to rainfall infiltration. By considering the transient methane concentration, the newly-modified method can give a more accurate oxidation efficiency. Copyright © 2017. Published by Elsevier Ltd.

  7. Alternative RF coupling configurations for H{sup −} ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briefi, S.; Fantz, U.; AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg

    2015-04-08

    RF heated sources for negative hydrogen ions both for fusion and accelerators require very high RF powers in order to achieve the required H{sup −} current what poses high demands on the RF generators and the RF circuit. Therefore it is highly desirable to improve the RF efficiency of the sources. This could be achieved by applying different RF coupling concepts than the currently used inductive coupling via a helical antenna, namely Helicon coupling or coupling via a planar ICP antenna enhanced with ferrites. In order to investigate the feasibility of these concepts, two small laboratory experiments have been setmore » up. The PlanICE experiment, where the enhanced inductive coupling is going to be investigated, is currently under assembly. At the CHARLIE experiment systematic measurements concerning Helicon coupling in hydrogen and deuterium are carried out. The investigations show that a prominent feature of Helicon discharges occurs: the so-called low-field peak. This is a local improvement of the coupling efficiency at a magnetic field strength of a few mT which results in an increased electron density and dissociation degree. The full Helicon mode has not been achieved yet due to the limited available RF power and magnetic field strength but it might be sufficient for the application of the coupling concept to ion sources to operate the discharge in the low-field-peak region.« less

  8. Alternative RF coupling configurations for H- ion sources

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Gutmann, P.; Fantz, U.

    2015-04-01

    RF heated sources for negative hydrogen ions both for fusion and accelerators require very high RF powers in order to achieve the required H- current what poses high demands on the RF generators and the RF circuit. Therefore it is highly desirable to improve the RF efficiency of the sources. This could be achieved by applying different RF coupling concepts than the currently used inductive coupling via a helical antenna, namely Helicon coupling or coupling via a planar ICP antenna enhanced with ferrites. In order to investigate the feasibility of these concepts, two small laboratory experiments have been set up. The PlanICE experiment, where the enhanced inductive coupling is going to be investigated, is currently under assembly. At the CHARLIE experiment systematic measurements concerning Helicon coupling in hydrogen and deuterium are carried out. The investigations show that a prominent feature of Helicon discharges occurs: the so-called low-field peak. This is a local improvement of the coupling efficiency at a magnetic field strength of a few mT which results in an increased electron density and dissociation degree. The full Helicon mode has not been achieved yet due to the limited available RF power and magnetic field strength but it might be sufficient for the application of the coupling concept to ion sources to operate the discharge in the low-field-peak region.

  9. Ecosystem-level water-use efficiency inferred from eddy covariance data: definitions, patterns and spatial up-scaling

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Beer, C.; Kuglitsch, F.; Papale, D.; Soussana, J. A.; Janssens, I.; Ciais, P.; Baldocchi, D.; Buchmann, N.; Verbeeck, H.; Ceulemans, R.; Moors, E.; Köstner, B.; Schulze, D.; Knohl, A.; Law, B. E.

    2007-12-01

    In this presentation we discuss ways to infer and to interpret water-use efficiency at ecosystem level (WUEe) from eddy covariance flux data and possibilities for scaling these patterns to regional and continental scale. In particular we convey the following: WUEe may be computed as a ratio of integrated fluxes or as the slope of carbon versus water fluxes offering different chances for interpretation. If computed from net ecosystem exchange and evapotranspiration on has to take of counfounding effects of respiration and soil evaporation. WUEe time-series at diurnal and seasonal scale is a valuable ecosystem physiological diagnostic for example about ecosystem-level responses to drought. Most often WUEe decreases during dry periods. The mean growing season ecosystem water-use efficiency of gross carbon uptake (WUEGPP) is highest in temperate broad-leaved deciduous forests, followed by temperate mixed forests, temperate evergreen conifers, Mediterranean broad-leaved deciduous forests, Mediterranean broad-leaved evergreen forests and Mediterranean evergreen conifers and boreal, grassland and tundra ecosystems. Water-use efficiency exhibits a temporally quite conservative relation with atmospheric water vapor pressure deficit (VPD) that is modified between sites by leaf area index (LAI) and soil quality, such that WUEe increases with LAI and soil water holding capacity which is related to texture. This property and tight coupling between carbon and water cycles is used to estimate catchment-scale water-use efficiency and primary productivity by integration of space-borne earth observation and river discharge data.

  10. A General, Efficient and Functional-Group-Tolerant Catalyst System for the Palladium-Catalyzed Thioetherification of Aryl Bromides and Iodides

    PubMed Central

    Fernández-Rodríguez, Manuel A.; Hartwig, John F.

    2010-01-01

    The cross-coupling reaction of aryl bromides and iodides with aliphatic and aromatic thiols catalyzed by palladium complexes of the bisphosphine ligand CyPF-tBu (1) is reported. Reactions occur in excellent yields, broad scope, high tolerance of functional groups and with turnover numbers that exceed those of previous catalysts by two or three orders of magnitude. These couplings of bromo- and iodoarenes are more efficient than the corresponding reactions of chloroarenes and could be conducted with less catalyst loading and/or milder reaction conditions. Consequently, limitations regarding scope and functional group tolerance previously reported in the coupling of aryl chlorides are now overcome. PMID:19154131

  11. Generation and transfer of single photons on a photonic crystal chip.

    PubMed

    Englund, Dirk; Faraon, Andrei; Zhang, Bingyang; Yamamoto, Yoshihisa; Vucković, Jelena

    2007-04-30

    We present a basic building block of a quantum network consisting of a quantum dot coupled to a source cavity, which in turn is coupled to a target cavity via a waveguide. The single photon emission from the high-Q/V source cavity is characterized by twelve-fold spontaneous emission (SE) rate enhancement, SE coupling efficiency beta ~ 0.98 into the source cavity mode, and mean wavepacket indistinguishability of ~67%. Single photons are efficiently transferred into the target cavity via the waveguide, with a target/source field intensity ratio of 0.12 +/- 0.01. This system shows great promise as a building block of future on-chip quantum information processing systems.

  12. An efficient coupling of N-tosylhydrazones with 2-halopyridines: synthesis of 2-α-styrylpyridines endowed with antitumor activity.

    PubMed

    Lawson, Marie; Hamze, Abdallah; Peyrat, Jean-François; Bignon, Jérôme; Dubois, Joelle; Brion, Jean-Daniel; Alami, Mouad

    2013-06-14

    The synthesis of 2-α-styrylpyridines has been carried out by using the coupling of polyoxygenated N-tosylhydrazones with various 2-halopyridines. We demonstrated that the use of a catalytic amount of PdCl2(MeCN)2 in combination with a bidentate ferrocene DPPF or a monodentate alkyl phosphine (t)Bu2MeP-HBF4 constitutes an efficient protocol for this coupling, providing 2-α-styrylpyridines 2 in satisfactory to good yields. Among several polyoxygenated derivatives 2 evaluated, compound 2aa was found to exhibit excellent antiproliferative and antimitotic activities comparable to that of the reference compound isoCA-4.

  13. Efficient Reformulation of HOTFGM: Heat Conduction with Variable Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Zhong, Yi; Pindera, Marek-Jerzy; Arnold, Steven M. (Technical Monitor)

    2002-01-01

    Functionally graded materials (FGMs) have become one of the major research topics in the mechanics of materials community during the past fifteen years. FGMs are heterogeneous materials, characterized by spatially variable microstructure, and thus spatially variable macroscopic properties, introduced to enhance material or structural performance. The spatially variable material properties make FGMs challenging to analyze. The review of the various techniques employed to analyze the thermodynamical response of FGMs reveals two distinct and fundamentally different computational strategies, called uncoupled macromechanical and coupled micromechanical approaches by some investigators. The uncoupled macromechanical approaches ignore the effect of microstructural gradation by employing specific spatial variations of material properties, which are either assumed or obtained by local homogenization, thereby resulting in erroneous results under certain circumstances. In contrast, the coupled approaches explicitly account for the micro-macrostructural interaction, albeit at a significantly higher computational cost. The higher-order theory for functionally graded materials (HOTFGM) developed by Aboudi et al. is representative of the coupled approach. However, despite its demonstrated utility in applications where micro-macrostructural coupling effects are important, the theory's full potential is yet to be realized because the original formulation of HOTFGM is computationally intensive. This, in turn, limits the size of problems that can be solved due to the large number of equations required to mimic realistic material microstructures. Therefore, a basis for an efficient reformulation of HOTFGM, referred to as user-friendly formulation, is developed herein, and subsequently employed in the construction of the efficient reformulation using the local/global conductivity matrix approach. In order to extend HOTFGM's range of applicability, spatially variable thermal conductivity capability at the local level is incorporated into the efficient reformulation. Analytical solutions to validate both the user-friendly and efficient reformulations am also developed. Volume discretization sensitivity and validation studies, as well as a practical application of the developed efficient reformulation are subsequently carried out. The presented results illustrate the accuracy and implementability of both the user-friendly formulation and the efficient reformulation of HOTFGM.

  14. Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and Purkinje fibers.

    PubMed

    Nayak, Alok Ranjan; Panfilov, A V; Pandit, Rahul

    2017-02-01

    We present systematic numerical studies of the possible effects of the coupling of human endocardial and Purkinje cells at cellular and two-dimensional tissue levels. We find that the autorhythmic-activity frequency of the Purkinje cell in a composite decreases with an increase in the coupling strength; this can even eliminate the autorhythmicity. We observe a delay between the beginning of the action potentials of endocardial and Purkinje cells in a composite; such a delay increases as we decrease the diffusive coupling, and eventually a failure of transmission occurs. An increase in the diffusive coupling decreases the slope of the action-potential-duration-restitution curve of an endocardial cell in a composite. By using a minimal model for the Purkinje network, in which we have a two-dimensional, bilayer tissue, with a layer of Purkinje cells on top of a layer of endocardial cells, we can stabilize spiral-wave turbulence; however, for a sparse distribution of Purkinje-ventricular junctions, at which these two layers are coupled, we can also obtain additional focal activity and many complex transient regimes. We also present additional effects resulting from the coupling of Purkinje and endocardial layers and discuss the relation of our results to the studies performed in anatomically accurate models of the Purkinje network.

  15. Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and Purkinje fibers

    NASA Astrophysics Data System (ADS)

    Nayak, Alok Ranjan; Panfilov, A. V.; Pandit, Rahul

    2017-02-01

    We present systematic numerical studies of the possible effects of the coupling of human endocardial and Purkinje cells at cellular and two-dimensional tissue levels. We find that the autorhythmic-activity frequency of the Purkinje cell in a composite decreases with an increase in the coupling strength; this can even eliminate the autorhythmicity. We observe a delay between the beginning of the action potentials of endocardial and Purkinje cells in a composite; such a delay increases as we decrease the diffusive coupling, and eventually a failure of transmission occurs. An increase in the diffusive coupling decreases the slope of the action-potential-duration-restitution curve of an endocardial cell in a composite. By using a minimal model for the Purkinje network, in which we have a two-dimensional, bilayer tissue, with a layer of Purkinje cells on top of a layer of endocardial cells, we can stabilize spiral-wave turbulence; however, for a sparse distribution of Purkinje-ventricular junctions, at which these two layers are coupled, we can also obtain additional focal activity and many complex transient regimes. We also present additional effects resulting from the coupling of Purkinje and endocardial layers and discuss the relation of our results to the studies performed in anatomically accurate models of the Purkinje network.

  16. Quenching And Luminescence Efficiency Of Nd3+ In YAG

    NASA Astrophysics Data System (ADS)

    Lupei, Voicu; Lupei, Aurelia; Georgescu, Serban; Ionescu, Christian I.; Yen, William M.

    1989-05-01

    The effect of the concentration luminescence quenching of the 4F 3/2, level of Nd3+ in YAG on the relative efficiency is presented. Based on the analysis of the decay curves in terms of the energy transfer theory, an analytical expression for the relative luminescence efficiency is obtained. In the low concentration range (up to q,1.5 at % Nd3+), the efficiency linearly decreases when Nd3+ concentration increases. It is also stressed that pairs quenching contribute about 20 % to the nonradiative energy transfer losses. Quantum efficiency of luminescence is an important parameter for the characterization of laser active media; its lowering is due to either multiphonon relaxation or energy transfer processes. The multiphonon non-radiative probability depends on the energy gap between levels, on the phonon energy and temperature; usually at low activator doping it is practically independent on concentration. On the other hand, energy transfer losses show a marked dependence on activator concentration, a fact that severely limits the range of useful con-centration of active centers in some laser crystals. In the YAG:Nd case the minimum energy gap between the Stark components of the 4F,I.) and the next lower level 4F15/2 is of about 4700 cm-1. Since in YAG tree phonons most effdbtively coupled to the Rare pi.th ions have an energy of 1, 700 cm-1, the probability for multiphonon relaxation from the 'F3/, level, even at room temperature, is very low and therefore for low Nd 3+ concentrations quantum efficiency is expected to be close to 1.

  17. High-resolution high-efficiency multilayer Fresnel zone plates for soft and hard x-rays

    NASA Astrophysics Data System (ADS)

    Sanli, Umut T.; Keskinbora, Kahraman; Gregorczyk, Keith; Leister, Jonas; Teeny, Nicolas; Grévent, Corinne; Knez, Mato; Schütz, Gisela

    2015-09-01

    X-ray microscopy enables high spatial resolutions, high penetration depths and characterization of a broad range of materials. Calculations show that nanometer range resolution is achievable in the hard X-ray regime by using Fresnel zone plates (FZPs) if certain conditions are satisfied. However, this requires, among other things, aspect ratios of several thousands. The multilayer (ML) type FZPs, having virtually unlimited aspect ratios, are strong candidates to achieve single nanometer resolutions. Our research is focused on the fabrication of ML-FZPs which encompasses deposition of multilayers over a glass fiber via the atomic layer deposition (ALD), which is subsequently sliced in the optimum thickness for the X-ray energy by a focused ion beam (FIB). We recently achieved aberration free imaging by resolving 21 nm features with an efficiency of up to 12.5 %, the highest imaging resolution achieved by an ML-FZP. We also showed efficient focusing of 7.9 keV X-rays down to 30 nm focal spot size (FWHM). For resolutions below ~10 nm, efficiencies would decrease significantly due to wave coupling effects. To compensate this effect high efficiency, low stress materials have to be researched, as lower intrinsic stresses will allow fabrication of larger FZPs with higher number of zones, leading to high light intensity at the focus. As a first step we fabricated an ML-FZP with a diameter of 62 μm, an outermost zone width of 12 nm and 452 active zones. Further strategies for fabrication of high resolution high efficiency multilayer FZPs will also be discussed.

  18. Microfluidic separation of magnetic nanoparticles on an ordered array of magnetized micropillars

    NASA Astrophysics Data System (ADS)

    Orlandi, G.; Kuzhir, P.; Izmaylov, Y.; Alves Marins, J.; Ezzaier, H.; Robert, L.; Doutre, F.; Noblin, X.; Lomenech, C.; Bossis, G.; Meunier, A.; Sandoz, G.; Zubarev, A.

    2016-06-01

    Microfluidic separation of magnetic particles is based on their capture by magnetized microcollectors while the suspending fluid flows past the microcollectors inside a microchannel. Separation of nanoparticles is often challenging because of strong Brownian motion. Low capture efficiency of nanoparticles limits their applications in bioanalysis. However, at some conditions, magnetic nanoparticles may undergo field-induced aggregation that amplifies the magnetic attractive force proportionally to the aggregate volume and considerably increases nanoparticle capture efficiency. In this paper, we have demonstrated the role of such aggregation on an efficient capture of magnetic nanoparticles (about 80 nm in diameter) in a microfluidic channel equipped with a nickel micropillar array. This array was magnetized by an external uniform magnetic field, of intensity as low as 6-10 kA/m, and experiments were carried out at flow rates ranging between 0.3 and 30 μ L /min . Nanoparticle capture is shown to be mostly governed by the Mason number Ma, while the dipolar coupling parameter α does not exhibit a clear effect in the studied range, 1.4 < α < 4.5. The capture efficiency Λ shows a strongly decreasing Mason number behavior, Λ ∝M a-1.78 within the range 32 ≤ Ma ≤ 3250. We have proposed a simple theoretical model which considers destructible nanoparticle chains and gives the scaling behavior, Λ ∝M a-1.7 , close to the experimental findings.

  19. Newer approach of using alternatives to (Indium doped) metal electrodes, dyes and electrolytes in dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Patni, Neha; Sharma, Pranjal; Pillai, Shibu G.

    2018-04-01

    This work demonstrates the PV study of dye sensitised solar cells by fabricating the (PV) cell using the ITO, FTO and AZO glass substrate. Dyes used for the fabrication were extracted from beetroot and spinach and a cocktail dye by mixing both of the dyes was also prepared. Similarly the three dufferent electrolytes used were iodide-triiodide couple, polyaniline and mixture of polyaniline and iodide couple. Mixed dye and mixed electrolyte has emerged as the highest efficient cell. The electrical characterisation shows that the highest power conversion efficiency of 1.86% was achieved by FTO substrate, followed by efficiency of 1.83% by AZO substrate and efficiency of 1.63% with ITO substrate using mixed dye and mixed electrolyte approach. This justifies that FTO and AZO shows better efficiency and hence proposed to be used as an alternative to indium free system.

  20. Optimization of output power and transmission efficiency of magnetically coupled resonance wireless power transfer system

    NASA Astrophysics Data System (ADS)

    Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng

    2018-05-01

    Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.

  1. Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser.

    PubMed

    Cong, Zhenhua; Zhang, Xingyu; Wang, Qingpu; Liu, Zhaojun; Li, Shutao; Chen, Xiaohan; Zhang, Xiaolei; Fan, Shuzhen; Zhang, Huaijin; Tao, Xutang

    2009-09-01

    An efficient intracavity frequency-doubled Raman laser was obtained by using an SrWO(4) Raman medium, an Nd:YAG ceramic gain medium, and a KTP frequency-doubling medium. Three laser cavities, including a two-mirror cavity, a three-mirror coupled cavity, and a folded cavity, were investigated. With the coupled cavity, a 2.93 W, 590 nm laser was obtained at an incident pump power of 16.2 W and a pulse repetition frequency of 20 kHz; the corresponding conversion efficiency was 18.1%. The highest conversion efficiency of 19.2% was obtained at an incident pump power of 14.1 W and a pulse repetition frequency of 15 kHz. The obtained maximum output power and conversion efficiency were much higher than the results previously obtained with intracavity frequency-doubled solid-state Raman lasers.

  2. Theoretical and experimental investigations of efficient light coupling with spatially varied all dielectric striped waveguides

    NASA Astrophysics Data System (ADS)

    Yilmaz, Y. A.; Tandogan, S. E.; Hayran, Z.; Giden, I. H.; Turduev, M.; Kurt, H.

    2017-07-01

    Integrated photonic systems require efficient, compact, and broadband solutions for strong light coupling into and out of optical waveguides. The present work investigates an efficient optical power transferring the problem between optical waveguides having different widths of in/out terminals. We propose a considerably practical and feasible concept to implement and design an optical coupler by introducing gradually index modulation to the coupler section. The index profile of the coupler section is modulated with a Gaussian function by the help of striped waveguides. The effective medium theory is used to replace the original spatially varying index profile with dielectric stripes of a finite length/width having a constant effective refractive index. 2D and 3D finite-difference time-domain analyzes are utilized to investigate the sampling effect of the designed optical coupler and to determine the parameters that play a crucial role in enhancing the optical power transfer performance. Comparing the coupling performance of conventional benchmark adiabatic and butt couplers with the designed striped waveguide coupler, the corresponding coupling efficiency increases from approximately 30% to 95% over a wide frequency interval. In addition, to realize the realistic optical coupler appropriate to integrated photonic applications, the proposed structure is numerically designed on a silicon-on-insulator wafer. The implemented SOI platform based optical coupler operates in the telecom wavelength regime (λ = 1.55 μm), and the dimensions of the striped coupler are kept as 9.77 μm (along the transverse to propagation direction) and 7.69 μm (along the propagation direction) where the unit distance is fixed to be 465 nm. Finally, to demonstrate the operating design principle, the microwave experiments are conducted and the spot size conversion ratio as high as 7.1:1 is measured, whereas a coupling efficiency over 60% in the frequency range of 5.0-16.0 GHz has been also demonstrated.

  3. Improving Subtropical Boundary Layer Cloudiness in the 2011 NCEP GFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, J. K.; Bretherton, Christopher S.; Xiao, Heng

    2014-09-23

    The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of short-wave cloud radiative forcing, and affect predicted sea surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parameterisations to make them more consistentmore » with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single-column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.« less

  4. Solving the Coupled System Improves Computational Efficiency of the Bidomain Equations

    PubMed Central

    Southern, James A.; Plank, Gernot; Vigmond, Edward J.; Whiteley, Jonathan P.

    2017-01-01

    The bidomain equations are frequently used to model the propagation of cardiac action potentials across cardiac tissue. At the whole organ level the size of the computational mesh required makes their solution a significant computational challenge. As the accuracy of the numerical solution cannot be compromised, efficiency of the solution technique is important to ensure that the results of the simulation can be obtained in a reasonable time whilst still encapsulating the complexities of the system. In an attempt to increase efficiency of the solver, the bidomain equations are often decoupled into one parabolic equation that is computationally very cheap to solve and an elliptic equation that is much more expensive to solve. In this study the performance of this uncoupled solution method is compared with an alternative strategy in which the bidomain equations are solved as a coupled system. This seems counter-intuitive as the alternative method requires the solution of a much larger linear system at each time step. However, in tests on two 3-D rabbit ventricle benchmarks it is shown that the coupled method is up to 80% faster than the conventional uncoupled method — and that parallel performance is better for the larger coupled problem. PMID:19457741

  5. Efficient functionalization of alginate biomaterials.

    PubMed

    Dalheim, Marianne Ø; Vanacker, Julie; Najmi, Maryam A; Aachmann, Finn L; Strand, Berit L; Christensen, Bjørn E

    2016-02-01

    Peptide coupled alginates obtained by chemical functionalization of alginates are commonly used as scaffold materials for cells in regenerative medicine and tissue engineering. We here present an alternative to the commonly used carbodiimide chemistry, using partial periodate oxidation followed by reductive amination. High and precise degrees of substitution were obtained with high reproducibility, and without formation of by-products. A protocol was established using l-Tyrosine methyl ester as a model compound and the non-toxic pic-BH3 as the reducing agent. DOSY was used to indirectly verify covalent binding and the structure of the product was further elucidated using NMR spectroscopy. The coupling efficiency was to some extent dependent on alginate composition, being most efficient on mannuronan. Three different bioactive peptide sequences (GRGDYP, GRGDSP and KHIFSDDSSE) were coupled to 8% periodate oxidized alginate resulting in degrees of substitution between 3.9 and 6.9%. Cell adhesion studies of mouse myoblasts (C2C12) and human dental stem cells (RP89) to gels containing various amounts of GRGDSP coupled alginate demonstrated the bioactivity of the material where RP89 cells needed higher peptide concentrations to adhere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers

    NASA Astrophysics Data System (ADS)

    Li, Shuangcai; Duffy, Christopher J.

    2011-03-01

    Our ability to predict complex environmental fluid flow and transport hinges on accurate and efficient simulations of multiple physical phenomenon operating simultaneously over a wide range of spatial and temporal scales, including overbank floods, coastal storm surge events, drying and wetting bed conditions, and simultaneous bed form evolution. This research implements a fully coupled strategy for solving shallow water hydrodynamics, sediment transport, and morphological bed evolution in rivers and floodplains (PIHM_Hydro) and applies the model to field and laboratory experiments that cover a wide range of spatial and temporal scales. The model uses a standard upwind finite volume method and Roe's approximate Riemann solver for unstructured grids. A multidimensional linear reconstruction and slope limiter are implemented, achieving second-order spatial accuracy. Model efficiency and stability are treated using an explicit-implicit method for temporal discretization with operator splitting. Laboratory-and field-scale experiments were compiled where coupled processes across a range of scales were observed and where higher-order spatial and temporal accuracy might be needed for accurate and efficient solutions. These experiments demonstrate the ability of the fully coupled strategy in capturing dynamics of field-scale flood waves and small-scale drying-wetting processes.

  7. Strong enhancement of emission efficiency in GaN light-emitting diodes by plasmon-coupled light amplification of graphene

    NASA Astrophysics Data System (ADS)

    Kim, Jong Min; Kim, Sung; Hwang, Sung Won; Kim, Chang Oh; Shin, Dong Hee; Kim, Ju Hwan; Jang, Chan Wook; Kang, Soo Seok; Hwang, Euyheon; Choi, Suk-Ho; El-Gohary, Sherif H.; Byun, Kyung Min

    2018-02-01

    Recently, we have demonstrated that excitation of plasmon-polaritons in a mechanically-derived graphene sheet on the top of a ZnO semiconductor considerably enhances its light emission efficiency. If this scheme is also applied to device structures, it is then expected that the energy efficiency of light-emitting diodes (LEDs) increases substantially and the commercial potential will be enormous. Here, we report that the plasmon-induced light coupling amplifies emitted light by ˜1.6 times in doped large-area chemical-vapor-deposition-grown graphene, which is useful for practical applications. This coupling behavior also appears in GaN-based LEDs. With AuCl3-doped graphene on Ga-doped ZnO films that is used as transparent conducting electrodes for the LEDs, the average electroluminescence intensity is 1.2-1.7 times enhanced depending on the injection current. The chemical doping of graphene may produce the inhomogeneity in charge densities (i.e., electron/hole puddles) or roughness, which can play a role as grating couplers, resulting in such strong plasmon-enhanced light amplification. Based on theoretical calculations, the plasmon-coupled behavior is rigorously explained and a method of controlling its resonance condition is proposed.

  8. A strained silicon cold electron bolometer using Schottky contacts

    NASA Astrophysics Data System (ADS)

    Brien, T. L. R.; Ade, P. A. R.; Barry, P. S.; Dunscombe, C.; Leadley, D. R.; Morozov, D. V.; Myronov, M.; Parker, E. H. C.; Prest, M. J.; Prunnila, M.; Sudiwala, R. V.; Whall, T. E.; Mauskopf, P. D.

    2014-07-01

    We describe optical characterisation of a strained silicon cold electron bolometer (CEB), operating on a 350 mK stage, designed for absorption of millimetre-wave radiation. The silicon cold electron bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to 160 GHz and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of 50% for radiation coupled into the device by the planar antenna and an overall noise equivalent power, referred to absorbed optical power, of 1.1×10-16 W Hz-1/2 when the detector is observing a 300 K source through a 4 K throughput limiting aperture. Even though this optical system is not optimized, we measure a system noise equivalent temperature difference of 6 mK Hz-1/2. We measure the noise of the device using a cross-correlation of time stream data, measured simultaneously with two junction field-effect transistor amplifiers, with a base correlated noise level of 300 pV Hz-1/2 and find that the total noise is consistent with a combination of photon noise, current shot noise, and electron-phonon thermal noise.

  9. Novel hybrid laser modes in composite VCSEL-DFB microcavities (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mischok, Andreas; Wagner, Tim; Sudzius, Markas; Brückner, Robert; Fröb, Hartmut; Lyssenko, Vadim G.; Leo, Karl

    2017-02-01

    Two of the most successful microcresonator concepts are the vertical cavity surface emitting laser (VCSEL), where light is confined between distributed Bragg reflectors (DBRs), and the distributed feedback (DFB) laser, where a periodic grating provides positive optical feedback to selected modes in an active waveguide (WG) layer. Our work concerns the combination of both into a composite device, facilitating coherent interaction between both regimes and giving rise to novel laser modes in the system. In a first realization, a full VCSEL stack with an organic active layer is evaporated on top of a diffraction grating with a large period (approximately 1 micron), leading to diffraction of waveguided modes into the surface emission of the device. Here, the coherent interaction between VCSEL and WG modes, as observed in an anticrossing of the dispersion lines, facilitates novel hybrid lasing modes with macroscopic in-plane coherence [1]. In further studies, we decrease the grating period of such devices to realise DFB conditions in a second-order Bragg grating which strongly couples photons via first-order light diffraction to the VCSEL. This efficient coupling can be compared to more classical cascade-coupled cavities and is successfully described by a coupled oscillator model [2]. When both resonators are non-degenerate, they are able to function as independent structures without substantial diffraction losses. The realization of such novel devices provides a promising platform for photonic circuits based on organic microlasers. [1] A. Mischok et al., Adv. Opt. Mater., early online, DOI: 10.1002/adom.201600282, (2016) [2] T. Wagner et al., Appl. Phys. Lett., accepted, in production, (2016)

  10. Characterization of the mutual influence of Ion Cyclotron and Lower Hybrid Range of frequencies systems on EAST

    NASA Astrophysics Data System (ADS)

    Urbanczyk, Guillaume; Zhang, Xinjun; Qin, Chengming; Zhao, Yanping; Zhang, Tao; Zhang, Ling; Li, Jiangang; Yuan, Shuai; Chen, Liang; Zhang, Heng; Zhang, Jiahui; Wang, Jianhua; Yang, Xiuda; Qian, Jinping

    2017-10-01

    Waves in the Ion Cyclotron (ICRF) and Lower Hybrid (LH) Range of Frequencies are efficient techniques respectively to heat the plasma and drive current. Main difficulties come from a trade-off between good RF coupling and acceptable level of impurities release. The mutual influence of both systems makes such equilibrium often hard to reach [1]. In order to investigate those interactions based on Scrape-Off Layer (SOL) plasma parameters, a new reciprocating probe was designed allying a three tips Langmuir probe with an emissive wire. The emissive filament provides a precise measure of plasma potential [2], which can be used to calibrate Langmuir probe's results. This paper reports on experimental results obtained on EAST, where there are two ICRF antennas and two LH launchers. Among others diagnostics, the new reciprocating probe enabled to evidence the deleterious influence of ICRF power on LHWs coupling in L-mode plasmas. In areas connected with an active ICRF antenna, SOL potentials increase while densities tend to decrease, respectively enhancing impurities release and deteriorating LHWs coupling. This phenomenon has mostly been attributed to RF sheath; the one that forms on top of Plasma Facing Components (PFCs) and causes ExB density convections [3]. From those experiments it seems ICRF has a strong influence on magnetically connected areas, both in the near field - influencing ICRF waves coupling - and in farther locations such as in front of LH grills. Moreover, influence of ICRF on LH system was observed both in L and H modes. Those results are consistent with RF sheath rectification process. Concerning the influence of LHWs on ICRF coupling, nothing was observed in L-mode. Besides during H-mode experiments, LHWs have been identified as having a mitigating effect on ELMs [4], which on average lowers the pedestal, increasing edge densities to the profit of ICRF waves coupling.

  11. PRELIMINARY COUPLING OF THE MONTE CARLO CODE OPENMC AND THE MULTIPHYSICS OBJECT-ORIENTED SIMULATION ENVIRONMENT (MOOSE) FOR ANALYZING DOPPLER FEEDBACK IN MONTE CARLO SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Ellis; Derek Gaston; Benoit Forget

    In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes.more » An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.« less

  12. Haemodynamic and energetic properties of stunned myocardium in rabbit hearts.

    PubMed Central

    Schipke, J. D.; Korbmacher, B.; Dorszewski, A.; Selcan, G.; Sunderdiek, U.; Arnold, G.

    1996-01-01

    OBJECTIVE--To amplify the description of myocardial stunning. DESIGN--Control versus 30 min after a 20 min no flow ischaemia. EXPERIMENTAL ANIMALS--15 isolated rabbit hearts perfused with erythrocyte suspension. MAIN OUTCOME MEASURES--Left ventricular systolic function in terms of aortic flow, peak systolic pressure (LVPmax), dP/dtmax, and the end systolic pressure-volume relation (ESPVR); early relaxation from dP/dtmin and rate of left ventricular pressure decay (tau). Passive properties: ventricular and myocardial stiffness. Coronary resistance from coronary blood flow and perfusion pressure. Total myocardial oxygen consumption (MVo2tot). Total mechanical energy via pressure-volume area (PVA). Contractile efficiency (Econ) and MVo2 of the unloaded contracting heart (MVo2unl). External mechanical efficiency (Eext) from stroke work and MVo2tot. RESULTS--Systolic variables in stunned myocardium were significantly decreased (mean (SD)): aortic flow: 38 (13) v 9 (11) ml/min; LVPmax: 112 (19) v 74 (18) mm Hg; dP/dtmax: 1475 (400) v 1075 (275) mm Hg/s. ESPVR was not significantly decreased, at 138 (73) v 125 (58) mm Hg/ml, but the volume axis intercept was shifted rightward: 0.30 (0.37) v 0.65 (0.25) ml. Likewise, early relaxation was impaired: dP/dtmin (-1275 (250) v -975 (250) mm Hg/s) and tau (37 (7) v 46 (10) ms). LVPed was significantly decreased at 19 (12) v 12 (7) mm Hg, and both the ventricular (end diastolic pressure-volume relation) and the myocardial stiffness (constant k) were increased by 75% and 31%, respectively. Coronary resistance increased non-significantly from 0.83 (0.31) to 1.04 (0.41) mm Hg/(ml/min/100 g). Decreases in PVA (570 (280) v 270 (200) mm Hg.ml/100 g), MVo2tot (40 (9) v 34 (8) microliters/beat/100 g), and MVo2unl (26 (9) v 22 (6) microliters/beat/100 g) did not reach significance, in contrast to significant decreases in Econ (31 (18) v 14 (7)%) and Eext (0.75 (0.29) v 0.18 (0.25) arbitrary units). CONCLUSIONS--Ventricular systolic function is decreased after brief episodes of ischaemia. The decrease in diastolic function probably amplifies the systolic deterioration during myocardial stunning. Passive diastolic properties are also changed, shown by increases in both ventricular and myocardial stiffness. The increase in coronary resistance indicates stunning at the vascular level which could limit oxygen supply. With maintained MVo2tot during stunning, external efficiency is decreased. Possible candidates for this metabolic stunning are inadequate excitation-contraction coupling and disturbed O2 utilisation by the contractile apparatus. Images PMID:8624873

  13. Decreasing Substance Use Risk Among African American Youth: Parent-based Mechanisms of Change

    PubMed Central

    Beach, Steven R. H.; Barton, Allen W.; Lei, Man Kit; Mandara, Jelani; Wells, Ashley C.; Kogan, Steven M.; Brody, Gene H.

    2017-01-01

    African American couples (N = 139; 67.7% married; with children between the ages of 9 and 14) were randomly assigned to (a) a culturally sensitive, couple- and parenting-focused program designed to prevent stress-spillover (n = 70) or (b) an information-only control condition in which couples received self-help materials (n = 69). Eight months after baseline, youth whose parents participated in the program, compared with control youth, reported increased parental monitoring, positive racial socialization, and positive self-concept, as well as decreased conduct problems and self-reported substance use. Changes in youth-reported parenting behavior partially mediated the effect of the intervention on conduct problems and fully mediated its impact on positive self-concept, but did not mediate effects on lifetime substance use initiation. Results suggest the potential for a culturally sensitive family-based intervention targeting adults’ couple and parenting processes to enhance multiple parenting behaviors as well as decrease youths’ substance use onset and vulnerability. PMID:27129477

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chun-Han; Su, Chia-Ying; Chen, Chung-Hui

    Further reduction of the efficiency droop effect and further enhancements of internal quantum efficiency (IQE) and output intensity of a surface plasmon coupled, blue-emitting light-emitting diode (LED) by inserting a dielectric interlayer (DI) of a lower refractive index between p-GaN and surface Ag nanoparticles are demonstrated. The insertion of a DI leads to a blue shift of the localized surface plasmon (LSP) resonance spectrum and increases the LSP coupling strength at the quantum well emitting wavelength in the blue range. With SiO{sub 2} as the DI, a thinner DI leads to a stronger LSP coupling effect, when compared with themore » case of a thicker DI. By using GaZnO, which is a dielectric in the optical range and a good conductor under direct-current operation, as the DI, the LSP coupling results in the highest IQE, highest LED output intensity, and weakest droop effect.« less

  15. A new efficient method for calculation of Frenkel exciton parameters in molecular aggregates

    NASA Astrophysics Data System (ADS)

    Plötz, Per-Arno; Niehaus, Thomas; Kühn, Oliver

    2014-05-01

    The Frenkel exciton Hamiltonian is at the heart of many simulations of excitation energy transfer in molecular aggregates. It separates the aggregate into Coulomb-coupled monomers. Here it is shown that the respective parameters, i.e., monomeric excitation energies and Coulomb couplings between transition densities can be efficiently calculated using time-dependent tight-binding-based density functional theory (TD-DFTB). Specifically, Coulomb couplings are expressed in terms of self-consistently determined Mulliken transition charges. The approach is applied to two dimer systems. First, formaldehyde oxime for which a detailed comparison with standard DFT using the B3LYP and the PBE functionals as well as with SCS-CC2 is provided. Second, the Coulomb coupling is explored in dependence on the intermolecular coordinates for a perylene bisimide dimer. This provides structural evidence for the previously observed biphasic aggregation behavior of this dye.

  16. Quantum Stirling heat engine and refrigerator with single and coupled spin systems

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Li; Niu, Xin-Ya; Xiu, Xiao-Ming; Yi, Xue-Xi

    2014-02-01

    We study the reversible quantum Stirling cycle with a single spin or two coupled spins as the working substance. With the single spin as the working substance, we find that under certain conditions the reversed cycle of a heat engine is NOT a refrigerator, this feature holds true for a Stirling heat engine with an ion trapped in a shallow potential as its working substance. The efficiency of quantum Stirling heat engine can be higher than the efficiency of the Carnot engine, but the performance coefficient of the quantum Stirling refrigerator is always lower than its classical counterpart. With two coupled spins as the working substance, we find that a heat engine can turn to a refrigerator due to the increasing of the coupling constant, this can be explained by the properties of the isothermal line in the magnetic field-entropy plane.

  17. Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application.

    PubMed

    Wang, Yan; Li, Hanyang; Zhao, Liyuan; Liu, Yongjun; Liu, Shuangqiang; Yang, Jun

    2017-01-23

    We demonstrate efficient coupling to the optical whispering gallery modes (WGMs) of nematic liquid crystal (NLC) microdroplets immersed in an immiscible aqueous environment. An individual NLC microdroplet, confined at the tip of a microcapillary, was coupled via a tapered optical fiber waveguide positioned correctly within its vicinity. Critical coupling of the taper-microdroplet system was facilitated by adjusting the gap between the taper and the microdroplet to change the overlap of the evanescent electromagnetic fields; efficient and controlled power transfer from the taper waveguide to the NLC microdroplet is indeed possible via the proposed technique. We also found that NLC microdroplets can function as highly sensitive thermal sensors: A maximum temperature sensitivity of 267.6 pm/°C and resolution of 7.5 × 10-2 °C were achieved in a 78-μm-diameter NLC microdroplet.

  18. Total internal reflection-evanescent coupler for fiber-to-waveguide integration of planar optoelectric devices.

    PubMed

    Lu, Zhaolin; Prather, Dennis W

    2004-08-01

    We present a method for parallel coupling from a single-mode fiber, or fiber ribbon, into a silicon-on-insulator waveguide for integration with silicon optoelectronic circuits. The coupler incorporates the advantages of the vertically tapered waveguides and prism couplers, yet offers the flexibility of planar integration. The coupler can be fabricated by use of either wafer polishing technology or gray-scale photolithography. When optimal coupling is achieved in our experimental setup, the coupler can be packaged by epoxy bonding to form a fiber-waveguide parallel coupler or connector. Two-dimensional electromagnetic calculation predicts a coupling efficiency of 77% (- 1.14-dB insertion loss) for a silicon-to-silicon coupler with a uniform tunnel layer. The coupling efficiency is experimentally achieved to be 46% (-3.4-dB insertion loss), excluding the loss in silicon and the reflections from the input surface and the output facet.

  19. Ten-year variability in ecosystem water use efficiency in an oak-dominated temperate forest under a warming climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jing; Chen, Jiquan; Sun, Ge

    The impacts of extreme weather events on water-carbon (C) coupling and ecosystem-scale water use efficiency (WUE) over a long term are poorly understood. We analyzed the changes in ecosystem water use efficiency (WUE) from 10 years of eddy-covariance measurements (2004-2013) over an oak-dominated temperate forest in Ohio, USA. The aim was to investigate the long-term response of ecosystem WUE to measured changes in site-biophysical conditions and ecosystem attributes. The oak forest produced new plant biomass of 2.5 +/- 0.2 gC kg(-1) of water loss annually. Monthly evapotranspiration (ET) and gross ecosystem production (GEP) were tightly coupled over the 10-year studymore » period (R-2=0.94). Daily WUE had a linear relationship with air temperature (T-a) in low-temperature months and a unimodal relationship with T-a in high-temperature months during the growing season. On average, daily WUE ceased to increase when T-a exceeded 22 degrees C in warm months for both wet and dry years. Monthly WUE had a strong positive linear relationship with leaf area index (LAI), net radiation (R-n), and T-a and weak logarithmic relationship with water vapor pressure deficit (VPD) and precipitation (P) on a growing-season basis. When exploring the regulatory mechanisms on WUE within each season, spring LAI and P, summer R-n and T-a, and autumnal VPD and R-n were found to be the main explanatory variables for seasonal variation in WUE. The model developed in this study was able to capture 78% of growing-season variation in WUE on a monthly basis. The negative correlation between WUE and A in spring was mainly due to the high precipitation amounts in spring, decreasing GEP and WUE when LAI was still small, adding ET being observed to increase with high levels of evaporation as a result of high SWC in spring. Summer WUE had a significant decreasing trend across the 10 years mainly due to the combined effect of seasonal drought and increasing potential and available energy increasing ET, but decreasing GEP in summer. We concluded that seasonal dynamics of the interchange between precipitation and drought status of the system was an important variable in controlling seasonal WUE in wet years. In contrast, despite the negative impacts of unfavorable warming, available groundwater and an early start of the growing season were important contributing variables in high seasonal GEP, and thus, high seasonal WUE in dry years. (C) 2015 Elsevier B.V. All rights reserved.« less

  20. Ten-year variability in ecosystem water use efficiency in an oak-dominated temperate forest under a warming climate

    DOE PAGES

    Xie, Jing; Chen, Jiquan; Sun, Ge; ...

    2016-01-07

    The impacts of extreme weather events on water-carbon (C) coupling and ecosystem-scale water use efficiency (WUE) over a long term are poorly understood. We analyzed the changes in ecosystem water use efficiency (WUE) from 10 years of eddy-covariance measurements (2004-2013) over an oak-dominated temperate forest in Ohio, USA. The aim was to investigate the long-term response of ecosystem WUE to measured changes in site-biophysical conditions and ecosystem attributes. The oak forest produced new plant biomass of 2.5 +/- 0.2 gC kg(-1) of water loss annually. Monthly evapotranspiration (ET) and gross ecosystem production (GEP) were tightly coupled over the 10-year studymore » period (R-2=0.94). Daily WUE had a linear relationship with air temperature (T-a) in low-temperature months and a unimodal relationship with T-a in high-temperature months during the growing season. On average, daily WUE ceased to increase when T-a exceeded 22 degrees C in warm months for both wet and dry years. Monthly WUE had a strong positive linear relationship with leaf area index (LAI), net radiation (R-n), and T-a and weak logarithmic relationship with water vapor pressure deficit (VPD) and precipitation (P) on a growing-season basis. When exploring the regulatory mechanisms on WUE within each season, spring LAI and P, summer R-n and T-a, and autumnal VPD and R-n were found to be the main explanatory variables for seasonal variation in WUE. The model developed in this study was able to capture 78% of growing-season variation in WUE on a monthly basis. The negative correlation between WUE and A in spring was mainly due to the high precipitation amounts in spring, decreasing GEP and WUE when LAI was still small, adding ET being observed to increase with high levels of evaporation as a result of high SWC in spring. Summer WUE had a significant decreasing trend across the 10 years mainly due to the combined effect of seasonal drought and increasing potential and available energy increasing ET, but decreasing GEP in summer. We concluded that seasonal dynamics of the interchange between precipitation and drought status of the system was an important variable in controlling seasonal WUE in wet years. In contrast, despite the negative impacts of unfavorable warming, available groundwater and an early start of the growing season were important contributing variables in high seasonal GEP, and thus, high seasonal WUE in dry years. (C) 2015 Elsevier B.V. All rights reserved.« less

  1. A hybrid framework for coupling arbitrary summation-by-parts schemes on general meshes

    NASA Astrophysics Data System (ADS)

    Lundquist, Tomas; Malan, Arnaud; Nordström, Jan

    2018-06-01

    We develop a general interface procedure to couple both structured and unstructured parts of a hybrid mesh in a non-collocated, multi-block fashion. The target is to gain optimal computational efficiency in fluid dynamics simulations involving complex geometries. While guaranteeing stability, the proposed procedure is optimized for accuracy and requires minimal algorithmic modifications to already existing schemes. Initial numerical investigations confirm considerable efficiency gains compared to non-hybrid calculations of up to an order of magnitude.

  2. Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells.

    PubMed

    Zhang, Cai; Tang, Ning; Shang, Liangliang; Fu, Lei; Wang, Weiying; Xu, Fujun; Wang, Xinqiang; Ge, Weikun; Shen, Bo

    2017-05-24

    We report the enhancement of the polarization and internal quantum efficiency (IQE) of deep-UV LEDs by evaporating Al nanoparticles on the device surface to induce localized surface plasmons (LSPs). The deep-UV LEDs polarization is improved due to part of TM emission turns into TE emission through LSPs coupling. The significantly enhanced IQE is attributed to LSPs coupling, which suppress the participation of delocalized and dissociated excitons to non-radiative recombination process.

  3. Mitochondrial Respiration in Insulin-Producing β-Cells: General Characteristics and Adaptive Effects of Hypoxia

    PubMed Central

    Ma, Zuheng; Scholz, Hanne; Björklund, Anneli; Grill, Valdemar

    2015-01-01

    Objective To provide novel insights on mitochondrial respiration in β-cells and the adaptive effects of hypoxia. Methods and Design Insulin-producing INS-1 832/13 cells were exposed to 18 hours of hypoxia followed by 20–22 hours re-oxygenation. Mitochondrial respiration was measured by high-resolution respirometry in both intact and permeabilized cells, in the latter after establishing three functional substrate-uncoupler-inhibitor titration (SUIT) protocols. Concomitant measurements included proteins of mitochondrial complexes (Western blotting), ATP and insulin secretion. Results Intact cells exhibited a high degree of intrinsic uncoupling, comprising about 50% of oxygen consumption in the basal respiratory state. Hypoxia followed by re-oxygenation increased maximal overall respiration. Exploratory experiments in peremabilized cells could not show induction of respiration by malate or pyruvate as reducing substrates, thus glutamate and succinate were used as mitochondrial substrates in SUIT protocols. Permeabilized cells displayed a high capacity for oxidative phosphorylation for both complex I- and II-linked substrates in relation to maximum capacity of electron transfer. Previous hypoxia decreased phosphorylation control of complex I-linked respiration, but not in complex II-linked respiration. Coupling control ratios showed increased coupling efficiency for both complex I- and II-linked substrates in hypoxia-exposed cells. Respiratory rates overall were increased. Also previous hypoxia increased proteins of mitochondrial complexes I and II (Western blotting) in INS-1 cells as well as in rat and human islets. Mitochondrial effects were accompanied by unchanged levels of ATP, increased basal and preserved glucose-induced insulin secretion. Conclusions Exposure of INS-1 832/13 cells to hypoxia, followed by a re-oxygenation period increases substrate-stimulated respiratory capacity and coupling efficiency. Such effects are accompanied by up-regulation of mitochondrial complexes also in pancreatic islets, highlighting adaptive capacities of possible importance in an islet transplantation setting. Results also indicate idiosyncrasies of β-cells that do not respire in response to a standard inclusion of malate in SUIT protocols. PMID:26401848

  4. Mitochondrial Respiration in Insulin-Producing β-Cells: General Characteristics and Adaptive Effects of Hypoxia.

    PubMed

    Hals, Ingrid K; Bruerberg, Simon Gustafson; Ma, Zuheng; Scholz, Hanne; Björklund, Anneli; Grill, Valdemar

    2015-01-01

    To provide novel insights on mitochondrial respiration in β-cells and the adaptive effects of hypoxia. Insulin-producing INS-1 832/13 cells were exposed to 18 hours of hypoxia followed by 20-22 hours re-oxygenation. Mitochondrial respiration was measured by high-resolution respirometry in both intact and permeabilized cells, in the latter after establishing three functional substrate-uncoupler-inhibitor titration (SUIT) protocols. Concomitant measurements included proteins of mitochondrial complexes (Western blotting), ATP and insulin secretion. Intact cells exhibited a high degree of intrinsic uncoupling, comprising about 50% of oxygen consumption in the basal respiratory state. Hypoxia followed by re-oxygenation increased maximal overall respiration. Exploratory experiments in peremabilized cells could not show induction of respiration by malate or pyruvate as reducing substrates, thus glutamate and succinate were used as mitochondrial substrates in SUIT protocols. Permeabilized cells displayed a high capacity for oxidative phosphorylation for both complex I- and II-linked substrates in relation to maximum capacity of electron transfer. Previous hypoxia decreased phosphorylation control of complex I-linked respiration, but not in complex II-linked respiration. Coupling control ratios showed increased coupling efficiency for both complex I- and II-linked substrates in hypoxia-exposed cells. Respiratory rates overall were increased. Also previous hypoxia increased proteins of mitochondrial complexes I and II (Western blotting) in INS-1 cells as well as in rat and human islets. Mitochondrial effects were accompanied by unchanged levels of ATP, increased basal and preserved glucose-induced insulin secretion. Exposure of INS-1 832/13 cells to hypoxia, followed by a re-oxygenation period increases substrate-stimulated respiratory capacity and coupling efficiency. Such effects are accompanied by up-regulation of mitochondrial complexes also in pancreatic islets, highlighting adaptive capacities of possible importance in an islet transplantation setting. Results also indicate idiosyncrasies of β-cells that do not respire in response to a standard inclusion of malate in SUIT protocols.

  5. Coupling between a multi-physics workflow engine and an optimization framework

    NASA Astrophysics Data System (ADS)

    Di Gallo, L.; Reux, C.; Imbeaux, F.; Artaud, J.-F.; Owsiak, M.; Saoutic, B.; Aiello, G.; Bernardi, P.; Ciraolo, G.; Bucalossi, J.; Duchateau, J.-L.; Fausser, C.; Galassi, D.; Hertout, P.; Jaboulay, J.-C.; Li-Puma, A.; Zani, L.

    2016-03-01

    A generic coupling method between a multi-physics workflow engine and an optimization framework is presented in this paper. The coupling architecture has been developed in order to preserve the integrity of the two frameworks. The objective is to provide the possibility to replace a framework, a workflow or an optimizer by another one without changing the whole coupling procedure or modifying the main content in each framework. The coupling is achieved by using a socket-based communication library for exchanging data between the two frameworks. Among a number of algorithms provided by optimization frameworks, Genetic Algorithms (GAs) have demonstrated their efficiency on single and multiple criteria optimization. Additionally to their robustness, GAs can handle non-valid data which may appear during the optimization. Consequently GAs work on most general cases. A parallelized framework has been developed to reduce the time spent for optimizations and evaluation of large samples. A test has shown a good scaling efficiency of this parallelized framework. This coupling method has been applied to the case of SYCOMORE (SYstem COde for MOdeling tokamak REactor) which is a system code developed in form of a modular workflow for designing magnetic fusion reactors. The coupling of SYCOMORE with the optimization platform URANIE enables design optimization along various figures of merit and constraints.

  6. Chitosan-based water-propelled micromotors with strong antibacterial activity.

    PubMed

    Delezuk, Jorge A M; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Wang, Joseph

    2017-02-09

    A rapid and efficient micromotor-based bacteria killing strategy is described. The new antibacterial approach couples the attractive antibacterial properties of chitosan with the efficient water-powered propulsion of magnesium (Mg) micromotors. These Janus micromotors consist of Mg microparticles coated with the biodegradable and biocompatible polymers poly(lactic-co-glycolic acid) (PLGA), alginate (Alg) and chitosan (Chi), with the latter responsible for the antibacterial properties of the micromotor. The distinct speed and efficiency advantages of the new micromotor-based environmentally friendly antibacterial approach have been demonstrated in various control experiments by treating drinking water contaminated with model Escherichia coli (E. coli) bacteria. The new dynamic antibacterial strategy offers dramatic improvements in the antibacterial efficiency, compared to static chitosan-coated microparticles (e.g., 27-fold enhancement), with a 96% killing efficiency within 10 min. Potential real-life applications of these chitosan-based micromotors for environmental remediation have been demonstrated by the efficient treatment of seawater and fresh water samples contaminated with unknown bacteria. Coupling the efficient water-driven propulsion of such biodegradable and biocompatible micromotors with the antibacterial properties of chitosan holds great considerable promise for advanced antimicrobial water treatment operation.

  7. Assisting couples to develop healthy relationships: effects of couples relationship education on cortisol.

    PubMed

    Ditzen, Beate; Hahlweg, Kurt; Fehm-Wolfsdorf, Gabriele; Baucom, Don

    2011-06-01

    Couple conflict in unhappy marriages is suggested to impair individual health via chronic psychophysiological stress reactions in couples' everyday lives. As a consequence, we hypothesized that standard couples relationship education (CRE) would decrease psychophysiological stress, namely salivary cortisol levels, during couple conflict in the laboratory as compared to a standard psychological stress paradigm. We considered cortisol to be of particular interest in this context, as it mediates endocrine and immune responses to stress, and thus might influence couples' health. Salivary cortisol was repeatedly investigated in 61 couples during (a) a standard psychological stress test with no relevance for the couples, and (b) a standard couple conflict discussion in the laboratory before and after CRE. In addition, increases in self-evaluated relationship quality were analyzed with regard to their influence on salivary cortisol. Data were analyzed using multilevel modeling. Cortisol responses to the couple-external psychological stress test were unaffected by CRE, but specifically cortisol responses during the couple conflict discussion were significantly reduced following CRE compared to pre-intervention levels. Moreover, cortisol decreases during conflict were partially mediated by increases in self-reported relationship quality following CRE. These data suggest that CRE might buffer the harmful effects of repeated conflict in close relationships. Rather than ameliorating overall stress resilience, CRE might thus specifically improve individual health through increased relationship quality and reduced HPA axis activity during couple conflict. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  9. Study on Fluid-solid Coupling Mathematical Models and Numerical Simulation of Coal Containing Gas

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Hao, Meng; Jin, Hongwei

    2018-02-01

    Based on coal seam gas migration theory under multi-physics field coupling effect, fluid-solid coupling model of coal seam gas was build using elastic mechanics, fluid mechanics in porous medium and effective stress principle. Gas seepage behavior under different original gas pressure was simulated. Results indicated that residual gas pressure, gas pressure gradient and gas low were bigger when original gas pressure was higher. Coal permeability distribution decreased exponentially when original gas pressure was lower than critical pressure. Coal permeability decreased rapidly first and then increased slowly when original pressure was higher than critical pressure.

  10. Design and optimization of a high-efficiency array generator in the mid-IR with binary subwavelength grooves.

    PubMed

    Bloom, Guillaume; Larat, Christian; Lallier, Eric; Lee-Bouhours, Mane-Si Laure; Loiseaux, Brigitte; Huignard, Jean-Pierre

    2011-02-10

    We have designed a high-efficiency array generator composed of subwavelength grooves etched in a GaAs substrate for operation at 4.5 μm. The method used combines rigorous coupled wave analysis with an optimization algorithm. The optimized beam splitter has both a high efficiency (∼96%) and a good intensity uniformity (∼0.2%). The fabrication error tolerances are numerically calculated, and it is shown that this subwavelength array generator could be fabricated with current electron beam writers and inductively coupled plasma etching. Finally, we studied the effect of a simple and realistic antireflection coating on the performance of the beam splitter.

  11. Radiation source with shaped emission

    DOEpatents

    Kubiak, Glenn D.; Sweatt, William C.

    2003-05-13

    Employing a source of radiation, such as an electric discharge source, that is equipped with a capillary region configured into some predetermined shape, such as an arc or slit, can significantly improve the amount of flux delivered to the lithographic wafers while maintaining high efficiency. The source is particularly suited for photolithography systems that employs a ringfield camera. The invention permits the condenser which delivers critical illumination to the reticle to be simplified from five or more reflective elements to a total of three or four reflective elements thereby increasing condenser efficiency. It maximizes the flux delivered and maintains a high coupling efficiency. This architecture couples EUV radiation from the discharge source into a ring field lithography camera.

  12. A revised MRCI-algorithm. I. Efficient combination of spin adaptation with individual configuration selection coupled to an effective valence-shell Hamiltonian

    NASA Astrophysics Data System (ADS)

    Strodel, Paul; Tavan, Paul

    2002-09-01

    We present a revised multi-reference configuration interaction (MRCI) algorithm for balanced and efficient calculation of electronic excitations in molecules. The revision takes up an earlier method, which had been designed for flexible, state-specific, and individual selection (IS) of MRCI expansions, included perturbational corrections (PERT), and used the spin-coupled hole-particle formalism of Tavan and Schulten (1980) for matrix-element evaluation. It removes the deficiencies of this method by introducing tree structures, which code the CI bases and allow us to efficiently exploit the sparseness of the Hamiltonian matrices. The algorithmic complexity is shown to be optimal for IS/MRCI applications. The revised IS/MRCI/PERT module is combined with the effective valence shell Hamiltonian OM2 suggested by Weber and Thiel (2000). This coupling serves the purpose of making excited state surfaces of organic dye molecules accessible to relatively cheap and sufficiently precise descriptions.

  13. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling

    PubMed Central

    Richter, Johannes M.; Abdi-Jalebi, Mojtaba; Sadhanala, Aditya; Tabachnyk, Maxim; Rivett, Jasmine P.H.; Pazos-Outón, Luis M.; Gödel, Karl C.; Price, Michael; Deschler, Felix; Friend, Richard H.

    2016-01-01

    In lead halide perovskite solar cells, there is at least one recycling event of electron–hole pair to photon to electron–hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells. PMID:28008917

  14. Surface Plasmon-Coupled Directional Enhanced Raman Scattering by Means of the Reverse Kretschmann Configuration.

    PubMed

    Huo, Si-Xin; Liu, Qian; Cao, Shuo-Hui; Cai, Wei-Peng; Meng, Ling-Yan; Xie, Kai-Xin; Zhai, Yan-Yun; Zong, Cheng; Yang, Zhi-Lin; Ren, Bin; Li, Yao-Qun

    2015-06-04

    Surface-enhanced Raman scattering (SERS) is a unique analytical technique that provides fingerprint spectra, yet facing the obstacle of low collection efficiency. In this study, we demonstrated a simple approach to measure surface plasmon-coupled directional enhanced Raman scattering by means of the reverse Kretschmann configuration (RK-SPCR). Highly directional and p-polarized Raman scattering of 4-aminothiophenol (4-ATP) was observed on a nanoparticle-on-film substrate at 46° through the prism coupler with a sharp angle distribution (full width at half-maximum of ∼3.3°). Because of the improved collection efficiency, the Raman scattering signal was enhanced 30-fold over the conventional SERS mode; this was consistent with finite-difference time-domain simulations. The effect of nanoparticles on the coupling efficiency of propagated surface plasmons was investigated. Possessing straightforward implementation and directional enhancement of Raman scattering, RK-SPCR is anticipated to simplify SERS instruments and to be broadly applicable to biochemical assays.

  15. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling.

    PubMed

    Richter, Johannes M; Abdi-Jalebi, Mojtaba; Sadhanala, Aditya; Tabachnyk, Maxim; Rivett, Jasmine P H; Pazos-Outón, Luis M; Gödel, Karl C; Price, Michael; Deschler, Felix; Friend, Richard H

    2016-12-23

    In lead halide perovskite solar cells, there is at least one recycling event of electron-hole pair to photon to electron-hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells.

  16. High efficiency all-optical plasmonic diode based on a nonlinear side-coupled waveguide-cavity structure with broken symmetry

    NASA Astrophysics Data System (ADS)

    Liang, Hong-Qin; Liu, Bin; Hu, Jin-Feng; He, Xing-Dao

    2018-05-01

    An all-optical plasmonic diode, comprising a metal-insulator-metal waveguide coupled with a stub cavity, is proposed based on a nonlinear Fano structure. The key technique used is to break structural spatial symmetry by a simple reflector layer in the waveguide. The spatial asymmetry of the structure gives rise to the nonreciprocity of coupling efficiencies between the Fano cavity and waveguides on both sides of the reflector layer, leading to a nonreciprocal nonlinear response. Transmission properties and dynamic responses are numerically simulated and investigated by the nonlinear finite-difference time-domain method. In the proposed structure, high-efficiency nonreciprocal transmission can be achieved with a low power threshold and an ultrafast response time (subpicosecond level). A high maximum transmittance of 89.3% and an ultra-high transmission contrast ratio of 99.6% can also be obtained. The device can be flexibly adjusted for working wavebands by altering the stub cavity length.

  17. Palladium-catalyzed one-pot three- or four-component coupling of aryl iodides, alkynes, and amines through C-N bond cleavage: efficient synthesis of indole derivatives.

    PubMed

    Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-02-24

    An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide

    NASA Astrophysics Data System (ADS)

    KiršanskÄ--, Gabija; Thyrrestrup, Henri; Daveau, Raphaël S.; Dreeßen, Chris L.; Pregnolato, Tommaso; Midolo, Leonardo; Tighineanu, Petru; Javadi, Alisa; Stobbe, Søren; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Park, Suk In; Song, Jin D.; Kuhlmann, Andreas V.; Söllner, Immo; Löbl, Matthias C.; Warburton, Richard J.; Lodahl, Peter

    2017-10-01

    We demonstrate a high-purity source of indistinguishable single photons using a quantum dot embedded in a nanophotonic waveguide. The source features a near-unity internal coupling efficiency and the collected photons are efficiently coupled off chip by implementing a taper that adiabatically couples the photons to an optical fiber. By quasiresonant excitation of the quantum dot, we measure a single-photon purity larger than 99.4 % and a photon indistinguishability of up to 94 ±1 % by using p -shell excitation combined with spectral filtering to reduce photon jitter. A temperature-dependent study allows pinpointing the residual decoherence processes, notably the effect of phonon broadening. Strict resonant excitation is implemented as well as another means of suppressing photon jitter, and the additional complexity of suppressing the excitation laser source is addressed. The paper opens a clear pathway towards the long-standing goal of a fully deterministic source of indistinguishable photons, which is integrated on a planar photonic chip.

  19. Dehydrogenative coupling of silanes with alcohols catalyzed by Cu3(BTC)2.

    PubMed

    Dhakshinamoorthy, Amarajothi; Concepcion, Patricia; Garcia, Hermenegildo

    2016-02-14

    Cu3(BTC)2 is an efficient and reusable heterogeneous catalyst for the dehydrogenative coupling of silanes with alcohols. Activity data and CO adsorption suggest that Cu(II) and in situ generated Cu(I) are the active species. Other MOFs such as Fe(BTC), MIL-101(Cr) and UiO-66(Zr) are unable to promote this cross-coupling.

  20. Amine-selective bioconjugation using arene diazonium salts.

    PubMed

    Diethelm, Stefan; Schafroth, Michael A; Carreira, Erick M

    2014-08-01

    A novel bioconjugation strategy is presented that relies on the coupling of diazonium terephthalates with amines in proteins. The diazonium captures the amine while the vicinal ester locks it through cyclization, ensuring no reversibility. The reaction is highly efficient and proceeds under mild conditions and short reaction times. Densely functionalized, complex natural products were directly coupled to proteins using low concentrations of coupling partners.

Top