Science.gov

Sample records for decreases matrix metalloproteinase

  1. Anti-HIV Drugs Decrease the Expression of Matrix Metalloproteinases in Astrocytes and Microglia

    ERIC Educational Resources Information Center

    Liuzzi, G. M.; Mastroianni, C. M.; Latronico, T.; Mengoni, F.; Fasano, A.; Lichtner, M.; Vullo, V.; Riccio, P.

    2004-01-01

    The introduction of potent antiretroviral drugs for the treatment of patients with human immunodeficiency virus (HIV) infection has dramatically reduced the prevalence of HIV-associated neurological disorders. Such diseases can be mediated by proteolytic enzymes, i.e. matrix metalloproteinases (MMPs) and, in particular gelatinases, released from…

  2. Inhibition of arachidonic acid metabolism decreases tumor cell invasion and matrix metalloproteinase expression.

    PubMed

    Koontongkaew, Sittichai; Monthanapisut, Paopanga; Saensuk, Theeranuch

    2010-11-01

    Head and neck cancers are known to synthesize arachidonic acid metabolites. Interfering with arachidonic acid metabolism may inhibit growth and invasiveness of cancer cells. In this study we investigate effects of sulindac (the non-selective COX inhibitor), aspirin (the irreversible, preferential COX-1 inhibitor), NS-398 (the selective COX-2 inhibitor), NDGA (nordihydroguaiaretic acid, the selective LOX inhibitor) and ETYA (5,8,11,14-eicosatetraynoic acid, the COX and LOX inhibitor) on cell viability, MMP-2 and MMP-9 activities, and in vitro invasion of cancer cells derived from primary and metastatic head and neck, and colon cancers. The inhibitors of COX and/or LOX could inhibit cell proliferation, MMP activity and invasion in head and neck and colon cancer cells. However, the inhibitory effect was obviously observed in colon cancer cells. Inhibition of arachidonic acid metabolism caused a decrease in cancer cell motility, which partially explained by the inhibition of MMPs. Therefore, COX and LOX pathways play important roles in head and neck cancer cell growth. PMID:20654727

  3. Ablation of matrix metalloproteinase-9 gene decreases cerebrovascular permeability and fibrinogen deposition post traumatic brain injury in mice

    PubMed Central

    Muradashvili, Nino; Benton, Richard L.; Saatman, Kathryn E.; Tyagi, Suresh C.; Lominadze, David

    2014-01-01

    Traumatic brain injury (TBI) is accompanied with enhanced matrix metalloproteinase-9 (MMP-9) activity and elevated levels of plasma fibrinogen (Fg), which is a known inflammatory agent. Activation of MMP-9 and increase in blood content of Fg (i.e. hyperfibrinogenemia, HFg) both contribute to cerebrovascular disorders leading to blood brain barrier disruption. It is well-known that activation of MMP-9 contributes to vascular permeability. It has been shown that at an elevated level (i.e. HFg) Fg disrupts blood brain barrier. However, mechanisms of their actions during TBI are not known. Mild TBI was induced in wild type (WT, C57BL/6J) and MMP-9 gene knockout (Mmp9−/−) homozygous, mice. Pial venular permeability to fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA) in pericontusional area was observed 14 days after injury. Mice memory was tested with a novel object recognition test. Increased expression of Fg endothelial receptor intercellular adhesion protein-1 and formation of caveolae were associated with enhanced activity of MMP-9 causing an increase in pial venular permeability. As a result, an enhanced deposition of Fg and cellular prion protein (PrPC) were found in pericontusional area. These changes were attenuated in Mmp9−/− mice and were associated with lesser loss of short-term memory in these mice than in WT mice. Our data suggest that mild TBI-induced increased cerebrovascular permeability enhances deposition of Fg-PrPC and loss of memory, which is ameliorated in the absence of MMP-9 activity. Thus, targeting MMP-9 activity and blood level of Fg can be a possible therapeutic remedy to diminish vasculo-neuronal damage after TBI. PMID:24771110

  4. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei

    2016-01-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis.

  5. Matrix metalloproteinases in fish biology and matrix turnover.

    PubMed

    Pedersen, Mona E; Vuong, Tram T; Rønning, Sissel B; Kolset, Svein O

    2015-01-01

    Matrix metalloproteinases have important functions for tissue turnover in fish, with relevance both for the fish industry and molecular and cellular research on embryology, inflammation and tissue repair. These metalloproteinases have been studied in different fish types, subjected to both aquaculture and experimental conditions. This review highlights studies on these metalloproteinases in relation to both fish quality and health and further, the future importance of fish for basic research studies.

  6. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2

    SciTech Connect

    Peng, P.-L.; Hsieh, Y.-S.; Wang, C.-J.; Hsu, J.-L.; Chou, F.-P. . E-mail: fpchou@csmu.edu.tw

    2006-07-01

    Berberine, a compound isolated from medicinal herbs, has been reported with many pharmacological effects related to anti-cancer and anti-inflammation capabilities. In this study, we observed that berberine exerted a dose- and time-dependent inhibitory effect on the motility and invasion ability of a highly metastatic A549 cells under non-cytotoxic concentrations. In cancer cell migration and invasion process, matrix-degrading proteinases are required. A549 cell treated with berberine at various concentrations showed reduced ECM proteinases including matrix metalloproteinase-2 (MMP2) and urokinase-plasminogen activator (u-PA) by gelatin and casein zymography analysis. The inhibitory effect is likely to be at the transcriptional level, since the reduction in the transcripts levels was corresponding to the proteins. Moreover, berberine also exerted its action via regulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and urokinase-plasminogen activator inhibitor (PAI). The upstream mediators of the effect involved c-jun, c-fos and NF-{kappa}B, as evidenced by reduced phosphorylation of the proteins. These findings suggest that berberine possesses an anti-metastatic effect in non-small lung cancer cell and may, therefore, be helpful in clinical treatment.

  7. Adventitial transplantation of blood outgrowth endothelial cells in porcine haemodialysis grafts alleviates hypoxia and decreases neointimal proliferation through a matrix metalloproteinase-9-mediated pathway—a pilot study

    PubMed Central

    Hughes, Deborah; Fu, Alex A.; Puggioni, Alessandra; Glockner, James F.; Anwer, Bilal; McGuire, Antonio M.; Mukhopadhyay, Debabrata; Misra, Sanjay

    2009-01-01

    Purpose. We hypothesized that adventitial transplantation of blood outgrowth endothelial cells (BOEC) to the vein-to-graft anastomosis of polytetrafluoroethylene grafts will reduce neointimal hyperplasia by reducing hypoxia inducible factor-1α (HIF-1α), by increasing angiogenesis in a porcine model of chronic renal insufficiency with haemodialysis polytetrafluoroethylene grafts. Because matrix metalloproteinases (MMPs) have been shown to be involved with angiogenesis, the expression of MMPs and their inhibitors was determined. Methods. Chronic renal insufficiency was created by subtotal renal infarction and 28 days later, arteriovenous PTFE grafts were placed bilaterally from the carotid artery to the jugular vein. Autologous blood outgrowth endothelial cells labeled with Lac Z were transplanted to the adventitia of the vein-to-graft anastomosis using polyglycolic acid scaffolding and scaffolding only to other side (control). Animals were killed 14 days later and vessels were explanted from the vein-to-graft anastomosis of both sides and underwent immunohistochemical analysis, western blotting and zymography for HIF-1α, MMP-2, MMP-9, TIMP-1 and TIMP-2. BOEC were also made hypoxic and normoxic for 12, 24 and 48 h to determine protein expression for MMPs and TIMPs. Results. Under hypoxia, BOEC significantly increased the expression of pro MMP-2 by 12 h and TIMP-2 by 24 h when compared to normoxic cells (P < 0.05). Transplantation of BOEC resulted in a significant decrease in both HIF-1α and intima-to-media ratio with a significant increase in both pro and active MMP-9 when compared to control vessels (P < 0.05). MMP-9 activity was localized to the neointima of the transplanted vessels by immunohistochemistry. There was increased CD31 density with engraftment of BOEC cells into the neointima of both the transplanted vessels compared to controls (P = NS). Conclusion. Transplantation of BOEC resulted in a significant decrease in intimal hyperplasia and HIF-1α with

  8. Matrix metalloproteinases in exercise and obesity

    PubMed Central

    Jaoude, Jonathan; Koh, Yunsuk

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs’ functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic) on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease. PMID:27471391

  9. [Progress on matrix metalloproteinase in axonal regeneration].

    PubMed

    Li, Yu-Ying; Ding, Yue-Min; Zhang, Xiong

    2015-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases. MMPs can degrade and remodel extracellular matrix, also active or inactive many molecules attaching to matrix including receptors, growth factors and cytokines, so that injury-induced MMPs can change the extracellular environment to affect the axonal regeneration in central nervous system. In this review, with spinal cord injury (SCI) as an example we discuss the effects of MMPs on inflammation, neuronal viability, extracellular molecules, glial scar and axonal remyelination, which are all important to axonal regeneration.

  10. [Progress on matrix metalloproteinase in axonal regeneration].

    PubMed

    Li, Yu-Ying; Ding, Yue-Min; Zhang, Xiong

    2015-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases. MMPs can degrade and remodel extracellular matrix, also active or inactive many molecules attaching to matrix including receptors, growth factors and cytokines, so that injury-induced MMPs can change the extracellular environment to affect the axonal regeneration in central nervous system. In this review, with spinal cord injury (SCI) as an example we discuss the effects of MMPs on inflammation, neuronal viability, extracellular molecules, glial scar and axonal remyelination, which are all important to axonal regeneration. PMID:25851983

  11. Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases in the hair cycle

    PubMed Central

    HOU, CHUN; MIAO, YONG; WANG, XUE; CHEN, CHAOYUE; LIN, BOJIE; HU, ZHIQI

    2016-01-01

    According to the growth state of hair follicles, the hair cycle is divided into the anagen, catagen and telogen phases. A number of biological factors have been shown to synchronize with the hair cycle. As an important component of the hair follicle, the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and their inhibitors (tissue inhibitor of matrix metalloproteinases; TIMPs). It has been reported that MMP-2, MMP-9 and TIMP-1 are associated with the hair cycle; however, their expression levels during the hair cycle have not been fully elucidated. Reverse transcription-polymerase chain reaction and ELISA analysis in the present study demonstrated that, during the hair cycle in mice, mRNA and protein expression levels of MMP-2 and MMP-9 were elevated in the anagen phase, and decreased during the catagen and telogen phases. Furthermore, SDS-PAGE gelatin zymography demonstrated that their activities fluctuated in the hair cycle. Additionally, it was observed that the mRNA and protein expression levels of TIMP-1 and TIMP-2 were negatively correlated with MMP-9 and MMP-2, respectively. Immunohistochemical examination demonstrated that MMP-2 and TIMP-2 were present in all structures of the hair follicle. However, MMP-9 and TIMP-1 were locally expressed in certain areas of the hair follicle, such as in the sebaceous gland at the anagen, catagen and telogen phases, and in the inner root sheath at the catagen phase. These results suggested that MMP-2 and MMP-9 may serve an important role in the hair growth cycle. PMID:27429651

  12. Matrix Metalloproteinases in Primary Culture of Cardiomyocytes.

    PubMed

    Bildyug, N B; Voronkina, I V; Smagina, L V; Yudintseva, N M; Pinaev, G P

    2015-10-01

    The highly organized contractile apparatus of cardiomyocytes in heart tissue allows for their continuous contractility, whereas extracellular matrix components are synthesized and spatially organized by fibroblasts and endothelial cells. However, reorganization of the cardiomyocyte contractile apparatus occurs upon their 2D cultivation, which is accompanied by transient loss of their contractility and acquired capability of extracellular matrix synthesis (Bildyug, N. B., and Pinaev, G. P. (2013) Tsitologiya, 55, 713-724). In this study, matrix metalloproteinases were investigated at different times of cardiomyocyte 2D cultivation and 3D cultivation in collagen gels. It was found that cardiomyocytes in 2D culture synthesize matrix metalloproteinases MMP-2 and MMP-9, wherein their amount varies with the cultivation time. The peak MMP-9 amount is at early cultivation time, when the reorganization of cardiomyocyte contractile apparatus occurs, and the MMP-2 peak precedes the recovery of the initial organization of their contractile apparatus. Upon cardiomyocyte cultivation in 3D collagen gels, in which case their contractile apparatus does not rearrange, a steady small amount of MMP-2 and MMP-9 is observed. These data indicate that the cardiomyocyte contractile apparatus reorganization in culture is associated with synthesis and spatial organization of their own extracellular matrix.

  13. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    PubMed

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination.

  14. Tuberculosis, Pulmonary Cavitation, and Matrix Metalloproteinases

    PubMed Central

    Ong, Catherine W. M.; Elkington, Paul T.

    2014-01-01

    Tuberculosis (TB), a chronic infectious disease of global importance, is facing the emergence of drug-resistant strains with few new drugs to treat the infection. Pulmonary cavitation, the hallmark of established disease, is associated with very high bacillary burden. Cavitation may lead to delayed sputum culture conversion, emergence of drug resistance, and transmission of the infection. The host immunological reaction to Mycobacterium tuberculosis is implicated in driving the development of TB cavities. TB is characterized by a matrix-degrading phenotype in which the activity of proteolytic matrix metalloproteinases (MMPs) is relatively unopposed by the specific tissue inhibitors of metalloproteinases. Proteases, in particular MMPs, secreted from monocyte-derived cells, neutrophils, and stromal cells, are involved in both cell recruitment and tissue damage and may cause cavitation. MMP activity is augmented by proinflammatory chemokines and cytokines, is tightly regulated by complex signaling paths, and causes matrix destruction. MMP concentrations are elevated in human TB and are closely associated with clinical and radiological markers of lung tissue destruction. Immunomodulatory therapies targeting MMPs in preclinical and clinical trials are potential adjuncts to TB treatment. Strategies targeting patients with cavitary TB have the potential to improve cure rates and reduce disease transmission. PMID:24713029

  15. Tuberculosis, pulmonary cavitation, and matrix metalloproteinases.

    PubMed

    Ong, Catherine W M; Elkington, Paul T; Friedland, Jon S

    2014-07-01

    Tuberculosis (TB), a chronic infectious disease of global importance, is facing the emergence of drug-resistant strains with few new drugs to treat the infection. Pulmonary cavitation, the hallmark of established disease, is associated with very high bacillary burden. Cavitation may lead to delayed sputum culture conversion, emergence of drug resistance, and transmission of the infection. The host immunological reaction to Mycobacterium tuberculosis is implicated in driving the development of TB cavities. TB is characterized by a matrix-degrading phenotype in which the activity of proteolytic matrix metalloproteinases (MMPs) is relatively unopposed by the specific tissue inhibitors of metalloproteinases. Proteases, in particular MMPs, secreted from monocyte-derived cells, neutrophils, and stromal cells, are involved in both cell recruitment and tissue damage and may cause cavitation. MMP activity is augmented by proinflammatory chemokines and cytokines, is tightly regulated by complex signaling paths, and causes matrix destruction. MMP concentrations are elevated in human TB and are closely associated with clinical and radiological markers of lung tissue destruction. Immunomodulatory therapies targeting MMPs in preclinical and clinical trials are potential adjuncts to TB treatment. Strategies targeting patients with cavitary TB have the potential to improve cure rates and reduce disease transmission.

  16. A caged substrate peptide for matrix metalloproteinases.

    PubMed

    Decaneto, Elena; Abbruzzetti, Stefania; Heise, Inge; Lubitz, Wolfgang; Viappiani, Cristiano; Knipp, Markus

    2015-02-01

    Based on the widely applied fluorogenic peptide FS-6 (Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2; Mca = methoxycoumarin-4-acetyl; Dpa = N-3-(2,4-dinitrophenyl)l-α,β-diaminopropionyl) a caged substrate peptide Ac-Lys-Pro-Leu-Gly-Lys*-Lys-Ala-Arg-NH2 (*, position of the cage group) for matrix metalloproteinases was synthesized and characterized. The synthesis implies the modification of a carbamidated lysine side-chain amine with a photocleavable 2-nitrobenzyl group. Mass spectrometry upon UV irradiation demonstrated the complete photolytic cleavage of the protecting group. Time-resolved laser-flash photolysis at 355 nm in combination with transient absorption spectroscopy determined the biphasic decomposition with τa = 171 ± 3 ms (79%) and τb = 2.9 ± 0.2 ms (21%) at pH 6.0 of the photo induced release of the 2-nitrobenzyl group. The recombinantly expressed catalytic domain of human membrane type I matrix metalloproteinase (MT1-MMP or MMP-14) was used to determine the hydrolysis efficiency of the caged peptide before and after photolysis. It turned out that the cage group sufficiently shields the peptide from peptidase activity, which can be thus controlled by UV light.

  17. OVARIAN CANCER: INVOLVEMENT OF THE MATRIX METALLOPROTEINASES

    PubMed Central

    Al-Alem, Linah; Curry, Thomas E.

    2016-01-01

    Ovarian cancer is the leading cause of death from gynecologic malignancies. Reasons for the high mortality rate associated with ovarian cancer include a late diagnosis at which time the cancer has metastasized throughout the peritoneal cavity. Cancer metastasis is facilitated by the remodeling of the extracellular tumor matrix by a family of proteolytic enzymes known as the matrix metalloproteinases (MMPs). There are 23 members in the MMP family, many of which have been reported to be associated with ovarian cancer. In the current paradigm, ovarian tumor cells and the surrounding stromal cells stimulate the synthesis and/or activation of various MMPs to aid in tumor growth, invasion, and eventual metastasis. This review sheds light on the different MMPs in the various types of ovarian cancer and their impact on the progression of this gynecologic malignancy. PMID:25918438

  18. Matrix Metalloproteinase Control of Capillary Morphogenesis

    PubMed Central

    Ghajar, Cyrus M; George, Steven C; Putnam, Andrew J

    2010-01-01

    Matrix metalloproteinases (MMPs) play crucial roles in a variety of normal (e.g. blood vessel formation, bone development) and pathophysiological (e.g. wound healing, cancer) processes. This is not only due to their ability to degrade the surrounding extracellular matrix (ECM), but also because MMPs function to reveal cryptic matrix binding sites, release matrix-bound growth factors inherent to these processes, and activate a variety of cell surface molecules. The process of blood vessel formation, in particular, is regulated by what is widely classified as the angiogenic switch: a mixture of both pro- and anti-angiogenic factors that function to counteract each other unless the stimuli from one side exceeds the other to disrupt the quiescent state. While it was initially thought that MMPs were strictly pro-angiogenic, new functions for this proteolytic family such as mediating vascular regression and generating matrix fragments with antiangiogenic capacities have been discovered in the last decade. These findings cast MMPs as multi-faceted pro- and anti-angiogenic effectors. The purpose of this review is to introduce the reader to the general structure and characterization of the MMP family and to discuss the temporal and spatial regulation of their gene expression and enzymatic activity in the following crucial steps associated with angiogenesis: degradation of the vascular basement membrane; proliferation and invasion of endothelial cells within the subjacent ECM, organization into immature tubules; maturation of these nascent vessels; and the pruning and regression of the vascular network. PMID:18540825

  19. Diverse functions of matrix metalloproteinases during fibrosis.

    PubMed

    Giannandrea, Matthew; Parks, William C

    2014-02-01

    Fibrosis--a debilitating condition that can occur in most organs - is characterized by excess deposition of a collagen-rich extracellular matrix (ECM). At first sight, the activities of proteinases that can degrade matrix, such as matrix metalloproteinases (MMPs), might be expected to be under-expressed in fibrosis or, if present, could function to resolve the excess matrix. However, as we review here, some MMPs are indeed anti-fibrotic, whereas others can have pro-fibrotic functions. MMPs modulate a range of biological processes, especially processes related to immunity and tissue repair and/or remodeling. Although we do not yet know precisely how MMPs function during fibrosis--that is, the protein substrate or substrates that an individual MMP acts on to effect a specific process--experiments in mouse models demonstrate that MMP-dependent functions during fibrosis are not limited to effects on ECM turnover. Rather, data from diverse models indicate that these proteinases influence cellular activities as varied as proliferation and survival, gene expression, and multiple aspects of inflammation that, in turn, impact outcomes related to fibrosis.

  20. Activity of matrix metalloproteinases during antimycobacterial therapy in mice with simulated tuberculous inflammation.

    PubMed

    Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E

    2013-05-01

    Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance.

  1. Chemical Biology for Understanding Matrix Metalloproteinase Function

    PubMed Central

    Knapinska, Anna; Fields, Gregg B.

    2013-01-01

    The matrix metalloproteinase (MMP) family has long been associated with normal physiological processes such as embryonic implantation, tissue remodeling, organ development, and wound healing, as well as multiple aspects of cancer initiation and progression, osteoarthritis, inflammatory and vascular diseases, and neurodegenerative diseases. The development of chemically designed MMP probes has advanced our understanding of the roles of MMPs in disease in addition to shedding considerable light on the mechanisms of MMP action. The first generation of protease-activated agents has demonstrated proof of principle as well as providing impetus for in vivo applications. One common problem has been a lack of agent stability at nontargeted tissues and organs due to activation by multiple proteases. The present review considers how chemical biology has impacted the progress made in understanding the roles of MMPs in disease and the basic mechanisms of MMP action. PMID:22933318

  2. Matrix Metalloproteinases as Drug Targets in Preeclampsia

    PubMed Central

    Palei, Ana C.T.; Granger, Joey P.; Tanus-Santos, Jose E.

    2013-01-01

    Preeclampsia is an important syndrome complicating pregnancy. While the pathogenesis of preeclampsia is not entirely known, poor placental perfusion leading to widespread maternal endothelial dysfunction is accepted as a major mechanism. It has been suggested that altered placental expression of matrix metalloproteinases (MMPs) may cause shallow cytotrophoblastic invasion and incomplete remodeling of the spiral arteries. MMPs are also thought to link placental ischemia to the cardiovascular alterations of preeclampsia. In fact, MMPs may promote vasoconstriction and surface receptors cleavage affecting the vasculature. Therefore, the overall goal of this review article is to provide an overview of the pathophisiology of preeclampsia, more specifically regarding the role of MMPs in the pathogenesis of preeclampsia and the potential of MMP inhibitors as therapeutic options. PMID:23316964

  3. Electrochemical Proteolytic Beacon for Detection of Matrix Metalloproteinase Activities

    SciTech Connect

    Liu, Guodong; Wang, Jun; Wunschel, David S.; Lin, Yuehe

    2006-09-27

    This communication describes a novel method for detecting of matrix metalloproteinase-7 activity using a peptide substrate labeled with a ferrocene reporter. The substrate serves as a selective ‘electrochemical proteolytic beacon’ (EPB) for this metalloproteinase. The EPB is immobilized on a gold electrode surface to enable ‘on-off’ electrochemical signaling capability for uncleaved and cleaved events. The EPB is efficiently and selectively cleaved by MMP-7 as measured by the rate of decrease in redox current of ferrocene. Direct transduction of a signal corresponding to peptide cleavage events into an electronic signal thus provides a simple, sensitive route for detecting the MMP activity. The new method allows for identification of the activity of MMP-7 in concentrations as low as 3.4 pM. The concept can be extended to design multiple peptide substrate labeled with different electroactive reporters for assaying multiple MMPs activities.

  4. Electrochemical proteolytic beacon for detection of matrix metalloproteinase activities.

    PubMed

    Liu, Guodong; Wang, Jun; Wunschel, David S; Lin, Yuehe

    2006-09-27

    This communication describes a novel method for detecting matrix metalloproteinase-7 activity using a peptide substrate labeled with a ferrocene reporter. The substrate serves as a selective "electrochemical proteolytic beacon" (EPB) for this metalloproteinase. The EPB is immobilized on a gold electrode surface to enable "on-off" electrochemical signaling capability for uncleaved and cleaved events. The EPB is efficiently and selectively cleaved by MMP-7 as measured by the rate of decrease in redox current of ferrocene. Direct transduction of a signal corresponding to peptide cleavage events into an electronic signal thus provides a simple, sensitive route for detecting the MMP activity. The new method allows for identification of the activity of MMP-7 in concentrations as low as 3.4 pM. The concept can be extended to design a multiple peptide substrate labeled with different electroactive reporters for assaying multiple MMPs activities.

  5. Matrix Metalloproteinases in Non-Neoplastic Disorders

    PubMed Central

    Tokito, Akinori; Jougasaki, Michihisa

    2016-01-01

    The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action. PMID:27455234

  6. Matrix metalloproteinases and neuroinflammation in multiple sclerosis.

    PubMed

    Rosenberg, Gary A

    2002-12-01

    Matrix metalloproteinases (MMPs) are extracellular matrix remodeling neutral proteases that are important in normal development, angiogenesis, wound repair, and a wide range of pathological processes. Growing evidence supports a key role of the MMPs in many neuroinflammatory conditions, including meningitis, encephalitis, brain tumors, cerebral ischemia, Guillain-Barré, and multiple sclerosis (MS). The MMPs attack the basal lamina macromolecules that line the blood vessels, opening the blood-brain barrier (BBB). They contribute to the remodeling of the blood vessels that causes hyalinosis and gliosis, and they attack myelin. During the acute inflammatory phase of MS, they are involved in the injury to the blood vessels and may be important in the disruption of the myelin sheath and axons. Normally under tight regulation, excessive proteolytic activity is detected in the blood and cerebrospinal fluid in patients with acute MS. Because they are induced in immunologic and nonimmunologic forms of demyelination, they act as a final common pathway to exert a "bystander" effect. Agents that block the action of the MMPs have been shown to reduce the damage to the BBB and lead to symptomatic improvement in several animal models of neuroinflammatory diseases, including experimental allergic encephalomyelitis. Such agents may eventually be useful in the control of excessive proteolysis that contributes to the pathology of MS and other neuroinflammatory conditions.

  7. Correlation between matrix metalloproteinase-9 and endometriosis.

    PubMed

    Liu, Haiping; Wang, Jianye; Wang, Haiyu; Tang, Ning; Li, Yunfei; Zhang, Yan; Hao, Tianyu

    2015-01-01

    Endometrial implantation is the major cause of endometriosis (EMS). Matrix metalloproteinase (MMPs) can degrade multiple extracellular matrix and has been postulated to be related with EMC occurrence. This study thus investigated serum and ascites levels of MMP-9 in EMS patients, in an attempt to discuss the correlation between MMP-9 and EMS. A total of 100 EMS patients, including eutopic endometrium and ectopic endometrium, were recruited in this study along with hysteromyoma patients as the control group. Peripheral blood and ascites samples were collected and tested for MMP-9 levels using gelatin zymogram and enzyme-linked immunosorbent assay (ELISA). In EMS patients, MMP-9 levels in serum and ascites were 6.24 ± 0.53 mM and 38.57 ± 4.93 mM, respectively. Both of them were significantly higher than those in control group (P<0.05). Eutopic endometrium group had higher MMP-9 levels compared to those in ectopic endometrium ones (P<0.05). With advancement of disease stage, EMS patients had progressively elevated MMP-9 levels (P<0.05). Patients at proliferative stage had higher MMP-9 secretion (P<0.05). In summary, site of endometrium, clinical stage and proliferative cycle were independent risk factors for EMS. The elevation of serum and ascites MMP-9 existed in EMS patients, of which those had ectopic endometrium, advanced stage and at proliferative stage had higher MMP-9 expression. PMID:26722547

  8. Correlation between matrix metalloproteinase-9 and endometriosis

    PubMed Central

    Liu, Haiping; Wang, Jianye; Wang, Haiyu; Tang, Ning; Li, Yunfei; Zhang, Yan; Hao, Tianyu

    2015-01-01

    Endometrial implantation is the major cause of endometriosis (EMS). Matrix metalloproteinase (MMPs) can degrade multiple extracellular matrix and has been postulated to be related with EMC occurrence. This study thus investigated serum and ascites levels of MMP-9 in EMS patients, in an attempt to discuss the correlation between MMP-9 and EMS. A total of 100 EMS patients, including eutopic endometrium and ectopic endometrium, were recruited in this study along with hysteromyoma patients as the control group. Peripheral blood and ascites samples were collected and tested for MMP-9 levels using gelatin zymogram and enzyme-linked immunosorbent assay (ELISA). In EMS patients, MMP-9 levels in serum and ascites were 6.24±0.53 mM and 38.57±4.93 mM, respectively. Both of them were significantly higher than those in control group (P<0.05). Eutopic endometrium group had higher MMP-9 levels compared to those in ectopic endometrium ones (P<0.05). With advancement of disease stage, EMS patients had progressively elevated MMP-9 levels (P<0.05). Patients at proliferative stage had higher MMP-9 secretion (P<0.05). In summary, site of endometrium, clinical stage and proliferative cycle were independent risk factors for EMS. The elevation of serum and ascites MMP-9 existed in EMS patients, of which those had ectopic endometrium, advanced stage and at proliferative stage had higher MMP-9 expression. PMID:26722547

  9. Matrix metalloproteinase inhibition in atherosclerosis and stroke.

    PubMed

    Roycik, M D; Myers, J S; Newcomer, R G; Sang, Q-X A

    2013-09-01

    Matrix metalloproteinases (MMPs) are a family of tightly regulated, zinc-dependent proteases that degrade extracellular matrix (ECM), cell surface, and intracellular proteins. Vascular remodeling, whether as a function of normal physiology or as a consequence of a myriad of pathological processes, requires degradation of the ECM. Thus, the expression and activity of many MMPs are up-regulated in numerous conditions affecting the vasculature and often exacerbate vascular dysfunction. A growing body of evidence supports the rationale of using MMP inhibitors for the treatment of cardiovascular diseases, stroke, and chronic vascular dementia. This manuscript will examine promising targets for MMP inhibition in atherosclerosis and stroke, reviewing findings in preclinical animal models and human patient studies. Strategies for MMP inhibition have progressed beyond chelating the catalytic zinc to functional blocking antibodies and peptides that target either the active site or exosites of the enzyme. While the inhibition of MMP activity presents a rational therapeutic avenue, the multiplicity of roles for MMPs and the non-selective nature of MMP inhibitors that cause unintended side-effects hinder full realization of MMP inhibition as therapy for vascular disease. For optimal therapeutic effects to be realized, specific targets for MMP inhibition in these pathologies must first be identified and then attacked by potent and selective agents during the most appropriate timepoint.

  10. Heterogeneity of serum activities of matrix metalloproteinases in chronic endometritis.

    PubMed

    Sukhikh, G T; Soboleva, G M; Silantyeva, E S; Shagerbieva, E A; Serov, V N

    2007-04-01

    Matrix metalloproteinases belong to the key molecules of tissue remodeling involved in physiological and pathological processes of the female reproductive system. Adequate levels of their expression in the endometrium are essential for effective implantation and uneventful pregnancy. Chronic inflammatory process in the endometrium is associated with low tissue expression of metalloproteinase-9. Histologically verified chronic endometritis is associated with low serum activities of metalloproteinases 2 and 9, which are restored after combined etiotropic therapy. We measured serum levels of metalloproteinases in patients with chronic endometritis concomitant with sterility and its changes during the first days after magnetotherapy. PMID:18214304

  11. Matrix metalloproteinase 14 overexpression reduces corneal scarring.

    PubMed

    Galiacy, S D; Fournié, P; Massoudi, D; Ancèle, E; Quintyn, J-C; Erraud, A; Raymond-Letron, I; Rolling, F; Malecaze, F

    2011-05-01

    Once a corneal scar develops, surgical management remains the only option for visual rehabilitation. Corneal transplantation is the definitive treatment for a corneal scar. In addition to the challenges posed by graft rejections and other postoperative complications, the lack of high-quality donor corneas can limit the benefits possible with keratoplasty. The purpose of our study was to evaluate a new therapeutic strategy for treating corneal scarring by targeting collagen deposition. We overexpressed a fibril collagenase (matrix metalloproteinase 14 (MMP14)) to prevent collagen deposition in the scar tissue. We demonstrated that a single and simple direct injection of recombinant adeno-associated virus-based vector expressing murine MMP14 can modulate gene expression of murine stromal keratocytes. This tool opens new possibilities with regard to treatment. In a mouse model of corneal full-thickness incision, we observed that MMP14 overexpression reduced corneal opacity and expression of the major genes involved in corneal scarring, especially type III collagen and α-smooth muscle actin. These results represent proof of concept that gene transfer of MMP14 can reduce scar formation, which could have therapeutic applications after corneal trauma.

  12. Cell Death Control by Matrix Metalloproteinases.

    PubMed

    Zimmermann, Dirk; Gomez-Barrera, Juan A; Pasule, Christian; Brack-Frick, Ursula B; Sieferer, Elke; Nicholson, Tim M; Pfannstiel, Jens; Stintzi, Annick; Schaller, Andreas

    2016-06-01

    In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato. PMID:27208293

  13. Expression of matrix metalloproteinase-2 and survivin in endometrioid and nonendometrioid endometrial cancers and clinicopathologic significance

    PubMed Central

    Yilmaz, Evren; Koyuncuoglu, Meral; Görken, İlknur Bilkay; Saatli, Bahadir; Ulukus, Emine Cagnur; Saygili, Ugur

    2011-01-01

    Objective To determine matrix metalloproteinase-2 and survivin expressions in endometrial cancers, their relation to clinical and histologic parameters and to investigate any difference in the expression of these markers between endometrioid and nonendometrioid cancers. Methods Ninety-five patients with endometrial cancer, were included. Matrix metalloproteinase-2 and survivin expressions were analyzed immunohistochemically from paraffin-embedded tissues by using specific monoclonal antibodies. Results Survivin nuclear expression was higher in endometrioid cancer as compared to nonendometrioid cancer (p=0.040), but there was no difference for cytoplasmic survivin and matrix metalloproteinase-2 expressions between type I and type II carcinomas. Survivin cytoplasmic staining was significantly lower in patients with deep myometrial invasion (p=0.038). Nuclear expression of survivin is decreased in histologic grade 3 tumors compared to grade 1 and 2 tumors (p=0.013), but there is no difference between grade 1 and 2. We did not find any statistically significant difference between survivin or matrix metalloproteinase-2 expressions and survival. Conclusion Survivin and matrix metalloproteinase-2 are present in endometrioid and nonendometrioid cancers. Grade 1 and 2 tumors and carcinomas having myometrial invasion less than 50% have higher survivin expression. These results supports that, survivin may play an important role in early stage tumors and early phases of tumor development. We did not find any association between matrix metalloproteinase-2 expression and classical prognostic factors in endometrial cancer and both proteins were not associated with survival. PMID:21860734

  14. Immunohistochemical Analysis of Matrix Metalloproteinase-13 in Human Caries Dentin

    PubMed Central

    Loreto, C.; Galanti, C.; Musumeci, G.; Rusu, M.C.; Leonardi, R.

    2014-01-01

    The immunoexpression profile of matrix metalloproteinase-13 was investigated for the first time in dentin of human caries and healthy teeth. Twelve permanent premolars (10 caries and 2 sound) were decalcified in ethylenediaminetetraacetic acid and processed for embedding in paraffin wax. Sections 3-4 µm in thickness were cut and processed for immunohistochemistry. A mouse monoclonal anti-metalloproteinase-13 antibody was used for localisation using an immunoperoxidase technique. Dentinal immunoreactivity was detected in all teeth; it was weak in sound teeth and strong close to the caries area. These in vivo findings suggest a role for metalloproteinase-13 in the development and progression of adult human dental tissue disorders. PMID:24704999

  15. Neural Functions of Matrix Metalloproteinases: Plasticity, Neurogenesis, and Disease

    PubMed Central

    Fujioka, Hiromi; Dairyo, Yusuke; Yasunaga, Kei-ichiro; Emoto, Kazuo

    2012-01-01

    The brain changes in response to experience and altered environment. To do that, the nervous system often remodels the structures of neuronal circuits. This structural plasticity of the neuronal circuits appears to be controlled not only by intrinsic factors, but also by extrinsic mechanisms including modification of the extracellular matrix. Recent studies employing a range of animal models implicate that matrix metalloproteinases regulate multiple aspects of the neuronal development and remodeling in the brain. This paper aims to summarize recent advances of our knowledge on the neuronal functions of matrix metalloproteinases and discuss how they might relate in neuronal disease. PMID:22567285

  16. Detection of functional matrix metalloproteinases by zymography.

    PubMed

    Hu, Xueyou; Beeton, Christine

    2010-01-01

    Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases. They degrade proteins by cleavage of peptide bonds. More than twenty MMPs have been identified and are separated into six groups based on their structure and substrate specificity (collagenases, gelatinases, membrane type [MT-MMP], stromelysins, matrilysins, and others). MMPs play a critical role in cell invasion, cartilage degradation, tissue remodeling, wound healing, and embryogenesis. They therefore participate in both normal processes and in the pathogenesis of many diseases, such as rheumatoid arthritis, cancer, or chronic obstructive pulmonary disease. Here, we will focus on MMP-2 (gelatinase A, type IV collagenase), a widely expressed MMP. We will demonstrate how to detect MMP-2 in cell culture supernatants by zymography, a commonly used, simple, and yet very sensitive technique first described in 1980 by C. Heussen and E.B. Dowdle. This technique is semi-quantitative, it can therefore be used to determine MMP levels in test samples when known concentrations of recombinant MMP are loaded on the same gel. Solutions containing MMPs (e.g. cell culture supernatants, urine, or serum) are loaded onto a polyacrylamide gel containing sodium dodecyl sulfate (SDS; to linearize the proteins) and gelatin (substrate for MMP-2). The sample buffer is designed to increase sample viscosity (to facilitate gel loading), provide a tracking dye (bromophenol blue; to monitor sample migration), provide denaturing molecules (to linearize proteins), and control the pH of the sample. Proteins are then allowed to migrate under an electric current in a running buffer designed to provide a constant migration rate. The distance of migration is inversely correlated with the molecular weight of the protein (small proteins move faster through the gel than large proteins do and therefore migrate further down the gel). After migration, the gel is placed in a renaturing buffer to allow proteins to regain their tertiary

  17. Isolation and characterization of chicken bile matrix metalloproteinase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian bile is rich in matrix metalloproteinases (MMP), the enzymes that cleave extracellular matrix (ECM) proteins such as collagens and proteoglycans. Changes in bile MMP expression have been correlated with hepatic and gall bladder pathologies but the significance of their expression in normal, he...

  18. Beneficial Regulation of Matrix Metalloproteinases for Skin Health

    PubMed Central

    Philips, Neena; Auler, Susan; Hugo, Raul; Gonzalez, Salvador

    2011-01-01

    Matrix metalloproteinases (MMPs) are essential to the remodeling of the extracellular matrix. While their upregulation facilitates aging and cancer, they are essential to epidermal differentiation and the prevention of wound scars. The pharmaceutical industry is active in identifying products that inhibit MMPs to prevent or treat aging and cancer and products that stimulate MMPs to prevent epidermal hyperproliferative diseases and wound scars. PMID:21423679

  19. The anti-fibrotic effect of liver growth factor is associated with decreased intrahepatic levels of matrix metalloproteinases 2 and 9 and transforming growth factor beta 1 in bile duct-ligated rats.

    PubMed

    Díaz-Gil, Juan J; García-Monzón, Carmelo; Rúa, Carmen; Martín-Sanz, Paloma; Cereceda, Rosa M; Miquilena-Colina, María E; Machín, Celia; Fernández-Martínez, Amalia; García-Cañero, Rarael

    2008-05-01

    Liver growth factor (LGF), a mitogen for liver cells, behaves as an anti-fibrotic agent even in extrahepatic sites, but its mechanistic basis is unknown. We aimed to determine the intrahepatic expression pattern of key modulators of liver fibrosis in bile duct-ligated rats (BDL) after injection of LGF. BDL rats received either LGF (4.5 microg/ratXdose, two doses/week, at time 0 or 2 or 5w after operation, depending on the group (BDL+LGF groups, n=20) or saline (BDL+S groups, n=20). Groups were compared in terms of fibrosis (histomorphometry), liver function (aminopyrine breath test), matrix metalloproteinases MMP-2 and MMP-9, transforming growth factor beta 1 (TGF-beta1) and liver endoglin content (Western blotting), and serum tissue inhibitor of metalloproteinases 1 (TIMP-1) levels (ELISA). In BDL+LGF rats, the fibrotic index was significantly lower at 5w, p=0.006, and at 8w, p=0.04, than in BDL+S rats. Liver function values in BDL+LGF rats were higher than those obtained in BDL+S rats (80% at 5w and 79% at 8w, versus 38% and 29%, p<0.01, taking healthy controls as 100%). Notably, in BDL+LGF rats the intrahepatic expression levels of both MMPs were lower at 2w (MMP-2, p=0.03; MMP-9, p=0.05) and 5w (MMP-2, p=0.05, MMP-9, p=0.04). In addition, the hepatic TGF-beta1 level in BDL+LGF rats was lower at 2w (36%, p=0.008), 5w (50%) and 8wk (37%), whereas intrahepatic endoglin expression remained constant in all BDL rats studied. LGF ameliorates liver fibrosis and improves liver function in BDL rats. The LGF-induced anti-fibrotic effect is associated with a decreased hepatic level of MMP-2, MMP-9 and TGF-beta1 in fibrotic rats.

  20. Matrix Metalloproteinase-9 Regulates Neuronal Circuit Development and Excitability.

    PubMed

    Murase, Sachiko; Lantz, Crystal L; Kim, Eunyoung; Gupta, Nitin; Higgins, Richard; Stopfer, Mark; Hoffman, Dax A; Quinlan, Elizabeth M

    2016-07-01

    In early postnatal development, naturally occurring cell death, dendritic outgrowth, and synaptogenesis sculpt neuronal ensembles into functional neuronal circuits. Here, we demonstrate that deletion of the extracellular proteinase matrix metalloproteinase-9 (MMP-9) affects each of these processes, resulting in maladapted neuronal circuitry. MMP-9 deletion increases the number of CA1 pyramidal neurons but decreases dendritic length and complexity. Parallel changes in neuronal morphology are observed in primary visual cortex and persist into adulthood. Individual CA1 neurons in MMP-9(-/-) mice have enhanced input resistance and a significant increase in the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs). Additionally, deletion of MMP-9 significantly increases spontaneous neuronal activity in awake MMP-9(-/-) mice and enhances response to acute challenge by the excitotoxin kainate. Our data document a novel role for MMP-9-dependent proteolysis: the regulation of several aspects of circuit maturation to constrain excitability throughout life.

  1. Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas

    PubMed Central

    Liu, Hong-Yan; Gu, Wei-Jun; Wang, Cheng-Zhi; Ji, Xiao-Jian; Mu, Yi-Ming

    2016-01-01

    Abstract The extracellular matrix is important for tumor invasion and metastasis. Normal function of the extracellular matrix depends on the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The objective of this meta-analysis was to assess the relationship between expression of MMP-9, MMP-2, and TIMP-2 and invasion of pituitary adenomas. We searched Pubmed, Embase, and the Chinese Biomedical Database up to October 2015. RevMan 5.1 software (Cochrane Collaboration, Copenhagen, Denmark) was used for statistical analysis. We calculated the standardized mean difference (SMD) for data expressed as mean ± standard deviation because of the difference in the detection method. Twenty-four studies (1320 patients) were included. MMP-9 expression was higher in the patients with invasive pituitary adenomas (IPAs) than patients with noninvasive pituitary adenomas (NIPAs) with detection methods of IHC [odds ratio (OR) = 5.48, 95% confidence interval (CI) = 2.61–11.50, P < 0.00001), and reverse transcriptase-polymerase chain reaction (SMD = 2.28, 95% CI = 0.91–3.64, P = 0.001). MMP-2 expression was also increased in patients with IPAs at the protein level (OR = 3.58, 95% CI = 1.63–7.87, P = 0.001), and RNA level (SMD = 3.91, 95% CI = 1.52–6.29, P = 0.001). Meta-analysis showed that there was no difference in TIMP-2 expression between invasive and NIPAs at the protein level (OR = 0.38, 95% CI = 0.06–2.26, P = 0.29). MMP-9 expression in prolactinomas and nonfunctioning pituitary adenomas was also no difference (OR = 1.03, 95% CI = 0.48–2.20, P = 0.95). The results indicated that MMP-9 and -2 may be correlated with invasiveness of pituitary adenomas, although their relationship with functional status of pituitary adenomas is still not clear. TIMP-2 expression in IPAs needs to be investigated further. PMID:27310993

  2. A Glimpse of Matrix Metalloproteinases in Diabetic Nephropathy

    PubMed Central

    Xu, X.; Xiao, L.; Xiao, P.; Yang, S.; Chen, G.; Liu, F.; Kanwar, Y.Y.; Sun, L.

    2014-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes belonging to the family of zinc-dependent endopeptidases that are capable of degrading almost all the proteinaceous components of the extracellular matrix (ECM). It is known that MMPs play a role in a number of renal diseases, such as, various forms of glomerulonephritis and tubular diseases, including some of the inherited kidney diseases. In this regard, ECM accumulation is considered to be a hallmark morphologic finding of diabetic nephropathy, which not only is related to the excessive synthesis of matrix proteins, but also to their decreased degradation by the MMPs. In recent years, increasing evidence suggest that there is a good correlation between the activity or expression of MMPs and progression of renal disease in patients with diabetic nephropathy in humans and in various experimental animal models. In such a diabetic milieu, the expression of MMPs is modulated by high glucose, advanced glycation end products (AGEs), TGF-β, reactive oxygen species (ROS), transcription factors and some of the microRNAs. In this review, we focused on the structure and functions of MMPs, and their role in the pathogenesis of diabetic nephropathy. PMID:25039784

  3. Chicken bile Matrix metalloproteinase; its characterization and significance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies from our lab had shown that the avian bile was rich in matrix metalloproteinase (MMP), enzymes implicated in the degradation of extracellular matrices (ECM) such as collagens and proteoglycans. We hypothesized that bile MMP may be evolutionarily associated with the digestion of ECM ...

  4. Aliskiren Inhibits Neointimal Matrix Metalloproteinases in Experimental Atherosclerosis

    PubMed Central

    Wu, Tao-Cheng; Lee, Chiu-Yang; Lin, Shing-Jong; Chen, Jaw-Wen

    2016-01-01

    Background The renin-angiotensin system (RAS) plays an important role in atherosclerosis. Acting via the angiotensin II receptor, type 1, oxidative stress increases and contributes to endothelial dysfunction and vascular inflammation. Renin exerts effects through a renin receptor causing an increase in the efficiency of angiotensinogen cleavage and facilitates angiotensin II (Ang II) generation and action on cell surfaces. Ang II enhances proliferation and migration of vascular smooth muscle cells, indicating a direct involvement of the RAS in smooth muscle cell proliferation during neointimal formation. Aliskiren, a direct renin inhibitor, is a new oral antihypertensive drug. However, the role of the direct renin inhibitor in neointimal formation and vascular matrix metalloproteinases remains unclear. Methods To investigate the effects of aliskiren on the expression of vascular matrix metalloproteinases, we evaluated the aortic neointimal formation of high-cholesterol-fed animals after vascular injury in vivo and the cellular function of the tumor necrosis factor-α stimulated human aortic smooth muscle cells in vitro. Thereafter, we evaluated vascular expression (by western blot), activity (by gelatin zymography) and molecular pathway. Results In this study we demonstrated that aliskiren reduced neointimal hyperplasia in hypercholesterolemic rabbits after vascular injury and the expression of matrix metalloproteinases in the neointima. Aliskiren also inhibited the expression and activities of matrix metalloproteinases on tumor necrosis factor-α (TNF-α)-stimulated human aortic smooth muscle cells via the mitogen-activated protein kinase pathway. Conclusions The present study showed that aliskiren inhibited the expression of vascular matrix metalloproteinases. With these results, we have better clarified the potential role of renin inhibitors in human atherosclerosis. PMID:27713608

  5. Expression and activation of matrix metalloproteinases in wounds: modulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+.

    PubMed

    Siméon, A; Monier, F; Emonard, H; Gillery, P; Birembaut, P; Hornebeck, W; Maquart, F X

    1999-06-01

    We investigated the expression and activation of matrix metalloproteinases in a model of experimental wounds in rats, and their modulation by glycyl-L-histidyl-L-lysine-Cu(II), a potent activator of wound repair. Wound chambers were inserted under the skin of Sprague-Dawley rats and received serial injections of either 2 mg glycyl-L-histidyl-L-lysine-Cu(II) or the same volume of saline. The wound fluid and the neosynthetized connective tissue deposited in the chambers were collected and analyzed for matrix metalloproteinase expression and/or activity. Interstitial collagenase increased progressively in the wound fluid throughout the experiment. Glycyl-L-histidyl-L-lysine-Cu(II) treatment did not alter its activity. Matrix metalloproteinase-9 (gelatinase B) and matrix metalloproteinase-2 (gelatinase A) were the two main gelatinolytic activities expressed during the healing process. Pro-matrix metalloproteinase (pro-form of matrix metalloproteinase)-9 was strongly expressed during the early stages of wound healing (day 3). In the wound fluid, it decreased rapidly and disappeared after day 18, whereas in the wound tissue, matrix metalloproteinase-9 expression persisted in the glycyl-L-histidyl-L-lysine-Cu(II) injected chamber until day 22. Pro-matrix metalloproteinase-2 was expressed at low levels at the beginning of the healing process, increased progressively until day 7, then decreased until day 18. Activated matrix metalloproteinase-2 was present in wound fluid and wound tissue. It increased until day 12, then decreased progressively. Glycyl-L-histidyl-L-lysine-Cu(II) injections increased pro-matrix metalloproteinase-2 and activated matrix metalloproteinase-2 during the later stages of healing (days 18 and/or 22). These results demonstrate that various types of matrix metalloproteinases are selectively expressed or activated at the various periods of wound healing. Glycyl-L-histidyl-L-lysine-Cu(II) is able to modulate their expression and might significantly alter

  6. Matrix metalloproteinase-1 inhibitory activity of Kaempferia pandurata Roxb.

    PubMed

    Shim, Jae-Seok; Choi, Eun-Jung; Lee, Chan-Woo; Kim, Han-Sung; Hwang, Jae-Kwan

    2009-06-01

    Matrix metalloproteinase (MMP)-1 is a superfamily of zinc-dependent endopeptidases that are capable of degrading all components of the extracellular matrix. Kaempferia pandurata extract (0.01-0.5 microg/mL) significantly reduced the expression of MMP-1 and induced the expression of type 1 procollagen at the protein and mRNA levels in a dose-dependent manner. Ultraviolet (UV)-induced MMP-1 initiates cleavage of fibrillar collagen. Once cleaved by MMP-1, collagen can be further degraded by elevated levels of MMP-3 and MMP-9. It was found that increased MMP-1 expression due to UV irradiation was mediated by activation of mitogen-activated protein kinases such as extracellular-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38 kinase. Treatment of K. pandurata extract in the range of 0.01-0.5 microg/mL inhibited the UV-induced phosphorylations of ERK, JNK, and p38, respectively. Moreover, inhibition of phosphorylated ERK, JNK, and p38 by K. pandurata extract resulted in decreased c-Fos expression and c-Jun phosphorylation induced by UV light. The results strongly suggest that K. pandurata is potentially useful for the prevention and treatment of skin aging.

  7. Assessment of Synthetic Matrix Metalloproteinase Inhibitors by Fluorogenic Substrate Assay.

    PubMed

    Lively, Ty J; Bosco, Dale B; Khamis, Zahraa I; Sang, Qing-Xiang Amy

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of metzincin enzymes that act as the principal regulators and remodelers of the extracellular matrix (ECM). While MMPs are involved in many normal biological processes, unregulated MMP activity has been linked to many detrimental diseases, including cancer, neurodegenerative diseases, stroke, and cardiovascular disease. Developed as tools to investigate MMP function and as potential new therapeutics, matrix metalloproteinase inhibitors (MMPIs) have been designed, synthesized, and tested to regulate MMP activity. This chapter focuses on the use of enzyme kinetics to characterize inhibitors of MMPs. MMP activity is measured via fluorescence spectroscopy using a fluorogenic substrate that contains a 7-methoxycoumarin-4-acetic acid N-succinimidyl ester (Mca) fluorophore and a 2,4-dinitrophenyl (Dpa) quencher separated by a scissile bond. MMP inhibitor (MMPI) potency can be determined from the reduction in fluorescent intensity when compared to the absence of the inhibitor. This chapter describes a technique to characterize a variety of MMPs through enzyme inhibition assays.

  8. Matrix metalloproteinase and tissue inhibitor of metalloproteinase responses to muscle damage after eccentric exercise

    PubMed Central

    Kim, Jooyoung; Lee, Joohyung

    2016-01-01

    High-intensity eccentric exercise is known to induce muscle damage leading to inflammatory responses and extracellular matrix (ECM) degradation. These degradation processes involve enzymes such as matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). MMPs are calcium and zinc-dependent proteolytic enzymes that play a role in ECM degradation and recruitment of inflammatory and myogenic cells into the damaged site. In contrast, TIMPs inhibit MMP-induced ECM degradation to maintain normal homeostasis in ECM. Recently, several studies have examined the process of muscle remodeling and the roles of ECM, MMPs, and TIMPs in exercise-induced muscle damage. However, the results of these studies are not inconsistent. In the present mini-review, we will discuss the responses of MMP and TIMP to eccentric exercise based on the literature review. PMID:27656621

  9. Matrix metalloproteinase and tissue inhibitor of metalloproteinase responses to muscle damage after eccentric exercise

    PubMed Central

    Kim, Jooyoung; Lee, Joohyung

    2016-01-01

    High-intensity eccentric exercise is known to induce muscle damage leading to inflammatory responses and extracellular matrix (ECM) degradation. These degradation processes involve enzymes such as matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). MMPs are calcium and zinc-dependent proteolytic enzymes that play a role in ECM degradation and recruitment of inflammatory and myogenic cells into the damaged site. In contrast, TIMPs inhibit MMP-induced ECM degradation to maintain normal homeostasis in ECM. Recently, several studies have examined the process of muscle remodeling and the roles of ECM, MMPs, and TIMPs in exercise-induced muscle damage. However, the results of these studies are not inconsistent. In the present mini-review, we will discuss the responses of MMP and TIMP to eccentric exercise based on the literature review.

  10. Matrix metalloproteinase and tissue inhibitor of metalloproteinase responses to muscle damage after eccentric exercise.

    PubMed

    Kim, Jooyoung; Lee, Joohyung

    2016-08-01

    High-intensity eccentric exercise is known to induce muscle damage leading to inflammatory responses and extracellular matrix (ECM) degradation. These degradation processes involve enzymes such as matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). MMPs are calcium and zinc-dependent proteolytic enzymes that play a role in ECM degradation and recruitment of inflammatory and myogenic cells into the damaged site. In contrast, TIMPs inhibit MMP-induced ECM degradation to maintain normal homeostasis in ECM. Recently, several studies have examined the process of muscle remodeling and the roles of ECM, MMPs, and TIMPs in exercise-induced muscle damage. However, the results of these studies are not inconsistent. In the present mini-review, we will discuss the responses of MMP and TIMP to eccentric exercise based on the literature review. PMID:27656621

  11. Relationship between expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 and invasion ability of cervical cancer cells.

    PubMed

    Kato, Yasuhito; Yamashita, Tsuyoshi; Ishikawa, Mutsuo

    2002-01-01

    Constitutive overexpression of matrix metalloproteinases (MMPs) is frequently observed in malignant tumors. MMPs are a family of zinc endopeptidases consisting of at least 20 different members. In particular, MMP-2 and MMP-9 are reported to be closely associated with invasion and metastasis in several cancers. We investigated whether expression of MMP-2 and MMP-9 is associated with invasion ability of seven cervical cancer cells by administration of o-phenanthroline as MMP inhibitor. In two cell lines, Siha and Caski, MMP-2 mRNA and protein were expressed at high levels. After treatment with o-phenanthroline, the rate of invasion in these two cell lines was significantly decreased. In contrast, in the other two cell lines, HT-3 and Caski, high levels of MMP-9 mRNA and protein were expressed but there was no decrease in the rate of invasion in these cells after treatment with o-phenanthroline. The data suggest that expression level of MMP-2 mRNA may regulate with invasion ability of cervical cancer.

  12. Differential temporal expression of matrix metalloproteinases following sciatic nerve crush.

    PubMed

    Qin, Jing; Zha, Guang-Bin; Yu, Jun; Zhang, Hong-Hong; Yi, Sheng

    2016-07-01

    We previously performed transcriptome sequencing and found that genes for matrix metalloproteinases (MMPs), such as MMP7 and 12, seem to be highly upregulated following peripheral nerve injury, and may be involved in nerve repair. In the present study, we systematically determined the expression levels of MMPs and their regulators at 1, 4, 7 and 14 days after sciatic nerve crush injury. The number of differentially expressed genes was elevated at 4 and 7 days after injury, but decreased at 14 days after injury. Among the differentially expressed genes, those most up-regulated showed fold changes of more than 214, while those most down-regulated exhibited fold changes of more than 2-10. Gene sequencing showed that, at all time points after injury, a variety of MMP genes in the "Inhibition of MMPs" pathway were up-regulated, and their inhibitor genes were down-regulated. Expression of key up- and down-regulated genes was verified by quantitative real-time polymerase chain reaction analysis and found to be consistent with transcriptome sequencing. These results suggest that MMP-related genes are strongly involved in the process of peripheral nerve regeneration. PMID:27630704

  13. Differential temporal expression of matrix metalloproteinases following sciatic nerve crush

    PubMed Central

    Qin, Jing; Zha, Guang-bin; Yu, Jun; Zhang, Hong-hong; Yi, Sheng

    2016-01-01

    We previously performed transcriptome sequencing and found that genes for matrix metalloproteinases (MMPs), such as MMP7 and 12, seem to be highly upregulated following peripheral nerve injury, and may be involved in nerve repair. In the present study, we systematically determined the expression levels of MMPs and their regulators at 1, 4, 7 and 14 days after sciatic nerve crush injury. The number of differentially expressed genes was elevated at 4 and 7 days after injury, but decreased at 14 days after injury. Among the differentially expressed genes, those most up-regulated showed fold changes of more than 214, while those most down-regulated exhibited fold changes of more than 2−10. Gene sequencing showed that, at all time points after injury, a variety of MMP genes in the “Inhibition of MMPs” pathway were up-regulated, and their inhibitor genes were down-regulated. Expression of key up- and down-regulated genes was verified by quantitative real-time polymerase chain reaction analysis and found to be consistent with transcriptome sequencing. These results suggest that MMP-related genes are strongly involved in the process of peripheral nerve regeneration. PMID:27630704

  14. Matrix Metalloproteinase-1 and Matrix Metalloproteinase-9 in the Aqueous Humor of Diabetic Macular Edema Patients

    PubMed Central

    Choi, Jin A.; Jee, Donghyun

    2016-01-01

    Purpose To assess the concentrations of matrix metalloproteinase (MMP)-1 and MMP-9 in the aqueous humor of diabetic macular edema (DME) patients. Method The concentrations of MMP-1 and MMP-9 in the aqueous humors of 15 cataract patients and 25 DME patients were compared. DME patients were analyzed according to the diabetic retinopathy (DR) stage, diabetes mellitus (DM) duration, pan-retinal photocoagulation (PRP) treatment, recurrence within 3 months, HbA1C (glycated hemoglobin) level, and axial length. Results The concentrations of MMP-1 and MMP-9 of the DME groups were higher than those of the control group (p = 0.005 and p = 0.002, respectively). There was a significant difference in MMP-1 concentration between the mild non-proliferative diabetic retinopathy (NPDR) group and the proliferative diabetic retinopathy (PDR) group (p = 0.012). MMP-1 concentrations were elevated in PRP-treated patients (p = 0.005). There was a significant difference in MMP-9 concentrations between the mild NPDR group and the PDR group (p < 0.001), and between the moderate and severe NPDR group and the PDR group (p < 0.001). The MMP-9 concentrations in PRP treated patients, DM patients with diabetes ≥ 10 years and recurrent DME within 3months were elevated (p = 0.023, p = 0.011, and p = 0.027, respectively). In correlation analyses, the MMP-1 level showed a significant correlation with age (r = -0.48, p = 0.01,), and the MMP-9 level showed significant correlations with axial length (r = -0.59, p < 0.01) and DM duration (r = 049, p = 0.01). Conclusions Concentrations of MMP-1 and MMP-9 were higher in the DME groups than in the control group. MMP-9 concentrations also differed depending on DR staging, DM duration, PRP treatment, and degree of axial myopia. MMP-9 may be more important than MMP-1 in the induction of DM complications in eyes. PMID:27467659

  15. Active matrix metalloproteinase-7 is associated with invasion in buccal squamous cell carcinoma.

    PubMed

    Chuang, Hui-Ching; Su, Chih-Ying; Huang, Hsuang-Ying; Huang, Chao-Cheng; Chien, Chih-Yen; Du, Yung-Ying; Chuang, Jiin-Haur

    2008-12-01

    Protein microarrays have shown that matrix metalloproteinase-7 is upregulated in head and neck squamous cell carcinomas, but its role in local tissue invasion is still uncertain. We investigated the expression of active matrix metalloproteinase-7, using tissue microarray, immunohistochemistry, and western blotting, in oral tissues from 24 patients with buccal squamous cell carcinoma, and correlated the findings with clinicopathological features. Normal buccal tissue samples from the same patients, obtained at sites at least 1 cm from tumor tissue, served as normal controls. Total matrix metalloproteinase-7 was detected on western blots in 9 of 15 (60%) tumor tissue samples and in 2 of 15 (13%) normal mucosal samples; this difference was significant (P=0.008). Moreover, the active matrix metalloproteinase-7 was expressed only in eight of the nine (89%) tumor samples that expressed matrix metalloproteinase-7, and in none of the normal tissue samples, regardless of the expression status of the pro-matrix metalloproteinase-7. Immunostaining of matrix metalloproteinase-7 was observed histologically in both tumor and nonneoplastic epithelium, but immunostaining of active matrix metalloproteinase-7 was present only in tumor nests. Expression of active matrix metalloproteinase-7 was associated with larger tumor size (P=0.022) and was significantly higher in buccal squamous cell carcinoma with adjacent skin or bone invasion (P=0.036). In conclusion, active matrix metalloproteinase-7 expression was associated with more aggressive buccal squamous cell carcinomas. PMID:18931651

  16. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers.

    PubMed

    Rempe, Ralf G; Hartz, Anika Ms; Bauer, Björn

    2016-09-01

    Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood-brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood-brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer's disease, Parkinson's disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood-brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood-brain barrier in brain disorders.

  17. Matrix metalloproteinases: drug targets for myocardial infarction

    PubMed Central

    Yabluchanskiy, Andriy; Li, Yaojun; Chilton, Robert J.; Lindsey, Merry L.

    2013-01-01

    Myocardial infarction (MI) remains a major cause of morbidity and mortality worldwide. Rapid advances in the treatment of acute MI have significantly improved short-term outcomes in patient, due in large part to successes in preventing myocardial cell death and limiting infarct area during the time of ischemia and subsequent reperfusion. Matrix metalloproteases (MMPs) play key roles in post-MI cardiac remodeling and in the development of adverse outcomes. This review highlights the importance of MMPs in the injury and remodeling response of the left ventricle and also discusses their potential as therapeutic targets Additional pre-clinical and clinical research is needed to further investigate and understand the cardioprotective effects of MMPs inhibitors. PMID:23316962

  18. Prognostic value of matrix metalloproteinases in oral squamous cell carcinoma

    PubMed Central

    Mishev, Georgi; Deliverska, Elitsa; Hlushchuk, Ruslan; Velinov, Nikolay; Aebersold, Daniel; Weinstein, Felix; Djonov, Valentin

    2014-01-01

    The aim of this study was to investigate whether there is a correlation between the expressions of four matrix metalloproteinases (MMPs): MMP-2, MMP-7, MMP-9 and MMP-13, and the TNM (tumour–node–metastasis) stages of oral squamous cell carcinoma (OSCC); and to explore the implication of these MMPs in OSCC dissemination. Samples from 61 patients diagnosed with oropharyngeal tumour were studied by immunohistochemistry against MMP-2, MMP-7, MMP-9 and MMP-13. The assessment of immunoreactivity was semi-quantitative. The results showed that MMP-2 and MMP-9 had similar expression patterns in the tumour cells with no changes in the immunoreactivity during tumour progression. MMP-9 always had the highest expression, whereas that of MMP-2 was moderate. MMP-7 showed a significant decrease in expression levels during tumour evolution. MMP-13 had constant expression levels within stage T2 and T3, but showed a remarkable decline in immunoreactivity in stage T4. No significant differences in the MMPs immunoreactivity between tumour cells and stroma were observed. Although strong evidence for the application of MMPs as reliable predictive markers for node metastasis was not acquired, we believe that combining patients’ MMPs expression intensity and clinical features may improve the diagnosis and prognosis. Strong evidence for the application of MMPs as reliable predictive markers for node metastasis was not acquired. Application of MMPs as prognostic indicators for the malignancy potential of OSCC might be considered in every case of tumour examination. We believe that combining patients’ MMPs expression intensity and clinical features may improve the process of making diagnosis and prognosis. PMID:26019601

  19. High Matrix Metalloproteinase Activity is a Hallmark of Periapical Granulomas

    PubMed Central

    de Paula e Silva, Francisco Wanderley Garcia; D'Silva, Nisha J.; da Silva, Léa Assed Bezerra; Kapila, Yvonne Lorraine

    2009-01-01

    Introduction Inability to distinguish periapical cysts from granulomas prior to performing root canal treatment leads to uncertainty in treatment outcomes, because cysts have lower healing rates. Searching for differential expression of molecules within cysts or granulomas could provide information with regard to the identity of the lesion or suggest mechanistic differences that may form the basis for future therapeutic intervention. Thus, we investigated whether granulomas and cysts exhibit differential expression of extracellular matrix (ECM) molecules. Methods Human periapical granulomas, periapical cysts, and healthy periodontal ligament tissues were used to investigate the differential expression of ECM molecules by microarray analysis. Since matrix metalloproteinases (MMP) showed the highest differential expression in the microarray analysis, MMPs were further examined by in situ zymography and immunohistochemistry. Data were analyzed using one-way ANOVA followed by Tukey test. Results We observed that cysts and granulomas differentially expressed several ECM molecules, especially those from the matrix metalloproteinase (MMP) family. Compared to cysts, granulomas exhibited higher MMP enzymatic activity in areas stained for MMP-9. These areas were composed of polymorphonuclear cells (PMNs), in contrast to cysts. Similarly, MMP-13 was expressed by a greater number of cells in granulomas compared to cysts. Conclusion Our findings indicate that high enzymatic MMP activity in PMNs together with MMP-9 and MMP-13 stained cells could be a molecular signature of granulomas, unlike periapical cysts. PMID:19720222

  20. Matrix Metalloproteinases and Descending Aortic Aneurysms: Parity, Disparity, and Switch

    PubMed Central

    Theruvath, Tom P.; Jones, Jeffrey A.; Ikonomidis, John S.

    2015-01-01

    Central to the pathologic changes in developing aortic aneurysms are alterations in the abundance and activity of proteases, of which the most important for aneurysm production comprise the matrix metalloproteinase (MMP) family. In this review, literature demonstrating the role of MMPs in the development of aortic aneurysms is presented, with emphasis on the parity and disparity between the thoracic and abdominal aorta. Furthermore, the role of embryologic cellular origins and evidence of phenotypic switch will be addressed in terms of how this process alters MMP production during aneurysm development. PMID:21958052

  1. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue.

    PubMed

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-12-01

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression.

  2. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue

    PubMed Central

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-01-01

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression. PMID:25206642

  3. Securin promotes migration and invasion via matrix metalloproteinases in glioma cells

    PubMed Central

    YAN, HAICHENG; WANG, WEI; DOU, CHANGWU; TIAN, FUMING; QI, SONGTAO

    2015-01-01

    Human securin, encoded by pituitary tumor transforming gene 1, is implicated in several oncogenic processes in the pathogenesis of brain tumors, including glioma. The aim of the present study was to examine the effect of securin on the migration and invasion of glioma cells. The results revealed that the overexpression of securin in glioma LN-229 cells significantly increased the invasion and transmigration abilities. By contrast, these abilities were significantly reduced by the downregulation of securin in glioma U373 cells. Furthermore, the results demonstrated that securin overexpression and downregulation significantly increased and decreased the levels of matrix metalloproteinase 2 and 9, respectively. These findings indicate a promotive role for securin in glioma migration and invasion, which may involve the action of matrix metalloproteinases. PMID:26137166

  4. Artesunate ameliorates hepatic fibrosis induced by bovine serum albumin in rats through regulating matrix metalloproteinases.

    PubMed

    Xu, Yajie; Liu, Wendong; Fang, Buwu; Gao, Sinan; Yan, Jing

    2014-12-01

    The effect of Artesunate on anti-hepatic fibrosis was discovered by our team for the first time. In order to investigate the effect of Artesunate on hepatic fibrosis induced by Bovine serum albumin (BSA) in rats and understand the initiatory mechanism of its effect, several experiments were conducted in this assay. HE staining and Masson׳s Trichrome staining were employed in observation of morphological changes. The content of hydroxyproline in the hepatic tissue was determined by using an acid hydrolyzation method. In addition, the expression of Matrix metalloproteinase-13 (MMP-13) and type I collagen were tested by western blotting respectively. The expression of Matrix metalloproteinase-2(MMP-2), Matrix metalloproteinase-9 (MMP-9) were determined by Gelatin Zymography Assay. Also, we use immunohistochemical studies to measure the expression of α-SMA. The final results indicated that Artesunate could dramatically attenuate the extent of hepatic fibrosis showed by histopathological sections of hepatic tissues, significantly decrease the content of hydroxyproline and efficiently inhibit the protein expression of MMP-2, MMP-9, α-SMA and type I collagen. Artesunate could as well promote the expression of MMP-13 at the same time. In conclusion, the results not only suggested that Artesunate could ameliorate hepatic fibrosis, but also suggested the anti-fibrogenic mechanisms of Artesunate might be associated with inhibiting the activation of HSCs, decreasing the expression of MMP-2, MMP-9 and increasing the expression of MMP-13.These results would bring new insights for the treatment for hepatic fibrosis.

  5. Acknowledged signatures of matrix metalloproteinases in Takayasu's arteritis.

    PubMed

    Wu, Gang; Mahajan, Nitin; Dhawan, Veena

    2014-01-01

    Takayasu's arteritis (TA) was reported as an eye disease in the year 1905 and later was confirmed as a vasculitis. Since then, the etiology of the disease remains unknown; however, characteristic clinical features suggest multiple causative factors. Recent progress in vascular biology and other disciplines enlightens the pathophysiology of TA and demonstrated induction of various nonspecific inflammatory symptoms and destruction of the arterial wall, which leads to aneurysms and rupture of the affected arteries. Matrix metalloproteinases (MMPs) as an enzyme family have well-established roles in several vascular pathologies including intima formation, atherosclerosiss and aneurysms. MMPs have been proposed to be one of the molecules with a potential of having dual role in the course of TA, first as an active participant in pathophysiology and secondly as a diagnostic biomarker for TA disease. The desire to improve our understanding of the importance of MMPs and their endogenous inhibitors (TIMPs) in TA disease and for the development of therapeutic agents has inspired basic and clinical scientists for over a decade. In the present paper, we summarized the scientific rationale which highlights the signatures of matrix metalloproteinases and their endogenous inhibitors in pathophysiology as well as their being a potential candidate as biomarker for Takayasu's arteritis.

  6. Matrix Metalloproteinases, New Insights into the Understanding of Neurodegenerative Disorders

    PubMed Central

    Kim, Yoon-Seong; Joh, Tong H.

    2012-01-01

    Matrix metalloproteinases (MMPs) are a subfamily of zinc-dependent proteases that are responsible for degradation and remodeling of extracellular matrix proteins. The activity of MMPs is tightly regulated at several levels including cleavage of prodomain, allosteric activation, compartmentalization and complex formation with tissue inhibitor of metalloproteinases (TIMPs). In the central nervous system (CNS), MMPs play a wide variety of roles ranging from brain development, synaptic plasticity and repair after injury to the pathogenesis of various brain disorders. Following general discussion on the domain structure and the regulation of activity of MMPs, we emphasize their implication in various brain disorder conditions such as Alzheimer’s disease, multiple sclerosis, ischemia/reperfusion and Parkinson’s disease. We further highlight accumulating evidence that MMPs might be the culprit in Parkinson’s disease (PD). Among them, MMP-3 appears to be involved in a range of pathogenesis processes in PD including neuroinflammation, apoptosis and degradation of α-synuclein and DJ-1. MMP inhibitors could represent potential novel therapeutic strategies for treatments of neurodegenerative diseases. PMID:24116286

  7. The regulation of matrix metalloproteinases and their inhibitors.

    PubMed

    Clark, Ian M; Swingler, Tracey E; Sampieri, Clara L; Edwards, Dylan R

    2008-01-01

    The matrix metalloproteinases (MMP) are a family of 23 enzymes in man. These enzymes were originally described as cleaving extracellular matrix (ECM) substrates with a predominant role in ECM homeostasis, but it is now clear that they have much wider functionality. Control over MMP and/or tissue inhibitor of metalloproteinases (TIMP) activity in vivo occurs at different levels and involves factors such as regulation of gene expression, activation of zymogens and inhibition of active enzymes by specific inhibitors. Whilst these enzymes and inhibitors have clear roles in physiological tissue turnover and homeostasis, if control of their expression or activity is lost, they contribute to a number of pathologies including e.g. cancer, arthritis and cardiovascular disease. The expression of many MMPs and TIMPs is regulated at the level of transcription by a variety of growth factors, cytokines and chemokines, though post-transcriptional pathways may contribute to this regulation in specific cases. The contribution of epigenetic modifications has also been uncovered in recent years. The promoter regions of many of these genes have been, at least partly, characterised including the role of identified single nucleotide polymorphisms. This article aims to review current knowledge across these gene families and use a bioinformatic approach to fill the gaps where no functional data are available.

  8. The role of polyphosphates in the sequestration of matrix metalloproteinases.

    PubMed

    McCarty, Sara M; Percival, Steven L; Clegg, Peter D; Cochrane, Christine A

    2015-02-01

    This study outlines the potential of a novel therapeutic dressing for the management of chronic wounds. The dressing incorporates polyphosphate, a non toxic compound with a number of beneficial characteristics in terms of wound healing, in a foam matrix. The aim of this study was to identify the potential of polyphosphate incorporated in the foam dressing to sequester the activity of matrix metalloproteinases (MMPs) and proteases derived from Pseudomonas aeruginosa. Methods used included gelatin zymography and milk-casein agar plate analysis. Results have shown that this dressing is effectively capable of reducing the levels of MMP-2 and MMP-9 in both their active and latent forms using an in vitro model. The dressing also demonstrated the compound's potential in the regulation of P. aeruginosa derived proteases. PMID:23590276

  9. Uterine cervical carcinoma: role of matrix metalloproteinases (review).

    PubMed

    Libra, Massimo; Scalisi, Aurora; Vella, Nadia; Clementi, Silvia; Sorio, Roberto; Stivala, Franca; Spandidos, Demetrios A; Mazzarino, Clorinda

    2009-04-01

    Epidemiological and experimental studies have provided evidence that human papillomavirus (HPV) infection is a main player in the development of uterine cervical neoplasms. Migration of cancer cells from the origin tissue to surrounding or distant organs is essential for tumor progression. Many studies of tumor invasion and metastases have focused on the degradation of the extracellular matrix where matrix metalloproteinases (MMPs) play a central role. Two of these enzymes, MMP-2 and MMP-9, have been correlated with the processes of tumor cell invasion and metastasis in human cancers, including uterine neoplasms. It has been shown that the up-regulation of MMPs is associated with progression of cervical uterine neoplasms. This review describes the current understanding of MMP-2 and MMP-9 expression and activity in pre-cancer and cancer lesions of cervical uterine, which may open new strategies for diagnostic and therapeutic interventions.

  10. Matrix metalloproteinases as biomarkers of disease: updates and new insights.

    PubMed

    Galliera, Emanuela; Tacchini, Lorenza; Corsi Romanelli, Massimiliano M

    2015-02-01

    Matrix metalloproteinases (MMPs) play a pivotal role in remodeling the extracellular matrix (ECM) and are therefore of interest for new diagnostic tools for the clinical management of diseases involving ECM disruption. This setting ranges from the classical areas of MMP studies, such as vascular disease, cancer progression or bone disorders, to new emerging fields of application, such as neurodegenerative disease or sepsis. Increasing the knowledge about the role of MMPs in the pathogenesis of diseases where a clear diagnostic panel is still lacking could provide new insight and improve the identification and the clinical treatment of these human diseases. This review focuses on the latest descriptions of the clinical use of MMP as biomarkers in the diagnosis, prognosis and monitoring of different diseases, such as diabetes, cardiovascular diseases, cancer and metastasis, neurodegenerative disorders and sepsis.

  11. Genetic polymorphism of matrix metalloproteinases in breast cancer.

    PubMed

    Wieczorek, E; Reszka, E; Gromadzinska, J; Wasowicz, W

    2012-01-01

    The family of human matrix metalloproteinases (MMPs) consists of 24 zinc- and calcium-dependent proteolytic enzymes. MMPs are divided into six subgroups, in terms of differences in the substrate specificity with structural domain architecture. These enzymes are involved in many physiological processes, such as skeletal development, wound healing, scar formation, as well as carcinogenesis. MMPs, fulfilling its function of degradation of extracellular matrix components, are involved in one of the stages of angiogenesis enabling the development, growth and spread of the primary tumor. Therefore, the search for the common polymorphic variants of MMPs, new genetic markers as prognostic factors in breast cancer progress seems to be understandable.The minireview presents the results of 19 case-control or prospective studies concerning the association of SNPs of genes encoding nine MMPs: MMP-1, -2, -3, -7, -8, -9, -12, -13, -21 with the breast cancer risk, progression and survival. PMID:22296495

  12. Matrix Metalloproteinases in Inflammatory Bowel Disease: An Update

    PubMed Central

    O'Sullivan, Shane; Gilmer, John F.

    2015-01-01

    Matrix metalloproteinases (MMPs) are known to be upregulated in inflammatory bowel disease (IBD) and other inflammatory conditions, but while their involvement is clear, their role in many settings has yet to be determined. Studies of the involvement of MMPs in IBD since 2006 have revealed an array of immune and stromal cells which release the proteases in response to inflammatory cytokines and growth factors. Through digestion of the extracellular matrix and cleavage of bioactive proteins, a huge diversity of roles have been revealed for the MMPs in IBD, where they have been shown to regulate epithelial barrier function, immune response, angiogenesis, fibrosis, and wound healing. For this reason, MMPs have been recognised as potential biomarkers for disease activity in IBD and inhibition remains a huge area of interest. This review describes new roles of MMPs in the pathophysiology of IBD and suggests future directions for the development of treatment strategies in this condition. PMID:25948887

  13. The role of polyphosphates in the sequestration of matrix metalloproteinases.

    PubMed

    McCarty, Sara M; Percival, Steven L; Clegg, Peter D; Cochrane, Christine A

    2015-02-01

    This study outlines the potential of a novel therapeutic dressing for the management of chronic wounds. The dressing incorporates polyphosphate, a non toxic compound with a number of beneficial characteristics in terms of wound healing, in a foam matrix. The aim of this study was to identify the potential of polyphosphate incorporated in the foam dressing to sequester the activity of matrix metalloproteinases (MMPs) and proteases derived from Pseudomonas aeruginosa. Methods used included gelatin zymography and milk-casein agar plate analysis. Results have shown that this dressing is effectively capable of reducing the levels of MMP-2 and MMP-9 in both their active and latent forms using an in vitro model. The dressing also demonstrated the compound's potential in the regulation of P. aeruginosa derived proteases.

  14. Matrix metalloproteinases and gastrointestinal cancers: Impacts of dietary antioxidants

    PubMed Central

    Verma, Sugreev; Kesh, Kousik; Ganguly, Nilanjan; Jana, Sayantan; Swarnakar, Snehasikta

    2014-01-01

    The process of carcinogenesis is tightly regulated by antioxidant enzymes and matrix degrading enzymes, namely, matrix metalloproteinases (MMPs). Degradation of extracellular matrix (ECM) proteins like collagen, proteoglycan, laminin, elastin and fibronectin is considered to be the prerequisite for tumor invasion and metastasis. MMPs can degrade essentially all of the ECM components and, most MMPs also substantially contribute to angiogenesis, differentiation, proliferation and apoptosis. Hence, MMPs are important regulators of tumor growth both at the primary site and in distant metastases; thus the enzymes are considered as important targets for cancer therapy. The implications of MMPs in cancers are no longer mysterious; however, the mechanism of action is yet to be explained. Herein, our major interest is to clarify how MMPs are tied up with gastrointestinal cancers. Gastrointestinal cancer is a variety of cancer types, including the cancers of gastrointestinal tract and organs, i.e., esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus. The activity of MMPs is regulated by its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP) which bind MMPs with a 1:1 stoichiometry. In addition, RECK (reversion including cysteine-rich protein with kazal motifs) is a membrane bound glycoprotein that inhibits MMP-2, -9 and -14. Moreover, α2-macroglobulin mediates the uptake of several MMPs thereby inhibit their activity. Cancerous conditions increase intrinsic reactive oxygen species (ROS) through mitochondrial dysfunction leading to altered protease/anti-protease balance. ROS, an index of oxidative stress is also involved in tumorigenesis by activation of different MAP kinase pathways including MMP induction. Oxidative stress is involved in cancer by changing the activity and expression of regulatory proteins especially MMPs. Epidemiological studies have shown that high intake of fruits that rich in antioxidants is

  15. Matrix Metalloproteinases in Alzheimer's Disease and Concurrent Cerebral Microbleeds.

    PubMed

    Duits, Flora H; Hernandez-Guillamon, Mar; Montaner, Joan; Goos, Jereon D C; Montañola, Alex; Wattjes, Mike P; Barkhof, Frederik; Scheltens, Philip; Teunissen, Charlotte E; van der Flier, Wiesje M

    2015-01-01

    Matrix metalloproteinases (MMPs) are a family of enzymes able to degrade components of the extracellular matrix, which is important for normal blood-brain barrier function. Their function is regulated by tissue inhibitors of matrix metalloproteinases (TIMPs). We investigated whether MMPs and TIMPs in cerebrospinal fluid (CSF) and plasma were altered in Alzheimer's disease (AD) and vascular dementia (VaD), and whether this effect was modified by presence of cerebral micro-bleeds in AD patients. In addition, we assessed associations of MMPs and TIMPs with CSF amyloid-β(1-42) (Aβ42), tau, and tau phosphorylated at threonine-181 (p-tau). We measured MMP2, MMP9, and MMP10, and TIMP1 and TIMP2 in CSF and plasma of 52 AD patients, 26 matched controls, and 24 VaD patients. AD patients showed higher plasma MMP2 levels compared to VaD patients (p <  0.05), and higher CSF MMP10 levels compared to controls (p <  0.05). Microbleeds in AD were associated with lower CSF TIMP1, TIMP2 and MMP9 in a dose-response relation. In addition, CSF MMP2 was associated with p-tau (St.B 0.23, p <  0.05), and CSF MMP10 with tau (St.B 0.38, p <  0.001) and p-tau (St.B 0.40, p <  0.001). Our findings suggest involvement of MMP2 and MMP10 in AD pathology. Lower levels of TIMPs in AD patients with microbleeds suggest less MMP inhibition in patients with concurrent cerebral microbleeds, which may hypothetically lead to a more vulnerable blood-brain barrier in these patients. PMID:26402072

  16. Matrix Metalloproteinase 12-Deficiency Augments Extracellular Matrix Degrading Metalloproteinases and Attenuates IL-13–Dependent Fibrosis

    PubMed Central

    Madala, Satish K.; Pesce, John T.; Ramalingam, Thirumalai R.; Wilson, Mark S.; Minnicozzi, Samantha; Cheever, Allen W.; Thompson, Robert W.; Mentink-Kane, Margaret M.; Wynn, Thomas A.

    2011-01-01

    Infection with the parasitic helminth Schistosoma mansoni causes significant liver fibrosis and extracellular matrix (ECM) remodeling. Matrix metalloproteinases (MMP) are important regulators of the ECM by regulating cellular inflammation, extracellular matrix deposition, and tissue reorganization. MMP12 is a macrophage-secreted elastase that is highly induced in the liver and lung in response to S. mansoni eggs, confirmed by both DNA microarray and real-time PCR analysis. However, the function of MMP12 in chronic helminth-induced inflammation and fibrosis is unclear. In this study, we reveal that MMP12 acts as a potent inducer of inflammation and fibrosis after infection with the helminth parasite S. mansoni. Surprisingly, the reduction in liver and lung fibrosis in MMP12-deficient mice was not associated with significant changes in cytokine, chemokine, TGF-β1, or tissue inhibitors of matrix metalloproteinase expression. Instead, we observed marked increases in MMP2 and MMP13 expression, suggesting that Mmp12 was promoting fibrosis by limiting the expression of specific ECM-degrading MMPs. Interestingly, like MMP12, MMP13 expression was highly dependent on IL-13 and type II–IL-4 receptor signaling. However, in contrast to MMP12, expression of MMP13 was significantly suppressed by the endogenous IL-13 decoy receptor, IL-13Rα2. In the absence of MMP12, expression of IL-13Rα2 was significantly reduced, providing a possible explanation for the increased IL-13-driven MMP13 activity and reduced fibrosis. As such, these data suggest important counter-regulatory roles between MMP12 and ECM-degrading enzymes like MMP2, MMP9, and MMP13 in Th2 cytokine-driven fibrosis. PMID:20181883

  17. Arylamino methylene bisphosphonate derivatives as bone seeking matrix metalloproteinase inhibitors.

    PubMed

    Tauro, Marilena; Laghezza, Antonio; Loiodice, Fulvio; Agamennone, Mariangela; Campestre, Cristina; Tortorella, Paolo

    2013-11-01

    The complexity of matrix metalloproteinase inhibitors (MMPIs) design derives from the difficulty in carefully addressing their inhibitory activity towards the MMP isoforms involved in many pathological conditions. In particular, specific metalloproteinases, such as MMP-2 and MMP-9, are key regulators of the 'vicious cycle' occurring between tumor metastases growth and bone remodeling. In an attempt to devise new approaches to selective inhibitor derivatives, we describe novel bisphosphonate bone seeking MMP inhibitors (BP-MMPIs), capable to be selectively targeted and to overcome undesired side effects of broad spectrum MMPIs. In vitro activity (IC50 values) for each inhibitor was determined against MMP-2, -8, -9 and -14, because of their relevant role in skeletal development and renewal. The results show that BP-MMPIs reached IC50 values of enzymatic inhibition in the low micromolar range. Computational studies, used to rationalize some trends in the observed inhibitory profiles, suggest a possible differential binding mode in MMP-2 that explains the selective inhibition of this isoform. In addition, survival assay was conducted on J774 cell line, a well known model system used to evaluate the structure-activity relationship of BPs for inhibiting bone resorption. The resulting data, confirming the specific activity of BP-MMPIs, and their additional proved propensity to bind hydroxyapatite powder in vitro, suggest a potential use of BP-MMPIs in skeletal malignancies.

  18. Immunohistochemical expression of matrix metalloproteinase-1, matrix metalloproteinase-2 and matrix metalloproteinase-9, myofibroblasts and Ki-67 in actinic cheilitis and lip squamous cell carcinoma.

    PubMed

    Bianco, Bianca C; Scotti, Fernanda M; Vieira, Daniella S C; Biz, Michelle T; Castro, Renata G; Modolo, Filipe

    2015-10-01

    Matrix metalloproteinases (MMPs), myofibroblasts (MFs) and epithelial proliferation have key roles in neoplastic progression. In this study immunoexpression of MMP-1, MMP-2 and MMP-9, presence of MFs and the epithelial proliferation index were investigated in actinic cheilitis (AC), lip squamous cell carcinoma (LSCC) and mucocele (MUC). Thirty cases of AC, thirty cases of LSCC and twenty cases of MUC were selected for immunohistochemical investigation of the proteins MMP-1, MMP-2, MMP-9, α-smooth muscle actin (α-SMA) and Ki-67. The MMP-1 expression in the epithelial component was higher in the AC than the MUC and LSCC. In the connective tissue, the expression was higher in the LSCC. MMP-2 showed lower epithelial and stromal immunostaining in the LSCC when compared to the AC and MUC. The epithelial staining for MMP-9 was higher in the AC when compared to the LSCC. However, in the connective tissue, the expression was lower in the AC compared to other lesions. The cell proliferation rate was increased in proportion to the severity of dysplasia in the AC, while in the LSCC it was higher in well-differentiated lesions compared to moderately differentiated. There were no statistically significant differences in number of MFs present in the lesions studied. The results suggest that MMPs could affect the biological behaviour of ACs and LSCCs inasmuch as they could participate in the development and progression from premalignant lesions to malignant lesions. PMID:26515234

  19. Relationship Between Methamphetamine Exposure and Matrix Metalloproteinase 9 Expression

    PubMed Central

    Liu, Yun; Brown, Sheketta; Shaikh, Jamaluddin; Fishback, James A.; Matsumoto, Rae R.

    2013-01-01

    The involvement of matrix metalloproteinase (MMP) 9 in methamphetamine-induced neurotoxicity was evaluated. Injection of mice with stimulant or toxic doses of methamphetamine up regulated MMP9 gene expression in the brain within 5 min. By 24 h, MMP9 gene expression returned to control levels in the stimulant-treated mice, but remained elevated in animals exposed to toxic doses of methamphetamine. Reductions in striatal dopamine levels, a marker of methamphetamine neurotoxicity, developed 1–7 days following methamphetamine exposure, but were not accompanied by concomitant changes in MMP9 gene expression. In MMP9 knock out mice, methamphetamine retained its ability to elicit neurotoxicity. The data suggest that MMP9 expression does not contribute to methamphetamine-induced neurotoxicity, and may instead be involved in remodeling of the nervous system. PMID:18766021

  20. Relationship between methamphetamine exposure and matrix metalloproteinase 9 expression.

    PubMed

    Liu, Yun; Brown, Sheketta; Shaikh, Jamaluddin; Fishback, James A; Matsumoto, Rae R

    2008-09-17

    The involvement of matrix metalloproteinase (MMP) 9 in methamphetamine-induced neurotoxicity was evaluated. Injection of mice with stimulant or toxic doses of methamphetamine upregulated MMP9 gene expression in the brain within 5 min. By 24 h, MMP9 gene expression returned to control levels in the stimulant-treated mice, but remained elevated in animals exposed to toxic doses of methamphetamine. Reductions in striatal dopamine levels, a marker of methamphetamine neurotoxicity, developed 1-7 days after methamphetamine exposure, but were not accompanied by concomitant changes in MMP9 gene expression. In MMP9 knockout mice, methamphetamine retained its ability to elicit neurotoxicity. The data suggest that MMP9 expression does not contribute to methamphetamine-induced neurotoxicity, and may instead be involved in remodeling of the nervous system. PMID:18766021

  1. Phloroglucinol Reduces Photodamage in Hairless Mice via Matrix Metalloproteinase Activity Through MAPK Pathway.

    PubMed

    Im, A-Rang; Nam, Kung-Woo; Hyun, Jin Won; Chae, Sungwook

    2016-01-01

    We investigated the photoprotective activity of phloroglucinol on ultraviolet B (UVB)-induced deleterious effects in hairless mice in vivo. To assess the photoprotective effect of phloroglucinol, phloroglucinol-treated HR-1 hairless male mice were exposed to UVB irradiation. The inhibitory activity of phloroglucinol on wrinkle formation was determined by analysis of skin replicas, epidermal thickness based on histological examination and collagen damage. Matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase (TIMP) mRNA levels were measured by real-time PCR. UVB induced transcription of proinflammatory cytokines, including interleukin-1 beta (IL-1β, IL-6) and IL-8 (IL-8). The protective effects of phloroglucinol on UVB-induced skin photoaging were examined by measuring protein levels of MMPs and mitogen-activated protein (MAP) kinases. The results of these experiments suggest that phloroglucinol has a significant beneficial effect on the barrier function of the skin. In hairless mice, signs of photoaging and photodamage, including coarse wrinkle formation, epidermal thickness and elastic fiber degeneration, were reduced in severity by phloroglucinol application. The phloroglucinol-treated group showed remarkably decreased mRNA levels of MMP-1, MMP-9 and inflammatory cytokines in comparison with those of the UVB-induced group. Oral administration of phloroglucinol attenuated phosphorylation of MAP kinases, including extracellular signal-regulated kinase, c-Jun N-terminal kinase and p38. PMID:26537624

  2. The role of matrix metalloproteinases in dental erosion.

    PubMed

    Buzalaf, M A R; Kato, M T; Hannas, A R

    2012-09-01

    This review discusses the role of matrix metalloproteinases (MMPs) in the development of dentin erosion and the protective effects of MMP inhibitors, based on recent evidence from in vitro and in situ studies. MMPs are present in both dentin and saliva and play an important role in dentin erosion progression. Enzymatic removal of the organic matrix by MMPs increases the demineralization process, since the demineralized organic matrix has been shown to hamper ionic diffusion after an acidic challenge. Recent evidence from in vitro and in situ studies has shown a protective role of MMP inhibitors against dentin erosion and erosion plus abrasion. The inhibitors tested were green tea and its active epigallocatechin-gallate (EGCG), ferrous sulfate, and chlorhexidine. They have been tested in dentifrices, solutions, and gels. The latter led to a more pronounced protective effect against dentin erosion and erosion plus abrasion. The protection was long-lasting and could be observed after up to 10 days of severe erosive and erosive-plus-abrasive challenges in situ. Thus, the use of MMP inhibitors has emerged as an important preventive tool against dentin erosion. Clinical studies should be conducted to confirm the results obtained and to give support to the establishment of clinical protocols of use.

  3. The Significance of Matrix Metalloproteinases in Oral Diseases.

    PubMed

    Maciejczyk, Mateusz; Pietrzykowska, Agnieszka; Zalewska, Anna; Knaś, Małgorzata; Daniszewska, Irena

    2016-01-01

    Matrix metalloproteinases (MMPs) belong to a family of structurally related zinc-dependent proteolytic enzymes that are known to play a key role in the catabolic turnover of extracellular matrix (ECM) components. Research studies to date have indicated that MMPs regulate the activity of several non-ECM bioactive substrates, including growth factors, cytokines, chemokines and cell receptors, which determine the tissue microenvironment. Disruption of the balance between the concentration of active matalloproteinases and their inhibitors (TIMPs) may lead to pathological changes associated with uncontrolled ECM turnover, tissue remodeling, inflammatory response, cell growth and migration. This brief review presents some information on MMPs' role in inflammatory, metabolic and cancer abnormalities related to the salivary glands, as well as MMP-related aspects that lead to the formation of human dentinal caries lesions. In oral diseases, the most relevant biological fluid commonly used for diagnosing periodontal diseases is saliva. In diseased patients with significantly higher levels of MMPs in their saliva than healthy people, most extracellular matrix components undergo digestion to lower molecular weight forms. Conventional treatment successfully reduces the levels of MMPs inhibits the progressive breakdown of gingival and periodontal ligament collagens. Beside inflammatory abnormalities like Sjögren's syndrome (SS), a large group of disorders is comprised of cancers, most of them involving the parotid gland. PMID:27627574

  4. Matrix metalloproteinases in neural development: a phylogenetically diverse perspective

    PubMed Central

    Small, Christopher D.; Crawford, Bryan D.

    2016-01-01

    The matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases originally characterized as secreted proteases responsible for degrading extracellular matrix proteins. Their canonical role in matrix remodelling is of significant importance in neural development and regeneration, but emerging roles for MMPs, especially in signal transduction pathways, are also of obvious importance in a neural context. Misregulation of MMP activity is a hallmark of many neuropathologies, and members of every branch of the MMP family have been implicated in aspects of neural development and disease. However, while extraordinary research efforts have been made to elucidate the molecular mechanisms involving MMPs, methodological constraints and complexities of the research models have impeded progress. Here we discuss the current state of our understanding of the roles of MMPs in neural development using recent examples and advocate a phylogenetically diverse approach to MMP research as a means to both circumvent the challenges associated with specific model organisms, and to provide a broader evolutionary context from which to synthesize an understanding of the underlying biology. PMID:27127457

  5. The role of matrix metalloproteinases in dental erosion.

    PubMed

    Buzalaf, M A R; Kato, M T; Hannas, A R

    2012-09-01

    This review discusses the role of matrix metalloproteinases (MMPs) in the development of dentin erosion and the protective effects of MMP inhibitors, based on recent evidence from in vitro and in situ studies. MMPs are present in both dentin and saliva and play an important role in dentin erosion progression. Enzymatic removal of the organic matrix by MMPs increases the demineralization process, since the demineralized organic matrix has been shown to hamper ionic diffusion after an acidic challenge. Recent evidence from in vitro and in situ studies has shown a protective role of MMP inhibitors against dentin erosion and erosion plus abrasion. The inhibitors tested were green tea and its active epigallocatechin-gallate (EGCG), ferrous sulfate, and chlorhexidine. They have been tested in dentifrices, solutions, and gels. The latter led to a more pronounced protective effect against dentin erosion and erosion plus abrasion. The protection was long-lasting and could be observed after up to 10 days of severe erosive and erosive-plus-abrasive challenges in situ. Thus, the use of MMP inhibitors has emerged as an important preventive tool against dentin erosion. Clinical studies should be conducted to confirm the results obtained and to give support to the establishment of clinical protocols of use. PMID:22899684

  6. Expression of matrix metalloproteinase and its tissue inhibitor in haemangioma.

    PubMed

    Zhong, Shan; Yang, Guohua; Xia, Cong; Duanlian, Zhang; Shan, Shengguo

    2009-10-01

    The action mechanism of matrix metalloproteinases-2 (MMP-2) and tissue inhibitor of metalloproteinases-2 (TIMP-2) in the genesis, development and degeneration of haemangioma was investigated by detecting their expression in the tissue of haemangioma in different phases by using the immunohistochemistry. Fifty paraffin-embedded specimens of skin capillary haemangioma were collected, which were documented in the Department of Pathology, Renmin Hospital of Wuhan University from 2000 to 2006. All samples were stained by regular HE method, and proliferative cell nuclear antigen (PCNA) was tested by immunohistochemical S-P method. The samples were classified according to the Mulliken criteria and the expression pattern of PCNA. Immunohistochemical S-P method was applied to detect the expression of MMP-2 and TIMP-2 in proliferative and degenerative phases of cutaneous capillary haemangioma, and in normal skin tissues. In combination with the detection of the expression of factor VIII-related antigen, it was verified that in haemangioma tissues, the cells expressing MMP-2 and TIMP-2 were vascular endothelial cells. The MMP-2 and TIMP-2 expression was quantitatively analyzed by image analysis system (HPIAS-1000), and one-way ANOVA(107) and SNK(q) test were done to analyze average absorbance (A) and positive area rate of immunohistochemically positive particles by using SPSS11.5. The results showed: (1) Among 50 samples of haemangioma, there were 26 proliferative haemangiomas, and 24 degenerative haemangiomas, respectively; (2) The expression of MMP-2 was weak in normal vascular endothelial cells, cytoplasm of connective tissues and extracellular matrix around blood vessels. The expression of MMP-2 in proliferative group was significantly higher than in degenerative group and control group (normal skin) (P<0.05), but there was no statistically significant difference between the latter two groups; (3) TIMP-2 was highly expressed in normal tissues, degenerative vascular

  7. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients

    PubMed Central

    Tamborino, Carmine; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Dujmovic, Irena

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process. PMID:27555667

  8. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients.

    PubMed

    Trentini, Alessandro; Castellazzi, Massimiliano; Cervellati, Carlo; Manfrinato, Maria Cristina; Tamborino, Carmine; Hanau, Stefania; Volta, Carlo Alberto; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Dujmovic, Irena; Fainardi, Enrico

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process. PMID:27555667

  9. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis.

    PubMed

    You, Yiwen; Shan, Ying; Chen, Jing; Yue, Huijun; You, Bo; Shi, Si; Li, Xingyu; Cao, Xiaolei

    2015-12-01

    Nasopharyngeal cancer (NPC) is an endemic type of head and neck cancer with a high rate of cervical lymph node metastasis. Metastasis is the major cause of death in NPC patients. Increasing evidence indicates that exosomes play a pivotal role in promoting cancer metastasis by enhancing angiogenesis and ECM degradation. Matrix metalloproteinase 13 is an important kind of matrix proteinase that is often overexpressed in various tumors and increases the risk of metastasis. However, little is known about the potential role of MMP13-containing exosomes in NPC. In this study, we found that MMP13 was overexpressed in NPC cells and exosomes purified from conditioned medium (CM) as well as NPC patients' plasma. Transwell analysis revealed that MMP13-containing exosomes facilitated the metastasis of NPC cells. Furthermore, siRNA inhibited the effect of MMP13-containing exosomes on tumor cells metastasis as well as angiogenesis. The current findings provided novel insight into the vital role of MMP13-containing exosomes in NPC progression which might offer unique insights for potential therapeutic strategies for NPC progressions. PMID:26362844

  10. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis.

    PubMed

    Pittayapruek, Pavida; Meephansan, Jitlada; Prapapan, Ornicha; Komine, Mayumi; Ohtsuki, Mamitaro

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases with an extensive range of substrate specificities. Collectively, these enzymes are able to degrade various components of extracellular matrix (ECM) proteins. Based on their structure and substrate specificity, they can be categorized into five main subgroups, namely (1) collagenases (MMP-1, MMP-8 and MMP-13); (2) gelatinases (MMP-2 and MMP-9); (3) stromelysins (MMP-3, MMP-10 and MMP-11); (4) matrilysins (MMP-7 and MMP-26); and (5) membrane-type (MT) MMPs (MMP-14, MMP-15, and MMP-16). The alterations made to the ECM by MMPs might contribute in skin wrinkling, a characteristic of premature skin aging. In photocarcinogenesis, degradation of ECM is the initial step towards tumor cell invasion, to invade both the basement membrane and the surrounding stroma that mainly comprises fibrillar collagens. Additionally, MMPs are involved in angiogenesis, which promotes cancer cell growth and migration. In this review, we focus on the present knowledge about premature skin aging and skin cancers such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, with our main focus on members of the MMP family and their functions.

  11. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis.

    PubMed

    Pittayapruek, Pavida; Meephansan, Jitlada; Prapapan, Ornicha; Komine, Mayumi; Ohtsuki, Mamitaro

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases with an extensive range of substrate specificities. Collectively, these enzymes are able to degrade various components of extracellular matrix (ECM) proteins. Based on their structure and substrate specificity, they can be categorized into five main subgroups, namely (1) collagenases (MMP-1, MMP-8 and MMP-13); (2) gelatinases (MMP-2 and MMP-9); (3) stromelysins (MMP-3, MMP-10 and MMP-11); (4) matrilysins (MMP-7 and MMP-26); and (5) membrane-type (MT) MMPs (MMP-14, MMP-15, and MMP-16). The alterations made to the ECM by MMPs might contribute in skin wrinkling, a characteristic of premature skin aging. In photocarcinogenesis, degradation of ECM is the initial step towards tumor cell invasion, to invade both the basement membrane and the surrounding stroma that mainly comprises fibrillar collagens. Additionally, MMPs are involved in angiogenesis, which promotes cancer cell growth and migration. In this review, we focus on the present knowledge about premature skin aging and skin cancers such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, with our main focus on members of the MMP family and their functions. PMID:27271600

  12. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis

    PubMed Central

    Pittayapruek, Pavida; Meephansan, Jitlada; Prapapan, Ornicha; Komine, Mayumi; Ohtsuki, Mamitaro

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases with an extensive range of substrate specificities. Collectively, these enzymes are able to degrade various components of extracellular matrix (ECM) proteins. Based on their structure and substrate specificity, they can be categorized into five main subgroups, namely (1) collagenases (MMP-1, MMP-8 and MMP-13); (2) gelatinases (MMP-2 and MMP-9); (3) stromelysins (MMP-3, MMP-10 and MMP-11); (4) matrilysins (MMP-7 and MMP-26); and (5) membrane-type (MT) MMPs (MMP-14, MMP-15, and MMP-16). The alterations made to the ECM by MMPs might contribute in skin wrinkling, a characteristic of premature skin aging. In photocarcinogenesis, degradation of ECM is the initial step towards tumor cell invasion, to invade both the basement membrane and the surrounding stroma that mainly comprises fibrillar collagens. Additionally, MMPs are involved in angiogenesis, which promotes cancer cell growth and migration. In this review, we focus on the present knowledge about premature skin aging and skin cancers such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, with our main focus on members of the MMP family and their functions. PMID:27271600

  13. The Role of Matrix Metalloproteinase Polymorphisms in Ischemic Stroke

    PubMed Central

    Chang, Jason J.; Stanfill, Ansley; Pourmotabbed, Tayebeh

    2016-01-01

    Stroke remains the fifth leading cause of mortality in the United States with an annual rate of over 128,000 deaths per year. Differences in incidence, pathogenesis, and clinical outcome have long been noted when comparing ischemic stroke among different ethnicities. The observation that racial disparities exist in clinical outcomes after stroke has resulted in genetic studies focusing on specific polymorphisms. Some studies have focused on matrix metalloproteinases (MMPs). MMPs are a ubiquitous group of proteins with extensive roles that include extracellular matrix remodeling and blood-brain barrier disruption. MMPs play an important role in ischemic stroke pathophysiology and clinical outcome. This review will evaluate the evidence for associations between polymorphisms in MMP-1, 2, 3, 9, and 12 with ischemic stroke incidence, pathophysiology, and clinical outcome. The role of polymorphisms in MMP genes may influence the presentation of ischemic stroke and be influenced by racial and ethnic background. However, contradictory evidence for the role of MMP polymorphisms does exist in the literature, and further studies will be necessary to consolidate our understanding of these multi-faceted proteins. PMID:27529234

  14. The Role of Matrix Metalloproteinase Polymorphisms in Ischemic Stroke.

    PubMed

    Chang, Jason J; Stanfill, Ansley; Pourmotabbed, Tayebeh

    2016-01-01

    Stroke remains the fifth leading cause of mortality in the United States with an annual rate of over 128,000 deaths per year. Differences in incidence, pathogenesis, and clinical outcome have long been noted when comparing ischemic stroke among different ethnicities. The observation that racial disparities exist in clinical outcomes after stroke has resulted in genetic studies focusing on specific polymorphisms. Some studies have focused on matrix metalloproteinases (MMPs). MMPs are a ubiquitous group of proteins with extensive roles that include extracellular matrix remodeling and blood-brain barrier disruption. MMPs play an important role in ischemic stroke pathophysiology and clinical outcome. This review will evaluate the evidence for associations between polymorphisms in MMP-1, 2, 3, 9, and 12 with ischemic stroke incidence, pathophysiology, and clinical outcome. The role of polymorphisms in MMP genes may influence the presentation of ischemic stroke and be influenced by racial and ethnic background. However, contradictory evidence for the role of MMP polymorphisms does exist in the literature, and further studies will be necessary to consolidate our understanding of these multi-faceted proteins. PMID:27529234

  15. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis.

    PubMed

    You, Yiwen; Shan, Ying; Chen, Jing; Yue, Huijun; You, Bo; Shi, Si; Li, Xingyu; Cao, Xiaolei

    2015-12-01

    Nasopharyngeal cancer (NPC) is an endemic type of head and neck cancer with a high rate of cervical lymph node metastasis. Metastasis is the major cause of death in NPC patients. Increasing evidence indicates that exosomes play a pivotal role in promoting cancer metastasis by enhancing angiogenesis and ECM degradation. Matrix metalloproteinase 13 is an important kind of matrix proteinase that is often overexpressed in various tumors and increases the risk of metastasis. However, little is known about the potential role of MMP13-containing exosomes in NPC. In this study, we found that MMP13 was overexpressed in NPC cells and exosomes purified from conditioned medium (CM) as well as NPC patients' plasma. Transwell analysis revealed that MMP13-containing exosomes facilitated the metastasis of NPC cells. Furthermore, siRNA inhibited the effect of MMP13-containing exosomes on tumor cells metastasis as well as angiogenesis. The current findings provided novel insight into the vital role of MMP13-containing exosomes in NPC progression which might offer unique insights for potential therapeutic strategies for NPC progressions.

  16. Matrix metalloproteinase inhibition negatively affects muscle stem cell behavior.

    PubMed

    Bellayr, Ian; Holden, Kyle; Mu, Xiaodong; Pan, Haiying; Li, Yong

    2013-01-01

    Skeletal muscle is a large and complex system that is crucial for structural support, movement and function. When injured, the repair of skeletal muscle undergoes three phases: inflammation and degeneration, regeneration and fibrosis formation in severe injuries. During fibrosis formation, muscle healing is impaired because of the accumulation of excess collagen. A group of zinc-dependent endopeptidases that have been found to aid in the repair of skeletal muscle are matrix metalloproteinases (MMPs). MMPs are able to assist in tissue remodeling through the regulation of extracellular matrix (ECM) components, as well as contributing to cell migration, proliferation, differentiation and angiogenesis. In the present study, the effect of GM6001, a broad-spectrum MMP inhibitor, on muscle-derived stem cells (MDSCs) is investigated. We find that MMP inhibition negatively impacts skeletal muscle healing by impairing MDSCs in migratory and multiple differentiation abilities. These results indicate that MMP signaling plays an essential role in the wound healing of muscle tissue because their inhibition is detrimental to stem cells residing in skeletal muscle. PMID:23329998

  17. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinase in uterine endometrial carcinoma and a correlation between expression of matrix metalloproteinase-7 and prognosis.

    PubMed

    Misugi, Fumiko; Sumi, Toshiyuki; Okamoto, Eri; Nobeyama, Hiroyuki; Hattori, Kanae; Yoshida, Hiroyuki; Matsumoto, Yoshinari; Yasui, Tomoyo; Honda, Ken-Ichi; Ishiko, Osamu

    2005-10-01

    Matrix metalloproteinases (MMPs) are associated with invasion and metastasis of several human malignant tumors, in particular MMP-7, which is mainly produced by the cancer cell itself. We examined the expression of MMP-2, 7 and 9, and tissue inhibitors of metalloproteinase (TIMP)-1 and 2 in uterine endometrial carcinoma, and compared the expression with clinicopathological characteristics in uterine endometrial carcinoma (UEC). A group of 256 patients with UEC received surgery at the Osaka City University Medical School Hospital, and 196 tumor samples were immunohistochemically stained to examine the expression of MMP-2, 7 and 9, and TIMP-1 and 2. Additionally, the invasion ability of cell stain established from UEC was examined using an in vitro invasion assay. The expression of MMP-2, 7 and 9, and TIMP-1 and 2 was observed in the cytoplasm, and the expression of MMP-2 and 7, and TIMP-1 and 2 was observed in stromal cells around the tumor cells. The expression of MMP-7 was significantly stronger in higher-grade than lower-grade tumors (P<0.05). The invasion assay showed that the invasion of cells derived from UECs was significantly inhibited by TIMP-1 and 2. The disease-free interval was significantly shorter when MMP-7 expression was intense. This increased expression of MMP-7 in high grade UECs may be associated with tumor invasion and metastasis, and MMP-7 could serve as a prognostic maker in UEC.

  18. Patterns of matrix metalloproteinase expression in cycling endometrium imply differential functions and regulation by steroid hormones.

    PubMed Central

    Rodgers, W H; Matrisian, L M; Giudice, L C; Dsupin, B; Cannon, P; Svitek, C; Gorstein, F; Osteen, K G

    1994-01-01

    Matrix metalloproteinases are a highly regulated family of enzymes, that together can degrade most components of the extracellular matrix. These proteins are active in normal and pathological processes involving tissue remodeling; however, their sites of synthesis and specific roles are poorly understood. Using in situ hybridization, we determined cellular distributions of matrix metalloproteinases and tissue inhibitor of metalloproteinase-1, an inhibitor of matrix metalloproteinases, in endometrium during the reproductive cycle. The mRNAs for all the metalloproteinases were detected in menstrual endometrium, but with different tissue distributions. The mRNA for matrilysin was localized to epithelium, while the others were detected in stromal cells. Only the transcripts for the 72-kD gelatinase and tissue inhibitor of metalloproteinases-1 were detected throughout the cycle. Transcripts for stromelysin-2 and the 92-kD gelatinase were only detected in late secretory and menstrual endometrium, while those for matrilysin, the 72-kD gelatinase, and stromelysin-3 were also consistently detected in proliferative endometrium. These data indicate that matrix metalloproteinases are expressed in cell-type, tissue, and reproductive cycle-specific patterns, consistent with regulation by steroid hormones, and with specific roles in the complex tissue growth and remodeling processes occurring in the endometrium during the reproductive cycle. Images PMID:8083380

  19. Dentin matrix degradation by host matrix metalloproteinases: inhibition and clinical perspectives toward regeneration

    PubMed Central

    Chaussain, Catherine; Boukpessi, Tchilalo; Khaddam, Mayssam; Tjaderhane, Leo; George, Anne; Menashi, Suzanne

    2013-01-01

    Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs) contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration. PMID:24198787

  20. Matrix metalloproteinases 2 and 9 in canine rheumatoid arthritis.

    PubMed

    Coughlan, A R; Robertson, D H; Bennett, D; May, C; Beynon, R J; Carter, S D

    1998-08-22

    Matrix metalloproteinases (MMPs) are considered important mediators of tissue damage in joint diseases. The levels of MMPs 2 and 9 were measured in samples of synovial fluid from 20 joints in seven dogs with rheumatoid arthritis by gelatin zymography. The results were compared with the actual gelatinolytic activity of the fluid measured in a gelatin-degradation ELISA. The gelatinolytic activity in synovial fluid from arthritic joints was markedly greater than that in fluid from disease-free joints. The zymographic activity attributable to MMP-9 (identified by Western blotting) was absent from synovial fluid from control joints but prominent in fluid from arthritic joints, and in these joints the presence of a 75 kDa form of MMP-9 was correlated with the gelatinolytic activity of the fluid measured by the ELISA (r = 0.81, P < 0.05). Synovial fluid from one dog with rheumatoid arthritis was examined before and after treatment with corticosteroids. After treatment its zymographic pattern had returned to normal. PMID:9770764

  1. Two matrix metalloproteinases inhibitors from Ferula persica var. persica.

    PubMed

    Shahverdi, A R; Saadat, F; Khorramizadeh, M R; Iranshahi, M; Khoshayand, M R

    2006-11-01

    Matrix metalloproteinases (MMPs) play a role in several physiologic and pathologic events. There is some evidence indicating the involvement of MMPs in tumor invasion and inflammatory diseases. Here we studied the chloroform extract of Ferula persica var. persica. The influence of these extracts vs. a reference drug, diclofenac sodium, on MMP production by the fibrosarcoma cell line was investigated using an in vitro cytotoxicity assay, sodium dodecyl sulfate-polyacrylamide, and gelatin zymography. The total extract of the roots was found to exhibit a selective inhibitory effect on tumor cell invasion. The bioactivity-guided fractionation of this extract led to the isolation of two compounds. These compounds showed highest MMP inhibitory effect at minimal toxic dose levels. Using conventional spectroscopy methods, the active fractions were identified as t-butyl 3-[(1-methylthiopropyl)dithio]-2-propenyl malonate (persicasulphide B) and umbelliprenin, previously isolated from F. persica var. latisecta. Since inhibition of MMP activity has been employed in modality therapy in diseases such as cancer, this compound might be promising in the preparation of anti-MMP therapeutic derivatives.

  2. Matrix metalloproteinases and their tissue inhibitors in preterm perinatal complications.

    PubMed

    Cockle, Julia V; Gopichandran, Nadia; Walker, James J; Levene, Malcolm I; Orsi, Nicolas M

    2007-10-01

    The objective of this article is to review the role of matrix metalloproteinases (MMPs) in fetomaternal/neonatal complications of preterm birth. The function of MMPs as proteolytic enzymes involved in tissue remodeling/destruction is reviewed in preterm labor, preeclampsia, premature rupture of membranes, intrauterine growth restriction, chronic lung disease, necrotizing enterocolitis, intraventricular hemorrhage, cystic periventricular leukomalacia, and retinopathy of prematurity. Cytokines, steroid hormones, and reactive oxygen species all regulate MMP labor and expression/activity. In labor, activation follows an inflammatory response, which results in fetal membrane rupture and cervical dilation/ripening, particularly when premature. Expression/activation is elevated during parturition, particularly when premature. While fetal membrane rupture is preceded by increases in tissue-specific MMPs, neonatal complications also ensue from an imbalance between MMPs and their tissue inhibitors. These e fects implicate environmental triggers and a genetic predisposition. MMPs are involved in the perinatal complications of prematurity and are potential targets for therapeutic intervention. Functional MMP genetic polymorphisms may assist in identifying patients at risk of complications.

  3. The Structural Basis for Matrix Metalloproteinase 1 Catalyzed Collagenolysis

    PubMed Central

    Bertini, Ivano; Fragai, Marco; Luchinat, Claudio; Melikian, Maxime; Toccafondi, Mirco; Lauer, Janelle L.; Fields, Gregg B.

    2012-01-01

    The proteolysis of collagen triple-helical structure (collagenolysis) is a poorly understood yet critical physiological process. Presently, matrix metalloproteinase 1 (MMP-1) and collagen triple-helical peptide models have been utilized to characterize the events and calculate the energetics of collagenolysis via NMR spectroscopic analysis of 12 enzyme-substrate complexes. The triple-helix is bound initially by the MMP-1 hemopexin-like (HPX) domain via a four amino acid stretch (analogous to type I collagen residues 782–785). The triple-helix is then presented to the MMP-1 catalytic (CAT) domain in a distinct orientation. The HPX and CAT domains are rotated with respect to one another compared with the X-ray “closed” conformation of MMP-1. Back-rotation of the CAT and HPX domains to the X-ray closed conformation releases one chain out of the triple-helix, and this chain is properly positioned in the CAT domain active site for subsequent hydrolysis. The aforementioned steps provide a detailed, experimentally-derived, and energetically favorable collagenolytic mechanism, as well as significant insight into the roles of distinct domains in extracellular protease function. PMID:22239621

  4. Protective effects of matrix metalloproteinase-12 following corneal injury.

    PubMed

    Chan, Matilda F; Li, Jing; Bertrand, Anthony; Casbon, Amy-Jo; Lin, Jeffrey H; Maltseva, Inna; Werb, Zena

    2013-09-01

    Corneal scarring due to injury is a leading cause of blindness worldwide and results from dysregulated inflammation and angiogenesis during wound healing. Here we demonstrate that the extracellular matrix metalloproteinase MMP12 (macrophage metalloelastase) is an important regulator of these repair processes. Chemical injury resulted in higher expression of the fibrotic markers α-smooth muscle actin and type I collagen, and increased levels of angiogenesis in corneas of Mmp12(-/-) mice compared with corneas of wild-type mice. In vivo, we observed altered immune cell dynamics in Mmp12(-/-) corneas by confocal imaging. We determined that the altered dynamics were the result of an altered inflammatory response, with delayed neutrophil infiltration during the first day and excessive macrophage infiltration 6 days later, mediated by altered expression levels of chemokines CXCL1 and CCL2, respectively. Corneal repair returned to normal upon inhibition of these chemokines. Taken together, these data show that MMP12 has a protective effect on corneal fibrosis during wound repair through regulation of immune cell infiltration and angiogenesis.

  5. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2.

    PubMed

    Deshane, Jessy; Garner, Craig C; Sontheimer, Harald

    2003-02-01

    Primary brain tumors (gliomas) have the unusual ability to diffusely infiltrate the normal brain thereby evading surgical treatment. Chlorotoxin is a scorpion toxin that specifically binds to the surface of glioma cells and impairs their ability to invade. Using a recombinant His-Cltx we isolated and identified the principal Cltx receptor on the surface of glioma cells as matrix metalloproteinase-2 (MMP-2). MMP-2 is specifically up-regulated in gliomas and related cancers, but is not normally expressed in brain. We demonstrate that Cltx specifically and selectively interacts with MMP-2 isoforms, but not with MMP-1, -3, and -9, which are also expressed in malignant glioma cells. Importantly, we show that the anti-invasive effect of Cltx on glioma cells can be explained by its interactions with MMP-2. Cltx exerts a dual effect on MMP-2: it inhibits the enzymatic activity of MMP-2 and causes a reduction in the surface expression of MMP-2. These findings suggest that Cltx is a specific MMP-2 inhibitor with significant therapeutic potential for gliomas and other diseases that invoke the activity of MMP-2.

  6. Matrix metalloproteinases and their multiple roles in Alzheimer's disease.

    PubMed

    Wang, Xiang-Xiang; Tan, Meng-Shan; Yu, Jin-Tai; Tan, Lan

    2014-01-01

    Alzheimer's disease (AD) is the most prevalent type of dementia. Pathological changes in the AD brain include amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), as well as neuronal death and synaptic loss. Matrix metalloproteinases (MMPs) play an important role as inflammatory components in the pathogenesis of AD. MMP-2 might be assumed to have a protective role in AD and is the major MMP which is directly linked to Aβ in the brain. Synthesis of MMP-9 can be induced by Aβ, and the enzymes appear to exert multiple effects in AD in senile plaque homoeostasis. The proaggregatory influence on tau oligomer formation in strategic brain regions may be a potential neurotoxic side effect of MMP-9. MMP-3 levels are correlated to the duration of AD and correlate with the CSF T-tau and P-tau levels in the elderly controls. Elevated brain levels of MMP-3 might result in increased MMP-9 activity and indirectly facilitate tau aggregation. At present, the clinical utility of these proteins, particularly in plasma or serum, as potential early diagnostic biomarkers for AD remains to be established. More research is needed to understand the diverse roles of these proteases to design specific drugs and devise therapeutic strategies for AD.

  7. Putative targeting of matrix metalloproteinase-8 in atherosclerosis.

    PubMed

    Ye, Shu

    2015-03-01

    There is compelling evidence indicating that some members of the matrix metalloproteinase (MMP) family play important roles in the pathogenesis of atherosclerosis and related vascular and cardiac conditions such as atherosclerotic plaque rupture leading to myocardial infarction, heart failure after myocardial infarction, neointima formation following angioplasty, and abdominal aortic aneurysm. Studies have shown that administration of MMP inhibitors can deter some of these conditions in experimental animal models, but few pertinent human clinical trials have been reported to date. Clinical studies of broad-spectrum MMP inhibitors in cancers and arthritis, however, have reported considerable side effects that are likely to be related to the lack of selectivity of these inhibitors. Since different members of the MMP family can have divergent and even opposing functions, it is believed that selective MMP inhibitors that specifically target particular MMPs that are key in the disease pathogenesis will likely have greater efficacy and less adverse effects. In recent years there has been accumulating evidence indicating an important role of MMP8 in atherosclerosis and the associated conditions mentioned above. This article will review findings from studies examining MMP8 in relation to these conditions and discuss rationale of targeting MMP8 as a potential therapeutic strategy.

  8. Matrix Metalloproteinases and Minocycline: Therapeutic Avenues for Fragile X Syndrome

    PubMed Central

    Siller, Saul S.; Broadie, Kendal

    2012-01-01

    Fragile X syndrome (FXS) is the most common known genetic form of intellectual disability and autism spectrum disorders. FXS patients suffer a broad range of other neurological symptoms, including hyperactivity, disrupted circadian activity cycles, obsessive-compulsive behavior, and childhood seizures. The high incidence and devastating effects of this disease state make finding effective pharmacological treatments imperative. Recently, reports in both mouse and Drosophila FXS disease models have indicated that the tetracycline derivative minocycline may hold great therapeutic promise for FXS patients. Both models strongly suggest that minocycline acts on the FXS disease state via inhibition of matrix metalloproteinases (MMPs), a class of zinc-dependent extracellular proteases important in tissue remodeling and cell-cell signaling. Recent FXS clinical trials indicate that minocycline may be effective in treating human patients. In this paper, we summarize the recent studies in Drosophila and mouse FXS disease models and human FXS patients, which indicate that minocycline may be an effective FXS therapeutic treatment, and discuss the data forming the basis for the proposed minocycline mechanism of action as an MMP inhibitor. PMID:22685676

  9. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis.

    PubMed

    Craig, Vanessa J; Zhang, Li; Hagood, James S; Owen, Caroline A

    2015-11-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.

  10. Development of matrix metalloproteinase inhibitors in cancer therapy.

    PubMed

    Hidalgo, M; Eckhardt, S G

    2001-02-01

    The matrix metalloproteinases (MMPs) are a family of zinc-dependent proteinases involved in the degradation of the extracellular matrix. The MMPs have been implicated in the processes of tumor growth, invasion, and metastasis; are frequently overexpressed in malignant tumors; and have been associated with an aggressive malignant phenotype and adverse prognosis in patients with cancer. A number of MMP inhibitors are being developed for the treatment of cancer. The most extensively studied class of MMP inhibitors includes collagen peptidomimetics and nonpeptidomimetic inhibitors of the MMP active site, tetracycline derivatives, and bisphosphonates. The hydroxamate peptidomimetic inhibitor batimastat and its orally bioavailable analogue marimastat, which bind covalently to the zinc atom at the MMP-active site, were the first MMP inhibitors to be studied in detail. Marimastat is currently being studied in randomized clinical trials. The nonpeptidic MMP inhibitors were synthesized in an attempt to improve the oral bioavailability and pharmaceutical properties of the peptidic inhibitors. Several members of this class of compounds are undergoing evaluation in phase III clinical trials. The tetracyclines and, particularly, the nonantibiotic chemically modified tetracyclines, interfere with several aspects of MMP expression and activation and inhibit tumor growth and metastases in preclinical models. A representative agent of this class, Col-3, is currently undergoing phase I clinical trials. The development of the MMP inhibitors, like that of other targeted and predominantly antiproliferative compounds, poses a challenge because the paradigms that have governed the design of clinical oncology trials may not be relevant to this new class of agents. The anticipated need for long-term administration of these drugs, together with their cytostatic mechanism of action, will require novel clinical trial design strategies.

  11. Caries correlates strongly to salivary levels of matrix metalloproteinase-8.

    PubMed

    Hedenbjörk-Lager, Anders; Bjørndal, Lars; Gustafsson, Anders; Sorsa, Timo; Tjäderhane, Leo; Åkerman, Sigvard; Ericson, Dan

    2015-01-01

    The caries process in dentin involves the degradation of both mineral and organic matrix. The demineralization has been demonstrated to be caused by bacterial acids. However, the collagen degradation is considered to be initiated by endogenous proteolytic enzymes, mainly collagenolytic matrix metalloproteinases (MMPs). This paper aims to relate salivary MMP-8 (or salivary collagenase-2) and tissue inhibitor of MMP (TIMP-1) levels to manifest caries in a large number of subjects. A random sample of 451 adults (aged 18-87 years) living in the south of Sweden was included in this study. Standard clinical examinations were performed, and stimulated saliva was collected and analyzed for concentrations of MMP-8, TIMP-1 and total protein, using an immunofluorometric assay, an enzyme-linked immunosorbent assay and the Bradford assay, respectively. Salivary numbers of mutans streptococci and lactobacilli were determined using a chair-side kit. Subjects with manifest caries lesions presented with elevated levels of MMP-8 (p < 0.001) as well as total protein, MMP-8/TIMP-1 ratio, bleeding on probing and plaque index (p = 0.05) compared with subjects without manifest caries. Multiple linear regression analysis with caries as the dependent variable revealed MMP-8 as the only significant explanatory variable (p < 0.001). TIMP-1 was not significant in any case. Using MMP-8 as the dependent variable revealed total protein concentration, caries lesions (p ≤ 0.001) and salivary secretion rate (p = 0.05) as explanatory variables. In conclusion, our data reveal that subjects with manifest caries lesions have elevated levels of salivary MMP-8 relative to subjects with no caries lesions.

  12. Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling.

    PubMed

    Ashworth, J L; Murphy, G; Rock, M J; Sherratt, M J; Shapiro, S D; Shuttleworth, C A; Kielty, C M

    1999-05-15

    Fibrillin is the principal structural component of the 10-12 nm diameter elastic microfibrils of the extracellular matrix. We have previously shown that both fibrillin molecules and assembled microfibrils are susceptible to degradation by serine proteases. In this study, we have investigated the potential catabolic effects of six matrix metalloproteinases (MMP-2, MMP-3, MMP-9, MMP-12, MMP-13 and MMP-14) on fibrillin molecules and on intact fibrillin-rich microfibrils isolated from ciliary zonules. Using newly synthesized recombinant fibrillin molecules, major cleavage sites within fibrillin-1 were identified. In particular, the six different MMPs generated a major degradation product of approximately 45 kDa from the N-terminal region of the molecule, whereas treatment of truncated, unprocessed and furin-processed C-termini also generated large degradation products. Introduction of a single ectopia lentis-causing amino acid substitution (E2447K; one-letter symbols for amino acids) in a calcium-binding epidermal growth factor-like domain, predicted to disrupt calcium binding, markedly altered the pattern of C-terminal fibrillin-1 degradation. However, the fragmentation pattern of a mutant fibrillin-1 with a comparable E-->K substitution in an upstream calcium-binding epidermal growth factor-like domain was indistinguishable from wild-type molecules. Ultrastructural examination highlighted that fibrillin-rich microfibrils isolated from ciliary zonules were grossly disrupted by MMPs. This is the first demonstration that fibrillin molecules and fibrillin-rich microfibrils are degraded by MMPs and that certain amino acid substitutions change the fragmentation patterns. These studies have important implications for physiological and pathological fibrillin catabolism and for loss of connective tissue elasticity in ageing and disease.

  13. Matrix metalloproteinases in osteoclasts of ontogenetic and regenerating zebrafish scales.

    PubMed

    de Vrieze, Erik; Sharif, Faiza; Metz, Juriaan R; Flik, Gert; Richardson, Michael K

    2011-04-01

    Matrix metalloproteinases (MMPs) are key enzymes in the turnover of extracellular matrix in health, disease, development and regeneration. We have studied zebrafish scale regeneration to ascertain the role of MMP-2 and MMP-9 in these processes. Scales were plucked from the surface of anaesthetised adult male zebrafish, and the scales that regenerated in the scale pocket were recovered at various time points after plucking. Analyses consisted of (i) mmp-9 in situ hybridisation; (ii) MMP-9+TRAcP double-staining; (iii) qRT-PCR for mmp-2 and mmp-9; (iv) zymography for gelatinolytic activity and (v) a hydroxyproline assay. We found that mmp-9 positive cells were confined to the episquamal side of the scales. Ontogenetic scales had irregular clusters of mono- and multinucleated mmp-9 expressing cells along their lateral margins and radii. During regeneration, mmp-9 positive cells were seen on the scale plate, but not along the lateral margins. Double staining for TRAcP and MMP-9 revealed the osteoclastic nature of these cells. During early scale regeneration, mmp-2 and mmp-9 transcripts increased in abundance in the scale, enzymatic MMP activity increased and collagen degradation was detected by means of hydroxyproline measurements. Near the end of regeneration, all of these parameters returned to the basal values seen in ontogenetic scales. These findings suggest that MMPs play an important role in remodelling of the scale plate during regeneration, and that this function resides in mononucleated and multinucleated osteoclasts which co-express TRAcP and mmp-9. Our findings suggest that the fish scale regeneration model may be a useful system in which to study the cells and mechanisms responsible for regeneration, development and skeletal remodelling.

  14. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice

    PubMed Central

    Stickens, Dominique; Behonick, Danielle J.; Ortega, Nathalie; Heyer, Babette; Hartenstein, Bettina; Yu, Ying; Fosang, Amanda J.; Schorpp-Kistner, Marina; Angel, Peter; Werb, Zena

    2009-01-01

    Summary The assembly and degradation of extracellular matrix (ECM) molecules are crucial processes during bone development. In this study, we show that ECM remodeling is a critical rate-limiting step in endochondral bone formation. Matrix metalloproteinase (MMP) 13 (collagenase 3) is poised to play a crucial role in bone formation and remodeling because of its expression both in terminal hypertrophic chondrocytes in the growth plate and in osteoblasts. Moreover, a mutation in the human MMP13 gene causes the Missouri variant of spondyloepimetaphyseal dysplasia. Inactivation of Mmp13 in mice through homologous recombination led to abnormal skeletal growth plate development. Chondrocytes differentiated normally but their exit from the growth plate was delayed. The severity of the Mmp13-null growth plate phenotype increased until about 5 weeks and completely resolved by 12 weeks of age. Mmp13-null mice had increased trabecular bone, which persisted for months. Conditional inactivation of Mmp13 in chondrocytes and osteoblasts showed that increases in trabecular bone occur independently of the improper cartilage ECM degradation caused by Mmp13 deficiency in late hypertrophic chondrocytes. Our studies identified the two major components of the cartilage ECM, collagen type II and aggrecan, as in vivo substrates for MMP13. We found that degradation of cartilage collagen and aggrecan is a coordinated process in which MMP13 works synergistically with MMP9. Mice lacking both MMP13 and MMP9 had severely impaired endochondral bone, characterized by diminished ECM remodeling, prolonged chondrocyte survival, delayed vascular recruitment and defective trabecular bone formation (resulting in drastically shortened bones). These data support the hypothesis that proper ECM remodeling is the dominant rate-limiting process for programmed cell death, angiogenesis and osteoblast recruitment during normal skeletal morphogenesis. PMID:15539485

  15. Production of matrix metalloproteinases in response to mycobacterial infection.

    PubMed

    Quiding-Järbrink, M; Smith, D A; Bancroft, G J

    2001-09-01

    Matrix metalloproteinases (MMPs) constitute a large family of enzymes with specificity for the various proteins of the extracellular matrix which are implicated in tissue remodeling processes and chronic inflammatory conditions. To investigate the role of MMPs in immunity to mycobacterial infections, we incubated murine peritoneal macrophages with viable Mycobacterium bovis BCG or Mycobacterium tuberculosis H37Rv and assayed MMP activity in the supernatants by zymography. Resting macrophages secreted only small amounts of MMP-9 (gelatinase B), but secretion increased dramatically in a dose-dependent manner in response to either BCG or M. tuberculosis in vitro. Incubation with mycobacteria also induced increased MMP-2 (gelatinase A) activity. Neutralization of tumor necrosis alpha (TNF-alpha), and to a lesser extent interleukin 18 (IL-18), substantially reduced MMP production in response to mycobacteria. Exogenous addition of TNF-alpha or IL-18 induced macrophages to express MMPs, even in the absence of bacteria. The immunoregulatory cytokines gamma interferon (IFN-gamma), IL-4, and IL-10 all suppressed BCG-induced MMP production, but through different mechanisms. IFN-gamma treatment increased macrophage secretion of TNF-alpha but still reduced their MMP activity. Conversely, IL-4 and IL-10 seemed to act by reducing the amount of TNF-alpha available to the macrophages. Finally, infection of BALB/c or severe combined immunodeficiency (SCID) mice with either BCG or M. tuberculosis induced substantial increases in MMP-9 activity in infected tissues. In conclusion, we show that mycobacterial infection induces MMP-9 activity both in vitro and in vivo and that this is regulated by TNF-alpha, IL-18, and IFN-gamma. These findings indicate a possible contribution of MMPs to tissue remodeling processes that occur in mycobacterial infections.

  16. Cell Death Control by Matrix Metalloproteinases1[OPEN

    PubMed Central

    Zimmermann, Dirk; Sieferer, Elke; Pfannstiel, Jens

    2016-01-01

    In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato. PMID:27208293

  17. Activation of Matrix Metalloproteinase-3 is altered at the frog neuromuscular junction following changes in synaptic activity.

    PubMed

    VanSaun, M; Humburg, B C; Arnett, M G; Pence, M; Werle, M J

    2007-09-15

    The extracellular matrix surrounding the neuromuscular junction is a highly specialized and dynamic structure. Matrix Metalloproteinases are enzymes that sculpt the extracellular matrix. Since synaptic activity is critical to the structure and function of this synapse, we investigated whether changes in synaptic activity levels could alter the activity of Matrix Metalloproteinases at the neuromuscular junction. In particular, we focused on Matrix Metalloproteinase 3 (MMP3), since antibodies to MMP3 recognize molecules at the frog neuromuscular junction, and MMP3 cleaves a number of synaptic basal lamina molecules, including agrin. Here we show that the fluorogenic compound (M2300) can be used to perform in vivo proteolytic imaging of the frog neuromuscular junction to directly measure the activity state of MMP3. Application of this compound reveals that active MMP3 is concentrated at the normal frog neuromuscular junction, and is tightly associated with the terminal Schwann cell. Blocking presynaptic activity via denervation, or TTX nerve blockade, results in a decreased level of active MMP3 at the neuromuscular junction. The loss of active MMP3 at the neuromuscular junction in denervated muscles can result from decreased activation of pro-MMP3, or it could result from increased inhibition of MMP3. These results support the hypothesis that changes in synaptic activity can alter the level of active MMP3 at the neuromuscular junction. PMID:17525979

  18. Matrix metalloproteinase 20-dentin sialophosphoprotein interaction in oral cancer.

    PubMed

    Saxena, G; Koli, K; de la Garza, J; Ogbureke, K U E

    2015-04-01

    Matrix metalloproteinase 20 (MMP-20), widely regarded as tooth specific, participates with MMP-2 in processing dentin sialophosphoprotein (DSPP) into dentin sialoprotein, dentin phosphoprotein, and dentin glycoprotein. In biochemical system, MMP-2, MMP-3, and MMP-9 bind with high affinity to, and are activated by, specific small integrin-binding ligand N-linked glycoproteins (SIBLINGs): bone sialoprotein, osteopontin, and dentin matrix protein 1, respectively. Subsequent reports documented possible biological relevance of SIBLING-MMP interaction in vivo by showing that SIBLINGs are always coexpressed with their MMP partners. However, the cognate MMPs for 2 other SIBLINGs-DSPP and matrix extracellular phosphogylcoprotein-are yet to be identified. Our goal was to investigate MMP-20 expression and to explore preliminary evidence of its interaction with DSPP in oral squamous cell carcinomas (OSCCs). Immunohistochemistry analysis of sections from 21 cases of archived human OSCC tissues showed immunoreactivity for MMP-20 in 18 (86%) and coexpression with DSPP in all 15 cases (71%) positive for DSPP. Similarly, 28 (93%) of 30 cases of oral epithelial dysplasia were positive for MMP-20. Western blot and quantitative real-time polymerase chain reaction analysis on OSCC cell lines showed upregulation of MMP-20 protein and mRNA, respectively, while immunofluorescence showed coexpression of MMP-20 and DSPP. Colocalization and potential interaction of MMP-20 with dentin sialoprotein was confirmed by coimmunoprecipitation and mass spectrometry analysis of immunoprecipitation product from OSCC cell lysate, and in situ proximity ligation assays. Significantly, results of chromatin immunoprecipation revealed a 9-fold enrichment of DSPP at MMP-20 promoter-proximal elements. Our data provide evidence that MMP-20 has a wider tissue distribution than previously acknowledged. MMP-20-DSPP specific interaction, excluding other MMP-20-SIBLING pairings, identifies MMP-20 as DSPP cognate MMP

  19. Matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases and angiogenic cytokines in peripheral blood of patients with thyroid cancer.

    PubMed

    Komorowski, Jan; Pasieka, Z; Jankiewicz-Wika, J; Stepień, H

    2002-08-01

    Stimulation of growth of endothelial cells from preexisting blood vessels, i.e., angiogenesis, is one of the essential elements necessary to create a permissive environment in which a tumor can grow. During angiogenesis, the matrix metalloproteinase (MMP) family of tissue enzymes contributes to normal (embriogenesis or wound repair) and pathologic tissue remodeling (chronic inflammation and tumor genesis). The proposed pathogenic roles of MMPs in cancer are tissue breakdown and remodeling during invasive tumor growth and tumor angiogenesis. Tissue inhibitors of metalloproteinases (TIMPs) form a complex with MMPs, which in turn inhibits active MMPs. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are unique among mediators of angiogenesis with synergistic effect, and both can also be secreted by thyroid cancer cells. The goal of the study was to evaluate the plasma blood concentration of VEGF, bFGF, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, TIMP-1, and TIMP-2 in patients with cancer and in normal subjects. Twenty-two patients with thyroid cancers (papillary cancer, 11; partly papillary and partly follicular cancer, 3; anaplastic cancer, 5; medullary cancer, 3) and 16 healthy subjects (controls) were included in the study. VEGF, bFGF MMPs, and TIMPs were evaluated by enzyme-linked immunosorbent assay (ELISA). In patients with thyroid cancer, normal VEGF concentrations (74.29 +/- 13.38 vs. 84.85 +/- 21.71 pg/mL; p > 0.05) and increased bFGF (29.52 +/- 4.99 vs. 6.05 +/- 1.43 pg/mL; p < 0.001), MMP-2 (605.95 +/- 81.83 vs. 148.75 +/- 43.53 ng/mL; p < 0.001), TIMP-2 (114.19 +/- 6.62 vs. 60.75 +/- 9.18 ng/mL; p < 0.001), as well as lower MMP-1 (0.70 +/- 0.42 vs. 3.87 +/- 0.53; p < 0.001) levels have been noted. Increased plasma levels of MMP-3 and MMP-9 were also found in patients with medullary carcinoma. In conclusion, predominance of MMP-2 over TIMP-2 and TIMP-1 over MMP-1 as well as increased concentration of bFGF in peripheral blood are

  20. Matrix Metalloproteinase-9 Protects Islets from Amyloid-induced Toxicity.

    PubMed

    Meier, Daniel T; Tu, Ling-Hsien; Zraika, Sakeneh; Hogan, Meghan F; Templin, Andrew T; Hull, Rebecca L; Raleigh, Daniel P; Kahn, Steven E

    2015-12-18

    Deposition of human islet amyloid polypeptide (hIAPP, also known as amylin) as islet amyloid is a characteristic feature of the pancreas in type 2 diabetes, contributing to increased β-cell apoptosis and reduced β-cell mass. Matrix metalloproteinase-9 (MMP-9) is active in islets and cleaves hIAPP. We investigated whether hIAPP fragments arising from MMP-9 cleavage retain the potential to aggregate and cause toxicity, and whether overexpressing MMP-9 in amyloid-prone islets reduces amyloid burden and the resulting β-cell toxicity. Synthetic hIAPP was incubated with MMP-9 and the major hIAPP fragments observed by MS comprised residues 1-15, 1-25, 16-37, 16-25, and 26-37. The fragments 1-15, 1-25, and 26-37 did not form amyloid fibrils in vitro and they were not cytotoxic when incubated with β cells. Mixtures of these fragments with full-length hIAPP did not modulate the kinetics of fibril formation by full-length hIAPP. In contrast, the 16-37 fragment formed fibrils more rapidly than full-length hIAPP but was less cytotoxic. Co-incubation of MMP-9 and fragment 16-37 ablated amyloidogenicity, suggesting that MMP-9 cleaves hIAPP 16-37 into non-amyloidogenic fragments. Consistent with MMP-9 cleavage resulting in largely non-amyloidogenic degradation products, adenoviral overexpression of MMP-9 in amyloid-prone islets reduced amyloid deposition and β-cell apoptosis. These findings suggest that increasing islet MMP-9 activity might be a strategy to limit β-cell loss in type 2 diabetes.

  1. Effect of α-asarone on angiogenesis and matrix metalloproteinase.

    PubMed

    Park, Hye-Jung; Lee, Soo-Jin; Kim, Moon-Moo

    2015-05-01

    α-Asarone is a main component of Acorus gramineus widely known as an oriental traditional medicinal stuff. A. gramineus has been known to have a variety of medicinal efficacies such as anti-gastric ulcer and anti-allergic activities, inhibition of histamine release and antioxidant effect. However, its effect on angiogenesis remains unclear. The aim of this study was to investigate the effect of α-asarone on induction of angiogenesis through modulation of matrix metalloproteinase (MMP). First of all, MTT assay was performed to evaluate the effect of α-asarone on cell viability using MTT assay, and then tube formation assay with human umbilical vein endothelial cells (HUVEC) in vitro and rat aorta ring assay ex vivo were carried out to elucidate its effect on angiogenesis. Treatment with α-asarone below 6μM showed no cytotoxicity in human fibrosarcoma cells (HT1080) and HUVEC. It was observed that α-asarone not only promotes tube formation of HUVEC but also induces angiogenesis of rat aorta. In addition, the effects of α-asarone on the expressions of protein and gene were evaluated using western blot analysis and RT-PCR assay. α-Asarone increased the expression levels of MMP-2 and MMP-9 stimulated by phenazine methosulfate (PMS) and phorbol 12-myristate 13-acetate (PMA) in HT1080. Especially, the expression level of antioxidant enzyme such as glutathione reductase was increased in the presence of α-asarone. Therefore, above findings suggest that α-asarone may play an important role in pathological diseases related to MMP and angiogenesis. PMID:25912851

  2. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates.

    PubMed

    Stawikowski, Maciej J; Stawikowska, Roma; Fields, Gregg B

    2015-05-19

    Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.

  3. Periodontal Treatment Reduces Matrix Metalloproteinase Levels in Localized Aggressive Periodontitis

    PubMed Central

    Gonçalves, Patricia Furtado; Huang, Hong; McAninley, Suzanna; Alfant, Barnett; Harrison, Peter; Aukhil, Ikramuddin; Walker, Clay; Shaddox, Luciana Macchion

    2015-01-01

    Background Matrix metalloproteinases (MMPs) are a family of host-derived proteinases reported to mediate multiple functions associated with periodontal destruction and inflammation. We have previously reported high MMP levels in African-American children with localized aggressive periodontitis (LAP). However, little is known about MMP reductions in gingival crevicular fluid (GCF) after therapy. This study aimed to evaluate MMP levels in the GCF following treatment of LAP and to correlate these levels with clinical response. Methods GCF samples were collected from 29 African-American individuals diagnosed with LAP. GCF was collected from one diseased site (pocket depth [PD]>4mm, bleeding on probing [BoP] and clinical attachment level [CAL] ≥2mm) and one healthy site (PD≤3mm, no BoP) from each individual at baseline, 3 and 6 months after periodontal treatment, which consisted of full-mouth SRP and systemic antibiotics. The volume of GCF was controlled using a calibrated gingival fluid meter and levels of MMP-1, 2, 3, 8, 9, 12 and 13 were assessed using fluorometric kits. Results MMP-1, 8, 9 12, and 13 levels were reduced significantly up to 6 months, at which point were comparable with healthy sites. Significant correlations were noted between MMP-2, 3, 8, 9, 12 and 13 levels and % of sites with PD>4mm. MMP-3, 12 and 13 levels also correlated with mean pocket depth of affected sites. Conclusion Treatment of LAP with SRP and systemic antibiotics was effective in reducing the local levels specific MMPs in African-American individuals, which correlated positively with some clinical parameters. PMID:23537121

  4. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    PubMed Central

    Cui, Yun-Liang; Zhang, Sheng; Tian, Zhao-Tao; Lin, Zhao-Fen; Chen, De-Chang

    2016-01-01

    Background: Intact endothelial structure and function are critical for maintaining microcirculatory homeostasis. Dysfunction of the latter is an underlying cause of various organ pathologies. In a previous study, we showed that rhubarb, a traditional Chinese medicine, protected intestinal mucosal microvascular endothelial cells in rats with metastasizing septicemia. In this study, we investigated the effects and mechanisms of rhubarb on matrix metalloproteinase-9 (MMP9)-induced vascular endothelial (VE) permeability. Methods: Rhubarb monomers were extracted and purified by a series of chromatography approaches. The identity of these monomers was analyzed by hydrogen-1 nuclear magnetic resonance (NMR), carbon-13 NMR, and distortionless enhancement by polarization transfer magnetic resonance spectroscopy. We established a human umbilical vein endothelial cell (HUVEC) monolayer on a Transwell insert. We measured the HUVEC permeability, proliferation, and the secretion of VE-cadherin into culture medium using fluorescein isothiocyanate-dextran assay, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, and enzyme-linked immunosorbent assay, respectively, in response to treatment with MMP9 and/or rhubarb monomers. Results: A total of 21 rhubarb monomers were extracted and identified. MMP9 significantly increased the permeability of the HUVEC monolayer, which was significantly reduced by five individual rhubarb monomer (emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein) or a combination of all five monomers (1 μmol/L for each monomer). Mechanistically, the five-monomer mixture at 1 μmol/L promoted HUVEC proliferation. In addition, MMP9 stimulated the secretion of VE-cadherin into the culture medium, which was significantly inhibited by the five-monomer mixture. Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2

  5. Maternal hypoxia alters matrix metalloproteinase expression patterns and causes cardiac remodeling in fetal and neonatal rats.

    PubMed

    Tong, Wenni; Xue, Qin; Li, Yong; Zhang, Lubo

    2011-11-01

    Fetal hypoxia leads to progressive cardiac remodeling in rat offspring. The present study tested the hypothesis that maternal hypoxia results in reprogramming of matrix metalloproteinase (MMP) expression patterns and fibrillar collagen matrix in the developing heart. Pregnant rats were treated with normoxia or hypoxia (10.5% O(2)) from day 15 to 21 of gestation. Hearts were isolated from 21-day fetuses (E21) and postnatal day 7 pups (PD7). Maternal hypoxia caused a decrease in the body weight of both E21 and PD7. The heart-to-body weight ratio was increased in E21 but not in PD7. Left ventricular myocardium wall thickness and cardiomyocyte proliferation were significantly decreased in both fetal and neonatal hearts. Hypoxia had no effect on fibrillar collagen content in the fetal heart, but significantly increased the collagen content in the neonatal heart. Western blotting revealed that maternal hypoxia significantly increased collagen I, but not collagen III, levels in the neonatal heart. Maternal hypoxia decreased MMP-1 but increased MMP-13 and membrane type (MT)1-MMP in the fetal heart. In the neonatal heart, MMP-1 and MMP-13 were significantly increased. Active MMP-2 and MMP-9 levels and activities were not altered in either fetal or neonatal hearts. Hypoxia significantly increased tissue inhibitors of metalloproteinase (TIMP)-3 and TIMP-4 in both fetal and neonatal hearts. In contrast, TIMP-1 and TIMP-2 were not affected. The results demonstrate that in utero hypoxia reprograms the expression patterns of MMPs and TIMPs and causes cardiac tissue remodeling with the increased collagen deposition in the developing heart.

  6. Proanthocyanidins from the American Cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways.

    PubMed

    Déziel, Bob A; Patel, Kunal; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert A R

    2010-10-15

    Prostate cancer is one of the most common cancers in the Western world, and it is believed that an individual's diet affects his risk of developing cancer. There has been an interest in examining phytochemicals, the secondary metabolites of plants, in order to determine their potential anti-cancer activities in vitro and in vivo. In this study we document the effects of proanthocyanidins (PACs) from the American Cranberry (Vaccinium macrocarpon) on matrix metalloproteinase (MMP) activity in DU145 human prostate cancer cells. Cranberry PACs decreased cellular viability of DU145 cells at a concentration of 25 µg/ml by 30% after 6 h of treatment. Treatment of DU145 cells with PACs resulted in an inhibition of both MMPs 2 and 9 activity. PACs increased the expression of TIMP-2, a known inhibitor of MMP activity, and decreased the expression of EMMPRIN, an inducer of MMP expression. PACs decreased the expression of PI-3 kinase and AKT proteins, and increased the phosphorylation of both p38 and ERK1/2. Cranberry PACs also decreased the translocation of the NF-κB p65 protein to the nucleus. Cranberry PACs increased c-jun and decreased c-fos protein levels. These results suggest that cranberry PACs decreases MMP activity through the induction and/or inhibition of specific temporal MMP regulators, and by affecting either the phosphorylation status and/or expression of MAP kinase, PI-3 kinase, NF-κB and AP-1 pathway proteins. This study further demonstrates that cranberry PACs are a strong candidate for further research as novel anti-cancer agents.

  7. Diet-Induced Obesity and Reduced Skin Cancer Susceptibility in Matrix Metalloproteinase 19-Deficient Mice

    PubMed Central

    Pendás, Alberto M.; Folgueras, Alicia R.; Llano, Elena; Caterina, John; Frerard, Françoise; Rodríguez, Francisco; Astudillo, Aurora; Noël, Agnès; Birkedal-Hansen, Henning; López-Otín, Carlos

    2004-01-01

    Matrix metalloproteinase 19 (MMP-19) is a member of the MMP family of endopeptidases that, in contrast to most MMPs, is widely expressed in human tissues under normal quiescent conditions. MMP-19 has been found to be associated with ovulation and angiogenic processes and is deregulated in diverse pathological conditions such as rheumatoid arthritis and cancer. To gain further insights into the in vivo functions of this protease, we have generated mutant mice deficient in Mmp19. These mice are viable and fertile and do not display any obvious abnormalities. However, Mmp19-null mice develop a diet-induced obesity due to adipocyte hypertrophy and exhibit decreased susceptibility to skin tumors induced by chemical carcinogens. Based on these results, we suggest that this enzyme plays an in vivo role in some of the tissue remodeling events associated with adipogenesis, as well as in pathological processes such as tumor progression. PMID:15169894

  8. Regulation of matrix metalloproteinase-9 expression between gingival fibroblast cells from old and young rats

    SciTech Connect

    Kim, Su-Jung; Chung, Yong-Koo; Chung, Tae-Wook; Kim, Jeong-Ran; Moon, Sung-Kwon; Kim, Cheorl-Ho Park, Young-Guk

    2009-01-09

    Gingival fibroblast cells (rGF) from aged rats have an age-related decline in proliferative capacity compared with young rats. We investigated G1 phase cell cycle regulation and MMP-9 expression in both young and aged rGF. G1 cell cycle protein levels and activity were significantly reduced in response to interleukin-1{beta} (IL-1{beta}) stimulation with increasing in vitro age. Tumor necrosis factor-{alpha} (TNF-{alpha})-induced matrix metalloproteinase-9 (MMP-9) expression was also decreased in aged rGF in comparison with young rGF. Mutational analysis and gel shift assays demonstrated that the lower MMP-9 expression in aged rGF is associated with lower activities of transcription factors NF-{kappa}B and AP-1. These results suggest that cell cycle dysregulation and down-regulation of MMP-9 expression in rGF may play a role in gingival remodeling during in vitro aging.

  9. The cloning and expression of matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase 2 in normal canine lymph nodes and in canine lymphoma.

    PubMed

    Newman, R G; Kitchell, B E; Wallig, M A; Paria, B

    2008-04-01

    Matrix metalloproteinase-2 (MMP-2) and its inhibitor, tissue inhibitor of matrix metalloproteinase 2 (TIMP2), are known to be important in cancer. The purposes of this study were to determine the cDNA sequence of canine MMP-2 and to investigate the expression patterns of MMP-2 and TIMP2 in normal canine lymph nodes and spontaneously arising canine lymphomas. We cloned and sequenced a PCR product containing most (1901 base pairs) of the coding sequence of canine MMP-2 that translates into a 623 amino acid protein. The cDNA and deduced amino acid sequences are highly homologous to those of other mammalian species. Canine MMP-2 and TIMP2 mRNAs were detectable in the majority of normal lymph node and lymphomatous samples evaluated. No statistical difference was identified when comparing the expression of either gene with regard to normal versus neoplastic nodes, nodal versus extranodal lymphoma, lymphoma grade, or B versus T cell immunophenotype. PMID:17604063

  10. Matrix Metalloproteinases Contribute to Neuronal Dysfunction in Animal Models of Drug Dependence, Alzheimer's Disease, and Epilepsy

    PubMed Central

    Mizoguchi, Hiroyuki; Yamada, Kiyofumi; Nabeshima, Toshitaka

    2011-01-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) remodel the pericellular environment by regulating the cleavage of extracellular matrix proteins, cell surface components, neurotransmitter receptors, and growth factors that mediate cell adhesion, synaptogenesis, synaptic plasticity, and long-term potentiation. Interestingly, increased MMP activity and dysregulation of the balance between MMPs and TIMPs have also been implicated in various pathologic conditions. In this paper, we discuss various animal models that suggest that the activation of the gelatinases MMP-2 and MMP-9 is involved in pathogenesis of drug dependence, Alzheimer's disease, and epilepsy. PMID:22235372

  11. Collagen and matrix metalloproteinase-2 and -9 in the ewe cervix during the estrous cycle.

    PubMed

    Rodríguez-Piñón, M; Tasende, C; Casuriaga, D; Bielli, A; Genovese, P; Garófalo, E G

    2015-09-15

    The cervical collagen remodeling during the estrous cycle of the ewe was examined. The collagen concentration determined by a hydroxyproline assay and the area occupied by collagen fibers (%C), determined by van Gieson staining, were assessed in the cranial and caudal cervix of Corriedale ewes on Days 1 (n = 6), 6 (n = 5), or 13 (n = 6) after estrous detection (defined as Day 0). In addition, the gelatinase activity by in situ and SDS-PAGE gelatin zymographies and matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9, respectively) expression by immunohistochemistry were determined. The collagen concentration and %C were lowest on Day 1 of the estrous cycle (P < 0.04), when MMP-2 activity was highest (P < 0.006) and the ratio of activated to latent MMP-2 trend to be highest (P = 0.0819). The MMP-2 activity was detected in 73% of the homogenized cervical samples, and its expression was mainly detected in active fibroblasts. By contrast, the MMP-9 activity was detected in 9% of the samples, and its scarce expression was associated with plasmocytes, macrophages, and lymphocytes. Matrix metalloproteinase-2 expression was maximal on Day 1 in the cranial cervix and on Day 13 in the caudal cervix and was lower in the cranial than in the caudal cervix (P < 0.0001). This time-dependent increase in MMP-2 expression that differed between the cranial and caudal cervix may reflect their different physiological roles. The decrease in the collagen content and increase in fibroblast MMP-2 activity in sheep cervix on Day 1 of the estrous cycle suggests that cervical dilation at estrus is due to the occurrence of collagen fiber degradation modulated by changes in periovulatory hormone levels.

  12. Extracellular matrix metalloproteinase inducer expression in the baboon endometrium: menstrual cycle and endometriosis

    PubMed Central

    Braundmeier, A G; Fazleabas, A T; Nowak, R A

    2016-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN; BSG) regulates tissue remodeling through matrix metalloproteinases (MMPs). In human and non-human primates, endometrial remodeling is important for menstruation and the pathogenesis of endometriosis. We hypothesized that as in humans, BSG and MMPs are expressed in the endometrium of cycling baboons, and their expression is hormonally regulated by ovarian hormones, but endometriosis disrupts this regulation. BSG expression was evaluated in the baboon endometrium by q-PCR and immunohistochemistry. In the endometrium of control cycling animals, BSG mRNA levels were highest in late secretory stage tissue. BSG protein localized to glandular epithelial cells during the proliferative phase; whereas, secretory stage tissues expressed BSG in glandular and luminal epithelia with weak stromal staining. Several MMPs were differentially expressed throughout the menstrual cycle with the highest levels found during menstruation. In ovariectomized animals, BSG endometrial mRNA levels were highest with treatment of both estrogen and progesterone than that with only estrogen. Estrogen alone resulted in BSG protein localization primarily in the endometrial glandular epithelia, while estrogen and progesterone treatment displayed BSG protein localization in both the glandular and stromal cells. Exogenous hormone treatment resulted in differential expression patterns of all MMPs compared with the control cycling animals. In the eutopic endometrium of endometriotic animals, BSG mRNA levels and protein were elevated early but decreased later in disease progression. Endometriosis elevated the expression of all MMPs except MMP7 compared with the control animals. In baboons, BSG and MMP endometrial expression is regulated by both ovarian hormones, and their expression patterns are dysregulated in endometriotic animals. PMID:20841363

  13. Matrix metalloproteinase expression and activity following prostaglandin F(2 alpha)-induced luteolysis.

    PubMed

    Ricke, William A; Smith, George W; Smith, Michael F

    2002-03-01

    Luteal tissue contains matrix metalloproteinases (MMPs) that cleave specific components of the extracellular matrix (ECM) and are inhibited by tissue inhibitors of metalloproteinases (TIMPs). We previously reported a decrease in luteal TIMP-1 within 15 min of prostaglandin F(2 alpha) (PGF(2 alpha))-induced luteolysis. An increase in the MMP:TIMP ratio may promote ECM degradation and apoptosis, as observed in other tissues that undergo involution. The objectives of these experiments were to determine whether 1) PGF(2 alpha) affects expression of mRNA encoding fibrillar collagenases (MMP-1 and -13), gelatinases A and B (MMP-2 and -9), membrane type (mt)-1 MMP (MMP-14), stromelysin (MMP-3), and matrilysin (MMP-7), and 2) PGF(2 alpha) increases MMP activity during PGF(2 alpha)-induced luteolysis in sheep. Corpora lutea (n = 3-10/time point) were collected at 0, 15, and 30 min and 1, 2, 4, 6, 12, 24, and 48 h after PGF(2 alpha) administration. Northern blot analysis confirmed the presence of all MMPs except MMP-9. Expression of mRNA for the above MMPs (except MMP-2) increased significantly (P < 0.05) by 30 min, and all MMPs increased significantly (P < 0.05) by 6 h after PGF(2 alpha) administration. Expression of MMP-14 mRNA increased significantly (P < 0.05) by 15 min post-PGF(2 alpha) and remained elevated through 48 h. MMP activity in luteal homogenates (following proenzyme activation and inactivation of inhibitors) was increased significantly (P < 0.05) by 15 min and remained elevated through 48 h post-PGF(2 alpha). MMP activity was localized (in situ zymography) to the pericellular area of various cell types in the 0-h group and was markedly increased by 30 min post-PGF(2 alpha). MMP mRNA expression and activity were significantly increased following PGF(2 alpha) treatment. Increased MMP activity may promote ECM degradation during luteolysis.

  14. Characterization of Xenopus Tissue Inhibitor of Metalloproteinases-2: A Role in Regulating Matrix Metalloproteinase Activity during Development

    PubMed Central

    Fiorentino, Maria; Shi, Yun-Bo

    2012-01-01

    Background Frog metamorphosis is totally dependent on thyroid hormone (T3) and mimics the postembryonic period around birth in mammals. It is an excellent model to study the molecular basis of postembryonic development in vertebrate. We and others have shown that many, if not all, matrix metalloproteinases (MMPs), which cleave proteins of the extracellular matrix as well as other substrates, are induced by T3 and important for metamorphosis. MMP activity can be inhibited by tissue inhibitors of metalloproteinase (TIMPs). There are 4 TIMPs in vertebrates and their roles in postembryonic development are poorly studied. Methodology/Principal Findings We analyzed the TIMP2 genes in Xenopus laevis and the highly related species Xenopus tropicalis and discovered that TIMP2 is a single copy gene in Xenopus tropicalis as in mammals but is duplicated in Xenopus laevis. Furthermore, the TIMP2 locus in Xenopus tropicalis genome is different from that in human, suggesting an evolutionary reorganization of the locus. More importantly, we found that the duplicated TIMP2 genes were similarly regulated in the developing limb, remodeling intestine, resorbing tail during metamorphosis. Unexpectedly, like its MMP target genes, the TIMP2 genes were upregulated by T3 during both natural and T3-induced metamorphosis. Conclusions/Significance Our results indicate that TIMP2 is highly conserved among vertebrates and that the TIMP2 locus underwent a chromosomal reorganization during evolution. Furthermore, the unexpected upregulation of TIMP2 genes during metamorphosis suggests that proper balance of MMP activity is important for metamorphosis. PMID:22693555

  15. Lumican: a new inhibitor of matrix metalloproteinase-14 activity.

    PubMed

    Pietraszek, Katarzyna; Chatron-Colliet, Aurore; Brézillon, Stéphane; Perreau, Corinne; Jakubiak-Augustyn, Anna; Krotkiewski, Hubert; Maquart, François-Xavier; Wegrowski, Yanusz

    2014-11-28

    We previously showed that lumican regulates MMP-14 expression. The aim of this study was to compare the effect of lumican and decorin on MMP-14 activity. In contrast to decorin, the glycosylated form of lumican was able to significantly decrease MMP-14 activity in B16F1 melanoma cells. Our results suggest that a direct interaction occurs between lumican and MMP-14. Lumican behaves as a competitive inhibitor which leads to a complete blocking of the activity of MMP-14. It binds to the catalytic domain of MMP-14 with moderate affinity (KD∼275 nM). Lumican may protect collagen against MMP-14 proteolysis, thus influencing cell-matrix interaction in tumor progression. PMID:25304424

  16. [Role of matrix metalloproteinases and tissue inhibitors of metalloproteinases in hypertension. Pathogenesis of hypertension and obesity].

    PubMed

    Trojanek, Joanna B

    2015-01-01

    Hypertension (HT), obesity and related metabolic disorders are increasing cause diseases with risk of premature death in western societies. Both hypertension and obesity are characterized by similar disorders such as chronic low systemic inflammation, changes in the vessel wall, abdominal obesity, insulin-resistance or dyslipidemia. Chronic, untreated HT leads to adverse changes in internal organs like kidney damage, arterial remodeling and hypertrophy of the left ventricle. The important role metalloproteinases and their inhibitors (TIMPs) in the pathophysiology of hypertension is associated with the degradation of vascular wall components, especially collagen and elastin. The activated RAAS system (renin-angiotensin-aldosterone) is displaying direct impact in the pathogenesis and progress of hypertension. Angiotensin II affects the expression and activation of many growth factors, cytokines and MMPs. The fat tissue of obese people is in the state of low intensity chronic inflammation and undergoes continual process of remodeling. Obesity is one of the direct cause of hypertension.

  17. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells.

    PubMed

    Haage, Amanda; Schneider, Ian C

    2014-08-01

    The pathogenesis of cancer is often driven by local invasion and metastasis. Recently, mechanical properties of the tumor microenvironment have been identified as potent regulators of invasion and metastasis, while matrix metalloproteinases (MMPs) are classically known as significant enhancers of cancer cell migration and invasion. Here we have been able to sensitively measure MMP activity changes in response to specific extracellular matrix (ECM) environments and cell contractility states. Cells of a pancreatic cancer cell line, Panc-1, up-regulate MMP activities between 3- and 10-fold with increased cell contractility. Conversely, they down-regulate MMP activities when contractility is blocked to levels seen with pan-MMP activity inhibitors. Similar, albeit attenuated, responses are seen in other pancreatic cancer cell lines, BxPC-3 and AsPC-1. In addition, MMP activity was modulated by substrate stiffness, collagen gel concentration, and the degree of collagen cross-linking, when cells were plated on collagen gels ranging from 0.5 to 5 mg/ml that span the physiological range of substrate stiffness (50-2000 Pa). Panc-1 cells showed enhanced MMP activity on stiffer substrates, whereas BxPC-3 and AsPC-1 cells showed diminished MMP activity. In addition, eliminating heparan sulfate proteoglycans using heparinase completely abrogated the mechanical induction of MMP activity. These results demonstrate the first functional link between MMP activity, contractility, and ECM stiffness and provide an explanation as to why stiffer environments result in enhanced cell migration and invasion.

  18. Molecular Cloning, Expression and Genome Organization of Channel Catfish (Ictalurus punctatus) Matrix Metalloproteinase-9

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned, sequenced using the RACE (rapid amplification of cDNA ends) method and cha...

  19. Genomic Organization of channel catfish, Ictalurus punctatus, matrix metalloproteinase-9-gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned and sequenced MMP-9 genomic DNA by using a Unversal GenomeWalker kit. The co...

  20. Regulation of Matrix Metalloproteinase Expression in Endothelial Cells by Heat-Inactivated Streptococcus pneumoniae

    PubMed Central

    Michel, Uwe; Zobotke, Rita; Mäder, Michael; Nau, Roland

    2001-01-01

    Matrix metalloproteinases (MMPs) may contribute to an impaired endothelial layer in several diseases. We examined the effect of heat-inactivated Streptococcus pneumoniae R6 on MMP-2 and MMP-9 release by cultured aortic and brain capillary endothelial cells. Treatment with heat-inactivated S. pneumoniae caused an increased release of MMP-2 by both cell types. PMID:11179373

  1. Nobiletin metabolites: synthesis and inhibitory activity against matrix metalloproteinase-9 production.

    PubMed

    Oshitari, Tetsuta; Okuyama, Yuji; Miyata, Yoshiki; Kosano, Hiroshi; Takahashi, Hideyo; Natsugari, Hideaki

    2011-08-01

    A divergent synthesis of nobiletin metabolites was developed through highly oxygenated acetophenone derivative. We used commercially available methyl 3,4,5-trimethoxybenzoate as a starting material for concise preparation of the key intermediate, 2'-hydroxy-3',4',5',6'-tetramethoxyacetophenone (I). These metabolites showed strong inhibitory activity against matrix metalloproteinase-9 production in human lens epithelial cells.

  2. Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction.

    PubMed

    Mias, Céline; Lairez, Olivier; Trouche, Elodie; Roncalli, Jérome; Calise, Denis; Seguelas, Marie-Hélène; Ordener, Catherine; Piercecchi-Marti, Marie-Dominique; Auge, Nathalie; Salvayre, Anne Negre; Bourin, Philippe; Parini, Angelo; Cussac, Daniel

    2009-11-01

    Recent studies showed that mesenchymal stem cells (MSCs) transplantation significantly decreased cardiac fibrosis; however, the mechanisms involved in these effects are still poorly understood. In this work, we investigated whether the antifibrotic properties of MSCs involve the regulation of matrix metalloproteinases (MMPs) and matrix metalloproteinase endogenous inhibitor (TIMP) production by cardiac fibroblasts. In vitro experiments showed that conditioned medium from MSCs decreased viability, alpha-smooth muscle actin expression, and collagen secretion of cardiac fibroblasts. These effects were concomitant with the stimulation of MMP-2/MMP-9 activities and membrane type 1 MMP expression. Experiments performed with fibroblasts from MMP2-knockout mice demonstrated that MMP-2 plays a preponderant role in preventing collagen accumulation upon incubation with conditioned medium from MSCs. We found that MSC-conditioned medium also decreased the expression of TIMP2 in cardiac fibroblasts. In vivo studies showed that intracardiac injection of MSCs in a rat model of postischemic heart failure induced a significant decrease in ventricular fibrosis. This effect was associated with the improvement of morphological and functional cardiac parameters. In conclusion, we showed that MSCs modulate the phenotype of cardiac fibroblasts and their ability to degrade extracellular matrix. These properties of MSCs open new perspectives for understanding the mechanisms of action of MSCs and anticipate their potential therapeutic or side effects.

  3. Activities of matrix metalloproteinases and tissue inhibitor of metalloproteinase-2 in idiopathic hemotympanum and otitis media with effusion

    PubMed Central

    Moon, Sung K.; Linthicum, Fred H.; Yang, Hae Dong; Lee, Seung Joo; Park, Keehyun

    2008-01-01

    Conclusion The expression profile of matrix metalloproteinases (MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) was specific to the type of middle ear effusion. Further studies are necessary for elucidating its correlation with the sequelae of otitis media with effusion (OME) and idiopathic hemotympanum. Objectives We aimed to investigate the relative activities of gelatinases (MMP-2 and 9), stromelysin-1 (MMP-3), matrilysin-1 (MMP-7) as well as measuring TIMP-2 levels in the serous and mucous effusions of OME and hemorrhagic effusion of the idiopathic hemotympanum. Method Middle ear effusions were collected from patients with OME and idiopathic hemotympanum, and were classified as mucoid, serous or hemorrhagic. MMP activity in the effusion samples was examined by gelatin and casein zymography. Levels of TIMP-2 were measured by ELISA. Human temporal bones sections, with and without otitis media (OM), were examined histologically. Results One case showed tympanic membrane thinning in the OM group, but none in the control group. While MMP-2 was present in all effusions, the active form of MMP-2 was found only in mucous effusions. MMP-3 and MMP-7 activity was detected only in the mucous effusions. MMP-9 exhibited activity in all effusions, with the highest levels in mucous effusions. TIMP-2 levels were markedly elevated in serous effusions. PMID:17851959

  4. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in cerebrospinal fluid differ in multiple sclerosis and Devic's neuromyelitis optica.

    PubMed

    Mandler, R N; Dencoff, J D; Midani, F; Ford, C C; Ahmed, W; Rosenberg, G A

    2001-03-01

    Matrix metalloproteinases (MMPs) are increased in the CSF of patients with multiple sclerosis. Devic's neuromyelitis optica (DNO) is a demyelinating syndrome that involves the optic nerve and cervical cord but differs pathologically from multiple sclerosis. Therefore, we hypothesized that the type of inflammatory reaction that causes MMPs to be elevated in multiple sclerosis would be absent in patients with DNO. CSF was collected from 23 patients with relapsing-remitting or secondary progressive multiple sclerosis, all of whom were experiencing acute symptoms, from seven patients with DNO, and from seven normal volunteers. Diagnoses were made according to current criteria on the basis of clinical manifestations, imaging results and CSF studies. IgG synthesis was increased in the CSF of multiple sclerosis patients but not in that of DNO patients. Zymography, reverse zymography and ELISA (enzyme-linked immunosorbent assay) were used to measure gelatinase A (MMP-2), gelatinase B (MMP-9) and tissue inhibitors of metalloproteinases (TIMPs). Zymograms showed that multiple sclerosis patients had elevated MMP-9 compared with DNO patients and controls (P: < 0.05). TIMP-1 and TIMP-2 levels were similar in all three groups. We conclude that multiple sclerosis patients have higher MMP-9 levels in the CSF than patients with DNO, which supports the different pathological mechanisms of these diseases.

  5. Antimycobacterial drugs modulate immunopathogenic matrix metalloproteinases in a cellular model of pulmonary tuberculosis.

    PubMed

    Singh, Shivani; Kubler, Andre; Singh, Utpal K; Singh, Ajay; Gardiner, Harriet; Prasad, Rajniti; Elkington, Paul T; Friedland, Jon S

    2014-08-01

    Tuberculosis is characterized by extensive destruction and remodelling of the pulmonary extracellular matrix. Stromal cell-derived matrix metalloproteinases (MMPs) are implicated in this process and may be a target for adjunctive immunotherapy. We hypothesized that MMPs are elevated in bronchoalveolar lavage fluid of tuberculosis patients and that antimycobacterial agents may have a modulatory effect on MMP secretion. Concentrations of MMP-1, -2, -3, -7, -8, and -9 were elevated in the bronchoalveolar lavage fluid from tuberculosis patients compared to those in bronchoalveolar lavage fluid from patients with other pulmonary conditions. There was a positive correlation between MMP-3, MMP-7, and MMP-8 and a chest radiological score of cavitation and parenchymal damage. Respiratory epithelial cell-derived MMP-3 was suppressed by moxifloxacin, rifampicin, and azithromycin in a dose-dependent manner. Respiratory epithelial cell-derived MMP-1 was suppressed by moxifloxacin and azithromycin, whereas MMP-9 secretion was only decreased by moxifloxacin. In contrast, moxifloxacin and azithromycin both increased MMP-1 and -3 secretion from MRC-5 fibroblasts, demonstrating that the effects of these drugs are cell specific. Isoniazid did not affect MMP secretion. In conclusion, MMPs are elevated in bronchoalveolar lavage fluid from tuberculosis patients and correlate with parameters of tissue destruction. Antimycobacterial agents have a hitherto-undescribed immunomodulatory effect on MMP release by stromal cells.

  6. Serum matrix metalloproteinase 9 (MMP9) as a biochemical marker for wasting marmoset syndrome.

    PubMed

    Yoshimoto, Takuro; Niimi, Kimie; Takahashi, Eiki

    2016-06-01

    Use of the common marmoset (Callithrix jacchus) as a non-human primate experimental animal has increased in recent years. Although wasting marmoset syndrome (WMS) is one of the biggest problems in captive marmoset colonies, the molecular mechanisms, biochemical markers for accurate diagnosis and a reliable treatment remain unknown. In this study, as a first step to finding biochemical marker(s) for the accurate diagnosis of WMS, we conducted blood cell counts, including hematocrit, hemoglobin and platelets, and examined serum chemistry values, including albumin, calcium and levels of serum matrix metalloproteinase 9 (MMP9), using a colony of marmosets with and without weight loss. MMP9 is thought to be an enzyme responsible for the degradation of extracellular matrix components and participates in the pathogenesis of inflammatory conditions, such as human and murine inflammatory bowel disease, which, like WMS, are characterized histologically by inflammatory cell infiltrations in the intestines. The values of hematocrit and hemoglobin and levels of serum albumin and calcium in the WMS group were significantly decreased versus the control group. The platelet values and serum MMP9 concentrations were increased significantly in the WMS group compared with the control group. MMP9 could be a new and useful marker for the diagnosis of WMS in addition to hematocrit, hemoglobin, serum albumin and calcium. Our results also indicate that MMP9 could be a useful molecular candidate for treatment.

  7. Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1.

    PubMed

    Ramer, Robert; Merkord, Jutta; Rohde, Helga; Hinz, Burkhard

    2010-04-01

    Although cannabinoids exhibit a broad variety of anticarcinogenic effects, their potential use in cancer therapy is limited by their psychoactive effects. Here we evaluated the impact of cannabidiol, a plant-derived non-psychoactive cannabinoid, on cancer cell invasion. Using Matrigel invasion assays we found a cannabidiol-driven impaired invasion of human cervical cancer (HeLa, C33A) and human lung cancer cells (A549) that was reversed by antagonists to both CB(1) and CB(2) receptors as well as to transient receptor potential vanilloid 1 (TRPV1). The decrease of invasion by cannabidiol appeared concomitantly with upregulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). Knockdown of cannabidiol-induced TIMP-1 expression by siRNA led to a reversal of the cannabidiol-elicited decrease in tumor cell invasiveness, implying a causal link between the TIMP-1-upregulating and anti-invasive action of cannabidiol. P38 and p42/44 mitogen-activated protein kinases were identified as upstream targets conferring TIMP-1 induction and subsequent decreased invasiveness. Additionally, in vivo studies in thymic-aplastic nude mice revealed a significant inhibition of A549 lung metastasis in cannabidiol-treated animals as compared to vehicle-treated controls. Altogether, these findings provide a novel mechanism underlying the anti-invasive action of cannabidiol and imply its use as a therapeutic option for the treatment of highly invasive cancers.

  8. Effects of Mutations on Structure–Function Relationships of Matrix Metalloproteinase-1

    PubMed Central

    Singh, Warispreet; Fields, Gregg B.; Christov, Christo Z.; Karabencheva-Christova, Tatyana G.

    2016-01-01

    Matrix metalloproteinase-1 (MMP-1) is one of the most widely studied enzymes involved in collagen degradation. Mutations of specific residues in the MMP-1 hemopexin-like (HPX) domain have been shown to modulate activity of the MMP-1 catalytic (CAT) domain. In order to reveal the structural and conformational effects of such mutations, a molecular dynamics (MD) study was performed of in silico mutated residues in the X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP). The results indicate an important role of the mutated residues in MMP-1 interactions with the THP and communication between the CAT and the HPX domains. Each mutation has a distinct impact on the correlated motions in the MMP-1•THP. An increased collagenase activity corresponded to the appearance of a unique anti-correlated motion and decreased correlated motions, while decreased collagenase activity corresponded both to increased and decreased anti-correlated motions. PMID:27754420

  9. Decreased snake venom metalloproteinase effects via inhibition of enzyme and modification of fibrinogen.

    PubMed

    Nielsen, Vance G; Cerruti, Marc A; Valencia, Olivia M; Amos, Quinlan

    2016-10-01

    Since the introduction of antivenom administration 120 years ago to treat venomous snake bit, it has been the gold standard for saving life and limb. However, this therapeutic approach is not always effective and not without potential life-threatening side effects. We tested a new paradigm to abrogate the plasmatic anticoagulant effects of fibrinogenolytic snake venom metalloproteinases by modification of fibrinogen with iron and carbon monoxide and by inhibiting these Zn(2+) dependent metalloproteinases directly with carbon monoxide exposure. Assessment of the fibrinogenolytic effects of venoms collected from Puff adder, Gaboon viper and Indian cobra snakes on plasmatic coagulation kinetics was performed with thrombelastography. Pretreatment of plasma with iron and carbon monoxide exposure markedly attenuated the effects of all three venoms, and direct pretreatment of each venom with carbon monoxide also significantly decreased the ability to compromise coagulation. These results demonstrated that the introduction of a transition metal (e.g., modulation of the α-chain of fibrinogen with iron), modulation of transition metal in heme (e.g., carbon monoxide modulation of fibrinogen-bound heme iron), and direct inhibition of transition metal containing venom enzymes (e.g., CO binding to Zn(2+) or displacing Zn(2+) from the catalytic site) significantly decreased fibrinogenolytic activity. This biometal modulation strategy to attenuate the anticoagulant effects of snake venom metalloproteinases could potentially diminish hemostatic injury in envenomed patients until antivenom can be administered. PMID:27492573

  10. Matrix metalloproteinases: new directions toward inhibition in the fight against cancers.

    PubMed

    King, Susan E

    2016-01-01

    Matrix metalloproteinases are zinc-dependent enzymes whose main function is to cleave the components of the extracellular matrix. Their overexpression is evident in all cancers but to date there is no satisfactory way to inhibit their actions. Here, we look at their types, their structures, their functions and the developing understanding we have of them in the search for ways to drug them and inhibit their actions selectively. We investigate their subtle but exploitable differences in order that we can develop drugs to target them and even to target specific substrates and functions that they carry out. To date there are no new matrix metalloproteinase inhibitors developed to treat cancer, but we are progressing in our understanding of them, which is leading us ever closer to our goal.

  11. Time dependent alterations of serum matrix metalloproteinase-1 and metalloproteinase-1 tissue inhibitor after successful reperfusion of acute myocardial infarction.

    PubMed Central

    Hirohata, S.; Kusachi, S.; Murakami, M.; Murakami, T.; Sano, I.; Watanabe, T.; Komatsubara, I.; Kondo, J.; Tsuji, T.

    1997-01-01

    OBJECTIVE: To test the hypothesis that changes in serum matrix metalloproteinase-1 (MMP-1) and tissue inhibitors of metalloproteinase-1 (TIMP-1) after acute myocardial infarction reflect extracellular matrix remodelling and the infarct healing process. PATIENTS: 13 consecutive patients with their first acute myocardial infarction who underwent successful reperfusion. METHODS: Blood was sampled on the day of admission, and on days 2, 3, 4, 5, 7, 14, and 28. Serum MMP-1 and TIMP-1 were measured by one step sandwich enzyme immunoassay. Left ventricular volume indices were determined by left ventriculography performed four weeks after the infarct. RESULTS: Serum concentrations of both MMP-1 and TIMP-1 changed over time. The average serum MMP-1 was more than 1 SD below the mean control values during the initial four days, increased thereafter, reaching a peak concentration around day 14, and then returned to the middle control range. Negative correlations with left ventricular end systolic volume index and positive correlations with left ventricular ejection fraction were obtained for serum MMP-1 on day 5, when it began to rise, and for the magnitude of rise in MMP-1 on day 5 compared to admission. Serum TIMP-1 at admission was more than 1 SD below the mean control value, and increased gradually thereafter, reaching a peak on around day 14. Negative correlations with left ventricular end systolic volume index and positive correlations with left ventricular ejection fraction were obtained for serum TIMP-1 on days 5 and 7, and for the magnitude of rise in TIMP-1 on days 5 and 7 compared to admission. CONCLUSIONS: Both MMP-1 and TIMP-1 showed significant time dependent alteration after acute myocardial infarction. Thus MMP-1 and TIMP-1 may provide useful information in evaluating the healing process as it affects left ventricular remodelling after acute myocardial infarction. PMID:9391291

  12. Radioactive smart probe for potential corrected matrix metalloproteinase imaging.

    PubMed

    Huang, Chiun-Wei; Li, Zibo; Conti, Peter S

    2012-11-21

    Although various activatable optical probes have been developed to visualize metalloproteinase (MMP) activities in vivo, precise quantification of the enzyme activity is limited due to the inherent scattering and attenuation (limited depth penetration) properties of optical imaging. In this investigation, a novel activatable peptide probe (64)Cu-BBQ650-PLGVR-K(Cy5.5)-E-K(DOTA)-OH was constructed to detect tumor MMP activity in vivo. This agent is optically quenched in its native form, but releases strong fluorescence upon cleavage by selected enzymes. MMP specificity was confirmed both in vitro and in vivo by fluorescent imaging studies. The use of a single modality to image biomarkers/processes may lead to erroneous interpretation of imaging data. The introduction of a quantitative imaging modality, such as PET, would make it feasible to correct the enzyme activity determined from optical imaging. In this proof of principle report, we demonstrated the feasibility of correcting the activatable optical imaging data through the PET signal. This approach provides an attractive new strategy for accurate imaging of MMP activity, which may also be applied for other protease imaging. PMID:23025637

  13. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves matrix metalloproteinase-2 modulation by homocysteine.

    PubMed

    Liu, Tingjiao; Lin, Jinghan; Ju, Ting; Chu, Lei; Zhang, Liming

    2015-08-01

    Arterial calcification is common in vascular diseases and involves conversion of vascular smooth muscle cells (VSMCs) to an osteoblast phenotype. Clinical studies suggest that the development of atherosclerosis can be promoted by homocysteine (HCY), but the mechanisms remain unclear. Here, we determined whether increases in HCY levels lead to an increase in VSMC calcification and differentiation, and examined the role of an extracellular matrix remodeler, matrix metalloproteinase-2 (MMP-2). Rat VSMCs were exposed to calcification medium in the absence or presence of HCY (10, 100 or 200 μmol/L) or an MMP-2 inhibitor (10(-6) or 10(-5) mol/L). MTT assays were performed to determine the cytotoxicity of the MMP-2 inhibitor in calcification medium containing 200 μmol/L HCY. Calcification was assessed by measurements of calcium deposition and alkaline phosphatase (ALP) activity as well as von Kossa staining. Expression of osteocalcin, bone morphogenetic protein (BMP)-2, and osteopontin, and MMP-2 was determined by immunoblotting. Calcification medium induced osteogenic differentiation of VSMCs. HCY promoted calcification, increased osteocalcin and BMP-2 expression, and decreased expression of osteopontin. MMP-2 expression was increased by HCY in a dose-dependent manner in VSMCs exposed to both control and calcification medium. The MMP-2 inhibitor decreased the calcium content and ALP activity, and attenuated the osteoblastic phenotype of VSMCs. Vascular calcification and osteogenic differentiation of VSMCs were positively regulated by HCY through increased/restored MMP-2 expression, increased expression of calcification proteins, and decreased anti-calcification protein levels. In summary, MMP-2 inhibition may be a protective strategy against VSMC calcification. PMID:25987498

  14. Role of matrix metalloproteinases in non-healing venous ulcers.

    PubMed

    Amato, Bruno; Coretti, Guido; Compagna, Rita; Amato, Maurizio; Buffone, Gianluca; Gigliotti, Diego; Grande, Raffaele; Serra, Raffaele; de Franciscis, Stefano

    2015-12-01

    Chronic venous ulceration (CVU) of the lower limbs is a common condition affecting 1% of the adult population in Western countries, which is burdened with a high complication rate and a marked reduction in the quality of life often due to prolonged healing time. Several metalloproteinases (MMPs) such as MMP-9 together with neutrophil gelatinase-associated lipocalin (NGAL) appear to be involved in the onset and healing phases of venous ulcer, but it is still unclear how many biochemical components are responsible for prolonged healing time in those ulcers. In this study, we evaluate the role of MMP-1 and MMP-8 in long lasting and refractory venous ulcers. In a 2-year period we enroled 45 patients (28 female and 17 male, median age 65) with CVU. The enroled population was divided into two groups: group I were patients with non-healing ulcers (ulcers that had failed to heal for more than 2 months despite appropriate treatments) and group II were patients with healing ulcers (ulcers in healing phases). MMP-1 and MMP-8 were measured in fluids and tissues of healing and non-healing ulcers by means of enzyme-linked immunosorbent assay (ELISA) and Western blot analysis, respectively. In particular the patterns of the collagenases MMP-1 and MMP-8 in healing wounds were distinct, with MMP-8 appearing in significantly greater amounts especially in the non-healing group. Our findings suggest that MMP-1, and MMP-8 are overexpressed in long lasting CVU. Therefore, this dysregulation may represent the main cause of the pathogenesis of non-healing CVU.

  15. Significant relation of tissue inhibitor of matrix metalloproteinase-2 and its combination with matrix metalloproteinase-2 to survival of patients with cancer of uterine cervix.

    PubMed

    Wang, Po-Hui; Ko, Jiunn-Liang; Yang, Shun-Fa; Tsai, Hsiu-Ting; Tee, Yi-Torng; Han, Chih-Ping; Lin, Long-Yau; Chen, Shiuan-Chih; Shih, Yang-Tse

    2011-08-01

    Tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) has high affinity for matrix metalloproteinase-2 (MMP-2). Few studies simultaneously investigate their implication in prognosis of patients with cervical cancer. We used reverse transcription-polymerase chain reaction and immunohistochemical method for cervical tissues and microarrays to investigate the association among TIMP-2, MMP-2, clinicopathological parameters, and prognosis of patients with cancer. Our results showed that cancer tissues exhibited less TIMP-2 expression and patients with pelvic lymph node metastasis had less TIMP-2 expression. Positive TIMP-2 constellated with negative MMP-2 indicated lower recurrence probability and better overall survival. The protective effect of TIMP-2 expression may overcome the adverse effect of MMP-2 expression in terms of disease-free interval and overall survival while neither TIMP-2 nor MMP-2 alone can be used to predict outcome. We suggest that following patients other than those with positive TIMP-2 and negative MMP-2 expression more closely and intensely may improve their prognosis.

  16. [Reference ranges of matrix metalloproteinase-1, -2, -9 and tissue inhibitor of matrix metalloproteinases-1 concentrations in amniotic fluid in physiological pregnancy].

    PubMed

    Korenovsky, Yu V; Remneva, O V

    2016-01-01

    The aim of this study was to determine reference values of matrix metalloproteinase-1 (MMP-1), MMP-2, MMP-9 and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) in the amniotic fluid at the first stage of labor in physiological pregnancy. 89 women at the first stage of term labor have been examined. Samples of amniotic fluid were taken at the first period of labor by vaginal amniotomy. Concentrations ofMMP-1, MMP-2, MMP-9, and TIMP-1 were investigated in amniotic fluid by ELISA kits. We have determined normal concentration ranges for MMP-1, MMP-2, MMP-9, TIMP-1, and ratios of concentrations of MMPs and TIMP-1 (MMP-1/TIMP-1, MMP-2/TIMP-1, MMP-9/TIMP-1) in the amniotic fluid at the first period of labor in physiological pregnancy. These included: MMP-1--5.1-16.8 pg/mg of protein, MMP-2--238.3-374.1 pg/mg of protein, MMP-9--66.1-113.3 pg/mg of protein, TIMP-1--4.7-13.6 pg/mg of protein, ratio of MMP-1/TIMP-1--0.1-2.2, ratio of MMP-2/TIMP-1--19.9-55.7, ratio of MMP-9/TIMP-1--4.2-17.2.

  17. Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids.

    PubMed

    Yager, D R; Zhang, L Y; Liang, H X; Diegelmann, R F; Cohen, I K

    1996-11-01

    Fluid from acute surgical wounds and from nonhealing pressure ulcers was examined for the presence of several matrix metalloproteinases. Gelatin zymography demonstrated the presence of two major gelatinases with apparent molecular masses of 72 kDa and 92 kDa and two minor gelatinases with apparent mobilities of 68 kDa and 125 kDa. Antigen-specific sera identified the 72-kDa protein as matrix melloproteinase-2. The same sera also reacted with the 68-kDa protein, which is consistent with it being an activated form of matrix metalloproteinase-2. Antigen-specific sera identified the 92-kDa and 125-kDa proteins as matrix metalloproteinase-9. Levels of matrix metalloproteinase-2 and matrix metalloproteinase-9 were elevated more than 10-fold and 25-fold, respectively, in fluids from pressure ulcers compared with fluids from healing wounds. Examination of total potential and actual collagenolytic activity revealed that fluid from pressure ulcers contained significantly greater levels of both total and active collagenase compared with that of acute surgical wounds. In addition, an enzyme-linked immunosorbent assay demonstrated that fluids from pressure ulcers contained significantly more collagenase complexed with the inhibitor, tissue inhibitor of metalloproteinases. Together, these observations suggest that an imbalance exists between levels of matrix metalloproteinases and their inhibitors in the fluids of pressure ulcers and that this is primarily the result of elevated levels of the matrix metalloproteinases. The presence of excessive levels of activated forms of matrix-degrading enzymes at the wound surface of pressure ulcers may impede the healing of these wounds and may be relevant to the development of new rationales for treatment.

  18. EGF-receptor regulation of matrix metalloproteinases in epithelial ovarian carcinoma

    PubMed Central

    Hudson, Laurie G; Moss, Natalie M; Stack, M Sharon

    2009-01-01

    Ovarian carcinoma is most frequently detected when disease has already disseminated intra-abdominally, resulting in a 5-year survival rate of less than 20% owing to complications of metastasis. Peritoneal ascites is often present, establishing a unique microenvironmental niche comprised of tumor and inflammatory cells, along with a wide range of bioactive soluble factors, several of which stimulate the EGF-receptor (EGFR). Elevated EGFR is associated with less favorable disease outcome in ovarian cancer, related in part to EGFR activation of signaling cascades that lead to enhanced matrix metalloproteinase expression and/or function. The available data suggest that modulating the expression or activity of the EGFR and/or matrix metalloproteinases offers opportunity for targeted intervention in patients with metastatic disease. PMID:19374540

  19. Structural characterizations of nonpeptidic thiadiazole inhibitors of matrix metalloproteinases reveal the basis for stromelysin selectivity.

    PubMed Central

    Finzel, B. C.; Baldwin, E. T.; Bryant, G. L.; Hess, G. F.; Wilks, J. W.; Trepod, C. M.; Mott, J. E.; Marshall, V. P.; Petzold, G. L.; Poorman, R. A.; O'Sullivan, T. J.; Schostarez, H. J.; Mitchell, M. A.

    1998-01-01

    The binding of two 5-substituted-1,3,4-thiadiazole-2-thione inhibitors to the matrix metalloproteinase stromelysin (MMP-3) have been characterized by protein crystallography. Both inhibitors coordinate to the catalytic zinc cation via an exocyclic sulfur and lay in an unusual position across the unprimed (P1-P3) side of the proteinase active site. Nitrogen atoms in the thiadiazole moiety make specific hydrogen bond interactions with enzyme structural elements that are conserved across all enzymes in the matrix metalloproteinase class. Strong hydrophobic interactions between the inhibitors and the side chain of tyrosine-155 appear to be responsible for the very high selectivity of these inhibitors for stromelysin. In these enzyme/inhibitor complexes, the S1' enzyme subsite is unoccupied. A conformational rearrangement of the catalytic domain occurs that reveals an inherent flexibility of the substrate binding region leading to speculation about a possible mechanism for modulation of stromelysin activity and selectivity. PMID:9792098

  20. Impact of losartan and angiotensin II on the expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in rat vascular smooth muscle cells.

    PubMed

    Guo, Yan-Song; Wu, Zong-Gui; Yang, Jun-Ke; Chen, Xin-Jing

    2015-03-01

    The present study aimed to investigate the impact of losartan and angiotensin II (AngII) on the expression of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1), secreted by rat vascular smooth muscle cells (VSMCs). Rat VSMCs were isolated and cultured in different concentrations of AngII and losartan for 24 h and western blot analysis and quantitative polymerase chain reaction were performed to observe the subsequent impact on the gene and protein expression of MMP-9 and TIMP-1. AngII was shown to promote the protein and gene expression of MMP-9 in VSMCs in a concentration-dependent manner. No effect was observed on the expression of TIMP-1, therefore, an increase in the MMP-9/TIMP-1 ratio was observed. Losartan was shown to be able to inhibit MMP-9 protein and gene expression in a concentration-dependent manner, whilst promoting an increase in TIMP-1 expression, thus decreasing the ratio of MMP-9/TIMP-1. The combined action of losartan and AngII resulted in the same directional changes in MMP-9 and TIMP-1 expression as observed for losartan alone. The comparison of AngII, losartan and the combinatory effect on the expression of MMP-9 and TIMP-1 in VSMCs indicated that losartan inhibited the effects of AngII, therefore reducing the MMP-9/TIMP-1 ratio, which may contribute to the molecular mechanism of losartan in preventing atherosclerosis. In atherosclerosis, the development of the extracellular matrix of plaque is closely correlated with the evolution of AS. The balance between MMPs and TIMPs is important in maintaining the dynamic equilibrium between the ECM, and the renin-angiotensin-aldosterone system, which is involved in the pathologenesis of AS, and in which AngII has a central role.

  1. An electrochemical peptide cleavage-based biosensor for matrix metalloproteinase-2 detection with exonuclease III-assisted cycling signal amplification.

    PubMed

    Wang, Ding; Yuan, Yali; Zheng, Yingning; Chai, Yaqin; Yuan, Ruo

    2016-05-01

    In this work, an electrochemical peptide biosensor was developed for matrix metalloproteinase-2 (MMP-2) detection by conversion of a peptide cleavage event into DNA detection with exonuclease III (Exo III)-assisted cycling signal amplification.

  2. Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells

    PubMed Central

    Meng, Huan; Xing, Gengmei; Blanco, Elvin; Song, Yan; Zhao, Lina; Sun, Baoyun; Li, Xiaoda; Wang, Paul C.; Korotcov, Alexandru; Li, Wei; Liang, Xing-Jie; Chen, Chunying; Yuan, Hui; Zhao, Feng; Chen, Zhen; Sun, Tong; Chai, Zhifang; Ferrari, Mauro; Zhao, Yuliang

    2012-01-01

    The purpose of this work is to study the antimetastasis activity of gadolinium metallofullerenol nanoparticles (f-NPs) in malignant and invasive human breast cancer models. We demonstrated that f-NPs inhibited the production of matrix metalloproteinase (MMP) enzymes and further interfered with the invasiveness of cancer cells in tissue culture condition. In the tissue invasion animal model, the invasive primary tumor treated with f-NPs showed significantly less metastasis to the ectopic site along with the decreased MMP expression. In the same animal model, we observed the formation of a fibrous cage that may serve as a physical barrier capable of cancer tissue encapsulation that cuts the communication between cancer- and tumor-associated macrophages, which produce MMP enzymes. In another animal model, the blood transfer model, f-NPs potently suppressed the establishment of tumor foci in lung. Based on these data, we conclude that f-NPs have antimetastasis effects and speculate that utilization of f-NPs may provide a new strategy for the treatment of tumor metastasis. PMID:21930111

  3. Onion extract and quercetin induce matrix metalloproteinase-1 in vitro and in vivo.

    PubMed

    Cho, Jae-We; Cho, Sun-Young; Lee, Seong-Ryong; Lee, Kyu-Suk

    2010-03-01

    A scar is usually developed by an imbalance of collagen synthesis and degradation. It is believed that the flavonoids (quercetin and kaempferol) in onion extract play a role in reducing scar formation through inhibition of fibroblast activities. Even though several commercial products are composed of onion extract, the precise molecular mechanisms of onion extract in reduction of scar formation in skin are still largely unknown. In this study we investigated the effect both of onion extract and quercetin on the proliferation of fibroblasts, expression of type I collagen and matrix metalloproteinase-1 (MMP-1). Our data show that proliferation rates of fibroblasts were decreased in a dose-dependent manner of the onion extract and quercetin. The expression of type I collagen was not markedly changed by the onion extract and quercetin. Interestingly, the expression of MMP-1 was markedly increased by both onion extract and quercetin in vitro and in vivo. Thus, our data indicate that onion extract and quercetin play a role in the anti-scar effect in skin through up-regulation of MMP-1 expression, implying this agent is a promising material for reducing scar formation.

  4. Murine matrix metalloproteinase-20 overexpression stimulates cell invasion into the enamel layer via enhanced Wnt signaling

    PubMed Central

    Shin, Masashi; Suzuki, Maiko; Guan, Xiaomu; Smith, Charles E.; Bartlett, John D.

    2016-01-01

    Matrix metalloproteinase-20 (MMP20) is expressed by ameloblasts in developing teeth and MMP20 mutations cause enamel malformation. We established a stably transfected Tet-Off Mmp20-inducible ameloblast-lineage cell line and found that MMP20 expression promoted cell invasion. Previously, we engineered transgenic mice (Tg) that drive Mmp20 expression and showed that Mmp20+/+Tg mice had soft enamel. Here we asked if Mmp20 overexpression disrupts ameloblast function. Incisors from Mmp20+/+ mice expressing the Mmp20 Tg had a striking cell infiltrate which nearly replaced the entire enamel layer. A thin layer of enamel-like material remained over the dentin and at the outer tooth surface, but between these regions were invading fibroblasts and epithelial cells that surrounded ectopic bone-like calcifications. Mmp20+/+Tg mice had decreased enamel organ cadherin levels compared to the Mmp20 ablated and WT mice and, instead of predominantly locating adjacent to the ameloblast cell membrane, β-catenin was predominantly present within the nuclei of invading cells. Our data suggest that increased cadherin cleavage by transgenic MMP20 in the WT background releases excess β-catenin, which translocates to ameloblast nuclei to promote cell migration/invasion. Therefore, we conclude that MMP20 plays a role in normal ameloblast migration through tightly controlled Wnt signaling and that MMP20 overexpression disrupts this process. PMID:27403713

  5. Activity of lung neutrophils and matrix metalloproteinases in cyclophosphamide-treated mice with experimental sepsis

    PubMed Central

    Hirsh, Mark; Carmel, Julie; Kaplan, Viktoria; Livne, Erella; Krausz, Michael M

    2004-01-01

    Sepsis in patients receiving chemotherapy may result in acute respiratory distress syndrome, despite decreased number of blood neutrophils [polymorphonuclear neutrophils (PMNs)]. In the present study, we investigated the correlation of cyclophosphamide (CY)-induced neutropenia with the destructive potential of lung PMN in respect to formation of septic acute lung injury (ALI). Mice were treated with 250 mg/kg of CY or saline (control) and subjected to cecal ligation and puncture (CLP) or sham operation. ALI was verified by histological examination. Lung PMNs and matrix metalloproteinases (MMPs) were assessed by flow cytometry and gelatin zymography. CLP in CY-treated mice induced a typical lung injury. Despite profound neutropenia, CY treatment did not attenuate CLP-induced ALI. This might relate to only a partial suppression of PMN: CY has significantly reduced PMN influx into the lungs (P = 0.008) and suppressed their oxidative metabolism, but had no suppressive effect on degranulation (P = 0.227) and even induced MMP-9 activity (P = 0.0003). In CY-untreated animals, peak of CLP-induced ALI coincided with massive PMN influx (P = 0.013), their maximal degranulation (P = 0.014) and activation of lung MMP-9 (P = 0.002). These findings may indicate an important role of the residual lung PMN and activation of MMP-9 in septic lung injury during CY chemotherapy. PMID:15255968

  6. Protein tyrosine phosphatase controls breast cancer invasion through the expression of matrix metalloproteinase-9

    PubMed Central

    Hwang, Bo-Mi; Chae, Hee Suk; Jeong, Young-Ju; Lee, Young-Rae; Noh, Eun-Mi; Youn, Hyun Zo; Jung, Sung Hoo; Yu, Hong-Nu; Chung, Eun Yong; Kim, Jong-Suk

    2013-01-01

    The expression of matrix metalloproteinases (MMPs) produced by cancer cells has been associated with the high potential of metastasis in several human carcinomas, including breast cancer. Several pieces of evidence demonstrate that protein tyrosine phosphatases (PTP) have functions that promote cell migration and metastasis in breast cancer. We analyzed whether PTP inhibitor might control breast cancer invasion through MMP expression. Herein, we investigate the effect of 4-hydroxy-3,3-dimethyl-2H benzo[g]indole-2,5(3H)-dione (BVT948), a novel PTP inhibitor, on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion in MCF-7 cells. The expression of MMP-9 and cell invasion increased after TPA treatment, whereas TPA-induced MMP-9 expression and cell invasion were decreased by BVT948 pretreatment. Also, BVT948 suppressed NF-κB activation in TPA-treated MCF-7 cells. However, BVT948 didn’t block TPA-induced AP-1 activation in MCF-7 cells. Our results suggest that the PTP inhibitor blocks breast cancer invasion via suppression of the expression of MMP-9. [BMB Reports 2013; 46(11): 533-538] PMID:24152909

  7. Stiff substrates increase YAP-signaling-mediated matrix metalloproteinase-7 expression

    PubMed Central

    Nukuda, A; Sasaki, C; Ishihara, S; Mizutani, T; Nakamura, K; Ayabe, T; Kawabata, K; Haga, H

    2015-01-01

    Abnormally stiff substrates have been shown to trigger cancer progression. However, the detailed molecular mechanisms underlying this trigger are not clear. In this study, we cultured T84 human colorectal cancer cells on plastic dishes to create a stiff substrate or on collagen-I gel to create a soft substrate. The stiff substrate enhanced the expression of matrix metalloproteinase-7 (MMP-7), an indicator of poor prognosis. In addition, we used polyacrylamide gels (2, 67 and 126 kPa) so that the MMP-7 expression on the 126-kPa gel was higher compared with that on the 2-kPa gel. Next, we investigated whether yes-associated protein (YAP) affected the MMP-7 expression. YAP knockdown decreased MMP-7 expression. Treatment with inhibitors of epidermal growth factor receptor (EGFR) and myosin regulatory light chain (MRLC) and integrin-α2 or integrin-β1 knockdown downregulated MMP-7 expression. Finally, we demonstrated that YAP, EGFR, integrin-α2β1 and MRLC produced a positive feedback loop that enhanced MMP-7 expression. These findings suggest that stiff substrates enhanced colorectal cancer cell viability by upregulating MMP-7 expression through a positive feedback loop. PMID:26344692

  8. Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction.

    PubMed

    Mohammad, Ghulam; Kowluru, Renu A

    2010-09-01

    In the pathogenesis of diabetic retinopathy, retinal mitochondria become dysfunctional resulting in accelerated apoptosis of its capillary cells. Matrix metalloproteinase-2 (MMP2) is considered critical in cell integrity and cell survival, and diabetes activates MMP2 in the retina and its capillary cells. This study aims at elucidating the mechanism by which MMP2 contributes to the development of diabetic retinopathy. Using isolated bovine retinal endothelial cells, the effect of regulation of MMP2 (by its siRNA and pharmacological inhibitor) on superoxide accumulation and mitochondrial dysfunction was evaluated. The effect of inhibiting diabetes-induced retinal superoxide accumulation on MMP2 and its regulators was investigated in diabetic mice overexpressing mitochondrial superoxide dismutase (MnSOD). Inhibition of MMP2 ameliorated glucose-induced increase in mitochondrial superoxide and membrane permeability, prevented cytochrome c leakage from the mitochondria, and inhibited capillary cell apoptosis. Overexpression of MnSOD protected the retina from diabetes-induced increase in MMP2 and its membrane activator (MT1-MMP), and decrease in its tissue inhibitor (TIMP-2). These results implicate that, in diabetes, MMP2 activates apoptosis of retinal capillary cells by mitochondrial dysfunction increasing their membrane permeability. Understanding the role of MMP2 in the pathogenesis of diabetic retinopathy should help lay ground for MMP2-targeted therapy to retard the development of retinopathy in diabetic patients.

  9. Protective effect of naringin on 3-nitropropionic acid-induced neurodegeneration through the modulation of matrix metalloproteinases and glial fibrillary acidic protein.

    PubMed

    Gopinath, Kulasekaran; Sudhandiran, Ganapasam

    2016-01-01

    Naringin (4',5,7-trihydroxy-flavonone-7-rhamnoglucoside), a flavonone present in grapefruit, has recently been reported to protect against neurodegeration, induced with 3-nitropropionic acid (3-NP), through its antioxidant, anti-inflammatory, and antiapoptotic properties. This study used a rat model of 3-NP-induced neurodegeneration to investigate the neuroprotective effects of naringin exerted by modulating the expression of matrix metalloproteinases and glial fibrillary acidic protein. Neurodegeneration was induced with 3-NP (10 mg/kg body mass, by intraperitoneal injection) once a day for 2 weeks, and induced rats were treated with naringin (80 mg/kg body mass, by oral gavage, once a day for 2 weeks). Naringin ameliorated the motor abnormalities caused by 3-NP, and reduced blood-brain barrier dysfunction by decreasing the expression of matrix metalloproteinases 2 and 9, along with increasing the expression of the tissue inhibitors of metalloproteinases 1 and 2 in 3-NP-induced rats. Further, naringin reduced 3-NP-induced neuroinflammation by decreasing the expression of nuclear factor-kappa B and glial fibrillary acidic protein. Thus, naringin exerts protective effects against 3-NP-induced neurodegeneration by ameliorating the expressions of matrix metalloproteinases and glial fibrillary acidic protein.

  10. A novel matrix metalloproteinase-2 inhibitor triazolylmethyl aziridine reduces melanoma cell invasion, angiogenesis and targets ERK1/2 phosphorylation.

    PubMed

    Romanchikova, Nadezhda; Trapencieris, Pēteris; Zemītis, Jānis; Turks, Māris

    2014-12-01

    A novel matrix metalloproteinase-2 (MMP-2) inhibitor JaZ-30, which belongs to the class of C(2)-monosubstituted aziridine - aryl-1,2,3-triazole conjugates, was developed. MTT and crystal violet assays were used to determine cytotoxicity- IC(50) values of compound JaZ-30 on melanoma cell line B16 4A5. Our study proves the anti-cancer properties of JaZ-30 with a wide spectrum of activities. JaZ-30 was revealed as selective inhibitor of matrix metalloproteinase-2. JaZ-30-mediated decrease of Vascular Endothelial Growth Factor (VEGF) secretion results in inhibition of angiogenesis, performed with the human umbilical vein endothelial cell line (HUVEC-2) on Matrigel. A novel inhibitor decreases invasive properties of melanoma cells measured in Matrigel chambers assay. JaZ-30 downregulates phosphorylation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in melanoma cells stimulated by phorbol-12-myristate-13-acetate (PMA). Our findings propose a novel MMP-2 inhibitor JaZ-30 as an attractive potential agent for melanoma treatment.

  11. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    SciTech Connect

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2015-02-01

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blot and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.

  12. ROCK inhibition enhances aggrecan deposition and suppresses matrix metalloproteinase-3 production in human articular chondrocytes.

    PubMed

    Furumatsu, Takayuki; Matsumoto-Ogawa, Emi; Tanaka, Takaaki; Lu, Zhichao; Ozaki, Toshifumi

    2014-04-01

    Homeostasis of articular cartilage is maintained by a balance between catabolism and anabolism. Matrix metalloproteinase-3 (MMP-3) catabolism of cartilaginous extracellular matrix (ECM), including aggrecan (AGN), is an important factor in osteoarthritis progression. We previously reported that inhibition of Rho-associated coiled-coil forming kinase (ROCK), an effector of Rho family GTPases, activates the chondrogenic transcription factor SRY-type high-mobility-group box (SOX) 9 and prevents dedifferentiation of monolayer-cultured chondrocytes. We hypothesized that ROCK inhibition prevents chondrocyte dedifferentiation by altering the transcriptional balance between MMP-3 and AGN. Normal human articular chondrocytes were cultured in the presence or absence of ROCK inhibitor (ROCKi, Y-27632). Expression of MMP-3 and AGN during monolayer cultivation was assessed by quantitative real-time PCR and western blot analysis. Chondrogenic redifferentiation potential of ROCKi-treated chondrocytes was evaluated by immunohistological analysis of pellet cultures. ROCKi treatment suppressed MMP-3 expression in monolayer- and pellet-cultured chondrocytes but increased AGN expression. Chromatin immunoprecipitation revealed that the association between transcription factors E26 transformation specific (ETS)-1 and SOX9 and their target genes MMP-3 and AGN, respectively, was affected by ROCKi treatment. ROCKi decreased the association between ETS-1 and its binding sites on the MMP-3 promoter, whereas ROCKi promoted the interaction between SOX9 and the AGN promoter. Our results suggest that ROCK inhibition may have an important role in modulating the balance between degradation and synthesis of cartilaginous ECM, a finding that may facilitate development of techniques to prepare differentiated chondrocytes for cartilage regeneration therapy.

  13. NF kappa B and Matrix Metalloproteinase induced Receptor Cleavage in the Spontaneously Hypertensive Rat

    PubMed Central

    Wu, Kwan-I Sharon; Schmid-Schönbein, Geert W.

    2011-01-01

    Recent evidence suggests that inflammation in the spontaneously hypertensive rat (SHR) is associated with an uncontrolled matrix metalloproteinase (MMP) activity. We hypothesize that the transcription factor nuclear factor kappa B (NF–κB) is overexpressed in the SHR, enhancing its MMP activity and enzymatic cleavage of the beta-2 adrenergic receptor (β2AR), thereby diminishing catecholamine-mediated arteriolar vasodilation. NF-κB expression level and translocation were compared between Wistar Kyoto rat (WKY) and SHR kidney, heart and brain. The animals were treated with a NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), for ten weeks and correlations between NF-κB and MMP activity were determined. Immunohistochemistry showed that NF-κB expression is increased in untreated SHR kidney (~ 14%) and brain hypothalamus (~ 22%) compared to that in WKY (p <0.05), but not in myocardium and cerebral cortex. After PDTC treatment, the SHR systolic blood pressure was reduced close to WKY levels. NF-κB expression level in treated-SHR was also decreased in kidney and hypothalamus compared to non-treated animals (p <0.05). Furthermore, MMP-2 and -9 activities in SHR plasma were significantly reduced (~41%) by PDTC treatment. Additionally, zymographic analyses and in situ zymography showed decreased MMP-2 activity in kidney homogenates and decreased MMP-1,-9 activities in brain. The level of the β2AR extracellular, but not intracellular, domain density was found reduced in kidney showing a receptor cleavage process that can be blocked by PDTC treatment. These results suggest NF-κB is an important transcription factor in the SHR and may be involved in the enhanced MMP activity and consequently receptor cleavage. PMID:21220710

  14. Molecular Docking Analysis of Selected Clinacanthus nutans Constituents as Xanthine Oxidase, Nitric Oxide Synthase, Human Neutrophil Elastase, Matrix Metalloproteinase 2, Matrix Metalloproteinase 9 and Squalene Synthase Inhibitors

    PubMed Central

    Narayanaswamy, Radhakrishnan; Isha, Azizul; Wai, Lam Kok; Ismail, Intan Safinar

    2016-01-01

    Background: Clinacanthus nutans (Burm. f.) Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity. Objective: This prompted us to carry out the present study on a selected 11 constituents of C. nutans which are clinacoside A–C, cycloclinacoside A1, shaftoside, vitexin, orientin, isovitexin, isoorientin, lupeol and β-sitosterol. Materials and Methods: Selected 11 constituents of C. nutans were evaluated on the docking behavior of xanthine oxidase (XO), nitric oxide synthase (NOS), human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and 9), and squalene synthase (SQS) using Discovery Studio Version 3.1. Also, molecular physicochemical, bioactivity, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and toxicity prediction by computer assisted technology analyzes were also carried out. Results: The molecular physicochemical analysis revealed that four ligands, namely clinacoside A–C and cycloclinacoside A1 showed nil violations and complied with Lipinski's rule of five. As for the analysis of bioactivity, all the 11 selected constituents of C. nutans exhibited active score (>0) toward enzyme inhibitors descriptor. ADMET analysis showed that the ligands except orientin and isoorientin were predicted to have Cytochrome P4502D6 inhibition effect. Docking studies and binding free energy calculations revealed that clinacoside B exhibited the least binding energy for the target enzymes except for XO and SQS. Isovitexin and isoorientin showed the potentials in the docking and binding with all of the six targeted enzymes, whereas vitexin and orientin docked and bound with only NOS and HNE. Conclusion: This present study has paved a new insight in understanding these 11 C. nutans ligands as potential inhibitors against XO, NOS, HNE, MMP 2, MMP 9, and SQS. SUMMARY Isovitexin and isoorientin (Clinacanthus nutans constituent) showed potentials in the docking and binding with all of the six targeted

  15. Differential expression of extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in avian tibial dyschondroplasia.

    PubMed

    Shahzad, Muhammad; Liu, Jingying; Gao, Jianfeng; Wang, Zhi; Zhang, Ding; Nabi, Fazul; Li, Kun; Li, Jiakui

    2015-01-01

    Tibial dyschondroplasia (TD) is an avian bone disorder of different aetiologies that may be associated with lameness. The disorder is characterized by focal disruption of endochondral bone formation, with a lack of matrix proteolysis and an accumulation of non-mineralized avascular cartilage. The aim of this study was to determine the expression of extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in normal, thiram-induced TD lesions and in the process of recovery from TD in broiler chickens. An extracellular matrix (ECM) degrading enzyme, matrix metalloproteinase-9 (MMP-9), was selected to investigate the effects of CD147 in the degradation of ECM. Gene expression was analysed by quantitative real-time polymerase chain reaction and protein levels by immunohistochemistry and western blotting. The birds were divided into three groups: thiram fed; recovery; and controls. Genes encoding CD147 and MMP-9 were down-regulated during the development of the disease, and were up-regulated during recovery. Western blotting also showed lower protein levels of CD147 in TD, which increased during the recovery phase associated with ECM degradation and growth plate repair. The findings of this study suggest that ECM has a crucial role in the occurrence of TD and that CD147 appears to play a pivotal role in matrix proteolysis in the chicken, similar to that in other species.

  16. Matrix metalloproteinase 14 is required for fibrous tissue expansion

    PubMed Central

    Taylor, Susan H; Yeung, Ching-Yan Chloé; Kalson, Nicholas S; Lu, Yinhui; Zigrino, Paola; Starborg, Tobias; Warwood, Stacey; Holmes, David F; Canty-Laird, Elizabeth G; Mauch, Cornelia; Kadler, Karl E

    2015-01-01

    Type I collagen-containing fibrils are major structural components of the extracellular matrix of vertebrate tissues, especially tendon, but how they are formed is not fully understood. MMP14 is a potent pericellular collagenase that can cleave type I collagen in vitro. In this study, we show that tendon development is arrested in Scleraxis-Cre::Mmp14 lox/lox mice that are unable to release collagen fibrils from plasma membrane fibripositors. In contrast to its role in collagen turnover in adult tissue, MMP14 promotes embryonic tissue formation by releasing collagen fibrils from the cell surface. Notably, the tendons grow to normal size and collagen fibril release from fibripositors occurs in Col-r/r mice that have a mutated collagen-I that is uncleavable by MMPs. Furthermore, fibronectin (not collagen-I) accumulates in the tendons of Mmp14-null mice. We propose a model for cell-regulated collagen fibril assembly during tendon development in which MMP14 cleaves a molecular bridge tethering collagen fibrils to the plasma membrane of fibripositors. DOI: http://dx.doi.org/10.7554/eLife.09345.001 PMID:26390284

  17. Common Matrix Metalloproteinases (MMP-8, -9, -25, and -26) Cannot Explain Dentigerous Cyst Expansion

    PubMed Central

    Lehtonen, Niko; Färkkilä, Esa; Hietanen, Jarkko; Teronen, Olli; Sorsa, Timo; Hagström, Jaana

    2014-01-01

    Objective: Mechanisms of the dentigerous cyst formation from the normal eruption follicle is unknown but disturbances in the proteolytic activity have been suspected, since the growth of these cysts is accompanied by local bone destruction. The aim of the present study was to evaluate the expression of matrix metalloproteinases (MMP) in human dental dentigerous cysts and healthy dental follicles. Materials and Methods: We studied 10 patients with dentigerous cysts and 10 healthy dental follicles from the lower jaw in respect to their immunoexpression of MMPs -8, -9, -25, and -26 and tissue inhibitor of metalloproteinases -1 (TIMP-1). Results: MMP-8 was expressed slightly more in cyst epithelium than in odontogenic epithelium of healthy controls dental follicle but the difference lacked statistical difference. Other MMPs and TIMP-1 did not differ regarding the studied specimens. Conclusion: Differences in MMP expression cannot solely explain the cyst expansion suggesting the potential involvement of other osteolytic mechanisms. PMID:25386530

  18. Overexpression of membrane sialic acid-specific sialidase Neu3 inhibits matrix metalloproteinase-9 expression in vascular smooth muscle cells

    SciTech Connect

    Moon, Sung-Kwon; Cho, Seung-Hak; Kim, Kyung-Woon; Jeon, Jae Heung; Ko, Jeong-Heon; Kim, Bo Yeon; Kim, Cheorl-Ho . E-mail: chkimbio@skku.edu

    2007-05-11

    The ganglioside-specific sialidase Neu3 has been suggested to participate in cell growth, migration, and differentiation. Recent reports suggest that sialidase may be involved in intimal thickening, an early stage in the development of atherosclerosis. However, the role of the Neu3 gene in vascular smooth muscle cells (VSMC) responses has not yet been elucidated. To determine whether a Neu3 is able to modulate VSMC growth, the effect of overexpression of the Neu3 gene on cell proliferation was examined. However, the results show that the overexpression of this gene has no effect on DNA synthesis and ERK phosphorylation in cultured VSMC in the presence of TNF-{alpha}. Because atherogenic effects need not be limited to proliferation, we decided to examine whether Neu3 exerted inhibitory effects on matrix metalloproteinase-9 (MMP-9) activity in TNF-{alpha}-induced VSMC. The expression of the Neu3 gene led to the inhibition of TNF-{alpha}-induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, Neu3 gene expression strongly decreased MMP-9 promoter activity in response to TNF-{alpha}. This inhibition was characterized by the down-regulation of MMP-9, which was transcriptionally regulated at NF-{kappa}B and activation protein-1 (AP-1) sites in the MMP-9 promoter. These findings suggest that the Neu3 gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis.

  19. Matrix metalloproteinase gene expressions might be oxidative stress targets in gastric cancer cell lines

    PubMed Central

    Gencer, Salih; Cebeci, Anil

    2013-01-01

    Objective Oxidative stress is linked to increased risk of gastric cancer and matrix metalloproteinases (MMPs) are important in the invasion and metastasis of gastric cancer. We aimed to analyze the effect of the accumulation of oxidative stress in the gastric cancer MKN-45 and 23132/87 cells following hydrogen peroxide (H2O2) exposure on the expression patterns of MMP-1, MMP-3, MMP-7, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-15, MMP-17, MMP-23, MMP-28, and β-catenin genes. Methods The mRNA transcripts in the cells were determined by RT-PCR. Following H2O2 exposure, oxidative stress in the viable cells was analyzed by 2',7'-dichlorofluorescein diacetate (DCFH-DA). Caffeic acid phenethyl ester (CAPE) was used to eliminate oxidative stress and the consequence of H2O2 exposure and its removal on the expressions of the genes were evaluated by quantitative real-time PCR. Results The expressions of MMP-1, MMP-7, MMP-14, MMP-15, MMP-17 and β-catenin in MKN-45 cells and only the expression of MMP-15 in 23132/87 cells were increased. Removal of the oxidative stress resulted in decrease in the expressions of MMP genes of which the expressions were increased after H2O2 exposure. β-catenin, a transcription factor for many genes including MMPs, also displayed decreased levels of expression in both of the cell lines following CAPE treatment. Conclusions Our data suggest that there is a remarkable link between the accumulation of oxidative stress and the increased expressions of MMP genes in the gastric cancer cells and MMPs should be considered as potential targets of therapy in gastric cancers due to its continuous exposure to oxidative stress. PMID:23825909

  20. Matrix Metalloproteinase-9 regulates neuronal circuit development and excitability

    PubMed Central

    Murase, Sachiko; Lantz, Crystal; Kim, Eunyoung; Gupta, Nitin; Higgins, Richard; Stopfer, Mark; Hoffman, Dax A.; Quinlan, Elizabeth M.

    2015-01-01

    In early postnatal development, naturally occurring cell death, dendritic outgrowth and synaptogenesis sculpt neuronal ensembles into functional neuronal circuits. Here we demonstrate that deletion of the extracellular proteinase MMP-9 affects each of these processes, resulting in maladapted neuronal circuitry. MMP-9 deletion increases the number of CA1 pyramidal neurons, but decreases dendritic length and complexity while dendritic spine density is unchanged. Parallel changes in neuronal morphology are observed in primary visual cortex, and persist into adulthood. Individual CA1 neurons in MMP-9−/− mice have enhanced input resistance and a significant increase in the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs). Additionally, deletion of MMP-9 significant increases spontaneous neuronal activity in awake MMP-9−/− mice and enhances response to acute challenge by the excitotoxin kainate. Thus MMP-9-dependent proteolysis regulates several aspects of circuit maturation to constrain excitability throughout life. PMID:26093382

  1. Matrix metalloproteinase-3 in the central nervous system: a look on the bright side.

    PubMed

    Van Hove, Inge; Lemmens, Kim; Van de Velde, Sarah; Verslegers, Mieke; Moons, Lieve

    2012-10-01

    Matrix metalloproteinases (MMPs) are a large family of proteases involved in many cell-matrix and cell-cell signalling processes through activation, inactivation or release of extracellular matrix (ECM) and non-ECM molecules, such as growth factors and receptors. Uncontrolled MMP activities underlie the pathophysiology of many disorders. Also matrix metalloproteinase-3 (MMP-3) or stromelysin-1 contributes to several pathologies, such as cancer, asthma and rheumatoid arthritis, and has also been associated with neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and multiple sclerosis. However, based on defined MMP spatiotemporal expression patterns, the identification of novel candidate molecular targets and in vitro and in vivo studies, a beneficial role for MMPs in CNS physiology and recovery is emerging. The main purpose of this review is to shed light on the recently identified roles of MMP-3 in normal brain development and in plasticity and regeneration after CNS injury and disease. As such, MMP-3 is correlated with neuronal migration and neurite outgrowth and guidance in the developing CNS and contributes to synaptic plasticity and learning in the adult CNS. Moreover, a strict spatiotemporal MMP-3 up-regulation in the injured or diseased CNS might support remyelination and neuroprotection, as well as genesis and migration of stem cells in the damaged brain.

  2. Time dependent integration of matrix metalloproteinases and their targeted substrates directs axonal sprouting and synaptogenesis following central nervous system injury

    PubMed Central

    Phillips, Linda L.; Chan, Julie L.; Doperalski, Adele E.; Reeves, Thomas M.

    2014-01-01

    Over the past two decades, many investigators have reported how extracellular matrix molecules act to regulate neuroplasticity. The majority of these studies involve proteins which are targets of matrix metalloproteinases. Importantly, these enzyme/substrate interactions can regulate degenerative and regenerative phases of synaptic plasticity, directing axonal and dendritic reorganization after brain insult. The present review first summarizes literature support for the prominent role of matrix metalloproteinases during neuroregeneration, followed by a discussion of data contrasting adaptive and maladaptive neuroplasticity that reveals time-dependent metalloproteinase/substrate regulation of postinjury synaptic recovery. The potential for these enzymes to serve as therapeutic targets for enhanced neuroplasticity after brain injury is illustrated with experiments demonstrating that metalloproteinase inhibitors can alter adaptive and maladaptive outcome. Finally, the complexity of metalloproteinase role in reactive synaptogenesis is revealed in new studies showing how these enzymes interact with immune molecules to mediate cellular response in the local regenerative environment, and are regulated by novel binding partners in the brain extracellular matrix. Together, these different examples show the complexity with which metalloproteinases are integrated into the process of neuroregeneration, and point to a promising new angle for future studies exploring how to facilitate brain plasticity. PMID:25206824

  3. Aging enhances a mechanically-induced reduction in tendon strength by an active process involving matrix metalloproteinase activity.

    PubMed

    Dudhia, Jayesh; Scott, Charlotte M; Draper, Edward R C; Heinegård, Dick; Pitsillides, Andrew A; Smith, Roger K

    2007-08-01

    Age-associated and degenerative loss of functional integrity in soft tissues develops from effects of cumulative and subtle changes in their extracellular matrix (ECM). The highly ordered tendon ECM provides the tissue with its tensile strength during loading. As age and exercise collide in the high incidence of tendinopathies, we hypothesized that aged tendons fail due to cumulative damage resulting from a combination of diminished matrix repair and fragmentation of ECM proteins induced by prolonged cyclical loading, and that this is an active cell-mediated process. We developed an equine tendon explant model to examine the effect of age on the influence of prolonged cyclical loading at physiologically relevant strain rates (5% strain, 1 Hz for 24 h) on tissue mechanical properties, loss of ECM protein and matrix metalloproteinase (MMP) expression. We show significantly diminished mechanical strength of cyclically loaded tissue compared to controls (39.7 +/- 12%, P metalloproteinase activity. Furthermore, tendon from older specimens was more susceptible to weakening (11-30 years, 50%P matrix protein, an integral ECM protein, an effect that could be mimicked by culture with fibronectin fragments. These findings indicate prolonged cyclical loading of physiological magnitude decreases tendon tensile strength by an active process, and that MMPs may contribute to loss of functional competence, exaggerated by age, via load-induced proteolytic disruption of the ECM.

  4. Unripe Rubus coreanus Miquel suppresses migration and invasion of human prostate cancer cells by reducing matrix metalloproteinase expression.

    PubMed

    Kim, Yesl; Lee, Seung Min; Kim, Jung-Hyun

    2014-01-01

    Rubus coreanus Miquel (RCM) is used to promote prostate health and has been shown to have anti-oxidant and anti-carcinogenic activities. However, the effects and mechanisms of RCM on prostate cancer metastasis remain unclear. PC-3 and DU 145 cells were treated with ethanol or water extract of unripe or ripe RCM and examined for cell invasion, migration, and matrix metalloproteinases (MMPs) activity and expression. Phosphoinositide 3-kinase (PI3K) and Akt activities were examined. Unripe RCM extracts exerted significant inhibitory effects on cell migration, invasion, and MMPs activities. A significant reduction in MMPs activities by unripe RCM ethanol extract treatment (UE) was associated with reduction of MMPs expression and induction of tissue inhibitors of metalloproteinases (TIMPs) expression. Furthermore, PI3K/Akt activity was diminished by UE treatment. In this study, we demonstrated that UE decreased metastatic potential of prostate cancer cells by reducing MMPs expression through the suppression of PI3K/Akt phosphorylation, thereby decreasing MMP activity and enhancing TIMPs expression.

  5. The emerging roles of ADAMTS-7 and ADAMTS-12 matrix metalloproteinases

    PubMed Central

    Lin, Edward A; Liu, Chuan-ju

    2009-01-01

    The a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) comprise a family of secreted zinc metalloproteinases with a precisely ordered modular organization. These enzymes play an important role in the turnover of extracellular matrix proteins in various tissues and their dysregulation has been implicated in disease-related processes such as arthritis, atherosclerosis, cancer, and inflammation. ADAMTS-7 and ADAMTS-12 share a similar domain organization to each other and form a subgroup within the ADAMTS family. Emerging evidence suggests that ADAMTS-7 and ADAMTS-12 may play an important role in the development and pathogenesis of various kinds of diseases. In this review, we summarize what is currently known about the roles of these two metalloproteinases, with a special focus on their involvement in chondrogenesis, endochondral ossification, and the pathogenesis of arthritis, atherosclerosis, and cancer. The future study of ADAMTS-7 and ADAMTS-12, as well as the molecules with which they interact, will help us to better understand a variety of human diseases from both a biological and therapeutic standpoint.

  6. Matrix metalloproteinase-1 cleavage site recognition and binding in full-length human type III collagen.

    PubMed

    Williams, Kim E; Olsen, David R

    2009-07-01

    Matrix metalloproteinases (MMPs) are essential for normal collagen turnover, recovery from fibrosis, and vascular permeability. In fibrillar collagens, MMP-1, MMP-8, and MMP-13 cleave a specific glycine-isoleucine or glycine-leucine bond, despite the presence of this sequence in other parts of the protein. This cut site specificity has been hypothesized to arise from a unique, relaxed super-secondary structure in this area due to local hydroxyproline poor character. In this study we examined the mechanism of interaction and cleavage of human type III collagen by fibroblast MMP-1 by using a panel of recombinant human type III collagens (rhCIIIs) containing engineered sequences in the vicinity of the cleavage site. Native and recombinant type III collagens had similar biochemical and structural characteristics, as indicated by transmission electron microscopy, circular dichroism spectropolarimetry, melting temperature and hydroxyproline analysis. A single amino acid change at the I785 cleavage site to proline resulted in partial MMP-1 resistance, but cuts were found in novel sites in the original cleavage region. However, the replacement of five Y-position residues by proline in this region, regardless of I785 variation, conferred complete resistance to MMP-1, MMP-8, MMP-13, trypsin, and elastase. MMP-1 had a decreased specific activity towards and reduced cleavage rate of rhCIII I785P but a K(m) similar to wild-type. Despite the reductions in protease sensitivity, MMP-1 bound to all of the engineered rhCIIIs with comparable affinity, indicating that MMP-1 binding is not sufficient for cleavage. The relaxed tertiary structure in the MMP cleavage region may permit local collagen unwinding by MMP-1 that enables site-specific proteolysis.

  7. Matrix metalloproteinases 2 and 9 and MMP9/NGAL complex activity in women with PCOS.

    PubMed

    Ranjbaran, Javad; Farimani, Marzieh; Tavilani, Heidar; Ghorbani, Marzieh; Karimi, Jamshid; Poormonsefi, Faranak; Khodadadi, Iraj

    2016-04-01

    It is believed that matrix metalloproteinases (MMPs) play important roles in follicular development and pathogenesis of polycystic ovary syndrome (PCOS). However, conflicting results are available about the alteration of MMP2 and MMP9 concentrations or activities in PCOS. In fact, there is no study entirely investigating both concentration and activity of these MMPs and serum levels of their tissue inhibitors TIMP2 and TIMP1, as well as lipocalin-bound form of MMP9 (MMP9/NGAL). Therefore, the thoroughness of previous studies is questionable. This study was conducted to determine circulatory concentration of MMP2, MMP9, MMP9/NGAL complex, TIMP1 and TIMP2 as well as gelatinase activities of MMP2, MMP9 and MMP9/NGAL complex in women with PCOS and controls. Mean age and BMI as well as serum levels of total cholesterol, triacylglycerol, HDL-C, LDL-C, fasting blood sugar (FBS), insulin, estradiol and sex hormone-binding globulin did not differ between groups, whereas a marked decrease in FSH and significant increases in LH, LH/FSH ratio, testosterone and free androgen index were observed. Women with PCOS and controls showed closed concentrations of MMP2, MMP9, MMP9/NGAL, TIMP1 and TIMP2. Gelatinase activity of MMP9 was found significantly higher in PCOS than in controls (64.53±15.32 vs 44.61±18.95 respectively) while patients and healthy subjects showed similar activities of MMP2 and MMP9/NGAL complex. Additionally, PCOS patients showed a higher MMP9/TIMP1 ratio compared with control women. Direct correlations were also observed between circulatory MMP9 level and the concentration and activity of MMP9/NGAL complex. In conclusion, based on the results of present study, we believe that MMP9 may be involved in the pathogenesis of PCOS.

  8. Peri-Implant Sulcus Fluid (PISF) Matrix Metalloproteinase (MMP) -8 Levels in Peri-Implantitis

    PubMed Central

    Thierbach, René; Maier, Kurt; Sorsa, Timo

    2016-01-01

    Introduction Matrix Metalloproteinase (MMP) -8 plays crucial role in pathogenesis of periodontitis and is also a possible biomarker candidate in peri-implantitis. Aim The aim of the study was to analyse MMP-8 levels in peri-Implant Sulcus Fluid (PISF) from peri-implantitis affected implants in smoking and non-smoking patients with different periodontal health status of natural teeth before and after peri-implantitis treatment. Settings and Design Altogether 29 patients with peri-implantitis were recruited and divided into two study groups (11 with healthy periodontium or gingivitis, i.e. no marginal bone loss, and 18 with chronic periodontitis). Materials and Methods PISF sample from one implant with peri-implantitis from each patient was collected at the baseline and six months after conservative and surgical peri-implantitis treatment, and clinical parameters were registered. Samples were analysed for MMP-8 with dento ELISA method applying a monoclonal antibody. Mucosal cell samples were also analysed for IL-1 gene polymorphism. PISF MMP-8 levels’ differences between periodontal diagnosis groups and between smokers’ and non-smokers’ were analysed. Also, IL-1 polymorphism profiles were compared between study groups. Results PISF MMP-8 levels were higher at the baseline compared to and after the treatment when all sampled implant sites were analysed together (p = 0.001). MMP-8 levels’ distribution was broader in periodontitis patients’ PISF samples, and only in periodontitis patients’ group levels decreased statistically significantly after the treatment (p = 0.005). Smokers’and non-smokers’ PISF MMP-8 was at similar level both at the baseline and after the treatment. No difference between distributions of IL-1 genotypes was found between study groups. Conclusion MMP-8 levels increase in peri-implantitis affected implants both in non-periodontitis and periodontitis patients, but levels still after treatment of the condition reflect intensified host

  9. Inhibition of matrix metalloproteinases in Siberian hamsters impedes photostimulated recrudescence of ovaries.

    PubMed

    Whited, Julie; Shahed, Asha; McMichael, Carling F; Young, Kelly A

    2010-12-01

    Exposure of Siberian hamsters to short photoperiod for 14 weeks induces ovarian regression. Subsequent transfer to long photoperiod restores ovarian function, and 2 weeks of photostimulation increases plasma estradiol (E(2)), antral follicles, and corpora lutea (CL). Because tissue remodeling involved with photostimulated ovarian recrudescence is associated with differential expression of matrix metalloproteinases (MMPs), we hypothesized that inhibiting MMP activity using a broad-spectrum in vivo MMP inhibitor, GM6001, would curtail recrudescence. One group of hamsters was placed in long days (LD; 16 h light:8 h darkness) for 16 weeks. Another group was placed in inhibitory short days (SD; 8 h light:16 h darkness) for 14 weeks. A third group was placed in SD for 14 weeks and transferred to LD for 2 weeks to stimulate recrudescence. During weeks 14-16, animals were either not treated or treated daily with i.p. injections of GM6001 (20 mg/kg) or vehicle (DMSO). GM6001 reduced gelatinase activity and decreased immunohistochemical staining for MMP1, MMP2, and MMP3 compared with vehicle. No differences between controls, vehicle, or GM6001 treatment were observed among LD animals, despite a trend toward reduction in CL and E(2) with GM6001. Although SD reduced ovarian function, photostimulation of transferred controls increased uterine mass, plasma E(2), appearance of antral follicles, and CL. With GM6001 treatment, photostimulation failed to increase uterine mass, plasma E(2), antral follicles, or CL. These data show, for the first time, that in vivo GM6001 administration inhibits MMP activity in hamster ovaries during photostimulation, and indicate that this inhibition may impede photostimulated recrudescence of ovaries. This study suggests an intriguing link between MMP activity and return to ovarian function during photostimulated recrudescence.

  10. Altered Serum Levels of Matrix Metalloproteinase-2, -9 in Response to Electroconvulsive Therapy for Mood Disorders

    PubMed Central

    Shibasaki, Chiyo; Itagaki, Kei; Abe, Hiromi; Kajitani, Naoto; Okada-Tsuchioka, Mami

    2016-01-01

    Background: Inflammatory processes could underlie mood disorders. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMP) are inflammation-related molecules. The current study sought an association between mood disorders and systemic levels of MMPs and TIMPs. Methods: Serum was obtained from patients with mood disorders (n=21) and patients with schizophrenia (n=13) scheduled to undergo electroconvulsive therapy. Serum was also obtained from healthy controls (n=40). Clinical symptoms were assessed by the Hamilton Rating Score for Depression and the Brief Psychiatric Rating Scale. Serum levels of MMPs and TIMPs were quantified by ELISA. Results: The serum levels of MMP-2 in mood disorder patients, but not in schizophrenia patients, prior to the first electroconvulsive therapy session (baseline) was significantly lower than that of healthy controls. At baseline, levels of MMP-9 and TIMP-2, -1 were not different between patients with mood disorder and schizophrenia and healthy controls. After a course of electroconvulsive therapy, MMP-2 levels were significantly increased in mood disorder patients, but MMP-9 levels were significantly decreased in both mood disorder and schizophrenia patients. In mood disorder patients, there was a significant negative correlation between depressive symptoms and serum levels of MMP-2 and a positive correlation between depressive symptoms and MMP-9. In addition, alterations of serum levels of MMP-2 and MMP-9 were significantly correlated each other and were associated with certain depressive symptoms. Conclusion: A change in inflammatory homeostasis, as indicated by MMP-2 and MMP-9, could be related to mood disorders, and these markers appear to be sensitive to electroconvulsive therapy. PMID:26912606

  11. alpha-Chaconine inhibits angiogenesis in vitro by reducing matrix metalloproteinase-2.

    PubMed

    Lu, Ming-Kun; Chen, Pei-Hsieng; Shih, Yuan-Wei; Chang, Ya-Ting; Huang, En-Tze; Liu, Cheng-Ruei; Chen, Pin-Shern

    2010-01-01

    alpha-Chaconine, a naturally occurring steroidal glycoalkaloid in potato sprouts, was found to possess anti-carcinogenic properties, such as inhibiting proliferation, migration, invasion, and inducing apoptosis of tumor cells. However, the effect of alpha-chaconine on tumor angiogenesis remains unclear. In the present study, we examined the effect of alpha-chaconine on angiogenesis in vitro. Data demonstrated that alpha-chaconine inhibited proliferation of bovine aortic endothelial cells (BAECs) in a dose-dependent manner. When treated with non-toxic doses of alpha-chaconine, cell migration, invasion and tube formation were markedly suppressed. Furthermore, alpha-chaconine reduced the expression and activity of matrix metalloproteinase-2 (MMP-2), which is involved in angiogenesis. Our biochemical assays indicated that alpha-chaconine potently suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), phosphatidylinositide-3 kinase (PI3K) and Akt, while it did not affect phosphorylation of extracellular signal regulating kinase (ERK) and p38. In addition, alpha-chaconine significantly increased the cytoplasmic level of inhibitors of kappaBalpha (IkappaBalpha) and decreased the nuclear level of nuclear factor kappa B (NF-kappaB), suggesting that alpha-chaconine could inhibit NF-kappaB activity. Furthermore, the treatment of inhibitors specific for JNK (SP600125), PI3K (LY294002) or NF-kappaB (pyrrolidine dithiocarbamate) to BAECs reduced tube formation. Taken together, the results suggested that alpha-chaconine inhibited migration, invasion and tube formation of BAECs by reducing MMP-2 activities, as well as JNK and PI3K/Akt signaling pathways and inhibition of NF-kappaB activity. These findings reveal a new therapeutic potential for alpha-chaconine on anti-angiogenic therapy.

  12. Matrix Metalloproteinase-2 Polymorphisms in Chronic Heart Failure: Relationship with Susceptibility and Long-Term Survival.

    PubMed

    Beber, Ana Rubia C; Polina, Evelise R; Biolo, Andréia; Santos, Bruna L; Gomes, Daiane C; La Porta, Vanessa L; Olsen, Virgílio; Clausell, Nadine; Rohde, Luis E; Santos, Kátia G

    2016-01-01

    Circulating levels of matrix metalloproteinase-2 (MMP-2) predict mortality and hospital admission in heart failure (HF) patients. However, the role of MMP-2 gene polymorphisms in the susceptibility and prognosis of HF remains elusive. In this study, 308 HF outpatients (216 Caucasian- and 92 African-Brazilians) and 333 healthy subjects (256 Caucasian- and 77 African-Brazilians) were genotyped for the -1575G>A (rs243866), -1059G>A (rs17859821), and -790G>T (rs243864) polymorphisms in the MMP-2 gene. Polymorphisms were analyzed individually and in combination (haplotype), and positive associations were adjusted for clinical covariates. Although allele frequencies were similar in HF patients and controls in both ethnic groups, homozygotes for the minor alleles were not found among African-Brazilian patients. After a median follow-up of 5.3 years, 124 patients (40.3%) died (54.8% of them for HF). In Caucasian-Brazilians, the TT genotype of the -790G>T polymorphism was associated with a decreased risk of HF-related death as compared with GT genotype (hazard ratio [HR] = 0.512, 95% confidence interval [CI] 0.285-0.920). However, this association was lost after adjusting for clinical covariates (HR = 0.703, 95% CI 0.365-1.353). Haplotype analysis revealed similar findings, as patients homozygous for the -1575G/-1059G/-790T haplotype had a lower rate of HF-related death than those with any other haplotype combination (12.9% versus 28.5%, respectively; P = 0.010). Again, this association did not remain after adjusting for clinical covariates (HR = 0.521, 95% CI 0.248-1.093). Our study does not exclude the possibility that polymorphisms in MMP-2 gene, particularly the -790G>T polymorphism, might be related to HF prognosis. However, due to the limitations of the study, our findings need to be confirmed in further larger studies. PMID:27551966

  13. [State of the liver antioxidant system and content of matrix metalloproteinase-2 of the large intestine under the effect of maleimide derivative in experimental colorectal carcinogenesis in rats].

    PubMed

    Filins'ka, O M; Iablons'ka, S V; Mandryk, S Ia; Kharchuk, I V; Ostrovs'ka, H V; Rybal'chenko, V K

    2010-01-01

    The maleimide derivative--1-(4-Cl-benzyl)-3-Cl-4-(CF3-phenylamino)-1H-pyrrol-2.5-dione (MI-1) with cytostatic activity did not cause substantial changes of liver antioxidant system and level of matrix metalloproteinase-2 in intestinal mucosa after chronic treatment (for 20 weeks). MI-1 did not cause significant changes in the content of thiobarbituric-active products and plasma membrane protein carbonyl groups in the rat liver. However activities of superoxide dismutase, glutathione peroxidase, and content of reduced glutathione were decreased in both doses--0.027 and 2.7 mg/kg. The level of matrix metalloproteinase-2 in intestinal mucosa was decreased just in maximum dose--2.7 mg/kg. The contents of thiobarbituric-active products, protein carbonyl groups, reduced glutathione, matrix metalloproteinase-2, activities of glutathione peroxidase and glutathione-S-transferase in the liver cells have increased in 1.2-dimethylhydrazine-induced colon cancer in rats. The activities of enzymes of the first line of antioxidant defense--superoxide dismutase and catalase were decreased to 40%. The maleimide derivative prevents development of oxidation stress and partially reduce them to control level.

  14. Membrane-type 1 matrix metalloproteinase regulates fibronectin assembly and N-cadherin adhesion.

    PubMed

    Takino, Takahisa; Yoshimoto, Taisuke; Nakada, Mitsutoshi; Li, Zichen; Domoto, Takahiro; Kawashiri, Shuichi; Sato, Hiroshi

    2014-07-25

    Fibronectin matrix formation requires the increased cytoskeletal tension generated by cadherin adhesions, and is suppressed by membrane-type 1 matrix metalloproteinase (MT1-MMP). In a co-culture of Rat1 fibroblasts and MT1-MMP-silenced HT1080 cells, fibronectin fibrils extended from Rat1 to cell-matrix adhesions in HT1080 cells, and N-cadherin adhesions were formed between Rat1 and HT1080 cells. In control HT1080 cells contacting with Rat1 fibroblasts, cell-matrix adhesions were formed in the side away from Rat1 fibroblasts, and fibronectin assembly and N-cadherin adhesions were not formed. The role of N-cadherin adhesions in fibronectin matrix formation was studied using MT1-MMP-silenced HT1080 cells. MT1-MMP knockdown promoted fibronectin matrix assembly and N-cadherin adhesions in HT1080 cells, which was abrogated by double knockdown with either integrin β1 or fibronectin. Conversely, inhibition of N-cadherin adhesions by its knockdown or treatment with its neutralizing antibody suppressed fibronectin matrix formation in MT1-MMP-silenced cells. These results demonstrate that fibronectin assembly initiated by MT1-MMP knockdown results in increase of N-cadherin adhesions, which are prerequisite for further fibronectin matrix formation.

  15. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    SciTech Connect

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V. . E-mail: reddysv@musc.edu

    2007-01-01

    Osteoclast differentiation is tightly regulated by receptor activator of NF-{kappa}B ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity in RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+ 1 to - 1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to + 1 bp to - 446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from - 446 bp to - 1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (- 1123 bp to - 1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter activity

  16. Metalloproteinases: A parade of functions in matrix biology and an outlook for the future.

    PubMed

    Apte, Suneel S; Parks, William C

    2015-01-01

    This issue of Matrix Biology is devoted to exploring how metalloproteinases - here inclusive of related families of extracellular proteinases - act on extracellular matrix (ECM) proteins to influence an astonishing diversity of biological systems and diseases. Since their discovery in the 1960's, matrix metalloproteinases (MMPs) have oft and widely been considered as the principal mediators of ECM destruction. However, as becomes clear from several articles in this issue, MMPs affect processes that both promote and limit ECM assembly, structure, and quantity. Furthermore, it has become increasingly apparent that ECM proteolysis is neither the exclusive function of MMPs nor their only sphere of influence. Thus, other enzymes may be important participants in ECM proteolysis, and indeed they are. The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 repeat) proteinases, BMP/tolloid proteases, and meprins have all emerged as major mechanisms of ECM proteolysis. An aggregate view of proteolysis as an exquisitely specific and crucial post-translational modification of secreted proteins emerges from these reviews. The cumulative evidence strongly suggests that although some MMPs can and do cleave ECM components, notably fibrillar collagens, the majority of these proteinases are not key physiological participants in morphogenesis nor in control of matrix metabolism in homeostasis or disease. In contrast, deficiency of ADAMTS proteases leads to a remarkable array of morphogenetic defects and connective tissue disorders consistent with a specialized role in turnover of the embryonic provisional ECM and in ECM assembly. Astacin-related proteases emerge into crucial positions in ECM assembly and turnover, although they also have numerous roles related to morphogen and growth factor regulation. To further turn the traditional view on its head, it is clear that many MMPs are key participants in many, diverse immune and inflammation processes

  17. Metalloproteinases: A parade of functions in matrix biology and an outlook for the future.

    PubMed

    Apte, Suneel S; Parks, William C

    2015-01-01

    This issue of Matrix Biology is devoted to exploring how metalloproteinases - here inclusive of related families of extracellular proteinases - act on extracellular matrix (ECM) proteins to influence an astonishing diversity of biological systems and diseases. Since their discovery in the 1960's, matrix metalloproteinases (MMPs) have oft and widely been considered as the principal mediators of ECM destruction. However, as becomes clear from several articles in this issue, MMPs affect processes that both promote and limit ECM assembly, structure, and quantity. Furthermore, it has become increasingly apparent that ECM proteolysis is neither the exclusive function of MMPs nor their only sphere of influence. Thus, other enzymes may be important participants in ECM proteolysis, and indeed they are. The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 repeat) proteinases, BMP/tolloid proteases, and meprins have all emerged as major mechanisms of ECM proteolysis. An aggregate view of proteolysis as an exquisitely specific and crucial post-translational modification of secreted proteins emerges from these reviews. The cumulative evidence strongly suggests that although some MMPs can and do cleave ECM components, notably fibrillar collagens, the majority of these proteinases are not key physiological participants in morphogenesis nor in control of matrix metabolism in homeostasis or disease. In contrast, deficiency of ADAMTS proteases leads to a remarkable array of morphogenetic defects and connective tissue disorders consistent with a specialized role in turnover of the embryonic provisional ECM and in ECM assembly. Astacin-related proteases emerge into crucial positions in ECM assembly and turnover, although they also have numerous roles related to morphogen and growth factor regulation. To further turn the traditional view on its head, it is clear that many MMPs are key participants in many, diverse immune and inflammation processes

  18. The Role of Microglia and Matrix Metalloproteinases Involvement in Neuroinflammation and Gliomas

    PubMed Central

    Könnecke, Helen; Bechmann, Ingo

    2013-01-01

    Matrix metalloproteinases (MMPs) are involved in the pathogenesis of neuroinflammatory diseases (such as multiple sclerosis) as well as in the expansion of malignant gliomas because they facilitate penetration of anatomical barriers (such as the glia limitans) and migration within the neuropil. This review elucidates pathomechanisms and summarizes the current knowledge of the involvement of MMPs in neuroinflammation and glioma, invasion highlighting microglia as major sources of MMPs. The induction of expression, suppression, and multiple pathways of function of MMPs in these scenarios will also be discussed. Understanding the induction and action of MMPs might provide valuable information and reveal attractive targets for future therapeutic strategies. PMID:24023566

  19. Effect of hesperidin on matrix metalloproteinases and antioxidant status during nicotine-induced toxicity.

    PubMed

    Balakrishnan, Annida; Menon, Venugopal P

    2007-09-01

    Cigarette smoking has been established as a major risk factor for atherosclerosis and also for lung cancer. Nicotine is an active substance present in tobacco. We have analyzed the effect of hesperidin, a bioflavonoid on nicotine induced toxicity. Antioxidant status and expression of MMPs (Matrix metalloproteinases) were analyzed to monitor the protective effect of hesperidin against nicotine toxicity. Our result demonstrated that nicotine significantly up regulates the expression of MMPs and depletes the antioxidant status. On treatment with hesperidin we found the down regulation of expression of MMPs and enhancement in antioxidant status. Hence it could be developed as a drug against tobacco related disease in near future. PMID:17643689

  20. Fluorinated matrix metalloproteinases inhibitors--Phosphonate based potential probes for positron emission tomography.

    PubMed

    Beutel, Bernd; Daniliuc, Constantin G; Riemann, Burkhard; Schäfers, Michael; Haufe, Günter

    2016-02-15

    Fluorine-containing inhibitors of matrix metalloproteinases (MMPs) can serve as lead structures for the development of (18)F-labeled radioligands. These compounds might be useful as non-invasive imaging probes to characterize pathologies associated with increased MMP activity. Results with a series of fluorinated analogs of a known biphenyl sulfonamide inhibitor have shown that fluorine can be incorporated into two different positions of the molecular scaffold without significant loss of potency in the nanomolar range. Additionally, the potential of a hitherto unknown fluorinated tertiary sulfonamide as MMP inhibitor has been demonstrated.

  1. Matrix Metalloproteinase-9 as a Novel Player in Synaptic Plasticity and Schizophrenia

    PubMed Central

    Lepeta, Katarzyna; Kaczmarek, Leszek

    2015-01-01

    Recent findings implicate alterations in glutamate signaling, leading to aberrant synaptic plasticity, in schizophrenia. Matrix metalloproteinase-9 (MMP-9) has been shown to regulate glutamate receptors, be regulated by glutamate at excitatory synapses, and modulate physiological and morphological synaptic plasticity. By means of functional gene polymorphism, gene responsiveness to antipsychotics and blood plasma levels MMP-9 has recently been implicated in schizophrenia. This commentary critically reviews these findings based on the hypothesis that MMP-9 contributes to pathological synaptic plasticity in schizophrenia. PMID:25837304

  2. Hydrogel-Framed Nanofiber Matrix Integrated with a Microfluidic Device for Fluorescence Detection of Matrix Metalloproteinases-9.

    PubMed

    Han, Sang Won; Koh, Won-Gun

    2016-06-21

    Matrix metalloproteinases (MMPs) play a pivotal role in regulating the composition of the extracellular matrix and have a critical role in vascular disease, cancer progression, and bone disorders. This paper describes the design and fabrication of a microdevice as a new platform for highly sensitive MMP-9 detection. In this sensing platform, fluorescein isocyanate (FITC)-labeled MMP-9 specific peptides were covalently immobilized on an electrospun nanofiber matrix to utilize an enzymatic cleavage strategy. Prior to peptide immobilization, the nanofiber matrix was incorporated into hydrogel micropatterns for easy size control and handling of the nanofiber matrix. The resultant hydrogel-framed nanofiber matrix immobilizing the peptides was inserted into microfluidic devices consisting of reaction chambers and detection zones. The immobilized peptides were reacted with the MMP-9-containing solution in a reaction chamber, which resulted in the cleavage of the FITC-containing peptide fragments and subsequently generated fluorescent flow at the detection zone. As higher concentrations of the MMP-9 solution were introduced or larger peptide-immobilizing nanofiber areas were used, more peptides were cleaved, and a stronger fluorescence signal was observed. Due to the huge surface area of the nanofiber and small dimensions of the microsystem, a faster response time (30 min) and lower detection limit (10 pM) could be achieved in this study. The hydrogel-framed nanofiber matrix is disposable and can be replaced with new ones immobilizing either the same or different biomolecules for various bioassays, while the microfluidic system can be continuously reused. PMID:27214657

  3. Hydrogel-Framed Nanofiber Matrix Integrated with a Microfluidic Device for Fluorescence Detection of Matrix Metalloproteinases-9.

    PubMed

    Han, Sang Won; Koh, Won-Gun

    2016-06-21

    Matrix metalloproteinases (MMPs) play a pivotal role in regulating the composition of the extracellular matrix and have a critical role in vascular disease, cancer progression, and bone disorders. This paper describes the design and fabrication of a microdevice as a new platform for highly sensitive MMP-9 detection. In this sensing platform, fluorescein isocyanate (FITC)-labeled MMP-9 specific peptides were covalently immobilized on an electrospun nanofiber matrix to utilize an enzymatic cleavage strategy. Prior to peptide immobilization, the nanofiber matrix was incorporated into hydrogel micropatterns for easy size control and handling of the nanofiber matrix. The resultant hydrogel-framed nanofiber matrix immobilizing the peptides was inserted into microfluidic devices consisting of reaction chambers and detection zones. The immobilized peptides were reacted with the MMP-9-containing solution in a reaction chamber, which resulted in the cleavage of the FITC-containing peptide fragments and subsequently generated fluorescent flow at the detection zone. As higher concentrations of the MMP-9 solution were introduced or larger peptide-immobilizing nanofiber areas were used, more peptides were cleaved, and a stronger fluorescence signal was observed. Due to the huge surface area of the nanofiber and small dimensions of the microsystem, a faster response time (30 min) and lower detection limit (10 pM) could be achieved in this study. The hydrogel-framed nanofiber matrix is disposable and can be replaced with new ones immobilizing either the same or different biomolecules for various bioassays, while the microfluidic system can be continuously reused.

  4. The serum matrix metalloproteinase-9 level is an independent predictor of recurrence after ablation of persistent atrial fibrillation

    PubMed Central

    Wu, Gang; Wang, Shun; Cheng, Mian; Peng, Bin; Liang, Jingjun; Huang, He; Jiang, Xuejun; Zhang, Lizhi; Yang, Bo; Cha, Yongmei; Jiang, Hong; Huang, Congxin

    2016-01-01

    OBJECTIVES: This study investigated whether the serum matrix metalloproteinase-9 level is an independent predictor of recurrence after catheter ablation for persistent atrial fibrillation. METHODS: Fifty-eight consecutive patients with persistent atrial fibrillation were enrolled and underwent catheter ablation. The serum matrix metalloproteinase-9 level was detected before ablation and its relationship with recurrent arrhythmia was analyzed at the end of the follow-up. RESULTS: After a mean follow-up of 12.1±7.2 months, 21 (36.2%) patients had a recurrence of their arrhythmia after catheter ablation. At baseline, the matrix metalloproteinase-9 level was higher in the patients with recurrence than in the non-recurrent group (305.77±88.90 vs 234.41±93.36 ng/ml, respectively, p=0.006). A multivariate analysis showed that the matrix metalloproteinase-9 level was an independent predictor of arrhythmia recurrence, as was a history of atrial fibrillation and the diameter of the left atrium. CONCLUSION: The serum matrix metalloproteinase-9 level is an independent predictor of recurrent arrhythmia after catheter ablation in patients with persistent atrial fibrillation. PMID:27276393

  5. Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas: A systematic review and meta-analysis of case-control trials.

    PubMed

    Liu, Hong-Yan; Gu, Wei-Jun; Wang, Cheng-Zhi; Ji, Xiao-Jian; Mu, Yi-Ming

    2016-06-01

    The extracellular matrix is important for tumor invasion and metastasis. Normal function of the extracellular matrix depends on the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The objective of this meta-analysis was to assess the relationship between expression of MMP-9, MMP-2, and TIMP-2 and invasion of pituitary adenomas.We searched Pubmed, Embase, and the Chinese Biomedical Database up to October 2015. RevMan 5.1 software (Cochrane Collaboration, Copenhagen, Denmark) was used for statistical analysis. We calculated the standardized mean difference (SMD) for data expressed as mean ± standard deviation because of the difference in the detection method.Twenty-four studies (1320 patients) were included. MMP-9 expression was higher in the patients with invasive pituitary adenomas (IPAs) than patients with noninvasive pituitary adenomas (NIPAs) with detection methods of IHC [odds ratio (OR) = 5.48, 95% confidence interval (CI) = 2.61-11.50, P < 0.00001), and reverse transcriptase-polymerase chain reaction (SMD = 2.28, 95% CI = 0.91-3.64, P = 0.001). MMP-2 expression was also increased in patients with IPAs at the protein level (OR = 3.58, 95% CI = 1.63-7.87, P = 0.001), and RNA level (SMD = 3.91, 95% CI = 1.52-6.29, P = 0.001). Meta-analysis showed that there was no difference in TIMP-2 expression between invasive and NIPAs at the protein level (OR = 0.38, 95% CI = 0.06-2.26, P = 0.29). MMP-9 expression in prolactinomas and nonfunctioning pituitary adenomas was also no difference (OR = 1.03, 95% CI = 0.48-2.20, P = 0.95).The results indicated that MMP-9 and -2 may be correlated with invasiveness of pituitary adenomas, although their relationship with functional status of pituitary adenomas is still not clear. TIMP-2 expression in IPAs needs to be investigated further. PMID:27310993

  6. Yellow wine polyphenolic compounds inhibit matrix metalloproteinase-2, -9 expression and improve atherosclerotic plaque in LDL-receptor-knockout mice.

    PubMed

    Zhai, Xiaoya; Chi, Jufang; Tang, Weiliang; Ji, Zheng; Zhao, Fei; Jiang, Chengjian; Lv, Haitao; Guo, Hangyuan

    2014-01-01

    Many epidemiological studies have strongly suggested an inverse correlation between dietary polyphenol consumption and reduced risks of cardiovascular diseases. Yellow rice wine is a Chinese specialty and one of the three most ancient wines in the world (Shaoxing rice wine, beer, and grape wine). There is a large amount of polyphenol substances in yellow rice wine. This experiment was designed to study the potential beneficial effects of yellow wine polyphenolic compounds (YWPC) from yellow rice wine on progression of atherosclerosis in vivo and to further explore its underlying mechanisms. Six-week-old male LDL-receptor-knockout mice were treated with high-fat diet to establish the mouse model with atherosclerosis. Animals received 10, 30, or 50 mg/kg per day of YWPC or 10 mg/kg per day rosuvastatin or water (vehicle) for 14 weeks. The results indicated that YWPC and rosuvastatin significantly decreased circulating total cholesterol and low-density lipoprotein cholesterol. Compared to the control group, the atherosclerosis lesion area in the rosuvastatin-intervention group and YWPC at doses of 10, 30, and 50 mg/kg per day intervention groups decreased by 74.14%, 18.51%, 40.09%, and 38.42%, respectively. YWPC and rosuvastatin decreased the expression and activity of matrix metalloproteinases (MMP)-2, 9, whereas the expression of the endogenous inhibitors of these proteins, namely, tissue inhibitors of matrix metalloproteinases (TIMP)-1, 2, increased when compared to the control group. It can be concluded that the YWPC is similar to the benefic effects of rosuvastatin on cardiovascular system. These effects may be attributed to their anti-atherosclerotic actions by lowering lipid and modulating the activity and expression of MMP-2, 9 and TIMP-1, 2.

  7. Role of Matrix Metalloproteinases 2 and 9 in Lacrimal Gland Disease in Animal Models of Sjögren's Syndrome

    PubMed Central

    Aluri, Hema S.; Kublin, Claire L.; Thotakura, Suharika; Armaos, Helene; Samizadeh, Mahta; Hawley, Dillon; Thomas, William M.; Leavis, Paul; Makarenkova, Helen P.; Zoukhri, Driss

    2015-01-01

    Purpose Chronic inflammation of the lacrimal gland results in changes in the composition of the extracellular matrix (ECM), which is believed to compromise tissue repair. We hypothesized that increased production/activity of matrix metalloproteinases (MMPs), especially MMP-2 and -9, in inflamed lacrimal glands modifies the ECM environment, therefore disrupting tissue repair. Methods The lacrimal glands from female MRL/lpr and male NOD mice along with their respective control strains were harvested and divided into three pieces and processed for histology, immunohistochemistry, zymography, Western blotting, and RNA analyses. In another study, MRL/lpr mice were treated for 5 weeks with a selective MMP2/9 inhibitor peptide or a control peptide. At the end of treatment, the lacrimal glands were excised and the tissue was processed as described above. Results There was a 2.5- and 2.7-fold increase in MMP2 gene expression levels in MRL/lpr and NOD mice, respectively. Matrix metalloproteinase 2 and 9 enzymatic activities and protein expression levels were significantly upregulated in the lacrimal glands of MRL/lpr and NOD mice compared to controls. Treatment with the MMP2/9 inhibitor resulted in decreased activity of MMP-2 and -9 both in vitro and in vivo. Importantly, MMP2/9 inhibitor treatment of MRL/lpr mice improved aqueous tear production and resulted in reduced number and size of lymphocytic foci in diseased lacrimal glands. Conclusions We conclude that MMP2/9 expression and activity are elevated in lacrimal glands of two murine models of Sjögren's syndrome, suggesting that manipulation of MMP2/9 activity might be a potential therapeutic target in chronically inflamed lacrimal glands. PMID:26244298

  8. HPV16 Oncoproteins Promote Cervical Cancer Invasiveness by Upregulating Specific Matrix Metalloproteinases

    PubMed Central

    Kaewprag, Jittranan; Umnajvijit, Wareerat; Ngamkham, Jarunya; Ponglikitmongkol, Mathurose

    2013-01-01

    Production of matrix metalloproteinases (MMPs) for degradation of extracellular matrix is a vital step in cancer metastasis. We investigated the effects of HPV16 oncoproteins (16E6, 16E6*I and 16E7), either individually or combined, on the transcription of 7 MMPs implicated in cervical cancer invasiveness. The levels of 7 MMPs reported to be increased in cervical cancer were determined in C33A stably expressing different HPV16 oncoproteins using quantitative RT-PCR and compared with invasion ability of cell lines using in vitro invasion and wound healing assays. Overexpression of MMP-2 and MT1-MMP was detected in HPV16E6E7 expressing cells which correlated with increased cell invasion. Combination of HPV oncoproteins always showed greater effects than its individual form. Inhibition of cell invasion using a specific MMP-2 inhibitor, OA-Hy, and anti-MT1-MMP antibody confirmed that invasion in these cells was dependent on both MMP-2 and MT1-MMP expression. Depletion of HPV16E6E7 by shRNA-mediated knock-down experiments resulted in decreased MMP-2 and MT1-MMP expression levels as well as reduced invasion ability which strongly suggested specific effects of HPV oncoproteins on both MMPs and on cell invasion. Immunohistochemistry study in invasive cervical cancers confirmed the enhanced in vivo expression of these two MMPs in HPV16-infected cells. In addition, possible sites required by HPV16E6E7 on the MMP-2 and MT1-MMP promoters were investigated and PEA3 (at −552/−540 for MMP-2, −303 for MT1-MMP) and Sp1 (at −91 for MMP-2, −102 for MT1-MMP) binding sites were shown to be essential for mediating their transactivation activity. In conclusion, our study demonstrated that HPV16E6 and E7 oncoproteins cooperate in promoting cervical cancer invasiveness by specifically upregulating MMP-2 and MT1-MMP transcription in a similar manner. PMID:23967226

  9. HPV16 oncoproteins promote cervical cancer invasiveness by upregulating specific matrix metalloproteinases.

    PubMed

    Kaewprag, Jittranan; Umnajvijit, Wareerat; Ngamkham, Jarunya; Ponglikitmongkol, Mathurose

    2013-01-01

    Production of matrix metalloproteinases (MMPs) for degradation of extracellular matrix is a vital step in cancer metastasis. We investigated the effects of HPV16 oncoproteins (16E6, 16E6*I and 16E7), either individually or combined, on the transcription of 7 MMPs implicated in cervical cancer invasiveness. The levels of 7 MMPs reported to be increased in cervical cancer were determined in C33A stably expressing different HPV16 oncoproteins using quantitative RT-PCR and compared with invasion ability of cell lines using in vitro invasion and wound healing assays. Overexpression of MMP-2 and MT1-MMP was detected in HPV16E6E7 expressing cells which correlated with increased cell invasion. Combination of HPV oncoproteins always showed greater effects than its individual form. Inhibition of cell invasion using a specific MMP-2 inhibitor, OA-Hy, and anti-MT1-MMP antibody confirmed that invasion in these cells was dependent on both MMP-2 and MT1-MMP expression. Depletion of HPV16E6E7 by shRNA-mediated knock-down experiments resulted in decreased MMP-2 and MT1-MMP expression levels as well as reduced invasion ability which strongly suggested specific effects of HPV oncoproteins on both MMPs and on cell invasion. Immunohistochemistry study in invasive cervical cancers confirmed the enhanced in vivo expression of these two MMPs in HPV16-infected cells. In addition, possible sites required by HPV16E6E7 on the MMP-2 and MT1-MMP promoters were investigated and PEA3 (at -552/-540 for MMP-2, -303 for MT1-MMP) and Sp1 (at -91 for MMP-2, -102 for MT1-MMP) binding sites were shown to be essential for mediating their transactivation activity. In conclusion, our study demonstrated that HPV16E6 and E7 oncoproteins cooperate in promoting cervical cancer invasiveness by specifically upregulating MMP-2 and MT1-MMP transcription in a similar manner.

  10. Tauroursodeoxycholic acid reduces the invasion of MDA-MB-231 cells by modulating matrix metalloproteinases 7 and 13

    PubMed Central

    Park, Ga-Young; Han, Yu Kyeong; Han, Jeong Yoon; Lee, Chang Geun

    2016-01-01

    Tauroursodeoxycholic acid (TUDCA) is a conjugated form of UDCA that modulates several signaling pathways and acts as a chemical chaperone to relieve endoplasmic reticulum (ER) stress. The present study showed that TUDCA reduced the invasion of the MDA-MB-231 metastatic breast cancer cell line under normoxic and hypoxic conditions using an in vitro invasion assay. Quantitative polymerase chain reaction assay revealed that the reduced invasion following TUDCA treatment was associated with a decreased expression of matrix metalloproteinase (MMP)-7 and −13, which play important roles in invasion and metastasis. Inhibitors and short hairpin RNAs were used to show that the effect of TUDCA in the reduction of invasion appeared to be dependent on the protein kinase RNA-like ER kinase pathway, a downstream ER stress signaling pathway. Thus, TUDCA is a candidate anti-metastatic agent to target the ER stress pathway.

  11. Olfactory ensheathing cells (OECs) degrade neurocan in injured spinal cord by secreting matrix metalloproteinase-2 in a rat contusion model.

    PubMed

    Yui, Sho; Fujita, Naoki; Chung, Cheng-Shu; Morita, Maresuke; Nishimura, Ryohei

    2014-11-01

    The mechanism by which olfactory ensheathing cells (OECs) exert their potential to promote functional recovery after transplantation into spinal cord injury (SCI) tissue is not fully understood, but the relevance of matrix metalloproteinases (MMPs) has been suggested. We evaluated the expression of MMPs in OECs in vitro and the MMP secretion by OECs transplanted in injured spinal cord in vivo using a rat SCI model. We also evaluated the degradation of neurocan, which is one of the axon-inhibitory chondroitin sulfate proteoglycans, using SCI model rats. The in vitro results showed that MMP-2 was the dominant MMP expressed by OECs. The in vivo results revealed that transplanted OECs secreted MMP-2 in injured spinal cord and that the expression of neurocan was significantly decreased by the transplantation of OECs. These results suggest that OECs transplanted into injured spinal cord degraded neurocan by secreting MMP-2.

  12. Tauroursodeoxycholic acid reduces the invasion of MDA-MB-231 cells by modulating matrix metalloproteinases 7 and 13

    PubMed Central

    Park, Ga-Young; Han, Yu Kyeong; Han, Jeong Yoon; Lee, Chang Geun

    2016-01-01

    Tauroursodeoxycholic acid (TUDCA) is a conjugated form of UDCA that modulates several signaling pathways and acts as a chemical chaperone to relieve endoplasmic reticulum (ER) stress. The present study showed that TUDCA reduced the invasion of the MDA-MB-231 metastatic breast cancer cell line under normoxic and hypoxic conditions using an in vitro invasion assay. Quantitative polymerase chain reaction assay revealed that the reduced invasion following TUDCA treatment was associated with a decreased expression of matrix metalloproteinase (MMP)-7 and −13, which play important roles in invasion and metastasis. Inhibitors and short hairpin RNAs were used to show that the effect of TUDCA in the reduction of invasion appeared to be dependent on the protein kinase RNA-like ER kinase pathway, a downstream ER stress signaling pathway. Thus, TUDCA is a candidate anti-metastatic agent to target the ER stress pathway. PMID:27602168

  13. HIV-1-infected macrophages induce astrogliosis by SDF-1{alpha} and matrix metalloproteinases

    SciTech Connect

    Okamoto, Mika; Wang, Xin; Baba, Masanori . E-mail: baba@m.kufm.kagoshima-u.ac.jp

    2005-11-04

    Brain macrophages/microglia and astrocytes are known to be involved in the pathogenesis of HIV-1-associated dementia (HAD). To clarify their interaction and contribution to the pathogenesis, HIV-1-infected or uninfected macrophages were used as a model of brain macrophages/microglia, and their effects on human astrocytes in vitro were examined. The culture supernatants of HIV-1-infected or uninfected macrophages induced significant astrocyte proliferation, which was annihilated with a neutralizing antibody to stromal cell-derived factor (SDF)-1{alpha} or a matrix metalloproteinase (MMP) inhibitor. In these astrocytes, CXCR4, MMP, and tissue inhibitors of matrix metalloproteinase mRNA expression and SDF-1{alpha} production were significantly up-regulated. The supernatants of infected macrophages were always more effective than those of uninfected cells. Moreover, the enhanced production of SDF-1{alpha} was suppressed by the MMP inhibitor. These results indicate that the activated and HIV-1-infected macrophages can indirectly induce astrocyte proliferation through up-regulating SDF-1{alpha} and MMP production, which implies a mechanism of astrogliosis in HAD.

  14. Changes in the Expression and Protein Level of Matrix Metalloproteinases after Exposure to Waterpipe Tobacco Smoke

    PubMed Central

    Khabour, Omar; Alzoubi, Karem H.; Abu Thiab, Tuqa M.; Al-Husein, Belal A.; Eissenberg, Thomas; Shihadeh, Alan

    2016-01-01

    Waterpipe smoking has become a worldwide epidemic with health consequences that only now are beginning to be understood fully. Because waterpipe use involves inhaling a large volume of toxicant-laden smoke that can cause inflammation, some health consequences may include inflammation-mediated lung injury. Excess matrix metalloproteinase expression is a key step in the etiology of toxicant exposure-driven inflammation and injury. In this study, changes in the level and mRNA of major matrix metalloproteinases (MMP-1, -9 and -12) in the lungs of mice following exposure to waterpipe smoke were investigated. Balb/c mice were exposed to waterpipe smoke for one hour daily, over a period of two or eight weeks. Control mice were exposed to fresh air only. ELISA and Real-Time PCR techniques were used to determine the protein and mRNA levels of MMP1, 9 and 12 respectively in the lungs. Our findings showed that MMP1, 9 and 12 levels in the lung significantly increased after both two (P < 0.05) and eight weeks (P < 0.01) exposures. Similarly, RT-PCR findings showed that mRNA of those proteinases significantly increased following two (P < 0.01) and eight weeks (P < 0.001) exposures. In conclusion, waterpipe smoking is associated strongly with lung injury as measured by elevation in the expression of MMPs in the lung tissue. PMID:26484568

  15. Relationship between the Expression of Matrix Metalloproteinase and Clinicopathologic Features in Oral Squamous Cell Carcinoma

    PubMed Central

    Jafarian, Amir Hossein; Vazife Mostaan, Leila; Mohammadian Roshan, Nema; Khazaeni, Kamran; Parsazad, Shafagh; Gilan, Hamed

    2015-01-01

    Introduction: Squamous cell carcinoma of the oral cavity is one of the most important and common types of head and neck malignancy, with an estimated rate of 4% among all human malignancies. The aim of this study was to determine the association between expression of matrix metalloproteinase 2 and 9 and the clinicopathological features of oral squamous cell carcinoma (OSCC). Materials and Methods: One hundred existing samples of formalin-fixed paraffin embedded specimens of OSCC were evaluated by immunohistochemistry staining for matrix metalloproteinase 2 and 9 antibodies. Samples were divided into four groups: negative, <10%, 10–50%, and >50%. Patient records were assessed for demographic characteristics such as age and gender, smoking and family history of OSCC as well as tumor features including location, differentiation, stage and lymph node involvement. Results: In this study, 58 patients (58%) were male and 42 (42%) female. The mean age of patients was 60.38±14.07 years. The average number of lymph nodes involved was 8.9±3.8. Tumoral grade, tumoral stage, lymphatic metastasis and history of smoking were significantly related to MMP2 and MMP9 expression. Conclusion: Our study demonstrated that MMP2 and MMP9 expression are important in the development of OSCC. PMID:26082904

  16. Biochemical insights into the role of matrix metalloproteinases in regeneration: challenges and recent developments

    PubMed Central

    Bellayr, IH; Mu, X; Li, Y

    2009-01-01

    Matrix metalloproteinases (MMPs) are a group of proteases that belong to the metazincin family. These proteins consist of similar structures featuring a signaling peptide, a propeptide domain, a catalytic domain where the notable zinc ion binding site is found and a hinge region that binds to the C-terminal hemoplexin domain. MMPs can be produced by numerous cell types through secretion or localization to the cell membrane. While certain chemical compounds have been known to generally inhibit MMPs, naturally occurring proteins known as tissue inhibitors of metalloproteinases (TIMPs) effectively interact with MMPs to modify their biological roles. MMPs are very important enzymes that actively participate in remodeling the extracellular matrix by degrading certain constituents, along with promoting cell proliferation, migration, differentiation, apoptosis and angiogenesis. In normal adult tissue, they are almost undetectable; however, when perturbed through injury, disease or pregnancy, they have elevated expression. The goal of this review is to identify new experimental findings that have provided further insight into the role of MMPs in skeletal muscle, nerve and dermal tissue, as well as in the liver, heart and kidneys. Increased expression of MMPs can improve the regeneration potential of wounds; however, an imbalance between MMP and TIMP expression can prove to be destructive for afflicted tissues. PMID:20161478

  17. Matrix metalloproteinase-9 and vascular endothelial growth factor expression change in experimental retinal neovascularization

    PubMed Central

    Di, Yu; Nie, Qing-Zhu; Chen, Xiao-Long

    2016-01-01

    AIM To investigate the signal transduction mechanism of matrix metalloproteinase-9 (MMP-9) mediated- vascular endothelial growth factor (VEGF) expression and retinal neovascularization (RNV) in oxygen-induced retinopathy (OIR) model. METHODS C57BL/6J mice were divided into four groups: control group, OIR group, OIR control group (phosphate-buffered saline by intravitreal injection) and treated group [tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) by intravitreal injection]. OIR model was established in C57BL/6J mice exposed to 75%±2% oxygen for 5d. mRNA level and protein expression of MMP-9, TIMP-1 and VEGF were measured by real-time polymerase chain reaction and Western blotting, and located by immunohistochemistry. RESULTS Levels of MMP-9 and VEGF in retina were significantly increased in animals with OIR and OIR control group. Levels of TIMP-1 in retina was significantly reduced in animals with OIR and OIR control group. Furthermore, a significant correlation was found between MMP-9 and VEGF. Intravitreal injection of TIMP-1 significantly reduced MMP-9 and VEGF expression of the OIR mouse model (all P<0.05). CONCLUSION These results demonstrate that MMP-9-mediated up-regulation of VEGF promotes RNV in retinopathy of prematurity (ROP). TIMP-1 may be a potential target for the prevention and treatment of ROP. PMID:27366678

  18. The Role of Host-derived Dentinal Matrix Metalloproteinases in Reducing Dentin Bonding of Resin Adhesives

    PubMed Central

    Zhang, Shan-chuan; Kern, Matthias

    2009-01-01

    Dentin matrix metalloproteinases (MMPs) are a family of host-derived proteolytic enzymes trapped within mineralized dentin matrix, which have the ability to hydrolyze the organic matrix of demineralized dentin. After bonding with resins to dentin there are usually some exposed collagen fibrils at the bottom of the hybrid layer owing to imperfect resin impregnation of the demineralized dentin matrix. Exposed collagen fibrils might be affected by MMPs inducing hydrolytic degradation, which might result in reduced bond strength. Most MMPs are synthesized and released from odontoblasts in the form of proenzymes, requiring activation to degrade extracellular matrix components. Unfortunately, they can be activated by modern self-etch and etch-and-rinse adhesives. The aim of this review is to summarize the current knowledge of the role of dentinal host-derived MMPs in dentin matrix degradation. We also discuss various available MMP inhibitors, especially chlorhexidine, and suggest that they could provide a potential pathway for inhibiting collagen degradation in bonding interfaces thereby increasing dentin bonding durability. PMID:20690420

  19. An apolipoprotein E4 fragment affects matrix metalloproteinase 9, tissue inhibitor of metalloproteinase 1 and cytokine levels in brain cell lines.

    PubMed

    Dafnis, I; Tzinia, A K; Tsilibary, E C; Zannis, V I; Chroni, A

    2012-05-17

    Apolipoprotein (apo) E4 isoform, a major risk factor for Alzheimer disease (AD), is more susceptible to proteolysis than apoE2 and apoE3 isoforms. ApoE4 fragments have been found in AD patients' brain. In the present study, we examined the effect of full-length apoE4 and apoE4 fragments apoE4[Δ(186-299)] and apoE4[Δ(166-299)] on inflammation in human neuroblastoma SK-N-SH and human astrocytoma SW-1783 cells. Western blot and zymography analysis showed that treatment of SK-N-SH cells with apoE4[Δ(186-299)], but not full-length apoE4 or the shorter apoE4[Δ(166-299)] fragment, leads to increased extracellular levels of matrix metalloproteinase 9 (MMP9) and tissue inhibitor of metalloproteinase 1 (TIMP1). Real-time PCR showed that interleukin (IL)-1β gene expression is also increased in SK-N-SH cells treated with apoE4[Δ(186-299)]. Treatment of SK-N-SH cells with IL-1β leads to increased MMP9 and TIMP1 extracellular levels, suggesting that the induction of IL-1β may be the mechanism by which apoE4[Δ(186-299)] regulates MMP9 and TIMP1 levels in these cells. In contrast to SK-N-SH cells, treatment of SW-1783 cells with apoE4[Δ(186-299)], and to a lesser extent with apoE4, leads to increased TIMP1 extracellular levels without affecting MMP9 levels. Additionally, apoE4[Δ(186-299)] leads to decreased IL-10 gene expression in SK-N-SH cells, whereas both apoE4 and apoE4[Δ(186-299)] lead to decreased TNFα gene expression without affecting IL-1β and IL-10 gene expression in SW-1783 cells. Overall, our findings indicate that a specific apoE4 fragment (apoE4[Δ(186-299)]), with molecular mass similar that of apoE4 fragments detected in AD patients' brain, can influence the level of inflammatory molecules in brain cell lines. It is possible that these phenomena contribute to AD pathogenesis.

  20. The role of matrix metalloproteinases in muscle and adipose tissue development and meat quality: A review.

    PubMed

    Christensen, Sara; Purslow, Peter P

    2016-09-01

    Matrix metalloproteinases (MMPs) are a group of enzymes that degrade extracellular matrix components but are also important signaling molecules that regulate many biological processes including muscle, adipose and connective tissue development. Most recently it has been discovered that MMPs act as intracellular signaling molecules inducing gene expression and altering related proteins in the nucleus. Several single nucleotide polymorphisms of MMPs and their inhibitors are known to exist and most of the research on MMPs to date has focused on their activity in relation to human health and disease. Nevertheless there is a growing body of evidence identifying important roles of MMPs as regulators of myogenesis, fibrogenesis and adipogenesis. The aim of this review is to highlight the currently known functions of the MMPs that have a direct bearing on the deposition of meat components and their relationship with meat quality. Some central pathways by which these enzymes can affect the tenderness, the amount and type of fatty acids are highlighted. PMID:27180222

  1. The role of matrix metalloproteinases in muscle and adipose tissue development and meat quality: A review.

    PubMed

    Christensen, Sara; Purslow, Peter P

    2016-09-01

    Matrix metalloproteinases (MMPs) are a group of enzymes that degrade extracellular matrix components but are also important signaling molecules that regulate many biological processes including muscle, adipose and connective tissue development. Most recently it has been discovered that MMPs act as intracellular signaling molecules inducing gene expression and altering related proteins in the nucleus. Several single nucleotide polymorphisms of MMPs and their inhibitors are known to exist and most of the research on MMPs to date has focused on their activity in relation to human health and disease. Nevertheless there is a growing body of evidence identifying important roles of MMPs as regulators of myogenesis, fibrogenesis and adipogenesis. The aim of this review is to highlight the currently known functions of the MMPs that have a direct bearing on the deposition of meat components and their relationship with meat quality. Some central pathways by which these enzymes can affect the tenderness, the amount and type of fatty acids are highlighted.

  2. A new biological marker candidate in female reproductive system diseases: Matrix metalloproteinase with thrombospondin motifs (ADAMTS)

    PubMed Central

    Demircan, Kadir; Cömertoğlu, İsmail; Akyol, Sümeyya; Yiğitoğlu, Beyza Nur; Sarıkaya, Esma

    2014-01-01

    Playing a key role in the pathophysiology of many diseases, A Disintegrin-like and Metalloproteinase with Thrombospondin type-1 motif (ADAMTS) proteinases have been attracted more attention in obstetrics and gynecology. First discovered in 1997, this zinc-dependent proteinase family has 19 members today. These enzymes, which are located in the extracellular matrix (ECM), have a lot of very important functions, like matrix formation and resorption, angiogenesis, ovulation, and coagulation. In addition, in the pathogenesis of cancer, inflammation, arthritis, and connective tissue diseases, ADAMTS proteinases have crucial roles. The purpose of this review is to collect previous studies about obstetrics and gynecology that are related to ADAMTS enzymes and discuss the subject in many aspects to give an idea to the investigators who are interested in the subject. PMID:25584036

  3. Matrix metalloproteinase expression and localization in turkey (Meleagris gallopavo) during the endochondral ossification process.

    PubMed

    Simsa, S; Genina, O; Ornan, E Monsonego

    2007-06-01

    Vertebrate long bones are formed by endochondral ossification, a process accompanied by changes in extracellular matrix synthesis and remodeling, performed mainly by the matrix metalloproteinases (MMP). The temporal/spatial expression patterns of 5 members of the MMP family known to be important for endochondral ossification were studied, for the first time, in the turkey growth plate during embryonic and juvenile stages. The expression of MMP-2 was detected in the proliferative zone, MMP-3, MMP-9, and MMP-13 in cells lining the blood vessels; MMP-13 was also detected in hypertrophic chondrocytes. The MMP-16 expression was detected in the reserve zone of the growth plate. These results present a detailed survey of turkey MMP, serving as a data source (atlas) for further studies in this subject.

  4. In vivo detecting matrix metalloproteinase (MMP) activity by a genetically engineered fluorescent probe

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhang, Zhihong; Su, Ting; Luo, Qingming

    2007-02-01

    Degradation of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) enhances tumor invasion and metastasis. To monitor MMP activity, we constructed plasmid that encoded a fluorescent sensor DC, in which an MMP substrate site (MSS) is sandwiched between DsRed2 and ECFP. MMPs are secretory proteins, only acting on the outside of cells; hence, an expressing vector was used that displayed the fluorescent sensor on the cellular surface. The DC was expressed in cells with high secretory MMP, so MSS was cleaved by MMP. Also, GM6001, an MMP inhibitor, causes DsRed2 signals to increase in living cells and on the chick embryo chorioallantoic membrane (CAM). Thus, this fluorescent sensor was able to sensitively monitor MMP activation in vivo. Potential applications for this sensor include high-throughput screening for MMP inhibitors for anti-cancer research, and detailed analysis of the effects of MMP inhibitors.

  5. Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling.

    PubMed

    Lindsey, Merry L; Iyer, Rugmani Padmanabhan; Jung, Mira; DeLeon-Pennell, Kristine Y; Ma, Yonggang

    2016-02-01

    Despite current optimal therapeutic regimens, approximately one in four patients diagnosed with myocardial infarction (MI) will go on to develop congestive heart failure, and heart failure has a high five-year mortality rate of 50%. Elucidating mechanisms whereby heart failure develops post-MI, therefore, is highly needed. Matrix metalloproteinases (MMPs) are key enzymes involved in post-MI remodeling of the left ventricle (LV). While MMPs process cytokine and extracellular matrix (ECM) substrates to regulate the inflammatory and fibrotic components of the wound healing response to MI, MMPs also serve as upstream signaling initiators with direct actions on cell signaling cascades. In this review, we summarize the current literature regarding MMP roles in post-MI LV remodeling. We also identify the current knowledge gaps and provide templates for experiments to fill these gaps. A more complete understanding of MMP roles, particularly with regards to upstream signaling roles, may provide new strategies to limit adverse LV remodeling.

  6. [Matrix metalloproteinases and their endogenous regulators in squamous cervical carcinoma (review of the own data)].

    PubMed

    Solovуeva, N I; Timoshenko, O S; Gureeva, T A; Kugaevskaya, E V

    2015-01-01

    Expression of matrix metalloproteinases (MMPs) and their endogenous regulators has been investigated in squamous cervical carcinoma (SCC). The study included (i) immortalized fibroblasts (IF) and three clones of fibroblasts transformed by oncogene E7 HPV-16 (TF); (ii) cell lines associated with HPV-16 and HPV-18; (iii) tumor tissue samples from patients with SCC, associated with gene E7 HPV-16. Transfection of fibroblasts with the E7 HPV16 oncogen was accompanied by induction of collagenase (MMP-1, MMP-14) and gelatinase (MMP-9) gene expression and the increase in catalytic activity of these MMP, while gelatinase MMP-2 expression remained unchanged. Expression of MMP-9 was found only inTF. MMP-9 may serve as a TF marker. In TF expression mRNA TIMP-1 was decreased. The level of free endogenous inhibitors in TF was significantly lower then the level in IF. Expression MMP correlated with the tumorigenic potential of TF. Invasive potential of cell lines associated with HPV18 (HeLa and S4-1) was more pronounced than that of cell lines associated with HPV16 (SiHa and Caski). The cell lines differed substantially in the level of expression of MMPI and their endogenous regulators. In most cell lines mRNA levels of collagenases MMP-1 and MMP-14 and the activator (uPA) increased, while gelatinase MMP-2 mRNA and tissue inhibitors mRNAs changed insignificantly. MMP-9 expression in cell lines was not detected. Results of studies on these cell lines suggest existence of an imbalance in the system enzyme/inhibitor/activator, that increases destructive potential of these cells. The study of expression of MMP and their endogenous regulators performed using SCC tumor samples associated with HPV16 has shown that the invasive and metastatic potentials of tumor tissue in SCC is obviously determined by the increase of expression of collagenases MMP-1, MT1-MMP and gelatinase MMP-9, decreased expression of inhibitors (TIMP-1 and TIMP-2), and to a lesser extent to increased expression of

  7. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9 expression.

    PubMed

    Yoon, Sang-Oh; Shin, Sejeong; Lee, Ho-Jae; Chun, Hyo-Kon; Chung, An-Sik

    2006-11-01

    Matrix metalloproteinase (MMP)-9 plays a key role in tumor invasion. Inhibitors of MMP-9 were screened from Metasequoia glyptostroboides (Dawn redwood) and one potent inhibitor, isoginkgetin, a biflavonoid, was identified. Noncytotoxic levels of isoginkgetin decreased MMP-9 production profoundly, but up-regulated the level of tissue inhibitor of metalloproteinase (TIMP)-1, an inhibitor of MMP-9, in HT1080 human fibrosarcoma cells. The major mechanism of Ras-dependent MMP-9 production in HT1080 cells was phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor-kappaB (NF-kappaB) activation. Expression of dominant-active H-Ras and p85 (a subunit of PI3K) increased MMP-9 activity, whereas dominant-negative forms of these molecules decreased the level of MMP-9. H-Ras did not increase MMP-9 in the presence of a PI3K inhibitor, LY294002, and a NF-kappaB inhibitor, SN50. Further studies showed that isoginkgetin regulated MMP-9 production via PI3K/Akt/NF-kappaB pathway, as evidenced by the findings that isoginkgetin inhibited activities of both Akt and NF-kappaB. PI3K/Akt is a well-known key pathway for cell invasion, and isoginkgetin inhibited HT1080 tumor cell invasion substantially. Isoginkgetin was also quite effective in inhibiting the activities of Akt and MMP-9 in MDA-MB-231 breast carcinomas and B16F10 melanoma. Moreover, isoginkgetin treatment resulted in marked decrease in invasion of these cells. In summary, PI3K/Akt is a major pathway for MMP-9 expression and isoginkgetin markedly decreased MMP-9 expression and invasion through inhibition of this pathway. This suggests that isoginkgetin could be a potential candidate as a therapeutic agent against tumor invasion.

  8. Matrix metalloproteinase 13 (MMP13) and tissue inhibitor of matrix metalloproteinase 1 (TIMP1), regulated by the MAPK pathway, are both necessary for Madin-Darby canine kidney tubulogenesis.

    PubMed

    Hellman, Nathan E; Spector, June; Robinson, Jonathan; Zuo, Xiaofeng; Saunier, Sophie; Antignac, Corinne; Tobias, John W; Lipschutz, Joshua H

    2008-02-15

    A classic model of tubulogenesis utilizes Madin-Darby canine kidney (MDCK) cells. MDCK cells form monoclonal cysts in three-dimensional collagen and tubulate in response to hepatocyte growth factor, which activates multiple signaling pathways, including the mitogen-activated protein kinase (MAPK) pathway. It was shown previously that MAPK activation is necessary and sufficient to induce the first stage of tubulogenesis, the partial epithelial to mesenchymal transition (p-EMT), whereas matrix metalloproteinases (MMPs) are necessary for the second redifferentiation stage. To identify specific MMP genes, their regulators, tissue inhibitors of matrix metalloproteinases (TIMPs), and the molecular pathways by which they are activated, we used two distinct MAPK inhibitors and a technique we have termed subtraction pathway microarray analysis. Of the 19 MMPs and 3 TIMPs present on the Canine Genome 2.0 Array, MMP13 and TIMP1 were up-regulated 198- and 169-fold, respectively, via the MAPK pathway. This was confirmed by two-dimensional and three-dimensional real time PCR, as well as in MDCK cells inducible for the MAPK gene Raf. Knockdown of MMP13 using short hairpin RNA prevented progression past the initial phase of p-EMT. Knockdown of TIMP1 prevented normal cystogenesis, although the initial phase of p-EMT did occasionally occur. The MMP13 knockdown phenotype is likely because of decreased collagenase activity, whereas the TIMP1 knockdown phenotype appears due to increased apoptosis. These data suggest a model, which may also be important for development of other branched organs, whereby the MAPK pathway controls both MDCK p-EMT and redifferentiation, in part by activating MMP13 and TIMP1.

  9. Matrix metalloproteinase-9 is essential for physiological Beta cell function and islet vascularization in adult mice.

    PubMed

    Christoffersson, Gustaf; Waldén, Tomas; Sandberg, Monica; Opdenakker, Ghislain; Carlsson, Per-Ola; Phillipson, Mia

    2015-04-01

    The availability of paracrine factors in the islets of Langerhans, and the constitution of the beta cell basement membrane can both be affected by proteolytic enzymes. This study aimed to investigate the effects of the extracellular matrix-degrading enzyme gelatinase B/matrix metalloproteinase-9 (Mmp-9) on islet function in mice. Islet function of Mmp9-deficient (Mmp9(-/-)) mice and their wild-type littermates was evaluated both in vivo and in vitro. The pancreata of Mmp9(-/-) mice did not differ from wild type in islet mass or distribution. However, Mmp9(-/-) mice had an impaired response to a glucose load in vivo, with lower serum insulin levels. The glucose-stimulated insulin secretion was reduced also in vitro in isolated Mmp9(-/-) islets. The vascular density of Mmp9(-/-) islets was lower, and the capillaries had fewer fenestrations, whereas the islet blood flow was threefold higher. These alterations could partly be explained by compensatory changes in the expression of matrix-related proteins. This in-depth investigation of the effects of the loss of MMP-9 function on pancreatic islets uncovers a deteriorated beta cell function that is primarily due to a shift in the beta cell phenotype, but also due to islet vascular aberrations. This likely reflects the importance of a normal islet matrix turnover exerted by MMP-9, and concomitant release of paracrine factors sequestered on the matrix.

  10. High Levels of 17β-Estradiol Are Associated with Increased Matrix Metalloproteinase-2 and Metalloproteinase-9 Activity in Tears of Postmenopausal Women with Dry Eye

    PubMed Central

    Shen, Guanglin; Ma, Xiaoping

    2016-01-01

    Purpose. To determine the serum levels of sex steroids and tear matrix metalloproteinases (MMP) 2 and 9 concentrations in postmenopausal women with dry eye. Methods. Forty-four postmenopausal women with dry eye and 22 asymptomatic controls were enrolled. Blood was drawn and analyzed for serum levels of sex steroids and lipids. Then, the following tests were performed: tear collection, Ocular Surface Disease Index (OSDI) questionnaire, fluorescein tear film break-up time (TBUT), corneal fluorescein staining, Schirmer test, and conjunctival impression cytology. The conjunctival mRNA expression and tear concentrations of MMP-2 and MMP-9 were measured. Results. Serum 17β-estradiol levels were significantly higher in the dry eye subjects than in the controls (P = 0.03), whereas there were no significant differences in levels of testosterone, dehydroepiandrosterone sulfate (DHEA-S), and progesterone. Tear MMP-2 and MMP-9 concentrations (P < 0.001), as well as the MMP-9 mRNA expression in conjunctival samples (P = 0.02), were significantly higher in dry eye subjects than in controls. Serum 17β-estradiol levels were positively correlated with tear MMP-2 and MMP-9 concentrations and negatively correlated with Schirmer test values. Conclusions. High levels of 17β-estradiol are associated with increased matrix metalloproteinase-2 and metalloproteinase-9 activity in tears of postmenopausal women with dry eye. PMID:26904272

  11. The Matrix Metalloproteinase-7 Polymorphism Rs10895304 Is Associated With Increased Recurrence Risk in Patients With Clinically Localized Prostate Cancer

    SciTech Connect

    Jaboin, Jerry J.; Hwang, Misun; Lopater, Zachary; Chen Heidi; Ray, Geoffrey L.; Perez, Carmen; Cai Qiuyin; Wills, Marcia L.; Lu Bo

    2011-04-01

    Purpose: To evaluate whether selected high-risk matrix metalloproteinase-7 single nucleotide polymorphisms influence clinicopathologic outcomes in patients with early-stage prostate cancer. Methods and Materials: Two hundred twelve prostate cancer patients treated with radical prostatectomy were evaluated with a median follow-up of 9.8 years. Genotyping was performed using hybridization with custom-designed allele-specific probes. Three single nucleotide polymorphisms within the matrix metalloproteinase-7 gene were assessed with respect to age at diagnosis, margin status, extracapsular extension, lymph node involvement, recurrence-free survival, and overall survival in paraffin-embedded prostate tissue specimens from patients with early-stage prostate cancer who underwent radical prostatectomy. Results: Rs10895304 was the sole significant polymorphism. The A/G genotype of rs10895304 had a statistically significant association with recurrence-free survival in postprostatectomy patients (p = 0.0061, log-rank test). The frequency of the risk-reducing genotype (A/A) was 74%, whereas that of the risk-enhancing genotypes (A/G and G/G) were 20% and 6%, respectively. Multivariable Cox regression analyses detected a significant association between rs10895304 and recurrences after adjustment for known prognostic factors. The G allele of this polymorphism was associated with increased risk of prostate cancer recurrence (adjusted hazards ratio, 3.375; 95% confidence interval 1.567-7.269; p < 0.001). The other assayed polymorphisms were not significant, and no correlations were made to other clinical variables. Conclusions: The A/G genotype of rs10895304 is predictive of decreased recurrence-free survival in patients with clinically localized prostate cancer. Our data suggest that for this subset of patients, prostatectomy alone may not be adequate for local control. This is a novel and relevant marker that should be evaluated for improved risk stratification of patients who

  12. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis

    PubMed Central

    Ray, Amlan K.; DasMahapatra, Pramathes; Swarnakar, Snehasikta

    2016-01-01

    Endometriosis is characterized by the ectopic development of the endometrium which relies on angiogenesis. Although studies have identified the involvement of different matrix metalloproteinases (MMPs) in endometriosis, no study has yet investigated the role of MMP-2 in endometriosis-associated angiogenesis. The present study aims to understand the regulation of MMP-2 activity in endothelial cells and on angiogenesis during progression of ovarian endometriosis. Histological and biochemical data showed increased expressions of vascular endothelial growth factor (VEGF), VEGF receptor-2, cycloxygenase (COX)-2, von Willebrand factor along with angiogenesis during endometriosis progression. Women with endometriosis showed decreased MMP-2 activity in eutopic endometrium as compared to women without endometriosis. However, ectopic ovarian endometrioma showed significantly elevated MMP-2 activity with disease severity. In addition, increased MT1MMP and decreased tissue inhibitors of metalloproteinases (TIMP)-2 expressions were found in the late stages of endometriosis indicating more MMP-2 activation with disease progression. In vitro study using human endothelial cells showed that prostaglandin E2 (PGE2) significantly increased MMP-2 activity as well as tube formation. Inhibition of COX-2 and/or phosphorylated AKT suppressed MMP-2 activity and endothelial tube formation suggesting involvement of PGE2 in regulation of MMP-2 activity during angiogenesis. Moreover, specific inhibition of MMP-2 by chemical inhibitor significantly reduced cellular migration, invasion and tube formation. In ovo assay showed decreased angiogenic branching upon MMP-2 inhibition. Furthermore, a significant reduction of lesion numbers was observed upon inhibition of MMP-2 and COX-2 in mouse model of endometriosis. In conclusion, our study establishes the involvement of MMP-2 activity via COX-2-PGE2-pAKT axis in promoting angiogenesis during endometriosis progression. PMID:27695098

  13. Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis.

    PubMed

    Robert, Sacha; Gicquel, Thomas; Victoni, Tatiana; Valença, Samuel; Barreto, Emiliano; Bailly-Maître, Béatrice; Boichot, Elisabeth; Lagente, Vincent

    2016-08-01

    Fibrosis is a basic connective tissue lesion defined by the increase in the fibrillar extracellular matrix (ECM) components in tissue or organ. Matrix metalloproteinases (MMPs) are a major group of proteases known to regulate the turn-over of ECM and so they are suggested to be important in tissue remodelling observed during fibrogenic process associated with chronic inflammation. Tissue remodelling is the result of an imbalance in the equilibrium of the normal processes of synthesis and degradation of ECM components markedly controlled by the MMPs/TIMP imbalance. We previously showed an association of the differences in collagen deposition in the lungs of bleomycin-treated mice with a reduced molar pro-MMP-9/TIMP-1 ratio. Using the carbon tetrachloride (CCl4) preclinical model of liver fibrosis in mice, we observed a significant increase in collagen deposition with increased expression and release of tissue inhibitors of metalloproteinase (TIMP)-1 both at 24 h and 3 weeks later. This suggests an early altered regulation of matrix turnover involved in the development of fibrosis. We also demonstrated an activation of NLRP3-inflammasome pathway associated with the IL-1R/MyD88 signalling in the development of experimental fibrosis both in lung and liver. This was also associated with an increased expression of purinergic receptors mainly P2X7 Finally, these observations emphasize those effective therapies for these disorders must be given early in the natural history of the disease, prior to the development of tissue remodelling and fibrosis.

  14. Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis

    PubMed Central

    Robert, Sacha; Gicquel, Thomas; Victoni, Tatiana; Valença, Samuel; Barreto, Emiliano; Bailly-Maître, Béatrice; Boichot, Elisabeth; Lagente, Vincent

    2016-01-01

    Fibrosis is a basic connective tissue lesion defined by the increase in the fibrillar extracellular matrix (ECM) components in tissue or organ. Matrix metalloproteinases (MMPs) are a major group of proteases known to regulate the turn-over of ECM and so they are suggested to be important in tissue remodelling observed during fibrogenic process associated with chronic inflammation. Tissue remodelling is the result of an imbalance in the equilibrium of the normal processes of synthesis and degradation of ECM components markedly controlled by the MMPs/TIMP imbalance. We previously showed an association of the differences in collagen deposition in the lungs of bleomycin-treated mice with a reduced molar pro-MMP-9/TIMP-1 ratio. Using the carbon tetrachloride (CCl4) preclinical model of liver fibrosis in mice, we observed a significant increase in collagen deposition with increased expression and release of tissue inhibitors of metalloproteinase (TIMP)-1 both at 24 h and 3 weeks later. This suggests an early altered regulation of matrix turnover involved in the development of fibrosis. We also demonstrated an activation of NLRP3-inflammasome pathway associated with the IL-1R/MyD88 signalling in the development of experimental fibrosis both in lung and liver. This was also associated with an increased expression of purinergic receptors mainly P2X7. Finally, these observations emphasize those effective therapies for these disorders must be given early in the natural history of the disease, prior to the development of tissue remodelling and fibrosis. PMID:27247426

  15. Matrix metalloproteinase 9 polymorphisms and systemic lupus erythematosus: correlation with systemic inflammatory markers and oxidative stress.

    PubMed

    Bahrehmand, F; Vaisi-Raygani, A; Kiani, A; Rahimi, Z; Tavilani, H; Ardalan, M; Vaisi-Raygani, H; Shakiba, E; Pourmotabbed, T

    2015-05-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organs and is characterized by persistent systemic inflammation. Among the effects of inflammatory mediators, the induction of matrix metalloproteinases-2 and -9 (MMP-2 and MMP-9) and oxidative stress has been demonstrated to be important in the development of SLE. In this study, the possible association between MMP-9 and MMP-2 functional promoter polymorphism, stress, and inflammatory markers with development of severe cardiovascular disease (CVD), high blood pressure (HBP), and lupus nephropathy (LN) in SLE patients was investigated. The present case-control study consisted of 109 SLE patients with and without CVD, HBP and LN and 101 gender- and age-matched unrelated healthy controls from a population in western Iran. MMP-2 -G1575A and MMP-9 -C1562T polymorphisms were detected by PCR-RFLP, serum MMP-2 and MMP-9, neopterin, malondialdehyde (MDA) and lipid levels were determined by ELISA, HPLC and enzyme assay, respectively. We found that MMP-9 -C1562 T and MMP-2 -G1575A alleles act synergistically to increase the risk of SLE by 2.98 times (p = 0.015). Findings of this study also demonstrated that there is a significant increase in the serum levels of MMP-2, neopterin and MDA and a significant decrease in serum level of MMP-9 in the presence of MMP-9-C1562 T and MMP-2 -G1575A alleles in SLE patients compared to controls. Further, SLE patients with MMP-9 (C/T + T/T) genotype had significantly higher serum concentrations of MMP-2, neopterin, MDA and LDL-C, but lower serum MMP-9 and HDL-C levels than corresponding members of the control group. MMP-9 (C/T + T/T) genotype increased risk of hypertension in SLE patients 2.71-fold. This study for the first time not only suggests that MMP-9 -C1562 T and MMP-2 -G1575A alleles synergistically increase the risk of SLE but also high serum levels of MDA, neopterin, and circulatory levels of MMP-2 and lower MMP-9 in SLE patients. This

  16. Matrix Metalloproteinase-2 Polymorphisms in Chronic Heart Failure: Relationship with Susceptibility and Long-Term Survival

    PubMed Central

    Beber, Ana Rubia C.; Polina, Evelise R.; Biolo, Andréia; Santos, Bruna L.; Gomes, Daiane C.; La Porta, Vanessa L.; Olsen, Virgílio; Clausell, Nadine; Rohde, Luis E.

    2016-01-01

    Circulating levels of matrix metalloproteinase-2 (MMP-2) predict mortality and hospital admission in heart failure (HF) patients. However, the role of MMP-2 gene polymorphisms in the susceptibility and prognosis of HF remains elusive. In this study, 308 HF outpatients (216 Caucasian- and 92 African-Brazilians) and 333 healthy subjects (256 Caucasian- and 77 African-Brazilians) were genotyped for the -1575G>A (rs243866), -1059G>A (rs17859821), and -790G>T (rs243864) polymorphisms in the MMP-2 gene. Polymorphisms were analyzed individually and in combination (haplotype), and positive associations were adjusted for clinical covariates. Although allele frequencies were similar in HF patients and controls in both ethnic groups, homozygotes for the minor alleles were not found among African-Brazilian patients. After a median follow-up of 5.3 years, 124 patients (40.3%) died (54.8% of them for HF). In Caucasian-Brazilians, the TT genotype of the -790G>T polymorphism was associated with a decreased risk of HF-related death as compared with GT genotype (hazard ratio [HR] = 0.512, 95% confidence interval [CI] 0.285–0.920). However, this association was lost after adjusting for clinical covariates (HR = 0.703, 95% CI 0.365–1.353). Haplotype analysis revealed similar findings, as patients homozygous for the -1575G/-1059G/-790T haplotype had a lower rate of HF-related death than those with any other haplotype combination (12.9% versus 28.5%, respectively; P = 0.010). Again, this association did not remain after adjusting for clinical covariates (HR = 0.521, 95% CI 0.248–1.093). Our study does not exclude the possibility that polymorphisms in MMP-2 gene, particularly the -790G>T polymorphism, might be related to HF prognosis. However, due to the limitations of the study, our findings need to be confirmed in further larger studies. PMID:27551966

  17. Association of Circulating Matrix Metalloproteinases with Carotid Artery Characteristics: The ARIC Carotid MRI Study

    PubMed Central

    Gaubatz, John W.; Ballantyne, Christie M.; Wasserman, Bruce A.; He, Max; Chambless, Lloyd E.; Boerwinkle, Eric; Hoogeveen, Ron C.

    2010-01-01

    Objective To examine the relationship of plasma levels of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase-1 (TIMP-1) with carotid artery characteristics measured by magnetic resonance imaging (MRI) in a cross-sectional investigation among Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study participants. Methods and Results A stratified random sample was recruited based on intima-media thickness (IMT) from a previous ultrasound examination. A high-resolution gadolinium-enhanced MRI exam of the carotid artery was performed in 2004–2005 on 1,901 ARIC cohort participants. Multiple carotid wall characteristics including wall thickness, lumen area, calcium area, lipid core and fibrous cap measures were evaluated for associations with plasma MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9 and TIMP-1. Plasma MMP-1, MMP-3, and MMP-7 were significantly higher among participants in the high IMT group compared to those in the low IMT group. Normalized wall index was independently associated with MMP-3, MMP-7, and TIMP-1. MMP-7 was positively associated with carotid calcification. Mean fibrous cap thickness was significantly higher in individuals with elevated TIMP-1 levels. In addition, TIMP-1 was positively associated with measures of lipid core. Conclusions Circulating levels of specific MMPs and TIMP-1 were associated with carotid wall remodeling and structural changes related to plaque burden in the elderly. PMID:20167662

  18. Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis

    PubMed Central

    Sampieri, Clara Luz; de la Peña, Sol; Ochoa-Lara, Mariana; Zenteno-Cuevas, Roberto; León-Córdoba, Kenneth

    2010-01-01

    AIM: To assess expression of matrix metalloproteinases 2 (MMP2) and MMP9 in gastric cancer, superficial gastritis and normal mucosa, and to measure metalloproteinase activity. METHODS: MMP2 and MMP9 mRNA expression was determined by quantitative real-time polymerase chain reaction. Normalization was carried out using three different factors. Proteins were analyzed by quantitative gelatin zymography (qGZ). RESULTS: 18S ribosomal RNA (18SRNA) was very highly expressed, while hypoxanthine ribosyltransferase-1 (HPRT-1) was moderately expressed. MMP2 was highly expressed, while MMP9 was not detected or lowly expressed in normal tissues, moderately or highly expressed in gastritis and highly expressed in cancer. Relative expression of 18SRNA and HPRT-1 showed no significant differences. Significant differences in MMP2 and MMP9 were found between cancer and normal tissue, but not between gastritis and normal tissue. Absolute quantification of MMP9 echoed this pattern, but differential expression of MMP2 proved conflictive. Analysis by qGZ indicated significant differences between cancer and normal tissue in MMP-2, total MMP-9, 250 and 110 kDa bands. CONCLUSION: MMP9 expression is enhanced in gastric cancer compared to normal mucosa; interpretation of differential expression of MMP2 is difficult to establish. PMID:20333791

  19. Protein kinase D2 induces invasion of pancreatic cancer cells by regulating matrix metalloproteinases.

    PubMed

    Wille, Christoph; Köhler, Conny; Armacki, Milena; Jamali, Arsia; Gössele, Ulrike; Pfizenmaier, Klaus; Seufferlein, Thomas; Eiseler, Tim

    2014-02-01

    Pancreatic cancer cell invasion, metastasis, and angiogenesis are major challenges for the development of novel therapeutic strategies. Protein kinase D (PKD) isoforms are involved in controlling tumor cell motility, angiogenesis, and metastasis. In particular PKD2 expression is up-regulated in pancreatic cancer, whereas PKD1 expression is lowered. We report that both kinases control pancreatic cancer cell invasive properties in an isoform-specific manner. PKD2 enhances invasion in three-dimensional extracellular matrix (3D-ECM) cultures by stimulating expression and secretion of matrix metalloproteinases 7 and 9 (MMP7/9), by which MMP7 is likely to act upstream of MMP9. Knockdown of MMP7/9 blocks PKD2-mediated invasion in 3D-ECM assays and in vivo using tumors growing on chorioallantois membranes. Furthermore, MMP9 enhances PKD2-mediated tumor angiogenesis by releasing extracellular matrix-bound vascular endothelial growth factor A, increasing its bioavailability and angiogenesis. Of interest, specific knockdown of PKD1 in PKD2-expressing pancreatic cancer cells further enhanced the invasive properties in 3D-ECM systems by generating a high-motility phenotype. Loss of PKD1 thus may be beneficial for tumor cells to enhance their matrix-invading abilities. In conclusion, we define for the first time PKD1 and 2 isoform-selective effects on pancreatic cancer cell invasion and angiogenesis, in vitro and in vivo, addressing PKD isoform specificity as a major factor for future therapeutic strategies. PMID:24336522

  20. Heterologous expression and functional characterization of matrix metalloproteinase-11 from canine mammary tumor.

    PubMed

    Sunil Kumar, B V; Kumar, K Aswani; Padmanath, K; Sharma, Bhaskar; Kataria, Meena

    2013-01-01

    Matrix metalloproteinases (MMPs) are reported to be involved in tumor growth, apoptosis, angiogenesis, invasion, and development of metastases. These are zinc containing metalloproteases, known for their role in extracellular matrix degradation. MMP-11 (stromelysin3) is reported to be highly expressed in breast cancer, therefore it may act as marker enzyme for breast cancer progression. The present work was carried out to produce recombinant canine (Canis lupus familiaris) MMP-11 lacking the signal and propeptide in E. coli by optimizing its expression and purification in biologically active form and to functionally characterize it. A bacterial protein expression vector pPROEX HTc was used. The MMP-11 mature peptide encoding gene was successfully cloned and expressed in E. coli and the purified recombinant enzyme was found to be functionally active. The recombinant enzyme exhibited caseinolytic activity and could be activated by Trypsin and 4-Amino phenyl mercuric acetate (APMA). However Ethylene diamine tertra acetate (EDTA) inhibited the enzyme's caseinolytic activity. The recombinant enzyme degraded extracellular matrix constituents and facilitated migration of MDCK (Madin-Darby canine kidney) cells through BD Biocoat Matrigel invasion chambers. These results suggest that in vivo MMP-11 could play a significant role in the turnover of extracellular matrix constituents. PMID:23394368

  1. Identification and characterization of matrix metalloproteinase-13 sequence structure and expression during embryogenesis and infection in channel catfish (Ictalurus punctatus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix metalloproteinase-13 (MMP-13), referred to as collagenase-3, is a proteolytic enzyme that plays a key role in degradation and remodelling of host extracellularmatrix proteins. The objective of this study was to characterize the MMP-13 gene in channel catfish, and to determine its pattern of e...

  2. Complete structure, genomic organization, and expression of channel catfish (Ictalurus punctatus, Rafinesque 1818) matrix metalloproteinase-9 gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that the channel catfish (CC) matrix metalloproteinase-9 (MMP-9) expressed sequence tag (EST) was up-regulated after early Edwardsiella ictaluri infection. In this study, the CC MMP-9 gene was cloned, sequenced and ch...

  3. The Extracellular Protease Matrix Metalloproteinase-9 Is Activated by Inhibitory Avoidance Learning and Required for Long-Term Memory

    ERIC Educational Resources Information Center

    Nagy, Vanja; Bozdagi, Ozlem; Huntley, George W.

    2007-01-01

    Matrix metalloproteinases (MMPs) are a family of extracellularly acting proteolytic enzymes with well-recognized roles in plasticity and remodeling of synaptic circuits during brain development and following brain injury. However, it is now becoming increasingly apparent that MMPs also function in normal, nonpathological synaptic plasticity of the…

  4. Proinflammatory cytokines and matrix metalloproteinases in CSF of patients with VZV vasculopathy

    PubMed Central

    Jones, Dallas; Alvarez, Enrique; Selva, Sean; Gilden, Don

    2016-01-01

    Objective: To determine the levels of proinflammatory cytokines and matrix metalloproteinases (MMPs) in the CSF of patients with virologically verified varicella zoster virus (VZV) vasculopathy. Methods: CSF from 30 patients with virologically verified VZV vasculopathy was analyzed for levels of proinflammatory cytokines and MMPs using the Meso Scale Discovery multiplex ELISA platform. Positive CNS inflammatory disease controls were provided by CSF from 30 patients with multiple sclerosis. Negative controls were provided by CSF from 20 healthy controls. Results: Compared to multiple sclerosis CSF and CSF from healthy controls, levels of interleukin (IL)-8, IL-6, and MMP-2 were significantly elevated in VZV vasculopathy CSF. Conclusions: CSF of patients with VZV vasculopathy revealed a unique profile of elevated proinflammatory cytokines, IL-8 and IL-6, along with elevated MMP-2. The relevance of these cytokines to the pathogenesis of VZV vasculopathy requires further study. PMID:27340684

  5. Synovial fluid matrix metalloproteinase-2 and -9 activities in dogs suffering from joint disorders

    PubMed Central

    MURAKAMI, Kohei; MAEDA, Shingo; YONEZAWA, Tomohiro; MATSUKI, Naoaki

    2016-01-01

    The activity of matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fluids (SF) sampled from dogs with joint disorders was investigated by gelatin zymography and densitometry. Pro-MMP-2 showed similar activity levels in dogs with idiopathic polyarthritis (IPA; n=17) or canine rheumatoid arthritis (cRA; n=4), and healthy controls (n=10). However, dogs with cranial cruciate ligament rupture (CCLR; n=5) presented significantly higher pro-MMP-2 activity than IPA and healthy dogs. Meanwhile, dogs with IPA exhibited significantly higher activity of pro- and active MMP-9 than other groups. Activity levels in pro- and active MMP-9 in cRA and CCLR dogs were not significantly different from those in healthy controls. Different patterns of MMP-2 and MMP-9 activity may reflect the differences in the underlying pathological processes. PMID:26902805

  6. Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis.

    PubMed

    Brown, Gordon T; Murray, Graeme I

    2015-11-01

    The purpose of this review is to highlight the recent mechanistic developments elucidating the role of matrix metalloproteinases (MMPs) in tumour invasion and metastasis. The ability of tumour cells to invade, migrate, and subsequently metastasize is a fundamental characteristic of cancer. Tumour invasion and metastasis are increasingly being characterized by the dynamic relationship between cancer cells and their microenvironment and developing a greater understanding of these basic pathological mechanisms is crucial. While MMPs have been strongly implicated in these processes as a result of extensive circumstantial evidence--for example, increased expression of individual MMPs in tumours and association of specific MMPs with prognosis--the underpinning mechanisms are only now being elucidated. Recent studies are now providing a mechanistic basis, highlighting and reinforcing the catalytic and non-catalytic roles of specific MMPs as key players in tumour invasion and metastasis.

  7. Osteopontin Promotes Expression of Matrix Metalloproteinase 13 through NF-κB Signaling in Osteoarthritis

    PubMed Central

    Li, Yusheng; Jiang, Wei; Wang, Hua; Deng, Zhenhan; Zeng, Chao; Tu, Min; Li, Liangjun; Xiao, Wenfeng; Gao, Shuguang; Luo, Wei

    2016-01-01

    Osteopontin (OPN) is associated with the severity and progression of osteoarthritis (OA); however, the mechanism of OPN in the pathogenesis of OA is unknown. In this study, we found that OA patients had higher abundance of OPN and matrix metalloproteinase 13 (MMP13). In chondrocytes, we showed that OPN promoted the production of MMP13 and activation of NF-κB pathway by increasing the abundance of p65 and phosphorylated p65 and translocation of p65 protein from cytoplasm to nucleus. Notably, inhibition of NF-κB pathway by inhibitor suppressed the production of MMP13 induced by OPN treatment. In conclusion, OPN induces production of MMP13 through activation of NF-κB pathway. PMID:27656654

  8. Adult Vascular Wall Resident Multipotent Vascular Stem Cells, Matrix Metalloproteinases, and Arterial Aneurysms

    PubMed Central

    Amato, Bruno; Compagna, Rita; Amato, Maurizio; Grande, Raffaele; Butrico, Lucia; Rossi, Alessio; Naso, Agostino; Ruggiero, Michele; de Franciscis, Stefano

    2015-01-01

    Evidences have shown the presence of multipotent stem cells (SCs) at sites of arterial aneurysms: they can differentiate into smooth muscle cells (SMCs) and are activated after residing in a quiescent state in the vascular wall. Recent studies have implicated the role of matrix metalloproteinases in the pathogenesis of arterial aneurysms: in fact the increased synthesis of MMPs by arterial SMCs is thought to be a pivotal mechanism in aneurysm formation. The factors and signaling pathways involved in regulating wall resident SC recruitment, survival, proliferation, growth factor production, and differentiation may be also related to selective expression of different MMPs. This review explores the relationship between adult vascular wall resident multipotent vascular SCs, MMPs, and arterial aneurysms. PMID:25866513

  9. Osteopontin Promotes Expression of Matrix Metalloproteinase 13 through NF-κB Signaling in Osteoarthritis

    PubMed Central

    Li, Yusheng; Jiang, Wei; Wang, Hua; Deng, Zhenhan; Zeng, Chao; Tu, Min; Li, Liangjun; Xiao, Wenfeng; Gao, Shuguang; Luo, Wei

    2016-01-01

    Osteopontin (OPN) is associated with the severity and progression of osteoarthritis (OA); however, the mechanism of OPN in the pathogenesis of OA is unknown. In this study, we found that OA patients had higher abundance of OPN and matrix metalloproteinase 13 (MMP13). In chondrocytes, we showed that OPN promoted the production of MMP13 and activation of NF-κB pathway by increasing the abundance of p65 and phosphorylated p65 and translocation of p65 protein from cytoplasm to nucleus. Notably, inhibition of NF-κB pathway by inhibitor suppressed the production of MMP13 induced by OPN treatment. In conclusion, OPN induces production of MMP13 through activation of NF-κB pathway.

  10. Prognostic significance of matrix metalloproteinases 2 and 9 in endometrial cancer.

    PubMed

    Puljiz, Mario; Puljiz, Zeljko; Vucemilo, Tiha; Ramić, Snjezana; Knezević, Fabijan; Culo, Branimir; Alvir, Ilija; Tomica, Darko; Danolić, Damir

    2012-12-01

    We investigated the prognostic significance of matrix metalloproteinases 2 (MMP 2) and 9 (MMP 9) in endometrial cancer (EC). The expression of MMP 2 and MMP 9 was analyzed immunohistochemically in 73 primary EC patients. In most cases, the gelatinases were predominantly localized to epithelial cell of tumor origin. In univariate analysis histological type, tumor grade, FIGO (1988) surgical stage and high stromal MMP 2 expression were identified as a significant determinant for EC recurrence, while epithelial MMP 2 expression and epithelial and stromal MMP 9 expression were not. Multivariate analysis revealed a subgroup of patient age > or = 63.6 years with endometrioid adenocarcinoma and papillary serous carcinoma, all FIGO (2009) stage I disease where strong staining of stromal MMP 2 increase risk of EC recurrence (p = 0.037).

  11. Ambidextrous binding of cell and membrane bilayers by soluble matrix metalloproteinase-12.

    PubMed

    Koppisetti, Rama K; Fulcher, Yan G; Jurkevich, Alexander; Prior, Stephen H; Xu, Jia; Lenoir, Marc; Overduin, Michael; Van Doren, Steven R

    2014-11-21

    Matrix metalloproteinases (MMPs) regulate tissue remodelling, inflammation and disease progression. Some soluble MMPs are inexplicably active near cell surfaces. Here we demonstrate the binding of MMP-12 directly to bilayers and cellular membranes using paramagnetic NMR and fluorescence. Opposing sides of the catalytic domain engage spin-labelled membrane mimics. Loops project from the β-sheet interface to contact the phospholipid bilayer with basic and hydrophobic residues. The distal membrane interface comprises loops on the other side of the catalytic cleft. Both interfaces mediate MMP-12 association with vesicles and cell membranes. MMP-12 binds plasma membranes and is internalized to hydrophobic perinuclear features, the nuclear membrane and inside the nucleus within minutes. While binding of TIMP-2 to MMP-12 hinders membrane interactions beside the active site, TIMP-2-inhibited MMP-12 binds vesicles and cells, suggesting compensatory rotation of its membrane approaches. MMP-12 association with diverse cell membranes may target its activities to modulate innate immune responses and inflammation.

  12. Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle.

    PubMed

    Motrescu, Elena Roza; Rio, Marie-Christine

    2008-08-01

    This brief review focuses on the emerging role of matrix metalloproteinase 11 (MMP-11) in cancer progression. It has recently been shown that MMP-11 is induced in adipose tissue by cancer cells as they invade their surrounding environment. MMP-11 negatively regulates adipogenesis by reducing pre-adipocyte differentiation and reversing mature adipocyte differentiation. Adipocyte dedifferentiation in turn leads to the accumulation of nonmalignant peritumoral fibroblast-like cells, which favor cancer cell survival and tumor progression. This MMP-11-mediated bi-directional cross-talk between invading cancer cells and adjacent adipocytes/pre-adipocytes highlights the central role that MMP-11 plays during tumor desmoplasia and represents a molecular link between obesity and cancer.

  13. Resveratrol reduces matrix metalloproteinases and alleviates intrahepatic cholestasis of pregnancy in rats.

    PubMed

    Chen, Zhong; Hu, Lingqing; Lu, Mudan; Shen, Zongji

    2016-04-01

    Intrahepatic cholestasis of pregnancy (ICP) is a severe liver disorder occurring specifically in pregnancy, and matrix metalloproteinase (MMP)-2 and MMP-9 were found to be elevated in ICP patients. Using ethinylestradiol-induced ICP rats as the model, we examined the effect of resveratrol on ICP symptoms such as bile flow rate, serum enzymatic activities, and TBA concentration, as well as MMP levels, and compared with the known ICP drug ursodeoxycholic acid. Both MMP-2 and MMP-9 were upregulated in ICP rats, and resveratrol treatment could inhibit the elevation of both MMPs, whereas ursodeoxycholic acid did not exhibit any effect. Although ursodeoxycholic acid alleviated ICP symptoms, resveratrol treatment in general exhibited better outcome in restoring bile flow rate, serum enzymatic activities, and TBA concentration. Our results for the first instance strongly supported the potential of RE as a new therapeutic agent in treating ICP, possibly through inhibiting MMP-2 and MMP-9. PMID:26913826

  14. Stir-baked Fructus gardeniae (L.) extracts inhibit matrix metalloproteinases and alter cell morphology.

    PubMed

    Yang, Jin-gang; Shen, Ye-hua; Hong, Yuan; Jin, Feng-hai; Zhao, Shu-hua; Wang, Ming-cui; Shi, Xiu-juan; Fang, Xue-xun

    2008-05-01

    Matrix metalloproteinases (MMPs) play vital roles in many pathological conditions, including cancer, cardiovascular disease, arthritis and inflammation. Modulating MMP activity may therefore be a useful therapeutic approach in treating these diseases. Qing-Kai-Ling is a popular Chinese anti-inflammatory formulation used to treat symptoms such as rheumatoid arthritis, acute hypertensive cerebral hemorrhage, hepatitis and upper respiratory tract infection. In this paper, we report that one of the components of Qing-Kai-Ling, Fructus gardeniae, strongly inhibits MMP activity. The IC50 values for the primary herbal extract and water extract against MMP-16 were 32 and 27 microg/ml, respectively. In addition, we show that the herbal extracts influence HT1080 human fibrosarcoma cell growth and morphology. These data may provide molecular mechanisms for the therapeutic effects of Qing-Kai-Ling and herbal medicinal Fructus gardeniae.

  15. Distribution and activity levels of matrix metalloproteinase 2 and 9 in canine and feline osteosarcoma.

    PubMed

    Gebhard, Christiane; Fuchs-Baumgartinger, Andrea; Razzazi-Fazeli, Ebrahim; Miller, Ingrid; Walter, Ingrid

    2016-01-01

    Overexpression of matrix metalloproteinases (MMPs) has been associated with increased tumor aggressiveness and metastasis dissemination. We investigated whether the contrasting metastatic behavior of feline and canine osteosarcoma is related to levels and activities of MMP2 and MMP9. Zymography and immunohistochemistry were used to determine expression levels of MMP2 and MMP9 in canine and feline osteosarcoma. Using immunohistochemistry, increased MMP9 levels were identified in most canine osteosarcomas, whereas cat samples more often displayed moderate levels. High levels of pro-MMP9, pro-MMP2, and active MMP2 were detected by gelatin zymography in both species, with significantly higher values for active MMP2 in canine osteosarcoma. These findings indicate that MMP2 is probably involved in canine and feline osteosarcoma and their expression and activity could be associated with the different metastatic behavior of canine and feline osteosarcoma. PMID:26733734

  16. Matrix metalloproteinases and genetic mouse models in cancer research: a mini-review.

    PubMed

    Wieczorek, Edyta; Jablonska, Ewa; Wasowicz, Wojciech; Reszka, Edyta

    2015-01-01

    Carcinogenesis is a multistep and also a multifactorial process that involves agents like genetic and environmental factors. Matrix metalloproteinases (MMPs) are major proteolytic enzymes which are involved in cancer cell migration, invasion, and metastasis. Genetic variations in genes encoding the MMPs were shown in human studies to influence cancer risk and phenotypic features of a tumor. The complex role of MMPs seems to be important in the mechanism of carcinogenesis, but it is not well recognized. Rodent studies concentrated particularly on the better understanding of the biological functions of the MMPs and their impact on the pathological process, also through the modification of Mmp genes. This review presents current knowledge and the existing evidence on the importance of selected MMPs in genetic mouse models of cancer and human genetic association studies. Further, this work can be useful for scientists studying the role of the genetic impact of MMPs in carcinogenesis. PMID:25352026

  17. Signatures of positive selection at hemopexin (PEX) domain of matrix metalloproteinase-9 (MMP-9) gene.

    PubMed

    Liu, Yang; Zhao, Yang; Lu, Chunlei; Fu, Maobin; Dou, Tonghai; Tan, Xiaoming

    2015-12-01

    Matrix metalloproteinases-9 (MMP-9) is an important cancer-associated, zinc-dependent endopeptidase. To investigate the natural selection hypothesis of MMP-9, the orthologous sequences from 12 vertebrates were compared and a molecular evolution analysis was performed. Results suggest that amino acid residues present in the middle region of the protein are more selectively constrained, whereas amino acid residues in the C-terminal region of the MMP-9 protein including exon 13 showed lowest conservation level in non-primate species, suggesting that it is an exon with fast evolving rate compared to the others analyzed. InterProScan analysis shows that exon 13 was located in hemopexin (PEX) domain of MMP-9. Positive selection was detected in PEX domain of MMP-9 protein between human and other species, which indicates that selective pressure may play a role in shaping the function of MMP-9 in the course of evolution. PMID:26648034

  18. Activation of matrix metalloproteinase-26 by HOXA10 promotes embryo adhesion in vitro.

    PubMed

    Jiang, Yue; Yan, Guijun; Zhang, Hui; Shan, Huizhi; Kong, Chengcai; Yan, Qiang; Xue, Bai; Diao, Zhenyu; Hu, Yali; Sun, Haixiang

    2014-03-14

    Successful embryonic implantation requires an effective maternal-embryonic molecular dialogue. However, the detailed mechanisms of epithelial-embryo adhesion remain poorly understood. Here, we report that matrix metalloproteinase-26 (MMP-26) is a novel downstream target gene of homeobox a 10 (HOXA10) in human endometrial cells. HOXA10 binds directly to a conserved TTAT unit (-442 to -439) located within the 5' regulatory region of the MMP-26 gene and regulates the expression and secretion of MMP-26 in a concentration-dependent manner. Moreover, the adenovirus-mediated overexpression of MMP-26 in Ishikawa cells markedly increased BeWo spheroid adhesion. An antibody blocking assay further demonstrated that the promotion of BeWo spheroid adhesion by HOXA10 and MMP-26 was significantly inhibited by pre-treatment with a specific antibody against MMP-26. These results demonstrate that the HOXA10-mediated expression of MMP-26 promotes embryo adhesion during the process of embryonic implantation. PMID:24565841

  19. Thymocyte development in the absence of matrix metalloproteinase-9/gelatinase B

    PubMed Central

    Gounko, Natalia V.; Martens, Erik; Opdenakker, Ghislain; Rybakin, Vasily

    2016-01-01

    Matrix metalloproteinases (MMP) play critical roles in a variety of immune reactions by facilitating cell migration, and affect cell communication by processing both cytokines and cell surface receptors. Based on published data indicating that MMP-9 is upregulated upon T cell activation and also in the thymus upon the induction of negative selection, we investigated the contribution of MMP-9 into mouse T cell development and differentiation in the thymus. Our data suggest that MMP-9 deficiency does not result in major abnormalities in the development of any conventionally selected or agonist selected subsets and does not interfere with thymocyte apoptosis and clearance, and that MMP-9 expression is not induced in immature T cells at any stage of their thymic development. PMID:27432536

  20. ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein

    PubMed Central

    Liu, Chuan-ju; Kong, Wei; Ilalov, Kiril; Yu, Shuang; Xu, Ke; Prazak, Lisa; Fajardo, Marc; Sehgal, Bantoo; Di Cesare, Paul E.

    2006-01-01

    Degradative fragments of cartilage oligomeric matrix protein (COMP) have been observed in arthritic patients. The physiological enzyme(s) that degrade COMP, however, remain unknown. We performed a yeast two-hybrid screen (Y2H) to search for proteins that associate with COMP to identify an interaction partner that might degrade it. One screen using the epidermal growth factor (EGF) domain of COMP as bait led to the discovery of ADAMTS-7. Rat ADAMTS-7 is composed of 1595 amino acids, and this protein exhibits higher expression in the musculoskeletal tissues. COMP binds directly to ADAMTS-7 in vitro and in native articular cartilage. ADAMTS-7 selectively interacts with the EGF repeat domain but not with the other three functional domains of COMP, whereas the four C-terminal TSP motifs of ADAMTS-7 are required and sufficient for association with COMP. The recombinant catalytic domain and intact ADAMTS-7 are capable of digesting COMP in vitro. The enzymatic activity of ADAMTS-7 requires the presence of Zn2+ and appropriate pH (7.5-9.5), and the concentration of ADAMTS-7 in cartilage and synovium of patients with rheumatoid arthritis is significantly increased as compared to normal cartilage and synovium. ADAMTS-7 is the first metalloproteinase found to bind directly to and degrade COMP.—Liu, C., Kong, W., Ilalov, K., Yu, S., Xu, K., Prazak, L., Fajardo, M., Sehgal, B., Di Cesare, P. E. ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein. FASEB J. 20, E129 -E140 (2006) PMID:16585064

  1. Blood Brain Barrier Disruption in Humans is Independently Associated with Increased Matrix Metalloproteinase-9

    PubMed Central

    Barr, Taura L.; Latour, Lawrence L.; Lee, Kyung-Yul; Schaewe, Timothy J.; Luby, Marie; Chang, George S.; El-Zammar, Ziad; Alam, Shaista; Hallenbeck, John M.; Kidwell, Chelsea S.; Warach, Steven

    2010-01-01

    Background and Purpose Matrix metalloproteinases (MMP’s) may play a role in blood brain barrier (BBB) disruption following ischemic stroke. We hypothesized that plasma concentrations of MMP-9 are associated with a marker of BBB disruption in patients evaluated for acute stroke. Methods Patients underwent MRI on presentation and approximately 24 hours later. The MRI marker, termed Hyperintense Acute reperfusion injuRy Marker (HARM), is gadolinium enhancement of cerebrospinal fluid (CSF) on fluid attenuated inversion recovery (FLAIR) MRI. Plasma MMP-9 and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) was measured by ELISA. Logistic regression models tested for predictors of HARM on 24 hour follow-up scans separately for MMP-9 and the MMP-9/TIMP-1 ratio. Results For the 41 patients enrolled diagnoses were: acute ischemic cerebrovascular syndrome 33 (80.6%), intracerebral hemorrhage 6 (14.6%), stroke mimic 1 (2.4 %) and no stroke 1 (2.4%). HARM was present in 17 (41.5%) patients. In model 1, HARM was associated with baseline plasma MMP-9 concentration: odds ratio (OR) = 1.01 (95% confidence interval (CI) =1.001-1.019), p=0.033. In model 2, HARM was associated with the MMP-9/TIMP-1 ratio: OR=4.94 (95% CI=1.27-19.14), p=0.021. Conclusions Baseline MMP-9 was a significant predictor of HARM at 24-hour follow-up, supporting the hypothesis that MMP-9 is associated with BBB disruption. If the association between MMP-9 and BBB disruption is confirmed in future studies, HARM may be a useful imaging marker to evaluate MMP-9 inhibition in ischemic stroke and other populations with BBB disruption. PMID:20035078

  2. Roles of the cyclooxygenase 2 matrix metalloproteinase 1 pathway in brain metastasis of breast cancer.

    PubMed

    Wu, Kerui; Fukuda, Koji; Xing, Fei; Zhang, Yingyu; Sharma, Sambad; Liu, Yin; Chan, Michael D; Zhou, Xiaobo; Qasem, Shadi A; Pochampally, Radhika; Mo, Yin-Yuan; Watabe, Kounosuke

    2015-04-10

    Brain is one of the major sites of metastasis in breast cancer; however, the pathological mechanism of brain metastasis is poorly understood. One of the critical rate-limiting steps of brain metastasis is the breaching of blood-brain barrier, which acts as a selective interface between the circulation and the central nervous system, and this process is considered to involve tumor-secreted proteinases. We analyzed clinical significance of 21 matrix metalloproteinases on brain metastasis-free survival of breast cancer followed by verification in brain metastatic cell lines and found that only matrix metalloproteinase 1 (MMP1) is significantly correlated with brain metastasis. We have shown that MMP1 is highly expressed in brain metastatic cells and is capable of degrading Claudin and Occludin but not Zo-1, which are key components of blood-brain barrier. Knockdown of MMP1 in brain metastatic cells significantly suppressed their ability of brain metastasis in vivo, whereas ectopic expression of MMP1 significantly increased the brain metastatic ability of the cells that are not brain metastatic. We also found that COX2 was highly up-regulated in brain metastatic cells and that COX2-induced prostaglandins were directly able to promote the expression of MMP1 followed by augmenting brain metastasis. Furthermore, we found that COX2 and prostaglandin were able to activate astrocytes to release chemokine (C-C motif) ligand 7 (CCL7), which in turn promoted self-renewal of tumor-initiating cells in the brain and that knockdown of COX2 significantly reduced the brain metastatic ability of tumor cells. Our results suggest the COX2-MMP1/CCL7 axis as a novel therapeutic target for brain metastasis.

  3. Bi-directional induction of matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 during T lymphoma/endothelial cell contact: implication of ICAM-1.

    PubMed

    Aoudjit, F; Potworowski, E F; St-Pierre, Y

    1998-03-15

    The mechanisms that lead to the expression of matrix metalloproteinases (MMP) and tissue inhibitors of MMP (TIMPs) during the invasive process of normal and transformed T cells remain largely unknown. Since vascular cells form a dynamic tissue capable of responding to local stimuli and activating cells through the expression of cytokine receptors and specific cell adhesion molecules, we hypothesized that the firm adhesion of T lymphoma cells to endothelial cells is a critical event in the local production of MMP and TIMP. In the present work, we show that adhesion of lymphoma cells to endothelial cells induced a transient and reciprocal de novo expression of MMP-9 mRNA and enzymatic activity by both cell types. Up-regulation of MMP-9 in T lymphoma cells was concomitant to that of TIMP-1, and required direct contact with endothelial cells. Induction of MMP-9, but not of TIMP-1, was blocked by anti-LFA-1 and anti-intercellular adhesion molecule-1 Abs, indicating that induction of MMP-9 and TIMP-1 in lymphoma cells required direct, yet distinct, intercellular contact. In contrast, the induction of MMP-9 in endothelial cells by T lymphoma cells did not necessitate direct contact and could be achieved by exposure to IL-1 and TNF, or to the supernatant of T lymphoma cell culture. Together, these results demonstrate that firm adhesion of T lymphoma cells to endothelial cells participates in the production of MMP-9 in both cell types through bi-directional signaling pathways, and identify intercellular adhesion molecule-1/LFA-1 as a key interaction in the up-regulation of MMP-9 in T lymphoma cells.

  4. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation

    PubMed Central

    2016-01-01

    The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs) play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM) during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI) or photobiomodulation (PBM) is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM. PMID:27314046

  5. Activity-based labeling of matrix metalloproteinases in living vertebrate embryos.

    PubMed

    Keow, Jonathan Y; Pond, Eric D; Cisar, Justin S; Cravatt, Benjamin F; Crawford, Bryan D

    2012-01-01

    Extracellular matrix (ECM) remodeling is a physiologically and developmentally essential process mediated by a family of zinc-dependent extracellular proteases called matrix metalloproteinases (MMPs). In addition to complex transcriptional control, MMPs are subject to extensive post-translational regulation. Because of this, classical biochemical, molecular and histological techniques that detect the expression of specific gene products provide useful but limited data regarding the biologically relevant activity of MMPs. Using benzophenone-bearing hydroxamate-based probes that interact with the catalytic zinc ion in MMPs, active proteases can be covalently 'tagged' by UV cross-linking. This approach has been successfully used to tag MMP-2 in vitro in tissue culture supernatants, and we show here that this probe tags proteins with mobilities consistent with known MMPs and detectable gelatinolytic activity in homogenates of zebrafish embryos. Furthermore, because of the transparency of the zebrafish embryo, UV-photocroslinking can be accomplished in vivo, and rhodamated benzophenone probe is detected in striking spatial patterns consistent with known distributions of active matrix remodeling in embryos. Finally, in metamorphosing Xenopus tadpoles, this probe can be used to biotinylate active MMP-2 by injecting it and cross-linking it in vivo, allowing the protein to be subsequently extracted and biochemically identified. PMID:22952682

  6. Matrix metalloproteinase 14 modulates signal transduction and angiogenesis in the cornea.

    PubMed

    Chang, Jin-Hong; Huang, Yu-Hui; Cunningham, Christy M; Han, Kyu-Yeon; Chang, Michael; Seiki, Motoharu; Zhou, Zhongjun; Azar, Dimitri T

    2016-01-01

    The cornea is transparent and avascular, and retention of these characteristics is critical to maintaining vision clarity. Under normal conditions, wound healing in response to corneal injury occurs without the formation of new blood vessels; however, neovascularization may be induced during corneal wound healing when the balance between proangiogenic and antiangiogenic mediators is disrupted to favor angiogenesis. Matrix metalloproteinases (MMPs), which are key factors in extracellular matrix remodeling and angiogenesis, contribute to the maintenance of this balance, and in pathologic instances, can contribute to its disruption. Here, we elaborate on the facilitative role of MMPs, specifically MMP-14, in corneal neovascularization. MMP-14 is a transmembrane MMP that is critically involved in extracellular matrix proteolysis, exosome transport, and cellular migration and invasion, processes that are critical for angiogenesis. To aid in developing efficacious therapies that promote healing without neovascularization, it is important to understand and further investigate the complex pathways related to MMP-14 signaling, which can also involve vascular endothelial growth factor, basic fibroblast growth factor, Wnt/β-catenin, transforming growth factor, platelet-derived growth factor, hepatocyte growth factor or chemokines, epidermal growth factor, prostaglandin E2, thrombin, integrins, Notch, Toll-like receptors, PI3k/Akt, Src, RhoA/RhoA kinase, and extracellular signal-related kinase. The involvement and potential contribution of these signaling molecules or proteins in neovascularization are the focus of the present review.

  7. Matrix Metalloproteinase 20 Co-expression With Dentin Sialophosphoprotein in Human and Monkey Kidneys.

    PubMed

    Ogbureke, Kalu U E; Koli, Komal; Saxena, Geetu

    2016-10-01

    We recently reported the expression of matrix metalloproteinase 20 (MMP20), hitherto thought to be tooth specific, in the metabolically active ductal epithelial cells of human salivary glands. Furthermore, our report indicated that MMP20 co-expressed and potentially interacts with dentin sialophosphoprotein (DSPP), a member of the small integrin-binding ligand N-linked glycoproteins (SIBLINGs). Our earlier reports have shown the co-expression of three MMPs, MMP2, MMP3, and MMP9, with specific members of the SIBLING family: bone sialoprotein, osteopontin, and dentin matrix protein 1, respectively. This study investigated the expression of MMP20 and verified its co-expression with DSPP in human and monkey kidney sections and human mixed renal cells by IHC, in situ proximity ligation assay, and immunofluorescence. Our results show that MMP20 is expressed in all segments of the human and monkey nephron with marked intensity in the proximal and distal tubules, and was absent in the glomeruli. Furthermore, MMP20 co-expressed with DSPP in the proximal, distal, and collecting tubules, and in mixed renal cells. Consistent with other SIBLING-MMP pairs, the DSPP-MMP20 pair may play a role in the normal turnover of cell surface proteins and/or repair of pericellular matrix proteins of the basement membranes in the metabolically active duct epithelial system of the nephrons. PMID:27666430

  8. Involvement of matrix metalloproteinase activity in hormone-induced mammary tumor regression.

    PubMed

    Simian, Marina; Molinolo, Alfredo; Lanari, Claudia

    2006-01-01

    Proteolytic activity and remodeling of the extracellular matrix are important players in tumor progression. However, to date the role of the extracellular matrix in tumor regression remains unresolved. To address this, we used a progesterone-dependent in vivo mouse mammary tumor line, C4-HD, which regresses in response to hormone therapy. Within the first 72 hours of treatment, massive apoptosis was accompanied by changes in the staining patterns of laminin and collagens I, III, and IV. We thus hypothesized that an increase in matrix metalloproteinase (MMP) activity could be involved in this process. This indeed was the case as the activities of MMP-2, -9, and -3 increased in regressing tumors, coinciding with the peak of apoptosis. Moreover, cell-cell interactions were disrupted during early hours of regression with E-cadherin levels reduced and fragmentation products detected during regression. Analysis of beta-catenin revealed that although total levels within the tissue did not change, this molecule switched from being involved in cell-cell adhesion in the growing tumor to being expressed in the reactive stroma during regression. Our data provide a novel role for proteolytic activity in tumor regression and question the underlying principle for using MMP inhibitors in cancer treatment. PMID:16400029

  9. Tributyltin alters osteocalcin, matrix metalloproteinase 20 and dentin sialophosphoprotein gene expression in mineralizing mouse embryonic tooth in vitro.

    PubMed

    Salmela, Eija; Alaluusua, Satu; Sahlberg, Carin; Lukinmaa, Pirjo-Liisa

    2012-01-01

    We showed in a previous in vitro study that tributyltin (TBT) arrests dentin mineralization and enamel formation in developing mouse tooth. The present aim was to investigate the effect of TBT on the expression of genes associated with mineralization of dental hard tissues. Embryonic day 18 mouse mandibular first molars were cultured for 3, 5 or 7 days and exposed to 1.0 μM TBT and studied by real-time quantitative polymerase chain reaction (RT-QPCR) for the expressions of osteocalcin (Ocn), alkaline phosphatase (Alpl), dentin matrix protein 1 (Dmp1), dentin sialophosphoprotein (Dspp) and matrix metalloproteinase 20 (Mmp-20).Ocn, Mmp-20 and Dspp, whose expressions showed changes in RT- QPCR, were further analyzed by in situ hybridization of tissue sections. In situ hybridization showed that TBT decreased Ocn expression in odontoblasts but increased the expression in the epithelial tooth compartment. In QPCR assays, the net effect in the whole tooth was increased expression. TBT also reduced Mmp-20 expression in ameloblasts and odontoblasts. Dspp expression varied but both QPCR assays and in situ hybridization showed a decreasing trend. TBT exposure had no clear effect on Alpl and Dmp1 expressions. Increased Ocn expression by epithelial enamel organ may inhibit dentin mineralization and enamel formation. Decreased Ocn, Mmp-20 and Dspp expressions in odontoblasts may indicate delayed cell differentiation, or TBT may specifically decrease the expression of genes involved in dentin mineralization. While decreased Mmp-20 expression by TBT in ameloblasts may impair enamel mineralization, the coincident reduction in Mmp-20 and Dspp expressions in odontoblasts may potentiate the delay of dentin mineralization.

  10. Effect of Lumican on the Migration of Human Mesenchymal Stem Cells and Endothelial Progenitor Cells: Involvement of Matrix Metalloproteinase-14

    PubMed Central

    Perreau, Corinne; Boguslawski, Mateusz; Decot, Véronique; Stoltz, Jean-François; Vallar, Laurent; Niewiarowska, Jolanta; Cierniewski, Czeslaw; Maquart, François-Xavier; Wegrowski, Yanusz; Brézillon, Stéphane

    2012-01-01

    Background Increasing number of evidence shows that soluble factors and extracellular matrix (ECM) components provide an optimal microenvironment controlling human bone marrow mesenchymal stem cell (MSC) functions. Successful in vivo administration of stem cells lies in their ability to migrate through ECM barriers and to differentiate along tissue-specific lineages, including endothelium. Lumican, a protein of the small leucine-rich proteoglycan (SLRP) family, was shown to impede cell migration and angiogenesis. The aim of the present study was to analyze the role of lumican in the control of MSC migration and transition to functional endothelial progenitor cell (EPC). Methodology/Principal Findings Lumican inhibited tube-like structures formation on Matrigel® by MSC, but not EPC. Since matrix metalloproteinases (MMPs), in particular MMP-14, play an important role in remodelling of ECM and enhancing cell migration, their expression and activity were investigated in the cells grown on different ECM substrata. Lumican down-regulated the MMP-14 expression and activity in MSC, but not in EPC. Lumican inhibited MSC, but not EPC migration and invasion. The inhibition of MSC migration and invasion by lumican was reversed by MMP-14 overexpression. Conclusion/Significance Altogether, our results suggest that lumican inhibits MSC tube-like structure formation and migration via mechanisms that involve a decrease of MMP-14 expression and activity. PMID:23236386

  11. Matrix metalloproteinase-9 plays a role in protecting zebrafish from lethal infection with Listeria monocytogenes by enhancing macrophage migration.

    PubMed

    Shan, Ying; Zhang, Yikai; Zhuo, Xunhui; Li, Xiaoliang; Peng, Jinrong; Fang, Weihuan

    2016-07-01

    Zebrafish could serve as an alternative animal model for pathogenic bacteria in multiple infectious routes. Our previous study showed that immersion infection in zebrafish with Listeria monocytogenes did not cause lethality but induced transient expression of several immune response genes. We used an Affymetrix gene chip to examine the expression profiles of genes of zebrafish immersion-infected with L. monocytogenes. A total of 239 genes were up-regulated and 56 genes down-regulated compared with uninfected fish. Highest expression (>20-fold) was seen with the mmp-9 gene encoding the matrix metalloproteinase-9 (Mmp-9) known to degrade the extracellular matrix proteins. By morpholino knockdown of mmp-9, we found that the morphants showed rapid death with much higher bacterial load after intravenous or intraventricular (brain ventricle) infection with L. monocytogenes. Macrophages in mmp-9-knockdown morphants had significant defect in migrating to the brain cavity upon intraventricular infection. Decreased migration of murine macrophages with knockdown of mmp-9 and cd44 was also seen in transwell inserts with 8-μm pore polycarbonate membrane, as compared with the scrambled RNA. These findings suggest that Mmp-9 is a protective molecule against infection by L. monocytogenes by engaging in migration of zebrafish macrophages to the site of infection via a non-proteolytic role. Further work is required on the molecular mechanisms governing Mmp-9-driven macrophage migration in zebrafish.

  12. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction

    PubMed Central

    Ducharme, Anique; Frantz, Stefan; Aikawa, Masanori; Rabkin, Elena; Lindsey, Merry; Rohde, Luis E.; Schoen, Frederick J.; Kelly, Ralph A.; Werb, Zena; Libby, Peter; Lee, Richard T.

    2000-01-01

    Matrix metalloproteinase-9 (MMP-9) is prominently overexpressed after myocardial infarction (MI). We tested the hypothesis that mice with targeted deletion of MMP9 have less left ventricular (LV) dilation after experimental MI than do sibling wild-type (WT) mice. Animals that survived ligation of the left coronary artery underwent echocardiographic studies after MI; all analyses were performed without knowledge of mouse genotype. By day 8, MMP9 knockout (KO) mice had significantly smaller increases in end-diastolic and end-systolic ventricular dimensions at both midpapillary and apical levels, compared with infarcted WT mice; these differences persisted at 15 days after MI. MMP-9 KO mice had less collagen accumulation in the infarcted area than did WT mice, and they showed enhanced expression of MMP-2, MMP-13, and TIMP-1 and a reduced number of macrophages. We conclude that targeted deletion of the MMP9 gene attenuates LV dilation after experimental MI in mice. The decrease in collagen accumulation and the enhanced expression of other MMPs suggest that MMP-9 plays a prominent role in extracellular matrix remodeling after MI. PMID:10880048

  13. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    SciTech Connect

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia; Chellini, Flaminia; Mazzanti, Benedetta; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2014-05-01

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.

  14. Matrix metalloproteinase-7 facilitates immune access to the CNS in experimental autoimmune encephalomyelitis

    PubMed Central

    Buhler, Lillian A; Samara, Ramsey; Guzman, Esther; Wilson, Carole L; Krizanac-Bengez, Liljana; Janigro, Damir; Ethell, Douglas W

    2009-01-01

    Background Metalloproteinase inhibitors can protect mice against experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). Matrix metalloproteinase-9 (MMP-9) has been implicated, but it is not clear if other MMPs are also involved, including matrilysin/MMP-7 – an enzyme capable of cleaving proteins that are essential for blood brain barrier integrity and immune suppression. Results Here we report that MMP-7-deficient (mmp7-/-) mice on the C57Bl/6 background are resistant to EAE induced by myelin oligodendrocyte glycoprotein (MOG). Brain sections from MOG-primed mmp7-/-mice did not show signs of immune cell infiltration of the CNS, but MOG-primed wild-type mice showed extensive vascular cuffing and mononuclear cell infiltration 15 days after vaccination. At the peak of EAE wild-type mice had MMP-7 immuno-reactive cells in vascular cuffs that also expressed the macrophage markers Iba-1 and Gr-1, as well as tomato lectin. MOG-specific proliferation of splenocytes, lymphocytes, CD4+ and CD8+ cells were reduced in cells isolated from MOG-primed mmp7-/- mice, compared with MOG-primed wild-type mice. However, the adoptive transfer of splenocytes and lymphocytes from MOG-primed mmp7-/- mice induced EAE in naïve wild-type recipients, but not naïve mmp7-/- recipients. Finally, we found that recombinant MMP-7 increased permeability between endothelial cells in an in vitro blood-brain barrier model. Conclusion Our findings suggest that MMP-7 may facilitate immune cell access or re-stimulation in perivascular areas, which are critical events in EAE and multiple sclerosis, and provide a new therapeutic target to treat this disorder. PMID:19267908

  15. Extracellular matrix assessment of infected chronic venous leg ulcers: role of metalloproteinases and inflammatory cytokines.

    PubMed

    Serra, Raffaele; Grande, Raffaele; Buffone, Gianluca; Molinari, Vincenzo; Perri, Paolo; Perri, Aldina; Amato, Bruno; Colosimo, Manuela; de Franciscis, Stefano

    2016-02-01

    Chronic venous ulcer (CVU) represents a dreaded complication of chronic venous disease (CVD). The onset of infection may further delay the already precarious healing process in such lesions. Some evidences have shown that matrix metalloproteinases (MMPs) are involved and play a central role in both CVUs and infectious diseases. Two groups of patients were enrolled to evaluate the expression of MMPs in infected ulcers and the levels of inflammatory cytokines as well as their prevalence. Group I comprised 63 patients (36 females and 27 males with a median age of 68·7 years) with infected CVUs, and group II (control group) comprised 66 patients (38 females and 28 males with a median age of 61·2 years) with non-infected venous ulcers. MMP evaluation and dosage of inflammatory cytokines in plasma and wound fluid was performed by means of enzyme-linked immunosorbent assay test; protein extraction and immunoblot analysis were performed on biopsied wounds. The first three most common agents involved in CVUs were Staphylococcus aureus (38·09%), Corynebacterium striatum (19·05%) and Pseudomonas aeruginosa (12·7%). In this study, we documented overall higher levels of MMP-1 and MMP-8 in patients with infected ulcers compared to those with uninfected ulcers that showed higher levels of MMP-2 and MMP-9. We also documented higher levels of interleukin (IL)-1, IL-6, IL-8, vascular endothelial growth factor and tumour necrosis factor-alpha in patients with infected ulcers with respect to those with uninfected ulcers, documenting a possible association between infection, MMP activation, cytokine secretions and symptoms. The present results could represent the basis for further studies on drug use that mimic the action of tissue inhibitors of metalloproteinases in order to make infected CVU more manageable.

  16. Molecular design of a highly selective and strong protein inhibitor against matrix metalloproteinase-2 (MMP-2).

    PubMed

    Higashi, Shouichi; Hirose, Tomokazu; Takeuchi, Tomoka; Miyazaki, Kaoru

    2013-03-29

    Synthetic inhibitors of matrix metalloproteinases (MMPs), designed previously, as well as tissue inhibitors of metalloproteinases (TIMPs) lack enzyme selectivity, which has been a major obstacle for developing inhibitors into safe and effective MMP-targeted drugs. Here we designed a fusion protein named APP-IP-TIMP-2, in which the ten amino acid residue sequence of APP-derived MMP-2 selective inhibitory peptide (APP-IP) is added to the N terminus of TIMP-2. The APP-IP and TIMP-2 regions of the fusion protein are designed to interact with the active site and the hemopexin-like domain of MMP-2, respectively. The reactive site of the TIMP-2 region, which has broad specificity against MMPs, is blocked by the APP-IP adduct. The recombinant APP-IP-TIMP-2 showed strong inhibitory activity toward MMP-2 (Ki(app) = 0.68 pm), whereas its inhibitory activity toward MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, or MT1-MMP was six orders of magnitude or more weaker (IC50 > 1 μm). The fusion protein inhibited the activation of pro-MMP-2 in the concanavalin A-stimulated HT1080 cells, degradation of type IV collagen by the cells, and the migration of stimulated cells. Compared with the decapeptide APP-IP (t½ = 30 min), APP-IP-TIMP-2 (t½ ≫ 96 h) showed a much longer half-life in cultured tumor cells. Therefore, the fusion protein may be a useful tool to evaluate contributions of proteolytic activity of MMP-2 in various pathophysiological processes. It may also be developed as an effective anti-tumor drug with restricted side effects.

  17. Matrix Metalloproteinases in a Sea Urchin Ligament with Adaptable Mechanical Properties

    PubMed Central

    Ribeiro, Ana R.; Barbaglio, Alice; Oliveira, Maria J.; Ribeiro, Cristina C.; Wilkie, Iain C.; Candia Carnevali, Maria D.; Barbosa, Mário A.

    2012-01-01

    Mutable collagenous tissues (MCTs) of echinoderms show reversible changes in tensile properties (mutability) that are initiated and modulated by the nervous system via the activities of cells known as juxtaligamental cells. The molecular mechanism underpinning this mechanical adaptability has still to be elucidated. Adaptable connective tissues are also present in mammals, most notably in the uterine cervix, in which changes in stiffness result partly from changes in the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). There have been no attempts to assess the potential involvement of MMPs in the echinoderm mutability phenomenon, apart from studies dealing with a process whose relationship to the latter is uncertain. In this investigation we used the compass depressor ligaments (CDLs) of the sea-urchin Paracentrotus lividus. The effect of a synthetic MMP inhibitor - galardin - on the biomechanical properties of CDLs in different mechanical states (“standard”, “compliant” and “stiff”) was evaluated by dynamic mechanical analysis, and the presence of MMPs in normal and galardin-treated CDLs was determined semi-quantitatively by gelatin zymography. Galardin reversibly increased the stiffness and storage modulus of CDLs in all three states, although its effect was significantly lower in stiff than in standard or compliant CDLs. Gelatin zymography revealed a progressive increase in total gelatinolytic activity between the compliant, standard and stiff states, which was possibly due primarily to higher molecular weight components resulting from the inhibition and degradation of MMPs. Galardin caused no change in the gelatinolytic activity of stiff CDLs, a pronounced and statistically significant reduction in that of standard CDLs, and a pronounced, but not statistically significant, reduction in that of compliant CDLs. Our results provide evidence that MMPs may contribute to the variable tensility of the

  18. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    SciTech Connect

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  19. Matrix metalloproteinase expression and activity in trophoblast-decidual tissues at organogenesis in CF-1 mouse.

    PubMed

    Fontana, Vanina; Coll, Tamara A; Sobarzo, Cristian M A; Tito, Leticia Perez; Calvo, Juan Carlos; Cebral, Elisa

    2012-10-01

    During early placentation, matrix metalloproteinases (MMPs) play important roles in decidualization, trophoblast migration, invasion, angiogenesis, vascularization and extracellular matrix (ECM) remodeling of the endometrium. The aim of our study was to analyze the localization, distribution and differential expression of MMP-2 and -9 in the organogenic implantation site and to evaluate in vivo and in vitro decidual MMP-2 and -9 activities on day 10 of gestation in CF-1 mouse. Whole extracts for Western blotting of organogenic E10-decidua expressed MMP-2 and -9 isoforms. MMP-2 immunoreactivity was found in a granular and discrete pattern in ECM of mesometrial decidua (MD) near maternal blood vessels and slightly in non-decidualized endometrium (NDE). Immunoexpression of MMP-9 was also detected in NDE, in cytoplasm of decidual cells and ECM of vascular MD, in trophoblastic area and in growing antimesometrial deciduum. Gelatin zymography showed that MMP-9 activity was significantly lower in CM compared to the active form of direct (not cultured) and cultured decidua. The decidual active MMP-9 was significantly higher than the active MMP-2. These results show differential localization, protein expression and enzymatic activation of MMPs, suggesting specific roles for MMP-2 and MMP-9 in decidual and trophoblast tissues related to organogenic ECM remodeling and vascularization during early establishment of mouse placentation. PMID:22714107

  20. The parasite Entamoeba histolytica exploits the activities of human matrix metalloproteinases to invade colonic tissue.

    PubMed

    Thibeaux, Roman; Avé, Patrick; Bernier, Michèle; Morcelet, Marie; Frileux, Pascal; Guillén, Nancy; Labruyère, Elisabeth

    2014-10-07

    Intestinal invasion by the protozoan parasite Entamoeba histolytica is characterized by remodelling of the extracellular matrix (ECM). The parasite cysteine proteinase A5 (CP-A5) is thought to cooperate with human matrix metalloproteinases (MMPs) involved in ECM degradation. Here, we investigate the role CP-A5 plays in the regulation of MMPs upon mucosal invasion. We use human colon explants to determine whether CP-A5 activates human MMPs. Inhibition of the MMPs' proteolytic activities abolishes remodelling of the fibrillar collagen structure and prevents trophozoite invasion of the mucosa. In the presence of trophozoites, MMPs-1 and -3 are overexpressed and are associated with fibrillar collagen remodelling. In vitro, CP-A5 performs the catalytic cleavage needed to activate pro-MMP-3, which in turn activates pro-MMP-1. Ex vivo, incubation with recombinant CP-A5 was enough to rescue CP-A5-defective trophozoites. Our results suggest that MMP-3 and/or CP-A5 inhibitors may be of value in further studies aiming to treat intestinal amoebiasis.

  1. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    SciTech Connect

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille; Dadrich, Monika; Hauser, Kai; Abdollahi, Amir; Groene, Hermann-Josef; Angel, Peter; Huber, Peter E.

    2010-06-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  2. Protease induced plasticity: matrix metalloproteinase-1 promotes neurostructural changes through activation of protease activated receptor 1

    PubMed Central

    Allen, Megan; Ghosh, Suhasini; Ahern, Gerard P.; Villapol, Sonia; Maguire-Zeiss, Kathleen A.; Conant, Katherine

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of secreted endopeptidases expressed by neurons and glia. Regulated MMP activity contributes to physiological synaptic plasticity, while dysregulated activity can stimulate injury. Disentangling the role individual MMPs play in synaptic plasticity is difficult due to overlapping structure and function as well as cell-type specific expression. Here, we develop a novel system to investigate the selective overexpression of a single MMP driven by GFAP expressing cells in vivo. We show that MMP-1 induces cellular and behavioral phenotypes consistent with enhanced signaling through the G-protein coupled protease activated receptor 1 (PAR1). Application of exogenous MMP-1, in vitro, stimulates PAR1 dependent increases in intracellular Ca2+ concentration and dendritic arborization. Overexpression of MMP-1, in vivo, increases dendritic complexity and induces biochemical and behavioral endpoints consistent with increased GPCR signaling. These data are exciting because we demonstrate that an astrocyte-derived protease can influence neuronal plasticity through an extracellular matrix independent mechanism. PMID:27762280

  3. Role of matrix metalloproteinases in cholestasis and hepatic ischemia/reperfusion injury: A review

    PubMed Central

    Palladini, Giuseppina; Ferrigno, Andrea; Richelmi, Plinio; Perlini, Stefano; Vairetti, Mariapia

    2015-01-01

    Matrix metalloproteinases (MMPs) are a family of proteases using zinc-dependent catalysis to break down extracellular matrix (ECM) components, allowing cell movement and tissue reorganization. Like many other proteases, MMPs are produced as zymogens, an inactive form, which are activated after their release from cells. Hepatic ischemia/reperfusion (I/R) is associated with MMP activation and release, with profound effects on tissue integrity: their inappropriate, prolonged or excessive expression has harmful consequences for the liver. Kupffer cells and hepatic stellate cells can secrete MMPs though sinusoidal endothelial cells are a further source of MMPs. After liver transplantation, biliary complications are mainly attributable to cholangiocytes, which, compared with hepatocytes, are particularly susceptible to injury and ultimately a major cause of increased graft dysfunction and patient morbidity. This paper focuses on liver I/R injury and cholestasis and reviews factors and mechanisms involved in MMP activation together with synthetic compounds used in their regulation. In this respect, recent data have demonstrated that the role of MMPs during I/R may go beyond the mere destruction of the ECM and may be much more complex than previously thought. We thus discuss the role of MMPs as an important factor in cholestasis associated with I/R injury. PMID:26576096

  4. [The role of matrix metalloproteinases and their inhibitors in pathogenesis of pancreatic pseudocysts].

    PubMed

    Kryvoruchko, I A; Goncharova, N M; Andreyseshchev, S A

    2015-02-01

    The investigation was conducted in 47 patients, operated on for pancreatic pseudocysts (PP). Activity of matrix metalloproteinases (MMP-9) and content of their tissue inhibitor (TIMP-2) were determined in the blood serum for estimation of inflammatory factors, hypoxia severity and state of the pancreatic tissue reconstruction. High activity of MMP-9 and TIMP-2 in presence of PP types I and II was noted in patients, what, probably, is caused by compensation reaction, directed towards inhibition of the collagen system destruction (predominantly of collagen type IV) and prevention of further reconstruction of pancreatic connective tissue. While progressing of pancreatic fibrosis the MMP-9 activity and the TIMP-2 level have lowered in comparison with these indices while its absence. In PP type III the MMP-9 activity was by 83.6% higher, than in a control group, but, by 51.4 and 35.1% lower, than in PP types I and IV. In all the patients endothelial dysfunction with endothelial injury was observed, witnessed by significant rising of the VEGF content in the blood serum. It have created favorable conditions for pancreatic tissue remodeling while parenchymal defect have been constituted by tissue, owing lower level of organization, including a cicatricial one. In cases of cellular repeated affection more activation of pancreatic stellate cells and enhancement of production of extracellular matrix component were noted.

  5. Macrophage fusion, giant cell formation, and the foreign body response require matrix metalloproteinase 9

    PubMed Central

    MacLauchlan, Susan; Skokos, Eleni A.; Meznarich, Norman; Zhu, Dana H.; Raoof, Sana; Shipley, J. Michael; Senior, Robert M.; Bornstein, Paul; Kyriakides, Themis R.

    2009-01-01

    Macrophages undergo fusion to form multinucleated giant cells in several pathologic conditions, including the foreign body response (FBR). We detected high levels of matrix metalloproteinase (MMP)-9 during macrophage fusion in vitro and in foreign body giant cells (FBGCs) in vivo. Wild-type (WT) bone marrow-derived macrophages were induced to fuse with IL-4 in the presence of MMP-9 function-blocking antibodies and displayed reduced fusion. A similar defect, characterized by delayed shape change and abnormal morphology, was observed in MMP-9 null macrophages. Analysis of the FBR in MMP-9 null mice was then pursued to evaluate the significance of these findings. Specifically, mixed cellulose ester disks and polyvinyl alcohol sponges were implanted s.c. in MMP-9 null and WT mice and excised 2–4 weeks later. Histochemical and immunohistochemical analyses indicated equal macrophage recruitment between MMP-9 null and WT mice, but FBGC formation was compromised in the former. In addition, MMP-9 null mice displayed abnormalities in extracellular matrix assembly and angiogenesis. Consistent with a requirement for MMP-9 in fusion, we also observed reduced MMP-9 levels in MCP-1 null macrophages, previously shown to be defective in FBGC formation. Collectively, our studies show abnormalities in MMP-9 null mice during the FBR and suggest a role for MMP-9 in macrophage fusion. PMID:19141565

  6. LMAN1 (ERGIC-53) is a potential carrier protein for matrix metalloproteinase-9 glycoprotein secretion

    PubMed Central

    Duellman, Tyler; Burnett, John; Shin, Alice; Yang, Jay

    2015-01-01

    Matrix metalloproteinase-9 (MMP-9) is a secreted glycoprotein with a major role in shaping the extra-cellular matrix and a detailed understanding of the secretory mechanism could help identify methods to correct diseases resulting from dysregulation of secretion. MMP-9 appears to follow a canonical secretory pathway through a quality control cycle in the endoplasmic reticulum (ER) before transport of the properly folded protein to the Golgi apparatus and beyond for secretion. Through a complementation assay, we determined that LMAN1, a well-studied lectin-carrier protein, interacts with a secretion-competent N-glycosylated MMP-9 in the ER while N-glycosylation-deficient secretion-compromised MMP-9 does not. In contrast, co-immunoprecipitation demonstrated protein interaction between LMAN1 and secretion-compromised N-glycosylation-deficient MMP-9. MMP-9 secretion was reduced in the LMAN1 knockout cell line compared to control cells confirming the functional role of LMAN1. These observations support the role of LMAN1 as a lectin-carrier protein mediating efficient MMP-9 secretion. PMID:26150355

  7. Ginsenoside Rb1 inhibits matrix metalloproteinase 13 through down-regulating Notch signaling pathway in osteoarthritis

    PubMed Central

    Wang, Wei; Zeng, Li; Wang, Ze-ming; Zhang, Sihan; Rong, Xiao-Feng

    2015-01-01

    Mounting evidence suggests that an excess of matrix metalloproteinase-13 (MMP-13) plays an important role in the breakdown of extracellular matrix in osteoarthritis (OA). Here, the effects of ginsenoside Rb1 (GRb1) on the expression of MMP-13 in IL-1β-induced SW 1353 chondrosarcoma cells and an experimental rat model of OA induced by anterior cruciate ligament transection (ACLT) were investigated. SW1353 chondrosarcoma cells were pretreated with or without GRb1 and Notch signaling pathway inhibitor, DAPT, then were stimulated with IL-1β. In rats, experimental OA was induced by ACLT. These rats then received intra-articular injections of vehicle, an inhibitor of γ-secretase, DAPT, and/or GRb1. Expression of MMP-13, collagen type II (CII), Notch1, and jagged 1 (JAG1) were verified by western blotting and immunohistochemistry. In addition, levels of MMP-13 mRNA were detected using quantitative real-time PCR. In histological analyses, treatment with DAPT reduced the number of cartilage lesions present and the expressions of MMP-13, CII, Notch1, and JAG1. In addition, treatment with GRb1 was associated with lower levels of Notch1 and JAG1 in both IL-1β-induced SW1353 chondrosarcoma cells and in the rat OA model. Furthermore, the suppressive effect of GRb1 on MMP-13 was greater than that exhibited by the signaling pathway inhibitor. In conclusion, GRb1 inhibits MMP-13 through down-regulating Notch signaling pathway in OA. PMID:26062798

  8. Urinary matrix metalloproteinase activities: biomarkers for plaque angiogenesis and nephropathy in diabetes.

    PubMed

    McKittrick, Ian B; Bogaert, Yolanda; Nadeau, Kristen; Snell-Bergeon, Janet; Hull, Amber; Jiang, Tao; Wang, Xiaoxin; Levi, Moshe; Moulton, Karen S

    2011-12-01

    Diabetic complications of nephropathy and accelerated atherosclerosis are associated with vascular remodeling and dysregulated angiogenesis. Matrix metalloproteinases (MMP) modify extracellular matrix during vascular remodeling and are excreted in urine of patients with vascular malformation or tumor angiogenesis. We hypothesized that urinary MMP activities would be sensitive biomarkers for vascular remodeling in diabetic complications. Activities of MMP-2, MMP-9, and its complex with neutrophil gelatinase-associated lipocalin (NGAL/MMP-9) were measured by substrate gel zymography in urine from nondiabetic (ND) and type 1 diabetic (T1D) rodents that were susceptible to both T1D-induced plaque angiogenesis and nephropathy, or nephropathy alone. Additionally, these urine activities were measured in ND and T1D adolescents. Urinary MMP-9, MMP-2, and NGAL/MMP-9 activities were increased and more prevalent in T1D compared with ND controls. Urinary MMP-2 activity was detected in mice with T1D-induced plaque neovascularization. In nephropathy models, urinary NGAL/MMP-9 and MMP-9 activities appeared before onset of albuminuria, whereas MMP-2 was absent or delayed. Finally, urinary MMP activities were increased in adolescents with early stages of T1D. Urinary MMP activities may be sensitive, noninvasive, and clinically useful biomarkers for predicting vascular remodeling in diabetic renal and vascular complications. PMID:21921021

  9. Urinary matrix metalloproteinase activities: biomarkers for plaque angiogenesis and nephropathy in diabetes

    PubMed Central

    McKittrick, Ian B.; Bogaert, Yolanda; Nadeau, Kristen; Snell-Bergeon, Janet; Hull, Amber; Jiang, Tao; Wang, Xiaoxin; Levi, Moshe

    2011-01-01

    Diabetic complications of nephropathy and accelerated atherosclerosis are associated with vascular remodeling and dysregulated angiogenesis. Matrix metalloproteinases (MMP) modify extracellular matrix during vascular remodeling and are excreted in urine of patients with vascular malformation or tumor angiogenesis. We hypothesized that urinary MMP activities would be sensitive biomarkers for vascular remodeling in diabetic complications. Activities of MMP-2, MMP-9, and its complex with neutrophil gelatinase-associated lipocalin (NGAL/MMP-9) were measured by substrate gel zymography in urine from nondiabetic (ND) and type 1 diabetic (T1D) rodents that were susceptible to both T1D-induced plaque angiogenesis and nephropathy, or nephropathy alone. Additionally, these urine activities were measured in ND and T1D adolescents. Urinary MMP-9, MMP-2, and NGAL/MMP-9 activities were increased and more prevalent in T1D compared with ND controls. Urinary MMP-2 activity was detected in mice with T1D-induced plaque neovascularization. In nephropathy models, urinary NGAL/MMP-9 and MMP-9 activities appeared before onset of albuminuria, whereas MMP-2 was absent or delayed. Finally, urinary MMP activities were increased in adolescents with early stages of T1D. Urinary MMP activities may be sensitive, noninvasive, and clinically useful biomarkers for predicting vascular remodeling in diabetic renal and vascular complications. PMID:21921021

  10. Matrix metalloproteinase-11/stromelysin-3 exhibits collagenolytic function against collagen VI under normal and malignant conditions.

    PubMed

    Motrescu, E R; Blaise, S; Etique, N; Messaddeq, N; Chenard, M-P; Stoll, I; Tomasetto, C; Rio, M-C

    2008-10-23

    The substrate of matrix metalloproteinase 11 (MMP11) remains unknown. We have recently shown that MMP11 is a negative regulator of adipogenesis, able to reduce and even to revert mature adipocyte differentiation. Here, we have used mouse 3T3L1 cells and human U87MG and SaOS cells to show that MMP11 cleaves the native alpha3 chain of collagen VI, which is an adipocyte-related extracellular matrix component. It is known that extracellular proteolytic processing of this chain is required for correct collagen VI folding. Interestingly, MMP11-deficient fat tissue is less cohesive and exhibits collagen VI alteration, dramatic adipocyte plasma and basement membrane abnormalities and lipid leakage. MMP11 is thus required for correct collagen VI folding and therefore for fat tissue cohesion and adipocyte function. Both MMP11 and collagen VI favor tumor progression. Similar spatio-temporal overexpression at the adipocyte-cancer cell interface has been reported for the two proteins. MMP11-dependent collagen VI processing might therefore be expected to occur during malignancy. Accordingly, collagen VI no longer delineates adipocytes located at the invasive front of breast carcinomas. In conclusion, the native alpha3 chain of collagen VI constitutes a specific MMP11 substrate. This MMP11 collagenolytic activity is functional in fat tissue ontogenesis as well as during cancer invasive steps.

  11. Lung Matrix Metalloproteinase Activation following Partial Hepatic Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Ferrigno, Andrea; Rizzo, Vittoria; Tarantola, Eleonora

    2014-01-01

    Purpose. Warm hepatic ischemia-reperfusion (I/R) injury can lead to multiorgan dysfunction. The aim of the present study was to investigate whether acute liver I/R does affect the function and/or structure of remote organs such as lung, kidney, and heart via modulation of extracellular matrix remodelling. Methods. Male Sprague-Dawley rats were subjected to 30 min partial hepatic ischemia by clamping the hepatic artery and the portal vein. After a 60 min reperfusion, liver, lung, kidney, and heart biopsies and blood samples were collected. Serum hepatic enzymes, creatinine, urea, Troponin I and TNF-alpha, and tissue matrix metalloproteinases (MMP-2, MMP-9), myeloperoxidase (MPO), malondialdehyde (MDA), and morphology were monitored. Results. Serum levels of hepatic enzymes and TNF-alpha were concomitantly increased during hepatic I/R. An increase in hepatic MMP-2 and MMP-9 activities was substantiated by tissue morphology alterations. Notably, acute hepatic I/R affect the lung inasmuch as MMP-9 activity and MPO levels were increased. No difference in MMPs and MPO was observed in kidney and heart. Conclusions. Although the underlying mechanism needs further investigation, this is the first study in which the MMP activation in a distant organ is reported; this event is probably TNF-alpha-mediated and the lung appears as the first remote organ to be involved in hepatic I/R injury. PMID:24592193

  12. Molecular Determinants of Matrix Metalloproteinase-12 Covalent Modification by a Photoaffinity Probe

    PubMed Central

    Dabert-Gay, Anne-Sophie; Czarny, Bertrand; Devel, Laurent; Beau, Fabrice; Lajeunesse, Evelyne; Bregant, Sarah; Thai, Robert; Yiotakis, Athanasios; Dive, Vincent

    2008-01-01

    Mass spectroscopy, microsequencing, and site-directed mutagenesis studies have been performed to identify in human matrix metalloelastase (hMMP-12) residues covalently modified by a photoaffinity probe, previously shown to be able to covalently label specifically the active site of matrix metalloproteinases (MMPs). Results obtained led us to conclude that photoactivation of this probe in complex with hMMP-12 affects a single residue in human MMP-12, Lys241, through covalent modification of its side chain ε NH2 group. Because x-ray and NMR studies of hMMP-12 indicate that Lys241 side chain is highly flexible, our data reveal the existence of particular Lys241 side-chain conformation in which the ε NH2 group points toward the photolabile group of the probe, an event explaining the high levels of cross-linking yield between hMMP-12 and the probe. Lys241 is not conserved in MMPs, thus differences in cross-linking yields observed with this probe between MMP members may be linked to the residue variability observed at position 241 in this family. PMID:18775985

  13. Phosphoramidate-based peptidomimetic inhibitors of membrane type-1 matrix metalloproteinase.

    PubMed

    Mendes, Desiree E; Wong-On-Wing, Annie; Berkman, Clifford E

    2016-01-01

    Membrane-type I matrix metalloproteinases (MT1-MMP) is an enzyme critical to the remodeling and homeostasis of extracellular matrix, and when over expressed it contributes to metastasis and cancer cell progression. Because of its role and implication as a biomarker that is upregulated in various cancers, MT1-MMP has become an attractive target for drug discovery. A small pilot library of peptidomimetics containing a phosphoramidate core as a zinc-binding group was synthesized and tested for inhibitory potency against MT1-MMP. From this library, a novel two residue peptidomimetic scaffold was identified that confers potency against MT1-MMP at submicromolar concentrations. The results of this study confirm that for this scaffold, valine is favored as a P1 residue and leucine in the P1' position. Furthermore, steric tolerance was observed for the N-terminus, thus implicating that a second-generation library could be constructed to extend the scaffold to P2 without concomitant loss of affinity within the MT1-MMP catalytic domain.

  14. Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies.

    PubMed

    Folgueras, Alicia R; Pendás, Alberto M; Sánchez, Luis M; López-Otín, Carlos

    2004-01-01

    Over the last years, the relevance of the matrix metalloproteinase (MMP) family in cancer research has grown considerably. These enzymes were initially associated with the invasive properties of tumour cells, owing to their ability to degrade all major protein components of the extracellular matrix (ECM) and basement membranes. However, further studies have demonstrated the implication of MMPs in early steps of tumour evolution, including stimulation of cell proliferation and modulation of angiogenesis. The establishment of causal relationships between MMP overproduction in tumour or stromal cells and cancer progression has prompted the development of clinical trials with a series of inhibitors designed to block the proteolytic activity of these enzymes. Unfortunately, the results derived from using broad-spectrum MMP inhibitors (MMPIs) for treating patients with advanced cancer have been disappointing in most cases. There are several putative explanations for the lack of success of these MMPIs including the recent finding that some MMPs may play a paradoxical protective role in tumour progression. These observations together with the identification of novel functions for MMPs in early stages of cancer have made necessary a reformulation of MMP inhibition strategies. A better understanding of the functional complexity of this proteolytic system and global approaches to identify the relevant MMPs which must be targeted in each individual cancer patient, will be necessary to clarify whether MMP inhibition may be part of future therapies against cancer. PMID:15349816

  15. Unravelling the reaction mechanism of matrix metalloproteinase 3 using QM/MM calculations

    NASA Astrophysics Data System (ADS)

    Feliciano, Gustavo Troiano; da Silva, Antônio José Roque

    2015-07-01

    The matrix metalloproteinase family (MMP) constitutes a family of zinc (Zn) proteases that catalyze the breaking of peptide bonds in proteins. These enzymes are very promising drug targets, since they are involved in remodeling and degradation of the extracellular matrix, which is a key process required for cancer metastasis, and thus, their reaction mechanism has been an area of intensive research. Early proposal based on acid base catalyzed hydrolysis, suggested that a conserved zinc bound water molecule acted as the nucleophile attacking the peptide bond carbon, after being activated by essential glutamate. The possibility of a direct nucleophilic attack by the enzyme, performed by the glutamate was also suggested. These are the key yet unsolved issues about MMP reaction mechanism. In the present work, we used hybrid quantum/classical calculations to analyze the structure and energetics of different possible hydrolysis reaction paths. The results support a water mediated mechanism, where both the nucleophile water molecule and the carbonyl oxygen of the scissile peptide bond are coordinated to zinc in the reactive configuration, while the essential glutamate acts as the base accepting the proton from the nucleophilic water. Formation of the carbon-oxygen bond and breaking of carbon-nitrogen bond were found to be concerted events, with a computed barrier of 14.8 kcal/mol. Substrate polarization was found to be important for the observed reaction mechanism, and a substantial change in the metal coordination environment was observed, particularly, regarding the zinc-histidine coordination.

  16. Gelatinase activity of matrix metalloproteinases in the cerebrospinal fluid of various patient populations.

    PubMed

    Valenzuela, M A; Cartier, L; Collados, L; Kettlun, A M; Araya, F; Concha, C; Flores, L; Wolf, M E; Mosnaim, A D

    1999-01-01

    We have studied the enzymatic gelatinolytic activity of matrix metalloproteinases (MMPs) present in cerebrospinal fluid (CSF) of samples obtained from 67 individuals, twenty-one nonneurological patients (considered controls) and 46 subjects with various neurological disorders e.g., vascular lesions, demyelination, inflammatory, degenerative and prion diseases. Biochemical characterization of MMPs, a family of neutral proteolytic enzymes involved in extracellular matrix modeling, included determination of substrate specificity and Ca+2 dependency, as well as the effects of protease inactivators, carboxylic and His (histidine) residue modifiers, and antibiotics. Whereas all CSF samples expressed MMP-2 (gelatinase A) activity, it corresponded in most cases (normal and pathological samples) to its latent form (proenzyme; pMMP-2). In general, inflammatory neurological diseases (especially meningitis and neurocisticercosis) were associated with the presence of a second enzyme, MMP-9 (or gelatinase B). Whereas MMP-9 was found in the CSF of every tropical spastic paraparesis patient studied, its presence in samples from individuals with vascular lesions was uncommon. Patients blood-brain barrier damage was ascertained by determining total CSF protein content using both, the conventional polyacrylamide gel electrophoresis procedure under denaturing conditions and capillary zone electrophoresis.

  17. Low matrix metalloproteinase levels precede vascular lesion formation in the JCR:LA-cp rat.

    PubMed

    Wilson, David; Massaeli, Hamid; Russell, James C; Pierce, Grant N; Zahradka, Peter

    2003-07-01

    Clinically significant occlusive vascular lesions contain more extracellular matrix (ECM) proteins and lipid deposition than healthy vascular tissue. The events leading to this condition remain unresolved. One possibility is that ECM deposition may exceed ECM degradation which would contribute to the expansion of the vascular lesion. Utilizing lean (+/?) and insulin-resistant, corpulent (cp/cp) JCR:LA-cp rats, which are predisposed to develop vascular lesions, we have compared the matrix metalloproteinase (MMP) profile prior to the development of significant vascular lesions. Analysis of serum MMPs revealed that cp/cp rats have lower circulating levels than (+/?) controls. This is observed prior to the development of any noticeable atherosclerotic lesions. It also occurs as the hyperinsulinemia and insulin resistance is first developing in these rats. Female corpulent animals, which are less prone to develop vascular lesions, also exhibit a depressed serum MMP profile of a similar magnitude to their male counterparts. Primary vascular smooth muscle cells isolated from cp/cp animals also showed a reduction in secreted MMP compared with cells derived from +/? lean controls. We conclude that reduced MMP levels could lead to increased ECM accumulation and thus contribute to early vascular lesion formation.

  18. Skin fragility in obese diabetic mice: possible involvement of elevated oxidative stress and upregulation of matrix metalloproteinases.

    PubMed

    Ibuki, Ai; Akase, Tomoko; Nagase, Takashi; Minematsu, Takeo; Nakagami, Gojiro; Horii, Motoko; Sagara, Hiroshi; Komeda, Takashi; Kobayashi, Masayuki; Shimada, Tsutomu; Aburada, Masaki; Yoshimura, Kotaro; Sugama, Junko; Sanada, Hiromi

    2012-03-01

    The purpose of this study was to test the hypothesis that obese diabetic mice exhibit marked skin fragility, which is caused by increased oxidative stress and increased matrix metalloproteinase (MMP) gene expression in the subcutaneous adipose tissue. Scanning electron microscopy of skin samples from Tsumura-Suzuki obese diabetic (TSOD) mice revealed thinner collagen bundles, and decreased density and convolution of the collagen fibres. Furthermore, skin tensile strength measurements confirmed that the dorsal skin of TSOD mice was more fragile to tensile force than that of non-obese mice. The mRNA expressions of heme oxygenase 1 (Hmox1), a marker of oxidative stress, Mmp2 and Mmp14 were increased in the adipose tissue of TSOD mice. Antioxidant experiments were subsequently performed to determine whether the changes in collagen fibres and skin fragility were caused by oxidative stress. Strikingly, oral administration of the antioxidant dl-α-tocopherol acetate (vitamin E) decreased Hmox1, Mmp2 and Mmp14 mRNA expressions, and improved the skin tensile strength and structure of collagen fibres in TSOD mice. These findings suggest that the skin fragility in TSOD mice is associated with dermal collagen damage and weakened tensile strength, and that oxidative stress and MMP overexpression in the subcutaneous adipose tissue may, at least in part, affect dermal fragility via a paracrine pathway. These observations may contribute to novel clinical interventions, such as dietary supplementation with antioxidants or application of skin cream containing antioxidants, which may overcome skin fragility in obese patients with diabetes.

  19. Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation

    PubMed Central

    Yeh, Chia-Ming; Lin, Chiao-Wen; Yang, Jia-Sin; Yang, Wei-En; Su, Shih-Chi; Yang, Shun-Fa

    2016-01-01

    Melatonin exerts antimetastatic effects on liver and breast cancer and also inhibits matrix metalloproteinase (MMP) activity. However, the detailed impacts and underlying mechanisms of melatonin on oral cancer cell metastasis are still unclear. This study showed that melatonin attenuated the 12-O-tetradecanoylphorbol-13-acetate-induced migration of oral cancer cell lines, HSC-3 and OECM-1. Zymography, quantitative real-time PCR, and Western blotting analyses revealed that melatonin lessened MMP-9 enzyme activity as well as the expression of MMP-9 mRNA and protein. Furthermore, melatonin suppressed the phosphorylation of the ERK1/2 signalling pathway, which dampened MMP-9 gene transcription by affecting the expression of transcriptional coactivators, such as CREB-binding protein (CREBBP) and E1A binding protein p300 (EP300), and decreasing histone acetylation in HSC-3 and OECM-1 cells. Examinations on clinical samples exhibited that MMP-9, CREBBP, and EP300 were significantly increased in oral cancer tissues. Moreover, the relative level of CREBBP was positively correlated with the expression of MMP-9 and EP300. In conclusion, we demonstrated that melatonin inhibits the motility of HSC-3 and OECM-1 cells in vitro through a molecular mechanism that involves attenuation of MMP-9 expression and activity mediated by decreased histone acetylation. PMID:26980735

  20. Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation.

    PubMed

    Yeh, Chia-Ming; Lin, Chiao-Wen; Yang, Jia-Sin; Yang, Wei-En; Su, Shih-Chi; Yang, Shun-Fa

    2016-04-19

    Melatonin exerts antimetastatic effects on liver and breast cancer and also inhibits matrix metalloproteinase (MMP) activity. However, the detailed impacts and underlying mechanisms of melatonin on oral cancer cell metastasis are still unclear. This study showed that melatonin attenuated the 12-O-tetradecanoylphorbol-13-acetate-induced migration of oral cancer cell lines, HSC-3 and OECM-1. Zymography, quantitative real-time PCR, and Western blotting analyses revealed that melatonin lessened MMP-9 enzyme activity as well as the expression of MMP-9 mRNA and protein. Furthermore, melatonin suppressed the phosphorylation of the ERK1/2 signalling pathway, which dampened MMP-9 gene transcription by affecting the expression of transcriptional coactivators, such as CREB-binding protein (CREBBP) and E1A binding protein p300 (EP300), and decreasing histone acetylation in HSC-3 and OECM-1 cells. Examinations on clinical samples exhibited that MMP-9, CREBBP, and EP300 were significantly increased in oral cancer tissues. Moreover, the relative level of CREBBP was positively correlated with the expression of MMP-9 and EP300. In conclusion, we demonstrated that melatonin inhibits the motility of HSC-3 and OECM-1 cells in vitro through a molecular mechanism that involves attenuation of MMP-9 expression and activity mediated by decreased histone acetylation. PMID:26980735

  1. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells.

    PubMed

    Rose, Peter; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependent manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  2. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    SciTech Connect

    Rose, Peter . E-mail: bchpcr@nus.edu.sg; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  3. Angiotensin type 2 receptor stimulation ameliorates left ventricular fibrosis and dysfunction via regulation of tissue inhibitor of matrix metalloproteinase 1/matrix metalloproteinase 9 axis and transforming growth factor β1 in the rat heart.

    PubMed

    Lauer, Dilyara; Slavic, Svetlana; Sommerfeld, Manuela; Thöne-Reineke, Christa; Sharkovska, Yuliya; Hallberg, Anders; Dahlöf, Bjorn; Kintscher, Ulrich; Unger, Thomas; Steckelings, Ulrike Muscha; Kaschina, Elena

    2014-03-01

    Left ventricular (LV) remodeling is the main reason for the development of progressive cardiac dysfunction after myocardial infarction (MI). This study investigated whether stimulation of the angiotensin type 2 receptor is able to ameliorate post-MI cardiac remodeling and what the underlying mechanisms may be. MI was induced in Wistar rats by permanent ligation of the left coronary artery. Treatment with the angiotensin type 2 receptor agonist compound 21 (0.03 mg/kg) was started 6 hours post-MI and continued for 6 weeks. Hemodynamic parameters were measured by echocardiography and intracardiac catheter. Effects on proteolysis were studied in heart tissue and primary cardiac fibroblasts. Compound 21 significantly improved systolic and diastolic functions, resulting in improved ejection fraction (71.2±4.7% versus 53.4±7.0%; P<0.001), fractional shortening (P<0.05), LV internal dimension in systole (P<0.05), LV end-diastolic pressure (16.9±1.2 versus 22.1±1.4 mm Hg; P<0.05), ratio of early (E) to late (A) ventricular filling velocities, and maximum and minimum rate of LV pressure rise (P<0.05). Compound 21 improved arterial stiffness parameters and reduced collagen content in peri-infarct myocardium. Tissue inhibitor of matrix metalloproteinase 1 was strongly upregulated, whereas matrix metalloproteinases 2 and 9 and transforming growth factor β1 were diminished in LV of treated animals. In cardiac fibroblasts, compound 21 initially induced tissue inhibitor of matrix metalloproteinase 1 expression followed by attenuated matrix metalloproteinase 9 and transforming growth factor β1 secretion. In conclusion, angiotensin type 2 receptor stimulation improves cardiac function and prevents cardiac remodeling in the late stage after MI, suggesting that angiotensin type 2 receptor agonists may be considered a future pharmacological approach for the improvement of post-MI cardiac dysfunction.

  4. Matrix metalloproteinase expression and molecular interaction network analysis in gastric cancer

    PubMed Central

    Xu, Jianting; E, Changyong; Yao, Yongfang; Ren, Shuangchun; Wang, Guoqing; Jin, Haofan

    2016-01-01

    Gastric cancer (GC) is one of the most common types of cancer of the digestive tract. Invasion of tumor cells into surrounding tissue and metastasis are among the most significant checkpoints in tumor progression. It is known that matrix metalloproteinases (MMPs) are involved in these processes; however, knowledge of their molecular interaction networks is still limited. Investigation of these networks could provide a more comprehensive picture of the function of MMPs in tumorigenesis. Furthermore, it could be used to develop new approaches to targeted anticancer therapy. In this study, we performed microarray analysis, and 1666 genes that were aberrantly expressed in GC tissues were identified (fold change >2, P<0.05). In addition, quantitative polymerase chain reaction analysis has confirmed that MMP1, MMP3, MMP7, MMP10, MMP11 and MMP12 expression is upregulated in GC. In addition, the MMP3 expression level was negatively correlated with GC differentiation (P<0.05). By integrating the microarray information and BioGRID and STRING databases, we constructed an MMP-related molecular interaction network and observed that 18 genes (including MMPs) were highly expressed in GC tissues. The most enriched of these 18 genes in the Gene Oncology (GO) and pathway analysis were in extracellular matrix disassembly (GO biological process) and extracellular matrix-receptor interaction (KEGG pathway), which are closely correlated with cancer invasion and metastasis. Collectively, our results suggest that the MMP-related interaction network has a role in GC progression, and therefore further studies are required in order to investigate these network interactions in tumorigenesis. PMID:27698806

  5. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors

    PubMed Central

    2014-01-01

    Background Cancer invasion and metastasis develops through a series of steps that involve the loss of cell to cell and cell to matrix adhesion, degradation of extracellular matrix and induction of angiogenesis. Different protease systems (e.g., matrix metalloproteinases, MMPs) are involved in these steps. MMP-10, one of the lesser studied MMPs, is limited to epithelial cells and can facilitate tumor cell invasion by targeting collagen, elastin and laminin. Enhanced MMP-10 expression has been linked to poor clinical prognosis in some cancers, however, mechanisms underlying a role for MMP-10 in tumorigenesis and progression remain largely unknown. Here, we report that MMP-10 expression is positively correlated with the invasiveness of human cervical and bladder cancers. Methods Using commercial tissue microarray (TMA) of cervical and bladder tissues, MMP-10 immunohistochemical staining was performed. Furthermore using a panel of human cells (HeLa and UROtsa), in vitro and in vivo experiments were performed in which MMP-10 was overexpressed or silenced and we noted phenotypic and genotypic changes. Results Experimentally, we showed that MMP-10 can regulate tumor cell migration and invasion, and endothelial cell tube formation, and that MMP-10 effects are associated with a resistance to apoptosis. Further investigation revealed that increasing MMP-10 expression stimulates the expression of HIF-1α and MMP-2 (pro-angiogenic factors) and PAI-1 and CXCR2 (pro-metastatic factors), and accordingly, targeting MMP-10 with siRNA in vivo resulted in diminution of xenograft tumor growth with a concomitant reduction of angiogenesis and a stimulation of apoptosis. Conclusion Taken together, our findings show that MMP-10 can play a significant role in tumor growth and progression, and that MMP-10 perturbation may represent a rational strategy for cancer treatment. PMID:24885595

  6. Kallikrein 4 and matrix metalloproteinase-20 immunoexpression in malignant, benign and infiltrative odontogenic tumors

    PubMed Central

    Crivelini, Marcelo Macedo; Oliveira, Denise Tostes; de Mesquita, Ricardo Alves; de Sousa, Suzana Cantanhede Orsini Machado; Loyola, Adriano Motta

    2016-01-01

    Context: Matrix metalloproteinase-20 (MMP20) (enamelysin) and kallikrein 4 (KLK4) are enzymes secreted by ameloblasts that play an important role in enamel matrix degradation during amelogenesis. However, studies have shown that neoplastic cells can produce such enzymes, which may affect the tumor infiltrative and metastatic behaviors. Aims: The aim of this study is to assess the biological role of MMP20 and KLK4 in odontogenic tumors. Materials and Methods: The enzymes were analyzed immunohistochemically in ameloblastoma, adenomatoid odontogenic tumor (AOT), calcifying epithelial odontogenic tumor, keratocystic odontogenic tumor with or without recurrence and odontogenic carcinoma. Statistical Analysis Used: Clinicopathological parameters were statistically correlated with protein expression using the Fisher's exact test. Kruskal–Wallis and Wilcoxon-independent methods were used to evaluate the differences in median values. Results: Positive Immunoexpression was detected in all benign lesions, with a prevalence of 75–100% immunolabeled cells. Patients were predominantly young, Caucasian, female, with slow-growing tumors located in the mandible causing asymptomatic swelling. No KLK4 expression was seen in carcinomas, and the amount of MMP20-positive cells varied between 20% and 80%. Rapid evolution, recurrence and age >60 years characterized the malignant nature of these lesions. Conclusions: Data showed that KLK4 and MMP20 enzymes may not be crucial to tumoral infiltrative capacity, especially in malignant tumors, considering the diversity and peculiarity of these lesions. The significant immunoexpression in benign lesions, remarkably in AOT, is likely associated with differentiated tumor cells that can produce and degrade enamel matrix-like substances. This would be expected since the histogenesis of odontogenic tumors commonly comes from epithelium that recently performed a secretory activity in tooth formation. PMID:27601817

  7. Matrix metalloproteinase expression and molecular interaction network analysis in gastric cancer

    PubMed Central

    Xu, Jianting; E, Changyong; Yao, Yongfang; Ren, Shuangchun; Wang, Guoqing; Jin, Haofan

    2016-01-01

    Gastric cancer (GC) is one of the most common types of cancer of the digestive tract. Invasion of tumor cells into surrounding tissue and metastasis are among the most significant checkpoints in tumor progression. It is known that matrix metalloproteinases (MMPs) are involved in these processes; however, knowledge of their molecular interaction networks is still limited. Investigation of these networks could provide a more comprehensive picture of the function of MMPs in tumorigenesis. Furthermore, it could be used to develop new approaches to targeted anticancer therapy. In this study, we performed microarray analysis, and 1666 genes that were aberrantly expressed in GC tissues were identified (fold change >2, P<0.05). In addition, quantitative polymerase chain reaction analysis has confirmed that MMP1, MMP3, MMP7, MMP10, MMP11 and MMP12 expression is upregulated in GC. In addition, the MMP3 expression level was negatively correlated with GC differentiation (P<0.05). By integrating the microarray information and BioGRID and STRING databases, we constructed an MMP-related molecular interaction network and observed that 18 genes (including MMPs) were highly expressed in GC tissues. The most enriched of these 18 genes in the Gene Oncology (GO) and pathway analysis were in extracellular matrix disassembly (GO biological process) and extracellular matrix-receptor interaction (KEGG pathway), which are closely correlated with cancer invasion and metastasis. Collectively, our results suggest that the MMP-related interaction network has a role in GC progression, and therefore further studies are required in order to investigate these network interactions in tumorigenesis.

  8. Direct measurement of matrix metalloproteinase activity in 3D cellular microenvironments using a fluorogenic peptide substrate

    PubMed Central

    Leight, Jennifer L.; Alge, Daniel L.; Maier, Andrew J.; Anseth, Kristi S.

    2014-01-01

    Incorporation of degradable moieties into synthetic hydrogels has greatly increased the utility of these three-dimensional matrices for in vitro cell culture as well as tissue engineering applications. A common method for introducing degradability is the inclusion of oligopeptides sensitive to cleavage by matrix metalloproteinases (MMPs), enabling cell-mediated remodeling and migration within the material. While this strategy has been effective, characterization and measurement of cell-mediated degradation in these materials has remained challenging. There are 20+ MMP family members whose activity is regulated in space and time by a number of biochemical and biophysical cues. Thus, the typical approach of characterizing cleavage of degradable moieties in solution with recombinant enzymes does not easily translate to three dimensional cell-mediated matrix remodeling. To address this challenge, we report here the synthesis of a cell-laden hydrogel matrix functionalized with a fluorogenic peptide substrate to provide real-time, quantitative monitoring of global MMP activity. Using this system, stimulation of MMP activity was observed with growth factor treatment in mammary epithelial cells and compared to classical zymography results. Further, the effect of biophysical cues on MMP activity of human mesenchymal stem cells was also investigated where more rigid hydrogels were observed to increase MMP activity. The regulation of MMP activity by these biochemical and biophysical cues highlights the need for in situ, real time measurement of hydrogel degradation, and use of these functionalized hydrogels will aid in future rational design of degradable synthetic hydrogels for in vitro cell studies and tissue engineering applications. PMID:23830581

  9. Matrix metalloproteinase-10 (MMP-10) interaction with tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2: binding studies and crystal structure.

    PubMed

    Batra, Jyotica; Robinson, Jessica; Soares, Alexei S; Fields, Alan P; Radisky, Derek C; Radisky, Evette S

    2012-05-01

    Matrix metalloproteinase 10 (MMP-10, stromelysin-2) is a secreted metalloproteinase with functions in skeletal development, wound healing, and vascular remodeling; its overexpression is also implicated in lung tumorigenesis and tumor progression. To understand the regulation of MMP-10 by tissue inhibitors of metalloproteinases (TIMPs), we have assessed equilibrium inhibition constants (K(i)) of putative physiological inhibitors TIMP-1 and TIMP-2 for the active catalytic domain of human MMP-10 (MMP-10cd) using multiple kinetic approaches. We find that TIMP-1 inhibits the MMP-10cd with a K(i) of 1.1 × 10(-9) M; this interaction is 10-fold weaker than the inhibition of the similar MMP-3 (stromelysin-1) catalytic domain (MMP-3cd) by TIMP-1. TIMP-2 inhibits the MMP-10cd with a K(i) of 5.8 × 10(-9) M, which is again 10-fold weaker than the inhibition of MMP-3cd by this inhibitor (K(i) = 5.5 × 10(-10) M). We solved the x-ray crystal structure of TIMP-1 bound to the MMP-10cd at 1.9 Å resolution; the structure was solved by molecular replacement and refined with an R-factor of 0.215 (R(free) = 0.266). Comparing our structure of MMP-10cd·TIMP-1 with the previously solved structure of MMP-3cd·TIMP-1 (Protein Data Bank entry 1UEA), we see substantial differences at the binding interface that provide insight into the differential binding of stromelysin family members to TIMP-1. This structural information may ultimately assist in the design of more selective TIMP-based inhibitors tailored for specificity toward individual members of the stromelysin family, with potential therapeutic applications.

  10. Biglycan fragmentation in pathologies associated with extracellular matrix remodeling by matrix metalloproteinases

    PubMed Central

    2013-01-01

    Background The proteoglycan biglycan (BGN) is involved in collagen fibril assembly and its fragmentation is likely to be associated with collagen turnover during the pathogenesis of diseases which involve dysregulated extracellular matrix remodeling (ECMR), such as rheumatoid arthritis (RA) and liver fibrosis. The scope of the present study was to develop a novel enzyme-linked immunosorbent assay (ELISA) for the measurement of a MMP-9 and MMP-12-generated biglycan neo-epitope and to test its biological validity in a rat model of RA and in two rat models of liver fibrosis, chosen as models of ECMR. Results Biglycan was cleaved in vitro by MMP-9 and -12 and the 344′YWEVQPATFR′353 peptide (BGM) was chosen as a potential neo-epitope. A technically sound competitive ELISA for the measurement of BGM was generated and the assay was validated in a bovine cartilage explant culture (BEX), in a collagen induced model of rheumatoid arthritis (CIA) and in two different rat models of liver fibrosis: the carbon tetrachloride (CCL4)-induced fibrosis model, and the bile duct ligation (BDL) model. Significant elevation in serum BGM was found in CIA rats compared to controls, in rats treated with CCL4 for 16 weeks and 20 weeks compared to the control groups as well as in all groups of rats subject to BDL compared with sham operated groups. Furthermore, there was a significant correlation of serum BGM levels with the extent of liver fibrosis determined by the Sirius red staining of liver sections in the CCL4 model. Conclusion We demonstrated that the specific tissue remodeling product of MMPs-degraded biglycan, namely the neo-epitope BGM, is correlated with pathological ECMR. This assay represents both a novel marker of ECM turnover and a potential new tool to elucidate biglycan role during the pathological processes associated with ECMR. PMID:23635022

  11. Enamel Matrix Derivative Promotes Superoxide Production and Chemotaxis, but Reduces Matrix Metalloproteinase 8 Expression by Polymorphonuclear Leukocytes

    PubMed Central

    Karima, Mamdouh M.; Van Dyke, Thomas E.

    2015-01-01

    Background Polymorphonuclear leukocyte (PMN) is the predominant innate immune cell type activated in acute inflammation. The aim of this study was to determine the impact of Enamel matrix derivative (EMD) on superoxide (O2−) generation, chemotaxis, and matrix metalloproteinase 8 (MMP 8) secretion by PMN in vitro to better understand the role of EMD in surgical wound healing. Methods PMN were isolated from healthy volunteers (N = 14). Superoxide generation was measured using a cytochrome-C reduction assay. Chemotaxis was measured in a modified Boyden chamber. MMP 8 secretion was analyzed by Western blotting. A relative density method was used to determine the percent of MMP 8 released from the PMN in relation to the total cellular MMP 8 content. Results O2− generation was significantly elevated when PMN were stimulated with EMD (200 μg/ml) (P<0.01). Secondary stimulation of PMN with 1 μM fMLP trigged earlier and more sustained O2− generation with EMD. EMD significantly increased PMN chemotactic activity (P<0.05). Combined stimulation with EMD plus formyl-methionyl-leucyl-phenylalanine (fMLP) resulted in significantly higher chemotaxis compared to fMLP alone (P<0.05). Conversely, EMD did not induce MMP 8 secretion from PMN. MMP 8 secretion by PMN in response to fMLP or serum-opsonized zymosan (OZ) stimulation was significantly inhibited by EMD (P<0.05). Conclusion EMD has specific, differential actions on PMN that suggest potential for enhancement of wound healing; bacterial and tissue debris clearance (O2− generation and chemotaxis) and suppress tissue damage and degradation (MMP 8). Taken together, the data suggest that EMD enhances wound healing and reduces inflammation. PMID:22050547

  12. Expression of survivin and matrix metalloproteinases in adenocarcinoma and squamous cell carcinoma of the uterine cervix.

    PubMed

    Yoshida, Hiroyuki; Sumi, Toshiyuki; Hyun, Yooji; Nakagawa, Eri; Hattori, Kanae; Yasui, Tomoyo; Morimura, Mina; Honda, Ken-Ichi; Nakatani, Tatsuya; Ishiko, Osamu

    2003-01-01

    Cervical cancer can be classified into two histological types: squamous cell carcinoma (SCA) and adenocarcinoma (ACA). Reportedly ACA has poorer prognoses, metastasizes more easily to lymph nodes, and is more resistant to radiotherapy than SCA. To clarify the cause of characteristic differences between these histological types, we examined the expressions of apoptosis inhibiting and tumor-invasion related factors in both histological types. We reviewed the 34 cases of cervical cancer (17 ACA, 17 SCA) that had surgery as their initial treatment at Osaka City University Medical School Hospital between 1996 and 2001. The differences of survivin, and matrix metalloproteinase (MMP-2, and MMP-7) expressions between both histological types were immunohistochemically assayed, and the correlation between the expression of each protein and clinicopathological characteristics was analyzed. Survivin was expressed significantly stronger in ACA cases (p=0.035). The number of patients who expressed MMP-2 and MMP-7 simultaneously was significantly higher in SCA cases (p=0.039). MMP-2 and MMP-7 had tendencies to be expressed stronger in SCA (p=0.057 and p=0.084, respectively). These results suggest that the differences of the expression of survivin (an apoptosis inhibiting factor), MMP-2, and MMP-7 (tumor-invasion related factors) between ACA and SCA were causes of the characteristic differences between the two histological types.

  13. Matrix metalloproteinases-2 and -9 in cervical cancer: different roles in tumor progression.

    PubMed

    Rauvala, M; Aglund, K; Puistola, U; Turpeenniemi-Hujanen, T; Horvath, G; Willén, R; Stendahl, U

    2006-01-01

    The incidence of uterine cervical cancer has increased slightly in Western countries, with an increase in relatively young women. Overexpression of matrix metalloproteinases (MMPs)-2 and -9 has turned out as a prognostic factor in many cancers. We compared the expression of the proteins MMP-2 and MMP-9 in cervical primary tumors with clinical outcome and risk factors of cervical cancer. One hundred sixty-one patients with cervical cancer treated in Umeå University Hospital or Sahlgrenska University Hospital, Sweden, between 1991 and 1995 were included in the study. Paraffin-embedded tissue samples obtained prior to treatment were examined immunohistochemically by specific antibodies for MMP-2 and MMP-9. Forty-two percent of the tumors were intensively positive for MMP-2 and 31% for MMP-9. Nineteen percent of the samples were intensively positive for both proteinases and 47% negative or weak for both. Overexpression of MMP-2 seemed to predict unfavorable survival under Kaplan-Meier analysis and in the multivariate analysis. Early sexual activity and low parity seemed to correlate to overexpression of MMP-2. MMP-9 was not associated with survival or sexual behavior. Intensive MMP-9 was noted in grade 1 tumors. We conclude that MMP-2 and MMP-9 have different roles in uterine cervical cancer. MMP-2 could be associated with aggressive behavior, but MMP-9 expression diminishes in high-grade tumors.

  14. Influence of HPV16 E2 and its localisation on the expression of matrix metalloproteinase-9.

    PubMed

    Mühlen, Sabrina; Behren, Andreas; Iftner, Thomas; Simon, Christian

    2010-08-01

    Infection with the high-risk HPV types 16 and 18 is the major cause of cervical cancer and plays a role in the development of certain head and neck and skin cancers. We have previously demonstrated that the Early Protein 2 of the Cottontail Rabbit papillomavirus (CRPV), required for skin carcinogenesis in a rabbit model, is able to induce the expression of a matrix metalloproteinase (MMP-9); a protease known to play a key role in invasion and metastasis. However, as of now we do not understand the underlying mechanism of activation nor relevance for the human system. Here, we report that high-risk human papillomavirus HPV16 E2 similar to our previously reported results on CRPV E2 activates the human MMP-9 promoter predominantly via the MEK1-ERK1/2-AP-1-signaling pathway. In addition this activation is associated with a nuclear sub-localisation of HPV16-E2 suggesting a nuclear protein-protein or protein-DNA interaction of E2 as the underlying mechanism of activation.

  15. Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke

    PubMed Central

    Zinnhardt, Bastian; Viel, Thomas; Wachsmuth, Lydia; Vrachimis, Alexis; Wagner, Stefan; Breyholz, Hans-Jörg; Faust, Andreas; Hermann, Sven; Kopka, Klaus; Faber, Cornelius; Dollé, Frédéric; Pappata, Sabina; Planas, Anna M; Tavitian, Bertrand; Schäfers, Michael; Sorokin, Lydia M; Kuhlmann, Michael T; Jacobs, Andreas H

    2015-01-01

    Stroke is the most common cause of death and disability from neurologic disease in humans. Activation of microglia and matrix metalloproteinases (MMPs) is involved in positively and negatively affecting stroke outcome. Novel, noninvasive, multimodal imaging methods visualizing microglial and MMP alterations were employed. The spatio-temporal dynamics of these parameters were studied in relation to blood flow changes. Micro positron emission tomography (μPET) using [18F]BR-351 showed MMP activity within the first days after transient middle cerebral artery occlusion (tMCAo), followed by increased [18F]DPA-714 uptake as a marker for microglia activation with a maximum at 14 days after tMCAo. The inflammatory response was spatially located in the infarct core and in adjacent (penumbral) tissue. For the first time, multimodal imaging based on PET, single photon emission computed tomography, and magnetic resonance imaging revealed insight into the spatio-temporal distribution of critical parameters of poststroke inflammation. This allows further evaluation of novel treatment paradigms targeting the postischemic inflammation. PMID:26126867

  16. A Matrix Metalloproteinase-1/Protease Activated Receptor-1 signaling axis promotes melanoma invasion and metastasis

    PubMed Central

    Blackburn, Jessica S.; Liu, Ingrid; Coon, Charles I.; Brinckerhoff, Constance E.

    2009-01-01

    Hallmarks of malignant melanoma are its propensity to metastasize and its resistance to treatment, giving patients with advanced disease a poor prognosis. The transition of melanoma from non-invasive radial growth phase (RGP) to invasive and metastatically competent vertical growth phase (VGP) is a major step in tumor progression, yet the mechanisms governing this transformation are unknown. Matrix Metalloproteinase-1 (MMP-1) is highly expressed by VGP melanomas, and is thought to contribute to melanoma progression by degrading type I collagen within the skin to facilitate melanoma invasion. Protease activated receptor-1 (PAR-1) is activated by MMP-1, and is also expressed by VGP melanomas. However, the effects MMP-1 signaling through PAR-1 have not been examined in melanoma. Here, we demonstrate that an MMP-1/PAR-1 signaling axis exists in VGP melanoma, and is necessary for melanoma invasion. Introduction of MMP-1 into RGP melanoma cells induced gene expression associated with tumor progression and promoted invasion in vitro, and enhanced tumor growth and conferred metastatic capability in vivo. This study demonstrates that both the type I collagenase and PAR-1 activating functions of MMP-1 are required for melanoma progression, and suggests that MMP-1 may be a major contributor to the transformation of melanoma from non-invasive to malignant disease. PMID:19734937

  17. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity.

    PubMed

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  18. Serum matrix metalloproteinase-9 in colorectal cancer family-risk population screening

    PubMed Central

    Otero-Estévez, Olalla; Chiara, Loretta De; Rodríguez-Girondo, Mar; Rodríguez-Berrocal, Francisco Javier; Cubiella, Joaquín; Castro, Inés; Hernández, Vicent; Martínez-Zorzano, Vicenta Soledad

    2015-01-01

    Matrix metalloproteinase-9 (MMP-9) is related to tumour development and progression in colorectal cancer (CRC) and its utility as biomarker has been suggested. The aim of our study was to measure serum MMP-9 in asymptomatic first-degree relatives of CRC patients, and to analyse its diagnostic accuracy for the detection of advanced neoplasia (AN: advanced adenomas and CRC). Additionally, we compared its diagnostic capability with the most used non-invasive faecal immunochemical test (FIT). Serum MMP-9 was quantified by ELISA in 516 asymptomatic individuals that underwent a colonoscopy and a FIT. MMP-9 levels were significantly related to age and gender and therefore the concentration was corrected by these confounders. Corrected MMP-9 (cMMP-9) levels were higher in individuals with advanced adenomas (AA; p-value = 0.029) and AN (p-value = 0.056) compared to individuals with no neoplasia. Moreover, elevated cMMP-9 concentration was associated with more severe characteristics of adenomas (number of lesions, size and histology). Nevertheless, the diagnostic accuracy of cMMP-9 was considerably lower than that of FIT for identifying AA (22.64% vs. 47.17% sensitivity, 90% specificity) or AN (19.30% vs. 52.63% sensitivity, 90% specificity). According to our results, serum MMP-9 cannot be considered of utility for the diagnosis of AN in CRC family-risk population screening. PMID:26264519

  19. Matrix Metalloproteinase-Mediated Neuroinflammation in Vascular Cognitive Impairment of the Binswanger Type.

    PubMed

    Rosenberg, Gary A

    2016-03-01

    Vascular cognitive impairment (VCI) is a heterogeneous group of diseases linked together by cerebrovascular disease. Treatment of VCI has been hindered by the lack of a coherent pathophysiological process that could provide molecular targets. Of the several forms of VCI, the small vessel disease form is both the most prevalent and generally has a progressive course. Binswanger's disease (BD) is the small vessel form of VCI that involves extensive injury to the deep white matter. Growing evidence suggests that there is disruption of the blood-brain barrier (BBB) secondary to an inflammatory state. Matrix metalloproteinases (MMPs) are increased in the brain and CSF of patients with BD, and have been shown to disrupt the BBB in animal studies, suggesting that they may be biomarkers and therapeutic targets. Multimodal biomarkers derived from clinical, neuropsychological, imaging, and biochemical data can be used to narrow the VCI population to the progressive inflammatory form that will be optimal for treatment trials. This review describes the role of the MMPs in pathophysiology and their use as biomarkers. PMID:26993507

  20. Sustained activation of neutrophils in the course of Kawasaki disease: an association with matrix metalloproteinases.

    PubMed

    Biezeveld, M H; van Mierlo, G; Lutter, R; Kuipers, I M; Dekker, T; Hack, C E; Newburger, J W; Kuijpers, T W

    2005-07-01

    Kawasaki disease (KD) is an acute febrile syndrome of childhood, characterized by vasculitis of the medium-sized arteries. White blood cell counts and the inflammatory parameter C-reactive protein (CRP) are known to be elevated in the acute phase of the disease. In this study we investigated the course of inflammatory cell type-specific parameters in KD over a longer period of time. Plasma levels of human neutrophil elastase (HNE), matrix metalloproteinases-2 and -9 (MMP2, MMP9), and neutrophil gelatinase-associated lipocalin (NGAL), macrophage neopterin and CRP were measured. Plasma samples were collected in the acute, subacute and early convalescent stage, and three months after the onset of disease. Median CRP and neopterin normalized within two weeks. In contrast, six weeks and three months after onset of disease, levels of HNE were still elevated, with median values of 163 ng/ml and 156 ng/ml, respectively (control children median < 50 ng/ml; for all time-points P < 0.0001). Values of NGAL correlated with the levels of HNE (r = 0.39, P = 0.013). These results demonstrate a longer state of neutrophil activation in KD than was previously assumed. The potential relationship between this prolonged neutrophil activation, coronary artery lesion formation and their persistence, as well as the risk of premature atherosclerosis warrants further evaluation.

  1. Matrix metalloproteinase-2 is elevated in midtrimester amniotic fluid prior to the development of preeclampsia

    PubMed Central

    Lavee, Michal; Goldman, Shlomit; Daniel-Spiegel, Etty; Shalev, Eliezer

    2009-01-01

    Objective To evaluate levels of matrix metalloproteinases (MMP) and their inhibitors (TIMP) in second trimester amniotic fluid of women with hypertensive disorders compared to normotensive women. Study Design Amniotic fluid was obtained from 133 women undergoing genetic second trimester amniocentesis. Zymography was performed for MMP characterization and an MMP-2 ELISA kit was used to determine MMP-2 levels. TIMP-2 expression was evaluated using western blot. Results Mean amniotic fluid MMP-2 and TIMP-2 levels were significantly higher in women who developed a hypertensive disorder compared to normotensive women (P < 0.0004 and P < 0.01, respectively). When subdivided into subgroups, amniotic fluid from women who eventually developed preeclampsia or superimposed preeclampsia showed significantly higher MMP-2 levels than normotensive women (P < 0.05). However, no statistical difference in MMP-2 levels was found between patients with gestational hypertension and normotensive patients. Conclusion Higher amniotic fluid MMP-2 and TIMP-2 levels are found in women who eventually develop preeclampsia. PMID:19698156

  2. Matrix metalloproteinase-12 is an essential mediator of acute and chronic arterial stiffening

    PubMed Central

    Liu, Shu-Lin; Bae, Yong Ho; Yu, Christopher; Monslow, James; Hawthorne, Elizabeth A.; Castagnino, Paola; Branchetti, Emanuela; Ferrari, Giovanni; Damrauer, Scott M.; Puré, Ellen; Assoian, Richard K.

    2015-01-01

    Arterial stiffening is a hallmark of aging and risk factor for cardiovascular disease, yet its regulation is poorly understood. Here we use mouse modeling to show that matrix metalloproteinase-12 (MMP12), a potent elastase, is essential for acute and chronic arterial stiffening. MMP12 was induced in arterial smooth muscle cells (SMCs) after acute vascular injury. As determined by genome-wide analysis, the magnitude of its gene induction exceeded that of all other MMPs as well as those of the fibrillar collagens and lysyl oxidases, other common regulators of tissue stiffness. A preferential induction of SMC MMP12, without comparable effect on collagen abundance or structure, was also seen during chronic arterial stiffening with age. In both settings, deletion of MMP12 reduced elastin degradation and blocked arterial stiffening as assessed by atomic force microscopy and immunostaining for stiffness-regulated molecular markers. Isolated MMP12-null SMCs sense extracellular stiffness normally, indicating that MMP12 causes arterial stiffening by remodeling the SMC microenvironment rather than affecting the mechanoresponsiveness of the cells themselves. In human aortic samples, MMP12 levels strongly correlate with markers of SMC stiffness. We conclude that MMP12 causes arterial stiffening in mice and suggest that it functions similarly in humans. PMID:26608672

  3. A unique C-terminal domain allows retention of matrix metalloproteinase-27 in the endoplasmic reticulum.

    PubMed

    Cominelli, Antoine; Halbout, Mathias; N'Kuli, Francisca; Lemoine, Pascale; Courtoy, Pierre J; Marbaix, Etienne; Tyteca, Donatienne; Henriet, Patrick

    2014-04-01

    Matrix metalloproteinase-27 (MMP-27) is poorly characterized. Sequence comparison suggests that a C-terminal extension (CTE) includes a potential transmembrane domain as in some membrane-type (MT)-MMPs. Having noticed that MMP-27 was barely secreted, we investigated its subcellular localization and addressed CTE contribution for MMP-27 retention. Intracellular MMP-27 was sensitive to endoglycosidase H. Subcellular fractionation and confocal microscopy evidenced retention of endogenous MMP-27 or recombinant rMMP-27 in the endoplasmic reticulum (ER) with locked exit across the intermediate compartment (ERGIC). Conversely, truncated rMMP-27 without CTE accessed downstream secretory compartments (ERGIC and Golgi) and was constitutively secreted. CTE addition to rMMP-10 (a secreted MMP) caused ER retention and blocked secretion. Addition of a PKA target sequence to the cytosolic C-terminus of transmembrane MT1-MMP/MMP-14 led to effective phosphorylation upon forskolin stimulation, but not for MMP-27, excluding transmembrane anchorage. Moreover, MMP-27 was protected from digestion by proteinase K. Finally, MT1-MMP/MMP-14 but neither endogenous nor recombinant MMP-27 partitioned in the detergent phase after Triton X-114 extraction, indicating that MMP-27 is not an integral membrane protein. In conclusion, MMP-27 is efficiently retained within the ER due to its unique CTE, which does not lead to stable membrane insertion. This could represent a novel ER retention system.

  4. Matrix metalloproteinase-2 in oncostatin M-induced sarcomere degeneration in cardiomyocytes.

    PubMed

    Fan, Xiaohu; Hughes, Bryan G; Ali, Mohammad A M; Chan, Brandon Y H; Launier, Katherine; Schulz, Richard

    2016-07-01

    Cardiomyocyte dedifferentiation may be an important source of proliferating cardiomyocytes facilitating cardiac repair. Cardiomyocyte dedifferentiation and proliferation induced by oncostatin-M (OSM) is characterized by sarcomere degeneration. However, the mechanism underlying sarcomere degeneration remains unclear. We hypothesized that this process may involve matrix metalloproteinase-2 (MMP-2), a key protease localized at the sarcomere in cardiomyocytes. We tested the hypothesis that MMP-2 is involved in the sarcomere degeneration that characterizes cardiomyocyte dedifferentiation. Confocal immunofluorescence and biochemical methods were used to explore the role of MMP-2 in OSM-induced dedifferentiation of neonatal rat ventricular myocytes (NRVM). OSM caused a concentration- and time-dependent loss of sarcomeric α-actinin and troponin-I in NRVM. Upon OSM-treatment, the mature sarcomere transformed to a phenotype resembling a less-developed sarcomere, i.e., loss of sarcomeric proteins and Z-disk transformed into disconnected Z bodies, characteristic of immature myofibrils. OSM dose dependently increased MMP-2 activity. Both the pan-MMP inhibitor GM6001 and the selective MMP-2 inhibitor ARP 100 prevented sarcomere degeneration induced by OSM treatment. OSM also induced NRVM cell cycling and increased methyl-thiazolyl-tetrazolium (MTT) staining, preventable by MMP inhibition. These results suggest that MMP-2 mediates sarcomere degeneration in OSM-induced cardiomyocyte dedifferentiation and thus potentially contributes to cardiomyocyte regeneration.

  5. Proliferative effects of apical, but not basal, matrix metalloproteinase-7 activity in polarized MDCK cells

    SciTech Connect

    Harrell, Permila C.; McCawley, Lisa J.; Fingleton, Barbara; McIntyre, J. Oliver; Matrisian, Lynn M. . E-mail: lynn.matrisian@vanderbilt.edu

    2005-02-15

    Matrix metalloproteinase-7 (MMP-7) is primarily expressed in glandular epithelium. Therefore, its mechanism of action may be influenced by its regulated vectorial release to either the apical and/or basolateral compartments, where it would act on its various substrates. To gain a better understanding of where MMP-7 is released in polarized epithelium, we have analyzed its pattern of secretion in polarized MDCK cells expressing stably transfected human MMP-7 (MDCK-MMP-7), and HCA-7 and Caco2 human colon cancer cell lines. In all cell lines, latent MMP-7 was secreted to both cellular compartments, but was 1.5- to 3-fold more abundant in the basolateral compartment as compared to the apical. However, studies in the MDCK system demonstrated that MMP-7 activity was 2-fold greater in the apical compartment of MDCK-MMP-7{sup HIGH}-polarized monolayers, which suggests the apical co-release of an MMP-7 activator. In functional assays, MMP-7 over-expression increased cell saturation density as a result of increased cell proliferation with no effect on apoptosis. Apical MMP-7 activity was shown to be responsible for the proliferative effect, which occurred, as demonstrated by media transfer experiments, through cleavage of an apical substrate and not through the generation of a soluble factor. Taken together, our findings demonstrate the importance of MMP-7 secretion in relation to its mechanism of action when expressed in a polarized epithelium.

  6. Matrix metalloproteinase-based photodynamic molecular beacons for targeted destruction of bone metastases in vivo.

    PubMed

    Liu, T W; Akens, M K; Chen, J; Wilson, B C; Zheng, G

    2016-03-01

    The metastatic spread of cancer from the primary site or organ is one of its most devastating aspects, being responsible for up to 90% of cancer-associated mortality. Bone is one of the common sites of metastatic spread, including the vertebrae. Regardless of the treatment strategy, the clinical goals for patients with vertebral metastases are to improve the quality of life by preventing neurologic decline, to achieve durable pain relief and enhance local tumor control. However, in part due to the close proximity of the spinal cord, current treatment options are limited. We propose a novel therapeutic strategy with the use of photodynamic molecular beacons (PMBs) for targeted destruction of spinal metastases, particularly to de-bulk lesions as an adjuvant to vertebroplasty or kyphoplasty in order to mechanically stabilize weak or fractured vertebrae. The PDT efficacy of a matrix metalloproteinase-specific PMB is reported in a metstatic model that recapitulates the clinical features of tumor growth within the bone. We demonstrate that not only does tumor cell destruction occur but also the killing of bone stromal cells. The potential of PMB-PDT to destroy metastatic tumors, disrupt the osteolytic cycle and better preserve critical organs with an increased therapeutic window compared with conventional photosensitizers is demonstrated. PMID:26880165

  7. Loss of matrix metalloproteinase 2 in platelets reduces arterial thrombosis in vivo

    PubMed Central

    Momi, Stefania; Falcinelli, Emanuela; Giannini, Silvia; Ruggeri, Loredana; Cecchetti, Luca; Corazzi, Teresa; Libert, Claude

    2009-01-01

    Platelet activation at a site of vascular injury is essential for the arrest of bleeding; however, excessive platelet activation at a site of arterial damage can result in the unwarranted formation of arterial thrombi, precipitating acute myocardial infarction, or ischemic stroke. Activation of platelets beyond the purpose of hemostasis may occur when substances facilitating thrombus growth and stability accumulate. Human platelets contain matrix metalloproteinase 2 (MMP-2) and release it upon activation. Active MMP-2 amplifies the platelet aggregation response to several agonists by potentiating phosphatidylinositol 3-kinase activation. Using several in vivo thrombosis models, we show that the inactivation of the MMP-2 gene prevented thrombosis induced by weak, but not strong, stimuli in mice but produced only a moderate prolongation of the bleeding time. Moreover, using cross-transfusion experiments and wild-type/MMP-2−/− chimeric mice, we show that it is platelet-derived MMP-2 that facilitates thrombus formation. Finally, we show that platelets activated by a mild vascular damage induce thrombus formation at a downstream arterial injury site by releasing MMP-2. Thus, platelet-derived MMP-2 plays a crucial role in thrombus formation by amplifying the response of platelets to weak activating stimuli. These findings open new possibilities for the prevention of thrombosis by the development of MMP-2 inhibitors. PMID:19808257

  8. Protection of the Transplant Kidney from Preservation Injury by Inhibition of Matrix Metalloproteinases

    PubMed Central

    Arcand, Steve; Lin, Han-Bin; Wojnarowicz, Chris; Sawicka, Jolanta; Banerjee, Tamalina; Luo, Yigang; Beck, Gavin R.; Luke, Patrick P.; Sawicki, Grzegorz

    2016-01-01

    Background Matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, play an important role in ischemic injury to the heart, yet it is not known if these MMPs are involved in the injury that occurs to the transplant kidney. We therefore studied the pharmacologic protection of transplant kidneys during machine cold perfusion. Methods Human kidney perfusates were analyzed for the presence of injury markers such as cytochrome c oxidase, lactate dehydrogenase, and neutrophil-gelatinase associated lipocalin (NGAL), and MMP-2 and MMP-9 were measured. The effects of MMP inhibitors MMP-2 siRNA and doxycycline were studied in an animal model of donation after circulatory determination of death (DCDD). Results Markers of injury were present in all analyzed perfusates, with higher levels seen in perfusates from human kidneys donated after controlled DCDD compared to brain death and in perfusate from kidneys with delayed graft function. When rat kidneys were perfused at 4°C for 22 hours with the addition of MMP inhibitors, this resulted in markedly reduced levels of MMP-2, MMP-9 and analyzed injury markers. Conclusions Based on our study, MMPs are involved in preservation injury and the supplementation of preservation solution with MMP inhibitors is a potential novel strategy in protecting the transplant kidney from preservation injury. PMID:27327879

  9. Expression of matrix metalloproteinases during impairment and recovery of the avian growth plate.

    PubMed

    Dan, H; Simsa-Maziel, S; Hisdai, A; Sela-Donenfeld, D; Monsonego Ornan, E

    2009-11-01

    Tibial dyschondroplasia (TD) is a prevalent skeletal abnormality associated with rapid growth rate in many avian species. It is characterized by the presence of a nonvascularized, nonmineralized lesion that extends from the epiphyseal growth plate into the metaphysis of the proximal tibiotarsal bones. In this study, we examined the expression of 4 members of the matrix metalloproteinase (MMP) family (MMP-2, -3, -9, and -13) in thiram-induced TD lesions and in the process of recovery from TD, by in situ hybridization analysis and quantitative real-time PCR. A model for the induction and recovery of TD was established, consisting of 3 groups of broilers: (1) thiram group, chicks fed a thiram-enriched diet to induce TD; (2) recovery group, chicks fed a thiram-enriched diet during the first week of the experiment and a normal diet from the second week on; and (3) control group, chicks fed a normal diet throughout the experimental period. In agreement with our previous data, the 4 MMP were diminished in the TD lesion (P < 0.05); however, in the current study we show that the growth plate was able to repair itself and that the MMP reappeared during the process of recovery from TD. Our results strengthen the link between MMP expression and growth-plate impairment, and we suggest that gelatinase activity (MMP-2 and 9) facilitates this process.

  10. High matrix metalloproteinase levels are associated with dermal graft failure in diabetic foot ulcers.

    PubMed

    Izzo, Valentina; Meloni, Marco; Vainieri, Erika; Giurato, Laura; Ruotolo, Valeria; Uccioli, Luigi

    2014-09-01

    The aim of our study is to analyze factors, including matrix metalloproteinase (MMP) levels, that could influence the integration of dermal grafts in diabetic foot ulcers. From September 2012 to September 2013, 35 diabetic patients with IIA lesion (Texas Wound Classification) and an extensive foot tissue loss were considered suitable for dermal graft. Before the enrollment we ensured the best local conditions: adequate blood supply, control of infection, and offloading. The MMP level of each lesion was evaluated blindly before the application of dermal substitutes. At 1-month follow-up, we analyzed the correlation between clinical patient characteristics, local wound features including MMP levels, dermal substitute applied, and the outcome expressed in terms of dermal graft integration. We observed dermal graft integration in 28/35 patients (80% of our population). In multivariate analysis high MMP level was the only negative predictor for dermal graft integration (P < .0007). In addition, we divided the patients into 2 groups according to MMP levels: group 1 with low protease activity (24 patients) and group 2 with elevated protease activity (11 patients). The integration of the dermal graft was 100% in group 1 (n = 24 patients) and 36.4% in group 2 (n = 4patients), P < .0001. According to our data, the evaluation of MMP levels may be useful to choose the right strategy to get the best results in terms of clinical success and cost saving. However, further studies are necessary to confirm these findings.

  11. Plasma gelsolin and matrix metalloproteinase 3 as potential biomarkers for Alzheimer disease.

    PubMed

    Peng, Mao; Jia, Jianping; Qin, Wei

    2015-05-19

    Gelsolin (GSN) levels and matrix metalloproteinase 3 (MMP3) activity have been found to be altered in the plasma in patients with Alzheimer disease (AD). The aim of this study was to determine whether a combination of these proteins with clinical data is specific and sensitive enough for AD diagnosis. In 113 non-demented controls and 113 patients with probable AD, the plasma GSN levels were determined using the enzyme-linked immunosorbent assay (ELISA), and the plasma MMP3 activity was determined using casein zymography. Logistic regression and receiver operating characteristic (ROC) curve analysis were used to determine the diagnostic accuracy of these proteins combined with clinical data. Compared with the controls, the AD patients had significantly lower GSN levels and significantly higher MMP3 activity. Moreover, both the GSN level and MMP3 activity were significantly correlated with the MMSE scores. In AD patients, the GSN level was negatively correlated with MMP3 activity. ROC curve analysis showed that the specificity and sensitivity were 77% and 75.2%, respectively, for the combination of the following candidate biomarkers: GSN level/the total amount of Aβ42 and Aβ40, plasma MMP3 activity and clinical data. With its relatively high sensitivity and specificity, this combined biomarker panel may have potential for the screening of AD patients.

  12. Trivalent metal ions based on inorganic compounds with in vitro inhibitory activity of matrix metalloproteinase 13.

    PubMed

    Wen, Hanyu; Qin, Yuan; Zhong, Weilong; Li, Cong; Liu, Xiang; Shen, Yehua

    2016-10-01

    Collagenase-3 (MMP-13) inhibitors have attracted considerable attention in recent years and have been developed as a therapeutic target for a variety of diseases, including cancer. Matrix metalloproteinases (MMPs) can be inhibited by a multitude of compounds, including hydroxamic acids. Studies have shown that materials and compounds containing trivalent metal ions, particularly potassium hexacyanoferrate (III) (K3[Fe(CN)6]), exhibit cdMMP-13 inhibitory potential with a half maximal inhibitory concentration (IC50) of 1.3μM. The target protein was obtained by refolding the recombinant histidine-tagged cdMMP-13 using size exclusion chromatography (SEC). The secondary structures of the refolded cdMMP-13 with or without metal ions were further analyzed via circular dichroism and the results indicate that upon binding with metal ions, an altered structure with increased domain stability was obtained. Furthermore, isothermal titration calorimetry (ITC) experiments demonstrated that K3[Fe(CN)6]is able to bind to MMP-13 and endothelial cell tube formation tests provide further evidence for this interaction to exhibit anti-angiogenesis potential. To the best of our knowledge, no previous report of an inorganic compound featuring a MMP-13 inhibitory activity has ever been reported in the literature. Our results demonstrate that K3[Fe(CN)6] is useful as a new effective and specific inhibitor for cdMMP-13 which may be of great potential for future drug screening applications. PMID:27542739

  13. Blood metal levels and third trimester maternal plasma matrix metalloproteinases (MMPs).

    PubMed

    Au, Felicia; Bielecki, Agnieszka; Blais, Erica; Fisher, Mandy; Cakmak, Sabit; Basak, Ajoy; Gomes, James; Arbuckle, Tye E; Fraser, William D; Vincent, Renaud; Kumarathasan, Prem

    2016-09-01

    While it is known that in utero exposure to environmental toxicants, namely heavy metals, can adversely affect the neonate, there remains a significant paucity of information on maternal biological changes specific to metal exposures during pregnancy. This study aims at identifying associations between maternal metal exposures and matrix metalloproteinases (MMPs) that are known to be engaged in pregnancy process. Third trimester maternal plasma (n = 1533) from a pregnancy cohort (Maternal-Infant Research on Environmental Chemicals Study, MIREC) were analyzed for MMP-1,-2,-7,-9 and -10 by affinity-based multiplex protein array analyses. Maternal metal concentrations (mercury, cadmium, lead, arsenic and manganese) in 1st and 3rd trimesters exhibited strong correlations (p < 0.05). Multivariate regression models were used to estimate odds ratio (OR) for the association between metal concentrations in quartiles and high (90%) and low (10%) maternal MMP levels. Significant (p < 0.05) metal exposure-related effects were observed with the different MMP isoform responses. MMP profiles were specific to the trimester at which the maternal blood metals were analyzed. Our findings suggest that the profiles of these MMP isoforms vary with the type of metal exposure, blood metal concentrations and the trimester at which metal levels were determined. These new findings on maternal metal-MMP relationships can guide future explorations on toxicity mechanisms relevant to metal exposure-mediated adverse birth outcomes.

  14. Matrix metalloproteinase-14 expression and its prognostic value in cervical carcinoma.

    PubMed

    Wang, Huayi; Zhang, Xianhua; Huang, Liming; Li, Jia; Qu, Shuyun; Pan, Fenglian

    2014-11-01

    The objective of the study was to evaluate the expression of matrix metalloproteinase-14 (MMP-14) in cervical carcinoma and correlate its expression with clinicopathological parameters, recurrence, and survival of the patients. The expressions of MMP-14 in normal cervical mucosa and cervical carcinoma tissue were detected with immunohistochemistry. Survival analysis by the Kaplan-Meier method was performed to assess prognostic significance. The positive expression rate of MMP-14 in cervical carcinoma tissue was 81.6 %(111/136), and there was significant difference on their positive expression rates between in cervical carcinoma tissue and in normal cervical mucosa(22.4 %)(13/58)(P < 0.05);The positive expression rates of MMP-14 in patients with poor histologic differentiation, lymph node metastasis, and recurrence group were heightened. Using Kaplan-Meier analysis, a comparison of survival curves of low versus high expressions of MMP-14 revealed a highly significant difference in human cervical carcinoma tissue (P < 0.05), which suggests that overexpression of MMP-14 is associated with a worse prognosis. The MMP-14 which promotes angiogenes is associated with lymph node metastasis, vascular invasion, and poor prognosis of cervical carcinoma. The current study shows that MMP-14 may be an independent prognostic factor for cervical carcinoma patients.

  15. Ambidextrous Binding of Cell and Membrane Bilayers by Soluble Matrix Metalloproteinase-12

    PubMed Central

    Koppisetti, Rama K.; Fulcher, Yan G.; Jurkevich, Alexander; Prior, Stephen H.; Xu, Jia; Lenoir, Marc; Overduin, Michael; Van Doren, Steven R.

    2014-01-01

    Matrix metalloproteinases (MMPs) regulate tissue remodeling, inflammation, and disease progression. Some soluble MMPs are inexplicably active near cell surfaces. Here, we demonstrate binding of MMP-12 directly to bilayers and cellular membranes using paramagnetic NMR and fluorescence. Opposing sides of the catalytic domain engage spin-labeled membrane mimics. Loops project from the β-sheet interface to contact the phospholipid bilayer with basic and hydrophobic residues. The distal membrane interface comprises loops on the other side of the catalytic cleft. Both interfaces mediate MMP-12 association with vesicles and cell membranes. MMP-12 binds plasma membranes and is internalized to hydrophobic perinuclear features, the nuclear membrane, and inside the nucleus within minutes. While binding of TIMP-2 to MMP-12 hinders membrane interactions beside the active site, TIMP-2-inhibited MMP-12 binds vesicles and cells, suggesting compensatory rotation of its membrane approaches. MMP-12 association with diverse cell membranes may target its activities to modulate innate immune responses and inflammation. PMID:25412686

  16. Localization of membrane-type 1 matrix metalloproteinase in caveolae membrane domains.

    PubMed Central

    Annabi, B; Lachambre, M; Bousquet-Gagnon, N; Pagé, M; Gingras, D; Béliveau, R

    2001-01-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-associated MMP that has been recently reported to have a central role in tumour cell invasion. Here we report that both the native and overexpressed recombinant forms of MT1-MMP are highly enriched in low-density Triton X-100-insoluble membrane domains that contain the caveolar marker protein caveolin 1. Moreover, the MT1-MMP-dependent activation of proMMP-2 induced by concanavalin A and cytochalasin D was correlated with the processing of MT1-MMP to its proteolytically inactive 43 kDa fragment in U-87 glioblastoma and HT-1080 fibrosarcoma tumour cell lines; this processing was also preferentially observed within the caveolar fraction. Interestingly, whereas the expression of caveolin 1 had no effect on the MT1-MMP-dependent activation of proMMP-2, its co-expression with MT1-MMP antagonized the MT1-MMP-increased migratory potential of COS-7 cells. Taken together, our results provide evidence that MT1-MMP is preferentially compartmentalized and proteolytically processed in caveolae of cancer cells. The inhibition of MT1-MMP-dependent cell migration by caveolin 1 also suggests that the localization of MT1-MMP to caveolin-enriched domains might have an important function in the control of its enzymic activity. PMID:11171051

  17. Computational characterization of ketone-ketal transformations at the active site of matrix metalloproteinases.

    PubMed

    Khrenova, Maria G; Nemukhin, Alexander V; Savitsky, Alexander P

    2014-04-24

    We modeled the first steps of hydrolysis reactions of a natural oligopeptide substrate of matrix metalloproteinase MMP-2 as well as of a substrate analogue. In the latter, the scissile amide group is substituted by a ketomethylene group which can be transformed to the ketal group upon binding of this compound to the enzyme active site. According to our quantum mechanical-molecular mechanical (QM/MM) calculations, the reaction of the ketone-ketal transformation proceeds with a low energy barrier (3.4 kcal/mol) and a high equilibrium constant (10(4)). The reaction product with the ketal group formed directly at the active site of the enzyme works as an inhibitor that chelates the zinc ion. On the other hand, the oligopeptide mimetic retains molecular groups responsible for binding of this compound to the enzyme active site. This example illustrates a strategy to design MMP inhibitors in situ by using data on binding specificity of substrates to a particular type of MMP and details of the reaction mechanism. PMID:24684684

  18. Castor oil polymer induces bone formation with high matrix metalloproteinase-2 expression.

    PubMed

    Saran, Wallace Rocha; Chierice, Gilberto Orivaldo; da Silva, Raquel Assed Bezerra; de Queiroz, Alexandra Mussolino; Paula-Silva, Francisco Wanderley Garcia; da Silva, Léa Assed Bezerra

    2014-02-01

    The aim of this study was to evaluate the modulation of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) expression in newly formed bone tissue at the interface between implants derived from castor oil (Ricinus communis) polymer and the tibia medullary canal. Forty-four rabbits were assigned to either Group 1 (n = 12; control) or Group 2 (n = 30), which had the tibial medullary canals reamed bilaterally and filled with polymer. CT scans showed no space between the material surface and the bone at the implant/bone marrow interface, and the density of the tissues at this interface was similar to the density measured of other regions of the bone. At 90 days postimplantation, the interface with the polymer presented a thick layer of newly formed bone tissue rich in osteocytes. This tissue exhibited ongoing maturation at 120 and 150 days postimplantation. Overall, bone remodeling process was accompanied by positive modulation of MMP-2 and low MMP-9 expression. Differently, in control group, the internal surface close to the medullary canal was lined by osteoblasts, followed by a bone tissue zone with few lacunae filled with osteocytes. Maturation of the tissue of the medullary internal surface occurred in the inner region, with the bone being nonlamellar.

  19. Assay of matrix metalloproteinases types 1, 2, 3 and 9 in breast cancer.

    PubMed Central

    Remacle, A. G.; Noël, A.; Duggan, C.; McDermott, E.; O'Higgins, N.; Foidart, J. M.; Duffy, M. J.

    1998-01-01

    Matrix metalloproteinases (MMPs) are zinc dependent endopeptidases implicated in cancer invasion and metastasis. Gelatin zymography was performed on 84 human breast carcinomas and seven normal breast tissues. The precursor form of MMP-2 (72 kDa) was found in 11 (12%) samples, while its two activated forms, i.e. 62 kDa and 59 kDa, were found in three (6%) and 34 (40%) samples respectively. In contrast to MMP-2, most of the samples (52%) contained MMP-9 in its precursor form. Using ELISA, MMP-1 levels were found in 12% of the samples while MMP-3 levels were found in only 2% of the samples. Levels of MMP-2, -3 and -9 correlated inversely with numbers of nodal metastases. Neither MMP-2 nor -9 levels were significantly related to patient outcome. However, patients with high levels of a 50-kDa gelatinase band after zymography had a significantly better survival than patients with low levels. This species was never observed in normal breast tissue. Images Figure 1 Figure 2 PMID:9528836

  20. Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases

    PubMed Central

    Brkic, Marjana; Balusu, Sriram; Libert, Claude; Vandenbroucke, Roosmarijn E.

    2015-01-01

    Neurodegeneration is a chronic progressive loss of neuronal cells leading to deterioration of central nervous system (CNS) functionality. It has been shown that neuroinflammation precedes neurodegeneration in various neurodegenerative diseases. Matrix metalloproteinases (MMPs), a protein family of zinc-containing endopeptidases, are essential in (neuro)inflammation and might be involved in neurodegeneration. Although MMPs are indispensable for physiological development and functioning of the organism, they are often referred to as double-edged swords due to their ability to also inflict substantial damage in various pathological conditions. MMP activity is strictly controlled, and its dysregulation leads to a variety of pathologies. Investigation of their potential use as therapeutic targets requires a better understanding of their contributions to the development of neurodegenerative diseases. Here, we review MMPs and their roles in neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and multiple sclerosis (MS). We also discuss MMP inhibition as a possible therapeutic strategy to treat neurodegenerative diseases. PMID:26538832

  1. Differential expression of matrix metalloproteinase-13 in association with invasion of breast cancer.

    PubMed

    Kotepui, Manas; Punsawad, Chuchard; Chupeerach, Chaowanee; Songsri, Apiram; Charoenkijkajorn, Lek; Petmitr, Songsak

    2016-01-01

    Matrix metalloproteinase-13 (MMP-13) has a potential role in tumour invasion and metastasis. However, its relevance to the prognosis of human breast cancer is poorly understood. The aim of this study is to investigate the expression patterns of MMP-13 protein and to determine its prognostic value in breast cancer, and to define its relation to the clinicopathological features. Immunohistochemistry analysis of MMP-13 was performed on formalin-fixed, paraffin-embedded sections of cancerous breast tissue (n = 76) and normal breast tissue (n = 20), all of which had clinicopathological information available. Based on the principle of immunoreactivity, the detection of MMP-13 on breast tissue was conducted using monoclonal antibodies against MMP-13. A semi-quantitative scoring system was used to assess the presence of, as well as the cellular localisation of MMP-13. MMP-13 expression was significantly greater in the cancerous breast tissues in comparison to those of normal breast tissues. In addition, high levels of MMP-13 expression were also found to be related to the positive detection of breast cancer cells in lymph nodes-amongst breast cancer patients. The results of this study showed that MMP-13 was frequently present in breast tumours, especially when tumours were accompanied by positive breast cancer cell detection in lymph nodes. This suggests that MMP-13 plays a potentially significant role in breast cancer invasion and metastasis. PMID:27647987

  2. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition.

    PubMed

    Purcell, Brendan P; Lobb, David; Charati, Manoj B; Dorsey, Shauna M; Wade, Ryan J; Zellars, Kia N; Doviak, Heather; Pettaway, Sara; Logdon, Christina B; Shuman, James A; Freels, Parker D; Gorman, Joseph H; Gorman, Robert C; Spinale, Francis G; Burdick, Jason A

    2014-06-01

    Inhibitors of matrix metalloproteinases (MMPs) have been extensively explored to treat pathologies where excessive MMP activity contributes to adverse tissue remodelling. Although MMP inhibition remains a relevant therapeutic target, MMP inhibitors have not translated to clinical application owing to the dose-limiting side effects following systemic administration of the drugs. Here, we describe the synthesis of a polysaccharide-based hydrogel that can be locally injected into tissues and releases a recombinant tissue inhibitor of MMPs (rTIMP-3) in response to MMP activity. Specifically, rTIMP-3 is sequestered in the hydrogels through electrostatic interactions and is released as crosslinks are degraded by active MMPs. Targeted delivery of the hydrogel/rTIMP-3 construct to regions of MMP overexpression following a myocardial infarction significantly reduced MMP activity and attenuated adverse left ventricular remodelling in a porcine model of myocardial infarction. Our findings demonstrate that local, on-demand MMP inhibition is achievable through the use of an injectable and bioresponsive hydrogel.

  3. Matrix metalloproteinase 14 participates in corneal lymphangiogenesis through the VEGF-C/VEGFR-3 signaling pathway

    PubMed Central

    Du, Hai-Tao; Liu, Ping

    2016-01-01

    The aim of the present study was to investigate the roles of matrix metalloproteinase 14 (MMP-14) in corneal inflammatory lymphangiogenesis. The expression of MMP-14 in vivo was detected by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assays, under various corneal conditions. pCMV-MMP-14 or empty pCMV vectors were injected into mouse corneal stroma, 3 days after suture placement in a standard suture-induced inflammatory corneal neovascularization assay. The outgrowth of blood and lymphatic vessels and macrophage recruitment were analyzed using immunofluorescence. The expression levels of vascular endothelial growth factor (VEGF) subtypes were tested by RT-qPCR. MMP-14 expression was upregulated significantly following various corneal injuries. The results demonstrated, for the first time, that MMP-14 strongly promotes corneal lymphangiogenesis and macrophage infiltration during inflammation. Furthermore, expression levels of VEGF-C and VEGF receptor-3, but not other VEGF components, were significantly upregulated by the intrastromal delivery of MMP-14 during corneal lymphangiogenesis. In conclusion, this study indicates that MMP-14 is critically involved in the processes of lymphangiogenesis. Inhibition of MMP-14 may provide a viable treatment for transplant rejection and other lymphatic disorders.

  4. Blood metal levels and third trimester maternal plasma matrix metalloproteinases (MMPs).

    PubMed

    Au, Felicia; Bielecki, Agnieszka; Blais, Erica; Fisher, Mandy; Cakmak, Sabit; Basak, Ajoy; Gomes, James; Arbuckle, Tye E; Fraser, William D; Vincent, Renaud; Kumarathasan, Prem

    2016-09-01

    While it is known that in utero exposure to environmental toxicants, namely heavy metals, can adversely affect the neonate, there remains a significant paucity of information on maternal biological changes specific to metal exposures during pregnancy. This study aims at identifying associations between maternal metal exposures and matrix metalloproteinases (MMPs) that are known to be engaged in pregnancy process. Third trimester maternal plasma (n = 1533) from a pregnancy cohort (Maternal-Infant Research on Environmental Chemicals Study, MIREC) were analyzed for MMP-1,-2,-7,-9 and -10 by affinity-based multiplex protein array analyses. Maternal metal concentrations (mercury, cadmium, lead, arsenic and manganese) in 1st and 3rd trimesters exhibited strong correlations (p < 0.05). Multivariate regression models were used to estimate odds ratio (OR) for the association between metal concentrations in quartiles and high (90%) and low (10%) maternal MMP levels. Significant (p < 0.05) metal exposure-related effects were observed with the different MMP isoform responses. MMP profiles were specific to the trimester at which the maternal blood metals were analyzed. Our findings suggest that the profiles of these MMP isoforms vary with the type of metal exposure, blood metal concentrations and the trimester at which metal levels were determined. These new findings on maternal metal-MMP relationships can guide future explorations on toxicity mechanisms relevant to metal exposure-mediated adverse birth outcomes. PMID:27341154

  5. Matrix metalloproteinase inhibitor, doxycycline and progression of calcific aortic valve disease in hyperlipidemic mice

    PubMed Central

    Jung, Jae-Joon; Razavian, Mahmoud; Kim, Hye-Yeong; Ye, Yunpeng; Golestani, Reza; Toczek, Jakub; Zhang, Jiasheng; Sadeghi, Mehran M.

    2016-01-01

    Calcific aortic valve disease (CAVD) is the most common cause of aortic stenosis. Currently, there is no non-invasive medical therapy for CAVD. Matrix metalloproteinases (MMPs) are upregulated in CAVD and play a role in its pathogenesis. Here, we evaluated the effect of doxycycline, a nonselective MMP inhibitor on CAVD progression in the mouse. Apolipoprotein (apo)E−/− mice (n = 20) were fed a Western diet (WD) to induce CAVD. After 3 months, half of the animals was treated with doxycycline, while the others continued WD alone. After 6 months, we evaluated the effect of doxycycline on CAVD progression by echocardiography, MMP-targeted micro single photon emission computed tomography (SPECT)/computed tomography (CT), and tissue analysis. Despite therapeutic blood levels, doxycycline had no significant effect on MMP activation, aortic valve leaflet separation or flow velocity. This lack of effect on in vivo images was confirmed on tissue analysis which showed a similar level of aortic valve gelatinase activity, and inflammation between the two groups of animals. In conclusion, doxycycline (100 mg/kg/day) had no effect on CAVD progression in apoE−/− mice with early disease. Studies with more potent and specific inhibitors are needed to establish any potential role of MMP inhibition in CAVD development and progression. PMID:27619752

  6. Matrix metalloproteinase 8 degrades apolipoprotein A-I and reduces its cholesterol efflux capacity.

    PubMed

    Salminen, Aino; Åström, Pirjo; Metso, Jari; Soliymani, Rabah; Salo, Tuula; Jauhiainen, Matti; Pussinen, Pirkko J; Sorsa, Timo

    2015-04-01

    Various cell types in atherosclerotic lesions express matrix metalloproteinase (MMP)-8. We investigated whether MMP-8 affects the structure and antiatherogenic function of apolipoprotein (apo) A-I, the main protein component of HDL particles. Furthermore, we studied serum lipid profiles and cholesterol efflux capacity in MMP-8-deficient mouse model. Incubation of apoA-I (28 kDa) with activated MMP-8 yielded 22 kDa and 25 kDa apoA-I fragments. Mass spectrometric analyses revealed that apoA-I was cleaved at its carboxyl-terminal part. Treatment of apoA-I and HDL with MMP-8 resulted in significant reduction (up to 84%, P < 0.001) in their ability to facilitate cholesterol efflux from cholesterol-loaded THP-1 macrophages. The cleavage of apoA-I by MMP-8 and the reduction in its cholesterol efflux capacity was inhibited by doxycycline. MMP-8-deficient mice had significantly lower serum triglyceride (TG) levels (P = 0.003) and larger HDL particles compared with wild-type (WT) mice. However, no differences were observed in the apoA-I levels or serum cholesterol efflux capacities between the mouse groups. Proteolytic modification of apoA-I by MMP-8 may impair the first steps of reverse cholesterol transport, leading to increased accumulation of cholesterol in the vessel walls. Eventually, inhibition of MMPs by doxycycline may reduce the risk for atherosclerotic vascular diseases.

  7. Identification of GPR65, a novel regulator of matrix metalloproteinases using high through-put screening

    SciTech Connect

    Xu, Hongbo; Chen, Xiaohong; Huang, Junwei; Deng, Weiwei; Zhong, Qi; Yue, Changli; Wang, Pingzhang; Huang, Zhigang

    2013-06-21

    Highlights: •A novel mechanism of MMP3 regulation by proton-sensing G-protein-coupled receptors was defined. •GPR65 was identified to induce the MMP3 expression. •GPR65 mediated MMP induction under acidic conditions. •AP-1 binding site in MMP3 promoter was crucial for MMP3 induction. •GPR65 overexpression can accelerate the invision of A549 cells. -- Abstract: Matrix metalloproteinases (MMPs) are over-expressed in nearly all cancers. To study novel regulatory factors of MMP expression in head and neck cancer (HNC), we screened a total of 636 candidate genes encoding putative human transmembrane proteins using MMP promoter reporter in a dual luciferase assay system. Three genes GPR65, AXL and TNFRSF10B dramatically activated the induction of MMP3 expression. The induction of MMP expression by GPR65 was further confirmed in A549 and/or FaDu cells. GPR65 mediated MMP induction under acidic conditions. The AP-1 binding site in MMP3 promoter was crucial for MMP3 induction. Moreover, the A549 cells infected by recombinant adenovirus of GPR65 showed accelerated cell invasion. In conclusion, we validate that GPR65 is vital regulatory genes upstream of MMP3, and define a novel mechanism of MMP3 regulation by proton-sensing G-protein-coupled receptors.

  8. Matrix Metalloproteinase-2 Mediates Intestinal Immunopathogenesis in Campylobacter Jejuni-Infected Infant Mice

    PubMed Central

    Alutis, Marie E.; Grundmann, Ursula; Hagen, Ulrike; Fischer, André; Kühl, Anja A.; Göbel, Ulf B.; Bereswill, Stefan; Heimesaat, Markus M.

    2015-01-01

    Increased levels of the matrix metalloproteinases (MMPs)-2 and -9 (also referred to gelatinase-A and -B, respectively) can be detected in the inflamed gut. We have recently shown that synthetic gelatinase blockage reduces colonic apoptosis and pro-inflammatory immune responses following murine Campylobacter (C.) jejuni infection. In order to dissect whether MMP-2 and/or MMP-9 is involved in mediating C. jejuni-induced immune responses, infant MMP-2–/–, MMP-9–/–, and wildtype (WT) mice were perorally infected with the C. jejuni strain B2 immediately after weaning. Whereas, at day 2 postinfection (p.i.), fecal C. jejuni B2 loads were comparable in mice of either genotype, mice expelled the pathogen from the intestinal tract until day 4 p.i. Six days p.i., colonic MMP-2 but not MMP-9 mRNA was upregulated in WT mice. Remarkably, infected MMP-2–/– mice exhibited less frequent abundance of blood in feces, less distinct colonic histopathology and apoptosis, lower numbers of effector as well as innate and adaptive immune cells within the colonic mucosa, and higher colonic IL-22 mRNA levels as compared to infected WT mice. In conclusion, these results point towards an important role of MMP-2 in mediating C. jejuni-induced intestinal immunopathogenesis. PMID:26495129

  9. Ultrasound Enhanced Matrix Metalloproteinase-9 Triggered Release of Contents from Echogenic Liposomes

    PubMed Central

    Nahire, Rahul; Paul, Shirshendu; Scott, Michael D.; Singh, Raushan K.; Muhonen, Wallace W.; Shabb, John; Gange, Kara N.; Srivastava, D. K.; Sarkar, Kausik; Mallik, Sanku

    2012-01-01

    The extracellular enzyme matrix metalloproteinase-9 (MMP-9) is overexpressed in atherosclerotic plaques and in metastatic cancers. The enzyme is responsible for rupture of the plaques and for the invasion and metastasis of a large number of cancers. The ability of ultrasonic excitation to induce thermal and mechanical effects has been used to release drugs from different carriers. However, majority of these studies were performed with low frequency ultrasound (LFUS) at kHz frequencies. Clinical usage of LFUS excitations will be limited due to harmful biological effects. Herein, we report our results on the release of encapsulated contents from substrate lipopeptide incorporated echogenic liposomes triggered by recombinant human MMP-9. The contents release was further enhanced by the application of diagnostic frequency (3 MHz) ultrasound. The echogenic liposomes were successfully imaged employing a medical ultrasound transducer (4 – 15 MHz). The conditioned cell culture media from cancer cells (secreting MMP-9) released the encapsulated dye from the liposomes (30 – 50%) and this release is also increased (50 – 80%) by applying diagnostic frequency ultrasound (3 MHz) for 3 minutes. With further developments, these liposomes have the potential to serve as multimodal carriers for triggered release and simultaneous ultrasound imaging. PMID:22849291

  10. Expression of matrix metalloproteinase-9 in oral potentially malignant disorders: A systematic review

    PubMed Central

    Venugopal, Archana; Uma Maheswari, TN

    2016-01-01

    Matrix metalloproteinase-9 (MMP-9) is an inducible enzyme. Oral potentially malignant disorders (OPMDs) are considered as the early tissue changes that happen due to various habits such as smoking tobacco, chewing tobacco or stress. This alteration in the tissues alters the expression of MMP-9. The rationale of the review is to know the expression of MMP-9 in OPMDs. Hand searching and electronic databases such as PubMed and ScienceDirect were done for mesh terms such as OPMDs and MMP-9. Eight articles were obtained, after applying inclusion and exclusion criteria. These articles were assessed with QUADAS and data were extracted and evaluated. The included eight studies were done in 182 oral squamous cell carcinoma cases, 430 OPMDs (146 oral lichen planus, 264 leukoplakia and 20 oral submucous fibrosis) and 352 healthy controls evaluated for MMP-9. MMP-9 expression was found to be elevated in tissue, serum and saliva samples of OPMDs than in healthy controls. There is only one study in each serum and saliva samples to evaluate MMP-9. Saliva being noninvasive and serum being minimally invasive, more studies need to be done in both serum and saliva to establish MMP-9 as an early diagnostic marker in OPMDs to know its potential in malignant transformation. PMID:27721614

  11. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition

    NASA Astrophysics Data System (ADS)

    Purcell, Brendan P.; Lobb, David; Charati, Manoj B.; Dorsey, Shauna M.; Wade, Ryan J.; Zellars, Kia N.; Doviak, Heather; Pettaway, Sara; Logdon, Christina B.; Shuman, James A.; Freels, Parker D.; Gorman, Joseph H., III; Gorman, Robert C.; Spinale, Francis G.; Burdick, Jason A.

    2014-06-01

    Inhibitors of matrix metalloproteinases (MMPs) have been extensively explored to treat pathologies where excessive MMP activity contributes to adverse tissue remodelling. Although MMP inhibition remains a relevant therapeutic target, MMP inhibitors have not translated to clinical application owing to the dose-limiting side effects following systemic administration of the drugs. Here, we describe the synthesis of a polysaccharide-based hydrogel that can be locally injected into tissues and releases a recombinant tissue inhibitor of MMPs (rTIMP-3) in response to MMP activity. Specifically, rTIMP-3 is sequestered in the hydrogels through electrostatic interactions and is released as crosslinks are degraded by active MMPs. Targeted delivery of the hydrogel/rTIMP-3 construct to regions of MMP overexpression following a myocardial infarction significantly reduced MMP activity and attenuated adverse left ventricular remodelling in a porcine model of myocardial infarction. Our findings demonstrate that local, on-demand MMP inhibition is achievable through the use of an injectable and bioresponsive hydrogel.

  12. Hydrogen peroxide-induced necrotic cell death in cardiomyocytes is independent of matrix metalloproteinase-2.

    PubMed

    Ali, Mohammad A M; Kandasamy, Arulmozhi D; Fan, Xiaohu; Schulz, Richard

    2013-09-01

    Matrix metalloproteinase-2 (MMP-2) is well known to proteolyse both extracellular and intracellular proteins. Reactive oxygen species activate MMP-2 at both transcriptional and post-translational levels, thus MMP-2 activation is considered an early event in oxidative stress injury. Although hydrogen peroxide is widely used to trigger oxidative stress-induced cell death, the type of cell death (apoptosis vs. necrosis) in cardiomyocytes is still controversial depending on the concentration used and the exposure time. We carefully investigated the mode of cell death in neonatal rat cardiomyocytes induced by different concentrations (50-500 μM) of hydrogen peroxide at various time intervals after exposure and determined whether MMP-2 is implicated in hydrogen peroxide-induced cardiomyocyte death. Treating cardiomyocytes with hydrogen peroxide led to elevated MMP-2 level/activity with maximal effects seen at 200 μM. Hydrogen peroxide caused necrotic cell death by disrupting the plasmalemma as evidenced by the release of lactate dehydrogenase in a concentration- and time-dependent manner as well as the necrotic cleavage of PARP-1. The absence of both caspase-3 cleavage/activation and apoptotic cleavage of PARP-1 illustrated the weak contribution of apoptosis. Pre-treatment with selective MMP inhibitors did not protect against hydrogen peroxide-induced necrosis. In conclusion hydrogen peroxide increases MMP-2 level/activity in cardiomyocytes and induces necrotic cell death, however, the later effect is MMP-2 independent.

  13. Matrix Metalloproteinases and Blood-Brain Barrier Disruption in Acute Ischemic Stroke

    PubMed Central

    Lakhan, Shaheen E.; Kirchgessner, Annette; Tepper, Deborah; Leonard, Aidan

    2013-01-01

    Ischemic stroke continues to be one of the most challenging diseases in translational neurology. Tissue plasminogen activator (tPA) remains the only approved treatment for acute ischemic stroke, but its use is limited to the first hours after stroke onset due to an increased risk of hemorrhagic transformation over time resulting in enhanced brain injury. In this review we discuss the role of matrix metalloproteinases (MMPs) in blood-brain barrier (BBB) disruption as a consequence of ischemic stroke. MMP-9 in particular appears to play an important role in tPA-associated hemorrhagic complications. Reactive oxygen species can enhance the effects of tPA on MMP activation through the loss of caveolin-1 (cav-1), a protein encoded in the cav-1 gene that serves as a critical determinant of BBB permeability. This review provides an overview of MMPs’ role in BBB breakdown during acute ischemic stroke. The possible role of MMPs in combination treatment of acute ischemic stroke is also examined. PMID:23565108

  14. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition

    PubMed Central

    Purcell, Brendan P.; Lobb, David; Charati, Manoj B.; Dorsey, Shauna M.; Wade, Ryan J.; Zellers, Kia N.; Doviak, Heather; Pettaway, Sara; Logdon, Christina B.; Shuman, James; Freels, Parker D.; Gorman, Joseph H.; Gorman, Robert C.; Spinale, Francis G.; Burdick, Jason A.

    2014-01-01

    Inhibitors of matrix metalloproteinases (MMPs) have been extensively explored to treat pathologies where excessive MMP activity contributes to adverse tissue remodeling. While MMP inhibition remains a relevant therapeutic target, MMP inhibitors have not translated to clinical application due to the dose-limiting side effects following systemic administration of the drugs. Here, we describe the synthesis of a polysaccharide-based hydrogel that can be locally injected into tissues and releases a recombinant tissue inhibitor of MMPs (rTIMP-3) in response to MMP activity. Specifically, rTIMP-3 is sequestered in the hydrogels through electrostatic interactions and is released as crosslinks are degraded by active MMPs. Targeted delivery of the hydrogel/rTIMP-3 construct to regions of MMP over-expression following a myocardial infarction (MI) significantly reduced MMP activity and attenuated adverse left ventricular remodeling in a porcine model of MI. Our findings demonstrate that local, on-demand MMP inhibition is achievable through the use of an injectable and bioresponsive hydrogel. PMID:24681647

  15. Matrix Metalloproteinases and Subclinical Atherosclerosis in Chronic Kidney Disease: A Systematic Review

    PubMed Central

    Kousios, Andreas; Kouis, Panayiotis

    2016-01-01

    Background. Cardiovascular disease (CVD) remains a significant problem in Chronic Kidney Disease (CKD). Subclinical atherosclerosis identified by noninvasive methods could improve CVD risk prediction in CKD but these methods are often unavailable. We therefore systematically reviewed whether circulating levels of Matrix Metalloproteinases (MMPs) and tissue inhibitors (TIMPs) are associated with subclinical atherosclerosis in CKD, as this would support their use as biomarkers or pharmacologic targets. Methods. All major electronic databases were systematically searched from inception until May 2015 using appropriate terms. Studies involving CKD patients with data on circulating MMPs levels and atherosclerosis were considered and subjected to quality assessment. Results. Overall, 16 studies were identified for qualitative synthesis and 9 studies were included in quantitative synthesis. MMP-2 and TIMP-1 were most frequently studied while most studies assessed carotid Intima-Media Thickness (cIMT) as a measure of subclinical atherosclerosis. Only MMP-2 demonstrated a consistent positive association with cIMT. Considerable variability in cIMT measurement methodology and poor plaque assessment was found. Conclusions. Although MMPs demonstrate great potential as biomarkers of subclinical atherosclerosis, they are understudied in CKD and not enough data existed for meta-analysis. Larger studies involving several MMPs, with more homogenized approaches in determining the atherosclerotic burden in CKD, are needed. PMID:27042350

  16. Differential expression of matrix metalloproteinase-13 in association with invasion of breast cancer

    PubMed Central

    Punsawad, Chuchard; Chupeerach, Chaowanee; Songsri, Apiram; Charoenkijkajorn, Lek; Petmitr, Songsak

    2016-01-01

    Matrix metalloproteinase-13 (MMP-13) has a potential role in tumour invasion and metastasis. However, its relevance to the prognosis of human breast cancer is poorly understood. The aim of this study is to investigate the expression patterns of MMP-13 protein and to determine its prognostic value in breast cancer, and to define its relation to the clinicopathological features. Immunohistochemistry analysis of MMP-13 was performed on formalin-fixed, paraffin-embedded sections of cancerous breast tissue (n = 76) and normal breast tissue (n = 20), all of which had clinicopathological information available. Based on the principle of immunoreactivity, the detection of MMP-13 on breast tissue was conducted using monoclonal antibodies against MMP-13. A semi-quantitative scoring system was used to assess the presence of, as well as the cellular localisation of MMP-13. MMP-13 expression was significantly greater in the cancerous breast tissues in comparison to those of normal breast tissues. In addition, high levels of MMP-13 expression were also found to be related to the positive detection of breast cancer cells in lymph nodes-amongst breast cancer patients. The results of this study showed that MMP-13 was frequently present in breast tumours, especially when tumours were accompanied by positive breast cancer cell detection in lymph nodes. This suggests that MMP-13 plays a potentially significant role in breast cancer invasion and metastasis. PMID:27647987

  17. Hispidulin induces mitochondrial apoptosis in acute myeloid leukemia cells by targeting extracellular matrix metalloproteinase inducer

    PubMed Central

    Gao, Hui; Liu, Yongji; Li, Kan; Wu, Tianhui; Peng, Jianjun; Jing, Fanbo

    2016-01-01

    Acute myeloid leukemia (AML) represents a heterogeneous group of hematological neoplasms with marked heterogeneity in response to both standard therapy and survival. Hispidulin, a flavonoid compound that is anactive ingredient in the traditional Chinese medicinal herb Salvia plebeia R. Br, has recently been reported to have anantitumor effect against solid tumors in vitro and in vivo. The aim of the present study was to investigate the effects of hispidulin on the human leukemia cell line in vitro and the underlying mechanisms of its actions on these cells. Our results showed that hispidulin inhibits AML cell proliferation in a dose- and time-dependent manner, and induces cell apoptosis throughan intrinsic mitochondrial pathway. Our results also revealed that hispidulin treatment significantly inhibits extracellular matrix metalloproteinase inducer (EMMPRIN) expression in both tested AML cell lines in a dose-dependent manner, and that the overexpression of EMMPRIN protein markedly attenuates hispidulin-induced cell apoptosis. Furthermore, our results strongly indicated that the modulating effect of hispidulin on EMMPRIN is correlated with its inhibitory effect on both the Akt and STAT3 signaling pathways. PMID:27158398

  18. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity

    PubMed Central

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L.; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B.

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  19. Matrix metalloproteinases (MMPs) inhibitory effects of an octameric oligopeptide isolated from abalone Haliotis discus hannai.

    PubMed

    Nguyen, Van-Tinh; Qian, Zhong-Ji; Ryu, Bomi; Kim, Kil-Nam; Kim, Daekyung; Kim, Young-Mog; Jeon, You-Jin; Park, Won Sun; Choi, Il-Whan; Kim, Geun Hyung; Je, Jae-Young; Jung, Won-Kyo

    2013-11-01

    Abalone (Haliotis discus hannai) is a marine gastropod, and an important fishery and food industrial resource that is massively maricultured in Asia, Africa, Australia and America. However, its health benefits have rarely been studied for nutraceutical and pharmaceutical application. In this study, the purified abalone oligopeptide (AOP) with anti-matrix metalloproteinases (anti-MMPs) effects was isolated from the digests of abalone intestine using recycle HPLC with a JAI W253 column and an OHpak SB-803 HQ column. The AOP was identified as Ala-Glu-Leu-Pro-Ser-Leu-Pro-Gly (MW=782.4 Da) with a de novo peptide sequencing technique using a tandem mass spectrometer. The AOP exhibited a specific inhibitory effect against MMP-2/-9 activity and attenuated protein expression of p50 and p65 in the human fibrosarcoma (HT1080) cells, dose-dependently. The results presented illustrate that the AOP could inhibit MMP-2/-9 expression in HT1080 cells via the nuclear factor-kappaB (NF-κB)-mediated pathway. This data suggest that the AOP from H. discus hannai intestine may possess therapeutic and preventive potential for the treatment of MMPs-related disorders such as angiogenesis and cardiovascular diseases.

  20. Matrix metalloproteinase-1 expression in breast cancer and cancer-adjacent tissues by immunohistochemical staining

    PubMed Central

    XUAN, JIAJIA; ZHANG, YUNFENG; ZHANG, XIUJUN; HU, FEN

    2015-01-01

    Although matrix metalloproteinase-1 (MMP-1) has been considered a factor of crucial importance for breast cancer cells invasion and metastasis, the expression of MMP-1 in different breast cancer and cancer-adjacent tissues have not been fully examined. In the present study, immunohistochemical staining was used to detect the MMP-1 expression in non-specific invasive ductal carcinoma of the breast, cancer-adjacent normal breast tissue, lymph node metastatic non-specific invasive ductal carcinoma of the breast and normal lymph node tissue. The results showed that MMP-1 expression is different in the above tissues. MMP-1 had a positive expression in normal lymph node tissue and lymph node metastatic non-specific invasive ductal carcinoma. The MMP-1 negative expression rate was only 6.1% in non-specific invasive ductal carcinoma of the breast and 2.9% in cancer-adjacent normal breast tissue respectively. MMP-1 expression is higher in non-specific invasive ductal carcinoma and lymph node metastatic non-specific invasive ductal carcinoma compared to cancer-adjacent normal breast tissue and normal lymph node tissue. In conclusion, higher expression of MMP-1 in breast cancer may play a crucial role in promoting breast cancer metastasis. PMID:26137243

  1. Matrix metalloproteinase inhibitor, doxycycline and progression of calcific aortic valve disease in hyperlipidemic mice.

    PubMed

    Jung, Jae-Joon; Razavian, Mahmoud; Kim, Hye-Yeong; Ye, Yunpeng; Golestani, Reza; Toczek, Jakub; Zhang, Jiasheng; Sadeghi, Mehran M

    2016-01-01

    Calcific aortic valve disease (CAVD) is the most common cause of aortic stenosis. Currently, there is no non-invasive medical therapy for CAVD. Matrix metalloproteinases (MMPs) are upregulated in CAVD and play a role in its pathogenesis. Here, we evaluated the effect of doxycycline, a nonselective MMP inhibitor on CAVD progression in the mouse. Apolipoprotein (apo)E(-/-) mice (n = 20) were fed a Western diet (WD) to induce CAVD. After 3 months, half of the animals was treated with doxycycline, while the others continued WD alone. After 6 months, we evaluated the effect of doxycycline on CAVD progression by echocardiography, MMP-targeted micro single photon emission computed tomography (SPECT)/computed tomography (CT), and tissue analysis. Despite therapeutic blood levels, doxycycline had no significant effect on MMP activation, aortic valve leaflet separation or flow velocity. This lack of effect on in vivo images was confirmed on tissue analysis which showed a similar level of aortic valve gelatinase activity, and inflammation between the two groups of animals. In conclusion, doxycycline (100 mg/kg/day) had no effect on CAVD progression in apoE(-/-) mice with early disease. Studies with more potent and specific inhibitors are needed to establish any potential role of MMP inhibition in CAVD development and progression. PMID:27619752

  2. Matrix Metalloproteinase-9 Production following Cardiopulmonary Bypass Was Not Associated with Pulmonary Dysfunction after Cardiac Surgery

    PubMed Central

    Lin, Tso-Chou; Lin, Feng-Yen; Lin, Yi-Wen; Hsu, Che-Hao; Huang, Go-Shine; Wu, Zhi-Fu; Tsai, Yi-Ting; Lin, Chih-Yuan; Li, Chi-Yuan; Tsai, Chien-Sung

    2015-01-01

    Background. Cardiopulmonary bypass (CPB) causes release of matrix metalloproteinase- (MMP-) 9, contributing to pulmonary infiltration and dysfunction. The aims were to investigate MMP-9 production and associated perioperative variables and oxygenation following CPB. Methods. Thirty patients undergoing elective cardiac surgery were included. Arterial blood was sampled at 6 sequential points (before anesthesia induction, before CPB and at 2, 4, 6, and 24 h after beginning CPB) for plasma MMP-9 concentrations by ELISA. The perioperative laboratory data and variables, including bypass time, PaO2/FiO2, and extubation time, were also recorded. Results. The plasma MMP-9 concentrations significantly elevated at 2–6 h after beginning CPB (P < 0.001) and returned to the preanesthesia level at 24 h (P = 0.23), with predominant neutrophil counts after surgery (P < 0.001). The plasma MMP-9 levels at 4 and 6 h were not correlated with prolonged CPB time and displayed no association with postoperative PaO2/FiO2, regardless of reduced ratio from preoperative 342.9 ± 81.2 to postoperative 207.3 ± 121.3 mmHg (P < 0.001). Conclusion. Elective cardiac surgery with CPB induced short-term elevation of plasma MMP-9 concentrations within 24 hours, however, without significant correlation with CPB time and postoperative pulmonary dysfunction, despite predominantly increased neutrophils and reduced oxygenation. PMID:26273135

  3. Matrix metalloproteinase 14 participates in corneal lymphangiogenesis through the VEGF-C/VEGFR-3 signaling pathway

    PubMed Central

    Du, Hai-Tao; Liu, Ping

    2016-01-01

    The aim of the present study was to investigate the roles of matrix metalloproteinase 14 (MMP-14) in corneal inflammatory lymphangiogenesis. The expression of MMP-14 in vivo was detected by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assays, under various corneal conditions. pCMV-MMP-14 or empty pCMV vectors were injected into mouse corneal stroma, 3 days after suture placement in a standard suture-induced inflammatory corneal neovascularization assay. The outgrowth of blood and lymphatic vessels and macrophage recruitment were analyzed using immunofluorescence. The expression levels of vascular endothelial growth factor (VEGF) subtypes were tested by RT-qPCR. MMP-14 expression was upregulated significantly following various corneal injuries. The results demonstrated, for the first time, that MMP-14 strongly promotes corneal lymphangiogenesis and macrophage infiltration during inflammation. Furthermore, expression levels of VEGF-C and VEGF receptor-3, but not other VEGF components, were significantly upregulated by the intrastromal delivery of MMP-14 during corneal lymphangiogenesis. In conclusion, this study indicates that MMP-14 is critically involved in the processes of lymphangiogenesis. Inhibition of MMP-14 may provide a viable treatment for transplant rejection and other lymphatic disorders. PMID:27698700

  4. Association between promoter polymorphisms of matrix metalloproteinase-1 and risk of gastric cancer.

    PubMed

    Peng, Qisong; Xu, Yong

    2015-01-01

    Growing evidences show that matrix metalloproteinase-1 (MMP1) plays important roles in tumorigenesis and cancer metastasis. The interactions between MMP1-1607 1G>2G polymorphism and risk of gastric cancer (GC) have been reported, but results remained ambiguous. To determine the association between MMP1-1607 1G>2G polymorphism and risk of GC, we conducted a meta-analysis and identified the outcome data from all the research papers estimating the association between MMP1-1607 1G>2G polymorphism and GC risk, which was based on comprehensive searches using databases such as PubMed, Elsevier Science Direct, Excerpta Medica Database (EMBASE), and Chinese National Knowledge Infrastructure (CNKI). The fixed-effects model was used in this meta-analysis. Data were extracted, and pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. In this meta-analysis, six studies involving 1,377 cases and 1,543 controls were included. We identified the significant association between MMP1-1607 1G>2G polymorphism and GC risk for allele model (OR =1.05; 95% CI, 1.01-1.08), for dominant model (OR =1.11; 95% CI, 1.08-1.15), and for recessive model (OR =1.06; 95% CI, 0.98-1.14). In summary, our analysis demonstrated that MMP1-1607 1G>2G polymorphism was significantly associated with an increased risk of GC.

  5. Matrix metalloproteinases and their tissue inhibitors in gastric cancer as molecular markers.

    PubMed

    Sampieri, Clara L; León-Córdoba, Kenneth; Remes-Troche, Jos Maria

    2013-01-01

    Gastric cancer is a complex disease that involves a range of biological individuals and tumors with histopathological features. The pathogenesis of this disease is multi-factorial and includes the interaction of genetic predisposition with environmental factors. Gastric cancer is normally diagnosed in advanced stages where there are few alternatives to offer and the prognosis is difficult to establish. Metastasis is the leading cause of cancer deaths. Identification of key genes and signaling pathways involved in metastasis and recurrence could predict these events and thereby identify therapeutic targets. In this context, the extracellular matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) represent a potential prognostic tool, because both genetic families regulate growth, angiogenesis, invasion, immune response, epithelial mesenchymal transition and cellular survival. Proteolytic parameters based on MMP/TIMP expression could be useful in the identification of patients with a high probability of developing distant metastases or peritoneal dissemination for each degree of histological malignancy. It is also probable that these parameters can allow improvement in the extent of surgery and dictate the most suitable therapy. We reviewed papers focused on human gastric epithelial cancer as a model and focus on the potential use of MMPs and TIMPs as molecular markers; also we include literature regarding gastric cancer risk factors, classification systems and MMP/TIMP regulation.

  6. Differentiation-dependent expression of gelatinase B/matrix metalloproteinase-9 in trophoblast cells.

    PubMed

    Peters, T J; Albieri, A; Bevilacqua, E; Chapman, B M; Crane, L H; Hamlin, G P; Seiki, M; Soares, M J

    1999-02-01

    The purpose of this study was to evaluate the Rcho-1 trophoblast culture system as a model for studying trophoblast invasion and to examine stage-specific expression of enzyme(s) potentially participating in rat trophoblast giant cell invasive behavior. The invasive behavior of the differentiating Rcho-1 trophoblast cells was demonstrated using Matrigel invasion chambers. Gelatin zymography and Western blot analysis of conditioned medium from differentiating Rcho-1 trophoblast cell cultures and rat ectoplacental cone outgrowths revealed a differentiation-dependent increase in gelatinase B/matrix metalloproteinase (MMP-9). Nothern blot and reverse transcriptase polymerase chain reaction (RT-PCR) analyses of Rcho-1 trophoblast or ectoplacental cone cells also showed increasing expression of MMP-9 accompanying cell differentiation. Rcho-1 trophoblast cells stably transfected with MMP-9 promoter/luciferase reporter constructs exhibited a differentiation-dependent increase in MMP-9 promoter activation. In conclusion, trophoblast giant cell differentiation is characterized by transcriptional activation of the MMP-9 gene and appearance of the invasive phenotype.

  7. Involvement of matrix metalloproteinase-9 in amyloid-β 1-42-induced shedding of the pericyte proteoglycan NG2.

    PubMed

    Schultz, Nina; Nielsen, Henrietta M; Minthon, Lennart; Wennström, Malin

    2014-07-01

    Deposition of amyloid-β (Aβ) 1-42, the major component of senile plaques characteristic of Alzheimer disease, affects brain microvascular integrity and causes blood-brain barrier dysfunction, increased angiogenesis, and pericyte degeneration. To understand the cellular events underlying Aβ1-42 effects on microvascular alterations, we investigated whether different aggregation forms of Aβ1-42 affect shedding of the pericyte proteoglycan NG2 and whether they affect proteolytic cleavage mediated by matrix metalloproteinase (MMP)-9. We found decreased levels of soluble NG2, total MMP-9, and MMP-9 activity in pericyte culture supernatants in response to fibril-enriched preparations of Aβ1-42. Conversely, oligomer-enriched preparations of Aβ1-42 increased soluble NG2 levels in the supernatants. This increase was ablated by the MMP-9/MMP-2 inhibitor SB-3CT. There was also a trend toward increased MMP-9 activity observed after oligomeric Aβ1-42 exposure. Our results, demonstrating an Aβ1-42 aggregation-dependent effect on levels of NG2 and MMP-9, support previous studies showing an impact of Aβ1-42 on vascular integrity and thereby add to our understanding of mechanisms behind the microvascular changes commonly found in patients with Alzheimer disease.

  8. Effects of ultrasound on estradiol level, bone mineral density, bone biomechanics and matrix metalloproteinase-13 expression in ovariectomized rabbits

    PubMed Central

    XIA, LU; HE, HONGCHEN; GUO, HUA; QING, YUXI; HE, CHENG-QI

    2015-01-01

    The aim of the present study was to observe the effect of ultrasound (US) on estradiol level, bone mineral density (BMD), bone biomechanics and matrix metalloproteinase-13 (MMP-13) expression in ovariectomized (OVX) rabbits. A total of 28 virgin New Zealand white rabbits were randomly assigned into the following groups: Control (control group), ovariectomy (OVX group), ovariectomy with ultrasound therapy (US group) and ovariectomy with estrogen replacement therapy group (ERT group). At 8 weeks after ovariectomy, the US group received ultrasound treatment while the ERT group were orally treated with conjugated estrogens, and the control and OVX groups remained untreated. The estradiol level, BMD and bone biomechanics, cartilage histology and the MMP-13 expression were analyzed after the intervention. The results indicate that the US treatment increased estradiol level, BMD and bone biomechanical function. Furthermore, the US treatment appeared to improve the recovery of cartilage morphology and decreased the expression of MMP-13 in OVX models. Furthermore, the results suggest that 10 days of US therapy was sufficient to prevent the reduction of estradiol, BMD and bone biomechanical function, to protect osteoarthritis cartilage structure, and to reduce MMP-13 transcription and expression in OVX rabbits. Therefore, US treatment may be a potential treatment for postmenopausal osteoarthritis and osteoporosis. PMID:26622502

  9. Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases

    SciTech Connect

    Huang, T.-Y.; Chu, H.-C.; Lin, Y.-L.; Lin, C.-K.; Hsieh, T.-Y.; Chang, W.-K.; Chao, Y.-C.; Liao, C.-L.

    2009-05-15

    In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitric oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases.

  10. RNA interference targeting extracellular matrix metalloproteinase inducer (CD147) inhibits growth and increases chemosensitivity in human cervical cancer cells.

    PubMed

    Zhang, F; Zeng, Y L; Zhang, X G; Chen, W J; Yang, R; Li, S J

    2013-01-01

    Overexpression of extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN CD147) has been implicated in the growth and survival of malignant cells. However, its presence and role in cervical cancer cells has not been well-studied. In the present study, small interfering RNA (siRNA) was designed and synthesized to breakdown the expression of CD147. The present data demonstrated that 24 and 48 hours after transfecting CD147 siRNA, both the CD147 mRNA and protein expression were significantly inhibited as determined by quantitative real-time polymerase chain reaction (RT-PCR) and immunocytochemistry. Meanwhile, simultaneous silencing of CD147 resulted in distinctly increasing MMP-9, VEGF, and MDR-1. Further studies demonstrated decreased CD147 expression, resulted in G1/S phase transition with flow cytometry analysis, as well as the resistance of the cells to 5-FU. These findings provide further evidence that CD147 may become a promising therapeutic target for human cervical cancer and a potential chemotherapy-sensitizing agent.

  11. Deletion of vitamin D receptor leads to premature emphysema/COPD by increased matrix metalloproteinases and lymphoid aggregates formation

    SciTech Connect

    Sundar, Isaac K.; Hwang, Jae-Woong; Wu, Shaoping; Sun, Jun; Rahman, Irfan

    2011-03-04

    Research highlights: {yields} Vitamin D deficiency is linked to accelerated decline in lung function. {yields} Levels of vitamin D receptor (VDR) are decreased in lungs of patients with COPD. {yields} VDR knock-out mouse showed increased lung inflammation and emphysema. {yields} This was associated with decline in lung function and increased MMPs. {yields} VDR knock-out mouse model is useful for studying the mechanisms of lung diseases. -- Abstract: Deficiency of vitamin D is associated with accelerated decline in lung function. Vitamin D is a ligand for nuclear hormone vitamin D receptor (VDR), and upon binding it modulates various cellular functions. The level of VDR is reduced in lungs of patients with chronic obstructive pulmonary disease (COPD) which led us to hypothesize that deficiency of VDR leads to significant alterations in lung phenotype that are characteristics of COPD/emphysema associated with increased inflammatory response. We found that VDR knock-out (VDR{sup -/-}) mice had increased influx of inflammatory cells, phospho-acetylation of nuclear factor-kappaB (NF-{kappa}B) associated with increased proinflammatory mediators, and up-regulation of matrix metalloproteinases (MMPs) MMP-2, MMP-9, and MMP-12 in the lung. This was associated with emphysema and decline in lung function associated with lymphoid aggregates formation compared to WT mice. These findings suggest that deficiency of VDR in mouse lung can lead to an early onset of emphysema/COPD because of chronic inflammation, immune dysregulation, and lung destruction.

  12. α-Solanine inhibits human melanoma cell migration and invasion by reducing matrix metalloproteinase-2/9 activities.

    PubMed

    Lu, Ming-Kun; Shih, Yuan-Wei; Chang Chien, Tzu-Tsung; Fang, Li-Heng; Huang, Hsiang-Ching; Chen, Pin-Shern

    2010-01-01

    α-Solanine, a naturally occurring steroidal glycoalkaloid in potato sprouts, was found to possess anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis of tumor cells. However, the effect of α-solanine on cancer metastasis remains unclear. In the present study, we examined the effect of α-solanine on metastasis in vitro. Data demonstrated that α-solanine inhibited proliferation of human melanoma cell line A2058 in a dose-dependent manner. When treated with non-toxic doses of α-solanine, cell migration and invasion were markedly suppressed. Furthermore, α-solanine reduced the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9, which are involved in the migration and invasion of cancer cells. Our biochemical assays indicated that α-solanine potently suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), phosphatidylinositide-3 kinase (PI3K) and Akt, while it did not affect phosphorylation of extracellular signal regulating kinase (ERK). In addition, α-solanine significantly decreased the nuclear level of nuclear factor kappa B (NF-κB), suggesting that α-solanine inhibited NF-κB activity. Taken together, the results suggested that α-solanine inhibited migration and invasion of A2058 cells by reducing MMP-2/9 activities. It also inhibited JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for α-solanine in anti-metastatic therapy.

  13. Androgen receptor promotes gastric cancer cell migration and invasion via AKT-phosphorylation dependent upregulation of matrix metalloproteinase 9

    PubMed Central

    Zang, Ming-de; Chang, Qing; Fan, Zhi-yuan; Li, Jian-fang; Yu, Bei-qin; Su, Li-ping; Li, Chen; Yan, Chao; Gu, Qin-long; Zhu, Zheng-gang; Yan, Min; Liu, Bingya

    2014-01-01

    Androgen receptor (AR) plays an important role in many kinds of cancers. However, the molecular mechanisms of AR in gastric cancer (GC) are poorly characterized. Here, we investigated the role of AR in GC cell migration, invasion and metastatic potential. Our data showed that AR expression was positively correlated with lymph node metastasis and late TNM stages. These findings were accompanied by activation of AKT and upregulation of matrix metalloproteinase 9 (MMP9). AR overexpression induced increases in GC cell migration, invasion and proliferation in vitro and in vivo. These effects were attenuated by inhibition of AKT, AR and MMP9. AR overexpression upregulated MMP9 protein levels, whereas this effect was counteracted by AR siRNA. Inhibition of AKT by siRNA or an inhibitor (MK-2206 2HC) decreased AR protein expression in both stably transfected and parental SGC-7901 cells. Luciferase reporter and chromatin immunoprecipitation assays demonstrated that AR bound to the AR-binding sites of the MMP9 promoter. In summary, AR overexpression induced by AKT phosphorylation upregulated MMP9 by binding to its promoter region to promote gastric carcinogenesis. The AKT/AR/MMP9 pathway plays an important role in GC metastasis and may be a novel therapeutic target for GC treatment. PMID:25301736

  14. Circular trimers of gelatinase B/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1

    PubMed Central

    Vandooren, Jennifer; Born, Benjamin; Solomonov, Inna; Zajac, Ewa; Saldova, Radka; Senske, Michael; Ugarte-Berzal, Estefanía; Martens, Erik; Van den Steen, Philippe E.; Van Damme, Jo; Garcia-Pardo, Angeles; Froeyen, Matheus; Deryugina, Elena I.; Quigley, James P.; Moestrup, Søren K.; Rudd, Pauline M.; Sagi, Irit; Opdenakker, Ghislain

    2015-01-01

    Gelatinase B/matrix metalloproteinase-9 (MMP-9) (EC 3.4.24.35) cleaves many substrates and is produced by most cell types as a zymogen, proMMP-9, in complex with the tissue inhibitor of metalloproteinases-1 (TIMP-1). Natural proMMP-9 occurs as monomers, homomultimers, and heterocomplexes, but our knowledge about the overall structure of proMMP-9 monomers and multimers is limited. We investigated biochemical, biophysical, and functional characteristics of zymogen and activated forms of MMP-9 monomers and multimers. In contrast to a conventional notion of a dimeric nature of MMP-9 homomultimers, we demonstrate that these are reduction-sensitive trimers. Based on the information from electrophoresis, atomic force microscopy (AFM) and transmission electron microscopy (TEM), we generated a 3Dstructure model of the proMMP-9 trimer. Remarkably, the proMMP-9 trimers possessed a 50-fold higher affinity for TIMP-1 than the monomers. In vivo, this finding was reflected in a higher extent of TIMP-1 inhibition of angiogenesis induced by trimers versus monomers. Our results show that proMMP-9 trimers constitute a novel structural and functional entity that is differentially regulated by TIMP-1. PMID:25360794

  15. MEMBRANE TYPE 1-MATRIX METALLOPROTEINASE (MT1-MMP) IDENTIFIED AS A MULTIFUNCTIONAL REGULATOR OF VASCULAR RESPONSES.

    PubMed

    Ohkawara, Hiroshi; Ikeda, Kazuhiko; Ogawa, Kazuei; Takeishi, Yasuchika

    2015-01-01

    Membrane type 1-matrix metalloproteinase (MT1-MMP) functions as a signaling molecules in addition to a transmembrane metalloprotease, which degrades interstitial collagens and extracellular matrix components. This review focuses on the multifunctional roles of MT1-MMP as a signaling molecule in vascular responses to pro-atherosclerotic stimuli in the pathogenesis of cardiovascular diseases. First, the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1)-MT1-MMP signaling axis contributes to endothelial dysfunction, which is mediated via small GTP-binding protein RhoA and Rac1 activation. Second, MT1-MMP plays a crucial role in reactive oxygen species (ROS) generation through the activation of receptor for advanced glycation end products (AGEs) in smooth muscle cells, indicating that MT1-MMP may be a therapeutic target for diabetic vascular complications. Third, MT1-MMP is involved in RhoA/Rac1 activation and Ca(2+) signaling in the mechanism of thrombin-stimulated endothelial dysfunction and oxidant stress. Fourth, the inhibition of the MT1-MMP/Akt signaling pathway may be an attractive strategy for treating endothelial disordered hemostasis in the development of vascular diseases linked to TNF-α-induced inflammation. Fifth, MT1-MMP through RAGE induced RhoA/Rac1 activation and tissue factor protein upregulation through NF-κB phosphorylation in endothelial cells stimulated by high-mobility group box-1, which plays a key role in the systemic inflammation. These findings suggest that the MT1-MMP-mediated signaling axis may be a promising target for treating atherosclerosis and subsequent cardiovascular diseases. PMID:26370683

  16. Requirement of matrix metalloproteinase-1 for intestinal homeostasis in the adult Drosophila midgut

    SciTech Connect

    Lee, Shin-Hae; Park, Joung-Sun; Kim, Young-Shin; Chung, Hae-Young; Yoo, Mi-Ae

    2012-03-10

    Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis. -- Highlights: Black-Right-Pointing-Pointer Mmp1 is expressed in the adult midgut. Black-Right-Pointing-Pointer Mmp1 is involved in the regulation of ISC proliferation activity. Black-Right-Pointing-Pointer Mmp1-related ISC proliferation is associated with EGFR signaling. Black-Right-Pointing-Pointer Mmp1 in the gut is required for the intestinal homeostasis and longevity.

  17. Matrix Metalloproteinase 7 Is Associated with Symptomatic Lesions and Adverse Events in Patients with Carotid Atherosclerosis

    PubMed Central

    Abbas, Azhar; Aukrust, Pål; Russell, David; Krohg-Sørensen, Kirsten; Almås, Trine; Bundgaard, Dorte; Bjerkeli, Vigdis; Sagen, Ellen Lund; Michelsen, Annika E.; Dahl, Tuva B.; Holm, Sverre; Ueland, Thor

    2014-01-01

    Background Atherosclerosis is a major cause of cerebrovascular disease. Matrix metalloproteinases (MMPs) play an important role in matrix degradation within the atherosclerotic lesion leading to plaque destabilization and ischemic stroke. We hypothesized that MMP-7 could be involved in this process. Methods Plasma levels of MMP-7 were measured in 182 consecutive patients with moderate (50–69%) or severe (≥70%) internal carotid artery stenosis, and in 23 healthy controls. The mRNA levels of MMP-7 were measured in atherosclerotic carotid plaques with different symptomatology, and based on its localization to macrophages, the in vitro regulation of MMP-7 in primary monocytes was examined. Results Our major findings were (i) Patients with carotid atherosclerosis had markedly increased plasma levels of MMP-7 compared to healthy controls, with particularly high levels in patients with recent symptoms (i.e., within the last 2 months). (ii) A similar pattern was found within carotid plaques with markedly higher mRNA levels of MMP-7 than in non-atherosclerotic vessels. Particularly high protein levels of MMP-7 levels were found in those with the most recent symptoms. (iii) Immunhistochemistry showed that MMP-7 was localized to macrophages, and in vitro studies in primary monocytes showed that the inflammatory cytokine tumor necrosis factor-α in combination with hypoxia and oxidized LDL markedly increased MMP-7 expression. (iv) During the follow-up of patients with carotid atherosclerosis, high plasma levels of MMP-7 were independently associated with total mortality. Conclusion Our findings suggest that MMP-7 could contribute to plaque instability in carotid atherosclerosis, potentially involving macrophage-related mechanisms. PMID:24400123

  18. Functional roles of N-linked glycosylation of human matrix metalloproteinase 9

    PubMed Central

    Duellman, Tyler; Burnett, John; Yang, Jay

    2016-01-01

    Matrix metalloproteinase-9 (MMP-9) is a secreted endoproteinase with a critical role in the regulation of the extracellular matrix and proteolytic activation of signaling molecules. Human (h)MMP-9 has two well-defined N-glycosylation sites at residues N38 and N120, however, their role has remained mostly unexplored partly because expression of the N-glycosylation-deficient N38S has been difficult due to a recently discovered SNP-dependent miRNA-mediated inhibitory mechanism. hMMP-9 cDNA encoding amino acid substitutions at residues 38 (mS38) or 120 (N120S) were created in the background of a miRNA binding site disrupted template and expressed by transient transfection. hMMP-9 harboring a single mS38 replacement secreted well, whereas N120S, or a double mS38/ N120S hMMP-9 demonstrated much reduced secretion. Imaging indicated ER-retention of the non-secreted variants and co-IP confirmed an enhanced strong interaction between the non-secreted hMMP-9s and the ER-resident protein calreticulin. Removal of N-glycosylation at residue 38 revealed an amino acid-dependent strong interaction with calreticulin likely preventing unloading of the misfolded protein from the ER chaperone down the normal secretory pathway. As with other glycoproteins, N-glycosylation strongly regulates hMMP-9 secretion. This is mediated, however, through a novel mechanism of cloaking an N-glycosylation-independent strong interaction with the ER-resident calreticulin. PMID:26207422

  19. Expression pattern of matrix metalloproteinases in human gynecological cancer cell lines

    PubMed Central

    2010-01-01

    Background Matrix metalloproteinases (MMPs) are involved in the degradation of protein components of the extracellular matrix and thus play an important role in tumor invasion and metastasis. Their expression is related to the progression of gynecological cancers (e.g. endometrial, cervical or ovarian carcinoma). In this study we investigated the expression pattern of the 23 MMPs, currently known in humans, in different gynecological cancer cell lines. Methods In total, cell lines from three endometrium carcinomas (Ishikawa, HEC-1-A, AN3 CA), three cervical carcinomas (HeLa, Caski, SiHa), three chorioncarcinomas (JEG, JAR, BeWo), two ovarian cancers (BG-1, OAW-42) and one teratocarcinoma (PA-1) were examined. The expression of MMPs was analyzed by RT-PCR, Western blot and gelatin zymography. Results We demonstrated that the cell lines examined can constitutively express a wide variety of MMPs on mRNA and protein level. While MMP-2, -11, -14 and -24 were widely expressed, no expression was seen for MMP-12, -16, -20, -25, -26, -27 in any of the cell lines. A broad range of 16 MMPs could be found in the PA1 cells and thus this cell line could be used as a positive control for general MMP experiments. While the three cervical cancer cell lines expressed 10-14 different MMPs, the median expression in endometrial and choriocarcinoma cells was 7 different enzymes. The two investigated ovarian cancer cell lines showed a distinctive difference in the number of expressed MMPs (2 vs. 10). Conclusions Ishikawa, Caski, OAW-42 and BeWo cell lines could be the best choice for all future experiments on MMP regulation and their role in endometrial, cervical, ovarian or choriocarcinoma development, whereas the teratocarcinoma cell line PA1 could be used as a positive control for general MMP experiments. PMID:20942921

  20. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages.

    PubMed

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. PMID:23978445

  1. Induction of Host Matrix Metalloproteinases by Borrelia burgdorferi Differs in Human and Murine Lyme Arthritis

    PubMed Central

    Behera, Aruna K.; Hildebrand, Ethan; Scagliotti, Joanna; Steere, Allen C.; Hu, Linden T.

    2005-01-01

    Matrix metalloproteinases (MMPs) are induced from host tissues in response to Borrelia burgdorferi. Upregulation of MMPs may play a role in the dissemination of the organism through extracellular matrix tissues, but it can also result in destructive pathology. Although mice are a well-accepted model for Lyme arthritis, there are significant differences compared to human disease. We sought to determine whether MMP expression could account for some of these differences. MMP expression patterns following B. burgdorferi infection were analyzed in primary human chondrocytes, synovial fluid samples from patients with Lyme arthritis, and cartilage tissue from Lyme arthritis-susceptible and -resistant mice by using a gene array, real-time PCR, an enzyme-linked immunosorbent assay, and immunohistochemistry. B. burgdorferi infection significantly induced transcription of MMP-1, -3, -13, and -19 from primary human chondrocyte cells. Transcription of MMP-10 and tissue inhibitor of metalloprotease 1 was increased with B. burgdorferi infection, but protein expression was only minimally increased. The synovial fluid levels of MMPs from patients with high and low spirochete burdens were consistent with results seen in the in vitro studies. B. burgdorferi-susceptible C3H/HeN mice infected with B. burgdorferi showed induction of MMP-3 and MMP-19 but no other MMP or tissue inhibitor of metalloprotease. As determined by immunohistochemistry, MMP-3 expression was increased only in chondrocytes near the articular surface. The levels of MMPs were significantly lower in the more Lyme arthritis-resistant BALB/c and C57BL/6 mice. Differences between human and murine Lyme arthritis may be related to the lack of induction of collagenases, such MMP-1 and MMP-13, in mouse joints. PMID:15618147

  2. Activation of matrix metalloproteinase-2 and -9 by 2- and 4-hydroxyestradiol.

    PubMed

    Paquette, Benoit; Bisson, Martine; Therriault, Hélène; Lemay, Rosalie; Paré, Mélanie; Banville, Pascale; Cantin, André M

    2003-10-01

    Breast cancer patients frequently develop metastases. This process requires the degradation of extracellular matrix proteins which act as a barrier to tumour cell passage. These proteins can be degraded by proteases, mainly the matrix metalloproteinases (MMPs). MMP-2 and -9 which are frequently detected in breast cancer tissues. ProMMPs are released from cancer cells, and their activation is considered to be a crucial step in metastases development. In breast cancer, estrogen metabolism is altered favouring the accumulation of 2- and 4-hydroxyestradiol (2- and 4-OHE(2)). These estradiol metabolites can generate free radicals. Since reactive species are known activators of proMMPs, this study was designed to determine if the free radicals generated by 2- and 4-OHE(2) can activate proMMP-2 and -9. Activation of MMPs by hydroxyestradiol was determined by monitoring the cleavage of a fluorogenic peptide and by zymography analysis. Both estradiol metabolites activated the MMP-2 and -9. 4-OHE(2) was a more potent activator than 2-OHE(2), which reflects its higher capacity to generate free radicals. ProMMPs activation was mainly mediated through O(2)*-, although the free radical HO* also activated the proMMPs but to a lesser extent. ProMMPs activation was not observed with estrogens that cannot generate free radicals, i.e. estradiol, estrone, 2- and 4-methoxyestradiol, and 16alpha-hydroxyestrone. These results demonstrate that 2- and 4-OHE(2) at a concentration as low as 10(-8)M can activate the proMMP-2 and -9 and might play an important role in the invasion of breast cancer cells.

  3. MMpI: A WideRange of Available Compounds of Matrix Metalloproteinase Inhibitors.

    PubMed

    Muvva, Charuvaka; Patra, Sanjukta; Venkatesan, Subramanian

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteinases involved in the regulation of the extracellular signaling and structural matrix environment of cells and tissues. MMPs are considered as promising targets for the treatment of many diseases. Therefore, creation of database on the inhibitors of MMP would definitely accelerate the research activities in this area due to its implication in above-mentioned diseases and associated limitations in the first and second generation inhibitors. In this communication, we report the development of a new MMpI database which provides resourceful information for all researchers working in this field. It is a web-accessible, unique resource that contains detailed information on the inhibitors of MMP including small molecules, peptides and MMP Drug Leads. The database contains entries of ~3000 inhibitors including ~72 MMP Drug Leads and ~73 peptide based inhibitors. This database provides the detailed molecular and structural details which are necessary for the drug discovery and development. The MMpI database contains physical properties, 2D and 3D structures (mol2 and pdb format files) of inhibitors of MMP. Other data fields are hyperlinked to PubChem, ChEMBL, BindingDB, DrugBank, PDB, MEROPS and PubMed. The database has extensive searching facility with MMpI ID, IUPAC name, chemical structure and with the title of research article. The MMP inhibitors provided in MMpI database are optimized using Python-based Hierarchical Environment for Integrated Xtallography (Phenix) software. MMpI Database is unique and it is the only public database that contains and provides the complete information on the inhibitors of MMP. Database URL: http://clri.res.in/subramanian/databases/mmpi/index.php.

  4. Involvement of matrix metalloproteinases in the adipose conversion of 3T3-L1 preadipocytes.

    PubMed Central

    Croissandeau, Gilles; Chrétien, Michel; Mbikay, Majambu

    2002-01-01

    When mouse 3T3-L1 preadipocytes are induced to differentiate into adipocytes, they change from an extended fibroblast-like morphology to a rounded one. This change most likely occurs through extracellular matrix remodelling, a process known to be mediated in part by matrix metalloproteinases (MMPs). In this study, we have shown by semi-quantitative reverse transcriptase-PCR, zymographic and immunoblot analysis that MMP-2, MMP-9 and membrane type 1 (MT1)-MMP are regulated during adipose conversion. To assess the importance of MMPs for adipocytic differentiation we have used MMP-specific inhibitors as well as neutralizing antibodies. Treatment of 3T3-L1 preadipocytes with the broad MMP inhibitor Ilomastat or the more restricted MMP-2 Inhibitor I prevented their differentiation into adipocytes in a dose-dependent manner, as evidenced by absence of triglyceride accumulation. Inhibitor treatment prevented the fibronectin-network degradation, as well as the induction of the genes for peroxisome-proliferator-activated receptor gamma and adipsin, two adipocyte phenotype markers. Inhibitor treatment was effective when applied during the early stages of adipocytic conversion, whereas inhibitor treatment during later stages had little effect. Inhibitor treatment did not inhibit clonal mitotic expansion; nor did it affect the expression pattern of the adipogenic transcription factor CCAAT/enhancer-binding protein beta (C/EBPbeta) or its nuclear translocation. It did, however, markedly reduce C/EBPbeta DNA-binding capacity. Taken together, these results suggest that MMPs, and notably MMP-2 and MMP-9, may be necessary mediators of adipocytic differentiation of 3T3-L1 cells. PMID:12049638

  5. Differential expression of matrix metalloproteinases during stimulated ovarian recrudescence in Siberian hamsters (Phodopus sungorus).

    PubMed

    Salverson, Trevor J; McMichael, Greer E; Sury, Jonathan J; Shahed, Asha; Young, Kelly A

    2008-02-01

    The matrix metalloproteinases (MMPs) are a family of extracellular matrix-cleaving enzymes involved in ovarian remodeling. In many non-tropical species, including Siberian hamsters, ovarian remodeling is necessary for the functional changes associated with seasonal reproduction. We evaluated MMPs and their endogenous inhibitors (TIMPs), during photoperiod-induced ovarian recrudescence in Siberian hamsters. Hamsters were transferred from long day (LD; 16:8) to short day (SD; 8:16) photoperiods for 14weeks, and then returned to LD for 0, 1, 2, 4, or 8weeks for collection of ovaries and plasma. Post-transfer (PT) LD exposure increased body and ovarian mass. Number of corpora lutea and antral, but not preantral follicles increased in PT groups. Plasma estradiol concentrations were lower in PT weeks 0-4, and returned to LD levels at PT week 8. No change was observed in relative MMP/TIMP mRNA levels at PT week 0 (SD week 14) as compared to LD. Photostimulation increased MMP-2 mRNA at PT week 8 as compared to PT weeks 0-1. MMP-14 mRNA expression peaked at PT weeks 1-2 as compared to LD levels, while MMP-13 expression was low during this time. TIMP-1 mRNA peaked at PT week 8 as compared to PT weeks 0-4. No changes were noted in MMP-9 and TIMP-2 mRNA expression. In general, MMP/TIMP protein immunodetection followed the same patterns with most staining occurring in granulosa cells of follicles and corpora lutea. Our data suggest that mRNA and protein for several members of the MMP/TIMP families are expressed in Siberian hamster ovaries during recrudescence. Because of the variation observed in expression patterns, MMPs and TIMPs may be differentially involved with photostimulated return to ovarian function.

  6. Matrix Metalloproteinases as Potential Targets in the Venous Dilation Associated with Varicose Veins

    PubMed Central

    Kucukguven, Arda; Khalil, Raouf A.

    2013-01-01

    Varicose veins (VVs) are a common venous disease of the lower extremity characterized by incompetent valves, venous reflux, and dilated and tortuous veins. If untreated, VVs could lead to venous thrombosis, thrombophlebitis and chronic venous leg ulcers. Various genetic, hormonal and environmental factors may lead to structural changes in the vein valves and make them incompetent, leading to venous reflux, increased venous pressure and vein wall dilation. Prolonged increases in venous pressure and vein wall tension are thought to increase the expression/activity of matrix metalloproteinases (MMPs). Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs and others. MMPs are known to degrade various components of the extracellular matrix (ECM). MMPs may also affect the endothelium and vascular smooth muscle, causing changes in the vein relaxation and contraction mechanisms. ECs injury also triggers leukocyte infiltration, activation and inflammation, which lead to further vein wall damage. The vein wall dilation and valve dysfunction, and the MMP activation and superimposed inflammation and fibrosis would lead to progressive venous dilation and VVs formation. Surgical ablation is an effective treatment for VVs, but may be associated with high recurrence rate, and other less invasive approaches that target the cause of the disease are needed. MMP inhibitors including endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline, batimastat and marimastat, have been used as diagnostic and therapeutic tools in cancer, autoimmune and cardiovascular disease. However, MMP inhibitors may have side effects especially on the musculoskeletal system. With the advent of new genetic and pharmacological tools, specific MMP inhibitors with fewer undesirable effects could be useful to retard the progression and prevent the recurrence of VVs. PMID:23316963

  7. Matrix metalloproteinase and elastase activities in LPS-induced acute lung injury in guinea pigs.

    PubMed

    D'Ortho, M P; Jarreau, P H; Delacourt, C; Macquin-Mavier, I; Levame, M; Pezet, S; Harf, A; Lafuma, C

    1994-03-01

    Matrix metalloproteinases (MMPs) and elastase are proteolytic enzymes specifically directed against extracellular matrix (ECM) components. They are secreted by inflammatory cells and may consequently contribute to the lesions of the ECM observed during acute pulmonary edema. We therefore evaluated the MMP and elastase activities, which are secreted by cultured alveolar macrophages (AMACs) and polymorphonuclear neutrophils (PMNs) and present in the bronchoalveolar lavage (BAL) fluid in a guinea pig model of acute lung injury induced by intratracheal instillation of lipopolysaccharide (LPS). The control group was given 0.9% NaCl. 24 h after instillation, a BAL was performed, the BAL fluid was separated from the cells by centrifugation, and AMACs and PMNs were separately cultured for 24 h. In BAL fluid from LPS-treated guinea pigs, we found 1) an increase in free gelatinase activity, tested on [3H]gelatin (0.7 +/- 0.2 micrograms.200 microliters BAL fluid-1.48 h-1 vs. 0.2 +/- 0.1 in controls, P < 0.05), and 2) increased total gelatinase activities, as assessed by zymography. The molecular masses of the major gelatinase species found in BAL fluid by zymography were 92 and 68 kDa. The 92-kDa gelatinase was secreted by both AMACs and PMNs, as demonstrated by zymography of their respective culture media. When tested on [3H]elastin, the elastase activity of BAL fluid of LPS-treated animals exhibited no increase, but when tested on a synthetic peptidic substrate [N-succinyl-(L-alanine)3-p-nitro anilide (SLAPN)], increased elastase-like activity was observed (from 17 +/- 4 nmol of SLAPN.200 microliters BAL fluid-1.24 h-1 in control group to 34 +/- 8 in LPS group, P < 0.05). This increase was attributable to the activity of a metalloendopeptidase that was inhibited by the metal chelator EDTA but not by the specific tissue inhibitor of MMPs.

  8. Matrix metalloproteinase-9 inhibition ameliorates pathogenesis and improves skeletal muscle regeneration in muscular dystrophy

    PubMed Central

    Li, Hong; Mittal, Ashwani; Makonchuk, Denys Y.; Bhatnagar, Shephali; Kumar, Ashok

    2009-01-01

    Duchenne muscular dystrophy (DMD) is a fatal X-linked genetic disorder of skeletal muscle caused by mutation in dystrophin gene. Although the degradation of skeletal muscle extracellular matrix, inflammation and fibrosis are the common pathological features in DMD, the underlying mechanisms remain poorly understood. In this study, we have investigated the role and the mechanisms by which increased levels of matrix metalloproteinase-9 (MMP-9) protein causes myopathy in dystrophin-deficient mdx mice. The levels of MMP-9 but not tissue inhibitor of MMPs were drastically increased in skeletal muscle of mdx mice. Besides skeletal muscle, infiltrating macrophages were found to contribute significantly to the elevated levels of MMP-9 in dystrophic muscle. In vivo administration of a nuclear factor-kappa B inhibitory peptide, NBD, blocked the expression of MMP-9 in dystrophic muscle of mdx mice. Deletion of Mmp9 gene in mdx mice improved skeletal muscle structure and functions and reduced muscle injury, inflammation and fiber necrosis. Inhibition of MMP-9 increased the levels of cytoskeletal protein β-dystroglycan and neural nitric oxide synthase and reduced the amounts of caveolin-3 and transforming growth factor-β in myofibers of mdx mice. Genetic ablation of MMP-9 significantly augmented the skeletal muscle regeneration in mdx mice. Finally, pharmacological inhibition of MMP-9 activity also ameliorated skeletal muscle pathogenesis and enhanced myofiber regeneration in mdx mice. Collectively, our study suggests that the increased production of MMP-9 exacerbates dystrophinopathy and MMP-9 represents as one of the most promising therapeutic targets for the prevention of disease progression in DMD. PMID:19401296

  9. Matrix metalloproteinases as potential targets in the venous dilation associated with varicose veins.

    PubMed

    Kucukguven, Arda; Khalil, Raouf A

    2013-03-01

    Varicose veins (VVs) are a common venous disease of the lower extremity characterized by incompetent valves, venous reflux, and dilated and tortuous veins. If untreated, VVs could lead to venous thrombosis, thrombophlebitis and chronic venous leg ulcers. Various genetic, hormonal and environmental factors may lead to structural changes in the vein valves and make them incompetent, leading to venous reflux, increased venous pressure and vein wall dilation. Prolonged increases in venous pressure and vein wall tension are thought to increase the expression/activity of matrix metalloproteinases (MMPs). Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane- type MMPs and others. MMPs are known to degrade various components of the extracellular matrix (ECM). MMPs may also affect the endothelium and vascular smooth muscle, causing changes in the vein relaxation and contraction mechanisms. Endothelial cell injury also triggers leukocyte infiltration, activation and inflammation, which lead to further vein wall damage. The vein wall dilation and valve dysfunction, and the MMP activation and superimposed inflammation and fibrosis would lead to progressive venous dilation and VVs formation. Surgical ablation is an effective treatment for VVs, but may be associated with high recurrence rate, and other less invasive approaches that target the cause of the disease are needed. MMP inhibitors including endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline, batimastat and marimastat, have been used as diagnostic and therapeutic tools in cancer, autoimmune and cardiovascular disease. However, MMP inhibitors may have side effects especially on the musculoskeletal system. With the advent of new genetic and pharmacological tools, specific MMP inhibitors with fewer undesirable effects could be useful to retard the progression and prevent the recurrence of VVs.

  10. Matrix metalloproteinase-9 facilitates glial scar formation in the injured spinal cord

    PubMed Central

    Hsu, Jung-Yu C.; Bourguignon, Lilly Y. W.; Adams, Christen M.; Peyrollier, Karine; Zhang, Haoqian; Fandel, Thomas; Cun, Christine L.; Werb, Zena; Noble-Haeusslein, Linda J.

    2008-01-01

    In the injured spinal cord, a glial scar forms and becomes a major obstacle to axonal regeneration. Formation of the glial scar involves migration of astrocytes toward the lesion. Matrix metalloproteinases (MMPs), including MMP-9 and MMP-2, govern cell migration through their ability to degrade constituents of the extracellular matrix. Although MMP-9 is expressed in reactive astrocytes, its involvement in astrocyte migration and formation of a glial scar is unknown. Here we found that spinal cord injured, wild-type mice expressing MMPs developed a more severe glial scar and enhanced expression of chondroitin sulfate proteoglycans, indicative of a more inhibitory environment for axonal regeneration/plasticity, than MMP-9 null mice. To determine if MMP-9 mediates astrocyte migration, we conducted a scratch wound assay using astrocytes cultured from MMP-9 null, MMP-2 null, and wild-type mice. Gelatin zymography confirmed the expression of MMP-9 and MMP-2 in wild-type cultures. MMP-9 null astrocytes and wild-type astrocytes, treated with an MMP-9 inhibitor, exhibited impaired migration relative to untreated wild-type controls. MMP-9 null astrocytes showed abnormalities in the actin cytoskeletal organization and function but no detectable untoward effects on proliferation, cellular viability, or adhesion. Interestingly, MMP-2 null astrocytes showed increased migration, which could be attenuated in the presence of an MMP-9 inhibitor. Collectively, our studies provide explicit evidence that MMP-9 is integral to the formation of an inhibitory glial scar and cytoskeleton-mediated astrocyte migration. MMP-9 may thus be a promising therapeutic target to reduce glial scarring during wound healing after spinal cord injury. PMID:19074020

  11. Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon

    PubMed Central

    Scherer, Randy L.; VanSaun, Michael N.; McIntyre, Oliver; Matrisian, Lynn M.

    2009-01-01

    Matrix metalloproteinases (MMPs) are extracellular proteolytic enzymes involved in tumor progression. We present the in vivo detection and quantitation of MMP7 activity using a specific near-infrared polymer-based proteolytic beacon, PB-M7NIR. PB-M7NIR is a pegylated polyamidoamine PAMAM-Generation 4 dendrimer core covalently coupled to a Cy5.5 labeled peptide representing a selective substrate that monitors MMP7 activity (S, sensor), and AF750 as an internal reference to monitor relative substrate concentration (R, reference). In vivo imaging of tumors expressing MMP7 had a median S/R ratio 2.2-fold higher than a bilateral control tumor. Ex-vivo imaging of intestines of multiple intestinal neoplasia (APCMin) mice injected systemically with PB-M7NIR revealed a 6-fold increase in S/R in the adenomas of APCMin mice compared to control intestinal tissue or adenomas from MMP7-null Min mice. PB-M7NIR detected tumor sizes as small as 0.01cm2, and S/R was independent of tumor size. Histological sectioning of xenograft tumors localized the proteolytic signal to the extracellular matrix; MMP7-overexpressing tumors displayed an approximately 300-fold enhancement in S/R compared to non-expressing tumor cells. In APCMin adenomas, the proteolytic signal co-localized with the endogenously-expressed MMP7 protein with S/R ratios approximately 6-fold greater than that of normal intestinal epithelium. PB-M7NIR provides a useful reagent for the in vivo and ex-vivo quantitation and localization of MMP-selective proteolytic activity. PMID:19123982

  12. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages.

    PubMed

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages.

  13. MMpI: A WideRange of Available Compounds of Matrix Metalloproteinase Inhibitors.

    PubMed

    Muvva, Charuvaka; Patra, Sanjukta; Venkatesan, Subramanian

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteinases involved in the regulation of the extracellular signaling and structural matrix environment of cells and tissues. MMPs are considered as promising targets for the treatment of many diseases. Therefore, creation of database on the inhibitors of MMP would definitely accelerate the research activities in this area due to its implication in above-mentioned diseases and associated limitations in the first and second generation inhibitors. In this communication, we report the development of a new MMpI database which provides resourceful information for all researchers working in this field. It is a web-accessible, unique resource that contains detailed information on the inhibitors of MMP including small molecules, peptides and MMP Drug Leads. The database contains entries of ~3000 inhibitors including ~72 MMP Drug Leads and ~73 peptide based inhibitors. This database provides the detailed molecular and structural details which are necessary for the drug discovery and development. The MMpI database contains physical properties, 2D and 3D structures (mol2 and pdb format files) of inhibitors of MMP. Other data fields are hyperlinked to PubChem, ChEMBL, BindingDB, DrugBank, PDB, MEROPS and PubMed. The database has extensive searching facility with MMpI ID, IUPAC name, chemical structure and with the title of research article. The MMP inhibitors provided in MMpI database are optimized using Python-based Hierarchical Environment for Integrated Xtallography (Phenix) software. MMpI Database is unique and it is the only public database that contains and provides the complete information on the inhibitors of MMP. Database URL: http://clri.res.in/subramanian/databases/mmpi/index.php. PMID:27509041

  14. Cardiac restricted overexpression of membrane type-1 matrix metalloproteinase causes adverse myocardial remodeling following myocardial infarction.

    PubMed

    Spinale, Francis G; Mukherjee, Rupak; Zavadzkas, Juozas A; Koval, Christine N; Bouges, Shenikqua; Stroud, Robert E; Dobrucki, Lawrence W; Sinusas, Albert J

    2010-09-24

    The membrane type-1 matrix metalloproteinase (MT1-MMP) is a unique member of the MMP family, but induction patterns and consequences of MT1-MMP overexpression (MT1-MMPexp), in a left ventricular (LV) remodeling process such as myocardial infarction (MI), have not been explored. MT1-MMP promoter activity (murine luciferase reporter) increased 20-fold at 3 days and 50-fold at 14 days post-MI. MI was then induced in mice with cardiac restricted MT1-MMPexp (n = 58) and wild type (WT, n = 60). Post-MI survival was reduced (67% versus 46%, p < 0.05), and LV ejection fraction was lower in the post-MI MT1-MMPexp mice compared with WT (41 ± 2 versus 32 ± 2%,p < 0.05). In the post-MI MT1-MMPexp mice, LV myocardial MMP activity, as assessed by radiotracer uptake, and MT1-MMP-specific proteolytic activity using a specific fluorogenic assay were both increased by 2-fold. LV collagen content was increased by nearly 2-fold in the post-MI MT1-MMPexp compared with WT. Using a validated fluorogenic construct, it was discovered that MT1-MMP proteolytically processed the pro-fibrotic molecule, latency-associated transforming growth factor-1 binding protein (LTBP-1), and MT1-MMP-specific LTBP-1 proteolytic activity was increased by 4-fold in the post-MI MT1-MMPexp group. Early and persistent MT1-MMP promoter activity occurred post-MI, and increased myocardial MT1-MMP levels resulted in poor survival, worsening of LV function, and significant fibrosis. A molecular mechanism for the adverse LV matrix remodeling with MT1-MMP induction is increased processing of pro-fibrotic signaling molecules. Thus, a proteolytically diverse portfolio exists for MT1-MMP within the myocardium and likely plays a mechanistic role in adverse LV remodeling.

  15. MMpI: A WideRange of Available Compounds of Matrix Metalloproteinase Inhibitors

    PubMed Central

    Muvva, Charuvaka; Patra, Sanjukta; Venkatesan, Subramanian

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteinases involved in the regulation of the extracellular signaling and structural matrix environment of cells and tissues. MMPs are considered as promising targets for the treatment of many diseases. Therefore, creation of database on the inhibitors of MMP would definitely accelerate the research activities in this area due to its implication in above-mentioned diseases and associated limitations in the first and second generation inhibitors. In this communication, we report the development of a new MMpI database which provides resourceful information for all researchers working in this field. It is a web-accessible, unique resource that contains detailed information on the inhibitors of MMP including small molecules, peptides and MMP Drug Leads. The database contains entries of ~3000 inhibitors including ~72 MMP Drug Leads and ~73 peptide based inhibitors. This database provides the detailed molecular and structural details which are necessary for the drug discovery and development. The MMpI database contains physical properties, 2D and 3D structures (mol2 and pdb format files) of inhibitors of MMP. Other data fields are hyperlinked to PubChem, ChEMBL, BindingDB, DrugBank, PDB, MEROPS and PubMed. The database has extensive searching facility with MMpI ID, IUPAC name, chemical structure and with the title of research article. The MMP inhibitors provided in MMpI database are optimized using Python-based Hierarchical Environment for Integrated Xtallography (Phenix) software. MMpI Database is unique and it is the only public database that contains and provides the complete information on the inhibitors of MMP. Database URL: http://clri.res.in/subramanian/databases/mmpi/index.php. PMID:27509041

  16. Matrix Metalloproteinase Inhibitors as Investigative Tools in the Pathogenesis and Management of Vascular Disease

    PubMed Central

    Benjamin, Mina M.; Khalil, Raouf A.

    2012-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM). MMPs could also regulate the activity of several non-ECM bioactive substrates, and consequently affect different cellular functions. Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs and others. Pro-MMPs are cleaved into active MMPs, which in turn act on various substrates in the ECM and on the cell surface. MMPs play an important role in the regulation of numerous physiological processes including vascular remodeling and angiogenesis. MMPs may also be involved in vascular diseases such as hypertension, atherosclerosis, aortic aneurysm, and varicose veins. MMPs also play a role in the hemodynamic and vascular changes associated with pregnancy and preeclampsia. The role of MMPs is commonly assessed by measuring their gene expression, protein amount, and proteolyic activity using gel zymography. Because there are no specific activators of MMPs, MMP inhibitors are often used to investigate the role of MMPs in different physiologic processes and in the pathogenesis of specific diseases. MMP inhibitors include endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline and marimastat. MMP inhibitors have been evaluated as diagnostic and therapeutic tools in cancer, autoimmune and cardiovascular disease. Although several MMP inhibitors have been synthesized and tested both experimentally and clinically, only on MMP inhibitor, i.e. doxycycline, is currently approved by the Food and Drug Administration. This is mainly due to the undesirable side effects of MMP inhibitors especially on the musculoskeletal system. While most experimental and clinical trials of MMP inhibitors have not demonstrated significant benefits, some trials still showed promising results. With the advent of new genetic and pharmacological tools, disease-specific MMP inhibitors

  17. Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood.

    PubMed

    Wang, Yuhui; Shen, Pei; Li, Chunya; Wang, Yanying; Liu, Zhihong

    2012-02-01

    Matrix metalloproteinase-2 (MMP-2) is a very important biomarker in blood. Presently, sensitive and selective determination of MMP-2 directly in blood samples is still a challenging job because of the high complexity of the sample matrix. In this work, we reported a new homogeneous biosensor for MMP-2 based on fluorescence resonance energy transfer (FRET) from upconversion phosphors (UCPs) to carbon nanoparticles (CNPs). A polypeptide chain (NH(2)-GHHYYGPLGVRGC-COOH) comprising both the specific MMP-2 substrate domain (PLGVR) and a π-rich motif (HHYY) was designed and linked to the surface of UCPs at the C terminus. The FRET process was initiated by the π-π interaction between the peptide and CNPs, which thus quenched the fluorescence of the donor. Upon the cleavage of the substrate by the protease at the amide bond between Gly and Val, the donor was separated from the acceptor while the π-rich motif stayed on the acceptor. As a result, the fluorescence of the donor was restored. The fluorescence recovery was found to be proportional to the concentration of MMP-2 within the range from 10-500 pg/mL in an aqueous solution. The quantification limit of this sensor was at least 1 order of magnitude lower than that of other reported assays for MMP-2. The sensor was used to determine the MMP-2 level directly in human plasma and whole blood samples with satisfactory results obtained. Owing to the hypersensitivity of the method, clinical samples of only less than 1 μL were needed for accurate quantification, which can be meaningful in MMP-2-related clinical and bioanalytical applications.

  18. Use of Synthetic Peptides to Study Structure-Function Relationships of Matrix Metalloproteinases and Their Substrates.

    NASA Astrophysics Data System (ADS)

    Netzel-Arnett, Sarah Joann

    The matrix metalloproteinases (MMPs) are a family of zinc proteinases that is collectively capable of degrading the major components of the extracellular matrix. A variety of synthetic peptides has been prepared which are models for the human MMP and their substrates to study structure -function relationships in this enzyme-substrate system. To elucidate the sequence specificity of the MMP, the k _{cat}/K_ M values for the hydrolysis of over 50 synthetic octapeptides has been investigated. Similarities, as well as distinct differences have been found between the individual MMP with the largest differences occurring at subsites P_1, P_1^' and P_3 ^'. Based on these data, quenched -fluorescence substrates with optimized sequences have been developed for five human MMP. The key features of these heptapeptides are a tryptophan on the P_ n^' side and a dinitrophenol quenching group on the amino terminus. To assess the role of the triple helical conformation in the collagenase-collagen system, a series of triple helical peptides has been prepared and shown to compete with collagen in collagenase assays. This provides evidence for the existence of a triple helical recognition site distinct from the active site. All of the MMP are secreted as zymogens and it has been postulated that the portion of the propeptide surrounding a critical cysteine is responsible for maintaining latency. Conformational energy calculations and mutagenesis studies have suggested that this region adopts a specific conformation that stabilizes the latent form. Peptide models of this region of the propeptide have been prepared and shown to inhibit the MMP. CD and NMR studies, however, have failed to provide evidence for the predicted peptide conformation. Thus, the observed inhibition may reflect their propensity to adopt the propeptide conformation upon binding to the enzyme.

  19. Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon.

    PubMed

    Scherer, Randy L; VanSaun, Michael N; McIntyre, J Oliver; Matrisian, Lynn M

    2008-01-01

    Matrix metalloproteinases (MMPs) are extracellular proteolytic enzymes involved in tumor progression. We present the in vivo detection and quantitation of MMP7 activity using a specific near-infrared polymer-based proteolytic beacon, PB-M7NIR. PB-M7NIR is a pegylated polyamidoamine PAMAM-Generation 4 dendrimer core covalently coupled to a Cy5.5-labeled peptide representing a selective substrate that monitors MMP7 activity (sensor) and AF750 as an internal reference to monitor relative substrate concentration (reference). In vivo imaging of tumors expressing MMP7 had a median sensor to reference ratio 2.2-fold higher than a that of a bilateral control tumor. Ex vivo imaging of intestines of multiple intestinal neoplasia (APC Min) mice injected systemically with PB-M7NIR revealed a sixfold increase in the sensor to reference ratio in the adenomas of APC Min mice compared with control intestinal tissue or adenomas from MMP7-null Min mice. PB-M7NIR detected tumor sizes as small as 0.01 cm2, and the sensor to reference ratio was independent of tumor size. Histologic sectioning of xenograft tumors localized the proteolytic signal to the extracellular matrix; MMP7-overexpressing tumors displayed an approximately 300-fold enhancement in the sensor to reference ratio compared with nonexpressing tumor cells. In APC Min adenomas, the proteolytic signal colocalized with the endogenously expressed MMP7 protein, with sensor to reference ratios approximately sixfold greater than that of normal intestinal epithelium. PB-M7NIR provides a useful reagent for the in vivo and ex vivo quantitation and localization of MMP-selective proteolytic activity.

  20. Overexpression of cathepsin f, matrix metalloproteinases 11 and 12 in cervical cancer

    PubMed Central

    Vazquez-Ortiz, Guelaguetza; Pina-Sanchez, Patricia; Vazquez, Karla; Duenas, Alfonso; Taja, Lucia; Mendoza, Patricia; Garcia, José A; Salcedo, Mauricio

    2005-01-01

    Background Cervical carcinoma (CC) is one of the most common cancers among women worldwide and the first cause of death among the Mexican female population. CC progression shows a continuum of neoplastic transitions until invasion. Matrix metalloproteinases (MMPs) and cathepsins play a central role on the enhancement of tumor-induced angiogenesis, cell migration, proliferation, apoptosis and connective tissue degradation. MMPs -2 and -9 expression has been widely studied in cervical cancer. Nevertheless, no other metalloproteinases or cathepsins have been yet related with the progression and/or invasion of this type of cancer. Methods Three HPV18 CC cell lines, two HPV16 CC cell lines and three HPV16 tumor CC tissues were compared with three morphologically normal, HPV negative, cervical specimens by cDNA arrays. Overexpression of selected genes was confirmed by end point semiquantitative reverse transcription-PCR with densitometry. In situ hybridization and protein expression of selected genes was further studied by means of two tissue microarrays, one consisting of 10 HSIL and 15 CC and the other one of 15 normal cervical and 10 LSIL tissues. Results TIMP1, Integrins alpha 1 and 4, cadherin 2 and 11, Cathepsins F, B L2, MMP 9, 10 11 and 12 were upregulated and Cathepsin S, L, H and C, Cadherins 3 and 4, TIMP3, MMP 13, Elastase 2 and Integrin beta 8 were found to be downregulated by cDNA arrays. Endpoint RT-PCR with densitometry gave consistent results with the cDNA array findings for all three genes selected for study (CTSF, MMP11 and MMP12). In situ hybridization of all three genes confirmed overexpression in all the HSIL and CC. Two of the selected proteins were detected in LSIL, HSIL and CC by immunohistochemistry. Conclusion Novel undetected CC promoting genes have been identified. Increased transcription of these genes may result in overexpression of proteins, such as CTSF, MMP11 and MMP12 which could contribute to the pathogenesis of CC. PMID:15989693

  1. The Effect of Autologous Platelet-Rich Gel on the Dynamic Changes of the Matrix Metalloproteinase-2 and Tissue Inhibitor of Metalloproteinase-2 Expression in the Diabetic Chronic Refractory Cutaneous Ulcers

    PubMed Central

    Li, Lan; Chen, Dawei; Wang, Chun; Liu, Guanjian; Ran, Xingwu

    2015-01-01

    Aim. To investigate the dynamic changes on the expression of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) in the diabetic chronic refractory cutaneous ulcers after the autologous platelet-rich gel (APG) treatment. Methods. The study was developed at the Diabetic Foot Care Centre, West China Hospital. The granulation tissues from the target wounds were taken before and within 15 days after APG application. The expression of MMP-2 and TIMP-2 as well as transforming growth factor-β1 (TGF-β1) in the granulation tissue was detected by q TR-PCR and IHC. The relationship between the expression level of MMP-2 and TIMP-2 and their ratio and that of TGF-β1 was analyzed. Results. The expression of MMP-2 (P < 0.05) was suppressed, and the expression of TIMP-2 (P < 0.05) was promoted, while the ratio of MMP-2/TIMP-2 (P < 0.05) was decreased after APG treatments. The expression of TGF-β1 had negative correlation with the ratio of MMP-2/TIMP-2 (P < 0.05) and positive correlation with the expression of TIMP-2 (P < 0.05). Conclusions. APG treatment may suppress the expression of MMP-2, promoting that of the TIMP-2 in the diabetic chronic refractory cutaneous wounds. TGF-β1 may be related to these effects. PMID:26221614

  2. Planarians as a model to assess in vivo the role of matrix metalloproteinase genes during homeostasis and regeneration.

    PubMed

    Isolani, Maria Emilia; Abril, Josep F; Saló, Emili; Deri, Paolo; Bianucci, Anna Maria; Batistoni, Renata

    2013-01-01

    Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results

  3. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    SciTech Connect

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki; Hiyama, Taiki; Kawai, Rie; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  4. Planarians as a Model to Assess In Vivo the Role of Matrix Metalloproteinase Genes during Homeostasis and Regeneration

    PubMed Central

    Isolani, Maria Emilia; Abril, Josep F.; Saló, Emili; Deri, Paolo; Bianucci, Anna Maria; Batistoni, Renata

    2013-01-01

    Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results

  5. OXIDATIVE STRESS AND PROSTATE CANCER PROGRESSION ARE ELICITED BY MEMBRANE-TYPE 1 MATRIX METALLOPROTEINASE (MT1-MMP)

    PubMed Central

    Nguyen, Hoang-Lan; Zucker, Stanley; Zarrabi, Kevin; Kadam, Pournima; Schmidt, Cathleen; Cao, Jian

    2012-01-01

    Oxidative stress caused by high levels of reactive oxygen species (ROS) has been correlated with prostate cancer (PCa) aggressiveness. Expression of membrane-type 1-matrix metalloproteinase (MT1-MMP), which has been implicated in cancer invasion and metastasis, is associated with advanced PCa. We demonstrate here that MT1-MMP plays a key role in eliciting oxidative stress in PCa cancer cells. Stable MT1-MMP expression in less invasive LNCaP prostate cancer cells with low endogenous MT1-MMP increased activity of ROS, whereas MT1-MMP knockdown in DU145 cells with high endogenous MT1-MMP decreased ROS. Expression of MT1-MMP increased oxidative DNA damage in LNCaP and in DU145 cells, indicating MT1-MMP-mediated induction of ROS caused oxidative stress. MT1-MMP expression promoted a more aggressive phenotype in LNCaP cells that was dependent on elaboration of ROS. Blocking ROS activity using the ROS scavenger, N-acetylcysteine (NAC), abrogated MT1-MMP-mediated increase in cell migration and invasion. MT1-MMP-expressing LNCaP cells displayed an enhanced ability to grow in soft agar that required increased ROS. Employing cells expressing MT1-MMP mutant cDNAs, we demonstrated that ROS activation entails cell surface MT1-MMP proteolytic activity. Induction of ROS in PCa cells expressing MT1-MMP required adhesion to extracellular matrix (ECM) proteins and was impeded by anti-β1 integrin antibodies. These results highlight a novel mechanism of malignant progression in PCa cells that involves β1 integrin-mediated adhesion, in concert with MT1-MMP proteolytic activity, to elicit oxidative stress and induction of a more invasive phenotype. PMID:21849471

  6. Cysteamine Suppresses Invasion, Metastasis and Prolongs Survival by Inhibiting Matrix Metalloproteinases in a Mouse Model of Human Pancreatic Cancer

    PubMed Central

    Fujisawa, Toshio; Rubin, Benjamin; Suzuki, Akiko; Patel, Prabhudas S.; Gahl, William A.; Joshi, Bharat H.; Puri, Raj K.

    2012-01-01

    Background Cysteamine, an anti-oxidant aminothiol, is the treatment of choice for nephropathic cystinosis, a rare lysosomal storage disease. Cysteamine is a chemo-sensitization and radioprotection agent and its antitumor effects have been investigated in various tumor cell lines and chemical induced carcinogenesis. Here, we investigated whether cysteamine has anti-tumor and anti-metastatic effects in transplantable human pancreatic cancer, an aggressive metastatic disease. Methodology/Principal Findings Cysteamine's anti-invasion effects were studied by matrigel invasion and cell migration assays in 10 pancreatic cancer cell lines. To study mechanism of action, we examined cell viability and matrix metalloproteinases (MMPs) activity in the cysteamine-treated cells. We also examined cysteamine's anti-metastasis effect in two orthotopic murine models of human pancreatic cancer by measuring peritoneal metastasis and survival of animals. Cysteamine inhibited both migration and invasion of all ten pancreatic cancer cell lines at concentrations (<25 mM) that caused no toxicity to cells. It significantly decreased MMPs activity (IC50 38–460 µM) and zymographic gelatinase activity in a dose dependent manner in vitro and in vivo; while mRNA and protein levels of MMP-9, MMP-12 and MMP-14 were slightly increased using the highest cysteamine concentration. In vivo, cysteamine significantly decreased metastasis in two established pancreatic tumor models, although it did not affect the size of primary tumors. Additionally, cysteamine prolonged survival of mice in a dose-dependent manner without causing any toxicity. Similar to the in vitro results, MMP activity was significantly decreased in animal tumors treated with cysteamine. Cysteamine had no clinical or preclinical adverse effects in the host even at the highest dose. Conclusions/Significance Our results suggest that cysteamine, an agent with a proven safety profile, may be useful for inhibition of metastasis and

  7. Protective effects of acetaminophen on ibuprofen-induced gastric mucosal damage in rats with associated suppression of matrix metalloproteinase.

    PubMed

    Fukushima, Eriko; Monoi, Noriyuki; Mikoshiba, Shigeo; Hirayama, Yutaka; Serizawa, Tetsushi; Adachi, Kiyo; Koide, Misao; Ohdera, Motoyasu; Murakoshi, Michiaki; Kato, Hisanori

    2014-04-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to cause gastric mucosal damage as a side effect. Acetaminophen, widely used as an analgesic and antipyretic drug, has gastroprotective effects against gastric lesions induced by absolute ethanol and certain NSAIDs. However, the mechanisms that underlie the gastroprotective effects of acetaminophen have not yet been clarified. In the present study, we examined the role and protective mechanism of acetaminophen on ibuprofen-induced gastric damage in rats. Ibuprofen and acetaminophen were administered orally, and the gastric mucosa was macroscopically examined 4 hours later. Acetaminophen decreased ibuprofen-induced gastric damage in a dose-dependent manner. To investigate the mechanisms involved, transcriptome analyses of the ibuprofen-damaged gastric mucosa were performed in the presence and absence of acetaminophen. Ingenuity pathway analysis (IPA) software revealed that acetaminophen suppressed the pathways related to cellular assembly and inflammation, whereas they were highly activated by ibuprofen. On the basis of gene classifications from the IPA Knowledge Base, we identified the following five genes that were related to gastric damage and showed significant changes in gene expression: interleukin-1β (IL-1β), chemokine (C-C motif) ligand 2 (CCL2), matrix metalloproteinase-10 (MMP-10), MMP-13, and FBJ osteosarcoma oncogene (FOS). Expression of these salient genes was confirmed using real-time polymerase chain reaction. The expression of MMP-13 was the most reactive to the treatments, showing strong induction by ibuprofen and suppression by acetaminophen. Moreover, MMP-13 inhibitors decreased ibuprofen-induced gastric damage. In conclusion, these results suggest that acetaminophen decreases ibuprofen-induced gastric mucosal damage and that the suppression of MMP-13 may play an important role in the gastroprotective effects of acetaminophen.

  8. The role of annexin A1 in expression of matrix metalloproteinase-9 and invasion of breast cancer cells

    SciTech Connect

    Kang, Hyereen; Ko, Jesang; Jang, Sung-Wuk

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We evaluated the effect of ANXA1 on promoting migration and invasion in MDA-MB-231 cells. Black-Right-Pointing-Pointer ANXA1 siRNA inhibits invasion and migration. Black-Right-Pointing-Pointer ANXA1 regulates MMP-9 expression and activity. Black-Right-Pointing-Pointer ANX-1 siRNA inhibits the activation of NF-{kappa}B in MDA-MB-231 cells. -- Abstract: Matrix metalloproteinase-9 (MMP-9) plays an important role in the invasion and metastasis of cancer cells. However, the regulatory mechanism of MMP-9 expression and its biological effects on breast cancer development remain obscure. In the current study, we examined the potential role of annexin A1 (ANXA1) in regulating migration and invasion in breast cancer cell lines. Both ANXA1 mRNA and protein are expressed in the highly invasive, hormone-insensitive human breast cancer cell lines MDA-MB-231 and SKBr3, but not in the hormone-responsive cell lines MCF-7 and T47D. Downregulation of ANXA1 expression with specific small interfering RNAs (ANXA1 siRNA) in MDA-MB-231 cells resulted in decreased cancer cell migration and invasion. Ablation of ANXA1 expression decreases the expression of MMP-9 at both the mRNA and protein levels and also reduces the proteolytic activity of MMP-9 in MDA-MB-231 cells. Moreover, silencing ANXA1 also decreases the transcriptional activity of MMP-9 by the suppression of nuclear factor kappa-B (NF-{kappa}B) activity. Collectively, these results indicate that ANXA1 functions as a positive regulator of MMP-9 expression and invasion of breast cancer cells through specific activation of the NF-{kappa}B signaling pathway.

  9. Transforming growth factor-beta suppresses tumor necrosis factor alpha-induced matrix metalloproteinase-9 expression in monocytes.

    PubMed

    Vaday, G G; Schor, H; Rahat, M A; Lahat, N; Lider, O

    2001-04-01

    The inflammatory response is marked by the release of several cytokines with multiple roles in regulating leukocyte activities, including the secretion of matrix metalloproteinases (MMPs). Although the effects of individual cytokines on monocyte MMP expression have been studied extensively, few studies have examined the influence of combinations of cytokines, which are likely present at inflammatory sites. Herein, we report our investigation of the combinatorial effects of tumor necrosis factor (TNF)-alpha and transforming growth factor (TGF)-beta on MMP-9 synthesis. We found that TGF-beta suppressed TNF-alpha-induced MMP-9 secretion by MonoMac-6 monocytic cells in a dose-dependent manner, with a maximal effect of TGF-beta observed at 1 ng/ml. Such suppression was likely regulated at the pretranslational level, because steady-state mRNA levels of TNF-alpha-induced MMP-9 were reduced by TGF-beta, and pulse-chase radiolabeling also showed a decrease in new MMP-9 protein synthesis. The suppressive effects of TGF-beta were time dependent, because short exposures to TNF-alpha before TGF-beta or simultaneous exposure to both cytokines efficiently reduced MMP-9 secretion. Expression of the tissue inhibitor of metalloproteinases (TIMP)-1 and TNF-alpha receptors was unaffected by either cytokine individually or in combination. Affinity binding with radiolabeled TGF-beta demonstrated that levels of TGF-beta receptors were not increased after preincubation with TGF-beta. Suppression of TNFalpha-induced MMP-9 secretion by TGF-beta correlated with a reduction in prostaglandin E2 (PGE2) secretion. Furthermore, the effect of TGF-beta or indomethacin on blockage of TNF-alpha-stimulated MMP-9 production was reversed by the addition of either exogenous PGE2 or the cyclic AMP (cAMP) analogue Bt2cAMP. Thus, we concluded that TGF-beta acts as a potent suppressor of TNF-alpha-induced monocyte MMP-9 synthesis via a PGE2- and cAMP-dependent mechanism. These results suggest that various

  10. Matrix metalloproteinase inhibition attenuates right ventricular dysfunction and improves responses to dobutamine during acute pulmonary thromboembolism.

    PubMed

    Neto-Neves, Evandro M; Sousa-Santos, Ozelia; Ferraz, Karina C; Rizzi, Elen; Ceron, Carla S; Romano, Minna M D; Gali, Luis G; Maciel, Benedito C; Schulz, Richard; Gerlach, Raquel F; Tanus-Santos, Jose E

    2013-12-01

    Activated matrix metalloproteinases (MMPs) cause cardiomyocyte injury during acute pulmonary thromboembolism (APT). However, the functional consequences of this alteration are not known. We examined whether doxycycline (a MMP inhibitor) improves right ventricle function and the cardiac responses to dobutamine during APT. APT was induced with autologous blood clots (350 mg/kg) in anaesthetized male lambs pre-treated with doxycycline (Doxy, 10 mg/kg/day, intravenously) or saline. Non-embolized control lambs received doxycycline pre-treatment or saline. The responses to intravenous dobutamine (Dob, 1, 5, 10 μg/kg/min.) or saline infusions at 30 and 120 min. after APT induction were evaluated by echocardiography. APT increased mean pulmonary artery pressure and pulmonary vascular resistance index by ~185%. Doxycycline partially prevented APT-induced pulmonary hypertension (P < 0.05). RV diameter increased in the APT group (from 10.7 ± 0.8 to 18.3 ± 1.6 mm, P < 0.05), but not in the Doxy+APT group (from 13.3 ± 0.9 to 14.4 ± 1.0 mm, P > 0.05). RV dysfunction on stress echocardiography was observed in embolized lambs (APT+Dob group) but not in embolized animals pre-treated with doxycycline (Doxy+APT+Dob). APT increased MMP-9 activity, oxidative stress and gelatinolytic activity in the RV. Although doxycycline had no effects on RV MMP-9 activity, it prevented the increases in RV oxidative stress and gelatinolytic activity (P < 0.05). APT increased serum cardiac troponin I concentrations (P < 0.05), doxycycline partially prevented this alteration (P < 0.05). We found evidence to support that doxycycline prevents RV dysfunction and improves the cardiac responses to dobutamine during APT. PMID:24199964

  11. Role of salivary matrix metalloproteinase-8 (MMP-8) in chronic periodontitis diagnosis.

    PubMed

    Gupta, Namita; Gupta, N D; Gupta, Akash; Khan, Saif; Bansal, Neha

    2015-03-01

    Periodontitis is an inflammatory disease of the periodontium. Any imbalance between the matrix metalloproteinases (MMPs) secreted by neutrophils and tissue inhibitors initiates the destruction of collagen in gum tissue, leading to chronic periodontitis. This study aimed to correlate salivary levels of MMP-8 and periodontal parameters of chronic periodontitis to establish MMP-8 as a noninvasive marker for the early diagnosis of chronic periodontitis. The study involved 40 subjects visiting the periodontic OPD of Dr. Ziauddin Ahmad Dental College and Hospital, located in Aligarh, U.P., India, from 2011 to 2012. The subjects were divided into two groups: group I consisted of 20 periodontally healthy subjects (controls) while group II consisted of 20 patients with chronic periodontitis. Chronic periodontitis was assessed on the basis of several periodontal parameters, including pocket probing depth (PPD), clinical attachment level (CAL), gingival index (GI), and plaque index (PI). Around 3ml of unstimulated and whole expectorated saliva was collected for MMP-8 estimation by ELISA using Quantikine human total MMP-8 immunoassay kits. Data were analyzed using STATISTICA (Windows version 6) software. Salivary MMP-8 levels of groups I and II were 190.91 ± 143.89 ng/ml and 348.26 ± 202.1 ng/ml, respectively. The MMP-8 levels and periodontal status (PPD, CAL, GI, and PI) of groups I and II showed positive and significant correlations (for PPD, r = 0.63, P < 0.001; for CAL, r = 0.54, P < 0.001; for GI, r = 0.49, P < 0.001; and for PI, r = 0.63, P < 0.001). The results of this study demonstrate elevated concentrations of MMP-8 in individuals with chronic periodontitis.

  12. Relationship between Vitreous Levels of Matrix Metalloproteinases and Vascular Endothelial Growth Factor in Proliferative Diabetic Retinopathy

    PubMed Central

    Abu El-Asrar, Ahmed M.; Mohammad, Ghulam; Nawaz, Mohd. Imtiaz; Siddiquei, Mohammad Mairaj; Van den Eynde, Kathleen; Mousa, Ahmed; De Hertogh, Gert; Opdenakker, Ghislain

    2013-01-01

    To investigate which matrix metalloproteinases (MMPs) are more likely to be involved in the angiogenic process in proliferative diabetic retinopathy (PDR), we measured the levels of MMPs in the vitreous fluid from patients with PDR and controls and correlated these levels with the levels of vascular endothelial growth factor (VEGF). Vitreous samples from 32 PDR and 24 nondiabetic patients were studied by mosaic multiplex MMPs enzyme-linked immunosorbent assay (ELISA), single ELISA, Western blot and zymography analysis. Epiretinal membranes from 11 patients with PDR were studied by immunohistochemistry. MMP-8 and MMP-13 were not detected. ELISA, Western blot and gelatin ymography assays revealed significant increases in the expression levels of MMP-1, MMP-7, MMP-9 and VEGF in vitreous samples from PDR patients compared to nondiabetic controls, whereas MMP-2 and MMP-3 were not upregulated in vitreous samples from PDR patients. Significant correlations existed between ELISA and zymography assays for the quantitation of MMP-2 (r=0.407; p=0.039) and MMP-9 (r=0.711; p<0.001). Significant correlations were observed between levels of VEGF and levels of MMP-1 (r=0.845; P<0.001) and MMP-9 (r=0.775; p<0.001), and between levels of MMP-1 and MMP-9 (r=0.857; p<0.001). In epiretinal membranes, cytoplasmic immunoreactivity for MMP-9 was present in vascular endothelial cells and stromal monocytes/macrophages and neutrophils. Our findings suggest that among the MMPs measured, MMP-1 and MMP-9 may contribute to the angiogenic switch in PDR. PMID:24392031

  13. Promoter polymorphism in the matrix metalloproteinase-1 and risk of cervical cancer in Korean women.

    PubMed

    Ju, Woong; Kang, Sokbom; Kim, Jae Weon; Park, Noh Hyun; Song, Yong Sang; Kang, Soon Beom; Lee, Hyo Pyo

    2005-01-20

    The aim of this investigation was to analyze the association between a single nucleotide polymorphism (SNP) in the matrix metalloproteinase (MMP)-1 promoter gene -1607 bp region and cervical cancer risk in Korean women. The blood samples of 232 cervical cancer patients and 332 non-cancer control subjects who managed at Seoul National University Hospital from 1999 to 2002 were collected. Polymorphism in MMP-1 promoter -1607 region was determined using TaqMan method. Allele frequency and genotype distribution in the cervical cancer group were compared with those of the control group to determine whether this polymorphism elevates the susceptibility of Korean women to cervical cancer. The relationship between this SNP and cancer invasiveness was also evaluated by collating clinicopathologic data of those in the cancer group, such as FIGO stage, lymph node status, histologic type and parametrial invasion. In the cervical cancer group, the allele frequency of 2G was 66.1%, in the control group 68.2%, showing no significant difference (P=0.41). Similarly the genotypes with insertion (2G/2G) or deletion (1G/1G) polymorphism showed no increased risk for cervical cancer susceptibility compared with 1G/2G genotype. A subgroup analysis of the clinicopathologic parameters in cancer group also showed no significant difference suggesting the lack of an association between SNP of the MMP-1 promoter -1607 bp region and cervical cancer invasiveness. In conclusion, this study shows that Korean with specific polymorphism in MMP-1 are neither more susceptible to develop cervical cancer nor more vulnerable for cancer progression.

  14. Curcumin attenuates adhesion molecules and matrix metalloproteinase expression in hypercholesterolemic rabbits.

    PubMed

    Um, Min Young; Hwang, Kwang Hyun; Choi, Won Hee; Ahn, Jiyun; Jung, Chang Hwa; Ha, Tae Youl

    2014-10-01

    Curcumin, the yellow substance found in turmeric, possesses antioxidant, anti-inflammation, anticancer, and lipid-lowering properties. Because we hypothesized that curcumin could ameliorate the development of atherosclerosis, the present study focused on the effects and potential mechanisms of curcumin consumption on high-cholesterol diet-induced atherosclerosis in rabbits. During our study, New Zealand white rabbits were fed 1 of 3 experimental diets: a normal diet, a normal diet enriched with 1% cholesterol (HCD), or an HCD supplemented with 0.2% curcumin. At the end of 8 weeks, blood samples were collected to determine the levels of serum lipids, cytokines, and soluble adhesion molecule levels. Gene expression of adhesion molecules and matrix metalloproteinases (MMPs) in aortas were measured by quantitative real-time polymerase chain reaction and Western blot. Compared with the HCD group, rabbits fed an HCD supplemented with 0.2% curcumin had significantly less aortic lesion areas and neointima thickening. Curcumin reduced the levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol, and oxidized low-density lipoprotein cholesterol in serum by 30.7%, 41.3%, 30.4%, and 66.9% (all P < .05), respectively, but did not affect high-density lipoprotein cholesterol levels. In addition, curcumin attenuated HCD-induced CD36 expression, circulating inflammatory cytokines, and soluble adhesive molecule levels. Curcumin reduced the mRNA and protein expression of intracellular adhesion molecule-1, vascular cell adhesion molecule-1, P-selectin, and monocyte chemotactic protein-1, and it inhibited HCD-induced up-regulation of MMP-1, MMP-2, and MMP-9. Our results demonstrate that curcumin exerts an antiatherosclerotic effect, which is mediated by multiple mechanisms that include lowering serum lipids and oxidized low-density lipoprotein, thus modulating the proinflammatory cytokine levels and altering adhesion molecules and MMP gene expression. PMID

  15. Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9.

    PubMed

    Ordonez, Alvaro A; Tasneen, Rokeya; Pokkali, Supriya; Xu, Ziyue; Converse, Paul J; Klunk, Mariah H; Mollura, Daniel J; Nuermberger, Eric L; Jain, Sanjay K

    2016-07-01

    Cavitation is a key pathological feature of human tuberculosis (TB), and is a well-recognized risk factor for transmission of infection, relapse after treatment and the emergence of drug resistance. Despite intense interest in the mechanisms underlying cavitation and its negative impact on treatment outcomes, there has been limited study of this phenomenon, owing in large part to the limitations of existing animal models. Although cavitation does not occur in conventional mouse strains after infection with Mycobacterium tuberculosis, cavitary lung lesions have occasionally been observed in C3HeB/FeJ mice. However, to date, there has been no demonstration that cavitation can be produced consistently enough to support C3HeB/FeJ mice as a new and useful model of cavitary TB. We utilized serial computed tomography (CT) imaging to detect pulmonary cavitation in C3HeB/FeJ mice after aerosol infection with M. tuberculosis Post-mortem analyses were performed to characterize lung lesions and to localize matrix metalloproteinases (MMPs) previously implicated in cavitary TB in situ A total of 47-61% of infected mice developed cavities during primary disease or relapse after non-curative treatments. Key pathological features of human TB, including simultaneous presence of multiple pathologies, were noted in lung tissues. Optical imaging demonstrated increased MMP activity in TB lesions and MMP-9 was significantly expressed in cavitary lesions. Tissue MMP-9 activity could be abrogated by specific inhibitors. In situ, three-dimensional analyses of cavitary lesions demonstrated that 22.06% of CD11b+ signal colocalized with MMP-9. C3HeB/FeJ mice represent a reliable, economical and tractable model of cavitary TB, with key similarities to human TB. This model should provide an excellent tool to better understand the pathogenesis of cavitation and its effects on TB treatments. PMID:27482816

  16. Comprehensive analysis of leukocytes, vascularization and matrix metalloproteinases in human menstrual xenograft model.

    PubMed

    Guo, Yong; He, Bin; Xu, Xiangbo; Wang, Jiedong

    2011-02-17

    In our previous study, menstrual-like changes in mouse were provoked through the pharmacologic withdrawal of progesterone with mifepristone following induction of decidualization. However, mouse is not a natural menstruation animal, and the menstruation model using external stimuli may not truly reflect the occurrence and development of the human menstrual process. Therefore, we established a model of menstruation based on human endometrial xenotransplantation. In this model, human endometrial tissues were transplanted subcutaneously into SCID mice that were ovarectomized and supplemented with estrogen and progestogen by silastic implants with a scheme imitating the endocrinological milieu of human menstrual cycle. Morphology, hormone levels, and expression of vimentin and cytokeratin markers were evaluated to confirm the menstrual-like changes in this model. With 28 days of hormone treatment, transplanted human endometrium survived and underwent proliferation, differentiation and disintegration, similar to human endometrium in vivo. Human CD45+ cells showed a peak of increase 28 days post-transplantation. Three days after progesterone withdrawal, mouse CD45+ cells increased rapidly in number and were significantly greater than human CD45+ cell counts. Mouse CD31+ blood vascular-like structures were detected in both transplanted and host tissues. After progesterone withdrawal, the expression levels of matrix metalloproteinases (MMP) 1, 2, and 9 were increased. In summary, we successfully established a human endometrial xenotransplantation model in SCID mice, based on the results of menstrual-like changes in which MMP-1, 2 and 9 are involved. We showed that leukocytes are originated from in situ proliferation in human xenografts and involved in the occurrence of menstruation. This model will help to further understand the occurrence, growth, and differentiation of the endometrium and the underlying mechanisms of menstruation.

  17. Expression analysis of Matrix Metalloproteinase-9 in epithelialized and non-epithelialized apical periodontitis lesions

    PubMed Central

    Carneiro, Everdan; Menezes, Renato; Garlet, Gustavo Pompermaier; Garcia, Roberto Brandão; Bramante, Clóvis Monteiro; Figueira, Rita; Sogayar, Mari; Granjeiro, José Mauro

    2009-01-01

    OBJECTIVE To determine the expression of matrix metalloproteinase-9 (MMP-9) in apical periodontitis lesions. STUDY DESIGN Nineteen epithelialized and eighteen non-epithelialized apical periodontitis lesions were collected after periapical surgery. After histological processing, serial sectioning, H&E staining and microscopic analysis, 10 epithelialized and 10 non-epithelialized lesions were selected for immunohistochemical analysis for MMP-9 and CD 68. At least 1/3 of each specimen was frozen at −70°C for further mRNA isolation and reverse transcription into cDNA for Real-Time-PCR procedures. The relative expression of a target gene was determined in comparison with reference genes (GAPDH, HPRT, β-actin and BCRP). RESULTS Polymorphonuclear neutrophils, macrophages and lymphocytes were stained for MMP-9 in both types of lesions, and when present, epithelial cells were also stained. The number and the ratio of MMP-9+/total cells were greater in non-epithelialized than epithelialized lesions (p=0.0001) and showed a positive correlation to CD68+/total cells (p=0.045). No significant differences were observed for MMP-9 mRNA expression between ephithelized and non-ephithelized lesions. However, when compared to healthy periapical ligaments, both types of lesions presented increased MMP-9 expression (p<0.0001). CONCLUSION The present data suggest the participation of several inflammatory cells, mainlly CD68+ cells, in the MMP-9 expression in apical periodontitis lesions. MMP-9 could be actively enroled in the ECM degradation in apical periodontitis lesions. PMID:18926740

  18. Airway mucus obstruction triggers macrophage activation and matrix metalloproteinase 12-dependent emphysema.

    PubMed

    Trojanek, Joanna B; Cobos-Correa, Amanda; Diemer, Stefanie; Kormann, Michael; Schubert, Susanne C; Zhou-Suckow, Zhe; Agrawal, Raman; Duerr, Julia; Wagner, Claudius J; Schatterny, Jolanthe; Hirtz, Stephanie; Sommerburg, Olaf; Hartl, Dominik; Schultz, Carsten; Mall, Marcus A

    2014-11-01

    Whereas cigarette smoking remains the main risk factor for emphysema, recent studies in β-epithelial Na(+) channel-transgenic (βENaC-Tg) mice demonstrated that airway surface dehydration, a key pathophysiological mechanism in cystic fibrosis (CF), caused emphysema in the absence of cigarette smoke exposure. However, the underlying mechanisms remain unknown. The aim of this study was to elucidate mechanisms of emphysema formation triggered by airway surface dehydration. We therefore used expression profiling, genetic and pharmacological inhibition, Foerster resonance energy transfer (FRET)-based activity assays, and genetic association studies to identify and validate emphysema candidate genes in βENaC-Tg mice and patients with CF. We identified matrix metalloproteinase 12 (Mmp12) as a highly up-regulated gene in lungs from βENaC-Tg mice, and demonstrate that elevated Mmp12 expression was associated with progressive emphysema formation, which was reduced by genetic deletion and pharmacological inhibition of MMP12 in vivo. By using FRET reporters, we show that MMP12 activity was elevated on the surface of airway macrophages in bronchoalveolar lavage from βENaC-Tg mice and patients with CF. Furthermore, we demonstrate that a functional polymorphism in MMP12 (rs2276109) was associated with severity of lung disease in CF. Our results suggest that MMP12 released by macrophages activated on dehydrated airway surfaces may play an important role in emphysema formation in the absence of cigarette smoke exposure, and may serve as a therapeutic target in CF and potentially other chronic lung diseases associated with airway mucus dehydration and obstruction. PMID:24828142

  19. Matrix metalloproteinase-3 gene promoter polymorphisms: A potential risk factor for pelvic organ prolapse

    PubMed Central

    Karachalios, Charalampos; Bakas, Panagiotis; Kaparos, Georgios; Demeridou, Styliani; Liapis, Ilias; Grigoriadis, Charalampos; Liapis, Aggelos

    2016-01-01

    Pelvic organ prolapse (POP) is a common multifactorial condition. Matrix metalloproteinases (MMPs) are enzymes capable of breaking down various connective tissue elements. Single-nucleotide polymorphisms (SNPs) in regulatory areas of MMP-encoding genes can alter their transcription rate, and therefore the possible effect on pelvic floor supporting structures. The insertion of an adenine (A) base in the promoter of the MMP-3 gene at position −1612/−1617 produces a sequence of six adenines (6A), whereas the other allele has five (5A). The aim of the present study was to investigate the possible association of MMP-3 gene promoter SNPs with the risk of POP. The patient group comprised 80 women with clinically significant POP [Stage II, III or IV; POP quantification (POP-Q) system]. The control group consisted of 80 females without any or important pelvic floor support defects (Stages 0 or I; POP-Q system). All the participants underwent the same preoperative evaluation. SNP detection was determined with whole blood sample DNA analysis by quantitative polymerase chain reaction (PCR) in LightCycler® PCR platforms, using the technique of sequence-specific hybridization probe-binding assays and melting temperature curve analysis. The results showed there was no statistically significant difference between 5A/5A, 5A/6A and 6A/6A MMP-3 gene promoter variants in the two study groups (P=0.4758). Therefore, MMP-3 gene promoter SNPs alone is insufficient to increase the genetic susceptibility to POP development. PMID:27588175

  20. Withaferin A inhibits matrix metalloproteinase-9 activity by suppressing the Akt signaling pathway.

    PubMed

    Lee, Dae Hyung; Lim, In-Hye; Sung, Eon-Gi; Kim, Joo-Young; Song, In-Hwan; Park, Yoon Ki; Lee, Tae-Jin

    2013-08-01

    Withaferin A (Wit A), a steroidal lactone isolated from Withania somnifera, exhibits anti-inflammatory, immuno-modulatory and anti-angiogenic properties and antitumor activities. In the present study, we investigated the effects of Wit A on protease-mediated invasiveness of the human metastatic cancer cell lines Caski and SK-Hep1. We found that treatment with Wit A resulted in marked inhibition of the TGF‑β‑induced increase in expression and activity of matrix metalloproteinase (MMP)‑9 in Caski cell line. These effects of Wit A were dose-dependent and showed a correlation with suppression of MMP‑9 mRNA expression levels. Treatment with Wit A resulted in an ~1.6-fold induction of MMP-9 promoter activity, which was also suppressed by treatment with Wit A in Caski cells. We found that treatment with Wit A resulted in inhibition of TGF‑β‑induced phosphorylation of Akt, which was involved in the downregulation of expression of MMP-9 at the protein level. Introduction with constitutively active (CA)‑Akt resulted in a partial increase in the secretion of TGF-β-induced MMP-9 blocked by treatment with Wit A in Caski cells. According to these results, Wit A may inhibit the invasive and migratory abilities of Caski cells through a reduction in MMP-9 expression through suppression of the pAkt signaling pathway. These findings indicate that use of Wit A may be an effective strategy for control of metastasis and invasiveness of tumors.

  1. Role of matrix metalloproteinase-9 in chronic kidney disease: a new biomarker of resistant albuminuria.

    PubMed

    Pulido-Olmo, Helena; García-Prieto, Concha F; Álvarez-Llamas, Gloria; Barderas, María G; Vivanco, Fernando; Aranguez, Isabel; Somoza, Beatriz; Segura, Julián; Kreutz, Reinhold; Fernández-Alfonso, María S; Ruilope, Luis M; Ruiz-Hurtado, Gema

    2016-04-01

    Resistant albuminuria, developed under adequate chronic blockade of the renin-angiotensin system, is a clinical problem present in a small number of patients with chronic kidney disease (CKD). The mechanism underlying this resistant albuminuria remains unknown. Matrix metalloproteinases (MMPs) are involved in the pathophysiology of cardiovascular and renal diseases. In the present study we tested the role of MMPs in resistant albuminuria. First we evaluated gelatinase MMP-2 and MMP-9 activity by zymography in the Munich Wistar Frömter (MWF) rat, a model of progressive albuminuria, and subsequently in patients with resistant albuminuria. Markers of oxidative stress were observed in the kidneys of MWF rats, together with a significant increase in pro-MMP-2 and active MMP-9 forms. These changes were normalized together with reduced albuminuria in consomic MWF-8(SHR) rats, in which chromosome 8 of MWF was replaced with the respective chromosome from spontaneously hypertensive rats. The MMP-2 and MMP-9 protein levels were similar in patients with normal and resistant albuminuria; however, high circulating levels of collagen IV, a specific biomarker of tissue collagen IV degradation, were observed in patients with resistant albuminuria. These patients showed a significant increase in gelatinase MMP-2 and MMP-9 activity, but only a significant increase in the active MMP-9 form quantified by ELISA, which correlated significantly with the degree of albuminuria. Although the expression of the tissue inhibitor of MMP-9 (TIMP)-1 was similar, a novel AlphaLISA assay demonstrated that the MMP-9-TIMP-1 interaction was reduced in patients with resistant albuminuria. It is of interest that oxidized TIMP-1 expression was higher in patients with resistant albuminuria. Therefore, increased circulating MMP-9 activity is associated with resistant albuminuria and a deleterious oxidative stress environment appears to be the underlying mechanism. These changes might contribute to the

  2. Methodological aspects of QM/MM calculations: A case study on matrix metalloproteinase-2.

    PubMed

    Vasilevskaya, Tatiana; Khrenova, Maria G; Nemukhin, Alexander V; Thiel, Walter

    2016-07-15

    We address methodological issues in quantum mechanics/molecular mechanics (QM/MM) calculations on a zinc-dependent enzyme. We focus on the first stage of peptide bond cleavage by matrix metalloproteinase-2 (MMP-2), that is, the nucleophilic attack of the zinc-coordinating water molecule on the carbonyl carbon atom of the scissile fragment of the substrate. This step is accompanied by significant charge redistribution around the zinc cation, bond cleavage, and bond formation. We vary the size and initial geometry of the model system as well as the computational protocol to demonstrate the influence of these choices on the results obtained. We present QM/MM potential energy profiles for a set of snapshots randomly selected from QM/MM-based molecular dynamics simulations and analyze the differences in the computed profiles in structural terms. Since the substrate in MMP-2 is located on the protein surface, we investigate the influence of the thickness of the water layer around the enzyme on the QM/MM energy profile. Thin water layers (0-2 Å) give unrealistic results because of structural reorganizations in the active-site region at the protein surface. A 12 Å water layer appears to be sufficient to capture the effect of the solvent; the corresponding QM/MM energy profile is very close to that obtained from QM/MM/SMBP calculations using the solvent macromolecular boundary potential (SMBP). We apply the optimized computational protocol to explain the origin of the different catalytic activity of the Glu116Asp mutant: the energy barrier for the first step is higher, which is rationalized on structural grounds. © 2016 Wiley Periodicals, Inc. PMID:27140531

  3. Curcumin attenuates adhesion molecules and matrix metalloproteinase expression in hypercholesterolemic rabbits.

    PubMed

    Um, Min Young; Hwang, Kwang Hyun; Choi, Won Hee; Ahn, Jiyun; Jung, Chang Hwa; Ha, Tae Youl

    2014-10-01

    Curcumin, the yellow substance found in turmeric, possesses antioxidant, anti-inflammation, anticancer, and lipid-lowering properties. Because we hypothesized that curcumin could ameliorate the development of atherosclerosis, the present study focused on the effects and potential mechanisms of curcumin consumption on high-cholesterol diet-induced atherosclerosis in rabbits. During our study, New Zealand white rabbits were fed 1 of 3 experimental diets: a normal diet, a normal diet enriched with 1% cholesterol (HCD), or an HCD supplemented with 0.2% curcumin. At the end of 8 weeks, blood samples were collected to determine the levels of serum lipids, cytokines, and soluble adhesion molecule levels. Gene expression of adhesion molecules and matrix metalloproteinases (MMPs) in aortas were measured by quantitative real-time polymerase chain reaction and Western blot. Compared with the HCD group, rabbits fed an HCD supplemented with 0.2% curcumin had significantly less aortic lesion areas and neointima thickening. Curcumin reduced the levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol, and oxidized low-density lipoprotein cholesterol in serum by 30.7%, 41.3%, 30.4%, and 66.9% (all P < .05), respectively, but did not affect high-density lipoprotein cholesterol levels. In addition, curcumin attenuated HCD-induced CD36 expression, circulating inflammatory cytokines, and soluble adhesive molecule levels. Curcumin reduced the mRNA and protein expression of intracellular adhesion molecule-1, vascular cell adhesion molecule-1, P-selectin, and monocyte chemotactic protein-1, and it inhibited HCD-induced up-regulation of MMP-1, MMP-2, and MMP-9. Our results demonstrate that curcumin exerts an antiatherosclerotic effect, which is mediated by multiple mechanisms that include lowering serum lipids and oxidized low-density lipoprotein, thus modulating the proinflammatory cytokine levels and altering adhesion molecules and MMP gene expression.

  4. Elevated serum brain natriuretic peptide and matrix metalloproteinases 2 and 9 in Wilson's disease.

    PubMed

    Cheng, Nan; Wang, Honghao; Dong, Jianjian; Pan, Suyue; Wang, Xun; Han, Yongsheng; Han, Yongzhu; Yang, Renmin

    2015-08-01

    Wilson's disease (WD) is a disease of copper metabolism characterized by excessive copper deposition in the body. It is reported abnormal copper metabolism has been associated with cardiovascular disease. BNP and MMP2/9 were biomarkers of congestive heart failure (CHF). There is rare study to explore whether serum concentrations of BNP, MMP2, and or MMP9 are altered in patients with WD. In this study we determine whether serum concentrations of brain natriuretic peptide (BNP) and matrix metalloproteinases (MMP) 2 and 9 are increased in patients with WD. Serum BNP, MMP2 and MMP9 were measured by an ELISA in 34 patients with hepatic WD, in 68 patients with neurological WD, and in 33 healthy controls. We found serum BNP levels were higher in patients with neurological WD than in healthy controls (p = 0.033). Serum MMP2 levels were higher in patients with hepatic (p = 0.009) and neurologic (p = 0.0004) WD than in controls. Serum MMP9 levels were higher in patients with neurologic WD than in patients with hepatic WD (p = 0.002) and controls (p = 0.00005), and were higher in patients with hepatic WD than in controls (p = 0.03). Serum BNP levels were negatively correlated with ceruloplasmin (p = 0.017, r = -0.215), while serum (p = 0.019, r = -0.221) and MMP9 (p = 0.011, r = -0.231) in patients with WD were negatively correlated with ceruloplasmin. BNP, MMP2, and MMP9 may reflect the deposition of copper in the heart.

  5. Matrix metalloproteinase inhibition influences aspects of photoperiod stimulated ovarian recrudescence in Siberian hamsters

    PubMed Central

    Shahed, Asha; Simmons, Jamie; Featherstone, Sydney L; Young, Kelly A.

    2015-01-01

    Blocking matrix metalloproteinase (MMP) activity in vivo with inhibitor GM6001 impedes photostimulated ovarian recrudescence in photoregressed Siberian hamsters. Since direct and indirect effects of MMPs influence a myriad of ovarian functions, we investigated the effect of in vivo MMP inhibition during recrudescence on ovarian mRNA expression of steroidogenic acute regulatory protein (StAR), 3β-hy-droxysteroid dehydrogenase (3β-HSD), Cyp19a1 aromatase, epidermal growth factor receptor (EGFR), amphiregulin (Areg), estrogen receptors (Esr1 and Esr2), tissue inhibitors of MMPs (TIMP-1,-2,-3), proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor A (VEGFA), its receptor VEGFR-2, and angiopoietin-2 (Ang-2). Female Siberian hamsters were randomly assigned to one of four photoperiod groups: stimulatory long (LD) or inhibitory short (SD) photoperiods, or transferred from SD to LD for 2 weeks (post-transfer, PT). Half of the PT hamsters were injected (ip) daily with GM6001 (PTG). SD exposure reduced ovarian StAR, 3β-HSD, Cyp19a1, Esr1, Esr2, TIMPs 2–3, PCNA, VEGFR-2 and Ang-2 mRNA expression (p < 0.05), and 2 weeks of photostimulation restored mRNA expression of 3β-HSD and PCNA and increased Areg and VEGFA mRNA expression in the PT group. GM6001 treatment during photostimulation (PTG) increased TIMP-1, -2 and -3 and PCNA mRNA, but inhibited Areg mRNA expression compared to PT. Neither photoperiod nor GM6001 altered EGFR expression. Results of this study suggest that in vivo inhibition of MMP activity by GM6001 may impede ovarian recrudescence, particularly follicular growth, in two ways: (1) directly by partially inhibiting the release of EGFR ligands like Areg, thereby potentially affecting EGFR activation and its downstream pathway, and (2) indirectly by its effect on TIMPs which themselves can affect proliferation, angiogenesis and follicular growth. PMID:25910436

  6. Matrix metalloproteinase inhibition influences aspects of photoperiod stimulated ovarian recrudescence in Siberian hamsters.

    PubMed

    Shahed, Asha; Simmons, Jamie J; Featherstone, Sydney L; Young, Kelly A

    2015-05-15

    Blocking matrix metalloproteinase (MMP) activity in vivo with inhibitor GM6001 impedes photostimulated ovarian recrudescence in photoregressed Siberian hamsters. Since direct and indirect effects of MMPs influence a myriad of ovarian functions, we investigated the effect of in vivo MMP inhibition during recrudescence on ovarian mRNA expression of steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), Cyp19a1 aromatase, epidermal growth factor receptor (EGFR), amphiregulin (Areg), estrogen receptors (Esr1 and Esr2), tissue inhibitors of MMPs (TIMP-1,-2,-3), proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor A (VEGFA), its receptor VEGFR-2, and angiopoietin-2 (Ang-2). Female Siberian hamsters were randomly assigned to one of four photoperiod groups: stimulatory long (LD) or inhibitory short (SD) photoperiods, or transferred from SD to LD for 2 weeks (post-transfer, PT). Half of the PT hamsters were injected (ip) daily with GM6001 (PTG). SD exposure reduced ovarian StAR, 3β-HSD, Cyp19a1, Esr1, Esr2, TIMPs 2-3, PCNA, VEGFR-2 and Ang-2 mRNA expression (p<0.05), and 2 weeks of photostimulation restored mRNA expression of 3β-HSD and PCNA and increased Areg and VEGFA mRNA expression in the PT group. GM6001 treatment during photostimulation (PTG) increased TIMP-1, -2 and -3 and PCNA mRNA, but inhibited Areg mRNA expression compared to PT. Neither photoperiod nor GM6001 altered EGFR expression. Results of this study suggest that in vivo inhibition of MMP activity by GM6001 may impede ovarian recrudescence, particularly follicular growth, in two ways: (1) directly by partially inhibiting the release of EGFR ligands like Areg, thereby potentially affecting EGFR activation and its downstream pathway, and (2) indirectly by its effect on TIMPs which themselves can affect proliferation, angiogenesis and follicular growth.

  7. Marked induction of matrix metalloproteinase-10 by respiratory syncytial virus infection in human nasal epithelial cells.

    PubMed

    Hirakawa, Satoshi; Kojima, Takashi; Obata, Kazufumi; Okabayashi, Tamaki; Yokota, Shin-Ichi; Nomura, Kazuaki; Obonai, Toshimasa; Fuchimoto, Jun; Himi, Tetsuo; Tsutsumi, Hiroyuki; Sawada, Norimasa

    2013-12-01

    Respiratory syncytial virus (RSV) is an important pathogen of bronchiolitis, asthma, and severe lower respiratory tract disease in infants and young children. Matrix metalloproteinases (MMPs) play key roles in viral infection, inflammation and remodeling of the airway. However, the roles and regulation of MMPs in human nasal epithelial cells (HNECs) after RSV infection remain unclear. To investigate the regulation of MMP induced after RSV infection in HNECs, an RSV-infected model of HNECs in vitro was used. It was found that mRNA of MMP-10 was markedly increased in HNECs after RSV infection, together with induction of mRNAs of MMP-1, -7, -9, and -19. The amount of MMP-10 released from HNECs was also increased in a time-dependent manner after RSV infection as was that of chemokine RANTES. The upregulation of MMP-10 in HNECs after RSV infection was prevented by inhibitors of NF-κB and pan-PKC with inhibition of RSV replication, whereas it was prevented by inhibitors of JAK/STAT, MAPK, and EGF receptors without inhibition of RSV replication. In lung tissue of an infant with severe RSV infection in which a few RSV antibody-positive macrophages were observed, MMP-10 was expressed at the apical side of the bronchial epithelial cells and alveolar epithelial cells. In conclusion, MMP-10 induced by RSV infection in HNECs is regulated via distinct signal transduction pathways with or without relation to RSV replication. MMP-10 may play an important role in the pathogenesis of RSV diseases and it has the potential to be a novel marker and therapeutic target for RSV infection.

  8. Matrix Metalloproteinase-8 Augments Bacterial Clearance in a Juvenile Sepsis Model

    PubMed Central

    Atkinson, Sarah J; Varisco, Brian M; Sandquist, Mary; Daly, Meghan N; Klingbeil, Lindsey; Kuethe, Joshua W; Midura, Emily F; Harmon, Kelli; Opoka, Amy; Lahni, Patrick; Piraino, Giovanna; Hake, Paul; Zingarelli, Basilia; Mortensen, Joel E; Wynn, James L; Wong, Hector R

    2016-01-01

    Genetic ablation or pharmacologic inhibition of matrix metalloproteinase-8 (MMP8) improves survival in an adult murine sepsis model. Because developmental age influences the host inflammatory response, we hypothesized that developmental age influences the role of MMP8 in sepsis. First, we compared sepsis survival between wild-type (WT, C57BL/6) and MMP8 null juvenile-aged mice (12–14 d) after intraperitoneal injection of a standardized cecal slurry. Second, peritoneal lavages collected 6 h and 18 h after cecal slurry injection were analyzed for bacterial burden, leukocyte subsets and inflammatory cytokines. Third, juvenile WT mice were pretreated with an MMP8 inhibitor prior to cecal slurry injection; analysis of their bacterial burden was compared with vehicle-injected animals. Fourth, the phagocytic capacity of WT and MMP8 null peritoneal macrophages was compared. Finally, peritoneal neutrophil extracellular traps (NETs) were compared using immunofluorescent imaging and quantitative image analysis. We found that juvenile MMP8 null mice had greater mortality and higher bacterial burden than WT mice. Leukocyte counts and cytokine concentrations in the peritoneal fluid were increased in the MMP8 null mice relative to the wild-type mice. Peritoneal macrophages from MMP8 null mice had reduced phagocytic capacity compared to WT macrophages. There was no quantitative difference in NET formation, but fewer bacteria were adherent to NETs from MMP8 null animals. In conclusion, in contrast to septic adult mice, genetic ablation of MMP8 increased mortality following bacterial peritonitis in juvenile mice. This increase in mortality was associated with reduced bacterial clearance and reduced NET efficiency. We conclude that developmental age influences the role of MMP8 in sepsis. PMID:27506554

  9. Betaine prevents homocysteine-induced memory impairment via matrix metalloproteinase-9 in the frontal cortex.

    PubMed

    Kunisawa, K; Nakashima, N; Nagao, M; Nomura, T; Kinoshita, S; Hiramatsu, M

    2015-10-01

    Betaine plays important roles that include acting as a methyl donor and converting homocysteine (Hcy) to methionine. Elevated plasma Hcy levels are known as hyperhomocysteinemia (HHcy) and contribute to impairments of learning and memory. Although it is commonly known that betaine plays an important role in Hcy metabolism, the effects of betaine on Hcy-induced memory impairment have not been investigated. Previously, we demonstrated the beneficial effects of betaine on acute stress and lipopolysaccharide-induced memory impairment. In the present study, we investigated whether betaine ameliorates Hcy-induced memory impairment and the underlying mechanisms of this putative effect. Mice were treated with Hcy (0.162mg/kg, s.c.) twice a day for nine days, and betaine (25mg/kg, s.c.) was administered 30min before the Hcy injections. The memory functions were evaluated using a spontaneous alternation performance test (Y-maze) at seven days and a step-down type passive avoidance test (SD) at nine and ten days after Hcy injection. We found that betaine suppressed the memory impairment induced by repeated Hcy injections. However, the blood concentrations of Hcy were significantly increased in the Hcy-treated mice immediately after the passive avoidance test, and betaine did not prevent this increase. Furthermore, Hcy induces redox stress in part by activating matrix metalloproteinase-9 (MMP-9), which leads to BBB dysfunction. Therefore, we tested whether betaine affected MMP-9 activity. Interestingly, treatment with betaine significantly inhibited Hcy-induced MMP-9 activity in the frontal cortex but not in the hippocampus after acute Hcy injection. These results suggest that the changes in MMP-9 activity after betaine treatment might have been partially responsible for the amelioration of the memory deficits and that MMP-9 might be a candidate therapeutic target for HHcy.

  10. Matrix metalloproteinases and chemokines in the gingival crevicular fluid during orthodontic tooth movement.

    PubMed

    Capelli, Jonas; Kantarci, Alpdogan; Haffajee, Anne; Teles, Ricardo Palmier; Fidel, Rivail; Figueredo, Carlos Marcelo

    2011-12-01

    Matrix metalloproteinases (MMPs) and monocyte chemoattractants are key modulators of the biological mechanisms triggered in the periodontium by mechanical forces. The gingival crevicular fluid (GCF) provides a non-invasive method to assess longitudinally the release of inflammatory mediators during orthodontic tooth movement. The goal of this study was to examine the GCF levels of MMP-3, MMP-9, and MMP-13 and of the chemokines macrophage inflammatory protein (MIP)-1β, monocyte chemoattractant protein (MCP)-1, and regulated on activation normal T cells expressed and secreted (RANTES) at different time points during orthodontic tooth movement. Fourteen subjects (three males and 11 females, 18.8 ± 4.8 years of age; range from 12 to 28 years) had their maxillary canines retracted. Thirty-second GCF samples were collected from the tension and pressure sides 7 days prior to the activation of the orthodontic appliance, on the day of activation, and after 1 and 24 hours, and 14, 21, and 80 days of constant force application. The volume of GCF was measured and samples analysed using a multiplexed bead immunoassay for the content of the six target molecules. Differences in the mean GFC volumes and mean level for each analyte over time were assessed using the Friedman test, and differences between the tension and pressure sides at each time point with the Mann-Whitney test. The mean levels of the three MMPs changed significantly over time but only at the compression side (P < 0.05, Friedman test). The GCF levels of the three chemokines were not affected by the application of mechanical stress. The levels of MMPs in GCF at the pressure side are modulated by the application of orthodontic force. PMID:21389074

  11. Circulating Matrix Metalloproteinase Levels Following Ventricular Septal Defect Repair in Infants

    PubMed Central

    McQuinn, Tim C.; Deardorff, Rachael L.; Mukherjee, Rupak; Taylor, Anna Greta B.; Graham, Eric M.; Atz, Andrew M.; Forbus, Geoffrey A.; DeSantis, Stacia M.; Young, Jennifer B.; Stroud, Robert E.; Crawford, Fred A.; Bradley, Scott M.; Reeves, Scott T.; Spinale, Francis G.

    2010-01-01

    Background Congenital heart surgery initiates a complex inflammatory response that can influence the post-operative course. However, broad integration of the cytokine and proteolytic cascades (matrix metalloproteinases: MMPs), which may contribute to post-operative outcomes has not been performed. Methods/Results Using a low volume (50 – 60 μL), high sensitivity, multiplex approach a panel of cytokines (IL-2, -4, -6, -8, -10, TNFα, IL-1β, GM-CSF) and MMPs (MMP-2, -3, -7, -8, -9, -12, -13) were serially measured in patients (n=9) pre-operatively and post-VSD repair. Results were correlated with outcomes such as inotropic requirement, oxygenation, and fluid balance. Serial changes in peri-operative plasma levels of the cytokines and MMPs exhibited distinct temporal profiles. Plasma levels of IL-2, -8, -10, and MMP-9 peaked within 4 hours, while MMP-3 and MMP-8 levels remained elevated at 24 and 48 hours following cross-clamp removal. Area-under-the-curve analysis of early cytokine levels were associated with major clinical variables, including inverse correlations between early IL-10 levels and cumulative inotrope requirement at 48 hours (r: −0.85, p<0.005) and late MMP-7 levels and cumulative fluid balance (r: −0.90, p<0.001). Conclusions The unique findings of this study were that serial profiling a large array of cytokines and proteolytic enzymes following congenital heart surgery can provide insight into relationships between changes in bioactive molecules to early postoperative outcomes. Specific patterns of cytokine and MMP release may hold significance as biomarkers for predicting and managing the post-operative course following congenital heart surgery. PMID:20561637

  12. Expression pattern of matrix metalloproteinases changes during folliculogenesis in the cat ovary.

    PubMed

    Fujihara, M; Yamamizu, K; Wildt, D E; Songsasen, N

    2016-10-01

    Matrix metalloproteinase (MMP) has been implicated as having roles in ovarian folliculogenesis. Here, we determined the expression pattern of six MMPs (MMP1, MMP2, MMP3, MMP7, MMP9 and MMP13) and their endogenous tissue inhibitor, TIMP1, during cat follicle growth. Different developmental stage follicles were mechanically isolated and gene expression analysed by real-time qPCR while MMP1, 2, 9 and 13 localization was determined by immunohistochemistry. With the exception of MMP13, the amount of MMP mRNA was lowest in primordial follicles and increased thereafter. Peak levels were detected in early antral follicles for MMP1 (72.2-fold increase above primordial follicle amount), MMP2 (10-fold), MMP3 (57-fold) and MMP9 (2.8-fold). MMP7 transcripts increased 2-fold by the primary follicle stage and then plateaued. MMP13 mRNA peaked in primary follicles (2.5-fold) and was lower in more advanced counterparts. TIMP1 sharply increased (6-fold) in secondary follicles and gradually declined in the later stages. MMP1 and MMP9 expression were expressed in the granulosa cells of all follicle stages. MMP2 was immunoreactive in early and antral follicles, especially at granulosa cells adjacent to the antral cavity. By contrast, the MMP13 was weakly detected in primary follicles onward. In summary, there are distinctive and consistent changes in MMPs and TIMP1 expression during follicle development, suggesting that these enzymes play one or more roles in cat folliculogenesis. In particular, high mRNA and protein expression levels of MMP1 and MMP2, especially at the antral stage, indicate that these enzymes likely are involved in antrum formation and expansion. PMID:27484055

  13. Matrix metalloproteinases -8 and -9 in the Airways, Blood and Urine During Exacerbations of COPD.

    PubMed

    Cane, Jennifer L; Mallia-Millanes, Brendan; Forrester, Douglas L; Knox, Alan J; Bolton, Charlotte E; Johnson, Simon R

    2016-01-01

    Matrix metalloproteinases (MMPs) are elevated in the airways and blood of COPD patients, contributing to disease pathogenesis and tissue remodelling. However, it is not clear if MMP levels in airways, blood and urine are related or if MMP levels are related to disease severity or presence of exacerbations requiring hospitalisation. Seventy-two patients requiring hospitalisation for COPD exacerbations had serum, urine and sputum MMP-8, -9 and active MMP-9 measured by ELISA and gelatin zymography on day one, five and four weeks later (recovery). Clinical history, spirometry, COPD Assessment Test and MRC dyspnoea score were obtained. Twenty-two stable COPD patients had MMP measurements one week apart. During exacerbations, serum and urine MMP-9 were slightly elevated by 17% and 30% compared with recovery values respectively (p = 0.001 and p = 0.026). MMP-8 was not significantly changed. These MMP levels related to serum neutrophil numbers but not to outcome of exacerbations, disease severity measures or smoking status. In clinically stable patients, serum MMP levels did not vary significantly over 7 days, whereas urine MMPs varied by up to nine fold for MMP-8 (p = 0.003). Sputum, serum and urine contained different MMP species and complexes. Median values for sputum active MMP-9 were significantly different from serum (p = 0.035) and urine (p = 0.024). Serum and urine MMPs are only modestly elevated during exacerbations of COPD and unlikely to be useful biomarkers in this clinical setting. Airway, serum and urine MMP levels are independent of each other in COPD patients. Further, MMP levels are variable between patients and do not reflect airflow obstruction.

  14. Distribution and relative activity of matrix metalloproteinase-2 in human coronal dentin

    PubMed Central

    Boushell, Lee W; Kaku, Masaru; Mochida, Yoshiyuki; Yamauchi, Mitsuo

    2011-01-01

    The presence of matrix metalloproteinase-2 (MMP-2) in dentin has been reported, but its distribution and activity level in mature human coronal dentin are not well understood. The purpose of this study was to determine the MMP-2 distribution and relative activity in demineralized dentin. Crowns of twenty eight human molars were sectioned into inner (ID), middle (MD), and outer dentin (OD) regions and demineralized. MMP-2 was extracted with 0.33 mol·L−1 EDTA/2 mol·L−1 guanidine-HCl, pH 7.4, and MMP-2 concentration was estimated with enzyme-linked immunoabsorbant assay (ELISA). Further characterization was accomplished by Western blotting analysis and gelatin zymography. The mean concentrations of MMP-2 per mg dentin protein in the dentin regions were significantly different (P=0.043): 0.9 ng (ID), 0.4 ng (MD), and 2.2 ng (OD), respectively. The pattern of MMP-2 concentration was OD>ID>MD. Western blotting analysis detected ∼66 and ∼72 kDa immunopositive proteins corresponding to pro- and mature MMP-2, respectively, in the ID and MD, and a ∼66 kDa protein in the OD. Gelatinolytic activity consistent with MMP-2 was detected in all regions. Interestingly, the pattern of levels of Western blot immunodetection and gelatinolytic activity was MD>ID>OD. The concentration of MMP-2 in human coronal dentin was highest in the region of dentin that contains the dentinoenamel junction and least in the middle region of dentin. However, levels of Western blot immunodetection and gelatinolytic activity did not correlate with the estimated regional concentrations of MMP-2, potentially indicating region specific protein interactions. PMID:22010577

  15. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    SciTech Connect

    O'Toole, Timothy E. Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca{sup 2+}]{sub i}), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca{sup 2+}]{sub I} with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca{sup 2+}]{sub I}, leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  16. Standardized Clitoria ternatea leaf extract as hyaluronidase, elastase and matrix-metalloproteinase-1 inhibitor

    PubMed Central

    Maity, Niladri; Nema, Neelesh K.; Sarkar, Birendra K.; Mukherjee, Pulok K.

    2012-01-01

    Aim: Plant Clitoria ternatea L. is claimed to possess a wide range of activities including antiinflammatory, local anesthetic and antidiabetic effect, etc. The aim of the present study was to evaluate the wound healing potential of standardized C. ternatea leaf extract in terms of different enzymatic models, which are mostly associated with skin wound. Materials and Methods: The methanol extract and fractions were screened for its hyaluronidase, elastase, and matrix metalloproteinase-1 (MMP-1) inhibitory activity compared with standard oleanolic acid. The activity was rationalized through reverse phase high performance liquid chromatography (RP-HPLC) standardization of the extract and fractions with respect to its isolated biomarker taraxerol (yield 5.27% w/w). Results: The extract showed significant (P < 0.001) hyaluronidase (IC50 18.08 ± 0.46 μg/ ml) and MMP-1 (P < 0.05) inhibition, but the elastase inhibition was insignificant (IC50 42.68 ± 0.46 μg/ml). Among the fractions, ethyl acetate fraction showed significant (P < 0.001) inhibition of hyaluronidase (IC50 28.01 ± 0.48 μg/ml) and MMP-1 (P < 0.01). The HPLC analysis revealed that the extract and the ethyl acetate fraction are enriched with taraxerol (5.32% w/w and 4.55% w/w, respectively). Conclusions: The experiment validated the traditional uses of C. ternatea and may be recommended for use in the treatment of different types of skin wounds, where taraxerol may be a responsible biomarker. PMID:23112418

  17. Mixed lineage kinase 3 is required for matrix metalloproteinase expression and invasion in ovarian cancer cells

    SciTech Connect

    Zhan, Yu; Abi Saab, Widian F.; Modi, Nidhi; Stewart, Amanda M.; Liu, Jinsong; Chadee, Deborah N.

    2012-08-15

    Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells. -- Highlights: Black-Right-Pointing-Pointer Ovarian cancer cell lines have high levels of total and phosphorylated MLK3. Black-Right-Pointing-Pointer MLK3 is required for MMP expression and activity in ovarian cancer cells. Black-Right-Pointing-Pointer MLK3 is required for invasion of SKOV3 and HEY1B ovarian cancer cells. Black-Right-Pointing-Pointer MLK3-dependent regulation of MMP-2 and MMP-9 activities requires ERK and JNK.

  18. Matrix metalloproteinase-2 of human carotid atherosclerotic plaques promotes platelet activation. Correlation with ischaemic events.

    PubMed

    Lenti, Massimo; Falcinelli, Emanuela; Pompili, Marcella; de Rango, Paola; Conti, Valentina; Guglielmini, Giuseppe; Momi, Stefania; Corazzi, Teresa; Giordano, Giuseppe; Gresele, Paolo

    2014-06-01

    Purified active matrix metalloproteinase-2 (MMP-2) is able to promote platelet aggregation. We aimed to assess the role of MMP-2 expressed in atherosclerotic plaques in the platelet-activating potential of human carotid plaques and its correlation with ischaemic events. Carotid plaques from 81 patients undergoing endarterectomy were tested for pro-MMP-2 and TIMP-2 content by zymography and ELISA. Plaque extracts were incubated with gel-filtered platelets from healthy volunteers for 2 minutes before the addition of a subthreshold concentration of thrombin receptor activating peptide-6 (TRAP-6) and aggregation was assessed. Moreover, platelet deposition on plaque extracts immobilised on plastic coverslips under high shear-rate flow conditions was measured. Forty-three plaque extracts (53%) potentiated platelet aggregation (+233 ± 26.8%), an effect prevented by three different specific MMP-2 inhibitors (inhibitor II, TIMP-2, moAb anti-MMP-2). The pro-MMP-2/TIMP-2 ratio of plaques potentiating platelet aggregation was significantly higher than that of plaques not potentiating it (3.67 ± 1.21 vs 1.01 ± 0.43, p<0.05). Moreover, the platelet aggregation-potentiating effect, the active-MMP-2 content and the active MMP-2/pro-MMP-2 ratio of plaque extracts were significantly higher in plaques from patients who developed a subsequent major cardiovascular event. In conclusion, atherosclerotic plaques exert a prothrombotic effect by potentiating platelet activation due to their content of MMP-2; an elevated MMP-2 activity in plaques is associated with a higher rate of subsequent ischaemic cerebrovascular events. PMID:24499865

  19. Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9.

    PubMed

    Ordonez, Alvaro A; Tasneen, Rokeya; Pokkali, Supriya; Xu, Ziyue; Converse, Paul J; Klunk, Mariah H; Mollura, Daniel J; Nuermberger, Eric L; Jain, Sanjay K

    2016-07-01

    Cavitation is a key pathological feature of human tuberculosis (TB), and is a well-recognized risk factor for transmission of infection, relapse after treatment and the emergence of drug resistance. Despite intense interest in the mechanisms underlying cavitation and its negative impact on treatment outcomes, there has been limited study of this phenomenon, owing in large part to the limitations of existing animal models. Although cavitation does not occur in conventional mouse strains after infection with Mycobacterium tuberculosis, cavitary lung lesions have occasionally been observed in C3HeB/FeJ mice. However, to date, there has been no demonstration that cavitation can be produced consistently enough to support C3HeB/FeJ mice as a new and useful model of cavitary TB. We utilized serial computed tomography (CT) imaging to detect pulmonary cavitation in C3HeB/FeJ mice after aerosol infection with M. tuberculosis Post-mortem analyses were performed to characterize lung lesions and to localize matrix metalloproteinases (MMPs) previously implicated in cavitary TB in situ A total of 47-61% of infected mice developed cavities during primary disease or relapse after non-curative treatments. Key pathological features of human TB, including simultaneous presence of multiple pathologies, were noted in lung tissues. Optical imaging demonstrated increased MMP activity in TB lesions and MMP-9 was significantly expressed in cavitary lesions. Tissue MMP-9 activity could be abrogated by specific inhibitors. In situ, three-dimensional analyses of cavitary lesions demonstrated that 22.06% of CD11b+ signal colocalized with MMP-9. C3HeB/FeJ mice represent a reliable, economical and tractable model of cavitary TB, with key similarities to human TB. This model should provide an excellent tool to better understand the pathogenesis of cavitation and its effects on TB treatments.

  20. Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals.

    PubMed

    Prajapati, Saumya; Tao, Jinhui; Ruan, Qichao; De Yoreo, James J; Moradian-Oldak, Janet

    2016-01-01

    Reconstruction of enamel-like materials is a central topic of research in dentistry and material sciences. The importance of precise proteolytic mechanisms in amelogenesis to form a hard tissue with more than 95% mineral content has already been reported. A mutation in the Matrix Metalloproteinase-20 (MMP-20) gene results in hypomineralized enamel that is thin, disorganized and breaks from the underlying dentin. We hypothesized that the absence of MMP-20 during amelogenesis results in the occlusion of amelogenin in the enamel hydroxyapatite crystals. We used spectroscopy and electron microscopy techniques to qualitatively and quantitatively analyze occluded proteins within the isolated enamel crystals from MMP-20 null and Wild type (WT) mice. Our results showed that the isolated enamel crystals of MMP-20 null mice had more organic macromolecules occluded inside them than enamel crystals from the WT. The crystal lattice arrangements of MMP-20 null enamel crystals analyzed by High Resolution Transmission Electron Microscopy (HRTEM) were found to be significantly different from those of the WT. Raman studies indicated that the crystallinity of the MMP-20 null enamel crystals was lower than that of the WT. In conclusion, we present a novel functional mechanism of MMP-20, specifically prevention of unwanted organic material entrapped in the forming enamel crystals, which occurs as the result of precise amelogenin cleavage. MMP-20 action guides the growth morphology of the forming hydroxyapatite crystals and enhances their crystallinity. Elucidating such molecular mechanisms can be applied in the design of novel biomaterials for future clinical applications in dental restoration or repair.

  1. Biosensing of matrix metalloproteinase activity with Cd-free quantum dots

    NASA Astrophysics Data System (ADS)

    Plumley, John Bryan

    Quantum dots (QDs) have become attractive in the biomedical field on account of their superior optical properties and stability, in comparison to traditional fluorophores. QDs also have properties which make them ideal for complex in vivo conditions. However, toxicity has been a chief concern in the eventual implementation of QDs for in vivo applications such as biosensing and tumor imaging. Commercially available QDs contain a notoriously noxious Cd component and therefore continuous research has gone into developing QDs without toxic heavy metals, generally Cd, that would still yield comparable performance in terms of their optical properties. Nonetheless, even in the case of Cd-free QDs, toxicity should be evaluated on a case by case basis, as other properties such as size, coating, stability, and charge can affect toxicity of nanomaterials as well, making it a very complex issue. With the high promise of QDs in the field of biomedical development as a motivation, this work strives to develop the efficient and repeatable synthesis of Cd-free QDs with high stability and luminescence, with proven low toxicity, and the ability to detect active matrix metalloproteinase (MMP) in a biosensing system, designed to identify direct biomarkers for pathological conditions, which in turn would enable early disease diagnosis and better treatment development. In this work, highly luminescent ZnSe:Mn/ZnS QDs have been synthesized, characterized, and modified with peptides with a bioconjugation procedure that utilized thiol-metal affinity. Experiments aiming at MMP detection were conducted using the peptide/QD conjugates. In addition, the ApoTox-Glo(TM) Triplex assay was utilized to evaluate cytotoxicity, and a safe concentration below 0.125 microM was identified for peptide-coated ZnSe:Mn/ZnS QDs in water. Finally, in contribution to developing an in vivo fiberoptic system for sensing MMP activity, the QDs were successfully tethered to silica and MMP detection was demonstrated

  2. Recanalization and flow regulate venous thrombus resolution and Matrix metalloproteinases expression in vivo

    PubMed Central

    Chabasse, Christine; Siefert, Suzanne A.; Chaudry, Mohammed; Hoofnagle, Mark H.; Lal, Brajesh K.; Sarkar, Rajabrata

    2016-01-01

    Objective We examined the role of thrombus recanalization and ongoing blood flow in the process of thrombus resolution by comparing two murine in vivo models of deep venous thrombosis. Design of study In CD1 mice, we performed surgical inferior vena cava (IVC) ligation (stasis thrombosis), stenosis (thrombosis with recanalization) or sham procedure. We analyzed thrombus weight over time as a measure of thrombus resolution, and quantified the mRNA and protein levels of Membrane-Type Matrix Metalloproteinases (MT-MMPs) as well as effectors of the plasmin complex at day 4, 8 and 12 post-surgery. Results Despite similar initial thrombus size, the presence of ongoing blood flow (stenosis model) was associated with a 45.91% subsequent improvement in thrombus resolution at day 8, and 12.57% at day 12, as compared with stasis thrombosis (ligation model). Immunoblot and real-time PCR demonstrated a difference in MMP-2 and MMP-9 activity at day 8 between the two models (P=.03 and P=.006 respectively), as well as a difference in MT2-MMP gene expression at day 8 (P=.044) and day 12 (P=0.03) and MT1-MMP protein expression at day 4 (P=.021). Histological analyses revealed distinct areas of recanalization in the thrombi of the stenosis model compared to the ligation model, as well as the recruitment of inflammatory cells, especially macrophages, and a focal pattern of localized expression of MT1-MMP and MT3-MMP proteins surrounding the areas of recanalization in the stenosis model. Conclusions Recanalization and ongoing blood flow accelerate deep venous thrombus resolution in vivo, and are associated with distinct patterns of MT1- and MT3-MMP expression and macrophages localization in areas of intra-thrombus recanalization. PMID:26993683

  3. Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9

    PubMed Central

    Ordonez, Alvaro A.; Tasneen, Rokeya; Pokkali, Supriya; Xu, Ziyue; Converse, Paul J.; Klunk, Mariah H.; Mollura, Daniel J.; Nuermberger, Eric L.

    2016-01-01

    ABSTRACT Cavitation is a key pathological feature of human tuberculosis (TB), and is a well-recognized risk factor for transmission of infection, relapse after treatment and the emergence of drug resistance. Despite intense interest in the mechanisms underlying cavitation and its negative impact on treatment outcomes, there has been limited study of this phenomenon, owing in large part to the limitations of existing animal models. Although cavitation does not occur in conventional mouse strains after infection with Mycobacterium tuberculosis, cavitary lung lesions have occasionally been observed in C3HeB/FeJ mice. However, to date, there has been no demonstration that cavitation can be produced consistently enough to support C3HeB/FeJ mice as a new and useful model of cavitary TB. We utilized serial computed tomography (CT) imaging to detect pulmonary cavitation in C3HeB/FeJ mice after aerosol infection with M. tuberculosis. Post-mortem analyses were performed to characterize lung lesions and to localize matrix metalloproteinases (MMPs) previously implicated in cavitary TB in situ. A total of 47-61% of infected mice developed cavities during primary disease or relapse after non-curative treatments. Key pathological features of human TB, including simultaneous presence of multiple pathologies, were noted in lung tissues. Optical imaging demonstrated increased MMP activity in TB lesions and MMP-9 was significantly expressed in cavitary lesions. Tissue MMP-9 activity could be abrogated by specific inhibitors. In situ, three-dimensional analyses of cavitary lesions demonstrated that 22.06% of CD11b+ signal colocalized with MMP-9. C3HeB/FeJ mice represent a reliable, economical and tractable model of cavitary TB, with key similarities to human TB. This model should provide an excellent tool to better understand the pathogenesis of cavitation and its effects on TB treatments. PMID:27482816

  4. Expressions of Matrix Metalloproteinases 2, 7, and 9 in Carcinogenesis of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Januszewska, Joanna; Sidorkiewicz, Iwona; Niewiński, Andrzej; Lewczuk, Łukasz; Kędra, Bogusław; Guzińska-Ustymowicz, Katarzyna

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal disease, usually diagnosed in an advanced stage which gives a slight chance of recovery. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that participate in tissue remodeling and stimulate neovascularization and inflammatory response. The aim of the study was to evaluate the expression of MMP-2, MMP-7, and MMP-9 in normal ducts, tumor pancreatic adenocarcinoma cells, and peritumoral stroma in correlation with clinicohistopathological parameters. The study material was obtained from 29 patients with pancreatic ductal adenocarcinoma. The expressions of MMP-2, MMP-7, and MMP-9 were performed by immunohistochemical technique. Microvessel density (MVD) was visualized by special immunostaining. The expressions of MMP-2, MMP-7, and MMP-9 were mainly observed in tumor cells and peritumoral stroma. MMP-2 expression in cancer cells was correlated with female gender, stronger inflammation, and histopathological type of cancer (R = 0.460, p = 0.013; R = 0.690, p = 0.0001; R = −0.440, p = 0.005, resp.). The expression of MMP-7 in tumor cells was found to positively correlate with the presence of necrosis and negatively correlate with MVD (R = 0.402, p = 0.031; R = −0.682, p = 0.000). We also showed that positive MMP-9 expression in tumor cells was associated with MVD (R = 0.368, p = 0.084); however, it was not statistically significant. Our results demonstrate that MMP-2, MMP-7, and MMP-9 expressions correlate with various morphological features of the PDAC tumor such as inflammation, necrosis, and formation of the new blood vessels. PMID:27429508

  5. Plasma matrix metalloproteinase 1 improves the detection and survival prediction of esophageal squamous cell carcinoma

    PubMed Central

    Chen, Yu-Kuei; Tung, Chun-Wei; Lee, Jui-Ying; Hung, Yi-Chun; Lee, Chien-Hung; Chou, Shah-Hwa; Lin, Hung-Shun; Wu, Ming-Tsang; Wu, I-Chen

    2016-01-01

    This study aimed to identify noninvasive protein markers capable of detecting the presence and prognosis of esophageal squamous-cell carcinoma (ESCC). Analyzing microarray expression data collected from 17-pair ESCC specimens, we identified one protein, matrix metalloproteinase-1 (MMP1), as a possibly useful marker. Plasma MMP1 was then measured by enzyme-linked immunosorbent assay (ELISA) in 210 ESCC patients and 197 healthy controls. ESCC patients had higher mean levels of MMP1 than controls (8.7 ± 7.5 vs. 6.7 ± 4.9 ng/mL, p < 0.0001). Using the highest quartile level (9.67 ng/mL) as cut-off, we found a 9.0-fold risk of ESCC in those with higher plasma MMP1 after adjusting for covariates (95% confidence interval = 2.2, 36.0). Heavy smokers and heavy drinkers with higher plasma MMP1 had 61.4- and 31.0 times the risk, respectively, than non-users with lower MMP1. In the survival analysis, compared to those with MMP1 ≤ 9.67 ng/mL, ESCC patients with MMP1 > 9.67 ng/mL had a 48% increase in the risk of ESCC death (adjusted hazard ratio = 1.48; 95% CI = 1.04–2.10). In conclusion, plasma MMP1 may serve as a noninvasive marker of detecting the presence and predicting the survival of ESCC. PMID:27436512

  6. Matrix metalloproteinase-1-mediated mesenchymal stem cell tumor tropism is dependent on crosstalk with stromal derived growth factor 1/C-X-C chemokine receptor 4 axis.

    PubMed

    Ho, Ivy A W; Yulyana, Yulyana; Sia, Kian C; Newman, Jennifer P; Guo, Chang M; Hui, Kam M; Lam, Paula Y P

    2014-10-01

    Human bone marrow-derived mesenchymal stem cells (MSCs) have the unique ability to home toward injuries or tumor sites. We have previously shown that the tumor-tropic property is dependent on the intrinsic expression and activity of the matrix remodeling gene, matrix metalloproteinase 1 (MMP-1). Herein, crosstalk between MMP-1/protease activated receptor 1 (PAR-1) and the G-protein coupled receptor stromal-derived growth factor 1 (SDF-1)/C-X-C chemokine receptor 4 (CXCR-4) in facilitating cell migration was investigated. Gain-of-function and RNA interference (RNAi) technology were used to evaluate the interplay between the key players. The downstream effect on the tumor-tropic migration of MSCs was investigated using modified Boyden chamber assay. Neutralizing PAR-1 activation using monoclonal antibody and targeted knockdown of MMP-1 using RNAi resulted in decreased expression of SDF-1, which was not observed in control-RNAi-transfected cells. Overexpression of CXCR-4 failed to promote MSC migration; the percentage of migrated cells toward tumor cell conditioned medium was similar to the vector-transduced and the CXCR-4-transduced MSCs. Furthermore, inhibition of SDF-1/CXCR-4 signaling using AMD3100 reduced MSC migration through the deregulation of MMP-1 promoter activities, protein expression, and metalloproteinase activity. Collectively, our results showed that MMP-1-mediated MSC tumor tropism is dependent on crosstalk with the SDF-1/CXCR-4 axis.

  7. The effects of panduratin A isolated from Kaempferia pandurata on the expression of matrix metalloproteinase-1 and type-1 procollagen in human skin fibroblasts.

    PubMed

    Shim, Jae-Seok; Kwon, Yi-Young; Hwang, Jae-Kwan

    2008-02-01

    Exposure of ultraviolet (UV) light on the skin induces photoaging associated with up-regulated matrix metalloproteinase (MMP) activities and decreased collagen synthesis. We investigated the effects of panduratin A isolated from Kaempferia pandurata Roxb. on the expression of matrix metalloproteinase-1 (MMP-1) and type-1 procollagen in UV-irradiated human skin fibroblasts. Cultured human fibroblasts were irradiated with UV (20 mJ/cm (2)) and panduratin A was added into the medium of the fibroblast culture. The expressions of MMP-1 and type-1 procollagen levels were measured using Western blot analysis and RT-RCR. Panduratin A in the range of 0.001 - 0.1 microM significantly reduced the expression of MMP-1 and induced the expression of type-1 procollagen at the protein and mRNA gene levels. Panduratin A showed stronger activity than epigallocatechin 3- O-gallate (EGCG) known as a natural anti-aging agent. The results suggest that panduratin A can be a potential candidate for the prevention and treatment of skin aging brought about by UV.

  8. Matrix Metalloproteinase-3 -1171 5A/6A Polymorphism (rs35068180) is Associated with Risk of Periodontitis.

    PubMed

    Ding, Cheng; Chen, Xing; Zhang, Peng-tao; Huang, Jin-ping; Xu, Yan; Chen, Ning; Zhong, Liang-jun

    2015-01-01

    Matrix metalloproteinase-3 (MMP3) plays a key role in tissue degradation in periodontitis. The relationship between the MMP3 -1171 5A/6A polymorphism (rs35068180) and periodontitis has been widely studied. However, existing studies have yielded contradictory results. We therefore conducted a meta-analysis to comprehensively investigate these inconclusive findings. Several electronic databases were searched for eligible articles. Seven case-control studies from 6 articles were searched without any language restrictions. Pooled estimates indicated that MMP3 -1171 5A/6A polymorphism is associated with a decreased risk of periodontitis (allelic genetic model: OR = 0.70, 95% CI: 0.62-0.80, P(heterogeneity) = 0.315; heterozygous model: OR = 0.50, 95% CI: 0.39-0.65, P(heterogeneity) = 0.221; homozygous model: OR = 0.42, 95% CI: 0.25-0.69, P(heterogeneity) = 0.265; dominant model: OR = 0.49, 95% CI: 0.38-0.62, P(heterogeneity) = 0.238, respectively). Similar results were also found in chronic periodontitis (CP), Asian, Asian&CP, and non-smokers subgroups. Moreover, MMP3 rs35068180 polymorphism might be associated with a lower risk of aggressive periodontitis (AgP) in Asians (allelic genetic model: OR = 0.66, 95% CI: 0.48-0.91, P(heterogeneity) = 0.945), and CP in Caucasians and Brazilians. In conclusion, this meta-analysis demonstrates that MMP3 -1171 5A/6A polymorphism may be associated with decreased risk of both CP and AgP in Asians. Large independent studies to replicate these results are necessary to validate these associations in other populations. PMID:26123623

  9. The effect of obesity and tobacco smoke exposure on inflammatory mediators and matrix metalloproteinases in rat model.

    PubMed

    Esquivel, Ana Laura; Pérez-Ramos, J; Cisneros, J; Herrera, I; Rivera-Rosales, R; Montaño, M; Ramos, C

    2014-12-01

    Obesity is characterized by hypertrophy of adipose tissue and chronic obstructive pulmonary disease (COPD) by lung damage; both diseases are associated with systemic low-grade inflammation. There are no animal models combining obesity and COPD; therefore, these diseases were induced simultaneously in rats to analyze their effects on the expression of inflammatory mediators and enzymes involved in lung tissue remodeling. Obesity was induced with sucrose (30%) for 4 months concomitant with tobacco smoke exposure (20 cigarettes/day, 5 days/wk) for the last 2 months. Were evaluated: body weight, abdominal fat, dyslipidemia, glucose tolerance test (GTT), histology, inflammatory mediators with qPCR and enzyme-linked immunosorbent assay, matrix metalloproteinases (MMP-2), MMP-9, MMP-12, TIMP-1 and TIMP-2 through qRT-PCR, and MMP-2 and MMP-9 by gelatin zymography. The rats on a sucrose diet exhibited increased body weight, abdominal fat, triglycerides, GTT, and plasma levels of insulin, adiponectin, leptin, resistin, IL-6, IL-1β, tumor necrosis factor-α (TNF-α) and IFN-γ, upregulated lung IL-6, IL-1β, TNF-α and IFN-γ, showing hyperplastic bronchial and alveolar epithelium. The animals exposed to sucrose and tobacco smoke exhibited decreased body weight, abdominal fat and plasma levels of leptin, resistin, IL-1β and IFN-γ, reducing inflammation but showing emphysematous lesions. Expression of gelatinases and MMP-12 augmented in the rats exposed to tobacco smoke alone or combined with sucrose. Zymography showed prominent gelatinases activity in all the experimental groups. These results suggest that simultaneous exposure to sucrose and tobacco smoke decreases inflammation but results in emphysematous lesions similar to those observed with tobacco smoke exposure, suggesting that obesity does not confer any protective effect against lung damage.

  10. Cannabinoids inhibit angiogenic capacities of endothelial cells via release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells.

    PubMed

    Ramer, Robert; Fischer, Sascha; Haustein, Maria; Manda, Katrin; Hinz, Burkhard

    2014-09-15

    Cannabinoids inhibit tumor neovascularization as part of their tumorregressive action. However, the underlying mechanism is still under debate. In the present study the impact of cannabinoids on potential tumor-to-endothelial cell communication conferring anti-angiogenesis was studied. Cellular behavior of human umbilical vein endothelial cells (HUVEC) associated with angiogenesis was evaluated by Boyden chamber, two-dimensional tube formation and fibrin bead assay, with the latter assessing three-dimensional sprout formation. Viability was quantified by the WST-1 test. Conditioned media (CM) from A549 lung cancer cells treated with cannabidiol, Δ(9)-tetrahydrocannabinol, R(+)-methanandamide or the CB2 agonist JWH-133 elicited decreased migration as well as tube and sprout formation of HUVEC as compared to CM of vehicle-treated cancer cells. Inhibition of sprout formation was further confirmed for cannabinoid-treated A549 cells co-cultured with HUVEC. Using antagonists to cannabinoid-activated receptors the antimigratory action was shown to be mediated via cannabinoid receptors or transient receptor potential vanilloid 1. SiRNA approaches revealed a cannabinoid-induced expression of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) as well as its upstream trigger, the intercellular adhesion molecule-1, to be causally linked to the observed decrease of HUVEC migration. Comparable anti-angiogenic effects were not detected following direct exposure of HUVEC to cannabinoids, but occurred after addition of recombinant TIMP-1 to HUVEC. Finally, antimigratory effects were confirmed for CM of two other cannabinoid-treated lung cancer cell lines (H460 and H358). Collectively, our data suggest a pivotal role of the anti-angiogenic factor TIMP-1 in intercellular tumor-endothelial cell communication resulting in anti-angiogenic features of endothelial cells.

  11. Matrix Metalloproteinase-3 -1171 5A/6A Polymorphism (rs35068180) is Associated with Risk of Periodontitis.

    PubMed

    Ding, Cheng; Chen, Xing; Zhang, Peng-tao; Huang, Jin-ping; Xu, Yan; Chen, Ning; Zhong, Liang-jun

    2015-06-30

    Matrix metalloproteinase-3 (MMP3) plays a key role in tissue degradation in periodontitis. The relationship between the MMP3 -1171 5A/6A polymorphism (rs35068180) and periodontitis has been widely studied. However, existing studies have yielded contradictory results. We therefore conducted a meta-analysis to comprehensively investigate these inconclusive findings. Several electronic databases were searched for eligible articles. Seven case-control studies from 6 articles were searched without any language restrictions. Pooled estimates indicated that MMP3 -1171 5A/6A polymorphism is associated with a decreased risk of periodontitis (allelic genetic model: OR = 0.70, 95% CI: 0.62-0.80, P(heterogeneity) = 0.315; heterozygous model: OR = 0.50, 95% CI: 0.39-0.65, P(heterogeneity) = 0.221; homozygous model: OR = 0.42, 95% CI: 0.25-0.69, P(heterogeneity) = 0.265; dominant model: OR = 0.49, 95% CI: 0.38-0.62, P(heterogeneity) = 0.238, respectively). Similar results were also found in chronic periodontitis (CP), Asian, Asian&CP, and non-smokers subgroups. Moreover, MMP3 rs35068180 polymorphism might be associated with a lower risk of aggressive periodontitis (AgP) in Asians (allelic genetic model: OR = 0.66, 95% CI: 0.48-0.91, P(heterogeneity) = 0.945), and CP in Caucasians and Brazilians. In conclusion, this meta-analysis demonstrates that MMP3 -1171 5A/6A polymorphism may be associated with decreased risk of both CP and AgP in Asians. Large independent studies to replicate these results are necessary to validate these associations in other populations.

  12. The Matrix Metalloproteinase Gene GmMMP2 Is Activated in Response to Pathogenic Infections in Soybean1

    PubMed Central

    Liu, Yongqing; Dammann, Christian; Bhattacharyya, Madan K.

    2001-01-01

    Matrix metalloproteinases (MMPs) play an important role in host defense responses against pathogens in mammals where their activities lead to the production of antimicrobial peptides. We have identified a novel soybean (Glycine max) metalloproteinase gene, GmMMP2, that is transcriptionally up-regulated in infected tissues. The deduced amino acid sequence indicates that this gene belongs to the MMP family. It is a preproprotein containing an N-terminal signal peptide, a cysteine switch, a zinc-binding catalytic motif, and a C-terminal transmembrane domain. The GmMMP2 expressed in and purified from Escherichia coli exhibited an in vitro enzymatic activity in digesting myelin basic protein. All plant metalloproteinases reported so far have no known functions. However, they have been suggested to be involved in extracellular cell matrix degradation during development or senescence. Our investigations demonstrate that the GmMMP2 transcript levels were rapidly increased in compatible and incompatible interactions of soybean tissues with the oomycete pathogen Phytophthora sojae or the bacterial pathogen Pseudomonas syringae pv. glycinea. In agreement with the GmMMP2 activation, a metalloproteinase activity was gradually increased in suspension-cultured cells following the bacterial infection. GmMMP2 was also activated in response to wounding and dehydration. However, GmMMP2 activation did not correlate with the oxidative burst leading to the hypersensitive response cell death or the tissue senescence progress that involves programmed cell death. Our investigations suggest that GmMMP2 may be involved in a novel defense response of soybean against pathogenic infections. PMID:11743122

  13. Cartilage oligomeric matrix protein and matrix metalloproteinase-3 expression in the serum and joint fluid of a reversible osteoarthritis rabbit model.

    PubMed

    Chu, X Q; Wang, J J; Dou, L D; Zhao, G

    2015-01-01

    The main pathological characteristic of osteoarthritis (OA) is cartilage damage. We explored cartilage oligomeric matrix protein (COMP) and matrix metalloproteinase-3 (MMP-3) changes during articular cartilage injury and repair. Rabbits were randomly divided into the following: a blank control group; groups M1, M2, and M3, in which breaking was performed for 2, 4, and 6 weeks, respectively; and groups L1, L2, and L3, in which breaking was discontinued for 2, 4, and 6 weeks, respectively, following a 4-week recovery period. There are 7 rabbits in each group. The degree of cartilage damage in each group was scored (OA score). An enzyme-linked immunosorbent assay was used to detect COMP and MMP-3 levels in serum and joint fluid. The OA scores were 3.89 ± 2.31, 7.21 ± 2.31, and 10.88 ± 2.08 points in groups M1, M2, and M3, respectively (P < 0.05). COMP and MMP-3 levels were significantly higher in groups M1, M2, and M3 than in C. The OA score improved significantly following the 4-week recovery period (P < 0.05). COMP and MMP-3 levels began to decrease as the time following discontinuation of breaking increased, but were higher than in the control (P < 0.05). MMP- 3 and COMP levels were correlated with OA score (r > 0.7, P < 0.05). COMP and MMP-3 levels were correlated between joint fluid and serum (r = 0.899, r = 0.874, P < 0.05, respectively). Long-term joint breaking can cause articular cartilage damage. Doing some activites after the process can promote self-repair of articular cartilage. COMP and MMP-3 levels were associated with articular cartilage destruction and repair.

  14. Differential expression of matrix metalloproteinases in activated c-ras-Ha-transfected immortalized human keratinocytes.

    PubMed Central

    Meade-Tollin, L. C.; Boukamp, P.; Fusenig, N. E.; Bowen, C. P.; Tsang, T. C.; Bowden, G. T.

    1998-01-01

    Elevated expression of matrix metalloproteinases (MMPs), a family of secreted proteinases that degrade matrix components of basement membranes and connective tissues, is strongly correlated with malignant expression in various human epithelial cancers and epithelial cancer cell lines. We have tested whether elevated levels of MMP expression are also associated with malignant progression in human cutaneous squamous cell carcinoma. Constitutive levels of expression of steady-state mRNA and of secreted protein encoded by three MMP genes (matrilysin, gelatinases A and B) were compared in a unique in vitro model of human skin carcinogenesis. This model is composed of the parental immortalized non-tumorigenic human keratinocyte line (HaCaT), and three activated c-Harvey-ras-oncogene transfected variants (A-4, I-7 and II-4). Although clone A-4 is non-tumorigenic, clones I-7 and II-4 exhibit benign and malignant tumorigenic phenotypes, respectively, after subcutaneous injection into athymic nude mice. Northern blot, Western blot, and zymogram analyses revealed three MMP-specific patterns of expression. Constitutive matrilysin mRNA expression was markedly increased in the I-7 cells compared with HaCaT, A-4 or II-4 cells. Secreted promatrilysin was distinctly increased in the tumorigenic I-7 and II-4 cells compared with the non-tumorigenic HaCaT and A-4 cells. Gelatinase A mRNA and secreted gelatinase A protein levels were increased in each transfectant compared with HaCaT. Both active and inactive forms of gelatinase A were detected. Gelatinase B transcripts were not detected, but an EDTA-inhibitable gelatinase activity comigrating with gelatinase B was moderately enhanced in both tumorigenic variants compared with the non-tumorigenic cells. Because promatrilysin and 92-kDa gelatinase secretion were increased in both benign and malignant tumorigenic cells, and not related to invasiveness in this model, it is concluded that enhanced constitutive expression of these two MMPs

  15. Role of Matrix Metalloproteinases 2 in Spinal Cord Injury-Induced Neuropathic Pain.

    PubMed

    Miranpuri, Gurwattan S; Schomberg, Dominic T; Alrfaei, Bahauddeen; King, Kevin C; Rynearson, Bryan; Wesley, Vishwas S; Khan, Nayab; Obiakor, Kristen; Wesley, Umadevi V; Resnick, Daniel K

    2016-03-01

    Neuropathic pain (NP) affects approximately 4 million people in the United States with spinal cord injury (SCI) being a common cause. Matrix metalloproteinases (MMPs) play an integral role in mediating inflammatory responses, cellular signaling, cell migration, extracellular matrix degradation and tissue remodeling and repair. As such, they are major components in the pathogenesis of secondary injury within the central nervous system. Other gene regulatory pathways, specifically MAPK/extracellular signaling-regulated kinase (ERK) and Wnt/β-catenin, are also believed to participate in secondary injury likely intersect. The study aims to examine the MMP-2 signaling pathway associated with ERK and Wnt/β-catenin activity during contusion SCI (cSCI)-induced NP in a rat model. This is an experimental study investigating the implication of MMP-2 in SCI-induced NP and its association with the cellular and molecular changes in the interactions between extracellular signaling kinase and β-catenin. Adult Sprague-Dawley rats received cSCI injury by NYU impactor by dropping 10 g weight from a height of 12.5 mm. Locomotor functional recovery of injured rats was measured on post cSCI day 1, and weekly thereafter for 6 weeks using Basso, Beattie and Bresnahan scores. Thermal hyperalgesia (TH) testing was performed on days 21, 28, 35 and 42 post cSCI. The expression and/or activity of MMP-2, β-catenin and ERK were studied following harvest of spinal cord tissues between 3 and 6 weeks post cSCI. All experiments were funded by the department of Neurological Surgery at the University of Wisconsin, School of Medicine and Public Health having no conflict of interest. MMP-2 and β-catenin expression were elevated and gradually increased from days 21 to 42 compared to sham-operated rats and injured rats that did not exhibit TH. The expression of phosphorylated ERK (phospho-ERK) increased on day 21 but returned to baseline levels on day 42 whereas total ERK levels remained relatively

  16. Fibronectin-bound TNF-alpha stimulates monocyte matrix metalloproteinase-9 expression and regulates chemotaxis.

    PubMed

    Vaday, G G; Hershkoviz, R; Rahat, M A; Lahat, N; Cahalon, L; Lider, O

    2000-11-01

    Tumor necrosis factor alpha (TNF-alpha) is a proinflammatory cytokine implicated in the stimulation of matrix metalloproteinase (MMP) production by several cell types. Our previous studies demonstrated that TNF-alpha avidly binds fibronectin (FN) and laminin, major adhesive glycoproteins of extracellular matrix (ECM) and basement membranes. These findings suggested that TNF-alpha complexing to insoluble ECM components may serve to concentrate its activities to distinct inflamed sites. Herein, we explored the bioactivity and possible function of ECM-bound TNF-alpha by examining its effects on MMP-9 secretion by monocytes. Immunofluorescent staining indicated that LPS-activated monocytes deposited newly synthesized TNF-alpha into ECM-FN. FN-bound TNF-alpha (FN/TNF-alpha) significantly up-regulated MMP-9 expression and secretion by the human monocytic cell line MonoMac-6 and peripheral blood monocytes. Such secretion could be inhibited by antibodies that block TNF-alpha activity and binding to its receptors TNF RI (p55) and TNF RII (p75). Cheniotaxis through ECM gels in the presence of soluble or bound TNF-alpha was inhibited by a hydroxamic acid inhibitor of MMPs (GM6001). It is interesting that, although the adhesion of MonoMac-6 cells to FN/TNF-alpha required functional activated beta1 integrins, FN/TNF-alpha-induced MMP-9 secretion was independent of binding to beta1 integrins, since MMP-9 secretion was unaffected by: (1) neutralizing nAb to alpha4, alpha5, and beta1 subunits, which blocked cell adhesion; (2) a mAb that stimulated beta1 integrin-mediated adhesion; and (3) binding TNF-alpha to the 30-kDa amino-terminal fragment of FN, which lacks the major cell adhesive binding sites. Thus, in addition to their cell-adhesive roles, ECM glycoproteins, such as FN, may play a pivotal role in presenting proinflammatory cytokines to leukocytes within the actual inflamed tissue, thereby affecting their capacities to secrete ECM-degrading enzymes. These TNF

  17. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    SciTech Connect

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol

  18. Role of Matrix Metalloproteinases 2 in Spinal Cord Injury-Induced Neuropathic Pain

    PubMed Central

    Miranpuri, Gurwattan S.; Schomberg, Dominic T.; Alrfaei, Bahauddeen; King, Kevin C.; Rynearson, Bryan; Wesley, Vishwas S.; Khan, Nayab; Obiakor, Kristen; Wesley, Umadevi V.; Resnick, Daniel K.

    2016-01-01

    Neuropathic pain (NP) affects approximately 4 million people in the United States with spinal cord injury (SCI) being a common cause. Matrix metalloproteinases (MMPs) play an integral role in mediating inflammatory responses, cellular signaling, cell migration, extracellular matrix degradation and tissue remodeling and repair. As such, they are major components in the pathogenesis of secondary injury within the central nervous system. Other gene regulatory pathways, specifically MAPK/extracellular signaling-regulated kinase (ERK) and Wnt/β-catenin, are also believed to participate in secondary injury likely intersect. The study aims to examine the MMP-2 signaling pathway associated with ERK and Wnt/β-catenin activity during contusion SCI (cSCI)-induced NP in a rat model. This is an experimental study investigating the implication of MMP-2 in SCI-induced NP and its association with the cellular and molecular changes in the interactions between extracellular signaling kinase and β-catenin. Adult Sprague-Dawley rats received cSCI injury by NYU impactor by dropping 10 g weight from a height of 12.5 mm. Locomotor functional recovery of injured rats was measured on post cSCI day 1, and weekly thereafter for 6 weeks using Basso, Beattie and Bresnahan scores. Thermal hyperalgesia (TH) testing was performed on days 21, 28, 35 and 42 post cSCI. The expression and/or activity of MMP-2, β-catenin and ERK were studied following harvest of spinal cord tissues between 3 and 6 weeks post cSCI. All experiments were funded by the department of Neurological Surgery at the University of Wisconsin, School of Medicine and Public Health having no conflict of interest. MMP-2 and β-catenin expression were elevated and gradually increased from days 21 to 42 compared to sham-operated rats and injured rats that did not exhibit TH. The expression of phosphorylated ERK (phospho-ERK) increased on day 21 but returned to baseline levels on day 42 whereas total ERK levels remained relatively

  19. Artesunate modulates expression of matrix metalloproteinases and their inhibitors as well as collagen-IV to attenuate pulmonary fibrosis in rats.

    PubMed

    Wang, Y; Huang, G; Mo, B; Wang, C

    2016-01-01

    The aim of this study was to determine the effect of artesunate on extracellular matrix (ECM) accumulation and the expression of collagen-IV, matrix metalloproteinase (MMP), and tissue inhibitor of matrix metalloproteinase (TIMP) to understand the pharmacological role of artesunate in pulmonary fibrosis. Eighty Sprague-Dawley rats were randomly assigned to four groups that were administered saline alone, bleomycin (BLM) alone, BLM + artesunate, or artesunate alone for 28 days. Lung tissues from 10 rats in each group were used to obtain lung fibroblast (LF) primary cells, and the rest were used to analyze protein expression. The mRNA expression of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 in lung fibroblasts was detected by real-time quantitative reverse transcriptase polymerase chain reaction. The protein levels of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 protein in lung tissues were analyzed by western blotting. Artesunate treatment alleviated alveolitis and pulmonary fibrosis induced by bleomycin in rats, as indicated by a decreased lung coefficient and improvement of lung tissue morphology. Artesunate treatment also led to decreased collagen-IV protein levels, which might be a result of its downregulated expression and increased MMP-2 and MMP-9 protein and mRNA levels. Increased TIMP-1 and TIMP- 2 protein and mRNA levels were detected after artesunate treatment in lung tissues and primary lung fibroblast cells and may contribute to enhanced activity of MMP-2 and -9. These findings suggested that artesunate attenuates alveolitis and pulmonary fibrosis by regulating expression of collagen-IV, TIMP-1 and 2, as well as MMP-2 and -9, to reduce ECM accumulation. PMID:27323108

  20. Downregulation of matrix