Sample records for decreasing cluster size

  1. INTERACTION OF INTERSTITIAL CLUSTERS WITH RHENIUM, OSMIUM, AND TANTALUM IN TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.

    2016-09-01

    In the previous semi annual report, we explored the stability of interstitial clusters in W up to size seven. In this report, we study the binding of those clusters to Re, Os, and Ta atoms. For each cluster size, the three most stable configurations are considered to average the binding property. The average binding energy to a Re decreases from 0.79 eV for a size-1 cluster (a [111] dumbbell) to 0.65 eV for a size-7 cluster. For Os, the binding decreases from 1.61 eV for a [111] dumbbell to 1.34 eV for a size-7 cluster. Tantalum is repulsive to interstitialmore » clusters with binding energy ranges from -0.61 eV for a [111] dumbbell to -0.5 eV for a size-7 cluster.« less

  2. Critical oxide cluster size on Si(111)

    NASA Astrophysics Data System (ADS)

    Shklyaev, A. A.; Aono, M.; Suzuki, T.

    1999-03-01

    The initial stage of oxide growth and subsequent oxide decomposition on Si(111)-7×7 at temperatures between 350 and 720°C are studied with the optical second harmonic generation for O 2 pressures ( Pox) between 5×10 -9 and 4×10 -6 Torr. The obtained pressure dependencies of the initial oxide growth rate ( Rgr) and the subsequent oxide decomposition rate are associated with the cluster-forming nature of the oxidation process. For the model of oxide cluster nucleation and growth, a scaling relationship is derived among the critical oxide cluster size, i, and the experimentally measurable values of Rgr and Pox. The critical oxide cluster size, i, thus obtained from the kinetic data increases with temperature. This correlates with an increase of desorption channels and their rates in that the competition between growth and decomposition requires more stable oxide clusters, i.e. clusters with a larger critical size, for oxide to grow at higher temperatures. The increase of i with decreasing Pox is related with a decrease of Rgr: a decreased Rgr requires critical clusters with a longer lifetime, i.e. clusters with a larger size.

  3. An Energy-Efficient Mobile Sink-Based Unequal Clustering Mechanism for WSNs.

    PubMed

    Gharaei, Niayesh; Abu Bakar, Kamalrulnizam; Mohd Hashim, Siti Zaiton; Hosseingholi Pourasl, Ali; Siraj, Mohammad; Darwish, Tasneem

    2017-08-11

    Network lifetime and energy efficiency are crucial performance metrics used to evaluate wireless sensor networks (WSNs). Decreasing and balancing the energy consumption of nodes can be employed to increase network lifetime. In cluster-based WSNs, one objective of applying clustering is to decrease the energy consumption of the network. In fact, the clustering technique will be considered effective if the energy consumed by sensor nodes decreases after applying clustering, however, this aim will not be achieved if the cluster size is not properly chosen. Therefore, in this paper, the energy consumption of nodes, before clustering, is considered to determine the optimal cluster size. A two-stage Genetic Algorithm (GA) is employed to determine the optimal interval of cluster size and derive the exact value from the interval. Furthermore, the energy hole is an inherent problem which leads to a remarkable decrease in the network's lifespan. This problem stems from the asynchronous energy depletion of nodes located in different layers of the network. For this reason, we propose Circular Motion of Mobile-Sink with Varied Velocity Algorithm (CM2SV2) to balance the energy consumption ratio of cluster heads (CH). According to the results, these strategies could largely increase the network's lifetime by decreasing the energy consumption of sensors and balancing the energy consumption among CHs.

  4. Properties of highly clustered networks

    NASA Astrophysics Data System (ADS)

    Newman, M. E.

    2003-08-01

    We propose and solve exactly a model of a network that has both a tunable degree distribution and a tunable clustering coefficient. Among other things, our results indicate that increased clustering leads to a decrease in the size of the giant component of the network. We also study susceptible/infective/recovered type epidemic processes within the model and find that clustering decreases the size of epidemics, but also decreases the epidemic threshold, making it easier for diseases to spread. In addition, clustering causes epidemics to saturate sooner, meaning that they infect a near-maximal fraction of the network for quite low transmission rates.

  5. Effects of cluster thinning on vine photosynthesis, berry ripeness and flavonoid composition of Cabernet Sauvignon.

    PubMed

    Wang, Yu; He, Yan-Nan; Chen, Wei-Kai; He, Fei; Chen, Wu; Cai, Xiao-Dong; Duan, Chang-Qing; Wang, Jun

    2018-05-15

    Cluster thinning is a common practice for regulating vine yield and grape quality. The effects of cluster thinning on vine photosynthesis, berry ripeness and flavonoid composition of V. vinifera L. Cabernet Sauvignon were evaluated during two seasons. Half of the clusters were removed at pea-size and veraison relative to two controls, respectively. Both cluster thinning treatments significantly increased pruning weight and decreased yield. No effects of cluster thinning on berry growth, ripeness and flavonol composition were observed. Early cluster thinning decreased the photosynthetic rate at pea-size, but the effect diminished at post-veraison. Early cluster thinning significantly promoted the biosynthesis of anthocyanins but decreased the proportion of 3'5'-hydroxylated and acylated anthocyanins at veraison. Late cluster thinning decreased the proportions of 3'5'-hydroxylated and acylated anthocyanins. Additionally, Cluster thinning showed inconsistent effects on flavan-3-ol composition over the two seasons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. An assessment of the effects of cell size on AGNPS modeling of watershed runoff

    USGS Publications Warehouse

    Wu, S.-S.; Usery, E.L.; Finn, M.P.; Bosch, D.D.

    2008-01-01

    This study investigates the changes in simulated watershed runoff from the Agricultural NonPoint Source (AGNPS) pollution model as a function of model input cell size resolution for eight different cell sizes (30 m, 60 m, 120 m, 210 m, 240 m, 480 m, 960 m, and 1920 m) for the Little River Watershed (Georgia, USA). Overland cell runoff (area-weighted cell runoff), total runoff volume, clustering statistics, and hot spot patterns were examined for the different cell sizes and trends identified. Total runoff volumes decreased with increasing cell size. Using data sets of 210-m cell size or smaller in conjunction with a representative watershed boundary allows one to model the runoff volumes within 0.2 percent accuracy. The runoff clustering statistics decrease with increasing cell size; a cell size of 960 m or smaller is necessary to indicate significant high-runoff clustering. Runoff hot spot areas have a decreasing trend with increasing cell size; a cell size of 240 m or smaller is required to detect important hot spots. Conclusions regarding cell size effects on runoff estimation cannot be applied to local watershed areas due to the inconsistent changes of runoff volume with cell size; but, optimal cells sizes for clustering and hot spot analyses are applicable to local watershed areas due to the consistent trends.

  7. Angle-Resolved Photoemission of Solvated Electrons in Sodium-Doped Clusters.

    PubMed

    West, Adam H C; Yoder, Bruce L; Luckhaus, David; Saak, Clara-Magdalena; Doppelbauer, Maximilian; Signorell, Ruth

    2015-04-16

    Angle-resolved photoelectron spectroscopy of the unpaired electron in sodium-doped water, methanol, ammonia, and dimethyl ether clusters is presented. The experimental observations and the complementary calculations are consistent with surface electrons for the cluster size range studied. Evidence against internally solvated electrons is provided by the photoelectron angular distribution. The trends in the ionization energies seem to be mainly determined by the degree of hydrogen bonding in the solvent and the solvation of the ion core. The onset ionization energies of water and methanol clusters do not level off at small cluster sizes but decrease slightly with increasing cluster size.

  8. Effects of Group Size and Lack of Sphericity on the Recovery of Clusters in K-means Cluster Analysis.

    PubMed

    Craen, Saskia de; Commandeur, Jacques J F; Frank, Laurence E; Heiser, Willem J

    2006-06-01

    K-means cluster analysis is known for its tendency to produce spherical and equally sized clusters. To assess the magnitude of these effects, a simulation study was conducted, in which populations were created with varying departures from sphericity and group sizes. An analysis of the recovery of clusters in the samples taken from these populations showed a significant effect of lack of sphericity and group size. This effect was, however, not as large as expected, with still a recovery index of more than 0.5 in the "worst case scenario." An interaction effect between the two data aspects was also found. The decreasing trend in the recovery of clusters for increasing departures from sphericity is different for equal and unequal group sizes.

  9. Geometry, packing, and evolutionary paths to increased multicellular size

    NASA Astrophysics Data System (ADS)

    Jacobeen, Shane; Graba, Elyes C.; Brandys, Colin G.; Day, Thomas C.; Ratcliff, William C.; Yunker, Peter J.

    2018-05-01

    The evolutionary transition to multicellularity transformed life on earth, heralding the evolution of large, complex organisms. Recent experiments demonstrated that laboratory-evolved multicellular "snowflake yeast" readily overcome the physical barriers that limit cluster size by modifying cellular geometry [Jacobeen et al., Nat. Phys. 14, 286 (2018), 10.1038/s41567-017-0002-y]. However, it is unclear why this route to large size is observed, rather than an evolved increase in intercellular bond strength. Here, we use a geometric model of the snowflake yeast growth form to examine the geometric efficiency of increasing size by modifying geometry and bond strength. We find that changing geometry is a far more efficient route to large size than evolving increased intercellular adhesion. In fact, increasing cellular aspect ratio is on average ˜13 times more effective than increasing bond strength at increasing the number of cells in a cluster. Modifying other geometric parameters, such as the geometric arrangement of mother and daughter cells, also had larger effects on cluster size than increasing bond strength. Simulations reveal that as cells reproduce, internal stress in the cluster increases rapidly; thus, increasing bond strength provides diminishing returns in cluster size. Conversely, as cells become more elongated, cellular packing density within the cluster decreases, which substantially decreases the rate of internal stress accumulation. This suggests that geometrically imposed physical constraints may have been a key early selective force guiding the emergence of multicellular complexity.

  10. Wettability behavior of water droplet on organic-polluted fused quartz surfaces of pillar-type nanostructures applying molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Chen, Jiaxuan; Chen, Wenyang; Xie, Yajing; Wang, Zhiguo; Qin, Jianbo

    2017-02-01

    Molecular dynamics (MD) is applied to research the wettability behaviors of different scale of water clusters absorbed on organic-polluted fused quartz (FQ) surface and different surface structures. The wettability of water clusters is studied under the effect of organic pollutant. With the combined influence of pillar height and interval, the stair-step Wenzel-Cassie transition critical line is obtained by analyzing stable state of water clusters on different surface structures. The results also show that when interval of pillars and the height of pillars keep constant respectively, the changing rules are exactly the opposite and these are termed as the "waterfall" rules. The substrate models of water clusters at Cassie-Baxter state which are at the vicinity of critical line are chosen to analyze the relationship of HI (refers to the pillar height/interval) ratio and scale of water cluster. The study has found that there is a critical changing threshold in the wettability changing process. When the HI ratio keeps constant, the wettability decreases first and then increase as the size of cluster increases; on the contrary, when the size of cluster keeps constant, the wettability decreases and then increase with the decrease of HI ratio, but when the size of water cluster is close to the threshold the HI ratio has little effect on the wettability.

  11. Dynamic properties of cluster glass in La0.25Ca0.75MnO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, X. H.; Ding, J. F.; Jiang, Z. L.; Yin, Y. W.; Yu, Q. X.; Li, X. G.

    2009-10-01

    The dynamic magnetic properties of cluster glass in La0.25Ca0.75MnO3 nanoparticles with average particle size range from 40 to 1000 nm have been investigated by measuring the frequency and dc magnetic field (H) dependencies of the ac susceptibility. The frequency-dependent Tf, the freezing temperature of the ferromagnetic clusters determined by the peak in the real part of the ac susceptibility χ' versus T curve with H =0, is fit to a power law. The relaxation time constant τ0 decreases as the particle size increases from 40 to 350 nm, which indicates the decrease in the size of the clusters at the surface of the nanoparticle. The relationship between H and Tf(H) deviates from the De Almeida-Thouless-type phase boundary at relatively high fields for the samples with size range from 40 to 350 nm. Moreover, for the samples with particle sizes of 40 and 100 nm, τ0 increases with increasing H, which indicates the increasing cluster size and may be ascribed to the competition between the influence of H and the local anisotropy field in the shell spins. All these results may give rise to a new insight into the behaviors of the cluster glass state in the nanosized antiferromagnetic charge-ordered perovskite manganites.

  12. Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation.

    PubMed

    Gartmann, Thomas E; Hartweg, Sebastian; Ban, Loren; Chasovskikh, Egor; Yoder, Bruce L; Signorell, Ruth

    2018-06-06

    Low-energy electron scattering in water clusters (H2O)n with average cluster sizes of n < 700 is investigated by angle-resolved photoelectron spectroscopy using high harmonic radiation at photon energies of 14.0, 20.3, and 26.5 eV for ionization from the three outermost valence orbitals. The measurements probe the evolution of the photoelectron anisotropy parameter β as a function of cluster size. A remarkably steep decrease of β with increasing cluster size is observed, which for the largest clusters reaches liquid bulk values. Detailed electron scattering calculations reveal that neither gas nor condensed phase scattering can explain the cluster data. Qualitative agreement between experiment and simulations is obtained with scattering calculations that treat cluster scattering as an intermediate case between gas and condensed phase scattering.

  13. Universal patterns of equilibrium cluster growth in aqueous sugars observed by dynamic light scattering.

    PubMed

    Sidebottom, D L; Tran, Tri D

    2010-11-01

    Dynamic light scattering performed on aqueous solutions of three sugars (glucose, maltose and sucrose) reveal a common pattern of sugar cluster formation with a narrow cluster size distribution. In each case, equilibrium clusters form whose size increases with increasing sugar content in an identical power law manner in advance of a common, critical-like, percolation threshold near 83 wt % sugar. The critical exponent of the power law divergence of the cluster size varies with temperature, increasing with decreasing temperature, due to changes in the strength of the intermolecular hydrogen bond and appears to vanish for temperatures in excess of 90 °C. Detailed analysis of the cluster growth process suggests a two-stage process: an initial cluster phase formed at low volume fractions, ϕ, consisting of noninteracting, monodisperse sugar clusters whose size increases ϕ(1/3) followed by an aggregation stage, active at concentrations above about ϕ=40%, where cluster-cluster contact first occurs.

  14. Dynamic Cluster Size Effects on the Glass Transition of Thin Films

    NASA Astrophysics Data System (ADS)

    Wool, Richard

    2013-03-01

    During cooling from the melt of amorphous materials, it has been shown experimentally that dynamic rigid clusters form in equilibrium with the liquid and their relaxation behavior determines the kinetic nature of Tg [Stanzione et al, J. Non Cryst Solids 357(2): 311-319 2011]. The fractal clusters of size R ~ 5-60 nm (polystyrene) have relaxation times τ ~ R1.8 (solid-to-liquid). They are analogous to sub critical size embryos during crystallization as the amorphous material tries to crystallize due to the strong intermolecular forces at T < Tm ; they are not related to density fluctuations or surface capillary waves. In free-standing thin films of thickness h, several important events occur: (a) The large clusters with R > h are excluded and the thin films have an average faster relaxation time compared to the bulk; consequently Tg decreases as h decreases. (b) The segmental dynamics at the 1 nm scale are largely not affected by nanoconfinement since Tg is determined only by the cluster dynamics with R >> 1 nm. (c) The mobile layer on the surface of free standing films is due to the presence of smaller clusters on the surface which will disappear with increasing rate of testing. (d) With adhesion to a solid substrate, the surface mobile layer disappears as the surface clusters size grow and the change in Tg is suppressed. (e) Physical aging is controlled by the relaxation of the rigid fractal clusters and in thin films, physical aging will occur more rapidly compared to the bulk. (f) The large effect of molecular weight M on Tg appears to be related to the effect on the cluster size distribution giving smaller clusters and faster relation times with increasing M. These results are in accord with the Twinkling Fractal theory of the glass transition.

  15. Inherent size effects on XANES of nanometer metal clusters: Size-selected platinum clusters on silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.

    2016-12-12

    X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Pt n/SiO 2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O 2 exposure and annealing in H 2. Here, the clusters are found tomore » be stable during deposition and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L 3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.« less

  16. Density functional theory and surface reactivity study of bimetallic AgnYm (n+m = 10) clusters

    NASA Astrophysics Data System (ADS)

    Hussain, Riaz; Hussain, Abdullah Ijaz; Chatha, Shahzad Ali Shahid; Hussain, Riaz; Hanif, Usman; Ayub, Khurshid

    2018-06-01

    Density functional theory calculations have been performed on pure silver (Agn), yttrium (Ym) and bimetallic silver yttrium clusters AgnYm (n + m = 2-10) for reactivity descriptors in order to realize sites for nucleophilic and electrophilic attack. The reactivity descriptors of the clusters, studied as a function of cluster size and shape, reveal the presence of different type of reactive sites in a cluster. The size and shape of the pure silver, yttrium and bimetallic silver yttrium cluster (n = 2-10) strongly influences the number and position of active sites for an electrophilic and/or nucleophilic attack. The trends of reactivities through reactivity descriptors are confirmed through comparison with experimental data for CO binding with silver clusters. Moreover, the adsorption of CO on bimetallic silver yttrium clusters is also evaluated. The trends of binding energies support the reactivity descriptors values. Doping of pure cluster with the other element also influence the hardness, softness and chemical reactivity of the clusters. The softness increases as we increase the number of silver atoms in the cluster, whereas the hardness decreases. The chemical reactivity increases with silver doping whereas it decreases by increasing yttrium concentration. Silver atoms are nucleophilic in small clusters but changed to electrophilic in large clusters.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.

    The stability of tungsten self-interstitial atom (SIA) clusters is studied using first-principles methods. Clusters from one to seven SIAs are systematically explored from 1264 unique configurations. Finite-size effect of the simulation cell is corrected based on the scaling of formation energy versus inverse volume cell. Furthermore, the accuracy of the calculations is improved by treating the 5p semicore states as valence states. Configurations of the three most stable clusters in each cluster size n are presented, which consist of parallel [111] dumbbells. The evolution of these clusters leading to small dislocation loops is discussed. The binding energy of size-n clustersmore » is analyzed relative to an n → (n-1) + 1 dissociation and is shown to increase with size. Extrapolation for n > 7 is presented using a dislocation loop model. In addition, the interaction of these clusters with a substitutional Re, Os, or Ta solute is explored by replacing one of the dumbbells with the solute. Re and Os strongly attract these clusters, but Ta strongly repels. The strongest interaction is found when the solute is located on the periphery of the cluster rather than in the middle. The magnitude of this interaction decreases with cluster size. Empirical fits to describe the trend of the solute binding energy are presented.« less

  18. Small-Scale Drop-Size Variability: Empirical Models for Drop-Size-Dependent Clustering in Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Larsen, Michael L.; Wiscombe, Warren J.

    2005-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, it has been shown in a companion paper that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)), where 0 less than or equals D(r) less than or equals 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and a Poisson distribution of cloud drops, these models illustrate strong drop clustering, especially with larger drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics, including how fast rain can form. For radiative transfer theory, clustering of large drops enhances their impact on the cloud optical path. The clustering phenomenon also helps explain why remotely sensed cloud drop size is generally larger than that measured in situ.

  19. Autophagy selectivity through receptor clustering

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew; Brown, Aidan

    Substrate selectivity in autophagy requires an all-or-none cellular response. We focus on peroxisomes, for which autophagy receptor proteins NBR1 and p62 are well characterized. Using computational models, we explore the hypothesis that physical clustering of autophagy receptor proteins on the peroxisome surface provides an appropriate all-or-none response. We find that larger peroxisomes nucleate NBR1 clusters first, and lose them due to competitive coarsening last, resulting in significant size-selectivity. We then consider a secondary hypothesis that p62 inhibits NBR1 cluster formation. We find that p62 inhibition enhances size-selectivity enough that, even if there is no change of the pexophagy rate, the volume of remaining peroxisomes can significantly decrease. We find that enhanced ubiquitin levels suppress size-selectivity, and that this effect is more pronounced for individual peroxisomes. Sufficient ubiquitin allows receptor clusters to form on even the smallest peroxisomes. We conclude that NBR1 cluster formation provides a viable physical mechanism for all-or-none substrate selectivity in pexophagy. We predict that cluster formation is associated with significant size-selectivity. Now at Simon Fraser University.

  20. Theoretical modelling on thermal expansion of Al, Ag and Cu nanomaterials

    NASA Astrophysics Data System (ADS)

    Manu, Mehul; Dubey, Vikash

    2018-05-01

    A simple theoretical model is developed for the calculating the coefficient of volume thermal expansion (CTE) and volume thermal expansion (VTE) of Al, Ag and Cu nanomaterials by considering the cubo-octahedral structure with the change of temperature and the cluster size. At the room temperature, the coefficient of volume thermal expansion decreases sharply below 20-25 nm and the decrement of the coefficient of volume thermal expansion becomes slower above 20-25 nm. We also saw a variation in the volume thermal expansion with the variation of temperature and cluster size. At a fixed cluster size, the volume thermal expansion increases with an increase of temperature at below the melting temperature and show a linear relation of volume thermal expansion with the temperature. At a constant temperature, the volume thermal expansion decreases rapidly with an increase in cluster size below 20-25 nm and after 20-25 nm the decrement of volume thermal expansion becomes slower with the increase of the size of the cluster. Thermal expansion is due to the anharmonicity of the atom interaction. As the temperature rises the amplitude of crystal lattice vibration increases, but the equilibrium distance shifts as the atom spend more time at distance greater than the original spacing due as the repulsion at short distance greater than the corresponding attraction at farther distance. In considering the cubo- octahedral structure with the cluster order, the model prediction on the CTE and the VTE are in good agreement with the available experimental data which demonstrate the validity of our work.

  1. Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs

    NASA Astrophysics Data System (ADS)

    van der Hofstad, Remco; Kliem, Sandra; van Leeuwaarden, Johan S. H.

    2018-04-01

    Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299-2361, 2012). It was proved that when the degrees obey a power law with exponent τ \\in (3,4), the sequence of clusters ordered in decreasing size and multiplied through by n^{-(τ -2)/(τ -1)} converges as n→ ∞ to a sequence of decreasing non-degenerate random variables. Here, we study the tails of the limit of the rescaled largest cluster, i.e., the probability that the scaling limit of the largest cluster takes a large value u, as a function of u. This extends a related result of Pittel (J Combin Theory Ser B 82(2):237-269, 2001) for the Erdős-Rényi random graph to the setting of rank-1 inhomogeneous random graphs with infinite third moment degrees. We make use of delicate large deviations and weak convergence arguments.

  2. Micron-size hydrogen cluster target for laser-driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Jinno, S.; Kanasaki, M.; Uno, M.; Matsui, R.; Uesaka, M.; Kishimoto, Y.; Fukuda, Y.

    2018-04-01

    As a new laser-driven ion acceleration technique, we proposed a way to produce impurity-free, highly reproducible, and robust proton beams exceeding 100 MeV using a Coulomb explosion of micron-size hydrogen clusters. In this study, micron-size hydrogen clusters were generated by expanding the cooled high-pressure hydrogen gas into a vacuum via a conical nozzle connected to a solenoid valve cooled by a mechanical cryostat. The size distributions of the hydrogen clusters were evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed mathematically based on the Mie scattering theory combined with the Tikhonov regularization method. The maximum size of the hydrogen cluster at 25 K and 6 MPa in the stagnation state was recognized to be 2.15 ± 0.10 μm. The mean cluster size decreased with increasing temperature, and was found to be much larger than that given by Hagena’s formula. This discrepancy suggests that the micron-size hydrogen clusters were formed by the atomization (spallation) of the liquid or supercritical fluid phase of hydrogen. In addition, the density profiles of the gas phase were evaluated for 25 to 80 K at 6 MPa using a Nomarski interferometer. Based on the measurement results and the equation of state for hydrogen, the cluster mass fraction was obtained. 3D particles-in-cell (PIC) simulations concerning the interaction processes of micron-size hydrogen clusters with high power laser pulses predicted the generation of protons exceeding 100 MeV and accelerating in a laser propagation direction via an anisotropic Coulomb explosion mechanism, thus demonstrating a future candidate in laser-driven proton sources for upcoming multi-petawatt lasers.

  3. Properties of Diamond and Diamond-Like Clusters in Nanometric Dimensions

    NASA Technical Reports Server (NTRS)

    Halicioglu, Timur; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    Variations in materials properties of small clusters of nanometric dimensions were investigated. Investigations were carried out for diamond and diamond-like particles in spherical shapes. Calculations were performed for clusters containing over 1000 carbon atoms. Results indicate that as the cluster size diminishes, (i) the average cohesive energy becomes weaker, (ii) the excess surface energy increases, and (iii) the value for stiffness decreases.

  4. Copper cluster size effect in methanol synthesis from CO 2

    DOE PAGES

    Yang, Bing; Liu, Cong; Halder, Avik; ...

    2017-05-08

    Here, size-selected Cu n catalysts ( n = 3, 4, 20) were synthesized on Al 2O 3 thin films using mass-selected cluster deposition. A systematic study of size and support effects was carried out for CO 2 hydrogenation at atmospheric pressure using a combination of in situ grazing incidence X-ray absorption spectroscopy, catalytic activity measurement, and first-principles calculations. The catalytic activity for methanol synthesis is found to strongly vary as a function of the cluster size; the Cu 4/Al 2O 3 catalyst shows the highest turnover rate for CH 3OH production. With only one atom less than Cu 4, Cumore » 3 showed less than 50% activity. Density functional theory calculations predict that the activities of the gas-phase Cu clusters increase as the cluster size decreases; however, the stronger charge transfer interaction with Al 2O 3 support for Cu 3 than for Cu 4 leads to remarkably reduced binding strength between the adsorbed intermediates and supported Cu 3, which subsequently results in a less favorable energetic pathway to transform carbon dioxide to methanol.« less

  5. Cluster-cluster aggregation with particle replication and chemotaxy: a simple model for the growth of animal cells in culture

    NASA Astrophysics Data System (ADS)

    Alves, S. G.; Martins, M. L.

    2010-09-01

    Aggregation of animal cells in culture comprises a series of motility, collision and adhesion processes of basic relevance for tissue engineering, bioseparations, oncology research and in vitro drug testing. In the present paper, a cluster-cluster aggregation model with stochastic particle replication and chemotactically driven motility is investigated as a model for the growth of animal cells in culture. The focus is on the scaling laws governing the aggregation kinetics. Our simulations reveal that in the absence of chemotaxy the mean cluster size and the total number of clusters scale in time as stretched exponentials dependent on the particle replication rate. Also, the dynamical cluster size distribution functions are represented by a scaling relation in which the scaling function involves a stretched exponential of the time. The introduction of chemoattraction among the particles leads to distribution functions decaying as power laws with exponents that decrease in time. The fractal dimensions and size distributions of the simulated clusters are qualitatively discussed in terms of those determined experimentally for several normal and tumoral cell lines growing in culture. It is shown that particle replication and chemotaxy account for the simplest cluster size distributions of cellular aggregates observed in culture.

  6. Sequential desorption energy of hydrogen from nickel clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deepika,; Kumar, Rakesh, E-mail: rakesh@iitrpr.ac.in; R, Kamal Raj.

    2015-06-24

    We report reversible Hydrogen adsorption on Nickel clusters, which act as a catalyst for solid state storage of Hydrogen on a substrate. First-principles technique is employed to investigate the maximum number of chemically adsorbed Hydrogen molecules on Nickel cluster. We observe a maximum of four Hydrogen molecules adsorbed per Nickel atom, but the average Hydrogen molecules adsorbed per Nickel atom decrease with cluster size. The dissociative chemisorption energy per Hydrogen molecule and sequential desorption energy per Hydrogen atom on Nickel cluster is found to decrease with number of adsorbed Hydrogen molecules, which on optimization may help in economical storage andmore » regeneration of Hydrogen as a clean energy carrier.« less

  7. Matilda: A mass filtered nanocluster source

    NASA Astrophysics Data System (ADS)

    Kwon, Gihan

    Cluster science provides a good model system for the study of the size dependence of electronic properties, chemical reactivity, as well as magnetic properties of materials. One of the main interests in cluster science is the nanoscale understanding of chemical reactions and selectivity in catalysis. Therefore, a new cluster system was constructed to study catalysts for applications in renewable energy. Matilda, a nanocluster source, consists of a cluster source and a Retarding Field Analyzer (RFA). A moveable AJA A310 Series 1"-diameter magnetron sputtering gun enclosed in a water cooled aggregation tube served as the cluster source. A silver coin was used for the sputtering target. The sputtering pressure in the aggregation tube was controlled, ranging from 0.07 to 1torr, using a mass flow controller. The mean cluster size was found to be a function of relative partial pressure (He/Ar), sputtering power, and aggregation length. The kinetic energy distribution of ionized clusters was measured with the RFA. The maximum ion energy distribution was 2.9 eV/atom at a zero pressure ratio. At high Ar flow rates, the mean cluster size was 20 ˜ 80nm, and at a 9.5 partial pressure ratio, the mean cluster size was reduced to 1.6nm. Our results showed that the He gas pressure can be optimized to reduce the cluster size variations. Results from SIMION, which is an electron optics simulation package, supported the basic function of an RFA, a three-element lens and the magnetic sector mass filter. These simulated results agreed with experimental data. For the size selection experiment, the channeltron electron multiplier collected ionized cluster signal at different positions during Ag deposition on a TEM grid for four and half hours. The cluster signal was high at the position for neutral clusters, which was not bent by a magnetic field, and the signal decreased rapidly far away from the neutral cluster region. For cluster separation according to mass to charge ratio in a magnetic sector mass filter, the ion energy of the cluster and its distribution must be precisely controlled by acceleration or deceleration. To verify the size separation, a high resolution microscope was required. Matilda provided narrow particle sized distribution from atomic scale to 4nm in size with different pressure ratio without additional mass filter. It is very economical way to produce relatively narrow particle size distribution.

  8. Cellular packing, mechanical stress and the evolution of multicellularity

    NASA Astrophysics Data System (ADS)

    Jacobeen, Shane; Pentz, Jennifer T.; Graba, Elyes C.; Brandys, Colin G.; Ratcliff, William C.; Yunker, Peter J.

    2018-03-01

    The evolution of multicellularity set the stage for sustained increases in organismal complexity1-5. However, a fundamental aspect of this transition remains largely unknown: how do simple clusters of cells evolve increased size when confronted by forces capable of breaking intracellular bonds? Here we show that multicellular snowflake yeast clusters6-8 fracture due to crowding-induced mechanical stress. Over seven weeks ( 291 generations) of daily selection for large size, snowflake clusters evolve to increase their radius 1.7-fold by reducing the accumulation of internal stress. During this period, cells within the clusters evolve to be more elongated, concomitant with a decrease in the cellular volume fraction of the clusters. The associated increase in free space reduces the internal stress caused by cellular growth, thus delaying fracture and increasing cluster size. This work demonstrates how readily natural selection finds simple, physical solutions to spatial constraints that limit the evolution of group size—a fundamental step in the evolution of multicellularity.

  9. Performance of small cluster surveys and the clustered LQAS design to estimate local-level vaccination coverage in Mali.

    PubMed

    Minetti, Andrea; Riera-Montes, Margarita; Nackers, Fabienne; Roederer, Thomas; Koudika, Marie Hortense; Sekkenes, Johanne; Taconet, Aurore; Fermon, Florence; Touré, Albouhary; Grais, Rebecca F; Checchi, Francesco

    2012-10-12

    Estimation of vaccination coverage at the local level is essential to identify communities that may require additional support. Cluster surveys can be used in resource-poor settings, when population figures are inaccurate. To be feasible, cluster samples need to be small, without losing robustness of results. The clustered LQAS (CLQAS) approach has been proposed as an alternative, as smaller sample sizes are required. We explored (i) the efficiency of cluster surveys of decreasing sample size through bootstrapping analysis and (ii) the performance of CLQAS under three alternative sampling plans to classify local VC, using data from a survey carried out in Mali after mass vaccination against meningococcal meningitis group A. VC estimates provided by a 10 × 15 cluster survey design were reasonably robust. We used them to classify health areas in three categories and guide mop-up activities: i) health areas not requiring supplemental activities; ii) health areas requiring additional vaccination; iii) health areas requiring further evaluation. As sample size decreased (from 10 × 15 to 10 × 3), standard error of VC and ICC estimates were increasingly unstable. Results of CLQAS simulations were not accurate for most health areas, with an overall risk of misclassification greater than 0.25 in one health area out of three. It was greater than 0.50 in one health area out of two under two of the three sampling plans. Small sample cluster surveys (10 × 15) are acceptably robust for classification of VC at local level. We do not recommend the CLQAS method as currently formulated for evaluating vaccination programmes.

  10. Thalamic Atrophy Contributes to Low Slow Wave Sleep in Neuromyelitis Optica Spectrum Disorder.

    PubMed

    Su, Lei; Han, Yujuan; Xue, Rong; Wood, Kristofer; Shi, Fu-Dong; Liu, Yaou; Fu, Ying

    2016-12-01

    Slow wave sleep abnormality has been reported in neuromyelitis optica spectrum disorder (NMOSD), but mechanism for such abnormality is unknown. To determine the structural defects in the brain that account for the decrease of slow wave sleep in NMOSD patients. Thirty-three NMOSD patients and 18 matched healthy controls (HC) were enrolled. Polysomnography was used to monitor slow wave sleep and three-dimensional T1-weighted MRIs were obtained to assess the alterations of grey matter volume. The percentage of deep slow wave sleep decreased in 93% NMOSD patients. Compared to HC, a reduction of grey matter volume was found in the bilateral thalamus of patients with a lower percentage of slow wave sleep (FWE corrected at cluster-level, p < 0.05, cluster size > 400 voxels). Furthermore, the right thalamic fraction was positively correlated with the decrease in the percentage of slow wave sleep in NMOSD patients (p < 0.05, FDR corrected, cluster size > 200 voxels). Our study identified that thalamic atrophy is associated with the decrease of slow wave sleep in NMOSD patients. Further studies should evaluate whether neurotransmitters or hormones which stem from thalamus are involved in the decrease of slow wave sleep.

  11. The effect of clustering on lot quality assurance sampling: a probabilistic model to calculate sample sizes for quality assessments

    PubMed Central

    2013-01-01

    Background Traditional Lot Quality Assurance Sampling (LQAS) designs assume observations are collected using simple random sampling. Alternatively, randomly sampling clusters of observations and then individuals within clusters reduces costs but decreases the precision of the classifications. In this paper, we develop a general framework for designing the cluster(C)-LQAS system and illustrate the method with the design of data quality assessments for the community health worker program in Rwanda. Results To determine sample size and decision rules for C-LQAS, we use the beta-binomial distribution to account for inflated risk of errors introduced by sampling clusters at the first stage. We present general theory and code for sample size calculations. The C-LQAS sample sizes provided in this paper constrain misclassification risks below user-specified limits. Multiple C-LQAS systems meet the specified risk requirements, but numerous considerations, including per-cluster versus per-individual sampling costs, help identify optimal systems for distinct applications. Conclusions We show the utility of C-LQAS for data quality assessments, but the method generalizes to numerous applications. This paper provides the necessary technical detail and supplemental code to support the design of C-LQAS for specific programs. PMID:24160725

  12. The effect of clustering on lot quality assurance sampling: a probabilistic model to calculate sample sizes for quality assessments.

    PubMed

    Hedt-Gauthier, Bethany L; Mitsunaga, Tisha; Hund, Lauren; Olives, Casey; Pagano, Marcello

    2013-10-26

    Traditional Lot Quality Assurance Sampling (LQAS) designs assume observations are collected using simple random sampling. Alternatively, randomly sampling clusters of observations and then individuals within clusters reduces costs but decreases the precision of the classifications. In this paper, we develop a general framework for designing the cluster(C)-LQAS system and illustrate the method with the design of data quality assessments for the community health worker program in Rwanda. To determine sample size and decision rules for C-LQAS, we use the beta-binomial distribution to account for inflated risk of errors introduced by sampling clusters at the first stage. We present general theory and code for sample size calculations.The C-LQAS sample sizes provided in this paper constrain misclassification risks below user-specified limits. Multiple C-LQAS systems meet the specified risk requirements, but numerous considerations, including per-cluster versus per-individual sampling costs, help identify optimal systems for distinct applications. We show the utility of C-LQAS for data quality assessments, but the method generalizes to numerous applications. This paper provides the necessary technical detail and supplemental code to support the design of C-LQAS for specific programs.

  13. Phobos MRO/CRISM visible and near-infrared (0.5-2.5 μm) spectral modeling

    NASA Astrophysics Data System (ADS)

    Pajola, Maurizio; Roush, Ted; Dalle Ore, Cristina; Marzo, Giuseppe A.; Simioni, Emanuele

    2018-05-01

    This paper focuses on the spectral modeling of the surface of Phobos in the wavelength range between 0.5 and 2.5 μm. We exploit the Phobos Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars (MRO/CRISM) dataset and extend the study area presented by Fraeman et al. (2012) including spectra from nearly the entire surface observed. Without a priori selection of surface locations we use the unsupervised K-means partitioning algorithm developed by Marzo et al. (2006) to investigate the spectral variability across Phobos surface. The statistical partitioning identifies seven clusters. We investigate the compositional information contained within the average spectra of four clusters using the radiative transfer model of Shkuratov et al. (1999). We use optical constants of Tagish Lake meteorite (TL), from Roush (2003), and pyroxene glass (PM80), from Jaeger et al. (1994) and Dorschner et al. (1995), as previously suggested by Pajola et al. (2013) as inputs for the calculations. The model results show good agreement in slope when compared to the averages of the CRISM spectral clusters. In particular, the best fitting model of the cluster with the steepest spectral slope yields relative abundances that are equal to those of Pajola et al. (2013), i.e. 20% PM80 and 80% TL, but grain sizes that are 12 μm smaller for PM80 and 4 μm smaller for TL (the grain sizes are 11 μm for PM80 and 20 μm for TL in Pajola et al. (2013), respectively). This modest discrepancy may arise from the fact that the areas observed by CRISM and those analyzed in Pajola et al. (2013) are on opposite locations on Phobos and are characterized by different morphological and weathering settings. Instead, as the clusters spectral slopes decrease, the best fits obtained show trends related to both relative abundance and grain size that is not observed for the cluster with the steepest spectral slope. With a decrease in slope there is general increase of relative percentage of PM80 from 12% to 18% and the associated decrease of TL from 88% to 82%. Simultaneously the PM80 grain sizes decrease from 9 to 5 μm and TL grain sizes increase from 13 to 16 μm. The best fitting models show relative abundances and grain sizes that partially overlap. This supports the hypothesis that from a compositional perspective the transition between the highest and lowest slopes on Phobos is subtle, and it is characterized by a smooth change of relative abundances and grain sizes, instead of a distinct dichotomy between the areas.

  14. Effect of post-irradiation annealing on the irradiated microstructure of neutron-irradiated 304L stainless steel

    NASA Astrophysics Data System (ADS)

    Jiao, Z.; Hesterberg, J.; Was, G. S.

    2018-03-01

    Post-irradiation annealing was performed on a 304L SS that was irradiated to 5.9 dpa in the Barsebäck 1 BWR reactor. Evolution of dislocation loops, radiation-induced solute clusters and radiation-induced segregation at the grain boundary was investigated following thermal annealing at 500 °C and 550 °C up to 20 h. Dislocation loops, Ni-Si and Al-Cu clusters, and enrichment of Ni, Si and depletion of Cr at the grain boundary were observed in the as-irradiated condition. Dislocation loop size did not change significantly after annealing at 550 °C for 5 h but the loop number density decreased considerably and loops mostly disappeared after annealing at 550 °C for 20 h. The average size of Ni-Si and Al-Cu clusters increased while the number density decreased with annealing. The increase in cluster size was due to diffusion of solutes rather than cluster coarsening. Significant volume fractions of Ni-Si and Al-Cu clusters still remained after annealing at 550 °C for 20 h. Substantial recovery of Cr and Ni at the grain boundary was observed after annealing at 550 °C for 5 h but neither Cr nor Ni was fully recovered after 20 h. Annihilation of dislocation loops, driven by the thermal vacancy concentration gradient caused by the strain field and stacking fault associated with the loops appeared to be faster than annihilation of solute clusters and recovery of Ni and Si at the grain boundary, both of which are driven by the solute concentration gradients.

  15. Growth of Pd Nanoclusters on Single-Layer Graphene on Cu(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soy, Esin; Guisinger, Nathan P.; Trenary, Michael

    We report scanning tunneling microscopy results on the nucleation and growth of Pd nanoclusters on a single layer of graphene on the Cu(111) surface. The shape, organization, and structural evolution of the Pd nanoclusters were investigated using two different growth methods, continuous and stepwise. The size and shape of the formed nanoclusters were found to greatly depend on the growth technique used. The size and density of spherical Pd nanoclusters increased with increasing coverage during stepwise deposition as a result of coarsening of existing clusters and continued nucleation of new clusters. In contrast, continuous deposition gave rise to well-defined triangularmore » Pd clusters as a result of anisotropic growth on the graphene surface. Exposure to ethylene caused a decrease in the size of the Pd clusters. As a result, this is attributed to the exothermic formation of ethylidyne on the cluster surfaces and an accompanying weakening of the Pd–Pd bonding.« less

  16. Growth of Pd Nanoclusters on Single-Layer Graphene on Cu(111)

    DOE PAGES

    Soy, Esin; Guisinger, Nathan P.; Trenary, Michael

    2017-07-05

    We report scanning tunneling microscopy results on the nucleation and growth of Pd nanoclusters on a single layer of graphene on the Cu(111) surface. The shape, organization, and structural evolution of the Pd nanoclusters were investigated using two different growth methods, continuous and stepwise. The size and shape of the formed nanoclusters were found to greatly depend on the growth technique used. The size and density of spherical Pd nanoclusters increased with increasing coverage during stepwise deposition as a result of coarsening of existing clusters and continued nucleation of new clusters. In contrast, continuous deposition gave rise to well-defined triangularmore » Pd clusters as a result of anisotropic growth on the graphene surface. Exposure to ethylene caused a decrease in the size of the Pd clusters. As a result, this is attributed to the exothermic formation of ethylidyne on the cluster surfaces and an accompanying weakening of the Pd–Pd bonding.« less

  17. Performance of small cluster surveys and the clustered LQAS design to estimate local-level vaccination coverage in Mali

    PubMed Central

    2012-01-01

    Background Estimation of vaccination coverage at the local level is essential to identify communities that may require additional support. Cluster surveys can be used in resource-poor settings, when population figures are inaccurate. To be feasible, cluster samples need to be small, without losing robustness of results. The clustered LQAS (CLQAS) approach has been proposed as an alternative, as smaller sample sizes are required. Methods We explored (i) the efficiency of cluster surveys of decreasing sample size through bootstrapping analysis and (ii) the performance of CLQAS under three alternative sampling plans to classify local VC, using data from a survey carried out in Mali after mass vaccination against meningococcal meningitis group A. Results VC estimates provided by a 10 × 15 cluster survey design were reasonably robust. We used them to classify health areas in three categories and guide mop-up activities: i) health areas not requiring supplemental activities; ii) health areas requiring additional vaccination; iii) health areas requiring further evaluation. As sample size decreased (from 10 × 15 to 10 × 3), standard error of VC and ICC estimates were increasingly unstable. Results of CLQAS simulations were not accurate for most health areas, with an overall risk of misclassification greater than 0.25 in one health area out of three. It was greater than 0.50 in one health area out of two under two of the three sampling plans. Conclusions Small sample cluster surveys (10 × 15) are acceptably robust for classification of VC at local level. We do not recommend the CLQAS method as currently formulated for evaluating vaccination programmes. PMID:23057445

  18. Automated thematic mapping and change detection of ERTS-A images

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. In the first part of the investigation, spatial and spectral features were developed which were employed to automatically recognize terrain features through a clustering algorithm. In this part of the investigation, the size of the cell which is the number of digital picture elements used for computing the spatial and spectral features was varied. It was determined that the accuracy of terrain recognition decreases slowly as the cell size is reduced and coincides with increased cluster diffuseness. It was also proven that a cell size of 17 x 17 pixels when used with the clustering algorithm results in high recognition rates for major terrain classes. ERTS-1 data from five diverse geographic regions of the United States were processed through the clustering algorithm with 17 x 17 pixel cells. Simple land use maps were produced and the average terrain recognition accuracy was 82 percent.

  19. New Scenario of Dynamical Heterogeneity in Supercooled Liquid and Glassy States of 2D Monatomic System.

    PubMed

    Van Hoang, Vo; Teboul, Victor; Odagaki, Takashi

    2015-12-24

    Via analysis of spatiotemporal arrangements of atoms based on their dynamics in supercooled liquid and glassy states of a 2D monatomic system with a double-well Lennard-Jones-Gauss (LJG) interaction potential, we find a new scenario of dynamical heterogeneity. Atoms with the same or very close mobility have a tendency to aggregate into clusters. The number of atoms with high mobility (and size of their clusters) increases with decreasing temperature passing over a maximum before decreasing down to zero. Position of the peak moves toward a lower temperature if mobility of atoms in clusters is lower together with an enhancement of height of the peak. In contrast, the number of atoms with very low mobility or solidlike atoms (and size of their clusters) has a tendency to increase with decreasing temperature and then it suddenly increases in the vicinity of the glass transition temperature leading to the formation of a glassy state. A sudden increase in the number of strongly correlated solidlike atoms in the vicinity of a glass transition temperature (Tg) may be an origin of a drastical increase in viscosity of the glass-forming systems approaching the glass transition. In fact, we find that the diffusion coefficient decays exponentially with a fraction of solidlike atoms exhibiting a sudden decrease in the vicinity of the glass transition region.

  20. Controlled deposition of size-selected MnO nanoparticle thin films for water splitting applications: reduction of onset potential with particle size

    NASA Astrophysics Data System (ADS)

    Khojasteh, Malak; Haghighat, Shima; Dawlaty, Jahan M.; Kresin, Vitaly V.

    2018-05-01

    Emulating water oxidation catalyzed by the oxomanganese clusters in the photosynthetic apparatus of plants has been a long-standing scientific challenge. The use of manganese oxide films has been explored, but while they may be catalytically active on the surface, their poor conductivity hinders their overall performance. We have approached this problem by using manganese oxide nanoparticles with sizes of 4, 6 and 8 nm, produced in a sputter-gas-aggregation source and soft-landed onto conducting electrodes. The mass loading of these catalytic particles was kept constant and corresponded to 45%–80% of a monolayer coverage. Measurements of the water oxidation threshold revealed that the onset potential decreases significantly with decreasing particle size. The final stoichiometry of the catalytically active nanoparticles, after exposure to air, was identified as predominantly MnO. The ability of such a sub-monolayer film to lower the reaction threshold implies that the key role is played by intrinsic size effects, i.e., by changes in the electronic properties and surface fields of the nanoparticles with decreasing size. We anticipate that this work will serve to bridge the knowledge gap between bulk thick film electrocatalysts and natural photosynthetic molecular-cluster complexes.

  1. Fischer-Tropsch Cobalt Catalyst Improvements with the Presence of TiO2, La2O3, and ZrO2 on an Alumina Support

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer Lindsey Suder

    2012-01-01

    The objective of this study was to evaluate the effect of titanium oxide, lanthanum oxide, and zirconium oxide on alumina supported cobalt catalysts. The hypothesis was that the presence of lanthanum oxide, titanium oxide, and zirconium oxide would reduce the interaction between cobalt and the alumina support. This was of interest because an optimized weakened interaction could lead to the most advantageous cobalt dispersion, particle size, and reducibility. The presence of these oxides on the support were investigated using a wide range of characterization techniques such as SEM, nitrogen adsorption, x-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed reduction after reduction (TPR-AR), and hydrogen chemisorptions/pulse reoxidation. Results indicated that both La2O3 and TiO2 doped supports facilitated the reduction of cobalt oxide species in reference to pure alumina supported cobalt catalysts, however further investigation is needed to determine the effect of ZrO2 on the reduction profile. Results showed an increased corrected cluster size for all three doped supported catalysts in comparison to their reference catalysts. The increase in reduction and an increase in the cluster size led to the conclusion that the support-metal interaction weakened by the addition of TiO2 and La2O3. It is also likely that the interaction decreased upon presence of ZrO2 on the alumina, but further research is necessary. Preliminary results have indicated that the alumina-supported catalysts with titanium oxide and lanthanum oxide present are of interest because of the weakened cobalt support interaction. These catalysts showed an increased extent of reduction, therefore more metallic cobalt is present on the support. However, whether or not there is more cobalt available to participate in the Fischer-Tropsch synthesis reaction (cobalt surface atoms) depends also on the cluster size. On one hand, increasing cluster size alone tends to decrease the active site density; on the other hand, by increasing the size of the cobalt clusters, there is less likelihood of forming oxidized cobalt complexes (cobalt aluminate) during Fischer-Tropsch synthesis. Thus, from the standpoint of stability, improving the extent of reduction while increasing the particle size slightly may be beneficial for maintaining the sites, even if there is a slight decrease in overall initial active site density.

  2. Cascades on a class of clustered random networks

    NASA Astrophysics Data System (ADS)

    Hackett, Adam; Melnik, Sergey; Gleeson, James P.

    2011-05-01

    We present an analytical approach to determining the expected cascade size in a broad range of dynamical models on the class of random networks with arbitrary degree distribution and nonzero clustering introduced previously in [M. E. J. Newman, Phys. Rev. Lett. PRLTAO0031-900710.1103/PhysRevLett.103.058701103, 058701 (2009)]. A condition for the existence of global cascades is derived as well as a general criterion that determines whether increasing the level of clustering will increase, or decrease, the expected cascade size. Applications, examples of which are provided, include site percolation, bond percolation, and Watts’ threshold model; in all cases analytical results give excellent agreement with numerical simulations.

  3. Maintenance of Velocity and Power With Cluster Sets During High-Volume Back Squats.

    PubMed

    Tufano, James J; Conlon, Jenny A; Nimphius, Sophia; Brown, Lee E; Seitz, Laurent B; Williamson, Bryce D; Haff, G Gregory

    2016-10-01

    To compare the effects of a traditional set structure and 2 cluster set structures on force, velocity, and power during back squats in strength-trained men. Twelve men (25.8 ± 5.1 y, 1.74 ± 0.07 m, 79.3 ± 8.2 kg) performed 3 sets of 12 repetitions at 60% of 1-repetition maximum using 3 different set structures: traditional sets (TS), cluster sets of 4 (CS4), and cluster sets of 2 (CS2). When averaged across all repetitions, peak velocity (PV), mean velocity (MV), peak power (PP), and mean power (MP) were greater in CS2 and CS4 than in TS (P < .01), with CS2 also resulting in greater values than CS4 (P < .02). When examining individual sets within each set structure, PV, MV, PP, and MP decreased during the course of TS (effect sizes 0.28-0.99), whereas no decreases were noted during CS2 (effect sizes 0.00-0.13) or CS4 (effect sizes 0.00-0.29). These results demonstrate that CS structures maintain velocity and power, whereas TS structures do not. Furthermore, increasing the frequency of intraset rest intervals in CS structures maximizes this effect and should be used if maximal velocity is to be maintained during training.

  4. The effects of charge, polymerization, and cluster size on the diffusivity of dissolved Si species in pore water

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tadashi; Sakuma, Hiroshi

    2018-03-01

    Silicon (Si) is the most abundant cation in crustal rocks. The charge and degree of polymerization of dissolved Si significantly change depending on solution pH and Si concentration. We used molecular dynamics (MD) simulations to predict the self-diffusion coefficients of dissolved Si, DSi, for 15 monomeric and polymeric species at ambient temperature. The results showed that DSi decreased with increasing negative charge and increasing degree of polymerization. The relationship between DSi and charge (Z) can be expressed by DSi/10-6 = 2.0 + 9.8e0.47Z, and that between DSi and number of polymerization (NSi) by DSi/10-6 = 9.7/NSi0.56. The results also revealed that multiple Si molecules assembled into a cluster and D decreased as the cluster size increased. Experiments to evaluate the diffusivity of Si in pore water revealed that the diffusion coefficient decreased with increasing Si concentration, a result consistent with the MD simulations. Simulation results can now be used to quantitatively assess water-rock interactions and water-concrete reactions over a wide range of environmentally relevant conditions.

  5. Possibility of Exciton Mediated Superconductivity in Nano-Sized Sn/Si Core-Shell Clusters: A Process Technology towards Heterogeneous Material in Nano-Scale

    NASA Astrophysics Data System (ADS)

    Kurokawa, Yuichiro; Hihara, Takehiko; Ichinose, Ikuo; Sumiyama, Kenji

    2012-07-01

    We have produced Sn/Si core-shell cluster assemblies by a plasma-gas-condensation cluster beam deposition apparatus. For the sample with Si content = 12 at. %, the temperature dependence of electrical resistivity exhibits a metallic behavior above 10 K and the onset of superconducting transition below 6.1 K. With decreasing temperature, the thermomagnetic curve for the sample with Si content = 8 at. % begins to decrease steadily toward negative value below 7.7 K, indicating the Meissner effect. An increase in the transition temperature, TC is attributable to exciton-type superconductivity.

  6. Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection

    PubMed Central

    Liu, Wenfen

    2017-01-01

    Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight. PMID:29312447

  7. Structural and Dynamical Properties of Alkaline Earth Metal Halides in Supercritical Water: Effect of Ion Size and Concentration.

    PubMed

    Keshri, Sonanki; Tembe, B L

    2017-11-22

    Constant temperature-constant pressure molecular dynamics simulations have been performed for aqueous alkaline earth metal chloride [M 2+ -Cl - (M = Mg, Ca, Sr, and Ba)] solutions over a wide range of concentrations (0.27-5.55 m) in supercritical (SC) and ambient conditions to investigate their structural and dynamical properties. A strong influence of the salt concentration is observed on the ion-ion pair correlation functions in both ambient and SC conditions. In SC conditions, significant clustering is observed in the 0.27 m solution, whereas the reverse situation is observed at room temperature and this is also supported by the residence times of the clusters. The concentration and ion size (cation size) seem to have opposite effects on the average number of hydrogen bonds. The simulation results show that the self-diffusion coefficients of water, cations, and the chloride ion increase with increasing temperature, whereas they decrease with increasing salt concentration. The cluster size distribution shows a strong density dependence in both ambient and SC conditions. In SC conditions, cluster sizes display a near-Gaussian distribution, whereas the distribution decays monotonically in ambient conditions.

  8. Delineation of gravel-bed clusters via factorial kriging

    NASA Astrophysics Data System (ADS)

    Wu, Fu-Chun; Wang, Chi-Kuei; Huang, Guo-Hao

    2018-05-01

    Gravel-bed clusters are the most prevalent microforms that affect local flows and sediment transport. A growing consensus is that the practice of cluster delineation should be based primarily on bed topography rather than grain sizes. Here we present a novel approach for cluster delineation using patch-scale high-resolution digital elevation models (DEMs). We use a geostatistical interpolation method, i.e., factorial kriging, to decompose the short- and long-range (grain- and microform-scale) DEMs. The required parameters are determined directly from the scales of the nested variograms. The short-range DEM exhibits a flat bed topography, yet individual grains are sharply outlined, making the short-range DEM a useful aid for grain segmentation. The long-range DEM exhibits a smoother topography than the original full DEM, yet groupings of particles emerge as small-scale bedforms, making the contour percentile levels of the long-range DEM a useful tool for cluster identification. Individual clusters are delineated using the segmented grains and identified clusters via a range of contour percentile levels. Our results reveal that the density and total area of delineated clusters decrease with increasing contour percentile level, while the mean grain size of clusters and average size of anchor clast (i.e., the largest particle in a cluster) increase with the contour percentile level. These results support the interpretation that larger particles group as clusters and protrude higher above the bed than other smaller grains. A striking feature of the delineated clusters is that anchor clasts are invariably greater than the D90 of the grain sizes even though a threshold anchor size was not adopted herein. The average areal fractal dimensions (Hausdorff-Besicovich dimensions of the projected areas) of individual clusters, however, demonstrate that clusters delineated with different contour percentile levels exhibit similar planform morphologies. Comparisons with a compilation of existing field data show consistency with the cluster properties documented in a wide variety of settings. This study thus points toward a promising, alternative DEM-based approach to characterizing sediment structures in gravel-bed rivers.

  9. A Theoretical Study of Structural, Electronic and Vibrational Properties of Small Fluoride Clusters

    NASA Astrophysics Data System (ADS)

    Waters, Kevin; Pandey, Ratnesh; Nigam, Sandeep; He, Haiying; Pingle, Subhash; Pandey, Avinash; Pandey, Ravindra

    2014-03-01

    Alkaline earth metal fluorides are an interesting family of ionic crystals having a wide range of applications in solid state lasers, luminescence, scintillators, to name just a few. In this work, small stoichiometric clusters of (MF2)n (M = Mg, Ca Sr, Ba, n =1-6) were studied for structural, vibrational and electronic properties using first-principles methods based on density functional theory. A clear trend of structural and electronic structure evolution was found for all the alkaline earth metal fluorides when the cluster size n increases from 1 to 6. Our study reveals that these fluoride clusters mimic the bulk-like behavior at the very small size. Among the four series of metal fluorides, however, (MgF2)n clusters stands out to be different in its preference of equilibrium structures owing to the much smaller ionic radius of Mg and the higher degree of covalency in the Mg-F bonding. The calculated binding energy, highest stretching frequency, ionization potential, and HOMO-LUMO gap decrease from MgF2 to BaF2 for the same cluster size. These variations are explained in terms of the change in the ionic radius and the basicity of the metal ions.

  10. Characteristics of airflow and particle deposition in COPD current smokers

    NASA Astrophysics Data System (ADS)

    Zou, Chunrui; Choi, Jiwoong; Haghighi, Babak; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2017-11-01

    A recent imaging-based cluster analysis of computed tomography (CT) lung images in a chronic obstructive pulmonary disease (COPD) cohort identified four clusters, viz. disease sub-populations. Cluster 1 had relatively normal airway structures; Cluster 2 had wall thickening; Cluster 3 exhibited decreased wall thickness and luminal narrowing; Cluster 4 had a significant decrease of luminal diameter and a significant reduction of lung deformation, thus having relatively low pulmonary functions. To better understand the characteristics of airflow and particle deposition in these clusters, we performed computational fluid and particle dynamics analyses on representative cluster patients and healthy controls using CT-based airway models and subject-specific 3D-1D coupled boundary conditions. The results show that particle deposition in central airways of cluster 4 patients was noticeably increased especially with increasing particle size despite reduced vital capacity as compared to other clusters and healthy controls. This may be attributable in part to significant airway constriction in cluster 4. This study demonstrates the potential application of cluster-guided CFD analysis in disease populations. NIH Grants U01HL114494 and S10-RR022421, and FDA Grant U01FD005837.

  11. Mechanisms contributing to cluster formation in the inferior olivary nucleus in brainstem slices from postnatal mice

    PubMed Central

    Kølvraa, Mathias; Müller, Felix C; Jahnsen, Henrik; Rekling, Jens C

    2014-01-01

    Abstract The inferior olivary nucleus (IO) in in vitro slices from postnatal mice (P5.5–P15.5) spontaneously generates clusters of neurons with synchronous calcium transients, and intracellular recordings from IO neurons suggest that electrical coupling between neighbouring IO neurons may serve as a synchronizing mechanism. Here, we studied the cluster-forming mechanism and find that clusters overlap extensively with an overlap distribution that resembles the distribution for a random overlap model. The average somatodendritic field size of single curly IO neurons was ∼6400 μm2, which is slightly smaller than the average IO cluster size. Eighty-seven neurons with overlapping dendrites were estimated to be contained in the principal olive mean cluster size, and about six non-overlapping curly IO neurons could be contained within the largest clusters. Clusters could also be induced by iontophoresis with glutamate. Induced clusters were inhibited by tetrodotoxin, carbenoxelone and 18β-glycyrrhetinic acid, suggesting that sodium action potentials and electrical coupling are involved in glutamate-induced cluster formation, which could also be induced by activation of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Spikelets and a small transient depolarizing response were observed during glutamate-induced cluster formation. Calcium transients spread with decreasing velocity during cluster formation, and somatic action potentials and cluster formation are accompanied by large dendritic calcium transients. In conclusion, cluster formation depends on gap junctions, sodium action potentials and spontaneous clusters occur randomly throughout the IO. The relative slow signal spread during cluster formation, combined with a strong dendritic influx of calcium, may signify that active dendritic properties contribute to cluster formation. PMID:24042500

  12. Changing cluster composition in cluster randomised controlled trials: design and analysis considerations

    PubMed Central

    2014-01-01

    Background There are many methodological challenges in the conduct and analysis of cluster randomised controlled trials, but one that has received little attention is that of post-randomisation changes to cluster composition. To illustrate this, we focus on the issue of cluster merging, considering the impact on the design, analysis and interpretation of trial outcomes. Methods We explored the effects of merging clusters on study power using standard methods of power calculation. We assessed the potential impacts on study findings of both homogeneous cluster merges (involving clusters randomised to the same arm of a trial) and heterogeneous merges (involving clusters randomised to different arms of a trial) by simulation. To determine the impact on bias and precision of treatment effect estimates, we applied standard methods of analysis to different populations under analysis. Results Cluster merging produced a systematic reduction in study power. This effect depended on the number of merges and was most pronounced when variability in cluster size was at its greatest. Simulations demonstrate that the impact on analysis was minimal when cluster merges were homogeneous, with impact on study power being balanced by a change in observed intracluster correlation coefficient (ICC). We found a decrease in study power when cluster merges were heterogeneous, and the estimate of treatment effect was attenuated. Conclusions Examples of cluster merges found in previously published reports of cluster randomised trials were typically homogeneous rather than heterogeneous. Simulations demonstrated that trial findings in such cases would be unbiased. However, simulations also showed that any heterogeneous cluster merges would introduce bias that would be hard to quantify, as well as having negative impacts on the precision of estimates obtained. Further methodological development is warranted to better determine how to analyse such trials appropriately. Interim recommendations include avoidance of cluster merges where possible, discontinuation of clusters following heterogeneous merges, allowance for potential loss of clusters and additional variability in cluster size in the original sample size calculation, and use of appropriate ICC estimates that reflect cluster size. PMID:24884591

  13. Simultaneous contrast: evidence from licking microstructure and cross-solution comparisons.

    PubMed

    Dwyer, Dominic M; Lydall, Emma S; Hayward, Andrew J

    2011-04-01

    The microstructure of rats' licking responses was analyzed to investigate both "classic" simultaneous contrast (e.g., Flaherty & Largen, 1975) and a novel discrete-trial contrast procedure where access to an 8% test solution of sucrose was preceded by a sample of either 2%, 8%, or 32% sucrose (Experiments 1 and 2, respectively). Consumption of a given concentration of sucrose was higher when consumed alongside a low rather than high concentration comparison solution (positive contrast) and consumption of a given concentration of sucrose was lower when consumed alongside a high rather than a low concentration comparison solution (negative contrast). Furthermore, positive contrast increased the size of lick clusters while negative contrast decreased the size of lick clusters. Lick cluster size has a positive monotonic relationship with the concentration of palatable solutions and so positive and negative contrasts produced changes in lick cluster size that were analogous to raising or lowering the concentration of the test solution respectively. Experiment 3 utilized the discrete-trial procedure and compared contrast between two solutions of the same type (sucrose-sucrose or maltodextrin-maltodextrin) or contrast across solutions (sucrose-maltodextrin or maltodextrin-sucrose). Contrast effects on consumption were present, but reduced in size, in the cross-solution conditions. Moreover, lick cluster sizes were not affected at all by cross-solution contrasts as they were by same-solution contrasts. These results are consistent with the idea that simultaneous contrast effects depend, at least partially, on sensory mechanisms.

  14. Melting of size-selected gallium clusters with 60-183 atoms.

    PubMed

    Pyfer, Katheryne L; Kafader, Jared O; Yalamanchali, Anirudh; Jarrold, Martin F

    2014-07-10

    Heat capacities have been measured as a function of temperature for size-selected gallium cluster cations with between 60 and 183 atoms. Almost all clusters studied show a single peak in the heat capacity that is attributed to a melting transition. The peaks can be fit by a two-state model incorporating only fully solid-like and fully liquid-like species, and hence no partially melted intermediates. The exceptions are Ga90(+), which does not show a peak, and Ga80(+) and Ga81(+), which show two peaks. For the clusters with two peaks, the lower temperature peak is attributed to a structural transition. The melting temperatures for clusters with less than 50 atoms have previously been shown to be hundreds of degrees above the bulk melting point. For clusters with more than 60 atoms the melting temperatures decrease, approaching the bulk value (303 K) at around 95 atoms, and then show several small upward excursions with increasing cluster size. A plot of the latent heat against the entropy change for melting reveals two groups of clusters: the latent heats and entropy changes for clusters with less than 94 atoms are distinct from those for clusters with more than 93 atoms. This observation suggests that a significant change in the nature of the bonding or the structure of the clusters occurs at 93-94 atoms. Even though the melting temperatures are close to the bulk value for the larger clusters studied here, the latent heats and entropies of melting are still far from the bulk values.

  15. Theoretical characterization on the size-dependent electron and hole trapping activity of chloride-passivated CdSe nanoclusters

    NASA Astrophysics Data System (ADS)

    Cui, Yingqi; Cui, Xianhui; Zhang, Li; Xie, Yujuan; Yang, Mingli

    2018-04-01

    Ligand passivation is often used to suppress the surface trap states of semiconductor quantum dots (QDs) for their continuous photoluminescence output. The suppression process is related to the electrophilic/nucleophilic activity of surface atoms that varies with the structure and size of QD and the electron donating/accepting nature of ligand. Based on first-principles-based descriptors and cluster models, the electrophilic/nucleophilic activities of bare and chloride-coated CdSe clusters were studied to reveal the suppression mechanism of Cl-passivated QDs and compared to experimental observations. The surface atoms of bare clusters have higher activity than inner atoms and their activity decreases with cluster size. In the ligand-coated clusters, the Cd atom remains as the electrophilic site, while the nucleophilic site of Se atoms is replaced by Cl atoms. The activities of Cd and Cl atoms in the coated clusters are, however, remarkably weaker than those in bare clusters. Cluster size, dangling atoms, ligand coverage, electronegativity of ligand atoms, and solvent (water) were found to have considerable influence on the activity of surface atoms. The suppression of surface trap states in Cl-passivated QDs was attributed to the reduction of electrophilic/nucleophilic activity of Cd/Se/Cl atoms. Both saturation to under-coordinated surface atoms and proper selection for the electron donating/accepting strength of ligands are crucial for eliminating the charge carrier traps. Our calculations predicted a similar suppressing effect of chloride ligands with experiments and provided a simple but effective approach to assess the charge carrier trapping behaviors of semiconductor QDs.

  16. Atomic dynamics and the problem of the structural stability of free clusters of solidified inert gases

    NASA Astrophysics Data System (ADS)

    Verkhovtseva, É. T.; Gospodarev, I. A.; Grishaev, A. V.; Kovalenko, S. I.; Solnyshkin, D. D.; Syrkin, E. S.; Feodos'ev, S. B.

    2003-05-01

    The dependence of the rms amplitudes of atoms in free clusters of solidified inert gases on the cluster size is investigated theoretically and experimentally. Free clusters are produced by homogeneous nucleation in an adiabatically expanding supersonic stream. Electron diffraction is used to measure the rms amplitudes of the atoms; the Jacobi-matrix method is used for theoretical calculations. A series of distinguishing features of the atomic dynamics of microclusters was found. This was necessary to determine the character of the formation and the stability conditions of the crystal structure. It wass shown that for clusters consisting of less than N˜103 atoms, as the cluster size decreases, the rms amplitudes grow much more rapidly than expected from the increase in the specific contribution of the surface. It is also established that an fcc structure of a free cluster, as a rule, contains twinning defects (nuclei of an hcp phase). One reason for the appearance of such defects is the so-called vertex instability (anomalously large oscillation amplitudes) of the atoms in coordination spheres.

  17. Modelling clustering of vertically aligned carbon nanotube arrays.

    PubMed

    Schaber, Clemens F; Filippov, Alexander E; Heinlein, Thorsten; Schneider, Jörg J; Gorb, Stanislav N

    2015-08-06

    Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications.

  18. Effects of Discrete Charge Clustering in Simulations of Charged Interfaces.

    PubMed

    Grime, John M A; Khan, Malek O

    2010-10-12

    A system of counterions between charged surfaces is investigated, with the surfaces represented by uniform charged planes and three different arrangements of discrete surface charges - an equispaced grid and two different clustered arrangements. The behaviors of a series of systems with identical net surface charge density are examined, with particular emphasis placed on the long ranged corrections via the method of "charged slabs" and the effects of the simulation cell size. Marked differences are observed in counterion distributions and the osmotic pressure dependent on the particular representation of the charged surfaces; the uniformly charged surfaces and equispaced grids of discrete charge behave in a broadly similar manner, but the clustered systems display a pronounced decrease in osmotic pressure as the simulation size is increased. The influence of the long ranged correction is shown to be minimal for all but the very smallest of system sizes.

  19. Efficient Decarbonylation of Furfural to Furan Catalyzed by Zirconia-Supported Palladium Clusters with Low Atomicity.

    PubMed

    Ishida, Tamao; Kume, Kurumi; Kinjo, Kota; Honma, Tetsuo; Nakada, Kengo; Ohashi, Hironori; Yokoyama, Takushi; Hamasaki, Akiyuki; Murayama, Haruno; Izawa, Yusuke; Utsunomiya, Masaru; Tokunaga, Makoto

    2016-12-20

    Decarbonylation of furfural to furan was efficiently catalyzed by ZrO 2 -supported Pd clusters in the liquid phase under a N 2 atmosphere without additives. Although Pd/C and Pd/Al 2 O 3 have frequently been used for decarbonylation, Pd/ZrO 2 exhibited superior catalytic performance compared with these conventional catalysts. Transmission electron microscopy and X-ray absorption fine structure measurements revealed that the size of the Pd particles decreased with an increase in the specific surface area of ZrO 2 . ZrO 2 with a high surface area immobilized Pd as clusters consisting of several (three to five) Pd atoms, whereas Pd aggregated to form nanoparticles on other supports such as carbon and Al 2 O 3 despite their high surface areas. The catalytic activity of Pd/ZrO 2 was enhanced with a decrease in particle size, and the smallest Pd/ZrO 2 was the most active catalyst for decarbonylation. When CeO 2 was used as the support, a decrease in Pd particle size with an increase in surface area was also observed. Single Pd atoms were deposited on CeO 2 with a high surface area, with a strong interaction through the formation of a Pd-O-Ce bond, which led to a lower catalytic activity than that of Pd/ZrO 2 . This result suggests that zero-valent small Pd clusters consisting of more than one Pd atom are the active species for the decarbonylation reaction. Recycling tests proved that Pd/ZrO 2 maintained its catalytic activity until its sixth use. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Clustering effects in ionic polymers: Molecular dynamics simulations.

    PubMed

    Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S

    2015-08-01

    Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. These ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing the electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Decrease in electrostatic interaction significantly enhances the mobility of the polymer.

  1. Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies

    NASA Astrophysics Data System (ADS)

    Sahi, Qurat-ul-ain; Kim, Yong-Soo

    2018-04-01

    The understanding of radiation-induced microstructural defects in body-centered cubic (BCC) iron is of major interest to those using advanced steel under extreme conditions in nuclear reactors. In this study, molecular dynamics (MD) simulations were implemented to examine the primary radiation damage in BCC iron with displacement cascades of energy 1, 5, 10, 20, and 30 keV at temperatures ranging from 100 to 1000 K. Statistical analysis of eight MD simulations of collision cascades were carried out along each [110], [112], [111] and a high index [135] direction and the temperature dependence of the surviving number of point defects and the in-cascade clustering of vacancies and interstitials were studied. The peak time and the corresponding number of defects increase with increasing irradiation temperature and primary knock-on atom (PKA) energy. However, the final number of surviving point defects decreases with increasing lattice temperature. This is associated with the increase of thermal spike at high PKA energy and its long timespan at higher temperatures. Defect production efficiency (i.e., surviving MD defects, per Norgett-Robinson-Torrens displacements) also showed a continuous decrease with the increasing irradiation temperature and PKA energy. The number of interstitial clusters increases with both irradiation temperature and PKA energy. However, the increase in the number of vacancy clusters with PKA energy is minimal-to-constant and decreases as the irradiation temperature increases. Similarly, the probability and cluster size distribution for larger interstitials increase with temperature, whereas only smaller size vacancy clusters were observed at higher temperatures.

  2. Analysis of radiation-induced small Cu particle cluster formation in aqueous CuCl2

    USGS Publications Warehouse

    Jayanetti, Sumedha; Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2001-01-01

    Radition-induced small Cu particle cluster formation in aqueous CuCl2 was analyzed. It was noticed that nearest neighbor distance increased with the increase in the time of irradiation. This showed that the clusters approached the lattice dimension of bulk copper. As the average cluster size approached its bulk dimensions, an increase in the nearest neighbor coordination number was found with the decrease in the surface to volume ratio. Radiolysis of water by incident x-ray beam led to the reduction of copper ions in the solution to themetallic state.

  3. Clustering, randomness, and regularity in cloud fields. 4. Stratocumulus cloud fields

    NASA Astrophysics Data System (ADS)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-07-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (>900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  4. Clustering, randomness, and regularity in cloud fields. 4: Stratocumulus cloud fields

    NASA Technical Reports Server (NTRS)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-01-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (more than 900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  5. Vapor-liquid-solid mechanisms: Challenges for nanosized quantum cluster/dot/wire materials

    NASA Astrophysics Data System (ADS)

    Cheyssac, P.; Sacilotti, M.; Patriarche, G.

    2006-08-01

    The growth mechanism model of a nanoscaled material is a critical step that has to be refined for a better understanding of a nanostructure's dot/wire fabrication. To do so, the growth mechanism will be discussed in this paper and the influence of the size of the metallic nanocluster starting point, referred to later as "size effect," will be studied. Among many of the so-called size effects, a tremendous decrease of the melting point of the metallic nanocluster changes the physical properties as well as the physical/mechanical interactions inside the growing structure composed of a metallic dot on top of a column. The thermodynamic size effect is related to the bending or curvature of chains of atoms, giving rise to the weakening of bonds between them; this size or curvature effect is described and approached to crystal nanodot/wire growth. We will describe this effect as that of a "cooking machine" when the number of atoms decreases from ˜1023at./cm3 for a bulk material to a few tens of them in a 1-2nm diameter sphere. The decrease of the number of atoms in a metallic cluster from such an enormous quantity is accompanied by a lowering of the melting temperature that extends from 200 up to 1000K, depending on the metallic material and its size under study. In this respect, the vapor-liquid-solid (VLS) model, which is the most utilized growth mechanism for quantum nanowires and nanodots, is critically exposed to size or curvature effects (CEs). More precisely, interactions in the vicinity of the growth regions should be reexamined. Some results illustrating the growth of micrometer-/nanometer-sized materials are presented in order to corroborate the CE/VLS models utilized by many research groups in today's nanosciences world. Examples of metallic clusters and semiconducting wires will be presented. The results and comments presented in this paper can be seen as a challenge to be overcome. From them, we expect that in a near future an improved model can be exposed to the scientific community.

  6. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90)

    NASA Astrophysics Data System (ADS)

    Dierking, Christoph W.; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-01

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H2O)n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n <5 . In the size range from n = 5 to n = 15, broad ion yield curves emerge; for larger clusters, a constant range between signal appearance (˜2.8 eV) and signal saturation (˜4.1 eV) has been observed. The measurements are interpreted with ab initio calculations and ab initio molecular dynamics simulations for selected cluster sizes (n ≤ 15). The simulations revealed theory shortfalls when aiming at quantitative agreement but allowed us identifying structural motifs consistent with the observed ionization energy distributions. We found a decrease in the ionization energy with increasing coordination of the Na atom and increasing delocalization of the Na 3s electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H2O)n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.

  7. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90).

    PubMed

    Dierking, Christoph W; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-28

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H 2 O) n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n<5. In the size range from n = 5 to n = 15, broad ion yield curves emerge; for larger clusters, a constant range between signal appearance (∼2.8 eV) and signal saturation (∼4.1 eV) has been observed. The measurements are interpreted with ab initio calculations and ab initio molecular dynamics simulations for selected cluster sizes (n≤ 15). The simulations revealed theory shortfalls when aiming at quantitative agreement but allowed us identifying structural motifs consistent with the observed ionization energy distributions. We found a decrease in the ionization energy with increasing coordination of the Na atom and increasing delocalization of the Na 3s electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H 2 O) n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.

  8. Cluster size selectivity in the product distribution of ethene dehydrogenation on niobium clusters.

    PubMed

    Parnis, J Mark; Escobar-Cabrera, Eric; Thompson, Matthew G K; Jacula, J Paul; Lafleur, Rick D; Guevara-García, Alfredo; Martínez, Ana; Rayner, David M

    2005-08-18

    Ethene reactions with niobium atoms and clusters containing up to 25 constituent atoms have been studied in a fast-flow metal cluster reactor. The clusters react with ethene at about the gas-kinetic collision rate, indicating a barrierless association process as the cluster removal step. Exceptions are Nb8 and Nb10, for which a significantly diminished rate is observed, reflecting some cluster size selectivity. Analysis of the experimental primary product masses indicates dehydrogenation of ethene for all clusters save Nb10, yielding either Nb(n)C2H2 or Nb(n)C2. Over the range Nb-Nb6, the extent of dehydrogenation increases with cluster size, then decreases for larger clusters. For many clusters, secondary and tertiary product masses are also observed, showing varying degrees of dehydrogenation corresponding to net addition of C2H4, C2H2, or C2. With Nb atoms and several small clusters, formal addition of at least six ethene molecules is observed, suggesting a polymerization process may be active. Kinetic analysis of the Nb atom and several Nb(n) cluster reactions with ethene shows that the process is consistent with sequential addition of ethene units at rates corresponding approximately to the gas-kinetic collision frequency for several consecutive reacting ethene molecules. Some variation in the rate of ethene pick up is found, which likely reflects small energy barriers or steric constraints associated with individual mechanistic steps. Density functional calculations of structures of Nb clusters up to Nb(6), and the reaction products Nb(n)C2H2 and Nb(n)C2 (n = 1...6) are presented. Investigation of the thermochemistry for the dehydrogenation of ethene to form molecular hydrogen, for the Nb atom and clusters up to Nb6, demonstrates that the exergonicity of the formation of Nb(n)C2 species increases with cluster size over this range, which supports the proposal that the extent of dehydrogenation is determined primarily by thermodynamic constraints. Analysis of the structural variations present in the cluster species studied shows an increase in C-H bond lengths with cluster size that closely correlates with the increased thermodynamic drive to full dehydrogenation. This correlation strongly suggests that all steps in the reaction are barrierless, and that weakening of the C-H bonds is directly reflected in the thermodynamics of the overall dehydrogenation process. It is also demonstrated that reaction exergonicity in the initial partial dehydrogenation step must be carried through as excess internal energy into the second dehydrogenation step.

  9. Clustering effects in ionic polymers: Molecular dynamics simulations

    DOE PAGES

    Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

    2015-08-18

    Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. Furthermore, these ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing themore » electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Finally, decrease in electrostatic interaction significantly enhances the mobility of the polymer.« less

  10. GATE Monte Carlo simulation in a cloud computing environment

    NASA Astrophysics Data System (ADS)

    Rowedder, Blake Austin

    The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon's Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive.

  11. Relative efficiency and sample size for cluster randomized trials with variable cluster sizes.

    PubMed

    You, Zhiying; Williams, O Dale; Aban, Inmaculada; Kabagambe, Edmond Kato; Tiwari, Hemant K; Cutter, Gary

    2011-02-01

    The statistical power of cluster randomized trials depends on two sample size components, the number of clusters per group and the numbers of individuals within clusters (cluster size). Variable cluster sizes are common and this variation alone may have significant impact on study power. Previous approaches have taken this into account by either adjusting total sample size using a designated design effect or adjusting the number of clusters according to an assessment of the relative efficiency of unequal versus equal cluster sizes. This article defines a relative efficiency of unequal versus equal cluster sizes using noncentrality parameters, investigates properties of this measure, and proposes an approach for adjusting the required sample size accordingly. We focus on comparing two groups with normally distributed outcomes using t-test, and use the noncentrality parameter to define the relative efficiency of unequal versus equal cluster sizes and show that statistical power depends only on this parameter for a given number of clusters. We calculate the sample size required for an unequal cluster sizes trial to have the same power as one with equal cluster sizes. Relative efficiency based on the noncentrality parameter is straightforward to calculate and easy to interpret. It connects the required mean cluster size directly to the required sample size with equal cluster sizes. Consequently, our approach first determines the sample size requirements with equal cluster sizes for a pre-specified study power and then calculates the required mean cluster size while keeping the number of clusters unchanged. Our approach allows adjustment in mean cluster size alone or simultaneous adjustment in mean cluster size and number of clusters, and is a flexible alternative to and a useful complement to existing methods. Comparison indicated that we have defined a relative efficiency that is greater than the relative efficiency in the literature under some conditions. Our measure of relative efficiency might be less than the measure in the literature under some conditions, underestimating the relative efficiency. The relative efficiency of unequal versus equal cluster sizes defined using the noncentrality parameter suggests a sample size approach that is a flexible alternative and a useful complement to existing methods.

  12. Performance comparison analysis library communication cluster system using merge sort

    NASA Astrophysics Data System (ADS)

    Wulandari, D. A. R.; Ramadhan, M. E.

    2018-04-01

    Begins by using a single processor, to increase the speed of computing time, the use of multi-processor was introduced. The second paradigm is known as parallel computing, example cluster. The cluster must have the communication potocol for processing, one of it is message passing Interface (MPI). MPI have many library, both of them OPENMPI and MPICH2. Performance of the cluster machine depend on suitable between performance characters of library communication and characters of the problem so this study aims to analyze the comparative performances libraries in handling parallel computing process. The case study in this research are MPICH2 and OpenMPI. This case research execute sorting’s problem to know the performance of cluster system. The sorting problem use mergesort method. The research method is by implementing OpenMPI and MPICH2 on a Linux-based cluster by using five computer virtual then analyze the performance of the system by different scenario tests and three parameters for to know the performance of MPICH2 and OpenMPI. These performances are execution time, speedup and efficiency. The results of this study showed that the addition of each data size makes OpenMPI and MPICH2 have an average speed-up and efficiency tend to increase but at a large data size decreases. increased data size doesn’t necessarily increased speed up and efficiency but only execution time example in 100000 data size. OpenMPI has a execution time greater than MPICH2 example in 1000 data size average execution time with MPICH2 is 0,009721 and OpenMPI is 0,003895 OpenMPI can customize communication needs.

  13. Modeling of particle agglomeration in nanofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna, K. Hari; Neti, S.; Oztekin, A.

    2015-03-07

    Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid wasmore » moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.« less

  14. Microstructural and electrical properties of Al/n-type Si Schottky diodes with Au-CuPc nanocomposite films as interlayer

    NASA Astrophysics Data System (ADS)

    Reddy, P. R. Sekhar; Janardhanam, V.; Jyothi, I.; Chang, Han-Soo; Lee, Sung-Nam; Lee, Myung Sun; Reddy, V. Rajagopal; Choi, Chel-Jong

    2017-11-01

    Au-CuPc nanocomposite films were prepared by simultaneous evaporation of Au and CuPc with various Au and CuPc concentrations. Microstructural analysis of Au-CuPc films revealed elongated Au cluster formation from isolated Au nanoclusters with increasing Au concentration associated with coalescence of Au clusters. Au-CuPc films with different compositions were employed as interlayer in Al/n-Si Schottky diode. Barrier height and series resistance of the Al/n-Si Schottky diode with Au-CuPc interlayer decreased with increasing Au concentration. This could be associated with the enhancement of electron tunneling between neighboring clusters due to decrease in spacing of Au clusters and formation of conducting paths through the composite material. Interface state density of the Al/n-Si Schottky diode with Au-CuPc interlayer increased with increasing Au concentration. This might be because the inclusion of metal decreases the crystallinity and crystal size of the polymer matrix accompanied by the formation of local defect sites at the places of metal nucleation.

  15. Microstructure chemistry and mechanical properties of Ni-based superalloy Rene N4 under irradiation at room temperature

    DOE PAGES

    Sun, C.; Kirk, M.; Li, M.; ...

    2015-06-14

    Nickel superalloys with cubic L12 structured γ' (Ni 3(Al, Ti)) precipitates exhibit high strength at high temperatures and excellent corrosion resistance when exposed to water. Unlike prior studies on irradiation damage of other Ni-based superalloys, our study on Rene N4 involves much larger γ' precipitates, ~450 nm in size, a size regime where the irradiation-induced disordering and dissolution kinetics and the corresponding mechanical property evolution are unknown. Under heavy ion irradiation at room temperature, the submicron-sized γ' precipitates were fully disordered at ~0.3 dpa and only later partially dissolved after 75 dpa irradiation. Nanoindentation experiments indicate that the mechanical propertiesmore » of the alloy change significantly, with a dramatic decrease in hardness, with irradiation dose. Three contributions to the change in hardness were examined: defect clusters, disordering and dissolution. Moreover, the generation of defect clusters in the matrix and precipitates slightly increased the indentation hardness, while disordering of the submicron-sized γ' precipitates resulted in a dramatic decrease in the total hardness, which decreased further during the early stages of the intermixing between γ' precipitates and matrix (<18 dpa). As a result, controlling the long-range-ordering and chemical intermixing can be used to tailor the mechanical properties of Ni-based superalloys under irradiation.« less

  16. Fluctuating micro-heterogeneity in water-tert-butyl alcohol mixtures and lambda-type divergence of the mean cluster size with phase transition-like multiple anomalies

    NASA Astrophysics Data System (ADS)

    Banerjee, Saikat; Furtado, Jonathan; Bagchi, Biman

    2014-05-01

    Water-tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with xTBA ≈ 0.03-0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at xTBA ≈ 0.05. We note that "islands" of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, xTBA ≈ 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level.

  17. Fluctuating micro-heterogeneity in water-tert-butyl alcohol mixtures and lambda-type divergence of the mean cluster size with phase transition-like multiple anomalies.

    PubMed

    Banerjee, Saikat; Furtado, Jonathan; Bagchi, Biman

    2014-05-21

    Water-tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with x(TBA) ≈ 0.03-0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at x(TBA) ≈ 0.05. We note that "islands" of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, x(TBA) ≈ 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level.

  18. Vapor-phase photo-oxidation of methanol over nanosize titanium dioxide clusters dispersed in MCM-41 host material part 1: synthesis and characterization.

    PubMed

    Bhattacharya, K; Tripathi, A K; Dey, G K; Gupta, N M

    2005-05-01

    Nanosize clusters of titania were dispersed in mesoporous MCM-41 silica matrix with the help of the incipient wet-impregnation route, using an isopropanol solution of titanium isopropoxide as precursor. The clusters thus formed were of pure anatase phase and their size depended upon the titania loading. In the case of low (< 15 wt %) loadings, the TiO2 particles were X-ray and laser-Raman amorphous, confirming very high dispersion. These particles were mostly of < or = 2 nm size. On the other hand, larger size clusters (2-15 nm) were present in a sample with a higher loading of approximately 21 wt %. These particles of titania, irrespective of their size, exhibited an absorbance behavior similar to that of bulk TiO2. Powder X-ray diffraction, N2-adsorption and transmission electron microscopy results showed that while smaller size particles were confined mostly inside the pore system, the larger size particles occupied the external surface of the host matrix. At the same time, the structural integrity of the host was maintained even though some deformation in the pore system was noticed in the case of the sample having highest loading. The core level X-ray photoelectron spectroscopy results revealed a + 4 valence state of Ti in all the samples. A positive binding energy shift and the increase of the width of Ti 2p peaks were observed, however, with the decrease in the particle size of supported titania crystallites, indicative of a microenvironment for surface sites that is different from that of the bulk.

  19. Unequal cluster sizes in stepped-wedge cluster randomised trials: a systematic review

    PubMed Central

    Morris, Tom; Gray, Laura

    2017-01-01

    Objectives To investigate the extent to which cluster sizes vary in stepped-wedge cluster randomised trials (SW-CRT) and whether any variability is accounted for during the sample size calculation and analysis of these trials. Setting Any, not limited to healthcare settings. Participants Any taking part in an SW-CRT published up to March 2016. Primary and secondary outcome measures The primary outcome is the variability in cluster sizes, measured by the coefficient of variation (CV) in cluster size. Secondary outcomes include the difference between the cluster sizes assumed during the sample size calculation and those observed during the trial, any reported variability in cluster sizes and whether the methods of sample size calculation and methods of analysis accounted for any variability in cluster sizes. Results Of the 101 included SW-CRTs, 48% mentioned that the included clusters were known to vary in size, yet only 13% of these accounted for this during the calculation of the sample size. However, 69% of the trials did use a method of analysis appropriate for when clusters vary in size. Full trial reports were available for 53 trials. The CV was calculated for 23 of these: the median CV was 0.41 (IQR: 0.22–0.52). Actual cluster sizes could be compared with those assumed during the sample size calculation for 14 (26%) of the trial reports; the cluster sizes were between 29% and 480% of that which had been assumed. Conclusions Cluster sizes often vary in SW-CRTs. Reporting of SW-CRTs also remains suboptimal. The effect of unequal cluster sizes on the statistical power of SW-CRTs needs further exploration and methods appropriate to studies with unequal cluster sizes need to be employed. PMID:29146637

  20. Single photon ionization of van der Waals clusters with a soft x-ray laser: (CO2)n and (CO2)n(H2O)m.

    PubMed

    Heinbuch, S; Dong, F; Rocca, J J; Bernstein, E R

    2006-10-21

    Pure neutral (CO2)n clusters and mixed (CO2)n(H2O)m clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV. The distribution of pure (CO2)n clusters decreases roughly exponentially with increasing cluster size. During the ionization process, neutral clusters suffer little fragmentation because almost all excess cluster energy above the vertical ionization energy is taken away by the photoelectron and only a small part of the photon energy is deposited into the (CO2)n cluster. Metastable dissociation rate constants of (CO2)n+ are measured in the range of (0.2-1.5) x 10(4) s(-1) for cluster sizes of 5< or =n< or =16. Mixed CO2-H2O clusters are studied under different generation conditions (5% and 20% CO2 partial pressures and high and low expansion pressures). At high CO2 concentration, predominant signals in the mass spectrum are the (CO2)n+ cluster ions. The unprotonated cluster ion series (CO2)nH2O+ and (CO2)n(H2O)2+ are also observed under these conditions. At low CO2 concentration, protonated cluster ions (H2O)nH+ are the dominant signals, and the protonated CO2(H2O)nH+ and unprotonated (H2O)n+ and (CO2)(H2O)n+ cluster ion series are also observed. The mechanisms and dynamics of the formation of these neutral and ionic clusters are discussed.

  1. Photodissociation and caging of HBr and HI molecules on the surface of large rare gas clusters.

    PubMed

    Baumfalk, R; Nahler, N H; Buck, U

    2001-01-01

    Photodissociation experiments were carried out at a wavelength of 243 nm for single HBr and HI molecules adsorbed on the surface of large Nen, Arn, Krn and Xen clusters. The average size is about = 130; the size ranges = 62-139 for the system HBr-Arn and = 110-830 for HI-Xen were covered. In this way the dependence of the photodissociation dynamics on both the size and the rare gas host cluster was investigated. The main observable is the kinetic energy distribution of the outgoing H atoms. The key results are that we do not find any size dependence for either system but that we observe a strong dependence on the rare gas clusters. All systems exhibit H atoms with no energy loss that indicate direct cage exit and those with nearly zero energy that are an indication of complete caging. The intensity ratio of caged to uncaged H atoms is largest for Nen, decreases with increasing mass of the cage atoms, and is weakest for Xen. On the basis of accompanying calculations this behaviour is attributed to the large amplitude motion of the light H atom. This leads to direct cage exit and penetration of the atom through the cluster with different energy transfer per collision depending on the rare gas atoms. The differences between HBr and HI molecules are attributed to different surface states, a flat and an encapsulated site.

  2. Influence of nutrient restriction and melatonin supplementation of pregnant ewes on maternal and fetal pancreatic digestive enzymes and insulin-containing clusters.

    PubMed

    Keomanivong, F E; Lemley, C O; Camacho, L E; Yunusova, R; Borowicz, P P; Caton, J S; Meyer, A M; Vonnahme, K A; Swanson, K C

    2016-03-01

    Primiparous ewes (n=32) were assigned to dietary treatments in a 2×2 factorial arrangement to determine effects of nutrient restriction and melatonin supplementation on maternal and fetal pancreatic weight, digestive enzyme activity, concentration of insulin-containing clusters and plasma insulin concentrations. Treatments consisted of nutrient intake with 60% (RES) or 100% (ADQ) of requirements and melatonin supplementation at 0 (CON) or 5 mg/day (MEL). Treatments began on day 50 of gestation and continued until day 130. On day 130, blood was collected under general anesthesia from the uterine artery, uterine vein, umbilical artery and umbilical vein for plasma insulin analysis. Ewes were then euthanized and the pancreas removed from the ewe and fetus, trimmed of mesentery and fat, weighed and snap-frozen until enzyme analysis. In addition, samples of pancreatic tissue were fixed in 10% formalin solution for histological examination including quantitative characterization of size and distribution of insulin-containing cell clusters. Nutrient restriction decreased (P⩽0.001) maternal pancreatic mass (g) and α-amylase activity (U/g, kU/pancreas, U/kg BW). Ewes supplemented with melatonin had increased pancreatic mass (P=0.03) and α-amylase content (kU/pancreas and U/kg BW). Melatonin supplementation decreased (P=0.002) maternal pancreatic insulin-positive tissue area (relative to section of tissue), and size of the largest insulin-containing cell cluster (P=0.04). Nutrient restriction decreased pancreatic insulin-positive tissue area (P=0.03) and percent of large (32 001 to 512 000 µm2) and giant (⩾512 001 µm2) insulin-containing cell clusters (P=0.04) in the fetus. Insulin concentrations in plasma from the uterine vein, umbilical artery and umbilical vein were greater (P⩽0.01) in animals receiving 100% requirements. When comparing ewes to fetuses, ewes had a greater percentage of medium insulin-containing cell clusters (2001 to 32 000 µm2) while fetuses had more (P<0.001) pancreatic insulin-positive area (relative to section of tissue) and a greater percent of small, large and giant insulin-containing cell clusters (P⩽0.02). Larger insulin-containing clusters were observed in fetuses (P<0.001) compared with ewes. In summary, the maternal pancreas responded to nutrient restriction by decreasing pancreatic weight and activity of digestive enzymes while melatonin supplementation increased α-amylase content. Nutrient restriction decreased the number of pancreatic insulin-containing clusters in fetuses while melatonin supplementation did not influence insulin concentration. This indicated using melatonin as a therapeutic agent to mitigate reduced pancreatic function in the fetus due to maternal nutrient restriction may not be beneficial.

  3. Particle-Size-Exclusion Clogging Regimes in Porous Media

    NASA Astrophysics Data System (ADS)

    Gerber, G.; Rodts, S.; Aimedieu, P.; Faure, P.; Coussot, P.

    2018-04-01

    From observations of the progressive deposition of noncolloidal particles by geometrical exclusion effects inside a 3D model porous medium, we get a complete dynamic view of particle deposits over a full range of regimes from transport over a long distance to clogging and caking. We show that clogging essentially occurs in the form of an accumulation of elements in pore size clusters, which ultimately constitute regions avoided by the flow. The clusters are dispersed in the medium, and their concentration (number per volume) decreases with the distance from the entrance; caking is associated with the final stage of this effect (for a critical cluster concentration at the entrance). A simple probabilistic model, taking into account the impact of clogging on particle transport, allows us to quantitatively predict all these trends up to a large cluster concentration, based on a single parameter: the clogging probability, which is a function of the confinement ratio. This opens the route towards a unification of the different fields of particle transport, clogging, caking, and filtration.

  4. Spatial Distribution of Large Cloud Drops

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Larsen, M.; Wiscombe, W.

    2004-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, we have shown in a companion paper (Knyazikhin et al., 2004) that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)) where 0 less than or equal to D(r) less than or equal to 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and therefore a Poisson distribution of cloud drops, these models show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics explaining how rain can form so fast. It also helps explain why remotely sensed cloud drop size is generally biased and why clouds absorb more sunlight than conventional radiative transfer models predict.

  5. CLUH couples mitochondrial distribution to the energetic and metabolic status.

    PubMed

    Wakim, Jamal; Goudenege, David; Perrot, Rodolphe; Gueguen, Naig; Desquiret-Dumas, Valerie; Chao de la Barca, Juan Manuel; Dalla Rosa, Ilaria; Manero, Florence; Le Mao, Morgane; Chupin, Stephanie; Chevrollier, Arnaud; Procaccio, Vincent; Bonneau, Dominique; Logan, David C; Reynier, Pascal; Lenaers, Guy; Khiati, Salim

    2017-06-01

    Mitochondrial dynamics and distribution are critical for supplying ATP in response to energy demand. CLUH is a protein involved in mitochondrial distribution whose dysfunction leads to mitochondrial clustering, the metabolic consequences of which remain unknown. To gain insight into the role of CLUH on mitochondrial energy production and cellular metabolism, we have generated CLUH-knockout cells using CRISPR/Cas9. Mitochondrial clustering was associated with a smaller cell size and with decreased abundance of respiratory complexes, resulting in oxidative phosphorylation (OXPHOS) defects. This energetic impairment was found to be due to the alteration of mitochondrial translation and to a metabolic shift towards glucose dependency. Metabolomic profiling by mass spectroscopy revealed an increase in the concentration of some amino acids, indicating a dysfunctional Krebs cycle, and increased palmitoylcarnitine concentration, indicating an alteration of fatty acid oxidation, and a dramatic decrease in the concentrations of phosphatidylcholine and sphingomyeline, consistent with the decreased cell size. Taken together, our study establishes a clear function for CLUH in coupling mitochondrial distribution to the control of cell energetic and metabolic status. © 2017. Published by The Company of Biologists Ltd.

  6. Relay entanglement and clusters of correlated spins

    NASA Astrophysics Data System (ADS)

    Doronin, S. I.; Zenchuk, A. I.

    2018-06-01

    Considering a spin-1/2 chain, we suppose that the entanglement passes from a given pair of particles to another one, thus establishing the relay transfer of entanglement along the chain. Therefore, we introduce the relay entanglement as a sum of all pairwise entanglements in a spin chain. For more detailed studying the effects of remote pairwise entanglements, we use the partial sums collecting entanglements between the spins separated by up to a certain number of nodes. The problem of entangled cluster formation is considered, and the geometric mean entanglement is introduced as a characteristic of quantum correlations in a cluster. Generally, the lifetime of a cluster decreases with an increase in its size.

  7. Unequal cluster sizes in stepped-wedge cluster randomised trials: a systematic review.

    PubMed

    Kristunas, Caroline; Morris, Tom; Gray, Laura

    2017-11-15

    To investigate the extent to which cluster sizes vary in stepped-wedge cluster randomised trials (SW-CRT) and whether any variability is accounted for during the sample size calculation and analysis of these trials. Any, not limited to healthcare settings. Any taking part in an SW-CRT published up to March 2016. The primary outcome is the variability in cluster sizes, measured by the coefficient of variation (CV) in cluster size. Secondary outcomes include the difference between the cluster sizes assumed during the sample size calculation and those observed during the trial, any reported variability in cluster sizes and whether the methods of sample size calculation and methods of analysis accounted for any variability in cluster sizes. Of the 101 included SW-CRTs, 48% mentioned that the included clusters were known to vary in size, yet only 13% of these accounted for this during the calculation of the sample size. However, 69% of the trials did use a method of analysis appropriate for when clusters vary in size. Full trial reports were available for 53 trials. The CV was calculated for 23 of these: the median CV was 0.41 (IQR: 0.22-0.52). Actual cluster sizes could be compared with those assumed during the sample size calculation for 14 (26%) of the trial reports; the cluster sizes were between 29% and 480% of that which had been assumed. Cluster sizes often vary in SW-CRTs. Reporting of SW-CRTs also remains suboptimal. The effect of unequal cluster sizes on the statistical power of SW-CRTs needs further exploration and methods appropriate to studies with unequal cluster sizes need to be employed. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Titanium embedded cage structure formation in Al{sub n}Ti{sup +} clusters and their interaction with Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, M. B., E-mail: begonia@ubu.es; Vega, A.; Balbás, L. C.

    2014-05-07

    Recently, Ar physisorption was used as a structural probe for the location of the Ti dopant atom in aluminium cluster cations, Al{sub n}Ti{sup +} [Lang et al., J. Am. Soc. Mass Spectrom. 22, 1508 (2011)]. As an experiment result, the lack of Ar complexes for n > n{sub c} determines the cluster size for which the Ti atom is located inside of an Al cage. To elucidate the decisive factors for the formation of endohedrally Al{sub n}Ti{sup +}, experimentalists proposed detailed computational studies as indispensable. In this work, we investigated, using the density functional theory, the structural and electronic propertiesmore » of singly titanium doped cationic clusters, Al{sub n}Ti{sup +} (n = 16–21) as well as the adsorption of an Ar atom on them. The first endohedral doped cluster, with Ti encapsulated in a fcc-like cage skeleton, appears at n{sub c} = 21, which is the critical number consistent with the exohedral-endohedral transition experimentally observed. At this critical size the non-crystalline icosahedral growth pattern, related to the pure aluminium clusters, with the Ti atom in the surface, changes into a endohedral fcc-like pattern. The map of structural isomers, relative energy differences, second energy differences, and structural parameters were determined and analyzed. Moreover, we show the critical size depends on the net charge of the cluster, being different for the cationic clusters (n{sub c} = 21) and their neutral counterparts (n{sub c} = 20). For the Al {sub n} Ti {sup +} · Ar complexes, and for n < 21, the preferred Ar adsorption site is on top of the exohedral Ti atom, with adsorption energy in very good agreement with the experimental value. Instead, for n = 21, the Ar adsorption occurs on the top an Al atom with very low absorption energy. For all sizes the geometry of the Al{sub n}Ti{sup +} clusters keeps unaltered in the Ar-cluster complexes. This fact indicates that Ar adsorption does not influence the cluster structure, providing support to the experimental technique used. For n{sub c} = 21, the smallest size of endohedral Ti doped cationic clusters, the Ar binding energy decreases drastically, whereas the Ar-cluster distance increases substantially, point to Ar physisorption, as assumed by the experimentalists. Calculated Ar adsorption energies agree well with available experimental binding energies.« less

  9. Effect of Graphene with Nanopores on Metal Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hu; Chen, Xianlang; Wang, Lei

    Porous graphene, which is a novel type of defective graphene, shows excellent potential as a support material for metal clusters. In this work, the stability and electronic structures of metal clusters (Pd, Ir, Rh) supported on pristine graphene and graphene with different sizes of nanopore were investigated by first-principle density functional theory (DFT) calculations. Thereafter, CO adsorption and oxidation reaction on the Pd-graphene system were chosen to evaluate its catalytic performance. Graphene with nanopore can strongly stabilize the metal clusters and cause a substantial downshift of the d-band center of the metal clusters, thus decreasing CO adsorption. All binding energies,more » d-band centers, and adsorption energies show a linear change with the size of the nanopore: a bigger size of nanopore corresponds to a stronger metal clusters bond to the graphene, lower downshift of the d-band center, and weaker CO adsorption. By using a suitable size nanopore, supported Pd clusters on the graphene will have similar CO and O2 adsorption ability, thus leading to superior CO tolerance. The DFT calculated reaction energy barriers show that graphene with nanopore is a superior catalyst for CO oxidation reaction. These properties can play an important role in instructing graphene-supported metal catalyst preparation to prevent the diffusion or agglomeration of metal clusters and enhance catalytic performance. This work was supported by National Basic Research Program of China (973Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21176221, 21136001, 21101137, 21306169, and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC).« less

  10. Interaction force in a vertical dust chain inside a glass box.

    PubMed

    Kong, Jie; Qiao, Ke; Matthews, Lorin S; Hyde, Truell W

    2014-07-01

    Small number dust particle clusters can be used as probes for plasma diagnostics. The number of dust particles as well as cluster size and shape can be easily controlled employing a glass box placed within a Gaseous Electronics Conference (GEC) rf reference chamber to provide confinement of the dust. The plasma parameters inside this box and within the larger plasma chamber have not yet been adequately defined. Adjusting the rf power alters the plasma conditions causing structural changes of the cluster. This effect can be used to probe the relationship between the rf power and other plasma parameters. This experiment employs the sloshing and breathing modes of small cluster oscillations to examine the relationship between system rf power and the particle charge and plasma screening length inside the glass box. The experimental results provided indicate that both the screening length and dust charge decrease as rf power inside the box increases. The decrease in dust charge as power increases may indicate that ion trapping plays a significant role in the sheath.

  11. Clustering determines the dynamics of complex contagions in multiplex networks

    NASA Astrophysics Data System (ADS)

    Zhuang, Yong; Arenas, Alex; Yaǧan, Osman

    2017-01-01

    We present the mathematical analysis of generalized complex contagions in a class of clustered multiplex networks. The model is intended to understand spread of influence, or any other spreading process implying a threshold dynamics, in setups of interconnected networks with significant clustering. The contagion is assumed to be general enough to account for a content-dependent linear threshold model, where each link type has a different weight (for spreading influence) that may depend on the content (e.g., product, rumor, political view) that is being spread. Using the generating functions formalism, we determine the conditions, probability, and expected size of the emergent global cascades. This analysis provides a generalization of previous approaches and is especially useful in problems related to spreading and percolation. The results present nontrivial dependencies between the clustering coefficient of the networks and its average degree. In particular, several phase transitions are shown to occur depending on these descriptors. Generally speaking, our findings reveal that increasing clustering decreases the probability of having global cascades and their size, however, this tendency changes with the average degree. There exists a certain average degree from which on clustering favors the probability and size of the contagion. By comparing the dynamics of complex contagions over multiplex networks and their monoplex projections, we demonstrate that ignoring link types and aggregating network layers may lead to inaccurate conclusions about contagion dynamics, particularly when the correlation of degrees between layers is high.

  12. Synthesis of high efficient Cu/TiO2 photocatalysts by grinding and their size-dependent photocatalytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Ni, Dawei; Shen, Haiyan; Li, Huiqiao; Ma, Ying; Zhai, Tianyou

    2017-07-01

    Recently, copper species have been extensively investigated to replace Pt as efficient co-catalysts for the evolution of H2 due to their low cost and relatively high activity. Cu nanoparticles less than 5 nm are successfully decorated on TiO2 surface in this work by an easy and mild milling process. These Cu nanoparticles are highly dispersed on TiO2 when the loading amount of Cu is no more than 10 wt%. The sizes of Cu nanoparticles can be controlled by changing the milling environment and decrease in the order of Cu-ethanol > Cu-water > Cu nanoparticles obtained through drying milling. The highest and stable hydrogen generation can be realized on Cu/TiO2 with 2.0 wt% Cu and sizes of Cu nanoparticles ranging from 2 to 4 nm, in which high and stable photocurrent confirms promoted photogenerated charge separation. Smaller Cu clusters are demonstrated to be detrimental to hydrogen evolution at same Cu content. High loading of Cu nanoparticles of 2-4 nm will benefit photogenerated electron-hole recombination and thus decrease the activity of Cu/TiO2. The results here demonstrate the key roles of Cu cluster size in addition to Cu coverage on photocatalytic activity of Cu/TiO2 composite photocatalysts.

  13. Hierarchical modeling of cluster size in wildlife surveys

    USGS Publications Warehouse

    Royle, J. Andrew

    2008-01-01

    Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).

  14. Predicting stability limits for pure and doped dicationic noble gas clusters undergoing coulomb explosion: A parallel tempering based study.

    PubMed

    Ghorai, Sankar; Chaudhury, Pinaki

    2018-05-30

    We have used a replica exchange Monte-Carlo procedure, popularly known as Parallel Tempering, to study the problem of Coulomb explosion in homogeneous Ar and Xe dicationic clusters as well as mixed Ar-Xe dicationic clusters of varying sizes with different degrees of relative composition. All the clusters studied have two units of positive charges. The simulations reveal that in all the cases there is a cutoff size below which the clusters fragment. It is seen that for the case of pure Ar, the value is around 95 while that for Xe it is 55. For the mixed clusters with increasing Xe content, the cutoff limit for suppression of Coulomb explosion gradually decreases from 95 for a pure Ar to 55 for a pure Xe cluster. The hallmark of this study is this smooth progression. All the clusters are simulated using the reliable potential energy surface developed by Gay and Berne (Gay and Berne, Phys. Rev. Lett. 1982, 49, 194). For the hetero clusters, we have also discussed two different ways of charge distribution, that is one in which both positive charges are on two Xe atoms and the other where the two charges are at a Xe atom and at an Ar atom. The fragmentation patterns observed by us are such that single ionic ejections are the favored dissociating pattern. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Theoretical investigation of the relative stability of Na{sup +}He{sub n} (n = 2–24) clusters: Many-body versus delocalization effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Issaoui, Noureddine, E-mail: issaoui-noureddine@yahoo.fr; Abdessalem, Kawther; Ghalla, Houcine

    2014-11-07

    The solvation of the Na{sup +} ion in helium clusters has been studied theoretically using optimization methods. A many-body empirical potential was developed to account for Na{sup +}–He and polarization interactions, and the most stable structures of Na{sup +}He{sub n} clusters were determined using the basin-hopping method. Vibrational delocalization was accounted for using zero-point energy corrections at the harmonic or anharmonic levels, the latter being evaluated from quantum Monte Carlo simulations for spinless particles. From the static perspective, many-body effects are found to play a minor role, and the structures obtained reflect homogeneous covering up to n = 10, followedmore » by polyicosahedral packing above this size, the cluster obtained at n = 12 appearing particularly stable. The cationic impurity binds the closest helium atoms sufficiently to negate vibrational delocalization at small sizes. However, this snowball effect is obliterated earlier than shell completion, the nuclear wavefunctions of {sup 4}He{sub n}Na{sup +} with n = 5–7, and n > 10 already exhibiting multiple inherent structures. The decrease in the snowball size due to many-body effects is consistent with recent mass spectrometry measurements.« less

  16. Study of Electron Gas on a Neutron-Rich Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Ramirez-Homs, Enrique

    This study used a classical molecular dynamics model to observe the role of electron gas on the formation of nuclear structures at subsaturation densities (rho < 0.015 fm-3) and low temperatures (T < 1MeV ). The simulations were performed by varying the Coulomb interaction strength on systems of isospin symmetric and asymmetric matter with periodic boundary conditions. The effect was quantified on the fragment size multiplicity, the inter-particle distance, the isospin content of the clusters, the nucleon mobility and cluster persistence, and on the nuclear structure shapes. The existence of the nuclear pasta structures was observed even with the absence of the Coulomb interaction but with a modication of the shapes formed. It was found that the presence of the electron gas tends to distribute matter more evenly, forms less compact objects, decreases the isospin content of clusters, modies the nucleon mobility, reduces the persistence and the fragment size multiplicity, but does not alter the inter-particle distance in clusters. The degree of these effects also varied on the nuclear structures and depended on their isospin content, temperature, and density.

  17. Nylon-sputtered nanoparticles: fabrication and basic properties

    NASA Astrophysics Data System (ADS)

    Polonskyi, O.; Kylián, O.; Solař, P.; Artemenko, A.; Kousal, J.; Slavínská, D.; Choukourov, A.; Biederman, H.

    2012-12-01

    Nylon-sputtered nanoparticles were prepared using a simple gas aggregation cluster source based on a planar magnetron (Haberland type) and equipped with a nylon target. Plasma polymer particles originated in an aggregation chamber and travelled to a main (deposition) chamber with a gas flow through an orifice. The deposited nanoparticles were observed to have a cauliflower-like structure. The nanoparticles were found to be nitrogen-rich with N/C ratio close to 0.5. An increase in rf power from 60 to 100 W resulted in a decrease in mean particle size from 210 to 168 nm whereas an increase in their residence time in the cluster source from 0.7 to 4.6 s resulted in an increase in the size from 73 to 231 nm.

  18. Effect of surfactant concentration to aggregations of nanogold particles

    NASA Astrophysics Data System (ADS)

    Duangthanu, Methawee; Pattanaporkratana, Apichart

    2017-09-01

    This research presents a study of aggregation of colloidal gold nanoparticles using 400 nm diameter gold nanoparticles mixed with a surfactant (Plantacare 2000) at various concentrations. When observed under a microscope, we found that the nanoparticles aggregated to form nearly spherical clusters at the beginning of the formation, and then sedimented to the bottom of the container. These clusters moved with Brownian’s motion and collided with each other in the horizontal plane, forming branch-like clusters in 2D. The appearance and size of the clusters were different depending on the concentration of surfactant. The clusters’ size and appearance were rarely changed after mixing with surfactant for 90 minutes, and we found that the cluster’s shapes were nearly spherical at low surfactant concentration (c = 0.25%). At surfactant concentration between 0.50% - 5.00%, the aggregates formed branch-like clusters with skinnier branches and smaller sizes at higher surfactant concentration. Moreover, we also found that, at surfactant concentrations between 2.50% - 5.00%, nanoparticles and aggregates stuck to the bottom of the glass container quickly and rarely moved after 10 minutes. At c = 0.25%, the 2D fractal dimension of the aggregates was measured to be D = 1.88 ± 0.04, since the aggregates were nearly spherical. The fractal dimension decreased to the minimum of D = 1.50 ± 0.12 at c = 1.50%, similar to D ∼ 1.45 found in diffusion-limited cluster aggregation (DLCA). At surfactant concentration above 1.50%, the fractal dimension increased until it reached the value of D ∼ 1.66 at c = 5.00%.

  19. An imbalance in cluster sizes does not lead to notable loss of power in cross-sectional, stepped-wedge cluster randomised trials with a continuous outcome.

    PubMed

    Kristunas, Caroline A; Smith, Karen L; Gray, Laura J

    2017-03-07

    The current methodology for sample size calculations for stepped-wedge cluster randomised trials (SW-CRTs) is based on the assumption of equal cluster sizes. However, as is often the case in cluster randomised trials (CRTs), the clusters in SW-CRTs are likely to vary in size, which in other designs of CRT leads to a reduction in power. The effect of an imbalance in cluster size on the power of SW-CRTs has not previously been reported, nor what an appropriate adjustment to the sample size calculation should be to allow for any imbalance. We aimed to assess the impact of an imbalance in cluster size on the power of a cross-sectional SW-CRT and recommend a method for calculating the sample size of a SW-CRT when there is an imbalance in cluster size. The effect of varying degrees of imbalance in cluster size on the power of SW-CRTs was investigated using simulations. The sample size was calculated using both the standard method and two proposed adjusted design effects (DEs), based on those suggested for CRTs with unequal cluster sizes. The data were analysed using generalised estimating equations with an exchangeable correlation matrix and robust standard errors. An imbalance in cluster size was not found to have a notable effect on the power of SW-CRTs. The two proposed adjusted DEs resulted in trials that were generally considerably over-powered. We recommend that the standard method of sample size calculation for SW-CRTs be used, provided that the assumptions of the method hold. However, it would be beneficial to investigate, through simulation, what effect the maximum likely amount of inequality in cluster sizes would be on the power of the trial and whether any inflation of the sample size would be required.

  20. A practical Bayesian stepped wedge design for community-based cluster-randomized clinical trials: The British Columbia Telehealth Trial.

    PubMed

    Cunanan, Kristen M; Carlin, Bradley P; Peterson, Kevin A

    2016-12-01

    Many clinical trial designs are impractical for community-based clinical intervention trials. Stepped wedge trial designs provide practical advantages, but few descriptions exist of their clinical implementational features, statistical design efficiencies, and limitations. Enhance efficiency of stepped wedge trial designs by evaluating the impact of design characteristics on statistical power for the British Columbia Telehealth Trial. The British Columbia Telehealth Trial is a community-based, cluster-randomized, controlled clinical trial in rural and urban British Columbia. To determine the effect of an Internet-based telehealth intervention on healthcare utilization, 1000 subjects with an existing diagnosis of congestive heart failure or type 2 diabetes will be enrolled from 50 clinical practices. Hospital utilization is measured using a composite of disease-specific hospital admissions and emergency visits. The intervention comprises online telehealth data collection and counseling provided to support a disease-specific action plan developed by the primary care provider. The planned intervention is sequentially introduced across all participating practices. We adopt a fully Bayesian, Markov chain Monte Carlo-driven statistical approach, wherein we use simulation to determine the effect of cluster size, sample size, and crossover interval choice on type I error and power to evaluate differences in hospital utilization. For our Bayesian stepped wedge trial design, simulations suggest moderate decreases in power when crossover intervals from control to intervention are reduced from every 3 to 2 weeks, and dramatic decreases in power as the numbers of clusters decrease. Power and type I error performance were not notably affected by the addition of nonzero cluster effects or a temporal trend in hospitalization intensity. Stepped wedge trial designs that intervene in small clusters across longer periods can provide enhanced power to evaluate comparative effectiveness, while offering practical implementation advantages in geographic stratification, temporal change, use of existing data, and resource distribution. Current population estimates were used; however, models may not reflect actual event rates during the trial. In addition, temporal or spatial heterogeneity can bias treatment effect estimates. © The Author(s) 2016.

  1. Kinetics of formation of nanoparticles from first group metal carboxylates

    NASA Astrophysics Data System (ADS)

    Solov'ev, M. E.; Irzhak, T. F.; Irzhak, V. I.

    2015-09-01

    A kinetic model of the formation of metal nanoparticles via reduction of their carboxylates under conditions of clustering is proposed. It is found that the kinetics of the process is characterized by an induction period in carboxylate consumption and by almost linear growth of the average size of nanoparticles with conversion. It is shown that the maximum rate of nanoparticle formation grows along with the rate of ternary associate formation, the induction period becomes longer, and the particle size decreases. At the same time, it is characterized by a narrow size distribution.

  2. 7 CFR 52.1851 - Sizes of raisins with seeds-layer or cluster.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sizes of raisins with seeds-layer or cluster. 52.1851...-Raisins with Seeds § 52.1851 Sizes of raisins with seeds—layer or cluster. The size of Layer or Cluster... measurement as applicable to layer or cluster raisins with seeds are: (a) 3 Crown size or larger. “3 Crown...

  3. Investigation of nucleation kinetics in H2SO4 vapor through modeling of gas phase kinetics coupled with particle dynamics

    NASA Astrophysics Data System (ADS)

    Carlsson, Philip T. M.; Zeuch, Thomas

    2018-03-01

    We have developed a new model utilizing our existing kinetic gas phase models to simulate experimental particle size distributions emerging in dry supersaturated H2SO4 vapor homogeneously produced by rapid oxidation of SO2 through stabilized Criegee-Intermediates from 2-butene ozonolysis. We use a sectional method for simulating the particle dynamics. The particle treatment in the model is based on first principles and takes into account the transition from the kinetic to the diffusion-limited regime. It captures the temporal evolution of size distributions at the end of the ozonolysis experiment well, noting a slight underrepresentation of coagulation effects for larger particle sizes. The model correctly predicts the shape and the modes of the experimentally observed particle size distributions. The predicted modes show an extremely high sensitivity to the H2SO4 evaporation rates of the initially formed H2SO4 clusters (dimer to pentamer), which were arbitrarily restricted to decrease exponentially with increasing cluster size. In future, the analysis presented in this work can be extended to allow a direct validation of quantum chemically predicted stabilities of small H2SO4 clusters, which are believed to initiate a significant fraction of atmospheric new particle formation events. We discuss the prospects and possible limitations of the here presented approach.

  4. STABILITY OF SMALL SELF-INTERSTITIAL CLUSTERS IN TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.

    2015-12-31

    Density functional theory was employed to explore the stability of interstitial clusters in W up to size seven. For each cluster size, the most stable configuration consists of parallel dumbbells. For clusters larger than size three, parallel dumbbells prefer to form in a multilayer fashion, instead of a planar structure. For size-7 clusters, the most stable configuration is a complete octahedron. The binding energy of a [111] dumbbell to the most stable cluster increases with cluster size, namely 2.49, 3.68, 4.76, 4.82, 5.47, and 6.85 eV for clusters of size 1, 2, 3, 4, 5, and 6, respectively. For amore » size-2 cluster, collinear dumbbells are still repulsive at the maximum allowable distance of 13.8 Å (the fifth neighbor along [111]). On the other hand, parallel dumbbells are strongly bound together. Two parallel dumbbells in which the axis-to-axis distance is within a cylindrical radius of 5.2 Å still exhibit a considerable binding of 0.28 eV. The most stable cluster in each size will be used to explore interactions with transmutation products.« less

  5. Influence of the size and charge of gold nanoclusters on complexation with siRNA: a molecular dynamics simulation study.

    PubMed

    Mudedla, Sathish Kumar; Azhagiya Singam, Ettayapuram Ramaprasad; Balamurugan, Kanagasabai; Subramanian, Venkatesan

    2015-11-11

    The complexation of small interfering RNA (siRNA) with positively charged gold nanoclusters has been studied in the present investigation with the help of classical molecular dynamics and steered molecular dynamics simulations accompanied by free energy calculations. The results show that gold nanoclusters form a stable complex with siRNA. The wrapping of siRNA around the gold nanocluster depends on the size and charge on the surface of the gold cluster. The binding pattern of the gold nanocluster with siRNA is also influenced by the presence of another cluster. The interaction between the positively charged amines in the gold nanocluster and the negatively charged phosphate group in the siRNA is responsible for the formation of complexes. The binding free energy value increases with the size of the gold cluster and the number of positive charges present on the surface of the gold nanocluster. The results reveal that the binding energy of small gold nanoclusters increases in the presence of another gold nanocluster while the binding of large gold nanoclusters decreases due to the introduction of another gold nanocluster. Overall, the findings have clearly demonstrated the effect of size and charge of gold nanoclusters on their interaction pattern with siRNA.

  6. Near-Infrared Spectroscopy of Small Protonated Water Clusters

    NASA Astrophysics Data System (ADS)

    Wagner, J. Philipp; McDonald, David C., II; McCoy, Anne B.; Duncan, Michael A.

    2017-06-01

    Small protonated water clusters and their argon tagged analogues of the general formula H^{+}(H_{2}O)_{n}Ar_{m} have been generated in a pulsed electric discharge source. Clusters containing n=1-8 water molecules were mass-selected and their absorptions in the near-infrared were probed with a tunable Nd/colonYAG pumped OPA/OPA laser system in the region from 4850-7350 cm^{-1}. A doublet corresponding to overtones of the free O-H stretches of the external waters was observed around 7200 cm^{-1} that was continuously decreasing in intensity with increasing cluster size. Broad, mostly featureless absorptions were found around 5300 cm^{-1} associated with stretch/bend combinations and with the hydrogen bonded waters in the core of the clusters. Vibrational assignments were substantiated by comparison to anharmonic frequency computations via second-order vibrational perturbation theory (VPT2) at the MP2/aug-cc-pVTZ level of theory.

  7. Salp distribution and size composition in the Atlantic sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Kawaguchi, S.; Siegel, V.; Litvinov, F.; Loeb, V.; Watkins, J.

    2004-06-01

    Salp abundance and length frequency were measured during the large-scale CCAMLR 2000 Survey conducted in the Atlantic Sector of the Southern Ocean in the 1999/2000 season. Results from regional surveys around Elephant Island in 1994/95 and 1996/97 seasons also were examined. During the CCAMLR 2000 Survey, salp abundance was higher in the Antarctic Peninsula and South Sandwich Island areas than in the central Scotia Sea. The probable reason for this pattern is a negative relationship with phytoplankton abundance; the central Scotia Sea having greater phytoplankton concentrations than required for optimal salp filter-feeding performance. Cluster analysis of salp size composition resulted in three cluster groups for each of the three surveys. Clusters comprising large salps occurred in warmer waters in all three surveys. The size composition of the salp populations suggests that the timing of intense asexual reproductive budding was earlier in warmer waters. As surface water temperatures generally decrease from north to south, and increase from spring to summer, the general spatio-temporal pattern of asexual reproduction by budding is likely to proceed from north to south as the summer season progresses.

  8. First-principles calculated decomposition pathways for LiBH4 nanoclusters

    PubMed Central

    Huang, Zhi-Quan; Chen, Wei-Chih; Chuang, Feng-Chuan; Majzoub, Eric H.; Ozoliņš, Vidvuds

    2016-01-01

    We analyze thermodynamic stability and decomposition pathways of LiBH4 nanoclusters using grand-canonical free-energy minimization based on total energies and vibrational frequencies obtained from density-functional theory (DFT) calculations. We consider (LiBH4)n nanoclusters with n = 2 to 12 as reactants, while the possible products include (Li)n, (B)n, (LiB)n, (LiH)n, and Li2BnHn; off-stoichiometric LinBnHm (m ≤ 4n) clusters were considered for n = 2, 3, and 6. Cluster ground-state configurations have been predicted using prototype electrostatic ground-state (PEGS) and genetic algorithm (GA) based structural optimizations. Free-energy calculations show hydrogen release pathways markedly differ from those in bulk LiBH4. While experiments have found that the bulk material decomposes into LiH and B, with Li2B12H12 as a kinetically inhibited intermediate phase, (LiBH4)n nanoclusters with n ≤ 12 are predicted to decompose into mixed LinBn clusters via a series of intermediate clusters of LinBnHm (m ≤ 4n). The calculated pressure-composition isotherms and temperature-pressure isobars exhibit sloping plateaus due to finite size effects on reaction thermodynamics. Generally, decomposition temperatures of free-standing clusters are found to increase with decreasing cluster size due to thermodynamic destabilization of reaction products. PMID:27189731

  9. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    PubMed

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. Copyright © 2015. Published by Elsevier Inc.

  10. First-principles calculated decomposition pathways for LiBH 4 nanoclusters

    DOE PAGES

    Huang, Zhi -Quan; Chen, Wei -Chih; Chuang, Feng -Chuan; ...

    2016-05-18

    Here, we analyze thermodynamic stability and decomposition pathways of LiBH 4 nanoclusters using grand-canonical free-energy minimization based on total energies and vibrational frequencies obtained from density-functional theory (DFT) calculations. We consider (LiBH 4) n nanoclusters with n = 2 to 12 as reactants, while the possible products include (Li) n, (B) n, (LiB) n, (LiH) n, and Li 2B nH n; off-stoichiometric LinBnHm (m ≤ 4n) clusters were considered for n = 2, 3, and 6. Cluster ground-state configurations have been predicted using prototype electrostatic ground-state (PEGS) and genetic algorithm (GA) based structural optimizations. Free-energy calculations show hydrogen release pathwaysmore » markedly differ from those in bulk LiBH 4. While experiments have found that the bulk material decomposes into LiH and B, with Li 2B 12H 12 as a kinetically inhibited intermediate phase, (LiBH 4) n nanoclusters with n ≤ 12 are predicted to decompose into mixed Li nB n clusters via a series of intermediate clusters of Li nB nH m (m ≤ 4n). The calculated pressure-composition isotherms and temperature-pressure isobars exhibit sloping plateaus due to finite size effects on reaction thermodynamics. Generally, decomposition temperatures of free-standing clusters are found to increase with decreasing cluster size due to thermodynamic destabilization of reaction products.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhi -Quan; Chen, Wei -Chih; Chuang, Feng -Chuan

    Here, we analyze thermodynamic stability and decomposition pathways of LiBH 4 nanoclusters using grand-canonical free-energy minimization based on total energies and vibrational frequencies obtained from density-functional theory (DFT) calculations. We consider (LiBH 4) n nanoclusters with n = 2 to 12 as reactants, while the possible products include (Li) n, (B) n, (LiB) n, (LiH) n, and Li 2B nH n; off-stoichiometric LinBnHm (m ≤ 4n) clusters were considered for n = 2, 3, and 6. Cluster ground-state configurations have been predicted using prototype electrostatic ground-state (PEGS) and genetic algorithm (GA) based structural optimizations. Free-energy calculations show hydrogen release pathwaysmore » markedly differ from those in bulk LiBH 4. While experiments have found that the bulk material decomposes into LiH and B, with Li 2B 12H 12 as a kinetically inhibited intermediate phase, (LiBH 4) n nanoclusters with n ≤ 12 are predicted to decompose into mixed Li nB n clusters via a series of intermediate clusters of Li nB nH m (m ≤ 4n). The calculated pressure-composition isotherms and temperature-pressure isobars exhibit sloping plateaus due to finite size effects on reaction thermodynamics. Generally, decomposition temperatures of free-standing clusters are found to increase with decreasing cluster size due to thermodynamic destabilization of reaction products.« less

  12. Interpretation of the microwave effect on induction time during CaSO4 primary nucleation by a cluster coagulation model

    NASA Astrophysics Data System (ADS)

    Guo, Zhichao; Li, Liye; Han, Wenxiang; Li, Jiawei; Wang, Baodong; Xiao, Yongfeng

    2017-10-01

    The effects of microwave on the induction time of CaSO4 are studied experimentally and theoretically. In the experiments, calcium sulfate is precipitated by mixing aqueous CaCl2 solution and Na2SO4 solution. The induction time is measured by recording the change of turbidity in solution. Various energy inputs are used to investigate the effect of energy input on nucleation. The results show that the induction time decreases with increasing supersaturation and increasing energy input. Employing the classical nucleation theory, the interfacial tension is estimated. In addition, the microwave effects on nucleation order (n) and nucleation coefficient (kN) are also investigated, and the corresponding values of homogeneous nucleation are compared with the values of heterogeneous nucleation in the microwave field. A cluster coagulation model, which brings together the classic nucleation models and the theories describing the behavior of colloidal suspension, was applied to estimate the induction time under various energy inputs. It is found that when nucleation is prominently homogeneous, the microwave energy input does not change the number of monomers in dominating clusters. And when nucleation is prominently heterogeneous, although the dominating cluster size increases with supersaturation increasing, at the same supersaturation level, the dominating cluster size remains constant in the microwave field.

  13. Uniform deposition of size-selected clusters using Lissajous scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beniya, Atsushi; Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Hirata, Hirohito

    2016-05-15

    Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonalmore » directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt{sub n} (n = 7, 15, 20) clusters uniformly deposited on the Al{sub 2}O{sub 3}/NiAl(110) surface and demonstrated the importance of uniform deposition.« less

  14. Cluster randomised crossover trials with binary data and unbalanced cluster sizes: application to studies of near-universal interventions in intensive care.

    PubMed

    Forbes, Andrew B; Akram, Muhammad; Pilcher, David; Cooper, Jamie; Bellomo, Rinaldo

    2015-02-01

    Cluster randomised crossover trials have been utilised in recent years in the health and social sciences. Methods for analysis have been proposed; however, for binary outcomes, these have received little assessment of their appropriateness. In addition, methods for determination of sample size are currently limited to balanced cluster sizes both between clusters and between periods within clusters. This article aims to extend this work to unbalanced situations and to evaluate the properties of a variety of methods for analysis of binary data, with a particular focus on the setting of potential trials of near-universal interventions in intensive care to reduce in-hospital mortality. We derive a formula for sample size estimation for unbalanced cluster sizes, and apply it to the intensive care setting to demonstrate the utility of the cluster crossover design. We conduct a numerical simulation of the design in the intensive care setting and for more general configurations, and we assess the performance of three cluster summary estimators and an individual-data estimator based on binomial-identity-link regression. For settings similar to the intensive care scenario involving large cluster sizes and small intra-cluster correlations, the sample size formulae developed and analysis methods investigated are found to be appropriate, with the unweighted cluster summary method performing well relative to the more optimal but more complex inverse-variance weighted method. More generally, we find that the unweighted and cluster-size-weighted summary methods perform well, with the relative efficiency of each largely determined systematically from the study design parameters. Performance of individual-data regression is adequate with small cluster sizes but becomes inefficient for large, unbalanced cluster sizes. When outcome prevalences are 6% or less and the within-cluster-within-period correlation is 0.05 or larger, all methods display sub-nominal confidence interval coverage, with the less prevalent the outcome the worse the coverage. As with all simulation studies, conclusions are limited to the configurations studied. We confined attention to detecting intervention effects on an absolute risk scale using marginal models and did not explore properties of binary random effects models. Cluster crossover designs with binary outcomes can be analysed using simple cluster summary methods, and sample size in unbalanced cluster size settings can be determined using relatively straightforward formulae. However, caution needs to be applied in situations with low prevalence outcomes and moderate to high intra-cluster correlations. © The Author(s) 2014.

  15. Microwave-assisted synthesis of water-soluble, fluorescent gold nanoclusters capped with small organic molecules and a revealing fluorescence and X-ray absorption study

    NASA Astrophysics Data System (ADS)

    Helmbrecht, C.; Lützenkirchen-Hecht, D.; Frank, W.

    2015-03-01

    Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES spectra in comparison to several gold references, optically transparent fluorescent AuNC are predicted to be ligand-stabilized Au5+ species. Additionally, their near edge structure compared with analogous results of polynuclear clusters known from the literature discloses an increasing intensity of the feature close to the absorption edge with decreasing cluster size. As a result, a linear relationship between the cluster size and the X-ray absorption coefficient can be established for the first time.Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES spectra in comparison to several gold references, optically transparent fluorescent AuNC are predicted to be ligand-stabilized Au5+ species. Additionally, their near edge structure compared with analogous results of polynuclear clusters known from the literature discloses an increasing intensity of the feature close to the absorption edge with decreasing cluster size. As a result, a linear relationship between the cluster size and the X-ray absorption coefficient can be established for the first time. Electronic supplementary information (ESI) available: The deconvoluted reference spectra are given in ESI Fig. 1-9. See DOI: 10.1039/c4nr07051h

  16. Adsorption and Formation of Small Na Clusters on Pristine and Double-Vacancy Graphene for Anodes of Na-Ion Batteries.

    PubMed

    Liang, Zhicong; Fan, Xiaofeng; Zheng, Weitao; Singh, David J

    2017-05-24

    Layered carbon is a likely anode material for Na-ion batteries (NIBs). Graphitic carbon has a low capacity of approximately 35 (mA h)/g due to the formation of NaC 64 . Using first-principles methods including van der Waals interactions, we analyze the adsorption of Na ions and clusters on graphene in the context of anodes. The interaction between Na ions and graphene is found to be weak. Small Na clusters are not stable on the surface of pristine graphene in the electrochemical environment of NIBs. However, we find that Na ions and clusters can be stored effectively on defected graphene that has double vacancies. In addition, the adsorption energy of small Na clusters near a double vacancy is found to decrease with increasing cluster size. With high concentrations of vacancies the capacity of Na on defective graphene is found to be as much as 10-30 times higher than that of graphitic carbon.

  17. Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment.

    PubMed

    Hasan, Md Tanvir; Senger, Brian J; Ryan, Conor; Culp, Marais; Gonzalez-Rodriguez, Roberto; Coffer, Jeffery L; Naumov, Anton V

    2017-07-25

    Graphene oxide (GO) is a graphene derivative that emits fluorescence, which makes GO an attractive material for optoelectronics and biotechnology. In this work, we utilize ozone treatment to controllably tune the band gap of GO, which can significantly enhance its applications. Ozone treatment in aqueous GO suspensions yields the addition/rearrangement of oxygen-containing functional groups suggested by the increase in vibrational transitions of C-O and C=O moieties. Concomitantly it leads to an initial increase in GO fluorescence intensity and significant (100 nm) blue shifts in emission maxima. Based on the model of GO fluorescence originating from sp 2 graphitic islands confined by oxygenated addends, we propose that ozone-induced functionalization decreases the size of graphitic islands affecting the GO band gap and emission energies. TEM analyses of GO flakes confirm the size decrease of ordered sp 2 domains with ozone treatment, whereas semi-empirical PM3 calculations on model addend-confined graphitic clusters predict the inverse dependence of the band gap energies on sp 2 cluster size. This model explains ozone-induced increase in emission energies yielding fluorescence blue shifts and helps develop an understanding of the origins of GO fluorescence emission. Furthermore, ozone treatment provides a versatile approach to controllably alter GO band gap for optoelectronics and bio-sensing applications.

  18. The Scale Sizes of Globular Clusters: Tidal Limits, Evolution, and the Outer Halo

    NASA Astrophysics Data System (ADS)

    Harris, William

    2011-10-01

    The physical factors that determine the linear sizes of massive star clusters are not well understood. Their scale sizes were long thought to be governed by the tidal field of the parent galaxy, but major questions are now emerging. Globular clusters, for example, have mean sizes nearly independent of location in the halo. Paradoxically, the recently discovered "anomalous extended clusters" in M31 and elsewhere have scale sizes that fit much better with tidal theory, but they are puzzlingly rare. Lastly, the persistent size difference between metal-poor and metal-rich clusters still lacks a quantitative explanation. Many aspects of these observations call for better modelling of dynamical evolution in the outskirts of clusters, and also their conditions of formation including the early rapid mass loss phase of protoclusters. A new set of accurate measurements of scale sizes and structural parameters, for a large and homogeneous set of globular clusters, would represent a major advance in this subject. We propose to carry out a {WFC3+ACS} imaging survey of the globular clusters in the supergiant Virgo elliptical M87 to cover the complete run of the halo. M87 is an optimum target system because of its huge numbers of clusters and HST's ability to resolve the cluster profiles accurately. We will derive cluster effective radii, central concentrations, luminosities, and colors for more than 4000 clusters using PSF-convolved King-model profile fitting. In parallel, we are developing theoretical tools to model the expected distribution of cluster sizes versus galactocentric distance as functions of cluster mass, concentration, and orbital anisotropy.

  19. Sample size calculation for stepped wedge and other longitudinal cluster randomised trials.

    PubMed

    Hooper, Richard; Teerenstra, Steven; de Hoop, Esther; Eldridge, Sandra

    2016-11-20

    The sample size required for a cluster randomised trial is inflated compared with an individually randomised trial because outcomes of participants from the same cluster are correlated. Sample size calculations for longitudinal cluster randomised trials (including stepped wedge trials) need to take account of at least two levels of clustering: the clusters themselves and times within clusters. We derive formulae for sample size for repeated cross-section and closed cohort cluster randomised trials with normally distributed outcome measures, under a multilevel model allowing for variation between clusters and between times within clusters. Our formulae agree with those previously described for special cases such as crossover and analysis of covariance designs, although simulation suggests that the formulae could underestimate required sample size when the number of clusters is small. Whether using a formula or simulation, a sample size calculation requires estimates of nuisance parameters, which in our model include the intracluster correlation, cluster autocorrelation, and individual autocorrelation. A cluster autocorrelation less than 1 reflects a situation where individuals sampled from the same cluster at different times have less correlated outcomes than individuals sampled from the same cluster at the same time. Nuisance parameters could be estimated from time series obtained in similarly clustered settings with the same outcome measure, using analysis of variance to estimate variance components. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Orientational ordering of lamellar structures on closed surfaces

    NASA Astrophysics Data System (ADS)

    Pȩkalski, J.; Ciach, A.

    2018-05-01

    Self-assembly of particles with short-range attraction and long-range repulsion interactions on a flat and on a spherical surface is compared. Molecular dynamics simulations are performed for the two systems having the same area and the density optimal for formation of stripes of particles. Structural characteristics, e.g., a cluster size distribution, a number of defects, and an orientational order parameter (OP), as well as the specific heat, are obtained for a range of temperatures. In both cases, the cluster size distribution becomes bimodal and elongated clusters appear at the temperature corresponding to the maximum of the specific heat. When the temperature decreases, orientational ordering of the stripes takes place and the number of particles per cluster or stripe increases in both cases. However, only on the flat surface, the specific heat has another maximum at the temperature corresponding to a rapid change of the OP. On the sphere, the crossover between the isotropic and anisotropic structures occur in a much broader temperature interval; the orientational order is weaker and occurs at significantly lower temperature. At low temperature, the stripes on the sphere form spirals and the defects resemble defects in the nematic phase of rods adsorbed at a sphere.

  1. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data.

    PubMed

    Kim, Sehwi; Jung, Inkyung

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns.

  2. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data

    PubMed Central

    Kim, Sehwi

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns. PMID:28753674

  3. Spontaneous brain activity in chronic smokers revealed by fractional amplitude of low frequency fluctuation analysis: a resting state functional magnetic resonance imaging study.

    PubMed

    Chu, Shuilian; Xiao, Dan; Wang, Shuangkun; Peng, Peng; Xie, Teng; He, Yong; Wang, Chen

    2014-01-01

    Nicotine is primarily rsponsible for the highly addictive properties of cigarettes. Similar to other substances, nicotine dependence is related to many important brain regions, particular in mesolimbic reward circuit. This study was to further reveal the alteration of brain function activity during resting state in chronic smokers by fractional amplitude of low frequency fluctuation (fALFF) based on functional magnetic resonance imaging (fMRI), in order to provide the evidence of neurobiological mechanism of smoking. This case control study involved twenty healthy smokers and nineteen healthy nonsmokers recruited by advertisement. Sociodemographic, smoking related characteristics and fMRI images were collected and the data analyzed. Compared with nonsmokers, smokers showed fALFF increased significantly in the left middle occipital gyrus, left limbic lobe and left cerebellum posterior lobe but decreases in the right middle frontal gyrus, right superior temporal gyrus, right extra nuclear, left postcentral gyrus and left cerebellum anterior lobe (cluster size >100 voxels). Compared with light smokers (pack years ≤ 20), heavy smokers (pack years >20) showed fALFF increased significantly in the right superior temporal gyrus, right precentral gyrus, and right occipital lobe/cuneus but decreased in the right/left limbic lobe/cingulate gyrus, right/left frontal lobe/sub gyral, right/left cerebellum posterior lobe (cluster size >50 voxels). Compared with nonsevere nicotine dependent smokers (Fagerstrőm test for nicotine dependence, score ≤ 6), severe nicotine dependent smokers (score >6) showed fALFF increased significantly in the right/left middle frontal gyrus, right superior frontal gyrus and left inferior parietal lobule but decreased in the left limbic lobe/cingulate gyrus (cluster size >25 voxels). In smokers during rest, the activity of addiction related regions were increased and the activity of smoking feeling, memory, related regions were also changed. The resting state activity changes in many regions were associated with the cumulative amount of nicotine intake and the severity of nicotine dependence.

  4. Sample size adjustments for varying cluster sizes in cluster randomized trials with binary outcomes analyzed with second-order PQL mixed logistic regression.

    PubMed

    Candel, Math J J M; Van Breukelen, Gerard J P

    2010-06-30

    Adjustments of sample size formulas are given for varying cluster sizes in cluster randomized trials with a binary outcome when testing the treatment effect with mixed effects logistic regression using second-order penalized quasi-likelihood estimation (PQL). Starting from first-order marginal quasi-likelihood (MQL) estimation of the treatment effect, the asymptotic relative efficiency of unequal versus equal cluster sizes is derived. A Monte Carlo simulation study shows this asymptotic relative efficiency to be rather accurate for realistic sample sizes, when employing second-order PQL. An approximate, simpler formula is presented to estimate the efficiency loss due to varying cluster sizes when planning a trial. In many cases sampling 14 per cent more clusters is sufficient to repair the efficiency loss due to varying cluster sizes. Since current closed-form formulas for sample size calculation are based on first-order MQL, planning a trial also requires a conversion factor to obtain the variance of the second-order PQL estimator. In a second Monte Carlo study, this conversion factor turned out to be 1.25 at most. (c) 2010 John Wiley & Sons, Ltd.

  5. Studying effect of carrier fluid viscosity in magnetite based ferrofluids using optical tweezers

    NASA Astrophysics Data System (ADS)

    Savitha, S.; Iyengar, Shruthi S.; Ananthamurthy, Sharath; Bhattacharya, Sarbari

    2018-02-01

    Ferrofluids with varying viscosities of carrier fluids have been prepared with magnetite (Fe3O4) nanoparticles. The nanoparticles were synthesized by chemical co-precipitation and characterized using X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). They were found to be nearly spherical in shape with an almost uniform size of 13nm. The superparamagnetic nature of the water based ferrofluids at room temperature was established by SQUID magnetometry. Dynamic light scattering (DLS) was carried out to establish the size of the nanoparticle clusters in the ferrofluids synthesized. The results indicate an increase in cluster size with increase in carrier fluid viscosity. This is supported by results from Raman Spectroscopy. A further attempt to characterise these ferrofluids was made by studying the behaviour of well characterised non-magnetic micron sized probes that are optically trapped while suspended in the ferrofluid. An increase in carrier fluid viscosity results in a decrease in corner frequency when only the carrier fluid is used as the suspending medium. When the magnetic component is also present the corner frequency is higher than with just the carrier fluid. This relative increase happens at all laser powers at the trapping plane. This trend is also found to be independent of the size and material of the probe particle. Comparisons of various parameters that influence optical trapping lead us to believe that the enhancement could be due to a directed motion of the magnetic clusters in the presence of an optical trap.

  6. Morphology of size-selected Ptn clusters on CeO2(111)

    NASA Astrophysics Data System (ADS)

    Shahed, Syed Mohammad Fakruddin; Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide

    2018-03-01

    Supported Pt catalysts and ceria are well known for their application in automotive exhaust catalysts. Size-selected Pt clusters supported on a CeO2(111) surface exhibit distinct physical and chemical properties. We investigated the morphology of the size-selected Ptn (n = 5-13) clusters on a CeO2(111) surface using scanning tunneling microscopy at room temperature. Ptn clusters prefer a two-dimensional morphology for n = 5 and a three-dimensional (3D) morphology for n ≥ 6. We further observed the preference for a 3D tri-layer structure when n ≥ 10. For each cluster size, we quantitatively estimated the relative fraction of the clusters for each type of morphology. Size-dependent morphology of the Ptn clusters on the CeO2(111) surface was attributed to the Pt-Pt interaction in the cluster and the Pt-O interaction between the cluster and CeO2(111) surface. The results obtained herein provide a clear understanding of the size-dependent morphology of the Ptn clusters on a CeO2(111) surface.

  7. Morphology of size-selected Ptn clusters on CeO2(111).

    PubMed

    Shahed, Syed Mohammad Fakruddin; Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide

    2018-03-21

    Supported Pt catalysts and ceria are well known for their application in automotive exhaust catalysts. Size-selected Pt clusters supported on a CeO 2 (111) surface exhibit distinct physical and chemical properties. We investigated the morphology of the size-selected Pt n (n = 5-13) clusters on a CeO 2 (111) surface using scanning tunneling microscopy at room temperature. Pt n clusters prefer a two-dimensional morphology for n = 5 and a three-dimensional (3D) morphology for n ≥ 6. We further observed the preference for a 3D tri-layer structure when n ≥ 10. For each cluster size, we quantitatively estimated the relative fraction of the clusters for each type of morphology. Size-dependent morphology of the Pt n clusters on the CeO 2 (111) surface was attributed to the Pt-Pt interaction in the cluster and the Pt-O interaction between the cluster and CeO 2 (111) surface. The results obtained herein provide a clear understanding of the size-dependent morphology of the Pt n clusters on a CeO 2 (111) surface.

  8. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic.

    PubMed

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set-proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters.

  9. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic

    PubMed Central

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set–proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters. PMID:26820646

  10. Effects of Vacancy Cluster Defects on Electrical and Thermodynamic Properties of Silicon Crystals

    PubMed Central

    Huang, Pei-Hsing; Lu, Chi-Ming

    2014-01-01

    A first-principle plane-wave pseudopotential method based on the density function theory (DFT) was employed to investigate the effects of vacancy cluster (VC) defects on the band structure and thermoelectric properties of silicon (Si) crystals. Simulation results showed that various VC defects changed the energy band and localized electron density distribution of Si crystals and caused the band gap to decrease with increasing VC size. The results can be ascribed to the formation of a defect level produced by the dangling bonds, floating bonds, or high-strain atoms surrounding the VC defects. The appearance of imaginary frequencies in the phonon spectrum of defective Si crystals indicates that the defect-region structure is dynamically unstable and demonstrates phase changes. The phonon dispersion relation and phonon density of state were also investigated using density functional perturbation theory. The obtained Debye temperature (θ D) for a perfect Si crystal had a minimum value of 448 K at T = 42 K and a maximum value of 671 K at the high-temperature limit, which is consistent with the experimental results reported by Flubacher. Moreover, the Debye temperature decreased with increases in the VC size. VC defects had minimal effects on the heat capacity (C v) value when temperatures were below 150 K. As the temperature was higher than 150 K, the heat capacity gradually increased with increasing temperature until it achieved a constant value of 11.8 cal/cell·K. The heat capacity significantly decreased as the VC size increased. For a 2 × 2 × 2 superlattice Si crystal containing a hexagonal ring VC (HRVC10), the heat capacity decreased by approximately 17%. PMID:24526923

  11. High reactivity of nanosized niobium oxide cluster cations in methane activation: A comparison with vanadium oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Xun-Lei, E-mail: dingxl@ncepu.edu.cn, E-mail: chemzyx@iccas.ac.cn; Wang, Dan; Wu, Xiao-Nan

    2015-09-28

    The reactions between methane and niobium oxide cluster cations were studied and compared to those employing vanadium oxides. Hydrogen atom abstraction (HAA) reactions were identified over stoichiometric (Nb{sub 2}O{sub 5}){sub N}{sup +} clusters for N as large as 14 with a time-of-flight mass spectrometer. The reactivity of (Nb{sub 2}O{sub 5}){sub N}{sup +} clusters decreases as the N increases, and it is higher than that of (V {sub 2}O{sub 5}){sub N}{sup +} for N ≥ 4. Theoretical studies were conducted on (Nb{sub 2}O{sub 5}){sub N}{sup +} (N = 2–6) by density functional calculations. HAA reactions on these clusters are all favorablemore » thermodynamically and kinetically. The difference of the reactivity with respect to the cluster size and metal type (Nb vs V) was attributed to thermodynamics, kinetics, the electron capture ability, and the distribution of the unpaired spin density. Nanosized Nb oxide clusters show higher HAA reactivity than V oxides, indicating that niobia may serve as promising catalysts for practical methane conversion.« less

  12. Wiggler magnetic field assisted third harmonic generation in expanding clusters

    NASA Astrophysics Data System (ADS)

    Vij, Shivani

    2018-04-01

    A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.

  13. Effect of the fruit position on the cluster on fruit quality, carotenoids, phenolics and sugars in cherry tomatoes (Solanum lycopersicum L.).

    PubMed

    Coyago-Cruz, Elena; Corell, Mireia; Moriana, Alfonso; Hernanz, Dolores; Stinco, Carla M; Meléndez-Martínez, Antonio J

    2017-10-01

    Cherry tomato varieties are widely consumed in many countries. They contain nutrients and health-promoting compounds like phenolics and carotenoids. The main purpose of this study was to determine how the fruit position on the cluster affected quality parameters of diverse nature (weight, soluble solids, firmness, colour, carotenoids, phenolic compounds and sugars). For this purpose the fourth cluster of two cherry varieties (Summerbrix and Lazarino) were studied. The results indicated that the fruit position on the cluster decreased the fruit size between 14 and 16% and weight 40%; firmness in 'Lazarino' increased 56%; C* ab increased 12% in 'Lazarino' and decreased 13% in 'Summerbrix'; h ab increased 9% in 'Summerbrix'. Total carotenoid levels were not statistically different in two positions, and in the other position the contents were higher, with a difference of 36% between these two values. The highest total phenolic levels were observed in the PII position. However, total sugars increased 36%, fructose 36% and glucose 35% from the PI to PIII position in 'Lazarino', while, in 'Summerbrix' higher values were observed in the PIII position. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Sensing Size through Clustering in Non-Equilibrium Membranes and the Control of Membrane-Bound Enzymatic Reactions

    PubMed Central

    Vagne, Quentin; Turner, Matthew S.; Sens, Pierre

    2015-01-01

    The formation of dynamical clusters of proteins is ubiquitous in cellular membranes and is in part regulated by the recycling of membrane components. We show, using stochastic simulations and analytic modeling, that the out-of-equilibrium cluster size distribution of membrane components undergoing continuous recycling is strongly influenced by lateral confinement. This result has significant implications for the clustering of plasma membrane proteins whose mobility is hindered by cytoskeletal “corrals” and for protein clustering in cellular organelles of limited size that generically support material fluxes. We show how the confinement size can be sensed through its effect on the size distribution of clusters of membrane heterogeneities and propose that this could be regulated to control the efficiency of membrane-bound reactions. To illustrate this, we study a chain of enzymatic reactions sensitive to membrane protein clustering. The reaction efficiency is found to be a non-monotonic function of the system size, and can be optimal for sizes comparable to those of cellular organelles. PMID:26656912

  15. Risk factors associated with cluster size of Mycobacterium tuberculosis (Mtb) of different RFLP lineages in Brazil.

    PubMed

    Peres, Renata Lyrio; Vinhas, Solange Alves; Ribeiro, Fabíola Karla Correa; Palaci, Moisés; do Prado, Thiago Nascimento; Reis-Santos, Bárbara; Zandonade, Eliana; Suffys, Philip Noel; Golub, Jonathan E; Riley, Lee W; Maciel, Ethel Leonor

    2018-02-08

    Tuberculosis (TB) transmission is influenced by patient-related risk, environment and bacteriological factors. We determined the risk factors associated with cluster size of IS6110 RFLP based genotypes of Mycobacterium tuberculosis (Mtb) isolates from Vitoria, Espirito Santo, Brazil. Cross-sectional study of new TB cases identified in the metropolitan area of Vitoria, Brazil between 2000 and 2010. Mtb isolates were genotyped by the IS6110 RFLP, spoligotyping and RD Rio . The isolates were classified according to genotype cluster sizes by three genotyping methods and associated patient epidemiologic characteristics. Regression Model was performed to identify factors associated with cluster size. Among 959 Mtb isolates, 461 (48%) cases had an isolate that belonged to an RFLP cluster, and six clusters with ten or more isolates were identified. Of the isolates spoligotyped, 448 (52%) were classified as LAM and 412 (48%) as non-LAM. Our regression model found that 6-9 isolates/RFLP cluster were more likely belong to the LAM family, having the RD Rio genotype and to be smear-positive (adjusted OR = 1.17, 95% CI 1.08-1.26; adjusted OR = 1.25, 95% CI 1.14-1.37; crude OR = 2.68, 95% IC 1.13-6.34; respectively) and living in a Serra city neighborhood decrease the risk of being in the 6-9 isolates/RFLP cluster (adjusted OR = 0.29, 95% CI, 0.10-0.84), than in the others groups. Individuals aged 21 to 30, 31 to 40 and > 50 years were less likely of belonging the 2-5 isolates/RFLP cluster than unique patterns compared to individuals < 20 years of age (adjusted OR = 0.49, 95% CI 0.28-0.85, OR = 0.43 95% CI 0.24-0.77and OR = 0. 49, 95% CI 0.26-0.91), respectively. The extrapulmonary disease was less likely to occur in those infected with strains in the 2-5 isolates/cluster group (adjustment OR = 0.45, 95% CI 0.24-0.85) than unique patterns. We found that a large proportion of new TB infections in Vitoria is caused by prevalent Mtb genotypes belonging to the LAM family and RD Rio genotypes. Such information demonstrates that some genotypes are more likely to cause recent transmission. Targeting interventions such as screening in specific areas and social risk groups, should be a priority for reducing transmission.

  16. Spatial correlations, clustering and percolation-like transitions in homicide crimes

    NASA Astrophysics Data System (ADS)

    Alves, L. G. A.; Lenzi, E. K.; Mendes, R. S.; Ribeiro, H. V.

    2015-07-01

    The spatial dynamics of criminal activities has been recently studied through statistical physics methods; however, models and results have been focusing on local scales (city level) and much less is known about these patterns at larger scales, e.g. at a country level. Here we report on a characterization of the spatial dynamics of the homicide crimes along the Brazilian territory using data from all cities (˜5000) in a period of more than thirty years. Our results show that the spatial correlation function in the per capita homicides decays exponentially with the distance between cities and that the characteristic correlation length displays an acute increasing trend in the latest years. We also investigate the formation of spatial clusters of cities via a percolation-like analysis, where clustering of cities and a phase-transition-like behavior describing the size of the largest cluster as a function of a homicide threshold are observed. This transition-like behavior presents evolutive features characterized by an increasing in the homicide threshold (where the transitions occur) and by a decreasing in the transition magnitudes (length of the jumps in the cluster size). We believe that our work sheds new light on the spatial patterns of criminal activities at large scales, which may contribute for better political decisions and resources allocation as well as opens new possibilities for modeling criminal activities by setting up fundamental empirical patterns at large scales.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Naim, Eli; Krapivsky, Paul

    Here we generalize the ordinary aggregation process to allow for choice. In ordinary aggregation, two random clusters merge and form a larger aggregate. In our implementation of choice, a target cluster and two candidate clusters are randomly selected and the target cluster merges with the larger of the two candidate clusters.We study the long-time asymptotic behavior and find that as in ordinary aggregation, the size density adheres to the standard scaling form. However, aggregation with choice exhibits a number of different features. First, the density of the smallest clusters exhibits anomalous scaling. Second, both the small-size and the large-size tailsmore » of the density are overpopulated, at the expense of the density of moderate-size clusters. Finally, we also study the complementary case where the smaller candidate cluster participates in the aggregation process and find an abundance of moderate clusters at the expense of small and large clusters. Additionally, we investigate aggregation processes with choice among multiple candidate clusters and a symmetric implementation where the choice is between two pairs of clusters.« less

  18. Growth of Ni nanoclusters on irradiated graphene: a molecular dynamics study.

    PubMed

    Valencia, F J; Hernandez-Vazquez, E E; Bringa, E M; Moran-Lopez, J L; Rogan, J; Gonzalez, R I; Munoz, F

    2018-04-23

    We studied the soft landing of Ni atoms on a previously damaged graphene sheet by means of molecular dynamics simulations. We found a monotonic decrease of the cluster frequency as a function of its size, but few big clusters comprise an appreciable fraction of the total number of Ni atoms. The aggregation of Ni atoms is also modeled by means of a simple phenomenological model. The results are in clear contrast with the case of hard or energetic landing of metal atoms, where there is a tendency to form mono-disperse metal clusters. This behavior is attributed to the high diffusion of unattached Ni atoms, together with vacancies acting as capture centers. The findings of this work show that a simple study of the energetics of the system is not enough in the soft landing regime, where it is unavoidable to also consider the growth process of metal clusters.

  19. Relative efficiency of unequal versus equal cluster sizes in cluster randomized trials using generalized estimating equation models.

    PubMed

    Liu, Jingxia; Colditz, Graham A

    2018-05-01

    There is growing interest in conducting cluster randomized trials (CRTs). For simplicity in sample size calculation, the cluster sizes are assumed to be identical across all clusters. However, equal cluster sizes are not guaranteed in practice. Therefore, the relative efficiency (RE) of unequal versus equal cluster sizes has been investigated when testing the treatment effect. One of the most important approaches to analyze a set of correlated data is the generalized estimating equation (GEE) proposed by Liang and Zeger, in which the "working correlation structure" is introduced and the association pattern depends on a vector of association parameters denoted by ρ. In this paper, we utilize GEE models to test the treatment effect in a two-group comparison for continuous, binary, or count data in CRTs. The variances of the estimator of the treatment effect are derived for the different types of outcome. RE is defined as the ratio of variance of the estimator of the treatment effect for equal to unequal cluster sizes. We discuss a commonly used structure in CRTs-exchangeable, and derive the simpler formula of RE with continuous, binary, and count outcomes. Finally, REs are investigated for several scenarios of cluster size distributions through simulation studies. We propose an adjusted sample size due to efficiency loss. Additionally, we also propose an optimal sample size estimation based on the GEE models under a fixed budget for known and unknown association parameter (ρ) in the working correlation structure within the cluster. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Breast cancer tumorigenicity is dependent on high expression levels of NAF-1 and the lability of its Fe-S clusters

    PubMed Central

    Darash-Yahana, Merav; Pozniak, Yair; Lu, Mingyang; Sohn, Yang-Sung; Karmi, Ola; Tamir, Sagi; Bai, Fang; Song, Luhua; Jennings, Patricia A.; Pikarsky, Eli; Geiger, Tamar; Onuchic, José N.; Mittler, Ron; Nechushtai, Rachel

    2016-01-01

    Iron–sulfur (Fe-S) proteins are thought to play an important role in cancer cells mediating redox reactions, DNA replication, and telomere maintenance. Nutrient-deprivation autophagy factor-1 (NAF-1) is a 2Fe-2S protein associated with the progression of multiple cancer types. It is unique among Fe-S proteins because of its 3Cys-1His cluster coordination structure that allows it to be relatively stable, as well as to transfer its clusters to apo-acceptor proteins. Here, we report that overexpression of NAF-1 in xenograft breast cancer tumors results in a dramatic augmentation in tumor size and aggressiveness and that NAF-1 overexpression enhances the tolerance of cancer cells to oxidative stress. Remarkably, overexpression of a NAF-1 mutant with a single point mutation that stabilizes the NAF-1 cluster, NAF-1(H114C), in xenograft breast cancer tumors results in a dramatic decrease in tumor size that is accompanied by enhanced mitochondrial iron and reactive oxygen accumulation and reduced cellular tolerance to oxidative stress. Furthermore, treating breast cancer cells with pioglitazone that stabilizes the 3Cys-1His cluster of NAF-1 results in a similar effect on mitochondrial iron and reactive oxygen species accumulation. Taken together, our findings point to a key role for the unique 3Cys-1His cluster of NAF-1 in promoting rapid tumor growth through cellular resistance to oxidative stress. Cluster transfer reactions mediated by the overexpressed NAF-1 protein are therefore critical for inducing oxidative stress tolerance in cancer cells, leading to rapid tumor growth, and drugs that stabilize the NAF-1 cluster could be used as part of a treatment strategy for cancers that display high NAF-1 expression. PMID:27621439

  1. Breast cancer tumorigenicity is dependent on high expression levels of NAF-1 and the lability of its Fe-S clusters.

    PubMed

    Darash-Yahana, Merav; Pozniak, Yair; Lu, Mingyang; Sohn, Yang-Sung; Karmi, Ola; Tamir, Sagi; Bai, Fang; Song, Luhua; Jennings, Patricia A; Pikarsky, Eli; Geiger, Tamar; Onuchic, José N; Mittler, Ron; Nechushtai, Rachel

    2016-09-27

    Iron-sulfur (Fe-S) proteins are thought to play an important role in cancer cells mediating redox reactions, DNA replication, and telomere maintenance. Nutrient-deprivation autophagy factor-1 (NAF-1) is a 2Fe-2S protein associated with the progression of multiple cancer types. It is unique among Fe-S proteins because of its 3Cys-1His cluster coordination structure that allows it to be relatively stable, as well as to transfer its clusters to apo-acceptor proteins. Here, we report that overexpression of NAF-1 in xenograft breast cancer tumors results in a dramatic augmentation in tumor size and aggressiveness and that NAF-1 overexpression enhances the tolerance of cancer cells to oxidative stress. Remarkably, overexpression of a NAF-1 mutant with a single point mutation that stabilizes the NAF-1 cluster, NAF-1(H114C), in xenograft breast cancer tumors results in a dramatic decrease in tumor size that is accompanied by enhanced mitochondrial iron and reactive oxygen accumulation and reduced cellular tolerance to oxidative stress. Furthermore, treating breast cancer cells with pioglitazone that stabilizes the 3Cys-1His cluster of NAF-1 results in a similar effect on mitochondrial iron and reactive oxygen species accumulation. Taken together, our findings point to a key role for the unique 3Cys-1His cluster of NAF-1 in promoting rapid tumor growth through cellular resistance to oxidative stress. Cluster transfer reactions mediated by the overexpressed NAF-1 protein are therefore critical for inducing oxidative stress tolerance in cancer cells, leading to rapid tumor growth, and drugs that stabilize the NAF-1 cluster could be used as part of a treatment strategy for cancers that display high NAF-1 expression.

  2. X-ray tomography investigation of intensive sheared Al–SiC metal matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Giovanni, Mario; Warnett, Jason M.; Williams, Mark A.

    2015-12-15

    X-ray computed tomography (XCT) was used to characterise three dimensional internal structure of Al–SiC metal matrix composites. The alloy composite was prepared by casting method with the application of intensive shearing to uniformly disperse SiC particles in the matrix. Visualisation of SiC clusters as well as porosity distribution were evaluated and compared with non-shearing samples. Results showed that the average particle size as well as agglomerate size is smaller in sheared sample compared to conventional cast samples. Further, it was observed that the volume fraction of porosity was reduced by 50% compared to conventional casting, confirming that the intensive shearingmore » helps in deagglomeration of particle clusters and decrease in porosity of Al–SiC metal matrix composites. - Highlights: • XCT was used to visualise 3D internal structure of Al-SiC MMC. • Al-SiC MMC was prepared by casting with the application of intensive shearing. • SiC particles and porosity distribution were evaluated. • Results show shearing deagglomerates particle clusters and reduces porosity in MMC.« less

  3. Greater-than-bulk melting temperatures explained: Gallium melts Gangnam style

    NASA Astrophysics Data System (ADS)

    Gaston, Nicola; Steenbergen, Krista

    2014-03-01

    The experimental discovery of superheating in gallium clusters contradicted the clear and well-demonstrated paradigm that the melting temperature of a particle should decrease with its size. However the extremely sensitive dependence of melting temperature on size also goes to the heart of cluster science, and the interplay between the effects of electronic and geometric structure. We have performed extensive first-principles molecular dynamics calculations, incorporating parallel tempering for an efficient exploration of configurational phase space. This is necessary, due to the complicated energy landscape of gallium. In the nanoparticles, melting is preceded by a transitions between phases. A structural feature, referred to here as the Gangnam motif, is found to increase with the latent heat and appears throughout the observed phase changes of this curious metal. We will present our detailed analysis of the solid-state isomers, performed using extensive statistical sampling of the trajectory data for the assignment of cluster structures to known phases of gallium. Finally, we explain the greater-than-bulk melting through analysis of the factors that stabilise the liquid structures.

  4. Effects of Group Size and Lack of Sphericity on the Recovery of Clusters in K-Means Cluster Analysis

    ERIC Educational Resources Information Center

    de Craen, Saskia; Commandeur, Jacques J. F.; Frank, Laurence E.; Heiser, Willem J.

    2006-01-01

    K-means cluster analysis is known for its tendency to produce spherical and equally sized clusters. To assess the magnitude of these effects, a simulation study was conducted, in which populations were created with varying departures from sphericity and group sizes. An analysis of the recovery of clusters in the samples taken from these…

  5. Extending Stability Through Hierarchical Clusters in Echo State Networks

    PubMed Central

    Jarvis, Sarah; Rotter, Stefan; Egert, Ulrich

    2009-01-01

    Echo State Networks (ESN) are reservoir networks that satisfy well-established criteria for stability when constructed as feedforward networks. Recent evidence suggests that stability criteria are altered in the presence of reservoir substructures, such as clusters. Understanding how the reservoir architecture affects stability is thus important for the appropriate design of any ESN. To quantitatively determine the influence of the most relevant network parameters, we analyzed the impact of reservoir substructures on stability in hierarchically clustered ESNs, as they allow a smooth transition from highly structured to increasingly homogeneous reservoirs. Previous studies used the largest eigenvalue of the reservoir connectivity matrix (spectral radius) as a predictor for stable network dynamics. Here, we evaluate the impact of clusters, hierarchy and intercluster connectivity on the predictive power of the spectral radius for stability. Both hierarchy and low relative cluster sizes extend the range of spectral radius values, leading to stable networks, while increasing intercluster connectivity decreased maximal spectral radius. PMID:20725523

  6. Towards Cluster-Assembled Materials of True Monodispersity in Size and Chemical Environment: Synthesis, Dynamics and Activity

    DTIC Science & Technology

    2016-10-27

    AFRL-AFOSR-UK-TR-2016-0037 Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and...Towards cluster-assembled materials of true monodispersity in size and chemical environment: synthesis, dynamics and activity 5a.  CONTRACT NUMBER 5b...report Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and Activity Ulrich Heiz

  7. Effects of heterogeneous convergence rate on consensus in opinion dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Changwei; Dai, Qionglin; Han, Wenchen; Feng, Yuee; Cheng, Hongyan; Li, Haihong

    2018-06-01

    The Deffuant model has attracted much attention in the study of opinion dynamics. Here, we propose a modified version by introducing into the model a heterogeneous convergence rate which is dependent on the opinion difference between interacting agents and a tunable parameter κ. We study the effects of heterogeneous convergence rate on consensus by investigating the probability of complete consensus, the size of the largest opinion cluster, the number of opinion clusters, and the relaxation time. We find that the decrease of the convergence rate is favorable to decreasing the confidence threshold for the population to always reach complete consensus, and there exists optimal κ resulting in the minimal bounded confidence threshold. Moreover, we find that there exists a window before the threshold of confidence in which complete consensus may be reached with a nonzero probability when κ is not too large. We also find that, within a certain confidence range, decreasing the convergence rate will reduce the relaxation time, which is somewhat counterintuitive.

  8. Synthesis and Characterization of Nd(3+)-Doped CaF2 Nanoparticles.

    PubMed

    Yuan, Dan; Li, Weiwei; Mei, Bingchu; Song, Jinghong

    2015-12-01

    The Ca(1-x)F(2+x):Nd(x) nanoparticles were synthesized by chemical direct precipitation method. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Image analyzer, absorption spectrum and transmittance were taken to characterization the phases, morphologies, sizes, size distribution and optical properties of the samples. The results indicate that the Ca(1-x)F(2+x):Nd(x) samples can be rationally modified in size and morphology by altering the Nd3+ ions doping concentration. With increasing concentration of Nd3+ ions, the particle size decreased from 24 to 14 nm, the intensity of the diffraction peaks decreased, the Ca(1-x)F(2+x):Nd(x) particles aggregated ion of the formed clusters which should have an effect on both speed and orientation of the particles growth. The transmittance of ceramics with a thickness of 2 mm showed that the transmittance can reach 90% when the doping concentration was 5%, which should be profitable for LD pumping.

  9. Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation

    PubMed Central

    2010-01-01

    Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM) and scanning electron transmission microscopy (STEM) measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications. PMID:20652132

  10. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. III. Coulomb explosion of deuterium clusters.

    PubMed

    Last, Isidore; Jortner, Joshua

    2004-08-15

    In this paper we present a theoretical and computational study of the energetics and temporal dynamics of Coulomb explosion of molecular clusters of deuterium (D2)n/2 (n = 480 - 7.6 x 10(4), cluster radius R0 = 13.1 - 70 A) in ultraintense laser fields (laser peak intensity I = 10(15) - 10(20)W cm(-2)). The energetics of Coulomb explosion was inferred from the dependence of the maximal energy EM and the average energy Eav of the product D+ ions on the laser intensity, the laser pulse shape, the cluster radius, and the laser frequency. Electron dynamics of outer cluster ionization and nuclear dynamics of Coulomb explosion were investigated by molecular dynamics simulations. Several distinct laser pulse shape envelopes, involving a rectangular field, a Gaussian field, and a truncated Gaussian field, were employed to determine the validity range of the cluster vertical ionization (CVI) approximation. The CVI predicts that Eav, EM proportional to R0(2) and that the energy distribution is P(E) proportional to E1/2. For a rectangular laser pulse the CVI conditions are satisfied when complete outer ionization is obtained, with the outer ionization time toi being shorter than both the pulse width and the cluster radius doubling time tau2. By increasing toi, due to the increase of R0 or the decrease of I, we have shown that the deviation of Eav from the corresponding CVI value (Eav(CVI)) is (Eav(CVI) - Eav)/Eav(CVI) approximately (toi/2.91tau2)2. The Gaussian pulses trigger outer ionization induced by adiabatic following of the laser field and of the cluster size, providing a pseudo-CVI behavior at sufficiently large laser fields. The energetics manifest the existence of a finite range of CVI size dependence, with the validity range for the applicability of the CVI being R0 < or = (R0)I, with (R0)I representing an intensity dependent boundary radius. Relating electron dynamics of outer ionization to nuclear dynamics for Coulomb explosion induced by a Gaussian pulse, the boundary radius (R0)I and the corresponding ion average energy (Eav)I were inferred from simulations and described in terms of an electrostatic model. Two independent estimates of (R0)I, which involve the cluster size where the CVI relation breaks down and the cluster size for the attainment of complete outer ionization, are in good agreement with each other, as well as with the electrostatic model for cluster barrier suppression. The relation (Eav)I proportional to (R0)I(2) provides the validity range of the pseudo-CVI domain for the cluster sizes and laser intensities, where the energetics of D+ ions produced by Coulomb explosion of (D)n clusters is optimized. The currently available experimental data [Madison et al., Phys. Plasmas 11, 1 (2004)] for the energetics of Coulomb explosion of (D)n clusters (Eav = 5 - 7 keV at I = 2 x 10(18) W cm(-2)), together with our simulation data, lead to the estimates of R0 = 51 - 60 A, which exceed the experimental estimate of R0 = 45 A. The predicted anisotropy of the D+ ion energies in the Coulomb explosion at I = 10(18) W cm(-2) is in accord with experiment. We also explored the laser frequency dependence of the energetics of Coulomb explosion in the range nu = 0.1 - 2.1 fs(-1) (lambda = 3000 - 140 nm), which can be rationalized in terms of the electrostatic model. (c) 2004 American Institute of Physics.

  11. Ab initio study of the Coulomb interaction in NbxCo clusters: Strong on-site versus weak nonlocal screening

    NASA Astrophysics Data System (ADS)

    Peters, L.; Şaşıoǧlu, E.; Mertig, I.; Katsnelson, M. I.

    2018-01-01

    By means of ab initio calculations in conjunction with the random-phase approximation (RPA) within the full-potential linearized augmented plane wave method, we study the screening of the Coulomb interaction in NbxCo (1 ≤x ≤9 ) clusters. In addition, these results are compared with pure bcc Nb bulk. We find that for all clusters the on-site Coulomb interaction in RPA is strongly screened, whereas the intersite nonlocal Coulomb interaction is weakly screened and for some clusters it is unscreened or even antiscreened. This is in strong contrast with pure Nb bulk, where the intersite Coulomb interaction is almost completely screened. Furthermore, constrained RPA calculations reveal that the contribution of the Co 3 d → 3 d channel to the total screening of the Co 3 d electrons is small. Moreover, we find that both the on-site and intersite Coulomb interaction parameters decrease in a reasonable approximation linearly with the cluster size and for clusters having more than 20 Nb atoms a transition from 0D to 3D screening is expected to take place.

  12. A Review of Luminescent Anionic Nano System: d10 Metallocyanide Excimers and Exciplexes in Alkali Halide Hosts

    PubMed Central

    Li, Xiaobo; Patterson, Howard H.

    2013-01-01

    Dicyanoaurate, dicyanoargentate, and dicyanocuprate ions in solution and doped in different alkali halide hosts exhibit interesting photophysical and photochemical behavior, such as multiple emission bands, exciplex tuning, optical memory, and thermochromism. This is attributed to the formation of different sizes of nanoclusters in solution and in doped hosts. A series of spectroscopic methods (luminescence, UV-reflectance, IR, and Raman) as well as theoretical calculations have confirmed the existence of excimers and exciplexes. This leads to the tunability of these nano systems over a wide wavelength interval. The population of these nanoclusters varies with temperature and external laser irradiation, which explains the thermochromism and optical memory. DFT calculations indicate an MLCT transition for each nanocluster and the emission energy decreases with increasing cluster size. This is in agreement with the relatively long life-time for the emission peaks and the multiple emission peaks dependence upon cluster concentration. PMID:28811397

  13. An investigation into the melting of silicon nanoclusters using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Fang, Kuan-Chuan; Weng, Cheng-I.

    2005-02-01

    Using the Stillinger-Weber (SW) potential model, we have performed molecular dynamics (MD) simulations to investigate the melting of silicon nanoclusters comprising a maximum of 9041 atoms. This study investigates the size, surface energy and root mean square displacement (RMSD) characteristics of the silicon nanoclusters as they undergo a heating process. The numerical results reveal that an intermediate nanocrystal regime exists for clusters with more than 357 atoms. Within this regime, a linear relationship exists between the cluster size and its melting temperature. It is found that melting of the silicon nanoclusters commences at the surface and that Tm,N = Tm,Bulk-αN-1/3. Therefore, the extrapolated melting temperature of the bulk with a surface decreases from Tm,Bulk = 1821 K to a value of Tm,357 = 1380 K at the lower limit of the intermediate nanocrystal regime.

  14. Kinetics of Aggregation with Choice

    DOE PAGES

    Ben-Naim, Eli; Krapivsky, Paul

    2016-12-01

    Here we generalize the ordinary aggregation process to allow for choice. In ordinary aggregation, two random clusters merge and form a larger aggregate. In our implementation of choice, a target cluster and two candidate clusters are randomly selected and the target cluster merges with the larger of the two candidate clusters.We study the long-time asymptotic behavior and find that as in ordinary aggregation, the size density adheres to the standard scaling form. However, aggregation with choice exhibits a number of different features. First, the density of the smallest clusters exhibits anomalous scaling. Second, both the small-size and the large-size tailsmore » of the density are overpopulated, at the expense of the density of moderate-size clusters. Finally, we also study the complementary case where the smaller candidate cluster participates in the aggregation process and find an abundance of moderate clusters at the expense of small and large clusters. Additionally, we investigate aggregation processes with choice among multiple candidate clusters and a symmetric implementation where the choice is between two pairs of clusters.« less

  15. Cluster Free Energies from Simple Simulations of Small Numbers of Aggregants: Nucleation of Liquid MTBE from Vapor and Aqueous Phases.

    PubMed

    Patel, Lara A; Kindt, James T

    2017-03-14

    We introduce a global fitting analysis method to obtain free energies of association of noncovalent molecular clusters using equilibrated cluster size distributions from unbiased constant-temperature molecular dynamics (MD) simulations. Because the systems simulated are small enough that the law of mass action does not describe the aggregation statistics, the method relies on iteratively determining a set of cluster free energies that, using appropriately weighted sums over all possible partitions of N monomers into clusters, produces the best-fit size distribution. The quality of these fits can be used as an objective measure of self-consistency to optimize the cutoff distance that determines how clusters are defined. To showcase the method, we have simulated a united-atom model of methyl tert-butyl ether (MTBE) in the vapor phase and in explicit water solution over a range of system sizes (up to 95 MTBE in the vapor phase and 60 MTBE in the aqueous phase) and concentrations at 273 K. The resulting size-dependent cluster free energy functions follow a form derived from classical nucleation theory (CNT) quite well over the full range of cluster sizes, although deviations are more pronounced for small cluster sizes. The CNT fit to cluster free energies yielded surface tensions that were in both cases lower than those for the simulated planar interfaces. We use a simple model to derive a condition for minimizing non-ideal effects on cluster size distributions and show that the cutoff distance that yields the best global fit is consistent with this condition.

  16. Water cluster fragmentation probed by pickup experiments

    NASA Astrophysics Data System (ADS)

    Huang, Chuanfu; Kresin, Vitaly V.; Pysanenko, Andriy; Fárník, Michal

    2016-09-01

    Electron ionization is a common tool for the mass spectrometry of atomic and molecular clusters. Any cluster can be ionized efficiently by sufficiently energetic electrons, but concomitant fragmentation can seriously obstruct the goal of size-resolved detection. We present a new general method to assess the original neutral population of the cluster beam. Clusters undergo a sticking collision with a molecule from a crossed beam, and the velocities of neat and doped cluster ion peaks are measured and compared. By making use of longitudinal momentum conservation, one can reconstruct the sizes of the neutral precursors. Here this method is applied to H2O and D2O clusters in the detected ion size range of 3-10. It is found that water clusters do fragment significantly upon electron impact: the deduced neutral precursor size is ˜3-5 times larger than the observed cluster ions. This conclusion agrees with beam size characterization by another experimental technique: photoionization after Na-doping. Abundant post-ionization fragmentation of water clusters must therefore be an important factor in the interpretation of experimental data; interestingly, there is at present no detailed microscopic understanding of the underlying fragmentation dynamics.

  17. Three-dimensional cluster formation and structure in heterogeneous dose distribution of intensity modulated radiation therapy.

    PubMed

    Chao, Ming; Wei, Jie; Narayanasamy, Ganesh; Yuan, Yading; Lo, Yeh-Chi; Peñagarícano, José A

    2018-05-01

    To investigate three-dimensional cluster structure and its correlation to clinical endpoint in heterogeneous dose distributions from intensity modulated radiation therapy. Twenty-five clinical plans from twenty-one head and neck (HN) patients were used for a phenomenological study of the cluster structure formed from the dose distributions of organs at risks (OARs) close to the planning target volumes (PTVs). Initially, OAR clusters were searched to examine the pattern consistence among ten HN patients and five clinically similar plans from another HN patient. Second, clusters of the esophagus from another ten HN patients were scrutinized to correlate their sizes to radiobiological parameters. Finally, an extensive Monte Carlo (MC) procedure was implemented to gain deeper insights into the behavioral properties of the cluster formation. Clinical studies showed that OAR clusters had drastic differences despite similar PTV coverage among different patients, and the radiobiological parameters failed to positively correlate with the cluster sizes. MC study demonstrated the inverse relationship between the cluster size and the cluster connectivity, and the nonlinear changes in cluster size with dose thresholds. In addition, the clusters were insensitive to the shape of OARs. The results demonstrated that the cluster size could serve as an insightful index of normal tissue damage. The clinical outcome of the same dose-volume might be potentially different. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Slow-Down in Diffusion in Crowded Protein Solutions Correlates with Transient Cluster Formation.

    PubMed

    Nawrocki, Grzegorz; Wang, Po-Hung; Yu, Isseki; Sugita, Yuji; Feig, Michael

    2017-12-14

    For a long time, the effect of a crowded cellular environment on protein dynamics has been largely ignored. Recent experiments indicate that proteins diffuse more slowly in a living cell than in a diluted solution, and further studies suggest that the diffusion depends on the local surroundings. Here, detailed insight into how diffusion depends on protein-protein contacts is presented based on extensive all-atom molecular dynamics simulations of concentrated villin headpiece solutions. After force field adjustments in the form of increased protein-water interactions to reproduce experimental data, translational and rotational diffusion was analyzed in detail. Although internal protein dynamics remained largely unaltered, rotational diffusion was found to slow down more significantly than translational diffusion as the protein concentration increased. The decrease in diffusion is interpreted in terms of a transient formation of protein clusters. These clusters persist on sub-microsecond time scales and follow distributions that increasingly shift toward larger cluster size with increasing protein concentrations. Weighting diffusion coefficients estimated for different clusters extracted from the simulations with the distribution of clusters largely reproduces the overall observed diffusion rates, suggesting that transient cluster formation is a primary cause for a slow-down in diffusion upon crowding with other proteins.

  19. Understanding the cluster randomised crossover design: a graphical illustraton of the components of variation and a sample size tutorial.

    PubMed

    Arnup, Sarah J; McKenzie, Joanne E; Hemming, Karla; Pilcher, David; Forbes, Andrew B

    2017-08-15

    In a cluster randomised crossover (CRXO) design, a sequence of interventions is assigned to a group, or 'cluster' of individuals. Each cluster receives each intervention in a separate period of time, forming 'cluster-periods'. Sample size calculations for CRXO trials need to account for both the cluster randomisation and crossover aspects of the design. Formulae are available for the two-period, two-intervention, cross-sectional CRXO design, however implementation of these formulae is known to be suboptimal. The aims of this tutorial are to illustrate the intuition behind the design; and provide guidance on performing sample size calculations. Graphical illustrations are used to describe the effect of the cluster randomisation and crossover aspects of the design on the correlation between individual responses in a CRXO trial. Sample size calculations for binary and continuous outcomes are illustrated using parameters estimated from the Australia and New Zealand Intensive Care Society - Adult Patient Database (ANZICS-APD) for patient mortality and length(s) of stay (LOS). The similarity between individual responses in a CRXO trial can be understood in terms of three components of variation: variation in cluster mean response; variation in the cluster-period mean response; and variation between individual responses within a cluster-period; or equivalently in terms of the correlation between individual responses in the same cluster-period (within-cluster within-period correlation, WPC), and between individual responses in the same cluster, but in different periods (within-cluster between-period correlation, BPC). The BPC lies between zero and the WPC. When the WPC and BPC are equal the precision gained by crossover aspect of the CRXO design equals the precision lost by cluster randomisation. When the BPC is zero there is no advantage in a CRXO over a parallel-group cluster randomised trial. Sample size calculations illustrate that small changes in the specification of the WPC or BPC can increase the required number of clusters. By illustrating how the parameters required for sample size calculations arise from the CRXO design and by providing guidance on both how to choose values for the parameters and perform the sample size calculations, the implementation of the sample size formulae for CRXO trials may improve.

  20. First assembly times and equilibration in stochastic coagulation-fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Orsogna, Maria R.; Department of Mathematics, CSUN, Los Angeles, California 91330-8313; Lei, Qi

    2015-07-07

    We develop a fully stochastic theory for coagulation and fragmentation (CF) in a finite system with a maximum cluster size constraint. The process is modeled using a high-dimensional master equation for the probabilities of cluster configurations. For certain realizations of total mass and maximum cluster sizes, we find exact analytical results for the expected equilibrium cluster distributions. If coagulation is fast relative to fragmentation and if the total system mass is indivisible by the mass of the largest allowed cluster, we find a mean cluster-size distribution that is strikingly broader than that predicted by the corresponding mass-action equations. Combinations ofmore » total mass and maximum cluster size under which equilibration is accelerated, eluding late-stage coarsening, are also delineated. Finally, we compute the mean time it takes particles to first assemble into a maximum-sized cluster. Through careful state-space enumeration, the scaling of mean assembly times is derived for all combinations of total mass and maximum cluster size. We find that CF accelerates assembly relative to monomer kinetic only in special cases. All of our results hold in the infinite system limit and can be only derived from a high-dimensional discrete stochastic model, highlighting how classical mass-action models of self-assembly can fail.« less

  1. Perspective: Size selected clusters for catalysis and electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro

    We report that size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this Perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition,more » cluster-support interactions and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modelling based on density functional theory sampling of local minima and energy barriers or ab initio Molecular Dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Lastly, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.« less

  2. Perspective: Size selected clusters for catalysis and electrochemistry

    DOE PAGES

    Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; ...

    2018-03-15

    We report that size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this Perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition,more » cluster-support interactions and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modelling based on density functional theory sampling of local minima and energy barriers or ab initio Molecular Dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Lastly, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.« less

  3. Perspective: Size selected clusters for catalysis and electrochemistry

    NASA Astrophysics Data System (ADS)

    Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; Vajda, Stefan

    2018-03-01

    Size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization, and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition, cluster-support interactions, and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modeling based on density functional theory sampling of local minima and energy barriers or ab initio molecular dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Finally, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.

  4. HF in clusters of molecular hydrogen. I. Size evolution of quantum solvation by parahydrogen molecules.

    PubMed

    Jiang, Hao; Bacić, Zlatko

    2005-06-22

    We present a theoretical study of the quantum solvation of the HF molecule by a small number of parahydrogen molecules, having n = 1-13 solvent particles. The minimum-energy cluster structures determined for n = 1-12 have all of the H(2) molecules in the first solvent shell. The first solvent shell closes at n = 12 and its geometry is icosahedral, with the HF molecule at the center. The quantum-mechanical ground-state properties of the clusters are calculated exactly using the diffusion Monte Carlo method. The zero-point energy of (p-H(2))(n)HF clusters is unusually large, amounting to 86% of the potential well depth for n > 7. The radial probability distribution functions (PDFs) confirm that the first solvent shell is complete for n = 12, and that the 13th p-H(2) molecule begins to fill the second solvent shell. The p-H(2) molecules execute large-amplitude motions and are highly mobile, making the solvent cage exceptionally fluxional. The anisotropy of the solvent, very pronounced for small clusters, decreases rapidly with increasing n, so that for n approximately 8-9 the solvent environment is practically isotropic. The analysis of the pair angular PDF reveals that for a given n, the parahydrogen solvent density around the HF is modulated in a pattern which clearly reflects the lowest-energy cluster configuration. The rigidity of the solvent clusters displays an interesting size dependence, increasing from n = 6 to 9, becoming floppier for n = 10, and increasing again up to n = 12, as the solvent shell is filled. The rigidity of the solvent cage appears to reach its maximum for n = 12, the point at which the first solvent shell is closed.

  5. Regression analysis of clustered failure time data with informative cluster size under the additive transformation models.

    PubMed

    Chen, Ling; Feng, Yanqin; Sun, Jianguo

    2017-10-01

    This paper discusses regression analysis of clustered failure time data, which occur when the failure times of interest are collected from clusters. In particular, we consider the situation where the correlated failure times of interest may be related to cluster sizes. For inference, we present two estimation procedures, the weighted estimating equation-based method and the within-cluster resampling-based method, when the correlated failure times of interest arise from a class of additive transformation models. The former makes use of the inverse of cluster sizes as weights in the estimating equations, while the latter can be easily implemented by using the existing software packages for right-censored failure time data. An extensive simulation study is conducted and indicates that the proposed approaches work well in both the situations with and without informative cluster size. They are applied to a dental study that motivated this study.

  6. IDENTIFICATION OF MEMBERS IN THE CENTRAL AND OUTER REGIONS OF GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serra, Ana Laura; Diaferio, Antonaldo, E-mail: serra@ph.unito.it

    2013-05-10

    The caustic technique measures the mass of galaxy clusters in both their virial and infall regions and, as a byproduct, yields the list of cluster galaxy members. Here we use 100 galaxy clusters with mass M{sub 200} {>=} 10{sup 14} h {sup -1} M{sub Sun} extracted from a cosmological N-body simulation of a {Lambda}CDM universe to test the ability of the caustic technique to identify the cluster galaxy members. We identify the true three-dimensional members as the gravitationally bound galaxies. The caustic technique uses the caustic location in the redshift diagram to separate the cluster members from the interlopers. Wemore » apply the technique to mock catalogs containing 1000 galaxies in the field of view of 12 h {sup -1} Mpc on a side at the cluster location. On average, this sample size roughly corresponds to 180 real galaxy members within 3r{sub 200}, similar to recent redshift surveys of cluster regions. The caustic technique yields a completeness, the fraction of identified true members, f{sub c} = 0.95 {+-} 0.03, within 3r{sub 200}. The contamination, the fraction of interlopers in the observed catalog of members, increases from f{sub i}=0.020{sup +0.046}{sub -0.015} at r{sub 200} to f{sub i}=0.08{sup +0.11}{sub -0.05} at 3r{sub 200}. No other technique for the identification of the members of a galaxy cluster provides such large completeness and small contamination at these large radii. The caustic technique assumes spherical symmetry and the asphericity of the cluster is responsible for most of the spread of the completeness and the contamination. By applying the technique to an approximately spherical system obtained by stacking the individual clusters, the spreads decrease by at least a factor of two. We finally estimate the cluster mass within 3r{sub 200} after removing the interlopers: for individual clusters, the mass estimated with the virial theorem is unbiased and within 30% of the actual mass; this spread decreases to less than 10% for the spherically symmetric stacked cluster.« less

  7. Formation of silicon nanocrystals in sapphire by ion implantation and the origin of visible photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yerci, S.; Serincan, U.; Dogan, I.

    2006-10-01

    Silicon nanocrystals, average sizes ranging between 3 and 7 nm, were formed in sapphire matrix by ion implantation and subsequent annealing. Evolution of the nanocrystals was detected by Raman spectroscopy and x-ray diffraction (XRD). Raman spectra display that clusters in the matrix start to form nanocrystalline structures at annealing temperatures as low as 800 deg. C in samples with high dose Si implantation. The onset temperature of crystallization increases with decreasing dose. Raman spectroscopy and XRD reveal gradual transformation of Si clusters into crystalline form. Visible photoluminescence band appears following implantation and its intensity increases with subsequent annealing process. Whilemore » the center of the peak does not shift, the intensity of the peak decreases with increasing dose. The origin of the observed photoluminescence is discussed in terms of radiation induced defects in the sapphire matrix.« less

  8. The Italian primary school-size distribution and the city-size: a complex nexus

    NASA Astrophysics Data System (ADS)

    Belmonte, Alessandro; di Clemente, Riccardo; Buldyrev, Sergey V.

    2014-06-01

    We characterize the statistical law according to which Italian primary school-size distributes. We find that the school-size can be approximated by a log-normal distribution, with a fat lower tail that collects a large number of very small schools. The upper tail of the school-size distribution decreases exponentially and the growth rates are distributed with a Laplace PDF. These distributions are similar to those observed for firms and are consistent with a Bose-Einstein preferential attachment process. The body of the distribution features a bimodal shape suggesting some source of heterogeneity in the school organization that we uncover by an in-depth analysis of the relation between schools-size and city-size. We propose a novel cluster methodology and a new spatial interaction approach among schools which outline the variety of policies implemented in Italy. Different regional policies are also discussed shedding lights on the relation between policy and geographical features.

  9. Modeling of correlated data with informative cluster sizes: An evaluation of joint modeling and within-cluster resampling approaches.

    PubMed

    Zhang, Bo; Liu, Wei; Zhang, Zhiwei; Qu, Yanping; Chen, Zhen; Albert, Paul S

    2017-08-01

    Joint modeling and within-cluster resampling are two approaches that are used for analyzing correlated data with informative cluster sizes. Motivated by a developmental toxicity study, we examined the performances and validity of these two approaches in testing covariate effects in generalized linear mixed-effects models. We show that the joint modeling approach is robust to the misspecification of cluster size models in terms of Type I and Type II errors when the corresponding covariates are not included in the random effects structure; otherwise, statistical tests may be affected. We also evaluate the performance of the within-cluster resampling procedure and thoroughly investigate the validity of it in modeling correlated data with informative cluster sizes. We show that within-cluster resampling is a valid alternative to joint modeling for cluster-specific covariates, but it is invalid for time-dependent covariates. The two methods are applied to a developmental toxicity study that investigated the effect of exposure to diethylene glycol dimethyl ether.

  10. Phase diagram of Ag-Pd bimetallic nanoclusters by molecular dynamics simulations: solid-to-liquid transition and size-dependent behavior.

    PubMed

    Kim, Da Hye; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo

    2009-07-07

    This report on the solid-to-liquid transition region of an Ag-Pd bimetallic nanocluster is based on a constant energy microcanonical ensemble molecular dynamics simulation combined with a collision method. By varying the size and composition of an Ag-Pd bimetallic cluster, we obtained a complete solid-solution type of binary phase diagram of the Ag-Pd system. Irrespective of the size and composition of the cluster, the melting temperature of Ag-Pd bimetallic clusters is lower than that of the bulk state and rises as the cluster size and the Pd composition increase. Additionally, the slope of the phase boundaries (even though not exactly linear) is lowered when the cluster size is reduced on account of the complex relations of the surface tension, the bulk melting temperature, and the heat of fusion. The melting of the cluster initially starts at the surface layer. The initiation and propagation of a five-fold icosahedron symmetry is related to the sequential melting of the cluster.

  11. Object Kinetic Monte Carlo Simulations of Radiation Damage In Bulk Tungsten

    NASA Astrophysics Data System (ADS)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard; Roche, Kenneth; Kurtz, Richard; Wirth, Brian

    2015-11-01

    Results are presented for the evolution of radiation damage in bulk tungsten investigated using the object KMC simulation tool, KSOME, as a function of dose, dose rate and primary knock-on atom (PKA) energies in the range of 10 to 100 keV, at temperatures of 300, 1025 and 2050 K. At 300 K, the number density of vacancies changes minimally with dose rate while the number density of vacancy clusters slightly decreases with dose rate indicating that larger clusters are formed at higher dose rates. Although the average vacancy cluster size increases slightly, the vast majority exists as mono-vacancies. At 1025 K void lattice formation was observed at all dose rates for cascades below 60 keV and at lower dose rates for higher PKA energies. After the appearance of initial features of the void lattice, vacancy cluster density increased minimally while the average vacancy cluster size increases rapidly with dose. At 2050 K, no accumulation of defects was observed over a broad range of dose rates for all PKA energies studied in this work. Further comparisons of results of irradiation simulations at various dose rates and PKA spectra, representative of the High Flux Isotope Reactor and future fusion relevant irradiation facilities will be discussed. The U.S. Department of Energy, Office of Fusion Energy Sciences (FES) and Office of Advanced Scientific Computing Research (ASCR) has supported this study through the SciDAC-3 program.

  12. Characterization of deuterium clusters mixed with helium gas for an application in beam-target-fusion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, W.; Quevedo, H. J.; Bernstein, A. C.

    We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure themore » average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.« less

  13. Ab initio calculations of optical properties of silver clusters: cross-over from molecular to nanoscale behavior

    NASA Astrophysics Data System (ADS)

    Titantah, John T.; Karttunen, Mikko

    2016-05-01

    Electronic and optical properties of silver clusters were calculated using two different ab initio approaches: (1) based on all-electron full-potential linearized-augmented plane-wave method and (2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach to simulate small clusters. The effect of cluster size is then explored using the local basis function approach. We find that as the cluster size increases, the electronic structure undergoes a transition from molecular behavior to nanoparticle behavior at a cluster size of 140 atoms (diameter ~1.7 nm). Above this cluster size the step-like electronic structure, evident as several features in the imaginary part of the polarizability of all clusters smaller than Ag147, gives way to a dominant plasmon peak localized at wavelengths 350 nm ≤ λ ≤ 600 nm. It is, thus, at this length-scale that the conduction electrons' collective oscillations that are responsible for plasmonic resonances begin to dominate the opto-electronic properties of silver nanoclusters.

  14. Characterization of deuterium clusters mixed with helium gas for an application in beam-target-fusion experiments

    DOE PAGES

    Bang, W.; Quevedo, H. J.; Bernstein, A. C.; ...

    2014-12-10

    We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure themore » average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.« less

  15. Search for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21-Ge29

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Zeng, X. C.

    2006-05-01

    We performed a constrained search for the geometries of low-lying neutral germanium clusters GeN in the size range of 21⩽N⩽29. The basin-hopping global optimization method is employed for the search. The potential-energy surface is computed based on the plane-wave pseudopotential density functional theory. A new series of low-lying clusters is found on the basis of several generic structural motifs identified previously for silicon clusters [S. Yoo and X. C. Zeng, J. Chem. Phys. 124, 054304 (2006)] as well as for smaller-sized germanium clusters [S. Bulusu et al., J. Chem. Phys. 122, 164305 (2005)]. Among the generic motifs examined, we found that two motifs stand out in producing most low-lying clusters, namely, the six/nine motif, a puckered-hexagonal-ring Ge6 unit attached to a tricapped trigonal prism Ge9, and the six/ten motif, a puckered-hexagonal-ring Ge6 unit attached to a bicapped antiprism Ge10. The low-lying clusters obtained are all prolate in shape and their energies are appreciably lower than the near-spherical low-energy clusters. This result is consistent with the ion-mobility measurement in that medium-sized germanium clusters detected are all prolate in shape until the size N ˜65.

  16. SPECTROSCOPY OF LUMINOUS COMPACT BLUE GALAXIES IN DISTANT CLUSTERS. II. PHYSICAL PROPERTIES OF dE PROGENITOR CANDIDATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, S. M.; Wirth, Gregory D.; Bershady, M. A.

    2016-02-01

    Luminous Compact Blue Galaxies (LCBGs) are an extreme star-bursting population of galaxies that were far more common at earlier epochs than today. Based on spectroscopic and photometric measurements of LCBGs in massive (M > 10{sup 15} M{sub ⊙}), intermediate redshift (0.5 < z < 0.9) galaxy clusters, we present their rest-frame properties including star formation rate, dynamical mass, size, luminosity, and metallicity. The appearance of these small, compact galaxies in clusters at intermediate redshift helps explain the observed redshift evolution in the size–luminosity relationship among cluster galaxies. In addition, we find the rest-frame properties of LCBGs appearing in galaxy clusters are indistinguishable from field LCBGs atmore » the same redshift. Up to 35% of the LCBGs show significant discrepancies between optical and infrared indicators of star formation, suggesting that star formation occurs in obscured regions. Nonetheless, the star formation for LCBGs shows a decrease toward the center of the galaxy clusters. Based on their position and velocity, we estimate that up to 10% of cluster LCBGs are likely to merge with another cluster galaxy. Finally, the observed properties and distributions of the LCBGs in these clusters lead us to conclude that we are witnessing the quenching of the progenitors of dwarf elliptical galaxies that dominate the number density of present-epoch galaxy clusters.« less

  17. Predicting vacancy-mediated diffusion of interstitial solutes in α -Fe

    NASA Astrophysics Data System (ADS)

    Barouh, Caroline; Schuler, Thomas; Fu, Chu-Chun; Jourdan, Thomas

    2015-09-01

    Based on a systematic first-principles study, the lowest-energy migration mechanisms and barriers for small vacancy-solute clusters (VnXm ) are determined in α -Fe for carbon, nitrogen, and oxygen, which are the most frequent interstitial solutes in several transition metals. We show that the dominant clusters present at thermal equilibrium (V X and V X2 ) have very reduced mobility compared to isolated solutes, while clusters composed of a solute bound to a small vacancy cluster may be significantly more mobile. In particular, V3X is found to be the fastest cluster for all three solutes. This result relies on the large diffusivity of the most compact trivacancy in a bcc lattice. Therefore, it may also be expected for interstitial solutes in other bcc metals. In the case of iron, we find that V3X may be as fast as or even more mobile than an interstitial solute. At variance with common assumptions, the trapping of interstitial solutes by vacancies does not necessarily decrease the mobility of the solute. Additionally, cluster dynamics simulations are performed considering a simple iron system with supersaturation of vacancies, in order to investigate the impacts of small mobile vacancy-solute clusters on properties such as the transport of solute and the cluster size distributions.

  18. Partially oxidized iridium clusters within dendrimers: size-controlled synthesis and selective hydrogenation of 2-nitrobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Higaki, Tatsuya; Kitazawa, Hirokazu; Yamazoe, Seiji; Tsukuda, Tatsuya

    2016-06-01

    Iridium clusters nominally composed of 15, 30 or 60 atoms were size-selectively synthesized within OH-terminated poly(amidoamine) dendrimers of generation 6. Spectroscopic characterization revealed that the Ir clusters were partially oxidized. All the Ir clusters efficiently converted 2-nitrobenzaldehyde to anthranil and 2-aminobenzaldehyde under atmospheric hydrogen at room temperature in toluene via selective hydrogenation of the NO2 group. The selectivity toward 2-aminobenzaldehyde over anthranil was improved with the reduction of the cluster size. The improved selectivity is ascribed to more efficient reduction than intramolecular heterocyclization of a hydroxylamine intermediate on smaller clusters that have a higher Ir(0)-phase population on the surface.Iridium clusters nominally composed of 15, 30 or 60 atoms were size-selectively synthesized within OH-terminated poly(amidoamine) dendrimers of generation 6. Spectroscopic characterization revealed that the Ir clusters were partially oxidized. All the Ir clusters efficiently converted 2-nitrobenzaldehyde to anthranil and 2-aminobenzaldehyde under atmospheric hydrogen at room temperature in toluene via selective hydrogenation of the NO2 group. The selectivity toward 2-aminobenzaldehyde over anthranil was improved with the reduction of the cluster size. The improved selectivity is ascribed to more efficient reduction than intramolecular heterocyclization of a hydroxylamine intermediate on smaller clusters that have a higher Ir(0)-phase population on the surface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01460g

  19. Structure of overheated metal clusters: MD simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorontsov, Alexander

    2015-08-17

    The structure of overheated metal clusters appeared in condensation process was studied by computer simulation techniques. It was found that clusters with size larger than several tens of atoms have three layers: core part, intermediate dense packing layer and a gas- like shell with low density. The change of the size and structure of these layers with the variation of internal energy and the size of cluster is discussed.

  20. Computational prediction of the refinement of oxide agglomerates in a physical conditioning process for molten aluminium alloy

    NASA Astrophysics Data System (ADS)

    Tong, M.; Jagarlapudi, S. C.; Patel, J. B.; Stone, I. C.; Fan, Z.; Browne, D. J.

    2015-06-01

    Physically conditioning molten scrap aluminium alloys using high shear processing (HSP) was recently found to be a promising technology for purification of contaminated alloys. HSP refines the solid oxide agglomerates in molten alloys, so that they can act as sites for the nucleation of Fe-rich intermetallic phases which can subsequently be removed by the downstream de-drossing process. In this paper, a computational modelling for predicting the evolution of size of oxide clusters during HSP is presented. We used CFD to predict the macroscopic flow features of the melt, and the resultant field predictions of temperature and melt shear rate were transferred to a population balance model (PBM) as its key inputs. The PBM is a macroscopic model that formulates the microscopic agglomeration and breakage of a population of a dispersed phase. Although it has been widely used to study conventional deoxidation of liquid metal, this is the first time that PBM has been used to simulate the melt conditioning process within a rotor/stator HSP device. We employed a method which discretizes the continuous profile of size of the dispersed phase into a collection of discrete bins of size, to solve the governing population balance equation for the size of agglomerates. A finite volume method was used to solve the continuity equation, the energy equation and the momentum equation. The overall computation was implemented mainly using the FLUENT module of ANSYS. The simulations showed that there is a relatively high melt shear rate between the stator and sweeping tips of the rotor blades. This high shear rate leads directly to significant fragmentation of the initially large oxide aggregates. Because the process of agglomeration is significantly slower than the breakage processes at the beginning of HSP, the mean size of oxide clusters decreases very rapidly. As the process of agglomeration gradually balances the process of breakage, the mean size of oxide clusters converges to a steady value. The model enables formulation of the quantitative relationship between the macroscopic flow features of liquid metal and the change of size of dispersed oxide clusters, during HSP. It predicted the variation in size of the dispersed phased with operational parameters (including the geometry and, particularly, the speed of the rotor), which is of direct use to experimentalists optimising the design of the HSP device and its implementation.

  1. Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hongyu; Liu Jiansheng; Wang Cheng

    The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effectsmore » of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.« less

  2. Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Liu, Jiansheng; Wang, Cheng; Ni, Guoquan; Li, Ruxin; Xu, Zhizhan

    2006-08-01

    The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effects of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.

  3. Modeling of mixing processes: Fluids, particulates, and powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottino, J.M.; Hansen, S.

    Work under this grant involves two main areas: (1) Mixing of Viscous Liquids, this first area comprising aggregation, fragmentation and dispersion, and (2) Mixing of Powders. In order to produce a coherent self-contained picture, we report primarily on results obtained under (1), and within this area, mostly on computational studies of particle aggregation in regular and chaotic flows. Numerical simulations show that the average cluster size of compact clusters grows algebraically, while the average cluster size of fractal clusters grows exponentially; companion mathematical arguments are used to describe the initial growth of average cluster size and polydispersity. It is foundmore » that when the system is well mixed and the capture radius independent of mass, the polydispersity is constant for long-times and the cluster size distribution is self-similar. Furthermore, our simulations indicate that the fractal nature of the clusters is dependent upon the mixing.« less

  4. Sample size calculations for the design of cluster randomized trials: A summary of methodology.

    PubMed

    Gao, Fei; Earnest, Arul; Matchar, David B; Campbell, Michael J; Machin, David

    2015-05-01

    Cluster randomized trial designs are growing in popularity in, for example, cardiovascular medicine research and other clinical areas and parallel statistical developments concerned with the design and analysis of these trials have been stimulated. Nevertheless, reviews suggest that design issues associated with cluster randomized trials are often poorly appreciated and there remain inadequacies in, for example, describing how the trial size is determined and the associated results are presented. In this paper, our aim is to provide pragmatic guidance for researchers on the methods of calculating sample sizes. We focus attention on designs with the primary purpose of comparing two interventions with respect to continuous, binary, ordered categorical, incidence rate and time-to-event outcome variables. Issues of aggregate and non-aggregate cluster trials, adjustment for variation in cluster size and the effect size are detailed. The problem of establishing the anticipated magnitude of between- and within-cluster variation to enable planning values of the intra-cluster correlation coefficient and the coefficient of variation are also described. Illustrative examples of calculations of trial sizes for each endpoint type are included. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Cluster formation by allelomimesis in real-world complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Juanico, Dranreb Earl; Monterola, Christopher; Saloma, Caesar

    2005-04-01

    Animal and human clusters are complex adaptive systems and many organize in cluster sizes s that obey the frequency distribution D(s)∝s-τ . The exponent τ describes the relative abundance of the cluster sizes in a given system. Data analyses reveal that real-world clusters exhibit a broad spectrum of τ values, 0.7 (tuna fish schools) ⩽τ⩽4.61 (T4 bacteriophage gene family sizes). Allelomimesis is proposed as an underlying mechanism for adaptation that explains the observed broad τ spectrum. Allelomimesis is the tendency of an individual to imitate the actions of others and two cluster systems have different τ values when their component agents display unequal degrees of allelomimetic tendencies. Cluster formation by allelomimesis is shown to be of three general types: namely, blind copying, information-use copying, and noncopying. Allelomimetic adaptation also reveals that the most stable cluster size is formed by three strongly allelomimetic individuals. Our finding is consistent with available field data taken from killer whales and marmots.

  6. Faster sequence homology searches by clustering subsequences.

    PubMed

    Suzuki, Shuji; Kakuta, Masanori; Ishida, Takashi; Akiyama, Yutaka

    2015-04-15

    Sequence homology searches are used in various fields. New sequencing technologies produce huge amounts of sequence data, which continuously increase the size of sequence databases. As a result, homology searches require large amounts of computational time, especially for metagenomic analysis. We developed a fast homology search method based on database subsequence clustering, and implemented it as GHOSTZ. This method clusters similar subsequences from a database to perform an efficient seed search and ungapped extension by reducing alignment candidates based on triangle inequality. The database subsequence clustering technique achieved an ∼2-fold increase in speed without a large decrease in search sensitivity. When we measured with metagenomic data, GHOSTZ is ∼2.2-2.8 times faster than RAPSearch and is ∼185-261 times faster than BLASTX. The source code is freely available for download at http://www.bi.cs.titech.ac.jp/ghostz/ akiyama@cs.titech.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  7. Effect of solute atom concentration on vacancy cluster formation in neutron-irradiated Ni alloys

    NASA Astrophysics Data System (ADS)

    Sato, Koichi; Itoh, Daiki; Yoshiie, Toshimasa; Xu, Qiu; Taniguchi, Akihiro; Toyama, Takeshi

    2011-10-01

    The dependence of microstructural evolution on solute atom concentration in Ni alloys was investigated by positron annihilation lifetime measurements. The positron annihilation lifetimes in pure Ni, Ni-0.05 at.%Si, Ni-0.05 at.%Sn, Ni-Cu, and Ni-Ge alloys were about 400 ps even at a low irradiation dose of 3 × 10 -4 dpa, indicating the presence of microvoids in these alloys. The size of vacancy clusters in Ni-Si and Ni-Sn alloys decreased with an increase in the solute atom concentration at irradiation doses less than 0.1 dpa; vacancy clusters started to grow at an irradiation dose of about 0.1 dpa. In Ni-2 at.%Si, irradiation-induced segregation was detected by positron annihilation coincidence Doppler broadening measurements. This segregation suppressed one-dimensional (1-D) motion of the interstitial clusters and promoted mutual annihilation of point defects. The frequency and mean free path of the 1-D motion depended on the solute atom concentration and the amount of segregation.

  8. Social aggregation as a cooperative game

    NASA Astrophysics Data System (ADS)

    Vilone, Daniele; Guazzini, Andrea

    2011-07-01

    A new approach for the description of phenomena of social aggregation is suggested. On the basis of psychological concepts (as for instance social norms and cultural coordinates), we deduce a general mechanism for social aggregation in which different clusters of individuals can merge according to cooperation among the agents. In their turn, the agents can cooperate or defect according to the clusters' distribution inside the system. The fitness of an individual increases with the size of its cluster, but decreases with the work the individual had to do in order to join it. In order to test the reliability of such a new approach, we introduce a couple of simple toy models with the features illustrated above. We see, from this preliminary study, how cooperation is the most convenient strategy only in the presence of very large clusters, while on the other hand it is not necessary to have one hundred percent of cooperators for reaching a totally ordered configuration with only one megacluster filling the whole system.

  9. Superresolution Imaging of Aquaporin-4 Cluster Size in Antibody-Stained Paraffin Brain Sections

    PubMed Central

    Smith, Alex J.; Verkman, Alan S.

    2015-01-01

    The water channel aquaporin-4 (AQP4) forms supramolecular clusters whose size is determined by the ratio of M1- and M23-AQP4 isoforms. In cultured astrocytes, differences in the subcellular localization and macromolecular interactions of small and large AQP4 clusters results in distinct physiological roles for M1- and M23-AQP4. Here, we developed quantitative superresolution optical imaging methodology to measure AQP4 cluster size in antibody-stained paraffin sections of mouse cerebral cortex and spinal cord, human postmortem brain, and glioma biopsy specimens. This methodology was used to demonstrate that large AQP4 clusters are formed in AQP4−/− astrocytes transfected with only M23-AQP4, but not in those expressing only M1-AQP4, both in vitro and in vivo. Native AQP4 in mouse cortex, where both isoforms are expressed, was enriched in astrocyte foot-processes adjacent to microcapillaries; clusters in perivascular regions of the cortex were larger than in parenchymal regions, demonstrating size-dependent subcellular segregation of AQP4 clusters. Two-color superresolution imaging demonstrated colocalization of Kir4.1 with AQP4 clusters in perivascular areas but not in parenchyma. Surprisingly, the subcellular distribution of AQP4 clusters was different between gray and white matter astrocytes in spinal cord, demonstrating regional specificity in cluster polarization. Changes in AQP4 subcellular distribution are associated with several neurological diseases and we demonstrate that AQP4 clustering was preserved in a postmortem human cortical brain tissue specimen, but that AQP4 was not substantially clustered in a human glioblastoma specimen despite high-level expression. Our results demonstrate the utility of superresolution optical imaging for measuring the size of AQP4 supramolecular clusters in paraffin sections of brain tissue and support AQP4 cluster size as a primary determinant of its subcellular distribution. PMID:26682810

  10. Re-estimating sample size in cluster randomised trials with active recruitment within clusters.

    PubMed

    van Schie, S; Moerbeek, M

    2014-08-30

    Often only a limited number of clusters can be obtained in cluster randomised trials, although many potential participants can be recruited within each cluster. Thus, active recruitment is feasible within the clusters. To obtain an efficient sample size in a cluster randomised trial, the cluster level and individual level variance should be known before the study starts, but this is often not the case. We suggest using an internal pilot study design to address this problem of unknown variances. A pilot can be useful to re-estimate the variances and re-calculate the sample size during the trial. Using simulated data, it is shown that an initially low or high power can be adjusted using an internal pilot with the type I error rate remaining within an acceptable range. The intracluster correlation coefficient can be re-estimated with more precision, which has a positive effect on the sample size. We conclude that an internal pilot study design may be used if active recruitment is feasible within a limited number of clusters. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Coarsening of protein clusters on subcellular drops exhibits strong and sudden size selectivity

    NASA Astrophysics Data System (ADS)

    Brown, Aidan; Rutenberg, Andrew

    2015-03-01

    Autophagy is an important process for the degradation of cellular components, with receptor proteins targeting substrates to downstream autophagy machinery. An important question is how receptor protein interactions lead to their selective accumulation on autophagy substrates. Receptor proteins have recently been observed in clusters, raising the possibility that clustering could affect autophagy selectivity. We investigate the clustering dynamics of the autophagy receptor protein NBR1. In addition to standard receptor protein domains, NBR1 has a ``J'' domain that anchors it to membranes, and a coiled-coil domain that enhances self-interaction. We model coarsening clusters of NBR1 on the surfaces of a polydisperse collection of drops, representing organelles. Despite the disconnected nature of the drop surfaces, we recover dynamical scaling of cluster sizes. Significantly, we find that at a well-defined time after coarsening begins, clusters evaporate from smaller drops and grow on larger drops. Thus, coarsening-driven size selection will localize protein clusters to larger substrates, leaving smaller substrates without clusters. This provides a possible physical mechanism for autophagy selectivity, and can explain reports of size selection during peroxisome degradation.

  12. Fibrous structure in GaSb surfaces irradiated with fast Cu cluster ions

    NASA Astrophysics Data System (ADS)

    Tsuchida, Hidetsugu; Nitta, Noriko; Yanagida, Yusuke; Okumura, Yuya; Murase, Ryu

    2018-04-01

    The effect of fast cluster irradiation on the formation of fibrous structures is investigated for single crystal GaSb surfaces irradiated by Cun+ ions (n = 1-3) with an energy of 0.4 MeV/atom at ion fluences up to 5 × 1015 cm-2. We study the cluster size dependence on the growth of fibrous network structures. With increasing cluster size, the shape of the fiber changed from rod-like to spherical. To quantitatively evaluate this cluster effect, a fiber diameter d in rod or spherical portion is examined as a function of ion fluence Φ and cluster size n. We find that the fiber diameter nonlinearly increases and follows the relation d ∝nα×Φ , with α≈2 . This evidently implies that the amount of defects generated by n-sized cluster bombardments varies as n2 for n ≤3 . Cluster ion irradiation enhances the defect generation owing to the overlap between cascades of individual cluster constituents and is therefore effective for the growth of nanofibers.

  13. Developmental nicotine exposure affects larval brain size and the adult dopaminergic system of Drosophila melanogaster.

    PubMed

    Morris, Melanie; Shaw, Ariel; Lambert, Madison; Perry, Haley Halperin; Lowenstein, Eve; Valenzuela, David; Velazquez-Ulloa, Norma Andrea

    2018-06-14

    Pregnant women may be exposed to nicotine if they smoke or use tobacco products, nicotine replacement therapy, or via e-cigarettes. Prenatal nicotine exposure has been shown to have deleterious effects on the nervous system in mammals including changes in brain size and in the dopaminergic system. The genetic and molecular mechanisms for these changes are not well understood. A Drosophila melanogaster model for these effects of nicotine exposure could contribute to faster identification of genes and molecular pathways underlying these effects. The purpose of this study was to determine if developmental nicotine exposure affects the nervous system of Drosophila melanogaster, focusing on changes to brain size and the dopaminergic system at two developmental stages. We reared flies on control or nicotine food from egg to 3rd instar larvae or from egg to adult and determined effectiveness of the nicotine treatment. We used immunohistochemistry to visualize the whole brain and dopaminergic neurons, using tyrosine hydroxylase as the marker. We measured brain area, tyrosine hydroxylase fluorescence, and counted the number of dopaminergic neurons in brain clusters. We detected an increase in larval brain hemisphere area, a decrease in tyrosine hydroxylase fluorescence in adult central brains, and a decrease in the number of neurons in the PPM3 adult dopaminergic cluster. We tested involvement of Dα7, one of the nicotinic acetylcholine receptor subunits, and found it was involved in eclosion, as previously described, but not involved in brain size. We conclude that developmental nicotine exposure in Drosophila melanogaster affects brain size and the dopaminergic system. Prenatal nicotine exposure in mammals has also been shown to have effects on brain size and in the dopaminergic system. This study further establishes Drosophila melanogaster as model organism to study the effects of developmental nicotine exposure. The genetic and molecular tools available for Drosophila research will allow elucidation of the mechanisms underlying the effects of nicotine exposure during development.

  14. Cluster Adjusted Regression for Displaced Subject Data (CARDS): Marginal Inference under Potentially Informative Temporal Cluster Size Profiles

    PubMed Central

    Bible, Joe; Beck, James D.; Datta, Somnath

    2016-01-01

    Summary Ignorance of the mechanisms responsible for the availability of information presents an unusual problem for analysts. It is often the case that the availability of information is dependent on the outcome. In the analysis of cluster data we say that a condition for informative cluster size (ICS) exists when the inference drawn from analysis of hypothetical balanced data varies from that of inference drawn on observed data. Much work has been done in order to address the analysis of clustered data with informative cluster size; examples include Inverse Probability Weighting (IPW), Cluster Weighted Generalized Estimating Equations (CWGEE), and Doubly Weighted Generalized Estimating Equations (DWGEE). When cluster size changes with time, i.e., the data set possess temporally varying cluster sizes (TVCS), these methods may produce biased inference for the underlying marginal distribution of interest. We propose a new marginalization that may be appropriate for addressing clustered longitudinal data with TVCS. The principal motivation for our present work is to analyze the periodontal data collected by Beck et al. (1997, Journal of Periodontal Research 6, 497–505). Longitudinal periodontal data often exhibits both ICS and TVCS as the number of teeth possessed by participants at the onset of study is not constant and teeth as well as individuals may be displaced throughout the study. PMID:26682911

  15. Extracting magnetic cluster size and its distributions in advanced perpendicular recording media with shrinking grain size using small angle x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken

    2015-05-18

    We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizesmore » of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.« less

  16. A rank-sum test for clustered data when the number of subjects in a group within a cluster is informative.

    PubMed

    Dutta, Sandipan; Datta, Somnath

    2016-06-01

    The Wilcoxon rank-sum test is a popular nonparametric test for comparing two independent populations (groups). In recent years, there have been renewed attempts in extending the Wilcoxon rank sum test for clustered data, one of which (Datta and Satten, 2005, Journal of the American Statistical Association 100, 908-915) addresses the issue of informative cluster size, i.e., when the outcomes and the cluster size are correlated. We are faced with a situation where the group specific marginal distribution in a cluster depends on the number of observations in that group (i.e., the intra-cluster group size). We develop a novel extension of the rank-sum test for handling this situation. We compare the performance of our test with the Datta-Satten test, as well as the naive Wilcoxon rank sum test. Using a naturally occurring simulation model of informative intra-cluster group size, we show that only our test maintains the correct size. We also compare our test with a classical signed rank test based on averages of the outcome values in each group paired by the cluster membership. While this test maintains the size, it has lower power than our test. Extensions to multiple group comparisons and the case of clusters not having samples from all groups are also discussed. We apply our test to determine whether there are differences in the attachment loss between the upper and lower teeth and between mesial and buccal sites of periodontal patients. © 2015, The International Biometric Society.

  17. Exploring cosmic origins with CORE: Cluster science

    NASA Astrophysics Data System (ADS)

    Melin, J.-B.; Bonaldi, A.; Remazeilles, M.; Hagstotz, S.; Diego, J. M.; Hernández-Monteagudo, C.; Génova-Santos, R. T.; Luzzi, G.; Martins, C. J. A. P.; Grandis, S.; Mohr, J. J.; Bartlett, J. G.; Delabrouille, J.; Ferraro, S.; Tramonte, D.; Rubiño-Martín, J. A.; Macìas-Pérez, J. F.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartolo, N.; Basak, S.; Basu, K.; Battye, R. A.; Baumann, D.; Bersanelli, M.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clesse, S.; Colafrancesco, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; De Petris, M.; De Zotti, G.; Di Valentino, E.; Errard, J.; Feeney, S. M.; Fernández-Cobos, R.; Finelli, F.; Forastieri, F.; Galli, S.; Gerbino, M.; González-Nuevo, J.; Greenslade, J.; Hanany, S.; Handley, W.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Le Brun, A. M. C.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Maffei, B.; Martinez-Gonzalez, E.; Masi, S.; Mazzotta, P.; McCarthy, D.; Melchiorri, A.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Roman, M.; Salvati, L.; Tartari, A.; Tomasi, M.; Trappe, N.; Triqueneaux, S.; Trombetti, T.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Weller, J.; Young, K.; Zannoni, M.

    2018-04-01

    We examine the cosmological constraints that can be achieved with a galaxy cluster survey with the future CORE space mission. Using realistic simulations of the millimeter sky, produced with the latest version of the Planck Sky Model, we characterize the CORE cluster catalogues as a function of the main mission performance parameters. We pay particular attention to telescope size, key to improved angular resolution, and discuss the comparison and the complementarity of CORE with ambitious future ground-based CMB experiments that could be deployed in the next decade. A possible CORE mission concept with a 150 cm diameter primary mirror can detect of the order of 50,000 clusters through the thermal Sunyaev-Zeldovich effect (SZE). The total yield increases (decreases) by 25% when increasing (decreasing) the mirror diameter by 30 cm. The 150 cm telescope configuration will detect the most massive clusters (>1014 Msolar) at redshift z>1.5 over the whole sky, although the exact number above this redshift is tied to the uncertain evolution of the cluster SZE flux-mass relation; assuming self-similar evolution, CORE will detect 0~ 50 clusters at redshift z>1.5. This changes to 800 (200) when increasing (decreasing) the mirror size by 30 cm. CORE will be able to measure individual cluster halo masses through lensing of the cosmic microwave background anisotropies with a 1-σ sensitivity of 4×1014 Msolar, for a 120 cm aperture telescope, and 1014 Msolar for a 180 cm one. From the ground, we estimate that, for example, a survey with about 150,000 detectors at the focus of 350 cm telescopes observing 65% of the sky would be shallower than CORE and detect about 11,000 clusters, while a survey with the same number of detectors observing 25% of sky with a 10 m telescope is expected to be deeper and to detect about 70,000 clusters. When combined with the latter, CORE would reach a limiting mass of M500 ~ 2‑3 × 1013 Msolar and detect 220,000 clusters (5 sigma detection limit). Cosmological constraints from CORE cluster counts alone are competitive with other scheduled large scale structure surveys in the 2020's for measuring the dark energy equation-of-state parameters w0 and wa (σw0=0.28, σwa=0.31). In combination with primary CMB constraints, CORE cluster counts can further reduce these error bars on w0 and wa to 0.05 and 0.13 respectively, and constrain the sum of the neutrino masses, Σ mν, to 39 meV (1 sigma). The wide frequency coverage of CORE, 60–600 GHz, will enable measurement of the relativistic thermal SZE by stacking clusters. Contamination by dust emission from the clusters, however, makes constraining the temperature of the intracluster medium difficult. The kinetic SZE pairwise momentum will be extracted with 0S/N=7 in the foreground-cleaned CMB map. Measurements of TCMB(z) using CORE clusters will establish competitive constraints on the evolution of the CMB temperature: (1+z)1‑β, with an uncertainty of σβ lesssim 2.7× 10‑3 at low redshift (z lesssim 1). The wide frequency coverage also enables clean extraction of a map of the diffuse SZE signal over the sky, substantially reducing contamination by foregrounds compared to the Planck SZE map extraction. Our analysis of the one-dimensional distribution of Compton-y values in the simulated map finds an order of magnitude improvement in constraints on σ8 over the Planck result, demonstrating the potential of this cosmological probe with CORE.

  18. Application of a parallel genetic algorithm to the global optimization of medium-sized Au-Pd sub-nanometre clusters

    NASA Astrophysics Data System (ADS)

    Hussein, Heider A.; Demiroglu, Ilker; Johnston, Roy L.

    2018-02-01

    To contribute to the discussion of the high activity and reactivity of Au-Pd system, we have adopted the BPGA-DFT approach to study the structural and energetic properties of medium-sized Au-Pd sub-nanometre clusters with 11-18 atoms. We have examined the structural behaviour and stability as a function of cluster size and composition. The study suggests 2D-3D crossover points for pure Au clusters at 14 and 16 atoms, whereas pure Pd clusters are all found to be 3D. For Au-Pd nanoalloys, the role of cluster size and the influence of doping were found to be extensive and non-monotonic in altering cluster structures. Various stability criteria (e.g. binding energies, second differences in energy, and mixing energies) are used to evaluate the energetics, structures, and tendency of segregation in sub-nanometre Au-Pd clusters. HOMO-LUMO gaps were calculated to give additional information on cluster stability and a systematic homotop search was used to evaluate the energies of the generated global minima of mono-substituted clusters and the preferred doping sites, as well as confirming the validity of the BPGA-DFT approach.

  19. The Impact of the Polymer Chain Length on the Catalytic Activity of Poly(N-vinyl-2-pyrrolidone)-supported Gold Nanoclusters.

    PubMed

    Haesuwannakij, Setsiri; Kimura, Tetsunari; Furutani, Yuji; Okumura, Kazu; Kokubo, Ken; Sakata, Takao; Yasuda, Hidehiro; Yakiyama, Yumi; Sakurai, Hidehiro

    2017-08-29

    Poly(N-vinyl-2-pyrrolidone) (PVP) of varying molecular weight (M w  = 40-360 kDa) were employed to stabilize gold nanoclusters of varying size. The resulting Au:PVP clusters were subsequently used as catalysts for a kinetic study on the sized-dependent aerobic oxidation of 1-indanol, which was monitored by time-resolved in situ infrared spectroscopy. The obtained results suggest that the catalytic behaviour is intimately correlated to the size of the clusters, which in turn depends on the molecular weight of the PVPs. The highest catalytic activity was observed for clusters with a core size of ~7 nm, and the size of the cluster should increase with the molecular weight of the polymer in order to maintain optimal catalytic activity. Studies on the electronic and colloid structure of these clusters revealed that the negative charge density on the cluster surface also strongly depends on the molecular weight of the stabilizing polymers.

  20. Ethical implications of excessive cluster sizes in cluster randomised trials.

    PubMed

    Hemming, Karla; Taljaard, Monica; Forbes, Gordon; Eldridge, Sandra M; Weijer, Charles

    2018-02-20

    The cluster randomised trial (CRT) is commonly used in healthcare research. It is the gold-standard study design for evaluating healthcare policy interventions. A key characteristic of this design is that as more participants are included, in a fixed number of clusters, the increase in achievable power will level off. CRTs with cluster sizes that exceed the point of levelling-off will have excessive numbers of participants, even if they do not achieve nominal levels of power. Excessively large cluster sizes may have ethical implications due to exposing trial participants unnecessarily to the burdens of both participating in the trial and the potential risks of harm associated with the intervention. We explore these issues through the use of two case studies. Where data are routinely collected, available at minimum cost and the intervention poses low risk, the ethical implications of excessively large cluster sizes are likely to be low (case study 1). However, to maximise the social benefit of the study, identification of excessive cluster sizes can allow for prespecified and fully powered secondary analyses. In the second case study, while there is no burden through trial participation (because the outcome data are routinely collected and non-identifiable), the intervention might be considered to pose some indirect risk to patients and risks to the healthcare workers. In this case study it is therefore important that the inclusion of excessively large cluster sizes is justifiable on other grounds (perhaps to show sustainability). In any randomised controlled trial, including evaluations of health policy interventions, it is important to minimise the burdens and risks to participants. Funders, researchers and research ethics committees should be aware of the ethical issues of excessively large cluster sizes in cluster trials. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. A theoretical study of water equilibria: The cluster distribution versus temperature and pressure for (H2O)n, n=1-60, and ice

    NASA Astrophysics Data System (ADS)

    Lenz, Annika; Ojamäe, Lars

    2009-10-01

    The size distribution of water clusters at equilibrium is studied using quantum-chemical calculations in combination with statistical thermodynamics. The necessary energetic data is obtained by quantum-chemical B3LYP computations and through extrapolations from the B3LYP results for the larger clusters. Clusters with up to 60 molecules are included in the equilibrium computations. Populations of different cluster sizes are calculated using both an ideal gas model with noninteracting clusters and a model where a correction for the interaction energy is included analogous to the van der Waals law. In standard vapor the majority of the water molecules are monomers. For the ideal gas model at 1 atm large clusters [56-mer (0-120 K) and 28-mer (100-260 K)] dominate at low temperatures and separate to smaller clusters [21-22-mer (170-280 K) and 4-6-mer (270-320 K) and to monomers (300-350 K)] when the temperature is increased. At lower pressure the transition from clusters to monomers lies at lower temperatures and fewer cluster sizes are formed. The computed size distribution exhibits enhanced peaks for the clusters consisting of 21 and 28 water molecules; these sizes are for protonated water clusters often referred to as magic numbers. If cluster-cluster interactions are included in the model the transition from clusters to monomers is sharper (i.e., occurs over a smaller temperature interval) than when the ideal-gas model is used. Clusters with 20-22 molecules dominate in the liquid region. When a large icelike cluster is included it will dominate for temperatures up to 325 K for the noninteracting clusters model. Thermodynamic properties (Cp, ΔH) were calculated with in general good agreement with experimental values for the solid and gas phase. A formula for the number of H-bond topologies in a given cluster structure is derived. For the 20-mer it is shown that the number of topologies contributes to making the population of dodecahedron-shaped cluster larger than that of a lower-energy fused prism cluster at high temperatures.

  2. A theoretical study of water equilibria: the cluster distribution versus temperature and pressure for (H2O)n, n = 1-60, and ice.

    PubMed

    Lenz, Annika; Ojamäe, Lars

    2009-10-07

    The size distribution of water clusters at equilibrium is studied using quantum-chemical calculations in combination with statistical thermodynamics. The necessary energetic data is obtained by quantum-chemical B3LYP computations and through extrapolations from the B3LYP results for the larger clusters. Clusters with up to 60 molecules are included in the equilibrium computations. Populations of different cluster sizes are calculated using both an ideal gas model with noninteracting clusters and a model where a correction for the interaction energy is included analogous to the van der Waals law. In standard vapor the majority of the water molecules are monomers. For the ideal gas model at 1 atm large clusters [56-mer (0-120 K) and 28-mer (100-260 K)] dominate at low temperatures and separate to smaller clusters [21-22-mer (170-280 K) and 4-6-mer (270-320 K) and to monomers (300-350 K)] when the temperature is increased. At lower pressure the transition from clusters to monomers lies at lower temperatures and fewer cluster sizes are formed. The computed size distribution exhibits enhanced peaks for the clusters consisting of 21 and 28 water molecules; these sizes are for protonated water clusters often referred to as magic numbers. If cluster-cluster interactions are included in the model the transition from clusters to monomers is sharper (i.e., occurs over a smaller temperature interval) than when the ideal-gas model is used. Clusters with 20-22 molecules dominate in the liquid region. When a large icelike cluster is included it will dominate for temperatures up to 325 K for the noninteracting clusters model. Thermodynamic properties (C(p), DeltaH) were calculated with in general good agreement with experimental values for the solid and gas phase. A formula for the number of H-bond topologies in a given cluster structure is derived. For the 20-mer it is shown that the number of topologies contributes to making the population of dodecahedron-shaped cluster larger than that of a lower-energy fused prism cluster at high temperatures.

  3. Cluster analysis and its application to healthcare claims data: a study of end-stage renal disease patients who initiated hemodialysis.

    PubMed

    Liao, Minlei; Li, Yunfeng; Kianifard, Farid; Obi, Engels; Arcona, Stephen

    2016-03-02

    Cluster analysis (CA) is a frequently used applied statistical technique that helps to reveal hidden structures and "clusters" found in large data sets. However, this method has not been widely used in large healthcare claims databases where the distribution of expenditure data is commonly severely skewed. The purpose of this study was to identify cost change patterns of patients with end-stage renal disease (ESRD) who initiated hemodialysis (HD) by applying different clustering methods. A retrospective, cross-sectional, observational study was conducted using the Truven Health MarketScan® Research Databases. Patients aged ≥18 years with ≥2 ESRD diagnoses who initiated HD between 2008 and 2010 were included. The K-means CA method and hierarchical CA with various linkage methods were applied to all-cause costs within baseline (12-months pre-HD) and follow-up periods (12-months post-HD) to identify clusters. Demographic, clinical, and cost information was extracted from both periods, and then examined by cluster. A total of 18,380 patients were identified. Meaningful all-cause cost clusters were generated using K-means CA and hierarchical CA with either flexible beta or Ward's methods. Based on cluster sample sizes and change of cost patterns, the K-means CA method and 4 clusters were selected: Cluster 1: Average to High (n = 113); Cluster 2: Very High to High (n = 89); Cluster 3: Average to Average (n = 16,624); or Cluster 4: Increasing Costs, High at Both Points (n = 1554). Median cost changes in the 12-month pre-HD and post-HD periods increased from $185,070 to $884,605 for Cluster 1 (Average to High), decreased from $910,930 to $157,997 for Cluster 2 (Very High to High), were relatively stable and remained low from $15,168 to $13,026 for Cluster 3 (Average to Average), and increased from $57,909 to $193,140 for Cluster 4 (Increasing Costs, High at Both Points). Relatively stable costs after starting HD were associated with more stable scores on comorbidity index scores from the pre-and post-HD periods, while increasing costs were associated with more sharply increasing comorbidity scores. The K-means CA method appeared to be the most appropriate in healthcare claims data with highly skewed cost information when taking into account both change of cost patterns and sample size in the smallest cluster.

  4. Cool Core Bias in Sunyaev-Zel’dovich Galaxy Cluster Surveys

    DOE PAGES

    Lin, Henry W.; McDonald, Michael; Benson, Bradford; ...

    2015-03-18

    Sunyaev-Zeldovich (SZ) surveys find massive clusters of galaxies by measuring the inverse Compton scattering of cosmic microwave background off of intra-cluster gas. The cluster selection function from such surveys is expected to be nearly independent of redshift and cluster astrophysics. In this work, we estimate the effect on the observed SZ signal of centrally-peaked gas density profiles (cool cores) and radio emission from the brightest cluster galaxy (BCG) by creating mock observations of a sample of clusters that span the observed range of classical cooling rates and radio luminosities. For each cluster, we make simulated SZ observations by the Southmore » Pole Telescope and characterize the cluster selection function, but note that our results are broadly applicable to other SZ surveys. We find that the inclusion of a cool core can cause a change in the measured SPT significance of a cluster between 0.01%–10% at z > 0.3, increasing with cuspiness of the cool core and angular size on the sky of the cluster (i.e., decreasing redshift, increasing mass). We provide quantitative estimates of the bias in the SZ signal as a function of a gas density cuspiness parameter, redshift, mass, and the 1.4 GHz radio luminosity of the central AGN. Based on this work, we estimate that, for the Phoenix cluster (one of the strongest cool cores known), the presence of a cool core is biasing the SZ significance high by ~6%. The ubiquity of radio galaxies at the centers of cool core clusters will offset the cool core bias to varying degrees« less

  5. CLUSTER DYNAMICS LARGELY SHAPES PROTOPLANETARY DISK SIZES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincke, Kirsten; Pfalzner, Susanne, E-mail: kvincke@mpifr-bonn.mpg.de

    2016-09-01

    To what degree the cluster environment influences the sizes of protoplanetary disks surrounding young stars is still an open question. This is particularly true for the short-lived clusters typical for the solar neighborhood, in which the stellar density and therefore the influence of the cluster environment change considerably over the first 10 Myr. In previous studies, the effect of the gas on the cluster dynamics has often been neglected; this is remedied here. Using the code NBody6++, we study the stellar dynamics in different developmental phases—embedded, expulsion, and expansion—including the gas, and quantify the effect of fly-bys on the diskmore » size. We concentrate on massive clusters (M {sub cl} ≥ 10{sup 3}–6 ∗ 10{sup 4} M {sub Sun}), which are representative for clusters like the Orion Nebula Cluster (ONC) or NGC 6611. We find that not only the stellar density but also the duration of the embedded phase matters. The densest clusters react fastest to the gas expulsion and drop quickly in density, here 98% of relevant encounters happen before gas expulsion. By contrast, disks in sparser clusters are initially less affected, but because these clusters expand more slowly, 13% of disks are truncated after gas expulsion. For ONC-like clusters, we find that disks larger than 500 au are usually affected by the environment, which corresponds to the observation that 200 au-sized disks are common. For NGC 6611-like clusters, disk sizes are cut-down on average to roughly 100 au. A testable hypothesis would be that the disks in the center of NGC 6611 should be on average ≈20 au and therefore considerably smaller than those in the ONC.« less

  6. Fischer–Tropsch Synthesis at a Low Pressure on Subnanometer Cobalt Oxide Clusters: The Effect of Cluster Size and Support on Activity and Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sungsik; Lee, Byeongdu; Seifert, Sönke

    2015-05-21

    In this study, the catalytic activity and changes in the oxidation state during the Fischer Tropsch (FT) reaction was investigated on subnanometer size-selected cobalt clusters deposited on oxide (Al2O3, MgO) and carbon-based (ultrananocrystalline diamond UNCD) supports by temperature programmed reaction (TPRx) combined with in-situ grazing-incidence X-ray absorption characterization (GIXAS). The activity and selectivity of ultrasmall cobalt clusters exhibits a very strong dependence on cluster size and support. The evolution of the oxidation state of metal cluster during the reaction reveals that metal-support interaction plays a key role in the reaction.

  7. Topological structure of dictionary graphs

    NASA Astrophysics Data System (ADS)

    Fukś, Henryk; Krzemiński, Mark

    2009-09-01

    We investigate the topological structure of the subgraphs of dictionary graphs constructed from WordNet and Moby thesaurus data. In the process of learning a foreign language, the learner knows only a subset of all words of the language, corresponding to a subgraph of a dictionary graph. When this subgraph grows with time, its topological properties change. We introduce the notion of the pseudocore and argue that the growth of the vocabulary roughly follows decreasing pseudocore numbers—that is, one first learns words with a high pseudocore number followed by smaller pseudocores. We also propose an alternative strategy for vocabulary growth, involving decreasing core numbers as opposed to pseudocore numbers. We find that as the core or pseudocore grows in size, the clustering coefficient first decreases, then reaches a minimum and starts increasing again. The minimum occurs when the vocabulary reaches a size between 103 and 104. A simple model exhibiting similar behavior is proposed. The model is based on a generalized geometric random graph. Possible implications for language learning are discussed.

  8. REMOVING COOL CORES AND CENTRAL METALLICITY PEAKS IN GALAXY CLUSTERS WITH POWERFUL ACTIVE GALACTIC NUCLEUS OUTBURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Fulai; Mathews, William G., E-mail: fulai@ucolick.or

    2010-07-10

    Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy {approx}10{sup 61}-10{sup 62} erg. Using two-dimensional hydrodynamic simulations, we showmore » that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.« less

  9. OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE IN TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.

    2015-04-16

    We used our recently developed lattice-based object kinetic Monte Carlo code; KSOME [1] to carryout simulations of radiation damage in bulk tungsten at temperatures of 300, and 2050 K for various dose rates. Displacement cascades generated from molecular dynamics (MD) simulations for PKA energies at 60, 75 and 100 keV provided residual point defect distributions. It was found that the number density of vacancies in the simulation box does not change with dose rate while the number density of vacancy clusters slightly decreases with dose rate indicating that bigger clusters are formed at larger dose rates. At 300 K, althoughmore » the average vacancy cluster size increases slightly, the vast majority of vacancies exist as mono-vacancies. At 2050 K no accumulation of defects was observed during irradiation over a wide range of dose rates for all PKA energies studied in this work.« less

  10. Catalysis applications of size-selected cluster deposition

    DOE PAGES

    Vajda, Stefan; White, Michael G.

    2015-10-23

    In this Perspective, we review recent studies of size-selected cluster deposition for catalysis applications performed at the U.S. DOE National Laboratories, with emphasis on work at Argonne National Laboratory (ANL) and Brookhaven National Laboratory (BNL). The focus is on the preparation of model supported catalysts in which the number of atoms in the deposited clusters is precisely controlled using a combination of gas-phase cluster ion sources, mass spectrometry, and soft-landing techniques. This approach is particularly effective for investigations of small nanoclusters, 0.5-2 nm (<200 atoms), where the rapid evolution of the atomic and electronic structure makes it essential to havemore » precise control over cluster size. Cluster deposition allows for independent control of cluster size, coverage, and stoichiometry (e.g., the metal-to-oxygen ratio in an oxide cluster) and can be used to deposit on any substrate without constraints of nucleation and growth. Examples are presented for metal, metal oxide, and metal sulfide cluster deposition on a variety of supports (metals, oxides, carbon/diamond) where the reactivity, cluster-support electronic interactions, and cluster stability and morphology are investigated. Both UHV and in situ/operando studies are presented that also make use of surface-sensitive X-ray characterization tools from synchrotron radiation facilities. Novel applications of cluster deposition to electrochemistry and batteries are also presented. This review also highlights the application of modern ab initio electronic structure calculations (density functional theory), which can essentially model the exact experimental system used in the laboratory (i.e., cluster and support) to provide insight on atomic and electronic structure, reaction energetics, and mechanisms. As amply demonstrated in this review, the powerful combination of atomically precise cluster deposition and theory is able to address fundamental aspects of size-effects, cluster-support interactions, and reaction mechanisms of cluster materials that are central to how catalysts function. Lastly, the insight gained from such studies can be used to further the development of novel nanostructured catalysts with high activity and selectivity.« less

  11. The effect of realistic forces in finite epitaxial islands: Equilibrium structure, stability limits and substrate-induced dissociation of migrating clusters

    NASA Astrophysics Data System (ADS)

    Milchev, Andrey; Markov, Ivan

    1985-06-01

    The behaviour of finite epitaxial islands in the periodic field of the substrate is theoretically investigated. The harmonic interactions, traditionally adopted in the model of Frank and Van der Merwe, are replaced by Toda and Morse potentials and sets of difference recursion equations, governing the equilibrium properties of the system, are derived and solved numerically. It is shown that allowing for anharmonicity in the interactions in the deposit reveals several qualiatively new effects, such as: (1) The existence of substrate-induced rupture of anharmonic clusters which migrate on the substrate. It is predicted that such dissociation should be enhanced, if (a) the energy barrier for surface diffusion is increased, (b) the natural incompatibility between substrate and deposit is decreased, and (c) the size of the clusters grows. (2) A split in the misfit stability limits for pseudomorphism and for spontaneous generation of misfit dislocations with respect to the sign of the misfit. The limits corresponding to negative misfit rapidly increase while the positive misfit limits decrease (in absolute terms) with growing degree of anharmonicity. (3) A marked asymmetry in the magnitude of various properties of the clusters, such as adhesion to the substrate, activation energy for surface diffusion, mean strain, dislocation lengths, etc., with respect to the sign of the mismatch between surface and deposit.

  12. Structural, electronic and vibrational properties of small GaxNy (x+y = 2 5) nanoclusters: a B3LYP-DFT study

    NASA Astrophysics Data System (ADS)

    Yadav, P. S.; Yadav, R. K.; Agrawal, B. K.

    2007-02-01

    An ab initio study of the stability, structural and electronic properties has been made for 49 gallium nitride nanoclusters, GaxNy (x+y = 2-5). Among the various configurations corresponding to a fixed x+y = n value, the configuration possessing the maximum value of binding energy (BE) is named as the most stable structure. The vibrational and optical properties have been investigated only for the most stable structures. A B3LYP-DFT/6-311G(3df) method has been employed to optimize the geometries of the nanoclusters fully. The binding energies (BEs), highest-occupied and lowest-unoccupied molecular orbital (HOMO-LUMO) gaps and the bond lengths have been obtained for all the clusters. We have considered the zero-point energy (ZPE) corrections ignored by the earlier workers. The adiabatic and vertical ionization potentials (IPs) and electron affinities (EAs), charge on atoms, dipole moments, vibrational frequencies, infrared intensities (IR Int.), relative infrared intensities (Rel. IR Int.) and Raman scattering activities have been investigated for the most stable structures. The configurations containing the N atoms in majority are seen to be the most stable structures. The strong N-N bond has an important role in stabilizing the clusters. For clusters containing one Ga atom and all the others as N atoms, the BE increases monotonically with the number of the N atoms. The HOMO-LUMO gap and IP fluctuate with the cluster size n, having larger values for the clusters containing odd number of N atoms. On the other hand, the EA decreases with the cluster size up to n = 3, and shows slow fluctuations thereafter for the larger clusters. In general, the adiabatic IP (EA) is smaller (greater) than the vertical IP (EA) because of the lower energies of the most stable ground state of the cationic (anionic) clusters. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every cluster, and may be used to characterize a specific cluster. All the predicted physical quantities are in good agreement with the experimental data wherever available. The growth of these most stable structures should be possible in experiments.

  13. Fabrication of large size alginate beads for three-dimensional cell-cluster culture

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengtao; Ruan, Meilin; Liu, Hongni; Cao, Yiping; He, Rongxiang

    2017-08-01

    We fabricated large size alginate beads using a simple microfluidic device under a co-axial injection regime. This device was made by PDMS casting with a mold formed by small diameter metal and polytetrafluorothylene tubes. Droplets of 2% sodium alginate were generated in soybean oil through the device and then cross-linked in a 2% CaCl2 solution, which was mixed tween80 with at a concentration of 0.4 to 40% (w/v). Our results showed that the morphology of the produced alginate beads strongly depends on the tween80 concentration. With the increase of concentration of tween80, the shape of the alginate beads varied from semi-spherical to tailed-spherical, due to the decrease of interface tension between oil and cross-link solution. To access the biocompatibility of the approach, MCF-7 cells were cultured with the alginate beads, showing the formation of cancer cells clusters which might be useful for future studies.

  14. Accurately tuning the charge on giant polyoxometalate type Keplerates through stoichiometric interaction with cationic surfactants.

    PubMed

    Kistler, Melissa L; Patel, Komal G; Liu, Tianbo

    2009-07-07

    We report an approach of exploring the interaction between cationic surfactants and a type of structurally well-defined, spherical "Keplerate" polyoxometalate (POM) macroanionic molecular clusters, {Mo72V30}, in aqueous solution. The effectiveness of the interaction can be determined by monitoring the size change of the "blackberry" supramolecular structures formed by the self-assembly of {Mo72V30} macroions, which is determined by the effective charge density on the macroions. Long-chain surfactants (CTAB and CTAT) can interact with {Mo72V30} macroions stoichiometrically and lower their charge density. Consequently, the blackberry size decreases continuously with increasing surfactant concentration in solution. On the other hand, for short-chain surfactants (e.g., OTAB), a larger fraction of surfactants exist as discrete chains in solution and do not strongly interact with the macroions. This approach shows that a controllable amount of suitable surfactants can accurately tune the charge on large molecular clusters.

  15. Phylodynamic Analysis Revealed That Epidemic of CRF07_BC Strain in Men Who Have Sex with Men Drove Its Second Spreading Wave in China.

    PubMed

    Zhang, Min; Jia, Dijing; Li, Hanping; Gui, Tao; Jia, Lei; Wang, Xiaolin; Li, Tianyi; Liu, Yongjian; Bao, Zuoyi; Liu, Siyang; Zhuang, Daomin; Li, Jingyun; Li, Lin

    2017-10-01

    CRF07_BC was originally formed in Yunnan province of China in 1980s and spread quickly in injecting drug users (IDUs). In recent years, it has been introduced into men who have sex with men (MSM) and become the most dominant strain in China. In this study, we performed a comprehensively phylodynamic analysis of CRF07_BC sequences from China. All CRF07_BC sequences identified in China were retrieved from database. More sequences obtained in our laboratory were added to make the dataset more representative. A maximum-likelihood (ML) tree was constructed with PhyML3.0. Maximum clade credibility (MCC) tree and effective population size were predicted by using Markov Chains Monte Carlo sampling method with Beast software. A total of 610 CRF07_BC sequences coving 1,473 bp of the gag gene (from 817 to 2,289 according to HXB2 calculator) were included into the dataset. Three epidemic clusters were identified; two clusters comprised sequences from IDUs, while one cluster mainly contained sequences from MSMs. The time of the most recent common ancestor of clusters that composed of sequences from MSMs was estimated to be in 2000. Two rapid spreading waves of effective population size of CRF07_BC infections were identified in the skyline plot. The second wave coincided with the expanding of MSM cluster. The results indicated that the control of CRF07_BC infections in MSMs would help to decrease its epidemic in China.

  16. The nucleation and growth of uranium on the basal plane of graphite studied by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Tench, R. J.

    1992-11-01

    For the first time, nanometer scale uranium clusters were created on the basal plane of highly oriented pyrolytic graphite by laser ablation under ultra-high vacuum conditions. The physical and chemical properties of these clusters were investigated by scanning tunneling microscopy (STM) as well as standard surface science techniques. Auger electron and X-ray photoelectron spectroscopies found the uranium deposit to be free of contamination and showed that no carbide had formed with the underlying graphite. Clusters with sizes ranging from 42 to 630 sq A were observed upon initial room temperature deposition. Surface diffusion of uranium was observed after annealing the substrate above 800 K, as evidenced by the decreased number density and the increased size of the clusters. Preferential depletion of clusters on terraces near step edges as a result of annealing was observed. The activation energy for diffusion deduced from these measurements was found to be 15 Kcal/mole. Novel formation of ordered uranium thin films was observed for coverages greater than two monolayers after annealing above 900 K. These ordered films displayed islands with hexagonally faceted edges rising in uniform step heights characteristic of the unit cell of the P-phase of uranium. In addition, atomic resolution STM images of these ordered films indicated the formation of the (beta)-phase of uranium. The chemical properties of these surfaces were investigated and it was shown that these uranium films had a reduced oxidation rate in air as compared to bulk metal and that STM imaging in air induced a polarity-dependent enhancement of the oxidation rate.

  17. Fission of Polyanionic Metal Clusters

    NASA Astrophysics Data System (ADS)

    König, S.; Jankowski, A.; Marx, G.; Schweikhard, L.; Wolfram, M.

    2018-04-01

    Size-selected dianionic lead clusters Pbn2 -, n =34 - 56 , are stored in a Penning trap and studied with respect to their decay products upon photoexcitation. Contrary to the decay of other dianionic metal clusters, these lead clusters show a variety of decay channels. The mass spectra of the fragments are compared to the corresponding spectra of the monoanionic precursors. This comparison leads to the conclusion that, in the cluster size region below about n =48 , the fission reaction Pbn2 -→Pbn-10 -+Pb10- is the major decay process. Its disappearance at larger cluster sizes may be an indication of a nonmetal to metal transition. Recently, the pair of Pb10- and Pbn-10 - were observed as pronounced fragments in electron-attachment studies [S. König et al., Int. J. Mass Spectrom. 421, 129 (2017), 10.1016/j.ijms.2017.06.009]. The present findings suggest that this combination is the fingerprint of the decay of doubly charged lead clusters. With this assumption, the dianion clusters have been traced down to Pb212 -, whereas the smallest size for the direct observation was as high as n =28 .

  18. Interlaced coarse-graining for the dynamical cluster approximation

    NASA Astrophysics Data System (ADS)

    Haehner, Urs; Staar, Peter; Jiang, Mi; Maier, Thomas; Schulthess, Thomas

    The negative sign problem remains a challenging limiting factor in quantum Monte Carlo simulations of strongly correlated fermionic many-body systems. The dynamical cluster approximation (DCA) makes this problem less severe by coarse-graining the momentum space to map the bulk lattice to a cluster embedded in a dynamical mean-field host. Here, we introduce a new form of an interlaced coarse-graining and compare it with the traditional coarse-graining. We show that it leads to more controlled results with weaker cluster shape and smoother cluster size dependence, which with increasing cluster size converge to the results obtained using the standard coarse-graining. In addition, the new coarse-graining reduces the severity of the fermionic sign problem. Therefore, it enables calculations on much larger clusters and can allow the evaluation of the exact infinite cluster size result via finite size scaling. To demonstrate this, we study the hole-doped two-dimensional Hubbard model and show that the interlaced coarse-graining in combination with the DCA+ algorithm permits the determination of the superconducting Tc on cluster sizes, for which the results can be fitted with the Kosterlitz-Thouless scaling law. This research used resources of the Oak Ridge Leadership Computing Facility (OLCF) awarded by the INCITE program, and of the Swiss National Supercomputing Center. OLCF is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  19. Chirally directed formation of nanometer-scale proline clusters.

    PubMed

    Myung, Sunnie; Fioroni, Marco; Julian, Ryan R; Koeniger, Stormy L; Baik, Mu-Hyun; Clemmer, David E

    2006-08-23

    Ion mobility measurements, combined with molecular mechanics simulations, are used to study enantiopure and racemic proline clusters formed by electrospray ionization. Broad distributions of cluster sizes and charge states are observed, ranging from clusters containing only a few proline units to clusters that contain more than 100 proline units (i.e., protonated clusters of the form [xPro + nH](n+) with x = 1 to >100 and n = 1-7). As the sizes of clusters increase, there is direct evidence for nanometer scale, chirally induced organization into specific structures. For n = 4 and 5, enantiopure clusters of approximately 50 to 100 prolines assemble into structures that are more elongated than the most compact structure that is observed from the racemic proline clusters. A molecular analogue, cis-4-hydroxy-proline, displays significantly different behavior, indicating that in addition to the rigidity of the side chain ring, intermolecular interactions are important in the formation of chirally directed clusters. This is the first case in which assemblies of chirally selective elongated structures are observed in this size range of amino acid clusters. Relationships between enantiopurity, cluster shape, and overall energetics are discussed.

  20. Stellar disc destruction by dynamical interactions in the Orion Trapezium star cluster

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon F.

    2016-03-01

    We compare the observed size distribution of circumstellar discs in the Orion Trapezium cluster with the results of N-body simulations in which we incorporated an heuristic prescription for the evolution of these discs. In our simulations, the sizes of stellar discs are affected by close encounters with other stars (with discs). We find that the observed distribution of disc sizes in the Orion Trapezium cluster is excellently reproduced by truncation due to dynamical encounters alone. The observed distribution appears to be a sensitive measure of the past dynamical history of the cluster, and therewith on the conditions of the cluster at birth. The best comparison between the observed disc-size distribution and the simulated distribution is realized with a cluster of N = 2500 ± 500 stars with a half-mass radius of about 0.5 pc in virial equilibrium (with a virial ratio of Q = 0.5, or somewhat colder Q ≃ 0.3), and with a density structure according to a fractal dimension of F ≃ 1.6. Simulations with these parameters reproduce the observed distribution of circumstellar discs in about 0.2-0.5 Myr. We conclude that the distribution of disk sizes in the Orion Trapezium cluster is the result of dynamical interactions in the early evolution of the cluster.

  1. Sample size calculations for stepped wedge and cluster randomised trials: a unified approach

    PubMed Central

    Hemming, Karla; Taljaard, Monica

    2016-01-01

    Objectives To clarify and illustrate sample size calculations for the cross-sectional stepped wedge cluster randomized trial (SW-CRT) and to present a simple approach for comparing the efficiencies of competing designs within a unified framework. Study Design and Setting We summarize design effects for the SW-CRT, the parallel cluster randomized trial (CRT), and the parallel cluster randomized trial with before and after observations (CRT-BA), assuming cross-sectional samples are selected over time. We present new formulas that enable trialists to determine the required cluster size for a given number of clusters. We illustrate by example how to implement the presented design effects and give practical guidance on the design of stepped wedge studies. Results For a fixed total cluster size, the choice of study design that provides the greatest power depends on the intracluster correlation coefficient (ICC) and the cluster size. When the ICC is small, the CRT tends to be more efficient; when the ICC is large, the SW-CRT tends to be more efficient and can serve as an alternative design when the CRT is an infeasible design. Conclusion Our unified approach allows trialists to easily compare the efficiencies of three competing designs to inform the decision about the most efficient design in a given scenario. PMID:26344808

  2. Modeling of Particle Agglomeration in Nanofluids

    NASA Astrophysics Data System (ADS)

    Kanagala, Hari Krishna

    Nanofluids are colloidal dispersions of nano sized particles (<100nm in diameter) in dispersion mediums. They are of great interest in industrial applications as heat transfer fluids owing to their enhanced thermal conductivities. Stability of nanofluids is a major problem hindering their industrial application. Agglomeration and then sedimentation are some reasons, which drastically decrease the shelf life of these nanofluids. Current research addresses the agglomeration effect and how it can affect the shelf life of a nanofluid. The reasons for agglomeration in nanofluids are attributable to the interparticle interactions which are quantified by the various theories. By altering the governing properties like volume fraction, pH and electrolyte concentration different nanofluids with instant agglomeration, slow agglomeration and no agglomeration can be produced. A numerical model is created based on the discretized population balance equations which analyses the particle size distribution at different times. Agglomeration effects have been analyzed for alumina nanoparticles with average particle size of 150nm dispersed in de-ionized water. As the pH was moved towards the isoelectric point of alumina nanofluids, the particle size distribution became broader and moved to bigger sizes rapidly with time. Particle size distributions became broader and moved to bigger sizes more quickly with time with increase in the electrolyte concentration. The two effects together can be used to create different temporal trends in the particle size distributions. Faster agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces which is due to decrease in the induced charge and the double layer thickness around the particle. Bigger particle clusters show lesser agglomeration due to reaching the equilibrium size. The procedures and processes described in this work can be used to generate more stable nanofluids.

  3. Polymorphism in magic-sized Au144(SR)60 clusters

    NASA Astrophysics Data System (ADS)

    Jensen, Kirsten M. Ø.; Juhas, Pavol; Tofanelli, Marcus A.; Heinecke, Christine L.; Vaughan, Gavin; Ackerson, Christopher J.; Billinge, Simon J. L.

    2016-06-01

    Ultra-small, magic-sized metal nanoclusters represent an important new class of materials with properties between molecules and particles. However, their small size challenges the conventional methods for structure characterization. Here we present the structure of ultra-stable Au144(SR)60 magic-sized nanoclusters obtained from atomic pair distribution function analysis of X-ray powder diffraction data. The study reveals structural polymorphism in these archetypal nanoclusters. In addition to confirming the theoretically predicted icosahedral-cored cluster, we also find samples with a truncated decahedral core structure, with some samples exhibiting a coexistence of both cluster structures. Although the clusters are monodisperse in size, structural diversity is apparent. The discovery of polymorphism may open up a new dimension in nanoscale engineering.

  4. Reactions of mixed silver-gold cluster cations AgmAun+ (m+n=4,5,6) with CO: Radiative association kinetics and density functional theory computations

    NASA Astrophysics Data System (ADS)

    Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M.

    2006-09-01

    Near thermal energy reactive collisions of small mixed metal cluster cations AgmAun+ (m +n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu3+ and Ag2Au2+ are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu2CO+. In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77to1.09eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a "head-on" fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag2Au2+ suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed.

  5. Star Cluster Formation in Cosmological Simulations. I. Properties of Young Clusters

    NASA Astrophysics Data System (ADS)

    Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; Meng, Xi; Semenov, Vadim A.; Kravtsov, Andrey V.

    2017-01-01

    We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope is α ≈ 1.8{--}2, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. Comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.

  6. Numbers of presynaptic Ca2+ channel clusters match those of functionally defined vesicular docking sites in single central synapses.

    PubMed

    Miki, Takafumi; Kaufmann, Walter A; Malagon, Gerardo; Gomez, Laura; Tabuchi, Katsuhiko; Watanabe, Masahiko; Shigemoto, Ryuichi; Marty, Alain

    2017-06-27

    Many central synapses contain a single presynaptic active zone and a single postsynaptic density. Vesicular release statistics at such "simple synapses" indicate that they contain a small complement of docking sites where vesicles repetitively dock and fuse. In this work, we investigate functional and morphological aspects of docking sites at simple synapses made between cerebellar parallel fibers and molecular layer interneurons. Using immunogold labeling of SDS-treated freeze-fracture replicas, we find that Ca v 2.1 channels form several clusters per active zone with about nine channels per cluster. The mean value and range of intersynaptic variation are similar for Ca v 2.1 cluster numbers and for functional estimates of docking-site numbers obtained from the maximum numbers of released vesicles per action potential. Both numbers grow in relation with synaptic size and decrease by a similar extent with age between 2 wk and 4 wk postnatal. Thus, the mean docking-site numbers were 3.15 at 2 wk (range: 1-10) and 2.03 at 4 wk (range: 1-4), whereas the mean numbers of Ca v 2.1 clusters were 2.84 at 2 wk (range: 1-8) and 2.37 at 4 wk (range: 1-5). These changes were accompanied by decreases of miniature current amplitude (from 93 pA to 56 pA), active-zone surface area (from 0.0427 μm 2 to 0.0234 μm 2 ), and initial success rate (from 0.609 to 0.353), indicating a tightening of synaptic transmission with development. Altogether, these results suggest a close correspondence between the number of functionally defined vesicular docking sites and that of clusters of voltage-gated calcium channels.

  7. Methods for sample size determination in cluster randomized trials

    PubMed Central

    Rutterford, Clare; Copas, Andrew; Eldridge, Sandra

    2015-01-01

    Background: The use of cluster randomized trials (CRTs) is increasing, along with the variety in their design and analysis. The simplest approach for their sample size calculation is to calculate the sample size assuming individual randomization and inflate this by a design effect to account for randomization by cluster. The assumptions of a simple design effect may not always be met; alternative or more complicated approaches are required. Methods: We summarise a wide range of sample size methods available for cluster randomized trials. For those familiar with sample size calculations for individually randomized trials but with less experience in the clustered case, this manuscript provides formulae for a wide range of scenarios with associated explanation and recommendations. For those with more experience, comprehensive summaries are provided that allow quick identification of methods for a given design, outcome and analysis method. Results: We present first those methods applicable to the simplest two-arm, parallel group, completely randomized design followed by methods that incorporate deviations from this design such as: variability in cluster sizes; attrition; non-compliance; or the inclusion of baseline covariates or repeated measures. The paper concludes with methods for alternative designs. Conclusions: There is a large amount of methodology available for sample size calculations in CRTs. This paper gives the most comprehensive description of published methodology for sample size calculation and provides an important resource for those designing these trials. PMID:26174515

  8. Cluster size dependence of high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Hagmeijer, R.; Bastiaens, H. M. J.; Goh, S. J.; van der Slot, P. J. M.; Biedron, S. G.; Milton, S. V.; Boller, K.-J.

    2017-08-01

    We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3×1016 to 3 × 1018 {{cm}}-3) at two different reservoir temperatures (303 and 363 K). For the first time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. By comparing the measured harmonic yield from a thin jet with the calculated corresponding yield from monomers alone, we find an increased emission of the harmonics when the average cluster size is less than 3000. Using g, under the assumption that the emission from monomers and clusters add up coherently, we calculate the ratio of the average single-atom response of an atom within a cluster to that of a monomer and find an enhancement of around 100 for very small average cluster size (∼200). We do not find any dependence of the cut-off frequency on the composition of the cluster jet. This implies that HHG in clusters is based on electrons that return to their parent ions and not to neighboring ions in the cluster. To fully employ the enhanced average single-atom response found for small average cluster sizes (∼200), the nozzle producing the cluster jet must provide a large liquid mass fraction at these small cluster sizes for increasing the harmonic yield. Moreover, cluster jets may allow for quasi-phase matching, as the higher mass of clusters allows for a higher density contrast in spatially structuring the nonlinear medium.

  9. Properties of Ammonium Ion–Water Clusters: Analyses of Structure Evolution, Noncovalent Interactions, and Temperature and Humidity Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Shi-Tu; Jiang, Shuai; Liu, Yi-Rong

    2015-03-03

    Although ammonium ion–water clusters are abundant in the biosphere, some information regarding these clusters, such as their growth route, the influence of temperature and humidity, and the concentrations of various hydrated clusters, is lacking. In this study, theoretical calculations are performed on ammonium ion–water clusters. These theoretical calculations are focused on determining the following characteristics: (1) the pattern of cluster growth; (2) the percentages of clusters of the same size at different temperatures and humidities; (3) the distributions of different isomers for the same size clusters at different temperatures; (4) the relative strengths of the noncovalent interactions for clusters ofmore » different sizes. The results suggest that the dipole moment may be very significant for the ammonium ion–water system, and some new stable isomers were found. The nucleation of ammonium ions and water molecules is favorable at low temperatures; thus, the clusters observed at high altitudes might not be present at low altitudes. High humidity can contribute to the formation of large ammonium ion–water clusters, whereas the formation of small clusters may be favorable under low-humidity conditions. The potential energy surfaces (PES) of these different sized clusters are complicated and differ according to the distribution of isomers at different temperatures. Some similar structures are observed between NH4+(H2O)n and M(H2O)n (where M represents an alkali metal ion or water molecule); when n = 8, the clusters begin to form the closed-cage geometry. As the cluster size increases, these interactions become progressively weaker. The successive binding energy at the DF-MP2-F12/VDZ-F12 level is better than that at the PW91PW91/6-311++G(3df, 3pd) level and is consistent with the experimentally determined values.« less

  10. Properties of ammonium ion-water clusters: analyses of structure evolution, noncovalent interactions, and temperature and humidity effects.

    PubMed

    Pei, Shi-Tu; Jiang, Shuai; Liu, Yi-Rong; Huang, Teng; Xu, Kang-Ming; Wen, Hui; Zhu, Yu-Peng; Huang, Wei

    2015-03-26

    Although ammonium ion-water clusters are abundant in the biosphere, some information regarding these clusters, such as their growth route, the influence of temperature and humidity, and the concentrations of various hydrated clusters, is lacking. In this study, theoretical calculations are performed on ammonium ion-water clusters. These theoretical calculations are focused on determining the following characteristics: (1) the pattern of cluster growth; (2) the percentages of clusters of the same size at different temperatures and humidities; (3) the distributions of different isomers for the same size clusters at different temperatures; (4) the relative strengths of the noncovalent interactions for clusters of different sizes. The results suggest that the dipole moment may be very significant for the ammonium ion-water system, and some new stable isomers were found. The nucleation of ammonium ions and water molecules is favorable at low temperatures; thus, the clusters observed at high altitudes might not be present at low altitudes. High humidity can contribute to the formation of large ammonium ion-water clusters, whereas the formation of small clusters may be favorable under low-humidity conditions. The potential energy surfaces (PES) of these different sized clusters are complicated and differ according to the distribution of isomers at different temperatures. Some similar structures are observed between NH4(+)(H2O)n and M(H2O)n (where M represents an alkali metal ion or water molecule); when n = 8, the clusters begin to form the closed-cage geometry. As the cluster size increases, these interactions become progressively weaker. The successive binding energy at the DF-MP2-F12/VDZ-F12 level is better than that at the PW91PW91/6-311++G(3df, 3pd) level and is consistent with the experimentally determined values.

  11. The optimal design of stepped wedge trials with equal allocation to sequences and a comparison to other trial designs.

    PubMed

    Thompson, Jennifer A; Fielding, Katherine; Hargreaves, James; Copas, Andrew

    2017-12-01

    Background/Aims We sought to optimise the design of stepped wedge trials with an equal allocation of clusters to sequences and explored sample size comparisons with alternative trial designs. Methods We developed a new expression for the design effect for a stepped wedge trial, assuming that observations are equally correlated within clusters and an equal number of observations in each period between sequences switching to the intervention. We minimised the design effect with respect to (1) the fraction of observations before the first and after the final sequence switches (the periods with all clusters in the control or intervention condition, respectively) and (2) the number of sequences. We compared the design effect of this optimised stepped wedge trial to the design effects of a parallel cluster-randomised trial, a cluster-randomised trial with baseline observations, and a hybrid trial design (a mixture of cluster-randomised trial and stepped wedge trial) with the same total cluster size for all designs. Results We found that a stepped wedge trial with an equal allocation to sequences is optimised by obtaining all observations after the first sequence switches and before the final sequence switches to the intervention; this means that the first sequence remains in the control condition and the last sequence remains in the intervention condition for the duration of the trial. With this design, the optimal number of sequences is [Formula: see text], where [Formula: see text] is the cluster-mean correlation, [Formula: see text] is the intracluster correlation coefficient, and m is the total cluster size. The optimal number of sequences is small when the intracluster correlation coefficient and cluster size are small and large when the intracluster correlation coefficient or cluster size is large. A cluster-randomised trial remains more efficient than the optimised stepped wedge trial when the intracluster correlation coefficient or cluster size is small. A cluster-randomised trial with baseline observations always requires a larger sample size than the optimised stepped wedge trial. The hybrid design can always give an equally or more efficient design, but will be at most 5% more efficient. We provide a strategy for selecting a design if the optimal number of sequences is unfeasible. For a non-optimal number of sequences, the sample size may be reduced by allowing a proportion of observations before the first or after the final sequence has switched. Conclusion The standard stepped wedge trial is inefficient. To reduce sample sizes when a hybrid design is unfeasible, stepped wedge trial designs should have no observations before the first sequence switches or after the final sequence switches.

  12. Pore-scale micro-computed-tomography imaging: Nonwetting-phase cluster-size distribution during drainage and imbibition

    NASA Astrophysics Data System (ADS)

    Georgiadis, A.; Berg, S.; Makurat, A.; Maitland, G.; Ott, H.

    2013-09-01

    We investigated the cluster-size distribution of the residual nonwetting phase in a sintered glass-bead porous medium at two-phase flow conditions, by means of micro-computed-tomography (μCT) imaging with pore-scale resolution. Cluster-size distribution functions and cluster volumes were obtained by image analysis for a range of injected pore volumes under both imbibition and drainage conditions; the field of view was larger than the porosity-based representative elementary volume (REV). We did not attempt to make a definition for a two-phase REV but used the nonwetting-phase cluster-size distribution as an indicator. Most of the nonwetting-phase total volume was found to be contained in clusters that were one to two orders of magnitude larger than the porosity-based REV. The largest observed clusters in fact ranged in volume from 65% to 99% of the entire nonwetting phase in the field of view. As a consequence, the largest clusters observed were statistically not represented and were found to be smaller than the estimated maximum cluster length. The results indicate that the two-phase REV is larger than the field of view attainable by μCT scanning, at a resolution which allows for the accurate determination of cluster connectivity.

  13. Size-guided multi-seed heuristic method for geometry optimization of clusters: Application to benzene clusters.

    PubMed

    Takeuchi, Hiroshi

    2018-05-08

    Since searching for the global minimum on the potential energy surface of a cluster is very difficult, many geometry optimization methods have been proposed, in which initial geometries are randomly generated and subsequently improved with different algorithms. In this study, a size-guided multi-seed heuristic method is developed and applied to benzene clusters. It produces initial configurations of the cluster with n molecules from the lowest-energy configurations of the cluster with n - 1 molecules (seeds). The initial geometries are further optimized with the geometrical perturbations previously used for molecular clusters. These steps are repeated until the size n satisfies a predefined one. The method locates putative global minima of benzene clusters with up to 65 molecules. The performance of the method is discussed using the computational cost, rates to locate the global minima, and energies of initial geometries. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  14. The Observational and Theoretical Tidal Radii of Globular Clusters in M87

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2012-02-01

    Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.

  15. A new method to prepare colloids of size-controlled clusters from a matrix assembly cluster source

    NASA Astrophysics Data System (ADS)

    Cai, Rongsheng; Jian, Nan; Murphy, Shane; Bauer, Karl; Palmer, Richard E.

    2017-05-01

    A new method for the production of colloidal suspensions of physically deposited clusters is demonstrated. A cluster source has been used to deposit size-controlled clusters onto water-soluble polymer films, which are then dissolved to produce colloidal suspensions of clusters encapsulated with polymer molecules. This process has been demonstrated using different cluster materials (Au and Ag) and polymers (polyvinylpyrrolidone, polyvinyl alcohol, and polyethylene glycol). Scanning transmission electron microscopy of the clusters before and after colloidal dispersion confirms that the polymers act as stabilizing agents. We propose that this method is suitable for the production of biocompatible colloids of ultraprecise clusters.

  16. Sample size calculation in cost-effectiveness cluster randomized trials: optimal and maximin approaches.

    PubMed

    Manju, Md Abu; Candel, Math J J M; Berger, Martijn P F

    2014-07-10

    In this paper, the optimal sample sizes at the cluster and person levels for each of two treatment arms are obtained for cluster randomized trials where the cost-effectiveness of treatments on a continuous scale is studied. The optimal sample sizes maximize the efficiency or power for a given budget or minimize the budget for a given efficiency or power. Optimal sample sizes require information on the intra-cluster correlations (ICCs) for effects and costs, the correlations between costs and effects at individual and cluster levels, the ratio of the variance of effects translated into costs to the variance of the costs (the variance ratio), sampling and measuring costs, and the budget. When planning, a study information on the model parameters usually is not available. To overcome this local optimality problem, the current paper also presents maximin sample sizes. The maximin sample sizes turn out to be rather robust against misspecifying the correlation between costs and effects at the cluster and individual levels but may lose much efficiency when misspecifying the variance ratio. The robustness of the maximin sample sizes against misspecifying the ICCs depends on the variance ratio. The maximin sample sizes are robust under misspecification of the ICC for costs for realistic values of the variance ratio greater than one but not robust under misspecification of the ICC for effects. Finally, we show how to calculate optimal or maximin sample sizes that yield sufficient power for a test on the cost-effectiveness of an intervention.

  17. Spectroscopy of metal "superatom" nanoclusters and high-Tc superconducting pairing

    NASA Astrophysics Data System (ADS)

    Halder, Avik; Kresin, Vitaly V.

    2015-12-01

    A unique property of metal nanoclusters is the "superatom" shell structure of their delocalized electrons. The electronic shell levels are highly degenerate and therefore represent sharp peaks in the density of states. This can enable exceptionally strong electron pairing in certain clusters composed of tens to hundreds of atoms. In a finite system, such as a free nanocluster or a nucleus, pairing is observed most clearly via its effect on the energy spectrum of the constituent fermions. Accordingly, we performed a photoionization spectroscopy study of size-resolved aluminum nanoclusters and observed a rapid rise in the near-threshold density of states of several clusters (A l37 ,44 ,66 ,68 ) with decreasing temperature. The characteristics of this behavior are consistent with compression of the density of states by a pairing transition into a high-temperature superconducting state with Tc≳100 K. This value exceeds that of bulk aluminum by two orders of magnitude. These results highlight the potential of novel pairing effects in size-quantized systems and the possibility to attain even higher critical temperatures by optimizing the particles' size and composition. As a new class of high-temperature superconductors, such metal nanocluster particles are promising building blocks for high-Tc materials, devices, and networks.

  18. Accounting for One-Group Clustering in Effect-Size Estimation

    ERIC Educational Resources Information Center

    Citkowicz, Martyna; Hedges, Larry V.

    2013-01-01

    In some instances, intentionally or not, study designs are such that there is clustering in one group but not in the other. This paper describes methods for computing effect size estimates and their variances when there is clustering in only one group and the analysis has not taken that clustering into account. The authors provide the effect size…

  19. The Italian primary school-size distribution and the city-size: a complex nexus

    PubMed Central

    Belmonte, Alessandro; Di Clemente, Riccardo; Buldyrev, Sergey V.

    2014-01-01

    We characterize the statistical law according to which Italian primary school-size distributes. We find that the school-size can be approximated by a log-normal distribution, with a fat lower tail that collects a large number of very small schools. The upper tail of the school-size distribution decreases exponentially and the growth rates are distributed with a Laplace PDF. These distributions are similar to those observed for firms and are consistent with a Bose-Einstein preferential attachment process. The body of the distribution features a bimodal shape suggesting some source of heterogeneity in the school organization that we uncover by an in-depth analysis of the relation between schools-size and city-size. We propose a novel cluster methodology and a new spatial interaction approach among schools which outline the variety of policies implemented in Italy. Different regional policies are also discussed shedding lights on the relation between policy and geographical features. PMID:24954714

  20. Characterization of micron-size hydrogen clusters using Mie scattering.

    PubMed

    Jinno, S; Tanaka, H; Matsui, R; Kanasaki, M; Sakaki, H; Kando, M; Kondo, K; Sugiyama, A; Uesaka, M; Kishimoto, Y; Fukuda, Y

    2017-08-07

    Hydrogen clusters with diameters of a few micrometer range, composed of 10 8-10 hydrogen molecules, have been produced for the first time in an expansion of supercooled, high-pressure hydrogen gas into a vacuum through a conical nozzle connected to a cryogenic pulsed solenoid valve. The size distribution of the clusters has been evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed based on the Mie scattering theory combined with the Tikhonov regularization method including the instrumental functions, the validity of which was assessed by performing a calibration study using a reference target consisting of standard micro-particles with two different sizes. The size distribution of the clusters was found discrete peaked at 0.33 ± 0.03, 0.65 ± 0.05, 0.81 ± 0.06, 1.40 ± 0.06 and 2.00 ± 0.13 µm in diameter. The highly reproducible and impurity-free nature of the micron-size hydrogen clusters can be a promising target for laser-driven multi-MeV proton sources with the currently available high power lasers.

  1. Analysis of Basis Weight Uniformity of Microfiber Nonwovens and Its Impact on Permeability and Filtration Properties

    NASA Astrophysics Data System (ADS)

    Amirnasr, Elham

    It is widely recognized that nonwoven basis weight non-uniformity affects various properties of nonwovens. However, few studies can be found in this topic. The development of uniformity definition and measurement methods and the study of their impact on various web properties such as filtration properties and air permeability would be beneficial both in industrial applications and in academia. They can be utilized as a quality control tool and would provide insights about nonwoven behaviors that cannot be solely explained by average values. Therefore, for quantifying nonwoven web basis weight uniformity we purse to develop an optical analytical tool. The quadrant method and clustering analysis was utilized in an image analysis scheme to help define "uniformity" and its spatial variation. Implementing the quadrant method in an image analysis system allows the establishment of a uniformity index that can be used to quantify the degree of uniformity. Clustering analysis has also been modified and verified using uniform and random simulated images with known parameters. Number of clusters and cluster properties such as cluster size, member and density was determined. We also utilized this new measurement method to evaluate uniformity of nonwovens produced with different processes and investigated impacts of uniformity on filtration and permeability. The results of quadrant method shows that uniformity index computed from quadrant method demonstrate a good range for non-uniformity of nonwoven webs. Clustering analysis is also been applied on reference nonwoven with known visual uniformity. From clustering analysis results, cluster size is promising to be used as uniformity parameter. It is been shown that non-uniform nonwovens has provide lager cluster size than uniform nonwovens. It was been tried to find a relationship between web properties and uniformity index (as a web characteristic). To achieve this, filtration properties, air permeability, solidity and uniformity index of meltblown and spunbond samples was measured. Results for filtration test show some deviation between theoretical and experimental filtration efficiency by considering different types of fiber diameter. This deviation can occur due to variation in basis weight non-uniformity. So an appropriate theory is required to predict the variation of filtration efficiency with respect to non-uniformity of nonwoven filter media. And the results for air permeability test showed that uniformity index determined by quadrant method and measured properties have some relationship. In the other word, air permeability decreases as uniformity index on nonwoven web increase.

  2. The Nature and Origin of UCDs in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Chiboucas, Kristin; Tully, R. Brent; Madrid, Juan; Phillipps, Steven; Carter, David; Peng, Eric

    2018-01-01

    UCDs are super massive star clusters found largely in dense regions but have also been found around individual galaxies and in smaller groups. Their origin is still under debate but currently favored scenarios include formation as giant star clusters, either as the brightest globular clusters or through mergers of super star clusters, themselves formed during major galaxy mergers, or as remnant nuclei from tidal stripping of nucleated dwarf ellipticals. Establishing the nature of these enigmatic objects has important implications for our understanding of star formation, star cluster formation, the missing satellite problem, and galaxy evolution. We are attempting to disentangle these competing formation scenarios with a large survey of UCDs in the Coma cluster. Using ACS two-passband imaging from the HST/ACS Coma Cluster Treasury Survey, we are using colors and sizes to identify the UCD cluster members. With a large size limited sample of the UCD population within the core region of the Coma cluster, we are investigating the population size, properties, and spatial distribution, and comparing that with the Coma globular cluster and nuclear star cluster populations to discriminate between the threshing and globular cluster scenarios. In previous work, we had found a possible correlation of UCD colors with host galaxy and a possible excess of UCDs around a non-central giant galaxy with an unusually large globular cluster population, both suggestive of a globular cluster origin. With a larger sample size and additional imaging fields that encompass the regions around these giant galaxies, we have found that the color correlation with host persists and the giant galaxy with unusually large globular cluster population does appear to host a large UCD population as well. We present the current status of the survey.

  3. Reversible Self-Assembly of Glutathione-Coated Gold Nanoparticle Clusters via pH-Tunable Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moaseri, Ehsan; Bollinger, Jonathan A.; Changalvaie, Behzad

    In this study, nanoparticle (NP) clusters with diameters ranging from 20 to 100 nm are reversibly assembled from 5 nm gold (Au) primary particles coated with glutathione (GSH) in aqueous solution as a function of pH in the range of 5.4 to 3.8. As the pH is lowered, the GSH surface ligands become partially zwitterionic and form interparticle hydrogen bonds that drive the self-limited assembly of metastable clusters in <1 min. Whereas clusters up to 20 nm in size are stable against cluster–cluster aggregation for up to 1 day, clusters up to 80 nm in size can be stabilized overmore » this period via the addition of citrate to the solution in equal molarity with GSH molecules. The cluster diameter may be cycled reversibly by tuning pH to manipulate the colloidal interactions; however, modest background cluster–cluster aggregation occurs during cycling. Cluster sizes can be stabilized for at least 1 month via the addition of PEG-thiol as a grafted steric stabilizer, where PEG-grafted clusters dissociate back to starting primary NPs at pH 7 in fewer than 3 days. Whereas the presence of excess citrate has little effect on the initial size of the metastable clusters, it is necessary for both the cycling and dissociation to mediate the GSH–GSH hydrogen bonds. In conclusion, these metastable clusters exhibit significant characteristics of equilibrium self-limited assembly between primary particles and clusters on time scales where cluster–cluster aggregation is not present.« less

  4. Reversible Self-Assembly of Glutathione-Coated Gold Nanoparticle Clusters via pH-Tunable Interactions

    DOE PAGES

    Moaseri, Ehsan; Bollinger, Jonathan A.; Changalvaie, Behzad; ...

    2017-10-06

    In this study, nanoparticle (NP) clusters with diameters ranging from 20 to 100 nm are reversibly assembled from 5 nm gold (Au) primary particles coated with glutathione (GSH) in aqueous solution as a function of pH in the range of 5.4 to 3.8. As the pH is lowered, the GSH surface ligands become partially zwitterionic and form interparticle hydrogen bonds that drive the self-limited assembly of metastable clusters in <1 min. Whereas clusters up to 20 nm in size are stable against cluster–cluster aggregation for up to 1 day, clusters up to 80 nm in size can be stabilized overmore » this period via the addition of citrate to the solution in equal molarity with GSH molecules. The cluster diameter may be cycled reversibly by tuning pH to manipulate the colloidal interactions; however, modest background cluster–cluster aggregation occurs during cycling. Cluster sizes can be stabilized for at least 1 month via the addition of PEG-thiol as a grafted steric stabilizer, where PEG-grafted clusters dissociate back to starting primary NPs at pH 7 in fewer than 3 days. Whereas the presence of excess citrate has little effect on the initial size of the metastable clusters, it is necessary for both the cycling and dissociation to mediate the GSH–GSH hydrogen bonds. In conclusion, these metastable clusters exhibit significant characteristics of equilibrium self-limited assembly between primary particles and clusters on time scales where cluster–cluster aggregation is not present.« less

  5. THE SIZE DIFFERENCE BETWEEN RED AND BLUE GLOBULAR CLUSTERS IS NOT DUE TO PROJECTION EFFECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Jeremy J.; Harris, William E.; Sills, Alison, E-mail: webbjj@mcmaster.ca

    Metal-rich (red) globular clusters in massive galaxies are, on average, smaller than metal-poor (blue) globular clusters. One of the possible explanations for this phenomenon is that the two populations of clusters have different spatial distributions. We test this idea by comparing clusters observed in unusually deep, high signal-to-noise images of M87 with a simulated globular cluster population in which the red and blue clusters have different spatial distributions, matching the observations. We compare the overall distribution of cluster effective radii as well as the relationship between effective radius and galactocentric distance for both the observed and simulated red and bluemore » sub-populations. We find that the different spatial distributions does not produce a significant size difference between the red and blue sub-populations as a whole or at a given galactocentric distance. These results suggest that the size difference between red and blue globular clusters is likely due to differences during formation or later evolution.« less

  6. Cluster evolution during the early stages of heating explosives and its relationship to sensitivity: a comparative study of TATB, β-HMX and PETN by molecular reactive force field simulations.

    PubMed

    Wen, Yushi; Zhang, Chaoyang; Xue, Xianggui; Long, Xinping

    2015-05-14

    Clustering is experimentally and theoretically verified during the complicated processes involved in heating high explosives, and has been thought to influence their detonation properties. However, a detailed description of the clustering that occurs has not been fully elucidated. We used molecular dynamic simulations with an improved reactive force field, ReaxFF_lg, to carry out a comparative study of cluster evolution during the early stages of heating for three representative explosives: 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), β-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and pentaerythritol tetranitrate (PETN). These representatives vary greatly in their oxygen balance (OB), molecular structure, stability and experimental sensitivity. We found that when heated, TATB, HMX and PETN differ in the size, amount, proportion and lifetime of their clusters. We also found that the clustering tendency of explosives decreases as their OB becomes less negative. We propose that the relationship between OB and clustering can be attributed to the role of clustering in detonation. That is, clusters can form more readily in a high explosive with a more negative OB, which retard its energy release, secondary decomposition, further decomposition to final small molecule products and widen its detonation reaction zone. Moreover, we found that the carbon content of the clusters increases during clustering, in accordance with the observed soot, which is mainly composed of carbon as the final product of detonation or deflagration.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhangwei; Baker, Ian; Guo, Wei

    We investigated the effects of cold rolling followed by annealing on the mechanical properties and dislocation substructure evolution of undoped and 1.1 at. % carbon-doped Fe 40.4Ni 11.3Mn 34.8Al 7.5Cr 6 high entropy alloys (HEAs). X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atom probe tomography (APT) were employed to characterize the microstructures. The as-cast HEAs were coarse-grained and single phase f.c.c., whereas the thermo-mechanical treatment caused recrystallization (to fine grain sizes) and precipitation (a B2 phase for the undoped HEA; and a B2 phase, and M 23C 6 and M 7C 3 carbides for the C-dopedmore » HEA). Carbon, which was found to have segregated to the grain boundaries using APT, retarded recrystallization. The reduction in grain size resulted in a sharp increase in strength, while the precipitation, which produced only a small increase in strength, probably accounted for the small decrease in ductility for both undoped and C-doped HEAs. For both undoped and C-doped HEAs, the smaller grain-sized material initially exhibited higher strain hardening than the coarse-grained material but showed a much lower strain hardening at large tensile strains. Wavy slip in the undoped HEAs and planar slip in C-doped HEAs were found at the early stages of deformation irrespective of grain size. At higher strains, dislocation cell structures formed in the 19 μm grain-sized undoped HEA, while microbands formed in the 23 μm grain-sized C-doped HEA. Conversely, localized dislocation clusters were found in both HEAs at the finest grain sizes (5 μm). The inhibition of grain subdivision by the grain boundaries and precipitates lead to the transformation from regular dislocation configurations consisting of dislocation-cells and microbands to irregular dislocation configurations consisting of localized dislocation clusters, which further account for the decrease in ductility. Our investigation of the formation mechanism and strain hardening of dislocation cells and microbands could benefit future structural material design.« less

  8. Rapid Redistribution of Synaptic PSD-95 in the Neocortex In Vivo

    PubMed Central

    Bureau, Ingrid; Svoboda, Karel

    2006-01-01

    Most excitatory synapses terminate on dendritic spines. Spines vary in size, and their volumes are proportional to the area of the postsynaptic density (PSD) and synaptic strength. PSD-95 is an abundant multi-domain postsynaptic scaffolding protein that clusters glutamate receptors and organizes the associated signaling complexes. PSD-95 is thought to determine the size and strength of synapses. Although spines and their synapses can persist for months in vivo, PSD-95 and other PSD proteins have shorter half-lives in vitro, on the order of hours. To probe the mechanisms underlying synapse stability, we measured the dynamics of synaptic PSD-95 clusters in vivo. Using two-photon microscopy, we imaged PSD-95 tagged with GFP in layer 2/3 dendrites in the developing (postnatal day 10–21) barrel cortex. A subset of PSD-95 clusters was stable for days. Using two-photon photoactivation of PSD-95 tagged with photoactivatable GFP (paGFP), we measured the time over which PSD-95 molecules were retained in individual spines. Synaptic PSD-95 turned over rapidly (median retention times τ r ~ 22–63 min from P10–P21) and exchanged with PSD-95 in neighboring spines by diffusion. PSDs therefore share a dynamic pool of PSD-95. Large PSDs in large spines captured more diffusing PSD-95 and also retained PSD-95 longer than small PSDs. Changes in the sizes of individual PSDs over days were associated with concomitant changes in PSD-95 retention times. Furthermore, retention times increased with developmental age (τ r ~ 100 min at postnatal day 70) and decreased dramatically following sensory deprivation. Our data suggest that individual PSDs compete for PSD-95 and that the kinetic interactions between PSD molecules and PSDs are tuned to regulate PSD size. PMID:17090216

  9. Density functional theory study on the structures, electronic and magnetic properties of the MFe3n‑1O4n (n = 1–3) (M=Mn, Co and Ni) clusters

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Zhao, Zhen; Wang, Qi; Yin, Xi-tao

    2018-04-01

    The structures, electronic and magnetic properties of the MFe3n‑1O4n (n = 1–3) (M=Mn, Co and Ni) clusters are obtained by using the GGA-PBE functional. The results found that the CoFe3n‑1O4n (n = 1–3) clusters are more stable than the corresponding NiFe3n‑1O4n and MnFe3n‑1O4n clusters. The NiFe2O4, MnFe5O8 and CoFe5O8 clusters have higher kinetic stability than their neighbors. The average magnetic moments of MFe3n‑1O4n (n = 1–3) (M=Mn, Co and Ni) clusters are successively: NiFe3n‑1O4n > CoFe3n‑1O4n > MnFe3n‑1O4n. For NiFe3n‑1O4n and CoFe3n‑1O4n clusters, the average magnetic moments are decreased with the cluster size increasing while for MnFe3n‑1O4n, the opposite situation is occur. The difference of 3d orbital electrons of M (M=Mn, Co and Ni) atoms influence the magnetic properties of MFe3n‑1O4n clusters.

  10. Polymorphism in magic-sized Au144(SR)60 clusters

    DOE PAGES

    Jensen, Kirsten M. O.; Juhas, Pavol; Tofanelli, Marcus A.; ...

    2016-06-14

    Ultra-small, magic-sized metal nanoclusters represent an important new class of materials with properties between molecules and particles. However, their small size challenges the conventional methods for structure characterization. We present the structure of ultra-stable Au144(SR)60 magic-sized nanoclusters obtained from atomic pair distribution function analysis of X-ray powder diffraction data. Our study reveals structural polymorphism in these archetypal nanoclusters. Additionally, in order to confirm the theoretically predicted icosahedral-cored cluster, we also find samples with a truncated decahedral core structure, with some samples exhibiting a coexistence of both cluster structures. Although the clusters are monodisperse in size, structural diversity is apparent. Finally,more » the discovery of polymorphism may open up a new dimension in nanoscale engineering.« less

  11. First-principles melting of gallium clusters down to nine atoms: structural and electronic contributions to melting.

    PubMed

    Steenbergen, Krista G; Gaston, Nicola

    2013-10-07

    First-principles Born-Oppenheimer molecular dynamics simulations of small gallium clusters, including parallel tempering, probe the distinction between cluster and molecule in the size range of 7-12 atoms. In contrast to the larger sizes, dynamic measures of structural change at finite temperature demonstrate that Ga7 and Ga8 do not melt, suggesting a size limit to melting in gallium exists at 9 atoms. Analysis of electronic structure further supports this size limit, additionally demonstrating that a covalent nature cannot be identified for clusters larger than the gallium dimer. Ga9, Ga10 and Ga11 melt at greater-than-bulk temperatures, with no evident covalent character. As Ga12 represents the first small gallium cluster to melt at a lower-than-bulk temperature, we examine the structural properties of each cluster at finite temperature in order to probe both the origins of greater-than-bulk melting, as well as the significant differences in melting temperatures induced by a single atom addition. Size-sensitive melting temperatures can be explained by both energetic and entropic differences between the solid and liquid phases for each cluster. We show that the lower-than-bulk melting temperature of the 12-atom cluster can be attributed to persistent pair bonding, reminiscent of the pairing observed in α-gallium. This result supports the attribution of greater-than-bulk melting in gallium clusters to the anomalously low melting temperature of the bulk, due to its dimeric structure.

  12. Temperature-dependent solubility transition of Na₂SO₄ in water and the effect of NaCl therein: solution structures and salt water dynamics.

    PubMed

    Bharmoria, Pankaj; Gehlot, Praveen Singh; Gupta, Hariom; Kumar, Arvind

    2014-11-06

    Dual, aqueous solubility behavior of Na2SO4 as a function of temperatures is still a natural enigma lying unresolved in the literature. The solubility of Na2SO4 increases up to 32.38 °C and decreases slightly thereafter at higher temperatures. We have thrown light on this phenomenon by analyzing the Na2SO4-water clusters (growth and stability) detected from temperature-dependent dynamic light scattering experiments, solution compressibility changes derived from the density and speed of sound measurements, and water structural changes/Na2SO4 (ion pair)-water interactions observed from the FT-IR and 2D DOSY (1)H NMR spectroscopic investigations. It has been observed that Na2SO4-water clusters grow with an increase in Na2SO4 concentration (until the solubility transition temperature) and then start decreasing afterward. An unusual decrease in cluster size and solution compressibility has been observed with the rise in temperature for the Na2SO4 saturated solutions below the solubility transition temperature, whereas an inverse pattern is followed thereafter. DOSY experiments have indicated different types of water cluster species in saturated solutions at different temperatures with varying self-diffusion coefficients. The effect of NaCl (5-15 wt %) on the solubility behavior of Na2SO4 at different temperatures has also been examined. The studies are important from both fundamental and industrial application points of view, for example, toward the clean separation of NaCl and Na2SO4 from the effluent streams of textile and tannery industries.

  13. Clustering of low-valence particles: structure and kinetics.

    PubMed

    Markova, Olga; Alberts, Jonathan; Munro, Edwin; Lenne, Pierre-François

    2014-08-01

    We compute the structure and kinetics of two systems of low-valence particles with three or six freely oriented bonds in two dimensions. The structure of clusters formed by trivalent particles is complex with loops and holes, while hexavalent particles self-organize into regular and compact structures. We identify the elementary structures which compose the clusters of trivalent particles. At initial stages of clustering, the clusters of trivalent particles grow with a power-law time dependence. Yet at longer times fusion and fission of clusters equilibrates and clusters form a heterogeneous phase with polydispersed sizes. These results emphasize the role of valence in the kinetics and stability of finite-size clusters.

  14. Reexamine structures and relative stability of medium-sized silicon clusters: Low-lying endohedral fullerene-like clusters Si 30-Si 38

    NASA Astrophysics Data System (ADS)

    Yoo, Soohaeng; Shao, Nan; Zeng, X. C.

    2009-10-01

    We report improved results of lowest-lying silicon clusters Si 30-Si 38. A large population of low-energy clusters are collected from previous searches by several research groups and the binding energies of these clusters are computed using density-functional theory (DFT) methods. Best candidates (isomers with high binding energies) are identified from the screening calculations. Additional constrained search is then performed for the best candidates using the basin-hopping method combined with DFT geometry optimization. The obtained low-lying clusters are classified according to binding energies computed using either the Perdew-Burke-Ernzerhof (PBE) functional or the Becke exchange and Lee-Yang-Parr correlation (BLYP) functional. We propose to rank low-lying clusters according to the mean PBE/BLYP binding energies in view that the PBE functional tends to give greater binding energies for more compact clusters whereas the BLYP functional tends to give greater binding energies for less compact clusters or clusters composed of small-sized magic-number clusters. Except for Si 30, the new search confirms again that medium-size silicon clusters Si 31-Si 38 constructed with proper fullerene cage motifs are most promising to be the lowest-energy structures.

  15. Electron-induced chemistry in imidazole clusters embedded in helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Kuhn, Martin; Raggl, Stefan; Martini, Paul; Gitzl, Norbert; Darian, Masoomeh Mahmoodi; Goulart, Marcelo; Postler, Johannes; Feketeová, Linda; Scheier, Paul

    2018-02-01

    Electron-induced chemistry in imidazole (IMI) clusters embedded in helium nanodroplets (with an average size of 2 × 105 He atoms) has been investigated with high-resolution time-of-flight mass spectrometry. The formation of both, negative and positive, ions was monitored as a function of the cluster size n. In both ion spectra a clear series of peaks with IMI cluster sizes up to at least 25 are observed. While the anions are formed by collisions of IMI n with He*-, the cations are formed through ionization of IMI n by He+ as the measured onset for the cation formation is observed at 24.6 eV (ionization energy of He). The most abundant series of anions are dehydrogenated anions IMI n-1(IMI-H)-, while other anion series are IMI clusters involving CN and C2H4 moieties. The formation of cations is dominated by the protonated cluster ions IMI n H+, while the intensity of parent cluster cations IMI n + is also observed preferentially for the small cluster size n. The observation of series of cluster cations [IMI n CH3]+ suggests either CH3+ cation to be solvated by n neutral IMI molecules, or the electron-induced chemistry has led to the formation of protonated methyl-imidazole solvated by ( n - 1) neutral IMI molecules.

  16. Understanding ligand effects in gold clusters using mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Laskin, Julia

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation ofmore » numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well-defined surfaces may be explored using ion soft landing (SL) in a custom-built instrument combined with in situ time of flight secondary ion mass spectrometry (TOF-SIMS). Jointly, this multipronged experimental approach allows characterization of the full spectrum of relevant phenomena including cluster synthesis, ligand exchange, thermochemistry, surface immobilization, and reactivity. The fundamental insights obtained from this work will facilitate the directed synthesis of gold clusters with predetermined size and properties for specific applications.« less

  17. Alternative Parameterizations for Cluster Editing

    NASA Astrophysics Data System (ADS)

    Komusiewicz, Christian; Uhlmann, Johannes

    Given an undirected graph G and a nonnegative integer k, the NP-hard Cluster Editing problem asks whether G can be transformed into a disjoint union of cliques by applying at most k edge modifications. In the field of parameterized algorithmics, Cluster Editing has almost exclusively been studied parameterized by the solution size k. Contrastingly, in many real-world instances it can be observed that the parameter k is not really small. This observation motivates our investigation of parameterizations of Cluster Editing different from the solution size k. Our results are as follows. Cluster Editing is fixed-parameter tractable with respect to the parameter "size of a minimum cluster vertex deletion set of G", a typically much smaller parameter than k. Cluster Editing remains NP-hard on graphs with maximum degree six. A restricted but practically relevant version of Cluster Editing is fixed-parameter tractable with respect to the combined parameter "number of clusters in the target graph" and "maximum number of modified edges incident to any vertex in G". Many of our results also transfer to the NP-hard Cluster Deletion problem, where only edge deletions are allowed.

  18. Does the impact of case management vary in different subgroups of multimorbidity? Secondary analysis of a quasi-experiment.

    PubMed

    Stokes, Jonathan; Kristensen, Søren Rud; Checkland, Kath; Cheraghi-Sohi, Sudeh; Bower, Peter

    2017-08-03

    Health systems must transition from catering primarily to acute conditions, to meet the increasing burden of chronic disease and multimorbidity. Case management is a popular method of integrating care, seeking to accomplish this goal. However, the intervention has shown limited effectiveness. We explore whether the effects of case management vary in patients with different types of multimorbidity. We extended a previously published quasi-experiment (difference-in-differences analysis) with 2049 propensity matched case management intervention patients, adding an additional interaction term to determine subgroup effects (difference-in-difference-in-differences) by different conceptualisations of multimorbidity: 1) Mental-physical comorbidity versus others; 2) 3+ chronic conditions versus <3; 3) Discordant versus concordant conditions; 4) Cardiovascular/metabolic cluster conditions only versus others; 5) Mental health-associated cluster conditions only versus others; 6) Musculoskeletal disorder cluster conditions only versus others 7) Charlson index >5 versus others. Outcome measures included a variety of secondary care utilisation and cost measures. The majority of conceptualisations suggested little to no difference in effect between subgroups. Where results were significant, the vast majority of effect sizes identified in either direction were very small. The trend across the majority of the results appeared to show very slight increases of admissions with treatment for the most complex patients (highest risk). The exceptions to this, patients with a Charlson index >5 may benefit slightly more from case management with decreased ACSC admissions (effect size (ES): −0.06) and inpatient re-admissions (30 days, ES: −0.05), and patients with only cardiovascular/metabolic cluster conditions may benefit slightly more with decreased inpatient non-elective admissions (ES: −0.12). Only the three significant estimates for the musculoskeletal disorder cluster met the minimum requirement for at least a ‘small’ effect. Two of these estimates in particular were very large. This cluster represented only 0.5% of the total patients analysed, however, so is hugely vulnerable to the effects of outliers, and makes us very cautious of interpreting these as ‘real’ effects. Our results indicate no appropriate multimorbidity subgroup at which to target the case management intervention in terms of secondary care utilisation/cost outcomes. The most complex, highest risk patients may legitimately require hospitalisation, and the intensified management may better identify these unmet needs. End of life patients (e.g. Charlson index >5)/those with only conditions particularly amenable to primary care management (e.g. cardiovascular/metabolic cluster conditions) may benefit very slightly more than others.

  19. Effect Sizes in Cluster-Randomized Designs

    ERIC Educational Resources Information Center

    Hedges, Larry V.

    2007-01-01

    Multisite research designs involving cluster randomization are becoming increasingly important in educational and behavioral research. Researchers would like to compute effect size indexes based on the standardized mean difference to compare the results of cluster-randomized studies (and corresponding quasi-experiments) with other studies and to…

  20. Variability in body size and shape of UK offshore workers: A cluster analysis approach.

    PubMed

    Stewart, Arthur; Ledingham, Robert; Williams, Hector

    2017-01-01

    Male UK offshore workers have enlarged dimensions compared with UK norms and knowledge of specific sizes and shapes typifying their physiques will assist a range of functions related to health and ergonomics. A representative sample of the UK offshore workforce (n = 588) underwent 3D photonic scanning, from which 19 extracted dimensional measures were used in k-means cluster analysis to characterise physique groups. Of the 11 resulting clusters four somatotype groups were expressed: one cluster was muscular and lean, four had greater muscularity than adiposity, three had equal adiposity and muscularity and three had greater adiposity than muscularity. Some clusters appeared constitutionally similar to others, differing only in absolute size. These cluster centroids represent an evidence-base for future designs in apparel and other applications where body size and proportions affect functional performance. They also constitute phenotypic evidence providing insight into the 'offshore culture' which may underpin the enlarged dimensions of offshore workers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Reporting and methodological quality of sample size calculations in cluster randomized trials could be improved: a review.

    PubMed

    Rutterford, Clare; Taljaard, Monica; Dixon, Stephanie; Copas, Andrew; Eldridge, Sandra

    2015-06-01

    To assess the quality of reporting and accuracy of a priori estimates used in sample size calculations for cluster randomized trials (CRTs). We reviewed 300 CRTs published between 2000 and 2008. The prevalence of reporting sample size elements from the 2004 CONSORT recommendations was evaluated and a priori estimates compared with those observed in the trial. Of the 300 trials, 166 (55%) reported a sample size calculation. Only 36 of 166 (22%) reported all recommended descriptive elements. Elements specific to CRTs were the worst reported: a measure of within-cluster correlation was specified in only 58 of 166 (35%). Only 18 of 166 articles (11%) reported both a priori and observed within-cluster correlation values. Except in two cases, observed within-cluster correlation values were either close to or less than a priori values. Even with the CONSORT extension for cluster randomization, the reporting of sample size elements specific to these trials remains below that necessary for transparent reporting. Journal editors and peer reviewers should implement stricter requirements for authors to follow CONSORT recommendations. Authors should report observed and a priori within-cluster correlation values to enable comparisons between these over a wider range of trials. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Low-temperature cluster catalysis.

    PubMed

    Judai, Ken; Abbet, Stéphane; Wörz, Anke S; Heiz, Ulrich; Henry, Claude R

    2004-03-10

    Free and supported metal clusters reveal unique chemical and physical properties, which vary as a function of size as each cluster possesses a characteristic electron confinement. Several previous experimental results showed that the outcome of a given chemical reaction can be controlled by tuning the cluster size. However, none of the examples indicate that clusters prepared in the gas phase and then deposited on a support material are indeed catalytically active over several reaction cycles nor that their catalytic properties remain constant during such a catalytic process. In this work we report turn-over frequencies (TOF) for Pd(n) (n = 4, 8, 30) clusters using pulsed molecular beam experiments. The obtained results illustrate that the catalytic reactivity for the NO reduction by CO (CO + NO --> 1/2N(2) + CO(2)) is indeed a function of cluster size and that the measured TOF remain constant at a given temperature. More interestingly, the temperature of maximal reactivity is at least 100 K lower than observed for palladium nanoparticles or single crystals. One reason for this surprising observation is the character of the binding sites of these small clusters: N(2) forms already at relatively low temperatures (400 and 450 K) and therefore poisoning by adsorbed nitrogen adatoms is prevented. Thus, small clusters not only open the possibility of tuning a catalytic process by changing cluster size, but also of catalyzing chemical reactions at low temperatures.

  3. Relaxation and collective excitations of cluster nano-plasmas

    NASA Astrophysics Data System (ADS)

    Reinholz, Heidi; Röpke, Gerd; Broda, Ingrid; Morozov, Igor; Bystryi, Roman; Lavrinenko, Yaroslav

    2018-01-01

    Nano-plasmas produced, for example, in clusters after short-pulse laser irradiation, can show collective excitations, as derived from the time evolution of fluctuations in thermodynamic equilibrium. Molecular dynamical simulations are performed for various cluster sizes. New data are obtained for the minimum value of the stationary cluster charge. The bi-local autocorrelation function gives the spatial structure of the eigenmodes, for which energy eigenvalues are obtained. By varying the cluster size, starting from a few-particle cluster, the emergence of macroscopic properties such as collective excitations is shown.

  4. Impact of grain size and rock composition on simulated rock weathering

    NASA Astrophysics Data System (ADS)

    Israeli, Yoni; Emmanuel, Simon

    2018-05-01

    Both chemical and mechanical processes act together to control the weathering rate of rocks. In rocks with micrometer size grains, enhanced dissolution at grain boundaries has been observed to cause the mechanical detachment of particles. However, it remains unclear how important this effect is in rocks with larger grains, and how the overall weathering rate is influenced by the proportion of high- and low-reactivity mineral phases. Here, we use a numerical model to assess the effect of grain size on chemical weathering and chemo-mechanical grain detachment. Our model shows that as grain size increases, the weathering rate initially decreases; however, beyond a critical size no significant decrease in the rate is observed. This transition occurs when the density of reactive boundaries is less than ˜ 20 % of the entire domain. In addition, we examined the weathering rates of rocks containing different proportions of high- and low-reactivity minerals. We found that as the proportion of low-reactivity minerals increases, the weathering rate decreases nonlinearly. These simulations indicate that for all compositions, grain detachment contributes more than 36 % to the overall weathering rate, with a maximum of ˜ 50 % when high- and low-reactivity minerals are equally abundant in the rock. This occurs because selective dissolution of the high-reactivity minerals creates large clusters of low-reactivity minerals, which then become detached. Our results demonstrate that the balance between chemical and mechanical processes can create complex and nonlinear relationships between the weathering rate and lithology.

  5. Experimental nanocalorimetry of protonated and deprotonated water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulon, Julien; Braud, Isabelle; Zamith, Sébastien

    2014-04-28

    An experimental nanocalorimetric study of mass selected protonated (H{sub 2}O){sub n}H{sup +} and deprotonated (H{sub 2}O){sub n−1}OH{sup −} water clusters is reported in the size range n = 20–118. Water cluster's heat capacities exhibit a change of slope at size dependent temperatures varying from 90 to 140 K, which is ascribed to phase or structural transition. For both anionic and cationic species, these transition temperatures strongly vary at small sizes, with higher amplitude for protonated than for deprotonated clusters, and change more smoothly above roughly n ≈ 35. There is a correlation between bonding energies and transition temperatures, which ismore » split in two components for protonated clusters while only one component is observed for deprotonated clusters. These features are tentatively interpreted in terms of structural properties of water clusters.« less

  6. Emergence of increased frequency and severity of multiple infections by viruses due to spatial clustering of hosts

    NASA Astrophysics Data System (ADS)

    Taylor, Bradford P.; Penington, Catherine J.; Weitz, Joshua S.

    2016-12-01

    Multiple virus particles can infect a target host cell. Such multiple infections (MIs) have significant and varied ecological and evolutionary consequences for both virus and host populations. Yet, the in situ rates and drivers of MIs in virus-microbe systems remain largely unknown. Here, we develop an individual-based model (IBM) of virus-microbe dynamics to probe how spatial interactions drive the frequency and nature of MIs. In our IBMs, we identify increasingly spatially correlated clusters of viruses given sufficient decreases in viral movement. We also identify increasingly spatially correlated clusters of viruses and clusters of hosts given sufficient increases in viral infectivity. The emergence of clusters is associated with an increase in multiply infected hosts as compared to expectations from an analogous mean field model. We also observe long-tails in the distribution of the multiplicity of infection in contrast to mean field expectations that such events are exponentially rare. We show that increases in both the frequency and severity of MIs occur when viruses invade a cluster of uninfected microbes. We contend that population-scale enhancement of MI arises from an aggregate of invasion dynamics over a distribution of microbe cluster sizes. Our work highlights the need to consider spatially explicit interactions as a potentially key driver underlying the ecology and evolution of virus-microbe communities.

  7. Scattering properties of alumina particle clusters with different radius of monomers in aerocraft plume

    NASA Astrophysics Data System (ADS)

    Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin; Gong, Yanjun

    2017-11-01

    In this paper, diffusion limited aggregation (DLA) algorithm is improved to generate the alumina particle cluster with different radius of monomers in the plume. Scattering properties of these alumina clusters are solved by the multiple sphere T matrix method (MSTM). The effect of the number and radius of monomers on the scattering properties of clusters of alumina particles is discussed. The scattering properties of two types of alumina particle clusters are compared, one has different radius of monomers that follows lognormal probability distribution, another has the same radius of monomers that equals the mean of lognormal probability distribution. The result show that the scattering phase functions and linear polarization degrees of these two types of alumina particle clusters are of great differences. For the alumina clusters with different radius of monomers, the forward scatterings are bigger and the linear polarization degree has multiple peaks. Moreover, the vary of their scattering properties do not have strong correlative with the change of number of monomers. For larger booster motors, 25-38% of the plume being condensed alumina. The alumina can scatter radiation from other sources present in the plume and effect on radiation transfer characteristics of plume. In addition, the shape, size distribution and refractive index of the particles in the plume are estimated by linear polarization degree. Therefore, accurate scattering properties calculation is very important to decrease the deviation in the related research.

  8. Biased phylodynamic inferences from analysing clusters of viral sequences

    PubMed Central

    Xiang, Fei; Frost, Simon D. W.

    2017-01-01

    Abstract Phylogenetic methods are being increasingly used to help understand the transmission dynamics of measurably evolving viruses, including HIV. Clusters of highly similar sequences are often observed, which appear to follow a ‘power law’ behaviour, with a small number of very large clusters. These clusters may help to identify subpopulations in an epidemic, and inform where intervention strategies should be implemented. However, clustering of samples does not necessarily imply the presence of a subpopulation with high transmission rates, as groups of closely related viruses can also occur due to non-epidemiological effects such as over-sampling. It is important to ensure that observed phylogenetic clustering reflects true heterogeneity in the transmitting population, and is not being driven by non-epidemiological effects. We qualify the effect of using a falsely identified ‘transmission cluster’ of sequences to estimate phylodynamic parameters including the effective population size and exponential growth rate under several demographic scenarios. Our simulation studies show that taking the maximum size cluster to re-estimate parameters from trees simulated under a randomly mixing, constant population size coalescent process systematically underestimates the overall effective population size. In addition, the transmission cluster wrongly resembles an exponential or logistic growth model 99% of the time. We also illustrate the consequences of false clusters in exponentially growing coalescent and birth-death trees, where again, the growth rate is skewed upwards. This has clear implications for identifying clusters in large viral databases, where a false cluster could result in wasted intervention resources. PMID:28852573

  9. Matrimonial distance, inbreeding coefficient and population size: Dhangar data.

    PubMed

    Majumder, P P; Malhotra, K C

    1979-01-01

    Data on the distance between the birthplaces of spouses (matrimonial distance) were collected from 2,260 married individuals belonging to 21 endogamous castes of the Dhangar (shepherd) cast-cluster of Maharashtra, India. The general form of the distribution of matrimonial distances is one which is extremely positively skewed and leptokurtic. The percentage of intra-village marriages generally decreases from the southern areas of Maharashtra to the northern areas of the state, as does the inbreeding coefficient. This situation is in conformity with the socio-cultural norms regulating matrimonial choice in south and north India. An attempt has been made to relate the degree of inbreeding to the mean matrimonial distance and population size. The mean matrimonial distance is more useful in predicting the degree of inbreeding than population size.

  10. Effect Sizes in Three-Level Cluster-Randomized Experiments

    ERIC Educational Resources Information Center

    Hedges, Larry V.

    2011-01-01

    Research designs involving cluster randomization are becoming increasingly important in educational and behavioral research. Many of these designs involve two levels of clustering or nesting (students within classes and classes within schools). Researchers would like to compute effect size indexes based on the standardized mean difference to…

  11. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Elmegreen, B. G.; Calzetti, D.; Adamo, A.; Aloisi, A.; Bright, S. N.; Cook, D. O.; Dale, D. A.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grebel, E. K.; Kahre, L.; Kim, H.; Krumholz, M. R.; Lee, J. C.; Messa, M.; Ryon, J. E.; Ubeda, L.

    2017-06-01

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25-0.6 power, and that the maximum size over which star formation is physically correlated ranges from ˜200 pc to ˜1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.

  12. Data-driven inference for the spatial scan statistic.

    PubMed

    Almeida, Alexandre C L; Duarte, Anderson R; Duczmal, Luiz H; Oliveira, Fernando L P; Takahashi, Ricardo H C

    2011-08-02

    Kulldorff's spatial scan statistic for aggregated area maps searches for clusters of cases without specifying their size (number of areas) or geographic location in advance. Their statistical significance is tested while adjusting for the multiple testing inherent in such a procedure. However, as is shown in this work, this adjustment is not done in an even manner for all possible cluster sizes. A modification is proposed to the usual inference test of the spatial scan statistic, incorporating additional information about the size of the most likely cluster found. A new interpretation of the results of the spatial scan statistic is done, posing a modified inference question: what is the probability that the null hypothesis is rejected for the original observed cases map with a most likely cluster of size k, taking into account only those most likely clusters of size k found under null hypothesis for comparison? This question is especially important when the p-value computed by the usual inference process is near the alpha significance level, regarding the correctness of the decision based in this inference. A practical procedure is provided to make more accurate inferences about the most likely cluster found by the spatial scan statistic.

  13. Micro-flock patterns and macro-clusters in chiral active Brownian disks

    NASA Astrophysics Data System (ADS)

    Levis, Demian; Liebchen, Benno

    2018-02-01

    Chiral active particles (or self-propelled circle swimmers) feature a rich collective behavior, comprising rotating macro-clusters and micro-flock patterns which consist of phase-synchronized rotating clusters with a characteristic self-limited size. These patterns emerge from the competition of alignment interactions and rotations suggesting that they might occur generically in many chiral active matter systems. However, although excluded volume interactions occur naturally among typical circle swimmers, it is not yet clear if macro-clusters and micro-flock patterns survive their presence. The present work shows that both types of pattern do survive but feature strongly enhance fluctuations regarding the size and shape of the individual clusters. Despite these fluctuations, we find that the average micro-flock size still follows the same characteristic scaling law as in the absence of excluded volume interactions, i.e. micro-flock sizes scale linearly with the single-swimmer radius.

  14. Cluster formation of network-modifier cations in cesium silicate glasses

    NASA Astrophysics Data System (ADS)

    Jardón-Álvarez, Daniel; Sanders, Kevin J.; Phyo, Pyae; Baltisberger, Jay H.; Grandinetti, Philip J.

    2018-03-01

    Natural abundance 29Si two-dimensional magic-angle flipping (2D MAF) NMR spectra were measured in a series of ten cesium silicate glass compositions xCs2O.(1 - x)SiO2, where x is 0.067, 0.113, 0.175, 0.179, 0.218, 0.234, 0.263, 0.298, 0.31, and 0.36. The Q3 shielding anisotropy decreases with increasing Cs content—interpreted as an increase in the non-bridging oxygen (NBO) bond length from increasing Cs coordination (clustering) around the NBO. The 29Si 2D MAF spectra for four glass compositions x = 0.218, 0.234, 0.263, 0.298 exhibit a second co-existing and distinctly smaller shielding anisotropy corresponding to a significantly longer Si-NBO length arising from a higher degree of Cs clustering around the NBO. This second Q3 site appears at a Cs2O mole fraction close to the critical mole fraction of x = 0.24 associated with the percolation threshold of non-bridging oxygen in random close packing of oxygen, thus suggesting that the longer Si-NBO length is associated with an infinite size spanning cluster while the sites with larger anisotropies are associated with shorter Si-NBO lengths and belong to finite size clusters. The equilibrium constant of the Q3 disproportionation reaction was determined as k3 = 0.005, indicating a Qn anionic species distribution close to a binary model as expected for a low field strength modifier such as cesium. It is also found that evolution of the isotropic Q4 and line shapes with increasing Cs content are consistent with a random connectivity model between Qn of differing number of bridging oxygen, n.

  15. Star cluster formation in cosmological simulations. I. Properties of young clusters

    DOE PAGES

    Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; ...

    2017-01-03

    We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope ismore » $$\\alpha \\approx 1.8\\mbox{–}2$$, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. As a result, comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.« less

  16. Star cluster formation in cosmological simulations. I. Properties of young clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.

    We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope ismore » $$\\alpha \\approx 1.8\\mbox{–}2$$, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. As a result, comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.« less

  17. Transient Properties of Probability Distribution for a Markov Process with Size-dependent Additive Noise

    NASA Astrophysics Data System (ADS)

    Yamada, Yuhei; Yamazaki, Yoshihiro

    2018-04-01

    This study considered a stochastic model for cluster growth in a Markov process with a cluster size dependent additive noise. According to this model, the probability distribution of the cluster size transiently becomes an exponential or a log-normal distribution depending on the initial condition of the growth. In this letter, a master equation is obtained for this model, and derivation of the distributions is discussed.

  18. Accounting for twin births in sample size calculations for randomised trials.

    PubMed

    Yelland, Lisa N; Sullivan, Thomas R; Collins, Carmel T; Price, David J; McPhee, Andrew J; Lee, Katherine J

    2018-05-04

    Including twins in randomised trials leads to non-independence or clustering in the data. Clustering has important implications for sample size calculations, yet few trials take this into account. Estimates of the intracluster correlation coefficient (ICC), or the correlation between outcomes of twins, are needed to assist with sample size planning. Our aims were to provide ICC estimates for infant outcomes, describe the information that must be specified in order to account for clustering due to twins in sample size calculations, and develop a simple tool for performing sample size calculations for trials including twins. ICCs were estimated for infant outcomes collected in four randomised trials that included twins. The information required to account for clustering due to twins in sample size calculations is described. A tool that calculates the sample size based on this information was developed in Microsoft Excel and in R as a Shiny web app. ICC estimates ranged between -0.12, indicating a weak negative relationship, and 0.98, indicating a strong positive relationship between outcomes of twins. Example calculations illustrate how the ICC estimates and sample size calculator can be used to determine the target sample size for trials including twins. Clustering among outcomes measured on twins should be taken into account in sample size calculations to obtain the desired power. Our ICC estimates and sample size calculator will be useful for designing future trials that include twins. Publication of additional ICCs is needed to further assist with sample size planning for future trials. © 2018 John Wiley & Sons Ltd.

  19. Scaling of cluster growth for coagulating active particles

    NASA Astrophysics Data System (ADS)

    Cremer, Peet; Löwen, Hartmut

    2014-02-01

    Cluster growth in a coagulating system of active particles (such as microswimmers in a solvent) is studied by theory and simulation. In contrast to passive systems, the net velocity of a cluster can have various scalings dependent on the propulsion mechanism and alignment of individual particles. Additionally, the persistence length of the cluster trajectory typically increases with size. As a consequence, a growing cluster collects neighboring particles in a very efficient way and thus amplifies its growth further. This results in unusual large growth exponents for the scaling of the cluster size with time and, for certain conditions, even leads to "explosive" cluster growth where the cluster becomes macroscopic in a finite amount of time.

  20. Molecular dynamics simulations of diffusion and clustering along critical isotherms of medium-chain n-alkanes.

    PubMed

    Mutoru, J W; Smith, W; O'Hern, C S; Firoozabadi, A

    2013-01-14

    Understanding the transport properties of molecular fluids in the critical region is important for a number of industrial and natural systems. In the literature, there are conflicting reports on the behavior of the self diffusion coefficient D(s) in the critical region of single-component molecular systems. For example, D(s) could decrease to zero, reach a maximum, or remain unchanged and finite at the critical point. Moreover, there is no molecular-scale understanding of the behavior of diffusion coefficients in molecular fluids in the critical regime. We perform extensive molecular dynamics simulations in the critical region of single-component fluids composed of medium-chain n-alkanes-n-pentane, n-decane, and n-dodecane-that interact via anisotropic united-atom potentials. For each system, we calculate D(s), and average molecular cluster sizes κ(cl) and numbers N(cl) at various cluster lifetimes τ, as a function of density ρ in the range 0.2ρ(c) ≤ ρ ≤ 2.0ρ(c) at the critical temperature T(c). We find that D(s) decreases with increasing ρ but remains finite at the critical point. Moreover, for any given τ < 1.2 × 10(-12) s, κ(cl) increases with increasing ρ but is also finite at the critical point.

  1. M/L, Hα Rotation Curves, and H I Gas Measurements for 329 Nearby Cluster and Field Spirals. III. Evolution in Fundamental Galaxy Parameters

    NASA Astrophysics Data System (ADS)

    Vogt, Nicole P.; Haynes, Martha P.; Giovanelli, Riccardo; Herter, Terry

    2004-06-01

    We have conducted a study of optical and H I properties of spiral galaxies (size, luminosity, Hα flux distribution, circular velocity, H I gas mass) to investigate causes (e.g., nature vs. nurture) for variation within the cluster environment. We find H I-deficient cluster galaxies to be offset in fundamental plane space, with disk scale lengths decreased by a factor of 25%. This may be a relic of early galaxy formation, caused by the disk coalescing out of a smaller, denser halo (e.g., higher concentration index) or by truncation of the hot gas envelope due to the enhanced local density of neighbors, although we cannot completely rule out the effect of the gas stripping process. The spatial extent of Hα flux and the B-band radius also decreases, but only in early-type spirals, suggesting that gas removal is less efficient within steeper potential wells (or that stripped late-type spirals are quickly rendered unrecognizable). We find no significant trend in stellar mass-to-light ratios or circular velocities with H I gas content, morphological type, or clustercentric radius, for star-forming spiral galaxies throughout the clusters. These data support the findings of a companion paper that gas stripping promotes a rapid truncation of star formation across the disk and could be interpreted as weak support for dark matter domination over baryons in the inner regions of spiral galaxies.

  2. The balance between keystone clustering and bed roughness in experimental step-pool stabilization

    NASA Astrophysics Data System (ADS)

    Johnson, J. P.

    2016-12-01

    Predicting how mountain channels will respond to environmental perturbations such as floods requires an improved quantitative understanding of morphodynamic feedbacks among bed topography, surface grain size and sediment sorting. In boulder-rich gravel streams, transport and sorting often lead to the development of step pool morphologies, which are expressed both in bed topography and coarse grain clustering. Bed stability is difficult to measure, and is sometimes inferred from the presence of step pools. I use scaled flume experiments to explore feedbacks among surface grain sizes, coarse grain clustering, bed roughness and hydraulic roughness during progressive bed stabilization and over a range of sediment transport rates. While grain clusters are sometimes identified by subjective interpretation, I quantify the degree of coarse surface grain clustering using spatial statistics, including a novel normalization of Ripley's K function. This approach is objective and provides information on the strength of clustering over a range of length scales. Flume experiments start with an initial bed surface with a broad grain size distribution and spatially random positions. Flow causes the bed surface to progressively stabilize in response to erosion, surface coarsening, roughening and grain reorganization. At 95% confidence, many but not all beds stabilized with coarse grains becoming more clustered than complete spatial randomness (CSR). I observe a tradeoff between topographic roughness and clustering. Beds that stabilized with higher degrees of coarse-grain clustering were topographically smoother, and vice-versa. Initial conditions influenced the degree of clustering at stability: Beds that happened to have fewer initial coarse grains had more coarse grain reorganization during stabilization, leading to more clustering. Finally, regressions demonstrate that clustering statistics actually predict hydraulic roughness significantly better than does D84 (the size at which 84% of grains are smaller). In the experimental data, the spatial organization of surface grains is a stronger control on flow characteristics than the size of surface grains.

  3. Theoretical Prediction of Si 2–Si 33 Absorption Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei

    Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less

  4. Theoretical Prediction of Si 2–Si 33 Absorption Spectra

    DOE PAGES

    Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei; ...

    2017-07-07

    Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less

  5. Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters using Density Functional Theory

    DTIC Science & Technology

    2017-05-05

    dependent density functional theory (TD-DFT). The size of the clusters considered is relatively large compared to those considered in previous studies...are characterized by many different geometries, which potentially can be optimized with respect to specific materials design criteria, i.e., molecular...SixOy molecular clusters using density functional theory (DFT). The size of the clusters considered, however, is relatively large compared to those

  6. Model selection for semiparametric marginal mean regression accounting for within-cluster subsampling variability and informative cluster size.

    PubMed

    Shen, Chung-Wei; Chen, Yi-Hau

    2018-03-13

    We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is "informative" in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121-1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly. © 2018, The International Biometric Society.

  7. PKMζ is necessary and sufficient for synaptic clustering of PSD-95.

    PubMed

    Shao, Charles Y; Sondhi, Rachna; van de Nes, Paula S; Sacktor, Todd Charlton

    2012-07-01

    The persistent activity of protein kinase Mzeta (PKMζ), a brain-specific, constitutively active protein kinase C isoform, maintains synaptic long-term potentiation (LTP). Structural remodeling of the postsynaptic density is believed to contribute to the expression of LTP. We therefore examined the role of PKMζ in reconfiguring PSD-95, the major postsynaptic scaffolding protein at excitatory synapses. In primary cultures of hippocampal neurons, PKMζ activity was critical for increasing the size of PSD-95 clusters during chemical LTP (cLTP). Increasing PKMζ activity by overexpressing the kinase in hippocampal neurons was sufficient to increase PSD-95 cluster size, spine size, and postsynaptic AMPAR subunit GluA2. Overexpression of an inactive mutant of PKMζ did not increase PSD-95 clustering, and applications of the ζ-pseudosubstrate inhibitor ZIP reversed the PKMζ-mediated increases in PSD-95 clustering, indicating that the activity of PKMζ is necessary to induce and maintain the increased size of PSD-95 clusters. Thus the persistent activity of PKMζ is both necessary and sufficient for maintaining increases of PSD-95 clusters, providing a unified mechanism for long-term functional and structural modifications of synapses. Copyright © 2011 Wiley Periodicals, Inc.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Donghai; Lebarbier, Vanessa M.; Rousseau, Roger

    In a combined experimental and first-principles density functional theory (DFT) study, benzene steam reforming (BSR) over MgAl 2O 4 supported Rh and Ir catalysts was investigated. Experimentally, it has been found that both highly dispersed Rh and Ir clusters (1-2 nm) on the MgAl 2O 4 spinel support are stable during the BSR in the temperature range of 700-850°C. Compared to the Ir/MgAl 2O 4 catalyst, the Rh/MgAl 2O 4 catalyst is more active with higher benzene turnover frequency and conversion. At typical steam conditions with the steam-to-carbon ratio > 12, the benzene conversion is only a weak function ofmore » the H 2O concentration in the feed. This suggests that the initial benzene decomposition step rather than the benzene adsorption is most likely the rate-determined step in BSR over supported Rh and Ir catalysts. In order to understand the differences between the two catalysts, we followed with a comparative DFT study of initial benzene decomposition pathways over two representative model systems for each supported metal (Rh and Ir) catalysts. A periodic terrace (111) surface and an amorphous 50-atom metal cluster with a diameter of 1.0 nm were used to represent the two supported model catalysts under low and high dispersion conditions. Our DFT results show that the decreasing catalyst particle size enhances the benzene decomposition on supported Rh catalysts by lowering both C-C and C-H bond scission. The activation barriers of the C-C and the C-H bond scission decrease from 1.60 and 1.61 eV on the Rh(111) surface to 1.34 and 1.26 eV on the Rh50 cluster. For supported Ir catalysts, the decreasing particle size only affects the C-C scission. The activation barrier of the C-C scission of benzene decreases from 1.60 eV on the Ir(111) surface to 1.35 eV on the Ir50 cluster while the barriers of the C-H scission are practically the same. The experimentally measured higher BSR activity on the supported highly dispersed Rh catalyst can be rationalized by the thermodynamic limitation for the very first C-C bond scission of benzene on the small Ir50 catalyst. The C-C bond scission of benzene on the small Ir50 catalyst is highly endothermic although the barrier is competitive with the barriers of both the C-C and the C-H bond-breakings on the small Rh50 catalyst. The calculations also imply that, for the supported Rh catalysts the C-C and C-H bond scissions are competitive, independently of the Rh cluster sizes. After the initial dissociation step via either the C-C or the C-H bond scission, the C-H bond breaking seems to be more favorable rather than the C-C bond breaking on the larger Rh terrace surface. This work was financially supported by the United States Department of Energy’s Office of Biomass Program’s. Computing time was granted by a user project at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  9. Power and money in cluster randomized trials: when is it worth measuring a covariate?

    PubMed

    Moerbeek, Mirjam

    2006-08-15

    The power to detect a treatment effect in cluster randomized trials can be increased by increasing the number of clusters. An alternative is to include covariates into the regression model that relates treatment condition to outcome. In this paper, formulae are derived in order to evaluate both strategies on basis of their costs. It is shown that the strategy that uses covariates is more cost-efficient in detecting a treatment effect when the costs to measure these covariates are small and the correlation between the covariates and outcome is sufficiently large. The minimum required correlation depends on the cluster size, and the costs to recruit a cluster and to measure the covariate, relative to the costs to recruit a person. Measuring a covariate that varies at the person level only is recommended when cluster sizes are small and the costs to recruit and measure a cluster are large. Measuring a cluster level covariate is recommended when cluster sizes are large and the costs to recruit and measure a cluster are small. An illustrative example shows the use of the formulae in a practical setting. Copyright 2006 John Wiley & Sons, Ltd.

  10. Detailed analysis of the supermarket task included on the Japanese version of the Rapid Dementia Screening Test.

    PubMed

    Moriyama, Yasushi; Yoshino, Aihide; Muramatsu, Taro; Mimura, Masaru

    2017-05-01

    The supermarket task, which is included in the Japanese version of the Rapid Dementia Screening Test, requires the quick (1 min) generation of words for things that can be bought in a supermarket. Cluster size and switches are investigated during this task. We investigated how the severity of dementia related to cluster size and switches on the supermarket task in patients with Alzheimer's disease. We administered the Japanese version of the Rapid Dementia Screening Test to 250 patients with very mild to severe Alzheimer's disease and to 49 healthy volunteers. Patients had Mini-Mental State Examination scores from 12 to 26 and Clinical Dementia Rating scale scores from 0.5 to 3. Patients were divided into four groups based on their Clinical Dementia Rating score (0.5, 1, 2, 3). We performed statistical analyses between the four groups and control subjects based on cluster size and switch scores on the supermarket task. The score for cluster size and switches deteriorated according to the severity of dementia. Moreover, for subjects with a Clinical Dementia Rating score of 0.5, cluster size was impaired, but switches were intact. Our findings indicate that the scores for cluster size and switches on the supermarket task may be useful for detecting the severity of symptoms of dementia in patients with Alzheimer's disease. © 2016 The Authors. Psychogeriatrics © 2016 Japanese Psychogeriatric Society.

  11. Gossip in Random Networks

    NASA Astrophysics Data System (ADS)

    Malarz, K.; Szvetelszky, Z.; Szekf, B.; Kulakowski, K.

    2006-11-01

    We consider the average probability X of being informed on a gossip in a given social network. The network is modeled within the random graph theory of Erd{õ}s and Rényi. In this theory, a network is characterized by two parameters: the size N and the link probability p. Our experimental data suggest three levels of social inclusion of friendship. The critical value pc, for which half of agents are informed, scales with the system size as N-gamma with gamma approx 0.68. Computer simulations show that the probability X varies with p as a sigmoidal curve. Influence of the correlations between neighbors is also evaluated: with increasing clustering coefficient C, X decreases.

  12. Proteomic analysis of soybean root exposed to varying sizes of silver nanoparticles under flooding stress.

    PubMed

    Mustafa, Ghazala; Sakata, Katsumi; Komatsu, Setsuko

    2016-10-04

    Silver nanoparticles (Ag-NPs) are excessively used as antibacterial agents; however, environmental interaction specifically with the plants remain uncertain. To study the size-dependent effects of Ag-NPs on soybean under flooding, a proteomic technique was used. Morphological analysis revealed that treatment with Ag-NPs of 15nm promoted soybean growth under flooding compared to 2 and 50-80nm. A total of 228 common proteins that significantly changed in abundance under flooding without and with Ag-NPs of 2, 15, and 50-80nm. Under varying sizes of Ag-NPs, number of protein synthesis related proteins decreased compared to flooding while number of amino acid synthesis related proteins were increased under Ag-NPs of 15nm. Hierarchical clustering identified the ribosomal proteins that increased under Ag-NPs of 15nm while decreased under other sizes. In silico protein-protein interaction indicated the beta ketoacyl reducatse 1 as the most interacted protein under Ag-NPs of 15nm while least interacted under other sizes. The beta ketoacyl reductase 1 was up-regulated under Ag-NPs of 15nm while its enzyme activity was decreased. These results suggest that the different sizes of Ag-NPs might affect the soybean growth under flooding by regulating the proteins related to amino acid synthesis and wax formation. This study highlighted the response of soybean proteins towards varying sizes of Ag NPs under flooding stress using gel-free proteomic technique. The Ag NPs of 15nm improved the length of root including hypocotyl of soybean. The proteins related to protein metabolism, cell division/organization, and amino acid metabolism were differentially changed under the varying sizes of Ag NPs. The protein synthesis-related proteins were decreased while amino acid metabolism-related proteins were increased under varying sizes of Ag NPs. The ribosomal proteins were increased under Ag NPs of 15nm. The beta ketoacyl reductase 1 was identified as the most interacted protein under varying sizes of Ag NPs. The mRNA expression level of beta ketoacyl reductase was up-regulated under Ag NPs of 15nm while its activity was decreased. These results suggest that the Ag NPs of 15nm improved the soybean growth under flooding stress by increasing the proteins related to amino acid synthesis and waxes formation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Experimental and theoretical study of the microsolvation of sodium atoms in methanol clusters: differences and similarities to sodium-water and sodium-ammonia.

    PubMed

    Dauster, Ingo; Suhm, Martin A; Buck, Udo; Zeuch, Thomas

    2008-01-07

    Methanol clusters are generated in a continuous He-seeded supersonic expansion and doped with sodium atoms in a pick-up cell. By this method, clusters of the type Na(CH(3)OH)(n) are formed and subsequently photoionized by applying a tunable dye-laser system. The microsolvation process of the Na 3s electron is studied by determining the ionization potentials (IPs) of these clusters size-selectively for n = 2-40. A decrease is found from n = 2 to 6 and a constant value of 3.19 +/- 0.07 eV for n = 6-40. The experimentally-determined ionization potentials are compared with ionization potentials derived from quantum-chemical calculations, assuming limiting vertical and adiabatic processes. In the first case, energy differences are calculated between the neutral and the ionized cationic clusters of the same geometry. In the second case, the ionized clusters are used in their optimized relaxed geometry. These energy differences and relative stabilities of isomeric clusters vary significantly with the applied quantum-chemical method (B3LYP or MP2). The comparison with the experiment for n = 2-7 reveals strong variations of the ionization potential with the cluster structure indicating that structural diversity and non-vertical pathways give significant signal contributions at the threshold. Based on these findings, a possible explanation for the remarkable difference in IP evolutions of methanol or water and ammonia is presented: for methanol and water a rather localized surface or semi-internal Na 3s electron is excited to either high Rydberg or more localized states below the vertical ionization threshold. This excitation is followed by a local structural relaxation that couples to an autoionization process. For small clusters with n < 6 for methanol and n < 4 for water the addition of solvent molecules leads to larger solvent-metal-ion interaction energies, which consequently lead to lower ionization thresholds. For n = 6 (methanol) and n = 4 (water) this effect comes to a halt, which may be connected with the completion of the first cationic solvation shell limiting the release of local relaxation energy. For Na(NH(3))(n), a largely delocalized and internal electron is excited to autoionizing electronic states, a process that is no longer local and consequently may depend on cluster size up to very large n.

  14. The KMOS Cluster Survey (KCS). II. The Effect of Environment on the Structural Properties of Massive Cluster Galaxies at Redshift 1.39 < z < 1.61

    NASA Astrophysics Data System (ADS)

    Chan, Jeffrey C. C.; Beifiori, Alessandra; Saglia, Roberto P.; Mendel, J. Trevor; Stott, John P.; Bender, Ralf; Galametz, Audrey; Wilman, David J.; Cappellari, Michele; Davies, Roger L.; Houghton, Ryan C. W.; Prichard, Laura J.; Lewis, Ian J.; Sharples, Ray; Wegner, Michael

    2018-03-01

    We present results on the structural properties of massive passive galaxies in three clusters at 1.39 < z < 1.61 from the KMOS Cluster Survey. We measure light-weighted and mass-weighted sizes from optical and near-infrared Hubble Space Telescope imaging and spatially resolved stellar mass maps. The rest-frame R-band sizes of these galaxies are a factor of ∼2–3 smaller than their local counterparts. The slopes of the relation between the stellar mass and the light-weighted size are consistent with recent studies in clusters and the field. Their mass-weighted sizes are smaller than the rest-frame R-band sizes, with an average mass-weighted to light-weighted size ratio that varies between ∼0.45 and 0.8 among the clusters. We find that the median light-weighted size of the passive galaxies in the two more evolved clusters is ∼24% larger than that for field galaxies, independent of the use of circularized effective radii or semimajor axes. These two clusters also show a smaller size ratio than the less evolved cluster, which we investigate using color gradients to probe the underlying {M}* /{L}{{{H}}160} gradients. The median color gradients are ∇z ‑ H ∼ ‑0.4 mag dex‑1, twice the local value. Using stellar populations models, these gradients are best reproduced by a combination of age and metallicity gradients. Our results favor the minor merger scenario as the dominant process responsible for the observed galaxy properties and the environmental differences at this redshift. The environmental differences support that clusters experience accelerated structural evolution compared to the field, likely via an epoch of enhanced minor merger activity during cluster assembly. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO; program IDs: 092.A-0210; 093.A-0051; 094.A-0578; 095.A-0137(A); 096.A-0189(A); 097.A-0332(A)). This work is based on observations made with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO 13687, as well as with the CANDELS Multi-Cycle Treasury Program and the 3D-HST Treasury Program (GO 12177 and 12328).

  15. Clustering Methods with Qualitative Data: A Mixed Methods Approach for Prevention Research with Small Samples

    PubMed Central

    Henry, David; Dymnicki, Allison B.; Mohatt, Nathaniel; Allen, James; Kelly, James G.

    2016-01-01

    Qualitative methods potentially add depth to prevention research, but can produce large amounts of complex data even with small samples. Studies conducted with culturally distinct samples often produce voluminous qualitative data, but may lack sufficient sample sizes for sophisticated quantitative analysis. Currently lacking in mixed methods research are methods allowing for more fully integrating qualitative and quantitative analysis techniques. Cluster analysis can be applied to coded qualitative data to clarify the findings of prevention studies by aiding efforts to reveal such things as the motives of participants for their actions and the reasons behind counterintuitive findings. By clustering groups of participants with similar profiles of codes in a quantitative analysis, cluster analysis can serve as a key component in mixed methods research. This article reports two studies. In the first study, we conduct simulations to test the accuracy of cluster assignment using three different clustering methods with binary data as produced when coding qualitative interviews. Results indicated that hierarchical clustering, K-Means clustering, and latent class analysis produced similar levels of accuracy with binary data, and that the accuracy of these methods did not decrease with samples as small as 50. Whereas the first study explores the feasibility of using common clustering methods with binary data, the second study provides a “real-world” example using data from a qualitative study of community leadership connected with a drug abuse prevention project. We discuss the implications of this approach for conducting prevention research, especially with small samples and culturally distinct communities. PMID:25946969

  16. A matched filter approach for blind joint detection of galaxy clusters in X-ray and SZ surveys

    NASA Astrophysics Data System (ADS)

    Tarrío, P.; Melin, J.-B.; Arnaud, M.

    2018-06-01

    The combination of X-ray and Sunyaev-Zeldovich (SZ) observations can potentially improve the cluster detection efficiency, when compared to using only one of these probes, since both probe the same medium, the hot ionized gas of the intra-cluster medium. We present a method based on matched multifrequency filters (MMF) for detecting galaxy clusters from SZ and X-ray surveys. This method builds on a previously proposed joint X-ray-SZ extraction method and allows the blind detection of clusters, that is finding new clusters without knowing their position, size, or redshift, by searching on SZ and X-ray maps simultaneously. The proposed method is tested using data from the ROSAT all-sky survey and from the Planck survey. The evaluation is done by comparison with existing cluster catalogues in the area of the sky covered by the deep SPT survey. Thanks to the addition of the X-ray information, the joint detection method is able to achieve simultaneously better purity, better detection efficiency, and better position accuracy than its predecessor Planck MMF, which is based on SZ maps alone. For a purity of 85%, the X-ray-SZ method detects 141 confirmed clusters in the SPT region; to detect the same number of confirmed clusters with Planck MMF, we would need to decrease its purity to 70%. We provide a catalogue of 225 sources selected by the proposed method in the SPT footprint, with masses ranging between 0.7 and 14.5 ×1014 M⊙ and redshifts between 0.01 and 1.2.

  17. Clustering Methods with Qualitative Data: a Mixed-Methods Approach for Prevention Research with Small Samples.

    PubMed

    Henry, David; Dymnicki, Allison B; Mohatt, Nathaniel; Allen, James; Kelly, James G

    2015-10-01

    Qualitative methods potentially add depth to prevention research but can produce large amounts of complex data even with small samples. Studies conducted with culturally distinct samples often produce voluminous qualitative data but may lack sufficient sample sizes for sophisticated quantitative analysis. Currently lacking in mixed-methods research are methods allowing for more fully integrating qualitative and quantitative analysis techniques. Cluster analysis can be applied to coded qualitative data to clarify the findings of prevention studies by aiding efforts to reveal such things as the motives of participants for their actions and the reasons behind counterintuitive findings. By clustering groups of participants with similar profiles of codes in a quantitative analysis, cluster analysis can serve as a key component in mixed-methods research. This article reports two studies. In the first study, we conduct simulations to test the accuracy of cluster assignment using three different clustering methods with binary data as produced when coding qualitative interviews. Results indicated that hierarchical clustering, K-means clustering, and latent class analysis produced similar levels of accuracy with binary data and that the accuracy of these methods did not decrease with samples as small as 50. Whereas the first study explores the feasibility of using common clustering methods with binary data, the second study provides a "real-world" example using data from a qualitative study of community leadership connected with a drug abuse prevention project. We discuss the implications of this approach for conducting prevention research, especially with small samples and culturally distinct communities.

  18. Microstructural indicators of convection in sills and dykes

    NASA Astrophysics Data System (ADS)

    Holness, Marian; Neufeld, Jerome; Gilbert, Andrew

    2016-04-01

    The question of whether or not magma convects is a vexed one, with some advocating vigorous convection in crustal magma chambers while others suggest that convection is weak and short-lived. From a detailed microstructural study of a range of tabular mafic intrusions, we argue that it is possible to determine whether crystallization took place predominantly in solidification fronts (i.e. the magma was essentially crystal-free) or whether crystals grew suspended in a convecting magma. The 168m thick Shiant Isles Main Sill is a composite body, dominated by a 140m thick unit with a 45m thick base rich in olivine phenocrysts (picrodolerite). The remainder of the unit contains only interstitial olivine. The average olivine grain size in the picrodolerite decreases upwards in the lowermost 10m, but then increases upwards. The coarsening-upwards sequence is marked by the onset of clustering of olivine grains. The extent to which these clusters are sintered, and the average cluster size, increase upwards. The coarsening-upwards sequence and the clustering are mirrored in a thinner (<10m) sequence at the roof. The fining-upwards sequence of non-clustered olivine formed by the rapid settling of incoming cargo crystals, while the coarsening-upwards sequence of clustered olivine represents post-emplacement growth of grains suspended in a convecting magma. The clusters grew by synneusis, with the extensive sintering pointing to the retention of the clusters in the convecting magma for a considerable time. The presence of large clusters at the intrusion roof can be reconciled with their high Stokes settling velocity if they were brought up in rapidly moving convective currents and entangled in the downwards-propagating solidification front. A further indication of convection is provided by plagioclase grain shape. During interface-controlled growth, plagioclase grows as well-facetted compact grains: these grains are platy in rapidly-cooled rocks and blocky in slowly-cooled rocks. In mafic sills, the average apparent aspect ratio (AR), as measured in thin-section, varies smoothly with model crystallization times (calculated assuming diffusive heat loss), consistent with in situ growth in solidification fronts. However, AR is invariant across individual mafic dykes, with decreasing values (i.e. more blocky grains) as the dyke width increases. This difference can be accounted for by the plagioclase in dykes growing as individual grains and clusters suspended in a convecting magma. Cooling at a vertical wall, as is the case for dykes, will always result in a gravitational convective instability, and therefore crystal-poor magma in dykes will always convect. As solidification proceeds, the increasing volume fraction of suspended crystals will eventually damp convection: the final stages of solidification occur in static crystal-rich magma, containing a well-mixed grain population. That the Shiant Isles Main Sill exhibits evidence for prolonged convection of sufficient vigour to suspend 5 mm olivine clusters, while other sills of comparable thickness contain plagioclase with grain shapes indicative of growth predominantly in solidification fronts, is most likely due to the composite nature of the Shiant. The 140m unit is underlain by 23m of picrite which intruded shortly before - this heat source would have acted as a strong driver for convection.

  19. Photoionization of rare gas clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Huaizhen

    This thesis concentrates on the study of photoionization of van der Waals clusters with different cluster sizes. The goal of the experimental investigation is to understand the electronic structure of van der Waals clusters and the electronic dynamics. These studies are fundamental to understand the interaction between UV-X rays and clusters. The experiments were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory. The experimental method employs angle-resolved time-of-flight photoelectron spectrometry, one of the most powerful methods for probing the electronic structure of atoms, molecules, clusters and solids. The van der Waals cluster photoionization studies are focused on probing the evolution of the photoelectron angular distribution parameter as a function of photon energy and cluster size. The angular distribution has been known to be a sensitive probe of the electronic structure in atoms and molecules. However, it has not been used in the case of van der Waals clusters. We carried out outer-valence levels, inner-valence levels and core-levels cluster photoionization experiments. Specifically, this work reports on the first quantitative measurements of the angular distribution parameters of rare gas clusters as a function of average cluster sizes. Our findings for xenon clusters is that the overall photon-energy-dependent behavior of the photoelectrons from the clusters is very similar to that of the corresponding free atoms. However, distinct differences in the angular distribution point at cluster-size-dependent effects were found. For krypton clusters, in the photon energy range where atomic photoelectrons have a high angular anisotropy, our measurements show considerably more isotropic angular distributions for the cluster photoelectrons, especially right above the 3d and 4p thresholds. For the valence electrons, a surprising difference between the two spin-orbit components was found. For argon clusters, we found that the angular distribution parameter values of the two-spin-orbit components from Ar 2p clusters are slightly different. When comparing the beta values for Ar between atoms and clusters, we found different results between Ar 3s atoms and clusters, and between Ar 3p atoms and clusters. Argon cluster resonance from surface and bulk were also measured. Furthermore, the angular distribution parameters of Ar cluster photoelectrons and Ar atom photoelectrons in the 3s → np ionization region were obtained.

  20. Master-equation approach to the study of phase-change processes in data storage media

    NASA Astrophysics Data System (ADS)

    Blyuss, K. B.; Ashwin, P.; Bassom, A. P.; Wright, C. D.

    2005-07-01

    We study the dynamics of crystallization in phase-change materials using a master-equation approach in which the state of the crystallizing material is described by a cluster size distribution function. A model is developed using the thermodynamics of the processes involved and representing the clusters of size two and greater as a continuum but clusters of size one (monomers) as a separate equation. We present some partial analytical results for the isothermal case and for large cluster sizes, but principally we use numerical simulations to investigate the model. We obtain results that are in good agreement with experimental data and the model appears to be useful for the fast simulation of reading and writing processes in phase-change optical and electrical memories.

  1. Optical limiting in suspension of detonation nanodiamonds in engine oil

    NASA Astrophysics Data System (ADS)

    Mikheev, Konstantin G.; Krivenkov, Roman Yu.; Mogileva, Tatyana N.; Puzyr, Alexey P.; Bondar, Vladimir S.; Bulatov, Denis L.; Mikheev, Gennady M.

    2017-07-01

    The optical limiting (OL) of detonation nanodiamond (DND) suspensions in engine oil was studied at a temperature range of 20°C to 100°C. Oil suspensions were prepared on the basis of the DNDs with an average nanoparticle cluster size in hydrosols (Daver) of 50 and 110 nm. Raman spectroscopy was used to characterize the samples. The OL investigation was carried out by the z-scan technique. The fundamental (1064 nm) and second (532 nm) harmonic radiations of YAG:Nd3+ laser with passive Q-switching as an excitation source were used. The OL thresholds for both suspensions at 532 and 1064 nm were determined. It is shown that a decrease in the average nanoparticle cluster size as well as an increase of the wavelength of the incident radiation leads to the OL threshold increase. It is established that the OL performance is not influenced by increasing the temperature from 20°C to 100°C. The results obtained show the possibility of using the DNDs suspensions in engine oil as an optical limiter in a wide temperature range.

  2. A General Class of Signed Rank Tests for Clustered Data when the Cluster Size is Potentially Informative

    PubMed Central

    Datta, Somnath; Nevalainen, Jaakko; Oja, Hannu

    2012-01-01

    SUMMARY Rank based tests are alternatives to likelihood based tests popularized by their relative robustness and underlying elegant mathematical theory. There has been a serge in research activities in this area in recent years since a number of researchers are working to develop and extend rank based procedures to clustered dependent data which include situations with known correlation structures (e.g., as in mixed effects models) as well as more general form of dependence. The purpose of this paper is to test the symmetry of a marginal distribution under clustered data. However, unlike most other papers in the area, we consider the possibility that the cluster size is a random variable whose distribution is dependent on the distribution of the variable of interest within a cluster. This situation typically arises when the clusters are defined in a natural way (e.g., not controlled by the experimenter or statistician) and in which the size of the cluster may carry information about the distribution of data values within a cluster. Under the scenario of an informative cluster size, attempts to use some form of variance adjusted sign or signed rank tests would fail since they would not maintain the correct size under the distribution of marginal symmetry. To overcome this difficulty Datta and Satten (2008; Biometrics, 64, 501–507) proposed a Wilcoxon type signed rank test based on the principle of within cluster resampling. In this paper we study this problem in more generality by introducing a class of valid tests employing a general score function. Asymptotic null distribution of these tests is obtained. A simulation study shows that a more general choice of the score function can sometimes result in greater power than the Datta and Satten test; furthermore, this development offers the user a wider choice. We illustrate our tests using a real data example on spinal cord injury patients. PMID:23074359

  3. A General Class of Signed Rank Tests for Clustered Data when the Cluster Size is Potentially Informative.

    PubMed

    Datta, Somnath; Nevalainen, Jaakko; Oja, Hannu

    2012-09-01

    Rank based tests are alternatives to likelihood based tests popularized by their relative robustness and underlying elegant mathematical theory. There has been a serge in research activities in this area in recent years since a number of researchers are working to develop and extend rank based procedures to clustered dependent data which include situations with known correlation structures (e.g., as in mixed effects models) as well as more general form of dependence.The purpose of this paper is to test the symmetry of a marginal distribution under clustered data. However, unlike most other papers in the area, we consider the possibility that the cluster size is a random variable whose distribution is dependent on the distribution of the variable of interest within a cluster. This situation typically arises when the clusters are defined in a natural way (e.g., not controlled by the experimenter or statistician) and in which the size of the cluster may carry information about the distribution of data values within a cluster.Under the scenario of an informative cluster size, attempts to use some form of variance adjusted sign or signed rank tests would fail since they would not maintain the correct size under the distribution of marginal symmetry. To overcome this difficulty Datta and Satten (2008; Biometrics, 64, 501-507) proposed a Wilcoxon type signed rank test based on the principle of within cluster resampling. In this paper we study this problem in more generality by introducing a class of valid tests employing a general score function. Asymptotic null distribution of these tests is obtained. A simulation study shows that a more general choice of the score function can sometimes result in greater power than the Datta and Satten test; furthermore, this development offers the user a wider choice. We illustrate our tests using a real data example on spinal cord injury patients.

  4. Mobility of large clusters on a semiconductor surface: Kinetic Monte Carlo simulation results

    NASA Astrophysics Data System (ADS)

    M, Esen; A, T. Tüzemen; M, Ozdemir

    2016-01-01

    The mobility of clusters on a semiconductor surface for various values of cluster size is studied as a function of temperature by kinetic Monte Carlo method. The cluster resides on the surface of a square grid. Kinetic processes such as the diffusion of single particles on the surface, their attachment and detachment to/from clusters, diffusion of particles along cluster edges are considered. The clusters considered in this study consist of 150-6000 atoms per cluster on average. A statistical probability of motion to each direction is assigned to each particle where a particle with four nearest neighbors is assumed to be immobile. The mobility of a cluster is found from the root mean square displacement of the center of mass of the cluster as a function of time. It is found that the diffusion coefficient of clusters goes as D = A(T)Nα where N is the average number of particles in the cluster, A(T) is a temperature-dependent constant and α is a parameter with a value of about -0.64 < α < -0.75. The value of α is found to be independent of cluster sizes and temperature values (170-220 K) considered in this study. As the diffusion along the perimeter of the cluster becomes prohibitive, the exponent approaches a value of -0.5. The diffusion coefficient is found to change by one order of magnitude as a function of cluster size.

  5. Catalysis by clusters with precise numbers of atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyo, Eric C.; Vajda, Stefan

    2015-07-03

    Clusters that contain only a small number of atoms can exhibit unique and often unexpected properties. The clusters are of particular interest in catalysis because they can act as individual active sites, and minor changes in size and composition – such as the addition or removal of a single atom – can have a substantial influence on the activity and selectivity of a reaction. Here we review recent progress in the synthesis, characterization and catalysis of well-defined sub-nanometre clusters. We examine work on size-selected supported clusters in ultra-high vacuum environments and under realistic reaction conditions, and explore the use ofmore » computational methods to provide a mechanistic understanding of their catalytic properties. We also highlight the potential of size-selected clusters to provide insights into important catalytic processes and their use in the development of novel catalytic systems.« less

  6. Thermodynamic properties of small aggregates of rare-gas atoms

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Kaelberer, J.

    1975-01-01

    The present work reports on the equilibrium thermodynamic properties of small clusters of xenon, krypton, and argon atoms, determined from a biased random-walk Monte Carlo procedure. Cluster sizes ranged from 3 to 13 atoms. Each cluster was found to have an abrupt liquid-gas phase transition at a temperature much less than for the bulk material. An abrupt solid-liquid transition is observed for thirteen- and eleven-particle clusters. For cluster sizes smaller than 11, a gradual transition from solid to liquid occurred over a fairly broad range of temperatures. Distribution of number of bond lengths as a function of bond length was calculated for several systems at various temperatures. The effects of box boundary conditions are discussed. Results show the importance of a correct description of boundary conditions. A surprising result is the slow rate at which system properties approach bulk behavior as cluster size is increased.

  7. A Theoretical Investigation of the Plausibility of Reactions Between Ammonia and Carbonyl Species (Formaldehyde, Acetaldehyde, and Acetone) in Interstellar Ice Analogs at Ultracold Temperatures

    NASA Technical Reports Server (NTRS)

    Chen, Lina; Woon, David E.

    2011-01-01

    We have reexamined the reaction between formaldehyde and ammonia, which was previously studied by us and other workers in modestly sized cluster calculations. Larger model systems with up to 12H2O were employed, and reactions of two more carbonyl species, acetaldehyde and acetone, were also carried out. Calculations were performed at the B3LYP/6-31+G** level with bulk solvent effects treated with a polarizable continuum model; limited MP2/6-31+G** calculations were also performed. We found that while the barrier for the concerted proton relay mechanism described in previous work remains modest, it is still prohibitively high for the reaction to occur under the ultracold conditions that prevail in dense interstellar clouds. However, a new pathway emerged in more realistic clusters that involves at least one barrierless step for two of the carbonyl species considered here: ammonia reacts with formaldehyde and acetaldehyde to form a partial charge transfer species in small clusters (4H2O) and a protonated hydroxyamino intermediate species in large clusters (9H2O, 12H2O); modest barriers that decrease sharply with cluster size are found for the analogous processes for the acetone-NH3 reaction. Furthermore, if a second ammonia replaces one of the water molecules in calculations in the 9H2O clusters, deprotonation can occur to yield the same neutral hydroxyamino species that is formed via the original concerted proton relay mechanism. In at least one position, deprotonation is barrierless when zero-point energy is included. In addition to describing the structures and energetics of the reactions between formaldehyde, acetaldehyde, and acetone with ammonia, we report spectroscopic predictions of the observable vibrational features that are expected to be present in ice mixtures of different composition.

  8. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions.

    PubMed

    Alarcón, Francisco; Valeriani, Chantal; Pagonabarraga, Ignacio

    2017-01-25

    In order to assess the effect of hydrodynamics in the assembly of active attractive spheres, we simulate a semi-dilute suspension of attractive self-propelled spherical particles in a quasi-two dimensional geometry comparing the case with and without hydrodynamics interactions. To start with, independent of the presence of hydrodynamics, we observe that depending on the ratio between attraction and propulsion, particles either coarsen or aggregate forming finite-size clusters. Focusing on the clustering regime, we characterize two different cluster parameters, i.e. their morphology and orientational order, and compare the case when active particles behave either as pushers or pullers (always in the regime where inter-particle attractions compete with self-propulsion). Studying cluster phases for squirmers with respect to those obtained for active Brownian disks (indicated as ABPs), we have shown that hydrodynamics alone can sustain a cluster phase of active swimmers (pullers), while ABPs form cluster phases due to the competition between attraction and self-propulsion. The structural properties of the cluster phases of squirmers and ABPs are similar, although squirmers show sensitivity to active stresses. Active Brownian disks resemble weakly pusher squirmer suspensions in terms of cluster size distribution, structure of the radius of gyration on the cluster size and degree of cluster polarity.

  9. Modeling tensional homeostasis in multicellular clusters.

    PubMed

    Tam, Sze Nok; Smith, Michael L; Stamenović, Dimitrije

    2017-03-01

    Homeostasis of mechanical stress in cells, or tensional homeostasis, is essential for normal physiological function of tissues and organs and is protective against disease progression, including atherosclerosis and cancer. Recent experimental studies have shown that isolated cells are not capable of maintaining tensional homeostasis, whereas multicellular clusters are, with stability increasing with the size of the clusters. Here, we proposed simple mathematical models to interpret experimental results and to obtain insight into factors that determine homeostasis. Multicellular clusters were modeled as one-dimensional arrays of linearly elastic blocks that were either jointed or disjointed. Fluctuating forces that mimicked experimentally measured cell-substrate tractions were obtained from Monte Carlo simulations. These forces were applied to the cluster models, and the corresponding stress field in the cluster was calculated by solving the equilibrium equation. It was found that temporal fluctuations of the cluster stress field became attenuated with increasing cluster size, indicating that the cluster approached tensional homeostasis. These results were consistent with previously reported experimental data. Furthermore, the models revealed that key determinants of tensional homeostasis in multicellular clusters included the cluster size, the distribution of traction forces, and mechanical coupling between adjacent cells. Based on these findings, we concluded that tensional homeostasis was a multicellular phenomenon. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Scale dependence of the 200-mb divergence inferred from EOLE data.

    NASA Technical Reports Server (NTRS)

    Morel, P.; Necco, G.

    1973-01-01

    The EOLE experiment with 480 constant-volume balloons distributed over the Southern Hemisphere approximately at the 200-mb level, has provided a unique, highly accurate set of tracer trajectories in the general westerly circulation. The trajectories of neighboring balloons are analyzed to estimate the horizontal divergence from the Lagrangian derivative of the area of one cluster. The variance of the divergence estimates results from two almost comparable effects: the true divergence of the horizontal flow and eddy diffusion due to small-scale, two-dimensional turbulence. Taking this into account, the rms divergence is found to be of the order of 0.00001 per sec and decreases logarithmically with cluster size. This scale dependence is shown to be consistent with the quasi-geostrophic turbulence model of the general circulation in midlatitudes.

  11. Infrared laser spectroscopy of the linear C13 carbon cluster

    NASA Technical Reports Server (NTRS)

    Giesen, T. F.; Van Orden, A.; Hwang, H. J.; Fellers, R. S.; Provencal, R. A.; Saykally, R. J.

    1994-01-01

    The infrared absorption spectrum of a linear, 13-atom carbon cluster (C13) has been observed by using a supersonic cluster beam-diode laser spectrometer. Seventy-six rovibrational transitions were measured near 1809 wave numbers and assigned to an antisymmetric stretching fundamental in the 1 sigma g+ ground state of C13. This definitive structural characterization of a carbon cluster in the intermediate size range between C10 and C20 is in apparent conflict with theoretical calculations, which predict that clusters of this size should exist as planar monocyclic rings.

  12. Reconstruction of sediment transport pathways in modern microtidal sand flat by multiple classification analysis

    NASA Astrophysics Data System (ADS)

    Yamashita, S.; Nakajo, T.; Naruse, H.

    2009-12-01

    In this study, we statistically classified the grain size distribution of the bottom surface sediment on a microtidal sand flat to analyze the depositional processes of the sediment. Multiple classification analysis revealed that two types of sediment populations exist in the bottom surface sediment. Then, we employed the sediment trend model developed by Gao and Collins (1992) for the estimation of sediment transport pathways. As a result, we found that statistical discrimination of the bottom surface sediment provides useful information for the sediment trend model while dealing with various types of sediment transport processes. The microtidal sand flat along the Kushida River estuary, Ise Bay, central Japan, was investigated, and 102 bottom surface sediment samples were obtained. Then, their grain size distribution patterns were measured by the settling tube method, and each grain size distribution parameter (mud and gravel contents, mean grain size, coefficient of variance (CV), skewness, kurtosis, 5, 25, 50, 75, and 95 percentile) was calculated. Here, CV is the normalized sorting value divided by the mean grain size. Two classical statistical methods—principal component analysis (PCA) and fuzzy cluster analysis—were applied. The results of PCA showed that the bottom surface sediment of the study area is mainly characterized by grain size (mean grain size and 5-95 percentile) and the CV value, indicating predominantly large absolute values of factor loadings in primal component (PC) 1. PC1 is interpreted as being indicative of the grain-size trend, in which a finer grain-size distribution indicates better size sorting. The frequency distribution of PC1 has a bimodal shape and suggests the existence of two types of sediment populations. Therefore, we applied fuzzy cluster analysis, the results of which revealed two groupings of the sediment (Cluster 1 and Cluster 2). Cluster 1 shows a lower value of PC1, indicating coarse and poorly sorted sediments. Cluster 1 sediments are distributed around the branched channel from Kushida River and show an expanding distribution from the river mouth toward the northeast direction. Cluster 2 shows a higher value of PC1, indicating fine and well-sorted sediments; this cluster is distributed in a distant area from the river mouth, including the offshore region. Therefore, Cluster 1 and Cluster 2 are interpreted as being deposited by fluvial and wave processes, respectively. Finally, on the basis of this distribution pattern, the sediment trend model was applied in areas dominated separately by fluvial and wave processes. Resultant sediment transport patterns showed good agreement with those obtained by field observations. The results of this study provide an important insight into the numerical models of sediment transport.

  13. Metal cluster's effect on the optical properties of cesium bromide thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Kuldeep; Arun, P.; Ravi Kant, Chhaya; Juluri, Bala Krishna

    2012-06-01

    Cesium bromide (CsBr) films grown on glass substrates by thermal evaporation showed prominent absorption peaks in the UV-visible region. Interestingly, these absorption spectra showed peaks which red shifted over time in ambient exposure. Structural and morphological studies suggested decrease in particle size overtime which was unusual. Electron micrographs show the formation of "daughter" cesium nanorods from parent CsBr particles. Theoretical calculations show the optical behavior observed to be due to localized surface plasmon resonance resulting from cesium nanorods.

  14. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grasha, K.; Calzetti, D.; Elmegreen, B. G.

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25–0.6 power, and that the maximum size over which star formation is physically correlated ranges from ∼200 pc to ∼1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are closemore » to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.« less

  15. Kinetics of binary nucleation of vapors in size and composition space.

    PubMed

    Fisenko, Sergey P; Wilemski, Gerald

    2004-11-01

    We reformulate the kinetic description of binary nucleation in the gas phase using two natural independent variables: the total number of molecules g and the molar composition x of the cluster. The resulting kinetic equation can be viewed as a two-dimensional Fokker-Planck equation describing the simultaneous Brownian motion of the clusters in size and composition space. Explicit expressions for the Brownian diffusion coefficients in cluster size and composition space are obtained. For characterization of binary nucleation in gases three criteria are established. These criteria establish the relative importance of the rate processes in cluster size and composition space for different gas phase conditions and types of liquid mixtures. The equilibrium distribution function of the clusters is determined in terms of the variables g and x. We obtain an approximate analytical solution for the steady-state binary nucleation rate that has the correct limit in the transition to unary nucleation. To further illustrate our description, the nonequilibrium steady-state cluster concentrations are found by numerically solving the reformulated kinetic equation. For the reformulated transient problem, the relaxation or induction time for binary nucleation was calculated using Galerkin's method. This relaxation time is affected by processes in both size and composition space, but the contributions from each process can be separated only approximately.

  16. Theoretical study on microhydration of SeO42-: On the number of water molecules necessary to stabilize the dianion

    NASA Astrophysics Data System (ADS)

    Pathak, Arup Kumar

    2012-01-01

    Microhydration of SeO42-·nH2O (n = 1-5) clusters are reported at B3LYP/Aug-cc-pvtz level of theory. Lower size hydrated clusters are stabilized by only double-hydrogen-bonding arrangements and the most stable conformer for higher size cluster (n > 3) contains a cyclic water ring. It is observed that at least one water molecule is necessary to stabilize the dianion in the gas phase against spontaneous electron loss. The microscopic theory based expression provides a route to predict the instability of bare SeO42- and to obtain the VDE for a wide range of cluster sizes including the bulk from the knowledge of the same for a few stable hydrated clusters.

  17. Water Oxidation Catalysis via Size-Selected Iridium Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Avik; Liu, Cong; LIU, ZHUN

    The detailed mechanism and efficacy of four electron electrochemical water oxidation depend critically upon the detailed atomic structure of each catalytic site, which are numerous and diverse in most metal oxides anodes. In order to limit the diversity of sites, arrays of discrete iridium clusters with identical metal atom number (Ir-2, Ir-4, or Ir-8) were deposited in submonolayer coverage on conductive oxide supports, and the electrochemical properties and activity of each was evaluated. Exceptional electroactivity for the oxygen evolving reaction (OER) was observed for all cluster samples in acidic electrolyte. Reproducible cluster-size-dependent trends in redox behavior were also resolved. First-principlesmore » computational models of the individual discrete-size clusters allow correlation of catalytic-site structure and multiplicity with redox behavior.« less

  18. Energetics of charged metal clusters containing vacancies

    NASA Astrophysics Data System (ADS)

    Pogosov, Valentin V.; Reva, Vitalii I.

    2018-01-01

    We study theoretically large metal clusters containing vacancies. We propose an approach, which combines the Kohn-Sham results for monovacancy in a bulk of metal and analytical expansions in small parameters cv (relative concentration of vacancies) and RN,v -1, RN ,v being cluster radii. We obtain expressions of the ionization potential and electron affinity in the form of corrections to electron work function, which require only the characteristics of 3D defect-free metal. The Kohn-Sham method is used to calculate the electron profiles, ionization potential, electron affinity, electrical capacitance; dissociation, cohesion, and monovacancy-formation energies of the small perfect clusters NaN, MgN, AlN (N ≤ 270) and the clusters containing a monovacancy (N ≥ 12) in the stabilized-jellium model. The quantum-sized dependences for monovacancy-formation energies are calculated for the Schottky scenario and the "bubble blowing" scenario, and their asymptotic behavior is also determined. It is shown that the asymptotical behaviors of size dependences for these two mechanisms differ from each other and weakly depend on the number of atoms in the cluster. The contribution of monovacancy to energetics of charged clusters and the size dependences of their characteristics and asymptotics are discussed. It is shown that the difference between the characteristics for the neutral and charged clusters is entirely determined by size dependences of ionization potential and electron affinity. Obtained analytical dependences may be useful for the analysis of the results of photoionization experiments and for the estimation of the size dependences of the vacancy concentration including the vicinity of the melting point.

  19. Effects of Emulsifier, Overrun and Dasher Speed on Ice Cream Microstructure and Melting Properties.

    PubMed

    Warren, Maya M; Hartel, Richard W

    2018-03-01

    Ice cream is a multiphase frozen food containing ice crystals, air cells, fat globules, and partially coalesced fat globule clusters dispersed in an unfrozen serum phase (sugars, proteins, and stabilizers). This microstructure is responsible for ice cream's melting characteristics. By varying both formulation (emulsifier content and overrun) and processing conditions (dasher speed), the effects of different microstructural elements, particularly air cells and fat globule clusters, on ice cream melt-down properties were studied. Factors that caused an increase in shear stress within the freezer, namely increasing dasher speed and overrun, caused a decrease in air cell size and an increase in extent of fat destabilization. Increasing emulsifier content, especially of polysorbate 80, caused an increase in extent of fat destabilization. Both overrun and fat destabilization influenced drip-through rates. Ice creams with a combination of low overrun and low fat destabilization had the highest drip-through rates. Further, the amount of remnant foam left on the screen increased with reduced drip-through rates. These results provide a better understanding of the effects of microstructure components and their interactions on drip-through rate. Manipulating operating and formulation parameters in ice cream manufacture influences the microstructure (air cells, ice crystals, and fat globule clusters). This work provides guidance on which parameters have most effect on air cell size and fat globule cluster formation. Further, the structural characteristics that reduce melt-down rate were determined. Ice cream manufacturers will use these results to tailor their products for the desired quality attributes. © 2018 Institute of Food Technologists®.

  20. Electronic effects on melting: Comparison of aluminum cluster anions and cations

    NASA Astrophysics Data System (ADS)

    Starace, Anne K.; Neal, Colleen M.; Cao, Baopeng; Jarrold, Martin F.; Aguado, Andrés; López, José M.

    2009-07-01

    Heat capacities have been measured as a function of temperature for aluminum cluster anions with 35-70 atoms. Melting temperatures and latent heats are determined from peaks in the heat capacities; cohesive energies are obtained for solid clusters from the latent heats and dissociation energies determined for liquid clusters. The melting temperatures, latent heats, and cohesive energies for the aluminum cluster anions are compared to previous measurements for the corresponding cations. Density functional theory calculations have been performed to identify the global minimum energy geometries for the cluster anions. The lowest energy geometries fall into four main families: distorted decahedral fragments, fcc fragments, fcc fragments with stacking faults, and "disordered" roughly spherical structures. The comparison of the cohesive energies for the lowest energy geometries with the measured values allows us to interpret the size variation in the latent heats. Both geometric and electronic shell closings contribute to the variations in the cohesive energies (and latent heats), but structural changes appear to be mainly responsible for the large variations in the melting temperatures with cluster size. The significant charge dependence of the latent heats found for some cluster sizes indicates that the electronic structure can change substantially when the cluster melts.

  1. Size distribution and growth rate of crystal nuclei near critical undercooling in small volumes

    NASA Astrophysics Data System (ADS)

    Kožíšek, Z.; Demo, P.

    2017-11-01

    Kinetic equations are numerically solved within standard nucleation model to determine the size distribution of nuclei in small volumes near critical undercooling. Critical undercooling, when first nuclei are detected within the system, depends on the droplet volume. The size distribution of nuclei reaches the stationary value after some time delay and decreases with nucleus size. Only a certain maximum size of nuclei is reached in small volumes near critical undercooling. As a model system, we selected recently studied nucleation in Ni droplet [J. Bokeloh et al., Phys. Rev. Let. 107 (2011) 145701] due to available experimental and simulation data. However, using these data for sample masses from 23 μg up to 63 mg (corresponding to experiments) leads to the size distribution of nuclei, when no critical nuclei in Ni droplet are formed (the number of critical nuclei < 1). If one takes into account the size dependence of the interfacial energy, the size distribution of nuclei increases to reasonable values. In lower volumes (V ≤ 10-9 m3) nucleus size reaches some maximum extreme size, which quickly increases with undercooling. Supercritical clusters continue their growth only if the number of critical nuclei is sufficiently high.

  2. Particle clustering within a two-phase turbulent pipe jet

    NASA Astrophysics Data System (ADS)

    Lau, Timothy; Nathan, Graham

    2016-11-01

    A comprehensive study of the influence of Stokes number on the instantaneous distributions of particles within a well-characterised, two-phase, turbulent pipe jet in a weak co-flow was performed. The experiments utilised particles with a narrow size distribution, resulting in a truly mono-disperse particle-laden jet. The jet Reynolds number, based on the pipe diameter, was in the range 10000 <= ReD <= 40000 , while the exit Stokes number was in the range 0 . 3 <= SkD <= 22 . 4 . The particle mass loading was fixed at ϕ = 0 . 4 , resulting in a flow that was in the two-way coupling regime. Instantaneous particle distributions within a two-dimensional sheet was measured using planar nephelometry while particle clusters were identified and subsequently characterised using an in-house developed technique. The results show that particle clustering is significantly influenced by the exit Stokes number. Particle clustering was found to be significant for 0 . 3 <= SkD <= 5 . 6 , with the degree of clustering increasing as SkD is decreased. The clusters, which typically appeared as filament-like structures with high aspect ratio oriented at oblique angles to the flow, were measured right from the exit plane, suggesting that they were generated inside the pipe. The authors acknowledge the financial contributions by the Australian Research Council (Grant No. DP120102961) and the Australian Renewable Energy Agency (Grant No. USO034).

  3. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.

    PubMed

    Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya

    2017-01-01

    Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe 3 O 4 and cobalt ferrite CoFe 2 O 4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10-20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%-25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal heating efficiency in comparison with the optimal size predicted by previous models.

  4. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia

    PubMed Central

    Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya

    2017-01-01

    Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe3O4 and cobalt ferrite CoFe2O4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10–20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%–25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal heating efficiency in comparison with the optimal size predicted by previous models. PMID:28894366

  5. SU-G-TeP3-14: Three-Dimensional Cluster Model in Inhomogeneous Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, J; Penagaricano, J; Narayanasamy, G

    2016-06-15

    Purpose: We aim to investigate 3D cluster formation in inhomogeneous dose distribution to search for new models predicting radiation tissue damage and further leading to new optimization paradigm for radiotherapy planning. Methods: The aggregation of higher dose in the organ at risk (OAR) than a preset threshold was chosen as the cluster whose connectivity dictates the cluster structure. Upon the selection of the dose threshold, the fractional density defined as the fraction of voxels in the organ eligible to be part of the cluster was determined according to the dose volume histogram (DVH). A Monte Carlo method was implemented tomore » establish a case pertinent to the corresponding DVH. Ones and zeros were randomly assigned to each OAR voxel with the sampling probability equal to the fractional density. Ten thousand samples were randomly generated to ensure a sufficient number of cluster sets. A recursive cluster searching algorithm was developed to analyze the cluster with various connectivity choices like 1-, 2-, and 3-connectivity. The mean size of the largest cluster (MSLC) from the Monte Carlo samples was taken to be a function of the fractional density. Various OARs from clinical plans were included in the study. Results: Intensive Monte Carlo study demonstrates the inverse relationship between the MSLC and the cluster connectivity as anticipated and the cluster size does not change with fractional density linearly regardless of the connectivity types. An initially-slow-increase to exponential growth transition of the MSLC from low to high density was observed. The cluster sizes were found to vary within a large range and are relatively independent of the OARs. Conclusion: The Monte Carlo study revealed that the cluster size could serve as a suitable index of the tissue damage (percolation cluster) and the clinical outcome of the same DVH might be potentially different.« less

  6. Local density variation of gold nanoparticles in aquatic environments

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, F.; Shirazian, F.; Shahsavari, R.; Khoei, A. R.

    2016-10-01

    Gold (Au) nanoparticles are widely used in diagnosing cancer, imaging, and identification of therapeutic methods due to their particular quantum characteristics. This research presents different types of aqueous models and potentials used in TIP3P, to study the effect of the particle size and density of Au clusters in aquatic environments; so it can be useful to facilitate future investigation of the interaction of proteins with Au nanoparticles. The EAM potential is used to model the structure of gold clusters. It is observed that in the systems with identical gold/water density and different cluster radii, gold particles are distributed in aqueous environment almost identically. Thus, Au particles have identical local densities, and the root mean square displacement (RMSD) increases with a constant slope. However in systems with constant cluster radii and different gold/water densities, Au particle dispersion increases with density; as a result, the local density decreases and the RMSD increases with a larger slope. In such systems, the larger densities result in more blunted second peaks in gold-gold radial distribution functions, owing to more intermixing of the clusters and less FCC crystalline features at longer range, a mechanism that is mediated by the competing effects of gold-water and gold-gold interactions.

  7. Apparent Trend of the Iron Abundance in NGC 3201: The Same Outcome with Different Data

    NASA Astrophysics Data System (ADS)

    Kravtsov, Valery V.

    2017-08-01

    We further study the unusual trend we found at statistically significant levels in some globular clusters, including NGC 3201: a decreasing iron abundance in red giants toward the cluster centers. We first show that recently published new estimates of iron abundance in the cluster reproduce this trend, in spite of the authors’ statement about no metallicity spread due to a low scatter achieved in the [Fe II/H] ratio. The mean of [Fe II/H] within R˜ 2\\prime from the cluster center is lower, by Δ[Fe II/H] = 0.05 ± 0.02 dex, than in the outer region, in agreement with our original estimate for a much larger sample size within R≈ 9\\prime . We found that an older data set traces the trend to a much larger radial distance, comparable with the cluster tidal radius, at Δ[Fe/H] ˜ 0.2 dex, due to higher metallicity of distant stars. We conclude the trend is reproduced by independent data sets and find that it is accompanied by both a notable same-sign trend of oxygen abundance that can vary by up to Δ[O/Fe] ˜ 0.3 dex within R≈ 9\\prime and an opposite-sign trend of sodium abundance.

  8. Lack of Dependence of the Sizes of the Mesoscopic Protein Clusters on Electrostatics.

    PubMed

    Vorontsova, Maria A; Chan, Ho Yin; Lubchenko, Vassiliy; Vekilov, Peter G

    2015-11-03

    Protein-rich clusters of steady submicron size and narrow size distribution exist in protein solutions in apparent violation of the classical laws of phase equilibrium. Even though they contain a minor fraction of the total protein, evidence suggests that they may serve as essential precursors for the nucleation of ordered solids such as crystals, sickle-cell hemoglobin polymers, and amyloid fibrils. The cluster formation mechanism remains elusive. We use the highly basic protein lysozyme at nearly neutral and lower pH as a model and explore the response of the cluster population to the electrostatic forces, which govern numerous biophysical phenomena, including crystallization and fibrillization. We tune the strength of intermolecular electrostatic forces by varying the solution ionic strength I and pH and find that despite the weaker repulsion at higher I and pH, the cluster size remains constant. Cluster responses to the presence of urea and ethanol demonstrate that cluster formation is controlled by hydrophobic interactions between the peptide backbones, exposed to the solvent after partial protein unfolding that may lead to transient protein oligomers. These findings reveal that the mechanism of the mesoscopic clusters is fundamentally different from those underlying the two main classes of ordered protein solid phases, crystals and amyloid fibrils, and partial unfolding of the protein chain may play a significant role. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Execution of a parallel edge-based Navier-Stokes solver on commodity graphics processor units

    NASA Astrophysics Data System (ADS)

    Corral, Roque; Gisbert, Fernando; Pueblas, Jesus

    2017-02-01

    The implementation of an edge-based three-dimensional Reynolds Average Navier-Stokes solver for unstructured grids able to run on multiple graphics processing units (GPUs) is presented. Loops over edges, which are the most time-consuming part of the solver, have been written to exploit the massively parallel capabilities of GPUs. Non-blocking communications between parallel processes and between the GPU and the central processor unit (CPU) have been used to enhance code scalability. The code is written using a mixture of C++ and OpenCL, to allow the execution of the source code on GPUs. The Message Passage Interface (MPI) library is used to allow the parallel execution of the solver on multiple GPUs. A comparative study of the solver parallel performance is carried out using a cluster of CPUs and another of GPUs. It is shown that a single GPU is up to 64 times faster than a single CPU core. The parallel scalability of the solver is mainly degraded due to the loss of computing efficiency of the GPU when the size of the case decreases. However, for large enough grid sizes, the scalability is strongly improved. A cluster featuring commodity GPUs and a high bandwidth network is ten times less costly and consumes 33% less energy than a CPU-based cluster with an equivalent computational power.

  10. Sound field measurement in a double layer cavitation cluster by rugged miniature needle hydrophones.

    PubMed

    Koch, Christian

    2016-03-01

    During multi-bubble cavitation the bubbles tend to organize themselves into clusters and thus the understanding of properties and dynamics of clustering is essential for controlling technical applications of cavitation. Sound field measurements are a potential technique to provide valuable experimental information about the status of cavitation clouds. Using purpose-made, rugged, wide band, and small-sized needle hydrophones, sound field measurements in bubble clusters were performed and time-dependent sound pressure waveforms were acquired and analyzed in the frequency domain up to 20 MHz. The cavitation clusters were synchronously observed by an electron multiplying charge-coupled device (EMCCD) camera and the relation between the sound field measurements and cluster behaviour was investigated. Depending on the driving power, three ranges could be identified and characteristic properties were assigned. At low power settings no transient and no or very low stable cavitation activity can be observed. The medium range is characterized by strong pressure peaks and various bubble cluster forms. At high power a stable double layer was observed which grew with further increasing power and became quite dynamic. The sound field was irregular and the fundamental at driving frequency decreased. Between the bubble clouds completely different sound field properties were found in comparison to those in the cloud where the cavitation activity is high. In between the sound field pressure amplitude was quite small and no collapses were detected. Copyright © 2015. Published by Elsevier B.V.

  11. Molybdenum cluster loaded PLGA nanoparticles: An innovative theranostic approach for the treatment of ovarian cancer.

    PubMed

    Brandhonneur, N; Hatahet, T; Amela-Cortes, M; Molard, Y; Cordier, S; Dollo, G

    2018-04-01

    We evaluate poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles embedding inorganic molybdenum octahedral cluster for photodynamic therapy of cancer (PDT). Tetrabutyl ammonium salt of Mo 6 Br 14 cluster unit, (TBA) 2 Mo 6 Br 14 , presents promising photosensitization activity in the destruction of targeted cancer cells. Stable cluster loaded nanoparticles (CNPs) were prepared by solvent displacement method showing spherical shapes, zeta potential values around -30 mV, polydispersity index lower than 0.2 and sizes around 100 nm. FT-IR and DSC analysis revealed the lack of strong chemical interaction between the cluster and the polymer within the nanoparticles. In vitro release study showed that (TBA) 2 Mo 6 Br 14 was totally dissolved in 20 min, while CNPs were able to control the release of encapsulated cluster. In vitro cellular viability studies conducted on A2780 ovarian cancer cell line treated up to 72 h with cluster or CNPs did not show any sign of toxicity in concentrations up to 20 µg/ml. This concentration was selected for photo-activation test on A2780 cells and CNPs were able to generate oxygen singlet resulting in a decrease of the cellular viability up to 50%, respectively compared to non-activated conditions. This work presents (TBA) 2 Mo 6 Br 14 as a novel photosensitizer for PDT and suggests PLGA nanoparticles as an efficient delivery system intended for tumor targeting. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Formation of metallic clusters in oxide insulators by means of ion beam mixing

    NASA Astrophysics Data System (ADS)

    Talut, G.; Potzger, K.; Mücklich, A.; Zhou, Shengqiang

    2008-04-01

    The intermixing and near-interface cluster formation of Pt and FePt thin films deposited on different oxide surfaces by means of Pt+ ion irradiation and subsequent annealing was investigated. Irradiated as well as postannealed samples were investigated using high resolution transmission electron microscopy. In MgO and Y :ZrO2 covered with Pt, crystalline clusters with mean sizes of 2 and 3.5nm were found after the Pt+ irradiations with 8×1015 and 2×1016cm-2 and subsequent annealing, respectively. In MgO samples covered with FePt, clusters with mean sizes of 1 and 2nm were found after the Pt+ irradiations with 8×1015 and 2×1016cm-2 and subsequent annealing, respectively. In Y :ZrO2 samples covered with FePt, clusters up to 5nm in size were found after the Pt+ irradiation with 2×1016cm-2 and subsequent annealing. In LaAlO3 the irradiation was accompanied by a full amorphization of the host matrix and appearance of embedded clusters of different sizes. The determination of the lattice constant and thus the kind of the clusters in samples covered by FePt was hindered due to strong deviation of the electron beam by the ferromagnetic FePt.

  13. Sizing the star cluster population of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2018-04-01

    The number of star clusters that populate the Large Magellanic Cloud (LMC) at deprojected distances <4 deg has been recently found to be nearly double the known size of the system. Because of the unprecedented consequences of this outcome in our knowledge of the LMC cluster formation and dissolution histories, we closely revisited such a compilation of objects and found that only ˜35 per cent of the previously known catalogued clusters have been included. The remaining entries are likely related to stellar overdensities of the LMC composite star field, because there is a remarkable enhancement of objects with assigned ages older than log(t yr-1) ˜ 9.4, which contrasts with the existence of the LMC cluster age gap; the assumption of a cluster formation rate similar to that of the LMC star field does not help to conciliate so large amount of clusters either; and nearly 50 per cent of them come from cluster search procedures known to produce more than 90 per cent of false detections. The lack of further analyses to confirm the physical reality as genuine star clusters of the identified overdensities also glooms those results. We support that the actual size of the LMC main body cluster population is close to that previously known.

  14. Effect of sodium hypochlorite on typical biofilms formed in drinking water distribution systems.

    PubMed

    Lin, Huirong; Zhu, Xuan; Wang, Yuxin; Yu, Xin

    2017-04-01

    Human health and biological safety problems resulting from urban drinking water pipe network biofilms pollution have attracted wide concern. Despite the inclusion of residual chlorine in drinking water distribution systems supplies, the bacterium is a recalcitrant human pathogen capable of forming biofilms on pipe walls and causing health risks. Typical drinking water bacterial biofilms and their response to different concentrations of chlorination was monitored. The results showed that the four bacteria all formed single biofilms susceptible to sodium hypochlorite. After 30 min disinfection, biomass and cultivability decreased with increasing concentration of disinfectant but then increased in high disinfectant doses. PMA-qPCR results indicated that it resulted in little cellular damage. Flow cytometry analysis showed that with increasing doses of disinfectant, the numbers of clusters increased and the sizes of clusters decreased. Under high disinfectant treatment, EPS was depleted by disinfectant and about 0.5-1 mg/L of residual chlorine seemed to be appropriate for drinking water treatment. This research provides an insight into the EPS protection to biofilms. Resistance of biofilms against high levels of chlorine has implications for the delivery of drinking water.

  15. Preventing childhood obesity by reducing consumption of carbonated drinks: cluster randomised controlled trial

    PubMed Central

    James, Janet; Thomas, Peter; Cavan, David; Kerr, David

    2004-01-01

    Objective To determine if a school based educational programme aimed at reducing consumption of carbonated drinks can prevent excessive weight gain in children. Design Cluster randomised controlled trial. Setting Six primary schools in southwest England. Participants 644 children aged 7-11 years. Intervention Focused educational programme on nutrition over one school year. Main outcome measures Drink consumption and number of overweight and obese children. Results Consumption of carbonated drinks over three days decreased by 0.6 glasses (average glass size 250 ml) in the intervention group but increased by 0.2 glasses in the control group (mean difference 0.7, 95% confidence interval 0.1 to 1.3). At 12 months the percentage of overweight and obese children increased in the control group by 7.5%, compared with a decrease in the intervention group of 0.2% (mean difference 7.7%, 2.2% to 13.1%). Conclusion A targeted, school based education programme produced a modest reduction in the number of carbonated drinks consumed, which was associated with a reduction in the number of overweight and obese children. PMID:15107313

  16. Opinion formation of free speech on the directed social network

    NASA Astrophysics Data System (ADS)

    Su, Jiongming; Ma, Hongxu; Liu, Baohong; Li, Qi

    2014-12-01

    A dynamical model with continuous opinion is proposed to study how the speech order and the topology of directed social network affect the opinion formation of free speech. In the model, agents express their opinions one by one with random order (RO) or probability order (PO), other agents paying attentions to the speaking agent, receive provider's opinion, update their opinions and then express their new opinions in their turns. It is proved that with the same agent j repeats its opinion more, other agents who pay their attentions to j and include j's opinion in their confidence level at initial time, will continue approaching j's opinion. Simulation results reveal that on directed scale-free network: (1) the model for PO forms fewer opinion clusters, larger maximum cluster (MC), smaller standard deviation (SD), and needs less waiting time to reach a middle level of consensus than RO; (2) as the parameter of scale-free degree distribution decreases or the confidence level increases, the results often get better for both speech orders; (3) the differences between PO and RO get smaller as the size of network decreases.

  17. Multi-scale study of condensation in water jets using ellipsoidal-statistical Bhatnagar-Gross-Krook and molecular dynamics modeling

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Borner, Arnaud; Levin, Deborah A.

    2014-06-01

    Homogeneous water condensation and ice formation in supersonic expansions to vacuum for stagnation pressures from 12 to 1000 mbar are studied using the particle-based Ellipsoidal-Statistical Bhatnagar-Gross-Krook (ES-BGK) method. We find that when condensation starts to occur, at a stagnation pressure of 96 mbar, the increase in the degree of condensation causes an increase in the rotational temperature due to the latent heat of vaporization. The simulated rotational temperature profiles along the plume expansion agree well with measurements confirming the kinetic homogeneous condensation models and the method of simulation. Comparisons of the simulated gas and cluster number densities, cluster size for different stagnation pressures along the plume centerline were made and it is found that the cluster size increase linearly with respect to stagnation pressure, consistent with classical nucleation theory. The sensitivity of our results to cluster nucleation model and latent heat values based on bulk water, specific cluster size, or bulk ice are examined. In particular, the ES-BGK simulations are found to be too coarse-grained to provide information on the phase or structure of the clusters formed. For this reason, molecular dynamics simulations of water condensation in a one-dimensional free expansion to simulate the conditions in the core of a plume are performed. We find that the internal structure of the clusters formed depends on the stagnation temperature. A larger cluster of average size 21 was tracked down the expansion, and a calculation of its average internal temperature as well as a comparison of its radial distribution functions (RDFs) with values measured for solid amorphous ice clusters lead us to conclude that this cluster is in a solid-like rather than liquid form. In another molecular-dynamics simulation at a much lower stagnation temperature, a larger cluster of size 324 and internal temperature 200 K was extracted from an expansion plume and equilibrated to determine its RDF and self-diffusion coefficient. The value of the latter shows that this cluster is formed in a supercooled liquid state rather than in an amorphous solid state.

  18. MicroRNA-15a/16-1 Antagomir Ameliorates Ischemic Brain Injury in Experimental Stroke.

    PubMed

    Yang, Xinxin; Tang, Xuelian; Sun, Ping; Shi, Yejie; Liu, Kai; Hassan, Sulaiman H; Stetler, R Anne; Chen, Jun; Yin, Ke-Jie

    2017-07-01

    Dysregulation of the miR-15a/16-1 cluster in plasma has been reported in patients with stroke as a potential biomarker for diagnostic and prognostic use. However, the essential role and therapeutic potential of the miR-15a/16-1 cluster in ischemic stroke are poorly understood. This study is aimed at investigating the regulatory role of the miR-15a/16-1 cluster in ischemic brain injury and insight mechanisms. Adult male miR-15a/16-1 knockout and wild-type mice, or adult male C57 BL/6J mice injected via tail vein with the miR-15a/16-1-specific inhibitor (antagomir, 30 pmol/g), were subjected to 1 hour of middle cerebral artery occlusion and 72 hours of reperfusion. The neurological scores, brain infarct volume, brain water content, and neurobehavioral tests were then evaluated and analyzed. To explore underlying signaling pathways associated with alteration of miR-15a/16-1 activity, major proinflammatory cytokines were measured by quantitative polymerase chain reaction or ELISA and antiapoptotic proteins were examined by Western blotting. Genetic deletion of the miR-15a/16-1 cluster or intravenous delivery of miR-15a/16-1 antagomir significantly reduced cerebral infarct size, decreased brain water content, and improved neurological outcomes in stroke mice. Inhibition of miR-15a/16-1 significantly decreased the expression of the proinflammatory cytokines interleukin-6, monocyte chemoattractant protein-1, vascular cell adhesion molecule 1, tumor necrosis factor alpha, and increased Bcl-2 and Bcl-w levels in the ischemic brain regions. Our data indicate that pharmacological inhibition of the miR-15a/16-1 cluster reduces ischemic brain injury via both upregulation of antiapoptotic proteins and suppression of proinflammatory molecules. These results suggest that the miR-15a/16-1 cluster is a novel therapeutic target for ischemic stroke. © 2017 American Heart Association, Inc.

  19. Cluster dynamics and cluster size distributions in systems of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Peruani, F.; Schimansky-Geier, L.; Bär, M.

    2010-12-01

    Systems of self-propelled particles (SPP) interacting by a velocity alignment mechanism in the presence of noise exhibit rich clustering dynamics. Often, clusters are responsible for the distribution of (local) information in these systems. Here, we investigate the properties of individual clusters in SPP systems, in particular the asymmetric spreading behavior of clusters with respect to their direction of motion. In addition, we formulate a Smoluchowski-type kinetic model to describe the evolution of the cluster size distribution (CSD). This model predicts the emergence of steady-state CSDs in SPP systems. We test our theoretical predictions in simulations of SPP with nematic interactions and find that our simple kinetic model reproduces qualitatively the transition to aggregation observed in simulations.

  20. Differences in Flower Transcriptome between Grapevine Clones Are Related to Their Cluster Compactness, Fruitfulness, and Berry Size

    PubMed Central

    Grimplet, Jérôme; Tello, Javier; Laguna, Natalia; Ibáñez, Javier

    2017-01-01

    Grapevine cluster compactness has a clear impact on fruit quality and health status, as clusters with greater compactness are more susceptible to pests and diseases and ripen more asynchronously. Different parameters related to inflorescence and cluster architecture (length, width, branching, etc.), fruitfulness (number of berries, number of seeds) and berry size (length, width) contribute to the final level of compactness. From a collection of 501 clones of cultivar Garnacha Tinta, two compact and two loose clones with stable differences for cluster compactness-related traits were selected and phenotyped. Key organs and developmental stages were selected for sampling and transcriptomic analyses. Comparison of global gene expression patterns in flowers at the end of bloom allowed identification of potential gene networks with a role in determining the final berry number, berry size and ultimately cluster compactness. A large portion of the differentially expressed genes were found in networks related to cell division (carbohydrates uptake, cell wall metabolism, cell cycle, nucleic acids metabolism, cell division, DNA repair). Their greater expression level in flowers of compact clones indicated that the number of berries and the berry size at ripening appear related to the rate of cell replication in flowers during the early growth stages after pollination. In addition, fluctuations in auxin and gibberellin signaling and transport related gene expression support that they play a central role in fruit set and impact berry number and size. Other hormones, such as ethylene and jasmonate may differentially regulate indirect effects, such as defense mechanisms activation or polyphenols production. This is the first transcriptomic based analysis focused on the discovery of the underlying gene networks involved in grapevine traits of grapevine cluster compactness, berry number and berry size. PMID:28496449

  1. Differences in Flower Transcriptome between Grapevine Clones Are Related to Their Cluster Compactness, Fruitfulness, and Berry Size.

    PubMed

    Grimplet, Jérôme; Tello, Javier; Laguna, Natalia; Ibáñez, Javier

    2017-01-01

    Grapevine cluster compactness has a clear impact on fruit quality and health status, as clusters with greater compactness are more susceptible to pests and diseases and ripen more asynchronously. Different parameters related to inflorescence and cluster architecture (length, width, branching, etc.), fruitfulness (number of berries, number of seeds) and berry size (length, width) contribute to the final level of compactness. From a collection of 501 clones of cultivar Garnacha Tinta, two compact and two loose clones with stable differences for cluster compactness-related traits were selected and phenotyped. Key organs and developmental stages were selected for sampling and transcriptomic analyses. Comparison of global gene expression patterns in flowers at the end of bloom allowed identification of potential gene networks with a role in determining the final berry number, berry size and ultimately cluster compactness. A large portion of the differentially expressed genes were found in networks related to cell division (carbohydrates uptake, cell wall metabolism, cell cycle, nucleic acids metabolism, cell division, DNA repair). Their greater expression level in flowers of compact clones indicated that the number of berries and the berry size at ripening appear related to the rate of cell replication in flowers during the early growth stages after pollination. In addition, fluctuations in auxin and gibberellin signaling and transport related gene expression support that they play a central role in fruit set and impact berry number and size. Other hormones, such as ethylene and jasmonate may differentially regulate indirect effects, such as defense mechanisms activation or polyphenols production. This is the first transcriptomic based analysis focused on the discovery of the underlying gene networks involved in grapevine traits of grapevine cluster compactness, berry number and berry size.

  2. Atomically precise (catalytic) particles synthesized by a novel cluster deposition instrument

    DOE PAGES

    Yin, C.; Tyo, E.; Kuchta, K.; ...

    2014-05-06

    Here, we report a new high vacuum instrument which is dedicated to the preparation of well-defined clusters supported on model and technologically relevant supports for catalytic and materials investigations. The instrument is based on deposition of size selected metallic cluster ions that are produced by a high flux magnetron cluster source. Furthermore, we maximize the throughput of the apparatus by collecting and focusing ions utilizing a conical octupole ion guide and a linear ion guide. The size selection is achieved by a quadrupole mass filter. The new design of the sample holder provides for the preparation of multiple samples onmore » supports of various sizes and shapes in one session. After cluster deposition onto the support of interest, samples will be taken out of the chamber for a variety of testing and characterization.« less

  3. Field-induced cluster spin glass and inverse symmetry breaking enhanced by frustration

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Zimmer, F. M.; Magalhaes, S. G.

    2018-03-01

    We consider a cluster disordered model to study the interplay between short- and long-range interactions in geometrically frustrated spin systems under an external magnetic field (h). In our approach, the intercluster long-range disorder (J) is analytically treated to get an effective cluster model that is computed exactly. The clusters follow a checkerboard lattice with first-neighbor (J1) and second-neighbor (J2) interactions. We find a reentrant transition from the cluster spin-glass (CSG) state to a paramagnetic (PM) phase as the temperature decreases for a certain range of h. This inverse symmetry breaking (ISB) appears as a consequence of both quenched disorder with frustration and h, that introduce a CSG state with higher entropy than the polarized PM phase. The competitive scenario introduced by antiferromagnetic (AF) short-range interactions increases the CSG state entropy, leading to continuous ISB transitions and enhancing the ISB regions, mainly in the geometrically frustrated case (J1 =J2). Remarkably, when strong AF intracluster couplings are present, field-induced CSG phases can be found. These CSG regions are strongly related to the magnetization plateaus observed in this cluster disordered system. In fact, it is found that each field-induced magnetization jump brings a CSG region. We notice that geometrical frustration, as well as cluster size, play an important role in the magnetization plateaus and, therefore, are also relevant in the field-induced glassy states. Our findings suggest that competing interactions support ISB and field-induced CSG phases in disordered cluster systems under an external magnetic field.

  4. Mechanisms behind overshoots in mean cluster size profiles in aggregation-breakup processes.

    PubMed

    Sadegh-Vaziri, Ramiar; Ludwig, Kristin; Sundmacher, Kai; Babler, Matthaus U

    2018-05-26

    Aggregation and breakup of small particles in stirred suspensions often shows an overshoot in the time evolution of the mean cluster size: Starting from a suspension of primary particles the mean cluster size first increases before going through a maximum beyond which a slow relaxation sets in. Such behavior was observed in various systems, including polymeric latices, inorganic colloids, asphaltenes, proteins, and, as shown by independent experiments in this work, in the flocculation of microalgae. This work aims at investigating possible mechanism to explain this phenomenon using detailed population balance modeling that incorporates refined rate models for aggregation and breakup of small particles in turbulence. Four mechanisms are considered: (1) restructuring, (2) decay of aggregate strength, (3) deposition of large clusters, and (4) primary particle aggregation where only aggregation events between clusters and primary particles are permitted. We show that all four mechanisms can lead to an overshoot in the mean size profile, while in contrast, aggregation and breakup alone lead to a monotonic, "S"-shaped size evolution profile. In order to distinguish between the different mechanisms simple protocols based on variations of the shear rate during the aggregation-breakup process are proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level.

    PubMed

    Moerbeek, Mirjam; van Schie, Sander

    2016-07-11

    The number of clusters in a cluster randomized trial is often low. It is therefore likely random assignment of clusters to treatment conditions results in covariate imbalance. There are no studies that quantify the consequences of covariate imbalance in cluster randomized trials on parameter and standard error bias and on power to detect treatment effects. The consequences of covariance imbalance in unadjusted and adjusted linear mixed models are investigated by means of a simulation study. The factors in this study are the degree of imbalance, the covariate effect size, the cluster size and the intraclass correlation coefficient. The covariate is binary and measured at the cluster level; the outcome is continuous and measured at the individual level. The results show covariate imbalance results in negligible parameter bias and small standard error bias in adjusted linear mixed models. Ignoring the possibility of covariate imbalance while calculating the sample size at the cluster level may result in a loss in power of at most 25 % in the adjusted linear mixed model. The results are more severe for the unadjusted linear mixed model: parameter biases up to 100 % and standard error biases up to 200 % may be observed. Power levels based on the unadjusted linear mixed model are often too low. The consequences are most severe for large clusters and/or small intraclass correlation coefficients since then the required number of clusters to achieve a desired power level is smallest. The possibility of covariate imbalance should be taken into account while calculating the sample size of a cluster randomized trial. Otherwise more sophisticated methods to randomize clusters to treatments should be used, such as stratification or balance algorithms. All relevant covariates should be carefully identified, be actually measured and included in the statistical model to avoid severe levels of parameter and standard error bias and insufficient power levels.

  6. Global optimization of ionic Mg(n)F(2n) (n=1-30) clusters.

    PubMed

    Francisco, E; Martín Pendás, A; Blanco, M A

    2005-12-15

    The global optimization basin-hopping (BH) method has been used to locate the global minima (GM) of Mg(n)F(2n) (n=1-30) clusters using a Born-Mayer-type potential. Some of the GM were particularly difficult to find, requiring more than 1.5 x 10(4) BH steps. We have found that both the binding energy per MgF2 unit and the effective volume of the GM isomers increase almost linearly with n, and that cluster symmetry decreases with cluster size. The data derived from the BH runs reveal a growing density of local minima just above the GM as n increases. Despite this, the attraction basin around each GM is relatively large, since after all their atomic coordinates are randomly displaced by values as high as 2.0 bohrs, the perturbed structures, upon reoptimization, relax back to the GM in more than 50% of the cases (except for n=10 and 11). The relative stabilities derived from energy second differences suggest that n=8,10,13,15, and 20 are probably the magic numbers for these systems. Mass spectrum experiments would be very useful to clarify this issue.

  7. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan , Pellin, Michael J.; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-04-03

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  8. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan [Lisle, IL; Pellin, Michael J [Naperville, IL; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-03-27

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  9. Extreme ionization of Xe clusters driven by ultraintense laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidenreich, Andreas; Last, Isidore; Jortner, Joshua

    We applied theoretical models and molecular dynamics simulations to explore extreme multielectron ionization in Xe{sub n} clusters (n=2-2171, initial cluster radius R{sub 0}=2.16-31.0 A ring ) driven by ultraintense infrared Gaussian laser fields (peak intensity I{sub M}=10{sup 15}-10{sup 20} W cm{sup -2}, temporal pulse length {tau}=10-100 fs, and frequency {nu}=0.35 fs{sup -1}). Cluster compound ionization was described by three processes of inner ionization, nanoplasma formation, and outer ionization. Inner ionization gives rise to high ionization levels (with the formation of (Xe{sup q+}){sub n} with q=2-36), which are amenable to experimental observation. The cluster size and laser intensity dependence of themore » inner ionization levels are induced by a superposition of barrier suppression ionization (BSI) and electron impact ionization (EII). The BSI was induced by a composite field involving the laser field and an inner field of the ions and electrons, which manifests ignition enhancement and screening retardation effects. EII was treated using experimental cross sections, with a proper account of sequential impact ionization. At the highest intensities (I{sub M}=10{sup 18}-10{sup 20} W cm{sup -2}) inner ionization is dominated by BSI. At lower intensities (I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2}), where the nanoplasma is persistent, the EII contribution to the inner ionization yield is substantial. It increases with increasing the cluster size, exerts a marked effect on the increase of the (Xe{sup q+}){sub n} ionization level, is most pronounced in the cluster center, and manifests a marked increase with increasing the pulse length (i.e., becoming the dominant ionization channel (56%) for Xe{sub 2171} at {tau}=100 fs). The EII yield and the ionization level enhancement decrease with increasing the laser intensity. The pulse length dependence of the EII yield at I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2} establishes an ultraintense laser pulse length control mechanism of extreme ionization products.« less

  10. The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe 40.4Ni 11.3Mn 34.8Al 7.5Cr 6 high entropy alloys

    DOE PAGES

    Wang, Zhangwei; Baker, Ian; Guo, Wei; ...

    2017-03-01

    We investigated the effects of cold rolling followed by annealing on the mechanical properties and dislocation substructure evolution of undoped and 1.1 at. % carbon-doped Fe 40.4Ni 11.3Mn 34.8Al 7.5Cr 6 high entropy alloys (HEAs). X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atom probe tomography (APT) were employed to characterize the microstructures. The as-cast HEAs were coarse-grained and single phase f.c.c., whereas the thermo-mechanical treatment caused recrystallization (to fine grain sizes) and precipitation (a B2 phase for the undoped HEA; and a B2 phase, and M 23C 6 and M 7C 3 carbides for the C-dopedmore » HEA). Carbon, which was found to have segregated to the grain boundaries using APT, retarded recrystallization. The reduction in grain size resulted in a sharp increase in strength, while the precipitation, which produced only a small increase in strength, probably accounted for the small decrease in ductility for both undoped and C-doped HEAs. For both undoped and C-doped HEAs, the smaller grain-sized material initially exhibited higher strain hardening than the coarse-grained material but showed a much lower strain hardening at large tensile strains. Wavy slip in the undoped HEAs and planar slip in C-doped HEAs were found at the early stages of deformation irrespective of grain size. At higher strains, dislocation cell structures formed in the 19 μm grain-sized undoped HEA, while microbands formed in the 23 μm grain-sized C-doped HEA. Conversely, localized dislocation clusters were found in both HEAs at the finest grain sizes (5 μm). The inhibition of grain subdivision by the grain boundaries and precipitates lead to the transformation from regular dislocation configurations consisting of dislocation-cells and microbands to irregular dislocation configurations consisting of localized dislocation clusters, which further account for the decrease in ductility. Our investigation of the formation mechanism and strain hardening of dislocation cells and microbands could benefit future structural material design.« less

  11. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks.

    PubMed

    Sapudom, Jiranuwat; Rubner, Stefan; Martin, Steve; Kurth, Tony; Riedel, Stefanie; Mierke, Claudia T; Pompe, Tilo

    2015-06-01

    The behavior of cancer cells is strongly influenced by the properties of extracellular microenvironments, including topology, mechanics and composition. As topological and mechanical properties of the extracellular matrix are hard to access and control for in-depth studies of underlying mechanisms in vivo, defined biomimetic in vitro models are needed. Herein we show, how pore size and fibril diameter of collagen I networks distinctively regulate cancer cell morphology and invasion. Three-dimensional collagen I matrices with a tight control of pore size, fibril diameter and stiffness were reconstituted by adjustment of concentration and pH value during matrix reconstitution. At first, a detailed analysis of topology and mechanics of matrices using confocal laser scanning microscopy, image analysis tools and force spectroscopy indicate pore size and not fibril diameter as the major determinant of matrix elasticity. Secondly, by using two different breast cancer cell lines (MDA-MB-231 and MCF-7), we demonstrate collagen fibril diameter--and not pore size--to primarily regulate cell morphology, cluster formation and invasion. Invasiveness increased and clustering decreased with increasing fibril diameter for both, the highly invasive MDA-MB-231 cells with mesenchymal migratory phenotype and the MCF-7 cells with amoeboid migratory phenotype. As this behavior was independent of overall pore size, matrix elasticity is shown to be not the major determinant of the cell characteristics. Our work emphasizes the complex relationship between structural-mechanical properties of the extracellular matrix and invasive behavior of cancer cells. It suggests a correlation of migratory and invasive phenotype of cancer cells in dependence on topological and mechanical features of the length scale of single fibrils and not on coarse-grained network properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh.

    PubMed

    Bi, Qifang; Azman, Andrew S; Satter, Syed Moinuddin; Khan, Azharul Islam; Ahmed, Dilruba; Riaj, Altaf Ahmed; Gurley, Emily S; Lessler, Justin

    2016-02-01

    Close interpersonal contact likely drives spatial clustering of cases of cholera and diarrhea, but spatial clustering of risk factors may also drive this pattern. Few studies have focused specifically on how exposures for disease cluster at small spatial scales. Improving our understanding of the micro-scale clustering of risk factors for cholera may help to target interventions and power studies with cluster designs. We selected sets of spatially matched households (matched-sets) near cholera case households between April and October 2013 in a cholera endemic urban neighborhood of Tongi Township in Bangladesh. We collected data on exposures to suspected cholera risk factors at the household and individual level. We used intra-class correlation coefficients (ICCs) to characterize clustering of exposures within matched-sets and households, and assessed if clustering depended on the geographical extent of the matched-sets. Clustering over larger spatial scales was explored by assessing the relationship between matched-sets. We also explored whether different exposures tended to appear together in individuals, households, and matched-sets. Household level exposures, including: drinking municipal supplied water (ICC = 0.97, 95%CI = 0.96, 0.98), type of latrine (ICC = 0.88, 95%CI = 0.71, 1.00), and intermittent access to drinking water (ICC = 0.96, 95%CI = 0.87, 1.00) exhibited strong clustering within matched-sets. As the geographic extent of matched-sets increased, the concordance of exposures within matched-sets decreased. Concordance between matched-sets of exposures related to water supply was elevated at distances of up to approximately 400 meters. Household level hygiene practices were correlated with infrastructure shown to increase cholera risk. Co-occurrence of different individual level exposures appeared to mostly reflect the differing domestic roles of study participants. Strong spatial clustering of exposures at a small spatial scale in a cholera endemic population suggests a possible role for highly targeted interventions. Studies with cluster designs in areas with strong spatial clustering of exposures should increase sample size to account for the correlation of these exposures.

  13. High star formation activity in the central region of a distant cluster at z = 1.46

    NASA Astrophysics Data System (ADS)

    Hayashi, Masao; Kodama, Tadayuki; Koyama, Yusei; Tanaka, Ichi; Shimasaku, Kazuhiro; Okamura, Sadanori

    2010-03-01

    We present an unbiased deep [OII] emission survey of a cluster XMMXCS J2215.9-1738 at z = 1.46, the most distant cluster to date with a detection of extended X-ray emission. With wide-field optical and near-infrared cameras (Suprime-Cam and MOIRCS, respectively) on Subaru telescope, we performed deep imaging with a narrow-band filter NB912 (λc = 9139 Å, Δλ = 134 Å) as well as broad-band filters (B,z',J and Ks). From the photometric catalogues, we have identified 44 [OII] emitters in the cluster central region of 6 × 6 arcmin2 down to a dust-free star formation rate (SFR) of 2.6Msolaryr-1 (3σ). Interestingly, it is found that there are many [OII] emitters even in the central high-density region. In fact, the fraction of [OII] emitters to the cluster members as well as their SFRs and equivalent widths stay almost constant with decreasing cluster-centric distance up to the cluster core. Unlike clusters at lower redshifts (z <~ 1) where star formation activity is mostly quenched in their central regions, this higher redshift XMMXCS J2215.9-1738 cluster shows its high star formation activity even at its centre, suggesting that we are beginning to enter the formation epoch of some galaxies in the cluster core eventually. Moreover, we find a deficit of galaxies on the red sequence at magnitudes fainter than ~M* + 0.5 on the colour-magnitude diagram. This break magnitude is brighter than that of lower redshift clusters, and it is likely that we are seeing the formation phase of more massive red galaxies in the cluster core at z ~ 1. These results may indicate inside-out and down-sizing propagation of star formation activity in the course of cluster evolution.

  14. First principles study of neutral and anionic (medium-size) aluminum nitride clusters: AlnNn, n=7-16.

    PubMed

    Costales, Aurora; Blanco, M A; Francisco, E; Pendas, A Martín; Pandey, Ravindra

    2006-03-09

    We report the results of a theoretical study of AlnNn (n=7-16) clusters that is based on density functional theory. We will focus on the evolution of structural and electronic properties with the cluster size in the stoichiometric AlN clusters considered. The results reveal that the structural and electronic properties tend to evolve toward their respective bulk limits. The rate of evolution is, however, slow due to the hollow globular shape exhibited by the clusters, which introduces large surface effects that dominate the properties studied. We will also discuss the changes induced upon addition of an extra electron to the respective neutral clusters.

  15. Para-hydrogen and helium cluster size distributions in free jet expansions based on Smoluchowski theory with kernel scaling.

    PubMed

    Kornilov, Oleg; Toennies, J Peter

    2015-02-21

    The size distribution of para-H2 (pH2) clusters produced in free jet expansions at a source temperature of T0 = 29.5 K and pressures of P0 = 0.9-1.96 bars is reported and analyzed according to a cluster growth model based on the Smoluchowski theory with kernel scaling. Good overall agreement is found between the measured and predicted, Nk = A k(a) e(-bk), shape of the distribution. The fit yields values for A and b for values of a derived from simple collision models. The small remaining deviations between measured abundances and theory imply a (pH2)k magic number cluster of k = 13 as has been observed previously by Raman spectroscopy. The predicted linear dependence of b(-(a+1)) on source gas pressure was verified and used to determine the value of the basic effective agglomeration reaction rate constant. A comparison of the corresponding effective growth cross sections σ11 with results from a similar analysis of He cluster size distributions indicates that the latter are much larger by a factor 6-10. An analysis of the three body recombination rates, the geometric sizes and the fact that the He clusters are liquid independent of their size can explain the larger cross sections found for He.

  16. Surfactant-controlled polymerization of semiconductor clusters to quantum dots through competing step-growth and living chain-growth mechanisms.

    PubMed

    Evans, Christopher M; Love, Alyssa M; Weiss, Emily A

    2012-10-17

    This article reports control of the competition between step-growth and living chain-growth polymerization mechanisms in the formation of cadmium chalcogenide colloidal quantum dots (QDs) from CdSe(S) clusters by varying the concentration of anionic surfactant in the synthetic reaction mixture. The growth of the particles proceeds by step-addition from initially nucleated clusters in the absence of excess phosphinic or carboxylic acids, which adsorb as their anionic conjugate bases, and proceeds indirectly by dissolution of clusters, and subsequent chain-addition of monomers to stable clusters (Ostwald ripening) in the presence of excess phosphinic or carboxylic acid. Fusion of clusters by step-growth polymerization is an explanation for the consistent observation of so-called "magic-sized" clusters in QD growth reactions. Living chain-addition (chain addition with no explicit termination step) produces QDs over a larger range of sizes with better size dispersity than step-addition. Tuning the molar ratio of surfactant to Se(2-)(S(2-)), the limiting ionic reagent, within the living chain-addition polymerization allows for stoichiometric control of QD radius without relying on reaction time.

  17. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy

    DOE PAGES

    Olsen, Raina J.; Jin, Ke; Lu, Chenyang; ...

    2015-11-23

    The nature of defect clusters in Ni and Nimore » $$_{50}$$Co$$_{50}$$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.« less

  18. [Achene morphology cluster analysis of Taraxacum F. H. Wigg. from northeast China and molecule systematics evidence determined by SRAP].

    PubMed

    Li, Hai-juan; Zhao, Xin; Jia, Qing-fei; Li, Tian-lai; Ning, Wei

    2012-08-01

    The achenes morphological and micro-morphological characteristics of six species of genus Taraxacum from northeastern China as well as SRAP cluster analysis were observed for their classification evidences. The achenes were observed by microscope and EPMA. Cluster analysis was given on the basis of the size, shape, cone proportion, color and surface sculpture of achenes. The Taraxacum inter-species achene shape characteristic difference is obvious, particularly spinulose distribution and size, achene color and achene size; with the Taraxacum plant achene shape the cluster method T. antungense Kitag. and the T. urbanum Kitag. should combine for the identical kind; the achene morphology cluster analysis and the SRAP tagged molecule systematics's cluster result retrieves in the table with "the Chinese flora". The class group to divide the result is consistent. Taraxacum plant achene shape characteristic stable conservative, may carry on the inter-species division and the sibship analysis according to the achene shape characteristic combination difference; the achene morphology cluster analysis as well as the SRAP tagged molecule systematics confirmation support dandelion classification result of "the Chinese flora".

  19. Computational investigation on the structures and electronic properties of the nanosized rhenium clusters

    DOE PAGES

    Zhao, Run -Ning; Chen, Rui; Yuan, Yan -Hong; ...

    2017-08-10

    Here, the stable equilibrium geometries, relative stabilities, and electronic and magnetic characteristics of Re n (n = 2–16) clusters were investigated by density functional theory method. The calculated fragmentation energies and second-order differences of energies exhibited interestingly that the stabilities of Re n (n = 2–16) clusters show a dramatic odd-even alternative behavior of the cluster size n: with the even-numbered Ren clusters being obviously more stable than their neighboring odd-numbered Re n clusters (beside n = 11). Simultaneously, the calculated HOMO-LUMO gaps of Re n (n = 6–16) display an oscillatory feature at large-sized Ren clusters. From the calculatedmore » magnetic moments and growth behaviors of Rhenium clusters, the magnetic Re 6 unit can be seen as the building block for the novel magnetic cluster-assembled nanomaterial. Such calculated results are in good agreement with the available experimental measurements.« less

  20. New atlas of open star clusters

    NASA Astrophysics Data System (ADS)

    Seleznev, Anton F.; Avvakumova, Ekaterina; Kulesh, Maxim; Filina, Julia; Tsaregorodtseva, Polina; Kvashnina, Alvira

    2017-11-01

    Due to numerous new discoveries of open star clusters in the last two decades, astronomers need an easy-touse resource to get visual information on the relative position of clusters in the sky. Therefore we propose a new atlas of open star clusters. It is based on a table compiled from the largest modern cluster catalogues. The atlas shows the positions and sizes of 3291 clusters and associations, and consists of two parts. The first contains 108 maps of 12 by 12 degrees with an overlapping of 2 degrees in three strips along the Galactic equator. The second one is an online web application, which shows a square field of an arbitrary size, either in equatorial coordinates or in galactic coordinates by request. The atlas is proposed for the sampling of clusters and cluster stars for further investigation. Another use is the identification of clusters among overdensities in stellar density maps or among stellar groups in images of the sky.

  1. Computational investigation on the structures and electronic properties of the nanosized rhenium clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Run -Ning; Chen, Rui; Yuan, Yan -Hong

    Here, the stable equilibrium geometries, relative stabilities, and electronic and magnetic characteristics of Re n (n = 2–16) clusters were investigated by density functional theory method. The calculated fragmentation energies and second-order differences of energies exhibited interestingly that the stabilities of Re n (n = 2–16) clusters show a dramatic odd-even alternative behavior of the cluster size n: with the even-numbered Ren clusters being obviously more stable than their neighboring odd-numbered Re n clusters (beside n = 11). Simultaneously, the calculated HOMO-LUMO gaps of Re n (n = 6–16) display an oscillatory feature at large-sized Ren clusters. From the calculatedmore » magnetic moments and growth behaviors of Rhenium clusters, the magnetic Re 6 unit can be seen as the building block for the novel magnetic cluster-assembled nanomaterial. Such calculated results are in good agreement with the available experimental measurements.« less

  2. Hot gas in the cold dark matter scenario: X-ray clusters from a high-resolution numerical simulation

    NASA Technical Reports Server (NTRS)

    Kang, Hyesung; Cen, Renyue; Ostriker, Jeremiah P.; Ryu, Dongsu

    1994-01-01

    A new, three-dimensional, shock-capturing hydrodynamic code is utilized to determine the distribution of hot gas in a standard cold dark matter (CDM) model of the universe. Periodic boundary conditions are assumed: a box with size 85 h(exp -1) Mpc having cell size 0.31 h(exp -1) Mpc is followed in a simulation with 270(exp 3) = 10(exp 7.3) cells. Adopting standard parameters determined from COBE and light-element nucleosynthesis, sigma(sub 8) = 1.05, omega(sub b) = 0.06, and assuming h = 0.5, we find the X-ray-emitting clusters and compute the luminosity function at several wavelengths, the temperature distribution, and estimated sizes, as well as the evolution of these quantities with redshift. We find that most of the total X-ray emissivity in our box originates in a relatively small number of identifiable clusters which occupy approximately 10(exp -3) of the box volume. This standard CDM model, normalized to COBE, produces approximately 5 times too much emission from clusters having L(sub x) is greater than 10(exp 43) ergs/s, a not-unexpected result. If all other parameters were unchanged, we would expect adequate agreement for sigma(sub 8) = 0.6. This provides a new and independent argument for lower small-scale power than standard CDM at the 8 h(exp -1) Mpc scale. The background radiation field at 1 keV due to clusters in this model is approximately one-third of the observed background, which, after correction for numerical effects, again indicates approximately 5 times too much emission and the appropriateness of sigma(sub 8) = 0.6. If we have used the observed ratio of gas to total mass in clusters, rather than basing the mean density on light-element nucleosynthesis, then the computed luminosity of each cluster would have increased still further, by a factor of approximately 10. The number density of clusters increases to z approximately 1, but the luminosity per typical cluster decreases, with the result that evolution in the number density of bright clusters is moderate in this redshift range, showing a broad peak near z = 0.7, and then a rapid decline above redshift z = 3. Detailed computations of the luminosity functions in the range L(sub x) = 10(exp 40) - 10(exp 44) ergs/s in various energy bands are presented for both cluster central regions and total luminosities to be used in comparison with ROSAT and other observational data sets. The quantitative results found disagree significantly with those found by other investigators using semianalytic techniques. We find little dependence of core radius on cluster luminosity and a dependence of temperature on luminosity given by log kT(sub x) = A + B log L(sub x), which is slightly steeper (B = 0.38) than is indicated by observations. Computed temperatures are somewhat higher than observed, as expected, in that COBE-normalized CDM has too much power on the relevant scales. A modest average temperature gradient is found, with temperatures dropping to 90% of central values at 0.4 h(exp -1) Mpc and 70% of central values at 0.9 h(exp -1) Mpc. Examining the ratio of gas to total mass in the clusters normalized to Omega(sub B) h(exp 2) = 0.015, and comparing with observations, we conclude, in agreement with White (1991), that the cluster observations argue for an open universe.

  3. Observation of small cluster formation in concentrated monoclonal antibody solutions and its implications to solution viscosity.

    PubMed

    Yearley, Eric J; Godfrin, Paul D; Perevozchikova, Tatiana; Zhang, Hailiang; Falus, Peter; Porcar, Lionel; Nagao, Michihiro; Curtis, Joseph E; Gawande, Pradad; Taing, Rosalynn; Zarraga, Isidro E; Wagner, Norman J; Liu, Yun

    2014-04-15

    Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals. It is hypothesized that some concentrated mAb solutions exhibit formation of a solution phase consisting of reversibly self-associated aggregates (or reversible clusters), which is speculated to be responsible for their distinct solution properties. Here, we report direct observation of reversible clusters in concentrated solutions of mAbs using neutron spin echo. Specifically, a stable mAb solution is studied across a transition from dispersed monomers in dilute solution to clustered states at more concentrated conditions, where clusters of a preferred size are observed. Once mAb clusters have formed, their size, in contrast to that observed in typical globular protein solutions, is observed to remain nearly constant over a wide range of concentrations. Our results not only conclusively establish a clear relationship between the undesirable high viscosity of some mAb solutions and the formation of reversible clusters with extended open structures, but also directly observe self-assembled mAb protein clusters of preferred small finite size similar to that in micelle formation that dominate the properties of concentrated mAb solutions. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Effect of palladium doping on the stability and fragmentation patterns of cationic gold clusters

    NASA Astrophysics Data System (ADS)

    Ferrari, P.; Hussein, H. A.; Heard, C. J.; Vanbuel, J.; Johnston, R. L.; Lievens, P.; Janssens, E.

    2018-05-01

    We analyze in detail how the interplay between electronic structure and cluster geometry determines the stability and the fragmentation channels of single Pd-doped cationic Au clusters, PdA uN-1+ (N =2 -20 ). For this purpose, a combination of photofragmentation experiments and density functional theory calculations was employed. A remarkable agreement between the experiment and the calculations is obtained. Pd doping is found to modify the structure of the Au clusters, in particular altering the two-dimensional to three-dimensional transition size, with direct consequences on the stability of the clusters. Analysis of the electronic density of states of the clusters shows that depending on cluster size, Pd delocalizes one 4 d electron, giving an enhanced stability to PdA u6 + , or remains with all 4 d10 electrons localized, closing an electronic shell in PdA u9 + . Furthermore, it is observed that for most clusters, Au evaporation is the lowest-energy decay channel, although for some sizes Pd evaporation competes. In particular, PdA u7 + and PdA u9 + decay by Pd evaporation due to the high stability of the A u7 + and A u9 + fragmentation products.

  5. DISPLACEMENT CASCADE SIMULATION IN TUNGSTEN UP TO 200 KEV OF DAMAGE ENERGY AT 300, 1025, AND 2050 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.

    2015-09-22

    We generated molecular dynamics database of primary defects that adequately covers the range of tungsten recoil energy imparted by 14-MeV neutrons. During this semi annual period, cascades at 150 and 200 keV at 300 and 1025 K were simulated. Overall, we included damage energy up to 200 keV at 300 and 1025 K, and up to 100 keV at 2050 K. We report the number of surviving Frenkel pairs (NF) and the size distribution of defect clusters. The slope of the NF curve versus cascade damage energy (EMD), on a log-log scale, changes at a transition energy (μ). For EMDmore » > μ, the cascade forms interconnected damage regions that facilitate the formation of large clusters of defects. At 300 K and EMD = 200 keV, the largest size of interstitial cluster and vacancy cluster is 266 and 335, respectively. Similarly, at 1025 K and EMD = 200 keV, the largest size of interstitial cluster and vacancy cluster is 296 and 338, respectively. At 2050 K, large interstitial clusters also routinely form, but practically no large vacancy clusters do« less

  6. Temperature invariance of NaCl solubility in water: inferences from salt-water cluster behavior of NaCl, KCl, and NH4Cl.

    PubMed

    Bharmoria, Pankaj; Gupta, Hariom; Mohandas, V P; Ghosh, Pushpito K; Kumar, Arvind

    2012-09-27

    The growth and stability of salt-water clusters have been experimentally studied in aqueous solutions of NaCl, KCl, and NH(4)Cl from dilute to near-saturation conditions employing dynamic light scattering and zeta potential measurements. In order to examine cluster stability, the changes in the cluster sizes were monitored as a function of temperature. Compared to the other cases, the average size of NaCl-water clusters remained almost constant over the studied temperature range of 20-70 °C. Information obtained from the temperature-dependent solution compressibility (determined from speed of sound and density measurements), multinuclear NMR ((1)H, (17)O, (35)Cl NMR), and FTIR were utilized to explain the cluster behavior. Comparison of NMR chemical shifts of saturated salt solutions with solid-state NMR data of pure salts, and evaluation of spectral modifications in the OH stretch region of saturated salt solutions as compared to that of pure water, provided important clues on ion pair-water interactions and water structure in the clusters. The high stability and temperature independence of the cluster sizes in aqueous NaCl shed light on the temperature invariance of its solubility.

  7. Infrared detection of (H 2O) 20 isomers of exceptional stability: A drop-like and a face-sharing pentagonal prism cluster

    DOE PAGES

    Pradzynski, Christoph C.; Dierking, Christoph W.; Zurheide, Florian; ...

    2014-09-01

    Water clusters containing fully coordinated water molecules are model systems that mimic the local environment of the condensed phase. Present knowledge about the water cluster size regime in which the transition from the allsurface to the fully solvated water molecules occurs is mainly based on theoretical predictions in lieu of the absence of precisely size resolved experimental measurements. Here, we report size and isomer selective infrared (IR) spectra of (H 2O) 20 clusters tagged with a sodium atom by employing IR excitation modulated photoionization spectroscopy. The observed absorption patterns in the OH stretching ”fingerprint” region are consistent with the theoreticallymore » predicted spectra of two structurally distinct isomers: A drop-like cluster with a fully coordinated (interior) water and an edge-sharing pentagonal prism cluster in which all atoms are on the surface. The observed isomers show exceptional stability and are predicted to be nearly isoenergetic.« less

  8. Recommendations for choosing an analysis method that controls Type I error for unbalanced cluster sample designs with Gaussian outcomes.

    PubMed

    Johnson, Jacqueline L; Kreidler, Sarah M; Catellier, Diane J; Murray, David M; Muller, Keith E; Glueck, Deborah H

    2015-11-30

    We used theoretical and simulation-based approaches to study Type I error rates for one-stage and two-stage analytic methods for cluster-randomized designs. The one-stage approach uses the observed data as outcomes and accounts for within-cluster correlation using a general linear mixed model. The two-stage model uses the cluster specific means as the outcomes in a general linear univariate model. We demonstrate analytically that both one-stage and two-stage models achieve exact Type I error rates when cluster sizes are equal. With unbalanced data, an exact size α test does not exist, and Type I error inflation may occur. Via simulation, we compare the Type I error rates for four one-stage and six two-stage hypothesis testing approaches for unbalanced data. With unbalanced data, the two-stage model, weighted by the inverse of the estimated theoretical variance of the cluster means, and with variance constrained to be positive, provided the best Type I error control for studies having at least six clusters per arm. The one-stage model with Kenward-Roger degrees of freedom and unconstrained variance performed well for studies having at least 14 clusters per arm. The popular analytic method of using a one-stage model with denominator degrees of freedom appropriate for balanced data performed poorly for small sample sizes and low intracluster correlation. Because small sample sizes and low intracluster correlation are common features of cluster-randomized trials, the Kenward-Roger method is the preferred one-stage approach. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Profiling Local Optima in K-Means Clustering: Developing a Diagnostic Technique

    ERIC Educational Resources Information Center

    Steinley, Douglas

    2006-01-01

    Using the cluster generation procedure proposed by D. Steinley and R. Henson (2005), the author investigated the performance of K-means clustering under the following scenarios: (a) different probabilities of cluster overlap; (b) different types of cluster overlap; (c) varying samples sizes, clusters, and dimensions; (d) different multivariate…

  10. Conformationally averaged vertical detachment energy of finite size NO3(-)·nH2O clusters: a route connecting few to many.

    PubMed

    Pathak, Arup Kumar; Samanta, Alok Kumar; Maity, Dilip Kumar

    2011-04-07

    We report conformationally averaged VDEs (VDE(w)(n)) for different sizes of NO(3)(-)·nH(2)O clusters calculated by using uncorrelated HF, correlated hybrid density functional (B3LYP, BHHLYP) and correlated ab intio (MP2 and CCSD(T)) theory. It is observed that the VDE(w)(n) at the B3LYP/6-311++G(d,p), B3LYP/Aug-cc-Pvtz and CCSD(T)/6-311++G(d,p) levels is very close to the experimentally measured VDE. It is shown that the use of calculated results of the conformationally averaged VDE for small-sized solvated negatively-charged clusters and a microscopic theory-based general expression for the same provides a route to obtain the VDE for a wide range of cluster sizes, including bulk.

  11. Aggregation Number in Water/n-Hexanol Molecular Clusters Formed in Cyclohexane at Different Water/n-Hexanol/Cyclohexane Compositions Calculated by Titration 1H NMR.

    PubMed

    Flores, Mario E; Shibue, Toshimichi; Sugimura, Natsuhiko; Nishide, Hiroyuki; Moreno-Villoslada, Ignacio

    2017-11-09

    Upon titration of n-hexanol/cyclohexane mixtures of different molar compositions with water, water/n-hexanol clusters are formed in cyclohexane. Here, we develop a new method to estimate the water and n-hexanol aggregation numbers in the clusters that combines integration analysis in one-dimensional 1 H NMR spectra, diffusion coefficients calculated by diffusion-ordered NMR spectroscopy, and further application of the Stokes-Einstein equation to calculate the hydrodynamic volume of the clusters. Aggregation numbers of 5-15 molecules of n-hexanol per cluster in the absence of water were observed in the whole range of n-hexanol/cyclohexane molar fractions studied. After saturation with water, aggregation numbers of 6-13 n-hexanol and 0.5-5 water molecules per cluster were found. O-H and O-O atom distances related to hydrogen bonds between donor/acceptor molecules were theoretically calculated using density functional theory. The results show that at low n-hexanol molar fractions, where a robust hydrogen-bond network is held between n-hexanol molecules, addition of water makes the intermolecular O-O atom distance shorter, reinforcing molecular association in the clusters, whereas at high n-hexanol molar fractions, where dipole-dipole interactions dominate, addition of water makes the intermolecular O-O atom distance longer, weakening the cluster structure. This correlates with experimental NMR results, which show an increase in the size and aggregation number in the clusters upon addition of water at low n-hexanol molar fractions, and a decrease of these magnitudes at high n-hexanol molar fractions. In addition, water produces an increase in the proton exchange rate between donor/acceptor molecules at all n-hexanol molar fractions.

  12. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2003-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  13. Manipulation of Microbubble Clusters Using Focused Ultrasound

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Hironobu; Osaki, Taichi; Kawaguchi, Kei; Unga, Johan; Ichiyanagi, Mitsuhisa; Azuma, Takashi; Suzuki, Ryo; Maruyama, Kazuo; Takagi, Shu

    2017-11-01

    In recent years, microbubbles (MBs) are expected to be utilized for the ultrasound drug delivery system (DDS). For the MB-DDS, it is important to establish a method of controlling bubbles and bubble clusters using ultrasound field. The objective of this study is to clarify behaviors of bubble clusters with various physical conditions. MBs in the ultrasound field are subjected to the primary Bjerknes force. The force traps MBs at the focal region of the focused ultrasound field. The trapped MBs form a bubble cluster at the region. A bubble cluster continues growing with absorbing surrounding bubbles until it reaches a maximum size beyond which it disappears from the focal region. In the present study, two kinds of MBs are used for the experiment. One is Sonazoid with average diameter of 2.6 um and resonant frequency of 5 MHz. The other is developed by Teikyo Univ., with average diameter of 1.5 um and presumed resonant frequency of 4 MHz. The bubble cluster's behaviors are analyzed using the high-speed camera. Sonazoid clusters have larger critical size than the other in every frequency, and its cluster size is inversely proportional to the ultrasound frequency, while Teikyo-bubble clusters have different tendency. These results are discussed in the presentation.

  14. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    1990-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi- component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma- sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia-yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging fiom 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  15. PubChem3D: conformer ensemble accuracy

    PubMed Central

    2013-01-01

    Background PubChem is a free and publicly available resource containing substance descriptions and their associated biological activity information. PubChem3D is an extension to PubChem containing computationally-derived three-dimensional (3-D) structures of small molecules. All the tools and services that are a part of PubChem3D rely upon the quality of the 3-D conformer models. Construction of the conformer models currently available in PubChem3D involves a clustering stage to sample the conformational space spanned by the molecule. While this stage allows one to downsize the conformer models to more manageable size, it may result in a loss of the ability to reproduce experimentally determined “bioactive” conformations, for example, found for PDB ligands. This study examines the extent of this accuracy loss and considers its effect on the 3-D similarity analysis of molecules. Results The conformer models consisting of up to 100,000 conformers per compound were generated for 47,123 small molecules whose structures were experimentally determined, and the conformers in each conformer model were clustered to reduce the size of the conformer model to a maximum of 500 conformers per molecule. The accuracy of the conformer models before and after clustering was evaluated using five different measures: root-mean-square distance (RMSD), shape-optimized shape-Tanimoto (STST-opt) and combo-Tanimoto (ComboTST-opt), and color-optimized color-Tanimoto (CTCT-opt) and combo-Tanimoto (ComboTCT-opt). On average, the effect of clustering decreased the conformer model accuracy, increasing the conformer ensemble’s RMSD to the bioactive conformer (by 0.18 ± 0.12 Å), and decreasing the STST-opt, ComboTST-opt, CTCT-opt, and ComboTCT-opt scores (by 0.04 ± 0.03, 0.16 ± 0.09, 0.09 ± 0.05, and 0.15 ± 0.09, respectively). Conclusion This study shows the RMSD accuracy performance of the PubChem3D conformer models is operating as designed. In addition, the effect of PubChem3D sampling on 3-D similarity measures shows that there is a linear degradation of average accuracy with respect to molecular size and flexibility. Generally speaking, one can likely expect the worst-case minimum accuracy of 90% or more of the PubChem3D ensembles to be 0.75, 1.09, 0.43, and 1.13, in terms of STST-opt, ComboTST-opt, CTCT-opt, and ComboTCT-opt, respectively. This expected accuracy improves linearly as the molecule becomes smaller or less flexible. PMID:23289532

  16. Nanoparticle formation of deposited Agn-clusters on free-standing graphene

    NASA Astrophysics Data System (ADS)

    Al-Hada, M.; Peters, S.; Gregoratti, L.; Amati, M.; Sezen, H.; Parisse, P.; Selve, S.; Niermann, T.; Berger, D.; Neeb, M.; Eberhardt, W.

    2017-11-01

    Size-selected Agn-clusters on unsupported graphene of a commercial Quantifoil sample have been investigated by surface and element-specific techniques such as transmission electron microscopy (TEM), spatially-resolved inner-shell X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). An agglomeration of the highly mobile clusters into nm-sized Ag-nanodots of 2-3 nm is observed. Moreover, crystalline as well as non-periodic fivefold symmetric structures of the Ag-nanoparticles are evident by high-resolution TEM. Using a lognormal size-distribution as revealed by TEM, the measured positive binding energy shift of the air-exposed Ag-nanodots can be explained by the size-dependent dynamical liquid-drop model.

  17. In situ measurements of plasma properties during gas-condensation of Cu nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koten, M. A., E-mail: mark.koten@gmail.com; Shield, J. E.; Voeller, S. A.

    2016-03-21

    Since the mean, standard deviation, and modality of nanoparticle size distributions can vary greatly between similar input conditions (e.g., power and gas flow rate), plasma diagnostics were carried out in situ using a double-sided, planar Langmuir probe to determine the effect the plasma has on the heating of clusters and their final size distributions. The formation of Cu nanoparticles was analyzed using cluster-plasma physics, which relates the processes of condensation and evaporation to internal plasma properties (e.g., electron temperature and density). Monitoring these plasma properties while depositing Cu nanoparticles with different size distributions revealed a negative correlation between average particlemore » size and electron temperature. Furthermore, the modality of the size distributions also correlated with the modality of the electron energy distributions. It was found that the maximum cluster temperature reached during plasma heating and the material's evaporation point regulates the growth process inside the plasma. In the case of Cu, size distributions with average sizes of 8.2, 17.3, and 24.9 nm in diameter were monitored with the Langmuir probe, and from the measurements made, the cluster temperatures for each deposition were calculated to be 1028, 1009, and 863 K. These values are then compared with the onset evaporation temperature of particles of this size, which was estimated to be 1059, 1068, and 1071 K. Thus, when the cluster temperature is too close to the evaporation temperature, less particle growth occurs, resulting in the formation of smaller particles.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olawoyin, L.

    The unattached environmental radioactive particles/clusters, produced mainly by {sup 222}Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research,more » a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It`s major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented.« less

  19. Interaction of size-selected gold nanoclusters with dopamine

    NASA Astrophysics Data System (ADS)

    Montone, Georgia R.; Hermann, Eric; Kandalam, Anil K.

    2016-12-01

    We present density functional theory based results on the interaction of size-selected gold nanoclusters, Au10 and Au20, with dopamine molecule. The gold clusters interact strongly with the nitrogen site of dopamine, thereby forming stable gold-dopamine complexes. Our calculations further show that there is no site specificity on the planar Au10 cluster with all the edge gold atoms equally preferred. On the other hand, in the pyramidal Au20 cluster, the vertex metal atom is the most active site. As the size increased from Au10 to Au20, the interaction strength has shown a declining trend. The effect of aqueous environment on the interaction strengths were also studied by solvation model. It is found that the presence of solvent water stabilizes the interaction between the metal cluster and dopamine molecule, even though for Au10 cluster the energy ordering of the isomers changed from that of the gas-phase.

  20. On the use of big-bang method to generate low-energy structures of atomic clusters modeled with pair potentials of different ranges.

    PubMed

    Marques, J M C; Pais, A A C C; Abreu, P E

    2012-02-05

    The efficiency of the so-called big-bang method for the optimization of atomic clusters is analysed in detail for Morse pair potentials with different ranges; here, we have used Morse potentials with four different ranges, from long- ρ = 3) to short-ranged ρ = 14) interactions. Specifically, we study the efficacy of the method in discovering low-energy structures, including the putative global minimum, as a function of the potential range and the cluster size. A new global minimum structure for long-ranged ρ = 3) Morse potential at the cluster size of n= 240 is reported. The present results are useful to assess the maximum cluster size for each type of interaction where the global minimum can be discovered with a limited number of big-bang trials. Copyright © 2011 Wiley Periodicals, Inc.

  1. Impact of non-uniform correlation structure on sample size and power in multiple-period cluster randomised trials.

    PubMed

    Kasza, J; Hemming, K; Hooper, R; Matthews, Jns; Forbes, A B

    2017-01-01

    Stepped wedge and cluster randomised crossover trials are examples of cluster randomised designs conducted over multiple time periods that are being used with increasing frequency in health research. Recent systematic reviews of both of these designs indicate that the within-cluster correlation is typically taken account of in the analysis of data using a random intercept mixed model, implying a constant correlation between any two individuals in the same cluster no matter how far apart in time they are measured: within-period and between-period intra-cluster correlations are assumed to be identical. Recently proposed extensions allow the within- and between-period intra-cluster correlations to differ, although these methods require that all between-period intra-cluster correlations are identical, which may not be appropriate in all situations. Motivated by a proposed intensive care cluster randomised trial, we propose an alternative correlation structure for repeated cross-sectional multiple-period cluster randomised trials in which the between-period intra-cluster correlation is allowed to decay depending on the distance between measurements. We present results for the variance of treatment effect estimators for varying amounts of decay, investigating the consequences of the variation in decay on sample size planning for stepped wedge, cluster crossover and multiple-period parallel-arm cluster randomised trials. We also investigate the impact of assuming constant between-period intra-cluster correlations instead of decaying between-period intra-cluster correlations. Our results indicate that in certain design configurations, including the one corresponding to the proposed trial, a correlation decay can have an important impact on variances of treatment effect estimators, and hence on sample size and power. An R Shiny app allows readers to interactively explore the impact of correlation decay.

  2. Using size-selected gold clusters on graphene oxide films to aid cryo-transmission electron tomography alignment

    PubMed Central

    Arkill, Kenton P.; Mantell, Judith M.; Plant, Simon R.; Verkade, Paul; Palmer, Richard E.

    2015-01-01

    A three-dimensional reconstruction of a nano-scale aqueous object can be achieved by taking a series of transmission electron micrographs tilted at different angles in vitreous ice: cryo-Transmission Electron Tomography. Presented here is a novel method of fine alignment for the tilt series. Size-selected gold clusters of ~2.7 nm (Au561 ± 14), ~3.2 nm (Au923 ± 22), and ~4.3 nm (Au2057 ± 45) in diameter were deposited onto separate graphene oxide films overlaying holes on amorphous carbon grids. After plunge freezing and subsequent transfer to cryo-Transmission Electron Tomography, the resulting tomograms have excellent (de-)focus and alignment properties during automatic acquisition. Fine alignment is accurate when the evenly distributed 3.2 nm gold particles are used as fiducial markers, demonstrated with a reconstruction of a tobacco mosaic virus. Using a graphene oxide film means the fiducial markers are not interfering with the ice bound sample and that automated collection is consistent. The use of pre-deposited size-selected clusters means there is no aggregation and a user defined concentration. The size-selected clusters are mono-dispersed and can be produced in a wide size range including 2–5 nm in diameter. The use of size-selected clusters on a graphene oxide films represents a significant technical advance for 3D cryo-electron microscopy. PMID:25783049

  3. Acetylcholine receptor (AChR) clustering is regulated both by glycogen synthase kinase 3β (GSK3β)-dependent phosphorylation and the level of CLIP-associated protein 2 (CLASP2) mediating the capture of microtubule plus-ends.

    PubMed

    Basu, Sreya; Sladecek, Stefan; Pemble, Hayley; Wittmann, Torsten; Slotman, Johan A; van Cappellen, Wiggert; Brenner, Hans-Rudolf; Galjart, Niels

    2014-10-31

    The postsynaptic apparatus of the neuromuscular junction (NMJ) traps and anchors acetylcholine receptors (AChRs) at high density at the synapse. We have previously shown that microtubule (MT) capture by CLASP2, a MT plus-end-tracking protein (+TIP), increases the size and receptor density of AChR clusters at the NMJ through the delivery of AChRs and that this is regulated by a pathway involving neuronal agrin and several postsynaptic kinases, including GSK3. Phosphorylation by GSK3 has been shown to cause CLASP2 dissociation from MT ends, and nine potential phosphorylation sites for GSK3 have been mapped on CLASP2. How CLASP2 phosphorylation regulates MT capture at the NMJ and how this controls the size of AChR clusters are not yet understood. To examine this, we used myotubes cultured on agrin patches that induce AChR clustering in a two-dimensional manner. We show that expression of a CLASP2 mutant, in which the nine GSK3 target serines are mutated to alanine (CLASP2-9XS/9XA) and are resistant to GSK3β-dependent phosphorylation, promotes MT capture at clusters and increases AChR cluster size, compared with myotubes that express similar levels of wild type CLASP2 or that are noninfected. Conversely, myotubes expressing a phosphomimetic form of CLASP2 (CLASP2-8XS/D) show enrichment of immobile mutant CLASP2 in clusters, but MT capture and AChR cluster size are reduced. Taken together, our data suggest that both GSK3β-dependent phosphorylation and the level of CLASP2 play a role in the maintenance of AChR cluster size through the regulated capture and release of MT plus-ends. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. The effects of CuO particle size on microstructure evolution of AgCuO compo-sites in plastic deformation process: finite element simulation and experimental study

    NASA Astrophysics Data System (ADS)

    Li, Zhiguo; Cao, Hanxing; Zhou, Xiaolong; Zhou, Zhaobo; Cao, Jianchun

    2018-04-01

    The effects of CuO with different particle sizes on the microstructure evolution of AgCuO composite material during plastic deformation process were investigated by finite element (FE) analysis and experiment. The results are as follows: with the decrease of CuO particle size, the degree of radial compression and axial elongation of CuO particle cluster increase gradually, as well as the dispersion of CuO also increase. Meanwhile, the shape of CuO particles is constantly transformed from polygonal to fibrous, which makes the number of linear fibrous CuO increase continuously while bent fibrous CuO reduce gradually. By comparing the simulation and experiment results we find that there are four different typical microstructure regions, which caused by the interaction between monoclinic and cubic CuO during the extrusion process.

  5. GDPC: Gravitation-based Density Peaks Clustering algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Jianhua; Hao, Dehao; Chen, Yujun; Parmar, Milan; Li, Keqin

    2018-07-01

    The Density Peaks Clustering algorithm, which we refer to as DPC, is a novel and efficient density-based clustering approach, and it is published in Science in 2014. The DPC has advantages of discovering clusters with varying sizes and varying densities, but has some limitations of detecting the number of clusters and identifying anomalies. We develop an enhanced algorithm with an alternative decision graph based on gravitation theory and nearby distance to identify centroids and anomalies accurately. We apply our method to some UCI and synthetic data sets. We report comparative clustering performances using F-Measure and 2-dimensional vision. We also compare our method to other clustering algorithms, such as K-Means, Affinity Propagation (AP) and DPC. We present F-Measure scores and clustering accuracies of our GDPC algorithm compared to K-Means, AP and DPC on different data sets. We show that the GDPC has the superior performance in its capability of: (1) detecting the number of clusters obviously; (2) aggregating clusters with varying sizes, varying densities efficiently; (3) identifying anomalies accurately.

  6. Clusters of circulating tumor cells traverse capillary-sized vessels

    PubMed Central

    Au, Sam H.; Storey, Brian D.; Moore, John C.; Tang, Qin; Chen, Yeng-Long; Javaid, Sarah; Sarioglu, A. Fatih; Sullivan, Ryan; Madden, Marissa W.; O’Keefe, Ryan; Haber, Daniel A.; Maheswaran, Shyamala; Langenau, David M.; Stott, Shannon L.; Toner, Mehmet

    2016-01-01

    Multicellular aggregates of circulating tumor cells (CTC clusters) are potent initiators of distant organ metastasis. However, it is currently assumed that CTC clusters are too large to pass through narrow vessels to reach these organs. Here, we present evidence that challenges this assumption through the use of microfluidic devices designed to mimic human capillary constrictions and CTC clusters obtained from patient and cancer cell origins. Over 90% of clusters containing up to 20 cells successfully traversed 5- to 10-μm constrictions even in whole blood. Clusters rapidly and reversibly reorganized into single-file chain-like geometries that substantially reduced their hydrodynamic resistances. Xenotransplantation of human CTC clusters into zebrafish showed similar reorganization and transit through capillary-sized vessels in vivo. Preliminary experiments demonstrated that clusters could be disrupted during transit using drugs that affected cellular interaction energies. These findings suggest that CTC clusters may contribute a greater role to tumor dissemination than previously believed and may point to strategies for combating CTC cluster-initiated metastasis. PMID:27091969

  7. Coagulation-fragmentation for a finite number of particles and application to telomere clustering in the yeast nucleus

    NASA Astrophysics Data System (ADS)

    Hozé, Nathanaël; Holcman, David

    2012-01-01

    We develop a coagulation-fragmentation model to study a system composed of a small number of stochastic objects moving in a confined domain, that can aggregate upon binding to form local clusters of arbitrary sizes. A cluster can also dissociate into two subclusters with a uniform probability. To study the statistics of clusters, we combine a Markov chain analysis with a partition number approach. Interestingly, we obtain explicit formulas for the size and the number of clusters in terms of hypergeometric functions. Finally, we apply our analysis to study the statistical physics of telomeres (ends of chromosomes) clustering in the yeast nucleus and show that the diffusion-coagulation-fragmentation process can predict the organization of telomeres.

  8. Suppression of vacancy cluster growth in concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Velisa, Gihan; Xue, Haizhou; ...

    2016-12-13

    Large vacancy clusters, such as stacking-fault tetrahedra, are detrimental vacancy-type defects in ion-irradiated structural alloys. Suppression of vacancy cluster formation and growth is highly desirable to improve the irradiation tolerance of these materials. In this paper, we demonstrate that vacancy cluster growth can be inhibited in concentrated solid solution alloys by modifying cluster migration pathways and diffusion kinetics. The alloying effects of Fe and Cr on the migration of vacancy clusters in Ni concentrated alloys are investigated by molecular dynamics simulations and ion irradiation experiment. While the diffusion coefficients of small vacancy clusters in Ni-based binary and ternary solid solutionmore » alloys are higher than in pure Ni, they become lower for large clusters. This observation suggests that large clusters can easily migrate and grow to very large sizes in pure Ni. In contrast, cluster growth is suppressed in solid solution alloys owing to the limited mobility of large vacancy clusters. Finally, the differences in cluster sizes and mobilities in Ni and in solid solution alloys are consistent with the results from ion irradiation experiments.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Nancy L., E-mail: nlcho@partners.org; Lin, Chi-Iou; Du, Jinyan

    Highlights: Black-Right-Pointing-Pointer Kinome profiling is a novel technique for identifying activated kinases in human cancers. Black-Right-Pointing-Pointer Src activity is increased in invasive thyroid cancers. Black-Right-Pointing-Pointer Inhibition of Src activity decreased proliferation and invasion in vitro. Black-Right-Pointing-Pointer Further investigation of Src targeted therapies in thyroid cancer is warranted. -- Abstract: Background: Novel therapies are needed for the treatment of invasive thyroid cancers. Aberrant activation of tyrosine kinases plays an important role in thyroid oncogenesis. Because current targeted therapies are biased toward a small subset of tyrosine kinases, we conducted a study to reveal novel therapeutic targets for thyroid cancer using amore » bead-based, high-throughput system. Methods: Thyroid tumors and matched normal tissues were harvested from twenty-six patients in the operating room. Protein lysates were analyzed using the Luminex immunosandwich, a bead-based kinase phosphorylation assay. Data was analyzed using GenePattern 3.0 software and clustered according to histology, demographic factors, and tumor status regarding capsular invasion, size, lymphovascular invasion, and extrathyroidal extension. Survival and invasion assays were performed to determine the effect of Src inhibition in papillary thyroid cancer (PTC) cells. Results: Tyrosine kinome profiling demonstrated upregulation of nine tyrosine kinases in tumors relative to matched normal thyroid tissue: EGFR, PTK6, BTK, HCK, ABL1, TNK1, GRB2, ERK, and SRC. Supervised clustering of well-differentiated tumors by histology, gender, age, or size did not reveal significant differences in tyrosine kinase activity. However, supervised clustering by the presence of invasive disease showed increased Src activity in invasive tumors relative to non-invasive tumors (60% v. 0%, p < 0.05). In vitro, we found that Src inhibition in PTC cells decreased cell invasion and proliferation. Conclusion: Global kinome analysis enables the discovery of novel targets for thyroid cancer therapy. Further investigation of Src targeted therapy for advanced thyroid cancer is warranted.« less

  10. Atomistic simulations to characterize the influence of applied strain and PKA energy on radiation damage evolution in pure aluminum

    NASA Astrophysics Data System (ADS)

    Sahi, Qurat-ul-ain; Kim, Yong-Soo

    2018-05-01

    Knowledge of defects generation, their mobility, growth rate, and spatial distribution is the cornerstone for understanding the surface and structural evolution of a material used under irradiation conditions. In this study, molecular dynamics simulations were used to investigate the coupled effect of primary knock-on atom (PKA) energy and applied strain (uniaxial and hydrostatic) fields on primary radiation damage evolution in pure aluminum. Cascade damage simulations were carried out for PKA energy ranging between 1 and 20 keV and for applied strain values ranging between -2% and 2% at the fixed temperature of 300 K. Simulation results showed that as the atomic displacement cascade proceeds under uniaxial and hydrostatic strains, the peak and surviving number of Frenkel point defects increases with increasing tension; however, these increments were more prominent under larger volume changing deformations (hydrostatic strain). The percentage fraction of point defects that aggregate into clusters increases under tension conditions; compared to the reference conditions with no strain, these increases are around 13% and 7% for interstitials and vacancies, respectively (under 2% uniaxial strain), and 19% and 11% for interstitials and vacancies, respectively (under 2% hydrostatic strain). Clusters formed of vacancies and interstitials were both larger under tensile strain conditions, with increases in both the average and maximum cluster sizes. The rate of increase/decrease in the number of Frenkel pairs, their clustering, and their size distributions under expansion/compression strain conditions were higher for higher PKA energies. Overall, the present results suggest that strain effects should be considered carefully in radiation damage environments, specifically for conditions of low temperature and high radiation energy. Compressive strain conditions could be beneficial for materials used in nuclear reactor power systems.

  11. Aromatization of n-hexane by platinum-containing molecular sieves. 2. n-Hexane reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielczarski, E.; Suk Bong Hong; Davis, M.E.

    Pt/KL, Pt/BaKL, Pt/KBaKL, Pt/NaY, Pt/CsNaY, Pt/NaFAU(C), Pt/hex, Pt/SSZ-24, Pt/silica, and Pt/carbon were tested as catalysts for the aromatization of n-hexane at 460-510 C and atmospheric total pressure in order to study the influence of Pt cluster size and support acidity/basicity, microstructure, and chemical composition on activity and selectivity. Analysis of the catalytic and NH{sub 3} temperature-programmed desorption results from Pt/KL, Pt/BaKL, and Pt/KBaKL reveals that the presence of any acidity increases hydrogenolysis at the expense of benzene production. In addition, no increase in aromatization selectivity is observed by the addition of base sites to a Pt/zeolite catalyst, confirming that aromatizationmore » of n-hexane over Pt clusters on nonacidic carriers is monofunctional. High selectivity to benzene over most of the zeolite samples demonstrates that support microstructure does not contribute directly to the aromatization selectivity over Pt catalysts. High selectivity to benzene is observed for a Pt/carbon catalyst suggesting that a zeolitic support is not necessary for good performance. In fact, similar reactivity is obtained from microporous (Pt/SSZ-24) and nonmicroporous (Pt/silica) silica supported platinum catalysts with similar H/Pt values. A clear trend of increasing benzene selectivity with decreasing Pt cluster size is found. These observations suggest that the exceptional reactivity of Pt/KL for the aromatization of n-hexane results from the lack of any acidity in the support and the ability of zeolite L to stabilize the formation of extremely small Pt clusters.« less

  12. Nature of bonding and cooperativity in linear DMSO clusters: A DFT, AIM and NCI analysis.

    PubMed

    Venkataramanan, Natarajan Sathiyamoorthy; Suvitha, Ambigapathy

    2018-05-01

    This study aims to cast light on the nature of interactions and cooperativity that exists in linear dimethyl sulfoxide (DMSO) clusters using dispersion corrected density functional theory. In the linear DMSO, DMSO molecules in the middle of the clusters are bound strongly than at the terminal. The plot of the total binding energy of the clusters vs the cluster size and mean polarizabilities vs cluster size shows an excellent linearity demonstrating the presence of cooperativity effect. The computed incremental binding energy of the clusters remains nearly constant, implying that DMSO addition at the terminal site can happen to form an infinite chain. In the linear clusters, two σ-hole at the terminal DMSO molecules were found and the value on it was found to increase with the increase in cluster size. The quantum theory of atoms in molecules topography shows the existence of hydrogen and SO⋯S type in linear tetramer and larger clusters. In the dimer and trimer SO⋯OS type of interaction exists. In 2D non-covalent interactions plot, additional peaks in the regions which contribute to the stabilization of the clusters were observed and it splits in the trimer and intensifies in the larger clusters. In the trimer and larger clusters in addition to the blue patches due to hydrogen bonds, additional, light blue patches were seen between the hydrogen atom of the methyl groups and the sulphur atom of the nearby DMSO molecule. Thus, in addition to the strong H-bonds, strong electrostatic interactions between the sulphur atom and methyl hydrogens exists in the linear clusters. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Structural requirements and reaction pathways in dimethyl ether combustion catalyzed by supported Pt clusters.

    PubMed

    Ishikawa, Akio; Neurock, Matthew; Iglesia, Enrique

    2007-10-31

    The identity and reversibility of the elementary steps required for catalytic combustion of dimethyl ether (DME) on Pt clusters were determined by combining isotopic and kinetic analyses with density functional theory estimates of reaction energies and activation barriers to probe the lowest energy paths. Reaction rates are limited by C-H bond activation in DME molecules adsorbed on surfaces of Pt clusters containing chemisorbed oxygen atoms at near-saturation coverages. Reaction energies and activation barriers for C-H bond activation in DME to form methoxymethyl and hydroxyl surface intermediates show that this step is more favorable than the activation of C-O bonds to form two methoxides, consistent with measured rates and kinetic isotope effects. This kinetic preference is driven by the greater stability of the CH3OCH2* and OH* intermediates relative to chemisorbed methoxides. Experimental activation barriers on Pt clusters agree with density functional theory (DFT)-derived barriers on oxygen-covered Pt(111). Measured DME turnover rates increased with increasing DME pressure, but decreased as the O2 pressure increased, because vacancies (*) on Pt surfaces nearly saturated with chemisorbed oxygen are required for DME chemisorption. DFT calculations show that although these surface vacancies are required, higher oxygen coverages lead to lower C-H activation barriers, because the basicity of oxygen adatoms increases with coverage and they become more effective in hydrogen abstraction from DME. Water inhibits reaction rates via quasi-equilibrated adsorption on vacancy sites, consistent with DFT results indicating that water binds more strongly than DME on vacancies. These conclusions are consistent with the measured kinetic response of combustion rates to DME, O2, and H2O, with H/D kinetic isotope effects, and with the absence of isotopic scrambling in reactants containing isotopic mixtures of 18O2-16O2 or 12CH3O12CH3-13CH3O13CH3. Turnover rates increased with Pt cluster size, because small clusters, with more coordinatively unsaturated surface atoms, bind oxygen atoms more strongly than larger clusters and exhibit lower steady-state vacancy concentrations and a consequently smaller number of adsorbed DME intermediates involved in kinetically relevant steps. These effects of cluster size and metal-oxygen bond energies on reactivity are ubiquitous in oxidation reactions requiring vacancies on surfaces nearly saturated with intermediates derived from O2.

  14. Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters.

    PubMed

    Knoppe, Stefan; Boudon, Julien; Dolamic, Igor; Dass, Amala; Bürgi, Thomas

    2011-07-01

    Size exclusion chromatography (SEC) on a semipreparative scale (10 mg and more) was used to size-select ultrasmall gold nanoclusters (<2 nm) from polydisperse mixtures. In particular, the ubiquitous byproducts of the etching process toward Au(38)(SR)(24) (SR, thiolate) clusters were separated and gained in high monodispersity (based on mass spectrometry). The isolated fractions were characterized by UV-vis spectroscopy, MALDI mass spectrometry, HPLC, and electron microscopy. Most notably, the separation of Au(38)(SR)(24) and Au(40)(SR)(24) clusters is demonstrated.

  15. Impact of Different Visual Field Testing Paradigms on Sample Size Requirements for Glaucoma Clinical Trials.

    PubMed

    Wu, Zhichao; Medeiros, Felipe A

    2018-03-20

    Visual field testing is an important endpoint in glaucoma clinical trials, and the testing paradigm used can have a significant impact on the sample size requirements. To investigate this, this study included 353 eyes of 247 glaucoma patients seen over a 3-year period to extract real-world visual field rates of change and variability estimates to provide sample size estimates from computer simulations. The clinical trial scenario assumed that a new treatment was added to one of two groups that were both under routine clinical care, with various treatment effects examined. Three different visual field testing paradigms were evaluated: a) evenly spaced testing, b) United Kingdom Glaucoma Treatment Study (UKGTS) follow-up scheme, which adds clustered tests at the beginning and end of follow-up in addition to evenly spaced testing, and c) clustered testing paradigm, with clusters of tests at the beginning and end of the trial period and two intermediary visits. The sample size requirements were reduced by 17-19% and 39-40% using the UKGTS and clustered testing paradigms, respectively, when compared to the evenly spaced approach. These findings highlight how the clustered testing paradigm can substantially reduce sample size requirements and improve the feasibility of future glaucoma clinical trials.

  16. Electric-field-induced association of colloidal particles

    NASA Astrophysics Data System (ADS)

    Fraden, Seth; Hurd, Alan J.; Meyer, Robert B.

    1989-11-01

    Dilute suspensions of micron diameter dielectric spheres confined to two dimensions are induced to aggregate linearly by application of an electric field. The growth of the average cluster size agrees well with the Smoluchowski equation, but the evolution of the measured cluster size distribution exhibits significant departures from theory at large times due to the formation of long linear clusters which effectively partition space into isolated one-dimensional strips.

  17. Dynamic fractals in spatial evolutionary games

    NASA Astrophysics Data System (ADS)

    Kolotev, Sergei; Malyutin, Aleksandr; Burovski, Evgeni; Krashakov, Sergei; Shchur, Lev

    2018-06-01

    We investigate critical properties of a spatial evolutionary game based on the Prisoner's Dilemma. Simulations demonstrate a jump in the component densities accompanied by drastic changes in average sizes of the component clusters. We argue that the cluster boundary is a random fractal. Our simulations are consistent with the fractal dimension of the boundary being equal to 2, and the cluster boundaries are hence asymptotically space filling as the system size increases.

  18. Intra-class correlation estimates for assessment of vitamin A intake in children.

    PubMed

    Agarwal, Girdhar G; Awasthi, Shally; Walter, Stephen D

    2005-03-01

    In many community-based surveys, multi-level sampling is inherent in the design. In the design of these studies, especially to calculate the appropriate sample size, investigators need good estimates of intra-class correlation coefficient (ICC), along with the cluster size, to adjust for variation inflation due to clustering at each level. The present study used data on the assessment of clinical vitamin A deficiency and intake of vitamin A-rich food in children in a district in India. For the survey, 16 households were sampled from 200 villages nested within eight randomly-selected blocks of the district. ICCs and components of variances were estimated from a three-level hierarchical random effects analysis of variance model. Estimates of ICCs and variance components were obtained at village and block levels. Between-cluster variation was evident at each level of clustering. In these estimates, ICCs were inversely related to cluster size, but the design effect could be substantial for large clusters. At the block level, most ICC estimates were below 0.07. At the village level, many ICC estimates ranged from 0.014 to 0.45. These estimates may provide useful information for the design of epidemiological studies in which the sampled (or allocated) units range in size from households to large administrative zones.

  19. Structural, optical and AFM characterization of PVA:La3+ polymer films

    NASA Astrophysics Data System (ADS)

    Ali, F. M.; Maiz, F.

    2018-02-01

    In this paper the structural and optical properties of pure Polyvinyl alcohol (PVA) and La3+-doped PVA films in the concentration range of 4%, 12% and 20% weight percent of Lanthanum were prepared by the conventional casting technique. X-ray diffraction pattern and atomic force microscopy studies of the investigated samples reveal their semi-crystalline nature. It is found that, absorption coefficient and cluster size of lanthanum:PVA composite increase with increasing salt concentration. However, the optical energy gap shows a slight decreasing trend.

  20. Para-hydrogen and helium cluster size distributions in free jet expansions based on Smoluchowski theory with kernel scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornilov, Oleg; Toennies, J. Peter

    The size distribution of para-H{sub 2} (pH{sub 2}) clusters produced in free jet expansions at a source temperature of T{sub 0} = 29.5 K and pressures of P{sub 0} = 0.9–1.96 bars is reported and analyzed according to a cluster growth model based on the Smoluchowski theory with kernel scaling. Good overall agreement is found between the measured and predicted, N{sub k} = A k{sup a} e{sup −bk}, shape of the distribution. The fit yields values for A and b for values of a derived from simple collision models. The small remaining deviations between measured abundances and theory imply a (pH{submore » 2}){sub k} magic number cluster of k = 13 as has been observed previously by Raman spectroscopy. The predicted linear dependence of b{sup −(a+1)} on source gas pressure was verified and used to determine the value of the basic effective agglomeration reaction rate constant. A comparison of the corresponding effective growth cross sections σ{sub 11} with results from a similar analysis of He cluster size distributions indicates that the latter are much larger by a factor 6-10. An analysis of the three body recombination rates, the geometric sizes and the fact that the He clusters are liquid independent of their size can explain the larger cross sections found for He.« less

  1. Nonrotating Convective Self-Aggregation in a Limited Area AGCM

    NASA Astrophysics Data System (ADS)

    Arnold, Nathan P.; Putman, William M.

    2018-04-01

    We present nonrotating simulations with the Goddard Earth Observing System (GEOS) atmospheric general circulation model (AGCM) in a square limited area domain over uniform sea surface temperature. As in previous studies, convection spontaneously aggregates into humid clusters, driven by a combination of radiative and moisture-convective feedbacks. The aggregation is qualitatively independent of resolution, with horizontal grid spacing from 3 to 110 km, with both explicit and parameterized deep convection. A budget for the spatial variance of column moist static energy suggests that longwave radiative and surface flux feedbacks help establish aggregation, while the shortwave feedback contributes to its maintenance. Mechanism-denial experiments confirm that aggregation does not occur without interactive longwave radiation. Ice cloud radiative effects help support the humid convecting regions but are not essential for aggregation, while liquid clouds have a negligible effect. Removing the dependence of parameterized convection on tropospheric humidity reduces the intensity of aggregation but does not prevent the formation of dry regions. In domain sizes less than (5,000 km)2, the aggregation forms a single cluster, while larger domains develop multiple clusters. Larger domains initialized with a single large cluster are unable to maintain them, suggesting an upper size limit. Surface wind speed increases with domain size, implying that maintenance of the boundary layer winds may limit cluster size. As cluster size increases, large boundary layer temperature anomalies develop to maintain the surface pressure gradient, leading to an increase in the depth of parameterized convective heating and an increase in gross moist stability.

  2. Coulomb Fission in Multiply-Charged Ammonia Clusters: Accurate Measurements of the Rayleigh Instability Limit from Fragmentation Patterns.

    PubMed

    Harris, Christopher; Stace, Anthony J

    2018-03-15

    A series of experiments have been undertaken on the fragmentation of multiply charged ammonia clusters, (NH 3 ) n z+ , where z ≤ 8 and n ≤ 850, to establish Rayleigh instability limits, whereby clusters at certain critical sizes become unstable due to Coulomb repulsion between the resident charges. Experimental results on size-selected clusters are found to be in excellent agreement with theoretical predictions of Rayleigh instability limits at all values of the charge. Electrostatic theory has been used to help identify fragmentation patterns on the assumption that the clusters separate into two dielectric spheres, and the predicted Coulomb repulsion energies used to establish pathways and the sizes of cluster fragments. The results show that fragmentation is very asymmetric in terms of both the numbers of molecules involved and the amount of charge each fragment accommodates. For clusters carrying a charge ≤+4, the results show that fragmentation proceeds via the loss of small, singly charged clusters. When clusters carry a charge of +5 or more, the experimental observations suggest a marked switch in behavior. Although the laboratory measurements equate to fragmentation via the loss of a large dication cluster, electrostatic theory supports an interpretation that involves the sequential loss of two smaller, singly charged clusters possibly accompanied by the extensive evaporation of neutral molecules. It is suggested that this change in fragmentation pattern is driven by the channelling of Coulomb repulsion energy into intermolecular modes within these larger clusters. Overall, the results appear to support the ion evaporation model that is frequently used to interpret electrospray experiments.

  3. Cluster Size Optimization in Sensor Networks with Decentralized Cluster-Based Protocols

    PubMed Central

    Amini, Navid; Vahdatpour, Alireza; Xu, Wenyao; Gerla, Mario; Sarrafzadeh, Majid

    2011-01-01

    Network lifetime and energy-efficiency are viewed as the dominating considerations in designing cluster-based communication protocols for wireless sensor networks. This paper analytically provides the optimal cluster size that minimizes the total energy expenditure in such networks, where all sensors communicate data through their elected cluster heads to the base station in a decentralized fashion. LEACH, LEACH-Coverage, and DBS comprise three cluster-based protocols investigated in this paper that do not require any centralized support from a certain node. The analytical outcomes are given in the form of closed-form expressions for various widely-used network configurations. Extensive simulations on different networks are used to confirm the expectations based on the analytical results. To obtain a thorough understanding of the results, cluster number variability problem is identified and inspected from the energy consumption point of view. PMID:22267882

  4. Dynamic behaviour of nanometre-sized defect clusters emitted from an atomic displacement cascade in Au at 50 K

    NASA Astrophysics Data System (ADS)

    Ono, K.; Miyamoto, M.; Arakawa, K.; Birtcher, R. C.

    2017-09-01

    We demonstrate the emission of nanometre-sized defect clusters from an isolated displacement cascade formed by irradiation of high-energy self-ions and their subsequent 1-D motion in Au at 50 K, using in situ electron microscopy. The small defect clusters emitted from a displacement cascade exhibited correlated back-and-forth 1-D motion along the [-1 1 0] direction and coalescence which results in their growth and reduction of their mobility. From the analysis of the random 1-D motion, the diffusivity of the small cluster was evaluated. Correlated 1-D motion and coalescence of clusters were understood via elastic interaction between small clusters. These results provide direct experimental evidence of the migration of small defect clusters and defect cascade evolution at low temperature.

  5. Excess electrons in methanol clusters: Beyond the one-electron picture

    NASA Astrophysics Data System (ADS)

    Pohl, Gábor; Mones, Letif; Turi, László

    2016-10-01

    We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, ("separators=" CH 3 OH ) n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.

  6. Excess electrons in methanol clusters: Beyond the one-electron picture.

    PubMed

    Pohl, Gábor; Mones, Letif; Turi, László

    2016-10-28

    We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, CH 3 OH n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.

  7. Growth-dissolution-regrowth transitions of Fe3O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions.

    PubMed

    Lin, Mouhong; Huang, Haoliang; Liu, Zuotao; Liu, Yingju; Ge, Junbin; Fang, Yueping

    2013-12-10

    Magnetic nanoparticle clusters (MNCs) are a class of secondary structural materials that comprise chemically defined nanoparticles assembled into clusters of defined size. Herein, MNCs are fabricated through a one-pot solvothermal reaction featuring self-limiting assembly of building blocks and the controlled reorganization process. Such growth-dissolution-regrowth fabrication mechanism overcomes some limitations of conventional solvothermal fabrication methods with regard to restricted available feature size and structural complexity, which can be extended to other oxides (as long as one can be chelated by EDTA-2Na). Based on this method, the nanoparticle size of MNCs is tuned between 6.8 and 31.2 nm at a fixed cluster diameter of 120 nm, wherein the critical size for superparamagnetic-ferromagnetic transition is estimated from 13.5 to 15.7 nm. Control over the nature and secondary structure of MNCs gives an excellent model system to understand the nanoparticle size-dependent magnetic properties of MNCs. MNCs have potential applications in many different areas, while this work evaluates their cytotoxicity and Pb(2+) adsorption capacity as initial application study.

  8. Communication: Diverse nanoscale cluster dynamics: Diffusion of 2D epitaxial clusters

    NASA Astrophysics Data System (ADS)

    Lai, King C.; Evans, James W.; Liu, Da-Jiang

    2017-11-01

    The dynamics of nanoscale clusters can be distinct from macroscale behavior described by continuum formalisms. For diffusion of 2D clusters of N atoms in homoepitaxial systems mediated by edge atom hopping, macroscale theory predicts simple monotonic size scaling of the diffusion coefficient, DN ˜ N-β, with β = 3/2. However, modeling for nanoclusters on metal(100) surfaces reveals that slow nucleation-mediated diffusion displaying weak size scaling β < 1 occurs for "perfect" sizes Np = L2 and L(L+1) for integer L = 3,4,… (with unique square or near-square ground state shapes), and also for Np+3, Np+4,…. In contrast, fast facile nucleation-free diffusion displaying strong size scaling β ≈ 2.5 occurs for sizes Np+1 and Np+2. DN versus N oscillates strongly between the slowest branch (for Np+3) and the fastest branch (for Np+1). All branches merge for N = O(102), but macroscale behavior is only achieved for much larger N = O(103). This analysis reveals the unprecedented diversity of behavior on the nanoscale.

  9. Low-energy collisions of helium clusters with size-selected cobalt cluster ions

    NASA Astrophysics Data System (ADS)

    Odaka, Hideho; Ichihashi, Masahiko

    2017-04-01

    Collisions of helium clusters with size-selected cobalt cluster ions, Com+ (m ≤ 5), were studied experimentally by using a merging beam technique. The product ions, Com+Hen (cluster complexes), were mass-analyzed, and this result indicates that more than 20 helium atoms can be attached onto Com+ at the relative velocities of 103 m/s. The measured size distributions of the cluster complexes indicate that there are relatively stable complexes: Co2+Hen (n = 2, 4, 6, and 12), Co3+Hen (n = 3, 6), Co4+He4, and Co5+Hen (n = 3, 6, 8, and 10). These stabilities are explained in terms of their geometric structures. The yields of the cluster complexes were also measured as a function of the relative velocity (1 × 102-4 × 103 m/s), and this result demonstrates that the main interaction in the collision process changes with the increase of the collision energy from the electrostatic interaction, which includes the induced deformation of HeN, to the hard-sphere interaction. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80015-0

  10. Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinel nanocrystals prepared using a template-free approach.

    PubMed

    Yu, Byong Yong; Kwak, Seung-Yeop

    2011-10-21

    Based on a self-assembly strategy, spherical mesoporous cobalt and nickel ferrite nanocrystal clusters with a large surface area and narrow size distribution were successfully synthesized for the first time via a template-free solvothermal process in ethylene glycol and subsequent heat treatment. In this work, the mesopores in the ferrite clusters were derived mainly from interior voids between aggregated primary nanoparticles (with crystallite size of less than 7 nm) and disordered particle packing domains. The concentration of sodium acetate is shown herein to play a crucial role in the formation of mesoporous ferrite spherical clusters. These ferrite clusters were characterized in detail using wide-angle X-ray diffraction, thermogravimetric-differential thermal analysis, (57)Fe Mössbauer spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, standard and high-resolution transmission electron microscopy, and other techniques. The results confirmed the formation of both pure-phase ferrite clusters with highly crystalline spinel structure, uniform size (about 160 nm) and spherical morphology, and worm-like mesopore structures. The BET specific surface areas and mean pore sizes of the mesoporous Co and Ni-ferrite clusters were as high as 160 m(2) g(-1) and 182 m(2) g(-1), and 7.91 nm and 6.87 nm, respectively. A model for the formation of the spherical clusters in our system is proposed on the basis of the results. The magnetic properties of both samples were investigated at 300 K, and it was found that these materials are superparamagnetic. This journal is © The Royal Society of Chemistry 2011

  11. Small Sample Performance of Bias-corrected Sandwich Estimators for Cluster-Randomized Trials with Binary Outcomes

    PubMed Central

    Li, Peng; Redden, David T.

    2014-01-01

    SUMMARY The sandwich estimator in generalized estimating equations (GEE) approach underestimates the true variance in small samples and consequently results in inflated type I error rates in hypothesis testing. This fact limits the application of the GEE in cluster-randomized trials (CRTs) with few clusters. Under various CRT scenarios with correlated binary outcomes, we evaluate the small sample properties of the GEE Wald tests using bias-corrected sandwich estimators. Our results suggest that the GEE Wald z test should be avoided in the analyses of CRTs with few clusters even when bias-corrected sandwich estimators are used. With t-distribution approximation, the Kauermann and Carroll (KC)-correction can keep the test size to nominal levels even when the number of clusters is as low as 10, and is robust to the moderate variation of the cluster sizes. However, in cases with large variations in cluster sizes, the Fay and Graubard (FG)-correction should be used instead. Furthermore, we derive a formula to calculate the power and minimum total number of clusters one needs using the t test and KC-correction for the CRTs with binary outcomes. The power levels as predicted by the proposed formula agree well with the empirical powers from the simulations. The proposed methods are illustrated using real CRT data. We conclude that with appropriate control of type I error rates under small sample sizes, we recommend the use of GEE approach in CRTs with binary outcomes due to fewer assumptions and robustness to the misspecification of the covariance structure. PMID:25345738

  12. EXPLORING ANTICORRELATIONS AND LIGHT ELEMENT VARIATIONS IN NORTHERN GLOBULAR CLUSTERS OBSERVED BY THE APOGEE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mészáros, Szabolcs; Martell, Sarah L.; Shetrone, Matthew

    We investigate the light-element behavior of red giant stars in northern globular clusters (GCs) observed by the SDSS-III Apache Point Observatory Galactic Evolution Experiment. We derive abundances of 9 elements (Fe, C, N, O, Mg, Al, Si, Ca, and Ti) for 428 red giant stars in 10 GCs. The intrinsic abundance range relative to measurement errors is examined, and the well-known C–N and Mg–Al anticorrelations are explored using an extreme-deconvolution code for the first time in a consistent way. We find that Mg and Al drive the population membership in most clusters, except in M107 and M71, the two mostmore » metal-rich clusters in our study, where the grouping is most sensitive to N. We also find a diversity in the abundance distributions, with some clusters exhibiting clear abundance bimodalities (for example M3 and M53) while others show extended distributions. The spread of Al abundances increases significantly as cluster average metallicity decreases as previously found by other works, which we take as evidence that low metallicity, intermediate mass AGB polluters were more common in the more metal-poor clusters. The statistically significant correlation of [Al/Fe] with [Si/Fe] in M15 suggests that {sup 28}Si leakage has occurred in this cluster. We also present C, N, and O abundances for stars cooler than 4500 K and examine the behavior of A(C+N+O) in each cluster as a function of temperature and [Al/Fe]. The scatter of A(C+N+O) is close to its estimated uncertainty in all clusters and independent of stellar temperature. A(C+N+O) exhibits small correlations and anticorrelations with [Al/Fe] in M3 and M13, but we cannot be certain about these relations given the size of our abundance uncertainties. Star-to-star variations of α-element (Si, Ca, Ti) abundances are comparable to our estimated errors in all clusters.« less

  13. Exploring Anticorrelations and Light Element Variations in Northern Globular Clusters Observed by the APOGEE Survey

    NASA Astrophysics Data System (ADS)

    Mészáros, Szabolcs; Martell, Sarah L.; Shetrone, Matthew; Lucatello, Sara; Troup, Nicholas W.; Bovy, Jo; Cunha, Katia; García-Hernández, Domingo A.; Overbeek, Jamie C.; Allende Prieto, Carlos; Beers, Timothy C.; Frinchaboy, Peter M.; García Pérez, Ana E.; Hearty, Fred R.; Holtzman, Jon; Majewski, Steven R.; Nidever, David L.; Schiavon, Ricardo P.; Schneider, Donald P.; Sobeck, Jennifer S.; Smith, Verne V.; Zamora, Olga; Zasowski, Gail

    2015-05-01

    We investigate the light-element behavior of red giant stars in northern globular clusters (GCs) observed by the SDSS-III Apache Point Observatory Galactic Evolution Experiment. We derive abundances of 9 elements (Fe, C, N, O, Mg, Al, Si, Ca, and Ti) for 428 red giant stars in 10 GCs. The intrinsic abundance range relative to measurement errors is examined, and the well-known C-N and Mg-Al anticorrelations are explored using an extreme-deconvolution code for the first time in a consistent way. We find that Mg and Al drive the population membership in most clusters, except in M107 and M71, the two most metal-rich clusters in our study, where the grouping is most sensitive to N. We also find a diversity in the abundance distributions, with some clusters exhibiting clear abundance bimodalities (for example M3 and M53) while others show extended distributions. The spread of Al abundances increases significantly as cluster average metallicity decreases as previously found by other works, which we take as evidence that low metallicity, intermediate mass AGB polluters were more common in the more metal-poor clusters. The statistically significant correlation of [Al/Fe] with [Si/Fe] in M15 suggests that 28Si leakage has occurred in this cluster. We also present C, N, and O abundances for stars cooler than 4500 K and examine the behavior of A(C+N+O) in each cluster as a function of temperature and [Al/Fe]. The scatter of A(C+N+O) is close to its estimated uncertainty in all clusters and independent of stellar temperature. A(C+N+O) exhibits small correlations and anticorrelations with [Al/Fe] in M3 and M13, but we cannot be certain about these relations given the size of our abundance uncertainties. Star-to-star variations of α-element (Si, Ca, Ti) abundances are comparable to our estimated errors in all clusters.

  14. Mesoscale simulations of confined Nafion thin films.

    PubMed

    Vanya, P; Sharman, J; Elliott, J A

    2017-12-07

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.

  15. Mesoscale simulations of confined Nafion thin films

    NASA Astrophysics Data System (ADS)

    Vanya, P.; Sharman, J.; Elliott, J. A.

    2017-12-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.

  16. Prediction of the size distributions of methanol-ethanol clusters detected in VUV laser/time-of-flight mass spectrometry.

    PubMed

    Liu, Yi; Consta, Styliani; Shi, Yujun; Lipson, R H; Goddard, William A

    2009-06-25

    The size distributions and geometries of vapor clusters equilibrated with methanol-ethanol (Me-Et) liquid mixtures were recently studied by vacuum ultraviolet (VUV) laser time-of-flight (TOF) mass spectrometry and density functional theory (DFT) calculations (Liu, Y.; Consta, S.; Ogeer, F.; Shi, Y. J.; Lipson, R. H. Can. J. Chem. 2007, 85, 843-852). On the basis of the mass spectra recorded, it was concluded that the formation of neutral tetramers is particularly prominent. Here we develop grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) frameworks to compute cluster size distributions in vapor mixtures that allow a direct comparison with experimental mass spectra. Using the all-atom optimized potential for liquid simulations (OPLS-AA) force field, we systematically examined the neutral cluster size distributions as functions of pressure and temperature. These neutral cluster distributions were then used to derive ionized cluster distributions to compare directly with the experiments. The simulations suggest that supersaturation at 12 to 16 times the equilibrium vapor pressure at 298 K or supercooling at temperature 240 to 260 K at the equilibrium vapor pressure can lead to the relatively abundant tetramer population observed in the experiments. Our simulations capture the most distinct features observed in the experimental TOF mass spectra: Et(3)H(+) at m/z = 139 in the vapor corresponding to 10:90% Me-Et liquid mixture and Me(3)H(+) at m/z = 97 in the vapors corresponding to 50:50% and 90:10% Me-Et liquid mixtures. The hybrid GCMC scheme developed in this work extends the capability of studying the size distributions of neat clusters to mixed species and provides a useful tool for studying environmentally important systems such as atmospheric aerosols.

  17. Using mini-rockwool blocks as growing media for limited-cluster tomato production

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Janes, H. W.

    2001-01-01

    Rockwool is an excellent growing medium for the hydroponic production of tomato; however, the standard size rockwool blocks [4 x 4 x 2.5 inches (10 x 10 x 6.3 cm) or 3 x 3 x 2.5 inches (7.5 x 7.5 x 6.3 cm)] are expensive. The following experiments were conducted with less expensive minirock wool blocks (MRBs), on rayon polyester material (RPM) as a bench top liner, to reduce the production cost of tomatoes (Lycopersicon esculentum) grown in a limited-cluster, ebb and flood hydroponic cultivation system. Fruit yield for single-cluster plants growing in MRBs [2 x 2 x 1.6 inches (5 x 5 x 4 cm) and 1.6 x 1.6 x 1.6 inches (4 x 4 x 4 cm)] was not significantly different from plants grown in larger sized blocks (3 x 3 x 2.5 inches). When the bench top was lined with RPM, roots penetrated the RPM, and an extensive root mat developed between the RPM and the bench top. The fruit yield from plants on RPM was significantly increased compared to plants without RPM due to increases in fruit size and fruit number. RPM also significantly reduced the incidence of blossom-end rot. In a second experiment, single- and double-cluster plants were grown on RPM. Fruit yield for double-cluster plants was 40% greater than for single-cluster plants due to an increase in fruit number, although the fruit were smaller in size. As in the first experiment, fruit yield for all plants grown in MRBs was not significantly different from plants grown in the larger sized blocks. MRBs and a RPM bench liner are an effective combination in the production of limited-cluster hydroponic tomatoes.

  18. Is the Size Evolution of Massive Galaxies Accelerated in Cluster Environments?

    NASA Astrophysics Data System (ADS)

    Wilson, Gillian

    2013-10-01

    At z 1.6 the main progenitors of present-day massive clusters are undergoing rapid collapse, and have the highest rates of galaxy merging and assembly. Recent observational studies have hinted at accelerated galaxy evolution in dense environments at this epoch, including increased merger rates and rapid growth in galaxy size relative to the field. We propose WFC3 G102 spectroscopy and F125W {Broad J} imaging of a sample of four massive spectroscopically-confirmed clusters at z = 1.6. Our primary scientific goal is to leverage the CANDELS Wide Legacy dataset to carry out a head-to-head comparison of the sizes of cluster members relative to the field {as a function of stellar mass and Sersic index}, and quantify the role of environment in the observed rapid evolution in galaxy sizes since z = 2. These clusters are four of the highest significance overdensities in the 50 square degree SWIRE fields, and will evolve over time to have present-day masses similar to Coma. They were detected using IRAC [3.6]-[4.5] color, which identifies galaxy overdensities regardless of optically red or blue color. A heroic ground-based spectroscopic campaign has resulted in 44 spectroscopically-confirmed members. However this sample is heavily biased toward star-forming {SF} galaxies, and WFC3 spectroscopy is essential to definitively determine cluster membership for 200 members, without bias with respect to quiescent or SF type. The F125W {rest-frame V-band} imaging is necessary to measure the sizes and morphologies of cluster members. 17-passband broadband imaging spanning UV, optical, near-IR, Spitzer IR and Herschel far-IR is already in hand.

  19. Electron impact ionization of size selected hydrogen clusters (H2)N: ion fragment and neutral size distributions.

    PubMed

    Kornilov, Oleg; Toennies, J Peter

    2008-05-21

    Clusters consisting of normal H2 molecules, produced in a free jet expansion, are size selected by diffraction from a transmission nanograting prior to electron impact ionization. For each neutral cluster (H2)(N) (N=2-40), the relative intensities of the ion fragments Hn+ are measured with a mass spectrometer. H3+ is found to be the most abundant fragment up to N=17. With a further increase in N, the abundances of H3+, H5+, H7+, and H9+ first increase and, after passing through a maximum, approach each other. At N=40, they are about the same and more than a factor of 2 and 3 larger than for H11+ and H13+, respectively. For a given neutral cluster size, the intensities of the ion fragments follow a Poisson distribution. The fragmentation probabilities are used to determine the neutral cluster size distribution produced in the expansion at a source temperature of 30.1 K and a source pressure of 1.50 bar. The distribution shows no clear evidence of a magic number N=13 as predicted by theory and found in experiments with pure para-H2 clusters. The ion fragment distributions are also used to extract information on the internal energy distribution of the H3+ ions produced in the reaction H2+ + H2-->H3+ +H, which is initiated upon ionization of the cluster. The internal energy is assumed to be rapidly equilibrated and to determine the number of molecules subsequently evaporated. The internal energy distribution found in this way is in good agreement with data obtained in an earlier independent merged beam scattering experiment.

  20. The energy and stability of helium-related cluster in nickel: A study of molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Gong, Hengfeng; Wang, Chengbin; Zhang, Wei; Xu, Jian; Huai, Ping; Deng, Huiqiu; Hu, Wangyu

    2016-02-01

    Using molecular dynamics simulation, we investigated the energy and stability of helium-related cluster in nickel. All the binding energies of the He-related clusters are demonstrated to be positive and increase with the cluster sizes. Due to the pre-existed self-interstitial nickel atom, the trapping capability of vacancy to defects becomes weak. Besides, the minimum energy configurations of He-related clusters exhibit the very high symmetry in the local atomistic environment. And for the HeN and HeNV1SIA1 clusters, the average length of He-He bonds shortens, but it elongates for the HeNV1 clusters with helium cluster sizes. The helium-to-vacancy ratio plays a decisive role on the binding energies of HeNVM cluster. These results can provide some excellent clues to insight the initial stage of helium bubbles nucleation and growth in the Ni-based alloys for the Generation-IV Molten Salt Reactor.

  1. Sample size determination for GEE analyses of stepped wedge cluster randomized trials.

    PubMed

    Li, Fan; Turner, Elizabeth L; Preisser, John S

    2018-06-19

    In stepped wedge cluster randomized trials, intact clusters of individuals switch from control to intervention from a randomly assigned period onwards. Such trials are becoming increasingly popular in health services research. When a closed cohort is recruited from each cluster for longitudinal follow-up, proper sample size calculation should account for three distinct types of intraclass correlations: the within-period, the inter-period, and the within-individual correlations. Setting the latter two correlation parameters to be equal accommodates cross-sectional designs. We propose sample size procedures for continuous and binary responses within the framework of generalized estimating equations that employ a block exchangeable within-cluster correlation structure defined from the distinct correlation types. For continuous responses, we show that the intraclass correlations affect power only through two eigenvalues of the correlation matrix. We demonstrate that analytical power agrees well with simulated power for as few as eight clusters, when data are analyzed using bias-corrected estimating equations for the correlation parameters concurrently with a bias-corrected sandwich variance estimator. © 2018, The International Biometric Society.

  2. The quantum structure of anionic hydrogen clusters

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Yurtsever, E.

    2018-03-01

    A flexible and polarizable interatomic potential has been developed to model hydrogen clusters interacting with one hydrogen anion, (H2)nH-, in a broad range of sizes n = 1-54 and parametrized against coupled cluster quantum chemical calculations. Using path-integral molecular dynamics simulations at 1 K initiated from the putative classical global minima, the equilibrium structures are found to generally rely on icosahedral shells with the hydrogen molecules pointing toward the anion, producing geometric magic numbers at sizes n = 12, 32, and 44 that are in agreement with recent mass spectrometry measurements. The energetic stability of the clusters is also connected with the extent of vibrational delocalization, measured here by the fluctuations among inherent structures hidden in the vibrational wave function. As the clusters grow, the outer molecules become increasingly free to rotate, and strong finite size effects are also found between magic numbers, associated with more prominent vibrational delocalization. The effective icosahedral structure of the 44-molecule cluster is found to originate from quantum nuclear effects as well, the classical structure showing no particular symmetry.

  3. Cluster dynamics transcending chemical dynamics toward nuclear fusion

    PubMed Central

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-01-01

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 1015–1020 W·cm−2). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C4+(D+)4)n and (D+I22+)n at IM = 1018 W·cm−2, that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D2)n, (HT)n, (CD4)n, (DI)n, (CD3I)n, and (CH3I)n clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D2)n clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., 12C(P,γ)13N driven by CE of (CH3I)n clusters, were explored. PMID:16740666

  4. Cluster dynamics transcending chemical dynamics toward nuclear fusion.

    PubMed

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-07-11

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 10(15)-10(20) W.cm(-2)). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C(4+)(D(+))(4))(n) and (D(+)I(22+))(n) at I(M) = 10(18) W.cm(-2), that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D(2))(n), (HT)(n), (CD(4))(n), (DI)(n), (CD(3)I)(n), and (CH(3)I)(n) clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D(2))(n) clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., (12)C(P,gamma)(13)N driven by CE of (CH(3)I)(n) clusters, were explored.

  5. A DFT study of pure and lithium doped gold clusters

    NASA Astrophysics Data System (ADS)

    Rani, Babita

    2018-05-01

    First principles calculations on Aun and Aun-1Li (n=1-6) clusters are performed to understand the effect of size and composition on their structural and energy parameters. It has been found that binding energy increases continuously with increase in the size of pure Aun and doped Aun-1Li clusters and attains its maximum at n=6. Also, Li doping results in the improvement of relative stabilities of pure gold clusters, owing to higher bond strength (i.e. shorter bond length) of Au- Li bond as compared to Au-Au bonds. Moreover, Aun-1Li clusters are found to be more compact. Structural transformations are observed in case of gold clusters doped with Li atom which may affect their application in the field of catalysis.

  6. The Size Distribution Of Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Kuchner, U.; Ziegler, B.; Bamford, S.; Verdugo, M.; Haeussler, B.

    2017-06-01

    We establish a sample of 560 spectroscopically confirmed cluster members of MACS J1206.2- 0847 at z = 0.45 and utilize multi-wavelength and multi-component Sersic profile fitting to provide luminosities and sizes for the key structural components bulge and disk. While the difference between field and cluster galaxy properties are mostly due to a preference for cluster members to be early-type (quiescent, bulge-dominated), we see evidence for an outer disk fading and a sharp rise in the number of red disks with smaller effective radii at the tidally active cluster region around R200. Even though red disks are already virialized according to their velocity distribution, they are clearly not part of the old population found in the innermost region; they represent an important population of transitional objects in clusters.

  7. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries

    DOE PAGES

    Lu, Jun; Cheng, Lei; Lau, Kah Chun; ...

    2014-09-12

    Lithium–oxygen batteries have the potential needed for long-range electric vehicles, but the charge and discharge chemistries are complex and not well understood. The active sites on cathode surfaces and their role in electrochemical reactions in aprotic lithium–oxygen cells are difficult to ascertain because the exact nature of the sites is unknown. In this paper, we report the deposition of subnanometre silver clusters of exact size and number of atoms on passivated carbon to study the discharge process in lithium–oxygen cells. The results reveal dramatically different morphologies of the electrochemically grown lithium peroxide dependent on the size of the clusters. Thismore » dependence is found to be due to the influence of the cluster size on the formation mechanism, which also affects the charge process. Finally, the results of this study suggest that precise control of subnanometre surface structure on cathodes can be used as a means to improve the performance of lithium–oxygen cells.« less

  8. Solutions of Smoluchowski's coagulation equation at large cluster sizes

    NASA Astrophysics Data System (ADS)

    Van Dongen, P. G. J.

    1987-09-01

    In this paper we determine the behavior of solutions ck( t) of Smoluchowski's coagulation equation for cluster sizes much larger than the mean cluster size s( t). We consider in general the homogeneous rate constants K( i, j), behaving as K( i, j) ∼ iμjv as j → ∞, where special attention is paid to models with an exponent v = 1. The behavior of ck( t) is studied in three different limits: (i) the short-time limit ( t ↓ 0), with k ≫ 1, (ii) the limit k → ∞, with t > 0 fixed, and (iii) the scaling limit, with k ≫ s( t). The two most important conclusions of this paper are, first, that the detailed behavior of ck( t) at large cluster sizes ( k ≫ s( t)) may be drastically different for different rate constants K( i, j) and, secondly, that the results for ck( t), obtained in the limits (i), (ii) and (iii), are closely related.

  9. Hydrodynamic fractionation of finite size gold nanoparticle clusters.

    PubMed

    Tsai, De-Hao; Cho, Tae Joon; DelRio, Frank W; Taurozzi, Julian; Zachariah, Michael R; Hackley, Vincent A

    2011-06-15

    We demonstrate a high-resolution in situ experimental method for performing simultaneous size classification and characterization of functional gold nanoparticle clusters (GNCs) based on asymmetric-flow field flow fractionation (AFFF). Field emission scanning electron microscopy, atomic force microscopy, multi-angle light scattering (MALS), and in situ ultraviolet-visible optical spectroscopy provide complementary data and imagery confirming the cluster state (e.g., dimer, trimer, tetramer), packing structure, and purity of fractionated populations. An orthogonal analysis of GNC size distributions is obtained using electrospray-differential mobility analysis (ES-DMA). We find a linear correlation between the normalized MALS intensity (measured during AFFF elution) and the corresponding number concentration (measured by ES-DMA), establishing the capacity for AFFF to quantify the absolute number concentration of GNCs. The results and corresponding methodology summarized here provide the proof of concept for general applications involving the formation, isolation, and in situ analysis of both functional and adventitious nanoparticle clusters of finite size. © 2011 American Chemical Society

  10. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold.

    PubMed

    Boronat, Mercedes; Leyva-Pérez, Antonio; Corma, Avelino

    2014-03-18

    Particle size is one of the key parameters determining the unexpected catalytic activity of gold, with reactivity improving as the particle gets smaller. While this is valid in the 1-5 nm range, chemists are now investigating the influence of particle size in the subnanometer regime. This is due to recent advances in both characterization techniques and synthetic routes capable of stabilizing these size-controlled gold clusters. Researchers reported in early studies that small clusters or aggregates of a few atoms can be extremely active in some reactions, while 1-2 nm nanoparticles are catalytically more efficient for other reactions. Furthermore, the possibility that small gold clusters generated in situ from gold salts or complexes could be the real active species in homogeneous gold-catalyzed organic reactions should be considered. In this Account, we address two questions. First, what is the origin of the enhanced reactivity of gold clusters on the subnanometer scale? And second, how can we predict the reactions where small clusters should work better than larger nanoparticles? Both geometric factors and electronic or quantum size effects become important in the subnanometer regime. Geometric reasons play a key role in hydrogenation reactions, where only accessible low coordinated neutral Au atoms are needed to dissociate H2. The quantum size effects of gold clusters are important as well, as clusters formed by only a few atoms have discrete molecule-like electronic states and their chemical reactivity is related to interactions between the cluster's frontier molecular orbitals and those of the reactant molecules. From first principles calculations, we predict an enhanced reactivity of small planar clusters for reactions involving activation of CC multiple bonds in alkenes and alkynes through Lewis acid-base interactions, and a better catalytic performance of 3D gold nanoparticles in redox reactions involving bond dissociation by oxidative addition and new bond formation by reductive elimination. In oxidation reactions with molecular O2, initial dissociation of O2 into basic oxygen atoms would be more effectively catalyzed by gold nanoparticles of ∼1 nm diameter. In contrast, small planar clusters should be more active for reactions following a radical pathway involving peroxo or hydroperoxo intermediates. We have experimentally confirmed these predictions for a series of Lewis acid and oxidation reactions catalyzed by gold clusters and nanoparticles either in solution or supported on solid carriers.

  11. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001).

    PubMed

    Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    Au nano-clusters and nanoparticles (NPs) have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001) by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots.

  12. Emergence of jams in the generalized totally asymmetric simple exclusion process

    NASA Astrophysics Data System (ADS)

    Derbyshev, A. E.; Povolotsky, A. M.; Priezzhev, V. B.

    2015-02-01

    The generalized totally asymmetric exclusion process (TASEP) [J. Stat. Mech. (2012) P05014, 10.1088/1742-5468/2012/05/P05014] is an integrable generalization of the TASEP equipped with an interaction, which enhances the clustering of particles. The process interpolates between two extremal cases: the TASEP with parallel update and the process with all particles irreversibly merging into a single cluster moving as an isolated particle. We are interested in the large time behavior of this process on a ring in the whole range of the parameter λ controlling the interaction. We study the stationary state correlations, the cluster size distribution, and the large-time fluctuations of integrated particle current. When λ is finite, we find the usual TASEP-like behavior: The correlation length is finite; there are only clusters of finite size in the stationary state and current fluctuations belong to the Kardar-Parisi-Zhang universality class. When λ grows with the system size, so does the correlation length. We find a nontrivial transition regime with clusters of all sizes on the lattice. We identify a crossover parameter and derive the large deviation function for particle current, which interpolates between the case considered by Derrida-Lebowitz and a single-particle diffusion.

  13. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001)

    PubMed Central

    Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    Au nano-clusters and nanoparticles (NPs) have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001) by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots. PMID:26285135

  14. Production of Au clusters by plasma gas condensation and their incorporation in oxide matrixes by sputtering

    NASA Astrophysics Data System (ADS)

    Figueiredo, N. M.; Serra, R.; Manninen, N. K.; Cavaleiro, A.

    2018-05-01

    Gold clusters were produced by plasma gas condensation method and studied in great detail for the first time. The influence of argon flow, discharge power applied to the Au target and aggregation chamber length on the size distribution and deposition rate of Au clusters was evaluated. Au clusters with sizes between 5 and 65 nm were deposited with varying deposition rates and size dispersion curves. Nanocomposite Au-TiO2 and Au-Al2O3 coatings were then deposited by alternating sputtering. These coatings were hydrophobic and showed strong colorations due to the surface plasmon resonance effect. By simulating the optical properties of the nanocomposites it was possible to identify each individual contribution to the overall surface plasmon resonance signal. These coatings show great potential to be used as high performance localized surface plasmon resonance sensors or as robust self-cleaning decorative protective layers. The hybrid method used for depositing the nanocomposites offers several advantages over co-sputtering or thermal evaporation processes, since a broader range of particle sizes can be obtained (up to tens of nanometers) without the application of any thermal annealing treatments and the properties of clusters and matrix can be controlled separately.

  15. Modulation aware cluster size optimisation in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Sriram Naik, M.; Kumar, Vinay

    2017-07-01

    Wireless sensor networks (WSNs) play a great role because of their numerous advantages to the mankind. The main challenge with WSNs is the energy efficiency. In this paper, we have focused on the energy minimisation with the help of cluster size optimisation along with consideration of modulation effect when the nodes are not able to communicate using baseband communication technique. Cluster size optimisations is important technique to improve the performance of WSNs. It provides improvement in energy efficiency, network scalability, network lifetime and latency. We have proposed analytical expression for cluster size optimisation using traditional sensing model of nodes for square sensing field with consideration of modulation effects. Energy minimisation can be achieved by changing the modulation schemes such as BPSK, 16-QAM, QPSK, 64-QAM, etc., so we are considering the effect of different modulation techniques in the cluster formation. The nodes in the sensing fields are random and uniformly deployed. It is also observed that placement of base station at centre of scenario enables very less number of modulation schemes to work in energy efficient manner but when base station placed at the corner of the sensing field, it enable large number of modulation schemes to work in energy efficient manner.

  16. Kinetic energy distribution of multiply charged ions in Coulomb explosion of Xe clusters.

    PubMed

    Heidenreich, Andreas; Jortner, Joshua

    2011-02-21

    We report on the calculations of kinetic energy distribution (KED) functions of multiply charged, high-energy ions in Coulomb explosion (CE) of an assembly of elemental Xe(n) clusters (average size (n) = 200-2171) driven by ultra-intense, near-infrared, Gaussian laser fields (peak intensities 10(15) - 4 × 10(16) W cm(-2), pulse lengths 65-230 fs). In this cluster size and pulse parameter domain, outer ionization is incomplete∕vertical, incomplete∕nonvertical, or complete∕nonvertical, with CE occurring in the presence of nanoplasma electrons. The KEDs were obtained from double averaging of single-trajectory molecular dynamics simulation ion kinetic energies. The KEDs were doubly averaged over a log-normal cluster size distribution and over the laser intensity distribution of a spatial Gaussian beam, which constitutes either a two-dimensional (2D) or a three-dimensional (3D) profile, with the 3D profile (when the cluster beam radius is larger than the Rayleigh length) usually being experimentally realized. The general features of the doubly averaged KEDs manifest the smearing out of the structure corresponding to the distribution of ion charges, a marked increase of the KEDs at very low energies due to the contribution from the persistent nanoplasma, a distortion of the KEDs and of the average energies toward lower energy values, and the appearance of long low-intensity high-energy tails caused by the admixture of contributions from large clusters by size averaging. The doubly averaged simulation results account reasonably well (within 30%) for the experimental data for the cluster-size dependence of the CE energetics and for its dependence on the laser pulse parameters, as well as for the anisotropy in the angular distribution of the energies of the Xe(q+) ions. Possible applications of this computational study include a control of the ion kinetic energies by the choice of the laser intensity profile (2D∕3D) in the laser-cluster interaction volume.

  17. Colloidal heteroaggregation: a strategy to prepare composite materials

    NASA Astrophysics Data System (ADS)

    López-López, J. M.; Schmitt, A.; Moncho-Jordá, A.; Hidalgo-Álvarez, R.

    2009-01-01

    In this work, we make use of single-cluster light-scattering (SCLS) experiments and Brownian dynamics (BD) simulations in order to investigate the formation of binary clusters of oppositely-charged colloidal particles by heteroaggregation processes. Two parameters determinate the stability, size and structure of the clusters: the relative concentration of both species x and the range of the particle-particle interactions κa. SCLS experiments reveal that stable binary clusters arise in asymmetric systems when particle-particle interactions are long-ranged. These stable aggregates group in bell-shaped distributions that correspond to compact clusters with different orders, i.e., with a given number of minority particles. It is found that x controls the distribution of the clusters among the different orders and κa determine the average size of the clusters belonging to each order. Finally, BD simulations allow us to interpret all these results within the the frame of the classic Hogg-Healy-Fuersternau theory.

  18. Structural study of gold clusters.

    PubMed

    Xiao, Li; Tollberg, Bethany; Hu, Xiankui; Wang, Lichang

    2006-03-21

    Density functional theory (DFT) calculations were carried out to study gold clusters of up to 55 atoms. Between the linear and zigzag monoatomic Au nanowires, the zigzag nanowires were found to be more stable. Furthermore, the linear Au nanowires of up to 2 nm are formed by slightly stretched Au dimers. These suggest that a substantial Peierls distortion exists in those structures. Planar geometries of Au clusters were found to be the global minima till the cluster size of 13. A quantitative correlation is provided between various properties of Au clusters and the structure and size. The relative stability of selected clusters was also estimated by the Sutton-Chen potential, and the result disagrees with that obtained from the DFT calculations. This suggests that a modification of the Sutton-Chen potential has to be made, such as obtaining new parameters, in order to use it to search the global minima for bigger Au clusters.

  19. Coevolutionary dynamics with clustering behaviors on cyclic competition

    NASA Astrophysics Data System (ADS)

    Dong, Linrong; Yang, Guangcan

    2012-05-01

    We propose a dynamic model for describing clustering behaviors on a cyclic game, in which the same species form a cluster to compete. The rates of consuming the prey depend not only on the individual competing ability v, but also on the two interacting cluster’s sizes. The fragmentation and coagulation rates of the clusters are related to the cohesive strength among the individuals. A new parameter u is introduced to indicate the uniting degree. We find that the probability distribution of the clustering sizes is almost a power law in a large regime specified by the two parameters, which reflects the scale-free behavior in complex systems. In addition, the exponential magnitudes are mostly in the range of real social systems. Our simulation shows that clustering promotes biodiversity. At steady state, the amounts about the three species evolve tempestuously with asymmetric period; the aggregations about big size’s clusters to compete are obvious and on-off intermittence.

  20. Communication: Finite size correction in periodic coupled cluster theory calculations of solids.

    PubMed

    Liao, Ke; Grüneis, Andreas

    2016-10-14

    We present a method to correct for finite size errors in coupled cluster theory calculations of solids. The outlined technique shares similarities with electronic structure factor interpolation methods used in quantum Monte Carlo calculations. However, our approach does not require the calculation of density matrices. Furthermore we show that the proposed finite size corrections achieve chemical accuracy in the convergence of second-order Møller-Plesset perturbation and coupled cluster singles and doubles correlation energies per atom for insulating solids with two atomic unit cells using 2 × 2 × 2 and 3 × 3 × 3 k-point meshes only.

  1. A Binary System in the Hyades Cluster Hosting a Neptune-Sized Planet

    NASA Astrophysics Data System (ADS)

    Feinstein, Adina; Ciardi, David; Crossfield, Ian; Schlieder, Joshua; Petigura, Erik; David, Trevor J.; Bristow, Makennah; Patel, Rahul; Arnold, Lauren; Benneke, Björn; Christiansen, Jessie; Dressing, Courtney; Fulton, Benjamin; Howard, Andrew; Isaacson, Howard; Sinukoff, Evan; Thackeray, Beverly

    2018-01-01

    We report the discovery of a Neptune-size planet (Rp = 3.0Rearth) in the Hyades Cluster. The host star is in a binary system, comprising a K5V star and M7/8V star with a projected separation of 40 AU. The planet orbits the primary star with an orbital period of 17.3 days and a transit duration of 3 hours. The host star is bright (V = 11.2, J = 9.1) and so may be a good target for precise radial velocity measurements. The planet is the first Neptune-sized planet to be found orbiting in a binary system within an open cluster. The Hyades is the nearest star cluster to the Sun, has an age of 625-750 Myr, and forms one of the fundamental rungs in the distance ladder; understanding the planet population in such a well-studied cluster can help us understand and set contraints on the formation and evolution of planetary systems.

  2. Quantum structural fluctuation in para-hydrogen clusters revealed by the variational path integral method

    NASA Astrophysics Data System (ADS)

    Miura, Shinichi

    2018-03-01

    In this paper, the ground state of para-hydrogen clusters for size regime N ≤ 40 has been studied by our variational path integral molecular dynamics method. Long molecular dynamics calculations have been performed to accurately evaluate ground state properties. The chemical potential of the hydrogen molecule is found to have a zigzag size dependence, indicating the magic number stability for the clusters of the size N = 13, 26, 29, 34, and 39. One-body density of the hydrogen molecule is demonstrated to have a structured profile, not a melted one. The observed magic number stability is examined using the inherent structure analysis. We also have developed a novel method combining our variational path integral hybrid Monte Carlo method with the replica exchange technique. We introduce replicas of the original system bridging from the structured to the melted cluster, which is realized by scaling the potential energy of the system. Using the enhanced sampling method, the clusters are demonstrated to have the structured density profile in the ground state.

  3. Charge-doping and chemical composition-driven magnetocrystalline anisotropy in CoPt core-shell alloy clusters

    NASA Astrophysics Data System (ADS)

    Ruiz-Díaz, P.; Muñoz-Navia, M.; Dorantes-Dávila, J.

    2018-03-01

    Charge-doping together with 3 d-4 d alloying emerges as promising mechanisms for tailoring the magnetic properties of low-dimensional systems. Here, throughout ab initio calculations, we present a systematic overview regarding the impact of both electron(hole) charge-doping and chemical composition on the magnetocrystalline anisotropy (MA) of CoPt core-shell alloy clusters. By taking medium-sized Co n Pt m ( N = n + m = 85) octahedral-like alloy nanoparticles for some illustrative core-sizes as examples, we found enhanced MA energies and large induced spin(orbital) moments in Pt-rich clusters. Moreover, depending on the Pt-core-size, both in-plane and off-plane directions of magnetization are observed. In general, the MA of these binary compounds further stabilizes upon charge-doping. In addition, in the clusters with small MA, the doping promotes magnetization switching. Insights into the microscopical origins of the MA behavior are associated to changes in the electronic structure of the clusters. [Figure not available: see fulltext.

  4. Quantum structural fluctuation in para-hydrogen clusters revealed by the variational path integral method.

    PubMed

    Miura, Shinichi

    2018-03-14

    In this paper, the ground state of para-hydrogen clusters for size regime N ≤ 40 has been studied by our variational path integral molecular dynamics method. Long molecular dynamics calculations have been performed to accurately evaluate ground state properties. The chemical potential of the hydrogen molecule is found to have a zigzag size dependence, indicating the magic number stability for the clusters of the size N = 13, 26, 29, 34, and 39. One-body density of the hydrogen molecule is demonstrated to have a structured profile, not a melted one. The observed magic number stability is examined using the inherent structure analysis. We also have developed a novel method combining our variational path integral hybrid Monte Carlo method with the replica exchange technique. We introduce replicas of the original system bridging from the structured to the melted cluster, which is realized by scaling the potential energy of the system. Using the enhanced sampling method, the clusters are demonstrated to have the structured density profile in the ground state.

  5. The Effects of Environmental Characteristics on the Structure of Hospital Clusters.

    ERIC Educational Resources Information Center

    Fennell, Mary L.

    1980-01-01

    The population ecology view that variation in sets or clusters of organizations should be isomorphic with variation in cluster environment was used to explain structural variation among hospital clusters. Cluster differentiation seems to be casually affected by range of services, average hospital size, and the periodic closing of hospitals.…

  6. Somatotyping using 3D anthropometry: a cluster analysis.

    PubMed

    Olds, Tim; Daniell, Nathan; Petkov, John; David Stewart, Arthur

    2013-01-01

    Somatotyping is the quantification of human body shape, independent of body size. Hitherto, somatotyping (including the most popular method, the Heath-Carter system) has been based on subjective visual ratings, sometimes supported by surface anthropometry. This study used data derived from three-dimensional (3D) whole-body scans as inputs for cluster analysis to objectively derive clusters of similar body shapes. Twenty-nine dimensions normalised for body size were measured on a purposive sample of 301 adults aged 17-56 years who had been scanned using a Vitus Smart laser scanner. K-means Cluster Analysis with v-fold cross-validation was used to determine shape clusters. Three male and three female clusters emerged, and were visualised using those scans closest to the cluster centroid and a caricature defined by doubling the difference between the average scan and the cluster centroid. The male clusters were decidedly endomorphic (high fatness), ectomorphic (high linearity), and endo-mesomorphic (a mixture of fatness and muscularity). The female clusters were clearly endomorphic, ectomorphic, and the ecto-mesomorphic (a mixture of linearity and muscularity). An objective shape quantification procedure combining 3D scanning and cluster analysis yielded shape clusters strikingly similar to traditional somatotyping.

  7. Growth properties of protoplanetary dust in a long-term microgravity experiment

    NASA Astrophysics Data System (ADS)

    Brisset, Julie; Kothe, Stefan; Weidling, Rene; Heisselmann, Daniel; Blum, Juergen

    2014-11-01

    In the very first steps of the formation of a new planetary system, dust agglomerates and grows inside the protoplanetary disk that rotates around the newly formed star. In this disk, collisions between the dust particles, induced by interactions with the surrounding gas, lead to sticking. Aggregates start growing until their sizes and relative velocities are high enough for collisions to result in bouncing or fragmentation. As part of a series of microgravity experiments aiming at the investigation of the transitions between sticking, bouncing and fragmentation of colliding dust aggregates, the Suborbital Particle and Aggregation Experiment (SPACE) was designed, built and operated both at the drop tower in Bremen (August 2011) and on the REXUS 12 suborbital rocket (March 2012). The SPACE experiment allowed for the observation of collisions between aggregates of sizes of a few 100 µm that were composed of SiO2, a commonly used protoplanetary dust analog material. At velocities below 10 cm/s, clusters composed of a high number of aggregates (more than 10^4) formed and grew to sizes of up to 5 mm. The analysis of these collisions delivered valuable input to a current dust collision model, which maps the outcome of collisions depending on the aggregate sizes and their relative velocities. The sticking probability of sub-mm-sized dust aggregates could directly be measured during the suborbital rocket flight, over a velocity range covering the transition between the sticking and bouncing regimes. In addition, the evolution of clusters formed from sub-mm-sized aggregates during the different experiments could be observed and some of their intrinsic properties derived. The measured characteristics were the cluster fractal dimensions, the tensile strength of their outer aggregate layer and the effective surface energy of their constituents. Threshold energies for cluster restructuring and fragmentation could also be determined. All these cluster properties are important input parameters for molecular dynamics or numerical simulations investigating the behavior of macroscopic clusters (>1 mm in size) in protoplanetary disks.

  8. Nanoclusters as a new family of high temperature superconductors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Halder, Avik; Kresin, Vitaly V.

    2017-03-01

    Electrons in metal clusters organize into quantum shells, akin to atomic shells in the periodic table. Such nanoparticles are referred to as "superatoms". The electronic shell levels are highly degenerate giving rise to sharp peaks in the density of states, which can enable exceptionally strong electron pairing in certain clusters containing tens to hundreds of atoms. A spectroscopic investigation of size - resolved aluminum nanoclusters has revealed a sharp rise in the density of states near the Fermi level as the temperature decreases towards 100 K. The effect is especially prominent in the closed-shell "magic" cluster Al66 [1, 2]. The characteristics of this behavior are fully consistent with a pairing transition, implying a high temperature superconducting state with Tc < 100K. This value exceeds that of bulk aluminum by two orders of magnitude. As a new class of high-temperature superconductors, such metal nanocluster particles are promising building blocks for high-Tc materials, devices, and networks. ---------- 1. Halder, A., Liang, A., Kresin, V. V. A novel feature in aluminum cluster photoionization spectra and possibility of electron pairing at T 100K. Nano Lett 15, 1410 - 1413 (2015) 2. Halder, A., Kresin, V. V. A transition in the density of states of metal "superatom" nanoclusters and evidence for superconducting pairing at T 100K. Phys. Rev. B 92, 214506 (2015).

  9. Experimental fault characterization of a neural network

    NASA Technical Reports Server (NTRS)

    Tan, Chang-Huong

    1990-01-01

    The effects of a variety of faults on a neural network is quantified via simulation. The neural network consists of a single-layered clustering network and a three-layered classification network. The percentage of vectors mistagged by the clustering network, the percentage of vectors misclassified by the classification network, the time taken for the network to stabilize, and the output values are all measured. The results show that both transient and permanent faults have a significant impact on the performance of the measured network. The corresponding mistag and misclassification percentages are typically within 5 to 10 percent of each other. The average mistag percentage and the average misclassification percentage are both about 25 percent. After relearning, the percentage of misclassifications is reduced to 9 percent. In addition, transient faults are found to cause the network to be increasingly unstable as the duration of a transient is increased. The impact of link faults is relatively insignificant in comparison with node faults (1 versus 19 percent misclassified after relearning). There is a linear increase in the mistag and misclassification percentages with decreasing hardware redundancy. In addition, the mistag and misclassification percentages linearly decrease with increasing network size.

  10. The Au(n) cluster probe in secondary ion mass spectrometry: influence of the projectile size and energy on the desorption/ionization rate from biomolecular solids.

    PubMed

    Novikov, Alexey; Caroff, Martine; Della-Negra, Serge; Depauw, Joël; Fallavier, Mireille; Le Beyec, Yvon; Pautrat, Michèle; Schultz, J Albert; Tempez, Agnès; Woods, Amina S

    2005-01-01

    A Au-Si liquid metal ion source which produces Au(n) clusters over a large range of sizes was used to study the dependence of both the molecular ion desorption yield and the damage cross-section on the size (n = 1 to 400) and on the kinetic energy (E = 10 to 500 keV) of the clusters used to bombard bioorganic surfaces. Three pure peptides with molecular masses between 750 and 1200 Da were used without matrix. [M+H](+) and [M+cation](+) ion emission yields were enhanced by as much as three orders of magnitude when bombarding with Au(400) (4+) instead of monatomic Au(+), yet very little damage was induced in the samples. A 100-fold increase in the molecular ion yield was observed when the incident energy of Au(9) (+) was varied from 10 to 180 keV. Values of emission yields and damage cross-sections are presented as a function of cluster size and energy. The possibility to adjust both cluster size and energy, depending on the application, makes the analysis of biomolecules by secondary ion mass spectrometry an extremely powerful and flexible technique, particularly when combined with orthogonal time-of-flight mass spectrometry that then allows fast measurements using small primary ion beam currents. Copyright (c) 2005 John Wiley & Sons, Ltd.

  11. X-ray tomography studies on porosity and particle size distribution in cast in-situ Al-Cu-TiB{sub 2} semi-solid forged composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, James; Mandal, Animesh

    X-ray computed tomography (XCT) was used to characterise the internal microstructure and clustering behaviour of TiB{sub 2} particles in in-situ processed Al-Cu metal matrix composites prepared by casting method. Forging was used in semi-solid state to reduce the porosity and to uniformly disperse TiB{sub 2} particles in the composite. Quantification of porosity and clustering of TiB{sub 2} particles was evaluated for different forging reductions (30% and 50% reductions) and compared with an as-cast sample using XCT. Results show that the porosity content was decreased by about 40% due to semi-solid forging as compared to the as-cast condition. Further, XCT resultsmore » show that the 30% forging reduction resulted in greater uniformity in distribution of TiB{sub 2} particles within the composite compared to as-cast and the 50% forge reduction in semi-solid state. These results show that the application of forging in semi-solid state enhances particle distribution and reduces porosity formation in cast in-situ Al-Cu-TiB{sub 2} metal matrix composites. - Highlights: •XCT was used to visualise 3D internal structure of Al-Cu-TiB{sub 2} MMCs. •Al-Cu-TiB{sub 2} MMC was prepared by casting using flux assisted synthesis method. •TiB{sub 2} particles and porosity size distribution were evaluated. •Results show that forging in semi-solid condition decreases the porosity content and improve the particle dispersion in MMCs.« less

  12. Microcalorimetric, {sup 13}C NMR spectroscopic, and reaction kinetic studies of silica- and L-zeolite-supported platinum catalysts for n-hexane conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S.B.; Ouraipryvan, P.; Nair, H.A.

    Reaction kinetics measurement of n-hexane conversion over 4% Pt/SiO{sub 2} and 1% Pt/SiO{sub 2} and 1% Pt/K(Ba)-L catalysts were made at a pressure of 3 atm and temperatures from 698 to 750 K. The rates of benzene and methylcyclopentane formation decrease with time during reaction over Pt/SiO{sub 2}, while 1% Pt/K(Ba)-L does not deactivate significantly. Microcalorimetric measurements at 353 K show that the heat of carbon monoxide adsorption is the same on freshly reduced Pt/SiO{sub 2} and Pt/K(Ba)-L catalysts; however, carbonaceous species that accumulate on Pt/SiO{sub 2} during n-hexane conversion decrease the total number of adsorption sites and the numbermore » of sites that adsorb carbon monoxide strongly. The 1% Pt/K(Ba)-L catalyst retains the adsorptive properties of the freshly reduced catalyst. Nuclear magnetic resonance studies of {sup 13}CO adsorption show that cluster-sized platinum particles are more resistant to deactivation by self-poisoning reactions than larger platinum particles. The greater catalyst stability and higher steady-state activity of L-zeolite-supported platinum catalysts may be attributed to the ability of L-zeolite to stabilize cluster-sized particles under reaction conditions. Differences in dehydrocyclization activity between catalysts may be related to differences in the number of strong adsorption sites that are present under reaction conditions. 31 refs., 7 figs., 4 tabs.« less

  13. Assessment and application of clustering techniques to atmospheric particle number size distribution for the purpose of source apportionment

    NASA Astrophysics Data System (ADS)

    Salimi, F.; Ristovski, Z.; Mazaheri, M.; Laiman, R.; Crilley, L. R.; He, C.; Clifford, S.; Morawska, L.

    2014-06-01

    Long-term measurements of particle number size distribution (PNSD) produce a very large number of observations and their analysis requires an efficient approach in order to produce results in the least possible time and with maximum accuracy. Clustering techniques are a family of sophisticated methods which have been recently employed to analyse PNSD data, however, very little information is available comparing the performance of different clustering techniques on PNSD data. This study aims to apply several clustering techniques (i.e. K-means, PAM, CLARA and SOM) to PNSD data, in order to identify and apply the optimum technique to PNSD data measured at 25 sites across Brisbane, Australia. A new method, based on the Generalised Additive Model (GAM) with a basis of penalised B-splines, was proposed to parameterise the PNSD data and the temporal weight of each cluster was also estimated using the GAM. In addition, each cluster was associated with its possible source based on the results of this parameterisation, together with the characteristics of each cluster. The performances of four clustering techniques were compared using the Dunn index and silhouette width validation values and the K-means technique was found to have the highest performance, with five clusters being the optimum. Therefore, five clusters were found within the data using the K-means technique. The diurnal occurrence of each cluster was used together with other air quality parameters, temporal trends and the physical properties of each cluster, in order to attribute each cluster to its source and origin. The five clusters were attributed to three major sources and origins, including regional background particles, photochemically induced nucleated particles and vehicle generated particles. Overall, clustering was found to be an effective technique for attributing each particle size spectra to its source and the GAM was suitable to parameterise the PNSD data. These two techniques can help researchers immensely in analysing PNSD data for characterisation and source apportionment purposes.

  14. Assessment and application of clustering techniques to atmospheric particle number size distribution for the purpose of source apportionment

    NASA Astrophysics Data System (ADS)

    Salimi, F.; Ristovski, Z.; Mazaheri, M.; Laiman, R.; Crilley, L. R.; He, C.; Clifford, S.; Morawska, L.

    2014-11-01

    Long-term measurements of particle number size distribution (PNSD) produce a very large number of observations and their analysis requires an efficient approach in order to produce results in the least possible time and with maximum accuracy. Clustering techniques are a family of sophisticated methods that have been recently employed to analyse PNSD data; however, very little information is available comparing the performance of different clustering techniques on PNSD data. This study aims to apply several clustering techniques (i.e. K means, PAM, CLARA and SOM) to PNSD data, in order to identify and apply the optimum technique to PNSD data measured at 25 sites across Brisbane, Australia. A new method, based on the Generalised Additive Model (GAM) with a basis of penalised B-splines, was proposed to parameterise the PNSD data and the temporal weight of each cluster was also estimated using the GAM. In addition, each cluster was associated with its possible source based on the results of this parameterisation, together with the characteristics of each cluster. The performances of four clustering techniques were compared using the Dunn index and Silhouette width validation values and the K means technique was found to have the highest performance, with five clusters being the optimum. Therefore, five clusters were found within the data using the K means technique. The diurnal occurrence of each cluster was used together with other air quality parameters, temporal trends and the physical properties of each cluster, in order to attribute each cluster to its source and origin. The five clusters were attributed to three major sources and origins, including regional background particles, photochemically induced nucleated particles and vehicle generated particles. Overall, clustering was found to be an effective technique for attributing each particle size spectrum to its source and the GAM was suitable to parameterise the PNSD data. These two techniques can help researchers immensely in analysing PNSD data for characterisation and source apportionment purposes.

  15. Nuclear fusion driven by Coulomb explosion of homonuclear and heteronuclear deuterium- and tritium-containing clusters

    NASA Astrophysics Data System (ADS)

    Last, Isidore; Jortner, Joshua

    2001-12-01

    The ionization and Coulomb explosion of homonuclear Dn and Tn (n=959-8007) and heteronuclear (D2O)n and (T2O)n (n=459-2171) clusters in very intense (I=5×1014-5×1018 W cm-2) laser fields is studied using classical dynamics simulations. The efficiency of the d+d and d+t nuclear fusion driven by the Coulomb explosion (NFDCE) is explored. The d+d NFDCE of (D2O)n heteronuclear clusters is enhanced by energetic and kinematic effects for D+, while for (T2O)n heteronuclear clusters the kinetic energy of T+ is dominated by energetic effects. The cluster size dependence of the fusion reaction yield has been established. The heteronuclear clusters provide considerably higher d+d and d+t fusion reaction yields than the homonuclear clusters of the same size. The clusters consisting of both D and T atoms can provide highly efficient d+t fusion reactions.

  16. Significant Transient Mobility of Platinum Clusters via a Hot Precursor State on the Alumina Surface.

    PubMed

    Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide

    2016-11-17

    Relaxation dynamics of hot metal clusters on oxide surfaces play a crucial role in a variety of physical and chemical processes. However, their transient mobility has not been investigated as much as other systems such as atoms and molecules on metal surfaces due to experimental difficulties. To study the role of the transient mobility of clusters on the oxide surface, we investigated the initial adsorption process of size-selected Pt clusters on a thin Al 2 O 3 film. Soft-landing the size-selected clusters while suppressing the thermal migration resulted in the transient migration controlling the initial adsorption states as an isolated and aggregated cluster, as revealed using scanning tunneling microscopy. We demonstrate that transient migration significantly contributes to the initial cluster adsorption process; the cross section for aggregation is seven times larger than the expected value from geometrical considerations, indicating that metal clusters are highly mobile during a energy dissipation process on the oxide surface.

  17. Clustering and flow around a sphere moving into a grain cloud.

    PubMed

    Seguin, A; Lefebvre-Lepot, A; Faure, S; Gondret, P

    2016-06-01

    A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller spherical grains far from any boundaries and without gravity is presented with a non-smooth contact dynamics method. A dense granular "cluster" zone builds progressively around the moving sphere until a stationary regime appears with a constant upstream cluster size. The key point is that the upstream cluster size increases with the initial solid fraction [Formula: see text] but the cluster packing fraction takes an about constant value independent of [Formula: see text]. Although the upstream cluster size around the moving sphere diverges when [Formula: see text] approaches a critical value, the drag force exerted by the grains on the sphere does not. The detailed analysis of the local strain rate and local stress fields made in the non-parallel granular flow inside the cluster allows us to extract the local invariants of the two tensors: dilation rate, shear rate, pressure and shear stress. Despite different spatial variations of these invariants, the local friction coefficient μ appears to depend only on the local inertial number I as well as the local solid fraction, which means that a local rheology does exist in the present non-parallel flow. The key point is that the spatial variations of I inside the cluster do not depend on the sphere velocity and explore only a small range around the value one.

  18. Nanothermodynamics of iron clusters: Small clusters, icosahedral and fcc-cuboctahedral structures

    NASA Astrophysics Data System (ADS)

    Angelié, C.; Soudan, J.-M.

    2017-05-01

    The study of the thermodynamics and structures of iron clusters has been carried on, focusing on small clusters and initial icosahedral and fcc-cuboctahedral structures. Two combined tools are used. First, energy intervals are explored by the Monte Carlo algorithm, called σ-mapping, detailed in the work of Soudan et al. [J. Chem. Phys. 135, 144109 (2011), Paper I]. In its flat histogram version, it provides the classical density of states, gp(Ep), in terms of the potential energy of the system. Second, the iron system is described by a potential which is called "corrected EAM" (cEAM), explained in the work of Basire et al. [J. Chem. Phys. 141, 104304 (2014), Paper II]. Small clusters from 3 to 12 atoms in their ground state have been compared first with published Density Functional Theory (DFT) calculations, giving a complete agreement of geometries. The series of 13, 55, 147, and 309 atom icosahedrons is shown to be the most stable form for the cEAM potential. However, the 147 atom cluster has a special behaviour, since decreasing the energy from the liquid zone leads to the irreversible trapping of the cluster in a reproducible amorphous state, 7.38 eV higher in energy than the icosahedron. This behaviour is not observed at the higher size of 309 atoms. The heat capacity of the 55, 147, and 309 atom clusters revealed a pronounced peak in the solid zone, related to a solid-solid transition, prior to the melting peak. The corresponding series of 13, 55, and 147 atom cuboctahedrons has been compared, underscoring the unstability towards the icosahedral structure. This unstability occurs clearly in several steps for the 147 atom cluster, with a sudden transformation at a transition state. This illustrates the concerted icosahedron-cuboctahedron transformation of Buckminster Fuller-Mackay, which is calculated for the cEAM potential. Two other clusters of initial fcc structures with 24 and 38 atoms have been studied, as well as a 302 atom cluster. Each one relaxes towards a more stable structure without regularity. The 38 atom cluster exhibits a nearly glassy relaxation, through a cascade of six metastable states of long life. This behaviour, as that of the 147 atom cluster towards the amorphous state, shows that difficulties to reach ergodicity in the lower half of the solid zone are related to particular features of the potential energy landscape, and not necessarily to a too large size of the system. Comparisons of the cEAM iron system with published results about Lennard-Jones systems and DFT calculations are made. The results of the previous clusters have been combined with that of Paper II to plot the cohesive energy Ec and the melting temperature Tm in terms of the cluster atom number Nat. The Nat -1 /3 linear dependence of the melting temperature (Pawlow law) is observed again for Nat > 150. In contrast, for Nat < 150, the curve diverges strongly from the Pawlow law, giving it an overall V-shape, with a linear increase of Tm when Nat goes from 55 to 13 atoms. Surprisingly, the 38 atom cluster is anomalously below the overall curve.

  19. Modeling solute clustering in the diffusion layer around a growing crystal.

    PubMed

    Shiau, Lie-Ding; Lu, Yung-Fang

    2009-03-07

    The mechanism of crystal growth from solution is often thought to consist of a mass transfer diffusion step followed by a surface reaction step. Solute molecules might form clusters in the diffusion step before incorporating into the crystal lattice. A model is proposed in this work to simulate the evolution of the cluster size distribution due to the simultaneous aggregation and breakage of solute molecules in the diffusion layer around a growing crystal in the stirred solution. The crystallization of KAl(SO(4))(2)12H(2)O from aqueous solution is studied to illustrate the effect of supersaturation and diffusion layer thickness on the number-average degree of clustering and the size distribution of solute clusters in the diffusion layer.

  20. Competitive cluster growth in complex networks.

    PubMed

    Moreira, André A; Paula, Demétrius R; Costa Filho, Raimundo N; Andrade, José S

    2006-06-01

    In this work we propose an idealized model for competitive cluster growth in complex networks. Each cluster can be thought of as a fraction of a community that shares some common opinion. Our results show that the cluster size distribution depends on the particular choice for the topology of the network of contacts among the agents. As an application, we show that the cluster size distributions obtained when the growth process is performed on hierarchical networks, e.g., the Apollonian network, have a scaling form similar to what has been observed for the distribution of a number of votes in an electoral process. We suggest that this similarity may be due to the fact that social networks involved in the electoral process may also possess an underlining hierarchical structure.

  1. Clustering and phase transitions on a neutral landscape

    NASA Astrophysics Data System (ADS)

    Scott, Adam D.; King, Dawn M.; Marić, Nevena; Bahar, Sonya

    2013-06-01

    Recent computational studies have shown that speciation can occur under neutral conditions, i.e., when the simulated organisms all have identical fitness. These works bear comparison with mathematical studies of clustering on neutral landscapes in the context of branching and coalescing random walks. Here, we show that sympatric clustering/speciation can occur on a neutral landscape whose dimensions specify only the simulated organisms’ phenotypes. We demonstrate that clustering occurs not only in the case of assortative mating, but also in the case of asexual fission; it is not observed in the control case of random mating. We find that the population size and the number of clusters undergo a second-order non-equilibrium phase transition as the maximum mutation size is varied.

  2. Novel size-dependent chemistry within ionized van der Waals clusters of 1,1-difluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coolbaugh, M.T.; Peifer, W.R.; Garvey, J.F.

    1990-02-22

    The authors present in this paper evidence for size-dependent cluster chemistry occurring in van der Waals clusters of 1,1-difluoroethane. Clusters of C{sub 2}H{sub 4}F{sub 2} are produced from a neat adiabatic expansion and are ionized via electron impact. In addition to the anticipated fragment ions, we observe ions with the general empirical formula of M{sub n}H{sup +} (where n {ge} 4). The reactive process that generates this species cannot be rationalized in terms of intramolecular analogues of known gas-phase bimolecular ion-molecular reactions. Hence, we fell the production of this product cluster ion represents an additional example of a brand newmore » class of ion-molecule reactions that can only occur within the unique solvated environment of the cluster.« less

  3. Ab initio structures and polarizabilities of sodium clusters

    NASA Astrophysics Data System (ADS)

    Kronik, Leeor; Vasiliev, Igor; Jain, Manish; Chelikowsky, James R.

    2001-09-01

    We present quantitative ab initio calculations for Na cluster structures and polarizabilities, for all cluster sizes up to 20 atoms. Our calculations are performed by combining an ab initio core-corrected pseudopotential and a gradient-corrected density functional within a real space approach. We find the cluster bonding to be very floppy and catalog a host of low-energy quasi-degenerate isomers for all second-decade clusters. The existence of these isomers results in a band of polarizability values for each cluster size even at zero temperature. This eliminates any finer structure in the polarizability curve. We further show that the experimental polarizability values are consistently underestimated by calculations at zero temperature. By computing the effects of structure expansion and distortion due to a finite temperature we arrive at a quantitative agreement between theory and experiment.

  4. Energetic proton generation from intense Coulomb explosion of large-size ethane clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Song; Zhou Zili; Tian Ye

    An experimental investigation is performed on the interaction of intense femtosecond laser pulses at the intensity of 6 Multiplication-Sign 10{sup 17} W/cm{sup 2} (55 fs, 160 mJ at 800 nm) with ethane cluster (C{sub 2}H{sub 6}){sub N} jets prepared under the backing pressure of 30 bars at room temperature (298 K). The experiment results indicate the generation of energetic protons, whose average and maximum kinetic energies are 12.2 and 138.1 keV, respectively, by Coulomb explosion of (C{sub 2}H{sub 6}){sub N} clusters. (C{sub 2}H{sub 6}){sub N} clusters of 5 nm in radius are generated in the experiment, which are 1.7 timesmore » larger than that of (CH{sub 4}){sub N} clusters prepared in the same conditions. Empirical estimation suggests that (C{sub 2}H{sub 6}){sub N} clusters with radius of about 9.6 nm can be prepared at 80-bars backing pressure at 308 K. While (C{sub 2}H{sub 6}){sub N} clusters of so large size are irradiated by sufficiently intense laser pulses, the average energy of protons will be increased up to 50 keV. It is inferred that such large-size deuterated ethane clusters (C{sub 2}D{sub 6}){sub N} will favor more efficient neutron generation due to the significant increase of the D-D nuclear reaction cross section in laser-driven cluster nuclear fusion.« less

  5. Molecular simulation of flow-enhanced nucleation in n-eicosane melts under steady shear and uniaxial extension.

    PubMed

    Nicholson, David A; Rutledge, Gregory C

    2016-12-28

    Non-equilibrium molecular dynamics is used to study crystal nucleation of n-eicosane under planar shear and, for the first time, uniaxial extension. A method of analysis based on the mean first-passage time is applied to the simulation results in order to determine the effect of the applied flow field type and strain rate on the steady-state nucleation rate and a characteristic growth rate, as well as the effects on kinetic parameters associated with nucleation: the free energy barrier, critical nucleus size, and monomer attachment pre-factor. The onset of flow-enhanced nucleation (FEN) occurs at a smaller critical strain rate in extension as compared to shear. For strain rates larger than the critical rate, a rapid increase in the nucleation rate is accompanied by decreases in the free energy barrier and critical nucleus size, as well as an increase in chain extension. These observations accord with a mechanism in which FEN is caused by an increase in the driving force for crystallization due to flow-induced entropy reduction. At high applied strain rates, the free energy barrier, critical nucleus size, and degree of stretching saturate, while the monomer attachment pre-factor and degree of orientational order increase steadily. This trend is indicative of a significant diffusive contribution to the nucleation rate under intense flows that is correlated with the degree of global orientational order in a nucleating system. Both flow fields give similar results for all kinetic quantities with respect to the reduced strain rate, which we define as the ratio of the applied strain rate to the critical rate. The characteristic growth rate increases with increasing strain rate, and shows a correspondence with the nucleation rate that does not depend on the type of flow field applied. Additionally, a structural analysis of the crystalline clusters indicates that the flow field suppresses the compaction and crystalline ordering of clusters, leading to the formation of large articulated clusters under strong flow fields, and compact well-ordered clusters under weak flow fields.

  6. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Takahiro; Takao, Kyosuke; Yoshida, Takashi

    2013-11-08

    Highlights: •CODH-II harbors a unique [Ni-Fe-S] cluster. •We substituted the ligand residues of Cys{sup 295} and His{sup 261}. •Dramatic decreases in Ni content upon substitutions were observed. •All substitutions did not affect Fe-S clusters assembly. •CO oxidation activity was decreased by the substitutions. -- Abstract: A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His{sup 261}, which coordinates one of the Fe atoms with Cys{sup 295}, is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys{sup 295}, we constructed CODH-II variants. Ala substitution formore » the Cys{sup 295} substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys{sup 295} indirectly and His{sup 261} together affect Ni-coordination in the C-cluster.« less

  7. Diffusion of two-dimensional epitaxial clusters on metal (100) surfaces: Facile versus nucleation-mediated behavior and their merging for larger sizes

    NASA Astrophysics Data System (ADS)

    Lai, King C.; Liu, Da-Jiang; Evans, James W.

    2017-12-01

    For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal (100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN˜ N-β with β =3 /2 . However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N <9 ; (ii) slow nucleation-mediated diffusion with small β <1 for "perfect" sizes N = Np= L2 or L (L +1 ) , for L =3 ,4 , ... having unique ground-state shapes, for moderate sizes 9 ≤N ≤O (102) ; the same also applies for N =Np+3 , Np+ 4 , ... (iii) facile diffusion but with large β >2 for N =Np+1 and Np+2 also for moderate sizes 9 ≤N ≤O (102) ; (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲β <3 /2 , reflecting the quasifacetted structure of clusters, for larger N =O (102) to N =O (103) ; (v) classic scaling with β =3 /2 for very large N =O (103) and above. The specified size ranges apply for typical model parameters. We focus on the moderate size regime where we show that diffusivity cycles quasiperiodically from the slowest branch for Np+3 (not Np) to the fastest branch for Np+1 . Behavior is quantified by kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground-state and low-lying excited state cluster configurations, and also of kink populations.

  8. Diffusion of two-dimensional epitaxial clusters on metal (100) surfaces: Facile versus nucleation-mediated behavior and their merging for larger sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, King C.; Liu, Da -Jiang; Evans, James W.

    For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal(100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN ~ N -β with β = 3/2. However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N < 9; (ii) slow nucleation-mediated diffusion with small β < 1 for “perfect” sizes N = N p = L 2 or L(L+1), for L = 3, 4,… having unique ground state shapes, for moderate sizes 9 ≤ N ≤ O(10 2); the samemore » also applies for N = N p +3, N p + 4,… (iii) facile diffusion but with large β > 2 for N = Np + 1 and N p + 2 also for moderate sizes 9 ≤ N ≤ O(10 2); (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲ β < 3/2, reflecting the quasi-facetted structure of clusters, for larger N = O(10 2) to N = O(10 3); and (v) classic scaling with β = 3/2 for very large N = O(103) and above. The specified size ranges apply for typical model parameters. We focus on the moderate size regime where show that diffusivity cycles quasi-periodically from the slowest branch for N p + 3 (not Np) to the fastest branch for Np + 1. Behavior is quantified by Kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back-correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground state and low-lying excited state cluster configurations, and also of kink populations.« less

  9. Diffusion of two-dimensional epitaxial clusters on metal (100) surfaces: Facile versus nucleation-mediated behavior and their merging for larger sizes

    DOE PAGES

    Lai, King C.; Liu, Da -Jiang; Evans, James W.

    2017-12-05

    For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal(100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN ~ N -β with β = 3/2. However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N < 9; (ii) slow nucleation-mediated diffusion with small β < 1 for “perfect” sizes N = N p = L 2 or L(L+1), for L = 3, 4,… having unique ground state shapes, for moderate sizes 9 ≤ N ≤ O(10 2); the samemore » also applies for N = N p +3, N p + 4,… (iii) facile diffusion but with large β > 2 for N = Np + 1 and N p + 2 also for moderate sizes 9 ≤ N ≤ O(10 2); (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲ β < 3/2, reflecting the quasi-facetted structure of clusters, for larger N = O(10 2) to N = O(10 3); and (v) classic scaling with β = 3/2 for very large N = O(103) and above. The specified size ranges apply for typical model parameters. We focus on the moderate size regime where show that diffusivity cycles quasi-periodically from the slowest branch for N p + 3 (not Np) to the fastest branch for Np + 1. Behavior is quantified by Kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back-correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground state and low-lying excited state cluster configurations, and also of kink populations.« less

  10. Comparisons of fish species traits from small streams to large rivers

    USGS Publications Warehouse

    Goldstein, R.M.; Meador, M.R.

    2004-01-01

    To examine the relations between fish community function and stream size, we classified 429 lotic freshwater fish species based on multiple categories within six species traits: (1) substrate preference, (2) geomorphic preference, (3) trophic ecology, (4) locomotion morphology, (5) reproductive strategy, and (6) stream size preference. Stream size categories included small streams, small, medium, and large rivers, and no size preference. The frequencies of each species trait category were determined for each stream size category based on life history information from the literature. Cluster analysis revealed the presence of covarying groups of species trait categories. One cluster (RUN) included the traits of planktivore and herbivore feeding ecology, migratory reproductive behavior and broadcast spawning, preferences for main-channel habitats, and a lack of preferences for substrate type. The frequencies of classifications for the RUN cluster varied significantly across stream size categories (P = 0.009), being greater for large rivers than for small streams and rivers. Another cluster (RIFFLE) included the traits of invertivore feeding ecology, simple nester reproductive behavior, a preference for riffles, and a preference for bedrock, boulder, and cobble-rubble substrate. No significant differences in the frequency of classifications among stream size categories were detected for the RIFFLE cluster (P = 0.328). Our results suggest that fish community function is structured by large-scale differences in habitat and is different for large rivers than for small streams and rivers. Our findings support theoretical predictions of variation in species traits among stream reaches based on ecological frameworks such as landscape filters, habitat templates, and the river continuum concept. We believe that the species trait classifications presented here provide an opportunity for further examination of fish species' relations to physical, chemical, and biological factors in lotic habitats ranging from small streams to large rivers.

  11. Size-selective reactivity of subnanometer Ag 4 and Ag 16 clusters on a TiO 2 surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Po-Tuan; Tyo, Eric C.; Hayashi, Michitoshi

    Size-selected Ag 4 and Ag 16 clusters on a titania surface have been studied for their potential in CO oxidation using theoretical calculations and X-ray absorption near edge spectroscopy. The first peak at the measured Ag K-edge of Ag 16@TiO 2 is more prominent in air than in carbon monoxide environment, but no variation was found between the spectra of Ag 4@TiO 2 in air and in carbon monoxide environments. Density functional theory calculations show a preference for molecular oxygen adsorption for Ag 4@TiO 2 and that for a dissociative one on Ag 16@TiO 2, while carbon monoxide reactions withmore » adsorbed oxygen reduced the Ag 16@TiO 2 cluster. The dissociated oxygen atoms increased the oxidation state of Ag 16 cluster and resulted in the prominent first peak in Ag K-edge spectrum in quasi-particle theory calculations, with the subsequent carbon monoxide oxidation reversing the character of Ag K-edge spectrum associated with the reduction of the cluster. Finally, the results provide insight into the size selectivity of supported subnanometer silver clusters in their interactions with oxygen and carbon monoxide, with implications on the cluster catalytic properties in oxidative reactions.« less

  12. GPI-anchored proteins are confined in subdiffraction clusters at the apical surface of polarized epithelial cells

    PubMed Central

    Paladino, Simona; Lebreton, Stéphanie; Lelek, Mickaël; Riccio, Patrizia; De Nicola, Sergio; Zimmer, Christophe

    2017-01-01

    Spatio-temporal compartmentalization of membrane proteins is critical for the regulation of diverse vital functions in eukaryotic cells. It was previously shown that, at the apical surface of polarized MDCK cells, glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are organized in small cholesterol-independent clusters of single GPI-AP species (homoclusters), which are required for the formation of larger cholesterol-dependent clusters formed by multiple GPI-AP species (heteroclusters). This clustered organization is crucial for the biological activities of GPI-APs; hence, understanding the spatio-temporal properties of their membrane organization is of fundamental importance. Here, by using direct stochastic optical reconstruction microscopy coupled to pair correlation analysis (pc-STORM), we were able to visualize and measure the size of these clusters. Specifically, we show that they are non-randomly distributed and have an average size of 67 nm. We also demonstrated that polarized MDCK and non-polarized CHO cells have similar cluster distribution and size, but different sensitivity to cholesterol depletion. Finally, we derived a model that allowed a quantitative characterization of the cluster organization of GPI-APs at the apical surface of polarized MDCK cells for the first time. Experimental FRET (fluorescence resonance energy transfer)/FLIM (fluorescence-lifetime imaging microscopy) data were correlated to the theoretical predictions of the model. PMID:29046391

  13. Size-selective reactivity of subnanometer Ag 4 and Ag 16 clusters on a TiO 2 surface

    DOE PAGES

    Chen, Po-Tuan; Tyo, Eric C.; Hayashi, Michitoshi; ...

    2017-03-08

    Size-selected Ag 4 and Ag 16 clusters on a titania surface have been studied for their potential in CO oxidation using theoretical calculations and X-ray absorption near edge spectroscopy. The first peak at the measured Ag K-edge of Ag 16@TiO 2 is more prominent in air than in carbon monoxide environment, but no variation was found between the spectra of Ag 4@TiO 2 in air and in carbon monoxide environments. Density functional theory calculations show a preference for molecular oxygen adsorption for Ag 4@TiO 2 and that for a dissociative one on Ag 16@TiO 2, while carbon monoxide reactions withmore » adsorbed oxygen reduced the Ag 16@TiO 2 cluster. The dissociated oxygen atoms increased the oxidation state of Ag 16 cluster and resulted in the prominent first peak in Ag K-edge spectrum in quasi-particle theory calculations, with the subsequent carbon monoxide oxidation reversing the character of Ag K-edge spectrum associated with the reduction of the cluster. Finally, the results provide insight into the size selectivity of supported subnanometer silver clusters in their interactions with oxygen and carbon monoxide, with implications on the cluster catalytic properties in oxidative reactions.« less

  14. Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments

    NASA Astrophysics Data System (ADS)

    Raghunathan, Srinivasan; Patil, Sanjaykumar; Baxter, Eric J.; Bianchini, Federico; Bleem, Lindsey E.; Crawford, Thomas M.; Holder, Gilbert P.; Manzotti, Alessandro; Reichardt, Christian L.

    2017-08-01

    We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, we examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment's beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.

  15. Communication: Diverse nanoscale cluster dynamics: Diffusion of 2D epitaxial clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, King C.; Evans, James W.; Liu, Da -Jiang

    The dynamics of nanoscale clusters can be distinct from macroscale behavior described by continuum formalisms. For diffusion of 2D clusters of N atoms in homoepitaxial systems mediated by edge atom hopping, macroscale theory predicts simple monotonic size scaling of the diffusion coefficient, D N ~ N –β, with β = 3/2. However, modeling for nanoclusters on metal(100) surfaces reveals that slow nucleation-mediated diffusion displaying weak size scaling β < 1 occurs for “perfect” sizes N p = L 2 and L(L+1) for integer L = 3,4,… (with unique square or near-square ground state shapes), and also for N p+3, Nmore » p+4,…. In contrast, fast facile nucleation-free diffusion displaying strong size scaling β ≈ 2.5 occurs for sizes N p+1 and N p+2. D N versus N oscillates strongly between the slowest branch (for N p+3) and the fastest branch (for N p+1). All branches merge for N = O(10 2), but macroscale behavior is only achieved for much larger N = O(10 3). Here, this analysis reveals the unprecedented diversity of behavior on the nanoscale.« less

  16. Communication: Diverse nanoscale cluster dynamics: Diffusion of 2D epitaxial clusters

    DOE PAGES

    Lai, King C.; Evans, James W.; Liu, Da -Jiang

    2017-11-27

    The dynamics of nanoscale clusters can be distinct from macroscale behavior described by continuum formalisms. For diffusion of 2D clusters of N atoms in homoepitaxial systems mediated by edge atom hopping, macroscale theory predicts simple monotonic size scaling of the diffusion coefficient, D N ~ N –β, with β = 3/2. However, modeling for nanoclusters on metal(100) surfaces reveals that slow nucleation-mediated diffusion displaying weak size scaling β < 1 occurs for “perfect” sizes N p = L 2 and L(L+1) for integer L = 3,4,… (with unique square or near-square ground state shapes), and also for N p+3, Nmore » p+4,…. In contrast, fast facile nucleation-free diffusion displaying strong size scaling β ≈ 2.5 occurs for sizes N p+1 and N p+2. D N versus N oscillates strongly between the slowest branch (for N p+3) and the fastest branch (for N p+1). All branches merge for N = O(10 2), but macroscale behavior is only achieved for much larger N = O(10 3). Here, this analysis reveals the unprecedented diversity of behavior on the nanoscale.« less

  17. Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh

    PubMed Central

    Bi, Qifang; Azman, Andrew S.; Satter, Syed Moinuddin; Khan, Azharul Islam; Ahmed, Dilruba; Riaj, Altaf Ahmed; Gurley, Emily S.; Lessler, Justin

    2016-01-01

    Close interpersonal contact likely drives spatial clustering of cases of cholera and diarrhea, but spatial clustering of risk factors may also drive this pattern. Few studies have focused specifically on how exposures for disease cluster at small spatial scales. Improving our understanding of the micro-scale clustering of risk factors for cholera may help to target interventions and power studies with cluster designs. We selected sets of spatially matched households (matched-sets) near cholera case households between April and October 2013 in a cholera endemic urban neighborhood of Tongi Township in Bangladesh. We collected data on exposures to suspected cholera risk factors at the household and individual level. We used intra-class correlation coefficients (ICCs) to characterize clustering of exposures within matched-sets and households, and assessed if clustering depended on the geographical extent of the matched-sets. Clustering over larger spatial scales was explored by assessing the relationship between matched-sets. We also explored whether different exposures tended to appear together in individuals, households, and matched-sets. Household level exposures, including: drinking municipal supplied water (ICC = 0.97, 95%CI = 0.96, 0.98), type of latrine (ICC = 0.88, 95%CI = 0.71, 1.00), and intermittent access to drinking water (ICC = 0.96, 95%CI = 0.87, 1.00) exhibited strong clustering within matched-sets. As the geographic extent of matched-sets increased, the concordance of exposures within matched-sets decreased. Concordance between matched-sets of exposures related to water supply was elevated at distances of up to approximately 400 meters. Household level hygiene practices were correlated with infrastructure shown to increase cholera risk. Co-occurrence of different individual level exposures appeared to mostly reflect the differing domestic roles of study participants. Strong spatial clustering of exposures at a small spatial scale in a cholera endemic population suggests a possible role for highly targeted interventions. Studies with cluster designs in areas with strong spatial clustering of exposures should increase sample size to account for the correlation of these exposures. PMID:26866926

  18. Reversible cluster formation in concentrated monoclonal antibody solutions

    NASA Astrophysics Data System (ADS)

    Godfrin, P. Douglas; Porcar, Lionel; Falus, Peter; Zarraga, Isidro; Wagner, Norm; Liu, Yun

    2015-03-01

    Protein cluster formation in solution is of fundamental interest for both academic research and industrial applications. Recently, industrial scientists are also exploring the effect of reversible cluster formation on biopharmaceutical processing and delivery. However, despite of its importance, the understanding of protein clusters at concentrated solutions remains scientifically very challenging. Using the neutron spin echo technique to study the short time dynamics of proteins in solutions, we have recently systematically studied cluster formation in a few monoclonal antibody (mAb) solutions and their relation with solution viscosity. We show that the existence of anisotropic attraction can cause the formation of finite sized clusters, which increases the solution viscosity. Interestingly, once clusters form at relatively low concentrations, the average size of clusters in solutions remains almost constant over a wide range of concentrations similar to that of micelle formation. For a different mAb we have also investigated, the attraction is mostly induced by hydrophobic patches. As a result, these mAbs form large clusters with loosely linked proteins. In both cases, the formation of clusters all increases the solution viscosity substantially. However, due to different physics origins of cluster formation, solutions viscosities for these two different types of mAbs need to be controlled by different ways.

  19. Infrared spectroscopic probing of dimethylamine clusters in an Ar matrix.

    PubMed

    Li, Siyang; Kjaergaard, Henrik G; Du, Lin

    2016-02-01

    Amines have many atmospheric sources and their clusters play an important role in aerosol nucleation processes. Clusters of a typical amine, dimethylamine (DMA), of different sizes were measured with matrix isolation IR (infrared) and NIR (near infrared) spectroscopy. The NIR vibrations are more separated and therefore it is easier to distinguish different sizes of clusters in this region. The DMA clusters, up to DMA tetramer, have been optimized using density functional methods, and the geometries, binding energies and thermodynamic properties of DMA clusters were obtained. The computed frequencies and intensities of NH-stretching vibrations in the DMA clusters were used to interpret the experimental spectra. We have identified the fundamental transitions of the bonded NH-stretching vibration and the first overtone transitions of the bonded and free NH-stretching vibration in the DMA clusters. Based on the changes in vibrational intensities during the annealing processes, the growth of clusters was clearly observed. The results of annealing processes indicate that DMA molecules tend to form larger clusters with lower energies under matrix temperatures, which is also supported by the calculated reaction energies of cluster formation. Copyright © 2015. Published by Elsevier B.V.

  20. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    PubMed

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  1. Geospatial Distribution and Clustering of Chlamydia trachomatis in Communities Undergoing Mass Azithromycin Treatment

    PubMed Central

    Yohannan, Jithin; He, Bing; Wang, Jiangxia; Greene, Gregory; Schein, Yvette; Mkocha, Harran; Munoz, Beatriz; Quinn, Thomas C.; Gaydos, Charlotte; West, Sheila K.

    2014-01-01

    Purpose. We detected spatial clustering of households with Chlamydia trachomatis infection (CI) and active trachoma (AT) in villages undergoing mass treatment with azithromycin (MDA) over time. Methods. We obtained global positioning system (GPS) coordinates for all households in four villages in Kongwa District, Tanzania. Every 6 months for a period of 42 months, our team examined all children under 10 for AT, and tested for CI with ocular swabbing and Amplicor. Villages underwent four rounds of annual MDA. We classified households as having ≥1 child with CI (or AT) or having 0 children with CI (or AT). We calculated the difference in the K function between households with and without CI or AT to detect clustering at each time point. Results. Between 918 and 991 households were included over the 42 months of this analysis. At baseline, 306 households (32.59%) had ≥1 child with CI, which declined to 73 households (7.50%) at 42 months. We observed borderline clustering of households with CI at 12 months after one round of MDA and statistically significant clustering with growing cluster sizes between 18 and 24 months after two rounds of MDA. Clusters diminished in size at 30 months after 3 rounds of MDA. Active trachoma did not cluster at any time point. Conclusions. This study demonstrates that CI clusters after multiple rounds of MDA. Clusters of infection may increase in size if the annual antibiotic pressure is removed. The absence of growth after the three rounds suggests the start of control of transmission. PMID:24906862

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria, E-mail: Valeria.Molinero@utah.edu

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition ismore » amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.« less

  3. Size resolved infrared spectroscopy of Na(CH3OH)n (n = 4-7) clusters in the OH stretching region: unravelling the interaction of methanol clusters with a sodium atom and the emergence of the solvated electron.

    PubMed

    Forck, Richard M; Pradzynski, Christoph C; Wolff, Sabine; Ončák, Milan; Slavíček, Petr; Zeuch, Thomas

    2012-03-07

    Size resolved IR action spectra of neutral sodium doped methanol clusters have been measured using IR excitation modulated photoionisation mass spectroscopy. The Na(CH(3)OH)(n) clusters were generated in a supersonic He seeded expansion of methanol by subsequent Na doping in a pick-up cell. A combined analysis of IR action spectra, IP evolutions and harmonic predictions of IR spectra (using density functional theory) of the most stable structures revealed that for n = 4, 5 structures with an exterior Na atom showing high ionisation potentials (IPs) of ~4 eV dominate, while for n = 6, 7 clusters with lower IPs (~3.2 eV) featuring fully solvated Na atoms and solvated electrons emerge and dominate the IR action spectra. For n = 4 simulations of photoionisation spectra using an ab initio MD approach confirm the dominance of exterior structures and explain the previously reported appearance IP of 3.48 eV by small fractions of clusters with partly solvated Na atoms. Only for this cluster size a shift in the isomer composition with cluster temperature has been observed, which may be related to kinetic stabilisation of less Na solvated clusters at low temperatures. Features of slow fragmentation dynamics of cationic Na(+)(CH(3)OH)(6) clusters have been observed for the photoionisation near the adiabatic limit. This finding points to the relevance of previously proposed non-vertical photoionisation dynamics of this system.

  4. Optimal design of a plot cluster for monitoring

    Treesearch

    Charles T. Scott

    1993-01-01

    Traveling costs incurred during extensive forest surveys make cluster sampling cost-effective. Clusters are specified by the type of plots, plot size, number of plots, and the distance between plots within the cluster. A method to determine the optimal cluster design when different plot types are used for different forest resource attributes is described. The method...

  5. Probability of coincidental similarity among the orbits of small bodies - I. Pairing

    NASA Astrophysics Data System (ADS)

    Jopek, Tadeusz Jan; Bronikowska, Małgorzata

    2017-09-01

    Probability of coincidental clustering among orbits of comets, asteroids and meteoroids depends on many factors like: the size of the orbital sample searched for clusters or the size of the identified group, it is different for groups of 2,3,4,… members. Probability of coincidental clustering is assessed by the numerical simulation, therefore, it depends also on the method used for the synthetic orbits generation. We have tested the impact of some of these factors. For a given size of the orbital sample we have assessed probability of random pairing among several orbital populations of different sizes. We have found how these probabilities vary with the size of the orbital samples. Finally, keeping fixed size of the orbital sample we have shown that the probability of random pairing can be significantly different for the orbital samples obtained by different observation techniques. Also for the user convenience we have obtained several formulae which, for given size of the orbital sample can be used to calculate the similarity threshold corresponding to the small value of the probability of coincidental similarity among two orbits.

  6. Changes in tropical precipitation cluster size distributions under global warming

    NASA Astrophysics Data System (ADS)

    Neelin, J. D.; Quinn, K. M.

    2016-12-01

    The total amount of precipitation integrated across a tropical storm or other precipitation feature (contiguous clusters of precipitation exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance. To establish baseline behavior in current climate, the probability distribution of cluster sizes from multiple satellite retrievals and National Center for Environmental Prediction (NCEP) reanalysis is compared to those from Coupled Model Intercomparison Project (CMIP5) models and the Geophysical Fluid Dynamics Laboratory high-resolution atmospheric model (HIRAM-360 and -180). With the caveat that a minimum rain rate threshold is important in the models (which tend to overproduce low rain rates), the models agree well with observations in leading properties. In particular, scale-free power law ranges in which the probability drops slowly with increasing cluster size are well modeled, followed by a rapid drop in probability of the largest clusters above a cutoff scale. Under the RCP 8.5 global warming scenario, the models indicate substantial increases in probability (up to an order of magnitude) of the largest clusters by the end of century. For models with continuous time series of high resolution output, there is substantial spread on when these probability increases for the largest precipitation clusters should be detectable, ranging from detectable within the observational period to statistically significant trends emerging only in the second half of the century. Examination of NCEP reanalysis and SSMI/SSMIS series of satellite retrievals from 1979 to present does not yield reliable evidence of trends at this time. The results suggest improvements in inter-satellite calibration of the SSMI/SSMIS retrievals could aid future detection.

  7. A Lagrangian analysis of cold cloud clusters and their life cycles with satellite observations

    PubMed Central

    Esmaili, Rebekah Bradley; Tian, Yudong; Vila, Daniel Alejandro; Kim, Kyu-Myong

    2018-01-01

    Cloud movement and evolution signify the complex water and energy transport in the atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi-coherent cluster objects enables study of their evolution which can complement climate model simulations and enhance satellite retrieval algorithms, where there are large gaps between overpasses. Using an area-overlap cluster tracking algorithm, in this study we examine the trajectories, horizontal extent, and brightness temperature variations of millions of individual cloud clusters over their lifespan, from infrared satellite observations at 30-minute, 4-km resolution, for a period of 11 years. We found that the majority of cold clouds were both small and short-lived and that their frequency and location are influenced by El Niño. More importantly, this large sample of individually tracked clouds shows their horizontal size and temperature evolution. Longer lived clusters tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lived clusters. On average, clusters with this lag also exhibited a greater rainfall contribution than those where minimum temperature and maximum size stages occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster development over Africa and the Indian subcontinent, we observed differences in the local timing of the maximum occurrence at different life cycle stages. Over land there was a strong diurnal peak in the afternoon while over the ocean there was a semi-diurnal peak composed of longer-lived clusters in the early morning hours and shorter-lived clusters in the afternoon. Building on regional specific work, this study provides a long-term, high-resolution, and global survey of object-based cloud characteristics. PMID:29744257

  8. Isotope exchange in reactions between D2O and size-selected ionic water clusters containing pyridine, H+ (pyridine)m(H2O)n.

    PubMed

    Ryding, Mauritz Johan; Zatula, Alexey S; Andersson, Patrik Urban; Uggerud, Einar

    2011-01-28

    Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.

  9. A Lagrangian analysis of cold cloud clusters and their life cycles with satellite observations.

    PubMed

    Esmaili, Rebekah Bradley; Tian, Yudong; Vila, Daniel Alejandro; Kim, Kyu-Myong

    2016-10-16

    Cloud movement and evolution signify the complex water and energy transport in the atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi-coherent cluster objects enables study of their evolution which can complement climate model simulations and enhance satellite retrieval algorithms, where there are large gaps between overpasses. Using an area-overlap cluster tracking algorithm, in this study we examine the trajectories, horizontal extent, and brightness temperature variations of millions of individual cloud clusters over their lifespan, from infrared satellite observations at 30-minute, 4-km resolution, for a period of 11 years. We found that the majority of cold clouds were both small and short-lived and that their frequency and location are influenced by El Niño. More importantly, this large sample of individually tracked clouds shows their horizontal size and temperature evolution. Longer lived clusters tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lived clusters. On average, clusters with this lag also exhibited a greater rainfall contribution than those where minimum temperature and maximum size stages occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster development over Africa and the Indian subcontinent, we observed differences in the local timing of the maximum occurrence at different life cycle stages. Over land there was a strong diurnal peak in the afternoon while over the ocean there was a semi-diurnal peak composed of longer-lived clusters in the early morning hours and shorter-lived clusters in the afternoon. Building on regional specific work, this study provides a long-term, high-resolution, and global survey of object-based cloud characteristics.

  10. A Lagrangian Analysis of Cold Cloud Clusters and Their Life Cycles With Satellite Observations

    NASA Technical Reports Server (NTRS)

    Esmaili, Rebekah Bradley; Tian, Yudong; Vila, Daniel Alejandro; Kim, Kyu-Myong

    2016-01-01

    Cloud movement and evolution signify the complex water and energy transport in the atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi coherent cluster objects enables study of their evolution which can complement climate model simulations and enhance satellite retrieval algorithms, where there are large gaps between overpasses. Using an area-overlap cluster tracking algorithm, in this study we examine the trajectories, horizontal extent, and brightness temperature variations of millions of individual cloud clusters over their lifespan, from infrared satellite observations at 30-minute, 4-km resolution, for a period of 11 years. We found that the majority of cold clouds were both small and short-lived and that their frequency and location are influenced by El Nino. More importantly, this large sample of individually tracked clouds shows their horizontal size and temperature evolution. Longer lived clusters tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lived clusters. On average, clusters with this lag also exhibited a greater rainfall contribution than those where minimum temperature and maximum size stages occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster development over Africa and the Indian subcontinent, we observed differences in the local timing of the maximum occurrence at different life cycle stages. Over land there was a strong diurnal peak in the afternoon while over the ocean there was a semi-diurnal peak composed of longer-lived clusters in the early morning hours and shorter-lived clusters in the afternoon. Building on regional specific work, this study provides a long-term, high-resolution, and global survey of object-based cloud characteristics.

  11. Ion-Size-Dependent Formation of Mixed Titanium/Lanthanide Oxo Clusters.

    PubMed

    Artner, Christine; Kronister, Stefan; Czakler, Matthias; Schubert, Ulrich

    2014-11-01

    The mixed-metal oxo clusters LnTi 4 O 3 (O i Pr) 2 (OMc) 11 (Ln = La, Ce; OMc = methacrylate), Ln 2 Ti 6 O 6 (OMc) 18 (HO i Pr) (Ln = La, Ce, Nd, Sm) and Ln 2 Ti 4 O 4 (OMc) 14 (HOMc) 2 (Ln = Sm, Eu, Gd, Ho) have been synthesized from titanium isopropoxide, the corresponding lanthanide acetate and methacrylic acid. The type of cluster obtained strongly depends on the size of the lanthanide ion.

  12. Archimedean Synthesis and Magic Numbers: "Sizing" Giant Molybdenum-Oxide-Based Molecular Spheres of the Keplerate Type.

    PubMed

    Müller; Sarkar; Shah; Bögge; Schmidtmann; Kögerler; Hauptfleisch; Trautwein; Schünemann

    1999-11-02

    Pythagorean harmony can be found in the spherical polyoxometalate clusters described here (see illustration for an example of a structure), since there are interesting relationships between the so-called magic numbers (12, 32, 42, 72, 132) relevant for spherical viruses and the number of the building blocks in the cluster. The size of these Keplerate clusters can be tailored by varying the type of connections between the pentagons by means of different spacers.

  13. Hybrid Assembly of Different-Sized Supertetrahedral Clusters into a Unique Non-Interpenetrated Mn-In-S Open Framework with Large Cavity.

    PubMed

    Wang, Hongxiang; Wang, Wei; Hu, Dandan; Luo, Min; Xue, Chaozhuang; Li, Dongsheng; Wu, Tao

    2018-06-04

    Reported here is a unique crystalline semiconductor open-framework material built from the large-sized supertetrahedral T4 and T5 clusters with the Mn-In-S compositions. The hybrid assembly between T4 and T5 clusters by sharing terminal μ 2 -S 2- is for the first time observed among the cluster-based chalcogenide open frameworks. Such three-dimensional structure displays non-interpenetrated diamond-type topology with extra-large nonframework volume of 82%. Moreover, ion exchange, CO 2 adsorption, as well as photoluminescence properties of the title compound are also investigated.

  14. Quantum-Size Dependence of the Energy for Vacancy Formation in Charged Small Metal Clusters. Drop Model

    NASA Astrophysics Data System (ADS)

    Pogosov, V. V.; Reva, V. I.

    2018-04-01

    Self-consistent computations of the monovacancy formation energy are performed for Na N , Mg N , and Al N (12 < N ≤ 168) spherical clusters in the drop model for stable jelly. Scenarios of the Schottky vacancy formation and "bubble vacancy blowing" are considered. It is shown that the asymptotic behavior of the size dependences of the energy for the vacancy formation by these two mechanisms is different and the difference between the characteristics of a charged and neutral cluster is entirely determined by the difference between the ionization potentials of clusters and the energies of electron attachment to them.

  15. Structures and stabilities of Al(n) (+), Al(n), and Al(n) (-) (n=13-34) clusters.

    PubMed

    Aguado, Andrés; López, José M

    2009-02-14

    Putative global minima of neutral (Al(n)) and singly charged (Al(n) (+) and Al(n) (-)) aluminum clusters with n=13-34 have been located from first-principles density functional theory structural optimizations. The calculations include spin polarization and employ the generalized gradient approximation of Perdew, Burke, and Ernzerhof to describe exchange-correlation electronic effects. Our results show that icosahedral growth dominates the structures of aluminum clusters for n=13-22. For n=23-34, there is a strong competition between decahedral structures, relaxed fragments of a fcc crystalline lattice (some of them including stacking faults), and hexagonal prismatic structures. For such small cluster sizes, there is no evidence yet for a clear establishment of the fcc atomic packing prevalent in bulk aluminum. The global minimum structure for a given number of atoms depends significantly on the cluster charge for most cluster sizes. An explicit comparison is made with previous theoretical results in the range n=13-30: for n=19, 22, 24, 25, 26, 29, 30 we locate a lower energy structure than previously reported. Sizes n=32, 33 are studied here for the first time by an ab initio technique.

  16. Cluster-size entropy in the Axelrod model of social influence: Small-world networks and mass media

    NASA Astrophysics Data System (ADS)

    Gandica, Y.; Charmell, A.; Villegas-Febres, J.; Bonalde, I.

    2011-10-01

    We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy Sc, which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the Sc(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait qc and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.

  17. Radiation-induced microcrystal shape change as a mechanism of wasteform degradation

    NASA Astrophysics Data System (ADS)

    Ojovan, Michael I.; Burakov, Boris E.; Lee, William E.

    2018-04-01

    Experiments with actinide-containing insulating wasteforms such as devitrified glasses containing 244Cm, Ti-pyrochlore, single-phase La-monazite, Pu-monazite ceramics, Eu-monazite and zircon single crystals containing 238Pu indicate that mechanical self-irradiation-induced destruction may not reveal itself for many years (even decades). The mechanisms causing these slowly-occurring changes remain unknown therefore in addition to known mechanisms of wasteform degradation such as matrix swelling and loss of solid solution we have modelled the damaging effects of electrical fields induced by the decay of radionuclides in clusters embedded in a non-conducting matrix. Three effects were important: (i) electric breakdown; (ii) cluster shape change due to dipole interaction, and (iii) cluster shape change due to polarisation interaction. We reveal a critical size of radioactive clusters in non-conducting matrices so that the matrix material can be damaged if clusters are larger than this critical size. The most important parameters that control the matrix integrity are the radioactive cluster (inhomogeneity) size, specific radioactivity, and effective matrix electrical conductivity. We conclude that the wasteform should be as homogeneous as possible and even electrically conductive to avoid potential damage caused by electrical charges induced by radioactive decay.

  18. Cluster-size entropy in the Axelrod model of social influence: small-world networks and mass media.

    PubMed

    Gandica, Y; Charmell, A; Villegas-Febres, J; Bonalde, I

    2011-10-01

    We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy S(c), which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the S(c)(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait q(c) and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.

  19. Relaxation pathways of photoexcited iodide-methanol clusters: a computational investigation.

    PubMed

    Mak, Chun C; Peslherbe, Gilles H

    2014-06-26

    Upon photoexcitation of iodide-methanol clusters, I(-)(CH3OH)n, to a charge-transfer-to-solvent (CTTS) excited state, extensive relaxation was found to occur, accompanied by a convoluted modulation of the stability of the excited electron, which ultimately decreases substantially. In order to develop a molecular-level understanding of the relaxation processes of CTTS excited I(-)(CH3OH)n, high-level quantum chemical calculations are first used to investigate the ground, excited, and ionized states of I(-)(CH3OH)n (n = 2). Because of the relatively small size of I(-)(CH3OH)2, it was possible to characterize the contributions of solvent-solvent interactions to the stability of the CTTS excited cluster relative to dissociation into methanol, iodine, and a free electron, which exhibits a substantial dependence on the cluster geometric configuration. Ab initio molecular dynamics simulations of CTTS excited I(-)(CH3OH)3 are then performed to shed some light onto the nature of the relaxation pathways involved in the modulation of the stability of the excited electron in larger clusters. Simulation results suggest that separation of I and (CH3OH)3(-) accompanied by solvent reorganization in the latter can initially stabilize the excited electron, while gradual cluster fragmentation to I, (CH3OH)2(-), and CH3OH ultimately destabilizes it. This work shows, for the first time, that the inability of small CTTS excited I(-)(CH3OH)n to retain a solvated electron may be attributed to the limited hydrogen-bonding capacity of CH3OH, which increases the propensity for fragmentation to smaller clusters with lower excess-electron binding energies, and highlights the critical role of intricate molecular interactions in the electron solvation process.

  20. Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.

    Molecular dynamics simulations have been used to generate a comprehensive database of surviving defects due to displacement cascades in bulk tungsten. Twenty-one data points of primary knock-on atom (PKA) energies ranging from 100 eV (sub-threshold energy) to 100 keV (~780 × Ed, where Ed = 128 eV is the average displacement threshold energy) have been completed at 300 K, 1025 K and 2050 K. Within this range of PKA energies, two regimes of power-law energy-dependence of the defect production are observed. A distinct power-law exponent characterizes the number of Frenkel pairs produced within each regime. The two regimes intersect atmore » a transition energy which occurs at approximately 250 × Ed. The transition energy also marks the onset of the formation of large self-interstitial atom (SIA) clusters (size 14 or more). The observed defect clustering behavior is asymmetric, with SIA clustering increasing with temperature, while the vacancy clustering decreases. This asymmetry increases with temperature such that at 2050 K (~0.5 Tm) practically no large vacancy clusters are formed, meanwhile large SIA clusters appear in all simulations. The implication of such asymmetry on the long-term defect survival and damage accumulation is discussed. In addition, <100> {110} SIA loops are observed to form directly in the highest energy cascades, while vacancy <100> loops are observed to form at the lowest temperature and highest PKA energies, although the appearance of both the vacancy and SIA loops with Burgers vector of <100> type is relatively rare.« less

Top