Sample records for decreasing test temperature

  1. The stress corrosion resistance and the cryogenic temperature mechanical properties of annealed Nitronic 60 bar material

    NASA Technical Reports Server (NTRS)

    Montano, J. W. L.

    1977-01-01

    Ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion properties of annealed, straightened, and centerless ground Nitronic 60 stainless steel alloy bar material are presented. The mechanical properties of longitudinal specimens were evaluated at test temperatures from ambient to liquid hydrogen. The tensile test data indicated increasing strength with decreasing temperature to -196 C. Below liquid nitrogen temperature the smooth tensile and notched tensile strengths decreased slightly while the elongation and reduction of area decreased drastically. The Charpy V-notched impact energy decreased steadily with decreasing test temperature. Stress corrosion tests were performed on longitudinal tensile specimens and transverse C-ring specimens exposed to: alternate immersion in a 3.5% NaCl bath; humidity cabinet; and a 5% salt spray atmosphere. The longitudinal tensile specimens experienced no corrosive attack. Approximately 3/4 of the transverse C-rings exposed to alternate immersion and to salt spray experienced a pitting attack on the top and bottom ends. Additional stress corrosion tests were performed on transverse tensile specimens. No failures occurred in the 90% stressed specimens exposed for 90 days in the alternate immersion and salt spray environments

  2. A mechanical property and stress corrosion evaluation of Custom 455 stainless steel alloy

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1972-01-01

    The mechanical and stress corrosion properties are presented of vacuum melted Custom 455 stainless steel alloy bar (1.0-inch diameter) and sheet (0.083-inch thick) material aged at 950 F, 1000 F, and 1050 F. Low temperature mechanical properties were determined at temperatures of 80 F, 0 F, -100 F, and -200 F. For all three aging treatments, the ultimate tensile and 0.2 percent offset yield strengths increased with decreasing test temperatures while the elongation held fairly constant down to -100 F and decreased at -200 F. Reduction in Area decreased moderately with decreasing temperature for the longitudinal round (0.250-inch diameter) specimens. Notched tensile strength and charpy V-notched impact strength decreased with decreasing test temperature. For all three aging treatments, no failures were observed in the unstressed specimens or the specimens stressed to 50, 75, and 100 percent of their yield strengths for 180 days of alternate immersion testing in a 3.5 percent NaCl solution. As indicated by the results of tensile tests performed after alternate immersion testing, the mechanical properties of Custom 455 alloy were not affected by stress or exposure under the conditions of the evaluation.

  3. The stress corrosion resistance and the cryogenic temperature mechanical properties of hot rolled Nitronic 32 bar material

    NASA Technical Reports Server (NTRS)

    Montano, J. W. L.

    1977-01-01

    The ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion properties of hot rolled and centerless ground Nitronic 32 stainless steel bar material are presented. The mechanical properties of longitudinal specimens were evaluated at test temperatures from ambient to liquid hydrogen. The tensile test data indicated increasing smooth tensile strength with decreasing temperature to liquid hydrogen temperature. However, below -200 F (-129.0 C) the notched tensile strength decreased slightly and below -320 F (-196.0 C) the decrease was significant. The elongation and reduction of area decreased drastically at temperatures below -200 F (-129.0 C). The Charpy V-notched impact energy decreased steadily with decreasing test temperature. Stress corrosion tests were performed on longitudinal tensile specimens stressed to 0, 75, and 90 percent of the 0.2 percent yield strength and on transverse 'C'-ring specimens stressed to 75 and 90 percent of the yield strength and exposed to: alternate immersion in a 3.5 percent NaCl bath, humidity cabinet environment, and a 5 percent salt spray atmosphere. The longitudinal tensile specimens experienced no corrosive attack; however, the 'C'-rings exposed to the alternate immersion and to the salt spray experienced some shallow etching and pitting, respectively. Small cracks appeared in two of the 'C'-rings after one month exposure to the salt spray.

  4. Biofeedback-assisted relaxation training to decrease test anxiety in nursing students.

    PubMed

    Prato, Catherine A; Yucha, Carolyn B

    2013-01-01

    Nursing students experiencing debilitating test anxiety may be unable to demonstrate their knowledge and have potential for poor academic performance. A biofeedback-assisted relaxation training program was created to reduce test anxiety. Anxiety was measured using Spielberger's Test Anxiety Inventory and monitoring peripheral skin temperature, pulse, and respiration rates during the training. Participants were introduced to diaphragmatic breathing, progressive muscle relaxation, and autogenic training. Statistically significant changes occurred in respiratory rates and skin temperatures during the diaphragmatic breathing session; respiratory rates and peripheral skin temperatures during progressive muscle relaxation session; respiratory and pulse rates, and peripheral skin temperatures during the autogenic sessions. No statistically significant difference was noted between the first and second TAI. Subjective test anxiety scores of the students did not decrease by the end of training. Autogenic training session was most effective in showing a statistically significant change in decreased respiratory and pulse rates and increased peripheral skin temperature.

  5. Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Xiong, Yi; He, Tiantian; Lu, Yan; Ren, Fengzhang; Volinsky, Alex A.; Cao, Wei

    2018-03-01

    Uniaxial tensile tests were conducted on AISI 316LN austenitic stainless steel from - 40 to 300 °C at a rate of 0.5 mm/min. Microstructure and mechanical properties of the deformed steel were investigated by optical, scanning and transmission electron microscopies, x-ray diffraction, and microhardness testing. The yield strength, ultimate tensile strength, elongation, and microhardness increase with the decrease in the test temperature. The tensile fracture morphology has the dimple rupture feature after low-temperature deformations and turns to a mixture of transgranular fracture and dimple fracture after high-temperature ones. The dominating deformation microstructure evolves from dislocation tangle/slip bands to large deformation twins/slip bands with temperature decrease. The deformation-induced martensite transformation can only be realized at low temperature, and its quantity increases with the decrease in the temperature.

  6. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    PubMed

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  7. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    PubMed Central

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-01-01

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature. PMID:29278398

  8. Study on energy saving effect of IHX on vehicle air conditioning system

    NASA Astrophysics Data System (ADS)

    Li, Huguang; Tong, Lin; Xu, Ming; Wei, Wangrui; Zhao, Meng; Wang, Long

    2018-02-01

    In this paper, the performance of Internal Heat Exchanger (IHX) air conditioning system for R134a is investigated in bench test and vehicle test. Comparison for cooling capacity and energy consumption between IHX air conditioning system and traditional tube air conditioning system are conducted. The suction temperature and discharge temperature of compressor is also recorded. The results show that IHX air conditioning system has higher cooling capacity, the vent temperature decrease 2.3 °C in idle condition. But the suction temperature and discharge temperature of compressor increase 10°C. IHX air conditioning system has lower energy consumption than traditional tube air conditioning system. Under the experimental conditions in this paper, the application of IHX can significantly reduce the energy consumption of air conditioning system. At 25°C of environment temperature, AC system energy consumption decrease 14%, compressor energy consumption decrease 16%. At 37°C of environment temperature, AC system energy consumption decrease 16%, compressor energy consumption decrease 13%.

  9. The Stress Corrosion Resistance and the Cryogenic Temperature Mechanical Behavior of 18-3 Mn (Nitronic 33) Stainless Steel Parent and Welded Material

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1976-01-01

    The ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion results of 18-3 Mn (Nitronic 33)stainless steel, longitudinal and transverse, as received and as welded (TIG) material specimens manufactured from 0.063 inch thick sheet material, were described. The tensile test results indicate an increase in ultimate tensile and yield strengths with decreasing temperature. The elongation remained fairly constant to -200 F, but below that temperature the elongation decreased to less than 6.0% at liquid hydrogen temperature. The notched tensile strength (NTS) for the parent metal increased with decreasing temperature to liquid nitrogen temperature. Below -320 F the NTS decreased rapidly. The notched/unnotched (N/U) tensile ratio of the parent material specimens remained above 0.9 from ambient to -200 F, and decreased to approximately 0.65 and 0.62, respectively, for the longitudinal and transverse directions at liquid hydrogen temperature. After 180 days of testing, only those specimens exposed to the salt spray indicated pitting and some degradation of mechanical properties.

  10. Material Damping Experiments at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Levine, Marie; White, Christopher

    2003-01-01

    A unique experimental facility has been designed to measure damping of materials at cryogenic temperatures. The test facility pays special attention to removing other sources of damping in the measurement by avoiding frictional interfaces, decoupling the test specimen from the support system, and by using a non-contacting measurement device; Damping data is obtained for materials (AI, GrEp, Be, Fused Quartz), strain amplitudes (less than 10-6 ppm), frequencies (20Hz-330Hz) and temperatures (20K-293K) relevant to future precision optical space missions. The test data shows a significant decrease in viscous damping at cryogenic temperatures and can be as low as 10-4%, but the amount of the damping decrease is a function of frequency and material. Contrary to the other materials whose damping monotonically decreased with temperature, damping of Fused Quartz increased substantially at cryo, after reaching a minimum at around l50 K. The damping is also shown to be insensitive to strain for low strain levels. At room temperatures, the test data correlates well to the analytical predictions of the Zener damping model. Discrepancies at cryogenic temperatures between the model predictions and the test data are observed.

  11. Determination of Material Properties Near the Glass Transition Temperature for an Isogrid Boom

    NASA Technical Reports Server (NTRS)

    Blandino, Joseph R.; Woods-Vedeler, Jessica A. (Technical Monitor)

    2002-01-01

    Experiments were performed and results obtained to determine the temperature dependence of the modulus of elasticity for a thermoplastic isogrid tube. The isogrid tube was subjected to axial tensile loads of 0-100 lbf and strain was measured at room and elevated temperatures of 100, 120, 140, 160, 180, 190, and 200 F. These were based on tube manufacturer specifying an incorrect glass transition temperature of 210 F. Two protocols were used. For the first protocol the tube was brought to temperature and a tensile test performed. The tube was allowed to cool between tests. For the second protocol the tube was ramped to the desired test temperature and held. A tensile test was performed and the tube temperature ramped to the next test temperature. The second protocol spanned the entire test range. The strain rate was constant at 0.008 in/min. Room temperature tests resulted in the determination of an average modulus of 2.34 x 106 Psi. The modulus decreased above 100 F. At 140 F the modulus had decreased by 7.26%. The two test protocols showed good agreement below 160 F. At this point the glass transition temperature had been exceeded. The two protocols were not repeated because the tube failed.

  12. An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Sung; You, Won-Hyo; Yoo, Chang-Hyuk; Kim, Kyung-Su; Kim, Yooil

    2013-12-01

    Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low (-100 °C) and cryogenic (-163 °C) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083- O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

  13. An evaluation of surface properties and frictional forces generated from Al-Mo-Ni coating on piston ring

    NASA Astrophysics Data System (ADS)

    Karamış, M. B.; Yıldızlı, K.; Çakırer, H.

    2004-05-01

    Surface properties of the Al-Mo-Ni coating plasma sprayed on the piston ring material and the frictional forces obtained by testing carried out under different loads, temperatures and frictional conditions were evaluated. Al-Mo-Ni composite material was deposited on the AISI 440C test steel using plasma spraying method. The coated and uncoated samples were tested by being exposed to frictional testing under dry and lubricated conditions. Test temperatures of 25, 100, 200, and 300 °C and loads of 83, 100, 200, and 300 N were applied during the tests in order to obtain the frictional response of the coating under conditions similar to real piston ring/cylinder friction conditions. Gray cast iron was used as a counterface material. All the tests were carried out with a constant sliding speed of 1 m/s. The properties of the coating were determined by using EDX and SEM analyses. Hardness distribution on the cross-section of the coating was also determined. In addition, the variations of the surface roughness after testing with test temperatures and loads under dry and lubricated conditions were recorded versus sliding distance. It was determined that the surface roughness increased with increasing loads. It increased with temperature up to 200 °C and then decreased at 300 °C under dry test conditions. Under lubricated conditions, the roughness decreased under the loads of 100 N and then increased. The roughness decreased at 200 °C but below and above this point it increased with the test temperature. Frictional forces observed under dry and lubricated test conditions increased with load at running-in period of the sliding. The steady-state period was then established with the sliding distance as a normal situation. However, the frictional forces were generally lower at a higher test temperature than those at a lower test temperature. Surprisingly, the test temperature of 200 °C was a critical point for frictional forces and surface roughness.

  14. Effect of air temperature and relative humidity at various fuel-air ratios on exhaust emissions on a per-mode basis of an Avco Lycoming 0-320 DIAD light aircraft engine. Volume 2: Individual data points

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempke, E. R.

    1976-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points.

  15. Low Temperature Mechanical Testing of Carbon-Fiber/Epoxy-Resin Composite Materials

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Biss, Emily J.

    1996-01-01

    The use of cryogenic fuels (liquid oxygen and liquid hydrogen) in current space transportation vehicles, in combination with the proposed use of composite materials in such applications, requires an understanding of how such materials behave at cryogenic temperatures. In this investigation, tensile intralaminar shear tests were performed at room, dry ice, and liquid nitrogen temperatures to evaluate the effect of temperature on the mechanical response of the IM7/8551-7 carbon-fiber/epoxy-resin system. Quasi-isotropic lay-ups were also tested to represent a more realistic lay-up. It was found that the matrix became both increasingly resistant to microcracking and stiffer with decreasing temperature. A marginal increase in matrix shear strength with decreasing temperature was also observed. Temperature did not appear to affect the integrity of the fiber-matrix bond.

  16. Forming-Limit Diagrams for Magnesium AZ31B and ZEK100 Alloy Sheets at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Antoniswamy, Aravindha R.; Carpenter, Alexander J.; Carter, Jon T.; Hector, Louis G.; Taleff, Eric M.

    2013-11-01

    Modern design and manufacturing methodologies for magnesium (Mg) sheet panels require formability data for use in computer-aided design and computer-aided engineering tools. To meet this need, forming-limit diagrams (FLDs) for AZ31B and ZEK100 wrought Mg alloy sheets were developed at elevated temperatures for strain rates of 10-3 and 10-2 s-1. The elevated temperatures investigated range from 250 to 450 °C for AZ31B and 300 to 450 °C for ZEK100. The FLDs were generated using data from uniaxial tension, biaxial bulge, and plane-strain bulge tests, all carried out until specimen rupture. The unique aspect of this study is that data from materials with consistent processing histories were produced using consistent testing techniques across all test conditions. The ZEK100 alloy reaches greater major true strains at rupture, by up to 60%, than the AZ31B alloy for all strain paths at all temperatures and strain rates examined. Formability limits decrease only slightly with a decrease in temperature, less than 30% decrease for AZ31B and less than 35% decrease for ZEK100 as the temperature decreases from 450 to 300 °C. This suggests that forming processes at 250-300 °C are potentially viable for manufacturing complex Mg components.

  17. Tensile test of pressureless-sintered silicon nitride at elevated temperature

    NASA Technical Reports Server (NTRS)

    Matsusue, K.; Fujisawa, Y.; Takahara, K.

    1985-01-01

    Uniaxial tensile strength tests of pressureless sintered silicon nitride were carried out in air at temperatures ranging from room temperature up to 1600 C. Silicon nitrides containing Y2O3, Al2O3, Al2O3-MgO, or MgO-CeO2 additives were tested. The results show that the composition of the additive used influences the strength characteristics of the silicon nitride. The tensile strength rapidly decreased at temperatures above 1000 C for the materials containing MgO as the additive and above 1000 C for the material with Y2O3. When the temperature increased to as high as 1300 C, the strength decreased to about 10 percent of the room temperature strength in each case. Observations of the fracture origin and of the crack propagation on the fracture surfaces are discussed.

  18. Toxicity of chromium (VI) to two mussels and an amphipod in water-only exposures with or without a co-stressor of elevated temperature, zinc, or nitrate

    USGS Publications Warehouse

    Wang, Ning; Kunz, James L.; Ivey, Chris D.; Ingersoll, Christopher G.; Barnhart, M. Christopher; Glidewell, Elizabeth A.

    2017-01-01

    The objectives of the present study were to develop methods for propagating western pearlshell (Margaritifera falcata) for laboratory toxicity testing and evaluate acute and chronic toxicity of chromium VI [Cr(VI)] to the pearlshell and a commonly tested mussel (fatmucket, Lampsilis siliquoidea at 20 °C or in association with a co-stressor of elevated temperature (27 °C), zinc (50 µg Zn/L), or nitrate (35 mg NO3/L). A commonly tested invertebrate (amphipod, Hyalella azteca) also was tested in chronic exposures. Newly transformed pearlshell (~1 week old) were successfully cultured and tested in acute 96 h Cr exposures (control survival 100%). However, the grow-out of juveniles in culture for chronic toxicity testing was less successful and chronic 28-day Cr toxicity tests started with 4 month-old pearlshell failed due to low control survival (39–68%). Acute median effect concentration (EC50) for the pearlshell (919 µg Cr/L) and fatmucket (456 µg Cr/L) tested at 20 °C without a co-stressor decreased by a factor of > 2 at elevated temperature but did not decrease at elevated Zn or elevated NO3. Chronic 28-day Cr tests were completed successfully with the fatmucket and amphipod (control survival 83–98%). Chronic maximum acceptable toxicant concentration (MATC) for fatmucket at 20 °C (26 µg Cr/L) decreased by a factor of 2 at elevated temperature or NO3 but did not decrease at elevated Zn. However, chronic MATC for amphipod at 20 °C (13 µg Cr/L) did not decrease at elevated temperature, Zn, or NO3. Acute EC50s for both mussels tested with or without a co-stressor were above the final acute value used to derive United States Environmental Protection Agency acute water quality criterion (WQC) for Cr(VI); however, chronic MATCs for fatmucket at elevated temperature or NO3 and chronic MATCs for the amphipod at 20 °C with or without elevated Zn or NO3 were about equal to the chronic WQC. The results indicate that (1) the elevated temperature increased the acute Cr toxicity to both mussel species, (2) fatmucket was acutely more sensitive to Cr than the pearlshell, (3) elevated temperature or NO3 increased chronic Cr toxicity to fatmucket, and (4) acute WQC are protective of tested mussels with or without a co-stressor; however, the chronic WQC might not protect fatmucket at elevated temperature or NO3 and might not protect the amphipod at 20 °C with or without elevated Zn or NO3.

  19. Environmental tests of metallization systems for terrestrial photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Alexander, P., Jr.

    1985-01-01

    Seven different solar cell metallization systems were subjected to temperature cycling tests and humidity tests. Temperature cycling excursions were -50 deg C to 150 deg C per cycle. Humidity conditions were 70 deg C at 98% relative humidity. The seven metallization systems were: Ti/Ag, Ti/Pd/Ag, Ti/Pd/Cu, Ni/Cu, Pd/Ni/Solder, Cr/Pd/Ag, and thick film Ag. All metallization systems showed a slight to moderate decrease in cell efficiencies after subjection to 1000 temperature cycles. Six of the seven metallization systems also evidenced slight increases in cell efficiencies after moderate numbers of cycles, generally less than 100 cycles. The copper based systems showed the largest decrease in cell efficiencies after temperature cycling. All metallization systems showed moderate to large decreases in cell efficiencies after 123 days of humidity exposure. The copper based systems again showed the largest decrease in cell efficiencies after humidity exposure. Graphs of the environmental exposures versus cell efficiencies are presented for each metallization system, as well as environmental exposures versus fill factors or series resistance.

  20. Effect of Air Temperature and Relative Humidity at Various Fuel-Air Ratios on Exhaust Emissions on a Per-Mode Basis of an AVCO Lycoming 0-320 Diad Light Aircraft Engine: Volume 1: Results and Plotted Data

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempe, E. E., Jr.

    1978-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions include carburetor lean out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity.

  1. High temperature monotonic and cyclic deformation in a directionally solidified nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Huron, Eric S.

    1986-01-01

    Directionally solidified (DS) MAR-M246+Hf was tested in tension and fatigue, at temperatures from 20 C to 1093 C. Tests were performed on (001) oriented specimens at strain rates of 50 % and 0.5 % per minute. In tension, the yield strength was constant up to 704 C, above which the strength dropped off rapidly. A strong dependence of strength on strain rate was seen at the higher temperatures. The deformation mode was observed to change from heterogeneous to homogeneous with increasing temperature. Low Cycle Fatigue tests were done using a fully reversed waveform and total strain control. For a given plastic strain range, lives increased with increasing temperature. For a given temperature strain rate had a strong effect on life. At 704 C, decreasing strain rates decreased life, while at the higher temperatures, decreasing strain rates increased life, for a given plastic strain range. These results could be explained through considerations of the deformation modes and stress levels. At the higher temperatures, marked coarsening caused beneficial stress reductions, but oxidation limited the life. The longitudinal grain boundaries were found to influence slip behavior. The degree of secondary slip adjacent to the boundaries was found to be related to the degree of misorientation between the grains.

  2. Investigation of temperature dependence of fracture toughness in high-dose HT9 steel using small-specimen reuse technique

    NASA Astrophysics Data System (ADS)

    Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, Start A.; Toloczko, Mychailo B.

    2014-01-01

    The temperature dependence of fracture toughness in HT9 steel irradiated to 3-145 dpa at 380-503 °C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm × 3 mm × 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperature than the irradiation dose. At an irradiation temperature <430 °C, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180-200 MPa √{m} at 350-450 °C, and then decreased with the test temperature. At an irradiation temperature ⩾430 °C, the fracture toughness was nearly unchanged up to about 450 °C and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.

  3. Sources of Variation in Creep Testing

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2011-01-01

    Creep rupture is an important material characteristic for the design of rocket engines. It was observed during the characterization of GRCop-84 that the complete data set had nearly 4 orders of magnitude of scatter. This scatter likely confounded attempts to determine how creep performance was influenced by manufacturing. It was unclear if this variation was from the testing, the material, or both. Sources of variation were examined by conducting tests on identically processed specimens at the same specified stresses and temperatures. Significant differences existed between the five constant-load creep frames. The specimen temperature was higher than the desired temperature by as much as 43 C. It was also observed that the temperature gradient was up to 44 C. Improved specimen temperature control minimized temperature variations. The data from additional tests demonstrated that the results from all five frames were comparable. The variation decreased to 1/2 order of magnitude from 2 orders of magnitude for the baseline data set. Independent determination of creep rates in a reference load frame closely matched the creep rates determined after the modifications. Testing in helium tended to decrease the sample temperature gradient, but helium was not a significant improvement over vacuum.

  4. A method to quickly test the emissivity with an infrared thermal imaging system within a small distance

    NASA Astrophysics Data System (ADS)

    Wang, Xuan-yu; Hu, Rui; Wang, Rui-xin

    2015-10-01

    A simple method has been set up to quickly test the emissivity with an infrared thermal imaging system within a small distance according to the theory of measuring temperature by infrared system, which is based on the Planck radiation law and Lambert-beer law. The object's temperature is promoted and held on by a heater while a temperature difference has been formed between the target and environment. The emissivity of human skin, galvanized iron plate, black rubber and liquid water has been tested under the condition that the emissivity is set in 1.0 and the testing distance is 1m. According to the invariance of human's body temperature, a testing curve is established to describe that the thermal imaging temperatures various with the emissivity which is set in from 0.9 to 1.0. As a result, the method has been verified. The testing results show that the emissivity of human skin is 0.95. The emissivity of galvanized iron plate, black rubber and liquid water decreases with the increase of object's temperature. The emissivity of galvanized iron plate is far smaller than the one of human skin, black rubber or water. The emissivity of water slowly linearly decreases with the increase of its temperature. By the study, within a small distance and clean atmosphere, the infrared emissivity of objects may be expediently tested with an infrared thermal imaging system according to the method, which is promoting the object's temperature to make it different from the environment temperature, then simultaneously measures the environmental temperature, the real temperature and thermal imaging temperature of the object when the emissivity is set in 1.0 and the testing distance is 1.0m.

  5. Investigation of temperature dependence of fracture toughness in high-dose HT9 steel using small-specimen reuse technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, S

    2014-01-01

    The temperature dependence of fracture toughness in HT9 steel irradiated to 3 145 dpa at 380 503 C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm 3mm 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperaturemore » than the irradiation dose. At an irradiation temperature <430 C, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180 200 MPa ffiffiffiffiffi m p at 350 450 C, and then decreased with the test temperature. At an irradiation temperatureP430 C, the fracture toughness was nearly unchanged up to about 450 C and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.« less

  6. Low temperature mechanical properties, fractographic and metallographic evaluation of several alloy steels

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1973-01-01

    The mechanical properties are presented of alloy steels, 4130, 4140, 4340, 6150, and 8740. Test specimens were manufactured from approximately 1.00 inch (2.54 cm) diameter bar stock which had been heat treated to two different hardness levels. The following mechanical tests were performed at temperatures of 80 F (+26.7 C), 0 F (-17.8 C), -100 F (-73 C), and -200 F (-129 C): (1) tensile test (Ultimate, yield, modulus, elongation, and reduction of area), (2) notched tensile test, (3) charpy V-notched impact test (impact energy), and (4) double shear strength test (ultimate and yield). The test data indicate excellent tensile strength, notched/unnotched tensile ratios, ductility, impact, and shear properties at all test temperatures, except at -200 F (-129 C) where the impact strength of the higher strength group of alloy steels, 4130 (Rc-37) and 4140 (Rc-44) decreased to approximately 9 ft. lbs. (12 joules) and 6 ft. lbs. (8 joules), respectively. Chemical, metallographic, and fractographic analyses were also performed to evaluate microstructure, microhardness and the effect of decrease in temperature on the ductile to brittle failure transition.

  7. The effect on engine performance of change in jacket-water outlet temperature

    NASA Technical Reports Server (NTRS)

    Garlock, E A; Ellis, Greer

    1933-01-01

    Tests made on a Curtiss D-12 engine in the Altitude Laboratory at the Bureau of Standards show the following effects on engine performance of change in jacket-water outlet temperature: 1) Friction at all altitudes is a linear function of the jacket-water temperature, decreasing with increasing temperature. 2) The brake horsepower below an altitude of about 9,000 feet decreases, and at higher altitudes increases, with jacket-water temperature. 3) The brake specific fuel consumption tends to decrease, at all altitudes, with increasing jacket-water temperature. 4) The percentage change in brake power output is roughly equal to the algebraic sum of the percentage change in volumetric efficiency and mechanical efficiency.

  8. Cryopumping in Cryogenic Insulations for a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Weiser, Erik S.; Grimsley, Brian W.; Jensen, Brian J.

    2003-01-01

    Testing at cryogenic temperatures was performed to verify the material characteristics and manufacturing processes of reusable propellant tank cryogenic insulations for a Reusable Launch Vehicle (RLV). The unique test apparatus and test methods developed for the investigation of cryopumping in cryogenic insulations are described. Panel level test specimens with various types of cryogenic insulations were subjected to a specific thermal profile where the temperature varied from -262 C to 21 C. Cryopumping occurred if the interior temperature of the specimen exhibited abnormal temperature fluctuations, such as a sudden decrease in temperature during the heating phase.

  9. Deformation Behavior of SiC/2014 Al Metal-Matrix Composite

    DTIC Science & Technology

    1989-05-01

    the 2014 aluminum is an Al-Cu alloy with the eutectic temperature equal to 5400C, at which the specimens were tested in this study. Summary Room...temperature, decreasing heating rate, and increasing holding time, while ductility increased under the same condition until the eutectic temperature 540...drastically reduced the ductility to 1.5 percent. At high temperature, the modulus decreases but retains a large portion of it even at the eutectic

  10. A novel approach to determine the effect of irrigation on temperature and failure of Ni-Ti endodontic rotary files

    PubMed Central

    Mousavi, Sayed Ali; Kargar-Dehnavi, Vida; Mousavi, Sayed Amir

    2012-01-01

    Background: Nickel-titanium (Ni-Ti) rotary instrument files are important devices in Endodontics in root canal preparation. Ni-Ti file breakage is a critical and problematic issue and irrigation techniques were applied to decrease risk of file failure root. The aim of the present study was to compare the temperature gradient change of different irrigation solutions with Ni-Ti rotary instrument system during root canal preparation and also to define their effects on the file failure. Materials and Methods: A novel computerized instrumentation was utilized and thirty standard (ProFile #25/.04) files were divided into three groups and subjected to a filing in the root canal test. Changes in temperature on teeth under constant instrumental conditions with custom-designed computerized experimental apparatus were measured by using a temperature sensor bonded to the apical hole. A rotary instrument for canal preparation in three series of solution was used and the changes in temperature after each solution were compared. Finally, the file failure results were mentored according to each step of test. Comparisons were performed between group status clinically by using ANOVA (t) test, once the sample showed up normal and differences of P<0.01 were considered significant. All data collected were computerized and analyzed for frequency, distribution, and statistical description. Results: There was a decrease in the temperature of the instruments, which were immersed in 5% NaOCl, when compared with the water group (P<0.01). There was also a decrease in the temperature of the instruments immersed in water, when compared with the no solution group (P<0.01). Test results showed that sodium hypochlorite, water, or air of root canals does alter the properties of gradual temperature change and contributes to the failure of the instruments. Conclusion: By immersing the file in 5% NaOCl, the temperature gradient decreased and instrument failure was reduced. PMID:23087732

  11. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S.J.; Eatherly, W.S.

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination ofmore » high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.« less

  12. Investigation of temperature dependence of fracture toughness in high-dose HT9 steel using small-specimen reuse technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, Stuart A.

    2014-01-01

    The temperature dependence of fracture toughness in HT9 steel irradiated to 3–145 dpa at 380–503 degrees*C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm *3mm* 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperature than themore » irradiation dose. At an irradiation temperature <430 *degreesC, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180—200 MPa*m^.5 at 350–450 degrees*C, and then decreased with the test temperature. At an irradiation temperature >430 degrees*C, the fracture toughness was nearly unchanged up to about 450 *degreesC and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.« less

  13. Laboratory Investigation on Physical and Mechanical Properties of Granite After Heating and Water-Cooling Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhao, Jianjian; Hu, Dawei; Skoczylas, Frederic; Shao, Jianfu

    2018-03-01

    High-temperature treatment may cause changes in physical and mechanical properties of rocks. Temperature changing rate (heating, cooling and both of them) plays an important role in those changes. Thermal conductivity tests, ultrasonic pulse velocity tests, gas permeability tests and triaxial compression tests are performed on granite samples after a heating and rapid cooling treatment in order to characterize the changes in physical and mechanical properties. Seven levels of temperature (from 25 to 900 °C) are used. It is found that the physical and mechanical properties of granite are significantly deteriorated by the thermal treatment. The porosity shows a significant increase from 1.19% at the initial state to 6.13% for samples heated to 900 °C. The increase in porosity is mainly due to three factors: (1) a large number of microcracks caused by the rapid cooling rate; (2) the mineral transformation of granite through high-temperature heating and water-cooling process; (3) the rapid cooling process causes the mineral particles to weaken. As the temperature of treatment increases, the thermal conductivity and P-wave velocity decrease while the gas permeability increases. Below 200 °C, the elastic modulus and cohesion increase with temperature increasing. Between 200 and 500 °C, the elastic modulus and cohesion have no obvious change with temperature. Beyond 500 °C, as the temperature increases, the elastic modulus and cohesion obviously decrease and the decreasing rate becomes slower with the increase in confining pressure. Poisson's ratio and internal frictional coefficient have no obvious change as the temperature increases. Moreover, there is a transition from a brittle to ductile behavior when the temperature becomes high. At 900 °C, the granite shows an obvious elastic-plastic behavior.

  14. Shock Response of Commercial Purity Polycrystalline Magnesium Under Uniaxial Strain at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas

    2017-12-01

    In the present paper, results of plate impact experiments designed to investigate the onset of incipient plasticity in commercial purity polycrystalline magnesium (99.9%) under weak uniaxial strain compression and elevated temperatures up to melt are presented. The dynamic stress at yield and post yield of magnesium, as inferred from the measured normal component of the particle velocity histories at the free (rear) surface of the target plate, are observed to decrease progressively with increasing test temperatures in the range from 23 to 500 °C. At (higher) test temperatures in the range 500-610 °C, the rate of decrease of dynamic stress with temperature at yield and post-yield in the sample is observed to weaken. At still higher test temperatures (617 and 630 °C), a dramatic increase in dynamic yield as well as flow stress is observed indicating a change in dominant mechanism of plastic deformation as the sample approaches the melt point of magnesium at strain rates of 105/s. In addition to these measurements at the wavefront, the plateau region of the free surface particle velocity profiles indicates that the longitudinal (plastic) impedance of the magnesium samples decreases continuously as the sample temperatures are increased from room to 610 °C, and then reverses trend (indicating increasing material longitudinal impedance/strength) as the sample temperatures are increased to 617 and 630 °C. Electron back scattered diffraction analysis of the as-received and annealed pre-test magnesium samples reveal grain coarsening as well as grain re-orientation to a different texture during the heating process of the samples.

  15. Strain-cycling fatigue behavior of ten structural metals tested in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K)

    NASA Technical Reports Server (NTRS)

    Nachtigall, A. J.

    1974-01-01

    Strain-cycling fatigue behavior of 10 different structural alloys and metals was investigated in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K). At high cyclic lives, fatigue resistance increased with decreasing temperature for all the materials investigated. At low cyclic lives, fatigue resistance generally decreased with decreasing temperature for the materials investigated. Only for Inconel 718 did fatigue resistance increase with decreasing temperature over the entire life range investigated. Comparison of the experimental fatigue behavior with that predicted by the Manson method of universal slopes showed that the fatigue behavior of these materials can be predicted for cryogenic temperatures by using material tensile properties obtained at those same temperatures.

  16. FaceSheet Push-off Tests to Determine Composite Sandwich Toughness at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Herring, Helen M.

    2001-01-01

    A new novel test method, associated analysis, and experimental procedures are developed to investigate the toughness of the facesheet-to-core interface of a sandwich material at cryogenic temperatures. The test method is designed to simulate the failure mode associated with facesheet debonding from high levels of gas pressure in the sandwich core. The effects of specimen orientation are considered, and the results of toughness measurements are presented. Comparisons are made between room and liquid nitrogen (-196 C) test temperatures. It was determined that the test method is insensitive to specimen facesheet orientation and strain energy release rate increases with a decrease in the test temperature.

  17. Evaporation behavior of lithium, potassium, uranium and rare earth chlorides in pyroprocessing

    NASA Astrophysics Data System (ADS)

    Jang, Junhyuk; Kim, Tackjin; Park, Sungbin; Kim, Gha-Young; Kim, Sihyoung; Lee, Sungjai

    2017-12-01

    The evaporation behaviors of Li, K, U, and rare earth (RE) chlorides were examined for the cathode process in pyroprocessing. The evaporation temperatures of the chlorides were evaluated in vacuum by measuring the weight decrease. In addition, an evaporation test up to 1473 K of the cathode process using a surrogate mixture of uranium and chlorides was conducted. It was found that LiCl evaporated more readily than the other chlorides. The weight of LiCl was rapidly decreased at temperatures above 981 K, while that of KCl was decreased above 1035 K, indicating the evaporation. UCl3 evaporated at temperatures above 1103 K. RE chlorides showed a similar evaporation behavior, evaporating first at 1158 K then rapidly evaporating at temperatures above 1230 K. Thus, the order of evaporation with increasing temperature was found to be LiCl < KCl < UCl3 < RE chlorides, with different RE chlorides evaporating at similar temperature. The surrogate test confirmed the observed evaporation trend of the chlorides during the cathode process, and revealed that the contamination of uranium remains by the back-reaction of RE chlorides is negligible.

  18. Reduction effect of surface temperature of baked bricks with different pore shapes during absorption-evaporation test

    NASA Astrophysics Data System (ADS)

    Oguchi, Chiaki T.; Shinozuka, Katsumi

    2017-04-01

    To study the effect of decreasing in surface temperature of baked bricks with various pore shapes, the present study performed several experiments such as water absorbance test and heating test. For the preparation of experimental specimens, bricks with artificial spherical pores, artificial linear pores and non-additional artificial pores were made. The bricks were examined their properties of bulk density, Equotip hardness and absorbing properties by putting in the water. Wet bricks were also put in the incubator set at 50 °C, and monitored the increasing of surface temperature of each brick. Brick with linear pores shows higher water absorption rate in a short time than those with spherical pores. They evaporated moisture faster than those with a spherical pores. They kept the temperature by 11.7 °C lower than the setting temperature, whereas the bricks with a spherical pores kept the temperature by 10.5 °C . Bricks with linear pores has about 10% higher effectiveness of decreasing in surface temperature than those with spheroidal pores.

  19. Mechanical tensile testing of titanium 15-3-3-3 and Kevlar 49 at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    James, B. L.; Martinez, R. M.; Shirron, P.; Tuttle, J.; Galassi, N. M.; McGuinness, D. S.; Puckett, D.; Francis, J. J.; Flom, Y.

    2012-06-01

    Titanium 15-3-3-3 and Kevlar 49 are highly desired materials for structural components in cryogenic applications due to their low thermal conductivity at low temperatures. Previous tests have indicated that titanium 15-3-3-3 becomes increasingly brittle as the temperature decreases. Furthermore, little is known regarding the mechanical properties of Kevlar 49 at low temperatures, most specifically its Young's modulus. This testing investigates the mechanical properties of both materials at cryogenic temperatures through cryogenic mechanical tensile testing to failure. The elongation, ultimate tensile strength, yield strength, and break strength of both materials are provided and analyzed here.

  20. Mechanical Tensile Testing of Titanium 15-3-3-3 and Kevlar 49 at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    James, Bryan L.; Martinez, Raul M.; Shirron, Peter; Tuttle, Jim; Galassi, Nicholas M.; Mcguinness, Daniel S.; Puckett, David; Francis, John J.; Flom, Yury

    2011-01-01

    Titanium 15-3-3-3 and Kevlar 49 are highly desired materials for structural components in cryogenic applications due to their low thennal conductivity at low temperatures. Previous tests have indicated that titanium 15-3-3-3 becomes increasingly brittle as the temperature decreases. Furthermore, little is known regarding the mechanical properties of Kevlar 49 at low temperatures, most specifically its Young's modulus. This testing investigates the mechanical properties of both materials at cryogenic temperatures through cryogenic mechanical tensile testing to failure. The elongation, ultimate tensile strength, yield strength, and break strength of both materials are provided and analyzed here.

  1. Study of voltage decrease in organic light emitting diodes during the initial stage of lifetime

    NASA Astrophysics Data System (ADS)

    Cusumano, P.

    2016-02-01

    We report the results of lifetime DC testing at constant current of not-encapsulated organic light emitting diodes (OLEDs) based on Tris (8 idroxyquinoline) aluminum (Alq3) as emitting material. In particular, a voltage decrease during the initial stage of the lifetime test is observed. The cause of this behavior is also discussed, mainly linked to initial Joule self-heating of the device, rising its temperature above room temperature until thermal equilibrium is reached at steady state.

  2. Low cycle fatigue properties of type 316 stainless steel in vacuum

    NASA Astrophysics Data System (ADS)

    Furuya, Kazuo; Nagata, Norio; Watanabe, Ryoji

    1980-04-01

    Low cycle fatigue tests in vacuum were carried out on Type 316 stainless steel under the push-pull type, strain-controlled, continuous cycling mode in the temperature range from room temperature to 1073 K and strain rate from 5 × 10 -3 to 5 × 10 -5/s . Little temperature dependence of the fatigue life at a given plastic strain range is observed. The fatigue life decreases with decreasing strain rate at room temperature and 823 K, but shows little change at 973 and 1073 K. The fracture mode is transgranular in most cases, but an indication of intergranular cracking is observed in the specimens tested at 1073 K and at the lowest strain rate. The results are treated by the general adsorption model.

  3. Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure.

    PubMed

    Li, Guanghui; Zhao, Jun; Wang, Zike

    2018-06-16

    Fiber-reinforced polymer (FRP) bars have been widely applied in civil engineering. This paper presents the results of an experimental study to investigate the tensile fatigue mechanical properties of glass fiber-reinforced polymer (GFRP) bars after elevated temperatures exposure. For this purpose, a total of 105 GFRP bars were conducted for testing. The specimens were exposed to heating regimes of 100, 150, 200, 250, 300 and 350 °C for a period of 0, 1 or 2 h. The GFRP bars were tested with different times of cyclic load after elevated temperatures exposure. The results show that the tensile strength and elastic modulus of GFRP bars decrease with the increase of elevated temperature and holding time, and the tensile strength of GFRP bars decreases obviously by 19.5% when the temperature reaches 250 °C. Within the test temperature range, the tensile strength of GFRP bars decreases at most by 28.0%. The cyclic load accelerates the degradation of GFRP bars after elevated temperature exposure. The coupling of elevated temperature and holding time enhance the degradation effect of cyclic load on GFRP bars. The tensile strength of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 50.5% compared with that at room temperature and by 36.3% compared with that after exposing at 350 °C without cyclic load. In addition, the elastic modulus of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 17.6% compared with that at room temperature and by 6.0% compared with that after exposing at 350 °C without cyclic load.

  4. Effects of temperature, strain rate, and vacancies on tensile and fatigue behaviors of silicon-based nanotubes

    NASA Astrophysics Data System (ADS)

    Jeng, Yeau-Ren; Tsai, Ping-Chi; Fang, Te-Hua

    2005-02-01

    This paper adopts the Tersoff-Brenner many-body potential function to perform molecular dynamics simulations of the tensile and fatigue behaviors of hypothetical silicon-based tubular nanostructures at various temperatures, strain rates, and vacancy percentages. The tensile test results indicate that with a predicted Young’s modulus of approximately 60GPa , silicon nanotubes (SiNTs) are significantly less stiff than conventional carbon nanotubes. It is observed that the presence of hydrogen has a significant influence on the tensile strength of SiNTs . Additionally, the present results indicate that the tensile strength clearly decreases with increasing temperature and with decreasing strain rate. Moreover, it is shown that the majority of the mechanical properties considered in the present study decrease with an increasing vacancy percentage. Regarding the fatigue tests, this study uses a standard theoretical model to derive curves of amplitude stress versus number of cycles for the current nanotubes. The results demonstrate that the fatigue limit of SiNTs increases with a decreasing vacancy percentage and with increasing temperature.

  5. Small angle neutron scattering analyses and high temperature mechanical properties of nano-structured oxide dispersion strengthened steels produced via cryomilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeoung Han; Byun, Thak Sang; Shin, Eunjoo

    2015-08-17

    Three oxide dispersion-strengthened (ODS) steels are produced in order to investigate the effect of the mechanical alloying (MA) temperature on the microstructural evolution and high temperature mechanical properties. The microstructural evolution with different MA conditions is examined using small angle neutron scattering. As the MA temperature decreases, the density of the nanoclusters below 10 nm increases and their mean diameter decreases. A low temperature during MA leads to a high strength in the compression tests performed at 500 *C; however, this effect disappears in testing at 900 *C. The milling process at *70 *C exhibits excellent high fracture toughness, whichmore » is better than the benchmark material 14YWT-SM10. However, the *150 *C milling process results in significantly worse fracture toughness properties. The reasons for this strong temperature dependency are discussed.« less

  6. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  7. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  8. Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer.

    PubMed

    Li, Adela J; Leung, Priscilla T Y; Bao, Vivien W W; Yi, Andy X L; Leung, Kenneth M Y

    2014-10-01

    We hypothesize that chemical toxicity to marine ectotherms is the lowest at an optimum temperature (OT) and it exacerbates with increasing or decreasing temperature from the OT. This study aimed to verify this hypothetical temperature-dependent chemical toxicity (TDCT) model through laboratory experiments. Acute toxicity over a range of temperatures was tested on four commonly used chemicals to three marine ectotherms. Our results confirmed that toxicities, in terms of 96-h LC50 (median lethal concentration; for the marine medaka fish Oryzias melastigma and the copepod Tigriopus japonicus) and 24-h LC50 (for the rotifer Brachionus koreanus), were highly temperature-dependent, and varied between test species and between study chemicals. The LC50 value of the fish peaked at 20 °C for copper (II) sulphate pentahydrate and triphenyltin chloride, and at 25 °C for dichlorophenyltrichloroethane and copper pyrithione, and decreased with temperature increase or decrease from the peak (i.e., OT). However, LC50 values of the copepod and the rotifer generally showed a negative relationship with temperature across all test chemicals. Both copepod and rotifer entered dormancy at the lowest temperature of 4 °C. Such metabolic depression responses in these zooplanktons could reduce their uptake of the chemical and hence minimize the chemical toxicity at low temperatures. Our TDCT model is supported by the fish data only, whereas a simple linear model fits better to the zooplankton data. Such species-specific TDCT patterns may be jointly ascribed to temperature-mediated changes in (1) the physiological response and susceptibility of the marine ectotherms to the chemical, (2) speciation and bioavailability of the chemical, and (3) toxicokinetics of the chemical in the organisms.

  9. Temperature dependency in motor skill learning.

    PubMed

    Immink, Maarten A; Wright, David L; Barnes, William S

    2012-01-01

    The present study investigated the role of temperature as a contextual condition for motor skill learning. Precision grip task training occurred while forearm cutaneous temperature was either heated (40-45 °C) or cooled (10-15 °C). At test, temperature was either reinstated or changed. Performance was comparable between training conditions while at test, temperature changes decreased accuracy, especially after hot training conditions. After cold training, temperature change deficits were only evident when concurrent force feedback was presented. These findings are the first evidence of localized temperature dependency in motor skill learning in humans. Results are not entirely accounted for by a context-dependent memory explanation and appear to represent an interaction of neuromuscular and sensory processes with the temperature present during training and test.

  10. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid) Green Composites during Thermal Cycling

    PubMed Central

    Katogi, Hideaki; Takemura, Kenichi; Akiyama, Motoki

    2016-01-01

    This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid) (PLA) during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin. PMID:28773694

  11. Preliminary tests of an advanced high-temperature combustion system

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.; Jacobs, R. E.

    1983-01-01

    A combustion system has been developed to operate efficiently and with good durability at inlet pressures to 4.05 MPa (40 atm), inlet air temperatures to 900 K, and exhaust gas temperatures to 2480 K. A preliminary investigation of this system was conducted at inlet pressures to 0.94 MPa (9 atm), a nominal inlet air temperature of 560 K, and exhaust gas temperatures to 2135 K. A maximum combustion efficiency of 98.5 percent was attained at a fuel-air ratio of 0.033; the combustion efficiency decreased to about 90 percent as the fuel-air ratio was increased to 0.058. An average liner metal temperature of 915 K, 355 kelvins greater than the nominal inlet air temperature, was reached with an average exhaust gas temperature of 2090 K. The maximum local metal temperature at this condition was about 565 kelvins above the nominal inlet air temperature and decreased to 505 kelvins above with increasing combustor pressure. Tests to determine the isothermal total pressure loss of the combustor showed a liner loss of 1.1 percent and a system loss of 6.5 percent.

  12. Bearing tester data compilation analysis, and reporting and bearing math modeling

    NASA Technical Reports Server (NTRS)

    Cody, J. C.

    1986-01-01

    Integration of heat transfer coefficients, modified to account for local vapor quality, into the 45 mm bearing model has been completed. The model has been evaluated with two flow rates and subcooled and saturated coolant. The evaluation showed that by increasing the flow from 3.6 to 7.0 lbs/sec the average ball temperature was decreased by 102 F, using a coolant temperature of -230 F. The average ball temperature was decreased by 63 F by decreasing the inlet coolant temperature from saturated to -230 F at a flow rate of 7.0 lbs/sec. Since other factors such as friction, cage heating, etc., affect bearing temperatures, the above bearing temperature effects should be considered as trends and not absolute values. The two phase heat transfer modification has been installed in the 57 mm bearing model and the effects on bearing temperatures have been evaluated. The average ball temperature was decreased by 60 F by increasing the flow rate from 4.6 to 9.0 lbs/sec for the subcooled case. By decreasing the inlet coolant temperature from saturation to -24 F, the average ball temperature was decreased 57 F for a flow rate of 9.0 lbs/sec. The technique of relating the two phase heat transfer coefficient to local vapor quality will be applied to the tester model and compared with test data.

  13. Dissolution and aggregation of Cu nanoparticles in culture media: effects of incubation temperature and particles size

    NASA Astrophysics Data System (ADS)

    Li, Lingxiangyu; Fernández-Cruz, María Luisa; Connolly, Mona; Schuster, Michael; Navas, José María

    2015-01-01

    Here, the effects of incubation temperature and particle size on the dissolution and aggregation behavior of copper nanoparticles (CuNPs) in culture media were investigated over 96 h, equivalent to the time period for acute cell toxicity tests. Three CuNPs with the nominal sizes of 25, 50, and 100 nm and one type of micro-sized particles (MPs, 500 nm) were examined in culture media used for human and fish hepatoma cell lines acute tests. A large decrease in sizes of CuNPs in the culture media was observed in the first 24 h incubation, and subsequently the sizes of CuNPs changed slightly over the following 72 h. Moreover, the decreasing rate in size was significantly dependent on the incubation temperature; the higher the incubation temperature, the larger the decreasing rate in size. In addition to that, we also found that the release of copper ions depended on the incubation temperature. Moreover, the dissolution rate of Cu particles increased very fast in the first 24 h, with a slight increase over the following 72 h.

  14. Temperature Dependent Modal Test/Analysis Correlation of X-34 Fastrac Composite Rocket Nozzle

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Brunty, Joseph A. (Technical Monitor)

    2001-01-01

    A unique high temperature modal test and model correlation/update program has been performed on the composite nozzle of the FASTRAC engine for the NASA X-34 Reusable Launch Vehicle. The program was required to provide an accurate high temperature model of the nozzle for incorporation into the engine system structural dynamics model for loads calculation; this model is significantly different from the ambient case due to the large decrease in composite stiffness properties due to heating. The high-temperature modal test was performed during a hot-fire test of the nozzle. Previously, a series of high fidelity modal tests and finite element model correlation of the nozzle in a free-free configuration had been performed. This model was then attached to a modal-test verified model of the engine hot-fire test stand and the ambient system mode shapes were identified. A reduced set of accelerometers was then attached to the nozzle, the engine fired full-duration, and the frequency peaks corresponding to the ambient nozzle modes individually isolated and tracked as they decreased during the test. To update the finite-element model of the nozzle to these frequency curves, the percentage differences of the anisotropic composite moduli due to temperature variation from ambient, which had been used in the initial modeling and which were obtained by small sample coupon testing, were multiplied by an iteratively determined constant factor. These new properties were used to create high-temperature nozzle models corresponding to 10 second engine operation increments and tied into the engine system model for loads determination.

  15. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.; Rathod, M. S.; Paslaski, J.

    1981-01-01

    The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.

  16. Evaluation, construction and endurance testing of compression sealed pyrolytic boron nitride slot insulation

    NASA Technical Reports Server (NTRS)

    Grant, W. L.

    1969-01-01

    A high-temperature statorette, consisting of an iron-27 percent cobalt magnetic lamination stack and nickel-clad silver conductors, was tested with pyrolytic boron nitride slot insulation. Temperatures were measured in each test to determine characteristics of slot linear heat conductance from statorette conductors. Testing was carried out to temperatures of approximately 1500 F in a vacuum environment of 10-8 torr. Three assemblies were built and tested, each having a different room temperature slot clearance. The final statorette assembly was subjected to a 100-hour vacuum aging test at 1400 F followed by 25 thermal cycles. Temperature data from the three assemblies showed that decreasing slot clearance and increasing compression loading did enhance heat transfer. The temperature difference between slot and lamination at 1400 F increased 4 F during the thermal aging and an additional 10 F during the 25 thermal cycles.

  17. Temperature and Strain-Rate Effects on Low-Cycle Fatigue Behavior of Alloy 800H

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Schiffers, H.; Schuster, H.; Halford, G. R.

    1996-01-01

    The effects of strain rate (4 x 10(exp -6) to 4 x 10(exp -3)/s) and temperature on the Low-Cycle Fatigue (LCF) behavior of alloy 800H have been evaluated in the range 750 C to 950 C. Total axial strain controlled LCF tests were conducted in air at a strain amplitude of +/- 0.30 pct. LCF life decreased with decreasing strain rate and increasing temperature. The cyclic stress response behavior showed a marked variation with temperature and strain rate. The time- and temperature- dependent processes which influence the cyclic stress response and life have been identified and their relative importance assessed. Dynamic strain aging, time-dependent deformation, precipitation of parallel platelets of M(23)C6 on grain boundaries and incoherent ledges of twins, and oxidation were found to operate depending on the test conditions. The largest effect on life was shown by oxidation processes.

  18. Centaur engine gimbal friction characteristics under simulated thrust load

    NASA Technical Reports Server (NTRS)

    Askew, J. W.

    1986-01-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  19. Low-temperature mechanical properties of superconducting radio frequency cavity materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Thak Sang; Kim, Sang-Ho; Mammosser, John

    2009-01-01

    Low temperature mechanical behaviors have been investigated for the constituent materials of superconducting radio frequency cavities. Test materials consist of small grain Nb, single crystal Nb, large grain Nb (bicrystal), Ti45Nb-Nb weld joint (e-beam welded), and Ti-316L bimetal joint (explosion welded). The strength of all test metals displayed strong temperature dependence and the Ti-316L bimetal showed the highest strength and lowest ductility among the test materials. The fracture toughness of the small grain Nb metals decreased with decreasing test temperature and reached the lower shelf values (30 40 MPa m) at or above 173 K. The Ti45Nb base and Ti45Nb-Nbmore » weld metals showed much higher fracture toughness than the small grain Nb. An extrapolation and comparison with existing data showed that the fracture toughness of the small grain Nb metals at 4 K was expected to be similar to those at 173 K and 77 K. The results from optical photography at a low magnification and fractography by a scanning electron microscope were consistent with corresponding mechanical properties.« less

  20. Centaur engine gimbal friction characteristics under simulated thrust load

    NASA Astrophysics Data System (ADS)

    Askew, J. W.

    1986-09-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  1. Effect of wall heat transfer on shock-tube test temperature at long times

    NASA Astrophysics Data System (ADS)

    Frazier, C.; Lamnaouer, M.; Divo, E.; Kassab, A.; Petersen, E.

    2011-02-01

    When performing chemical kinetics experiments behind reflected shock waves at conditions of lower temperature (<1,000 K), longer test times on the order of 10-20 ms may be required. The integrity of the test temperature during such experiments may be in question, because heat loss to the tube walls may play a larger role than is generally seen in shock-tube kinetics experiments that are over within a millisecond or two. A series of detailed calculations was performed to estimate the effect of longer test times on the temperature uniformity of the post-shock test gas. Assuming the main mode of heat transfer is conduction between the high-temperature gas and the colder shock-tube walls, a comprehensive set of calculations covering a range of conditions including test temperatures between 800 and 1,800 K, pressures between 1 and 50 atm, driven-tube inner diameters between 3 and 16.2 cm, and test gases of N2 and Ar was performed. Based on the results, heat loss to the tube walls does not significantly reduce the area-averaged temperature behind the reflected shock wave for test conditions that are likely to be used in shock-tube studies for test times up to 20 ms (and higher), provided the shock-tube inner diameter is sufficiently large (>8cm). Smaller diameters on the order of 3 cm or less can experience significant temperature loss near the reflected-shock region. Although the area-averaged gas temperature decreases due to the heat loss, the main core region remains spatially uniform so that the zone of temperature change is limited to only the thermal layer adjacent to the walls. Although the heat conduction model assumes the gas and wall to behave as solid bodies, resulting in a core gas temperature that remains constant at the initial temperature, a two-zone gas model that accounts for density loss from the core to the colder thermal layer indicates that the core temperature and gas pressure both decrease slightly with time. A full CFD solution of the shock-tube flow field and heat transfer at long test times was also performed for one typical condition (800 K, 1 atm, Ar), the results of which indicate that the simpler analytical conduction model is realistic but somewhat conservative in that it over predicts the mean temperature loss by a few Kelvins. This paper presents the first comprehensive study on the effects of long test times on the average test gas temperature behind the reflected shock wave for conditions representative of chemical kinetics experiments.

  2. Combustion and NOx emissions in deep-air-staging combustion of char in a circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Gong, Zhiqiang; Wang, Zhentong; Wang, Lei; Du, Aixun

    2017-10-01

    Combustion and NOx emissions in deep-air-staging (with higher level secondary air (SA) injection) combustion of char have been investigated in a CFB test rig. A good fluidized condition and uniform temperature distribution can be achieved with injection of higher level SA. NOx emission decreases with injection of higher level SA and the reduction effect is more obvious at higher temperature. NOx emission decreases with combustion temperature increasing for char combustion.

  3. Stability of fragrance patch test preparations applied in test chambers.

    PubMed

    Mowitz, M; Zimerson, E; Svedman, C; Bruze, M

    2012-10-01

    Petrolatum patch test preparations are for practical reasons often applied in test chambers in advance, several hours or even days before the patient is tested. As many fragrance compounds are volatile it may be suspected that petrolatum preparations applied in test chambers are not stable over time. To investigate the stability of petrolatum preparations of the seven chemically defined components in the fragrance mix (FM I) when stored in test chambers. Samples of petrolatum preparations applied in test chambers stored at room temperature and in a refrigerator for between 4 and 144 h were analysed using liquid chromatographic methods. The concentration decreased by ≥ 20% within 8 h in four of seven preparations stored in Finn chambers at room temperature. When stored in a refrigerator only the preparation of cinnamal had decreased by ≥ 20% within 24 h. The stability of preparations of cinnamal stored in IQ chambers with a plastic cover was slightly better, but like the preparations applied in Finn chambers, the concentration decreased by ≥ 20% within 4 h at room temperature and within 24 h in a refrigerator. Cinnamal and cinnamyl alcohol were found to be more stable when analysed as ingredients in FM I compared with when analysed in individual preparations. Within a couple of hours several fragrance allergens evaporate from test chambers to an extent that may affect the outcome of the patch test. Application to the test chambers should be performed as close to the patch test occasion as possible and storage in a refrigerator is recommended. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  4. Mammographic film-processor temperature, development time, and chemistry: effect on dose, contrast, and noise.

    PubMed

    Kimme-Smith, C; Rothschild, P A; Bassett, L W; Gold, R H; Moler, C

    1989-01-01

    Six different combinations of film-processor temperature (33.3 degrees C, 35 degrees C), development time (22 sec, 44 sec), and chemistry (Du Pont medium contrast developer [MCD] and Kodak rapid process [RP] developer) were each evaluated by separate analyses with Hurter and Driffield curves, test images of plastic step wedges, noise variance analysis, and phantom images; each combination also was evaluated clinically. Du Pont MCD chemistry produced greater contrast than did Kodak RP chemistry. A change in temperature from 33.3 degrees C (92 degrees F) to 35 degrees C (95 degrees F) had the least effect on dose and image contrast. Temperatures of 36.7 degrees C (98 degrees F) and 38.3 degrees C (101 degrees F) also were tested with extended processing. The speed increased for 36.7 degrees C but decreased at 38.3 degrees C. Base plus fog increased, but contrast decreased for these higher temperatures. Increasing development time had the greatest effect on decreasing the dose required for equivalent film darkening when imaging BR12 breast equivalent test objects; ion chamber measurements showed a 32% reduction in dose when the development time was increased from 22 to 44 sec. Although noise variance doubled in images processed with the extended development time, diagnostic capability was not compromised. Extending the processing time for mammographic films was an effective method of dose reduction, whereas varying the processing temperature and chemicals had less effect on contrast and dose.

  5. Fracture toughness of copper-base alloys for ITER applications: A preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, D.J.; Zinkle, S.J.; Rowcliffe, A.F.

    1997-04-01

    Oxide-dispersion strengthened copper alloys and a precipitation-hardened copper-nickel-beryllium alloy showed a significant reduction in toughness at elevated temperature (250{degrees}C). This decrease in toughness was much larger than would be expected from the relatively modest changes in the tensile properties over the same temperature range. However, a copper-chromium-zirconium alloy strengthened by precipitation showed only a small decrease in toughness at the higher temperatures. The embrittled alloys showed a transition in fracture mode, from transgranular microvoid coalescence at room temperature to intergranular with localized ductility at high temperatures. The Cu-Cr-Zr alloy maintained the ductile microvoid coalescence failure mode at all test temperatures.

  6. The effect of the impactor diameter and temperature on low velocity impact behavior of CFRP laminates

    NASA Astrophysics Data System (ADS)

    Evci, C.; Uyandıran, I.

    2017-02-01

    Impact damage is one of the major concerns that should be taken into account with the new aircraft and spacecraft structures which employ ever-growing use of composite materials. Considering the thermal loads encountered at different altitudes, both low and high temperatures can affect the properties and impact behavior of composite materials. This study aims to investigate the effect of temperature and impactor diameter on the impact behavior and damage development in balanced and symmetrical CFRP laminates which were manufactured by employing vacuum bagging process with autoclave cure. Instrumented drop-weight impact testing system is used to perform the low velocity impact tests in a range of temperatures ranged from 60 down to -50 °C. Impact tests for each temperature level were conducted using three different hemispherical impactor diameters varying from 10 to 20 mm. Energy profile method is employed to determine the impact threshold energies for damage evolution. The level of impact damage is determined from the dent depth on the impacted face and delamination damage detected using ultrasonic C-Scan technique. Test results reveal that the threshold of penetration energy, main failure force and delamination area increase with impactor diameter at all temperature levels. No clear influence of temperature on the critical force thresholds could be derived. However, penetration threshold energy decreased as the temperature was lowered. Drop in the penetration threshold was more obvious with quite low temperatures. Delamination damage area increased while the temperature decreased from +60 °C to -50 °C.

  7. Temperature-dependent residual shear strength characteristics of smectite-bearing landslide soils

    NASA Astrophysics Data System (ADS)

    Shibasaki, Tatsuya; Matsuura, Sumio; Hasegawa, Yoichi

    2017-02-01

    This paper presents experimental investigations regarding the effect of temperature on the residual strength of landslide soils at slow-to-moderate shearing velocities. We performed ring-shear tests on 23 soil samples at temperatures of 6-29°C. The test results show that the shear strength of smectite-rich soils decreased when temperatures were relatively low. These positive temperature effects (strength losses at lower temperatures) observed for smectite-bearing soils are typical under relatively slow shearing rates. In contrast, under relatively high shearing rates, strength was gained as temperature decreased. As rheological properties of smectite suspensions are sensitive to environmental factors, such as temperature, pH, and dissolved ions, we inferred that temperature-dependent residual strengths of smectitic soils are also attributed to their specific rheological properties. Visual and scanning electron microscope observations of Ca-bentonite suggest that slickensided shear surfaces at slow shearing rates are very shiny and smooth, whereas those at moderate shearing rates are not glossy and are slightly turbulent, indicating that platy smectite particles are strongly orientated at slow velocities. The positive temperature effect is probably due to temperature-dependent microfriction that is mobilized in the parallel directions of the sheet structure of hydrous smectite particles. On the contrary, the influence of microviscous resistance, which appears in the vertical directions of the lamination, is assumed to increase at faster velocities. Our results imply that if slip-surface soils contain high fractions of smectite, decreases in ground temperature can lead to lowered shear resistance of the slip surface and trigger slow landslide movement.

  8. Effect of post cure time and temperature on the properties of two phenolic-fiber composites

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.; Price, H. L.

    1975-01-01

    Some effects of post-cure time and temperature on the physicomechanical properties of a phenolic-asbestos and a phenolic-glass composite are studied. The molding and post-curing procedures are discussed along with physical and mechanical test results. It is found that the specific gravity of the panels tested decreased slightly but the hardness always increased with post cure, and that the mechanical properties had different patterns of response to increasing post-cure time and temperature. For tensile properties, strength decreased, modulus increased, and elongation at break exhibited little change. In general, the phenolic-asbestos showed more positive response to post cure than did the phenolic-glass. Mold venting is found to impart better properties to the composites concerned.

  9. Fluid mass and thermal loading effects on the modal characteristics of space shuttle main engine liquid oxygen inlet splitter vanes

    NASA Technical Reports Server (NTRS)

    Panossian, H. V.; Boehnlein, J. J.

    1987-01-01

    An analysis and evaluation of experimental modal survey test data on the variations of modal characteristics induced by pressure and thermal loading events are presented. Extensive modal survey tests were carried out on a Space Shuttle Main Engine (SSME) test article using liquid nitrogen under cryogenic temperatures and high pressures. The results suggest that an increase of pressure under constant cryogenic temperature or a decrease of temperature under high pressure induces an upward shift of frequencies of various modes of the structures.

  10. Motor excitability measurements: the influence of gender, body mass index, age and temperature in healthy controls.

    PubMed

    Casanova, I; Diaz, A; Pinto, S; de Carvalho, M

    2014-04-01

    The technique of threshold tracking to test axonal excitability gives information about nodal and internodal ion channel function. We aimed to investigate variability of the motor excitability measurements in healthy controls, taking into account age, gender, body mass index (BMI) and small changes in skin temperature. We examined the left median nerve of 47 healthy controls using the automated threshold-tacking program, QTRAC. Statistical multiple regression analysis was applied to test relationship between nerve excitability measurements and subject variables. Comparisons between genders did not find any significant difference (P>0.2 for all comparisons). Multiple regression analysis showed that motor amplitude decreases with age and temperature, stimulus-response slope decreases with age and BMI, and that accommodation half-time decrease with age and temperature. The changes related to demographic features on TRONDE protocol parameters are small and less important than in conventional nerve conduction studies. Nonetheless, our results underscore the relevance of careful temperature control, and indicate that interpretation of stimulus-response slope and accommodation half-time should take into account age and BMI. In contrast, gender is not of major relevance to axonal threshold findings in motor nerves. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. A mosaic infrared sensor for space astronomy, phase 3

    NASA Technical Reports Server (NTRS)

    Sood, A. K.

    1985-01-01

    Short wavelength (1 to 3 micron) HgCdTe mosaic detector arrays for space astronomy purposes were fabricated and studied. Honeywell will test and analyze these arrays at moderate temperatures (300-130K). Low temperature testing will be performed at the University of Hawaii. Short wavelength mosaic arrays were fabricated on three wafers and one array from each wafer was tested and analyzed. The p-type base carrier concentration on these wafers was an order of magnitude lower than typically used so far on this program (10 to the 14/cc as compared to 10 to the 15/cc). Tunneling currents are expected to decrease with this decrease in carrier concentration, resulting in improved performance at very low temperatures. The risk with such a low carrier concentration is that fixed charge in the surface passivating layer must be carefully controlled to prevent surface inversion layers.

  12. Effect of temperature on the orthodontic clinical applications of niti closed-coil springs

    PubMed Central

    Espinar-Escalona, Eduardo; Llamas-Carreras, José M.; Barrera-Mora, José M.; Abalos-Lasbrucci, Camilo

    2013-01-01

    NiTi spring coils were used to obtain large deformation under a constant force. The device consists on a NiTi coil spring, superelastic at body temperature, in order to have a stress plateau during the austenitic retransformation during the unloading. The temperature variations induced changes in the spring force. Objectives: The aim of this study is to investigate the effect of the temperature variations in the spring forces and corrosion behaviour simulating the ingestion hot/cold drinks and food. Study Design: The springs were subjected to a tensile force using universal testing machine MTS-Adamel (100 N load cell). All tests were performed in artificial saliva maintained at different temperatures. The corrosion tests were performed according to the ISO-standard 10993-15:2000. Results: The increase in temperature of 18oC induced an increase in the spring force of 30%. However, when the temperature returns to 37oC the distraction force recovers near the initial level. After cooling down the spring to 15oC, the force decreased by 46%. This investigation show as the temperature increase, the corrosion potential shifts towards negative values and the corrosion density is rising. Conclusions: The changes of the temperatures do not modify the superelastic behaviour of the NiTi closed-coil springs. The corrosion potential of NiTi in artificial saliva is decreasing by the rise of the temperatures. Key words:Superelasticity, NiTi, springs, orthodontic, coils, recovery, temperature. PMID:23722142

  13. The Effect of Insertion Technique on Temperatures for Standard and Self-Drilling External Fixation Pins.

    PubMed

    Manoogian, Sarah; Lee, Adam K; Widmaier, James C

    2017-08-01

    No studies have assessed the effects of parameters associated with insertion temperature in modern self-drilling external fixation pins. The current study assessed how varying the presence of irrigation, insertion speed, and force impacted the insertion temperatures of 2 types of standard and self-drilling external fixation half pins. Seventy tests were conducted with 10 trials for 4 conditions on self-drilling pins, and 3 conditions for standard pins. Each test used a thermocouple inside the pin to measure temperature rise during insertion. Adding irrigation to the standard pin insertion significantly lowered the maximum temperature (P <0.001). Lowering the applied force for the standard pin did not have a significant change in temperature rise. Applying irrigation during the self-drilling pin tests dropped average rise in temperature from 151.3 ± 21.6°C to 124.1 ± 15.3°C (P = 0.005). When the self-drilling pin insertion was decreased considerably from 360 to 60 rpm, the temperature decreased significantly from 151.3 ± 21.6°C to 109.6 ± 14.0°C (P <0.001). When the force applied increased significantly, the corresponding self-drilling pin temperature increase was not significant. The standard pin had lower peak temperatures than the self-drilling pin for all conditions. Moreover, slowing down the insertion speed and adding irrigation helped mitigate the temperature increase of both pin types during insertion.

  14. Friction and Wear Characteristics of a Modified Composite Solid Lubricant Plasma Spray Coating

    NASA Technical Reports Server (NTRS)

    Stanford, M. K.; DellaCorte, C.

    2004-01-01

    LCR304 is a solid lubricant coating composed of Ni-10Cr, Cr2O3, BaF2-CaF2 and Ag and developed for dimensional stability in high temperature air. This coating is a modification of PS304, which differs in that the Ni-Cr constituent contains 20wt% Cr. The tribological characteristics of LCR304 were evaluated by pin-on-disk and foil air bearing rig testing from 25 to 650 C and compared to previous test results with PS304. For both tests, the friction coefficient decreased as temperature increased from 25 to 650 C. Wear generally decreased with increasing temperature for all pin-on-disk tests. LCR304 coated components produced the least wear of Inconel X-750 counterface materials at 427 and 650 C. These results indicate that the LCR304 coating has potential as a replacement for PS304 in, for example, low cycle (minimum wear) applications where dimensional stability is imperative.

  15. Remote temperature-set-point controller

    DOEpatents

    Burke, W.F.; Winiecki, A.L.

    1984-10-17

    An instrument is described for carrying out mechanical strain tests on metallic samples with the addition of means for varying the temperature with strain. The instrument includes opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

  16. Remote temperature-set-point controller

    DOEpatents

    Burke, William F.; Winiecki, Alan L.

    1986-01-01

    An instrument for carrying out mechanical strain tests on metallic samples with the addition of an electrical system for varying the temperature with strain, the instrument including opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

  17. The Role of Molecular Weight and Temperature on the Elastic and Viscoelastic Properties of a Glassy Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2001-01-01

    Mechanical testing of the elastic and viscoelastic response of an advanced thermoplastic polyimide (LaRC-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The notched tensile strength was shown to be a strong function of both molecular weight and temperature, whereas stiffness was only a strong function of temperature. A critical molecular weight was observed to occur at a weight average molecular weight of M, approx. 22,000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Low, molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. Furthermore, low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. At long timescales (less than 1100 hours) physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested. Low molecular weight materials are less influenced by the effects of physical aging.

  18. Xe/Kr Selectivity Measurements using AgZ-PAN at Various Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garn, Troy Gerry; Greenhalgh, Mitchell Randy; Watson, Tony Leroy

    2015-05-01

    In preparation for planned FY-15 Xe/Kr multi-column testing, a series of experiments were performed to determine the selectivity of Xe over Kr using the silver converted mordenite-polyacrylonitrile (AgZ-PAN) sorbent. Results from these experiments will be used for parameter selection guidelines to define test conditions for Kr gas capture purity evaluations later this year. The currently configured experimental test bed was modified by installing a new cooling apparatus to permit future multi-column testing with independent column temperature control. The modified test bed will allow for multi-column testing to facilitate a Xe separation followed by a Kr separation using engineered form sorbents.more » Selectivity experiments were run at temperatures of 295, 250 and 220 K. Two feed gas compositions of 1000 ppmv Xe, 150 ppmv Kr in either a He or an air balance were used. AgZ-PAN sorbent selectivity was calculated using Xe and Kr capacity determinations. AgZ-PAN sorbent selectivities for Xe over Kr of 72 were calculated at room temperature (295 K) using the feed gas with a He balance and 34 using the feed gas with an air balance. As the test temperatures were decreased the selectivity of Xe over Kr also decreased due to an increase in both Xe and Kr capacities. At 220 K, the sorbent selectivities for Xe over Kr were 22 using the feed gas with a He balance and 28 using the feed gas with an air balance. The selectivity results indicate that AgZ-PAN used in the first column of a multi-column configuration will provide adequate partitioning of Xe from Kr in the tested temperature range to produce a more pure Kr end product for collection.« less

  19. High-Speed, High-Temperature Finger Seal Test Results

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Kumar, Arun; Delgado, Irebert R.

    2002-01-01

    Finger seals have significantly lower leakage rates than conventional labyrinth seals used in gas turbine engines and are expected to decrease specific fuel consumption by over 1 percent and to decrease direct operating cost by over 0.5 percent. Their compliant design accommodates shaft growth and motion due to thermal and dynamic loads with minimal wear. The cost to fabricate these finger seals is estimated to be about half the cost to fabricate brush seals. A finger seal has been tested in NASA's High Temperature, High Speed Turbine Seal Test Rig at operating conditions up to 1200 F, 1200 ft/s, and 75 psid. Static, performance and endurance test results are presented. While seal leakage and wear performance are acceptable, further design improvements are needed to reduce the seal power loss.

  20. Thermal-Aware Test Access Mechanism and Wrapper Design Optimization for System-on-Chips

    NASA Astrophysics Data System (ADS)

    Yu, Thomas Edison; Yoneda, Tomokazu; Chakrabarty, Krishnendu; Fujiwara, Hideo

    Rapid advances in semiconductor manufacturing technology have led to higher chip power densities, which places greater emphasis on packaging and temperature control during testing. For system-on-chips, peak power-based scheduling algorithms have been used to optimize tests under specified power constraints. However, imposing power constraints does not always solve the problem of overheating due to the non-uniform distribution of power across the chip. This paper presents a TAM/Wrapper co-design methodology for system-on-chips that ensures thermal safety while still optimizing the test schedule. The method combines a simplified thermal-cost model with a traditional bin-packing algorithm to minimize test time while satisfying temperature constraints. Furthermore, for temperature checking, thermal simulation is done using cycle-accurate power profiles for more realistic results. Experiments show that even a minimal sacrifice in test time can yield a considerable decrease in test temperature as well as the possibility of further lowering temperatures beyond those achieved using traditional power-based test scheduling.

  1. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie D.

    2011-01-01

    Ground vibration tests are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicles, thermoelastic vibration testing techniques are neither well established nor routinely performed. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. When high-temperature materials, which increase in stiffness when heated, are incorporated into a hot-structure that contains metallic components that decrease in stiffness when heated, the interaction between those materials can affect the hypersonic flutter analysis. A high-temperature modal survey will expand the research database for hypersonics and improve the understanding of this dual-material interaction. This report discusses the vibration testing of the carbon-silicon carbide Ruddervator Subcomponent Test Article, which is a truncated version of a full-scale hot-structure control surface. Two series of room-temperature modal test configurations were performed in order to define the modal characteristics of the test article during the elevated-temperature modal survey: one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary). Testing was performed in the NASA Dryden Flight Research Center Flight Loads Laboratory Large Nitrogen Test Chamber.

  2. Dynamic Fracture Initiation Toughness at Elevated Temperatures With Application to the New Generation of Titanium Aluminide Alloys. Chapter 8

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Draper, Susan; Shukla, Arun (Editor)

    2006-01-01

    Recently, a new generation of titanium aluminide alloy, named Gamma-Met PX, has been developed with better rolling and post-rolling characteristics. I'revious work on this alloy has shown the material to have higher strengths at room and elevated temperatures when compared with other gamma titanium aluminides. In particular, this new alloy has shown increased ductility at elevated temperatures under both quasi-static and high strain rate uniaxial compressive loading. However, its high strain rate tensile ductility at room and elevated temperatures is limited to approx. 1%. In the present chapter, results of a study to investigate the effects of loading rate and test temperature on the dynamic fracture initiation toughness in Gamma-Met PX are presented. Modified split Hopkinson pressure bar was used along with high-speed photography to determine the crack initiation time. Three-point bend dynamic fracture experiments were conducted at impact speeds of approx. 1 m/s and tests temperatures of up-to 1200 C. The results show that thc dynamic fracture initiation toughness decreases with increasing test temperatures beyond 600 C. Furthermore, thc effect of long time high temperature air exposure on the fracture toughness was investigated. The dynamic fracture initiation toughness was found to decrease with increasing exposure time. The reasons behind this drop are analyzed and discussed.

  3. Effects of Strain Rate and Temperature on the Mechanical Properties of Medium Manganese Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Radhakanta; Matlock, David K; Speer, John G

    2016-11-16

    The effects of temperature (-60 to 100 °C) and strain rate (0.002 to 0.2 s-1) on the properties of Al-alloyed 7 and 10 wt-% Mn steels containing 34.8 and 57.3 vol-% austenite respectively were evaluated by tensile tests in isothermal liquid baths. The tensile strengths of both medium Mn steels increased with a decrease in temperature owing to the decreased austenite stability with a decrease in temperature. At lower temperatures the strength of the 10MnAl steel was highest, a consequence of the higher strain hardening rate caused by more austenite transformation to martensite with deformation. The resulting properties are assessedmore » with a consideration of the effects of strain rate and deformation on adiabatic heating which was observed to be as high as 95o C.« less

  4. Experimental investigation on the failure of T-joints at elevated temperature under unaxial loading

    NASA Astrophysics Data System (ADS)

    Bahri, N. F.; Afendi, M.; Razlan, Z. M.; Nor, A.; Baharuddin, S. A.

    2017-09-01

    In this study, the mechanical properties and maximum failure load of a bulk and T-joints subjected to tensile loading were investigated experimentally. A bulk and the T-joint specimens were fabricated and tested in order to investigate the effects of temperature conditions on the failure of the joints. The adherent and adhesive used for T-joint are 304 L stainless steel and Hysol E 214 HP with the adhesive thickness of 1.0 mm. The tensile test of the bulk specimen and adhesively T-joint were conducted by using a universal testing machine (UTM) at room temperature (RT), 55 °C, 75 °C, 100 °C and 120 °C, respectively. It was found that as the temperature increases, the failure force strength decreases for bulk and T-joint specimen. Data obtained from the tests at 120 °C showed the failure force of the bulk adhesive decreased by approximately 44 % compared to the specimen tested at RT. Next, the bulk of Hysol failure force result was compared with Araldite at RT and 100 °C. Araldite data was taken from the previous study [1]. It has also been found that the bulk for Hysol has higher failure force compared to Araldite at RT and 100 °C.

  5. Research on EHN additive on the diesel engine combustion characteristics in plateau environment

    NASA Astrophysics Data System (ADS)

    Sun, Zhixin; Li, Ruoting; Wang, Xiancheng; Hu, Chuan

    2017-03-01

    Aiming at the combustion deterioration problem of diesel engine in plateau environment, a bench test was carried out for the effects of EHN additive on combustion characteristics of the diesel engine with intake pressure of 0.68 kPa. Test results showed that with the full load working condition of 1 400 r/min: Cylinder pressure and pressure uprising rate decreased with EHN additive added in, mechanical load on the engine could be relieved; peak value of the heat release rate decreased and its occurrence advanced, ignition delay and combustion duration were shortened; cylinder temperature and exhaust gas temperature declined, thermal load on the engine could be relieved, output torque increased while specific oil consumption decreased, and effective thermal efficiency of diesel engine increased.

  6. Design, Fabrication, and Testing of Ceramic Joints for High Temperature SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Lara-Curzio, Edgar

    2000-01-01

    Various issues associated with the design and mechanical evaluation of joints of ceramic matrix composites are discussed. The specific case of an affordable, robust ceramic joining technology (ARCJoinT) to join silicon carbide (CG-Nicalon(sup TM)) fiber-reinforced-chemically vapor infiltrated (CVI) silicon carbide matrix composites is addressed. Experimental results are presented for the time and temperature dependence of the shear strength of these joints in air up to 1200 C. From compression testing of double-notched joint specimens with a notch separation of 4 mm, it was found that the apparent shear strength of the joints decreased from 92 MPa at room temperature to 71 MPa at 1200 C. From shear stress-rupture testing in air at 1200 C it was found that the shear strength of the joints decreased rapidly with time from an initial shear strength of 71 to 17.5 MPa after 14.3 hr. The implications of these results in relation to the expected long-term service life of these joints in applications at elevated temperatures are discussed.

  7. Influence of High Temperature Treatment on Mechanical Behavior of a Coarse-grained Marble

    NASA Astrophysics Data System (ADS)

    Rong, G.; Peng, J.; Jiang, M.

    2017-12-01

    High temperature has a significant influence on the physical and mechanical behavior of rocks. With increasing geotechnical engineering structures concerning with high temperature problems such as boreholes for oil or gas production, underground caverns for storage of radioactive waste, and deep wells for injection of carbon dioxides, etc., it is important to study the influence of temperature on the physical and mechanical properties of rocks. This paper experimentally investigates the triaxial compressive properties of a coarse-grained marble after exposure to different high temperatures. The rock specimens were first heated to a predetermined temperature (200, 400, and 600 oC) and then cooled down to room temperature. Triaxial compression tests on these heat-treated specimens subjected to different confining pressures (i.e., 0, 5, 10, 15, 20, 25, 30, 35, and 40 MPa) were then conducted. Triaxial compression tests on rock specimens with no heat treatment were also conducted for comparison. The results show that the high temperature treatment has a significant influence on the microstructure, porosity, P-wave velocity, stress-strain relation, strength and deformation parameters, and failure mode of the tested rock. As the treatment temperature gradually increases, the porosity slightly increases and the P-wave velocity dramatically decreases. Microscopic observation on thin sections reveals that many micro-cracks will be generated inside the rock specimen after high temperature treatment. The rock strength and Young's modulus show a decreasing trend with increase of the treatment temperature. The ductility of the rock is generally enhanced as the treatment temperature increases. In general, the high temperature treatment weakens the performance of the tested rock. Finally, a degradation parameter is defined and a strength degradation model is proposed to characterize the strength behavior of heat-treated rocks. The results in this study provide useful data for evaluation of rock properties in high temperature condition.

  8. An evaluation of the transition temperature range of super-elastic orthodontic NiTi springs using differential scanning calorimetry.

    PubMed

    Barwart, O; Rollinger, J M; Burger, A

    1999-10-01

    Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.

  9. Performance of three systems for warming intravenous fluids at different flow rates.

    PubMed

    Satoh, J; Yamakage, M; Wasaki, S I; Namiki, A

    2006-02-01

    This study compared the intravenous fluid warming capabilities of three systems at different flow rates. The devices studied were a water-bath warmer, a dry-heat plate warmer, and an intravenous fluid tube warmer Ambient temperature was controlled at 22 degrees to 24 degrees C. Normal saline (0.9% NaCl) at either room temperature (21 degrees to 23 degrees C) or at ice-cold temperature (3 degrees to 5 degrees C) was administered through each device at a range of flow rates (2 to 100 ml/min). To mimic clinical conditions, the temperature of the fluid was measured with thermocouples at the end of a one metre tube connected to the outflow of the warmer for the first two devices and at the end of the 1.2 m warming tubing for the intravenous fluid tube warmer The temperature of fluid delivered by the water bath warmer increased as the flow rate was increased up to 15 to 20 ml/min but decreased with greater flow rates. The temperature of the fluid delivered by the dry-heat plate warmer significantly increased as the flow rate was increased within the range tested (due to decreased cooling after leaving the device at higher flow rates). The temperature of fluid delivered by the intravenous fluid tube warmer did not depend on the flow rate up to 20 ml/min but significantly and fluid temperature-dependently decreased at higher flow rates (>30 ml/min). Under the conditions of our testing, the dry heat plate warmer delivered the highest temperature fluid at high flow rates.

  10. Realistic Testing of the Safe Affordable Fission Engine (SAFE-100) Thermal Simulator Using Fiber Bragg Gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson-Bagby, Kelly L.; Fielder, Robert S.; Van Dyke, Melissa K.

    2004-02-04

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. Distributed high temperature measurements were made with 20 FBG temperature sensors installed in the SAFE-100 thermal simulator at the NASA Marshal Space Flight Center. Experiments were performed at temperatures approaching 800 deg. C and 1150 deg. C for characterization studies of the SAFE-100 core. Temperature profiles were successfully generated for the core during temperature increases and decreases. Related tests in the SAFE-100 successfully provided strain measurement data.

  11. The Tension and Puncture Properties of HDPE Geomembrane under the Corrosion of Leachate.

    PubMed

    Xue, Qiang; Zhang, Qian; Li, Zhen-Ze; Xiao, Kai

    2013-09-17

    To investigate the gradual failure of high-density polyethylene (HDPE) geomembrane as a result of long-term corrosion, four dynamic corrosion tests were conducted at different temperatures and durations. By combining tension and puncture tests, we systematically studied the variation law of tension and puncture properties of the HDPE geomembrane under different corrosion conditions. Results showed that tension and puncture failure of the HDPE geomembrane was progressive, and tensile strength in the longitudinal grain direction was evidently better than that in the transverse direction. Punctures appeared shortly after puncture force reached the puncture strength. The tensile strength of geomembrane was in inversely proportional to the corrosion time, and the impact of corrosion was more obvious in the longitudinal direction than transverse direction. As corrosion time increased, puncture strength decreased and corresponding deformation increased. As with corrosion time, the increase of corrosion temperature induced the decrease of geomembrane tensile strength. Tensile and puncture strength were extremely sensitive to temperature. Overall, residual strength had a negative correlation with corrosion time or temperature. Elongation variation increased initially and then decreased with the increase in temperature. However, it did not show significant law with corrosion time. The reduction in puncture strength and the increase in puncture deformation had positive correlations with corrosion time or temperature. The geomembrane softened under corrosion condition. The conclusion may be applicable to the proper designing of the HDPE geomembrane in landfill barrier system.

  12. Dynamic Uniaxial Compression of HSLA-65 Steel at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Dike, Shweta; Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas

    2017-12-01

    In the present study, the dynamic response of a high-strength, low alloy Grade 65 (HSLA-65) steel, used by the United States Navy for ship hull construction, is investigated under dynamic uniaxial compression at temperatures ranging from room temperature to 1000 °C using a novel elevated temperature split-Hopkinson pressure bar. These experiments are designed to probe the dynamic response of HSLA-65 steel in its single α-ferrite phase, mixed α + γ-austenite phase, and the single γ-austenite phase, as a function of temperature. The investigation is conducted at two different average strain rates—1450 and 2100/s. The experimental results indicate that at test temperatures in the range from room temperature to lower than 600 °C, i.e. prior to the development of the mixed α + γ phase, a net softening in flow strength is observed at all levels of plastic strain with increase in test temperatures. As the test temperatures are increased, the rate of this strain softening with temperature is observed to decrease, and at 600 °C the trend reverses itself resulting in an increase in flow stress at all strains tested. This increase in flow stress is understood be due to dynamic strain aging, where solute atoms play a distinctive role in hindering dislocation motion. At 800 °C, a (sharp) drop in the flow stress, equivalent to one-half of its value at room temperature, is observed. As the test temperature are increased to 900 and 1000 °C, further drop in flow stress are observed at all plastic strain levels. In addition, strain hardening in flow stress is observed at all test temperatures up to 600 °C; beyond 800 °C the rate of strain hardening is observed to decrease, with strain softening becoming dominant at temperatures of 900 °C and higher. Moreover, comparing the high strain rate stress versus strain data gathered on HSLA 65 in the current investigation with those available in the literature at quasi-static strain rates, strain-rate hardening can be inferred. The flow stress increases from 700 MPa at 8 × 10-4/s to 950 MPa at 1450/s and then to 1000 MPa at 2100/s at a strain of 0.1. Optical microscopy is used to understand evolution of microstructure in the post-test samples at the various test temperatures employed in the present study.

  13. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie Dawn

    2010-01-01

    Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.

  14. Hydro-meteorological trends in the Gidabo catchment of the Rift Valley Lakes Basin of Ethiopia

    NASA Astrophysics Data System (ADS)

    Belihu, Mamuye; Abate, Brook; Tekleab, Sirak; Bewket, Woldeamlak

    2018-04-01

    The global and regional variability and changes of climate and stream flows are likely to have significant influence on water resource availability. The magnitude and impacts of climate variability and change differs spatially and temporally. This study examines the long term hydroclimatic changes, analyses of the hydro-climate variability and detect whether there exist significant trend or not in the Gidabo catchment, rift valley lakes basin of Ethiopia. Precipitation, temperature and stream flow time series data were used in monthly, seasonal and annual time scales. The precipitation and temperature data span is between 1982 and 2014 and that of stream flow is between 1976 and 2006. To detect trends the analysis were done by using Mann Kendal (MK), Sen's graphical method and to detect change point using the Pettit test. The comparison of trend analysis between MK trend test and Sen graphical method results depict mostly similar pattern. The annual rainfall trends exhibited a significant decrease by about 12 mm per year in the upstream, which is largely driven by the significant decrease in the peak season rainfall. The Pettit test revealed that the years 1997 and 2007 were the change points. It is noted that the rise of temperature over a catchment might have decreased the availability of soil moisture which resulted in less runoff. The temperature analyses also revealed that the catchment was getting warmer; particularly in the upstream. The minimum temperature trend showed a significant increase about 0.08°c per annum. There is generally a decreasing trend in stream flow. The monthly stream flow also exhibited a decreasing trend in February, March and September. The decline in annual and seasonal rainfall and the increase in temperature lead to more evaporation and directly affecting the stream flow negatively. This trend compounded with the growth of population and increasing demand for irrigation water exacerbates the competing demand for water resources. It thus calls for prudence in devising appropriate intervention in the planning and sustainable development of the basin water resources.

  15. The Effect of Curing Temperature on the Properties of Cement Pastes Modified with TiO2 Nanoparticles

    PubMed Central

    Pimenta Teixeira, Karine; Perdigão Rocha, Isadora; De Sá Carneiro, Leticia; Flores, Jessica; Dauer, Edward A.; Ghahremaninezhad, Ali

    2016-01-01

    This paper investigates the effect of curing temperature on the hydration, microstructure, compressive strength, and transport of cement pastes modified with TiO2 nanoparticles. These characteristics of cement pastes were studied using non-evaporable water content measurement, X-ray diffraction (XRD), compressive strength test, electrical resistivity and porosity measurements, and scanning electron microscopy (SEM). It was shown that temperature enhanced the early hydration. The cement pastes cured at elevated temperatures generally showed an increase in compressive strength at an early age compared to the cement paste cured at room temperature, but the strength gain decreased at later ages. The electrical resistivity of the cement pastes cured at elevated temperatures was found to decrease more noticeably at late ages compared to that of the room temperature cured cement paste. SEM examination indicated that hydration product was more uniformly distributed in the microstructure of the cement paste cured at room temperature compared to the cement pastes cured at elevated temperatures. It was observed that high temperature curing decreased the compressive strength and electrical resistivity of the cement pastes at late ages in a more pronounced manner when higher levels of TiO2 nanoparticles were added. PMID:28774073

  16. Characterizing the temperature dependence of electronic packaging-material properties

    NASA Astrophysics Data System (ADS)

    Fu, Chia-Yu; Ume, Charles

    1995-06-01

    A computer-controlled, temperature-dependent material characterization system has been developed for thermal deformation analysis in electronic packaging applications, especially for printed wiring assembly warpage study. For fiberglass-reinforced epoxy (FR-4 type) material, the Young's moduli decrease to as low as 20-30% of the room-temperature values, while the shear moduli decrease to as low as 60-70% of the room-temperature values. The electrical resistance strain gage technique was used in this research. The test results produced overestimated values in property measurements, and this was shown in a case study. A noncontact strau]n measurement technique (laser extensometer) is now being used to measure these properties. Discrepancies of finite-element warpage predictions using different property values increase as the temperature increases from the stress-free temperature.

  17. Unidirectional trends in annual and seasonal climate and extremes in Egypt

    NASA Astrophysics Data System (ADS)

    Nashwan, Mohamed Salem; Shahid, Shamsuddin; Abd Rahim, Norhan

    2018-05-01

    The presence of short- and long-term autocorrelations can lead to considerable change in significance of trend in hydro-climatic time series. Therefore, past findings of climatic trend studies that did not consider autocorrelations became a questionable issue. The spatial patterns in the trends of annual and seasonal temperature, rainfall, and related extremes in Egypt have been assessed in this paper using modified Mann-Kendal (MMK) trend test which can detect unidirectional trends in time series in the presence of short- and long-term autocorrelations. The trends obtained using the MMK test was compared with that obtained using standard Mann-Kendall (MK) test to show how natural variability in climate affects the trends. The daily rainfall and temperature data of Princeton Global Meteorological Forcing for the period 1948-2010 having a spatial resolution of 0.25° × 0.25° was used for this purpose. The results showed a large difference between the trends obtained using MMK and MK tests. The MMK test showed increasing trends in temperature and a number of temperature extremes in Egypt, but almost no change in rainfall and rainfall extremes. The minimum temperature was found to increase (0.08-0.29 °C/decade) much faster compared to maximum temperature (0.07-0.24 °C/decade) and therefore, a decrease in diurnal temperature range (- 0.01 to - 0.16 °C/decade) in most part of Egypt. The number of winter hot days and nights are increasing, while the number of cold days is decreasing in most part of the country. The study provides a more realistic scenario of the changes in climate and weather extremes of Egypt.

  18. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans.

    PubMed

    Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G

    2010-11-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.

  19. Comportement en fatigue et influence de la temperature sur les proprietes en traction du PLA

    NASA Astrophysics Data System (ADS)

    Menard, Claire

    Current environmental issues reduce the use of materials obtained from fossil resources. The usual plastics therefore tend to be replaced by more green polymers such as polylactic acid (PLA), a bio-based and biodegradable polymer. Knowledge on the properties of this material is essential, especially in terms of fatigue strength and influence of temperature on tensile stiffness and strength. In this study, the PLA samples are submitted to monotonic tensile tests, according to ASTM D638-10, at various temperatures between room temperature (23°C) and the glass transition temperature of the material (55-60°C). The results show a decrease of 30% of the modulus of elasticity and 60% of the tensile strength between these two temperatures. This decrease is mainly due to a significant drop in the mechanical properties beyond 50°C. In addition, tensile fatigue tests were conducted at loads rate between 40 and 80% of tensile strength, at room temperature in order to plot the Wohler curve of PLA. The ruptured specimens were finally observed with a scanning electron microscope (SEM) to analyze the failure mechanisms in fatigue of PLA.

  20. Emissions of an AVCO Lycoming 0-320-DIAD air cooled light aircraft engine as a function of fuel-air ratio, timing, and air temperature and humidity

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Skorobatckyi, M.; Cosgrove, D. V.; Kempke, E. E., Jr.

    1976-01-01

    A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased.

  1. Incubation temperature effects on hatchling performance in the loggerhead sea turtle (Caretta caretta).

    PubMed

    Fisher, Leah R; Godfrey, Matthew H; Owens, David W

    2014-01-01

    Incubation temperature has significant developmental effects on oviparous animals, including affecting sexual differentiation for several species. Incubation temperature also affects traits that can influence survival, a theory that is verified in this study for the Northwest Atlantic loggerhead sea turtle (Caretta caretta). We conducted controlled laboratory incubations and experiments to test for an effect of incubation temperature on performance of loggerhead hatchlings. Sixty-eight hatchlings were tested in 2011, and 31 in 2012, produced from eggs incubated at 11 different constant temperatures ranging from 27°C to 33°C. Following their emergence from the eggs, we tested righting response, crawling speed, and conducted a 24-hour long swim test. The results support previous studies on sea turtle hatchlings, with an effect of incubation temperature seen on survivorship, righting response time, crawling speed, change in crawl speed, and overall swim activity, and with hatchlings incubated at 27°C showing decreased locomotor abilities. No hatchlings survived to be tested in both years when incubated at 32°C and above. Differences in survivorship of hatchlings incubated at high temperatures are important in light of projected higher sand temperatures due to climate change, and could indicate increased mortality from incubation temperature effects.

  2. Effects of Internal and External Hydrogen on Inconel 718

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Frandsen, J. D.

    1999-01-01

    Internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE) tensile and bend crack growth tests were performed on Inconel 718. For the IHE tests, the specimens were precharged to approximately 90 ppm hydrogen by exposure to 34.5 MPa H2 at 650 C. The HEE tests were performed in 34.5 MPa H2. Parameters evaluated were test temperature, strain rate for smooth and notch specimen geometries. The strain rate effect was very significant at ambient temperature for both IHE and HEE and decreased with increasing temperatures. For IHE, the strain rate effect was neglible at 260'C, and for HEE the strain rate effect was neglible at 400 C. At low temperatures, IHE was more severe than HEE, and at high temperatures HEE was more severe than IHE with a cross over temperature about 350 C. At 350 C, the equilibrium hydrogen concentration in Inconel 718 is about 50% lower than the hydrogen content of the precharged IHE specimens. Dislocation hydrogen sweeping of surface absorbed hydrogen was the likely transport mechanism for increasing the hydrogen concentration in the HEE tests sufficiently to produce the same degree of embrittlement as that of the more highly hydrogen charged IHE specimens. The main IHE fracture characteristic was formation of large, brittle flat facets, which decreased with increasing test temperature. The IHE fracture matrix surrounding the large facets ranged between brittle fine faceted to microvoid ductility depending upon strain rate, specimen geometry as well as temperature. The HEE fractures were characteristically fine featured, transgranular and brittle with a significant portion forming a "saw tooth" crystallographic pattern. Both IHE and HEE fractures were predominantly along the {1 1 1) slip and twin boundaries. With respect to embrittlement mechanism, it was postulated that dislocation hydrogen sweeping and hydrogen enhanced localized plasticity were active in HEE and IHE for concentrating hydrogen along (1 1 1) slip and twin planes. Final brittle failure occurred by hydrogen induced planer decohesion.

  3. Cryogenic Refractive Index and Coefficient of Thermal Expansion for the S-TIH1 Glass

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Leviton, Douglas; Content, David

    2013-01-01

    Using the CHARMS facility at NASA GSFC, we have measured the cryogenic refractive index of the Ohara S-TIH1 glass from 0.40 to 2.53 micrometers and from 120 to 300 K. We have also examined the spectral dispersion and thermo-optic coefficients (dn/dT). We also derived temperature-dependent Sellmeier models from which refractive index may be calculated for any wavelength and temperature within the stated ranges of each model. The S-TIH1 glass we tested exhibited unusual behavior in the thermo-optic coefficient. We found that for delta < 0.5 micrometers, the index of refraction decrease with a decrease in temperature (positive dn/dT). However, the situation was reversed for delta larger than 0.63 micrometers, where the index will increase with a decrease in temperature (negative dn/dT). We also measured the coefficient of thermal expansion (CTE) for the similar batch of S-TIH1 glass in order to understand its thermal properties. The CTE showed a monotonic change with a decrease in temperature.

  4. Effect of welding structure and δ-ferrite on fatigue properties for TIG welded austenitic stainless steels at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Yuri, Tetsumi; Ogata, Toshio; Saito, Masahiro; Hirayama, Yoshiaki

    2000-04-01

    High-cycle and low-cycle fatigue properties of base and weld metals for SUS304L and SUS316L and the effects of welding structure and δ-ferrite on fatigue properties were investigated at cryogenic temperatures in order to evaluate the long-life reliability of the structural materials to be used in liquid hydrogen supertankers and storage tanks and to develop a welding process for these applications. The S-N curves of the base and weld metals shifted towards higher levels, i.e., the longer life side, with decreasing test temperatures. High-cycle fatigue tests demonstrated the ratios of fatigue strength at 10 6 cycles to tensile strength of the weld metals to be 0.35-0.7, falling below those of base metals with decreasing test temperatures. Fatigue crack initiation sites in SUS304L weld metals were mostly at blowholes with diameters of 200-700 μm, and those of SUS316L weld metals were at weld pass interface boundaries. Low-cycle fatigue tests revealed the fatigue lives of the weld metals to be somewhat lower than those of the base metals. Although δ-ferrite reduces the toughness of austenitic stainless steels at cryogenic temperatures, the effects of δ-ferrite on high-cycle and low-cycle fatigue properties are not clear or significant.

  5. Time-dependent edge notch sensitivity of Inconel 718 sheet in the temperature range 900 to 1400 F (482 to 760 C)

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.

    1972-01-01

    Time-dependent notch sensitivity of Inconel 718 sheet occurred at 900 to 1200 F when notched specimens were loaded below the yield strength, and tests on smooth specimens showed that small amounts of creep consumed large fractions of creep-rupture life. The severity of the notch sensitivity decreased with decreasing solution treatment temperature and increasing time and/or temperature of the aging treatment. Elimination of the notch sensitivity was correlated with a change in the dislocation mechanism from shearing to by-passing precipitate particles.

  6. [Effect of glyceryl triacetate on properties of PLA/PBAT blends].

    PubMed

    Yang, Nan; Wang, Xiyuan; Weng, Yunxuan; Jin, Yujuan; Zhang, Min

    2016-06-25

    Poly lactic acid (PLA)/Poly (butyleneadipate-co-terephthalate)(PBAT) and glyceryl triacetate (GTA) blend were prepared by torque rheometer, and the effect of GTA on thermodynamical performance, mechanical properties and microstructure of PLA/PBAT composites were studied using differential scanning calorimeter(DSC), dynamic mechanical analysis(DMA), universal testing machine, impact testing machine and scanning electron microscope(SEM). After adding GTA, Tg values of the two phases gradually became closer, blends cold crystallization temperature and melting temperature decreased. When with 3 phr GTA, the dispersed phase particle size of PLA/PBAT blend decreased. Mechanics performance test showed that the elongation at break and impact strength of the PLA/PBAT blend was greatly increased with 3 phr GTA, and the elongation at break increased 2.6 times, improved from 17.7% to 64.1%.

  7. Temperature influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in the bullfrog, Lithobates catesbeianus.

    PubMed

    Santin, Joseph M; Watters, Kayla C; Putnam, Robert W; Hartzler, Lynn K

    2013-12-15

    The locus coeruleus (LC) is a chemoreceptive brain stem region in anuran amphibians and contains neurons sensitive to physiological changes in CO2/pH. The ventilatory and central sensitivity to CO2/pH is proportional to the temperature in amphibians, i.e., sensitivity increases with increasing temperature. We hypothesized that LC neurons from bullfrogs, Lithobates catesbeianus, would increase CO2/pH sensitivity with increasing temperature and decrease CO2/pH sensitivity with decreasing temperature. Further, we hypothesized that cooling would decrease, while warming would increase, normocapnic firing rates of LC neurons. To test these hypotheses, we used whole cell patch-clamp electrophysiology to measure firing rate, membrane potential (V(m)), and input resistance (R(in)) in LC neurons in brain stem slices from adult bullfrogs over a physiological range of temperatures during normocapnia and hypercapnia. We found that cooling reduced chemosensitive responses of LC neurons as temperature decreased until elimination of CO2/pH sensitivity at 10°C. Chemosensitive responses increased at elevated temperatures. Surprisingly, chemosensitive LC neurons increased normocapnic firing rate and underwent membrane depolarization when cooled and decreased normocapnic firing rate and underwent membrane hyperpolarization when warmed. These responses to temperature were not observed in nonchemosensitive LC neurons or neurons in a brain stem slice 500 μm rostral to the LC. Our results indicate that modulation of cellular chemosensitivity within the LC during temperature changes may influence temperature-dependent respiratory drive during acid-base disturbances in amphibians. Additionally, cold-activated/warm-inhibited LC neurons introduce paradoxical temperature sensitivity in respiratory control neurons of amphibians.

  8. Effect of temperature on the effectiveness of artificial reproduction of dace [Cyprinidae (Leuciscus leuciscus (L.))] under laboratory and field conditions.

    PubMed

    Nowosad, Joanna; Targońska, Katarzyna; Chwaluczyk, Rafał; Kaszubowski, Rafał; Kucharczyk, Dariusz

    2014-10-01

    This study sought to determine the effect of water temperature on the effectiveness of artificial reproduction of dace brooders under laboratory and field conditions. Three temperatures were tested in the laboratory: 9.5, 12 and 14.5 °C (± 0.1 °C). The water temperature under field conditions was 11.0 ± 0.3 °C (Czarci Jar Fish Farm) and 13.2 ± 1.4 °C (Janowo Fish Farm). The study showed that artificial reproduction of dace is possible in all the temperature ranges under study and an embryo survival rate of over 87% can be achieved. Dace has also been found to be very sensitive to rapid temperature changes, even within the temperature ranges optimal for the species. Such changes have an adverse effect on the outcome of the reproduction process, such as a decrease in the percentage of reproducing females, a decrease in the pseudo-gonado-somatic index (PGSI) and a decrease in the embryo survival rate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  10. The Influence of Non-Nociceptive Factors on Hot Plate Latency in Rats

    PubMed Central

    Gunn, Amanda; Bobeck, Erin N.; Weber, Ceri; Morgan, Michael M.

    2010-01-01

    The hot plate is a widely used test to assess nociception. The effect of non-nociceptive factors (weight, sex, activity, habituation, and repeated testing) on hot plate latency was examined. Comparison of body weight and hot plate latency revealed a small but significant inverse correlation (light rats had longer latencies). Habituating rats to the test room for 1 hr prior to testing did not decrease hot plate latency except for female rats tested on Days 2 - 4. Hot plate latency decreased with repeated daily testing, but this was not caused by a decrease in locomotor activity or learning to respond. Activity on the hot plate was consistent across all four trials, and prior exposure to a room temperature plate caused a similar decrease in latency as rats tested repeatedly on the hot plate. Despite this decrease in baseline hot plate latency, there was no difference in morphine antinociceptive potency. The present study shows that weight, habituation to the test room, and repeated testing can alter baseline hot plate latency, but these effects are small and have relatively little impact on morphine antinociception. PMID:20797920

  11. Thermal analysis and kinetics of coal during oxy-fuel combustion

    NASA Astrophysics Data System (ADS)

    Kosowska-Golachowska, Monika

    2017-08-01

    The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied using non-isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870°C in both N2 and CO2 atmospheres, while further mass loss occurred in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Replacement of N2 in the combustion environment by CO2 delayed the combustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.

  12. Modification of the Structure of Low-Carbon Pipe Steel by Helical Rolling, and the Increase in Its Strength and Cold Resistance

    NASA Astrophysics Data System (ADS)

    Derevyagina, L. S.; Gordienko, A. I.; Pochivalov, Yu. I.; Smirnova, A. S.

    2018-01-01

    The paper reports the investigation results on the microstructure and mechanical properties of low-carbon pipe steel after helical rolling. The processing of the steel leads to the refinement of ferritic grains from 12 (for the coarse-grained state) to 5 μm, to the strengthening of ferrite by carbide particles, a decrease in the total fraction of perlite grains, a more uniform alternation of ferrite and perlite, and the formation of regions with bainitic structure. The mechanical properties of the steel have been determined in the conditions of static and dynamic loading in the range of test temperatures from +20 to-70°C. As a result of processing, the ultimate tensile strength increases (from 650 to 770 MPa at a rolling temperature from 920°C) and the viscoplastic properties at negative temperatures are improved significantly. The ductile-brittle transition temperature of the rolled steel decreases from-32 to-55°C and the impact toughness at the test temperature-40°C increases eight times compared to the initial state of the steel.

  13. Effect of the lactoperoxidase system on Listeria monocytogenes behavior in raw milk at refrigeration temperatures.

    PubMed Central

    Gaya, P; Medina, M; Nuñez, M

    1991-01-01

    Activity of raw milk lactoperoxidase-thiocyanate-hydrogen peroxide (LP) system on four Listeria monocytogenes strains at refrigeration temperatures after addition of 0.25 mM sodium thiocyanate and 0.25 mM hydrogen peroxide was studied. The LP system exhibited a bactericidal activity against L. monocytogenes at 4 and 8 degrees C; the activity was dependent on temperature, length of incubation, and strain of L. monocytogenes tested. D values in activated-LP system milk for the four strains tested ranged from 4.1 to 11.2 days at 4 degrees C and from 4.4 to 9.7 days at 8 degrees C. The lactoperoxidase level in raw milk declined during a 7-day incubation, the decrease being more pronounced at 8 degrees C than at 4 degrees C and in control milk than in activated-LP system milk. The thiocyanate concentration decreased considerably in activated-LP system milk at both temperatures during the first 8 h of incubation. LP system activation was shown to be a feasible procedure for controlling development of L. monocytogenes in raw milk at refrigeration temperatures. PMID:1781693

  14. Elevated temperature ductility of types 304 and 316 stainless steel. [640/sup 0/ to 750/sup 0/C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikka, V. K.

    1978-01-01

    Austenitic stainless steel types 304 and 316 are known for their high ductility and toughness. However, the present study shows that certain combinations of strain rate and test temperature can result in a significant loss in elevated-temperature ductility. Such a phenomenon is referred to as ductility minimum. The strain rate, below which ductility loss is initiated, decreases with decrease in test temperature. Besides strain rate and temperature, the ductility minimum was also affected by nitrogen content and thermal aging conditions. Thermal aging at 649/sup 0/C was observed to eliminate the ductility minimum at 649/sup 0/C in both types 304 andmore » 316 stainless steel. Such an aging treatment resulted in a higher ductility than the unaged value. Aging at 593/sup 0/C still resulted in some loss in ductility. Current results suggest that ductility-minimum conditions for stainless steel should be considered in design, thermal aging data analysis, and while studying the effects of chemical composition.« less

  15. Performance of High-frequency High-flux Magnetic Cores at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Hammoud, Ahmad; Elbuluk, Malik E.; Patterson, Richard L.

    2002-01-01

    Three magnetic powder cores and one ferrite core, which are commonly used in inductor and transformer design for switch mode power supplies, were selected for investigation at cryogenic temperatures. The powder cores are Molypermalloy Core (MPC), High Flux Core (HFC), and Kool Mu Core (KMC). The performance of four inductors utilizing these cores has been evaluated as a function of temperature from 20 C to -180 C. All cores were wound with the same wire type and gauge to obtain equal values of inductance at room temperature. Each inductor was evaluated in terms of its inductance, quality (Q) factor, resistance, and dynamic hysteresis characteristics (B-H loop) as a function of temperature and frequency. Both sinusoidal and square wave excitations were used in these investigations. Measured data obtained on the inductance showed that both the MPC and the HFC cores maintain a constant inductance value, whereas with the KMC and ferrite core hold a steady value in inductance with frequency but decrease as temperature is decreased. All cores exhibited dependency, with varying degrees, in their quality factor and resistance on test frequency and temperature. Except for the ferrite, all cores exhibited good stability in the investigated properties with temperature as well as frequency. Details of the experimental procedures and test results are presented and discussed in the paper.

  16. Effects of ambient temperature on glucose tolerance and insulin sensitivity test outcomes in normal and obese C57 male mice.

    PubMed

    Dudele, Anete; Rasmussen, Gitte Marie; Mayntz, David; Malte, Hans; Lund, Sten; Wang, Tobias

    2015-05-01

    Mice are commonly used as animal models to study human metabolic diseases, but experiments are typically performed at room temperature, which is far below their thermoneutral zone and is associated with elevated heart rate, food intake, and energy expenditure. We set out to study how ambient temperature affects glucose tolerance and insulin sensitivity in control and obese male mice. Adult male C57BL/6J mice were housed at room temperature (23°C) for 6 weeks and fed either control or high fat diet. They were then fasted for 6 h before glucose or insulin tolerance tests were performed at 15, 20, 25, or 30°C. To ensure that behavioral thermoregulation did not counterbalance the afflicted ambient temperatures, oxygen consumption was determined on mice with the same thermoregulatory opportunities as during the tests. Decreasing ambient temperatures increased oxygen consumption and body mass loss during fasting in both groups. Mice fed high fat diet had improved glucose tolerance at 30°C and increased levels of fasting insulin followed by successive decrease of fasting glucose. However, differences between control and high-fat diet mice were present at all temperatures. Ambient temperature did not affect glucose tolerance in control group and insulin tolerance in either of the groups. Ambient temperature affects glucose metabolism in mice and this effect is phenotype specific. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. Kinetic Study of Mass Transfer by Sodium Hydroxide in Nickel Under Free-convection Conditions /by Don R. Mosher and Robert A. Lad

    NASA Technical Reports Server (NTRS)

    Mosher, Don R; Lad, Robert A

    1954-01-01

    An investigation was conducted using static capsules fabricated from "L" nickel tubing to determine the effect of temperature level, temperature gradient, and test duration on corrosion and mass transfer by molten sodium hydroxide under free-convection conditions. A base temperature range from 1000 degrees to 1600 degrees F with temperature differences to 500 degrees was studied. The rate of mass transfer was found to be strongly dependent on both temperature level and gradient. The rate shows little tendency to decrease for test durations up to 200 hours, although the concentration of nickel in the melt approaches a limited value after 100 hours.

  18. Effect of inlet-air humidity on the formation of oxides of nitrogen in a gas-turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    Tests were conducted to determine the effect of inlet-air humidity on the formation of oxides of nitrogen from a gas-turbine combustor. Combustor inlet-air temperature ranged from 450 F to 1050 F. The tests were run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NO sub x emission index was found to decrease with increasing inlet-air humidity at a constant exponential rate of 19 percent per mass percent water vapor in the air. This decrease of NO sub x emission index with increasing humidity was found to be independent of inlet-air temperature.

  19. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    NASA Astrophysics Data System (ADS)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    On gentle clayey slopes in weathered argillaceous rock areas, there exist many landslides which repeatedly reactivate with slow movement. The slip surface soils of these landslides are sometimes composed dominantly of swelling clay mineral (smectite) which is well known to show extremely low residual friction angle. From field data monitored at landslide sites in Japan, it has become clear that some landslides with relatively shallow slip surface begin to move and become active in late autumn or early winter every year. In such cases, the triggering mechanisms of landslides have not been understood well enough, because landslide initiation and movement are not always clearly linked with rises in pore water pressures (ground water levels). In this study, we focus on the influence of seasonal variation in ground temperature on slope stability and have investigated the effect of temperature on the shear strength of slip surface soils. Undisturbed soil samples were collected by boring from the Busuno landslide in Japan. We performed box shear experiments on undisturbed slip surface soils at low temperature ranges (approximately 5-25 °C). XRD analysis revealed that these soils contain high fraction of smectite. Slickensided slip surface within test specimen was coincided with the shearing plane of the shear box and shear displacement was applied precisely along the localized slip surface. Experiments were performed under slow shearing rate condition (0.005mm/min) and the results showed that shear strength decreased with decreasing temperature. Temperature effect was rather significant on frictional angle than on cohesion. Ring shear experiments were also performed on normally-consolidated remoulded samples. Under residual strength condition, temperature-change experiments (cooling-event tests) ranging approximately from 5 to 25 °C were performed on smectite-rich landslide soils and commercial bentonites. As well as the results by box shear test, shear weakening behaviors were also recognized during cooling-event tests. Shear stress fluctuations, which were obtained by 1 Hz data sampling, showed that shear behavior characteristically changed in response to temperature conditions. Stick-slip behavior prevailed under room temperature conditions, whereas shear behavior gradually changed into stable sliding behavior as temperature decreased. SEM (Scanning Electric Microscope) observation on shear surfaces indicated that silt- and sand-size asperities in the vicinity of the shear surface influence the occurrence of stick-slip behavior. It is also characteristically noted that rod-shaped smectitic clays, here called "roll", developed on shear surfaces and are arrayed densely perpendicular to the shearing direction in a micrometer scale. We assume that these rolls are probably rotating slowly within shear zone and acting as a lubricant which affects the temperature-dependent frictional properties of the shearing plane. These experimental results show that residual strength characteristics of smectite-rich soils are sensitive to temperature conditions. Our findings imply that if slip surface soils contain a high fraction of smectite, a decrease in ground temperature can lead to lowered shear resistance of the slip surface and triggering of slow landslide movement.

  20. The effect of 60-h sleep deprivation on cardiovascular regulation and body temperature.

    PubMed

    Vaara, Jani; Kyröläinen, Heikki; Koivu, Mikko; Tulppo, Mikko; Finni, Taija

    2009-02-01

    This study examined cardiovascular regulation and body temperature (BT) during 60 h of sleep deprivation in 20 young healthy cadets. Heart rate variability was measured during an active orthostatic test (AOT). Measurements were performed each day in the morning and evening after 2, 14, 26, 38, 50 and 60 h of sleep deprivation. In AOT, in the sitting and standing positions, heart rate decreased (P < 0.001), while high frequency and low frequency power increased (P < 0.05-0.001) during sleep deprivation. Body temperature also decreased (P < 0.001), but no changes were detected in blood pressure. In conclusion, the accumulation of 60 h of sleep loss resulted in increased vagal outflow, as evidenced by decreased heart rate. In addition, BT decreased during sleep deprivation. Thus, sleep deprivation causes alterations in autonomic regulation of the heart, and in thermoregulation.

  1. Thermoelastic vibration test techniques

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Snyder, H. Todd

    1991-01-01

    The structural integrity of proposed high speed aircraft can be seriously affected by the extremely high surface temperatures and large temperature gradients throughout the vehicle's structure. Variations in the structure's elastic characteristics as a result of thermal effects can be observed by changes in vibration frequency, damping, and mode shape. Analysis codes that predict these changes must be correlated and verified with experimental data. The experimental modal test techniques and procedures used to conduct uniform, nonuniform, and transient thermoelastic vibration tests are presented. Experimental setup and elevated temperature instrumentation considerations are also discussed. Modal data for a 12 by 50 inch aluminum plate heated to a temperature of 475 F are presented. These data show the effect of heat on the plate's modal characteristics. The results indicated that frequency decreased, damping increased, and mode shape remained unchanged as the temperature of the plate was increased.

  2. Effect of Elevated Temperature and Loading Rate on Delamination Fracture Toughness

    NASA Technical Reports Server (NTRS)

    Reeder, J. R.; Allen, D. H.; Bradley, W. L.

    2003-01-01

    The effects of temperature and loading rate on delamination growth were studied. The delamination fracture toughness of IM7/K3B was measured at 149 C, 177 C, and 204 C. At each temperature the tests were performed with a variety of loading rates so that the delamination initiated over the range of time from 0.5 sec to 24 hrs. The double cantilever beam (DCB) test was used to measure fracture toughness. The results showed that the delamination resistance is a complicated function of both time and temperature with the effect of temperature either increasing or decreasing the fracture toughness depending on the time scale. The results also showed that the fracture toughness changed by as much as a factor of three as the time scale changed over the five orders of magnitude tested.

  3. Estimation of Temperature Range for Cryo Cutting of Frozen Mackerel using DSC

    NASA Astrophysics Data System (ADS)

    Okamoto, Kiyoshi; Hagura, Yoshio; Suzuki, Kanichi

    Frozen mackerel flesh was subjected to measurement of its fracture stress (bending energy) in a low temperature range. The optimum conditions for low temperature cutting, "cryo cutting," were estimated from the results of enthalpy changes measured by a differential scanning calorimeter (DSC). There were two enthalpy changes for gross transition on the DSC chart for mackerel, one was at -63°C to -77°C and the other at -96°C to -112°C. Thus we estimated that mackerel was able to cut by bending below -63°C and that there would be a great decrease in bending energy occurring at around -77°C and -112°C. In testing, there were indeed two great decreases of bending energy for the test pieces of mackerel that had been frozen at -40°C, one was at -70°C to -90°C and the other was at -100°C to -120°C. Therefore, the test pieces of mackerel could be cut by bending at -70°C. The results showed that the DSC measurement of mackerel flesh gave a good estimation of the appropriate cutting temperature of mackerel.

  4. The Tension and Puncture Properties of HDPE Geomembrane under the Corrosion of Leachate

    PubMed Central

    Xue, Qiang; Zhang, Qian; Li, Zhen-Ze; Xiao, Kai

    2013-01-01

    To investigate the gradual failure of high-density polyethylene (HDPE) geomembrane as a result of long-term corrosion, four dynamic corrosion tests were conducted at different temperatures and durations. By combining tension and puncture tests, we systematically studied the variation law of tension and puncture properties of the HDPE geomembrane under different corrosion conditions. Results showed that tension and puncture failure of the HDPE geomembrane was progressive, and tensile strength in the longitudinal grain direction was evidently better than that in the transverse direction. Punctures appeared shortly after puncture force reached the puncture strength. The tensile strength of geomembrane was in inversely proportional to the corrosion time, and the impact of corrosion was more obvious in the longitudinal direction than transverse direction. As corrosion time increased, puncture strength decreased and corresponding deformation increased. As with corrosion time, the increase of corrosion temperature induced the decrease of geomembrane tensile strength. Tensile and puncture strength were extremely sensitive to temperature. Overall, residual strength had a negative correlation with corrosion time or temperature. Elongation variation increased initially and then decreased with the increase in temperature. However, it did not show significant law with corrosion time. The reduction in puncture strength and the increase in puncture deformation had positive correlations with corrosion time or temperature. The geomembrane softened under corrosion condition. The conclusion may be applicable to the proper designing of the HDPE geomembrane in landfill barrier system. PMID:28788321

  5. Effects of ocean warming and acidification on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations.

    PubMed

    Ho, M A; Price, C; King, C K; Virtue, P; Byrne, M

    2013-09-01

    The gametes of marine invertebrates are being spawned into an ocean that is simultaneously warming and decreasing in pH. Predicting the potential for interactive effects of these stressors on fertilization is difficult, especially for stenothermal polar invertebrates adapted to fertilization in cold, viscous water and, when decreased sperm availability may be an additional stressor. The impact of increased temperature (2-4 °C above ambient) and decreased pH (0.2-0.4 pH units below ambient) on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations was investigated in cross-factorial experiments in context with near future ocean change projections. The high temperature treatment (+4 °C) was also used to assess thermal tolerance. Gametes from multiple males and females in replicate experiments were used to reflect the multiple spawner scenario in nature. For fertilization at low sperm density we tested three hypotheses, 1) increased temperature enhances fertilization success, 2) low pH reduces fertilization and, 3) due to the cold stenothermal physiology of S. neumayeri, temperature would be the more significant stressor. Temperature and sperm levels had a significant effect on fertilization, but decreased pH did not affect fertilization. Warming enhanced fertilization at the lowest sperm concentration tested likely through stimulation of sperm motility and reduced water viscosity. Our results indicate that fertilization in S. neumayeri, even at low sperm levels potentially found in nature, is resilient to near-future ocean warming and acidification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Ester oxidation on an aluminum surface using chemiluminescence

    NASA Technical Reports Server (NTRS)

    Jones, William R., Jr.; Meador, Michael A.; Morales, Wilfredo

    1986-01-01

    The oxidation characteristics of a pure ester (trimethyolpropane triheptanoate) were studied by using a chemiluminescence technique. Tests were run in a thin film microoxidation apparatus with an aluminum alloy catalyst. Conditions included a pure oxygen atmosphere and a temperature range of 176 to 206 C. Results indicated that oxidation of the ester (containing .001 M diphenylanthracene as an intensifier) was accompanied by emission of light. The maximum intensity of light emission was a function of the amount of ester, the concentration of intensifier, and the test temperature. The induction period, or the time to reach one-half of maximum intensity was inversely proportional to test temperature. Decreases in light emission at the later stages of a test were caused by depletion of the intensifier.

  7. Dynamic Mechanical Properties and Fracture Surface Morphologies of Core-Shell Rubber (CSR) Toughened Epoxy at Liquid Nitrogen (Ln2) Temperatures

    NASA Technical Reports Server (NTRS)

    Wang, J.; Magee, D.; Schneider, J. A.

    2009-01-01

    The dynamic mechanical properties and fracture surface morphologies were evaluated for a commercial epoxy resin toughened with two types of core-shell rubber (CSR) toughening agents (Kane Ace(Registered TradeMark) MX130 and MX960). The impact resistance (R) was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The resulting fracture surface morphologies were examined using Scanning Electron Microscopy (SEM). Fractographic observations of the CSR toughened epoxy tested at ambient temperature, showed a fracture as characterized by slender dendrite textures with large voids. The increasing number of dendrites and decreasing size of scale-like texture with more CSR particles corresponded with increased R. As the temperature decreased to Liquid Nitrogen (LN 2), the fracture surfaces showed a fracture characterized by a rough, torn texture containing many river markings and deep furrows.

  8. Influence of salinity and temperature on acute toxicity of cadmium to Mysidopsis bahia molenock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voyer, R.A.; Modica, G.

    1990-01-01

    Acute toxicity tests were conducted to compare estimates of toxicity, as modified by salinity and temperature, based on response surface techniques with those derived using conventional test methods, and to compare effect of a single episodic exposure to cadmium as a function of salinity with that of continuous exposure. Regression analysis indicated that mortality following continuous 96-hr exposure is related to linear and quadratic effects of salinity and cadmium at 20 C, and to the linear and quadratic effects of cadmium only at 25C. LC50s decreased with increases in temperature and decreases in salinity. Based on the regression model developed,more » 96-hr LC50s ranged from 15.5 to 28.0 micro Cd/L at 10 and 30% salinities, respectively, at 25C; and from 47 to 85 microgram Cd/L at these salinities at 20C.« less

  9. Incubation Temperature Effects on Hatchling Performance in the Loggerhead Sea Turtle (Caretta caretta)

    PubMed Central

    Fisher, Leah R.; Godfrey, Matthew H.; Owens, David W.

    2014-01-01

    Incubation temperature has significant developmental effects on oviparous animals, including affecting sexual differentiation for several species. Incubation temperature also affects traits that can influence survival, a theory that is verified in this study for the Northwest Atlantic loggerhead sea turtle (Caretta caretta). We conducted controlled laboratory incubations and experiments to test for an effect of incubation temperature on performance of loggerhead hatchlings. Sixty-eight hatchlings were tested in 2011, and 31 in 2012, produced from eggs incubated at 11 different constant temperatures ranging from 27°C to 33°C. Following their emergence from the eggs, we tested righting response, crawling speed, and conducted a 24-hour long swim test. The results support previous studies on sea turtle hatchlings, with an effect of incubation temperature seen on survivorship, righting response time, crawling speed, change in crawl speed, and overall swim activity, and with hatchlings incubated at 27°C showing decreased locomotor abilities. No hatchlings survived to be tested in both years when incubated at 32°C and above. Differences in survivorship of hatchlings incubated at high temperatures are important in light of projected higher sand temperatures due to climate change, and could indicate increased mortality from incubation temperature effects. PMID:25517114

  10. Long-term trends in daily temperature extremes in Iraq

    NASA Astrophysics Data System (ADS)

    Salman, Saleem A.; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Al-Abadi, Alaa M.

    2017-12-01

    The existence of long-term persistence (LTP) in hydro-climatic time series can lead to considerable change in significance of trends. Therefore, past findings of climatic trend studies that did not consider LTP became a disputable issue. A study has been conducted to assess the trends in temperature and temperature extremes in Iraq in recent years (1965-2015) using both ordinary Mann-Kendal (MK) test; and the modified Mann-Kendall (m-MK) test, which can differentiate the multi-decadal oscillatory variations from secular trends. Trends in annual and seasonal minimum and maximum temperatures, diurnal temperature range (DTR), and 14 temperature-related extremes were assessed. MK test detected the significant increases in minimum and maximum temperature at all stations, where m-MK test detected at 86% and 80% of all stations, respectively. The temperature in Iraq is increasing 2 to 7 times faster than global temperature rise. The minimum temperature is increasing more (0.48-1.17 °C/decade) than maximum temperature (0.25-1.01 °C/decade). Temperature rise is higher in northern Iraq and in summer. The hot extremes particularly warm nights are increasing all over Iraq at a rate of 2.92-10.69 days/decade, respectively. On the other hand, numbers of cold days are decreasing at some stations at a rate of - 2.65 to - 8.40 days/decade. The use of m-MK test along with MK test confirms the significant increase in temperature and some of the temperature extremes in Iraq. This study suggests that trends in many temperature extremes in the region estimated in previous studies using MK test may be due to natural variability of climate, which empathizes the need for validation of the trends by considering LTP in time series.

  11. Rapid down-regulation of testicular androgen biosynthesis at increased environmental temperature is due to cytochrome P450c17 (CYP17) thermolability in Leydig cells, but not in endoplasmic reticulum membranes.

    PubMed

    Kühn-Velten, W N

    1996-01-01

    To identify possible molecular targets in moderate heat-induced, short-term derangements of rat testicular endocrine function, rates of androgen and precursor biosynthesis and key enzyme concentrations were compared at 38 degrees C (normal body core temperature) and 31 degrees C (normal scrotal temperature) in three in-vitro models of decreasing complexity and increasing specificity. In purified Leydig cells and similarly in decapsulated testes, gross testosterone secretion was by 20% higher at 38 degrees C under basal conditions and during the initial phase of stimulation with hCG or cAMP; longer (> 1 hour) exposure to the elevated temperature resulted in a marked decrease (52% after 3 hours) of testosterone response to hCG or cAMP as compared to the corresponding rates at 31 degrees C. This phenomenon was neither due to the development of hormone resistance at the receptor level nor to restricted cholesterol supply and turnover nor to increased testosterone accumulation. Whereas mitochondrial CYP11A (cytochrome P450cscc: cholesterol monooxygenase) was absolutely temperature-insensitive in all systems tested, CYP17 (cytochrome P450c17: steroid-17 alpha-monooxygenase/C17, 20-aldolase) in the smooth endoplasmic reticulum responded with a 57% loss in whole testes and 39% loss in purified Leydig cells upon a 3-hour temperature elevation from 31 degrees C to 38 degrees C. In contrast, CYP17 was stable (4% loss) when tested directly in microsomal membranes. It is concluded that CYP17, but not CYP11A, is very sensitive towards even moderate elevation of environmental temperature, and that this apparent lability is not an intrinsic property of the enzyme protein but rather mediated by heat-activated intracellular factors.

  12. Hemodynamic and thermal responses to head and neck cooling in men and women

    NASA Technical Reports Server (NTRS)

    Ku, Y. T.; Montgomery, L. D.; Webbon, B. W.

    1996-01-01

    Personal cooling systems are used to alleviate symptoms of multiple sclerosis and to prevent increased core temperature during daily activities. The objective of this study was to determine the operating characteristics and the physiologic changes produced by short term use of one commercially available thermal control system. A Life Support Systems, Inc. Mark VII portable cooling system and a liquid cooling helmet were used to cool the head and neck regions of 12 female and 12 male subjects (25-55 yr) in this study. The healthy subjects, seated in an upright position at normal room temperature (approximately 21 degrees C), were tested for 30 min with the liquid cooling garment operated at its maximum cooling capacity. Electrocardiograms and scalp and intracranial blood flows were recorded periodically during each test sequence. Scalp, right and left ear, and oral temperatures and cooling system parameters were logged every 5 min. Scalp, right and left ear canal, and oral temperatures were all significantly (P <0.05) reduced by 30 min of head and neck cooling. Oral temperatures decreased approximately 0.2-0.6 degrees C after 30 min and continued to decrease further (approximately 0.1-0.2 degrees C) for a period of approximately 10 min after removal of the cooling helmet. Intracranial blood flow decreased significantly (P < 0.05) during the first 10 min of the cooling period. Both right and left ear temperatures in the women were significantly lower than those of the men during the cooling period. These data indicate that head and neck cooling may be used to reduce core temperature to that needed for symptomatic relief of both male and female multiple sclerosis patients. This study quantifies the operating characteristics of one liquid cooling garment as an example of the information needed to compare the efficiency of other garments operated under different test conditions.

  13. Increased Air Temperature during Simulated Autumn Conditions Impairs Photosynthetic Electron Transport between Photosystem II and Photosystem I1[OA

    PubMed Central

    Busch, Florian; Hüner, Norman P.A.; Ensminger, Ingo

    2008-01-01

    Changes in temperature and daylength trigger physiological and seasonal developmental processes that enable evergreen trees of the boreal forest to withstand severe winter conditions. Climate change is expected to increase the autumn air temperature in the northern latitudes, while the natural decreasing photoperiod remains unaffected. As shown previously, an increase in autumn air temperature inhibits CO2 assimilation, with a concomitant increased capacity for zeaxanthin-independent dissipation of energy exceeding the photochemical capacity in Pinus banksiana. In this study, we tested our previous model of antenna quenching and tested a limitation in intersystem electron transport in plants exposed to elevated autumn air temperatures. Using a factorial design, we dissected the effects of temperature and photoperiod on the function as well as the stoichiometry of the major components of the photosynthetic electron transport chain in P. banksiana. Natural summer conditions (16-h photoperiod/22°C) and late autumn conditions (8-h photoperiod/7°C) were compared with a treatment of autumn photoperiod with increased air temperature (SD/HT: 8-h photoperiod/22°C) and a treatment with summer photoperiod and autumn temperature (16-h photoperiod/7°C). Exposure to SD/HT resulted in an inhibition of the effective quantum yield associated with a decreased photosystem II/photosystem I stoichiometry coupled with decreased levels of Rubisco. Our data indicate that a greater capacity to keep the primary electron donor of photosystem I (P700) oxidized in plants exposed to SD/HT compared with the summer control may be attributed to a reduced rate of electron transport from the cytochrome b6f complex to photosystem I. Photoprotection under increased autumn air temperature conditions appears to be consistent with zeaxanthin-independent antenna quenching through light-harvesting complex II aggregation and a decreased efficiency in energy transfer from the antenna to the photosystem II core. We suggest that models that predict the effect of climate change on the productivity of boreal forests must take into account the interactive effects of photoperiod and elevated temperatures. PMID:18375598

  14. Increased air temperature during simulated autumn conditions impairs photosynthetic electron transport between photosystem II and photosystem I.

    PubMed

    Busch, Florian; Hüner, Norman P A; Ensminger, Ingo

    2008-05-01

    Changes in temperature and daylength trigger physiological and seasonal developmental processes that enable evergreen trees of the boreal forest to withstand severe winter conditions. Climate change is expected to increase the autumn air temperature in the northern latitudes, while the natural decreasing photoperiod remains unaffected. As shown previously, an increase in autumn air temperature inhibits CO2 assimilation, with a concomitant increased capacity for zeaxanthin-independent dissipation of energy exceeding the photochemical capacity in Pinus banksiana. In this study, we tested our previous model of antenna quenching and tested a limitation in intersystem electron transport in plants exposed to elevated autumn air temperatures. Using a factorial design, we dissected the effects of temperature and photoperiod on the function as well as the stoichiometry of the major components of the photosynthetic electron transport chain in P. banksiana. Natural summer conditions (16-h photoperiod/22 degrees C) and late autumn conditions (8-h photoperiod/7 degrees C) were compared with a treatment of autumn photoperiod with increased air temperature (SD/HT: 8-h photoperiod/22 degrees C) and a treatment with summer photoperiod and autumn temperature (16-h photoperiod/7 degrees C). Exposure to SD/HT resulted in an inhibition of the effective quantum yield associated with a decreased photosystem II/photosystem I stoichiometry coupled with decreased levels of Rubisco. Our data indicate that a greater capacity to keep the primary electron donor of photosystem I (P700) oxidized in plants exposed to SD/HT compared with the summer control may be attributed to a reduced rate of electron transport from the cytochrome b6f complex to photosystem I. Photoprotection under increased autumn air temperature conditions appears to be consistent with zeaxanthin-independent antenna quenching through light-harvesting complex II aggregation and a decreased efficiency in energy transfer from the antenna to the photosystem II core. We suggest that models that predict the effect of climate change on the productivity of boreal forests must take into account the interactive effects of photoperiod and elevated temperatures.

  15. Intramuscular temperature changes during and after 2 different cryotherapy interventions in healthy individuals.

    PubMed

    Rupp, Kimberly A; Herman, Daniel C; Hertel, Jay; Saliba, Susan A

    2012-08-01

    Crossover. To compare the time required to decrease intramuscular temperature 8°C below baseline temperature, and to compare intramuscular temperature 90 minutes posttreatment, between 2 cryotherapy modalities. Cryotherapy is used to treat pain from muscle injuries. Cooler intramuscular temperatures may reduce cellular metabolism and secondary hypoxic injury to attenuate acute injury response, specifically the rate of chemical mediator activity. Modalities that decrease intramuscular temperature quickly may be beneficial in the treatment of muscle injuries. Eighteen healthy subjects received 2 cryotherapy conditions, crushed-ice bag (CIB) and cold-water immersion (CWI), in a randomly allocated order, separated by 72 hours. Each condition was applied until intramuscular temperature decreased 8°C below baseline. Intramuscular temperature was monitored in the gastrocnemius, 1 cm below subcutaneous adipose tissue. The primary outcome was time to decrease intramuscular temperature 8°C below baseline. A secondary outcome was intramuscular temperature at the end of a 90-minute rewarming period. Paired t tests were used to examine outcomes. Time to reach an 8°C reduction in intramuscular temperature was not significantly different between CIB and CWI (mean difference, 2.6 minutes; 95% confidence interval: -3.10, 8.30). Intramuscular temperature remained significantly colder 90 minutes post-CWI compared to CIB (mean difference, 2.8°C; 95% confidence interval: 2.07°C, 3.52°C). There was no difference in time required to reduce intramuscular temperature 8°C 1 cm below adipose tissue using CIB and CWI. However, intramuscular temperature remained significantly colder 90 minutes following CWI. These results provide clinicians with information that may guide treatment-modality decisions.

  16. High temperature compounds for turbine vanes. [of SiC, Si3N4, and Si composites

    NASA Technical Reports Server (NTRS)

    Rhodes, W. H.; Cannon, R. M., Jr.

    1974-01-01

    Fabrication and microstructure control studies were conducted on SiC, Si3N and composites based on Si3N. Charpy mode impact testing to 2400 F established that Si3N4/Mo composites have excellent potential. Attempts to fabricate composites of Si3N4 with superalloys, both by hot pressing and infiltration were largely unsuccessful in comparison to using Mo, Re, and Ta which are less reactive. Modest improvements in impact strength were realized for monolithic Si3N4; however, SiC strengths increased by a factor of six and now equal values achieved for Si3N4. Correlations of impact strength with material properties are discussed. Reduced MgO densification aid additions to Si3N4 were found to decrease densification kinetics, increase final porosity, decrease room temperature bend strength, increase high temperature bend strength, and decrease bend stress rupture properties. The decrease in bend strength at high temperature for fine grain size SiC suggested that a slightly larger grain size material with a nearly constant strength-temperature relation may prove desirable in the creep and stress rupture mode.

  17. Effects of Temperature and Strain Rate on Tensile Deformation Behavior of 9Cr-0.5Mo-1.8W-VNb Ferritic Heat-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Weng, Xiaoxiang; Jiang, Yong; Gong, Jianming

    2017-09-01

    A series of uniaxial tensile tests were carried out at different strain rate and different temperatures to investigate the effects of temperature and strain rate on tensile deformation behavior of P92 steel. In the temperature range of 30-700 °C, the variations of flow stress, average work-hardening rate, tensile strength and ductility with temperature all show three temperature regimes. At intermediate temperature, the material exhibited the serrated flow behavior, the peak in flow stress, the maximum in average work-hardening rate, and the abnormal variations in tensile strength and ductility indicates the occurrence of DSA, whereas the sharp decrease in flow stress, average work-hardening rate as well as strength values, and the remarkable increase in ductility values with increasing temperature from 450 to 700 °C imply that dynamic recovery plays a dominant role in this regime. Additionally, for the temperature ranging from 550 to 650 °C, a significant decrease in flow stress values is observed with decreasing in strain rate. This phenomenon suggests the strain rate has a strong influence on flow stress. Based on the experimental results above, an Arrhenius-type constitutive equation is proposed to predict the flow stress.

  18. Behavior of reinforcement SCC beams under elevated temperatures

    NASA Astrophysics Data System (ADS)

    Fathi, Hamoon; Farhang, Kianoosh

    2015-09-01

    This experimental study focuses on the behavior of heated reinforced concrete beams. Four types of concrete mixtures were used for the tested self-compacting concrete beams. A total of 72 reinforced concrete beams and 72 standard cylindrical specimens were tested. The compressive strength under uniaxial loading at 23 °C ranged from 30 to 45 MPa. The specimens were exposed to different temperatures. The test parameters of interest were the compressive strength and the temperature of the specimens. The effect of changes in the parameters was examined so as to control the behavior of the tested concrete and that of the reinforced concrete beam. The results indicated that flexibility and compressive strength of the reinforced concrete beams decreased at higher temperatures. Furthermore, heating beyond 400 °C produced greater variations in the structural behavior of the materials in both the cylindrical samples and the reinforced concrete beams.

  19. Spatial and Temporal Temperature trends on Iraq during 1980-2015

    NASA Astrophysics Data System (ADS)

    Al-Timimi, Yassen K.; Al-Khudhairy, Aws A.

    2018-05-01

    Monthly Mean surface air temperature at 23 stations in Iraq were analyzed for temporal trends and spatial variation during 1980-2015. Seasonal and annual temperature was analyzed using Mann-Kendall test to detect the significant trend. The results of temporal analysis showed that during winter, spring, summer and Autumn have a positive trend in all the parts of Iraq. A tendency has also been observed towards warmer years, with significantly warmer summer and spring periods and slightly warmer autumn and winter, the highest increase is (3.5)°C in Basrah during the summer. The results of spatial analyze using the ArcGIS showed that the seasonal temperature can be divided into two or three distinct areas with high temperature in the south and decreasing towards north, where the trend of spatial temperature were decreasing from south to the north in all the four seasons.

  20. Temperature-dependent plastic hysteresis in highly confined polycrystalline Nb films

    NASA Astrophysics Data System (ADS)

    Waheed, S.; Hao, R.; Zheng, Z.; Wheeler, J. M.; Michler, J.; Balint, D. S.; Giuliani, F.

    2018-02-01

    In this study, the effect of temperature on the cyclic deformation behaviour of a confined polycrystalline Nb film is investigated. Micropillars encapsulating a thin niobium interlayer are deformed under cyclic axial compression at different test temperatures. A distinct plastic hysteresis is observed for samples tested at elevated temperatures, whereas negligible plastic hysteresis is observed for samples tested at room temperature. These results are interpreted using planar discrete dislocation plasticity incorporating slip transmission across grain boundaries. The effect of temperature-dependent grain boundary energy and dislocation mobility on dislocation penetration and, consequently, the size of plastic hysteresis is simulated to correlate with the experimental results. It is found that the decrease in grain boundary energy barrier caused by the increase in temperature does not lead to any appreciable change in the cyclic response. However, dislocation mobility significantly affects the size of plastic hysteresis, with high mobilities leading to a larger hysteresis. Therefore, it is postulated that the experimental observations are predominantly caused by an increase in dislocation mobility as the temperature is increased above the critical temperature of body-centred cubic niobium.

  1. Improved running performance in hot humid conditions following whole body precooling.

    PubMed

    Booth, J; Marino, F; Ward, J J

    1997-07-01

    On two separate occasions, eight subjects controlled speed to run the greatest distance possible in 30 min in a hot, humid environment (ambient temperature 32 degrees C, relative humidity 60%). For the experimental test (precooling), exercise was preceeded by cold-water immersion. Precooling increased the distance run by 304 +/- 166 m (P < 0.05). Precooling decreased the pre-exercise rectal and mean skin temperature by 0.7 degrees C and 5.9 degrees C, respectively (P < 0.05). Rectal and mean skin temperature were decreased up to 20 and 25 min during exercise, respectively (P < 0.05). Mean body temperature decreased from 36.5 +/- 0.1 degrees C to 33.8 +/- 0.2 degrees C following precooling (P < 0.05) and remained lower throughout exercise (P < 0.01) and at the end of exercise (by 0.8 degrees C; P < 0.05). The rate of heat storage at the end of exercise increased from 113 +/- 45 to 249 +/- 55 W.m-2 (P < 0.005). Precooling lowered the heart rate at rest (13%), 5 (9%), and 10 min (10%) exercise (P < 0.05) and increased the end of exercise blood lactate from 4.9 +/- 0.5 to 7.4 +/- 0.9 mmol.L-1 (P < 0.01). The VO2 at 10 and 20 min of exercise and total body sweating are not different between tests. In conclusion, water immersion precooling increased exercise endurance in hot, humid conditions with an enhanced rate of heat storage and decreased thermoregulatory strain.

  2. Subseasonal climate variability for North Carolina, United States

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, Mohammad; Jha, Manoj K.; Mekonnen, Ademe; Schimmel, Keith A.

    2014-08-01

    Subseasonal trends in climate variability for maximum temperature (Tmax), minimum temperature (Tmin) and precipitation were evaluated for 249 ground-based stations in North Carolina for 1950-2009. The magnitude and significance of the trends at all stations were determined using the non-parametric Theil-Sen Approach (TSA) and the Mann-Kendall (MK) test, respectively. The Sequential Mann-Kendall (SQMK) test was also applied to find the initiation of abrupt trend changes. The lag-1 serial correlation and double mass curve were employed to address the data independency and homogeneity. Using the MK trend test, statistically significant (confidence level ≥ 95% in two-tailed test) decreasing (increasing) trends by 44% (45%) of stations were found in May (June). In general, trends were decreased in Tmax and increased in Tmin data series in subseasonal scale. Using the TSA method, the magnitude of lowest (highest) decreasing (increasing) trend in Tmax is - 0.050 °C/year (+ 0.052 °C/year) in the monthly series for May (March) and for Tmin is - 0.055 °C/year (+ 0.075 °C/year) in February (December). For the precipitation time series using the TSA method, it was found that the highest (lowest) magnitude of 1.00 mm/year (- 1.20 mm/year) is in September (February). The overall trends in precipitation data series were not significant at the 95% confidence level except that 17% of stations were found to have significant (confidence level ≥ 95% in two-tailed test) decreasing trends in February. The statistically significant trend test results were used to develop a spatial distribution of trends: May for Tmax, June for Tmin, and February for precipitation. A correlative analysis of significant temperature and precipitation trend results was examined with respect to large scale circulation modes (North Atlantic Oscillation (NAO) and Southern Oscillation Index (SOI). A negative NAO index (positive-El Niño Southern Oscillation (ENSO) index) was found to be associated with the decreasing precipitation in February during 1960-1980 (2000-2009). The incremental trend in Tmin in the inter-seasonal (April-October) time scale can be associated with the positive NAO index during 1970-2000.

  3. The effect of temperature cycling typical of low earth orbit satellites on thin films of YBa2Cu3O(7-x)

    NASA Technical Reports Server (NTRS)

    Mogro-Campero, A.; Turner, L. G.; Bogorad, A.; Herschitz, R.

    1991-01-01

    Thin films of YBa2Cu3O(7-x) (YBCO) were temperature cycled to simulate conditions of a low earth orbit satellite. In one series of tests, epitaxial and polycrystalline YBCO films were cycled between temperatures of +/- 80 C in vacuum and in nitrogen for hundreds of cycles. The room temperature resistance of an epitaxial YBCO film increased by about 10 percent, but the superconducting transition temperature was unchanged. The largest changes were for a polycrystalline YBCO film on oxidized silicon with a zirconia buffer layer, for which the transition temperature decreased by 3 K. An extended test was carried out for epitaxial films. After 3200 cycles (corresponding to about 230 days in space), transition temperatures and critical current densities remained unchanged.

  4. Fabrication of lithium/C-103 alloy heat pipes for sharp leading edge cooling

    NASA Astrophysics Data System (ADS)

    Ai, Bangcheng; Chen, Siyuan; Yu, Jijun; Lu, Qin; Han, Hantao; Hu, Longfei

    2018-05-01

    In this study, lithium/C-103 alloys heat pipes are proposed for sharp leading edge cooling. Three models of lithium/C-103 alloy heat pipes were fabricated. And their startup properties were tested by radiant heat tests and aerothermal tests. It is found that the startup temperature of lithium heat pipe was about 860 °C. At 1000 °C radiant heat tests, the operating temperature of lithium/C-103 alloy heat pipe is lower than 860 °C. Thus, startup failure occurs. At 1100 °C radiant heat tests and aerothermal tests, the operating temperature of lithium/C-103 alloy heat pipe is higher than 860 °C, and the heat pipe starts up successfully. The startup of lithium/C-103 alloy heat pipe decreases the leading edge temperature effectively, which endows itself good ablation resistance. After radiant heat tests and aerothermal tests, all the heat pipe models are severely oxidized because of the C-103 poor oxidation resistance. Therefore, protective coatings are required for further applications of lithium/C-103 alloy heat pipes.

  5. Microstructure evolution and mechanical properties degradation of HPNb alloy after a five-year service

    NASA Astrophysics Data System (ADS)

    Guo, Jingfeng; Cao, Tieshan; Cheng, Congqian; Meng, Xianming; Zhao, Jie

    2018-04-01

    The microstructure and mechanical properties of ethylene cracking furnace tube (HPNb alloy) are investigated by scanning electronic microscopy (SEM), tensile tests and Charpy impact tests at room temperature, tensile tests and creep tests at high temperature in this paper. The primary carbides of HPNb alloy coarsened and formed a continuous network after a five-year service. Furthermore, a lot of fine secondary carbides precipitated in the dendrite interior. The primary carbides M7C3 and NbC transformed into M23C6 and G phase after service, respectively. The furnace tube after service exhibits higher yield strength, lower tensile strength, worse ductility and toughness than as-cast tube at room temperature. At high temperature, the tensile strength and yield strength of service tube are higher than as-cast tube, but its tensile elongation is lower. The creep strength of HPNb alloy at high temperature decreases after a five-year service. Both microstructure and mechanical properties of ethylene cracking furnace tube have deteriorated after a five-year service.

  6. Experimental test program for evaluation of solid lubricant coating as applied to compliant foil gas bearings to 315 deg C

    NASA Technical Reports Server (NTRS)

    Wagner, R. C.

    1985-01-01

    An experimental apparatus and test procedure was developed to compare the performance of two solid lubricant coatings for air lubricated compliant foil gas bearings in the temperature range of 25 to 315 C. Polyimide bonded additive (SBGC) were tested extensively for durability and frictional characteristics. A partial arc bearing constructed of Inconel X-750 was coated on the bore with one of these coatings. The foil was subjected to repeated start/stop cycles. Performance comparisons reveal that although both coatings survive thousands of start/stop cycles, only the PBGF coated bearing achieves the specified 9000 start/stops. There is enough wear on the SBGC coated bearing to warrant termination of the test prior to 9000 start/stop cycles due to coating failure. The frictional characteristics of the PBGF are better at the elevated temperatures than at lower temperatures; a marked increase in sliding friction occurs as the temperature decreases. The SBGC maintains relatively constant frictional characteristics independent of operating temperature.

  7. Acute toxicity of 4-nitrophenol, 2,4-dinitrophenol, terbufos and trichlorfon to grass shrimp (Palaemonetes spp.) and sheepshead minnows (Cyprinodon variegatus) as affected by salinity and temperature

    USGS Publications Warehouse

    Brecken-Folse, J. A.; Mayer, F.L.; Pedigo, L.E.; Marking, L.L.

    1994-01-01

    The toxicities of two industrial chemicals (4-nitrophenol and 2,4-dinitrophenol) and two organophosphate insecticides (terbufos and trichlorfon) to juvenile grass shrimp (Palaemonetes spp.) and sheepshead minnows (Cyprinodon vanegatus) were determined by static, 96-h toxicity tests in a factorial design with 12 combinations of salinity and temperature (15, 20, 25, 30ppt x 17, 22, 27°C). Concentrations of the toxicants, including bioconcentradon, were determined as appropriate by gas or liquid chromatography and the use of 14C-labeled compounds. The 96-h LC50s for 4-nitrophenol ranged from 12 to 31 mg/L and for 2,4-dinitrophenol from 13 to 50 mg/L. Toxicity decreased as salinity increased for 4-nitrophenol and both test organisms. Toxicity decreased as salinity increased for 2,4-dinitrophenol and sheepshead minnows, but toxicity to grass shrimp increased as salinity increased. Toxicity decreased with increased temperature for grass shrimp exposed to 2,4-dinitrophenol and sheepshead minnows exposed to 4-nitrophenol, increased with temperature for sheepshead minnows exposed to 2,4-dinitrophenol, and no change was observed for grass shrimp exposed to 4-nitrophenol. Bioconcentration of phenols in both test organisms increased as concentration increased. The 96-h LC50s for terbufos ranged from 3.4 to 6.6 μg/L and for trichlorfon from 6.3 to 19,300 μg/L. Terbufos and trichlorfon toxicity to grass shrimp and sheepshead minnows increased with increased temperature. BCFs for terbufos were greater in sheepshead minnows than grass shrimp, but were reversed for trichlorfon.

  8. Effect of low temperature regression and aging on structure and properties of Al-B electric round rods

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Lei, Yuanyuan; Zhang, Xiaoyan; Zhang, Junjie

    2018-04-01

    The effects of pre-aging temperature (125°C, 135°C, 145°C) and regression time (5min 25min) on Al-B electric round rod were studied by tensile strength test, conductivity test, XRD and SEM. The results showed that the tensile strength of the alloy first increased and then decreased, while the electrical conductivity decreased first and then increased after re-aging treatment. When the regression and re-aging process is 145 °C × 4h+200 °C × 5min+145 °C × 4h, the comprehensive properties of the sample are better, the tensile strength is 78MPa and the conductivity is 63.1% IACS.

  9. An experimental study on pseudoelasticity of a NiTi-based damper for civil applications

    NASA Astrophysics Data System (ADS)

    Nespoli, Adelaide; Bassani, Enrico; Della Torre, Davide; Donnini, Riccardo; Villa, Elena; Passaretti, Francesca

    2017-10-01

    In this work, a pseudoelastic damper composed by NiTi wires is tested at 0.5, 1 and 2 Hz for 1000 mechanical cycles. The damping performances were evaluated by three key parameters: the damping capacity, the dissipated energy per cycle and the maximum force. During testing, the temperature of the pseudoelastic elements was registered as well. Results show that the damper assures a bi-directional motion throughout the 1000 cycles together with the maintenance of the recentering. It was observed a stabilization process in the first 50 mechanical cycles, where the key parameters reach stable values; in particular it was found that the damping capacity and the dissipated energy both decrease with frequency. Besides, the mean temperature of the pseudoleastic elements reaches a stable value during tests and confirms the different response of the pseudoelastic wires accordingly with the specific length and stain. Finally, interesting thermal effects were observed at 1 and 2 Hz: at these frequencies and at high strains, the maximum force increases but the temperature of the NiTi wire decreases being in contraddiction with the Clausius-Clapeyron law.

  10. Detection of Small Stress Relaxation in Tightened Metallic Structures by Ultrasounds

    NASA Astrophysics Data System (ADS)

    Augereau, F.; Portal, A.

    Experimental data are presented here to highlight the performances of ultrasounds for the control or the better understanding of the quality of the mechanical contact between tightened plates. Thus, variations of the mechanical load as small as those induced by creep or stress relaxation are potentially detectable by simply monitoring the amplitude of the reflected acoustic plane wave reflected at this interface. To illustrate this, two 3 cm thick aluminium plates are firstly tightened with a given torque and next, the amplitude of the acoustic wave is monitored for several days. All long this test, the temperature of the sample is controlled as well as the compression load applied to the plates using a thermocouple and a bolt gauge sensor. The reflected amplitude decreases quickly during first hours and then stabilises after a week approximately. The total variation reaches -28% of the initial value of the reflected amplitude. During this test, temperature is remained almost constant and its fluctuation around the ambient temperature is not correlated with the reflected amplitude. As expected from classic stress relaxation tests, the compression load has slowly decreased by an amount of only -1% but this should have logically increased the reflected amplitude. Further investigations have shown that instrumentation drift were negligible. Consequently, this large decrease of the reflected amplitude has been interpreted as the indication of the increase of the contact area between the two tightened plates. This test attests the high sensitivity of ultrasonic reflection measurement to investigate quality of mechanical contacts for non destructive testing.

  11. Optimization of batteries for plug-in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity. Three sample optimizations were performed: a compact car, a, truck, and a sports car. The compact car benefits from increased battery capacity despite the associated higher cost. The truck returned the smallest possible battery of each chemistry, indicating that electrification is not advisable. The sports car optimization resulted in the largest possible battery, indicating large performance from increased electrification. These results mirror the current state of the electric vehicle market.

  12. Effect of pyrolysis temperature and air flow on toxicity of gases from a polycarbonate polymer

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brick, V. E.; Brauer, D. P.

    1978-01-01

    A polycarbonate polymer was evaluated for toxicity of pyrolysis gases generated at various temperatures without forced air flow and with 1 L/min air flow, using the toxicity screening test method developed at the University of San Francisco. Time to various animal responses decreased with increasing pyrolysis temperature over the range from 500 C to 800 C. There appeared to be no significant toxic effects at 400 C and lower temperatures.

  13. Magnetic Properties of Fe-49Co-2V Alloy and Pure Fe at Room and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    De Groh, Henry C., III; Geng, Steven M.; Niedra, Janis M.; Hofer, Richard R.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) has a need for soft magnetic materials for fission power and ion propulsion systems. In this work the magnetic properties of the soft magnetic materials Hiperco 50 (Fe-49wt%Cr-2V) and CMI-C (commercially pure magnetic iron) were examined at various temperatures up to 600 C. Toroidal Hiperco 50 samples were made from stacks of 0.35 mm thick sheet, toroidal CMI-C specimens were machined out of solid bar stock, and both were heat treated prior to testing. The magnetic properties of a Hiperco 50 sample were measured at various temperatures up to 600 C and then again after returning to room temperature; the magnetic properties of CMI-C were tested at temperatures up to 400 C. For Hiperco 50 coercivity decreased as temperature increased, and remained low upon returning to room temperature; maximum permeability improved (increased) with increasing temperature and was dramatically improved upon returning to room temperature; remanence was not significantly affected by temperature; flux density at H = 0.1 kA/m increased slightly with increasing temperature, and was about 20% higher upon returning to room temperature; flux density at H = 0.5 kA/m was insensitive to temperature. It appears that the properties of Hiperco 50 improved with increasing temperature due to grain growth. There was no significant magnetic property difference between annealed and aged CMI-C iron material; permeability tended to decrease with increasing temperature; the approximate decline in the permeability at 400 C compared to room temperature was 30%; saturation flux density, B(sub S), was approximately equal for all temperatures below 400 C; B(sub S) was lower at 400 C.

  14. Measurement of mechanical and thermophysical properties of dimensionally stable materials for space applications

    NASA Technical Reports Server (NTRS)

    Rawal, Suraj P.; Misra, Mohan S.

    1992-01-01

    Mechanical, thermal, and physical property test data was generated for as-fabricated advanced composite materials at room temperature (RT), -150 and 250 F. The results are documented of mechanical and thermophysical property tests of IM7/PEEK and discontinuous SiC/Al (particulate (p) and whisker (w) reinforced) composites which were tested at three different temperatures to determine the effect of temperature on material properties. The specific material systems tested were IM7/PEEK (0)8, (0, + or - 45, 90)s, (+ or - 30, 04)s, 25 vol. pct. (v/o) SiCp/Al, and 25 v/o SiCw/Al. RT material property results of IM7/PEEK were in good agreement with the predicted values, providing a measure of consolidation integrity attained during fabrication. Results of mechanical property tests indicated that modulus values at each test temperature were identical, whereas the strength (e.g., tensile, compressive, flexural, and shear) values were the same at -150 F, and RT, and gradually decreased as the test temperature was increased to 250 F. Similar trends in the strength values was also observed in discontinuous SiC/Al composites. These results indicate that the effect of temperature was more pronounced on the strength values than modulus values.

  15. Effect of cage design on characteristics of high-speed-jet-lubricated 35-millimeter-bore ball bearing. [turbojet engines

    NASA Technical Reports Server (NTRS)

    Schuller, F. T.; Pinel, S. I.; Signer, H. R.

    1980-01-01

    Parametric tests were conducted with a 35 mm bore angular contact ball bearing with a double outer land guided cage. Provisions were made for jet lubrication and outer-ring cooling of the bearing. Test conditions included a combined thrust and radial load at nominal shaft speeds of 48,000 rpm, and an oil-in temperature of 394 K (250 F). Successful operation of the test bearing was accomplished up to 2.5 million DN. Test results were compared with those obtained with similar bearing having a single outer land guided cage. Higher temperatures were generated with the double outer land guided cage bearing, and bearing power loss and cage slip were greater. Cooling the outer ring resulted in a decrease in overall bearing operating temperature.

  16. Assessment of a landfill methane emission screening method using an unmanned aerial vehicle mounted thermal infrared camera - A field study.

    PubMed

    Fjelsted, L; Christensen, A G; Larsen, J E; Kjeldsen, P; Scheutz, C

    2018-05-28

    An unmanned aerial vehicle (UAV)-mounted thermal infrared (TIR) camera's ability to delineate landfill gas (LFG) emission hotspots was evaluated in a field test at two Danish landfills (Hedeland landfill and Audebo landfill). At both sites, a test area of 100 m 2 was established and divided into about 100 measuring points. The relationship between LFG emissions and soil surface temperatures were investigated through four to five measuring campaigns, in order to cover different atmospheric conditions along with increasing, decreasing and stable barometric pressure. For each measuring campaign, a TIR image of the test area was obtained followed by the measurement of methane (CH 4 ) and carbon dioxide (CO 2 ) emissions at each measuring point, using a static flux chamber. At the same time, soil temperatures measured on the surface, at 5 cm and 10 cm depths, were registered. At the Hedeland landfill, no relationship was found between LFG emissions and surface temperatures. In addition, CH 4 emissions were very limited, on average 0.92-4.52 g CH 4  m -2  d -1 , and only measureable on the two days with decreasing barometric pressure. TIR images from Hedeland did not show any significant temperature differences in the test area. At the Audebo landfill, an area with slightly higher surface temperatures was found in the TIR images, and the same pattern with slightly higher temperatures was found at a depth of 10 cm. The main LFG emissions were found in the area with the higher surface temperatures. LFG emissions at Audebo were influenced significantly by changes in barometric pressure, and the average CH 4 emissions varied between 111 g m -2  d -1 and 314 g m -2  d -1 , depending on whether the barometric pressure gradient had increased or decreased, respectively. The temperature differences observed in the TIR images from both landfills were limited to between 0.7 °C and 1.2 °C. The minimum observable CH 4 emission for the TIR camera to identify an emission hotspot was 150 g CH 4  m -2  d -1 from an area of more than 1 m 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Spatiotemporal trends in extreme rainfall and temperature indices over Upper Tapi Basin, India

    NASA Astrophysics Data System (ADS)

    Sharma, Priyank J.; Loliyana, V. D.; S. R., Resmi; Timbadiya, P. V.; Patel, P. L.

    2017-12-01

    The flood risk across the globe is intensified due to global warming and subsequent increase in extreme temperature and precipitation. The long-term trends in extreme rainfall (1944-2013) and temperature (1969-2012) indices have been investigated at annual, seasonal, and monthly time scales using nonparametric Mann-Kendall (MK), modified Mann-Kendall (MMK), and Sen's slope estimator tests. The extreme rainfall and temperature indices, recommended by the Expert Team on Climate Change Detection Monitoring Indices (ETCCDMI), have been analyzed at finer spatial scales for trend detection. The results of trend analyses indicate decreasing trend in annual total rainfall, significant decreasing trend in rainy days, and increasing trend in rainfall intensity over the basin. The seasonal rainfall has been found to decrease for all the seasons except postmonsoon, which could affect the rain-fed agriculture in the basin. The 1- and 5-day annual maximum rainfalls exhibit mixed trends, wherein part of the basin experiences increasing trend, while other parts experience a decreasing trend. The increase in dry spells and concurrent decrease in wet spells are also observed over the basin. The extreme temperature indices revealed increasing trends in hottest and coldest days, while decreasing trends in coldest night are found over most parts of the basin. Further, the diurnal temperature range is also found to increase due to warming tendency in maximum temperature (T max) at a faster rate compared to the minimum temperature (T min). The increase in frequency and magnitude of extreme rainfall in the basin has been attributed to the increasing trend in maximum and minimum temperatures, reducing forest cover, rapid pace of urbanization, increase in human population, and thereby increase in the aerosol content in the atmosphere. The findings of the present study would significantly help in sustainable water resource planning, better decision-making for policy framework, and setting up infrastructure against flood disasters in Upper Tapi Basin, India.

  18. Performance and emission characteristics of swirl-can combustors to near-stoichiometric fuel-air ratio

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.; Trout, A. M.

    1976-01-01

    Emissions and performance characteristics were determined for two full annular swirl-can combustors operated to near stoichiometric fuel-air ratio. Test condition variations were as follows: combustor inlet-air temperatures, 589, 756, 839, and 894 K; reference velocities, 24 to 37 meters per second; inlet pressure, 62 newtons per square centimeter; and fuel-air ratios, 0.015 to 0.065. The combustor average exit temperature and combustor efficiency were calculated from the combustor exhaust gas composition. For fuel-air ratios greater than 0.04, the combustion efficiency decreased with increasing fuel-air ratios in a near-linear manner. Increasing the combustor inlet air temperature tended to offset this decrease. Maximum oxides of nitrogen emission indices occurred at intermediate fuel-air ratios and were dependent on combustor design. Carbon monoxide levels were extremely high and were the primary cause of poor combustion efficiency at the higher fuel-air ratios. Unburned hydrocarbons were low for all test conditions. For high fuel-air ratios SAE smoke numbers greater than 25 were produced, except at the highest inlet-air temperatures.

  19. Thermal and energetic constraints on ectotherm abundance: A global test using lizards

    USGS Publications Warehouse

    Buckley, L.B.; Rodda, G.H.; Jetz, W.

    2008-01-01

    Population densities of birds and mammals have been shown to decrease with body mass at approximately the same rate as metabolic rates increase, indicating that energetic needs constrain endotherm population densities. In ectotherms, the exponential increase of metabolic rate with body temperature suggests that environmental temperature may additionally constrain population densities. Here we test simple bioenergetic models for an ecologically important group of ectothermic vertebrates by examining 483 lizard populations. We find that lizard population densities decrease as a power law of body mass with a slope approximately inverse to the slope of the relationship between metabolic rates and body mass. Energy availability should limit population densities. As predicted, environmental productivity has a positive effect on lizard density, strengthening the relationship between lizard density and body mass. In contrast, the effect of environmental temperature is at most weak due to behavioral thermoregulation, thermal evolution, or the temperature dependence of ectotherm performance. Our results provide initial insights into how energy needs and availability differentially constrain ectotherm and endotherm density across broad spatial scales. ?? 2008 by the Ecological Society of America.

  20. Thermal and energetic constraints on ectotherm abundance: a global test using lizards.

    PubMed

    Buckley, Lauren B; Rodda, Gordon H; Jetz, Walter

    2008-01-01

    Population densities of birds and mammals have been shown to decrease with body mass at approximately the same rate as metabolic rates increase, indicating that energetic needs constrain endotherm population densities. In ectotherms, the exponential increase of metabolic rate with body temperature suggests that environmental temperature may additionally constrain population densities. Here we test simple bioenergetic models for an ecologically important group of ectothermic vertebrates by examining 483 lizard populations. We find that lizard population densities decrease as a power law of body mass with a slope approximately inverse to the slope of the relationship between metabolic rates and body mass. Energy availability should limit population densities. As predicted, environmental productivity has a positive effect on lizard density, strengthening the relationship between lizard density and body mass. In contrast, the effect of environmental temperature is at most weak due to behavioral thermoregulation, thermal evolution, or the temperature dependence of ectotherm performance. Our results provide initial insights into how energy needs and availability differentially constrain ectotherm and endotherm density across broad spatial scales.

  1. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2012-05-01

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  2. Turbine Seal Research at NASA GRC

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Steinetz, Bruce M.; Delgado, Irebert R.; Hendricks, Robert C.

    2011-01-01

    Low-leakage, long-life turbomachinery seals are important to both Space and Aeronautics Missions. (1) Increased payload capability (2) Decreased specific fuel consumption and emissions (3) Decreased direct operating costs. NASA GRC has a history of significant accomplishments and collaboration with industry and academia in seals research. NASA's unique, state-of-the-art High Temperature, High Speed Turbine Seal Test Facility is an asset to the U.S. Engine / Seal Community. Current focus is on developing experimentally validated compliant, non-contacting, high temperature seal designs, analysis, and design methodologies to enable commercialization.

  3. Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2002-01-01

    Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.

  4. A investigation on unixial and quasi-biaxial tensile mechanical properties of aging HTPB propellant under dynamic loading at low temperature

    NASA Astrophysics Data System (ADS)

    Duan, Leiguang; Wang, Guang; Zhang, Guoxing; Sun, Xinya; Shang, Hehao

    2018-06-01

    In order to study the uniaxial and quasi-biaxial mechanical properties of aging solid propellants under low temperature and high strain rate, stress-strain curves and tensile fracture surfaces of HTPB propellant were obtained in a wide range of temperature (-30,25 °C) and strain rates (0.4,4.0 and 14.29 s-1), respectively, by means of uniaxial and biaxial tensile tests and electron microscopy scanning on the fracture cross section. The results indicate that the quasi-biaxial tensile mechanical properties of aging HTPB propellant is same as the uniaxial tensile mechanical properties influenced distinctly by temperature and strain rate. With decreasing temperature and increasing strain rate, the mechanical properties gradually strengthen. The damage for HTPB propellant changes from "dehumidification" to grain fracture. The initial elastic modulus E and maximum tensile stress σ of the uniaxial and biaxial tensile increase gradually with decreasing temperature and increasing strain rate, and well present linear-log function relation with strain rate. The ratio of quasi-biaxial and uniaxial stretching under different loading conditions was obtained so that the researchers could predict the quasi-biaxial tensile mechanical properties of the propellant based on the uniaxial test data.

  5. Effect of heat shock and recovery temperature on variability of single cell lag time of Cronobacter turicensis.

    PubMed

    Xu, Y Zh; Métris, A; Stasinopoulos, D M; Forsythe, S J; Sutherland, J P

    2015-02-01

    The effect of heat stress and subsequent recovery temperature on the individual cellular lag of Cronobacter turicensis was analysed using optical density measurements. Low numbers of cells were obtained through serial dilution and the time to reach an optical density of 0.035 was determined. Assuming the lag of a single cell follows a shifted Gamma distribution with a fixed shape parameter, the effect of recovery temperature on the individual lag of untreated and sublethally heat treated cells of Cr. turicensis were modelled. It was found that the shift parameter (Tshift) increased asymptotically as the temperature decreased while the logarithm of the scale parameter (θ) decreased linearly with recovery temperature. To test the validity of the model in food, growth of low numbers of untreated and heat treated Cr. turicensis in artificially contaminated infant first milk was measured experimentally and compared with predictions obtained by Monte Carlo simulations. Although the model for untreated cells slightly underestimated the actual growth in first milk at low temperatures, the model for heat treated cells was in agreement with the data derived from the challenge tests and provides a basis for reliable quantitative microbiological risk assessments for Cronobacter spp. in infant milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Analysis of Slip Activity and Deformation Modes in Tension and Tension-Creep Tests of Cast Mg-10Gd-3Y-0.5Zr (Wt Pct) at Elevated Temperatures Using In Situ SEM Experiments

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Boehlert, Carl J.; Wang, Qudong; Yin, Dongdi; Ding, Wenjiang

    2016-05-01

    The tension and tension-creep deformation behavior at elevated temperatures of a cast Mg-10Gd-3Y-0.5Zr (wt pct, GW103) alloy was investigated using in situ scanning electron microscopy. The tests were performed at temperatures ranging from 473 K to 598 K (200 °C to 325 °C). The active slip systems were identified using an EBSD-based slip trace analysis methodology. The results showed that for all of the tests, basal slip was the most likely system to be activated, and non-basal slip was activated to some extent depending on the temperature. No twinning was observed. For the tension tests, non-basal slip consisted of ~35 pct of the deformation modes at low temperatures (473 K and 523 K (200 °C and 250 °C)), while non-basal slip accounted for 12 and 7 pct of the deformation modes at high temperatures (573 K and 598 K (300 °C and 325 °C)), respectively. For the tension-creep tests, non-basal slip accounted for 31 pct of the total slip systems at low temperatures, while this value decreased to 10 to 16 pct at high temperatures. For a given temperature, the relative activity for prismatic slip in the tension-creep tests was slightly greater than that for the tension tests, while the activity for pyramidal slip was lower. Slip-transfer in neighboring grains was observed for the low-temperature tests. Intergranular cracking was the main cracking mode, while some intragranular cracks were observed for the tension-creep tests at high temperature and low stress. Grain boundary ledges were prevalently observed for both the tension and tension-creep tests at high temperatures, which suggests that besides dislocation slip, grain boundary sliding also contributed to the deformation.

  7. Prevention of hypothermia by infusion of warm fluid during abdominal surgery.

    PubMed

    Xu, Hong-xia; You, Zhi-Jian; Zhang, Hong; Li, Zhiqing

    2010-12-01

    Perioperative hypothermia can lead to a number of complications for patients after surgery. The aim of this pilot study was to evaluate the efficacy of warm fluids in maintaining normal core temperature during the intraoperative period. We studied 30 American Society of Anesthesiologists (ASA) physical status I or II adult patients who required general anesthesia for abdominal surgery. In the control group (n = 15), fluids were infused at room temperature; in the test group (n = 15), fluids were infused at 37° C. In the control group, core temperature decreased to 35.5 ± 0.3° C during the first 3 hours, and then stabilized at the end of anesthesia. In the test group, core temperature decreased during the first 60 minutes, but increased to 36.9 ± 0.3° C at the end of anesthesia. In the control group, eight patients shivered at grade ≥2. In the test group, none of the patients reached grade ≥2 (P < .01). Infusion of warm fluid is effective in keeping patients nearly normothermic and preventing postanesthetic shivering. It may provide an easy and effective method for prevention of perioperative hypothermia. Copyright © 2010 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  8. Efficacy and safety of a new coverlet device on skin microclimate management: a pilot study in critical care patients.

    PubMed

    Forriez, O; Masseline, J; Coadic, D; David, V; Trouiller, P; Sztrymf, B

    2017-02-02

    To test the effect of a new coverlet device, allowing air circulation at the body/underlying surface interface, on skin microclimate management. This prospective observational pilot study took place in a 15-bed university-affiliated intensive care unit. Overall, 34 mechanically ventilated patients were included. Skin humidity and temperature were monitored before and after the implementation of the tested device at the occiput, scapulas, buttocks and sacrum. Humidity and temperature were evaluated through surface skin impedance and an infra-red thermometer, respectively. Health professionals were asked to evaluate the device. After implementation of the coverlet device, there was a rapid, sustained and significant decrease in skin humidity at all sites ranging from 6 % to 15 %, excluding the occiput. Skin temperature also significantly decreased from 1 % at both scapulas, but not at the other studied body sites. No side effects were observed. Health professionals reported that the device was easy and quick to install. Although they did not report a subjective improvement in skin moisture or temperature, they considered the device to be efficient. Although limited by its design, this pilot study suggests a good efficacy of the studied device on skin microclimate management. Further data are warranted to test the clinical implications of our findings.

  9. Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics

    PubMed Central

    Mainwaring, Mark C; Deeming, D Charles; Jones, Chris I; Hartley, Ian R

    2014-01-01

    Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds’ Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures. PMID:24683466

  10. Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics.

    PubMed

    Mainwaring, Mark C; Deeming, D Charles; Jones, Chris I; Hartley, Ian R

    2014-03-01

    Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds' Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures.

  11. Temperature, illumination and fluence dependence of current and voltage in electron irradiated solar cells

    NASA Technical Reports Server (NTRS)

    Obenschain, A. F.; Faith, T. J.

    1973-01-01

    Emperical equations have been derived from measurements of solar cell photovoltaic characteristics relating light generated current, IL, and open circuit voltage, VO, to cell temperature, T, intensity of illumination, W, and 1 Mev electron fluence, phi both 2 ohm-cm and 10 ohm-cm cells were tested. The temperature dependency of IL is similar for both resistivities at 140mw/sq cm; at high temperature the coefficient varies with fluence as phi 0.18, while at low temperatures the coefficient is relatively independent of fluence. Fluence dependent degration causes a decrease in IL at a rate proportional to phi 0.153 for both resistivities. At all intensities other than 560 mw/sq cm, a linear dependence of IL on illumination was found. The temperature coefficient of voltage was, to a good approximation, independent of both temperature and illumination for both resistivities. Illumination dependence of VOC was logarithmic, while the decrease with fluence of VOC varied as phi 0.25 for both resistivities.

  12. Low-temperature limitation of bioreactor sludge in anaerobic treatment of domestic wastewater.

    PubMed

    Bowen, Emma J; Dolfing, Jan; Davenport, Russell J; Read, Fiona L; Curtis, Thomas P

    2014-01-01

    Two strategies exist for seeding low-temperature anaerobic reactors: the use of specialist psychrophilic biomass or mesophilic bioreactor sludge acclimated to low temperature. We sought to determine the low-temperature limitation of anaerobic sludge from a bioreactor acclimated to UK temperatures (<15 °C). Anaerobic incubation tests using low-strength real domestic wastewater (DWW) and various alternative soluble COD sources were conducted at 4, 8 and 15 °C; methanogenesis and acidogenesis were monitored separately. Production of methane and acetate was observed; decreasing temperature resulted in decreased yields and increased 'start-up' times. At 4 °C methanogenesis not hydrolysis/acidogenesis was rate-limiting. The final methane yields at 4 °C were less than 35% of the theoretical potential whilst at 8 and 15 °C more than 75 and 100% of the theoretical yield was achieved respectively. We propose that the lower temperature limit for DWW treatment with anaerobic bioreactor sludge lies between 8 and 4 °C and that 8 °C is the threshold for reliable operation.

  13. Behavior of NiTiNb SMA wires under recovery stress or prestressing.

    PubMed

    Choi, Eunsoo; Nam, Tae-Hyun; Chung, Young-Soo; Kim, Yeon-Wook; Lee, Seung-Yong

    2012-01-05

    The recovery stress of martensitic shape-memory alloy [SMA] wires can be used to confine concrete, and the confining effectiveness of the SMA wires was previously proved through experimental tests. However, the behavior of SMA wires under recovery stress has not been seriously investigated. Thus, this study conducted a series of tests of NiTiNb martensitic SMA wires under recovery stress with varying degrees of prestrain on the wires and compared the behavior under recovery stress with that under prestressing of the wires. The remaining stress was reduced by the procedure of additional strain loading and unloading. More additional strains reduced more remaining stresses. When the SMA wires were heated up to the transformation temperature under prestress, the stress on the wires increased due to the state transformation. Furthermore, the stress decreased with a decreasing temperature of the wires down to room temperature. The stress of the NiTiNb wires was higher than the prestress, and the developed stress seemed to depend on the composition of the SMAs. When an additional strain was subsequently loaded and unloaded on the prestressed SMA wires, the remaining stress decreased. Finally, the remaining stress becomes zero when loading and unloading a specific large strain.

  14. Correlation of Microstructure and Mechanical Properties of Thermomechanically Processed Low-Carbon Steels Containing Boron and Copper

    NASA Astrophysics Data System (ADS)

    Hwang, Byoungchul; Lee, Chang Gil; Lee, Tae-Ho

    2010-01-01

    The correlation of the microstructure and mechanical properties of thermomechanically processed low-carbon steels containing B and Cu was investigated in this study. Eighteen kinds of steel specimens were fabricated by varying B and Cu contents and finish cooling temperatures (FCTs) after controlled rolling, and then tensile and Charpy impact tests were conducted on them. Continuous cooling transformation (CCT) diagrams of the B-free and B-added steel specimens under nondeformed and deformed conditions were constructed by a combination of deformation dilatometry and metallographic methods. The addition of a very small amount of B remarkably decreased the transformation start temperatures near a bainite start temperature (Bs) and thus expanded the formation region of low-temperature transformation phases such as degenerate upper bainite (DUB) and lower bainite (LB) to slower cooling rates. On the other hand, a deformation in the austenite region promoted the formation of quasipolygonal ferrite (QPF) and granular bainite (GB) with an increase in transformation start temperatures. The tensile test results indicated that tensile strength primarily increased with decreasing FCT, while the yield strength did not vary much, except in some specimens. The addition of B and Cu, however, increased the tensile and yield strengths simultaneously because of the significant microstructural change occasionally affected by the FCT. The Charpy impact test results indicated that the steel specimens predominantly composed of LB and lath martensite (LM) had lower upper-shelf energy (USE) than those consisting of GB or DUB, but had nearly equivalent or rather lower ductile-to-brittle transition temperature (DBTT) in spite of the increased strength. According to the electron backscatter diffraction (EBSD) analysis data, it was confirmed that LB and LM microstructures had a relatively smaller effective grain size than GB or DUB microstructures, which enhanced the tortuosity of cleavage crack propagation, thereby resulting in a decrease in DBTT.

  15. The sublimation kinetics of GeSe single crystals

    NASA Technical Reports Server (NTRS)

    Irene, E. A.; Wiedemeier, H.

    1975-01-01

    The sublimation kinetics of (001) oriented GeSe single crystal platelets was studied by high-temperature mass spectroscopy, quantitative vacuum microbalance techniques, and hot stage optical microscopy. For a mean experimental temperature of 563 K, the activation enthalpy and entropy are found to equal 32.3 kcal/mole and 19.1 eu, respectively. The vaporization coefficient is less than unity for the range of test temperatures, and decreases with increasing temperature. The combined experimental data are correlated by means of a multistep surface adsorption mechanism.

  16. Extraction of temperature dependent electrical resistivity and thermal conductivity from silicon microwires self-heated to melting temperature

    NASA Astrophysics Data System (ADS)

    Bakan, Gokhan; Adnane, Lhacene; Gokirmak, Ali; Silva, Helena

    2012-09-01

    Temperature-dependent electrical resistivity, ρ(T), and thermal conductivity, k(T), of nanocrystalline silicon microwires self-heated to melt are extracted by matching simulated current-voltage (I-V) characteristics to experimental I-V characteristics. Electrical resistivity is extracted from highly doped p-type wires on silicon dioxide in which the heat losses are predominantly to the substrate and the self-heating depends mainly on ρ(T) of the wires. The extracted ρ(T) decreases from 11.8 mΩ cm at room-temperature to 5.2 mΩ cm at 1690 K, in reasonable agreement with the values measured up to ˜650 K. Electrical resistivity and thermal conductivity are extracted from suspended highly doped n-type silicon wires in which the heat losses are predominantly through the wires. In this case, measured ρ(T) (decreasing from 20.5 mΩ cm at room temperature to 12 mΩ cm at 620 K) is used to extract ρ(T) at higher temperatures (decreasing to 1 mΩ cm at 1690 K) and k(T) (decreasing from 30 W m-1 K-1 at room temperature to 20 W m-1 K-1 at 1690 K). The method is tested by using the extracted parameters to model wires with different dimensions. The experimental and simulated I-V curves for these wires show good agreement up to high voltage and temperature levels. This technique allows extraction of the electrical resistivity and thermal conductivity up to very high temperatures from self-heated microstructures.

  17. Transportation monitoring unit qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Transportation monitoring unit (TMU) qualification testing was performed between 3 Mar. and 14 Dec. 1989. The purpose of the testing was to qualify the TMUs to monitor and store temperature and acceleration data on redesigned solid rocket motor segments and exit cones while they are being shipped from Utah's Thiokol Corporation, Space Operations, to Kennedy Space Center. TMUs were subjected to transportation tests that concerned the structural integrity of the TMUs only, and did not involve TMU measuring capability. This testing was terminated prior to completion due to mounting plate failures, high and low temperature shutdown failures, and data collection errors. Corrective actions taken by the vendor to eliminate high temperature shutdowns were ineffective. An evaluation was performed on the TMUs to determine the TMU vibration and temperature measuring accuracy at a variety of temperatures. This test demonstrated that TMU measured shock levels are high, and that TMUs are temperature sensitive because of decreased accuracy at high and low temperatures. It was determined that modifications to the current TMU system, such that it could be qualified for use, would require a complete redesign and remanufacture. Because the cost of redesigning and remanufacturing the present TMU system exceeds the cost of procuring a new system that could be qualified without modification, it is recommended that an alternate transportation monitoring system be qualified.

  18. A new thermal conductivity probe for high temperature tests for the characterization of molten salts.

    PubMed

    Bovesecchi, G; Coppa, P; Pistacchio, S

    2018-05-01

    A new thermal conductivity probe for high temperature (HT-TCP) has been built and tested. Its design and construction procedure are adapted from the ambient temperature thermal conductivity probe (AT-TCP) due to good performance of the latter device. The construction procedure and the preliminary tests are accurately described. The probe contains a Pt wire as a heater and a type K thermocouple (TC) as a temperature sensor, and its size is so small (0.6 mm in diameter and 60 mm in length) as to guarantee a length to diameter ratio of about 100. Calibration tests with glycerol for temperatures between 0 °C and 60 °C have shown good agreement with literature data, within 3%. Preliminary tests were also carried on a ternary molten salt for Concentrated Solar Power (CSP) (18% in mass of NaNO 3 , 52% KNO 3 , and 30% LiNO 3 ) at 120 °C and 150 °C. Obtained results are within λ range of the Hitec ® salt (53% KNO 3 , 7% NaNO 3 , 40% NaNO 2 ). Unfortunately, at the higher temperature tested (200 °C), the viscosity of the salt highly decreases, and free convection starts, making the measurements unreliable.

  19. A new thermal conductivity probe for high temperature tests for the characterization of molten salts

    NASA Astrophysics Data System (ADS)

    Bovesecchi, G.; Coppa, P.; Pistacchio, S.

    2018-05-01

    A new thermal conductivity probe for high temperature (HT-TCP) has been built and tested. Its design and construction procedure are adapted from the ambient temperature thermal conductivity probe (AT-TCP) due to good performance of the latter device. The construction procedure and the preliminary tests are accurately described. The probe contains a Pt wire as a heater and a type K thermocouple (TC) as a temperature sensor, and its size is so small (0.6 mm in diameter and 60 mm in length) as to guarantee a length to diameter ratio of about 100. Calibration tests with glycerol for temperatures between 0 °C and 60 °C have shown good agreement with literature data, within 3%. Preliminary tests were also carried on a ternary molten salt for Concentrated Solar Power (CSP) (18% in mass of NaNO3, 52% KNO3, and 30% LiNO3) at 120 °C and 150 °C. Obtained results are within λ range of the Hitec® salt (53% KNO3, 7% NaNO3, 40% NaNO2). Unfortunately, at the higher temperature tested (200 °C), the viscosity of the salt highly decreases, and free convection starts, making the measurements unreliable.

  20. Physiological and Thermal Responses of MS Patients to Head and Vest Cooling: A Case Study

    NASA Technical Reports Server (NTRS)

    Luna, Bernadette; Webbon, Bruce W.; Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Personal cooling systems are used to alleviate symptoms of multiple sclerosis (MS) and to prevent increased core temperature during daily activities. The objective of this study was to determine the operating characteristics and the physiologic changes produced by short term application of the stationary thermal control system used by most clinical institutions. The Life Enhancement Tech (LET) Mark VII portable cooling system and a lightweight Head-vest active cooling garment were used to cool the head and chest regions of 4 male and 3 female MS patients (30 to 66 yrs. old) in this study. The subjects, seated in an upright position at normal room temperature (approx. 24 C), were tested for 60 min. with the liquid cooling garment (LCG) operated at 50 F. Oral, right and left ear temperatures and cooling system parameters were logged manually every 5 min. Arm, leg, chest and rectal temperatures, heart rate, respiration, and an activity index were recorded continuously on a U.F.I., Inc., Biolog ambulatory monitor. All temperature responses showed extreme variation among subjects. The cold-sensitive subject's rectal temperature increased initially in response to cooling; the heat sensitive subject's rectal temperature decreased. After 40 min. of cooling and during recovery, all subjects'rectal temperatures decreased. Oral temperatures began to decrease after 30 min. of cooling. After 60 min. of cooling, temperature drops ranged from approx. 0.3 - 0.8 C. Oral temperatures continued to decrease during recovery (approx. 0.2 C). The car temperature of the heat sensitive subject was increased after cooling, other subjects exhibited an ear temperature decrease (0.0 - 0.5 C). These data indicate that head and vest cooling may be used to reduce the oral temperatures of MS patients by the approximate amount needed for symptomatic relief as shown by other researchers. The combination of a small subject population and a large subject variance does not permit us to draw statistical conclusions about the temperature response of MS patients. An individual's heat or cold sensitivity may influence their thermal response to cooling. This factor should be considered in the prescribed use of liquid cooling garments in the therapeutic management of MS.

  1. The effect of temperature and loading frequency on the converse piezoelectric response of soft PZT ceramics

    NASA Astrophysics Data System (ADS)

    Dapeng, Zhu; Qinghui, Jiang; Yingwei, Li

    2017-12-01

    The converse piezoelectric coefficient d 33 of soft PZT ceramics was measured from 20 °C to 150 °C under different loading frequency. Results showed that in the tested temperature range, the evolution of d 33 obeys the Rayleigh-law behavior. The influence of temperature on d 33 is a little complicated. For instance, the maximum d 33 was observed at 150 °C when the applied electric field E was at 0.1 kV mm-1. When E increased to 0.3 kV mm-1 and 0.4 kV mm-1, the maximum d 33 was observed at 120 °C and 100 °C, respectively. Such behaviors are rationalized by the evolution of the Rayleigh parameters d init and α. For d init, it increases as temperature increases. While for α, it first increases and then decreases with the increase of temperature due to the evolution of the spontaneous strain and the volume of the switched domains. In the tested loading frequency, d 33 decreased linearly with the logarithm of the frequency of electric field. With the increase of temperature, the influence of frequency on d 33 gradually weakened, implying that at high temperature, the motion of domain walls became active and the pinning effect of defects nearly disappeared.

  2. Influence of Temperature and Grain Size on Austenite Stability in Medium Manganese Steels

    NASA Astrophysics Data System (ADS)

    Zhang, Yulong; Wang, Li; Findley, Kip O.; Speer, John G.

    2017-05-01

    With an aim to elucidate the influence of temperature and grain size on austenite stability, a commercial cold-rolled 7Mn steel was annealed at 893 K (620 °C) for times varying between 3 minutes and 96 hours to develop different grain sizes. The austenite fraction after 3 minutes was 34.7 vol pct, and at longer times was around 40 pct. An elongated microstructure was retained after shorter annealing times while other conditions exhibited equiaxed ferrite and austenite grains. All conditions exhibit similar temperature dependence of mechanical properties. With increasing test temperature, the yield and tensile strength decrease gradually, while the uniform and total elongation increase, followed by an abrupt drop in strength and ductility at 393 K (120 °C). The Olson-Cohen model was applied to fit the transformed austenite fractions for strained tensile samples, measured by means of XRD. The fit results indicate that the parameters α and β decrease with increasing test temperature, consistent with increased austenite stability. The 7Mn steels exhibit a distinct temperature dependence of the work hardening rate. Optimized austenite stability provides continuous work hardening in the temperature range of 298 K to 353 K (25 °C to 80 °C). The yield and tensile strengths have a strong dependence on grain size, although grain size variations have less effect on uniform and total elongation.

  3. The cost of muscle power production: muscle oxygen consumption per unit work increases at low temperatures in Xenopus laevis.

    PubMed

    Seebacher, Frank; Tallis, Jason A; James, Rob S

    2014-06-01

    Metabolic energy (ATP) supply to muscle is essential to support activity and behaviour. It is expected, therefore, that there is strong selection to maximise muscle power output for a given rate of ATP use. However, the viscosity and stiffness of muscle increases with a decrease in temperature, which means that more ATP may be required to achieve a given work output. Here, we tested the hypothesis that ATP use increases at lower temperatures for a given power output in Xenopus laevis. To account for temperature variation at different time scales, we considered the interaction between acclimation for 4 weeks (to 15 or 25°C) and acute exposure to these temperatures. Cold-acclimated frogs had greater sprint speed at 15°C than warm-acclimated animals. However, acclimation temperature did not affect isolated gastrocnemius muscle biomechanics. Isolated muscle produced greater tetanus force, and faster isometric force generation and relaxation, and generated more work loop power at 25°C than at 15°C acute test temperature. Oxygen consumption of isolated muscle at rest did not change with test temperature, but oxygen consumption while muscle was performing work was significantly higher at 15°C than at 25°C, regardless of acclimation conditions. Muscle therefore consumed significantly more oxygen at 15°C for a given work output than at 25°C, and plastic responses did not modify this thermodynamic effect. The metabolic cost of muscle performance and activity therefore increased with a decrease in temperature. To maintain activity across a range of temperature, animals must increase ATP production or face an allocation trade-off at lower temperatures. Our data demonstrate the potential energetic benefits of warming up muscle before activity, which is seen in diverse groups of animals such as bees, which warm flight muscle before take-off, and humans performing warm ups before exercise. © 2014. Published by The Company of Biologists Ltd.

  4. Body condition of Morelet’s Crocodiles (Crocodylus moreletii) from northern Belize

    USGS Publications Warehouse

    Mazzotti, Frank J.; Cherkiss, Michael S.; Brandt, Laura A.; Fujisaki, Ikuko; Hart, Kristen; Jeffery, Brian; McMurry, Scott T.; Platt, Steven G.; Rainwater, Thomas R.; Vinci, Joy

    2012-01-01

    Body condition factors have been used as an indicator of health and well-being of crocodilians. We evaluated body condition of Morelet's Crocodiles (Crocodylus moreletii) in northern Belize in relation to biotic (size, sex, and habitat) and abiotic (location, water level, and air temperature) factors. We also tested the hypothesis that high water levels and warm temperatures combine or interact to result in a decrease in body condition. Size class, temperature, and water level explained 20% of the variability in condition of Morelet's Crocodiles in this study. We found that adult crocodiles had higher condition scores than juveniles/subadults but that sex, habitat, and site had no effect. We confirmed our hypothesis that warm temperatures and high water levels interact to decrease body condition. We related body condition of Morelet's Crocodiles to natural fluctuations in air temperatures and water levels in northern Belize, providing baseline conditions for population and ecosystem monitoring.

  5. Effect of calcinations temperature of CuO nanoparticle on the kinetics of decontamination and decontamination products of sulphur mustard.

    PubMed

    Mahato, T H; Singh, Beer; Srivastava, A K; Prasad, G K; Srivastava, A R; Ganesan, K; Vijayaraghavan, R

    2011-09-15

    Present study investigates the potential of CuO nanoparticles calcined at different temperature for the decontamination of persistent chemical warfare agent sulphur mustard (HD) at room temperature (30 ± 2 °C). Nanoparticles were synthesized by precipitation method and characterized by using SEM, EDAX, XRD, and Raman Spectroscopy. Synthesized nanoparticles were tested as destructive adsorbents for the degradation of HD. Reactions were monitored by GC-FID technique and the reaction products characterized by GC-MS. It was observed that the rate of degradation of HD decreases with the increase in calcination temperature and there is a change in the percentage of product of HD degradation. GC-MS data indicated that the elimination product increases with increase in calcination temperature whereas the hydrolysis product decreases. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Development of a compact freeze vacuum drying for jelly fish (Schypomedusae)

    NASA Astrophysics Data System (ADS)

    Alhamid, M. Idrus; Yulianto, M.; Nasruddin

    2012-06-01

    A new design of a freeze vacuum drying with internal cooling and heater from condenser's heat loss was built and tested. The dryer was used to dry jelly fish (schypomedusae), to study the effect of drying parameters such as the temperature within the drying chamber on mass losses (evaporation) during the freezing stage and the moisture ratio at the end of the drying process. The midili thin layer mathematical drying model was used to estimate and predict the moisture ratio curve based on different drying chamber temperatures. This experiment shows that decreasing the drying chamber temperature with constant pressure results in less mass loss during the freezing stage Drying time was reduced with an increase in drying temperature. Decreasing the drying chamber temperature results in lower pressure saturation of the material has no effect of drying chamber pressure on mass transfer.

  7. Thermal tests of the SGT5-4000F gas-turbine plant of the PGU-420T power-generating unit at Combined Heat And Power Plant 16 of Mosenergo

    NASA Astrophysics Data System (ADS)

    Teplov, B. D.; Radin, Yu. A.; Filin, A. A.; Rudenko, D. V.

    2016-08-01

    In December 2014, the PGU-420T power-generating unit was put into operation at the Combined Heat and Power Plant 16, an affiliated company of PAO Mosenergo. In 2014-2015, thermal tests of the SGT5- 4000F gas-turbine plant (GTP) integrated into the power-generating unit were carried out. In the article, the test conditions are described and the test results are presented and analyzed. During the tests, 92 operating modes within a wide range of electrical loads and ambient air temperatures and operating conditions of the GTP when fired with fuel oil were investigated. In the tests, an authorized automated measuring system was applied. The experimental data were processed according to ISO 2314:2009 "Gas turbines—Acceptance tests" standard. The available capacity and the GTP efficiency vary from 266 MW and 38.8% to 302 MW and 39.8%, respectively, within the ambient air temperature range from +24 to-12°C, while the turbine inlet temperature decreases from 1200 to 1250°C. The switch to firing fuel oil results in a reduction in the turbine inlet temperature and the capacity of the GTP. With the full load and a reduction in the ambient temperature from +24 to-12°C, the compressor efficiency decreases from 89.6 to 86.4%. The turbine efficiency is approximately 89-91%. Within the investigated range of power output, the emissions of nitrogen oxides do not exceed 35 ppm for the gas-fired plant and 65 ppm for the fuel-oil-fired plant. Within the range of the GTP power output from 50 to 100% of the rated output, the combustion chamber operates without underburning and with hardly any CO being formed. At low loads close to the no-load operation mode, the CO emissions drastically increase.

  8. High temperature tensile properties of V-4Cr-4Ti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S.J.; Rowcliffe, A.F.; Stevens, C.O.

    Tensile tests have been performed on V-4Cr-4Ti at 750 and 800 C in order to extend the data base beyond the current limit of 700 C. From comparison with previous measurements, the yield strength is nearly constant and tensile elongations decrease slightly with increasing temperature between 300 and 800 C. The ultimate strength exhibits an apparent maximum near 600 C (attributable to dynamic strain aging) but adequate strength is maintained up to 800 C. The reduction in area measured on tensile specimens remained high ({approximately}80%) for test temperatures up to 800 C, in contrast to previous reported results.

  9. Relationship of mechanical characteristics and microstructural features to the time-dependent edge notch sensitivity of inconel 718 sheet

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.

    1971-01-01

    Time-dependent notch sensitivity of Inconel 718 sheet was observed at 900 F to 1200 F (482 - 649 C). It occurred when edge-notched specimens were loaded below the yield strength and smooth specimen tests showed that small amounts of creep consumed large rupture life fractions. The severity of the notch sensitivity was reduced by decreasing the solution temperature, increasing the time and/or temperature of aging and increasing the test temperature to 1400 F (760 C). Elimination of time-dependent notch sensitivity correlated with a change in dislocation motion mechanism from shearing to by-passing precipitate particles.

  10. A preliminary study of ester oxidation on an aluminum surface using chemiluminescence

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Meador, M. A.; Morales, W.

    1986-01-01

    The oxidation characteristics of a pure ester (trimethyolpropane triheptanoate) were studied by using a chemiluminescence technique. Tests were run in a thin-film micro-oxidation apparatus with an aluminum alloy catalyst. Conditions included a pure oxygen atmosphere and a temperature range of 176 to 206 C. Results indicated that oxidation of the ester (containing 10 to the minus 3 power M diphenylanthracene as an intensifier) was accompanied by emission of light. The maximum intensity of light emission (I sub max) was a function of the amount of ester, the concentration of intensifier, and the test temperature. The induction period or the time to reach one-half of maximum intensity (t sub 1/2) was an inverse function of test temperature. Decreases in light emission at the later stages of a test were caused by depletion of the intensifier.

  11. A preliminary study of ester oxidation on an aluminum surface using chemiluminescence

    NASA Technical Reports Server (NTRS)

    Jones, William R., Jr.; Meador, Michael A.; Morales, Wilfredo

    1987-01-01

    The oxidation characteristics of a pure ester (trimethyolpropane triheptanoate) were studied by using a chemiluminescence technique. Tests were run in a thin-film micro-oxidation apparatus with an aluminum alloy catalyst. Conditions included a pure oxygen atmosphere and a temperature range of 176 to 206 C. Results indicated that oxidation of the ester (containing 10 to the minus 3rd power M diphenylanthracene as an intensifier) was accompanied by emission of light. The maximum intensity of light emission (I sub max) was a function of the amount of ester, the concentration of intensifier, and the test temperature. The induction period or the time to reach one-half of maximum intensity (t sub 1/2) was an inverse function of test temperature. Decreases in light emission at the later stages of a test were caused by depletion of the intensifier.

  12. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory

    USGS Publications Warehouse

    Wieting, Celeste; Ebel, Brian A.; Singha, Kamini

    2017-01-01

    Study regionThis study used intact soil cores collected at the Boulder Creek Critical Zone Observatory near Boulder, Colorado, USA to explore fire impacts on soil properties.Study focusThree soil scenarios were considered: unburned control soils, and low- and high-temperature burned soils. We explored simulated fire impacts on field-saturated hydraulic conductivity, dry bulk density, total organic carbon, and infiltration processes during rainfall simulations.New hydrological insights for the regionSoils burned to high temperatures became more homogeneous with depth with respect to total organic carbon and bulk density, suggesting reductions in near-surface porosity. Organic matter decreased significantly with increasing soil temperature. Tension infiltration experiments suggested a decrease in infiltration rates from unburned to low-temperature burned soils, and an increase in infiltration rates in high-temperature burned soils. Non-parametric statistical tests showed that field-saturated hydraulic conductivity similarly decreased from unburned to low-temperature burned soils, and then increased with high-temperature burned soils. We interpret these changes result from the combustion of surface and near-surface organic materials, enabling water to infiltrate directly into soil instead of being stored in the litter and duff layer at the surface. Together, these results indicate that fire-induced changes in soil properties from low temperatures were not as drastic as high temperatures, but that reductions in surface soil water repellency in high temperatures may increase infiltration relative to low temperatures.

  13. Sensing Disaster: The Use of Wearable Sensor Technology to Decrease Firefighter Line-of-Duty Deaths

    DTIC Science & Technology

    2015-12-01

    peripheral oxygen or SpO2), and temperature , to name but a few.164 The current GTWM allows these sensors to be plugged in anywhere on the shirt, although...desired monitoring parameters included the “heart rate, respiratory rate, body temperature , blood oxygen saturation levels, environmental...physiological tests and parameters of firefighters that should be monitored are the EKG, heart rate (HR), body temperature , blood oxygen saturation

  14. Testing the effects of temperature and humidity on printed passive UHF RFID tags on paper substrate

    NASA Astrophysics Data System (ADS)

    Linnea Merilampi, Sari; Virkki, Johanna; Ukkonen, Leena; Sydänheimo, Lauri

    2014-05-01

    This article is an interesting substrate material for environmental-friendly printable electronics. In this study, screen-printed RFID tags on paper substrate are examined. Their reliability was tested with low temperature, high temperature, slow temperature cycling, high temperature and high humidity and water dipping test. Environmental stresses affect the tag antenna impedance, losses and radiation characteristics due to their impact on the ink film and paper substrate. Low temperature, temperature cycling and high humidity did not have a radical effect on the measured parameters: threshold power, backscattered signal power or read range of the tags. However, the frequency response and the losses of the tags were slightly affected. Exposure to high temperature was found to even improve the tag performance due to the positive effect of high temperature on the ink film. The combined high humidity and high temperature had the most severe effect on the tag performance. The threshold power increased, backscattered power decreased and the read range was shortened. On the whole, the results showed that field use of these tags in high, low and changing temperature conditions and high humidity conditions is possible. Use of these tags in combined high-humidity and high-temperature conditions should be carefully considered.

  15. Effects of Fuel Temperature on Injection Process and Combustion of Dimethyl Ether Engine.

    PubMed

    Guangxin, Gao; Zhulin, Yuan; Apeng, Zhou; Shenghua, Liu; Yanju, Wei

    2013-12-01

    To investigate the effects of fuel temperature on the injection process in the fuel-injection pipe and the combustion characteristics of compression ignition (CI) engine, tests on a four stroke, direct injection dimethyl ether (DME) engine were conducted. Experimental results show that as the fuel temperature increases from 20 to 40 °C, the sound speed is decreased by 12.2%, the peak line pressure at pump and nozzle sides are decreased by 7.2% and 5.6%, respectively. Meanwhile, the injection timing is retarded by 2.2 °CA and the injection duration is extended by 0.8 °CA. Accordingly, the ignition delay and the combustion duration are extended by 0.7 °CA and 4.0 °CA, respectively. The cylinder peak pressure is decreased by 5.4%. As a result, the effective thermal efficiency is decreased, especially for temperature above 40 °C. Before beginning an experiment, the fuel properties of DME, including the density, the bulk modulus, and the sound speed were calculated by "ThermoData." The calculated result of sound speed is consistent with the experimental results.

  16. Brain temperature in volunteers subjected to intranasal cooling.

    PubMed

    Covaciu, L; Weis, J; Bengtsson, C; Allers, M; Lunderquist, A; Ahlström, H; Rubertsson, S

    2011-08-01

    Intranasal cooling can be used to initiate therapeutic hypothermia. However, direct measurement of brain temperature is difficult and the intra-cerebral distribution of temperature changes with cooling is unknown. The purpose of this study was to measure the brain temperature of human volunteers subjected to intranasal cooling using non-invasive magnetic resonance (MR) methods. Intranasal balloons catheters circulated with saline at 20°C were applied for 60 min in ten awake volunteers. No sedation was used. Brain temperature changes were measured and mapped using MR spectroscopic imaging (MRSI) and phase-mapping techniques. Heart rate and blood pressure were monitored throughout the experiment. Rectal temperature was measured before and after the cooling. Mini Mental State Examination (MMSE) test and nasal inspection were done before and after the cooling. Questionnaires about the subjects' personal experience were completed after the experiment. Brain temperature decrease measured by MRSI was -1.7 ± 0.8°C and by phase-mapping -1.8 ± 0.9°C (n = 9) at the end of cooling. Spatial distribution of temperature changes was relatively uniform. Rectal temperature decreased by -0.5 ± 0.3°C (n = 5). The physiological parameters were stable and no shivering was reported. The volunteers remained alert during cooling and no cognitive dysfunctions were apparent in the MMSE test. Postcooling nasal examination detected increased nasal secretion in nine of the ten volunteers. Volunteers' acceptance of the method was good. Both MR techniques revealed brain temperature reductions after 60 min of intranasal cooling with balloons circulated with saline at 20°C in awake, unsedated volunteers.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell K Meyer

    Blister–threshold testing of fuel plates is a standard method through which the safety margin for operation of plate-type in research and test reactors is assessed. The blister-threshold temperature is indicative of the ability of fuel to operate at high temperatures for short periods of time (transient conditions) without failure. This method of testing was applied to the newly developed U-Mo monolithic fuel system. Blister annealing studies on the U-Mo monolithic fuel plates began in 2007, with the Reduced Enrichment for Research and Test Reactors (RERTR)-6 experiment, and they have continued as the U-Mo fuel system has evolved through the researchmore » and development process. Blister anneal threshold temperatures from early irradiation experiments (RERTR-6 through RERTR-10) ranged from 400 to 500°C. These temperatures were projected to be acceptable for NRC-licensed research reactors and the high-power Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) based on current safety-analysis reports (SARs). Initial blister testing results from the RERTR-12 experiment capsules X1 and X2 showed a decrease in the blister-threshold temperatures. Blister threshold temperatures from this experiment ranged from 300 to 400°C. Selected plates from the AFIP-4 experiment, which was fabricated using a process similar to that used to fabricate the RERTR-12 experiment, also underwent blister testing to determine whether results would be similar. The measured blister-threshold temperatures from the AFIP-4 plates fell within the same blister-threshold temperature range measured in the RERTR-12 plates. Investigation of the cause of this decrease in bister threshold temperature is being conducted under the guidance of Idaho National Laboratory PLN-4155, “Analysis of Low Blister Threshold Temperatures in the RERTR-12 and AFIP-4 Experiments,” and is driven by hypotheses. The main focus of the investigation is in the following areas: 1. Fabrication variables 2. Pre-irradiation characterization 3. Irradiation conditions 4. Post-irradiation examination 5. Additional blister testing 6. Mechanical modeling This report documents the preliminary results of this investigation. Several hypotheses can be dismissed as a result of this investigation. Two primary categories of causes remain. The most prominent theory, supported by the data, is that low blister-threshold temperature is the result of mechanical energy imparted on the samples during the fabrication process (hot and cold rolling) without adequate post processing (annealing). The mechanisms are not clearly understood and require further investigation, but can be divided into two categories: • Residual Stress • Undesirable interaction boundary and/or U-Mo microstructure change A secondary theory that cannot be dismissed with the information that is currently available is that a change in the test conditions has resulted in a statistically significant downward shift of measured blister temperature. This report outlines the results of the forensic investigations conducted to date. The data and conclusions presented in this report are preliminary. Definitive cause and effect relationships will be established by future experimental programs.« less

  18. Spatio-temporal Trends of Climate Variability in North Carolina

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, Mohammad

    Climatic trends in spatial and temporal variability of maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tmean) and precipitation were evaluated for 249 ground-based stations in North Carolina for 1950-2009. The Mann-Kendall (MK), the Theil-Sen Approach (TSA) and the Sequential Mann-Kendall (SQMK) tests were applied to quantify the significance of trend, magnitude of trend and the trend shift, respectively. The lag-1 serial correlation and double mass curve techniques were used to address the data independency and homogeneity. The pre-whitening technique was used to eliminate the effect of auto correlation of the data series. The difference between minimum and maximum temperatures, and so the diurnal temperature range (DTR), at some stations was found to be decreasing on both an annual and a seasonal basis, with an overall increasing trend in the mean temperature. For precipitation, a statewide increasing trend in fall (highest in November) and decreasing trend in winter (highest in February) were detected. No pronounced increasing/decreasing trends were detected in annual, spring, and summer precipitation time series. Trend analysis on a spatial scale (for three physiographic regions: mountain, piedmont and coastal) revealed mixed results. Coastal zone exhibited increasing mean temperature (warming) trend as compared to other locations whereas mountain zone showed decreasing trend (cooling). Three main moisture components (precipitation, total cloud cover, and soil moisture) and the two major atmospheric circulation modes (North Atlantic Oscillation and Southern Oscillation) were used for correlative analysis purposes with the temperature (specifically with DTR) and precipitation trends. It appears that the moisture components are associated with DTR more than the circulation modes in North Carolina.

  19. Mechanical properties and fracture toughness of rail steels and thermite welds at low temperature

    NASA Astrophysics Data System (ADS)

    Wang, Yuan-qing; Zhou, Hui; Shi, Yong-jiu; Feng, Bao-rui

    2012-05-01

    Brittle fracture occurs frequently in rails and thermite welded joints, which intimidates the security and reliability of railway service. Railways in cold regions, such as Qinghai-Tibet Railway, make the problem of brittle fracture in rails even worse. A series of tests such as uniaxial tensile tests, Charpy impact tests, and three-point bending tests were carried out at low temperature to investigate the mechanical properties and fracture toughness of U71Mn and U75V rail steels and their thermite welds. Fracture micromechanisms were analyzed by scanning electron microscopy (SEM) on the fracture surfaces of the tested specimens. The ductility indices (percentage elongation after fracture and percentage reduction of area) and the toughness indices (Charpy impact energy A k and plane-strain fracture toughness K IC) of the two kinds of rail steels and the corresponding thermite welds all decrease as the temperature decreases. The thermite welds are more critical to fracture than the rail steel base metals, as indicated by a higher yield-to-ultimate ratio and a much lower Charpy impact energy. U71Mn rail steel is relatively higher in toughness than U75V, as demonstrated by larger A k and K IC values. Therefore, U71Mn rail steel and the corresponding thermite weld are recommended in railway construction and maintenance in cold regions.

  20. Dynamic strain aging behavior of modified 9Cr-1Mo and reduced activation ferritic martensitic steels under low cycle fatigue

    NASA Astrophysics Data System (ADS)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Prasad Reddy, G. V.; Mathew, M. D.

    2013-04-01

    Influence of temperature and strain rate on low cycle fatigue (LCF) behavior of modified 9Cr-1Mo ferritic martensitic steel and 1.4W-0.06Ta reduced activation ferritic martensitic (RAFM) steel in normalized and tempered conditions was studied. Total strain controlled LCF tests between 300 and 873 K on modified 9Cr-1Mo steel and RAFM steel and at various strain rates on modified 9Cr-1Mo steel were performed at total strain amplitude of ±0.6%. Both the steels showed continuous cyclic softening at all temperatures. Whereas manifestations of dynamic strain aging (DSA) were observed in both the steels which decreased fatigue life at intermediate temperatures, at higher temperatures, oxidation played a crucial role in decreasing fatigue life.

  1. Silicon Carbide Diodes Characterization at High Temperature and Comparison With Silicon Devices

    NASA Technical Reports Server (NTRS)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry D., Jr.

    2004-01-01

    Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers rated at 200, 300, 600, and 1200 V, were electrically tested and characterized as a function of temperature up to 300 C. Electrical tests included both steady state and dynamic tests. Steady state tests produced forward and reverse I-V characteristic curves. Transient tests evaluated the switching performance of the diodes in either a hard-switched DC to DC buck converter or a half-bridge boost converter. For evaluation and comparison purposes, the same tests were performed with current state-of-the-art ultra fast silicon (Si) pn-junction diodes of similar ratings and also a Si Schottky diode. The comparisons made were forward voltage drop at rated current, reverse current at rated voltage, and turn-off peak reverse recovery current and reverse recovery time. In addition, efficiency measurements were taken for the buck DC to DC converter using both the SiC Schottky diodes and the Si pn-junction diodes at different temperatures and frequencies. The test results showed that at high temperature, the forward voltage drop for SiC Schottky diodes is higher than the forward drop of the ultra fast Si pn-junction diodes. As the temperature increased, the forward voltage drop of the SiC Schottky increased while for the ultra fast Si pn-junction diodes, the forward voltage drop decreased as temperature increased. For the elevated temperature steady state reverse voltage tests, the SiC Schottky diodes showed low leakage current at their rated voltage. Likewise, for the transient tests, the SiC Schottky diodes displayed low reverse recovery currents over the range of temperatures tested. Conversely, the Si pn-junction diodes showed increasing peak reverse current values and reverse recovery times with increasing temperature. Efficiency measurements in the DC to DC buck converter showed the advantage of the SiC Schottky diodes over the ultra fast Si pn-junction diodes, especially at the higher temperatures and higher frequencies.

  2. Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    1999-01-01

    Mechanical Testing of an advanced thermoplastic polyimide (LaRC-TM-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength were all determined as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. A critical molecular weight (Mc) was observed to occur at a weight-average molecular weight (Mw) of approx. 22000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Furthermore, inelastic analysis showed that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microstructural images supported these findings.

  3. The Effect of Piston-Head Temperature on Knock-Limited Power

    NASA Technical Reports Server (NTRS)

    Imming, Harry S.

    1944-01-01

    To determine the effect of piston-head temperature on knock-limited power. Tests were made in a supercharged CFR engine over a range of fuel-air ratios from 0.055 to 0.120, using S-3 reference fuel, AN-F-28, Amendment-2, aviation gasoline, and AN-F-28 plus 2 percent xylidines by weight. Tests were run at a compression ratio of 7.0 with inlet-air temperatures of 150 F and 250 F and at a compression ratio of 8.0 with an inlet-air temperature of 250 F. All other engine conditions were held constant. The piston-head temperature was varied by circulation of oil through passages in the crown of a liquid-cooled piston. This method of piston cooling decreased the piston-head temperature about 80 F. The data are not intended to constitute a recommendation as to the advisability of piston cooling in practice.

  4. The effect of temperature on the sensitivity of Daphnia magna to cyanobacteria is genus dependent.

    PubMed

    Hochmuth, Jennifer D; De Schamphelaere, Karel A C

    2014-10-01

    In the present study, the authors investigated the effects of 6 different genera of cyanobacteria on multiple endpoints of Daphnia magna in a 21-d life table experiment conducted at 3 different temperatures (15 °C, 19 °C, and 23 °C). The specific aims were to test if the effect of temperature on Daphnia's sensitivity to cyanobacteria differed among different cyanobacteria and if the rank order from most to least harmful cyanobacteria to Daphnia reproduction changed or remained the same across the studied temperature range. Overall, the authors observed a decrease in harmful effects on reproduction with increasing temperature for Microcystis, Nodularia, and Aphanizomenon, and an increase in harmful effects with increasing temperature for Anabaena and Oscillatoria. No effect of temperature was observed on Daphnia sensitivity to Cylindrospermopsis. Harmful effects of Microcystis and Nodularia on reproduction appear to be mirrored by a decrease in length. On the other hand, harmful effects of Anabaena, Aphanizomenon, and Oscillatoria on reproduction were correlated with a decrease in intrinsic rate of natural increase, which was matched by a later onset of reproduction in exposures to Oscillatoria. In addition, the results suggest that the cyanobacteria rank order of harmfulness may change with temperature. Higher temperatures may increase the sensitivity of D. magna to the presence of some cyanobacteria (Anabaena and Oscillatoria) in their diet, whereas the harmful effects of others (Microcystis, Nodularia, and Aphanizomenon) may be reduced by higher temperatures. © 2014 SETAC.

  5. Interaction of high voltage surfaces with the space plasma

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    High voltage solar arrays provide spacecraft power while optimizing mass and power efficiency. Operating such arrays in the space plasma environment can result in anomalously large currents being collected through insulation defects. Two thicknesses of the insulating material were tested, with no effect found due to insulator thickness. In these tests the polyimide thickness was always much less than the pinhole diameter. The pinhole area was varied over an area range of more than 30:1. It was found that the current collected was independent of the pinhole area for hole diameters from 0.35 to 2.0 mm. Two types of adhesives were tried in two different configurations. The adhesives were chosen for their extreme difference in vacuum qualifications. Neither adhesive types nor configuration made a significant difference in current collection. The temperature of the insulating material was also varied. It was found that current collection decreased with increasing temperature. Tests were conducted to see if pinhole current collection decreased with time, as was indicated by the effects of several short tests. Current was collected for over four hours while the conductor potential was held constant at 1000 volts. A smooth decrease with time was not observed, but rather a roughly constant current collection with brief surges to high values. Tests were also conducted with the simulated solar cell biased negative. The current was found to be proportional to pinhole area.

  6. Characterization of Thermal Stability and High-Temperature Tribological Behavior of Electroless Ni-B Coating

    NASA Astrophysics Data System (ADS)

    Pal, Soupitak; Sarkar, Rohit; Jayaram, Vikram

    2018-05-01

    A preliminary study has been conducted using sequences of isothermal heat treatments and unidirectional high-temperature wear test following ball-on-flat geometry against an alumina counterface, to assess thermal stability and high-temperature tribological properties of the crystalline electroless Ni-B coating, a potential candidate for high-temperature solid lubricant coating. Isothermal heat treatment of 450 °C/15 h causes a significant amount of B diffusion into the Fe substrate without altering the coating's through-thickness hardness and nanostructure. At room temperature, a very low wear rate is observed, which increases up to two orders of magnitude above a testing temperature of 100 °C. Room-temperature wear behavior is mostly governed by oxidative wear, where friction-induced heating produces a thick oxide scale on the wear track, which subsequently decreases the wear rate by preventing direct contact between the coating and counterface. In the case of wear tests above 100 °C, removal of the same oxide layer occurs through local plastic deformation, essentially plastic ratcheting at the contacting region by flow softening of the contacting surface layer due to a local rise in temperature. Worn track morphology shows similarity with the severe wear seen in steel-steel contacts. Experimental observations have been explained and validated using the concept of contact point flash temperature. A quantitative assessment of contact point flash temperature has been carried out adopting the methodology, proposed by Ashby et al. The effects of applied normal load, test geometry, choice of counterface material, and testing temperatures on the transition of wear mechanism are critically discussed.

  7. Lubrication of optimized-design tapered-roller bearings to 2.4 million DN

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Pinel, S. I.; Signer, Hans R.

    1980-01-01

    The performance of 120.65 mm (4.75 in.) bore high speed design, tapered roller bearings was investigated at shaft speeds to 20,000 rpm (2.4 million DN) under combined thrust and radial load. The test bearing design was computer optimized for high speed operation. Temperature distribution bearing heat generation were determined as a function of shaft speed, radial and thrust loads, lubricant flow rates, and lubricant inlet temperature. The high speed design, tapered roller bearing operated successfully at shaft speeds up to 20,000 rpm under heavy thrust and radial loads. Bearing temperatures and heat generation with the high speed design bearing were significantly less than those of a modified standard bearing tested previously. Cup cooling was effective in decreasing the high cup temperatures to levels equal to the cone temperature.

  8. Substrate Integrated Waveguide (SIW)-Based Wireless Temperature Sensor for Harsh Environments.

    PubMed

    Tan, Qiulin; Guo, Yanjie; Zhang, Lei; Lu, Fei; Dong, Helei; Xiong, Jijun

    2018-05-03

    This paper presents a new wireless sensor structure based on a substrate integrated circular waveguide (SICW) for the temperature test in harsh environments. The sensor substrate material is 99% alumina ceramic, and the SICW structure is composed of upper and lower metal plates and a series of metal cylindrical sidewall vias. A rectangular aperture antenna integrated on the surface of the SICW resonator is used for electromagnetic wave transmission between the sensor and the external antenna. The resonant frequency of the temperature sensor decreases when the temperature increases, because the relative permittivity of the alumina ceramic increases with temperature. The temperature sensor presented in this paper was tested four times at a range of 30⁻1200 °C, and a broad band coplanar waveguide (CPW)-fed antenna was used as an interrogation antenna during the test process. The resonant frequency changed from 2.371 to 2.141 GHz as the temperature varied from 30 to 1200 °C, leading to a sensitivity of 0.197 MHz/°C. The quality factor of the sensor changed from 3444.6 to 35.028 when the temperature varied from 30 to 1000 °C.

  9. Microstructural evolution and mechanical characterization for the A508-3 steel before and after phase transition

    NASA Astrophysics Data System (ADS)

    Lu, Chuanyang; He, Yanming; Gao, Zengliang; Yang, Jianguo; Jin, Weiya; Xie, Zhigang

    2017-11-01

    Nuclear power, as a reliable clean and economical energy source, has gained great attention from all over the world. The A508-3 steel will be introduced as the structural materials for Chinese nuclear reactor pressure vessels (RPVs). This work investigated the temperature-dependence microstructural evolution during high-temperature heat treatments, and built the relationship between the microstructure and mechanical properties for the steel before and after phase transition. The results show that the original steel consists of the bainite, allotriomorphic ferrite, retained austenite and few Mo-rich M2C carbides. The phase-transition temperature of the steel is determined to be 750 °C. The tensile tests performed at 20-1000 °C indicate that both of the yield strength and ultimate tensile strength decrease monotonously with increasing the temperature. Before phase transition, precipitation of cementite from the retained austenite and coarsening of cementite at the austenite-ferrite interphases should be responsible for their sharp decrease. After phase transition, the growth of austenite grain reduces the strength moderately. As for the elongation, however, it increases dramatically when the testing temperature is over 750 °C, due to the dissolution of cementite and formation of austenite. The obtained results will provide some fundamental data to understand and implement the In-Vessel Retention strategy.

  10. Wheelchair cushion effect on skin temperature, heat flux, and relative humidity.

    PubMed

    Stewart, S F; Palmieri, V; Cochran, G V

    1980-05-01

    For patients subject to decubitus ulcers, wheelchair cushions should be prescribed with knowledge of the cushion's effect on the thermal as well as mechanical environment of the skin. To define thermal effects that may be encountered during routine use, tests werr made on 24 commercially available cushions. Skin temperature, heat flux and relative humidity were measured under the ischial tuberosities of a normal 24-year-old man during a 1-hour period of sitting on each cushion. After 1 hour, skin temperatures increased by means of 3.4 C and 2.8 C on foams and viscoelastic foams and there were slight decreases in heat flux as compared with control values in air. On gels, skin temperatures remained constant and heat flux increased, while water "floatation" pads caused a mean skin temperature decreased of 2.7 C along with a marked increase in heat flux. Relative humidity at the skin cushion interface increased by 10.4%, 22.8% and 19.8% on foams, gels and water floatation pads, as compared with room air values. Representative cushions from each of the general types (foam, viscoelastic foam, gel and water floatation) also were subjected to 2-hour tests which indicated the measured parameters continued to change asymptotically.

  11. Physiologic Responses Produced by Active and Passive Personal Cooling Vests

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Luna, Bernadette

    2000-01-01

    Personal thermoregulatory systems which provide chest cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to document and compare the subjects' response to three cooling vests in their recommended configurations. The Life Enhancement Tech (LET) lightweight active cooling vest with cap, the MicroClimate Systems Change of Phase garment (MCS), and the Steele Vest were each used to cool the chest regions of 12 male and 8 female Healthy subjects (21 to 69 yr.) in this study. The subjects, seated in an upright position at normal room temperature (approx. 22 C), were tested for 60 min. with one of the cooling garments. The LET active garment had an initial coolant fluid inlet temperature of 60 F, and was ramped down to 50 F. Oral, right and left ear canal temperatures were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; and respiration were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. For men, all three vests had similar, significant cooling effects. Decreases in the average rectal temperature, oral temperature, and ear canal temperatures were approximately 0.2 C, 0.2 C and 0.1 C, respectively. In contrast to the men, the female subjects wearing the MCS and Steel vests had similar cooling responses in which the core temperature remained elevated and oral and ear canal temperatures did not drop. The LET active garment cooled most of the female subjects in this study; rectal, oral and ear temperature decreased about 0.2 C, 0.3 C and 0.3 C, respectively. These results show that the garment configurations tested do not elicit a similar thermal response in all subjects. A gender difference is evident. The LET active garment configuration was most effective in decreasing temperatures of the female subjects; the MCS vest was least effective. For male subjects, the three vests appear to be more nearly equivalent. The active garment system under study included a cooling cap, which may account for some of the difference in response.

  12. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; ...

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 -3 s -1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords« less

  13. A Wide Range Temperature Sensor Using SOI Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Elbuluk, Malik E.; Hammoud, Ahmad

    2009-01-01

    Silicon-on-insulator (SOI) technology is becoming widely used in integrated circuit chips for its advantages over the conventional silicon counterpart. The decrease in leakage current combined with lower power consumption allows electronics to operate in a broader temperature range. This paper describes the performance of an SOIbased temperature sensor under extreme temperatures and thermal cycling. The sensor comprised of a temperature-to-frequency relaxation oscillator circuit utilizing an SOI precision timer chip. The circuit was evaluated under extreme temperature exposure and thermal cycling between -190 C and +210 C. The results indicate that the sensor performed well over the entire test temperature range and it was able to re-start at extreme temperatures.

  14. Enhancement of crystallinity and magnetization in Fe3O4 nanoferrites induced by a high synthesized magnetic field

    NASA Astrophysics Data System (ADS)

    Ma, Xinxiu; Zhang, Zhanxian; Chen, Shijie; Lei, Wei; Xu, Yan; Lin, Jia; Luo, Xiaojing; Liu, Yongsheng

    2018-05-01

    A one-step hydrothermal method in different dc magnetic fields was used to prepare the Fe3O4 nanoparticles. Under the magnetic field, the average particle size decreased from 72.9 to 41.6 nm, meanwhile, the particle crystallinity is greatly improved. The magnetic field enhances its saturation magnetization and coercivity. The high magnetic field induce another magnetic structure. At room temperature, these nanoparticles exhibit superparamagnetism whose critical size (D sp) is about 26 nm. The Verwey transition is observed in the vicinity of 120 K of Fe3O4 nanoparticles. The effective magnetic anisotropy decreases with the increase of the test temperature because of the H c decreased.

  15. The Combined Influence of Molecular Weight and Temperature on the Aging and Viscoelastic Response of a Glassy Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2000-01-01

    The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC-SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of five materials of different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have higher creep compliance and creep rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of M (bar) (sub w) 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly. The short-term creep compliance data were used in association with Struik's effective time theory to predict the long-term creep compliance behavior for the different molecular weights. At long timescales, physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested.

  16. Sulfur recirculation for increased electricity production in Waste-to-Energy plants.

    PubMed

    Andersson, Sven; Blomqvist, Evalena W; Bäfver, Linda; Jones, Frida; Davidsson, Kent; Froitzheim, Jan; Karlsson, Martin; Larsson, Erik; Liske, Jesper

    2014-01-01

    Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. High temperature tensile behavior and microstructure of Al-SiC nanocomposite fabricated by mechanical milling and hot extrusion technique

    NASA Astrophysics Data System (ADS)

    Soltani, Mohammadreza; Atrian, Amir

    2018-02-01

    This paper investigates the high-temperature tensile behavior of Al-SiC nanocomposite reinforced with 0, 1.5, and 3 vol% SiC nano particles. To fabricate the samples, SiC nano reinforcements and aluminum (Al) powders were milled using an attritor milling and then were cold pressed and hot extruded at 500 °C. Afterward, mechanical and microstructural characteristics were studied in different temperatures. To this end, tensile and compressive tests, micro-hardness test, microscopic examinations, and XRD analysis were performed. The results showed significant improvement of mechanical properties of Al-SiC nanocomposite in room temperature including 40% of ultimate tensile strength (UTS), 36% of ultimate compressive strength (UCS), and 44% of micro-hardness. Moreover, performing tensile tests at elevated temperatures (up to 270 °C) decreased the tensile strength by about 53%, 46%, and 45% for Al-0 vol% SiC, Al-1.5 vol% SiC, and Al-3 vol% SiC, respectively. This temperature rise also enhanced the elongation by about 11% and 133% for non-reinforced Al and Al-3 vol% SiC, respectively.

  18. Detection of moisture and moisture related phenomena from Skylab. [Texas

    NASA Technical Reports Server (NTRS)

    Eagleman, J. R.; Pogge, E. C.; Moore, R. K. (Principal Investigator); Hardy, N.; Lin, W.; League, L.

    1973-01-01

    The author has identified the following significant results. This is a preliminary report on the ability to detect soil moisture variation from the two different sensors on board Skylab. Initial investigations of S190A and Sl94 Skylab data and ground truth has indicated the following significant results. (1) There was a decrease in Sl94 antenna temperature from NW to SE across the Texas test site. (2) Soil moisture increases were measured from NW to SE across the test site. (3) There was a general increase in precipitation distribution and radar echoes from NW to SE across the site for the few days prior to measurements. This was consistent with the soil moisture measurements and gives more complete coverage of the site. (4) There are distinct variations in soil textures over the test site. This affects the moisture holding capacity of soils and must be considered. (5) Strong correlation coefficients were obtained between S194 antenna temperature and soil moisutre content. As the antenna temperature decreases soil moisture increases. (6) The Sl94 antenna temperature correlated best with soil mositure content in the upper two inches of the soil. A correlation coefficient of .988 was obtained. (7) Sl90A photographs in the red-infrared region were shown to be useful for identification of Abilene clay loam and for determining the distribution of this soil type.

  19. Hypothermic general cold adaptation induced by local cold acclimation.

    PubMed

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P < 0.05) without a change either in metabolic heat production or in lower limb skin temperatures during SCAT after LCA. It was concluded that local cold adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P < 0.05). However, the hypothermic insulative general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P < 0.05) was observed but was rather related to a "T3 polar syndrome" occurring during LCA.

  20. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1992-01-01

    The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.

  1. Elevated Temperature Effects on the Plastic Anisotropy of an Extruded Mg-4 Wt Pct Li Alloy: Experiments and Polycrystal Modeling

    NASA Astrophysics Data System (ADS)

    Risse, Marcel; Lentz, Martin; Fahrenson, Christoph; Reimers, Walter; Knezevic, Marko; Beyerlein, Irene J.

    2017-01-01

    In this work, we study the deformation behavior of Mg-4 wt pct Li in uniaxial tension as a function of temperature and loading direction. Standard tensile tests were performed at temperatures in the range of 293 K (20 °C) ≤ T ≤ 473 K (200 °C) and in two in-plane directions: the extrusion and the transverse. We find that while the in-plane plastic anisotropy (PA) decreases with temperature, the anisotropy in failure strain and texture development increases. To uncover the temperature dependence in the critical stresses for slip and in the amounts of slip and twinning systems mediating deformation, we employ the elastic-plastic self-consistent polycrystal plasticity model with a thermally activated dislocation density based hardening law for activating slip with individual crystals. We demonstrate that the model, with a single set of intrinsic material parameters, achieves good agreement with the stress-strain curves, deformation textures, and intragranular misorientation axis analysis for all test directions and temperatures. With the model, we show that at all temperatures the in-plane tensile behavior is driven primarily by < a rangle slip and both < {c + a} rangle slip and twinning play a minor role. The analysis explains that the in-plane PA decreases and failure strains increase with temperature as a result of a significant reduction in the activation stress for pyramidal < {c + a} rangle slip, which effectively promotes strain accommodation from multiple types of < a rangle and < {c + a} rangle slip. The results also show that because of the strong initial texture, in-plane texture development is anisotropic since prismatic slip dominates the deformation in one test, although it is not the easiest slip mode, and basal slip in the other. These findings reveal the relationship between the temperature-sensitive thresholds needed to activate crystallographic slip and the development of texture and macroscopic PA.

  2. Temperature-dependent tensile and shear response of graphite/aluminum

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Pindera, M. J.; Herakovich, C. T.

    1987-01-01

    The thermo-mechanical response of unidirectional P100 graphite fiber/6061 aluminum matrix composites was investigated at four temperatures:-150, +75, +250, and +500 F. Two types of tests, off-axis tension and losipescu shear, were used to obtain the desired properties. Good experimental-theoretical correlation was obtained for Exx, vxy, and G12. It is shown that E11 is temperature independent, but E22, v12, and G12 generally decrease with increasing temperature. Compared with rather high longitudinal strength, very low transverse strength was obtained for the graphite/aluminum. The poor transverse strength is believed to be due to the low interfacial bond strength in this material. The strength decrease significantly with increasing temperature. The tensile response at various temperatures is greatly affected by the residual stresses caused by the mismatch in the coefficients of thermal expansion of fibers and matrix. The degradation of the aluminum matrix properties at higher temperatures has a deleterious effect on composite properties. The composite has a very low coefficient of thermal expansion in the fiber direction.

  3. Diabetic Foot and Risk: How to Prevent Losing Your Leg

    MedlinePlus

    ... in blood flow to the foot. Darkening or loss of hair may indicate that the blood or nerve supply has decreased. Less blood to the foot can ... differences between hot/warm and cold water. Shower water can be first tested ... identify any loss of temperature sensation. Testing for any change in ...

  4. Effect of irradiation temperature and strain rate on the mechanical properties of V-4Cr-4Ti irradiated to low doses in fission reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S.J.; Snead, L.L.; Rowcliffe, A.F.

    Tensile tests performed on irradiated V-(3-6%)Cr-(3-6%)Ti alloys indicate that pronounced hardening and loss of strain hardening capacity occurs for doses of 0.1--20 dpa at irradiation temperatures below {approximately}330 C. The amount of radiation hardening decreases rapidly for irradiation temperatures above 400 C, with a concomitant increase in strain hardening capacity. Low-dose (0.1--0.5 dpa) irradiation shifts the dynamic strain aging regime to higher temperatures and lower strain rates compared to unirradiated specimens. Very low fracture toughness values were observed in miniature disk compact specimens irradiated at 200--320 C to {approximately}1.5--15 dpa and tested at 200 C.

  5. Crosswinds Effect on the Thermal Performance of Wet Cooling Towers Under Variable Operating Conditions

    NASA Astrophysics Data System (ADS)

    Chen, You Liang; Shi, Yong Feng; Hao, Jian Gang; Chang, Hao; Sun, Feng Zhong

    2018-01-01

    In order to quantitatively analyze the influence of the variable operating parameters on the cooling performance of natural draft wet cooling towers (NDWCTs), a hot model test system was set up with adjustable ambient temperature and humidity, circulating water flowrate and temperature. In order to apply the hot model test results to the real tower, the crosswind Froude number is defined. The results show that the crosswind has a negative effect on the thermal performance of the cooling tower, and there is a critical crosswind velocity corresponding to the lowest cooling efficiency. According to the crosswind Froude number similarity, when the ambient temperature decreases, or the circulating water flowrate and temperature increase, the cooling tower draft force will increase, and the critical crosswind velocity will increase correspondingly.

  6. Effects of temperature and copper pollution on soil community--extreme temperature events can lead to community extinction.

    PubMed

    Menezes-Oliveira, Vanessa B; Scott-Fordsmand, Janeck J; Soares, Amadeu M V M; Amorim, Monica J B

    2013-12-01

    Global warming affects ecosystems and species' diversity. The physiology of individual species is highly influenced by changes in temperature. The effects on species communities are less studied; they are virtually unknown when combining effects of pollution and temperature. To assess the effects of temperature and pollution in the soil community, a 2-factorial soil mesocosms multispecies experiment was performed. Three exposure periods (28 d, 61 d, and 84 d) and 4 temperatures (19 °C, 23 °C, 26 °C, and 29 °C) were tested, resembling the mean annual values for southern Europe countries and extreme events. The soil used was from a field site, clean, or spiked with Cu (100 mg Cu/kg). Results showed clear differences between 29 °C treatment and all other temperature treatments, with a decrease in overall abundance of organisms, further potentiated by the increase in exposure time. Folsomia candida was the most abundant species and Enchytraeus crypticus was the most sensitive to Cu toxicity. Differences in species optimum temperatures were adequately covered: 19 °C for Hypoaspis aculeifer or 26 °C for E. crypticus. The temperature effects were more pronounced the longer the exposure time. Feeding activity decreased with higher temperature and exposure time, following the decrease in invertebrate abundance, whereas for the same conditions the organic matter turnover increased. Hence, negative impacts on ecosystem services because of temperature increase can be expected by changes on soil function and as consequence of biodiversity loss. © 2013 SETAC.

  7. Effect of detomidine on visceral and somatic nociception and duodenal motility in conscious adult horses.

    PubMed

    Elfenbein, Johanna R; Sanchez, L Chris; Robertson, Sheilah A; Cole, Cynthia A; Sams, Richard

    2009-03-01

    To evaluate the effects of detomidine on visceral and somatic nociception, heart and respiratory rates, sedation, and duodenal motility and to correlate these effects with serum detomidine concentrations. Nonrandomized, experimental trial. Five adult horses, each with a permanent gastric cannula weighing 534 +/- 46 kg. Visceral nociception was evaluated by colorectal (CRD) and duodenal distension (DD). The duodenal balloon was used to assess motility. Somatic nociception was assessed via thermal threshold (TT). Nose-to-ground (NTG) height was used as a measure of sedation. Serum was collected for pharmacokinetic analysis. Detomidine (10 or 20 microg kg(-1)) was administered intravenously. Data were analyzed by means of a three-factor anova with fixed factors of treatment and time and random factor of horse. When a significant time x treatment interaction was detected, differences were compared with a simple t-test or Bonferroni t-test. Significance was set at p < 0.05. Detomidine produced a significant, dose-dependent decrease in NTG height, heart rate, and skin temperature and a significant, nondose-dependent decrease in respiratory rate. Colorectal distension threshold was significantly increased with 10 microg kg(-1) for 15 minutes and for at least 165 minutes with 20 microg kg(-1). Duodenal distension threshold was significantly increased at 15 minutes for the 20 microg kg(-1) dose. A significant change in TT was not observed at either dose. A marked, immediate decrease in amplitude of duodenal contractions followed detomidine administration at both doses for 50 minutes. Detomidine caused a longer period of visceral anti-nociception as determined by CRD but a shorter period of anti-nociception as determined by DD than has been previously reported. The lack of somatic anti-nociception as determined by TT testing may be related to the marked decrease in skin temperature, likely caused by peripheral vasoconstriction and the low temperature cut-off of the testing device.

  8. Nanosecond laser-induced damage at different initial temperatures of Ta{sub 2}O{sub 5} films prepared by dual ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Cheng, E-mail: xucheng@cumt.edu.cn; Jia, Jiaojiao; Fan, Heliang

    2014-08-07

    Ta{sub 2}O{sub 5} films were deposited by dual ion beam sputtering method. The nanosecond laser-induced damage threshold (LIDT) at different initial temperatures and time of the films was investigated by an in situ high temperature laser-induced damage testing platform. It was shown that, when the initial temperature increased from 298 K to 383 K, the LIDT at 1064 nm and 12 ns significantly decreased by nearly 14%. Then the LIDT at 1064 nm and 12 ns decreased slower with the same temperature increment. Different damage morphologies were found at different initial temperatures. At low initial temperatures, it was the defects-isolated damage while at high initial temperaturesmore » it was the defects-combined damage. The theoretical calculations based on the defect-induced damage model revealed that both the significant increase of the highest temperature and the duration contributed to the different damage morphologies. With the initial temperature being increased, the thermal-stress coupling damage mechanism transformed gradually to the thermal dominant damage mechanism.« less

  9. CYTOGENETIC AND MOLECULAR RESPONSES OF AMMONIUM SULPHATE APPLICATION FOR TOLERANCE TO EXTREME TEMPERATURES IN VICIA FABA L.

    PubMed

    Öney, S; Tabur, S; Tuna, M

    2015-01-01

    Effects of ammonium sulphate [(NH4)2SO4] on mitosis, cell cycle and chromosomes in Vicia faba L. seeds exposed to extreme temperatures were investigated using flowcytometric and cytogenetic analysis. Seeds germinated at high and low temperatures showed a signiicant decrease in mitotic index as compared to those of optimum temperature conditions. Application of 50 and 1000 µM (NH4)2SO4 were successful in alleviating the negative effects of low and high temperature on mitotic activity, respectively. 50 µM (NH4)2SO4 showed the most positive effect on cell cycle at the extreme temperatures. This concentration increased the cell division removing or decreasing the negative effects of temperature stress. Namely, the highest G2/M and S phase percentages under stress conditions were obtained with application of 50 µM (NH4)2SO4. Chromosomal aberrations were not observed in cells of seeds germinated in distilled water and also at any temperatures. However, the frequency of chromosomal aberrations increased significantly by increasing (NH4)2SO4 concentration. The highest aberration frequency in all temperature degree tested was found at 1000 µM (NH4)2SO4 concentration.

  10. Problems in evaluating regional and local trends in temperature: An example from eastern Colorado, USA

    USGS Publications Warehouse

    Pielke, R.A.; Stohlgren, T.; Schell, L.; Parton, W.; Doesken, N.; Redmond, K.; Moeny, J.; McKee, T.; Kittel, T.G.F.

    2002-01-01

    We evaluated long-term trends in average maximum and minimum temperatures, threshold temperatures, and growing season in eastern Colorado, USA, to explore the potential shortcomings of many climate-change studies that either: (1) generalize regional patterns from single stations, single seasons, or a few parameters over short duration from averaging dissimilar stations: or (2) generalize an average regional pattern from coarse-scale general circulation models. Based on 11 weather stations, some trends were weakly regionally consistent with previous studies of night-time temperature warming. Long-term (80 + years) mean minimum temperatures increased significantly (P < 0.2) in about half the stations in winter, spring, and autumn and six stations had significant decreases in the number of days per year with temperatures ??? - 17.8 ??C (???0??F). However, spatial and temporal variation in the direction of change was enormous for all the other weather parameters tested, and, in the majority of tests, few stations showed significant trends (even at P < 0.2). In summer, four stations had significant increases and three stations had significant decreases in minimum temperatures, producing a strongly mixed regional signal. Trends in maximum temperature varied seasonally and geographically, as did trends in threshold temperature days ???32.2??C (???90??F) or days ???37.8??C (???100??F). There was evidence of a subregional cooling in autumn's maximum temperatures, with five stations showing significant decreasing trends. There were many geographic anomalies where neighbouring weather stations differed greatly in the magnitude of change or where they had significant and opposite trends. We conclude that sub-regional spatial and seasonal variation cannot be ignored when evaluating the direction and magnitude of climate change. It is unlikely that one or a few weather stations are representative of regional climate trends, and equally unlikely that regionally projected climate change from coarse-scale general circulation models will accurately portray trends at sub-regional scales. However, the assessment of a group of stations for consistent more qualitative trends (such as the number of days less than - 17.8??C, such as we found) provides a reasonably robust procedure to evaluate climate trends and variability. Copyright ?? 2002 Royal Meteorological Society.

  11. Mechanisms of elevated-temperature deformation in the B2 aluminides NiAl and CoAl

    NASA Technical Reports Server (NTRS)

    Yaney, D. L.; Nix, W. D.

    1988-01-01

    A strain rate change technique, developed previously for distinguishing between pure-metal and alloy-type creep behavior, was used to study the elevated-temperature deformation behavior of the intermetallic compounds NiAl and CoAl. Tests on NiAl were conducted at temperatures between 1100 and 1300 K while tests on CoAl were performed at temperatures ranging from 1200 to 1400 K. NiAl exhibits pure-metal type behavior over the entire temperature range studied. CoAl, however, undergoes a transition from pure-metal to alloy-type deformation behavior as the temperature is decreased from 1400 to 1200 K. Slip appears to be inherently more difficult in CoAl than in NiAl, with lattice friction effects limiting the mobility of dislocations at a much higher tmeperature in CoAl than in NiAl. The superior strength of CoAl at elevated temperatures may, therefore, be related to a greater lattice friction strengthening effect in CoAl than in NiAl.

  12. Effect of Strain Rate on Mechanical Properties of Wrought Sintered Tungsten at Temperatures above 2500 F

    NASA Technical Reports Server (NTRS)

    Sikora, Paul F.; Hall, Robert W.

    1961-01-01

    Specimens of wrought sintered commercially pure tungsten were made from 1/8-inch swaged rods. All the specimens were recrystallized at 4050 F for 1 hour prior to testing at temperatures from 2500 to 4000 F at various strain rates from 0.002 to 20 inches per inch per minute. Results showed that, at a constant temperature, increasing the strain rate increased the ultimate tensile strength significantly. The effects of both strain rate and temperature on the ultimate tensile strength of tungsten may be correlated by the linear parameter method of Manson and Haferd and may be used to predict the ultimate tensile strength at higher temperatures, 4500 and 5000 F. As previously reported, ductility, as measured by reduction of area in a tensile test, decreases with increasing temperature above about 3000 F. Increasing the strain rate at temperatures above 3000 F increases the ductility. Fractures are generally transgranular at the higher strain rates and intergranular at the lower strain rates.

  13. Determination of mechanical properties of polymer film materials

    NASA Technical Reports Server (NTRS)

    Hughes, E. J.; Rutherford, J. L.

    1975-01-01

    Five polymeric film materials, Tedlar, Teflon, Kapton H, Kapton F, and a fiberglass reinforced polyimide, PG-402, in thickness ranging from 0.002 to 0.005 inch, were tested over a temperature range of -195 to 200 C in the "machine" and transverse direction to determine: elastic modulus, Poisson's ratio, three percent offset yield stress, fracture stress, and strain to fracture. The elastic modulus, yield stress and fracture stress decreased with increasing temperature for all the materials while the fracture strain increased. Teflon and Tedlar had the greatest temperature dependence and PG-402 the least. At 200 C the Poisson ratio values ranged from 0.39 to 0.5; they diminished as the temperature decreased covering a range of 0.26 to 0.42 at -195 C. Shortening the gauge length from eight inches to one inch increased the strain to fracture and lowered the elastic modulus values.

  14. Increased water temperature renders single-housed C57BL/6J mice susceptible to antidepressant treatment in the forced swim test.

    PubMed

    Bächli, Heidi; Steiner, Michel A; Habersetzer, Ursula; Wotjak, Carsten T

    2008-02-11

    To investigate genotype x environment interactions in the forced swim test, we tested the influence of water temperature (20 degrees C, 25 degrees C, 30 degrees C) on floating behaviour in single-housed male C57BL/6J and BALB/c mice. We observed a contrasting relationship between floating and water temperature between the two strains, with C57BL/6J floating more and BALB/c floating less with increasing water temperature, independent of the lightening conditions and the time point of testing during the animals' circadian rhythm. Both strains showed an inverse relationship between plasma corticosterone concentration and water temperature, indicating that the differences in stress coping are unrelated to different perception of the aversive encounter. Treatment with desipramine (20mg/kg, i.p.) caused a reduction in immobility time in C57BL/6J mice if the animals were tested at 30 degrees C water temperature, with no effect at 25 degrees C and no effects on forced swim stress-induced corticosterone secretion. The same treatment failed to affect floating behaviour in BALB/c at any temperature, but caused a decrease in plasma corticosterone levels. Taken together we demonstrate that an increase in water temperature in the forced swim test exerts opposite effects on floating behaviour in C57BL/6J and BALB/c and renders single-housed C57BL/6J mice, but not BALB/c mice, susceptible to antidepressant-like behavioral effects of desipramine.

  15. Effects of a neonicotinoid pesticide on thermoregulation of African honey bees (Apis mellifera scutellata).

    PubMed

    Tosi, Simone; Démares, Fabien J; Nicolson, Susan W; Medrzycki, Piotr; Pirk, Christian W W; Human, Hannelie

    Thiamethoxam is a widely used neonicotinoid pesticide that, as agonist of the nicotinic acetylcholine receptors, has been shown to elicit a variety of sublethal effects in honey bees. However, information concerning neonicotinoid effects on honey bee thermoregulation is lacking. Thermoregulation is an essential ability for the honey bee that guarantees the success of foraging and many in-hive tasks, especially brood rearing. We tested the effects of acute exposure to thiamethoxam (0.2, 1, 2ng/bee) on the thorax temperatures of foragers exposed to low (22°C) and high (33°C) temperature environments. Thiamethoxam significantly altered honey bee thorax temperature at all doses tested; the effects elicited varied depending on the environmental temperature and pesticide dose to which individuals were exposed. When bees were exposed to the high temperature environment, the high dose of thiamethoxam increased their thorax temperature 1-2h after exposure. When bees were exposed to the low temperature, the higher doses of the neonicotinoid reduced bee thorax temperatures 60-90min after treatment. In both experiments, the neonicotinoid decreased the temperature of bees the day following the exposure. After a cold shock (5min at 4°C), the two higher doses elicited a decrease of the thorax temperature, while the lower dose caused an increase, compared to the control. These alterations in thermoregulation caused by thiamethoxam may affect bee foraging activity and a variety of in-hive tasks, likely leading to negative consequences at the colony level. Our results shed light on sublethal effect of pesticides which our bees have to deal with. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Life Limiting Behavior in Interlaminar Shear of Continuous Fiber-Reinforced Ceramic Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Calomino, Anthony M.; Bansal, Narottam P.; Verrilli, Michael J.

    2006-01-01

    Interlaminar shear strength of four different fiber-reinforced ceramic matrix composites was determined with doublenotch shear test specimens as a function of test rate at elevated temperatures ranging from 1100 to 1316 C in air. Life limiting behavior, represented as interlaminar shear strength degradation with decreasing test rate, was significant for 2-D crossplied SiC/MAS-5 and 2-D plain-woven C/SiC composites, but insignificant for 2-D plain-woven SiC/SiC and 2-D woven Sylramic (Dow Corning, Midland, Michigan) SiC/SiC composites. A phenomenological, power-law delayed failure model was proposed to account for and to quantify the rate dependency of interlaminar shear strength of the composites. Additional stress rupture testing in interlaminar shear was conducted at elevated temperatures to validate the proposed model. The model was in good agreement with SiC/MAS-5 and C/SiC composites, but in poor to reasonable agreement with Sylramic SiC/SiC. Constant shear stress-rate testing was proposed as a possible means of life prediction testing methodology for ceramic matrix composites subjected to interlaminar shear at elevated temperatures when short lifetimes are expected.

  17. Responses of caddisfly larvae (Brachycentrus spp. ) to temperature, food availability and current velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallepp, G.W.

    1977-07-01

    Larvae of the stream caddisflies, Brachycentrus americanus and Brachycentrus occidentalis, were studied in eight simulated stream channels to determine their behavioral responses to temperature, food availability (brine shrimp) and current velocity. For both species, filtering, withdrawn and case-building were the primary behavior patterns of larvae that had attached their cases to the substrate. Most larvae not attached to the substrate were crawling or holding. As temperatures increased above 8 C, B. occidentalis larvae filtered more frequantly; but above 20 C the percentage of larvae filtering steadily decreased and the percentage withdrawn increased dramatically with increasing temperature. Percentages of larvae case-buildingmore » and unattached generally decreased over the range of 4 to 27 C. Despite this decrease in case-building, B. occidentalis larvae generally grew faster as temperature increased from 4 to 16 C. Behavior of B. americanus as a function of temperature was similar to behavior of B. occidentalis. Both species responded to decreased ration by increasing the percentage of time filtering. Although many larvae were unattached and probably grazing in Lawrence Creek, few larvae were unattached in the laboratory, even at the lowest ration (1.2 percent of the body weight per day). Growth and case-building activity of B. americanus larvae were directly related to ration. Over the range of current velocities of 7 to 26 cm/sec, behavior of B. occidentalis changed little. At 5 cm/sec fewer larvae filtered and more were unattached; this suggested a threshold response to current velocity. Increasing temperatures from 10 to 20 C caused the percentage withdrawn at low velocities to increase; however, this trend was hardly noticeable at velocities above 10 cm/sec. In these tests, Brachycentrus were more responsive to temperature and food availability than to current velocity.« less

  18. Accelerated aging tests on ENEA-ASE solar coating for receiver tube suitable to operate up to 550 °C

    NASA Astrophysics Data System (ADS)

    Antonaia, A.; D'Angelo, A.; Esposito, S.; Addonizio, M. L.; Castaldo, A.; Ferrara, M.; Guglielmo, A.; Maccari, A.

    2016-05-01

    A patented solar coating for evacuated receiver, based on innovative graded WN-AlN cermet layer, has been optically designed and optimized to operate at high temperature with high performance and high thermal stability. This solar coating, being designed to operate in solar field with molten salt as heat transfer fluid, has to be thermally stable up to the maximum temperature of 550 °C. With the aim of determining degradation behaviour and lifetime prediction of the solar coating, we chose to monitor the variation of the solar absorptance αs after each thermal annealing cycle carried out at accelerated temperatures under vacuum. This prediction method was coupled with a preliminary Differential Thermal Analysis (DTA) in order to give evidence for any chemical-physical coating modification in the temperature range of interest before performing accelerated aging tests. In the accelerated aging tests we assumed that the temperature dependence of the degradation processes could be described by Arrhenius behaviour and we hypothesized that a linear correlation occurs between optical parameter variation rate (specifically, Δαs/Δt) and degradation process rate. Starting from Δαs/Δt values evaluated at 650 and 690 °C, Arrhenius plot gave an activation energy of 325 kJ mol-1 for the degradation phenomenon, where the prediction on the coating degradation gave a solar absorptance decrease of only 1.65 % after 25 years at 550 °C. This very low αs decrease gave evidence for an excellent stability of our solar coating, also when employed at the maximum temperature (550 °C) of a solar field operating with molten salt as heat transfer fluid.

  19. Observations of the temperature dependent response of ozone to NOx reductions in the Sacramento, CA urban plume

    NASA Astrophysics Data System (ADS)

    Lafranchi, B. W.; Goldstein, A. H.; Cohen, R. C.

    2011-07-01

    Observations of NOx in the Sacramento, CA region show that mixing ratios decreased by 30 % between 2001 and 2008. Here we use an observation-based method to quantify net ozone (O3) production rates in the outflow from the Sacramento metropolitan region and examine the O3 decrease resulting from reductions in NOx emissions. This observational method does not rely on assumptions about detailed chemistry of ozone production, rather it is an independent means to verify and test these assumptions. We use an instantaneous steady-state model as well as a detailed 1-D plume model to aid in interpretation of the ozone production inferred from observations. In agreement with the models, the observations show that early in the plume, the NOx dependence for Ox (Ox = O3 + NO2) production is strongly coupled with temperature, suggesting that temperature-dependent biogenic VOC emissions and other temperature-related effects can drive Ox production between NOx-limited and NOx-suppressed regimes. As a result, NOx reductions were found to be most effective at higher temperatures over the 7 year period. We show that violations of the California 1-h O3 standard (90 ppb) in the region have been decreasing linearly with decreases in NOx (at a given temperature) and predict that reductions of NOx concentrations (and presumably emissions) by an additional 30 % (relative to 2007 levels) will eliminate violations of the state 1 h standard in the region. If current trends continue, a 30 % decrease in NOx is expected by 2012, and an end to violations of the 1 h standard in the Sacramento region appears to be imminent.

  20. Effects of whey protein concentrate, feed moisture and temperature on the physicochemical characteristics of a rice-based extruded flour.

    PubMed

    Teba, Carla da Silva; Silva, Erika Madeira Moreira da; Chávez, Davy William Hidalgo; Carvalho, Carlos Wanderlei Piler de; Ascheri, José Luis Ramírez

    2017-08-01

    The influence of whey protein concentrate (WPC), feed moisture and temperature on the physicochemical properties of rice-based extrudates has been investigated. WPC (0.64-7.36g/100g rice) was extruded under 5 moisture (16.64-23.36g/100g) and 5 temperature (106.36-173.64°C) established by a 3 2 central composite rotational design. Physicochemical properties [color, porosimetry, crystallinity, water solubility and absorption, pasting properties, reconstitution test, proximate composition, amino acids, minerals and electrophoresis] were determined. WPC and feed moisture increased redness, yellowness and decreased luminosity. Feed moisture and temperature increased density and total volume pore. WPC and moisture increased crystallinity, but only WPC increased solubility and decrease the retrogradation tendency. Increasing temperature increased the viscosity of the extrudates. The addition of WPC improved the nutritional composition of the extrudates, especially proteins. It is suggested that the extrusion process positively affected the retention of most of the polypeptides chains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance.

    PubMed

    Garzke, Jessica; Ismar, Stefanie M H; Sommer, Ulrich

    2015-03-01

    Concern about climate change has re-ignited interest in universal ecological responses to temperature variations: (1) biogeographical shifts, (2) phenology changes, and (3) size shifts. In this study we used copepods as model organisms to study size responses to temperature because of their central role in the pelagic food web and because of the ontogenetic length constancy between molts, which facilitates the definition of size of distinct developmental stages. In order to test the expected temperature-induced shifts towards smaller body size and lower abundances under warming conditions, a mesocosm experiment using plankton from the Baltic Sea at three temperature levels (ambient, ambient +4 °C, ambient -4 °C) was performed in summer 2010. Overall copepod and copepodit abundances, copepod size at all life stages, and adult copepod size in particular, showed significant temperature effects. As expected, zooplankton peak abundance was lower in warm than in ambient treatments. Copepod size-at-immature stage significantly increased in cold treatments, while adult size significantly decreased in warm treatments.

  2. Detonation in TATB Hemispheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druce, B; Souers, P C; Chow, C

    2004-03-17

    Streak camera breakout and Fabry-Perot interferometer data have been taken on the outer surface of 1.80 g/cm{sup 3} TATB hemispherical boosters initiated by slapper detonators at three temperatures. The slapper causes breakout to occur at 54{sup o} at ambient temperatures and 42{sup o} at -54 C, where the axis of rotation is 0{sup o}. The Fabry velocities may be associated with pressures, and these decrease for large timing delays in breakout seen at the colder temperatures. At room temperature, the Fabry pressures appear constant at all angles. Both fresh and decade-old explosive are tested and no difference is seen. Themore » problem has been modeled with reactive flow. Adjustment of the JWL for temperature makes little difference, but cooling to -54 C decreases the rate constant by 1/6th. The problem was run both at constant density and with density differences using two different codes. The ambient code results show that a density difference is probably there but it cannot be quantified.« less

  3. Demonstration of SiC Pressure Sensors at 750 C

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2014-01-01

    We report the first demonstration of MEMS-based 4H-SiC piezoresistive pressure sensors tested at 750 C and in the process confirmed the existence of strain sensitivity recovery with increasing temperature above 400 C, eventually achieving near or up to 100% of the room temperature values at 750 C. This strain sensitivity recovery phenomenon in 4H-SiC is uncharacteristic of the well-known monotonic decrease in strain sensitivity with increasing temperature in silicon piezoresistors. For the three sensors tested, the room temperature full-scale output (FSO) at 200 psig ranged between 29 and 36 mV. Although the FSO at 400 C dropped by about 60%, full recovery was achieved at 750 C. This result will allow the operation of SiC pressure sensors at higher temperatures, thereby permitting deeper insertion into the engine combustion chamber to improve the accurate quantification of combustor dynamics.

  4. Effect of segmental, localized lower limb cooling on dynamic balance.

    PubMed

    Montgomery, Roger E; Hartley, Geoffrey L; Tyler, Christopher J; Cheung, Stephen S

    2015-01-01

    This study aimed to determine the effect of cooling progressively greater portions of the lower extremities on dynamic balance and neuromuscular activation. Ten healthy males (22.8 ± 3.4 yr, 76.5 ± 9.1 kg) performed one room air temperature control (22.4°C ± 0.8°C) and three trials of cold water immersion at 12°C (lateral malleolus, ankle; lateral femoral epicondyle, knee; anterior superior iliac spine, hip) for 10 min before performing a unipedal balance test (Star Excursion Balance Test (SEBT)) with their dominant limb. Muscle activation of the vastus lateralis, biceps femoris, tibialis anterior, and lateral gastrocnemius was measured with surface EMG during the SEBT. Core temperature remained euthermic throughout all trials. Gastrocnemius temperature decreased from control (30.4°C ± 0.5°C) with knee (23.7°C ± 1.7°C) and hip immersion (22.4°C ± 1.0°C), whereas vastus lateralis temperature decreased from control (33.7°C ± 1.7°C) with hip immersion (27.3°C ± 2.0°C) (P < 0.01 for all comparisons). Cold water immersion influenced mean anterior and posterior reach distance on the SEBT in a dose-dependent fashion. Compared with those in control, mean anterior and posterior SEBT reach distances were not decreased with ankle (-1.38% and -0.74%, respectively) and knee immersion (-2.48% and -2.74%), whereas hip immersion significantly reduced SEBT by 4.73% and 4.05% (P < 0.05, d = 0.52-0.58). Muscle activation was largely unaffected as the lower extremities were cooled, with only the lateral gastrocnemius during the anterior SEBT approaching a decrease (P = 0.059). Cooling larger portions of the lower extremities progressively affect dynamic balance, and thermal protection strategies should focus on maintaining temperature in the large muscle mass of the thigh.

  5. Isolated effects of peripheral arm and central body cooling on arm performance.

    PubMed

    Giesbrecht, G G; Wu, M P; White, M D; Johnston, C E; Bristow, G K

    1995-10-01

    Whole body cooling impairs manual arm performance. The independent contributions of local (peripheral) and/or whole body (central) cooling are not known. Therefore, a protocol was developed in which the arm and the rest of the body could be independently cooled. Biceps temperature (Tmus), at a depth of 20 mm, and esophageal temperature (Tes) were measured. Six subjects were immersed to the clavicles in a tank (body tank) of water under 3 conditions: 1) cold body-cold arm (CB-CA); 2) warm body-cold arm (WB-CA); and 3) cold body-warm arm (CB-WA). In the latter two conditions, subjects placed their dominant arm in a separate (arm) tank. Water temperature (Tw) in each tank was independently controlled. In conditions requiring cold body and/or cold arm, Tw in the appropriate tanks was 8 degrees C. In conditions requiring warm body and/or warm arm, Tw in the appropriate tanks was adjusted between 29 and 38 degrees C to maintain body/arm temperature at baseline values. A battery of 6 tests, requiring fine or gross motor movements, were performed immediately before immersion and after 15, 45, and 70 minutes of immersion. In CB-CA, Tes decreased from an average of 37.2 to 35.6 degrees C and Tmus decreased from 34.6 to 22.0 degrees C. In WB-CA, Tmus decreased to 18.1 degrees C (Tes = 37.1 degrees C), and in CB-WA, Tes decreased to 35.8 degrees C (Tmus = 34.5 degrees C). By the end of immersion, there were significant decrements (43-85%) in the performance of all tests in CB-CA and WB-CA (p < 0.0002); scores for each test were similar in these two conditions. There was no significant change in scores throughout the CB-WA condition. In both conditions with arm cooling (i.e., WB-CA and CB-CA), Tmus accounted for 85-98% of the variance in all tests. When the core was cooled in the CB-WA condition, Tes was significantly correlated to scores in only two tests (accounted for 90 and 93% of the variance) although the actual effect was small. In the CB-CA condition, partial correlations indicated that Tes accounted for 4-10% of the variance in scores of 4 tests. We conclude that cooling of the body and/or the arm elicits large decrements in finger, hand and arm performance. The decrements are due almost entirely to the local effects of arm tissue cooling.

  6. Temperature effects on particulate emissions from DPF-equipped diesel trucks operating on conventional and biodiesel fuels.

    PubMed

    Book, Emily K; Snow, Richard; Long, Thomas; Fang, Tiegang; Baldauf, Richard

    2015-06-01

    Emissions tests were conducted on two medium heavy-duty diesel trucks equipped with a particulate filter (DPF), with one vehicle using a NOx absorber and the other a selective catalytic reduction (SCR) system for control of nitrogen oxides (NOx). Both vehicles were tested with two different fuels (ultra-low-sulfur diesel [ULSD] and biodiesel [B20]) and ambient temperatures (70ºF and 20ºF), while the truck with the NOx absorber was also operated at two loads (a heavy weight and a light weight). The test procedure included three driving cycles, a cold start with low transients (CSLT), the federal heavy-duty urban dynamometer driving schedule (UDDS), and a warm start with low transients (WSLT). Particulate matter (PM) emissions were measured second-by-second using an Aethalometer for black carbon (BC) concentrations and an engine exhaust particle sizer (EEPS) for particle count measurements between 5.6 and 560 nm. The DPF/NOx absorber vehicle experienced increased BC and particle number concentrations during cold starts under cold ambient conditions, with concentrations two to three times higher than under warm starts at higher ambient temperatures. The average particle count for the UDDS showed an opposite trend, with an approximately 27% decrease when ambient temperatures decreased from 70ºF to 20ºF. This vehicle experienced decreased emissions when going from ULSD to B20. The DPF/SCR vehicle tested had much lower emissions, with many of the BC and particle number measurements below detectable limits. However, both vehicles did experience elevated emissions caused by DPF regeneration. All regeneration events occurred during the UDDS cycle. Slight increases in emissions were measured during the WSLT cycles after the regeneration. However, the day after a regeneration occurred, both vehicles showed significant increases in particle number and BC for the CSLT drive cycle, with increases from 93 to 1380% for PM number emissions compared with tests following a day with no regeneration. The use of diesel particulate filters (DPFs) on trucks is becoming more common throughout the world. Understanding how DPFs affect air pollution emissions under varying operating conditions will be critical in implementing effective air quality standards. This study evaluated particulate matter (PM) and black carbon (BC) emissions with two DPF-equipped heavy-duty diesel trucks operating on conventional fuel and a biodiesel fuel blend at varying ambient temperatures, loads, and drive cycles.

  7. Effects of Thermal Treatment on Tensile Creep and Stress-Rupture Behavior of Hi-Nicalon SiC Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1995-01-01

    Tensile creep and stress-rupture studies were conducted on Hi-Nicalon SiC fibers at 1200 and 1400 C in argon and air. Examined were as-received fibers as well as fibers annealed from 1400 to 1800 C for 1 hour in argon before testing. The creep and rupture results for these annealed fibers were compared to those of the as-received fibers to determine the effects of annealing temperature, test temperature, and test environment. Argon anneals up to 1500 C degrade room temperature strength of Hi-Nicalon fibers, but improve fiber creep resistance in argon or air by as much as 100% with no significant degradation in rupture strength. Argon anneals above 1500 C continue to improve fiber creep resistance when tested in argon, but significantly degrade creep resistance and rupture strength when tested in air. Decrease in creep resistance in air is greater at 1200 C than at 1400 C. Mechanisms are suggested for the observed behavior.

  8. Effects of temperature changes and stress loading on the mechanical and shape memory properties of thermoplastic materials with different glass transition behaviours and crystal structures.

    PubMed

    Iijima, Masahiro; Kohda, Naohisa; Kawaguchi, Kyotaro; Muguruma, Takeshi; Ohta, Mitsuru; Naganishi, Atsuko; Murakami, Takashi; Mizoguchi, Itaru

    2015-12-01

    To investigate the effects of temperature changes and stress loading on the mechanical and shape memory properties of thermoplastic materials with different glass transition behaviours and crystal structures. Five thermoplastic materials, polyethylene terephthalate glycol (Duran®, Scheu Dental), polypropylene (Hardcast®, Scheu Dental), and polyurethane (SMP MM®, SMP Technologies) with three different glass transition temperatures (T g) were selected. The T g and crystal structure were assessed using differential scanning calorimetry and X-ray diffraction. The deterioration of mechanical properties by thermal cycling and the orthodontic forces during stepwise temperature changes were investigated using nanoindentation testing and custom-made force-measuring system. The mechanical properties were also evaluated by three-point bending tests; shape recovery with heating was then investigated. The mechanical properties for each material were decreased significantly by 2500 cycles and great decrease was observed for Hardcast (crystal plastic) with higher T g (155.5°C) and PU 1 (crystalline or semi-crystalline plastic) with lower T g (29.6°C). The Duran, PU 2, and PU 3 with intermediate T g (75.3°C for Duran, 56.5°C for PU 2, and 80.7°C for PU 3) showed relatively stable mechanical properties with thermal cycling. The polyurethane polymers showed perfect shape memory effect within the range of intraoral temperature changes. The orthodontic force produced by thermoplastic appliances decreased with the stepwise temperature change for all materials. Orthodontic forces delivered by thermoplastic appliances may influence by the T g of the materials, but not the crystal structure. Polyurethane is attractive thermoplastic materials due to their unique shape memory phenomenon, but stress relaxation with temperature changes is expected. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Rheological Behavior, Granule Size Distribution and Differential Scanning Calorimetry of Cross-Linked Banana (Musa paradisiaca) Starch.

    NASA Astrophysics Data System (ADS)

    Núñez-Santiago, María C.; Maristany-Cáceres, Amira J.; Suárez, Francisco J. García; Bello-Pérez, Arturo

    2008-07-01

    Rheological behavior at 60 °C, granule size distribution and Differential Scanning Calorimetry (DSC) tests were employed to study the effect of diverse reaction conditions: adipic acid concentration, pH and temperature during cross-linking of banana (Musa paradisiaca) starch. These properties were determined in native banana starch pastes for the purpose of comparison. Rheological behavior from pastes of cross-linked starch at 60 °C did not show hysteresis, probably due the cross-linkage of starch that avoided disruption of granules, elsewhere, native starch showed hysteresis in a thixotropic loop. All pastes exhibited non-Newtonian shear thinning behavior. In all cases, size distribution showed a decrease in the median diameter in cross-linked starches. This condition produces a decrease in swelling capacity of cross-linked starch. The median diameter decreased with an increase of acid adipic concentration; however, an increase of pH and Temperature produced an increase in this variable. Finally, an increase in gelatinization temperature and entalphy (ΔH) were observed as an effect of cross-linkage. An increase in acid adipic concentration produced an increase in Tonset and a decrease in ΔH. pH and temperature. The cross-linked of banana starch produced granules more resistant during the pasting procedure.

  10. [The negative temperature effect of UV absorbance on C60 in different solvents].

    PubMed

    Yang, Tao; Zeng, Fan-qin; Ge, Qi; Xiong, Qian; Guo, Feng; Zhang, Xun-gao

    2004-02-01

    Ultraviolet Absorption Spectrum of Difference in Temperature (UVSDT) of C60 was studied in different solvents by UV-240 ultraviolet-visible spectrophotometer. Two samples were tested, one of which acted as reference sample and the other as ready test sample. During the period of the experiment, the temperature of the reference sample remained constant, while that of the ready test sample was changed to obtain difference in temperature. The two samples were scanned in succession by UV-240 ultraviolet-visible spectrophotometer using a certain range of wavelength. By changing the temperature of the ready test sample, we can get the ultraviolet absorption spectrum changing curve with temperature differential. In addition, the curve was studied by putting C60 in different solvents (alcohol, cyclohexane, n-hexane and 2-propanol). The curve indicates that the intensity of the absorption peak wavelength of C60 decreased with increasing the temperature of the sample, and a negative peak was observed in UVSDT. And the greater the difference in temperature, the higher the intensity of the negative peak. The result reflects that the structure of C60 depends strongly on its temperature, and the dependent relationship is closely related to the type of pi-pi electron transition. So it's valuable to test the absorption rate of C60 and obtain the changing curve in real time. It'll help us to separate, purify, analyze, and characterize C60. And it'll also help to do research on the mechanism of the chemical reactions, which take place in solvents, as well as to improve veracity.

  11. Acutely Decreased Thermoregulatory Energy Expenditure or Decreased Activity Energy Expenditure Both Acutely Reduce Food Intake in Mice

    PubMed Central

    Kaiyala, Karl J.; Morton, Gregory J.; Thaler, Joshua P.; Meek, Thomas H.; Tylee, Tracy; Ogimoto, Kayoko; Wisse, Brent E.

    2012-01-01

    Despite the suggestion that reduced energy expenditure may be a key contributor to the obesity pandemic, few studies have tested whether acutely reduced energy expenditure is associated with a compensatory reduction in food intake. The homeostatic mechanisms that control food intake and energy expenditure remain controversial and are thought to act over days to weeks. We evaluated food intake in mice using two models of acutely decreased energy expenditure: 1) increasing ambient temperature to thermoneutrality in mice acclimated to standard laboratory temperature or 2) exercise cessation in mice accustomed to wheel running. Increasing ambient temperature (from 21°C to 28°C) rapidly decreased energy expenditure, demonstrating that thermoregulatory energy expenditure contributes to both light cycle (40±1%) and dark cycle energy expenditure (15±3%) at normal ambient temperature (21°C). Reducing thermoregulatory energy expenditure acutely decreased food intake primarily during the light cycle (65±7%), thus conflicting with the delayed compensation model, but did not alter spontaneous activity. Acute exercise cessation decreased energy expenditure only during the dark cycle (14±2% at 21°C; 21±4% at 28°C), while food intake was reduced during the dark cycle (0.9±0.1 g) in mice housed at 28°C, but during the light cycle (0.3±0.1 g) in mice housed at 21°C. Cumulatively, there was a strong correlation between the change in daily energy expenditure and the change in daily food intake (R2 = 0.51, p<0.01). We conclude that acutely decreased energy expenditure decreases food intake suggesting that energy intake is regulated by metabolic signals that respond rapidly and accurately to reduced energy expenditure. PMID:22936977

  12. Temporal changes in climatic variables and their impact on crop yields in southwestern China

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Bin; Gou, Yu; Wang, Hong-Ye; Li, Hong-Mei; Wu, Wei

    2014-08-01

    Knowledge of variability in climatic variables changes and its impact on crop yields is important for farmers and policy makers, especially in southwestern China where rainfed agriculture is dominant. In the current study, six climatic parameters (mean temperature, rainfall, relative humidity, sunshine hours, temperature difference, and rainy days) and aggregated yields of three main crops (rice: Oryza sativa L., oilseed rape: Brassica napus L., and tobacco: Nicotiana tabacum L.) during 1985-2010 were collected and analyzed for Chongqing—a large agricultural municipality of China. Climatic variables changes were detected by Mann-Kendall test. Increased mean temperature and temperature difference and decreased relative humidity were found in annual and oilseed rape growth time series ( P < 0.05). Increased sunshine hours were observed during the oilseed rape growth period ( P < 0.05). Rainy days decreased slightly in annual and oilseed rape growth time series ( P < 0.10). Correlation analysis showed that yields of all three crops could benefit from changes in climatic variables in this region. Yield of rice increased with rainfall ( P < 0.10). Yield of oilseed rape increased with mean temperature and temperature difference but decreased with relative humidity ( P < 0.01). Tobacco yield increased with mean temperature ( P < 0.05). Path analysis provided additional information about the importance and contribution paths of climatic variables to crop yields. Temperature difference and sunshine hours had higher direct and indirect effects via other climatic variables on yields of rice and tobacco. Mean temperature, relative humidity, rainy days, and temperature difference had higher direct and indirect effects via others on yield of oilseed rape.

  13. Temporal changes in climatic variables and their impact on crop yields in southwestern China.

    PubMed

    Liu, Hong-Bin; Gou, Yu; Wang, Hong-Ye; Li, Hong-Mei; Wu, Wei

    2014-08-01

    Knowledge of variability in climatic variables changes and its impact on crop yields is important for farmers and policy makers, especially in southwestern China where rainfed agriculture is dominant. In the current study, six climatic parameters (mean temperature, rainfall, relative humidity, sunshine hours, temperature difference, and rainy days) and aggregated yields of three main crops (rice: Oryza sativa L., oilseed rape: Brassica napus L., and tobacco: Nicotiana tabacum L.) during 1985-2010 were collected and analyzed for Chongqing-a large agricultural municipality of China. Climatic variables changes were detected by Mann-Kendall test. Increased mean temperature and temperature difference and decreased relative humidity were found in annual and oilseed rape growth time series (P<0.05). Increased sunshine hours were observed during the oilseed rape growth period (P<0.05). Rainy days decreased slightly in annual and oilseed rape growth time series (P<0.10). Correlation analysis showed that yields of all three crops could benefit from changes in climatic variables in this region. Yield of rice increased with rainfall (P<0.10). Yield of oilseed rape increased with mean temperature and temperature difference but decreased with relative humidity (P<0.01). Tobacco yield increased with mean temperature (P<0.05). Path analysis provided additional information about the importance and contribution paths of climatic variables to crop yields. Temperature difference and sunshine hours had higher direct and indirect effects via other climatic variables on yields of rice and tobacco. Mean temperature, relative humidity, rainy days, and temperature difference had higher direct and indirect effects via others on yield of oilseed rape.

  14. Investigation of the deformation mechanisms of core-shell rubber-modified epoxy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Brown, Hayley Rebecca

    The industrial demand for high strength-to-weight ratio materials is increasing due to the need for high performance components. Epoxy polymers, although often used in fiber-reinforced polymeric composites, have an inherent low toughness that further decreases with decreasing temperatures. Second-phase additives have been effective in increasing the toughness of epoxies at room temperature; however, the mechanisms at low temperatures are still not understood. In this study, the deformation mechanisms of a DGEBA epoxy modified with MX960 core-shell rubber (CSR) particles were investigated under quasi-static tensile and impact loads at room temperature (RT) and liquid nitrogen (LN 2) temperature. Overall, the CSR had little effect on the tensile properties at RT and LN2 temperature. The impact strength decreased from neat to 3 wt% but increased from neat to 5 wt% at RT and LN2 temperature, with a higher impact strength at RT at all CSR loadings. The CSR particles debonded in front of the crack tip, inducing voids into the matrix. It was found that an increase in shear deformation and void growth likely accounted for the higher impact strength at 5 wt% CSR loading at RT while the thermal stress fields due to the coefficient of thermal expansion mismatch between rubber and epoxy and an increase in secondary cracking is likely responsible for the higher impact strength at 5 wt% tested at LN2 temperature. While a large toughening effect was not seen in this study, the mechanisms analyzed herein will likely be of use for further material investigations at cryogenic temperatures.

  15. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Lin, L.; Gettelman, A.; Xu, Y.; Fu, Q.

    2016-01-01

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.

  16. Evaluation of Biomass and Coal Briquettes for a Spreader Stoker Boiler Using an Experimental Furnace --- Modeling and Test

    NASA Astrophysics Data System (ADS)

    Wiggins, Gavin Memminger

    The compliance of coal-fired boilers with emissions regulations is a concern for many facilities. The introduction of biomass briquettes in industrial boilers can help to reduce greenhouse gas emissions and coal usage. In this research project, a thermodynamic chemical equilibrium model was derived and analytical simulations performed for a coal boiler system for several types of biomass fuels such as beech, hickory, maple, poplar, white oak, willow, sawdust, torrefied willow, and switchgrass. The biomass emissions were compared to coal and charcoal emissions. The chemical equilibrium analysis numerically estimated the emissions of CO, CO2, NO, NO2, N 2O, SO2, and SO3. When examining the computer results, coal and charcoal emitted the highest CO, CO2, and SO x levels while the lowest (especially for SOx) were reached by the biomass fuels. Similarly, NOx levels were highest for the biomass and lowest for coal and charcoal. To validate these analytical results, a custom traveling grate furnace was designed and fabricated to evaluate different types of biofuels in the laboratory for operation temperatures and emissions. The furnace fuels tested included coal, charcoal, torrefied wood chips, and wood briquettes. As expected, the coal reached the highest temperature while the torrefied wood chips offered the lowest temperature. For CO and NO x emissions, the charcoal emitted the highest levels while the wood briquettes emitted the lowest levels. The highest SO2 emissions were reached by the coal while the lowest were emitted by the wood briquettes. When compared to the coal fuel, charcoal emissions for CO increased by 103%, NO and NOx decreased by 21% and 20% respectively, and SO2 levels decreased by 92%. For torrefied wood, emissions for CO increased by 17%, NO and NOx decreased by 58% and 57% respectively, and SO 2 decreased by 90%. For wood briquettes, emissions for CO decreased by 27%, NO and NOx decreased by 66%, and SO2 levels decreased by 97%. General trends in emissions levels for CO, CO2, SO2, and SO3 among the various fuels were the same for the two methods. From the modeling and experimental results, it is clear that the opportunity exists to reduce boiler emissions using biomass materials. In computer controlled systems, electric motor and connector arcing can cause operational difficulties such as reduced motor life, connector/cable failure, and VFD tripping. To better understand the behavior of electric motors in diverse environments, experimental testing has been conducted on two different 230/460 V 3-phase AC brushless motors at unloaded and loaded conditions. The motors were driven with a 200 VAC or 400 VAC class Hitachi variable-frequency drive (VFD) and operated in air, argon, and helium environments for a duration of eight hours. Voltage transients and temperatures were monitored for these tests. The largest recorded voltage spike of 1,852 V occurred during 480 VAC start/stop tests. In addition, two different cable lengths between the VFD and motor terminals were tested. The experimental results demonstrated that the shorter cable produced smaller voltage spikes when compared to the longer electrical cable. For all tests, both motors operated coolest in the helium environment and warmest in the argon environment.

  17. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging may play a role. Fractography showed that microvoid coalescence was the microscopic mode of fracture in FVS0812 under all testing conditions. However, the nature of the microvoids varied with test temperature and loading rate, and is complex for the fine grain and dipersoid sizes of FVS0812.

  18. Determination of Temperature Rise and Temperature Differentials of CEMII/B-V Cement for 20MPa Mass Concrete using Adiabatic Temperature Rise Data

    NASA Astrophysics Data System (ADS)

    Chee Siang, GO

    2017-07-01

    Experimental test was carried out to determine the temperature rise characteristics of Portland-Fly-Ash Cement (CEM II/B-V, 42.5N) of Blaine fineness 418.6m2/kg and 444.6m2/kg respectively for 20MPa mass concrete under adiabatic condition. The estimation on adiabatic temperature rise by way of CIRIA C660 method (Construction Industry Research & Information Information) was adopted to verify and validate the hot-box test results by simulating the heat generation curve of the concrete under semi-adiabatic condition. Test result found that Portland fly-ash cement has exhibited decrease in the peak value of temperature rise and maximum temperature rise rate. The result showed that the temperature development and distribution profile, which is directly contributed from the heat of hydration of cement with time, is affected by the insulation, initial placing temperature, geometry and size of concrete mass. The mock up data showing the measured temperature differential is significantly lower than the technical specifications 20°C temperature differential requirement and the 27.7°C limiting temperature differential for granite aggregate concrete as stipulated in BS8110-2: 1985. The concrete strength test result revealed that the 28 days cubes compressive strength was above the stipulated 20MPa characteristic strength at 90 days. The test demonstrated that with proper concrete mix design, the use of Portland flyash cement, combination of chilled water and flake ice, and good insulation is effective in reducing peak temperature rise, temperature differential, and lower adiabatic temperature rise for mass concrete pours. As far as the determined adiabatic temperature rise result was concern, the established result could be inferred for in-situ thermal properties of 20MPa mass concrete application, as the result could be repeatable on account of similar type of constituent materials and concrete mix design adopted for permanent works at project site.

  19. [Effects of tree species fine root decomposition on soil active organic carbon].

    PubMed

    Liu, Yan; Wang, Si-Long; Wang, Xiao-Wei; Yu, Xiao-Jun; Yang, Yue-Jun

    2007-03-01

    With incubation test, this paper studied the effects of fine root decomposition of Alnus cremastogyne, Cunninghamia lanceolata and Michelia macclurei on the content of soil active organic carbon at 9 degrees C , 14 degrees C , 24 degrees C and 28 degrees C. The results showed that the decomposition rate of fine root differed significantly with test tree species, which was decreased in the order of M. macclurei > A. cremastogyne > C. lanceolata. The decomposition rate was increased with increasing temperature, but declined with prolonged incubation time. Fine root source, incubation temperature, and incubation time all affected the contents of soil microbial biomass carbon and water-soluble organic carbon. The decomposition of fine root increased soil microbial biomass carbon and water-soluble organic carbon significantly, and the effect decreased in the order of M. macclurei > A. cremastogyne > C. lanceolata. Higher contents of soil microbial biomass carbon and water-soluble organic carbon were observed at medium temperature and middle incubation stage. Fine root decomposition had less effect on the content of soil readily oxidized organic carbon.

  20. Performance and Reliability of Solid Tantalum Capacitors at Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2006-01-01

    Performance of different types of solid tantalum capacitors was evaluated at room and low temperatures, down to 15 K. The effect of temperature on frequency dependencies of capacitance, effective series resistances (ESR), leakage currents, and breakdown voltages has been investigated and analyzed. To assess thermo-mechanical robustness of the parts, several groups of loose capacitors and those soldered on FR4 boards were subjected to multiple (up to 500) temperature cycles between room temperature and 77 K. Experiments and mathematical modeling have shown that degradation in tantalum capacitors at low temperatures is mostly due to increasing resistance of the manganese cathode layer, resulting in substantial decrease of the roll-off frequency. Absorption currents follow a power law, I approximately t(sup -m), with the exponent m varying from 0.8 to 1.1. These currents do not change significantly at cryogenic conditions and the value of the exponent remains the same down to 15 K. Variations of leakage currents with voltage can be described by Pool-Frenkel and Schottky mechanisms of conductivity, with the Schottky mechanism prevailing at cryogenic conditions. Breakdown voltages of tantalum capacitors increase and the probability of scintillations decreases at cryogenic temperatures. However, breakdown voltages measured during surge current testing decrease at liquid nitrogen (LN) compared to room-temperature conditions. Results of temperature cycling suggest that tantalum capacitors are capable of withstanding multiple exposures to cryogenic conditions, but the probability of failures varies for different part types.

  1. The influence of non-nociceptive factors on hot-plate latency in rats.

    PubMed

    Gunn, Amanda; Bobeck, Erin N; Weber, Ceri; Morgan, Michael M

    2011-02-01

    The hot plate is a widely used test to assess nociception. The effect of non-nociceptive factors (weight, sex, activity, habituation, and repeated testing) on hot-plate latency was examined. Comparison of body weight and hot-plate latency revealed a small but significant inverse correlation (light rats had longer latencies). Habituating rats to the test room for 1 hour prior to testing did not decrease hot-plate latency except for female rats tested on days 2 to 4. Hot-plate latency decreased with repeated daily testing, but this was not caused by a decrease in locomotor activity or learning to respond. Activity on the hot plate was consistent across all 4 trials, and prior exposure to a room-temperature plate caused a similar decrease in latency as rats tested repeatedly on the hot plate. Despite this decrease in baseline hot-plate latency, there was no difference in morphine antinociceptive potency. The present study shows that weight, habituation to the test room, and repeated testing can alter baseline hot-plate latency, but these effects are small and have relatively little impact on morphine antinociception. This manuscript shows that non-nociceptive factors such as body weight, habituation, and repeated testing can alter hot-plate latency, but these factors do not alter morphine potency. In sum, the hot-plate test is an easy to use and reliable method to assess supraspinally organized nociceptive responses. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  2. The effect of water injection on nitric oxide emissions of a gas turbine combustor burning ASTM Jet-A fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.

  3. Temperature effects on the mechanical properties of candidate SNS target container materials after proton and neutron irradiation

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Farrell, K.; Lee, E. H.; Mansur, L. K.; Maloy, S. A.; James, M. R.; Johnson, W. R.

    2002-05-01

    This report presents the tensile properties of EC316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel after 800 MeV proton and spallation neutron irradiation to doses in the range 0.54-2.53 dpa at 30-100 °C. Tensile testing was performed at room temperature (20 °C) and 164 °C. The EC316LN stainless steel maintained notable strain-hardening capability after irradiation, while the 9Cr-2WVTa ferritic/martensitic steel posted negative hardening in the engineering stress-strain curves. In the EC316LN stainless steel, increasing the test temperature from 20 to 164 °C decreased the strength by 13-18% and the ductility by 8-36%. The effect of test temperature for the 9Cr-2WVTa ferritic/martensitic steel was less significant than for the EC316LN stainless steel. In addition, strain-hardening behaviors were analyzed for EC316LN and 316L stainless steels. The strain-hardening rate of the 316 stainless steels was largely dependent on test temperature. A calculation using reduction of area measurements and stress-strain data predicted positive strain hardening during plastic instability.

  4. Seasonal changes in the cardiovascular, respiratory and metabolic responses to temperature and hypoxia in the bullfrog Rana catesbeiana.

    PubMed

    Rocha, P L; Branco, L G

    1998-03-01

    We assessed seasonal variations in the effects of temperature on hypoxia-induced alterations in the bullfrog Rana catesbeiana by measuring the heart rate, arterial blood pressure, breathing frequency, metabolic rate, blood gas levels, acid-base status and plasma glucose concentration. Regardless of the season, decreased body temperature was accompanied by a reduction in heart and breathing frequencies. Lower temperatures caused a significant decrease in arterial blood pressure during all four seasons. Hypoxia-induced changes in breathing frequency were proportional to body temperature and were more pronounced during winter, less so during spring and autumn and even smaller during summer. Season had no effect on the relationship between hypoxia and heart rate. At any temperature tested, the rate of oxygen consumption had a tendency to be highest during summer and lowest during winter, but the difference was significant only at 35 degrees C. The PaO2 and pH values showed no significant change during the year, but PaCO2 was almost twice as high during winter than in summer and spring, indicating increased plasma bicarbonate levels. Lower temperatures were accompanied by decreased plasma glucose levels, and this effect was greater during summer and smaller during autumn. Hypoxia-induced hyperglycaemia was influenced by temperature and season. During autumn and winter, plasma glucose level remained elevated regardless of temperature, probably to avoid dehydration and/or freezing. In winter, the bullfrog may be exposed not only to low temperatures but also to hypoxia. These animals show temperature-dependent responses that may be beneficial since at low body temperatures the set-points of most physiological responses to hypoxia are reduced, regardless of the season.

  5. Transient receptor potential melastatin 8 (TRPM8) channels are involved in body temperature regulation

    PubMed Central

    2012-01-01

    Background Transient receptor potential cation channel subfamily M member 8 (TRPM8) is activated by cold temperature in vitro and has been demonstrated to act as a ‘cold temperature sensor’ in vivo. Although it is known that agonists of this ‘cold temperature sensor’, such as menthol and icilin, cause a transient increase in body temperature (Tb), it is not known if TRPM8 plays a role in Tb regulation. Since TRPM8 has been considered as a potential target for chronic pain therapeutics, we have investigated the role of TRPM8 in Tb regulation. Results We characterized five chemically distinct compounds (AMG0635, AMG2850, AMG8788, AMG9678, and Compound 496) as potent and selective antagonists of TRPM8 and tested their effects on Tb in rats and mice implanted with radiotelemetry probes. All five antagonists used in the study caused a transient decrease in Tb (maximum decrease of 0.98°C). Since thermoregulation is a homeostatic process that maintains Tb about 37°C, we further evaluated whether repeated administration of an antagonist attenuated the decrease in Tb. Indeed, repeated daily administration of AMG9678 for four consecutive days showed a reduction in the magnitude of the Tb decrease Day 2 onwards. Conclusions The data reported here demonstrate that TRPM8 channels play a role in Tb regulation. Further, a reduction of magnitude in Tb decrease after repeated dosing of an antagonist suggests that TRPM8’s role in Tb maintenance may not pose an issue for developing TRPM8 antagonists as therapeutics. PMID:22571355

  6. Observations of the temperature dependent response of ozone to NOx reductions in the Sacramento, CA urban plume

    NASA Astrophysics Data System (ADS)

    Lafranchi, B. W.; Goldstein, A. H.; Cohen, R. C.

    2011-02-01

    Observations of NOx in the Sacramento, CA region show that mixing ratios decreased by 30% between 2001 and 2008. Here we use an observation-based method to quantify net ozone production rates in the outflow from the Sacramento metropolitan region and examine the O3 decrease resulting from reductions in NOx emissions. This observational method does not rely on assumptions about detailed chemistry of ozone production, rather it is an independent means to verify and test these assumptions. We use an instantaneous steady-state model as well as a detailed 1-D plume model to aid in interpretation of the ozone production inferred from observations. In agreement with the models, the observations show that early in the plume, the NOx dependence for Ox (Ox = O3 + NO2) production is strongly coupled with temperature, suggesting that temperature-dependent biogenic VOC emissions can drive Ox production between NOx-limited and NOx-suppressed regimes. As a result, NOx reductions were found to be most effective at higher temperatures over the 7 year period. We show that violations of the California 1-hour O3 standard (90 ppb) in the region have been decreasing linearly with decreases in NOx (at a given temperature) and predict that reductions of NOx concentrations (and presumably emissions) by an additional 30% (relative to 2007 levels) will eliminate violations of the state 1 h standard in the region. If current trends continue, a 30% decrease in NOx is expected by 2012, and an end to violations of the 1 h standard in the Sacramento region appears to be imminent.

  7. Safety Performance of Exterior Wall Insulation Material Based on Large Security Concept

    NASA Astrophysics Data System (ADS)

    Zuo, Q. L.; Wang, Y. J.; Li, J. S.

    2018-05-01

    In order to evaluate the fire spread characteristics of building insulation materials under corner fire, an experiment is carried out with small-scale fire spread test system. The change rule of the parameters such as the average height of the flame, the average temperature of the flame and the shape of the flame are analyzed. The variations of the fire spread characteristic parameters of the building insulation materials are investigated. The results show that the average temperature of Expanded Polystyrene (EPS) board, with different thickness, decrease - rise - decrease - increase. During the combustion process, the fire of 4cm thick plate spreads faster.

  8. Temperature dependence of ice-on-rock friction at realistic glacier conditions

    PubMed Central

    Savage, H.; Nettles, M.

    2017-01-01

    Using a new biaxial friction apparatus, we conducted experiments of ice-on-rock friction in order to better understand basal sliding of glaciers and ice streams. A series of velocity-stepping and slide–hold–slide tests were conducted to measure friction and healing at temperatures between −20°C and melting. Experimental conditions in this study are comparable to subglacial temperatures, sliding rates and effective pressures of Antarctic ice streams and other glaciers, with load-point velocities ranging from 0.5 to 100 µm s−1 and normal stress σn = 100 kPa. In this range of conditions, temperature dependences of both steady-state friction and frictional healing are considerable. The friction increases linearly with decreasing temperature (temperature weakening) from μ = 0.52 at −20°C to μ = 0.02 at melting. Frictional healing increases and velocity dependence shifts from velocity-strengthening to velocity-weakening behaviour with decreasing temperature. Our results indicate that the strength and stability of glaciers and ice streams may change considerably over the range of temperatures typically found at the ice–bed interface. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025297

  9. Investigation of Mechanical Properties and Interfacial Mechanics of Crystalline Nanomaterials

    NASA Astrophysics Data System (ADS)

    Qin, Qingquan

    Nanowires (NWs) and nanotubes (NTs) are critical building blocks of nanotechnologies. The operation and reliability of these nanomaterials based devices depend on their mechanical properties of the nanomaterials, which is therefore important to accurately measure the mechanical properties. Besides, the NW--substrate interfaces also play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small. In this thesis, we focus on the mechanical properties and interface mechanics of three important one dimensional (1D) nanomaterials: ZnO NWs, Ag NWs and Si NWs. For the size effect study, this thesis presents a systematic experimental investigation on the elastic and failure properties of ZnO NWs under different loading modes: tension and buckling. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The elastic modulus also shows loading mode dependent; the bending modulus increases more rapidly than the tensile modulus. The tension experiments showed that fracture strain and strength of ZnO NWs increase as the NW diameter decrease. A resonance testing setup was developed to measure elastic modulus of ZnO NWs to confirm the loading mode dependent effect. A systematic study was conducted on the effect of clamping on resonance frequency and thus measured Young's modulus of NWs via a combined experiment and simulation approach. A simple scaling law was provided as guidelines for future designs to accurate measure elastic modulus of a cantilevered NW using the resonance method. This thesis reports the first quantitative measurement of a full spectrum of mechanical properties of five-fold twinned Ag NWs including Young's modulus, yield strength and ultimate tensile strength. In situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a SEM. Young's modulus, yield strength and ultimate tensile strength were found to all increased as the NW diameter decreased. For the temperature effect study, a brief review on brittle-to-ductile transition (BDT) of silicon (Si) is presented. BDT temperature shows decreasing trend as size of the sample decrease. However, controversial results have been reported in terms of brittle or ductile behaviors for Si NWs at room temperature. A microelectromechanical systems (MEMS) thermal actuator (ETA) was designed to test NW without involving external heating. To circumvent undesired heating of the end effector, heat sink beams that can be co-fabricated with the thermal actuator were introduced. A combined modeling and experimental study was conducted to access the effect of such heat sink beams. Temperature distribution was measured and simulated using Raman scattering and multiphysics finite element method, respectively. Our results demonstrated that heat sink beams are effective in reducing the temperature of the thermal actuator. To get elevated temperature in a controllable fashion, a comb drive actuator was designed with separating actuation and heating mechanisms. Multiphysics finite element analysis (coupled electrical-thermal-mechanical) was used to optimize structure design and minimize undesired thermal loading/unloading. A Si NW with diameter of 50 nm was tested on the device under different temperatures. Stress strain curves at different temperatures revealed that plastic deformation occurs at temperature of 55 °C. For interfacial mechanics, we report an experimental study on the friction between Ag and ZnO NW tips (ends) and a gold substrate. An innovative experimental method based on column buckling theory was developed for the friction measurements. Direct measurements of the static friction force and interfacial shear strength between Si NWs and poly(dimethylsiloxane) (PDMS) is reported. The static friction and shear strength were found to increase rapidly and then decrease with the increasing ultraviolet/ozone (UVO) treatment of PDMS.

  10. Compressive Properties of Open-Cell Al Hybrid Foams at Different Temperatures

    PubMed Central

    Liu, Jiaan; Si, Fujian; Zhu, Xianyong; Liu, Yaohui; Zhang, Jiawei; Liu, Yan; Zhang, Chengchun

    2017-01-01

    Hybrid Ni/Al foams were fabricated by depositing electroless Ni–P (EN) coatings on open-cell Al foam substrate to obtain enhanced mechanical properties. The microstructure, chemical components and phases of the hybrid foams were observed and analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The mechanical properties of the foams were studied by compressive tests at different temperatures. The experiment results show that the coating is mainly composed of Ni and P elements. There was neither defect at the interface nor crack in the coatings, indicating that the EN coatings had fine adhesion to the Al substrate. The compressive strengths and energy absorption capacities of the as-received foam and hybrid foams decrease with the increasing testing temperatures, but the hybrid foams exhibit a lower decrement rate than the as-received foam. This might be attributed to the different failure mechanisms at different testing temperatures, which is conformed by fractography observation. PMID:28772456

  11. Dynamic changes in ear temperature in relation to separation distress in dogs.

    PubMed

    Riemer, Stefanie; Assis, Luciana; Pike, Thomas W; Mills, Daniel S

    2016-12-01

    Infrared thermography can visualize changes in body surface temperature that result from stress-induced physiological changes and alterations of blood flow patterns. Here we explored its use for remote stress monitoring (i.e. removing need for human presence) in a sample of six pet dogs. Dogs were tested in a brief separation test involving contact with their owner, a stranger, and social isolation for two one-minute-periods. Tests were filmed using a thermographic camera set up in a corner of the room, around 7m from where the subjects spent most of the time. Temperature was measured from selected regions of both ear pinnae simultaneously. Temperatures of both ear pinnae showed a pattern of decrease during separation and increase when a person (either the owner or a stranger) was present, with no lateralized temperature differences between the two ears. Long distance thermographic measurement is a promising technique for non-invasive remote stress assessment, although there are some limitations related to dogs' hair structure over the ears, making it unsuitable for some subjects. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The impact of the proportion of nanoparticles to the spherical microparticles of silver on the connection parameters LTJT

    NASA Astrophysics Data System (ADS)

    Szałapak, J.; Kiełbasiński, K.; Krzemiński, J.; Jakubowska, M.

    2017-08-01

    There are few EU directives restricting use of lead and other hazardous substances in electronics. That leads to ban Pb- Sn alloy from use, the consequence of which is a search for new ways of preparing joints. One of the discussed solutions is using silver particles in Low Temperature Joining Technique (LTJT). This technique allows to use different conducting pastes and lower their sintering temperatures with the use of pressure. The most popular material for the joining tests was silver. Due to its high melting temperature and high pressures needed for lowering the temperature, silver nanoparticles were considered and tested. The temperatures of sintering decreased to 300ºC and the pressures went down from about 40 to less than 10 MPa. Due to unsatisfactory parameters of such joints, the authors prepared mixtures of spherical, submicron-sized silver particles with nanoparticles. Joints were tested for their electrical and shears strength parameters. In this article, the authors show the comparison of different variations of the mixtures with joints prepared only with nanoparticles.

  13. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 2; Temperature Stability

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kaya, Taril; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. LHP's are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the second part of the experimental study, i.e. the effect of an accelerating force on the LHP operating temperature. It has been known that in stationary tests the LHP operating temperature is a function of the evaporator power and the condenser sink temperature when the compensation temperature is not actively controlled. Results of this test program indicate that any change in the accelerating force will result in a chance in the LHP operating temperature through its influence on the fluid distribution in the evaporator, condenser and compensation chamber. However, the effect is not universal, rather it is a function of other test conditions. A steady, constant acceleration may result in an increase or decrease of the operating temperature, while a periodic spin will lead to a quasi-steady operating temperature over a sufficient time interval. In addition, an accelerating force may lead to temperature hysteresis and changes in the temperature oscillation. In spite of all these effects, the LHP continued to operate without any problems in all tests.

  14. Effects of temperature variability on community structure in a natural microbial food web.

    PubMed

    Zander, Axel; Bersier, Louis-Félix; Gray, Sarah M

    2017-01-01

    Climate change research has demonstrated that changing temperatures will have an effect on community-level dynamics by altering species survival rates, shifting species distributions, and ultimately, creating mismatches in community interactions. However, most of this work has focused on increasing temperature, and still little is known about how the variation in temperature extremes will affect community dynamics. We used the model aquatic community held within the leaves of the carnivorous plant, Sarracenia purpurea, to test how food web dynamics will be affected by high temperature variation. We tested the community response of the first (bacterial density), second (protist diversity and composition), and third trophic level (predator mortality), and measured community respiration. We collected early and late successional stage inquiline communities from S. purpurea from two North American and two European sites with similar average July temperature. We then created a common garden experiment in which replicates of these communities underwent either high or normal daily temperature variation, with the average temperature equal among treatments. We found an impact of temperature variation on the first two, but not on the third trophic level. For bacteria in the high-variation treatment, density experienced an initial boost in growth but then decreased quickly through time. For protists in the high-variation treatment, alpha-diversity decreased faster than in the normal-variation treatment, beta-diversity increased only in the European sites, and protist community composition tended to diverge more in the late successional stage. The mortality of the predatory mosquito larvae was unaffected by temperature variation. Community respiration was lower in the high-variation treatment, indicating a lower ecosystem functioning. Our results highlight clear impacts of temperature variation. A more mechanistic understanding of the effects that temperature, and especially temperature variation, will have on community dynamics is still greatly needed. © 2016 John Wiley & Sons Ltd.

  15. Effects of pregnancy on body temperature and locomotor performance of velvet geckos.

    PubMed

    Dayananda, Buddhi; Ibargüengoytía, Nora; Whiting, Martin J; Webb, Jonathan K

    2017-04-01

    Pregnancy is a challenging period for egg laying squamates. Carrying eggs can encumber females and decrease their locomotor performance, potentially increasing their risk of predation. Pregnant females can potentially reduce this handicap by selecting higher temperatures to increase their sprint speed and ability to escape from predators, or to speed up embryonic development and reduce the period during which they are burdened with eggs ('selfish mother' hypothesis). Alternatively, females might select more stable body temperatures during pregnancy to enhance offspring fitness ('maternal manipulation hypothesis'), even if the maintenance of such temperatures compromises a female's locomotor performance. We investigated whether pregnancy affects the preferred body temperatures and locomotor performance of female velvet geckos Amalosia lesueurii. We measured running speed of females during late pregnancy, and one week after they laid eggs at four temperatures (20°, 25°, 30° and 35°C). Preferred body temperatures of females were measured in a cost-free thermal gradient during late pregnancy and one week after egg-laying. Females selected higher and more stable set-point temperatures when they were pregnant (mean =29.0°C, T set =27.8-30.5°C) than when they were non-pregnant (mean =26.2°C, T set =23.7-28.7°C). Pregnancy was also associated with impaired performance; females sprinted more slowly at all four test temperatures when burdened with eggs. Although females selected higher body temperatures during late pregnancy, this increase in temperature did not compensate for their impaired running performance. Hence, our results suggest that females select higher temperatures during pregnancy to speed up embryogenesis and reduce the period during which they have reduced performance. This strategy may decrease a female's probability of encountering predatory snakes that use the same microhabitats for thermoregulation. Selection of stable temperatures by pregnant females may also benefit embryos, but manipulative experiments are necessary to test this hypothesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Acoustothermometric study of the human hand under hyperthrmia and hypothermia

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Vilkov, V. A.; Dvornikova, M. V.; Dvornikova, V. V.; Kazanskii, A. S.; Kuryatnikova, N. A.; Mansfel'd, A. D.

    2013-01-01

    The results of an acoustothermometric study of the human hand under local hyperthermia and hypothermia are presented. Individuals under testing plunged their hands in hot or cold water for several minutes. Thermal acoustic radiation was detected by two sensors placed near the palm and near the backside of the tested hand. The internal temperature profiles of the hand were reconstructed. The indirect estimate of the reconstruction error was 0.6°C, which is acceptable for medical applications. Hyperthermia was achieved by placing the hand in water with a maximal temperature of 44°C for 2 min. In this case, the internal temperature was 35.4 ± 0.6°C. Hypothermia was achieved by placing the hand in water with a temperature of 17.8°C for 15 min. In this case, the internal temperature decreased from 26 to 24°C. The use of a four-sensor planar receiving array allowed dynamic mapping of the acoustic brightness temperature of the hand.

  17. Heating of food in modified atmospheres

    NASA Technical Reports Server (NTRS)

    Sweat, V. E.

    1973-01-01

    Food heating tests were conducted with two model foods; a Carnation turkey salad sandwich spread and frankfurter chunks in a sauce of water and agar. For the first series of tests comparing heating in five different atmospheres, the atmospheres were: (1) air at atmospheric pressure, (2) air at 5 psia, (3) helium at 5 psia, (4) oxygen-nitrogen mixture at 5 psia, and (5) oxygen-helium mixture at 5 psia. No significant differences in heating rates were caused by varying the atmosphere. Initial food temperatures were varied in the next series of tests. Heating times were found to increase with decreasing initial temperatures. There were also differences in heating times between the two foods used.

  18. Frictional Properties of the Nankai Trough Accretionary Mud Samples Collected from 1000-3000 mbsf at IODP Site C0002

    NASA Astrophysics Data System (ADS)

    Kanagawa, K.; Hoshino, K.; Abe, K.; Sawai, M.

    2016-12-01

    We conducted triaxial friction experiments on the Nankai Trough accretionary mud samples collected from 1000-3000 mbsf (meters below seafloor) at IODP Site C0002 off Kii Peninsula, at confining pressures of 44-83 MPa, pore water pressures of 32-50 MPa and temperatures of 51-98°C equivalent to their in situ conditions, and at axial displacement rates changed stepwise among 0.1, 1 and 10 µm/s, in order to investigate their frictional properties changing with depth. XRD analyses of tested mud samples revealed that the content of total clay minerals tends to increase with depth from 30 to 60 wt%, while the smectite fraction in total clay minerals decreases with depth from 0.75 to 0.3. Because the temperature at 3000 mbsf reaches 100°C, this decrease in smectite fraction with depth is likely due to the progress of smectite dehydration with increasing temperature. Friction experiments on tested mud samples revealed that the steady-state friction coefficient at an axial displacement rate of 1 µm/s tends to decrease with depth from 0.5 to 0.3, according to the increasing content of total clay minerals with depth. Velocity dependence of steady-state friction also tends to decrease with depth, likely reflecting a decrease in smectite fraction in total clay minerals. Although velocity dependence of steady-state friction is mostly positive at depths down to 3000 mbsf, it is locally neutral or negative at depths deeper than 2000 mbsf, implying that faulting at these depths is conditionally stable and possibly accompanied by slow slip events.

  19. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.

    PubMed

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-02-10

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.

  20. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor

    PubMed Central

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-01-01

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor’s working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from −40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz/°C℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications. PMID:29439393

  1. Elevated temperature properties of boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Sullivan, P. G.

    1978-01-01

    The high temperature properties of boron/aluminum composites, fabricated by an air diffusion bonding technique utilizing vacuum-bonded monolayer tape are reported. Seventeen different combinations of matrix alloy, reinforcement diameter, reinforcement volume percent, angle-ply and matrix enhancement (i.e. titanium cladding and interleaves) were fabricated, inspected, and tested. It is shown that good to excellent mechanical properties could be obtained for air-bonded boron/aluminum composites and that these properties did not decrease significantly up to a test temperature of at least 260 C. Composites made with 8 mil B/W fiber show a much greater longitudinal strength dependence on volume percent fiber than composites made with 5.6 mil fiber. The addition of titanium caused difficulties in composite bonding and yielded composites with reduced strength.

  2. Influence of Accumulative Roll Bonding on the Texture and Tensile Properties of an AZ31 Magnesium Alloy Sheets

    PubMed Central

    Džugan, Ján; Németh, Gergely; Lukáč, Pavel; Bohlen, Jan

    2018-01-01

    Deformation behaviour of rolled AZ31 sheets that were subjected to the accumulative roll bonding was investigated. Substantially refined microstructure of samples was achieved after the first and second pass through the rolling mill. Sheets texture was investigated using an X-ray diffractometer. Samples for tensile tests were cut either parallel or perpendicular to the rolling direction. Tensile tests were performed at temperatures ranging from room temperature up to 300 °C. Tensile plastic anisotropy, different from the anisotropy observed in AZ31 sheets by other authors, was observed. This anisotropy decreases with an increasing number of rolling passes and increasing deformation temperature. Grain refinement and texture are the crucial factors influencing the deformation behaviour. PMID:29303975

  3. Modeling of chemical reactions in afterburning for the reduction of N{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsson, L.; Glarborg, P.; Leckner, B.

    1996-08-01

    Afterburning involves burning a secondary fuel in the flue gases from a fluidized bed combustor to raise the temperature, and thereby decrease the emission of N{sub 2}O. Tests in a 12-MW circulating fluidized bed boiler used the cyclone as an afterburning combustor. The results from these tests are analyzed by chemical kinetic calculations with homogeneous hydrocarbon and nitrogen chemistry. Furthermore, a study is made of the influence on the calculation of particles in the flue gases. The deviation between calculated and measured data is small at high temperatures, but increases at the lower temperatures investigated. The influence of particles ismore » predicted to be small under conditions prevailing in the cyclone.« less

  4. Effect of incubation temperature and time on the precision of data generated by antibiotic disc diffusion assays.

    PubMed

    Smith, P; Kronvall, G

    2015-07-01

    The influence on the precision of disc diffusion data of the conditions under which the tests were performed was examined by analysing multilaboratory data sets generated after incubation at 35 °C for 18 h, at 28 °C for 24 h and 22 °C for 24 h and 48 h. Analyses of these data sets demonstrated that precision was significantly and progressively decreased as the test temperature was reduced from 35 to 22 °C. Analysis of the data obtained at 22 °C also showed the precision was inversely related to the time of incubation. Temperature and time related decreases in precision were not related to differences in the mean zone sizes of the data sets obtained under these test conditions. Analysis of the zone data obtained at 28 and 22 °C as single laboratory sets demonstrated that reductions of incubation temperature resulted in significant increases in both intralaboratory and interlaboratory variation. Increases in incubation time at 22 °C were, however, associated with statistically significant increases in interlaboratory variation but not with any significant increase in intralaboratory variation. The significance of these observations for the establishment of the acceptable limits of precision of data sets that can be used for the setting of valid epidemiological cut-off values is discussed. © 2014 John Wiley & Sons Ltd.

  5. Deformation Behavior and Microstructure Evolution of As-Cast 42CrMo Alloy in Isothermal and Non-isothermal Compression

    NASA Astrophysics Data System (ADS)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Lv, Zhenhua

    2016-11-01

    The isothermal and non-isothermal multi-pass compression tests of centrifugal casting 42CrMo steel were conducted on a Gleeble-3500 thermal simulation machine. The effects of compression passes and finishing temperatures on deformation behavior and microstructure evolution were investigated. It is found that the microstructure is homogeneous with equiaxed grains, and the flow stress does not show significant change with the increase in passes, while the peak softening coefficient increases first and then decreases during inter-pass. Moreover, the dominant mechanisms of controlled temperature and accumulated static recrystallization for grain refinement and its homogeneous distribution are found after 5 passes deformation. As the finishing temperature increases, the flow stress decreases gradually, but the dynamic recrystallization accelerates and softening effect increases, resulting in the larger grain size and homogeneous microstructure. The microhardness decreases sharply because the sufficient softening occurs in microstructure. When the finishing temperature is 890 °C, the carbide particles are precipitated in the vicinity of the grain boundaries, thus inhibiting the dislocation motion. Thus, the higher finishing temperature (≥970 °C) for centrifugal casting 42CrMo alloy should be avoided in non-isothermal multi-pass deformation, which is beneficial to grain refinement and properties improvement.

  6. Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa

    PubMed Central

    Wu, Haibin; Guiot, Joël; Brewer, Simon; Guo, Zhengtang; Peng, Changhui

    2007-01-01

    The knowledge of tropical palaeoclimates is crucial for understanding global climate change, because it is a test bench for general circulation models that are ultimately used to predict future global warming. A longstanding issue concerning the last glacial maximum in the tropics is the discrepancy between the decrease in sea-surface temperatures reconstructed from marine proxies and the high-elevation decrease in land temperatures estimated from indicators of treeline elevation. In this study, an improved inverse vegetation modeling approach is used to quantitatively reconstruct palaeoclimate and to estimate the effects of different factors (temperature, precipitation, and atmospheric CO2 concentration) on changes in treeline elevation based on a set of pollen data covering an altitudinal range from 100 to 3,140 m above sea level in Africa. We show that lowering of the African treeline during the last glacial maximum was primarily triggered by regional drying, especially at upper elevations, and was amplified by decreases in atmospheric CO2 concentration and perhaps temperature. This contrasts with scenarios for the Holocene and future climates, in which the increase in treeline elevation will be dominated by temperature. Our results suggest that previous temperature changes inferred from tropical treeline shifts may have been overestimated for low-CO2 glacial periods, because the limiting factors that control changes in treeline elevation differ between glacial and interglacial periods. PMID:17535920

  7. Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa.

    PubMed

    Wu, Haibin; Guiot, Joël; Brewer, Simon; Guo, Zhengtang; Peng, Changhui

    2007-06-05

    The knowledge of tropical palaeoclimates is crucial for understanding global climate change, because it is a test bench for general circulation models that are ultimately used to predict future global warming. A longstanding issue concerning the last glacial maximum in the tropics is the discrepancy between the decrease in sea-surface temperatures reconstructed from marine proxies and the high-elevation decrease in land temperatures estimated from indicators of treeline elevation. In this study, an improved inverse vegetation modeling approach is used to quantitatively reconstruct palaeoclimate and to estimate the effects of different factors (temperature, precipitation, and atmospheric CO(2) concentration) on changes in treeline elevation based on a set of pollen data covering an altitudinal range from 100 to 3,140 m above sea level in Africa. We show that lowering of the African treeline during the last glacial maximum was primarily triggered by regional drying, especially at upper elevations, and was amplified by decreases in atmospheric CO(2) concentration and perhaps temperature. This contrasts with scenarios for the Holocene and future climates, in which the increase in treeline elevation will be dominated by temperature. Our results suggest that previous temperature changes inferred from tropical treeline shifts may have been overestimated for low-CO(2) glacial periods, because the limiting factors that control changes in treeline elevation differ between glacial and interglacial periods.

  8. Dexamethasone decreases the incidence of shivering after cardiac surgery: a randomized, double-blind, placebo-controlled study.

    PubMed

    Yared, J P; Starr, N J; Hoffmann-Hogg, L; Bashour, C A; Insler, S R; O'Connor, M; Piedmonte, M; Cosgrove, D M

    1998-10-01

    Shivering after cardiac surgery is common, and may be a result of intraoperative hypothermia. Another possible etiology is fever and chills secondary to activation of the inflammatory response and release of cytokines by cardiopulmonary bypass. Dexamethasone decreases the gradient between core and skin temperature and modifies the inflammatory response. The goal of this study was to determine whether dexamethasone can reduce the incidence of shivering. Two hundred thirty-six patients scheduled for elective coronary and/or valvular surgery were randomly assigned to receive either dexamethasone 0.6 mg/kg or placebo after the induction of anesthesia. All patients received standard monitoring and anesthetic management. After arrival in the intensive care unit (ICU), nurses unaware of the treatment groups recorded visible shivering, as well as skin and pulmonary artery temperatures. Analysis of shivering rates was performed by using chi2 tests and logistic regression analysis. Compared with placebo, dexamethasone decreased the incidence of shivering (33.0% vs 13.1%; P = 0.001). It was an independent predictor of reduced incidence of shivering and was also associated with a higher skin temperature on ICU admission and a lower central temperature in the early postoperative period. Dexamethasone is effective in decreasing the incidence of shivering. The effectiveness of dexamethasone is independent of temperature and duration of cardiopulmonary bypass. Shivering after cardiac surgery may be part of the febrile response that occurs after release of cytokines during cardiopulmonary bypass.

  9. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy.

    PubMed

    Zhang, Xiaobo; Yuan, Guangyin; Mao, Lin; Niu, Jialin; Fu, Penghuai; Ding, Wenjiang

    2012-03-01

    Mechanical properties at room temperature and biocorrosion behaviors in simulated body fluid (SBF) at 37 °C of a new type of patented Mg-3Nd-0.2Zn-0.4Zr (hereafter, denoted as JDBM) alloy prepared at different extrusion temperatures, as well as heat treatment, were studied. The mechanical properties of this magnesium alloy at room temperature were improved significantly after extrusion and heat treatment compared to an as-cast alloy. The results of mechanical properties show that the yield strength (YS) decreases with increasing extrusion temperature. The tensile elongation decreases a little while the ultimate tensile strength (UTS) has no obvious difference. The yield strength and ultimate tensile strength were improved clearly after heat treatment at 200 °C for 10 h compared with that at the extrusion state, which can be mainly contributed to the precipitation strengthening. The biocorrosion behaviors of the JDBM alloy were studied using immersion tests and electrochemical tests. The results reveal that the extruded JDBM alloy and the aging treatment on the extruded alloy show much better biocorrosion resistance than that at solid solution state (T4 treatment), and the JDBM exhibited favorable uniform corrosion mode in SBF. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Joining of alumina via copper/niobium/copper interlayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Robert A.; Chapman, Daniel R.; Danielson, David T.

    2000-03-15

    Alumina has been joined at 1150 degrees C and 1400 degrees C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (approximately equal 240 plus/minus 20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized aluminamore » bonds, bend tests at 800 degrees C-1100 degrees C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000 degrees C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.« less

  11. Impact of the Dubai Coastline Intensive Urbanization on the Atmosphere Employing MODIS Data (2001-2014)

    NASA Astrophysics Data System (ADS)

    Elhacham, Emily; Alpert, Pinhas

    2017-04-01

    Over the last 20 years Dubai landscape has dramatically changed - artificial islands have been constructed as well as residential and industrial facilities along with roads systems. This rapid and massive construction placed Dubai urban growth rate at the top of the global list. Here, we investigate the impact of those constructions on the local atmosphere, both in land and sea based on MODIS data. It was found that, over the tested time period, temperature decreases and albedo increases were observed in the sea area of the artificial islands. In land, albedo decreases along with temperature increases of up to 2C were observed in the areas along the coast where intensive constructions occurred. In addition, the coast of Dubai was found to have urban heat island characteristics, where the urban center point at Deira area exhibits higher temperature than surrounding points along the coast. Nonetheless, the largest temperature trends were observed in the coastal area in between Palm Jumeirah and Palm Jebel Ali, where massive construction was performed during the tested time frame. Reference: E.Elhacham and P. Alpert ,"Impact of coastline-intensive anthropogenic activities on the atmosphere from moderate resolution imaging spectroradiometer (MODIS) data in Dubai (2001-2014)", Earth's Future, 4, 2016.

  12. Thermal adaptation and diversity in tropical ecosystems: evidence from cicadas (Hemiptera, Cicadidae).

    PubMed

    Sanborn, Allen F; Heath, James E; Phillips, Polly K; Heath, Maxine S; Noriega, Fernando G

    2011-01-01

    The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54' of longitude and 21°4' of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors.

  13. Lubrication of 35-millimeter-bore ball bearings of several designs to 2.5 million DN

    NASA Technical Reports Server (NTRS)

    Schuller, F. T.

    1983-01-01

    Parametric tests were conducted with 35mm bore, angular contact ball bearings with either a single or double outer and guided cage. The bearings were either lubricated by oil jets or employed inner ring lubrication. Outer ring cooling was added in selected tests. Lubricant flow to the bearing ranged from 300 to 1900 cc/min. All bearings were successfully run at speeds to 2.5 million DN. Increasing the lubricant flow decreased bearing ring temperatures but increased bearing power lines. The power loss and race temperatures of a jet lubricated with double outer land guided cage were always higher than those of the single land guided design at similar test conditions. The lowest bearing operating temperatures were achieved when inner ring lubrication and outer ring cooling were combined. It is found that cage slip of a double outer land guided cage is approximately twice that of a single outer land guided cage.

  14. A laboratory model of a hydrogen/oxygen engine for combustion and nozzle studies

    NASA Technical Reports Server (NTRS)

    Morren, Sybil H.; Myers, Roger M.; Benko, Stephen E.; Arrington, Lynn A.; Reed, Brian D.

    1993-01-01

    A small laboratory diagnostic thruster was developed in order to evaluate approaches for the use of temperature and pressure sensors for the investigation of low thrust rocket flowfields. Tests were performed at chamber pressures of about 255 kPa, 370 kPa, and 500 kPa with oxidizer/fuel mixture ratios between 4.0 and 8.0. Two gaseous hydrogen/gaseous oxygen injector designs were tested with 60 and 75 fuel film cooling. The results of hot-wire tests showed the thruster and instrumentation designs to be effective. Azimuthal temperature distributions were found to be a function of operating conditions and hardware configuration. Results indicated that small differences in injector design can result in dramatically different thruster performance and wall temperature behavior. However, the importance of these injector effects may be decreased by operating at a high fuel film cooling rate.

  15. Microstructure, Mechanical Properties, and Corrosion Resistance of Thermomechanically Processed AlZn6Mg0.8Zr Alloy

    PubMed Central

    Kowalski, Aleksander; Ozgowicz, Wojciech; Jurczak, Wojciech; Grajcar, Adam; Boczkal, Sonia; Żelechowski, Janusz

    2018-01-01

    The paper presents results of the investigations on the effect of low-temperature thermomechanical treatment (LTTT) on the microstructure of AlZn6Mg0.8Zr alloy (7000 series) and its mechanical properties as well as electrochemical and stress corrosion resistance. For comparison of the LTTT effect, the alloy was subjected to conventional precipitation hardening. Comparative studies were conducted in the fields of metallographic examinations and static tensile tests. It was found that mechanical properties after the LTTT were better in comparison to after conventional heat treatment (CHT). The tested alloy after low-temperature thermomechanical treatment with increasing plastic deformation shows decreased electrochemical corrosion resistance during potentiodynamic tests. The alloy after low-temperature thermomechanical treatment with deformation degree in the range of 10 to 30% is characterized by a high resistance to stress corrosion specified by the level of PSCC indices. PMID:29642448

  16. Elevated temperature mechanical properties of line pipe steels

    NASA Astrophysics Data System (ADS)

    Jacobs, Taylor Roth

    The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow strength and strain hardening occurred increased with increasing strain rate. Strain rate sensitivities were measured using flow stress data from multiple tensile tests and strain rate jump tests on single tensile samples. In flow stress strain rate sensitivity measurements, a transition from negative to positive strain rate sensitivity was observed in the X52 steel at approximately 275--300 °C, and negative strain rate sensitivity was observed at all elevated temperature testing conditions in the X70 steels. In jump test strain rate sensitivity measurements, all four steels exhibited a transition from negative to positive strain rate sensitivity at approximately 250--275 °C. Anisotropic deformation in the X70 steels was observed by measuring the geometry of the fracture surfaces of the tensile samples. The degree of anisotropy changed as a function of temperature and minima in the degree of anisotropy was observed at approximately 300 °C for all three X70 steels. DSA was verified as an active strengthening mechanism at elevated temperatures for all line pipe steels tested resulting in serrated yielding, a minimum in ductility as a function of temperature, a maximum in flow strength as a function of temperature, a maximum in average strain hardening rate as a function of temperature, and negative strain rate sensitivities. Mechanical properties of the X70 steels exhibited different functionality with respect to temperature compared to the X52 steels at temperatures greater than 250 ºC. Changes in the acicular ferrite microstructure during deformation such as precipitate coarsening, dynamic precipitation, tempering of martensite in martensite-austenite islands, or transformation of retained austenite could account for differences in tensile property functionality between the X52 and X70 steels. Long term aging under load (LTA) testing of the X70 steels resulted in increased yield strength compared to standard elevated temperature tensile tests at all temperatures as a result of static strain aging. LTA specimen ultimate tensile strengths (UTS) increased slightly at 200 °C, were comparable at 275 °C, and decreased significantly at 350 °C when compared to as-received (standard) tests at 350 °C. Observed reductions in UTS were a result of decreased strain hardening in the LTA specimens compared to standard tensile specimens. Ideal elevated temperature operating conditions (based on tensile properties) for the X70 line pipe steels in the temperature range relevant to the steam assisted gravity drainage process are around 275--325 °C at the strain rates tested. In the temperature range of 275--325 °C the X70 steels exhibited continuous plastic deformation, a maximum in ductility, a maximum in flow stress, improved strain hardening compared to intermediate temperatures, reduced anisotropic deformation, and after extended use at elevated temperatures, yield strength increases with little change in UTS.

  17. Vitreous humor thermodynamics during phacoemulsification.

    PubMed

    Salcedo-Villanueva, Guillermo; Kon-Jara, Veronica; Harasawa, Mariana; Cervantes-Coste, Guadalupe; Ochoa-Contreras, Daniel; Morales-Cantón, Virgilio; Guerrero-Naranjo, José Luis; Quiroz-Mercado, Hugo; Landers, Maurice B

    2015-08-01

    The purpose of this study is to determine baseline vitreous humor temperature during a combined phacoemulsification and pars plana vitrectomy (PPV) procedure; to determine what is the temperature variation during phacoemulsification; and to compare vitreous temperature to sublingual temperature. The methods used are prospective, interventional and comparative study. Patients with a diagnosis of cataract and vitreous hemorrhage, programed for a combined procedure of phacoemulsification and PPV, were included. Patients were excluded if posterior capsular rupture existed during the anterior segment procedure. A thermoprobe was inserted through a PPV trocar. Measurement of the vitreous temperature was obtained at baseline and throughout phacoemulsification, at the end of every surgical step, and every 5 min. Sublingual temperature was measured with the same probe at the end of the surgery. Room temperature was registered. Seventeen eyes of 17 patients were included. Mean sublingual temperature was 36.5 °C (standard deviation [σ] 0.26 °C). Mean total vitreous temperature was 31.47 °C (σ 2.1 °C). Mean baseline vitreous temperature was 33.04 °C (σ 0.99 °C). Comparison of sublingual temperature with baseline vitreous temperature resulted in a significant difference (t test P < 0.000. 95 % confidence interval 2.93-3.98). Temperature measured by surgical step and surgical time presented a significant decrease in temperature from baseline (Kruskal-Wallis P < 0.000, P = 0.003, respectively). Vitreous humor is significantly hypothermic when compared to sublingual temperature. Vitreous temperature decreases significantly during phacoemulsification.

  18. Patients' experiences of cold exposure during ambulance care.

    PubMed

    Aléx, Jonas; Karlsson, Stig; Saveman, Britt-Inger

    2013-06-06

    Exposure to cold temperatures is often a neglected problem in prehospital care. Cold exposure increase thermal discomfort and, if untreated causes disturbances of vital body functions until ultimately reaching hypothermia. It may also impair cognitive function, increase pain and contribute to fear and an overall sense of dissatisfaction. The aim of this study was to investigate injured and ill patients' experiences of cold exposure and to identify related factors. During January to March 2011, 62 consecutively selected patients were observed when they were cared for by ambulance nursing staff in prehospital care in the north of Sweden. The field study was based on observations, questions about thermal discomfort and temperature measurements (mattress air and patients' finger temperature). Based on the observation protocol the participants were divided into two groups, one group that stated it was cold in the patient compartment in the ambulance and another group that did not. Continuous variables were analyzed with independent sample t-test, paired sample t-test and dichotomous variables with cross tabulation. In the ambulance 85% of the patients had a finger temperature below comfort zone and 44% experienced the ambient temperature in the patient compartment in the ambulance to be cold. There was a significant decrease in finger temperature from the first measurement indoor compared to measurement in the ambulance. The mattress temperature at the ambulance ranged from -22.3°C to 8.4°C. Cold exposure in winter time is common in prehospital care. Sick and injured patients immediately react to cold exposure with decreasing finger temperature and experience of discomfort from cold. Keeping the patient in the comfort zone is of great importance. Further studies are needed to increase knowledge which can be a base for implications in prehospital care for patients who probably already suffer for other reasons.

  19. Instream habitat restoration and stream temperature reduction in a whirling disease-positive Spring Creek in the Blackfoot River Basin, Montana

    USGS Publications Warehouse

    Pierce, Ron; Podner, Craig; Marczak, Laurie B; Jones, Leslie A.

    2014-01-01

    Anthropogenic warming of stream temperature and the presence of exotic diseases such as whirling disease are both contemporary threats to coldwater salmonids across western North America. We examined stream temperature reduction over a 15-year prerestoration and postrestoration period and the severity of Myxobolus cerebralisinfection (agent of whirling disease) over a 7-year prerestoration and postrestoration period in Kleinschmidt Creek, a fully reconstructed spring creek in the Blackfoot River basin of western Montana. Stream restoration increased channel length by 36% and reduced the wetted surface area by 69% by narrowing and renaturalizing the channel. Following channel restoration, average maximum daily summer stream temperatures decreased from 15.7°C to 12.5°C, average daily temperature decreased from 11.2°C to 10.0°C, and the range of daily temperatures narrowed by 3.3°C. Despite large changes in channel morphology and reductions in summer stream temperature, the prevalence and severity of M. cerebralis infection for hatchery Rainbow Trout Oncorhynchus mykiss remained high (98–100% test fish with grade > 3 infection) versus minimal for hatchery Brown Trout Salmo trutta (2% of test fish with grade-1 infection). This study shows channel renaturalization can reduce summer stream temperatures in small low-elevation, groundwater-dominated streams in the Blackfoot basin to levels more suitable to native trout. However, because of continuous high infections associated with groundwater-dominated systems, the restoration of Kleinschmidt Creek favors brown trout Salmo trutta given their innate resistance to the parasite and the higher relative susceptibility of other salmonids.

  20. The study of stiffness modulus values for AC-WC pavement

    NASA Astrophysics Data System (ADS)

    Lubis, AS; Muis, Z. A.; Iskandar, T. D.

    2018-02-01

    One of the parameters of the asphalt mixture in order for the strength and durability to be achieved as required is the stress-and-strain showing the stiffness of a material. Stiffness modulus is a very necessary factor that will affect the performance of asphalt pavements. If the stiffness modulus value decreases there will be a cause of aging asphalt pavement crack easily when receiving a heavy load. The high stiffness modulus asphalt concrete causes more stiff and resistant to bending. The stiffness modulus value of an asphalt mixture material can be obtained from the theoretical (indirect methods) and laboratory test results (direct methods). For the indirect methods used Brown & Brunton method, and Shell Bitumen method; while for the direct methods used the UMATTA tool. This study aims to determine stiffness modulus values for AC-WC pavement. The tests were conducted in laboratory that used 3 methods, i.e. Brown & Brunton Method, Shell Bitumen Method and Marshall Test as a substitute tool for the UMATTA tool. Hotmix asphalt made from type AC-WC with pen 60/70 using a mixture of optimum bitumen content was 5.84% with a standard temperature variation was 60°C and several variations of temperature that were 30, 40, 50, 70 and 80°C. The stiffness modulus value results obtained from Brown & Brunton Method, Shell Bitumen Method and Marshall Test which were 1374,93 Mpa, 235,45 Mpa dan 254,96 Mpa. The stiffness modulus value decreases with increasing temperature of the concrete asphalt. The stiffness modulus value from the Bitumen Shell method and the Marshall Test has a relatively similar value.The stiffness modulus value from the Brown & Brunton method is greater than the Bitumen Shell method and the Marshall Test, but can not measure the stiffness modulus value at temperature above 80°C.

  1. On the Effects of Hot Forging and Hot Rolling on the Microstructural Development and Mechanical Response of a Biocompatible Ti Alloy

    PubMed Central

    Okazaki, Yoshimitsu

    2012-01-01

    Zr, Nb, and Ta as alloying elements for Ti alloys are important for attaining superior corrosion resistance and biocompatibility in the long term. However, note that the addition of excess Nb and Ta to Ti alloys leads to higher manufacturing cost. To develop low-cost manufacturing processes, the effects of hot-forging and continuous-hot-rolling conditions on the microstructure, mechanical properties, hot forgeability, and fatigue strength of Ti-15Zr-4Nb-4Ta alloy were investigated. The temperature dependences with a temperature difference (ΔT) from β-transus temperature (Tβ) for the volume fraction of the α- and β-phases were almost the same for both Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys. In the α-β-forged Ti-15Zr-4Nb-4Ta alloy, a fine granular α-phase structure containing a fine granular β-phase at grain boundaries of an equiaxed α-phase was observed. The Ti-15Zr-4Nb-4Ta alloy billet forged at Tβ-(30 to 50) °C exhibited high strength and excellent ductility. The effects of forging ratio on mechanical strength and ductility were small at a forging ratio of more than 3. The maximum strength (σmax) markedly increased with decreasing testing temperature below Tβ. The reduction in area (R.A.) value slowly decreased with decreasing testing temperature below Tβ. The temperature dependences of σmax for the Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys show the same tendency and might be caused by the temperature difference (ΔT) from Tβ. It was clarified that Ti-15Zr-4Nb-4Ta alloy could be manufactured using the same manufacturing process as for previously approved Ti-6Al-4V alloy, taking into account the difference (ΔT) between Tβ and heat treatment temperature. Also, the manufacturing equivalency of Ti-15Zr-4Nb-4Ta alloy to obtain marketing approval of implants was established. Thus, it was concluded that continuous hot rolling is useful for manufacturing α-β-type Ti alloy.

  2. Engineering characterisation of epoxidized natural rubber-modified hot-mix asphalt

    PubMed Central

    Al-Mansob, Ramez A.; Ismail, Amiruddin; Yusoff, Nur Izzi Md.; Rahmat, Riza Atiq O. K.; Borhan, Muhamad Nazri; Albrka, Shaban Ismael; Azhari, Che Husna; Karim, Mohamed Rehan

    2017-01-01

    Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR)-modified hot-mix asphalt. Tests were conducted using ENR–asphalt mixes prepared using the wet process. Mechanical testing on the ENR–asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR–asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR–asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress. PMID:28182724

  3. Influence of testing environment on the room temperature ductility of FeAl alloys

    NASA Technical Reports Server (NTRS)

    Gaydosh, D. J.; Nathal, M. V.

    1990-01-01

    The effects of testing atmospheres (air, O2, N2, and vacuum) on the room-temperature ductility of Fe-40Al, Fe-40Al-0.5B, and Fe-50Al alloys were investigated. The results confirmed the decrease in room-temperature ductility of Fe-rich FeAl alloys by the interaction of the aluminide with water vapor, reported previously by Liu et al. (1989). The highest ductilities were measured in the atmosphere with the lowest moisture levels, i.e., in vacuum. It was found that significant ductility is still restricted to Fe-rich alloys (Fe-40Al), as the Fe-50Al alloy remained brittle under all testing conditions. It was also found that slow cooling after annealing was beneficial, and the effect was additive to the environmental effect. The highest ductility measurements in this study were 9 percent elongation in furnace-cooled Fe-40Al and in Fe-40Al-0.5B, when tested in vacuum.

  4. Engineering characterisation of epoxidized natural rubber-modified hot-mix asphalt.

    PubMed

    Al-Mansob, Ramez A; Ismail, Amiruddin; Yusoff, Nur Izzi Md; Rahmat, Riza Atiq O K; Borhan, Muhamad Nazri; Albrka, Shaban Ismael; Azhari, Che Husna; Karim, Mohamed Rehan

    2017-01-01

    Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR)-modified hot-mix asphalt. Tests were conducted using ENR-asphalt mixes prepared using the wet process. Mechanical testing on the ENR-asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR-asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR-asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress.

  5. A high field and cryogenic test facility for neutron irradiated superconducting wire

    NASA Astrophysics Data System (ADS)

    Nishimura, A.; Miyata, H.; Yoshida, M.; Iio, M.; Suzuki, K.; Nakamoto, T.; Yamazaki, M.; Toyama, T.

    2017-12-01

    A 15.5 T superconducting magnet and a variable temperature insert (VTI) system were installed at a radiation control area in Oarai center in Tohoku University to investigate the superconducting properties of activated superconducting materials by fast neutron. The superconductivity was measured at cryogenic temperature and high magnetic field. During these tests, some inconvenient problems were observed and the additional investigation was carried out. The variable temperature insert was designed and assembled to perform the superconducting property tests. without the liquid helium. To remove the heat induced by radiation and joule heating, high purity aluminum rod was used in VTI. The thermal contact was checked by FEM analysis and an additional support was added to confirm the decreasing the stress concentration and the good thermal contact. After the work for improvement, it was affirmed that the test system works well and all troubles were resolved. In this report, the improved technical solution is described and the first data set on the irradiation effect on Nb3Sn wire is presented.

  6. ZM-21 magnesium alloy corrosion properties and cryogenic to elevated temperature mechanical properties

    NASA Technical Reports Server (NTRS)

    Montana, J. W.; Nelson, E. E.

    1972-01-01

    The mechanical properties of bare ZM-21 magnesium alloy flat tensile specimens were determined for test temperatures of +400 F, +300 F, +200 F, +80 F, 0 F, -100 F, -200 F, and -320 F. The ultimate tensile and yield strengths of the material increased with decreasing temperature with a corresponding reduction in elongation values. Stress corrosion tests performed under: (1) MSFC atmospheric conditions; (2) 95% relative humidity; and (3) submerged in 100 ppm chloride solution for 8 weeks indicated that the alloy is not susceptible to stress corrosion. The corrosion tests indicated that the material is susceptible to attack by crevice corrosion in high humidity and chemical type attack by chloride solution. Atmospheric conditions at MSFC did not produce any adverse effects on the material, probably due to the rapid formation of a protective oxide coating. In both the mechanical properties and the stress corrosion evaluations the test specimens which were cut transverse to the rolling direction had superior properties when compared to the longitudinal properties.

  7. Decreasing the exhaust outlet temperatures on a class III bus with the lowest impact on the exhaust backpressure and the fuel consumption

    NASA Astrophysics Data System (ADS)

    Aslan, E.; Ozturk, Y.; Dileroglu, S.

    2017-07-01

    The focus of this study is to determine the most appropriate exhaust tail pipe form among three different type of designs with respect to their temperature loss efficiency for a 9.5m intercity bus equipped with an Euro VI diesel engine and an automated transmission. To provide lower temperatures at the exhaust outlet, mentioned designs were submitted on to a CFD simulation using Ansys Fluent 17.1, while for manufactured products, temperature measurement tests were conducted in an environmental chamber with Omega K-type thermocouples, and Flir T420 thermal camera was used to monitor outer surface temperature distributions to make a comparison between theoretical and practical results. In order to obtain these practical results, actual tests were performed in an environmental chamber with a constant ambient temperature during the vehicle exhaust emission system regeneration process. In conclusion, an exhaust tail pipe design with a diffuser having a circular contraction and expansion forms is designated since it was the most optimized option in terms of temperature loss efficiency, inconsiderable exhaust backpressure increase and manufacturing costs.

  8. Fracture mechanics data for 2024-T861 and 2124-T851 aluminum

    NASA Technical Reports Server (NTRS)

    Pionke, L. J.; Linback, R. K.

    1974-01-01

    The fracture toughness and fatigue flaw growth characteristics of 2024-T861 and 2124-T851 aluminum were evaluated under plane stress conditions. Center cracked tension specimens were employed to evaluate these properties under a number of different test conditions which included variations in specimen thickness, specimen orientation, test environment, and initial flaw size. The effect of buckling was also investigated for all tests of thin gage specimens, and the effect of frequency and stress ratio was evaluated for the cyclic tests. Fracture toughness test results were analyzed and presented in terms of fracture resistance curves; fatigue flaw growth data was analyzed using empirical rate models. The results of the study indicate that both fracture toughness and resistance to fatigue crack growth improve with increasing temperature and decreasing thickness. The presence of buckling during testing of thin gage panels was found to degrade the resistance to fatigue flaw growth only at elevated temperatures.

  9. Supercritical-Multiple-Solvent Extraction From Coal

    NASA Technical Reports Server (NTRS)

    Corcoran, W.; Fong, W.; Pichaichanarong, P.; Chan, P.; Lawson, D.

    1983-01-01

    Large and small molecules dissolve different constituents. Experimental apparatus used to test supercritical extraction of hydrogen rich compounds from coal in various organic solvents. In decreasing order of importance, relevant process parameters were found to be temperature, solvent type, pressure, and residence time.

  10. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): effects of temperature and salinity.

    PubMed

    Kwok, K W H; Leung, K M Y

    2005-01-01

    Intertidal harpacticoid copepods are commonly used in eco-toxicity tests worldwide. They predominately live in mid-high shore rock pools and often experience a wide range of temperature and salinity fluctuation. Most eco-toxicity tests are conducted at fixed temperature and salinity and thus the influence of these environmental factors on chemical toxicity is largely unknown. This study investigated the combined effect of temperature and salinity on the acute toxicity of the copepod Tigriopus japonicus against two common biocides, copper (Cu) and tributyltin (TBT) using a 2 x 3 x 4 factorial design (i.e. two temperatures: 25 and 35 degrees C; three salinities: 15.0 per thousand, 34.5 per thousand and 45.0 per thousand; three levels of the biocide plus a control). Copper sulphate and tributyltin chloride were used as the test chemicals while distilled water and acetone were utilised as solvents for Cu and TBT respectively. 96 h-LC50s of Cu and TBT were 1024 and 0.149 microg l(-1) respectively (at 25 degrees C; 34.5 per thousand) and, based on these results, nominal biocide concentrations of LC0 (i.e. control), LC30, LC50 and LC70 were employed. Analysis of Covariance using 'concentration' as the covariate and both 'temperature' and 'salinity' as fixed factors, showed a significant interaction between temperature and salinity effects for Cu, mortality increasing with temperature but decreasing with elevated salinity. A similar result was revealed for TBT. Both temperature and salinity are, therefore, important factors affecting the results of acute eco-toxicity tests using these marine copepods. We recommend that such eco-toxicity tests should be conducted at a range of environmentally realistic temperature/salinity regimes, as this will enhance the sensitivity of the test and improve the safety margin in line with the precautionary principle.

  11. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, L.; Gettelman, A.; Xu, Y.

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. In this work, we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO 4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate ofmore » 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO 4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO 4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO 4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO 4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO 4-induced PET changes.« less

  12. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols

    DOE PAGES

    Lin, L.; Gettelman, A.; Xu, Y.; ...

    2016-01-27

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. In this work, we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO 4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate ofmore » 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO 4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO 4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO 4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO 4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO 4-induced PET changes.« less

  13. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols: LIN: SIMULATED RESPONSES ARIDITY

    DOE PAGES

    Lin, L.; Gettelman, A.; Xu, Y.; ...

    2016-01-27

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of globalmore » mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.« less

  14. Hot Ductility and Compression Deformation Behavior of TRIP980 at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, Mei; Li, Haiyang; Gan, Bin; Zhao, Xue; Yao, Yi; Wang, Li

    2018-02-01

    The hot ductility tests of a kind of 980 MPa class Fe-0.31C (wt pct) TRIP steel (TRIP980) with the addition of Ti/V/Nb were conducted on a Gleeble-3500 thermomechanical simulator in the temperatures ranging from 873 K to 1573 K (600 °C to 1300 °C) at a constant strain rate of 0.001 s-1. It is found that the hot ductility trough ranges from 873 K to 1123 K (600 °C to 850 °C). The recommended straightening temperatures are from 1173 K to 1523 K (900 °C to 1250 °C). The isothermal hot compression deformation behavior was also studied by means of Gleeble-3500 in the temperatures ranging from 1173 K to 1373 K (900 °C to 1100 °C) at strain rates ranging from 0.01 s-1 to 10 s-1. The results show that the peak stress decreases with the increasing temperature and the decreasing strain rate. The deformation activation energy of the test steel is 436.7 kJ/mol. The hot deformation equation of the steel has been established, and the processing maps have been developed on the basis of experimental data and the principle of dynamic materials model (DMM). By analyzing the processing maps of strains of 0.5, 0.7, and 0.9, it is found that dynamic recrystallization occurs in the peak power dissipation efficiency domain, which is the optimal area of hot working. Finally, the factors influencing hot ductility and thermal activation energy of the test steel were investigated by means of microscopic analysis. It indicates that the additional microalloying elements play important roles both in the loss of hot ductility and in the enormous increase of deformation activation energy for the TRIP980 steel.

  15. Atmospheric leakage and condensate production in NASA's biomass production chamber. Effect of diurnal temperature cycles

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Drese, John H.; Sager, John C.

    1991-01-01

    A series of tests were conducted to monitor atmospheric leakage rate and condensate production in NASA's Biomass Production Chamber (BPC). Water was circulated through the 64 plant culture trays inside the chamber during the tests but no plants were present. Environmental conditions were set to a 12-hr photoperiod with either a matching 26 C (light)/20 C (dark) thermoperiod, or a constant 23 C temperature. Leakage, as determined by carbon dioxide decay rates, averaged about 9.8 percent for the 26 C/20 C regime and 7.3 percent for the constant 23 C regime. Increasing the temperature from 20 C to 26 C caused a temporary increase in pressure (up to 0.5 kPa) relative to ambient, while decreasing the temperature caused a temporary decrease in pressure of similar magnitude. Little pressure change was observed during transition between 23 C (light) and 23 C (dark). The lack of large pressure events under isothermal conditions may explain the lower leakage rate observed. When only the plant support inserts were placed in the culture trays, condensate production averaged about 37 liters per day. Placing acrylic germination covers over the tops of culture trays reduced condensate production to about 7 liters per day. During both tests, condensate production from the lower air handling system was 60 to 70 percent greater than from the upper system, suggesting imbalances exist in chilled and hot water flows for the two air handling systems. Results indicate that atmospheric leakage rates are sufficiently low to measure CO2 exchange rates by plants and the accumulation of certain volatile contaminants (e.g., ethylene). Control system changes are recommended in order to balance operational differences (e.g., humidity and temperature) between the two halves of the chamber.

  16. Lipoprotein Lipase Expression in Hypothalamus Is Involved in the Central Regulation of Thermogenesis and the Response to Cold Exposure

    PubMed Central

    Laperrousaz, Elise; Denis, Raphaël G.; Kassis, Nadim; Contreras, Cristina; López, Miguel; Luquet, Serge; Cruciani-Guglielmacci, Céline; Magnan, Christophe

    2018-01-01

    Lipoprotein lipase (LPL) is expressed in different areas of the brain, including the hypothalamus and plays an important role in neural control of the energy balance, including feeding behavior and metabolic fluxes. This study tested the hypothesis that hypothalamic LPL participates in the control of body temperature. We first showed that cold exposure induces decreased activity and expression of LPL in the mouse hypothalamus. We then selectively deleted LPL in the mediobasal hypothalamus (MBH) through an adeno-associated virus approach in LPL-floxed mice and generated MBHΔLpl mice with 30–35% decrease in hypothalamic LPL activity. Results showed a decrease in body temperature in MBHΔLpl mice when compared with controls at 22°C. Exposure to cold (4°C for 4 h) decreased the body temperature of the control mice while that of the MBHΔLpl mice remained similar to that observed at 22°C. MBHΔLpl mice also showed increased energy expenditure during cold exposure, when compared to controls. Finally, the selective MBH deletion of LPL also increased the expression of the thermogenic PRMD16 and Dio2 in subcutaneous and perigonadal adipose tissues. Thus, the MBH LPL deletion seems to favor thermogenesis. These data demonstrate that for the first time hypothalamic LPL appears to function as a regulator of body temperature and cold-induced thermogenesis. PMID:29593657

  17. Do mitochondrial properties explain intraspecific variation in thermal tolerance?

    PubMed

    Fangue, Nann A; Richards, Jeffrey G; Schulte, Patricia M

    2009-02-01

    As global temperatures rise, there is a growing need to understand the physiological mechanisms that determine an organism's thermal niche. Here, we test the hypothesis that increases in mitochondrial capacity with cold acclimation and adaptation are associated with decreases in thermal tolerance using two subspecies of killifish (Fundulus heteroclitus) that differ in thermal niche. We assessed whole-organism metabolic rate, mitochondrial amount and mitochondrial function in killifish acclimated to several temperatures. Mitochondrial enzyme activities and mRNA levels were greater in fish from the northern subspecies, particularly in cold-acclimated fish, suggesting that the putatively cold-adapted northern subspecies has a greater capacity for increases in mitochondrial amount in response to cold acclimation. When tested at the fish's acclimation temperature, maximum ADP-stimulated (State III) rates of mitochondrial oxygen consumption in vitro were greater in cold-acclimated northern fish than in southern fish but did not differ between subspecies at higher acclimation temperatures. Whole-organism metabolic rate was greater in fish of the northern subspecies at all acclimation temperatures. Cold acclimation also changed the response of mitochondrial respiration to acute temperature challenge. Mitochondrial oxygen consumption was greater in cold-acclimated northern fish than in southern fish at low test temperatures, but the opposite was true at high test temperatures. These differences were reflected in whole-organism oxygen consumption. Our data indicate that the plasticity of mitochondrial function and amount differs between killifish subspecies, with the less high-temperature tolerant, and putatively cold adapted, northern subspecies having greater ability to increase mitochondrial capacity in the cold. However, there were few differences in mitochondrial properties between subspecies at warm acclimation temperatures, despite differences in both whole-organism oxygen consumption and thermal tolerance at these temperatures.

  18. Reforming the Exhaust Passage of Low-pressure Cylinder for 330MW Steam Turbine

    NASA Astrophysics Data System (ADS)

    Yan, Tao; Cai, Wen; Chen, Wen; Lu, Jin; Hong-yan, Yang

    2018-06-01

    In concern of the velocity distribution of the exhaust passage of 330MW turbine is not uniform, which results in higher the upper temperature difference of the condenser and higher exhaust pressure. It is introduced in this article that based on mathematical simulation, steam-equalizing equipment is augmented at the exhaust area of the condenser which makes the decrease in the steam resistance, much more uniform velocity distribution, and the increase of the heat transfer coefficient. By comparison of the condenser performance test before the amending and after, the result shows that after the amending, the upper temperature difference of the condenser and the exhaust pressure decreases dramatically.

  19. Reconsolidation of Crushed Salt to 250°C Under Hydrostatic and Shear Stress Conditions Scott Broome, Frank Hansen, and SJ Bauer Sandia National Laboratories, Geomechanics Department

    NASA Astrophysics Data System (ADS)

    Broome, S. T.

    2012-12-01

    Design, analysis and performance assessment of potential salt repositories for heat-generating nuclear waste require knowledge of thermal, mechanical, and fluid transport properties of reconsolidating granular salt. Mechanical properties, Bulk (K) and Elastic (E) Moduli and Poisson's ratio (ν) are functions of porosity which decreases as the surrounding salt creeps inward and compresses granular salt within the rooms, drifts or shafts. To inform salt repository evaluations, we have undertaken an experimental program to determine K, E, and ν of reconsolidated granular salt as a function of porosity and temperature and to establish the deformational processes by which the salt reconsolidates. The experiments will be used to populate the database used in the reconsolidation model developed by Callahan (1999) which accounts for the effects of moisture through pressure solution and dislocation creep, with both terms dependent on effective stress to account for the effects of porosity. Mine-run salt from the Waste Isolation Pilot Program (WIPP) was first dried at 105 °C for a few days. Undeformed right-circular cylindrical sample assemblies of unconsolidated granular salt with an initial porosity of ~ 40%, nominally 10 cm in diameter and 17.5 cm in length, are jacketed in lead. Samples are placed in a pressure vessel and kept at test temperatures of 100, 175 or 250 °C; samples are vented to the atmosphere during the entire test procedure. At these test conditions the consolidating salt is always creeping, the creep rate increases with increasing temperature and stress and decreases as porosity decreases. In hydrostatic tests, confining pressure is increased to 20 MPa with periodic unload/reload loops to determine K. Volume strain increases with increasing temperature. In shear tests at 2.5 and 5 MPa confining pressure, after confining pressure is applied, the crushed salt is subjected to a differential stress, with periodic unload/reload loops to determine E and ν. At predetermined differential stress levels the stress is held constant and the salt consolidates. Displacement gages mounted on the samples show little lateral deformation until the samples reach a porosity of ~10%. Interestingly, vapor is vented in tests at 250°C and condenses at the vent port. Release of water is not observed in the lower two test temperatures. It is hypothesized that the water originates from fluid inclusions, which were made accessible by intragranular deformational processes including decrepitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Preparation and Dynamic Mechanical Properties at Elevated Temperatures of a Tungsten/Glass Composite

    NASA Astrophysics Data System (ADS)

    Gao, Chong; Wang, Yingchun; Ma, Xueya; Liu, Keyi; Wang, Yubing; Li, Shukui; Cheng, Xingwang

    2018-03-01

    Experiments were conducted to prepare a borosilicate glass matrix composite containing 50 vol.% tungsten and examine its dynamic compressive behavior at elevated temperatures in the range of 450-775 °C. The results show that the homogenous microstructure of the tungsten/glass composite with relative density of 97% can be obtained by hot-pressing sintering at 800 °C for 1 h under pressure of 30 MPa. Dynamic compressive testing was carried out by a separate Hopkinson pressure bar system with a synchronous device. The results show that the peak stress decreases and the composite transforms from brittle to ductile in nature with testing temperature increasing from 450 to 750 °C. The brittle-ductile transition temperature is about 500 °C. Over 775 °C, the composite loses load-bearing capacity totally because of the excessive softening of the glass phase. In addition, the deformation and failure mechanism were analyzed.

  1. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part 1: Narloy Z

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1974-01-01

    Short-term tensile and low-cycle fatigue data are reported for Narloy Z, a centrifugally cast, copper-base alloy. Tensile tests were performed at room temperature in air and in argon at 482, 538 and 593 C using an axial strain rate of .002/sec to the -1 power. In addition tensile tests were performed at 538 C in an evaluation of tensile properties at strain rates of .004 and .01/sec to the -1 power. Ultimate and yield strength values of about 315 and 200 MN/sq m respectively were recorded at room temperature and these decreased to about 120 and 105 respectively as the temperature was increased to 593 C. Reduction in area values were recorded in the range from 40 to 50% with some indication of a minimum ductility point at 538 C.

  2. Numerical and Experimental Study of a Cooling for Vanes in a Small Turbine Engine

    NASA Astrophysics Data System (ADS)

    Šimák, Jan; Michálek, Jan

    2016-03-01

    This paper is concerned with a cooling system for inlet guide vanes of a small turbine engine which are exposed to a high temperature gas leaving a combustion chamber. Because of small dimensions of the vanes, only a simple internal cavity and cooling holes can be realized. The idea was to utilize a film cooling technique. The proposed solution was simulated by means of a numerical method based on a coupling of CFD and heat transfer solvers. The numerical results of various scenarios (different coolant temperature, heat transfer to surroundings) showed a desired decrease of the temperature, especially on the most critical part - the trailing edge. The numerical data are compared to results obtained by experimental measurements performed in a test facility in our institute. A quarter segment model of the inlet guide vanes wheel was equipped with thermocouples in order to verify an effect of cooling. Despite some uncertainty in the results, a verifiable decrease of the vane temperature was observed.

  3. Morphology control of PLA microfibers and spheres via melt electrospinning

    NASA Astrophysics Data System (ADS)

    Yu, Shu-Xin; Zheng, Jie; Yan, Xu; Wang, Xiao-Xiong; Nie, Guang-Di; Tan, Ye-Qiang; Zhang, Jun; Sui, Kun-Yan; Long, Yun-Ze

    2018-04-01

    In conventional solution electrospinning, the morphologies (e.g., spheres, beaded fibers, and fibers) of electrospun products can be controlled by solution concentration. Here, we report that the morphologies and structures of polylactic acid (PLA) via melt electrospinning also can be adjusted from microfibers to microspheres by simply increasing the spinning temperature. It was found that with temperature increasing from 200 °C to 240 °C, the average diameter of melt-electrospun PLA fibers decreased from 58.46 to 2.96 μm. Then, beaded fibers and microspheres about 14.5 μm in diameter were collected when the spinning temperature was increased to 250 °C and 260 °C. In addition, we also found that the average PLA fiber diameter decreased with increasing the applied spinning voltage, and increased with the increase of spinning distance. To explain the formation mechanism of different PLA microstructures, rheological property and infrared spectra of PLA under different spinning temperatures were also tested.

  4. Core Dynamics Analysis for Reactivity Insertion and Loss of Coolant Flow Tests Using the High Temperature Engineering Test Reactor

    NASA Astrophysics Data System (ADS)

    Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki

    Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-temperature Gas-cooled Reactors (HTGRs). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named-ACCORD-, was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We have modified this code to use a model with four parallel channels and twenty temperature coefficients. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results. Moreover, the effect of the model is formulated quantitatively with our proposed equation. Finally, the pre-analytical result of the loss of coolant flow test by tripping all gas circulators is also discussed.

  5. Prolonged exposure of mixed aerobic cultures to low temperature and benzalkonium chloride affect the rate and extent of nitrification.

    PubMed

    Yang, Jeongwoo; Tezel, Ulas; Li, Kexun; Pavlostathis, Spyros G

    2015-03-01

    The combined effect of benzalkonium chloride (BAC) and prolonged exposure to low temperature on nitrification was investigated. Ammonia oxidation at 22-24°C by an enriched nitrifying culture was inhibited at increasing BAC concentrations and ceased at 15 mg BAC/L. The non-competitive inhibition coefficient was 1.5±0.9 mg BAC/L. Nitrification tests were conducted without and with BAC at 5mg/L using an aerobic, mixed heterotrophic/nitrifying culture maintained at a temperature range of 24-10°C. Maintaining this culture at 10°C for over one month in the absence of BAC, resulted in slower nitrification kinetics compared to those measured when the culture was first exposed to 10°C. BAC was degraded by the heterotrophic population, but its degradation rate decreased significantly as the culture temperature decreased to 10°C. These results confirm the negative impact of quaternary ammonium compounds on the nitrification process, which is further exacerbated by prolonged, low temperature conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Correlation between Mechanical Behavior and Actuator-type Performance of Ni-Ti-Pd High-temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.

  7. Correlation between mechanical behavior and actuator-type performance of Ni-Ti-Pd high-temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.

    2007-04-01

    High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.

  8. Evaluation of the Transient Liquid Phase (TLP) Bonding Process for Ti3Al-Based Honeycomb Core Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Hoffman, Eric K.

    1998-01-01

    The suitability of using transient liquid phase (TLP) bonding to fabricate honeycomb core sandwich panels with Ti-14Al-21Nb (wt%) titanium aluminide (T3Al) face sheets for high-temperature hypersonic vehicle applications was evaluated. Three titanium alloy honeycomb cores and one Ti3Al alloy honeycomb core were investigated. Edgewise compression (EWC) and flatwise tension (FWT) tests on honeycomb core sandwich specimens and tensile tests of the face sheet material were conducted at temperatures ranging from room temperature to 1500 F. EWC tests indicated that the honeycomb cores and diffusion bonded joints were able to stabilize the face sheets up to and beyond the face sheet compressive yield strength for all temperatures investigated. The specimens with the T3Al honeycomb core produced the highest FWT strengths at temperatures above 1000 F. Tensile tests indicated that TLP processing conditions resulted in decreases in ductility of the Ti-14Al-21Nb face sheets. Microstructural examination showed that the side of the face sheets to which the filler metals had been applied was transformed from equiaxed alpha2 grains to coarse plates of alpha2 with intergranular Beta. Fractographic examination of the tensile specimens showed that this transformed region was dominated by brittle fracture.

  9. Rheology of serpentinite in high-temperature and low-slip-velocity regime

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Uehara, S.; Mizoguchi, K.; Takeda, N.; Masuda, K.

    2009-12-01

    This study was designed to clarify the rheology of serpentinite experimentally, related both the sliding velocity and the temperature. The frictional behavior of serpentinite is of particular interest in the study of earthquake generation processes along subducting plates and transform faults. Previous studies [Reinen et al., 1991-93] revealed that the serpentinites indicated two-mechanical behaviors at velocity-step test: ‘state-variable dominated behavior’ at relatively higher velocity (0.1-10 μm/sec) and ‘flow-dominated behavior’ at lower velocity (less than 0.1 μm/sec). Such complexity on the frictional behavior could make it complicated to forecast on the slip acceleration process from the plate motion velocity to the earthquake. Even under the room-temperature condition, those multiple behavior could be observed, thus, serpentinite can be a model substance to present a new constitutive law at the brittle-ductile transition regime. We, therefore, focus to discuss the transient behaviors of serpentinite at the velocity-step test. We used a gas-medium, high-pressure, and high-temperature triaxial testing machine belonging to the National Institute of Advanced Industrial Science and Technology (AIST), Japan. Sliding deformation was applied on the thin zone of the serpentinite gouge (1.0 g of almost pure antigorite powder) sandwiched between two alumina blocks with oblique surfaces at 30° to the axis. All experiments were carried out under a set of constant conditions, 100 MPa of the confining pressure (Ar-gas) and 30 MPa of the pore pressure (distilled water). The temperature conditions were varied from the room-temperature to 500° C, and three sliding velocity-regimes were adopted: low (0.0115 - 0.115 μm/sec), middle (0.115 - 1.15 μm/sec) and high (1.15 - 11.5 μm/sec) velocity regimes. In each velocity regime, the sliding velocity was increased or decreased in a stepwise fashion, and then we observed the transient behaviors until it reached the new steady-state frictional strength. Most results showed velocity-strengthening and flow-like transient behavior. Roughly said, the degree of the velocity dependence became larger with increasing the temperature until 400° C, and became larger with decreasing the velocity. At the temperature condition from 300° C to 400° C, the increasing of the velocity dependence became conspicuous with decreasing the velocity. Moreover, just after the dehydration of the antigorite started (450° - 500° C), the friction behaved unstable sliding. The rheology of the serpentinite seemed to be “not simple” at this experimental conditions on this study.

  10. Thermal activation in Au-based bulk metallic glass characterized by high-temperature nanoindentation

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Wadsworth, Jeffrey; Nieh, Tai-Gang

    2007-02-01

    High-temperature nanoindentation experiments have been conducted on a Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass from 30to140°C, utilizing loading rates ranging from 0.1to100mN/s. Generally, the hardness decreased with increasing temperature. An inhomogeneous-to-homogeneous flow transition was clearly observed when the test temperature approached the glass transition temperature. Analyses of the pop-in pattern and hardness variation showed that the inhomogeneous-to-homogeneous transition temperature was loading-rate dependent. Using a free-volume model, the authors deduced the size of the basic flow units and the activation energy for the homogeneous flow. In addition, the strain rate dependency of the transition temperature was predicted.

  11. An assessment of cold work effects on strain-controlled low-cycle fatigue behavior of type 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Rao, K. Bhanu Sankara; Valsan, M.; Sandhya, R.; Mannan, S. L.; Rodriguez, P.

    1993-04-01

    The influence of prior cold work (PCW) on low-cycle fatigue (LCF) behavior of type 304 stainless steel has been studied at 300, 823, 923, and 1023 K by conducting total axial strain-controlled tests in solution annealed (SA, 0 pct PCW) condition and on specimens having three levels of PCW, namely, 10, 20, and 30 pct. A triangular waveform with a constant frequency of 0.1 Hz was employed for all of the tests performed over strain amplitudes in the range of ±0.25 to ± 1.25 pct. These studies have revealed that fatigue life is strongly dependent on PCW, temperature, and strain amplitude employed in testing. The SA material generally displayed better endurance in terms of total and plastic strain amplitudes than the material in 10, 20, and 30 pct PCW conditions at all of the temperatures. However, at 300 K at very low strain amplitudes, PCW material exhibited better total strain fatigue resistance. At 823 K, LCF life decreased with increasing PCW, whereas at 923 K, 10 pct PCW displayed the lowest life. An improvement in life occurred for prior deformations exceeding 10 pct at all strain amplitudes at 923 K. Fatigue life showed a noticeable decrease with increasing temperature up to 1023 K in PCW state. On the other hand, SA material displayed a minimum in fatigue life at 923 K. The fatigue life results of SA as well as all of the PCW conditions obeyed the Basquin and Coffin-Manson relationships at 300, 823, and 923 K. The constants and exponents in these equations were found to depend on the test temperature and prior metallurgical state of the material. A study is made of cyclic stress-strain behavior in SA and PCW states and the relationship between the cyclic strain-hardening exponent and fatigue behavior at different temperatures has been explored. The influence of environment on fatigue crack initiation and propagation behavior has been examined.

  12. Effect of season and ambient temperature on outcome of guaiac-based faecal occult blood tests performed for colorectal cancer screening.

    PubMed

    Hunter, J P; Saratzis, A; Froggatt, P; Harmston, C

    2012-09-01

    Guaiac-based faecal occult blood tests (gFOBTs) are used in the colorectal cancer screening programme. Recent data suggested that the immunological faecal occult blood test illustrated a variation in positivity according to season and ambient temperature. Our aim was to assess the effect of season and ambient temperature on the positivity rates of the gFOBT during pilot screening for colorectal cancer. Data from the first year of round 1 of the pilot screening programme in Coventry and Warwickshire were analysed. Patients with positive and negative gFOBT samples were included. Patients with spoilt samples or incomplete data were excluded. Of the total of 59513 patients, 30311 were men and 29202 women. Mean age was 56 years. Daily temperature data were provided by the meteorological office. Median exposure of the gFOBT test card was 6 days (range 1-17). Median daily maximum temperature was 14°C. Spring and summer illustrated significantly decreased positivity rates compared with autumn and winter (Pearson's chi-squared test, P<0.001). Mean daily maximum temperature for the test card exposure showed no significant difference in positivity rates (P=0.53). Subgroup analysis revealed a significant reduction in positive samples in the >25°C subgroup (P=0.045). There is a seasonal variation in positivity rates of gFOBTs with increased positivity in spring and summer months. There is no difference in positivity rates in relation to ambient temperature except in subgroup analysis where there is a significant reduction in positivity rates above 25°C. © 2011 The Authors. Colorectal Disease © 2011 The Association of Coloproctology of Great Britain and Ireland.

  13. Electromechanical properties of amorphous In-Zn-Sn-O transparent conducting film deposited at various substrate temperatures on polyimide substrate

    NASA Astrophysics Data System (ADS)

    Kim, Young Sung; Lee, Eun Kyung; Eun, Kyoungtae; Choa, Sung-Hoon

    2015-09-01

    The electromechanical properties of the amorphous In-Zn-Sn-O (IZTO) film deposited at various substrate temperatures were investigated by bending, stretching, twisting, and cyclic bending fatigue tests. Amorphous IZTO films were grown on a transparent polyimide substrate using a pulsed DC magnetron sputtering system at different substrate temperatures ranging from room temperature to 200 °C. A single oxide alloyed ceramic target (In2O3: 80 wt %, ZnO: 10 wt %, SnO2: 10 wt % composition) was used. The amorphous IZTO film deposited at 150 °C exhibited an optimized electrical resistivity of 5.8 × 10-4 Ω cm, optical transmittance of 87%, and figure of merit of 8.3 × 10-3 Ω-1. The outer bending tests showed that the critical bending radius decreased as substrate temperature increased. On the other hand, in the inner bending tests, the critical bending radius increased with an increase in substrate temperature. The differences in the bendability of IZTO films for the outer and inner bending tests could be attributed to the internal residual stress of the films. The uniaxial stretching tests also showed the effects of the internal stress on the mechanical flexibility of the film. The bending and stretching test results demonstrated that the IZTO film had higher bendability and stretchability than the conventional ITO film. The IZTO film could withstand 10,000 bending cycles at a bending radius of 10 mm. The effect of the surface roughness on the mechanical durability of all IZTO films was very small due to their very smooth surfaces.

  14. Effect of wall to total temperature ratio variation on heat transfer to the leeside of a space shuttle configuration at M equals 10.3

    NASA Technical Reports Server (NTRS)

    Dunavant, J. C.

    1974-01-01

    An experimental study has been conducted of the influence of wall to total temperature ratio on the heat transfer to the leeside of a 040A space shuttle configuration. The heat transfer tests were made at a Mach number of 10 and a Reynolds number of one million per foot for angles of attack from 0 deg to 30 deg. Range of wall to total temperature ratio was from 0.16 to 0.43. Where the heat transfer was relatively high and the laminar boundary layer attached, the local heat transfer decreased by about 20 percent as the wall to total temperature ratio was increased from the minimum to the maximum test value. On regions of separated flow and vortex reattachment, very low heating rates were measured at some conditions and indicate significant changes are occurring in the leeside flow field. No single trend of heat transfer variation with wall to total temperature ratio could be observed.

  15. A study on tensile deformation at room temperature and 650 °C in the directional solidified Ni-base superalloy GTD-111

    NASA Astrophysics Data System (ADS)

    Pauzi, AA; Ghaffar, MH Abdul; Chang, SY; Ng, GP; Husin, S.

    2017-10-01

    GTD-111 DS generally used for gas turbine blades is a high performance Ni-base superalloy. This alloy, with high volume of γ’ phase, has excellent tensile properties at high temperature. The effect of temperature on the tensile deformation of GTD-111 DS was investigated by using tensile test and microstructure evaluation of the fractured specimens. The tensile behaviour of GTD-111 DS was studied in the room temperature (RT) and 650 °C. From the yield strength results, the yield strength decreases from the average of 702.72 MPa to the average of 645.62 MPa with the increase of temperature from RT to 650 °C. The scanning electron microscope (SEM) results on fractured specimens confirmed that the tensile behaviour affected by deformation of the surface at 650 °C compared to fractured surface at RT. Based on the laboratory testing results, the correlation between tensile deformation of fractured surface and yield strength were discussed.

  16. Microstructures and Mechanical Properties of a Wear-Resistant Alloyed Ductile Iron Austempered at Various Temperatures

    NASA Astrophysics Data System (ADS)

    Cui, Junjun; Chen, Liqing

    2015-08-01

    To further improve the mechanical performance of a new type of alloyed bainitic wear-resistant ductile iron, the effects of the various austempering temperatures have been investigated on microstructure and mechanical behaviors of alloyed ductile iron Fe-3.50C-1.95Si-3.58Ni-0.71Cu-0.92Mo-0.65Cr-0.36Mn (in weight percent). This alloyed ductile iron were firstly austenitized at 1123 K (850 °C) for 1 hour and then austempered in a salt bath at 548 K, 573 K, and 598 K (275 °C, 300 °C, and 325 °C) for 2 hours according to time-temperature-transformation diagram calculated by JMatPro software. The microstructures of austempered wear-resistant ductile irons consist of matrix of dark needle-like ferrite plus bright etching austenite and some amount of martensite and some dispersed graphite nodules. With increasing the austempering temperature, the amount of ferrite decreases in austempered ductile iron, while the amount of austenite and carbon content of austenite increases. There is a gradual decrease in hardness and increase in compressive strength with increasing austempering temperature. The increased austenite content and coarsened austenite and ferrite can lead to a hardness decrease as austempering temperature is increased. The increased compressive strength can be attributed to a decreased amount of martensitic transformation. The alloyed ductile iron behaves rather well wear resistance when the austempering is carried out at 598 K (325 °C) for 2 hours. Under the condition of wear test by dry sand/rubber wheel, the wear mechanisms of austempered ductile irons are both micro-cutting and plastic deformation.

  17. The influence of loading frequency on the high-temperature fatigue behavior of a Nicalon-fabric-reinforced polymer-derived ceramic-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanswijgenhoven, E.; Holmes, J.; Wevers, M.

    Fiber-reinforced ceramic-matrix composites are under development for high-temperature structural applications. These applications involve fatigue loading under a wide range of frequencies. To date, high-temperature fatigue experiments have typically been performed at loading frequencies of 10 Hz or lower. At higher frequencies, a strong effect of loading frequency on fatigue life has been demonstrated for certain CMC`s tested at room temperature. The fatigue life of CMC`s with weak fiber-matrix interfaces typically decreases as the loading frequency increases. This decrease is attributed to frictional heating and frequency dependent interface and fiber damage. More recently, it has been shown that the room temperaturemore » fatigue life of a Nicalon-fabric-reinforced composite with a strong interface (SYLRAMIC{trademark}) appears to be independent of loading frequency. The high-temperature low-frequency fatigue behavior of the SYLRAMIC composite has also been investigated. For a fatigue peak stress {sigma}{sub peak} above a proportional limit stress of 70 MPa, the number of cycles to failure N{sub f} decreased with an increase in {sigma}{sub peak}. The material endured more than 10{sup 6} cycles for {sigma}{sub peak} below 70 MPa. In this paper, the influence of loading frequency on the high-temperature fatigue behavior of the SYLRAMIC composite is reported. It will be shown that the fatigue limit is unaffected by the loading frequency, that the number of fatigue cycles to failure N{sub f} increases with an increase in frequency, and that the time to failure t{sub f} decreases with an increase in frequency.« less

  18. Effects of Storage Duration and Temperature on the Chemical Composition, Microorganism Density, and In vitro Rumen Fermentation of Wet Brewers Grains

    PubMed Central

    Wang, B.; Luo, Y.; Myung, K. H.; Liu, J. X.

    2014-01-01

    This study aimed to investigate the effects of storage duration and temperature on the characteristics of wet brewers grains (WBG) as feeds for ruminant animals. Four storage temperatures (5°C, 15°C, 25°C, and 35°C) and four durations (0, 1, 2, and 3 d) were arranged in a 4×4 factorial design. Surface spoilage, chemical composition and microorganism density were analyzed. An in vitro gas test was also conducted to determine the pH, ammonia-nitrogen and volatile fatty acid (VFA) concentrations after 24 h incubation. Surface spoilage was apparent at higher temperatures such as 25°C and 35°C. Nutrients contents decreased concomitantly with prolonged storage times (p<0.01) and increasing temperatures (p<0.01). The amount of yeast and mold increased (p<0.05) with increasing storage times and temperatures. As storage temperature increased, gas production, in vitro disappearance of organic matter, pH, ammonia nitrogen and total VFA from the WBG in the rumen decreased (p<0.01). Our results indicate that lower storage temperature promotes longer beneficial use period. However, when storage temperature exceeds 35°C, WBG should be used within a day to prevent impairment of rumen fermentation in the subtropics such as Southeast China, where the temperature is typically above 35°C during summer. PMID:25050021

  19. Effect of short-term decrease in water temperature on body temperature and involvement of testosterone in steelhead and rainbow trout, Oncorhynchus mykiss.

    PubMed

    Miura, Go; Munakata, Arimune; Yada, Takashi; Schreck, Carl B; Noakes, David L G; Matsuda, Hiroyuki

    2013-09-01

    The Pacific salmonid species Oncorhynchus mykiss is separated into a migratory form (steelhead trout) and a non-migratory form (rainbow trout). A decrease in water temperature is likely a cue triggering downstream behavior in the migratory form, and testosterone inhibits onset of this behavior. To elucidate differences in sensitivity to water temperature decreases between the migratory and non-migratory forms and effect of testosterone on the sensitivity, we examined two experiments. In experiment 1, we compared changes in body temperature during a short-term decrease in water temperature between both live and dead steelhead and rainbow trout. In experiment 2, we investigated effects of testosterone on body temperature decrease in steelhead trout. Water temperature was decreased by 3°C in 30min. The body temperature of the steelhead decreased faster than that of the rainbow trout. In contrast, there was no significant difference in the decrease in body temperature between dead steelhead and rainbow trout specimens. The body temperature of the testosterone-treated steelhead trout decreased more slowly than that of control fish. Our results suggest that the migratory form is more sensitive to decreases in water temperature than the non-migratory form. Moreover, testosterone might play an inhibitory role in sensitivity to such decreases. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Solar Array at Very High Temperatures: Ground Tests

    NASA Technical Reports Server (NTRS)

    Vayner, Boris

    2016-01-01

    Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 V) or to operate at higher voltages with encapsulated of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between coverglass and conductive spacecraft body in a kilovolt range. In such a case, weakly conductive layer over coverglass (ITO) is one of possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of -150 C +110 C. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to Sun. Conductive layer over coverglass causes sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating material (RTV), radiative heating of coupon in vacuum chamber becomes practically impossible above 150 C, conductivities of glass and adhesive go up with temperature that decrease array efficiency, and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 200 C. The dependence of leakage current on temperature was measured, and electrostatic cleanness was verified for coupons with antireflection (AR) coating over ITO layer.

  1. Transition of the Laminar Boundary Layer on a Delta Wing with 74 degree Sweep in Free Flight at Mach Numbers from 2.8 to 5.3

    NASA Technical Reports Server (NTRS)

    Chapman, Gary T.

    1961-01-01

    The tests were conducted at Mach numbers from 2.8 to 5.3, with model surface temperatures small compared to boundary-layer recovery temperature. The effects of Mach number, temperature ratio, unit Reynolds number, leading-edge diameter, and angle of attack were investigated in an exploratory fashion. The effect of heat-transfer condition (i.e., wall temperature to total temperature ratio) and Mach number can not be separated explicitly in free-flight tests. However, the data of the present report, as well as those of NACA TN 3473, were found to be more consistent when plotted versus temperature ratio. Decreasing temperature ratio increased the transition Reynolds number. The effect of unit Reynolds number was small as was the effect of leading-edge diameter within the range tested. At small values of angle of attack, transition moved forward on the windward surface and rearward on the leeward surface. This trend was reversed at high angles of attack (6 deg to 18 deg). Possible reasons for this are the reduction of crossflow on the windward side and the influence of the lifting vortices on the leeward surface. When the transition results on the 740 delta wing were compared to data at similar test conditions for an unswept leading edge, the results bore out the results of earlier research at nearly zero heat transfer; namely, sweep causes a large reduction in the transition Reynolds number.

  2. Effects of Elevated CO2 and Temperature on Yield and Fruit Quality of Strawberry (Fragaria × ananassa Duch.) at Two Levels of Nitrogen Application

    PubMed Central

    Sun, Peng; Mantri, Nitin; Lou, Heqiang; Hu, Ya; Sun, Dan; Zhu, Yueqing; Dong, Tingting; Lu, Hongfei

    2012-01-01

    We investigated if elevated CO2 could alleviate the negative effect of high temperature on fruit yield of strawberry (Fragaria × ananassa Duch. cv. Toyonoka) at different levels of nitrogen and also tested the combined effects of CO2, temperature and nitrogen on fruit quality of plants cultivated in controlled growth chambers. Results show that elevated CO2 and high temperature caused a further 12% and 35% decrease in fruit yield at low and high nitrogen, respectively. The fewer inflorescences and smaller umbel size during flower induction caused the reduction of fruit yield at elevated CO2 and high temperature. Interestingly, nitrogen application has no beneficial effect on fruit yield, and this may be because of decreased sucrose export to the shoot apical meristem at floral transition. Moreover, elevated CO2 increased the levels of dry matter-content, fructose, glucose, total sugar and sweetness index per dry matter, but decreased fruit nitrogen content, total antioxidant capacity and all antioxidant compounds per dry matter in strawberry fruit. The reduction of fruit nitrogen content and antioxidant activity was mainly caused by the dilution effect of accumulated non-structural carbohydrates sourced from the increased net photosynthetic rate at elevated CO2. Thus, the quality of strawberry fruit would increase because of the increased sweetness and the similar amount of fruit nitrogen content, antioxidant activity per fresh matter at elevated CO2. Overall, we found that elevated CO2 improved the production of strawberry (including yield and quality) at low temperature, but decreased it at high temperature. The dramatic fluctuation in strawberry yield between low and high temperature at elevated CO2 implies that more attention should be paid to the process of flower induction under climate change, especially in fruits that require winter chilling for reproductive growth. PMID:22911728

  3. Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. P.; Ruggles-Wrenn, M. B.

    2017-12-01

    Tension-tension fatigue behavior of two polymer matrix composites (PMCs) was studied at elevated temperature. The two PMCs consist of the NRPE polyimide matrix reinforced with carbon fibers, but have different fiber architectures: the 3D PMC is a singly-ply non-crimp 3D orthogonal weave composite and the 2D PMC, a laminated composite reinforced with 15 plies of an eight harness satin weave (8HSW) fabric. In order to assess the performance and suitability of the two composites for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all elevated temperature tests performed in this work, one side of the test specimen was at 329 °C while the other side was open to ambient laboratory air. The tensile stress-strain behavior of the two composites was investigated and the tensile properties measured for both on-axis (0/90) and off-axis (±45) fiber orientations. Elevated temperature had little effect on the on-axis tensile properties of the two composites. The off-axis tensile strength of both PMCs decreased slightly at elevated temperature. Tension-tension fatigue tests were conducted at elevated temperature at a frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R = 0.05. Fatigue run-out was defined as 2 × 105 cycles. Both strain accumulation and modulus evolution during cycling were analyzed for each fatigue test. The laminated 2D PMC exhibited better fatigue resistance than the 3D composite. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Post-test examination under optical microscope revealed severe delamination in the laminated 2D PMC. The non-crimp 3D orthogonal weave composite offered improved delamination resistance.

  4. Lower skin temperature decreases maximal cycling performance.

    PubMed

    Imai, Daiki; Okazaki, Kazunobu; Matsumura, Shinya; Suzuki, Takashi; Miyazawa, Taiki; Suzuki, Akina; Takeda, Ryosuke; Hamamoto, Takeshi; Zako, Tetsuo; Kawabata, Takashi; Miyagawa, Toshiaki

    2011-12-01

    It is known that external cooling of body regions involved in exercise, prior to exercise, decreases anaerobic performance. However, there have been no studies reporting the effects of whole body skin surface cooling before exercise on maximal anaerobic capacity. In order to clarify the effects, we compared power output during the Wingate anaerobic test between preconditioning by exposure to temperature 10 degrees C and 25 degrees C. Eight healthy males carried out the Wingate test for 30 seconds, after pre-conditioning for 60 minutes using a perfusion suit with water at a temperature of 10 degrees C or 25 degrees C. We evaluated the peak power (PP) and peak power slope (PS) of the power output. Mean skin temperature (T(sk)) at 60 minutes of pre-conditioning in the 10 degrees C trial was significantly lower than in the 25 degrees C trial (p < 0.05). PP and also PS were significantly lower in the 10 degrees C trial than in the 25 degrees C trial. Changes (Δ) in PP between the 10 degrees C trial and the 25 degrees C trial were strongly correlated with ΔT(sk) and Δ in thigh and leg skin temperature (ΔT(thigh) and ΔT(leg), respectively), whereas ΔPS was strongly correlated with ΔT(sk), but not with ΔT(thigh) and ΔT(leg). Whole body skin surface cooling prior to exercise restricts anaerobic capacity, especially in the initial phase of exercise.

  5. Rheological study of the effect of polyethylene oxide (PEO) homopolymer on the gelation of PEO-PPO-PEO triblock copolymer in aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Xiaolei; Hyun, Kyu

    2018-05-01

    The effects of polyethylene oxide (PEO) homopolymer on the gelation behavior of a PEO100-PPO65-PEO100 triblock copolymer (Pluronic F127) were explored in aqueous solution under non-isothermal and isothermal conditions. Under non-isothermal conditions (temperature sweep test), two transition points were observed on increasing temperature, that is, at lower and upper gelation temperatures (LTgel and UTgel, respectively). Between LTgel and UTgel, F127 aqueous solutions maintained a hard gel state. Both molecular weight (MW) and PEO concentration affected these two gelation temperatures. In particular, relative molecular weight (MWrel ≡ molecular weight of PEO homopolymer/PEO segment of F127) affected LTgel. LTgel decreased on increasing PEO concentration at MWrel values of <1, but increased on increasing PEO concentration at MWrel values of >1. On the other hand, UTgel decreased with increasing PEO concentration regardless of MWrel. Under isothermal conditions (fixed temperature between LTgel and UTgel), the effects of PEO homopolymer on the mechanical properties of F127 hard gel were systemically investigated using small and large amplitude oscillatory shear tests. In the linear viscoelastic regime, total intra-cycle stress and elastic intra-cycle stress were similar, and viscous response increased on increasing PEO concentration. However, at large strain amplitudes, hard gels showed intra-cycle stiffening but inter-cycle softening behavior. In addition, on increasing PEO concentrations, viscous nonlinearities underwent strain-rate thickening followed by strain-rate thinning.

  6. Influence of Secondary Cyclic Hardening on the Low Cycle Fatigue Behavior of Nitrogen Alloyed 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Mathew, M. D.; Sankaran, S.

    2013-12-01

    In this article, the occurrence of secondary cyclic hardening (SCH) and its effect on high-temperature cyclic deformation and fatigue life of 316LN Stainless steel are presented. SCH is found to result from planar slip mode of deformation and enhance the degree of hardening over and above that resulted from dynamic strain aging. The occurrence of SCH is strongly governed by the applied strain amplitude, test temperature, and the nitrogen content in the 316LN SS. Under certain test conditions, SCH is noticed to decrease the low cycle fatigue life with the increasing nitrogen content.

  7. The Collection of Ice in Jet A-1 Fuel Pipes

    NASA Astrophysics Data System (ADS)

    Maloney, Thomas C.

    Ice collection and blockages in fuel systems have been of interest to the aerospace community since their discovery in the late 1950's when a B-52 crashed. A recent growth of interest was provoked by several incidents that occurred within the last few years. This study seeks to understand the underlying principles of ice growth in fuel flow systems. Tests were performed in a recirculated fuel system with a fuel tank that held approximately 115 gallons of Jet A-1 fuel and ice accumulation was observed in two removable test pipes. The setup was in an altitude chamber capable of -60 °F and the experiments involved full scale flow components. Initially, tests were done to better understand the system and variables that effected accumulation. First, initial conditions within the test pipes were varied. Next, pipe geometry, pipe surface properties, initial water content of the fuel and heat transfer from the fuel pipe were varied. As a result of the tests, observations were made about other effects involved in the study. The effects include: the result of sequentially run tests, the effect of the fuel on the freezing temperature of the entrained water, the effect of ice accumulation on pipe welds, and the effect of the test pipe entrance and exit flow conditions on ice accumulation. The results of initial tests were qualitative. Later quantitative tests were done to demonstrate the dependence of temperature, Reynolds number, and heat transfer on ice accumulation. Tests were quantified with a pressure increase across the pipe sections that was normalized by the expected theoretical initial pressure. As a result of these tests the effect of contamination in the fuel was revealed. For ease of reference, the initial tests were called "stage I" and the later tests were called "stage II". The results of stage I showed that accumulation of soft ice was greatest when a layer of hard ice had initially formed on the pipe surface. Stainless steel collected more ice than Teflon® and there was a lack of a preferential accumulation region downstream of a pipe bend. A greater heat transfer from the pipe increased ice accumulation for aluminum that was made rough with 80 grit sand paper, and for Teflon®. Water was shown to collect in the pipe system as the number of tests increased and the freeze temperature of either the hard or soft ice was about 0 °C. Finally, results of "stage I" tests showed that stainless steel pipe welds were a preferred sight for ice to accumulate. Repeatability was done first in stage II and the normalized pressure increase for two 3/42 un-insulated pipe tests were within 7%. Normalized pressure increase across a pipe was shown to increase as Reynolds number decreased. A 50% increase in Reynolds number led to a 40% decrease in characteristic normalized pressure increase (CNPI). Tests were done at three temperatures and ice accumulated the most at -11 °C. The CNPI at -11 °C was about three times greater than the CNPI at -7.4 °C and about sixty times greater than the CNPI at -19.4 C. A greater heat transfer from the fuel pipe increased ice accumulation. For the amount of time that the tests ran, the total normalized pressure increase was about .9 greater for an un-insulated pipe than for an insulated pipe. Contamination in the fuel increased the amount of soft ice that collected in the system. The CNPI for the more contaminated fuel was more than double the case with less contaminated fuel. Possible solutions for the prevention or decrease of ice accumulation in aircraft fuel systems based on the results of this study are insulated pipes, a change in the type of pipe material, a higher fuel flow rate and cleaner fuel. The fuel temperature could also be altered to avoid temperatures where the most ice accumulates.

  8. Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube

    NASA Astrophysics Data System (ADS)

    Yoon, Jung-In; Son, Chang-Hyo; Jung, Suk-Ho; Jeon, Min-Ju; Yang, Dong-Il

    2017-05-01

    In this paper, the evaporation heat transfer coefficient of carbon dioxide at low temperature of -30 to -20 °C in a horizontal smooth tube was investigated experimentally. The test devices consist of mass flowmeter, pre-heater, magnetic gear pump, test section (evaporator), condenser and liquid receiver. Test section is made of cooper tube. Inner and outer diameter of the test section is 8 and 9.52 mm, respectively. The experiment is conducted at mass fluxes from 100 to 300 kg/m2 s, saturation temperature from -30 to -20 °C. The main results are summarized as follows: In case that the mass flux of carbon dioxide is 100 kg/m2 s, the evaporation heat transfer coefficient is almost constant regardless of vapor quality. In case of 200 and 300 kg/m2 s, the evaporation heat transfer coefficient increases steadily with increasing vapor quality. For the same mass flux, the evaporation heat transfer coefficient increases as the evaporation temperature of the refrigerant decreases. In comparison of heat transfer correlations with the experimental result, the evaporation heat transfer correlations do not predict them exactly. Therefore, more accurate heat transfer correlation than the previous one is required.

  9. Packaging Technology Developed for High-Temperature Silicon Carbide Microsystems

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.

    2001-01-01

    High-temperature electronics and sensors are necessary for harsh-environment space and aeronautical applications, such as sensors and electronics for space missions to the inner solar system, sensors for in situ combustion and emission monitoring, and electronics for combustion control for aeronautical and automotive engines. However, these devices cannot be used until they can be packaged in appropriate forms for specific applications. Suitable packaging technology for operation temperatures up to 500 C and beyond is not commercially available. Thus, the development of a systematic high-temperature packaging technology for SiC-based microsystems is essential for both in situ testing and commercializing high-temperature SiC sensors and electronics. In response to these needs, researchers at Glenn innovatively designed, fabricated, and assembled a new prototype electronic package for high-temperature electronic microsystems using ceramic substrates (aluminum nitride and aluminum oxide) and gold (Au) thick-film metallization. Packaging components include a ceramic packaging frame, thick-film metallization-based interconnection system, and a low electrical resistance SiC die-attachment scheme. Both the materials and fabrication process of the basic packaging components have been tested with an in-house-fabricated SiC semiconductor test chip in an oxidizing environment at temperatures from room temperature to 500 C for more than 1000 hr. These test results set lifetime records for both high-temperature electronic packaging and high-temperature electronic device testing. As required, the thick-film-based interconnection system demonstrated low (2.5 times of the room-temperature resistance of the Au conductor) and stable (decreased 3 percent in 1500 hr of continuous testing) electrical resistance at 500 C in an oxidizing environment. Also as required, the electrical isolation impedance between printed wires that were not electrically joined by a wire bond remained high (greater than 0.4 GW) at 500 C in air. The attached SiC diode demonstrated low (less than 3.8 W/mm2) and relatively consistent dynamic resistance from room temperature to 500 C. These results indicate that the prototype package and the compatible die-attach scheme meet the initial design standards for high-temperature, low-power, and long-term operation. This technology will be further developed and evaluated, especially with more mechanical tests of each packaging element for operation at higher temperatures and longer lifetimes.

  10. Phasic and tonic fluctuations in brain, muscle, and skin temperatures during motivated drinking behavior in rats: physiological correlates of motivation and reward.

    PubMed

    Smirnov, Michael S; Kiyatkin, Eugene A

    2010-01-15

    Since brain metabolism is accompanied by heat production, measurement of brain temperature offers a method for assessing global alterations in metabolic neural activity. This approach, high-resolution (5-s bin) temperature recording from the nucleus accumbens (NAcc), temporal muscle, and facial skin, was used to study motivated drinking behavior in rats. Experienced animals were presented with a cup containing 5-ml of Coca-Cola(R) (Coke) beverage that resulted, within certain latencies, in initiation of a continuous chain of licking until all liquid was fully consumed. While cup presentation induced rapid, gradual NAcc temperature increase peaking at the start of drinking, temperatures slowly decreased during Coke consumption, but phasically increased again in the post-consumption period when rats were hyperactive, showing multiple interactions with an empty cup. Muscle temperatures followed a similar pattern, but the changes were weaker and delayed compared to those in the brain. Skin temperature rapidly dropped after cup presentation, steadily maintained at low levels during consumption, and slowly restored during the post-consumption period. Substitution of the expected Coke with either sugar-free Diet Coke(R) or water resulted in numerous drinking attempts but ultimately no consumption. During these tests, locomotor activation was much greater and more prolonged, brain and muscle temperatures increased monophasically, and their elevation was significantly greater than that with regular Coke tests. Food deprivation decreased drinking latencies, did not change the pattern of temperature fluctuations during Coke consumption, but temperature elevations were greater than in controls. Our data suggest sustained neural activation triggered by appetitive stimuli and associated with activational (seeking) aspects of appetitive motivated behavior. This seeking-related activation is rapidly ceased following consumption, suggesting this change as a neural correlate of reward. In contrast, inability to obtain an expected reward maintains neural activation and seeking behavior, resulting in larger deviations in physiological parameters. Published by Elsevier B.V.

  11. Phasic and tonic fluctuations in brain, muscle and skin temperatures during motivated drinking behavior in rats: physiological correlates of motivation and reward

    PubMed Central

    Smirnov, Michael S.; Kiyatkin, Eugene A.

    2009-01-01

    Since brain metabolism is accompanied by heat production, measurement of brain temperature offers a method for assessing global alterations in metabolic neural activity. This approach, high-resolution (5-s bin) temperature recording from the nucleus accumbens (NAcc), temporal muscle, and facial skin, was used to study motivated drinking behavior in rats. Experienced animals were presented with a cup containing 5-ml of Coca-Cola® (Coke) beverage that resulted, within certain latencies, in initiation of a continuous chain of licking until all liquid was fully consumed. While cup presentation induced rapid, gradual NAcc temperature increase peaking at the start of drinking, temperatures slowly decreased during Coke consumption, but phasically increased again in the post-consumption period when rats were hyperactive, showing multiple interactions with an empty cup. Muscle temperatures followed a similar pattern, but the changes were weaker and delayed compared to those in the brain. Skin temperature rapidly dropped after cup presentation, steadily maintained at low levels during consumption, and slowly restored during the post-consumption period. Substitution of the expected Coke with either sugar-free Diet Coke® or water resulted in numerous drinking attempts but ultimately no consumption. During these tests, locomotor activation was much greater and more prolonged, brain and muscle temperatures increased monophasically, and their elevation was significantly greater than that with regular Coke tests. Food deprivation decreased drinking latencies, did not change the pattern of temperature fluctuations during Coke consumption, but temperature elevations were greater than in controls. Our data suggest sustained neural activation triggered by appetitive stimuli and associated with activational (seeking) aspects of appetitive motivated behavior. This seeking-related activation is rapidly ceased following consumption, suggesting this change as a neural correlate of reward. In contrast, inability to obtain an expected reward maintains neural activation and seeking behavior, resulting in larger deviations in physiological parameters. PMID:19932691

  12. Preparation of high-strength Al-Mg-Si-Cu-Fe alloy via heat treatment and rolling

    NASA Astrophysics Data System (ADS)

    Liu, Chong-yu; Yu, Peng-fei; Wang, Xiao-ying; Ma, Ming-zhen; Liu, Ri-ping

    2014-07-01

    An Al-Mg-Si-Cu-Fe alloy was solid-solution treated at 560°C for 3 h and then cooled by water quenching or furnace cooling. The alloy samples which underwent cooling by these two methods were rolled at different temperatures. The microstructure and mechanical properties of the rolled alloys were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and tensile testing. For the water-quenched alloys, the peak tensile strength and elongation occurred at a rolling temperature of 180°C. For the furnace-cooled alloys, the tensile strength decreased initially, until the rolling temperature of 420°C, and then increased; the elongation increased consistently with increasing rolling temperature. The effects of grain boundary hardening and dislocation hardening on the mechanical properties of these rolled alloys decreased with increases in rolling temperature. The mechanical properties of the 180°C rolling water-quenched alloy were also improved by the presence of β″ phase. Above 420°C, the effect of solid-solution hardening on the mechanical properties of the rolled alloys increased with increases in rolling temperature.

  13. Constitutive modeling and dynamic softening mechanism during hot deformation of an ultra-pure 17%Cr ferritic stainless steel stabilized with Nb

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Liu, Zhenyu; Misra, R. D. K.; Liu, Haitao; Yu, Fuxiao

    2014-09-01

    The hot deformation behavior of an ultra-pure 17%Cr ferritic stainless steel was studied in the temperature range of 750-1000 °C and strain rates of 0.5 to 10 s-1 using isothermal hot compression tests in a thermomechanical simulator. The microstructural evolution was investigated using electron backscattered diffraction and transmission electron microscopy. A modified constitutive equation considering the effect of strain on material constant was developed, which predicted the flow stress for the deformation conditions studied, except at 950 °C in 1 s-1 and 900 °C in 10 s-1. Decreasing deformation temperature and increasing strain was beneficial in refining the microstructure. Decreasing deformation temperature, the in-grain shear bands appeared in the microstructure. It is suggested that the dynamic softening mechanism is closely related to deformation temperature. At low deformation temperature, dynamic recovery was major softening mechanism and no dynamic recrystallization occurred. At high deformation temperature, dynamic softening was explained in terms of efficient dynamic recovery and limited continuous dynamic recrystallization. A drop in the flow stress was not found due to very small fraction of new grains nucleated during dynamic recrystallization.

  14. CO2 Acquisition Membrane (CAM)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport mechanisms. The Membrane Test Facility (MTF) has been developed to measure membrane permeance over a wide range of temperature and pressure. The facility uses two volume compartments separated by the membrane that are instrumented to measure temperature, delta pressure across the membrane, and gas composition. A thermal shroud supports and encloses the membrane, and provides temperature control. Methods were developed to determine membrane permeance using the first order decay of the pressure difference between the sealed compartments, using the total pressure for pure gases, and partial pressure of each species in gas mixtures. The technique provides an end-to-end measurement of gas permeance that includes concentration polarization effects. Experiments have shown that in addition to membrane permeance properties, the geometry and design of associated structures play an important role in how membrane systems will function on Mars.

  15. The effect of temperature on the low cycle fatigue of type 316L stainless steel over the range 20-200°C

    NASA Astrophysics Data System (ADS)

    Chung, T. E.; Kalantary, M. R.; Faulkner, R. G.; Boutard, J.-L.

    1992-09-01

    Strain-controlled low cycle fatigue tests (with and without tensile hold) were performed on type 316L stainless steel over the temperature range 20-200°C. The results indicate that for strain ranges of less than 1%, the fatigue life was temperature independent. By contrast, for strain ranges of 1% or more, fatigue life decreased significantly as temperature was increased from 20 to approximately 50°C. It then increased with further increases in temperature until approximately 100°C and beyond when it became relatively temperature insensitive. Fatigue life at all temperatures was reduced with the superimposition of a speak tension hold of 50 s. A model based on the temperature-assisted diffusion of interstitial carbon atoms is proposed to explain the phenomenon.

  16. Liquid Oxygen Thermodynamic Vent System Testing with Helium Pressurization

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.

    2014-01-01

    This report presents the results of several thermodynamic vent system (TVS) tests with liquid oxygen plus a test with liquid nitrogen. In all tests, the liquid was heated above its normal boiling point to 111 K for oxygen and 100 K for nitrogen. The elevated temperature was representative of tank conditions for a candidate lunar lander ascent stage. An initial test series was conducted with saturated oxygen liquid and vapor at 0.6 MPa. The initial series was followed by tests where the test tank was pressurized with gaseous helium to 1.4 to 1.6 MPa. For these tests, the helium mole fraction in the ullage was quite high, about 0.57 to 0.62. TVS behavior is different when helium is present than when helium is absent. The tank pressure becomes the sum of the vapor pressure and the partial pressure of helium. Therefore, tank pressure depends not only on temperature, as is the case for a pure liquid-vapor system, but also on helium density (i.e., the mass of helium divided by the ullage volume). Thus, properly controlling TVS operation is more challenging with helium pressurization than without helium pressurization. When helium was present, the liquid temperature would rise with each successive TVS cycle if tank pressure was kept within a constant control band. Alternatively, if the liquid temperature was maintained within a constant TVS control band, the tank pressure would drop with each TVS cycle. The final test series, which was conducted with liquid nitrogen pressurized with helium, demonstrated simultaneous pressure and temperature control during TVS operation. The simultaneous control was achieved by systematic injection of additional helium during each TVS cycle. Adding helium maintained the helium partial pressure as the liquid volume decreased because of TVS operation. The TVS demonstrations with liquid oxygen pressurized with helium were conducted with three different fluid-mixer configurations-a submerged axial jet mixer, a pair of spray hoops in the tank ullage, and combined use of the axial jet and spray hoops. A submerged liquid pump and compact heat exchanger located inside the test tank were used with all the mixer configurations. The initial series without helium and the final series with liquid nitrogen both used the axial jet mixer. The axial jet configuration successfully demonstrated the ability to control tank pressure; but in the normal-gravity environment, the temperature in the upper tank region (ullage and unwetted wall) was not controlled. The spray hoops and axial jet combination also successfully demonstrated pressure control as well as temperature control of the entire tank and contents. The spray-hoops-only configuration was not expected to be a reliable means of tank mixing because there was no direct means to produce liquid circulation. However, surprisingly good results also were obtained with the sprayhoops- only configuration (i.e., performance metrics such as cycle-averaged vent flowrate were similar to those obtained with the other configurations). A simple thermodynamic model was developed that correctly predicted the TVS behavior (temperature rise or pressure drop per TVS cycle) when helium was present in the ullage. The model predictions were correlated over a range of input parameters. The correlations show that temperature rise or pressure drop per cycle was proportional to both helium mole fraction and tank heat input. The response also depended on the tank fill fraction: the temperature rise or pressure drop (per TVS cycle) increased as the ullage volume decreased.

  17. Is the Pearl River basin, China, drying or wetting? Seasonal variations, causes and implications

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Jianfeng; Gu, Xihui; Shi, Peijun

    2018-07-01

    Soil moisture plays crucial roles in the hydrological cycle and is also a critical link between land surface and atmosphere. The Pearl River basin (PRb) is climatically subtropical and tropical and is highly sensitive to climate changes. In this study, seasonal soil moisture changes across the PRb were analyzed using the Variable Infiltration Capacity (VIC) model forced by the gridded 0.5° × 0.5° climatic observations. Seasonal changes of soil moisture in both space and time were investigated using the Mann-Kendall trend test method. Potential influencing factors behind seasonal soil moisture changes such as precipitation and temperature were identified using the Maximum Covariance Analysis (MCA) technique. The results indicated that: (1) VIC model performs well in describing changing properties of soil moisture across the PRb; (2) Distinctly different seasonal features of soil moisture can be observed. Soil moisture in spring decreased from east to west parts of the PRb. In summer however, soil moisture was higher in east and west parts but was lower in central parts of the PRb; (3) A significant drying trend was identified over the PRb in autumn, while no significant drying trends can be detected in other seasons; (4) The increase/decrease in precipitation can generally explain the wetting/drying tendency of soil moisture. However, warming temperature contributed significantly to the drying trends and these drying trends were particularly evident during autumn and winter; (5) Significant decreasing precipitation and increasing temperature combined to trigger substantially decreasing soil moisture in autumn. In winter, warming temperature is the major reason behind decreased soil moisture although precipitation is in slightly decreasing tendency. Season variations of soil moisture and related implications for hydro-meteorological processes in the subtropical and tropical river basins over the globe should arouse considerable human concerns.

  18. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature

    NASA Astrophysics Data System (ADS)

    Kizilel, R.; Lateef, A.; Sabbah, R.; Farid, M. M.; Selman, J. R.; Al-Hallaj, S.

    A strategy for portable high-power applications with a controlled thermal environment has been developed and has demonstrated the advantage of using the novel phase change material (PCM) thermal management systems over conventional active cooling systems. A passive thermal management system using PCM for Li-ion batteries is tested for extreme conditions, such as ambient temperature of 45 °C and discharge rate of 2.08 C-rate (10 A). Contrary to Li-ion packs without thermal management system, high-energy packs with PCM are discharged safely at high currents and degrading rate of capacity of the Li-ion packs lowered by half. Moreover, the compactness of the packs not only decreases the volume occupied by the packs and its associated complex cooling system, but also decreases the total weight for large power application.

  19. Utilization of solar energy in sewage sludge composting: fertilizer effect and application.

    PubMed

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-11-01

    Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55°C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Risky Adaptation: The Effect of Temperature Extremes on HIV Prevalence

    NASA Astrophysics Data System (ADS)

    Baker, R.

    2016-12-01

    Previous work has linked rainfall shock to an increase in HIV prevalence in Sub-Saharan Africa. In this paper we take advantage of repeated waves of the Demographic and Health Survey (DHS) and a new high resolution climate dataset for the African continent to test the non-linear relationship between temperature and HIV. We find a strong and significant relationship between recent high temperatures and increases in HIV prevalence in a region. We then test the effect of temperature on risk factors that may contribute to this increase. High temperatures are linked to an increase in sexual violence, number of partners and a decrease in condom usage - all of which may contribute to the uptake in HIV rate. This paper contributes to the literature on adaptation from two standpoints. First, we suggest that some behavioral changes that are classed as adaptations, in the sense that they allow for consumption smoothing in the face of extreme temperatures, may carry unexpected risks to the individuals involved. Second, we find preliminary evidence that the relationship between temperature and these risky behaviors is diminished in regions prone to higher temperatures, suggesting some adaptation is possible in the long run.

  1. Prony series spectra of structural relaxation in N-BK7 for finite element modeling.

    PubMed

    Koontz, Erick; Blouin, Vincent; Wachtel, Peter; Musgraves, J David; Richardson, Kathleen

    2012-12-20

    Structural relaxation behavior of N-BK7 glass was characterized at temperatures 20 °C above and below T(12) for this glass, using a thermo mechanical analyzer (TMA). T(12) is a characteristic temperature corresponding to a viscosity of 10(12) Pa·s. The glass was subject to quick temperature down-jumps preceded and followed by long isothermal holds. The exponential-like decay of the sample height was recorded and fitted using a unique Prony series method. The result of his method was a plot of the fit parameters revealing the presence of four distinct peaks or distributions of relaxation times. The number of relaxation times decreased as final test temperature was increased. The relaxation times did not shift significantly with changing temperature; however, the Prony weight terms varied essentially linearly with temperature. It was also found that the structural relaxation behavior of the glass trended toward single exponential behavior at temperatures above the testing range. The result of the analysis was a temperature-dependent Prony series model that can be used in finite element modeling of glass behavior in processes such as precision glass molding (PGM).

  2. Fatigue crack growth rates in a pressure vessel steel under various conditions of loading and the environment

    NASA Astrophysics Data System (ADS)

    Hicks, P. D.; Robinson, F. P. A.

    1986-10-01

    Corrosion fatigue (CF) tests have been carried out on SA508 Cl 3 pressure vessel steel, in simulated P.W.R. environments. The test variables investigated included air and P.W.R. water environments, frequency variation over the range 1 Hz to 10 Hz, transverse and longitudinal crack growth directions, temperatures of 20 °C and 50 °C, and R-ratios of 0.2 and 0.7. It was found that decreasing the test frequency increased fatigue crack growth rates (FCGR) in P.W.R. environments, P.W.R. environment testing gave enhanced crack growth (vs air tests), FCGRs were greater for cracks growing in the longitudinal direction, slight increases in temperature gave noticeable accelerations in FCGR, and several air tests gave FCGR greater than those predicted by the existing ASME codes. Fractographic evidence indicates that FCGRs were accelerated by a hydrogen embrittlement mechanism. The presence of elongated MnS inclusions aided both mechanical fatigue and hydrogen embrittlement processes, thus producing synergistically fast FCGRs. Both anodic dissolution and hydrogen embrittlement mechanisms have been proposed for the environmental enhancement of crack growth rates. Electrochemical potential measurements and potentiostatic tests have shown that sample isolation of the test specimens from the clevises in the apparatus is not essential during low temperature corrosion fatigue testing.

  3. Comparison of influence of ageing on low-temperature characteristics of asphalt mixtures

    NASA Astrophysics Data System (ADS)

    Vacková, Pavla; Valentin, Jan; Benešová, Lucie

    2017-09-01

    Ability of relaxation of asphalt mixtures and thus its resilience to climate change and traffic load is decreasing by influence of aging - in this case aging of bituminous binder. Binder exposed to climate and UV ages and becomes more fragile and susceptible to damage. The results of the research presented in this paper are aimed to finding a correlation between low-temperature properties of referential and aged asphalt mixture specimens and characteristics (not low-temperature) of bituminous binders. In this research there were used conventional road binders, commonly used modified binders and binders additionally modified in the laboratory. The low-temperature characteristics were determined by strength flexural test, commonly used in the Czech Republic for High Modulus Asphalt Mixtures (TP 151), and semi-cylindrical bending test (EN 12697-44). Both of the tests were extended by specimens exposed to artificial long-term aging (EN 12697-52) - storing at 85° C for 5 days. The results were compared with characteristics of binders for finding a suitable correlation between characteristics of binders and asphalt mixtures.

  4. Effect of Heat Input and Post-Weld Heat Treatment on the Mechanical and Metallurgical Characteristics of Laser-Welded Maraging Steel Joints

    NASA Astrophysics Data System (ADS)

    Karthikeyan, R.; Saravanan, M.; Singaravel, B.; Sathiya, P.

    This paper investigates the impact of heat input and post-weld aging behavior at different temperatures on the laser paper welded maraging steel grade 250. Three different levels of heat inputs were chosen and CO2 laser welding was performed. Aging was done at six different temperatures: 360∘C, 400∘C, 440∘C, 480∘C, 520∘C and 560∘C. The macrostructure and microstructure of the fusion zone were obtained using optical microscope. The microhardness test was performed on the weld zone. Tensile tests and impact tests were carried out for the weld samples and different age-treated weld samples. Fracture surfaces were investigated by scanning electron microscopy (SEM). Microhardness values of the fusion zone increased with increasing aging temperature, while the base metal microhardness value decreased. Tensile properties increased with aging temperature up to 480∘C and reduced for 520∘C and 560∘C. This was mainly due to the formation of reverted austenite beyond 500∘C. XRD analysis confirmed the formation of reverted austenite.

  5. Difference in the Dissolution Behaviors of Tablets Containing Polyvinylpolypyrrolidone (PVPP) Depending on Pharmaceutical Formulation After Storage Under High Temperature and Humid Conditions.

    PubMed

    Takekuma, Yoh; Ishizaka, Haruka; Sumi, Masato; Sato, Yuki; Sugawara, Mitsuru

    Storage under high temperature and humid conditions has been reported to decrease the dissolution rate for some kinds of tablets containing polyvinylpolypyrrolidone (PVPP) as a disintegrant. The aim of this study was to elucidate the properties of pharmaceutical formulations with PVPP that cause a decrease in the dissolution rate after storage under high temperature and humid conditions by using model tablets with a simple composition. Model tablets, which consisted of rosuvastatin calcium or 5 simple structure compounds, salicylic acid, 2-aminodiphenylmethane, 2-aminobiphenyl, 2-(p-tolyl)benzoic acid or 4.4'-biphenol as principal agents, cellulose, lactose hydrate, PVPP and magnesium stearate as additives, were made by direct compression. The model tables were wrapped in paraffin papers and stored for 2 weeks at 40°C/75% relative humidity (RH). Dissolution tests were carried out by the paddle method in the Japanese Pharmacopoeia 16th edition. Model tablets with a simple composition were able to reproduce a decreased dissolution rate after storage at 40°C/75% RH. These tablets showed significantly decreased water absorption activities after storage. In the case of tablets without lactose hydrate by replacing with cellulose, a decreased dissolution rate was not observed. Carboxyl and amino groups in the structure of the principal agent were not directly involved in the decreased dissolution. 2-Benzylaniline tablets showed a remarkably decreased dissolution rate and 2-aminobiphenyl and 2-(p-tolyl)benzoic acid tablets showed slightly decreased dissolution rates, though 4,4'-biphenol tablets did not show a decrease dissolution rate. We demonstrated that additives and structure of the principal agent were involved in the decreased in dissolution rate for tablets with PVPP. The results suggested that one of the reasons for a decreased dissolution rate was the inclusion of lactose hydrate in tablets. The results also indicated that compounds as principal agents with low affinity for PVPP may be easily affected by airborne water under high temperature and humid conditions. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  6. Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load.

    PubMed

    Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai

    2016-10-13

    This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C.

  7. Continuous measurement of tympanic temperature with a new infrared method using an optical fiber.

    PubMed

    Shibasaki, M; Kondo, N; Tominaga, H; Aoki, K; Hasegawa, E; Idota, Y; Moriwaki, T

    1998-09-01

    The purpose of this study was to investigate the utility of an infrared tympanic thermometry by using an optical fiber for measuring tympanic temperature (Tty). In the head cooling and facial fanning tests during normothermia, right Tty measured by this method (infrared-Tty) and esophageal temperature (Tes) were not affected by decreased temple and forehead skin temperatures, suggesting that the infrared sensor in this system measured the infrared radiation from the tympanic membrane selectively. Eight male subjects took part in passive-heat-stress and progressive-exercise tests. No significant differences among infrared-Tty, the left Tty measured by thermistor (contact-Tty), and Tes were observed at rest or at the end of each experiment, and there was no significant difference in the increase in these core temperatures from rest to the end. Furthermore, there were no significant differences in the core temperature threshold at the onset of sweating and slope (the relationship of sweating rate vs. infrared-Tty and vs. contact-Tty). These results suggest that this method makes it possible to measure Tty accurately, continuously, and more safely.

  8. Deformation Mechanism Map of Cu/Nb Nanoscale Metallic Multilayers as a Function of Temperature and Layer Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snel, J.; Monclús, M. A.; Castillo-Rodríguez, M.

    The mechanical properties and deformation mechanisms of Cu/Nb nanoscale metallic multilayers (NMMs) manufactured by accumulative roll bonding are studied at 25°C and 400°C. Cu/Nb NMMs with individual layer thicknesses between 7 nm and 63 nm were tested by in situ micropillar compression inside a scanning electron microscope. Yield strength, strain-rate sensitivities and activation volumes were obtained from the pillar compression tests. The deformed micropillars were examined under scanning and transmission electron microscopy in order to examine the deformation mechanisms active for different layer thicknesses and temperatures. The paper suggests that room temperature deformation was determined by dislocation glide at largermore » layer thicknesses and interface-related mechanisms at the thinner layer thicknesses. The high-temperature compression tests, in contrast, revealed superior thermo-mechanical stability and strength retention for the NMMs with larger layer thicknesses with deformation controlled by dislocation glide. A remarkable transition in deformation mechanism occurred as the layer thickness decreased, to a deformation response controlled by diffusion processes along the interfaces, which resulted in temperature-induced softening. Finally, a deformation mechanism map, in terms of layer thickness and temperature, is proposed from the results obtained in this investigation.« less

  9. Ceramic materials under high temperature heat transfer conditions

    NASA Astrophysics Data System (ADS)

    Mittenbühler, A.; Jung, J.

    1990-04-01

    Ceramic materials for application in a High-Temperature Reactor coupled with the steam gasification of coal were investigated. The study concentrated on the hot gas duct and their thermal insulation. Materials examined for the inner lining of the tubes were graphite, carbon fibre reinforced carbon and amorphous silica, while fibres, porous alumina and bonded alumina fibres were tested as insulating materials. During material investigations qualification was performed on samples and in component tests. For two carbon fibre reinforced carbon qualities with different graphitizing temperatures, the bending strength was determined as a function of volume corrosion. Devitrification of amorphous silica can be tolerated up to operating temperatures of about 950°C. The resilience of fibre materials depends on the Al2O3/ SiO2 ratio. It decreases according to the different fibre composition with increasing temperature and limits the maximum operating temperature for long term operation. The porous hollow spherical corundum inserted in the form of bricks fulfilled the thermal shock and mechanical requirements but led to an insulation exhibiting gaps in component tests. An advanced insulation on the basis of bonded alumina fibre showed a quasi-elastic material behaviour. Resistance to abrasion was achieved with a protective ceramic coating. The different materials and design concepts are compared and the results provide a good solution for the project.

  10. Deformation Mechanism Map of Cu/Nb Nanoscale Metallic Multilayers as a Function of Temperature and Layer Thickness

    DOE PAGES

    Snel, J.; Monclús, M. A.; Castillo-Rodríguez, M.; ...

    2017-08-29

    The mechanical properties and deformation mechanisms of Cu/Nb nanoscale metallic multilayers (NMMs) manufactured by accumulative roll bonding are studied at 25°C and 400°C. Cu/Nb NMMs with individual layer thicknesses between 7 nm and 63 nm were tested by in situ micropillar compression inside a scanning electron microscope. Yield strength, strain-rate sensitivities and activation volumes were obtained from the pillar compression tests. The deformed micropillars were examined under scanning and transmission electron microscopy in order to examine the deformation mechanisms active for different layer thicknesses and temperatures. The paper suggests that room temperature deformation was determined by dislocation glide at largermore » layer thicknesses and interface-related mechanisms at the thinner layer thicknesses. The high-temperature compression tests, in contrast, revealed superior thermo-mechanical stability and strength retention for the NMMs with larger layer thicknesses with deformation controlled by dislocation glide. A remarkable transition in deformation mechanism occurred as the layer thickness decreased, to a deformation response controlled by diffusion processes along the interfaces, which resulted in temperature-induced softening. Finally, a deformation mechanism map, in terms of layer thickness and temperature, is proposed from the results obtained in this investigation.« less

  11. Effects of Hot Rolling on Low-Cycle Fatigue Properties of Zn-22 wt.% Al Alloy at Room Temperature

    NASA Astrophysics Data System (ADS)

    Dong, X. H.; Cao, Q. D.; Ma, S. J.; Han, S. H.; Tang, W.; Zhang, X. P.

    2016-09-01

    The effects of the reduction ratio (RR) on the low-cycle fatigue (LCF) properties of the Zn-22 wt.% Al (Zn-22Al) alloy were investigated. Various grain sizes from 0.68 to 1.13 μm were obtained by controlled RRs. Tensile and LCF tests were carried out at room temperature. Superplasticity and cyclic softening were observed. Strength and ductility of the rolled Zn-22Al alloy increased with the RR, owing to the decrease in its grain size. The RR did not affect the cyclic softening behavior of the alloy. The fatigue life of the alloy decreased with increasing strain amplitude, while the fatigue life first decreased and then increased with increasing RR. The longest fatigue life was observed for the alloy rolled at a RR of 60%. A bilinear Coffin-Manson relationship was observed to hold true for this alloy.

  12. Interaction Between Neuronal NOS Signaling and Temperature Influences SR Ca2+ Leak:Role of Nitroso-Redox Balance

    PubMed Central

    Dulce, Raul A.; Mayo, Vera; Rangel, Erika B.; Balkan, Wayne; Hare, Joshua M.

    2014-01-01

    Rationale While nitric oxide (NO) signaling modulates cardiac function and excitation-contraction coupling, opposing results due to inconsistent experimental conditions, particularly with respect to temperature, confound the ability to elucidate NO signaling pathways. Here we show that temperature significantly modulates NO effects. Objective Test the hypothesis that temperature profoundly impacts nitroso-redox equilibrium, thereby affecting sarcomeric reticulum (SR) Ca2+ leak. Methods and Results We measured SR Ca2+ leak in cardiomyocytes from wild-type (WT), NO/redox imbalance (NOS1−/−), and hyper S-nitrosylation (GSNOR−/−) mice. In WT cardiomyocytes, SR Ca2+ leak increased as temperature decreased from 37°C to 23°C, whereas, in NOS1−/ −cells, the leak suddenly increased when the temperature surpassed 30°C. GSNOR−/ − cardiomyocytes exhibited low leak throughout the temperature range. Exogenously added NO had a biphasic effect on NOS1−/− cardiomyocytes; reducing leak at 37°C but increasing it at sub-physiologic temperatures. Oxypurinol and Tempol diminished the leak in NOS1−/ − cardiomyocytes. Cooling from 37° to 23°C increased ROS generation in WT but decreased it in NOS1−/− cardiomyocytes. Oxypurinol further reduced ROS generation. At 23°C in WT cells, leak was decreased by tetrahydrobiopterin, an essential NOS cofactor. Cooling significantly increased SR Ca2+ content in NOS1−/− cells but had no effect in WT or GSNOR−/−. Conclusions Ca2+ leak and temperature are normally inversely proportional, whereas NOS1 deficiency reverses this effect, increasing leak and elevating ROS production as temperature increases. Reduced denitrosylation (GSNOR deficiency) eliminates the temperature dependence of leak. Thus, temperature regulates the balance between NO and ROS which in turn has a major impact on SR Ca2+. PMID:25326127

  13. Interaction between neuronal nitric oxide synthase signaling and temperature influences sarcoplasmic reticulum calcium leak: role of nitroso-redox balance.

    PubMed

    Dulce, Raul A; Mayo, Vera; Rangel, Erika B; Balkan, Wayne; Hare, Joshua M

    2015-01-02

    Although nitric oxide (NO) signaling modulates cardiac function and excitation-contraction coupling, opposing results because of inconsistent experimental conditions, particularly with respect to temperature, confound the ability to elucidate NO signaling pathways. Here, we show that temperature significantly modulates NO effects. To test the hypothesis that temperature profoundly affects nitroso-redox equilibrium, thereby affecting sarcoplasmic reticulum (SR) calcium (Ca(2+)) leak. We measured SR Ca(2+) leak in cardiomyocytes from wild-type (WT), NO/redox imbalance (neuronal nitric oxide synthase-deficient mice-1 [NOS1(-/-)]), and hyper S-nitrosoglutathione reductase-deficient (GSNOR(-/-)) mice. In WT cardiomyocytes, SR Ca(2+) leak increased because temperature decreased from 37°C to 23°C, whereas in NOS1(-/-) cells, the leak suddenly increased when the temperature surpassed 30°C. GSNOR(-/-) cardiomyocytes exhibited low leak throughout the temperature range. Exogenously added NO had a biphasic effect on NOS1(-/-) cardiomyocytes; reducing leak at 37°C but increasing it at subphysiological temperatures. Oxypurinol and Tempol diminished the leak in NOS1(-/-) cardiomyocytes. Cooling from 37°C to 23°C increased reactive oxygen species generation in WT but decreased it in NOS1(-/-) cardiomyocytes. Oxypurinol further reduced reactive oxygen species generation. At 23°C in WT cells, leak was decreased by tetrahydrobiopterin, an essential NOS cofactor. Cooling significantly increased SR Ca(2+) content in NOS1(-/-) cells but had no effect in WT or GSNOR(-/-). Ca(2+) leak and temperature are normally inversely proportional, whereas NOS1 deficiency reverses this effect, increasing leak and elevating reactive oxygen species production because temperature increases. Reduced denitrosylation (GSNOR deficiency) eliminates the temperature dependence of leak. Thus, temperature regulates the balance between NO and reactive oxygen species which in turn has a major effect on SR Ca(2+). © 2014 American Heart Association, Inc.

  14. Effect of Temperature, Light and Salinity on Seed Germination and Radicle Growth of the Geographically Widespread Halophyte Shrub Halocnemum strobilaceum

    PubMed Central

    Qu, Xiao-Xia; Huang, Zhen-Ying; Baskin, Jerry M.; Baskin, Carol C.

    2008-01-01

    Background and Aims The small leafy succulent shrub Halocnemum strobilaceum occurs in saline habitats from northern Africa and Mediterranean Europe to western Asia, and it is a dominant species in salt deserts such as those of north-west China. The effects of temperature, light/darkness and NaCl salinity were tested on seed germination, and the effects of salinity were tested on seed germination recovery, radicle growth and radicle elongation recovery, using seeds from north-west China; the results were compared with those previously reported on this species from ‘salt steppes’ in the Mediterranean region of Spain. Methods Seed germination was tested over a range of temperatures in light and in darkness and over a range of salinities at 25 °C in the light. Seeds that did not germinate in the NaCl solutions were tested for germination in deionized water. Seeds from which radicles had barely emerged in deionized water were transferred to NaCl solutions for 10 d and then back to deionized water for 10 d to test for radicle growth and recovery. Key Results Seeds germinated to higher percentages in light than in darkness and at high than at low temperatures. Germination percentages decreased with an increase in salinity from 0·1 to 0·75 m NaCl. Seeds that did not germinate in NaCl solutions did so after transfer to deionized water. Radicle elongation was increased by low salinity, and then it decreased with an increase in salinity, being completely inhibited by ≥2·0 m NaCl. Elongation of radicles from salt solutions <3·0 m resumed after seedlings were transferred to deionized water. Conclusions The seed and early seedling growth stages of the life cycle of H. strobilaceum are very salt tolerant, and their physiological responses differ somewhat between the Mediterranean ‘salt steppe’ of Spain and the inland cold salt desert of north-west China. PMID:17428834

  15. Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub Halocnemum strobilaceum.

    PubMed

    Qu, Xiao-Xia; Huang, Zhen-Ying; Baskin, Jerry M; Baskin, Carol C

    2008-01-01

    The small leafy succulent shrub Halocnemum strobilaceum occurs in saline habitats from northern Africa and Mediterranean Europe to western Asia, and it is a dominant species in salt deserts such as those of north-west China. The effects of temperature, light/darkness and NaCl salinity were tested on seed germination, and the effects of salinity were tested on seed germination recovery, radicle growth and radicle elongation recovery, using seeds from north-west China; the results were compared with those previously reported on this species from 'salt steppes' in the Mediterranean region of Spain. Seed germination was tested over a range of temperatures in light and in darkness and over a range of salinities at 25 degrees C in the light. Seeds that did not germinate in the NaCl solutions were tested for germination in deionized water. Seeds from which radicles had barely emerged in deionized water were transferred to NaCl solutions for 10 d and then back to deionized water for 10 d to test for radicle growth and recovery. Seeds germinated to higher percentages in light than in darkness and at high than at low temperatures. Germination percentages decreased with an increase in salinity from 0.1 to 0.75 M NaCl. Seeds that did not germinate in NaCl solutions did so after transfer to deionized water. Radicle elongation was increased by low salinity, and then it decreased with an increase in salinity, being completely inhibited by > or = 2.0 M NaCl. Elongation of radicles from salt solutions < 3.0 M resumed after seedlings were transferred to deionized water. The seed and early seedling growth stages of the life cycle of H. strobilaceum are very salt tolerant, and their physiological responses differ somewhat between the Mediterranean 'salt steppe' of Spain and the inland cold salt desert of north-west China.

  16. Physiologic and thermal responses of male and female patients with multiple sclerosis to head and neck cooling

    NASA Technical Reports Server (NTRS)

    Ku, Y. T.; Montgomery, L. D.; Wenzel, K. C.; Webbon, B. W.; Burks, J. S.

    1999-01-01

    Personal cooling systems are used to alleviate symptoms of multiple sclerosis and to prevent increased core temperature during daily activities. The objective of this study was to determine the thermal and physiologic responses of patients with multiple sclerosis to short-term maximal head and neck cooling. A Life Support Systems, Inc. Mark VII portable cooling system and a liquid cooling helmet were used to cool the head and neck regions of 24 female and 26 male patients with multiple sclerosis in this study. The subjects, seated in an upright position at normal room temperature (approximately 22 degrees C), were cooled for 30 min by the liquid cooling garment, which was operated at its maximum cooling capacity. Oral, right, and left ear temperatures and cooling system parameters were logged manually every 5 min. Forearm, calf, chest, and rectal temperatures, heart rate, and respiration rate were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. This protocol was performed during the winter and summer to investigate the seasonal differences in the way patients with multiple sclerosis respond to head and neck cooling. No significant differences were found between the male and female subject group's mean rectal or oral temperature responses during any phase of the experiment. The mean oral temperature decreased significantly (P < 0.05) for both groups approximately 0.3 degrees C after 30 min of cooling and continued to decrease further (approximately 0.1-0.2 degrees C) for a period of approximately 15 min after removal of the cooling helmet. The mean rectal temperatures decreased significantly (P < 0.05) in both male and female subjects in the winter studies (approximately 0.2-0.3 degrees C) and for the male subjects during the summer test (approximately 0.2 degrees C). However, the rectal temperature of the female subjects did not change significantly during any phase of the summer test. These data indicate that head and neck cooling may, in general, be used to reduce the oral and body temperatures of both male and female patients with multiple sclerosis by the approximate amount needed for symptomatic relief as shown by other researchers. However, thermal response of patients with multiple sclerosis may be affected by gender and seasonal factors, which should be considered in the use of liquid cooling therapy.

  17. Cold-gas experiments to study the flow separation characteristics of a dual-bell nozzle during its transition modes

    NASA Astrophysics Data System (ADS)

    Verma, S. B.; Stark, R.; Nuerenberger-Genin, C.; Haidn, O.

    2010-06-01

    An experimental investigation has been carried out to study the effect of test environment on transition characteristics and the flow unsteadiness associated with the transition modes of a dual-bell nozzle. Cold-gas tests using gaseous nitrogen were carried out in (i) a horizontal test-rig with nozzle exhausting into atmospheric conditions and, (ii) a high altitude simulation chamber with nozzle operation under self-evacuation mode. Transient tests indicate that increasing δP 0/ δt (the rate of stagnation chamber pressure change) reduces the amplitude of pressure fluctuations of the separation shock at the wall inflection point. This is preferable from the viewpoint of lowering the possible risk of any structural failure during the transition mode. Sea-level tests show 15-17% decrease in the transition nozzle pressure ratio (NPR) during subsequent tests in a single run primarily due to frost formation in the nozzle extension up to the wall inflection location. Frost reduces the wall inflection angle and hence, the transition NPR. However, tests inside the altitude chamber show nearly constant NPR value during subsequent runs primarily due to decrease in back temperature with decrease in back pressure that prevents any frost formation.

  18. Potential fitness trade-offs for thermal tolerance in the intertidal copepod Tigriopus californicus.

    PubMed

    Willett, Christopher S

    2010-09-01

    Thermal adaptation to spatially varying environmental conditions occurs in a wide range of species, but what is less clear is the nature of fitness trade-offs associated with this temperature adaptation. Here, populations of the intertidal copepod Tigriopus californicus are examined at both local and latitudinal scales to determine whether these populations have evolved differences in their survival under high temperature stress. A clear pattern of increasing high temperature stress tolerance is seen with decreasing latitude, consistent with temperature adaptation. Additionally, there is also evidence for significant variation in thermal tolerance on a smaller scale. The competitive fitness of pairs of northern and southern copepod populations were also examined under a series of lower, more moderate temperatures. These fitness assays show that the southern populations that have the best survival under extreme high temperatures have lowered competitive fitness at the lower temperatures tested, whereas the fitness of the southern populations exceeded that of the northern populations at the highest temperatures tested. Combined, these results suggest that there may be evolutionary trade-offs between performance at high and stressful temperatures and fitness at moderate temperatures in this species. © 2010 The Author(s). Journal compilation © 2010 The Society for the Study of Evolution.

  19. Evolution of microstructure of Haynes 230 and Inconel 617 under mechanical testing at high temperatures

    NASA Astrophysics Data System (ADS)

    Hrutkay, Kyle

    Haynes 230 and Inconel 617 are austenitic nickel based superalloys, which are candidate structural materials for next generation high temperature nuclear reactors. High temperature deformation behavior of Haynes 230 and Inconel 617 have been investigated at the microstructural level in order to gain a better understanding of mechanical properties. Tensile tests were performed at strain rates ranging from 10-3-10-5 s -1 at room temperature, 600 °C, 800 °C and 950 °C. Subsequent microstructural analysis, including Scanning Electron Microscopy, Transmission Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, and X-Ray Diffraction were used to relate the microstructural evolution at high temperatures to that of room temperature samples. Grain sizes and precipitate morphologies were used to determine high temperature behavior and fracture mechanics. Serrated flow was observed at intermediate and high temperatures as a result of discontinuous slip and dynamic recrystallization. The amplitude of serration increased with a decrease in the strain rate and increase in the temperature. Dynamic strain ageing was responsible for serrations at intermediate temperatures by means of a locking and unlocking phenomenon between dislocations and solute atoms. Dynamic recrystallization nucleated by grain and twin bulging resulting in a refinement of grain size. Existing models found in the literature were discussed to explain both of these phenomena.

  20. Characterization of commercial supercapacitors for low temperature applications

    NASA Astrophysics Data System (ADS)

    Iwama, E.; Taberna, P. L.; Azais, P.; Brégeon, L.; Simon, P.

    2012-12-01

    Electrochemical characterizations at low temperature and floating tests have been performed on 600F commercial supercapacitor (SC) for acetonitrile (AN)-based and AN + methyl acetate (MA) mixed electrolytes. From -40 to +20 °C, AN electrolyte showed slightly higher capacitance than those of AN + MA mixed electrolytes (25 and 33 vol.% of MA). At -55 °C, however, AN electrolyte did not cycle at all, while MA mixed electrolyte normally cycled with a slight decrease in their capacitance. From electrochemical impedance spectroscopy measurements, the whole resistance for AN-based cells at -55 °C was found to be about 10,000 times higher than that of +20 °C, while a 40-fold increase in the cell resistance was obtained for the MA mixture between 20 and -55 °C. From the results of floating tests at 2.7 V and 60 °C for 1 month, the 25 vol.% MA mixture showed no change and slight decreased but stable capacitance.

  1. Degradation and ESR Failures in MnO2 Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2017-01-01

    Equivalent series resistance (ESR) of chip tantalum capacitors determines the rate of energy delivery and power dissipation thus affecting temperature and reliability of the parts. Employment of advanced capacitors with reduced ESR decreases power losses and improves efficiency in power systems. Stability of ESR is essential for correct operations of power units and might cause malfunctioning and failures when ESR becomes too high or too low. Several cases with ESR values in CWR29 capacitors exceeding the specified limit that were observed recently raised concerns regarding environmental factors affecting ESR and the adequacy of the existing screening and qualification testing. In this work, results of stress testing of various types of military and commercial capacitors obtained over years by GSFC test lab and NEPP projects that involved ESR measurements are described. Environmental stress tests include testing in humidity and vacuum chambers, temperature cycling, long-term storage at high temperatures, and various soldering simulation tests. Note that in many cases parts failed due to excessive leakage currents or reduced breakdown voltages. However, only ESR-related degradation and failures are discussed. Mechanisms of moisture effect are discussed and recommendations to improve screening and qualification system are suggested.

  2. Damage Accumulation and Failure of Plasma-Sprayed Thermal Barrier Coatings under Thermal Gradient Cyclic Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Ghosn, Louis J.; Miller, rober A.

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. A fundamental understanding of the sintering and thermal cycling induced delamination of thermal barrier coating systems under engine-like heat flux conditions will potentially help to improve the coating temperature capability. In this study, a test approach is established to emphasize the real-time monitoring and assessment of the coating thermal conductivity, which can initially increase under the steady-state high temperature thermal gradient test due to coating sintering, and later decrease under the thermal gradient cyclic test due to coating cracking and delamination. Thermal conductivity prediction models have been established for a ZrO2-(7- 8wt%)Y2O3 model coating system in terms of heat flux, time, and testing temperatures. The coating delamination accumulation is then assessed based on the observed thermal conductivity response under the combined steady-state and cyclic thermal gradient tests. The coating thermal gradient cycling associated delaminations and failure mechanisms under simulated engine heat-flux conditions will be discussed in conjunction with the coating sintering and fracture testing results.

  3. Steam gasification of waste tyre: influence of process temperature on yield and product composition.

    PubMed

    Portofino, Sabrina; Donatelli, Antonio; Iovane, Pierpaolo; Innella, Carolina; Civita, Rocco; Martino, Maria; Matera, Domenico Antonio; Russo, Antonio; Cornacchia, Giacinto; Galvagno, Sergio

    2013-03-01

    An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850-1000°C, holding all the other operational parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid-gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000°C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Secular Trend of Surface Temperature at an Elevated Observatory in the Pyrenees.

    NASA Astrophysics Data System (ADS)

    Bücher, A.; Dessens, J.

    1991-08-01

    Surface temperature was measured at the Pic du Midi de Bigorre, 2862 m MSL, from the foundation of the Observatory in 1878 until the closing of the meteorological station in 1984. After testing the homogeneity of the series with the annual mean temperatures in western Europe and in southwestern France, the period 1882-1970 was retained for trend analysis.The mean annual temperature increased 0.83°C during the 89-yr period. This increase is the sum of a very significant increase in the daily minimum temperature (+ 2.11°C) and a decrease in the maximum temperature ( 0.45°C). In consequence, the most dramatic change in the temperature regime was the difference between maximum and minimum; this decreased from 8.05°C in 1882 to 5.49°C in 1970. A mean increase is observed in all seasons, but, as for western Europe, it is stronger in spring and fall than in winter and summer.Analysis of cloudiness data for the same period shows a 15% increase in annual mean cloudiness and also significant year-to-year correlations between cloudiness and the maximum and minimum temperature. In consequence, the change in the temperature regime observed at the Pic du Midi since the end of last century is most probably the result of a climatic change involving an increase in cloud cover and, maybe, an increasing greenhouse effect.

  5. Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease.

    PubMed

    Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro

    2013-01-01

    It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.

  6. Sudden Collapse of Vacuoles in Saintpaulia sp. Palisade Cells Induced by a Rapid Temperature Decrease

    PubMed Central

    Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro

    2013-01-01

    It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. ‘Iceberg’) and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury. PMID:23451194

  7. Plasma-Based Surface Modification and Corrosion in High Temperature Environments

    DTIC Science & Technology

    2009-02-05

    supercritical water, molten salts, supercritical carbon dioxide (KAPL), and helium have been designed and built Room temperature corrosion tests for...coatings such as diamond-like carbon (DLC) and Si-DLC, performed at < 5kV) 4 Energetic ion mixing of thin nano-multilayers Enhancing coating-substrate...Nitrogen ion implantation of 17-7PH stainless steel (with Alison Gas Turbines ) Also a 11% decrease in erosion rate for the N+ implanted sample

  8. Nonlinearity of bituminous mixtures

    NASA Astrophysics Data System (ADS)

    Mangiafico, S.; Babadopulos, L. F. A. L.; Sauzéat, C.; Di Benedetto, H.

    2018-02-01

    This paper presents an experimental characterization of the strain dependency of the complex modulus of bituminous mixtures for strain amplitude levels lower than about 110 μm/m. A series of strain amplitude sweep tests are performed at different temperatures (8, 10, 12 and 14°C) and frequencies (0.3, 1, 3 and 10 Hz), during which complex modulus is monitored. For each combination of temperature and frequency, four maximum strain amplitudes are targeted (50, 75, 100 and 110 μm/m). For each of them, two series of 50 loading cycles are applied, respectively at decreasing and increasing strain amplitudes. Before each decreasing strain sweep and after each increasing strain sweep, 5 cycles are performed at constant maximum targeted strain amplitude. Experimental results show that the behavior of the studied material is strain dependent. The norm of the complex modulus decreases and phase angle increases with strain amplitude. Results are presented in Black and Cole-Cole plots, where characteristic directions of nonlinearity can be identified. Both the effects of nonlinearity in terms of the complex modulus variation and of the direction of nonlinearity in Black space seem to validate the time-temperature superposition principle with the same shift factors as for linear viscoelasticity. The comparison between results obtained during increasing and decreasing strain sweeps suggests the existence of another phenomenon occurring during cyclic loading, which appears to systematically induce a decrease of the norm of the complex modulus and an increase of the phase angle, regardless of the type of the strain sweep (increasing or decreasing).

  9. Toward development of an in vitro model of methamphetamine-induced dopamine nerve terminal toxicity.

    PubMed

    Kim, S; Westphalen, R; Callahan, B; Hatzidimitriou, G; Yuan, J; Ricaurte, G A

    2000-05-01

    To develop an in vitro model of methamphetamine (METH)-induced dopamine (DA) neurotoxicity, striatal synaptosomes were incubated at 37 degrees C with METH for different periods of time (10-80 min), washed once, then tested for DA transporter function at 37 degrees C. METH produced time- and dose-dependent reductions in the V(max) of DA uptake, without producing any change in K(m). Incubation of synaptosomes with the DA neurotoxins 1-methyl-4-phenyl-pyridinium ion, 6-hydroxydopamine, and amphetamine under similar conditions produced comparable effects. In contrast, incubation with fenfluramine, a serotonin neurotoxin, did not. METH-induced decreases in DA uptake were selective, insofar as striatal glutamate uptake was unaffected. Various DA transporter blockers (cocaine, methylphenidate, and bupropion) afforded complete protection against METH-induced decreases in DA uptake, without producing any effect themselves. METH's effects were also temperature dependent, with greater decreases in DA uptake occurring at higher temperatures. Tests for residual drug revealed small amounts (0.1-0.2 microM) of remaining METH, but kinetic studies indicated that decreases in DA uptake were not likely to be due to METH acting as a competitive inhibitor of DA uptake. Decreases in the V(max) of DA uptake were not accompanied by decreases in B(max) of [(3)H]WIN 35,428 binding, possibly because there is no mechanism for removing damaged DA nerve endings from the in vitro preparation Collectively, these results give good support to the development of a valid in vitro model that may prove helpful for elucidating the mechanisms underlying METH-induced DA neurotoxicity.

  10. Quantitative sensory studies in complex regional pain syndrome type 1/RSD.

    PubMed

    Tahmoush, A J; Schwartzman, R J; Hopp, J L; Grothusen, J R

    2000-12-01

    Patients with complex regional pain syndrome type I (CRPSD1) may have thermal allodynia after application of a non-noxious thermal stimulus to the affected limb. We measured the warm, cold, heat-evoked pain threshold and the cold-evoked pain threshold in the affected area of 16 control patients and patients with complex regional pain syndrome type 1/RSD to test the hypothesis that allodynia results from an abnormality in sensory physiology. A contact thermode was used to apply a constant 1 degrees C/second increasing (warm and heat-evoked pain) or decreasing (cold and cold-evoked pain) thermal stimulus until the patient pressed the response button to show that a temperature change was felt by the patient. Student t test was used to compare thresholds in patients and control patients. The cold-evoked pain threshold in patients with CRPSD1/RSD (p <0.001) was significantly decreased when compared with the thresholds in control patients (i.e., a smaller decrease in temperature was necessary to elicit cold-pain in patients with CRPSD1/RSD than in control patients). The heat-evoked pain threshold in patients with CRPS1/RSD was (p <0.05) decreased significantly when compared with thresholds in control patients. The warm- and cold-detection thresholds in patients with CRPS1/RSD were similar to the thresholds in control patients. This study suggests that thermal allodynia in patients with CRPS1/RSD results from decreased cold-evoked and heat-evoked pain thresholds. The thermal pain thresholds are reset (decreased) so that non-noxious thermal stimuli are perceived to be pain (allodynia).

  11. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy

    PubMed Central

    Liu, Gang; Xie, Wen; Wei, Guobing; Yang, Yan; Liu, Junwei; Xu, Tiancai; Xie, Weidong; Peng, Xiaodong

    2018-01-01

    The hot deformation and dynamic recrystallization behavior of the dual-phase Mg-9Li-3Al-2Sr-2Y alloy had been investigated using a compression test. The typical dual-phase structure was observed, and average of grain size of as-homogenized alloy is about 110 µm. It mainly contains β-Li, α-Mg, Al4Sr and Al2Y phases. The dynamic recrystallization (DRX) kinetic was established based on an Avrami type equation. The onset of the DRX process occurred before the peak of the stress–strain flow curves. It shows that the DRX volume fraction increases with increasing deformation temperature or decreasing strain rate. The microstructure evolution during the hot compression at various temperatures and strain rates had been investigated. The DRX grain size became larger with the increasing testing temperature or decreasing strain rate because the higher temperature or lower strain rate can improve the migration of DRX grain boundaries. The fully recrystallized microstructure can be achieved in a small strain due to the dispersed island-shape α-Mg phases, continuous the Al4Sr phases and spheroidal Al2Y particles, which can accelerate the nucleation. The continuous Al4Sr phases along the grain boundaries are very helpful for enhancing the corrosion resistance of the duplex structured Mg-Li alloy, which can prevent the pitting corrosion and filiform corrosion. PMID:29522473

  12. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy.

    PubMed

    Liu, Gang; Xie, Wen; Wei, Guobing; Yang, Yan; Liu, Junwei; Xu, Tiancai; Xie, Weidong; Peng, Xiaodong

    2018-03-09

    The hot deformation and dynamic recrystallization behavior of the dual-phase Mg-9Li-3Al-2Sr-2Y alloy had been investigated using a compression test. The typical dual-phase structure was observed, and average of grain size of as-homogenized alloy is about 110 µm. It mainly contains β-Li, α-Mg, Al₄Sr and Al₂Y phases. The dynamic recrystallization (DRX) kinetic was established based on an Avrami type equation. The onset of the DRX process occurred before the peak of the stress-strain flow curves. It shows that the DRX volume fraction increases with increasing deformation temperature or decreasing strain rate. The microstructure evolution during the hot compression at various temperatures and strain rates had been investigated. The DRX grain size became larger with the increasing testing temperature or decreasing strain rate because the higher temperature or lower strain rate can improve the migration of DRX grain boundaries. The fully recrystallized microstructure can be achieved in a small strain due to the dispersed island-shape α-Mg phases, continuous the Al₄Sr phases and spheroidal Al₂Y particles, which can accelerate the nucleation. The continuous Al₄Sr phases along the grain boundaries are very helpful for enhancing the corrosion resistance of the duplex structured Mg-Li alloy, which can prevent the pitting corrosion and filiform corrosion.

  13. Assessment of circadian rhythms of both skin temperature and motor activity in infants during the first 6 months of life.

    PubMed

    Zornoza-Moreno, Matilde; Fuentes-Hernández, Silvia; Sánchez-Solis, Manuel; Rol, María Ángeles; Larqué, Elvira; Madrid, Juan Antonio

    2011-05-01

    The authors developed a method useful for home measurement of temperature, activity, and sleep rhythms in infants under normal-living conditions during their first 6 mos of life. In addition, parametric and nonparametric tests for assessing circadian system maturation in these infants were compared. Anthropometric parameters plus ankle skin temperature and activity were evaluated in 10 infants by means of two data loggers, Termochron iButton (DS1291H, Maxim Integrated Products, Sunnyvale, CA) for temperature and HOBO Pendant G (Hobo Pendant G Acceleration, UA-004-64, Onset Computer Corporation, Bourne, MA) for motor activity, located in special baby socks specifically designed for the study. Skin temperature and motor activity were recorded over 3 consecutive days at 15 days, 1, 3, and 6 mos of age. Circadian rhythms of skin temperature and motor activity appeared at 3 mos in most babies. Mean skin temperature decreased significantly by 3 mos of life relative to previous measurements (p = .0001), whereas mean activity continued to increase during the first 6 mos. For most of the parameters analyzed, statistically significant changes occurred at 3-6 mos relative to 0.5-1 mo of age. Major differences were found using nonparametric tests. Intradaily variability in motor activity decreased significantly at 6 mos of age relative to previous measurements, and followed a similar trend for temperature; interdaily stability increased significantly at 6 mos of age relative to previous measurements for both variables; relative amplitude increased significantly at 6 mos for temperature and at 3 mos for activity, both with respect to previous measurements. A high degree of correlation was found between chronobiological parametric and nonparametric tests for mean and mesor and also for relative amplitude versus the cosinor-derived amplitude. However, the correlation between parametric and nonparametric equivalent indices (acrophase and midpoint of M5, interdaily stability and Rayleigh test, or intradaily variability and P(1)/P(ultradian)) despite being significant, was lower for both temperature and activity. The circadian function index (CFI index), based on the integrated variable temperature-activity, increased gradually with age and was statistically significant at 6 mos of age. At 6 mos, 90% of the infants' rest period coincided with the standard sleep period of their parents, defined from 23:00 to 07:00 h (dichotomic index I < O; when I < O = 100%, there is a complete coincidence between infant nocturnal rest period and the standard rest period), whereas at 15 days of life the coincidence was only 75%. The combination of thermometry and actimetry using data loggers placed in infants' socks is a reliable method for assessing both variables and also sleep rhythms in infants under ambulatory conditions, with minimal disturbance. Using this methodological approach, circadian rhythms of skin temperature and motor activity appeared by 3 mos in most babies. Nonparametric tests provided more reliable information than cosinor analysis for circadian rhythm assessment in infants.

  14. Solid-solid phase change thermal storage application to space-suit battery pack

    NASA Astrophysics Data System (ADS)

    Son, Chang H.; Morehouse, Jeffrey H.

    1989-01-01

    High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.

  15. The temperature of unheated bodies in a high-speed gas stream

    NASA Technical Reports Server (NTRS)

    Eckert, E; Weise, W

    1941-01-01

    The present report deals with temperature measurements on cylinders of 0.2 to 3 millimeters diameter in longitudinal and transverse air flow at speeds of 100 to 300 meters per second. Within the explored test range, that is, the probable laminar boundary layer region, the temperature of the cylinders in axial flow is practically independent of the speed and in good agreement with Pohlhausen's theoretical values; Whereas, in transverse flow, cylinders of certain diameter manifest a close relationship with speed, the ratio of the temperature above the air of the body to the adiabatic stagnation temperature decreases with rising speed and then rises again from a Mach number of 0.6. The importance of this "specific temperature" of the body for heat-transfer studies at high speed is discussed.

  16. The Effect of Carrier Properties on the Ballistic Processing of Sn-0.7 Cu Thick Films

    NASA Astrophysics Data System (ADS)

    Hille, David M.

    The need for metallic films has increased since the creation of electronic components. The continued miniaturization of systems and components has led to a greater demand for both thick and thin films, especially in the technology field. Computers, hand held devices, and solar cells are a few of the multitudes of uses for these films. This thesis investigates a novel additive manufacturing process known as Ballistic Manufacturing (BM), invented at the Advanced Materials Processing Lab (AMPL) at San Diego State University. Lead free solder (Tin (Sn)-0.7%Copper (Cu)) was chosen as the testing material due to its low melting temperature. The effects of varying thermal conductivity via the change in carrier material type, the effect of raising substrate temperature, and surface finish differences were investigated. An increase in thermal conductivity resulted in an increase in film thickness and decrease in cell size. As substrate temperature was raised, film thickness decreased, while cell size decreased. Surface finish provided a proof of concept to the transfer of substrate features to the resultant film surface. Evaluation of dendritic microstructures led to relative cooling rates reflective of changes in parameters. The mechanical behavior was also investigated using tensile tests to determine stress-stain relationships and measure elastic modulus. With the current work of this thesis, and previous work by Cavero and Stewart, Ballistic Manufacturing is proven to be an alternative method in the production of metallic films.

  17. Thermal Adaptation and Diversity in Tropical Ecosystems: Evidence from Cicadas (Hemiptera, Cicadidae)

    PubMed Central

    Sanborn, Allen F.; Heath, James E.; Phillips, Polly K.; Heath, Maxine S.; Noriega, Fernando G.

    2011-01-01

    The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54′ of longitude and 21°4′ of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors. PMID:22242117

  18. Flow behaviour and constitutive modelling of a ferritic stainless steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Zhao, Jingwei; Jiang, Zhengyi; Zu, Guoqing; Du, Wei; Zhang, Xin; Jiang, Laizhu

    2016-05-01

    The flow behaviour of a ferritic stainless steel (FSS) was investigated by a Gleeble 3500 thermal-mechanical test simulator over the temperature range of 900-1100 °C and strain rate range of 1-50 s-1. Empirical and phenomenological constitutive models were established, and a comparative study was made on the predictability of them. The results indicate that the flow stress decreases with increasing the temperature and decreasing the strain rate. High strain rate may cause a drop in flow stress after a peak value due to the adiabatic heating. The Zener-Hollomon parameter depends linearly on the flow stress, and decreases with raising the temperature and reducing the strain rate. Significant deviations occur in the prediction of flow stress by the Johnson-Cook (JC) model, indicating that the JC model cannot accurately track the flow behaviour of the FSS during hot deformation. Both the multiple-linear and the Arrhenius-type models can track the flow behaviour very well under the whole hot working conditions, and have much higher accuracy in predicting the flow behaviour than that of the JC model. The multiple-linear model is recommended in the current work due to its simpler structure and less time needed for solving the equations relative to the Arrhenius-type model.

  19. Evaluation of a 2.5 kWel automotive low temperature PEM fuel cell stack with extended operating temperature range up to 120 °C

    NASA Astrophysics Data System (ADS)

    Ruiu, Tiziana; Dreizler, Andreas M.; Mitzel, Jens; Gülzow, Erich

    2016-01-01

    Nowadays, the operating temperature of polymer electrolyte membrane fuel cell stacks is typically limited to 80 °C due to water management issues of membrane materials. In the present work, short-term operation at elevated temperatures up to 120 °C and long-term steady-state operation under automotive relevant conditions at 80 °C are examined using a 30-cell stack developed at DLR. The high temperature behavior is investigated by using temperature cycles between 90 and 120 °C without adjustment of the gases dew points, to simulate a short-period temperature increase, possibly caused by an extended power demand and/or limited heat removal. This galvanostatic test demonstrates a fully reversible performance decrease of 21 ± 1% during each thermal cycle. The irreversible degradation rate is about a factor of 6 higher compared to the one determined by the long-term test. The 1200-h test at 80 °C demonstrates linear stack voltage decay with acceptable degradation rate, apart from a malfunction of the air compressor, which results in increased catalyst degradation effects on individual cells. This interpretation is based on an end-of-life characterization, aimed to investigate catalyst, electrode and membrane degradation, by determining hydrogen crossover rates, high frequency resistances, electrochemically active surface areas and catalyst particle sizes.

  20. Respiratory alkalosis and primary hypocapnia in Labrador Retrievers participating in field trials in high-ambient-temperature conditions.

    PubMed

    Steiss, Janet E; Wright, James C

    2008-10-01

    To determine whether Labrador Retrievers participating in field trials develop respiratory alkalosis and hypocapnia primarily in conditions of high ambient temperatures. 16 Labrador Retrievers. At each of 5 field trials, 5 to 10 dogs were monitored during a test (retrieval of birds over a variable distance on land [1,076 to 2,200 m]; 36 assessments); ambient temperatures ranged from 2.2 degrees to 29.4 degrees C. For each dog, rectal temperature was measured and a venous blood sample was collected in a heparinized syringe within 5 minutes of test completion. Blood samples were analyzed on site for Hct; pH; sodium, potassium, ionized calcium, glucose, lactate, bicarbonate, and total CO2 concentrations; and values of PvO2 and PvCO2. Scatterplots of each variable versus ambient temperature were reviewed. Regression analysis was used to evaluate the effect of ambient temperature (< or = 21 degrees C and > 21 degrees C) on each variable. Compared with findings at ambient temperatures < or = 21 degrees C, venous blood pH was increased (mean, 7.521 vs 7.349) and PvCO2 was decreased (mean, 17.8 vs 29.3 mm Hg) at temperatures > 21 degrees C; rectal temperature did not differ. Two dogs developed signs of heat stress in 1 test at an ambient temperature of 29 degrees C; their rectal temperatures were higher and PvCO2 values were lower than findings in other dogs. When running distances frequently encountered at field trials, healthy Labrador Retrievers developed hyperthermia regardless of ambient temperature. Dogs developed respiratory alkalosis and hypocapnia at ambient temperatures > 21 degrees C.

  1. Flow cytometric analysis of regulatory T cells during hyposensitization of acquired allergic contact dermatitis.

    PubMed

    Fraser, Kathleen; Abbas, Mariam; Hull, Peter R

    2014-01-01

    We previously demonstrated that repeated intradermal steroid injections administered at weekly intervals into positive patch-test sites induce hyposensitization and desensitization. To examine changes in CD4CD25CD127lo/ regulatory T cells during the attenuation of the patch-test response. Ten patients with known allergic contact dermatitis were patch tested weekly for 10 weeks. The patch-test site was injected intradermally with 2 mg triamcinolone. At weeks 1 and 7, a biopsy was performed on the patch-test site in 6 patients, and flow cytometry was performed assessing CD4CD25CD127lo/ regulatory T cells. Secondary outcomes were clinical score, reaction size, erythema, and temperature. Statistical analysis included regression, correlation, and repeated-measures analysis of variance. The percentage of CD4CD25CD127lo/ regulatory T cells, measured by flow cytometry, increased from week 1 to week 7 by an average of 19.2%. The average grade of patch-test reaction decreased from +++ (vesicular reaction) to ++ (palpable erythema). The mean drop in temperature following treatment was 0.28°C per week. The mean area decreased 8.6 mm/wk over 10 weeks. Intradermal steroid injections of weekly patch-test reactions resulted in hyposensitization of the allergic contact dermatitis reaction. CD4CD25CD127lo/ regulatory T cells showed a tendency to increase; however, further studies are needed to determine if this is significant.

  2. Influence of Austenitizing Parameters on Mechanical Behavior of Press Hardened Steels

    NASA Astrophysics Data System (ADS)

    Golem, Lindsay

    Recent increases in the Corporate Average Fuel Economy standard have led to an increased focus on lightweight materials for use in vehicle architectures. In particular, press hardened steels (PHS) have been identified as suitable materials to reduce vehicle mass while maintaining or possibly improving vehicle crash performance. A fundamental understanding of the mechanical behavior of PHS with respect to changes in processing conditions is critical to their proper use. In this work, 22MnB5 Al-Si coated blanks were austenitized at several different times and temperatures to produce a range of prior austenite grain sizes. Mechanical behavior was evaluated using smooth sided tensile testing, double edge notch tensile testing, and free bend testing. Metrics, such as notch tensile strength, notch strength ratio, and notch displacement, which is based on the fracture mechanics parameter crack tip opening displacement, were derived from double edge notch tensile testing to assess material notch sensitivity and toughness as a function of processing conditions. Additionally, bend angle at maximum load, post uniform bending slope, and energy for fracture were measured using free bend testing to provide another means for evaluating mechanical behavior. Increasing the austenitizing temperature and hold time resulted in an increase in the measured prior austenite grain size; however, elevated austenitizing temperatures also increased the thickness of the coating interdiffusion layer. In the coated material, tensile strength decreased with increasing prior austenite grain size for both notched and smooth sided tensile samples, but minimal difference was observed in the strain to failure results. Notch displacement, bend angle at maximum load, and energy for fracture during free bend testing all decreased with increasing prior austenite grain size in the coated PHS and also showed a significant drop in measured behavior for the 1025 °C for 30 minutes austenitizing condition, which was not observed in smooth sided tensile testing. The drop in mechanical behavior for this condition was not observed when the coating was removed, which suggests that the interdiffusion layer may degrade the mechanical behavior of PHS. Bend angle at maximum load and energy for fracture in bend testing also decreased for the smallest prior austenite grain size conditions, which was not observed in any of the other testing methods. Results from the three testing methods indicate that differences in the stress and strain state associated with each test influences their ability to discern differences between microstructure and processing conditions of press hardened steels.

  3. Life jacket design affects dorsal head and chest exposure, core cooling, and cognition in 10 degrees C water.

    PubMed

    Lockhart, Tamara L; Jamieson, Christopher P; Steinman, Alan M; Giesbrecht, Gordon G

    2005-10-01

    Personal floatation devices (PFDs) differ in whether they maintain the head out of the water or allow the dorsum of the head to be immersed. Partial head submersion may hasten systemic cooling, incapacitation, and death in cold water. Six healthy male volunteers (mean age = 26.8 yr; height = 184 cm; weight = 81 kg; body fat = 20%) were immersed in 10 degrees C water for 65 min, or until core temperature = 34 degrees C, under three conditions: PFD#1 maintained the head and upper chest out of the water; PFD#2 allowed the dorsal head and whole body to be immersed; and an insulated drysuit (control) allowed the dorsal head to be immersed. Mental performance tests included: logic reasoning test; Stroop word-color test; digit symbol coding; backward digit span; and paced auditory serial addition test (PASAT). Core cooling was significantly faster for PFD#2 (2.8 +/- 1.6 degrees C x h(-1)) than for PFD#1 (1.5 +/- 0.7 degrees C x h(-1)) or for the drysuit (0.4 +/- 0.2 degrees C x h(-1)). Although no statistically significant effects on cognitive performance were noted for the individual PFDs and drysuit, when analyzed as a group, four of the tests of cognitive performance (Stroop word-color, digit symbol coding, backward digit span, and PASAT) showed significant correlations between decreasing core temperature to 34 degrees C and diminished cognitive performance. Performance in more complicated mental tasks was adversely affected as core temperature decreased to 34 degrees C. The PFD that kept the head and upper chest out of the water preserved body heat and mental performance better than the PFD that produced horizontal flotation.

  4. Evidence for Reduced Fatigue Resistance of Contemporary Rotary Instruments Exposed to Body Temperature.

    PubMed

    de Vasconcelos, Rafaela Andrade; Murphy, Sarah; Carvalho, Claudio Antonio Talge; Govindjee, Rajiv G; Govindjee, Sanjay; Peters, Ove A

    2016-05-01

    The purpose of this study was to evaluate the effect of 2 different temperatures (20°C and 37°C) on the cyclic fatigue life of rotary instruments and correlate the results with martensitic transformation temperatures. Contemporary nickel-titanium rotary instruments (n = 20 each and tip size #25, including Hyflex CM [Coltene, Cuyahoga Falls, OH], TRUShape [Dentsply Tulsa Dental Specialties, Tulsa, OK], Vortex Blue [Dentsply Tulsa Dental Specialties], and ProTaper Universal [Dentsply Tulsa Dental Specialties]) were tested for cyclic fatigue at room temperature (20°C ± 1°C) and at body temperature (37°C ± 1°C). Instruments were rotated until fracture occurred in a simulated canal with an angle curvature of about 60° and a radius curvature of 3 mm; the center of the curvature was 4.5 mm from the instrument tip. The number of cycles to fracture was measured. Phase transformation temperatures for 2 instruments of each brand were analyzed by differential scanning calorimetry. Data were analyzed using the t test and 1-way analysis of variance with the significance level set at 0.05. For the tested size and at 20°C, Hyflex CM showed the highest resistance to fracture; no significant difference was found between TRUShape and Vortex Blue, whereas ProTaper Universal showed the lowest resistance to fracture. At 37°C, resistance to fatigue fracture was significantly reduced, up to 85%, for the tested instruments (P < .001); at that temperature, Hyflex CM and Vortex Blue had similar and higher fatigue resistance compared with TRUShape and ProTaper Universal. Under the conditions of this study, using a novel testing design, immersion in water at simulated body temperature was associated with a marked decrease in the fatigue life of all rotary instruments tested. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Mechanical properties of 8Cr-2WVTa steel aged for 30 000 h

    NASA Astrophysics Data System (ADS)

    Tamura, M.; Shinozuka, K.; Esaka, H.; Sugimoto, S.; Ishizawa, K.; Masamura, K.

    2000-12-01

    A mill production plate of a reduced activation ferritic steel was thermally aged for up to 30 000 h at 400-650°C. Charpy impact tests, creep rupture tests and hardness tests were conducted. Both Vickers hardness number and creep strength decrease with aging at 650°C. The ductile-brittle transition temperature (DBTT) increases with both aging time and aging temperature. However, the DBTT does not exceed +20°C even after aging at 650°C for 30 000 h. Extracted residues and extraction replicas were analyzed metallurgically. The increase in DBTT is related mainly to the precipitation of Laves phase on the prior austenite grain boundaries. The rather low DBTT after aging is caused by the fine prior austenitic grain size.

  6. The effect of temperature on the extrinsic incubation period and infection rate of dengue virus serotype 2 infection in Aedes albopictus.

    PubMed

    Xiao, Fang-Zhen; Zhang, Yi; Deng, Yan-Qin; He, Si; Xie, Han-Guo; Zhou, Xiao-Nong; Yan, Yan-Sheng

    2014-11-01

    Dengue fever is an acute mosquito-borne viral disease caused by dengue virus (DENV). Temperature may affect the efficiency of the mosquito vectors in spreading DENV. Aedes albopictus mosquitoes were infected orally with a DENV2 suspension and incubated at different temperatures. Subsequently, DENV2 antigen was collected from salivary gland and thorax-abdomen samples on different days postinfection and tested using an immunofluorescence assay to determine the extrinsic incubation period and infection rate. As the temperature increased, the extrinsic DENV2 incubation period in Ae. albopictus gradually shortened, and infection rates showed a tendency to initially increase, followed by a subsequent decrease.

  7. Accelerated aging test results for aerospace wire insulation constructions

    NASA Technical Reports Server (NTRS)

    Dunbar, William G.

    1995-01-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  8. Accelerated aging test results for aerospace wire insulation constructions

    NASA Astrophysics Data System (ADS)

    Dunbar, William G.

    1995-11-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  9. Temporal Variation Analysis on Climate of Dry-Hot Valley Since 1950s in Upper Yangtze River Basin, China

    NASA Astrophysics Data System (ADS)

    Sun, L.; Cai, Y.

    2017-12-01

    Climate of dry-hot valley areas regarding their long term temporal changes are seldom studied. In this paper, climate change in lower reach of Yalongjiang River, a typical dry-hot valley area locating in upper Yangtze River Basin, was analyzed. Ten single meteorological factors were used to investigate basic climatic characteristics, and two integrated index (i.e. relative evapotranspiration(AET/P), standard precipitation evapotranspiration index(SPEI)) were selected to reflect changes from human activities and gauge climate drought regime. Mann-Kendall mutation test was applied to identify mutation year, and variation trends were diagnosed with linear regression and distance average analysis. Mean values were tested to find if there were significant changes resulting from a large artificial reservoir constructed in 1999. Results of mutation test showed that minimum temperature, relative humidity, and AET/P in two stations changed significantly in 2000s. Temperature increased since 1990s, and other single index fluctuated in recent 50 years. Precipitation decreased and temperature increased in autumn significantly, while precipitation in summer decreased slightly. The variation of SPEI implied that the area was humid from 1980s to 2000s, but drought in 2010s. The results of mean test indicated that 56% meteorological index changed significantly, which might be related to the construction of the large reservoir. This research not only reveals the climate change in a dry-hot valley, but also helps study concerning human activities especially the construction of cascade reservoirs in the future in this area.

  10. Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A

    Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weakermore » regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.« less

  11. The Influence of The Temperature on Dry Friction of AISI 3315 Steel Sliding Against AISI 3150 Steel

    NASA Astrophysics Data System (ADS)

    Odabas, D.

    2018-01-01

    In this paper, the effects the influence of frictional heating on the wear of AISI 3315 Steel were investigated experimentally using a pin-on-ring geometry. All the tests were carried out in air without any lubricant. In order to understand the variation in frictional coefficient and temperature with load and speed, the friction tests were carried out at a speed of 1 m/s and loads in the range 115-250 N, and at a speed range 1-4 m/s, a load of 115 N. The sliding distance was 1500 m. The bulk temperature of the specimen was measured from the interface surface at a distance of 1 mm from the contact surface by using type K thermocouples (Ni-Cr-Ni). The coefficient of friction was determined as a function of test load and speed. The steady state coefficient of friction of the test material decreases with increasing load and speed due to the oxide formation. But the unsteady state coefficient of friction increases with an increase in load and speed.

  12. Transition temperature and fracture mode of as-castand austempered ductile iron.

    PubMed

    Rajnovic, D; Eric, O; Sidjanin, L

    2008-12-01

    The ductile to brittle transition temperature is a very important criterion that is used for selection of materials in some applications, especially in low-temperature conditions. For that reason, in this paper transition temperature of as-cast and austempered copper and copper-nickel alloyed ductile iron (DI) in the temperature interval from -196 to +150 degrees C have been investigated. The microstructures of DIs and ADIs were examined by light microscope, whereas the fractured surfaces were observed by scanning electron microscope. The ADI materials have higher impact energies compared with DIs in an as-cast condition. In addition, the transition curves for ADIs are shifted towards lower temperatures. The fracture mode of Dls is influenced by a dominantly pearlitic matrix, exhibiting mostly brittle fracture through all temperatures of testing. By contrast, with decrease of temperature, the fracture mode for ADI materials changes gradually from fully ductile to fully brittle.

  13. A temperature-compensated optical fiber force sensor for minimally invasive surgeries

    NASA Astrophysics Data System (ADS)

    Mo, Z.; Xu, W.; Broderick, N.; Chen, H.

    2015-12-01

    Force sensing in minimally invasive surgery (MIS) is a chronic problem since it has an intensive magnetic resonance (MR) operation environment, which causes a high influence to traditional electronic force sensors. Optical sensor is a promising choice in this area because it is immune to MR influence. However, the changing temperature introduces a lot of noise signals to them, which is the main obstacle for optical sensing applications in MIS. This paper proposes a miniature temperature-compensated optical force sensor by using Fabry-Perot interference (FPI) principle. It can be integrated into medical tools' tips and the temperature noise is decreased by using a reference FPI temperature sensor. An injection needle with embedded temperature-compensated FPI force sensor has been fabricated and tested. And the comparison between temperature-force simulation results and the temperature-force experiment results has been carried out.

  14. Temperature-dependent dielectric and energy-storage properties of Pb(Zr,Sn,Ti)O3 antiferroelectric bulk ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Xuefeng; Liu, Zhen; Xu, Chenhong; Cao, Fei; Wang, Genshui; Dong, Xianlin

    2016-05-01

    The dielectric and energy-storage properties of Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]0.98O3 (PNZST) bulk ceramics near the antiferroelectric (AFE)-ferroelectric (FE) phase boundary are investigated as a function of temperature. Three characteristic temperatures T0, TC, T2 are obtained from the dielectric temperature spectrum. At different temperature regions (below T0, between T0 and TC, and above TC), three types of hysteresis loops are observed as square double loop, slim loop and linear loop, respectively. The switching fields and recoverable energy density all first increase and then decrease with increasing temperature, and reach their peak values at ˜T0. These results provide a convenient method to optimize the working temperature of antiferroelectric electronic devices through testing the temperature dependent dielectric properties of antiferroelectric ceramics.

  15. Result of International Round Robin Test on Young's Modulus Measurement of 304L and 316L Steels at Cryogenic Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibata, K.; Ogata, T.; Nyilas, A.

    2006-03-31

    Ogata et al. reported in 1996 results of international Round Robin tests on mechanical property measurement of several metals at cryogenic temperatures. Following the report, the standard deviation of Young's modulus of 316L steel is much larger than those of yield and tensile strengths, that is, 4.6 % of the mean value for Young's modulus, while 1.4 % and 1.6 % of the mean values for yield and for tensile strengths, respectively. Therefore, an international Round Robin test on Young's modulus of two austenitic stainless steels at cryogenic temperatures under the participation often institutes from four nations has been initiatedmore » within these two years. As a result, the ratios of standard deviation to the mean values are 4.2 % for 304L and 3.6 % for 316L. Such a drop in the standard deviation is attributable to the decrease in the number of institute owing to the application of single extensometer or direct strain gage technique.« less

  16. Effect of inlet-air humidity, temperature, pressure, and reference Mach number on the formation of oxides of nitrogen in a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.

  17. Pneumatic testing in 45-degree-inclined boreholes in ash-flow tuff near Superior, Arizona

    USGS Publications Warehouse

    LeCain, G.D.

    1995-01-01

    Matrix permeability values determined by single-hole pneumatic testing in nonfractured ash-flow tuff ranged from 5.1 to 20.3 * 1046 m2 (meters squared), depending on the gas-injection rate and analysis method used. Results from the single-hole tests showed several significant correlations between permeability and injection rate and between permeability and test order. Fracture permeability values determined by cross-hole pneumatic testing in fractured ash-flow tuff ranged from 0.81 to 3.49 * 1044 m2, depending on injection rate and analysis method used. Results from the cross-hole tests monitor intervals showed no significant correlation between permeability and injection rate; however, results from the injection interval showed a significant correlation between injection rate and permeability. Porosity estimates from the 'cross-hole testing range from 0.8 to 2.0 percent. The maximum temperature change associated with the pneumatic testing was 1.2'(2 measured in the injection interval during cross-hole testing. The maximum temperature change in the guard and monitor intervals was O.Ip C. The maximum error introduced into the permeability values due to temperature fluctuations is approximately 4 percent. Data from temperature monitoring in the borehole indicated a positive correlation between the temperature decrease in the injection interval during recovery testing and the gas-injection rate. The thermocouple psychrometers indicated that water vapor was condensing in the boreholes during testing. The psychrometers in the guard and monitor intervals detected the drier injected gas as an increase in the dry bulb reading. The relative humidity in the test intervals was always higher than the upper measurement limit of the psychrometers. Although the installation of the packer system may have altered the water balance of the borehole, the gas-injection testing resulted in minimal or no changes in the borehole relative humidity.

  18. High temperature fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Saltsman, James F.; Kalluri, Sreeramesh

    1988-01-01

    The high temperature, creep-fatigue behavior of Haynes 188 was investigated as an element in a broader thermomechanical fatigue life prediction model development program at the NASA-Lewis. The models are still in the development stage, but the data that were generated possess intrinsic value on their own. Results generated to date is reported. Data were generated to characterize isothermal low cycle fatigue resistance at temperatures of 316, 704, and 927 C with cyclic failure lives ranging from 10 to more than 20,000. These results follow trends that would be predicted from a knowledge of tensile properties, i.e., as the tensile ductility varies with temperature, so varies the cyclic inelastic straining capacity. Likewise, as the tensile strength decreases, so does the high cyclic fatigue resistance. A few two-minute hold-time cycles at peak compressive strain were included in tests at 760 C. These results were obtained in support of a redesign effort for the Orbital Maneuverable System engine. No detrimental effects on cyclic life were noted despite the added exposure time for creep and oxidation. Finally, a series of simulated thermal fatigue tests, referred to as bithermal fatigue tests, were conducted using 316 C as the minimum and 760 C as the maximum temperature. Only out-of-phase bithermal tests were conducted to date. These test results are intended for use as input to a more general thermomechanical fatigue life prediction model based on the concepts of the total strain version of Strainrange Partitioning.

  19. The Effect of Curing Temperature on the Fracture Toughness of Fiberglass Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas J.

    The curing reaction in a thermoset polymer matrix composite is often accelerated by the addition of heat in an oven or autoclave. The heat added increases the rate of the polymerization reaction and cross-linking in the material. The cure cycle used (temperature, pressure and time) can therefore alter the final material properties. This research focuses on how the curing temperature (250, 275, 300 °F) affects the yield strength and the mode I interlaminar fracture toughness, GI, of a unidirectional S-2 glass epoxy composite. The test method that was used for the tension test was ASTM D3039 and the test method for the mode I interlaminar fracture toughness, the double cantilever beam (DCB) test, was ASTM D5528. The DCB specimens were fabricated with a non-adhesive insert at the midplane of the composite that serves as the initiatior of the delamination. Opening forces were then applied to the specimen, causing the crack propagation. The results show that increasing the cure temperature by 50 °F increased the tensile strength by 10% (86.54 - 94.73 ksi) and decreased the fracture toughness 20% (506.23 - 381.31 J/m 2). Thus, the curing temperature can cause a trade-off between these two properties, which means that the curing cycle will need to be altered based on the intended use and the required material properties.

  20. Temperature dependence of 63Ni-Si betavoltaic microbattery.

    PubMed

    Yunpeng, Liu; Xiao, Guo; Zhangang, Jin; Xiaobin, Tang

    2018-05-01

    This paper theoretically presented the temperature effects on the 63 Ni-Si betavoltaic microbattery irradiated by a source with different thicknesses and activity densities at a temperature range 170-340K. Temperature dependences of the monolayer and interbedded 63 Ni-Si betavoltaics at 213.15-333.15K were tested with respect to calculations. Results showed that the higher the thickness, activity density, and average energy of the source, the lower is the betavoltaic performance responds to temperature. With the increase in temperature, the V oc and P max of the upper, lower, and interbedded betavoltaics decreased linearly at low temperatures and decreased exponentially at high temperatures in the experiment. As predicted, the measured V oc and P max sensitivities of the lower betavoltaic with 4.90mCi/cm 2 63 Ni, -2.230mV/K and -1.132%, respectively, were lower than those with 1.96mCi/cm 2 63 Ni, -2.490mV/K and -1.348%, respectively. Compared with the calculated results, the prepared betavoltaics had lower V oc sensitivity and higher P max sensitivity. In addition, the measured V oc sensitivity of the interbedded betavoltaic in series is equal to the sum of those of the upper and lower ones as predicted. Moreover, the measured P max sensitivity of the interbedded betavoltaic is equal to the average of those of the two monolayers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Petunia × hybrida floral scent production is negatively affected by high-temperature growth conditions.

    PubMed

    Cna'ani, Alon; Mühlemann, Joelle K; Ravid, Jasmin; Masci, Tania; Klempien, Antje; Nguyen, Thuong T H; Dudareva, Natalia; Pichersky, Eran; Vainstein, Alexander

    2015-07-01

    Increasing temperatures due to changing global climate are interfering with plant-pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography-mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid-based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down-regulation of scent-related structural gene expression from both phenylpropanoid and shikimate pathways, and up-regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic 'Blue Spark' plants overexpressing CaMV 35S-driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long-term high-temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up-regulation of transcription might negate the adverse effects of temperature on scent production. © 2014 John Wiley & Sons Ltd.

  2. Effects of temperature on consumer-resource interactions.

    PubMed

    Amarasekare, Priyanga

    2015-05-01

    Understanding how temperature variation influences the negative (e.g. self-limitation) and positive (e.g. saturating functional responses) feedback processes that characterize consumer-resource interactions is an important research priority. Previous work on this topic has yielded conflicting outcomes with some studies predicting that warming should increase consumer-resource oscillations and others predicting that warming should decrease consumer-resource oscillations. Here, I develop a consumer-resource model that both synthesizes previous findings in a common framework and yields novel insights about temperature effects on consumer-resource dynamics. I report three key findings. First, when the resource species' birth rate exhibits a unimodal temperature response, as demonstrated by a large number of empirical studies, the temperature range over which the consumer-resource interaction can persist is determined by the lower and upper temperature limits to the resource species' reproduction. This contrasts with the predictions of previous studies, which assume that the birth rate exhibits a monotonic temperature response, that consumer extinction is determined by temperature effects on consumer species' traits, rather than the resource species' traits. Secondly, the comparative analysis I have conducted shows that whether warming leads to an increase or decrease in consumer-resource oscillations depends on the manner in which temperature affects intraspecific competition. When the strength of self-limitation increases monotonically with temperature, warming causes a decrease in consumer-resource oscillations. However, if self-limitation is strongest at temperatures physiologically optimal for reproduction, a scenario previously unanalysed by theory but amply substantiated by empirical data, warming can cause an increase in consumer-resource oscillations. Thirdly, the model yields testable comparative predictions about consumer-resource dynamics under alternative hypotheses for how temperature affects competitive and resource acquisition traits. Importantly, it does so through empirically quantifiable metrics for predicting temperature effects on consumer viability and consumer-resource oscillations, which obviates the need for parameterizing complex dynamical models. Tests of these metrics with empirical data on a host-parasitoid interaction yield realistic estimates of temperature limits for consumer persistence and the propensity for consumer-resource oscillations, highlighting their utility in predicting temperature effects, particularly warming, on consumer-resource interactions in both natural and agricultural settings. © 2014 The Author. Journal of Animal Ecology © 2014 British Ecological Society.

  3. T-Burner Testing of Metallized Solid Propellants

    DTIC Science & Technology

    1974-10-01

    The heat exchanger reduces the temperature of the combustion products and, therefore, serves to decrease the pressure build up in the overall system by...transducer (4-5). The high temperature gases will not affect the flush mounted Kistler unit for duratiens of several seconds, with only a thin film of sili...Assume that the average speeds of the particles and gases are the same, and that the local value of p p/pg = C at the edge of the combustion zone is

  4. Fatigue Behavior of an Advanced SiC/SiC Composite at Elevated Temperature in Air and in Steam

    DTIC Science & Technology

    2009-12-01

    specimens tested in salt fog achieved fatigue run-out. However, a significant decrease in fatigue life was observed for fatigue stresses ≥ 100 MPa...fatigue stress level approached the proportional limit. The reduction is fatigue life was attributed to the increased matrix cracking near the...oxidation of any free silicon remaining after production using methods such as melt infiltration, and the SiC itself as temperatures near 1000 ºC. These

  5. Solar Array at Very High Temperatures: Ground Tests

    NASA Technical Reports Server (NTRS)

    Vayner, Boris

    2016-01-01

    Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 volts) or to operate at higher voltages with encapsulation of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between the coverglass and the conductive spacecraft body in a kilovolt range. In such a case, the weakly conductive layer over coverglass, indium tin oxide (ITO) is one of the possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of minus150 degrees Centigrade to plus 1100 degrees Centigrade. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside a shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to the Sun. The conductive layer over coverglass causes a sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating (Room Temperature Vulcanizing (RTV) material; radiative heating of a coupon in vacuum chamber becomes practically impossible above 1500 degrees Centigrade; conductivities of glass and adhesive go up with temperature that decrease array efficiency; and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 2000 degrees Centigrade. The dependence of leakage current on temperature was measured, and electrostatic cleanness was verified for coupons with antireflection (AR) coating over the indium tin oxide (ITO) layer.

  6. Study on Thermal Deformation Behavior of TC4 – ELI Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Song, Y.; Zhang, F. S.; Huang, T.; Song, K. X.

    2018-05-01

    The TC4-ELI titanium alloy was subjected to hot compression deformation test by the Gleeble-1500D thermal simulation test machine. The thermal deformation behavior of the TC4-ELI titanium alloy was studied under the condition of 850°C-1050°C, 0.001s-1-10s-1 strain rate and 50% deformation. The constitutive equation of TC4-ELI titanium alloy was established based on the hyperbolic sine model of Arrhenius equation. The results show that the flow stress of TC4-ELI titanium alloy decreases with the increase of temperature at high temperature. The calculated heat activation energy of TC4-ELI titanium alloy is 300367.5807J / mol.

  7. Liquid cooling applications on automotive exterior LED lighting

    NASA Astrophysics Data System (ADS)

    Aktaş, Mehmet; Şenyüz, Tunç; Şenyıldız, Teoman; Kılıç, Muhsin

    2018-02-01

    In this study cooling of a LED unit with heatsink and liquid cooling block which is used in automotive head lamp applications has been investigated numerically and experimentally. Junction temperature of a LED which is cooled with heatsink and liquid cooling block obtained in the experiment. 23°C is used both in the simulation and the experiment phase. Liquid cooling block material is choosed aluminium (Al) and polyamide. All tests and simulation are performed with three different flow rate. Temperature distribution of the designed product is investigated by doing the numerical simulations with a commercially software. In the simulations, fluid flow is assumed to be steady, incompressible and laminar and 3 dimensional (3D) Navier-Stokes equations are used. According to the calculations it is obtained that junction temperature is higher in the heatsink design compared to block cooled one. By changing the block material, it is desired to investigate the variation on the LED junction temperature. It is found that more efficient cooling can be obtained in block cooling by using less volume and weight. With block cooling lifetime of LED can be increased and flux loss can be decreased with the result of decreased junction temperature.

  8. Effect of heat treatment on the enzymatic stability of grass carp skin collagen and its ability to form fibrils in vitro.

    PubMed

    Yang, Huan; Wang, Haibo; Zhao, Yan; Wang, Haiyin; Zhang, Hanjun

    2015-01-01

    The molecular configuration, molecular weight distribution and thermal transition enthalpy (ΔH) of grass carp skin (GCS) collagens after heat treatment under different conditions were measured using circular dichroism, gel filtration chromatography and differential scanning calorimetry (DSC). The enzymatic stability of collagen was evaluated using different enzymes, while the ability to form fibrils in vitro was assessed by morphological observation of collagen fibrils and turbidity testing. The ΔH values, in-solution molecular aggregation and the stability to enzymatic hydrolysis of GCS collagen decreased irreversibly and progressively with the duration of heat treatment at 33 °C, which was the onset endothermic temperature obtained from the DSC curve. A strong positive linear correlation between the enzymatic sensitivity of collagen and the degree of thermal denaturation was found. A decrease in fibril diameter and D-periodicity length with denaturation could also be observed in the SEM and TEM images. The onset endothermic temperature (To ) rather than the denaturation temperature (Td ) is the threshold temperature for configurational stability of GCS collagen in acidic solution, and the biological properties would obviously change if the collagen was heat treated at this temperature. © 2014 Society of Chemical Industry.

  9. Thermoregulatory models of safety-for-flight issues for space operations

    NASA Astrophysics Data System (ADS)

    Pisacane, V. L.; Kuznetz, L. H.; Logan, J. S.; Clark, J. B.; Wissler, E. H.

    2006-10-01

    This study investigates the use of a mathematical model for thermoregulation as a tool in safety-of-flight issues and proposed solutions for mission operations of the Space Shuttle and the International Space Station. Specifically, this study assesses the effects of elevated cabin temperature and metabolic loads on astronauts wearing the Advanced Crew Escape Suit (ACES) and the Liquid Cooled Ventilation Garment (LCVG). The 225-node Wissler model is validated by comparison with two ground-based human subject tests, firefighters, and surrogate astronauts under anomalous conditions that show good agreement. Subsequent simulations indicate that the performance of the ACES/LCVG is marginal. Increases in either workload or cabin temperature from the nominal will increase rectal temperature, stored heat load, heart rate, and sweating leading to possible deficits in the ability of the astronauts to perform cognitive and motor tasks that could affect the safety of the mission, especially the safe landing of the Shuttle. Specific relationships are given between cabin temperature and metabolic rate that define the threshold for decreased manual dexterity and loss of tracking skills. Model results indicate that the most effective mitigation strategy would be to decrease the LCVG inlet temperature. Methods of accomplishing this are also proposed.

  10. Study on Thermal Decomposition Characteristics of Ammonium Nitrate Emulsion Explosive in Different Scales

    NASA Astrophysics Data System (ADS)

    Wu, Qiujie; Tan, Liu; Xu, Sen; Liu, Dabin; Min, Li

    2018-04-01

    Numerous accidents of emulsion explosive (EE) are attributed to uncontrolled thermal decomposition of ammonium nitrate emulsion (ANE, the intermediate of EE) and EE in large scale. In order to study the thermal decomposition characteristics of ANE and EE in different scales, a large-scale test of modified vented pipe test (MVPT), and two laboratory-scale tests of differential scanning calorimeter (DSC) and accelerating rate calorimeter (ARC) were applied in the present study. The scale effect and water effect both play an important role in the thermal stability of ANE and EE. The measured decomposition temperatures of ANE and EE in MVPT are 146°C and 144°C, respectively, much lower than those in DSC and ARC. As the size of the same sample in DSC, ARC, and MVPT successively increases, the onset temperatures decrease. In the same test, the measured onset temperature value of ANE is higher than that of EE. The water composition of the sample stabilizes the sample. The large-scale test of MVPT can provide information for the real-life operations. The large-scale operations have more risks, and continuous overheating should be avoided.

  11. Dehydration of Traditional Dried Instant Noodle (Mee Siput) Using Controlled Temperature & Humidity Dryer

    NASA Astrophysics Data System (ADS)

    Mamat, K. A.; Yusof, M. S.; Yusoff, Wan Fauziah Wan; Zulafif Rahim, M.; Hassan, S.; Rahman, M. Qusyairi. A.; Karim, M. A. Abd

    2017-05-01

    Drying process is an essential step to produce instant noodles. Yet, the industries especially Small and Medium Enterprises (SMEs), is seeking for an efficient method to dry the noodles. This paper discusses the performance of an invented drying system which employed heating and humidifying process. The drying system was tested using 30 kilogram of the raw noodle known as “Mee Siput”. Temperature controlled system were used in the study to control the temperature of the drying process and prevent the dried noodles from damage by maintaining the temperature of lower than 80°C. The analysis shows that the system was drastically decreased the humidity from 80% to 40% just after 200 minutes of the drying process. The complete dehydration time of noodle has also decreased to only 4 hours from 16 hours when using traditional drying system without sacrificed the good quality of the dried noodle. In overall, the invented system believed to increase the production capacity of the noodle, reduce cost of production which would highly beneficial for Small Medium Industries (SMEs) in Malaysia.

  12. Characterization of Hot Deformation Behavior of a Fe-Cr-Ni-Mo-N Superaustenitic Stainless Steel Using Dynamic Materials Modeling

    NASA Astrophysics Data System (ADS)

    Pu, Enxiang; Zheng, Wenjie; Song, Zhigang; Feng, Han; Zhu, Yuliang

    2017-03-01

    Hot deformation behavior of a Fe-24Cr-22Ni-7Mo-0.5N superaustenitic stainless steel was investigated by hot compression tests in a wide temperature range of 950-1250 °C and strain rate range of 0.001-10 s-1. The flow curves show that the flow stress decreases as the deformation temperature increases or the strain rate decreases. The processing maps developed on the basis of the dynamic materials model and flow stress data were adopted to optimize the parameters of hot working. It was found that the strain higher than 0.2 has no significant effect on the processing maps. The optimum processing conditions were in the temperature range of 1125-1220 °C and strain rate range of 0.1-3 s-1. Comparing to other stable domains, microstructural observations in this domain revealed the complete dynamic recrystallization (DRX) with finer and more uniform grain size. Flow instability occurred in the domain of temperature lower than 1100 °C and strain rate higher than 0.1 s-1.

  13. Prevailing trends of climatic extremes across Indus-Delta of Sindh-Pakistan

    NASA Astrophysics Data System (ADS)

    Abbas, Farhat; Rehman, Iqra; Adrees, Muhammad; Ibrahim, Muhammad; Saleem, Farhan; Ali, Shafaqat; Rizwan, Muhammad; Salik, Muhammad Raza

    2018-02-01

    This study examines the variability and change in the patterns of climatic extremes experienced in Indus-Delta of Sindh province of Pakistan, comprising regions of Karachi, Badin, Mohenjodaro, and Rohri. The homogenized daily minimum and maximum temperature and precipitation data for a 36-year period were used to calculate 13 and 11 indices of temperature and precipitation extremes with the help of RClimDex, a program written in the statistical software package R. A non-parametric Mann-Kendall test and Sen's slope estimates were used to determine the statistical significance and magnitude of the calculated trend. Temperatures of summer days and tropical nights increased in the region with overall significant warming trends for monthly maximum temperature as well as for warm days and nights reflecting dry conditions in the study area. The warm extremes and nighttime temperature indices showed greater trends than cold extremes and daytime indices depicting an overall warming trends in the Delta. Historic decrease in the acreage of major crops and over 33% decrease in agriculture credit for Sindh are the indicators of adverse impacts of warmer and drier weather on Sindh agriculture. Trends reported for Karachi and Badin are expected to decrease rice cultivation, hatching of fisheries, and mangroves forest surrounding these cities. Increase in the prevailing temperature trends will lead to increasingly hotter and drier summers resulting to constraints on cotton, wheat, and rice yield in Rohri and Mohenjodaro areas due to increased crop water requirements that may be met with additional groundwater pumping; nonetheless, the depleted groundwater resources would have a direct impact on the region's economy.

  14. Shear transfer capacity of reinforced concrete exposed to fire

    NASA Astrophysics Data System (ADS)

    Ahmad, Subhan; Bhargava, Pradeep; Chourasia, Ajay

    2018-04-01

    Shear transfer capacity of reinforced concrete elements is a function of concrete compressive strength and reinforcement yield strength. Exposure of concrete and steel to elevated temperature reduces their mechanical properties resulting in reduced shear transfer capacity of RC elements. The objective of present study is to find the effect of elevated temperature on shear transfer capacity of reinforced concrete. For this purpose pushoff specimens were casted using normal strength concrete. After curing, specimens were heated to 250°C and 500°C in an electric furnace. Cooled specimens were tested for shear transfer capacity in a universal testing machine. It was found that shear transfer capacity and stiffness (slope of load-slip curve) were reduced when the specimens were heated to 250°C and 500°C. Load level for the initiation of crack slip was found to be decreased as the temperature was increased. A simple analytical approach is also proposed to predict the shear transfer capacity of reinforced concrete after elevated temperature.

  15. Effect of Temperature on Galling Behavior of SS 316, 316 L and 416 Under Self-Mated Condition

    NASA Astrophysics Data System (ADS)

    Harsha, A. P.; Limaye, P. K.; Tyagi, Rajnesh; Gupta, Ankit

    2016-11-01

    Galling behavior of three different stainless steels (SS 316, 316 L and 416) was evaluated at room temperature and 300 °C under a self-mated condition. An indigenously fabricated galling tester was used to evaluate the galling performance of mated materials as per ASTM G196-08 standard. The variation in frictional torque was recorded online during the test to assess the onset of galling. The galling50 (G50) stress value was used to compare the galling resistance of a combination of materials, and the results indicate a significant influence of temperature on the galling resistance of the materials tested. This has been attributed to the decrease in hardness and yield strength at elevated temperature which results in softening of the steel and limits its ability to resist severe deformation. Scanning electron micrographs of the galled surface reflected a severe plastic deformation in sliding direction, and a typical adhesive wear mechanism is prevalent during the galling process.

  16. Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments.

    PubMed

    Sharp, Christine E; Brady, Allyson L; Sharp, Glen H; Grasby, Stephen E; Stott, Matthew B; Dunfield, Peter F

    2014-06-01

    Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature-diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5-99 °C and a pH range of 1.8-9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R(2) values up to 0.62 for neutral-alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13-20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible.

  17. Patients’ experiences of cold exposure during ambulance care

    PubMed Central

    2013-01-01

    Background Exposure to cold temperatures is often a neglected problem in prehospital care. Cold exposure increase thermal discomfort and, if untreated causes disturbances of vital body functions until ultimately reaching hypothermia. It may also impair cognitive function, increase pain and contribute to fear and an overall sense of dissatisfaction. The aim of this study was to investigate injured and ill patients’ experiences of cold exposure and to identify related factors. Method During January to March 2011, 62 consecutively selected patients were observed when they were cared for by ambulance nursing staff in prehospital care in the north of Sweden. The field study was based on observations, questions about thermal discomfort and temperature measurements (mattress air and patients’ finger temperature). Based on the observation protocol the participants were divided into two groups, one group that stated it was cold in the patient compartment in the ambulance and another group that did not. Continuous variables were analyzed with independent sample t-test, paired sample t-test and dichotomous variables with cross tabulation. Results In the ambulance 85% of the patients had a finger temperature below comfort zone and 44% experienced the ambient temperature in the patient compartment in the ambulance to be cold. There was a significant decrease in finger temperature from the first measurement indoor compared to measurement in the ambulance. The mattress temperature at the ambulance ranged from −22.3°C to 8.4°C. Conclusion Cold exposure in winter time is common in prehospital care. Sick and injured patients immediately react to cold exposure with decreasing finger temperature and experience of discomfort from cold. Keeping the patient in the comfort zone is of great importance. Further studies are needed to increase knowledge which can be a base for implications in prehospital care for patients who probably already suffer for other reasons. PMID:23742143

  18. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  19. Lung function association with outdoor temperature and relative humidity and its interaction with air pollution in the elderly.

    PubMed

    Lepeule, Johanna; Litonjua, Augusto A; Gasparrini, Antonio; Koutrakis, Petros; Sparrow, David; Vokonas, Pantel S; Schwartz, Joel

    2018-04-21

    While the effects of weather variability on cardio-respiratory mortality are well described, research examining the effects on morbidity, especially for vulnerable populations, is warranted. We investigated the associations between lung function and outdoor temperature (T in Celsius degrees (°C)) and relative humidity (RH), in a cohort of elderly men, the Normative Aging Study. Our study included 1103 participants whose forced vital capacity (FVC), forced expiratory volume in one second (FEV 1 ), and weather exposures were assessed one to five times during the period 1995-2011 (i.e. 3162 observations). Temperature and relative humidity were measured at one location 4 h to 7 days before lung function tests. We used linear mixed-effects models to examine the associations with outdoor T and RH. A 5-degree increase in the 3-day moving average T was associated with a significant 0.7% decrease (95%CI: -1.24, -0.20) in FVC and a 5% increase in the 7-day moving average RH was associated with a significant 0.2% decrease (95%CI: -0.40, -0.02) in FVC and FEV 1 . The associations with T were greater when combined with higher exposures of black carbon with a 1.6% decrease (95%CI -2.2; -0.9) in FVC and a 1% decrease (95%CI -1.7; -0.4) in FEV 1 . The relationships between T and RH and lung function were linear. No synergistic effect of T and RH was found. Heat and lung function are two predictors of mortality. Our findings suggest that increases in temperature and relative humidity are related to decreases in lung function, and such observations might be amplified by high black carbon levels. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Examination of the mechanism for the reversible aging behavior at open circuit when changing the operating temperature of (La 0.8Sr 0.2) 0.95 MnO 3 electrodes

    DOE PAGES

    Abernathy, Harry; Finklea, Harry O.; Mebane, David S.; ...

    2015-02-17

    The aging behavior of symmetrical cells, consisting of either (La 0.8Sr 0.2) 0.95 MnO 3 (LSM) or La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF) electrodes screen printed on either 8 mol% yttria-stabilized zirconia (YSZ) or Ce 0.8Gd 0.2O 2 (GDC) electrolyte substrates, is reported as the symmetrical cell is thermally cycled between 700 °C and 800 °C. For LSM, between 700 °C and 850 °C, the polarization resistance exhibits slow increases or decreases with time (on the order of days) after a quick change in temperature. When increasing the temperature, the polarization resistance decreases with time, and when decreasing themore » temperature, the polarization resistance slowly increases with time. In a previous work, the authors had explained these results with LSM by connecting the testing conditions to literature reports of surface analysis of LSM thin films which demonstrated a change in the amount of surface cation segregation as a function of temperature. In this work, TEM/EDS/XPS analysis of dense LSM pellets thermally cycled under the same conditions as the symmetrical cells does not indicate any significant reversible change in the surface composition of the LSM pellet between 700 °C and 800 °C. An alternative hypothesis is proposed to explain the relationship between polarization resistance and the LSM cation/anion vacancy concentrations controlled by the Schottky reaction. The timescale of aging behavior is related to the time necessary for the cations to move to or from the LSM surface to adjust to the new equilibrium at each temperature. Furthermore, the relevance in understanding the mechanism behind the aging behavior is emphasized with respect to fuel cell sample/stack modeling as well as to proper testing procedures for reaching reliable conclusions when comparing different electrode samples.« less

  1. Effects of a warmer climate on seed germination in the subarctic

    PubMed Central

    Milbau, Ann; Graae, Bente Jessen; Shevtsova, Anna; Nijs, Ivan

    2009-01-01

    Background and Aims In a future warmer subarctic climate, the soil temperatures experienced by dispersed seeds are likely to increase during summer but may decrease during winter due to expected changes in snow depth, duration and quality. Because little is known about the dormancy-breaking and germination requirements of subarctic species, how warming may influence the timing and level of germination in these species was examined. Methods Under controlled conditions, how colder winter and warmer summer soil temperatures influenced germination was tested in 23 subarctic species. The cold stratification and warm incubation temperatures were derived from real soil temperature measurements in subarctic tundra and the temperatures were gradually changed over time to simulate different months of the year. Key Results Moderate summer warming (+2·5 °C) substantially accelerated germination in all but four species but did not affect germination percentages. Optimum germination temperatures (20/10°C) further decreased germination time and increased germination percentages in three species. Colder winter soil temperatures delayed the germination in ten species and decreased the germination percentage in four species, whereas the opposite was found in Silene acaulis. In most species, the combined effect of a reduced snow cover and summer warming resulted in earlier germination and thus a longer first growing season, which improves the chance of seedling survival. In particular the recruitment of (dwarf) shrubs (Vaccinium myrtillus, V. vitis-idaea, Betula nana), trees (Alnus incana, Betula pubescens) and grasses (Calamagrostis lapponica, C. purpurea) is likely to benefit from a warmer subarctic climate. Conclusions Seedling establishment is expected to improve in a future warmer subarctic climate, mainly by considerably earlier germination. The magnitudes of the responses are species-specific, which should be taken into account when modelling population growth and migration of subarctic species. PMID:19443459

  2. Phase Transformation and Shape Memory Effect of Ti-Pd-Pt-Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yamabe-Mitarai, Yoko; Takebe, Wataru; Shimojo, Masayuki

    2017-12-01

    To understand the potential of high-temperature shape memory alloys, we have investigated the phase transformation and shape memory effect of Ti-(50 - x)Pt- xPd-5Zr alloys ( x = 0, 5, and 15 at.%), which present the B2 structure in the austenite phase and B19 structure in the martensite phase. Their phase transformation temperatures are very high; A f and M f of Ti-50Pt are 1066 and 1012 °C, respectively. By adding Zr and Pd, the phase transition temperatures decrease, ranging between 804 and 994 °C for A f and 590 and 865 °C for M f. Even at the high phase transformation temperature, a maximum recovery ratio of 70% was obtained for one cycle in a thermal cyclic test. A work output of 1.2 J/cm3 was also obtained. The recovery ratio obtained by the thermal cyclic test was less than 70% because the recovery strain was < 1% and a large irrecoverable strain was obtained. The shape recovery was explained by the austenite strength. The training effect was also investigated.

  3. Arctic (and Antarctic) Observing Experiment - an Assessment of Methods to Measure Temperature over Polar Environments

    NASA Astrophysics Data System (ADS)

    Rigor, I. G.; Clemente-Colon, P.; Nghiem, S. V.; Hall, D. K.; Woods, J. E.; Henderson, G. R.; Zook, J.; Marshall, C.; Gallage, C.

    2014-12-01

    The Arctic environment has been undergoing profound changes; the most visible is the dramatic decrease in Arctic sea ice extent (SIE). These changes pose a challenge to our ability to measure surface temperature across the Polar Regions. Traditionally, the International Arctic Buoy Programme (IABP) and International Programme for Antarctic Buoys (IPAB) have measured surface air temperature (SAT) at 2-m height, which minimizes the ambiguity of measurements near of the surface. Specifically, is the temperature sensor measuring open water, snow, sea ice, or air? But now, with the dramatic decrease in Arctic SIE, increase in open water during summer, and the frailty of the younger sea ice pack, the IABP has had to deploy and develop new instruments to measure temperature. These instruments include Surface Velocity Program (SVP) buoys, which are commonly deployed on the world's ice-free oceans and typically measure sea surface temperature (SST), and the new robust Airborne eXpendable Ice Beacons (AXIB), which measure both SST and SAT. "Best Practice" requires that these instruments are inter-compared, and early results showing differences in collocated temperature measurements of over 2°C prompted the establishment of the IABP Arctic Observing Experiment (AOX) buoy test site at the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska. Preliminary results showed that the color of the hull of SVP buoys introduces a bias due to solar heating of the buoy. Since then, we have recommended that buoys should be painted white to reduce biases in temperature measurements due to different colors of the buoys deployed in different regions of the Arctic or the Antarctic. Measurements of SAT are more robust, but some of the temperature shields are susceptible to frosting. During our presentation we will provide an intercomparison of the temperature measurements at the AOX test site (i.e. high quality DOE/ARM observations compared with unattended buoy measurements, and satellite retrievals). We will also show how these data may be used to improve our record of temperature over polar environments.

  4. Austenitizing Temperature Effects on the Martensitic Transformation, Microstructural Characteristics, and Mechanical Performance of Modified Ferritic Heat-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaosheng; Liu, Yongchang; Liu, Chenxi; Yu, Liming; Li, Huijun

    2018-06-01

    The martensitic transformation, microstructural characteristics, and mechanical performance of modified ferritic heat-resistant steels under various austenitizing conditions were investigated by differential scanning calorimetry, microstructural examination, and mechanical tests. When the austenitizing temperature was as high as 1200 °C, a considerable amount of δ-ferrite formed, and the austenite grain size was seen to decrease. Higher austenitizing temperatures were found to promote martensite formation, but retard martensite growth, and the lath width increased as the austenitizing temperature increased. After tempering, rod-like and granular M23C6 carbides appeared within the tempered martensite, the average size and composition of which were dependent on the austenitizing conditions. When the austenitizing temperature was 1050 °C, granular MX with sizes less than 6 nm were identified in the δ-ferrite, while for other austenitizing temperatures, plate MX was inside the δ-ferrite. At 1200 °C, the length of the plate MX was as high as 100 nm, and the number density of plate MX decreased. The steel austenitized at 1150 °C exhibited the best tensile performance. It was found that the presence of a large amount of δ-ferrite would initiate cracking, thereby impeding the tensile strength.

  5. Effects of water vapor density on cutaneous resistance to evaporative water loss and body temperature in green tree frogs (Hyla cinerea).

    PubMed

    Wygoda, Mark L; Kersten, Constance A

    2013-01-01

    Increased cutaneous resistance to evaporative water loss (Rc) in tree frogs results in decreased water loss rate and increased body temperature. We examined sensitivity of Rc to water vapor density (WVD) in Hyla cinerea by exposing individual frogs and agar models to four different WVD environments and measuring cutaneous evaporative water loss rate and body temperature simultaneously using a gravimetric wind tunnel measuring system. We found that water loss rate varied inversely and body temperature directly with WVD but that models were affected to a greater extent than were animals. Mean Rc was significantly different between the highest WVD environment and each of the three drier environments but did not differ among the drier environments, indicating that Rc initially increases and then reaches a plateau in response to decreasing WVD. Rc was equivalent when calculated using either WVD difference or WVD deficit as the driving force for evaporation. We also directly observed secretions from cutaneous glands while measuring body temperature and tested secretions and skin samples for the presence of lipids. We found that irregular transient body temperature depressions observed during wind tunnel trials occur due to evaporative cooling from intermittent skin secretions containing lipids, although we were unable to identify lipid-secreting glands.

  6. Effect of operating temperature on styrene mass transfer characteristics in a biotrickling filter.

    PubMed

    Parnian, Parham; Zamir, Seyed Morteza; Shojaosadati, Seyed Abbas

    2017-05-01

    To study the effect of operating temperature on styrene mass transfer from gas to liquid phase in biotrickling filters (BTFs), overall mass transfer coefficient (K L a) was calculated through fitting test data to a general mass balance model under abiotic conditions. Styrene was used as the volatile organic compound and the BTF was packed with a mixture of pall rings and pumice. Operating temperature was set at 30°C and 50°C for mesophilic and thermophilic conditions, respectively. K L a values increased from 54 to 70 h -1 at 30°C and from 60 to 90 h -1 at 50°C, respectively, depending on the countercurrent gas to liquid flow ratio that varied in the range of 7.5-32. Evaluation of styrene mass transfer capacity (MTC) showed that liquid-phase mass transfer resistance decreased as the flow ratio increased at constant temperature. MTC also decreased with an increase in operating temperature. Both gas-liquid partition coefficient and K L a increased with increasing temperature; however the effect on gas-liquid partition coefficient was more significant and served to increase mass transfer limitations. Thermophilic biofiltration on the one hand increases mass transfer limitations, but on the other hand may enhance the biodegradation rate in favor of enhancing BTFs' performance.

  7. Thermomechanical Performance of Si-Ti-C-O and Sintered SiC Fiber-Bonded Ceramics at High Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunaga, Tadashi; Lin, Hua-Tay; Singh, Mrityunjay

    2011-01-01

    The stress-temperature-lifetime response of Si-Ti-C-O fiber-bonded ceramic (Tyrannohex ) and sintered SiC fiber-bonded ceramic (SA-Tyrannohex ) materials were investigated in air from 500 to 1150 C and 500 to 1400 C, respectively. The apparent threshold stress of Si-Ti-C-O fiber-bonded ceramic was about 175 MPa in the 500-1150 C temperature range. When the applied stress of the sintered SiC fiber-bonded ceramic was below an apparent threshold stress (e.g., ~225MPa) for tests conducted 1150 C, no failures were observed for lifetimes up to 1000h. In the case of sintered SiC fiber-bonded ceramic, at the temperature of 1300 C, the apparent threshold stressmore » decreased to 175 MPa. The decrease in strength seemed to be caused by grain growth which was confirmed from the SEM fractography. Both fiber-bonded ceramics exhibited much higher durability than a commercial SiC/SiC composite at temperatures above 500 C. In addition, results suggested that the sintered SiC fiber-bonded ceramic (SA-Tyrannohex) is more stable than a Hi-Nicalon/MI SiC composite with BN/SiC fiber coating at temperatures above 1300 C.« less

  8. Testing physical models for dipolar asymmetry with CMB polarization

    NASA Astrophysics Data System (ADS)

    Contreras, D.; Zibin, J. P.; Scott, D.; Banday, A. J.; Górski, K. M.

    2017-12-01

    The cosmic microwave background (CMB) temperature anisotropies exhibit a large-scale dipolar power asymmetry. To determine whether this is due to a real, physical modulation or is simply a large statistical fluctuation requires the measurement of new modes. Here we forecast how well CMB polarization data from Planck and future experiments will be able to confirm or constrain physical models for modulation. Fitting several such models to the Planck temperature data allows us to provide predictions for polarization asymmetry. While for some models and parameters Planck polarization will decrease error bars on the modulation amplitude by only a small percentage, we show, importantly, that cosmic-variance-limited (and in some cases even Planck) polarization data can decrease the errors by considerably better than the expectation of √{2 } based on simple ℓ-space arguments. We project that if the primordial fluctuations are truly modulated (with parameters as indicated by Planck temperature data) then Planck will be able to make a 2 σ detection of the modulation model with 20%-75% probability, increasing to 45%-99% when cosmic-variance-limited polarization is considered. We stress that these results are quite model dependent. Cosmic variance in temperature is important: combining statistically isotropic polarization with temperature data will spuriously increase the significance of the temperature signal with 30% probability for Planck.

  9. The effects of temperature on decomposition and allelopathic phytotoxicity of boneseed litter.

    PubMed

    Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W

    2015-07-01

    Decomposition of plant litter is a fundamental process in ecosystem function, carbon and nutrient cycling and, by extension, climate change. This study aimed to investigate the role of temperature on the decomposition of water soluble phenolics (WSP), carbon and soil nutrients in conjunction with the phytotoxicity dynamics of Chrysanthemoides monilifera subsp. monilifera (boneseed) litter. Treatments consisted of three factors including decomposition materials (litter alone, litter with soil and soil alone), decomposition periods and temperatures (5-15, 15-25 and 25-35°C (night/day)). Leachates were collected on 0, 5, 10, 20, 40 and 60th days to analyse physico-chemical parameters and phytotoxicity. Water soluble phenolics and dissolved organic carbon (DOC) increased with increasing temperature while nutrients like SO4(-2) and NO3(-1) decreased. Speed of germination, hypocotyl and radical length and weight of Lactuca sativa exposed to leachates were decreased with increasing decomposition temperature. All treatment components had significant effects on these parameters. There had a strong correlation between DOC and WSP, and WSP content of the leachates with radical length of test species. This study identified complex interactivity among temperature, WSP, DOC and soil nutrient dynamics of litter occupied soil and that these factors work together to influence phytotoxicity. Copyright © 2015. Published by Elsevier B.V.

  10. Influence of increasing temperature and salinity on herbicide toxicity in estuarine phytoplankton.

    PubMed

    DeLorenzo, Marie E; Danese, Loren E; Baird, Thomas D

    2013-07-01

    Ecological risk assessments are, in part, based on results of toxicity tests conducted under standard exposure conditions. Global climate change will have a wide range of effects on estuarine habitats, including potentially increasing water temperature and salinity, which may alter the risk assessment of estuarine pollutants. We examined the effects of increasing temperature and salinity on the toxicity of common herbicides (irgarol, diuron, atrazine, and ametryn) to the phytoplankton species Dunaliella tertiolecta. Static 96-h algal bioassays were conducted for each herbicide under four exposure scenarios: standard temperature and salinity (25°C, 20 ppt), standard temperature and elevated salinity (25°C, 40 ppt), elevated temperature and standard salinity (35°C, 20 ppt), and elevated temperature and elevated salinity (35°C, 40 ppt). The endpoints assessed were algal cell density at 96 h, growth rate, chlorophyll a content, lipid content, and starch content. Increasing exposure temperature reduced growth rate and 96-h cell density but increased the cellular chlorophyll and lipid concentrations of the control algae. Exposure condition did not alter starch content of control algae. Herbicides were found to decrease growth rate, 96 h cell density, and cellular chlorophyll and lipid concentrations, while starch concentrations increased with herbicide exposure. Herbicide effects under standard test conditions were then compared with those observed under elevated temperature and salinity. Herbicide effects on growth rate, cell density, and starch content were more pronounced under elevated salinity and temperature conditions. To encompass the natural variability in estuarine temperature and salinity, and to account for future changes in climate, toxicity tests should be conducted under a wider range of environmental conditions. Copyright © 2011 Wiley Periodicals, Inc.

  11. The Influence of Low Wall Temperature on Boundary-Layer Transition and Local Heat Transfer on 2-Inch-Diameter Hemispheres at a Mach Number of 4.95 and a Reynolds Number per Foot of 73.2 x 10(exp 6)

    NASA Technical Reports Server (NTRS)

    Cooper, Morton; Mayo, Edward E.; Julius, Jerome D.

    1960-01-01

    Measurements of the location of boundary-layer transition and the local heat transfer have been made on 2-inch-diameter hemispheres in the Langley gas dynamics laboratory at a Mach number of 4.95, a Reynolds number per foot of 73.2 x 10(exp 6), and a stagnation temperature of approximately 400 F. The transient-heating thin-skin calorimeter technique was used, and the initial values of the wall-to-stream stagnation- temperature ratios were 0.16 (cold-model tests) and 0.65 (hot-model test). During two of the four cold tests, the boundary-layer flow changed from turbulent to laminar over large regions of the hemisphere as the model heated. On the basis of a detailed consideration of the magnitude of roughness possibly present during these two cold tests, it appears that this destabilizing effect of low wall temperatures (cooling) was not caused by roughness as a dominant influence. This idea of a decrease in boundary-layer stability with cooling has been previously suggested. (See, for example, NASA Memorandum 10-8-58E.) For the laminar data obtained during the early part of the hot test, the correlation of the local-heating data with laminar theory was excellent.

  12. Simulating extreme environments: Ergonomic evaluation of Chinese pilot performance and heat stress tolerance.

    PubMed

    Li, Jing; Tian, Yinsheng; Ding, Li; Zou, Huijuan; Ren, Zhaosheng; Shi, Liyong; Feathers, David; Wang, Ning

    2015-06-05

    High-temperatures in the cockpit environment can adversely influence pilot behavior and performance. To investigate the impact of high thermal environments on Chinese pilot performance in a simulated cockpit environment. Ten subjects volunteered to participate in the tests under 40°C and 45°C high-temperature simulations in an environmentally controlled chamber. Measures such as grip strength, perception, dexterity, somatic sense reaction, and analytical reasoning were taken. The results were compared to the Combined Index of Heat Stress (CIHS). CIHS exceeded the heat stress safety limit after 45 min under 40°C, grip strength decreased by 12% and somatic perception became 2.89 times larger than the initial value. In the case of 45°C, CIHS exceeded the safety limit after only 20 min, while the grip strength decreased just by 3.2% and somatic perception increased to 4.36 times larger than the initial value. Reaction and finger dexterity were not statistically different from baseline measurements, but the error rate of analytical reasoning test rose remarkably. Somatic perception was the most sensitive index to high-temperature, followed by grip strength. Results of this paper may help to improve environmental control design of new fighter cockpit and for pilot physiology and cockpit environment ergonomics research for Chinese pilots.

  13. Effects of deformation-induced martensite and grain size on ductile-to-brittle transition behavior of austenitic 18Cr-10Mn-N stainless steels

    NASA Astrophysics Data System (ADS)

    Hwang, Byoungchul; Lee, Tae-Ho; Kim, Sung-Joon

    2010-12-01

    Effects of deformation-induced martensite and grain size on ductile-to-brittle transition behavior of austenitic 18Cr-10Mn-(0.3˜0.6)N stainless steels with different alloying elements were investigated by means of Charpy impact tests and microstructural analyses. The steels all exhibited ductile-to-brittle transition behavior due to unusual brittle fracture at low temperatures despite having a face-centered cubic structure. The ductileto-brittle transition temperature (DBTT) obtained from Chapry impact tests did not coincide with that predicted by an empirical equation depending on N content in austenitic Cr-Mn-N stainless steels. Furthermore, a decrease of grain size was not effective in terms of lowering DBTT. Electron back-scattered diffraction and transmission electron microscopy analyses of the cross-sectional area of the fracture surface showed that some austenites with lower stability could be transformed to α'-martensite by localized plastic deformation near the fracture surface. Based on these results, it was suggested that when austenitic 18Cr-10Mn-N stainless steels have limited Ni, Mo, and N content, the deterioration of austenite stability promotes the formation of deformation-induced martensite and thus increases DBTT by substantially decreasing low-temperature toughness.

  14. Experimental investigation of anisotropy evolution of AZ31 magnesium alloy sheets under tensile loading

    NASA Astrophysics Data System (ADS)

    Tari, D. Ghaffari; Worswick, M. J.

    2011-05-01

    Increasing demand for lighter final products has created new opportunities for the application of new light weight materials. Due to high strength to density ratio and good magnetic resistance properties, magnesium alloys are good candidates to replace steel and aluminum for same application. However, limited numbers of active slip deformation mechanisms, result in a decreased formability at room temperature. Furthermore, wrought magnesium alloys have an initial crystallographic texture, remained from the prior rolling operations, which makes them highly anisotropic. In this paper, tensile tests are performed at room temperature and 200° C at different strain rates and orientations relative to the rolling direction, including rolling, 30°, 45°, 60° and transverse orientation. The strain rates adopted for these experiments varied from 0.001 to 1.0. The testing results show the effect of temperature on the strain rate sensitivity of AZ31 sheets. The extent of deformation is continuously recorded using two separate high temperature extensometers. The results of testing show an increase in the r-values with the plastic deformation. The strain rate sensitivity of AZ31 increased as the temperature was elevated. At higher strain rates the measured r-values are larger and the slope of its evolution with the plastic strain is steeper.

  15. Thermal acclimation of interactions: differential responses to temperature change alter predator-prey relationship.

    PubMed

    Grigaltchik, Veronica S; Ward, Ashley J W; Seebacher, Frank

    2012-10-07

    Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator-prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10-30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator-prey interactions can be a mechanism by which global warming affects ecological communities.

  16. Thermal acclimation of interactions: differential responses to temperature change alter predator–prey relationship

    PubMed Central

    Grigaltchik, Veronica S.; Ward, Ashley J. W.; Seebacher, Frank

    2012-01-01

    Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator–prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10–30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator–prey interactions can be a mechanism by which global warming affects ecological communities. PMID:22859598

  17. NiMnGa/Si Shape Memory Bimorph Nanoactuation

    NASA Astrophysics Data System (ADS)

    Lambrecht, Franziska; Lay, Christian; Aseguinolaza, Iván R.; Chernenko, Volodymyr; Kohl, Manfred

    2016-12-01

    The size dependences of thermal bimorph and shape memory effect of nanoscale shape memory alloy (SMA)/Si bimorph actuators are investigated in situ in a scanning electron microscope and by finite element simulations. By combining silicon nanomachining and magnetron sputtering, freestanding NiMnGa/Si bimorph cantilever structures with film/substrate thickness of 200/250 nm and decreasing lateral dimensions are fabricated. Electrical resistance and mechanical beam bending tests upon direct Joule heating demonstrate martensitic phase transformation and reversible thermal bimorph effect, respectively. Corresponding characteristics are strongly affected by the large temperature gradient in the order of 50 K/µm forming along the nano bimorph cantilever upon electro-thermal actuation, which, in addition, depends on the size-dependent heat conductivity in the Si nano layer. Furthermore, the martensitic transformation temperatures show a size-dependent decrease by about 40 K for decreasing lateral dimensions down to 200 nm. The effects of heating temperature and stress distribution on the nanoactuation performance are analyzed by finite element simulations revealing thickness ratio of SMA/Si of 90/250 nm to achieve an optimum SME. Differential thermal expansion and thermo-elastic effects are discriminated by comparative measurements and simulations on Ni/Si bimorph reference actuators.

  18. Plasma immersion ion implantation for reducing metal ion release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, C.; Garcia, J. A.; Maendl, S.

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment.more » Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.« less

  19. Increased benefit of alteplase in patients with ischemic stroke and a high body temperature.

    PubMed

    de Ridder, Inger; den Hertog, Heleen; van Gemert, Maarten; Dippel, Diederik; van der Worp, Bart

    2013-01-01

    In observational studies, a high body temperature has been associated with unfavorable outcome. In in vitro studies, the fibrinolytic activity of alteplase decreased 5% per degree Celsius reduction in temperature. The modifying effect of body temperature on treatment with alteplase in patients with acute ischemic stroke is unclear. We assessed the influence of baseline body temperature on the effect of alteplase on functional outcome in patients with acute ischemic stroke, included in the Paracetamol (Acetaminophen) in Stroke (PAIS) trial. PAIS was a randomized, double-blind clinical trial to assess the effect of high-dose paracetamol on functional outcome in patients with acute stroke. For this study, we selected all patients with ischemic stroke and randomization within 6 h of symptom onset. We estimated the effect of treatment with alteplase on the modified Rankin Scale score at 3 months with ordinal logistic regression, stratified by baseline body temperature. We made adjustments for confounding factors and expressed associations as adjusted odds ratios (aOR) with 95% confidence intervals (CI). We also tested for interaction between treatment with alteplase and body temperature. We included 647 of the 1,400 patients in PAIS in our study. Treatment with alteplase was associated with improved functional outcome at 3 months (aOR 1.51, 95% CI 1.09-2.08). In the 286 patients (44%) with a baseline body temperature of 37.0°C or higher, alteplase was associated with a larger effect (aOR 2.13, 95% CI 1.28-3.45) than in patients with a temperature below 37.0°C (aOR 1.11, 95% CI 0.71-1.69). A test for interaction between body temperature and alteplase did not reach statistical significance (p = 0.18). Patients with ischemic stroke and a high body temperature may have a larger benefit of treatment with alteplase than patients with lower body temperatures. These findings are in line with those from in vitro studies, in which lowering temperature decreased the fibrinolytic activity of the enzyme alteplase. This interaction should be explored further in randomized clinical trials of thrombolytic therapy or modification of body temperature. Trials of therapeutic hypothermia should be controlled for treatment with thrombolytics, and trials of thrombolytic treatment should consider body temperature as a potential effect modifier. Copyright © 2013 S. Karger AG, Basel.

  20. Evaluation of a thermoplastic polyimide (422) for bonding GR/PI composite

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.

    1988-01-01

    A hot-melt processable copolyimide previously studied and characterized as an adhesive for bonding Ti-6Al-4V was used to bond Celion 6000/LARC-160 composite. Comparisons are made for the two adherend systems. A bonding cycle was determined for the composite bonding and lap shear specimens were prepared which were thermally exposed in a forced-air oven for up to 5000 h at 204 C. The lap shear strengths (LSSs) were determined at RT, 177, and 204 C. After thermal exposure at RT, 177, and 204 C the LSS decreased significantly; however, a slight increase was noted for the 204 C tests. Initially the LSS values are higher for the bonded Ti-6Al-4V than for the bonded composite, however, the LSS decreases dramatically between 5000 and 10,000 h of 204 C thermal exposure. Longer periods of thermal exposure up to 20,000 h results in further decreases in the LSSs. Although the bonded composite retained useful strengths for exposures up to 5000 h, based on the poor results of the bonded Ti-6Al-4V beyond 5000 h, the 422 adhesive bonded composites would most likely also produce poor strengths beyond 5000 h exposure. Adhesive bonded composite lap shear specimens exposed to boiling water for 72 h exhibited greatly reduced strengths at all test temperatures. The percent retained after water boil for each test temperature was essentially the same for both systems.

  1. Evaluation of a thermoplastic polyimide (422) for bonding GR/PI composite

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.

    1988-01-01

    A hot-melt processable copolyimide previously studied and characterized as an adhesive for bonding Ti-6Al-4V was used to bond Celion 6000/LARC-160 composite. Comparisons are made for the two adherend systems. A bonding cycle was determined for the composite bonding and lap shear specimens were prepared which were thermally exposed in a forced-air oven for up to 5000 h at 204 C. The lap shear strengths (LSSs) were determined at RT, 177, and 204 C. After thermal exposure at RT, 177, and 204 C the LSS decreased significantly; however, a slight increase was noted for the 204 C tests. Initially the LSS values are higher for the bonded Ti-6Al-4V than for the bonded composite, however, the LSS decreases dramatically between 5000 and 10,000 h of 204 C thermal exposure. Longer periods of thermal exposure up to 20,000 h results in further decreases in the LSSs. Although the bonded composite retained useful strengths for exposures up to 5000 h, based on the por results of the bonded Ti-6Al-4V beyond 5000 h, the 422 adhesive bonded composites would most likely also produce poor strengths beyond 5000 h exposure. Adhesive bonded composite lap shear specimens exposed to boiling water for 72 h exhibited greatly reduced strengths at all test temperatures. The percent retained after water boil for each test temperature was essentially the same for both systems.

  2. Theoretical predications of the effects of temperature on simulated adaptive processes in human motor nerve axons at 20°C-42°C.

    PubMed

    Stephanova, D I; Daskalova, M

    2014-09-01

    The effects of temperature on conducting and accommodative processes in the myelinated human motor nerve fiber were previously studied by us in the range of 20°C-42°C. To complete the cycle of our studies on adaptive processes in the fiber, the temperature effects on strength-duration time constant, rheobasic current and recovery cycle are investigated. The computations use our temperature dependent multi-layered model of the fiber and the temperature is increased from 20°C to 42°C. The results show that these excitability parameters are more sensitive to the hypothermia (≤ 25°C) and are most sensitive to the hyperthermia (≥ 40°C), especially at 42°C, than at temperatures in the range of 28°C-37°C. With the increase of temperature from 20°C to 42°C, the strength-duration time constant decreases ~ 8.8 times, while it decreases ~ 2.7% per °C in the range of 28°C-37°C. Conversely, the rheobasic current increases ~ 4.4 times from 20°C to 42°C, while it increases ~ 2.3% per °C in the range of 28°C-37°C. The behavior of relative refractory period and axonal superexcitability in a 100 ms recovery cycle is complex with the increase of temperature. The axonal superexcitability decreases with the increase of temperature during hypothermia. However, it increases rapidly with the increase of temperature during hyperthermia, especially at 42°C and a block of each applied third testing stimulus is obtained. The superexcitability period is followed by a late subexcitability period when the temperatures are in the physiological range of 32°C-37°C. The present results are essential for the interpretation of mechanisms of excitability parameter changes obtained here and measured in healthy subjects with symptoms of cooling, warming and fever, which can result from alterations in body temperature. Our present and previous results confirm that 42°C is the highest critical temperature for healthy subjects.

  3. High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel

    NASA Astrophysics Data System (ADS)

    Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu

    2018-07-01

    India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent ( n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent ( n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity ( m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume ( V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

  4. High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel

    NASA Astrophysics Data System (ADS)

    Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu

    2018-05-01

    India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent (n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume (V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

  5. Study on the mechanism of Si-glass-Si two step anodic bonding process

    NASA Astrophysics Data System (ADS)

    Hu, Lifang; Wang, Hao; Xue, Yongzhi; Shi, Fangrong; Chen, Shaoping

    2018-04-01

    Si-glass-Si was successfully bonded together through a two-step anodic bonding process. The bonding current in each step of the two-step bonding process was investigated, and found to be quite different. The first bonding current decreased quickly to a relatively small value, but for the second bonding step, there were two current peaks; the current first decreased, then increased, and then decreased again. The second current peak occurred earlier with higher temperature and voltage. The two-step anodic bonding process was investigated in terms of bonding current. SEM and EDS tests were conducted to investigate the interfacial structure of the Si-glass-Si samples. The two bonding interfaces were almost the same, but after an etching process, transitional layers could be found in the bonding interface and a deeper trench with a thickness of ~1.5 µm could be found in the second bonding interface. Atomic force microscopy mapping results indicated that sodium precipitated from the back of the glass, which makes the roughness of the surface become coarse. Tensile tests indicated that the fracture occurred at the glass substrate and that the bonding strength increased with the increment of bonding temperature and voltage with the maximum strength of 6.4 MPa.

  6. Impacts of environmental factors on the climbing behaviors of herbaceous stem-twiners.

    PubMed

    Hu, Liang; Chen, Youfang; Liu, Meicun

    2017-11-01

    The curvature of the helical trajectory formed by herbaceous stem-twiners has been hypothesized to be constant on uniformly sized cylindrical supports and remains constant on different supports varying in diameter. However, experimental studies on the constant curvature hypothesis have been very limited. Here, we tested the hypothesis in a series of experiments on five herbaceous stem-twiners ( Ipomoea triloba , Ipomoea nil , Phaseolus vulgaris , Vigna unguiculata, and Mikania micrantha ). We investigated how internode characteristics (curvature [β], diameter [ d ], and length [ L ]) and success rate (SR) of twining shoots would be affected by support thickness ( D ), temperature ( T ), illumination, and support inclination. The results showed that: (1) the SR of tested species decreased, but d increased with increasing support thickness. The β of the twining shoots on erect cylindrical poles was not constant, but it decreased with increasing d or support thickness. (2) The SR of tested species was not obviously reduced under low-temperature conditions, but their β was significantly higher and d significantly lower when temperature was more than 5°C lower. (3) The SR , d, and L of two tested Ipomoea species significantly declined, but β increased under 50% shading stress. (4) The curvatures of upper semicycles of I. triloba shoots on 45° inclined supports were not significantly different from curvatures of those shoots climb on erect supports, whereas the curvatures of lower semicycles were 40%-72% higher than curvatures of upper semicycles. Synthesis : Our study illustrates that stem curvatures of a certain herbaceous stem-twiners are not constant, but rather vary in response to external support, temperature, and illumination conditions. We speculate that herbaceous stem-twiners positively adapt to wide-diameter supports by thickening their stems and by reducing their twining curvatures. This insight helps us better understand climbing processes and dynamics of stem-twiners in forest communities and ecosystems.

  7. Heat resistance study of basalt fiber material via mechanical tests

    NASA Astrophysics Data System (ADS)

    Gao, Y. Q.; Jia, C.; Meng, L.; Li, X. H.

    2017-12-01

    This paper focuses on the study of the relationship between the fracture strength of basalt rovings and temperature. Strong stretching performance of the rovings has been tested after the treatment at fixed temperatures but different heating time and then the fracture strength of the rovings exposed to the heating at different temperatures and cooled in different modes investigated. Finally, the fracture strength of the basalt material after the heat treatment was studied. The results showed that the room-temperature strength tends to decrease with an increase of the heat treatment time at 250 °C, but it has the local maximum after 2h heating. And the basalt rovings strength increased after the heat treatment up to 200 °C. It was 16.7 percent higher than the original strength. The strength depends not only on the temperature and duration of the heating, but also on the cooling mode. The value of the strength measured after cold water cooling was less by 6.3% compared with an ambient air cooling mode. The room-temperature breaking strength of the rovings heated at 200 °C and 100 °C for 2 hours each increased by about 14.6% with respect to unpretreated basalt rovings.

  8. Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load

    PubMed Central

    Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai

    2016-01-01

    This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C. PMID:27754356

  9. Evaluation of Die-Attach Bonding Using High-Frequency Ultrasonic Energy for High-Temperature Application

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Bum; Aw, Jie-Li; Rhee, Min-Woo

    2014-09-01

    Room-temperature die-attach bonding using ultrasonic energy was evaluated on Cu/In and Cu/Sn-3Ag metal stacks. The In and Sn-3Ag layers have much lower melting temperatures than the base material (Cu) and can be melted through the heat generated during ultrasonic bonding, forming intermetallic compounds (IMCs). Samples were bonded using different ultrasonic powers, bonding times, and forces and subsequently aged at 300°C for 500 h. After aging, die shear testing was performed and the fracture surfaces were inspected by scanning electron microscopy. Results showed that the shear strength of Cu/In joints reached an upper plateau after 100 h of thermal aging and remained stable with aging time, whereas that of the Cu/Sn-3Ag joints decreased with increasing aging time. η-Cu7In4 and (Cu,Au)11In9 IMCs were observed at the Cu/In joint, while Cu3Sn and (Ag,Cu)3Sn IMCs were found at the Cu/Sn-3Ag joint after reliability testing. As Cu-based IMCs have high melting temperatures, they are highly suitable for use in high-temperature electronics, but can be formed at room temperature using an ultrasonic approach.

  10. A study on rheological characteristics of roller milled fenugreek fractions.

    PubMed

    Sakhare, Suresh D; Inamdar, Aashitosh A; Prabhasankar, P

    2016-01-01

    Fenugreek seeds were fractionated by roller milling to get various fractions. The roller milled fractions and whole fenugreek flour (WFF) were evaluated for the flow behavior and time-dependent flow properties using a rotational viscometer at the temperatures of 10-60 (0)C. The samples subjected to a programmed shear rate increase linearly from 0 to 300 s(-1) in 3 min and successive decrease linearly shear rate from 300 s(-1) to 0 in 3 min. The roller milled fractions and WFF paste exhibited non-Newtonian pseudoplastic behavior. Difference in hysteresis loop area was observed among the roller milled fractions and WFF, being more noticeable at lower temperatures. Power law and Casson models were used to predict flow properties of samples. The power law model described well the flow behavior of the roller milled fractions and WFF at temperatures tested. Except flour (FL) fraction, consistency coefficient, m, increased with the temperature both in the forward and backward measurements. The roller milled fractions and WFF exhibited rheopectic behavior that increased viscosity with increasing the shear speed and the temperature. For all the sample tested, initial shear stress increased with increase in shear rate and temperature.

  11. [Antimicrobial Effects of Iodine-Polyvinyl Alcohol Ophthalmic and Eye Washing Solution (PA * IODO) with Special Reference to its Temperature, Concentration and Time and its Preservation Stability].

    PubMed

    Hatano, Hiroshi; Sakamoto, Masako; Hayashi, Kazuo; Kamiya, Seigo

    2015-08-01

    Temperature, concentration and time are the three factors that affect the inactivation capacity of iodine antiseptics. We investigated the effect of these factors on the microbe inactivation of Iodine-Polyvinyl Alcohol ophthalmic and eye washing solution (PA * IODO), and also investigated the preservation conditions on stability of the inactivation activity of the PA * IODO. Test microbes were mixed with PA * IODO, varying the three factors. The live microbes were counted after each reaction. The effects of plugging and preservation temperature were investigated to determine the preserving stability. The inactivation capacity of PA * IODO tended to decrease in almost all microbes tested at 4 degrees C. Twenty times or less diluted PA * IODO killed almost all microbes completely. The time effect was more marked in viruses. Plugging and low-temperature made iodine concentration in diluted PA * IODO remain relatively high. The concentration of PA * IODO affected the inactivation ability more than the temperature and time, although all the three factors correlated positively to the inactivation. For preservation the diluted PA * IODO needed plugging and low temperature.

  12. Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments

    PubMed Central

    Sharp, Christine E; Brady, Allyson L; Sharp, Glen H; Grasby, Stephen E; Stott, Matthew B; Dunfield, Peter F

    2014-01-01

    Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature–diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5–99 °C and a pH range of 1.8–9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R2 values up to 0.62 for neutral–alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13–20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible. PMID:24430481

  13. Effects of sintering process on wear and mechanical behavior properties of titanium carbide/hexagonal boron nitrid/steel 316L base nanocomposites

    NASA Astrophysics Data System (ADS)

    Sadooghi, Ali; Payganeh, Gholamhassan

    2018-02-01

    Powder metallurgy process is one of the approaches to manufacture nanocomposite samples, in which the product quality depends upon the pressure, temperature, and sintering time. In this manuscript, steel is selected as the base material together with 2% carbon-based reinforcing TiC particles, and 2% hBN particles as the self-lubricant material. The powders were mixed for 5 h in high ball milling, and compacted with two pressures of 350 and 450 MPa, sintered in the furnace for 2 and 4 h, and sintering temperatures of 1350 and 1450 °C were utilized. SEM, XRD, and EDX tests are performed to identify the nanocomposite structure, and DTA tests are carried out to specify the temperature graph of the material. Finally, hardness, wear, and bending tests are done to find the corresponding mechanical properties of the samples. As a result, the optimum process parameters, including pressure, temperature and sintering duration is achieved. Results show that adding the reinforcing particles into a steel matrix increase the hardness, as well as flexural strength of the nanocomposite product. Also, coefficient of friction shows a decreases.

  14. Temperature-fluctuation-sensitive accumulative effect of the phase measurement errors in low-coherence interferometry in characterizing arrayed waveguide gratings.

    PubMed

    Zhao, Changyun; Wei, Bing; Yang, Longzhi; Wang, Gencheng; Wang, Yuehai; Jiang, Xiaoqing; Li, Yubo; Yang, Jianyi

    2015-09-20

    We investigate the accumulative effect of the phase measurement errors in characterizing optical multipath components by low-coherence interferometry. The accumulative effect is caused by the fluctuation of the environment temperature, which leads to the variation of the refractive index of the device under test. The resulting phase measurement errors accumulate with the increasing of the phase difference between the two interferometer arms. Our experiments were carried out to demonstrate that the accumulative effect is still obvious even though the thermo-optical coefficient of the device under test is quite small. Shortening the measurement time to reduce the fluctuation of the environment temperature can effectively restrain the accumulative effect. The experiments show that when the scanning speed increases to 4.8 mm/s, the slope of the phase measurement errors decreases to 5.52×10(-8), which means the accumulative effect can be ignored.

  15. OXIDATION OF INCONEL 718 IN AIR AT TEMPERATURES FROM 973K TO 1620K.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    As part of the APT project, it was necessary to quantify the release of tungsten from the APT spallation target during postulated accident conditions in order to develop accident source terms for accident consequence characterization. Experiments with tungsten rods at high temperatures in a flowing steam environment characteristic of postulated accidents revealed that considerable vaporization of the tungsten occurred as a result of reactions with the steam and that the aerosols which formed were readily transported away from the tungsten surfaces, thus exposing fresh tungsten to react with more steam. The resulting tungsten release fractions and source terms were undesirablemore » and it was decided to clad the tungsten target with Inconel 718 in order to protect it from contact with steam during an accident and mitigate the accident source term and the consequences. As part of the material selection criteria, experiments were conducted with Inconel 718 at high temperatures to evaluate the rate of oxidation of the proposed clad material over as wide a temperature range as possible, as well as to determine the high-temperature failure limit of the material. Samples of Inconel 718 were inserted into a preheated furnace at temperatures ranging from 973 K to 1620 K and oxidized in air for varying periods of time. After oxidizing in air at a constant temperature for the prescribed time and then being allowed to cool, the samples would be reweighed to determine their weight gain due to the uptake of oxygen. From these weight gain measurements, it was possible to identify three regimes of oxidation for Inconel 718: a low-temperature regime in which the samples became passivated after the initial oxidation, an intermediate-temperature regime in which the rate of oxidation was limited by diffusion and exhibited a constant parabolic rate dependence, and a high-temperature regime in which material deformation and damage accompanied an accelerated oxidation rate above the parabolic regime. At temperatures below 1173 K, the rate of oxidation of the Inconel 718 surface was found to decrease markedly with time; the parabolic oxidation rate coefficient was not a constant but decreased with time. This was taken to indicate that the oxide film on the surface was having a passivating effect on oxygen transport through the oxide to the underlying metal. For temperatures in the range 1173 K to 1573 K, the time-dependent rate of oxidation as determined once again by weight-gain measurements was found to display the classical parabolic rate behavior, indicating that the rate of transport of reactants through the oxide was controlled by diffusion through the growing oxide layer. Parabolic rate coefficients were determined by least-squares analysis of time-dependent mass-gain data at 1173 K, 1273 K, 1373 K, 1473 K and 1573 K. At temperatures above 1540 K, post test examination of the oxidized samples revealed that the Inconel 718 began to lose strength and to deform. At 1540 K, samples which were suspended from their ends during testing began to demonstrate axial curvature as they lost strength and bowed under their own weight. As the temperatures of the tests were increased, rivulets were seen to appear on the surfaces of the test specimens; damage became severe at 1560 K. Although melting was never observed in any of these tests even up to. 1620 K, it was concluded from these data that the Inconel 718 clad should not be expected to protect the underlying tungsten at temperatures above 1540 K.« less

  16. Suburban heat island effect in groundwater energy utilisation in Nordic climate - case study

    NASA Astrophysics Data System (ADS)

    Arola, Teppo

    2017-04-01

    We present the preliminary results from the initial thermogeological characterization of Finland's first-ever planned large-scale aquifer thermal energy storage (ATES) facility. The site is located in the Asko area (Lahti), at a latitude of 60°59'N. In particular, emphasis is put on the results from an aquifer's pumping test performed in July / August 2016 to investigate the potential implication of suburban heat island (SUHI) effect to ATES system on the naturally cold groundwater area. The site has been under geological investigation since July 2015. At a regional scale, the groundwater's natural temperature is about 5.8- 6°C. However, preliminary measurements during the investigations revealed that local groundwater temperature ranged between 7.5 to 8.7 °C in Asko area. The highest temperature was observed underneath buildings, suggesting that higher-than-average temperature is most likely influenced due to anthropogenic heat flux into the ground. The pumping test was performed for 39 days, of which 28 days with groundwater withdrawal and 11 days of heads recovery. The pumped volumes range from 350 to 540 m3/d leading the total volume of 10400 m3 of groundwater. Groundwater temperatures were continuously measured from pumping test well and two observation piezometers during the entire test. The results indicated that aquifer's temperature remained nearly constant being between 7.4 to 7.9 °C during the test period. Heat pulses with temperature variation of 0.1 to 0.3 °C were observed in the pumping well and nearest monitoring well (19 meters from pumping well) during the pumping test and recovery phase. We estimate that the pulses were due to rapidly changed groundwater flowing conditions and pulse indicate "new groundwater" flow to the well. Overall, the preliminary test suggests that groundwater temperature are expected to remain elevated during the ATES system operation. Elevated temperature due the SUHI effect increases groundwater heating potential significantly. Similarly groundwater cooling potential decrease but groundwater still constitutes an effective cooling energy reservoir because groundwater temperatures remain below air temperatures during the summer and the COP for cooling is extremely high. In Asko site SUHI effect has been recognised from the beginning of the project. Energy and economical calculations are based on anthropogenic influence to ground temperatures. More research, i.e. detailed groundwater thermogeological modelling, is needed to design the multi well ATES system based on elevated groundwater temperatures.

  17. Trends in cooling degree-days for five locations in Croatia

    NASA Astrophysics Data System (ADS)

    Cvitan, L.

    2010-09-01

    The cooling degree-days (CDD) and number of cooling days (CD) over the period 1901-2008 are analyzed at five stations that represent different climatic regions in Croatia. The stations under consideration are: Osijek in the southern lowland of Pannonian Plain, Zagreb - Grič at the furthest south-eastern edge of the Julian Alps, Gospić in highland - hinterland of the Dinaric Alps, Crikvenica on the north-eastern Adriatic coast and Hvar on the mid - Adriatic island with the same name. Calculation of CDDs and counting of CDs are performed for the 18° C, 21° C and 23° C temperature thresholds that represent daily mean air temperature. Daily mean temperature (M) is calculated by using daily temperatures measured at 7 a.m. (t7), 2 p.m. (t14) and 9 p.m. (t21), in the following way: M=(t7+t14+2t21)/4. Linear trends over the period 1901-2008 are determined for each month as well as for the whole year (annual trend). Statistical significances of the trends are tested using the non-parametric Mann - Kendal test. For the months with the greatest potential cooling demands - June, July and August, the increasing trend is detected for almost all analyzed values at five locations. Namely, only for the August CD (threshold 18° C) for Hvar area and for the June and August CDDs (threshold 23° C) for Gospić area are detected slightly decreasing trends. Most slightly decreasing trends are discovered for September for both parameters at Osijek, Zagreb and Gospić area. Annual trends in both parameters for all locations are increasing, except the annual Gospić CDD (threshold 23° C) trend that is slightly decreasing. According to the Mann - Kendal test neither of the annual trends in CDD and CD for three temperature thresholds are statistically significant at 0.05 significance level in Gospić and Osijek. On the contrary, all of the mentioned annual trends are significant in Zagreb and Crikvenica, and almost all in Hvar (except trends in CD for the 21° C and 23° C thresholds). Months with the significant trends in most of analyzed values are: May and June in Osijek, May, June and July in Zagreb, June in Gospić, June, July and August in Crikvenica and July in Hvar.

  18. Effects of Age on Temperature Responses During Exposure to Hypergravity

    NASA Technical Reports Server (NTRS)

    Fung, C.K.; Baer, L. A.; Moran, M. M.; Wang, T. J.; Yuan, F.; Daunton, N. G.; Corcoran, M. L.; Wade, C. E.; Dalfan, Bonnie P. (Technical Monitor)

    2001-01-01

    Rats subjected to centrifugation show a marked decrease in body temperature relating to gravity level. Several studies have indicated, that an initial response to centrifugation is followed by acclimation. To test for differences between young (Y; 2 months) and mature (M; 8 months) rats in their response in temperature, both groups were exposed to hypergravity induced by centrifugation. Thirty-six male rats were divided into four groups according to age and G-load (control (1.0G-Y and 1.0G-M), 2.0G-Y or 2.0G-M) and were housed in pairs in standard vivarium cages. During the 7-day period of centrifugation, temperature was measured every five minutes by surgically implanted telemeters. Body mass was measured daily. We found that initial body temperature in 2.0G-M was less than that of 2.0G-Y. Both hypergravity groups (2.0G-Y and 2.0G-M) showed a decrease in temperature at the onset of centrifugation, and the change in temperature (Delta = 0.5 C) remained the same between the groups. Significant differences persisted with 2.0G-Y recovering to control values in four days and 2.0G-M recovering in five days. These results indicate that the mature animals have a similar response as the younger animals, but take longer to acclimate.

  19. Enrichment of pasta with faba bean does not impact glycemic or insulin response but can enhance satiety feeling and digestive comfort when dried at very high temperature.

    PubMed

    Greffeuille, Valérie; Marsset-Baglieri, Agnès; Molinari, Nicolas; Cassan, Denis; Sutra, Thibault; Avignon, Antoine; Micard, Valérie

    2015-09-01

    Enrichment of durum wheat pasta with legume flour enhances their protein and essential amino acid content, especially lysine content. However, despite its nutritional potential, the addition of a legume alters the rheological properties of pasta. High temperature drying of pasta reduces this negative effect by strengthening its protein network. The aim of our study was to determine if these changes in the pasta structure alter its in vitro carbohydrate digestibility, in vivo glycemic, insulin and satiety responses. We also investigated if high temperature drying of pasta can reduce the well-known digestive discomfort associated with the consumption of legume grains. Fifteen healthy volunteers consumed three test meals: durum wheat pasta dried at a low temperature (control), and pasta enriched with 35% faba bean dried at a low and at a very high temperature. When enriched with 35% legume flour, pasta maintained its nutritionally valuable low glycemic and insulin index, despite its weaker protein network. Drying 35% faba bean pasta at a high temperature strengthened its protein network, and decreased its in vitro carbohydrate digestion with no further decrease in its in vivo glycemic or insulin index. Drying pasta at a very high temperature reduced digestive discomfort and enhanced self-reported satiety, and was not associated with a modification of energy intake in the following meal.

  20. Warming influences Mg2+ content, while warming and acidification influence calcification and test strength of a sea urchin.

    PubMed

    Byrne, Maria; Smith, Abigail M; West, Samantha; Collard, Marie; Dubois, Philippe; Graba-landry, Alexia; Dworjanyn, Symon A

    2014-11-04

    We examined the long-term effects of near-future changes in temperature and acidification on skeletal mineralogy, thickness, and strength in the sea urchin Tripneustes gratilla reared in all combinations of three pH (pH 8.1, 7.8, 7.6) and three temperatures (22 °C, 25 °C, 28 °C) from the early juvenile to adult, over 146 days. As the high-magnesium calcite of the echinoderm skeleton is a biomineral form highly sensitive to acidification, and influenced by temperature, we documented the MgCO3 content of the spines, test plates, and teeth. The percentage of MgCO3 varied systematically, with more Mg2+ in the test and spines. The percentage of MgCO3 in the test and teeth, but not the spines increased with temperature. Acidification did not change the percentage MgCO3. Test thickness increased with warming and decreased at pH 7.6, with no interaction between these factors. In crushing tests live urchins mostly ruptured at sutures between the plates. The force required to crush a live urchin was reduced in animals reared in low pH conditions but increased in those reared in warm conditions, a result driven by differences in urchin size. It appears that the interactive effects of warming and acidification on the Mg2+ content and protective function of the sea urchin skeleton will play out in a complex way as global climatic change unfolds.

  1. High temperature abatement of acid gases from waste incineration. Part I: experimental tests in full scale plants.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Rigamonti, Lucia; Marras, Roberto; Grosso, Mario

    2015-02-01

    In recent years, several waste-to-energy plants in Italy have experienced an increase of the concentration of acid gases (HCl, SO2 and HF) in the raw gas. This is likely an indirect effect of the progressive decrease of the amount of treated municipal waste, which is partially replaced by commercial waste. The latter is characterised by a higher variability of its chemical composition because of the different origins, with possible increase of the load of halogen elements such as chlorine (Cl) and fluorine (F), as well as of sulphur (S). A new dolomitic sorbent was then tested in four waste-to-energy plants during standard operation as a pre-cleaning stage, to be directly injected at high temperature in the combustion chamber. For a sorbent injection of about 6 kg per tonne of waste, the decrease of acid gases concentration downstream the boiler was in the range of 7-37% (mean 23%) for HCl, 34-95% (mean 71%) for SO2 and 39-80% (mean 63%) for HF. This pre-abatement of acid gases allowed to decrease the feeding rate of the traditional low temperature sorbent (sodium bicarbonate in all four plants) by about 30%. Furthermore, it was observed by the plant operators that the sorbent helps to keep the boiler surfaces cleaner, with a possible reduction of the fouling phenomena and a consequent increase of the specific energy production. A preliminary quantitative estimate was carried out in one of the four plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Temperature of shocked plastic bonded explosive PBX 9502 measured with spontaneous Stokes/anti-Stokes Raman

    NASA Astrophysics Data System (ADS)

    McGrane, Shawn D.; Aslam, Tariq D.; Pierce, Timothy H.; Hare, Steven J.; Byers, Mark E.

    2018-01-01

    Raman spectra and velocimetry of shocked PBX 9502 (plastic bonded explosive composed of 95% triaminotrinitrobenzene (TATB) and 5% 3M Company Kel F-800 polymer binder) are reported with the Stokes/anti-Stokes ratio used to determine temperature after the shock reflects from a lithium fluoride window. Final pressures up to 14.5 GPa were tested, but the pressure induced absorption of TATB caused the Raman signal to decrease exponentially with pressure. The reflected shock temperature could be determined to 7 GPa, with an average increase of 14.9 K/GPa. Suggestions to adapt the technique to permit thermometry at higher temperatures are discussed, as are comparisons to a recently proposed equation of state for PBX 9502.

  3. Modeling turbulent/chemistry interactions using assumed pdf methods

    NASA Technical Reports Server (NTRS)

    Gaffney, R. L, Jr.; White, J. A.; Girimaji, S. S.; Drummond, J. P.

    1992-01-01

    Two assumed probability density functions (pdfs) are employed for computing the effect of temperature fluctuations on chemical reaction. The pdfs assumed for this purpose are the Gaussian and the beta densities of the first kind. The pdfs are first used in a parametric study to determine the influence of temperature fluctuations on the mean reaction-rate coefficients. Results indicate that temperature fluctuations significantly affect the magnitude of the mean reaction-rate coefficients of some reactions depending on the mean temperature and the intensity of the fluctuations. The pdfs are then tested on a high-speed turbulent reacting mixing layer. Results clearly show a decrease in the ignition delay time due to increases in the magnitude of most of the mean reaction rate coefficients.

  4. Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures

    DOE PAGES

    Daniel, Daniel; Mankin, Max N.; Belisle, Rebecca A.; ...

    2013-06-10

    Omniphobic surfaces that can repel fluids at temperatures higher than 100 °C are rare. Most state-of- the-art liquid-repellent materials are based on the lotus effect, where a thin air layer is maintained throughout micro/nanotextures leading to high mobility of liquids. However, such behavior eventually fails at elevated temperatures when the surface tension of test liquids decreases significantly. Here, we demonstrate a class of lubricant-infused structured surfaces that can maintain a robust omniphobic state even for low-surface-tension liquids at temperatures up to at least 200 °C. We also demonstrate how liquid mobility on such surfaces can be tuned by a factormore » of 1000.« less

  5. Warm hands, cold heart: progressive whole-body cooling increases warm thermosensitivity of human hands and feet in a dose-dependent fashion.

    PubMed

    Filingeri, Davide; Morris, Nathan B; Jay, Ollie

    2017-01-01

    What is the central question of this study? Investigations on inhibitory/facilitatory modulation of vision, touch and pain show that conditioning stimuli outside the receptive field of testing stimuli modulate the central processing of visual, touch and painful stimuli. We asked whether contextual modulation also exists in human temperature integration. What is the main finding and its importance? Progressive decreases in whole-body mean skin temperature (the conditioning stimulus) significantly increased local thermosensitivity to skin warming but not cooling (the testing stimuli) in a dose-dependent fashion. In resembling the central mechanisms underlying endogenous analgesia, our findings point to the existence of an endogenous thermosensory system in humans that could modulate local skin thermal sensitivity to facilitate thermal behaviour. Although inhibitory/facilitatory central modulation of vision and pain has been investigated, contextual modulation of skin temperature integration has not been explored. Hence, we tested whether progressive decreases in whole-body mean skin temperature (T sk ; a large conditioning stimulus) alter the magnitude estimation of local warming and cooling stimuli applied to hairy and glabrous skin. On four separate occasions, eight men (27 ± 5 years old) underwent a 30 min whole-body cooling protocol (water-perfused suit; temperature, 5°C), during which a quantitative thermosensory test, consisting of reporting the perceived magnitude of warming and cooling stimuli (±8°C from 30°C baseline) applied to the hand (palm/dorsum) and foot (sole/dorsum), was performed before cooling and every 10 min thereafter. The cooling protocol resulted in large progressive reductions in T sk [10 min, -3.36°C (95% confidence interval -2.62 to -4.10); 20 min, -5.21°C (-4.47 to -5.95); and 30 min, -6.32°C (-5.58 to -7.05); P < 0.001], with minimal changes (∼0.08°C) in rectal temperature. While thermosensitivity to local skin cooling remained unchanged (P = 0.831), sensitivity to skin warming increased significantly at each level of T sk for all skin regions [10 min, +4.9% (-1.1 to +11.0); 20 min, +6.1% (+0.1-12.2); and 30 min, +7.9% (+1.9-13.9); P = 0.009]. Linear regression indicated a 1.2% °C -1 increase in warm thermosensitivity with whole-body skin cooling. Overall, large decreases in T sk significantly facilitated warm but not cold sensory processing of local thermal stimuli, in a dose-dependent fashion. In highlighting a novel feature of human temperature integration, these findings point to the existence of an endogenous thermosensory system that could modulate local skin thermal sensitivity in relationship to whole-body thermal states. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  6. Microstructures and mechanical behavior of magnesium processed by ECAP at ice-water temperature

    NASA Astrophysics Data System (ADS)

    Zuo, Dai; Li, Taotao; Liang, Wei; Wen, Xiyu; Yang, Fuqian

    2018-05-01

    Magnesium of high purity is processed by equal channel angular pressing (ECAP) up to eight passes at the ice-water temperature, in which a core–shell-like structure is used. The core–shell-like structure consists of pure iron (Fe) of 1.5 mm in thickness as the shell and magnesium (Mg) as the core. The microstructure, texture and mechanical behavior of the ECAP-processed Mg are studied. The ECAP processing leads to the formation of fine and equiaxed grains of ~1.1 µm. The basal planes initially parallel to the extrusion direction evolve to slanted basal planes with the tilting angle in a range of 25°–45° to the extrusion direction. Increasing the number of the extrusion passes leads to the decreasing of twins and dislocation density in grains, while individual grains after eight passes still have high dislocation density. The large decreases of twins and the dislocation density make dynamic recrystallization (DRX) difficult, resulting in the decrease of the degree of DRX. Tension test reveals that the mechanical behavior of the ECAP-processed Mg is dependent on grain refinement and textures. The yield strength of the ECAP-extruded Mg first increases with the decrease of the grain size, and then decreases with further decrease of the grain size.

  7. Ultrasound effects on the degradation kinetics, structure, and antioxidant activity of sea cucumber fucoidan.

    PubMed

    Guo, Xin; Ye, Xingqian; Sun, Yujing; Wu, Dan; Wu, Nian; Hu, Yaqin; Chen, Shiguo

    2014-02-05

    The effects of ultrasound on the molecular weight, structure, and antioxidant potential of a fucoidan found in Isostichopus badionotus were investigated. The results showed the molecular weight (Mw) of fucoidan decreased obviously after ultrasound treatment. Higher ultrasonic intensity, lower temperature, and lower fucoidan concentrations led to a more effective sonochemical effect. The kinetic model for fucoidan degradation fitted to 1/M(wt)-1/M(w0) = kt at the tested temperature. The optimized degradation conditions by response surface methodology (RSM) were temperature, 12 °C, and intensity, 508 W/cm². Structural analysis by FTIR and NMR indicated the fucoidan kept the linear tetrasaccharide repeating units as the original polysaccharides after the ultrasound treatment, with only slight destruction of the middle nonsulfated fucose units. Antioxidant activity assay showed the antioxidant activity was slightly improved by the ultrasound treatment. The results suggested that ultrasound treatment is an effective approach to decrease the M(w) of fucoidan with only minor structural destruction.

  8. Effect of reduced cobalt contents on hot isostatically pressed powder metallurgy U-700 alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1982-01-01

    The effect of reducing the cobalt content of prealloyed powders of UDIMET 700 (U-700) alloys to 12.7, 8.6, 4.3, and 0% was examined. The powders were hot isostatically pressed into billets, which were given heat treatments appropriate for turbine disks, namely partial solutioning at temperatures below the gamma prime solvus and four step aging treatments. Chemical analyses, metallographic examinations, and X-ray diffraction measurements were performed on the materials. Minor effects on gamma prime content and on room temperature and 650 C tensile properties were observed. Creep rupture lives at 650 C reached a maximum at the 8.4% concentration, while at 760 C a maximum in life was reached at the 4.3% cobalt level. Minimum creep rates increased with decreasing cobalt content at both test temperatures. Extended exposures at 760 and 815 C resulted in decreased tensile strengths and rupture lives for all alloys. Evidence of sigma phase formation was also found.

  9. Frictional slip of granite at hydrothermal conditions

    USGS Publications Warehouse

    Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.

    1995-01-01

    To measure the strength, sliding behavior, and friction constitutive properties of faults at hydrothermal conditions, laboratory granite faults containing a layer of granite powder (simulated gouge) were slid. The mechanical results define two regimes. The first regime includes dry granite up to at least 845?? and wet granite below 250??C. In this regime the coefficient of friction is high (?? = 0.7 to 0.8) and depends only modestly on temperature, slip rate, and PH2O. The second regime includes wet granite above ~350??C. In this regime friction decreases considerably with increasing temperature (temperature weakening) and with decreasing slip rate (velocity strengthening). These regimes correspond well to those identified in sliding tests on ultrafine quartz. The results highlight the importance of fluid-assisted deformation processes active in faults at depth and the need for laboratory studies on the roles of additional factors such as fluid chemistry, large displacements, higher concentrations of phyllosilicates, and time-dependent fault healing. -from Authors

  10. Oxytocin treatment does not change cardiovascular parameters, hematology and plasma electrolytes in parturient horse mares.

    PubMed

    Nagel, Christina; Trenk, Lisa; Wulf, Manuela; Ille, Natascha; Aurich, Jörg; Aurich, Christine

    2017-03-15

    In mares, foaling is associated with changes in hematology, plasma electrolytes, blood pressure and heart rate and it has been hypothesized that these are induced by oxytocin. To test this hypothesis, mares (n = 8-14/group) were treated with oxytocin (OT; 20 I.U.) or saline (CON) at 1 h (test A) and 12 h after foaling (test B) and during first postpartum diestrus (test C). Heart rate, heart rate variability (HRV), atrioventricular blocks, salivary cortisol concentration, blood pressure, plasma electrolytes and blood count were determined. Heart rate decreased from test A to C (P < 0.001) but at no time differed between groups. The HRV, blood pressure and occurrence of atrioventricular blocks did not change in response to oxytocin. Cortisol concentration decreased from test A to C (P < 0.001). Oxytocin induced a cortisol release in test B (time x treatment P < 0.001, time x test P < 0.001). Plasma sodium and chloride concentrations decreased from test A to C (P < 0.001) but did not differ between groups. In test A, potassium concentration increased in CON but not OT mares (time P < 0.01, time x test P < 0.01, time x treatment P < 0.05). Polymorphnuclear cell (PMN) numbers in blood decreased from test A to C (P < 0.001) while lymphocytes increased (P < 0.05). At no time PMN and lymphocytes differed between groups. Oxytocin treatment had no effect on skin temperature. In conclusion, except for a limited effect on cortisol release, oxytocin was without effect and the hypothesis of oxytocin-induced alterations in cardiac parameters, plasma electrolytes and hematology of foaling mares was not verified. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A study of the effects of rare-earth elements on the microstructural evolution and deformation behavior of magnesium alloys at temperatures up to 523K

    NASA Astrophysics Data System (ADS)

    Chakkedath, Ajith

    Due to their high specific strength, lightweight magnesium (Mg) alloys are being increasingly used for applications, such as the automotive industry, where weight savings are critical. In order to develop new alloys and processing methods to achieve higher strength and better formability to compete with currently used metal alloys, it is important to understand the effects of alloying elements, processing, and temperature on the microstructure, mechanical properties, and the deformation behavior. In this dissertation, a systematic investigation on the effects of Nd additions (0-1wt.%) and temperature (298-523K) on the microstructure and the activity of different deformation modes in as-cast and cast-then-extruded Mg-1Mn (wt.%) alloys were performed. For this study, an in-situ testing technique which combines tension and compression testing inside a scanning electron microscope (SEM) with electron backscatter diffraction (EBSD) analysis was employed. The main findings of this work were that the microstructure, strength, and the distribution of the deformation modes varied significantly as a function of Nd content, temperature, and processing. An increase in the Nd content resulted in a weaker texture after extrusion in Mg-1Mn alloys. A combination of slip and twinning mechanisms controlled the tensile deformation in the extruded alloys at ambient temperatures. With an increase in temperature, the twinning activity decreased, and slip mechanisms dominated the deformation. In the extruded Nd-containing alloys, basal slip dominated the deformation, especially at elevated temperatures, suggesting that Nd additions strengthen basal slip. This resulted in excellent elevated-temperature strength retention in extruded Mg-1Mn-1Nd alloy, and a decrease in the Nd content to 0-0.3wt.% resulted in a decrease in the tensile strength at elevated temperatures. In extruded Mg-1Mn, contraction twinning dominated the tensile deformation and this alloy exhibited a lower elongation-to-failure (epsilon f) than the other alloys at 323K. With an increase in strain, these twins evolved into {101¯1} - {101¯2} double twins. Crystal plasticity modeling and simulation of the contraction twins and double twins showed that the activity of these twin modes is detrimental to the epsilon f of Mg alloys due to the strain localization that happens within the twinned volume due to the enhanced activity of basal slip. This agreed with the experimental observations. Compared to the extruded materials, the as-cast alloys exhibited significantly larger grain sizes and lower tensile strengths. The deformation in the as-cast alloys was dominated by a combination of basal slip and extension twinning at all test temperatures. A novel methodology which combines in-situ annealing inside a SEM with EBSD analysis was developed and employed to understand the effects of dilute Ce additions (0.2-0.6wt.%) on the recrystallization behavior in Mg-2Zn (wt.%) alloys. Texture weakening in these alloys resulted from the formation of an enhanced number of grain boundaries with rotation axis during recrystallization. The developed testing methodology will be valuable for future recrystallization studies on Mg and other alloy systems. Overall, the insights gained from this dissertation will have a broad impact on understanding the deformation behavior and microstructural evolution of RE-containing Mg alloys, and such insights can serve as guidance for the development of new alloys and processes. The information and data provided in this dissertation can also serve as inputs for the development of accurate crystal plasticity models.

  12. Microstructure Aspects of a Newly Developed, Low Cost, Corrosion-Resistant White Cast Iron

    NASA Astrophysics Data System (ADS)

    Sain, P. K.; Sharma, C. P.; Bhargava, A. K.

    2013-04-01

    The purpose of this work is to study the influence of heat treatment on the corrosion resistance of a newly developed white cast iron, basically suitable for corrosion- and wear-resistant applications, and to attain a microstructure that is most suitable from the corrosion resistance point of view. The composition was selected with an aim to have austenitic matrix both in as-cast and heat-treated conditions. The difference in electrochemical potential between austenite and carbide is less in comparison to that between austenite and graphite. Additionally, graphitic corrosion which is frequently encountered in gray cast irons is absent in white cast irons. These basic facts encouraged us to undertake this work. Optical metallography, hardness testing, X-ray diffractometry, and SEM-EDX techniques were employed to identify the phases present in the as-cast and heat-treated specimens of the investigated alloy and to correlate microstructure with corrosion resistance and hardness. Corrosion testing was carried out in 5 pct NaCl solution (approximate chloride content of sea water) using the weight loss method. In the investigated alloy, austenite was retained the in as-cast and heat-treated conditions. The same was confirmed by X-ray and EDX analysis. The stability and volume fraction of austenite increased with an increase of heat-treated temperature/time with a simultaneous decrease in the volume fraction of massive carbides. The decrease in volume fraction of massive carbides resulted in the availability of alloying elements. These alloying elements, on increasing the heat treatment temperature or increasing the soaking period at certain temperatures, get dissolved in austenite. As a consequence, austenite gets enriched as well as becomes more stable. On cooling from lower soaking period/temperature, enriched austenite decomposes to lesser enriched austenite and to a dispersed phase due to decreasing solid solubility of alloying elements with decreasing temperature. The dispersed second phase precipitated from the austenite adversely influenced corrosion resistance due to unfavorable morphology and enhanced galvanic action. Corrosion rate and hardness were found to decrease with an increase in heat treatment temperatures/soaking periods. It was essentially due to the increase in the volume fraction and stability of the austenitic matrix and favorable morphology of the second phase (carbides). The corrosion resistance of the investigated alloy, heat treated at 1223 K (950 °C) for 8 hours, was comparable to that of Ni-Resist iron. Thus, a microstructure comprising austenite and nearly spherical and finer carbides is the most appropriate from a corrosion point of view. Fortunately, the literature reveals that the same microstructure is also well suited from a wear point of view. It confirms that this investigated alloy will be suitable for corrosive-wear applications.

  13. Laboratory investigation of the factors impact on bubble size, pore blocking and enhanced oil recovery with aqueous Colloidal Gas Aphron.

    PubMed

    Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao

    Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.

  14. Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields

    NASA Astrophysics Data System (ADS)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.

    2017-11-01

    Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.

  15. The Effect of Temperature on Reflectance of Materials Space Weathered by Laser Irradiation: Implications for Increased Albedo Measured by LOLA

    NASA Astrophysics Data System (ADS)

    Corley, L. M.; Gillis-Davis, J.; Lucey, P. G.; Trang, D.

    2016-12-01

    Space weathering significantly changes the optical properties of airless planetary bodies, resulting in decreased albedo, spectral reddening, and subdued absorption bands. These optical changes are caused by the presence of submicroscopic iron (SMFe) in agglutinates and patina glass, which is observed in lunar soils returned by the Apollo and Luna missions. Micrometeorite impacts and solar wind irradiation are key processes that produce SMFe. The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter measured a trend of increased albedo at 1064 nm with decreasing temperature and a spike in 1064-nm albedo in permanently shadowed regions (PSRs). Although the LOLA albedo increase could be due to the presence of ice, increased reflectance is also consistent with reduced space weathering. It is currently unknown how temperature influences the production of SMFe and the resulting spectral effects. Low temperatures of polar regions and PSRs (as low as 50K) may affect the volume of impact melt/vaporization produced and the subsequent development of SMFe. To test this hypothesis we compare visible to near-infrared (VNIR) reflectance spectra of materials laser space weathered at low temperature and room temperature. Olivine irradiated at 88K is brighter at 1064 nm and exhibits less reddening than olivine irradiated at 295K. Radiative transfer modeling provided abundance estimates for SMFe. Based on these estimates, olivine irradiated at 88K contains 65-70% the abundance of SMFe of olivine irradiated at 295K. Laser weathering of a highlands analog at 85K results in reduced reddening but does not yield a statistically significant increased brightness at 1064 nm with lower temperature. Hence, our results show that laser weathering at low temperatures produces a measurable effect in VNIR spectra for olivine and less so for a plagioclase dominated soil. We attribute this mineral dependent observation to a decrease in the production of SMFe, and we will confirm this hypothesis with transmission electron microscopy. The 5% greater reflectance at 1064 nm for the 88K sample of olivine is consistent with the observed anticorrelation trend between temperature and LOLA albedo. Thus, reduced space weathering may contribute to the trend of increased albedo with decreasing temperature measured by LOLA.

  16. Modelling of nectarine drying under near infrared - Vacuum conditions.

    PubMed

    Alaei, Behnam; Chayjan, Reza Amiri

    2015-01-01

    Drying of nectarine slices was performed to determine the thermal and physical properties in order to reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because nectarine slices are sensitive to heat with long drying period, the selection of a suitable drying approach is a challenging task. Infrared-vacuum drying can be used as an appropriate method for susceptible materials with high moisture content such as nectarine slices. Modelling of nectarine slices drying was carried out in a thin layer near infraredvacuum conditions. Drying of the samples was implemented at the absolute pressures of 20, 40 and 60 kPa and drying temperatures of 50, 60 and 70°C. Drying behaviour of nectarine slices, as well as the effect of drying conditions on moisture loss trend, drying rate, effective diffusion coefficient, activation energy, shrinkage, colour and energy consumption of nectarine slices, dried in near infrared-vacuum dryer are discussed in this study. Six mathematical models were used to predict the moisture ratio of the samples in thin layer drying. The Midilli model had supremacy in prediction of nectarine slices drying behaviour. The maximum drying rates of the samples were between 0.014-0.047 gwater/gdry material·min. Effective moisture diffusivity of the samples was estimated in the ranges of 2.46·10-10 to 6.48·10-10 m2/s. Activation energy were computed between 31.28 and 35.23 kJ/mol. Minimum shrinkage (48.4%) and total colour difference (15.1) were achieved at temperature of 50°C and absolute pressure of 20 kPa. Energy consumption of the tests was estimated in the ranges of 0.129 to 0.247 kWh. Effective moisture diffusivity was increased with decrease of vacuum pressure and increase of drying temperature but effect of drying temperature on effective moisture diffusivity of nectarine slices was more than vacuum pressure. Activation energy was decreased with decrease in absolute pressure. Total colour difference and shrinkage of nectarine slices on near infrared-vacuum drying was decreased with decrease of vacuum pressure and decrease of drying temperature.

  17. Cool, warm, and heat-pain detection thresholds: testing methods and inferences about anatomic distribution of receptors.

    PubMed

    Dyck, P J; Zimmerman, I; Gillen, D A; Johnson, D; Karnes, J L; O'Brien, P C

    1993-08-01

    We recently found that vibratory detection threshold is greatly influenced by the algorithm of testing. Here, we study the influence of stimulus characteristics and algorithm of testing and estimating threshold on cool (CDT), warm (WDT), and heat-pain (HPDT) detection thresholds. We show that continuously decreasing (for CDT) or increasing (for WDT) thermode temperature to the point at which cooling or warming is perceived and signaled by depressing a response key ("appearance" threshold) overestimates threshold with rapid rates of thermal change. The mean of the appearance and disappearance thresholds also does not perform well for insensitive sites and patients. Pyramidal (or flat-topped pyramidal) stimuli ranging in magnitude, in 25 steps, from near skin temperature to 9 degrees C for 10 seconds (for CDT), from near skin temperature to 45 degrees C for 10 seconds (for WDT), and from near skin temperature to 49 degrees C for 10 seconds (for HPDT) provide ideal stimuli for use in several algorithms of testing and estimating threshold. Near threshold, only the initial direction of thermal change from skin temperature is perceived, and not its return to baseline. Use of steps of stimulus intensity allows the subject or patient to take the needed time to decide whether the stimulus was felt or not (in 4, 2, and 1 stepping algorithms), or whether it occurred in stimulus interval 1 or 2 (in two-alternative forced-choice testing). Thermal thresholds were generally significantly lower with a large (10 cm2) than with a small (2.7 cm2) thermode.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. A generalized conditional heteroscedastic model for temperature downscaling

    NASA Astrophysics Data System (ADS)

    Modarres, R.; Ouarda, T. B. M. J.

    2014-11-01

    This study describes a method for deriving the time varying second order moment, or heteroscedasticity, of local daily temperature and its association to large Coupled Canadian General Circulation Models predictors. This is carried out by applying a multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) approach to construct the conditional variance-covariance structure between General Circulation Models (GCMs) predictors and maximum and minimum temperature time series during 1980-2000. Two MGARCH specifications namely diagonal VECH and dynamic conditional correlation (DCC) are applied and 25 GCM predictors were selected for a bivariate temperature heteroscedastic modeling. It is observed that the conditional covariance between predictors and temperature is not very strong and mostly depends on the interaction between the random process governing temporal variation of predictors and predictants. The DCC model reveals a time varying conditional correlation between GCM predictors and temperature time series. No remarkable increasing or decreasing change is observed for correlation coefficients between GCM predictors and observed temperature during 1980-2000 while weak winter-summer seasonality is clear for both conditional covariance and correlation. Furthermore, the stationarity and nonlinearity Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Brock-Dechert-Scheinkman (BDS) tests showed that GCM predictors, temperature and their conditional correlation time series are nonlinear but stationary during 1980-2000 according to BDS and KPSS test results. However, the degree of nonlinearity of temperature time series is higher than most of the GCM predictors.

  19. Compressive Strength of Notched Poly(Phenylene Sulfide) Aerospace Composite: Influence of Fatigue and Environment

    NASA Astrophysics Data System (ADS)

    Niitsu, G. T.; Lopes, C. M. A.

    2013-08-01

    The purpose of this work is to evaluate the influences of fatigue and environmental conditions (-55 °C, 23 °C, and 82 °C/Wet) on the ultimate compression strength of notched carbon-fiber-reinforced poly(phenylene sulfide) composites by performing open-hole compression (OHC) tests. Analysis of the fatigue effect showed that at temperatures of -55 and 23 °C, the ultimate OHC strengths were higher for fatigued than for not-fatigued specimens; this could be attributed to fiber splitting and delamination during fatigue cycling, which reduces the stress concentration at the hole edge, thus increasing the composite strength. This effect of increasing strength for fatigued specimens was not observed under the 82 °C/Wet conditions, since the test temperature near the matrix glass transition temperature ( T g) together with moisture content resulted in matrix softening, suggesting a reduction in fiber splitting during cycling; similar OHC strengths were verified for fatigued and not-fatigued specimens tested at 82 °C/Wet. Analysis of the temperature effect showed that the ultimate OHC strengths decreased with increasing temperature. A high temperature together with moisture content (82 °C/Wet condition) reduced the composite compressive strengths, since a temperature close to the matrix T g resulted in matrix softening, which reduced the lateral support provided by the resin to the 0° fibers, leading to fiber instability failure at reduced applied loads. On the other hand, a low temperature (-55 °C) improved the compressive strength because of possible fiber-matrix interfacial strengthening, increasing the fiber contribution to compressive strength.

  20. Environment-Assisted Cracking in Custom 465 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lee, E. U.; Goswami, R.; Jones, M.; Vasudevan, A. K.

    2011-02-01

    The influence of cold work and aging on the environment-assisted cracking (EAC) behavior and mechanical properties of Custom 465 stainless steel (SS) was studied. Four sets of specimens were made and tested. All specimens were initially solution annealed, rapidly cooled, and refrigerated (SAR condition). The first specimen set was steel in the SAR condition. The second specimen set was aged to the H1000 condition. The third specimen set was 60 pct cold worked, and the fourth specimen set was 60 pct cold worked and aged at temperatures ranging from 755 K to 825 K (482 °C to 552 °C) for 4 hours in air. The specimens were subsequently subjected to EAC and mechanical testing. The EAC testing was conducted, using the rising step load (RSL) technique, in aqueous solutions of NaCl of pH 7.3 with concentrations ranging from 0.0035 to 3.5 pct at room temperature. The microstructure, dislocation substructure, and crack paths, resulting from the cold work, aging, or subsequent EAC testing, were examined by optical microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The aging of the cold-worked specimens induced carbide precipitation within the martensite lath, but not at the lath or packet boundaries. In the aged specimens, as aging temperature rose, the threshold stress intensity for EAC (KIEAC), elongation, and fracture toughness increased, but the strength and hardness decreased. The KIEAC also decreased with increasing yield strength and NaCl concentration. In the SAR and H1000 specimens, the EAC propagated along the prior austenite grain boundary, while in the cold-worked and cold-worked and aged specimens, the EAC propagated along the martensite lath, and its packet and prior austenite grain boundaries. The controlling mechanism for the observed EAC was identified to be hydrogen embrittlement.

Top