Sample records for deep active site

  1. Bacterial biomass and activity in the deep waters of the eastern Atlantic—evidence of a barophilic community

    NASA Astrophysics Data System (ADS)

    Patching, J. W.; Eardly, D.

    1997-09-01

    Bacterial biomass and activity were investigated in deep waters at two sites in the eastern Atlantic, of similar depth (4560-4800 m), but varying in their nutritional status. The Northern (N) site was eutrophic and subject to a strong seasonal input of surface derived organic matter (phytodetritus) to the sediment. The Southern (S) site was oligotrophic. Deep water at this site does not appear to receive any strong seasonal input. Bacterial numbers in the deep water column at the N site showed no significant seasonal variation but were greater than those at the S site. Deep water bacteria were typically small and free-living. From biovolume determinations, it was estimated that mean concentrations of bacterial organic carbon at depths greater than 500 m were 0.12 (0.03-0.29) μg C 1 -1 and 0.02 (0.01-0.04) μg C 1 -1 at the N and S sites, respectively. Rates of thymidine and leucine incorporation were used as indicators of bacterial activity. Bacterial communities in water in contact with the sediment (SCW; sediment contact water) at both sites (but especially at the S site) were strongly barophilic at in situ temperatures (2.5-4.1°C). The barophilic response of thymidine incorporation was enhanced when SCW samples from the N site were incubated at 11.5°C. It is proposed that this result indicated an elevating effect of pressure on cardinal temperatures and that the SCW community was obligately psychrophilic when unpressurised. Comparison of cell-specific incorporation rates determined under in situ conditions showed bacteria in the SCW to have levels of activity comparable with bacteria from a depth of 150 m. Thymidine incorporation rates were highest in SCW samples taken at the N site in May 1988 and September 1989. Thymidine incorporation by SCW samples taken immediately before (10 April 1994) the main spring-bloom-associated deposition of phytodetritus was significantly lower and comparable with that determined for the oligotrophic S site. The attributes exhibited by the SCW community appeared to be highly localised. We conclude that the bacterial communities of the SCW are active and adapted to their environment. Activity is influenced by the trophic nature of the site and may show temporal changes linked with episodic food supply. We postulate that the existence of such communities is linked to the role of the sediment-water interface as the initial site of deposition of sea-surface derived labile organic material.

  2. Molecular phylogenetic and chemical analyses of the microbial mats in deep-sea cold seep sediments at the northeastern Japan Sea.

    PubMed

    Arakawa, Shizuka; Sato, Takako; Sato, Rumi; Zhang, Jing; Gamo, Toshitaka; Tsunogai, Urumu; Hirota, Akinari; Yoshida, Yasuhiko; Usami, Ron; Inagaki, Fumio; Kato, Chiaki

    2006-08-01

    Microbial communities inhabiting deep-sea cold seep sediments at the northeastern Japan Sea were characterized by molecular phylogenetic and chemical analyses. White patchy microbial mats were observed along the fault offshore the Hokkaido Island and sediment samples were collected from two stations at the southern foot of the Shiribeshi seamount (M1 site at a depth of 2,961 m on the active fault) and off the Motta Cape site (M2 site at a depth of 3,064 m off the active fault). The phylogenetic and terminal-restriction fragment polymorphism analyses of PCR-amplified 16S rRNA genes revealed that microbial community structures were different between two sampling stations. The members of ANME-2 archaea and diverse bacterial components including sulfate reducers within Deltaproteobacteria were detected from M1 site, indicating the occurrence of biologically mediated anaerobic oxidation of methane, while microbial community at M2 site was predominantly composed of members of Marine Crenarchaeota group I, sulfate reducers of Deltaproteobacteria, and sulfur oxidizers of Epsilonproteobacteria. Chemical analyses of seawater above microbial mats suggested that concentrations of sulfate and methane at M1 site were largely decreased relative to those at M2 site and carbon isotopic composition of methane at M1 site shifted heavier ((13)C-enriched), the results of which are consistent with molecular analyses. These results suggest that the mat microbial communities in deep-sea cold seep sediments at the northeastern Japan Sea are significantly responsible for sulfur and carbon circulations and the geological activity associated with plate movements serves unique microbial habitats in deep-sea environments.

  3. Analysis of DGGE profiles to explore the relationship between prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin.

    PubMed

    Fry, John C; Webster, Gordon; Cragg, Barry A; Weightman, Andrew J; Parkes, R John

    2006-10-01

    The aim of this work was to relate depth profiles of prokaryotic community composition with geochemical processes in the deep subseafloor biosphere at two shallow-water sites on the Peru Margin in the Pacific Ocean (ODP Leg 201, sites 1228 and 1229). Principal component analysis of denaturing gradient gel electrophoresis banding patterns of deep-sediment Bacteria, Archaea, Euryarchaeota and the novel candidate division JS1, followed by multiple regression, showed strong relationships with prokaryotic activity and geochemistry (R(2)=55-100%). Further correlation analysis, at one site, between the principal components from the community composition profiles for Bacteria and 12 other variables quantitatively confirmed their relationship with activity and geochemistry, which had previously only been implied. Comparison with previously published cell counts enumerated by fluorescent in situ hybridization with rRNA-targeted probes confirmed that these denaturing gradient gel electrophoresis profiles described an active prokaryotic community.

  4. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time.

    PubMed

    Parkes, R John; Webster, Gordon; Cragg, Barry A; Weightman, Andrew J; Newberry, Carole J; Ferdelman, Timothy G; Kallmeyer, Jens; Jørgensen, Bo B; Aiello, Ivano W; Fry, John C

    2005-07-21

    The sub-seafloor biosphere is the largest prokaryotic habitat on Earth but also a habitat with the lowest metabolic rates. Modelled activity rates are very low, indicating that most prokaryotes may be inactive or have extraordinarily slow metabolism. Here we present results from two Pacific Ocean sites, margin and open ocean, both of which have deep, subsurface stimulation of prokaryotic processes associated with geochemical and/or sedimentary interfaces. At 90 m depth in the margin site, stimulation was such that prokaryote numbers were higher (about 13-fold) and activity rates higher than or similar to near-surface values. Analysis of high-molecular-mass DNA confirmed the presence of viable prokaryotes and showed changes in biodiversity with depth that were coupled to geochemistry, including a marked community change at the 90-m interface. At the open ocean site, increases in numbers of prokaryotes at depth were more restricted but also corresponded to increased activity; however, this time they were associated with repeating layers of diatom-rich sediments (about 9 Myr old). These results show that deep sedimentary prokaryotes can have high activity, have changing diversity associated with interfaces and are active over geological timescales.

  5. A Global Survey and Interactive Map Suite of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges: (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D)

    NASA Astrophysics Data System (ADS)

    Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.

    2017-12-01

    This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  6. A Deep-Sea Simulation.

    ERIC Educational Resources Information Center

    Montes, Georgia E.

    1997-01-01

    Describes an activity that simulates exploration techniques used in deep-sea explorations and teaches students how this technology can be used to take a closer look inside volcanoes, inspect hazardous waste sites such as nuclear reactors, and explore other environments dangerous to humans. (DDR)

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James P. Barry; Peter G. Brewer

    OAK-B135 This report summarizes activities and results of investigations of the potential environmental consequences of direct injection of carbon dioxide into the deep-sea as a carbon sequestration method. Results of field experiments using small scale in situ releases of liquid CO2 are described in detail. The major conclusions of these experiments are that mortality rates of deep sea biota will vary depending on the concentrations of CO2 in deep ocean waters that result from a carbon sequestration project. Large changes in seawater acidity and carbon dioxide content near CO2 release sites will likely cause significant harm to deep-sea marine life.more » Smaller changes in seawater chemistry at greater distances from release sites will be less harmful, but may result in significant ecosystem changes.« less

  8. Site Characterization for a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Hardin, E. L.; Freeze, G. A.; Sassani, D.; Brady, P. V.

    2015-12-01

    The US Department of Energy Office of Nuclear Energy is at the beginning of 5-year Deep Borehole Field Test (DBFT) to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages over mined repositories, including incremental construction and loading, the enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Site characterization efforts need to determine an eligible site that does not have the following disqualifying characteristics: greater than 2 km to crystalline basement, upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection to the shallow subsurface, and significant probability of future seismic or volcanic activity. Site characterization activities for the DBFT will include geomechanical (i.e., rock in situ stress state, and fluid pressure), geological (i.e., rock and fracture infill lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), and geochemical (i.e., rock-water interaction and natural tracers) aspects. Both direct (i.e., sampling and in situ testing) and indirect (i.e., borehole geophysical) methods are planned for efficient and effective characterization of these site aspects and physical processes. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth, and interpretation of material and system parameters relevant to numerical site simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Canada's Deep Geological Repository For Used Nuclear Fuel -The Geoscientific Site Evaluation Process

    NASA Astrophysics Data System (ADS)

    Hirschorn, S.; Ben Belfadhel, M.; Blyth, A.; DesRoches, A. J.; McKelvie, J. R. M.; Parmenter, A.; Sanchez-Rico Castejon, M.; Urrutia-Bustos, A.; Vorauer, A.

    2014-12-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The suitability of candidate areas will be assessed in a stepwise manner over a period of many years and include three main steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations. The Preliminary Assessment is conducted in two phases. NWMO has completed Phase 1 preliminary assessments for the first eight communities that entered into this step. While the Phase 1 desktop geoscientific assessments showed that each of the eight communities contains general areas that have the potential to satisfy the geoscientific safety requirements for hosting a deep geological repository, the assessment identified varying degrees of geoscientific complexity and uncertainty between communities, reflecting their different geological settings and structural histories. Phase 2 activities will include a sequence of high-resolution airborne geophysical surveys and focused geological field mapping to ground-truth lithology and structural features, followed by limited deep borehole drilling and testing. These activities will further evaluate the site's ability to meet the safety functions that a site would need to ultimately satisfy in order to be considered suitable. This paper provides an update on the site evaluation process and describes the approach, methods and criteria that are being used to conduct the geoscientific Preliminary Assessments.

  10. Deep aquifer as driver for mineral authigenesis in Gulf of Alaska sediments (IODP Expedition 341, Site U1417)

    NASA Astrophysics Data System (ADS)

    Zindorf, Mark; März, Christian; Wagner, Thomas; Strauss, Harald; Gulick, Sean P. S.; Jaeger, John M.; LeVay, Leah J.

    2016-04-01

    Bacterial sulphate reduction plays a key role in authigenic mineral formation in marine sediments. Usually, decomposition of organic matter follows a sequence of microbial metabolic pathways, where microbial sulphate reduction leads to sulphate depletion deeper in the sediment. When sulphate is consumed completely from the pore waters, methanogenesis commences. The contact of sulphate- and methane-containing pore waters is a well-defined biogeochemical boundary (the sulphate-methane transition zone, SMTZ). Here authigenic pyrite, barite and carbonates form. Pyrite formation is directly driven by bacterial sulphate reduction since pyrite precipitates from produced hydrogen sulphide. Barite and carbonate formation are secondary effects resulting from changes of the chemical milieu due to microbial activity. However, this mineral authigenesis is ultimately linked to abiotic processes that determine the living conditions for microorganisms. At IODP Site U1417 in the Gulf of Alaska, a remarkable diagenetic pattern has been observed: Between sulphate depletion and methane enrichment, a ~250 m wide gap exists. Consequently, no SMTZ can be found under present conditions, but enrichments of pyrite indicate that such zones have existed in the past. Solid layers consisting of authigenic carbonate-cemented sand were partly recovered right above the methane production zone, likely preventing continued upward methane diffusion. At the bottom of the sediment succession, the lower boundary of the methanogenic zone is constrained by sulphate-rich pore waters that appear to originate from a deeper source. Here, a well-established SMTZ exists, but in reversed order (sulphate diffusing up, methane diffusing down). Sulphur isotopes of pyrite reveal that sulphate reduction here does not occur under closed system conditions. This indicates that a deep aquifer is actively recharging the deep sulphate pool. Similar deep SMTZs have been found at other sites, yet mostly in geologically active environments such as ridge flanks or above subduction zones. Therefore Site U1417, in a relatively inactive intraplate environment, represents a so far under-sampled geochemical setting. Calculated accumulation times for authigenic minerals in the deep SMTZ are on the same order of magnitude as the onset of subduction-related bending of the Pacific Plate, suggesting that both processes are linked. Plate bending could create fractures in the overlying sediments allowing seawater to penetrate and recharge a deep aquifer. Our study provides insights into a newly discovered geological process suitable for delivering sulphate-rich water deep into the sediments and installing diagenetically active environments where microbial activity would otherwise be very limited.

  11. Workshop to develop deep-life continental scientific drilling projects

    DOE PAGES

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; ...

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have includedmore » a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP-sponsored drilling workshops in 2016.« less

  12. Uncovering a Salt Giant. Deep-Sea Record of Mediterranean Messinian Events (DREAM) multi-phase drilling project

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Aoisi, Vanni; Lofi, Johanna; Hübscher, Christian; deLange, Gert; Flecker, Rachel; Garcia-Castellanos, Daniel; Gorini, Christian; Gvirtzman, Zohar; Krijgsman, Wout; Lugli, Stefano; Makowsky, Yizhaq; Manzi, Vinicio; McGenity, Terry; Panieri, Giuliana; Rabineau, Marina; Roveri, Marco; Sierro, Francisco Javier; Waldmann, Nicolas

    2014-05-01

    In May 2013, the DREAM MagellanPlus Workshop was held in Brisighella (Italy). The initiative builds from recent activities by various research groups to identify potential sites to perform deep-sea scientific drilling in the Mediterranean Sea across the deep Messinian Salinity Crisis (MSC) sedimentary record. In this workshop three generations of scientists were gathered: those who participated in formulation of the deep desiccated model, through DSDP Leg 13 drilling in 1973; those who are actively involved in present-day MSC research; and the next generation (PhD students and young post-docs). The purpose of the workshop was to identify locations for multiple-site drilling (including riser-drilling) in the Mediterranean Sea that would contribute to solve the several open questions still existing about the causes, processes, timing and consequences at local and planetary scale of an outstanding case of natural environmental change in the recent Earth history: the Messinian Salinity Crisis in the Mediterranean Sea. The product of the workshop is the identification of the structure of an experimental design of site characterization, riser-less and riser drilling, sampling, measurements, and down-hole analyses that will be the core for at least one compelling and feasible multiple phase drilling proposal. Particular focus has been given to reviewing seismic site survey data available from different research groups at pan-Mediterranean basin scale, to the assessment of additional site survey activity including 3D seismics, and to ways of establishing firm links with oil and gas industry. The scientific community behind the DREAM initiative is willing to proceed with the submission to IODP of a Multi-phase Drilling Project including several drilling proposals addressing specific drilling objectives, all linked to the driving objectives of the MSC drilling and understanding . A series of critical drilling targets were identified to address the still open questions related to the MSC event. Several proposal ideas also emerged to support the Multi-phase drilling project concept: Salt tectonics and fluids, Deep stratigraphic and crustal drilling in the Gulf of Lion (deriving from the GOLD drilling project), Deep stratigraphic and crustal drilling in the Ionian Sea, Deep Biosphere, Sapropels, and the Red Sea. A second MagellanPlus workshop held in January 2014 in Paris (France), has proceeded a step further towards the drafting of the Multi-phase Drilling Project and a set of pre-proposals for submission to IODP.

  13. Substituted Phosphonic Analogues of Phenylglycine as Inhibitors of Phenylalanine Ammonia Lyase from Potatoes.

    PubMed

    Wanat, Weronika; Talma, Michał; Hurek, Józef; Pawełczak, Małgorzata; Kafarski, Paweł

    2018-06-08

    A series of phosphonic acid analogues of phenylglycine variously substituted in phenyl ring have been synthesized and evaluated for their inhibitory activity towards potato L-phenylalanine ammonia lyase. Most of the compounds appeared to act as moderate (micromolar) inhibitors of the enzyme. Analysis of their binding performed using molecular modeling have shown that they might be bound either in active site of the enzyme or in the non-physiologic site. The latter one is located in adjoining deep site nearby the to the entrance channel for substrate into active site. Copyright © 2018. Published by Elsevier B.V.

  14. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tynan, Mark C.; Russell, Glenn P.; Perry, Frank V.

    These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.:more » access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.« less

  15. A phylogenetic approach to octocoral community structure in the deep Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Quattrini, Andrea M.; Etnoyer, Peter J.; Doughty, Cheryl; English, Lisa; Falco, Rosalia; Remon, Natasha; Rittinghouse, Matthew; Cordes, Erik E.

    2014-01-01

    Deep-sea communities are becoming increasingly vulnerable to anthropogenic disturbances, as fishing, hydrocarbon exploration and extraction, and mining activities extend into deeper water. Negative impacts from such activities were recently documented in the Gulf of Mexico (GoM), where the Deepwater Horizon oil spill caused substantial damage to a deep-water octocoral community. Although a faunal checklist and numerous museum records are currently available for the entire GoM, local-scale diversity and assemblage structure of octocoral communities remains unknown, particularly in deep water. On a series of recent cruises (2008-2011) using remotely operated vehicles, 435 octocorals were collected from 33 deep-water sites (250-2500 m) in the northern GoM. To elucidate species boundaries, the extended mitochondrial barcode (COI+igr1+msh) was successfully amplified and sequenced for 422 of these specimens, yielding a total of 64 haplotypes representing at least 52 species. Further, at least 29% of the species collected were either previously not known to occur in the GoM (12 species) or represent new species (at least three species). Overall, species richness at each site was fairly low (1-12 spp.). The greatest species richness occurred at the shallowest (<325 m: GC140, n=8 spp.) and the deepest (2100-2500 m: DC673, n=12 spp., DC583, n=10 spp.) sites, and minimum taxonomic and phylogenetic (Faith's Index) diversity was evident at 600-950 m. This pattern is the opposite of the typical pattern of deep-sea diversity in the GoM, which normally peaks at mid-slope depths. Sorensen's Index of taxonomic β-diversity indicated that six distinct (65-95% dissimilarity) species assemblages corresponded with five depth breaks at ~325, 425, 600, 1100, and 2100 m. Further assemblage structure was observed within certain depth zones. Of note, within the 425-600 m depth range, species assemblages at the West Florida Slope differed from the other sites, corresponding to an established biogeographic barrier. The phylogenetic approach used in this study provided important insights into the species boundaries of many taxa while demonstrating that evolutionary history plays a critical role in community structure of deep-sea octocorals.

  16. Position-specific binding of FUS to nascent RNA regulates mRNA length

    PubMed Central

    Masuda, Akio; Takeda, Jun-ichi; Okuno, Tatsuya; Okamoto, Takaaki; Ohkawara, Bisei; Ito, Mikako; Ishigaki, Shinsuke; Sobue, Gen

    2015-01-01

    More than half of all human genes produce prematurely terminated polyadenylated short mRNAs. However, the underlying mechanisms remain largely elusive. CLIP-seq (cross-linking immunoprecipitation [CLIP] combined with deep sequencing) of FUS (fused in sarcoma) in neuronal cells showed that FUS is frequently clustered around an alternative polyadenylation (APA) site of nascent RNA. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) of RNA polymerase II (RNAP II) demonstrated that FUS stalls RNAP II and prematurely terminates transcription. When an APA site is located upstream of an FUS cluster, FUS enhances polyadenylation by recruiting CPSF160 and up-regulates the alternative short transcript. In contrast, when an APA site is located downstream from an FUS cluster, polyadenylation is not activated, and the RNAP II-suppressing effect of FUS leads to down-regulation of the alternative short transcript. CAGE-seq (cap analysis of gene expression [CAGE] combined with deep sequencing) and PolyA-seq (a strand-specific and quantitative method for high-throughput sequencing of 3' ends of polyadenylated transcripts) revealed that position-specific regulation of mRNA lengths by FUS is operational in two-thirds of transcripts in neuronal cells, with enrichment in genes involved in synaptic activities. PMID:25995189

  17. Electrical stimulation site influences the spatial distribution of motor units recruited in tibialis anterior.

    PubMed

    Okuma, Yoshino; Bergquist, Austin J; Hong, Mandy; Chan, K Ming; Collins, David F

    2013-11-01

    To compare the spatial distribution of motor units recruited in tibialis anterior (TA) when electrical stimulation is applied over the TA muscle belly versus the common peroneal nerve trunk. Electromyography (EMG) was recorded from the surface and from fine wires in superficial and deep regions of TA. Separate M-wave recruitment curves were constructed for muscle belly and nerve trunk stimulation. During muscle belly stimulation, significantly more current was required to generate M-waves that were 5% of the maximal M-wave (M max; M5%max), 50% M max (M 50%max) and 95% M max (M 95%max) at the deep versus the superficial recording site. In contrast, during nerve trunk stimulation, there were no differences in the current required to reach M5%max, M 50%max or M 95%max between deep and superficial recording sites. Surface EMG reflected activity in both superficial and deep muscle regions. Stimulation over the muscle belly recruited motor units from superficial to deep with increasing stimulation amplitude. Stimulation over the nerve trunk recruited superficial and deep motor units equally, regardless of stimulation amplitude. These results support the idea that where electrical stimulation is applied markedly affects how contractions are produced and have implications for the interpretation of surface EMG data. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Logging Options to Minimize Soil Disturbance in the Northern Lake States

    Treesearch

    Douglas M. Stone

    2002-01-01

    Forest harvesting is likely to have greater impacts on site productivity than any other activity during the rotation. We determined effects of commercial, winter-logging of four aspen-dominated stands on site disturbance and development of regeneration on clay soils in western Upper Michigan. A large skidder caused deep rutting on 20% of a site in a thinning that...

  19. Prokaryotic dynamics and heterotrophic metabolism in a deep convection site of Eastern Mediterranean Sea (the Southern Adriatic Pit)

    NASA Astrophysics Data System (ADS)

    Azzaro, M.; La Ferla, R.; Maimone, G.; Monticelli, L. S.; Zaccone, R.; Civitarese, G.

    2012-08-01

    We report on investigations of prokaryotic abundance, biomass, extracellular enzymatic activity, prokaryotic heterotrophic production and respiration in the full water column (˜1200 m) of a deep convection site (the Southern Adriatic Pit), carried out on six cruises in 2006-2008. Prokaryotic abundance (PA) varied vertically and temporally and ranged from 1.2 to 20.4×105 cell ml-1. Cell volumes, generally increased with depth; the lowest mean cell volume was observed in a period with no active convective process (Feb-07) and the highest in a period of stratification (Jun-08) following the convection process occurred in Feb-08. Prokaryotic biomass decreased with the depth and was related with both seasonal cycles of organic matter and hydrological processes. The picophytoplankton ranged in the upper layer (UL) from 0.089 to 10.71×104 cell ml-1. Cells were also recorded till 500 m depth in Feb-08 and this finding could be linked to water convection occurred in the Southern Adriatic Pit in that month. In UL the variations of enzymatic activities as well as leucine-aminopeptidase/ß-glucosidase ratio showed a seasonal trend probably linked to the productive processes of the photic layer. An inverse relation between alkaline phosphatase activity (APA) and phosphate concentrations was found (APA=0.0003PO4-1.7714, R2=0.333, P<0.05). Generally cell-specific enzymatic activities increased with depth as did cell-specific carbon dioxide production rates, while cell-specific prokaryotic heterotrophic production had an opposite trend. High values of prokaryotic growth efficiency registered in the deep layers in Nov-06 reflected a supply of preformed C transported within the deep water masses. Overall, in 2007 when no convective phenomenon was observed, the variability of prokaryotic metabolism was governed by the seasonal cycle of the organic matter, while in Nov-06 and Jun-08 the dynamics of deep water ventilation influenced the trend along the water column of many microbial parameters. The yearly trophic balance of the study site appeared to move towards autotrophy only in UL, whilst in the whole water column, the prokaryotic carbon demand exceeded POC availability rained down from euphotic zone. This mismatch was balanced by the DOC entrapped in the "younger waters" of new formation that alters the normal flux of the biological pump and fuels the deep marine biota in this area of deep water convection.

  20. Bond-center hydrogen in dilute Si1-xGex alloys: Laplace deep-level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Bonde Nielsen, K.; Dobaczewski, L.; Peaker, A. R.; Abrosimov, N. V.

    2003-07-01

    We apply Laplace deep-level transient spectroscopy in situ after low-temperature proton implantation into dilute Si1-xGex alloys and identify the deep donor state of hydrogen occupying a strained Si-Si bond-center site next to Ge. The activation energy of the electron emission from the donor is ˜158 meV when extrapolated to zero electrical field. We construct a configuration diagram of the Ge-strained site from formation and annealing data and deduce that alloying with ˜1% Ge does not significantly influence the low-temperature migration of hydrogen as compared to elemental Si. We observe two bond-center-type carbon-hydrogen centers and conclude that carbon impurities act as much stronger traps for hydrogen than the alloy Ge atoms.

  1. Deep brain stimulation reveals emotional impact processing in ventromedial prefrontal cortex.

    PubMed

    Gjedde, Albert; Geday, Jacob

    2009-12-07

    We tested the hypothesis that modulation of monoaminergic tone with deep-brain stimulation (DBS) of subthalamic nucleus would reveal a site of reactivity in the ventromedial prefrontal cortex that we previously identified by modulating serotonergic and noradrenergic mechanisms by blocking serotonin-noradrenaline reuptake sites. We tested the hypothesis in patients with Parkinson's disease in whom we had measured the changes of blood flow everywhere in the brain associated with the deep brain stimulation of the subthalamic nucleus. We determined the emotional reactivity of the patients as the average impact of emotive images rated by the patients off the DBS. We then searched for sites in the brain that had significant correlation of the changes of blood flow with the emotional impact rated by the patients. The results indicate a significant link between the emotional impact when patients are not stimulated and the change of blood flow associated with the DBS. In subjects with a low emotional impact, activity measured as blood flow rose when the electrode was turned on, while in subjects of high impact, the activity at this site in the ventromedial prefrontal cortex declined when the electrode was turned on. We conclude that changes of neurotransmission in the ventromedial prefrontal cortex had an effect on the tissue that depends on changes of monoamine concentration interacting with specific combinations of inhibitory and excitatory monoamine receptors.

  2. Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning.

    PubMed

    Heredia, Jeremiah D; Park, Jihye; Brubaker, Riley J; Szymanski, Steven K; Gill, Kevin S; Procko, Erik

    2018-06-01

    Chemokine receptors CXCR4 and CCR5 regulate WBC trafficking and are engaged by the HIV-1 envelope glycoprotein gp120 during infection. We combine a selection of human CXCR4 and CCR5 libraries comprising nearly all of ∼7000 single amino acid substitutions with deep sequencing to define sequence-activity landscapes for surface expression and ligand interactions. After consideration of sequence constraints for surface expression, known interaction sites with HIV-1-blocking Abs were appropriately identified as conserved residues following library sorting for Ab binding, validating the use of deep mutational scanning to map functional interaction sites in G protein-coupled receptors. Chemokine CXCL12 was found to interact with residues extending asymmetrically into the CXCR4 ligand-binding cavity, similar to the binding surface of CXCR4 recognized by an antagonistic viral chemokine previously observed crystallographically. CXCR4 mutations distal from the chemokine binding site were identified that enhance chemokine recognition. This included disruptive mutations in the G protein-coupling site that diminished calcium mobilization, as well as conservative mutations to a membrane-exposed site (CXCR4 residues H79 2.45 and W161 4.50 ) that increased ligand binding without loss of signaling. Compared with CXCR4-CXCL12 interactions, CCR5 residues conserved for gp120 (HIV-1 BaL strain) interactions map to a more expansive surface, mimicking how the cognate chemokine CCL5 makes contacts across the entire CCR5 binding cavity. Acidic substitutions in the CCR5 N terminus and extracellular loops enhanced gp120 binding. This study demonstrates how comprehensive mutational scanning can define functional interaction sites on receptors, and novel mutations that enhance receptor activities can be found simultaneously. Copyright © 2018 by The American Association of Immunologists, Inc.

  3. The effect of age on word-stem cued recall: a behavioral and electrophysiological study.

    PubMed

    Osorio, Alexandra; Ballesteros, Soledad; Fay, Séverine; Pouthas, Viviane

    2009-09-15

    The present study investigated the effects of aging on behavioral cued-recall performance and on the neural correlates of explicit memory using event-related potentials (ERPs) under shallow and deep encoding conditions. At test, participants were required to complete old and new three-letter word stems using the letters as retrieval cues. The main results were as follows: (1) older participants exhibited the same level of explicit memory as young adults with the same high level of education. Moreover older adults benefited as much as young ones from deep processing at encoding; (2) brain activity at frontal sites showed that the shallow old/new effect developed and ended earlier for older than young adults. In contrast, the deep old/new effect started later for older than for young adults and was sustained up to 1000 ms in both age groups. Moreover, the results suggest that the frontal old/new effect was bilateral but greater over the right than the left electrode sites from 600 ms onward; (3) there were no differences at parietal sites between age groups: the old/new effect developed from 400 ms under both encoding conditions and was sustained up to 1000 ms under the deep condition but ended earlier (800 ms) under the shallow condition. These ERP results indicate significant age-related changes in brain activity associated with the voluntary retrieval of previously encoded information, in spite of similar behavioral performance of young and older adults.

  4. Antarctic climate, Southern Ocean circulation patterns, and deep water formation during the Eocene

    NASA Astrophysics Data System (ADS)

    Huck, Claire E.; van de Flierdt, Tina; Bohaty, Steven M.; Hammond, Samantha J.

    2017-07-01

    We assess early-to-middle Eocene seawater neodymium (Nd) isotope records from seven Southern Ocean deep-sea drill sites to evaluate the role of Southern Ocean circulation in long-term Cenozoic climate change. Our study sites are strategically located on either side of the Tasman Gateway and are positioned at a range of shallow (<500 m) to intermediate/deep ( 1000-2500 m) paleowater depths. Unradiogenic seawater Nd isotopic compositions, reconstructed from fish teeth at intermediate/deep Indian Ocean pelagic sites (Ocean Drilling Program (ODP) Sites 738 and 757 and Deep Sea Drilling Project (DSDP) Site 264), indicate a dominant Southern Ocean-sourced contribution to regional deep waters (ɛNd(t) = -9.3 ± 1.5). IODP Site U1356 off the coast of Adélie Land, a locus of modern-day Antarctic Bottom Water production, is identified as a site of persistent deep water formation from the early Eocene to the Oligocene. East of the Tasman Gateway an additional local source of intermediate/deep water formation is inferred at ODP Site 277 in the SW Pacific Ocean (ɛNd(t) = -8.7 ± 1.5). Antarctic-proximal shelf sites (ODP Site 1171 and Site U1356) reveal a pronounced erosional event between 49 and 48 Ma, manifested by 2 ɛNd unit negative excursions in seawater chemistry toward the composition of bulk sediments at these sites. This erosional event coincides with the termination of peak global warmth following the Early Eocene Climatic Optimum and is associated with documented cooling across the study region and increased export of Antarctic deep waters, highlighting the complexity and importance of Southern Ocean circulation in the greenhouse climate of the Eocene.

  5. Anatomic Sites and Associated Clinical Factors for Deep Dyspareunia.

    PubMed

    Yong, Paul J; Williams, Christina; Yosef, Ali; Wong, Fontayne; Bedaiwy, Mohamed A; Lisonkova, Sarka; Allaire, Catherine

    2017-09-01

    Deep dyspareunia negatively affects women's sexual function. There is a known association between deep dyspareunia and endometriosis of the cul-de-sac or uterosacral ligaments in reproductive-age women; however, other factors are less clear in this population. To identify anatomic sites and associated clinical factors for deep dyspareunia in reproductive-age women at a referral center. This study involved the analysis of cross-sectional baseline data from a prospective database of 548 women (87% consent rate) recruited from December 2013 through April 2015 at a tertiary referral center for endometriosis and/or pelvic pain. Exclusion criteria included menopausal status, age at least 50 years, previous hysterectomy or oophorectomy, and not sexually active. We performed a standardized endovaginal ultrasound-assisted pelvic examination to palpate anatomic structures for tenderness and reproduce deep dyspareunia. Multivariable regression was used to determine which tender anatomic structures were independently associated with deep dyspareunia severity and to identify clinical factors independently associated with each tender anatomic site. Severity of deep dyspareunia on a numeric pain rating scale of 0 to 10. Severity of deep dyspareunia (scale = 0-10) was independently associated with tenderness of the bladder (b = 0.88, P = .018), pelvic floor (levator ani) (b = 0.66, P = .038), cervix and uterus (b = 0.88, P = .008), and cul-de-sac or uterosacral ligaments (b = 1.39, P < .001), but not with the adnexa (b = -0.16, P = 0.87). The number of tender anatomic sites was significantly correlated with more severe deep dyspareunia (Spearman r = 0.34, P < .001). For associated clinical factors, greater depression symptom severity was specifically associated with tenderness of the bladder (b = 1.05, P = .008) and pelvic floor (b = 1.07, P < .001). A history of miscarriage was specifically associated with tenderness of the cervix and uterus (b = 2.24, P = .001). Endometriosis was specifically associated with tenderness of the cul-de-sac or uterosacral ligaments (b = 3.54, P < .001). In reproductive-age women at a tertiary referral center, deep dyspareunia was independently associated not only with tenderness of the cul-de-sac and uterosacral ligaments but also with tenderness of the bladder, pelvic floor, and cervix and uterus. Yong PJ, Williams C, Yosef A, et al. Anatomic Sites and Associated Clinical Factors for Deep Dyspareunia. Sex Med 2017;5:e184-e195. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Halomonhystera disjuncta - a young-carrying nematode first observed for the Baltic Sea in deep basins within chemical munitions disposal sites

    NASA Astrophysics Data System (ADS)

    Grzelak, Katarzyna; Kotwicki, Lech

    2016-06-01

    Three deep basins in the Baltic Sea were investigated within the framework of the CHEMSEA project (Chemical Munitions Search & Assessment), which aims to evaluate the ecological impact of chemical warfare agents dumped after World War II. Nematode communities, which comprise the most numerous and diverse organisms in the surveyed areas, were investigated as a key group of benthic fauna. One of the most successful nematode species was morphologically identified as Halomonhystera disjuncta (Bastian, 1865). The presence of this species, which is an active coloniser that is highly resistant to disturbed environments, may indicate that the sediments of these disposal sites are characterised by toxic conditions that are unfavourable for other metazoans. Moreover, ovoviviparous reproductive behaviour in which parents carry their brood internally, which is an important adaptation to harsh environmental conditions, was observed for specimens from Gdansk Deep and Gotland Deep. This reproductive strategy, which is uncommon for marine nematodes, has not previously been reported for nematodes from the Baltic Sea sediment.

  7. Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon.

    PubMed

    Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel

    2014-01-01

    The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400-800 m depth range. To explore the degree of alteration of surface sediments (0-50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y-1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea.

  8. Impact of Bottom Trawling on Deep-Sea Sediment Properties along the Flanks of a Submarine Canyon

    PubMed Central

    Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel

    2014-01-01

    The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400–800 m depth range. To explore the degree of alteration of surface sediments (0–50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y−1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea. PMID:25111298

  9. The Congolobe project, a multidisciplinary study of Congo deep-sea fan lobe complex: Overview of methods, strategies, observations and sampling

    NASA Astrophysics Data System (ADS)

    Rabouille, C.; Olu, K.; Baudin, F.; Khripounoff, A.; Dennielou, B.; Arnaud-Haond, S.; Babonneau, N.; Bayle, C.; Beckler, J.; Bessette, S.; Bombled, B.; Bourgeois, S.; Brandily, C.; Caprais, J. C.; Cathalot, C.; Charlier, K.; Corvaisier, R.; Croguennec, C.; Cruaud, P.; Decker, C.; Droz, L.; Gayet, N.; Godfroy, A.; Hourdez, S.; Le Bruchec, J.; Saout, J.; Le Saout, M.; Lesongeur, F.; Martinez, P.; Mejanelle, L.; Michalopoulos, P.; Mouchel, O.; Noel, P.; Pastor, L.; Picot, M.; Pignet, P.; Pozzato, L.; Pruski, A. M.; Rabiller, M.; Raimonet, M.; Ragueneau, O.; Reyss, J. L.; Rodier, P.; Ruesch, B.; Ruffine, L.; Savignac, F.; Senyarich, C.; Schnyder, J.; Sen, A.; Stetten, E.; Sun, Ming Yi; Taillefert, M.; Teixeira, S.; Tisnerat-Laborde, N.; Toffin, L.; Tourolle, J.; Toussaint, F.; Vétion, G.; Jouanneau, J. M.; Bez, M.; Congolobe Group:

    2017-08-01

    The presently active region of the Congo deep-sea fan (around 330,000 km2), called the terminal lobes or lobe complex, covers an area of 2500 km2 at 4700-5100 m water depth and 750-800 km offshore. It is a unique sedimentary area in the world ocean fed by a submarine canyon and a channel-levee system which presently deliver large amounts of organic carbon originating from the Congo River by turbidity currents. This particularity is due to the deep incision of the shelf by the Congo canyon, up to 30 km into the estuary, which funnels the Congo River sediments into the deep-sea. The connection between the river and the canyon is unique for major world rivers. In 2011, two cruises (WACS leg 2 and Congolobe) were conducted to simultaneously investigate the geology, organic and inorganic geochemistry, and micro- and macro-biology of the terminal lobes of the Congo deep-sea fan. Using this multidisciplinary approach, the morpho-sedimentary features of the lobes were characterized along with the origin and reactivity of organic matter, the recycling and burial of biogenic compounds, the diversity and function of bacterial and archaeal communities within the sediment, and the biodiversity and functioning of the faunal assemblages on the seafloor. Six different sites were selected for this study: Four distributed along the active channel from the lobe complex entrance to the outer rim of the sediment deposition zone, and two positioned cross-axis and at increasing distance from the active channel, thus providing a gradient in turbidite particle delivery and sediment age. This paper aims to provide the general context of this multidisciplinary study. It describes the general features of the site and the overall sampling strategy and provides the initial habitat observations to guide the other in-depth investigations presented in this special issue. Detailed bathymetry of each sampling site using 0.1-1 m resolution multibeam obtained with a remotely operated vehicle (ROV) shows progressive widening and smoothing of the channel-levees with increasing depth and reveals a complex morphology with channel bifurcations, erosional features and massive deposits. Dense ecosystems surveyed in the study area gather high density clusters of two large-sized species of symbiotic Vesicomyidae bivalves and microbial mats. These assemblages, which are rarely observed in sedimentary zones, resemble those based on chemosynthesis at cold-seep sites, such as the active pockmarks encountered along the Congo margin, and share with these sites the dominant vesicomyid species Christineconcha regab. Sedimentation rates estimated in the lobe complex range between 0.5 and 10 cm yr-1, which is 2-3 orders of magnitude higher than values generally encountered at abyssal depths. The bathymetry, faunal assemblages and sedimentation rates make the Congo lobe complex a highly peculiar deep-sea habitat driven by high inputs of terrigenous material delivered by the Congo channel-levee system.

  10. Hanford Site 100-N Area In Situ Bioremediation of UPR-100-N-17, Deep Petroleum Unplanned Release - 13245

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saueressig, Daniel G.

    2013-07-01

    In 1965 and 1966, approximately 303 m{sup 3} of Number 2 diesel fuel leaked from a pipeline used to support reactor operations at the Hanford Site's N Reactor. N Reactor was Hanford's longest operating reactor and served as the world's first dual purpose reactor for military and power production needs. The Interim Action Record of Decision for the 100-N Area identified in situ bioremediation as the preferred alternative to remediate the deep vadose zone contaminated by this release. A pilot project supplied oxygen into the vadose zone to stimulate microbial activity in the soil. The project monitored respiration rates asmore » an indicator of active biodegradation. Based on pilot study results, a full-scale system is being constructed and installed to remediate the vadose zone contamination. (authors)« less

  11. Spatial and temporal patterns of benthic macrofaunal communities on the deep continental margin in the Gulf of Guinea

    NASA Astrophysics Data System (ADS)

    Galéron, J.; Menot, L.; Renaud, N.; Crassous, P.; Khripounoff, A.; Treignier, C.; Sibuet, M.

    2009-12-01

    Density, taxonomic composition at higher taxon level and vertical distribution of benthic macrofaunal communities and sediment characteristics (pore water, nitrogen, organic carbon, sulfur, C/N ratio, n-alcohol biomarkers) were examined at three deep sites on the Congo-Gabon continental margin. This study was part of the multidisciplinary BIOZAIRE project that aimed at studying the deep benthic ecosystems in the Gulf of Guinea. Sampling of macrofaunal communities and of sediment was conducted during three cruises (January 2001, December 2001 and December 2003) at two downslope sites (4000 m depth), one located near the Congo submarine channel (15 km in the south) and the other one far from the channel (150 km in the South). The third area located 8 km north of the Congo channel in the surroundings of a giant pockmark at 3160 m depth was sampled during one cruise in December 2003. At these three locations the macrofaunal communities presented relatively high densities (327-987 ind. 0.25 m -2) compared with macrofaunal communities at similar depths; that is due to high levels of food input related to the Congo river and submarine system activities that affect the whole study area. The communities were different from each other in terms of taxonomic composition at higher taxon level (phylum, class, order for all the groups except for the polychaetes classified into families). The polychaetes dominated the communities and were responsible for the increase in densities observed at both deep sites (4000 m) between January 2001 and December 2003 whereas the tanaidaceans, the isopods and the bivalves were the other most abundant taxa responsible for the spatial differences between these sites. The community at 3150 m differed from the two deep communities by higher abundances in bivalves, nemerteans and holothuroids. The composition of the polychaete community also differed among sites. In the vicinity of the Congo channel, the expected positive effect of the additional organic matter transported through the turbiditic currents on to the surrounding benthic communities was not observed, as the increase in densities during the study period was higher at the site located away from the Congo channel than near the channel (80% vs 30%). That may be due to the low food value of the organic matter of terrestrial origin carried through the turbidites, and/or to the disturbance caused by these turbidites. Conversely, far from the channel the macrofaunal communities benefit from organic matter of higher energetic value originating mainly from marine sources, but also from continental sources, carried by the Congo plume or by near-bed currents across or along the continental slope. Spatial and temporal variability in trophic and physical characteristics of the sediment habitat at both deep sites also affected the vertical distribution of the macrofaunal communities. The activities of the very active Congo system structure the deep macrofaunal communities on a large area in terms of densities, composition and vertical distribution. The food input is enhanced at regional scale as well as the heterogeneity of the sediment characteristics, mainly in terms of organic matter quality (marine vs terrigenous). In turn, the densities are enhanced as well as the regional diversity of the macrofaunal communities in terms of taxonomic composition and distribution.

  12. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.

    2016-10-01

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.

  13. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz

    PubMed Central

    Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.

    2016-01-01

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults. PMID:27762306

  14. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz.

    PubMed

    Coelho, Francisco J R C; Louvado, António; Domingues, Patrícia M; Cleary, Daniel F R; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R; Cunha, Ângela; Gomes, Newton C M

    2016-10-20

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellman, Dawn M.; Triplett, Mark B.; Freshley, Mark D.

    DOE-EM, Office of Groundwater and Soil Remediation and DOE Richland, in collaboration with the Hanford site and Pacific Northwest National Laboratory, have established the Deep Vadose Zone Applied Field Research Center (DVZ-AFRC). The DVZ-AFRC leverages DOE investments in basic science from the Office of Science, applied research from DOE EM Office of Technology Innovation and Development, and site operation (e.g., site contractors [CH2M HILL Plateau Remediation Contractor and Washington River Protection Solutions], DOE-EM RL and ORP) in a collaborative effort to address the complex region of the deep vadose zone. Although the aim, goal, motivation, and contractual obligation of eachmore » organization is different, the integration of these activities into the framework of the DVZ-AFRC brings the resources and creativity of many to provide sites with viable alternative remedial strategies to current baseline approaches for persistent contaminants and deep vadose zone contamination. This cooperative strategy removes stove pipes, prevents duplication of efforts, maximizes resources, and facilitates development of the scientific foundation needed to make sound and defensible remedial decisions that will successfully meet the target cleanup goals for one of DOE EM's most intractable problems, in a manner that is acceptable by regulators.« less

  16. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    PubMed Central

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  17. Rates and extent of microbial debromination in the deep subseafloor biosphere

    NASA Astrophysics Data System (ADS)

    Berg, R. D.; Solomon, E. A.; Morris, R. M.

    2013-12-01

    Recent genomic and porewater geochemical data suggest that reductive dehalogenation of a wide range of halogenated organic compounds could represent an important energy source for deep subseafloor microbial communities. At continental slope sites worldwide, there is a remarkably linear relationship between porewater profiles of ammonium and bromide, indicating that the factors controlling the distribution and rates of dehalogenation have the potential to influence carbon and nitrogen cycling in the deep subsurface biosphere. Though this metabolic pathway could play an important role in the cycling of otherwise refractory pools of carbon and nitrogen in marine sediments and provide energy to microbial communities in the deep subsurface biosphere, the rates and extent of dehalogenation in marine sediments are poorly constrained. Here we report net reaction rate profiles of debromination activity in continental slope sediments, calculated from numerical modeling of porewater bromide profiles from several margins worldwide. The reaction rate profiles indicate three common zones of debromination activity in slope sediments: 1) low rates of debromination, and a potential bromine sink, in the upper sediment column correlating to the sulfate reduction zone, with net bromide removal rates from -3.6 x 10^-2 to -4.85 x 10^-1 μmol m^-2 yr^-1, 2) high rates of debromination from the sulfate-methane transition zone to ~40-100 mbsf, with net bromide release rates between 7.1 x 10^-2 to 3.9 x 10^-1 μmol m^-2 yr^-1, and 3) an inflection point at ~40-100 mbsf, below which net rates of debromination decrease by an order of magnitude and at several sites are indistinguishable from zero. These results indicate that dehalogenating activity is widely distributed in marine sediments, providing energy to fuel deep subseafloor microbial communities, with potentially important consequences for the global bromine and nitrogen cycles.

  18. Hydrogeochemical and stream sediment special reconnaissance report for the Deep Creek Mountains, Nevada and Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qualheim, B.

    1979-04-01

    This report represents the results of the reconnaissance sampling of the Deep Creek Mountains of western Utah. The Deep Creek range is located in the northwest corner of the Delta NTMS 1:250,000 and the southwestern corner of the Tooele NTMS 1:250,000 sheets and covers an area of 1750 km/sup 2/. Samples collected in this study include dry and wet stream sediments and water from available streams, wells, and springs. The samples were analyzed for uranium, as well as 15 to 20 trace elements, using neutron activation techniques. In addition, field and laboratory measurements were made on the water samples. Analyticalmore » data and field measurements are presented in tabular hard copy and fiche format. Water-sample site locations, water-sample uranium concentrations, sediment-sample site locations, and sediment-sample uranium concentrations are shown on separate overlays.« less

  19. Sensory processing of deep tissue nociception in the rat spinal cord and thalamic ventrobasal complex.

    PubMed

    Sikandar, Shafaq; West, Steven J; McMahon, Stephen B; Bennett, David L; Dickenson, Anthony H

    2017-07-01

    Sensory processing of deep somatic tissue constitutes an important component of the nociceptive system, yet associated central processing pathways remain poorly understood. Here, we provide a novel electrophysiological characterization and immunohistochemical analysis of neural activation in the lateral spinal nucleus (LSN). These neurons show evoked activity to deep, but not cutaneous, stimulation. The evoked responses of neurons in the LSN can be sensitized to somatosensory stimulation following intramuscular hypertonic saline, an acute model of muscle pain, suggesting this is an important spinal relay site for the processing of deep tissue nociceptive inputs. Neurons of the thalamic ventrobasal complex (VBC) mediate both cutaneous and deep tissue sensory processing, but in contrast to the lateral spinal nucleus our electrophysiological studies do not suggest the existence of a subgroup of cells that selectively process deep tissue inputs. The sensitization of polymodal and thermospecific VBC neurons to mechanical somatosensory stimulation following acute muscle stimulation with hypertonic saline suggests differential roles of thalamic subpopulations in mediating cutaneous and deep tissue nociception in pathological states. Overall, our studies at both the spinal (lateral spinal nucleus) and supraspinal (thalamic ventrobasal complex) levels suggest a convergence of cutaneous and deep somatosensory inputs onto spinothalamic pathways, which are unmasked by activation of muscle nociceptive afferents to produce consequent phenotypic alterations in spinal and thalamic neural coding of somatosensory stimulation. A better understanding of the sensory pathways involved in deep tissue nociception, as well as the degree of labeled line and convergent pathways for cutaneous and deep somatosensory inputs, is fundamental to developing targeted analgesic therapies for deep pain syndromes. © 2017 University College London. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. Protein model discrimination using mutational sensitivity derived from deep sequencing.

    PubMed

    Adkar, Bharat V; Tripathi, Arti; Sahoo, Anusmita; Bajaj, Kanika; Goswami, Devrishi; Chakrabarti, Purbani; Swarnkar, Mohit K; Gokhale, Rajesh S; Varadarajan, Raghavan

    2012-02-08

    A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. An examination of photoacclimatory responses of Zostera marina transplants along a depth gradient for transplant-site selection in a disturbed estuary

    NASA Astrophysics Data System (ADS)

    Li, Wen-Tao; Kim, Seung Hyeon; Kim, Jae Woo; Kim, Jong-Hyeob; Lee, Kun-Seop

    2013-02-01

    Growth and photosynthetic responses of Zostera marina transplants along a depth gradient were examined to determine appropriate transplanting areas for seagrass restoration. Seagrass Z. marina was once widely distributed in the Taehwa River estuary in southeastern Korea, but has disappeared since the 1960s due to port construction and large scale pollutant inputs from upstream industrial areas. Recently, water quality has been considerably improved as a result of effective sewage treatment, and the local government is attempting to restore Z. marina to the estuary. For seagrass restoration in this estuary, a pilot transplantation trial of Z. marina at three water depths (shallow: 0.5 m; intermediate: 1.5 m; deep: 2.5 m relative to MLLW) was conducted in November 2008. The transplant shoot density increased gradually at the intermediate and deep sites, whereas the transplants at the shallow site disappeared after 3 months. To find the optimal transplantation locations in this estuary, the growth and photosynthetic responses of the transplants along a depth gradient were examined for approximately 4 months following transplantation in March 2009. In the 2009 experimental transplantation trial, shoot density of transplants at the shallow site was significantly higher than those at the intermediate and deep sites during the first 3 months following transplantation, but rapidly decreased approximately 4 months after transplantation. The chlorophyll content, photosynthetic efficiency (α), and maximum quantum yield (Fv/Fm) of the transplants were significantly higher at the deep site than at the shallow site. Shoot size, biomass and leaf productivity were also significantly higher at the deep site than at the shallow site. Although underwater irradiance was significantly lower at the deep site than at the shallow site, transplants at the deep site were morphologically and physiologically acclimated to the low light. Transplants at the shallow site exhibited high mortality during the early period of transplantation perhaps due to high physical disturbances at the site, but transplants at the intermediate and deep sites showed higher growth through more efficient photosynthesis and morphological adaptation. Thus, the intermediate and deep sites (1.5-2.5 m relative to MLLW) appeared to be more appropriate seagrass transplantation sites in this estuary.

  2. Intermediate to deep water hydrographic changes of the Japan Sea over the past 10 Myr, inferred from radiolarian data (IODP Exp. 346, Site U1425)

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Kenji M.; Itaki, Takuya; Tada, Ryuji; Kurokawa, Shunsuke

    2017-04-01

    The Japan Sea is a back-arc basin opened under a continental rifting during the Early to Middle Miocene (ca. 25-13 Ma). This area is characterized by active tectonism, which drastically modified the Japan Sea paleogeography such as the sill depth of its key straits. In modern condition, the Japan Sea is connected to adjacent marginal seas and the Pacific Ocean by four straits shallower than 130 m. These straits are the Tsushima Strait connecting to the East China Sea, the Tsugaru Strait connecting to the Pacific, and the Soya and Mamiya Straits connecting to the Sea of Okhotsk. Therefore, the intermediate and deep water of the Japan Sea is isolated, leading the formation of a unique and regional deep sea water, known as the Japan Sea Proper Water. However, past studies show that during the late Miocene and Pliocene, only the Tsugaru Strait connecting to the North Pacific was opened. This strait was deeper during Plio-Miocene and have likely enable inflow of deep to intermediate water of the North Pacific in the Japan Sea. Radiolarians are one of the planktic micro-organisms group bearing siliceous skeletons. Their species comprise shallow to deep water dwellers, sensitive to changes in sea water physical/ecological properties forced by climate changes. Their fossils are known for be well preserved in the deep-sea sediments of the North Pacific. Therefore, in this study we propose to monitor changes in intermediate to deep water hydrography of the Japan Sea since the late Miocene, using radiolarian as an environmental proxy. In 2013 the IODP Expedition 346 retrieved sediment cores at different sites in the Japan Sea. In this study, we have analyzed 139 core sediments samples collected at Site U1425. This site is situated in the middle of the Yamato Bank. We selected this site because the past 10 Myr could be recovered continuously without hiatuses. Changes in radiolarian assemblages reveal that the oceanographic setting of the Japan Sea changed drastically at ca. 2.7 Ma. For older interval (2.7- 10 Ma), deep water species of the North Pacific could be identified at site U1425, inferring influences of deep water from the North Pacific and consequently a deeper sill depths of the connecting strait. Radiolarian assemblages also show that the intermediate water of the Japan sea is characterized by taxa living in equatorial to mid latitude area of the Northwest Pacific during the time interval between 2.7-10 Ma. While between 4 and 5 Ma, taxa related to the Sea of Okhotsk show very high abundances, inferring also inflow of intermediate water from the Sea of Okhotsk in the Japan Sea.

  3. Microbial stowaways: Addressing oil spill impacts and the artificial reef effect on deep-sea microbiomes

    NASA Astrophysics Data System (ADS)

    Hamdan, L. J.; Salerno, J. L.; Blackwell, C. A.; Little, B.; McGown, C.; Fitzgerald, L. A.; Damour, M.

    2016-02-01

    Shipwrecks enhance macro-biological diversity in the deep ocean, but, to date, studies have not explored the reef effect on deep-sea microbiological diversity. This is an important concept to address in a restoration framework, as microbial biogeochemical function impacts recruitment and adhesion of higher trophic levels on artificial reefs. In addition, microbial biofilms influence the preservation of shipwrecks through biologically mediated corrosion. Oil and gas-related activities have potential to disrupt the base of the reef trophic web; therefore, bacterial diversity and gene function at six shipwrecks (3 steel-hulled; 3 wood-hulled) in the northern Gulf of Mexico was investigated as part of the GOM-SCHEMA (Shipwreck Corrosion, Hydrocarbon Exposure, Microbiology, and Archaeology) project. Sites were selected based on proximity to the Deepwater Horizon spill's subsurface plume, depth, hull type, and existing archaeological data. Classification of taxa in sediments adjacent to and at distance from wrecks, in water, and on experimental steel coupons was used to evaluate how the presence of shipwrecks and spill contaminants in the deep biosphere influenced diversity. At all sites, and in all sample types, Proteobacteria were most abundant. Biodiversity was highest in surface sediments and in coupon biofilms adjacent to two steel-hulled wrecks in the study (Halo and Anona) and decreased with sediment depth and distance from the wrecks. Sequences associated with the iron oxidizing Mariprofundus genus were elevated at steel-hulled sites, indicating wreck-specific environmental selection. Despite evidence of the reef effect on microbiomes, bacterial composition was structured primarily by proximity to the spill and secondarily by hull material at all sites. This study provides the first evidence of an artificial reef effect on deep-sea microbial communities and suggests that biodiversity and function of primary colonizers of shipwrecks may be impacted by the spill.

  4. Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa-River Channel, Amargosa Desert, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.

    2003-01-01

    The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability.The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960’s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the newest field (cultivated since 1993), the downstream Amargosa-River site, and the edge of an older field were indicative of recently active deep percolation moving previously accumulated salts from the upper profile to greater depths.Results clearly indicate that deep percolation and ground-water recharge occur not only beneath areas of irrigation but also beneath ephemeral stream channels, despite the arid climate and infrequency of runoff. Rates of deep percolation beneath irrigated fields ranged from 0.1 to 0.5 m/yr. Estimated rates of deep percolation beneath the Amargosa-River channel ranged from 0.02 to 0.15 m/yr. Only a few decades are needed for excess irrigation water to move through the unsaturated zone and recharge ground water. Assuming vertical, one-dimensional flow, the estimated time for irrigation-return flow to reach the water table beneath the irrigated fields ranged from about 10 to 70 years. In contrast, infiltration from present-day runoff takes centuries to move through the unsaturated zone and reach the water table. The estimated time for water to reach the water table beneath the channel ranged from 140 to 1000 years. These values represent minimum times, as they do not take lateral flow into account. The estimated fraction of irrigation water becoming deep percolation averaged 8 to 16 percent. Similar fractions of infiltration from ephemeral flow events were estimated to become deep percolation beneath the normally dry Amargosa-River channel. In areas where flood-induced channel migration occurs at sub-centennial frequencies, residence times in the unsaturated zone beneath the Amargosa channel could be longer. Estimates of deep percolation presented herein provide a basis for evaluating the importance of recharge from irrigation and channel infiltration in models of ground-water flow from the Nevada Test Site.

  5. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction.

    PubMed

    Wang, Duolin; Zeng, Shuai; Xu, Chunhui; Qiu, Wangren; Liang, Yanchun; Joshi, Trupti; Xu, Dong

    2017-12-15

    Computational methods for phosphorylation site prediction play important roles in protein function studies and experimental design. Most existing methods are based on feature extraction, which may result in incomplete or biased features. Deep learning as the cutting-edge machine learning method has the ability to automatically discover complex representations of phosphorylation patterns from the raw sequences, and hence it provides a powerful tool for improvement of phosphorylation site prediction. We present MusiteDeep, the first deep-learning framework for predicting general and kinase-specific phosphorylation sites. MusiteDeep takes raw sequence data as input and uses convolutional neural networks with a novel two-dimensional attention mechanism. It achieves over a 50% relative improvement in the area under the precision-recall curve in general phosphorylation site prediction and obtains competitive results in kinase-specific prediction compared to other well-known tools on the benchmark data. MusiteDeep is provided as an open-source tool available at https://github.com/duolinwang/MusiteDeep. xudong@missouri.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  6. Initial results from the ICDP SCOPSCO drilling project, Lake Ohrid (Macedonia, Albania)

    NASA Astrophysics Data System (ADS)

    Francke, A.; Wagner, B.; Krastel, S.; Lindhorst, K.; Wilke, T.; Zanchetta, G.; Sulpizio, R.; Grazhdani, A.; Reicherter, K. R.

    2013-12-01

    Lake Ohrid (Macedonia, Albania) is about 30 km long and 15 km wide and up to 290 m deep. Formed within a tectonic graben, Lake Ohrid is considered to be the oldest lake in Europe, providing a high-resolution, continuous archive of environmental change and tectonic and tephrostratigraphic history in the Eastern Mediterranean Region. The deep drilling campaign at Lake Ohrid in spring 2013 within the scope of the ICDP project SCOPSCO (Scientific Collaboration of Past Speciation Conditions in Lake Ohrid) aimed (a) to obtain more precise information about the age and origin of the lake, (b) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (c) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (d) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. Drilling was carried out by DOSECC (Salt Lake City, USA) using the DLDS (Deep Lake Drilling System) with a hydraulic piston corer for surface sediments and rotation drilling for harder, deeper sediments. Overall, about 2,100 m of sediment were recovered from 4 drill sites. At the 'DEEP' site in the center of the lake, seismic data implied a maximum sediment fill of ca. 700 m, of which the uppermost 568 m sediment were recovered. Coarse-grained gravel and pebbles underlying clay and shallow water facies sediments hampered deeper penetration. 6 boreholes at the 'DEEP' site resulted in a total of 1526 m of sediment cores and a composite field recovery of 544 m (95%). Initial geochemical and magnetic susceptibility data imply that the sediments from 'DEEP' site are highly sensitive to climate and environmental variations in the Balkan area probably over the last 1.5 Mio years. Long-term climate oscillations on a glacial/interglacial timescale and also short-term events such as Dansgaard-Oescher cycles during the last glacial period can be inferred from the initial data. Although a high amount of greigite complicates the paleomagnetic dating of the recovered sediments, a robust age model can likely be inferred from numerous tephras and cryptotephras, which are indicated by spikes in the magnetic susceptibility data. Three additional sites at lateral parts of Lake Ohrid were drilled to un-ravel lake level fluctuations, catchment dynamics, biodiversity and evolution processes ('Cerava', deepest drilled depth: 90 m), active tectonics and spring dynamics ('Gradiste', deepest drilled depth: 123 m), and the early development of the Ohrid Basin ('Pestani', deepest drilled depth: 194 m). The composite field recovery is >90% at each site. The initial results obtained from the field campaign indicate that Lake Ohrid provides an extraordinary record of environmental change in the northern Mediterranean and will become a key site for a better understanding of speciation triggers.

  7. Application of telluric-telluric profiling combined with magnetotelluric and self-potential methods to geothermal exploration in the Fujian Province, China

    NASA Astrophysics Data System (ADS)

    Pham, Van-Ngoc; Boyer, Danièle; Yuan, Xue Cheng; Liu, Shao Cheng

    1995-05-01

    In the Fujian Province, southeastern China, most of the hot springs emerge in fluviatile valleys and the geothermal resources are mainly medium and low temperature ones by mixing of hot water with cold superficial groundwater. The occurrence of the thermal waters is controlled by deep tectonic fractures in the bedrock where higher-temperature geothermal reservoirs of economic interest are present. The objective of this study is to detect the deeper active hydrothermal zone under a thick sedimentary cover by geoelectrical methods. In the Gui-An site, the combination of telluric-telluric profiling and magnetotelluric methods turns out very efficient to delineate more accurately the width of the deep conductive fracture zone. Moreover, the self-potential method allows us to localize the most active geothermal zone by electrofiltration processes above a convective cell of hot water which flows up from a deep source. The combined results constitute a possible guide for deep geothermal exploration currently encountered in several geothermal regions over the world.

  8. Monitoring regional effects of high pressure injection of wastewater in a limestone aquifer

    USGS Publications Warehouse

    Faulkner, Glen L.; Pascale, Charles A.

    1975-01-01

    More than 10 billion gallons (38 × 106 m3) of acid industrial liquid waste has been injected in about 11 years under high pressure into a saline-water-filled part of a limestone aquifer of low transmissivity between 1,400 and 1,700 feet (430 and 520 m) below land surface near Pensacola, Florida. A similar waste disposal system is planned for the same zone at a site about 8.5 miles (13.7 km) to the east. The injection zone is the lower limestone of the Floridan aquifer. The lower limestone is overlain by a confining layer of plastic clay about 220 feet (67 m) thick at the active injection site and underlain by another confining layer of shale and clay. The upper confining layer is overlain by the upper limestone of the Floridan aquifer.The active injection system consists of two injection wells about a quarter of a mile (0.4 km) apart and three monitor wells. Two of the monitor wells (deep monitors) are used to observe hydraulic and geochemical effects of waste injection in the injection zone at locations about 1.5 miles (2.4 km) south and 1.9 miles (3.1 km) north of the center of the injection site. The third well (shallow monitor), used to observe any effects in the upper limestone, is about 100 feet (30 m) from one of the injection wells. Since 1972 the injection zone has also been monitored at a test well at the planned new injection site. Three more monitor wells in the injection zone were activated in early 1974 at sites 17 miles (27 km) northeast, 22 miles (35 km) east and 33 miles (53 km) northeast of the injection site. The six deep monitors provide a system for evaluating the regional effects of injecting wastes. No change in pressure or water quality due to injection was, by mid-1974, evident in the upper limestone at the injection site, but static pressures in the lower limestone at the site had increased 8 fold since injection began in 1963. Chemical analyses indicated probable arrival of the diluted waste at the south monitor well in 1973. By mid-1974 waste evidently had not reached the north monitor well.Calculations indicate that by mid-1974 pressure effects from waste injection extended radially more than 40 miles (64 km) from the injection site. By mid-1974 pressure effects of injection were evident from water-level measurements made at the five deep monitor wells nearest the active injection site. No effects were recognized at the well 33 miles (53 km) away. Less than 20 miles (32 km) northeast of the active injection site, the lower limestone contains fresh water. Changes in the pressure regime due to injection indicate a tendency for northeastward movement of the fresh-water/salt-water interface in the lower limestone.

  9. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations.

    PubMed

    Sun, Zhizeng; Mehta, Shrenik C; Adamski, Carolyn J; Gibbs, Richard A; Palzkill, Timothy

    2016-09-12

    CphA is a Zn(2+)-dependent metallo-β-lactamase that efficiently hydrolyzes only carbapenem antibiotics. To understand the sequence requirements for CphA function, single codon random mutant libraries were constructed for residues in and near the active site and mutants were selected for E. coli growth on increasing concentrations of imipenem, a carbapenem antibiotic. At high concentrations of imipenem that select for phenotypically wild-type mutants, the active-site residues exhibit stringent sequence requirements in that nearly all residues in positions that contact zinc, the substrate, or the catalytic water do not tolerate amino acid substitutions. In addition, at high imipenem concentrations a number of residues that do not directly contact zinc or substrate are also essential and do not tolerate substitutions. Biochemical analysis confirmed that amino acid substitutions at essential positions decreased the stability or catalytic activity of the CphA enzyme. Therefore, the CphA active - site is fragile to substitutions, suggesting active-site residues are optimized for imipenem hydrolysis. These results also suggest that resistance to inhibitors targeted to the CphA active site would be slow to develop because of the strong sequence constraints on function.

  10. DeepMirTar: a deep-learning approach for predicting human miRNA targets.

    PubMed

    Wen, Ming; Cong, Peisheng; Zhang, Zhimin; Lu, Hongmei; Li, Tonghua

    2018-06-01

    MicroRNAs (miRNAs) are small noncoding RNAs that function in RNA silencing and post-transcriptional regulation of gene expression by targeting messenger RNAs (mRNAs). Because the underlying mechanisms associated with miRNA binding to mRNA are not fully understood, a major challenge of miRNA studies involves the identification of miRNA-target sites on mRNA. In silico prediction of miRNA-target sites can expedite costly and time-consuming experimental work by providing the most promising miRNA-target-site candidates. In this study, we reported the design and implementation of DeepMirTar, a deep-learning-based approach for accurately predicting human miRNA targets at the site level. The predicted miRNA-target sites are those having canonical or non-canonical seed, and features, including high-level expert-designed, low-level expert-designed, and raw-data-level, were used to represent the miRNA-target site. Comparison with other state-of-the-art machine-learning methods and existing miRNA-target-prediction tools indicated that DeepMirTar improved overall predictive performance. DeepMirTar is freely available at https://github.com/Bjoux2/DeepMirTar_SdA. lith@tongji.edu.cn, hongmeilu@csu.edu.cn. Supplementary data are available at Bioinformatics online.

  11. Geoscientific Site Evaluation Approach for Canada's Deep Geological Repository for Used Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Sanchez-Rico Castejon, M.; Hirschorn, S.; Ben Belfadhel, M.

    2015-12-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable crystalline or sedimentary rock formation. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The site evaluation process includes three main technical evaluation steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations, to assess the suitability of candidate areas in a stepwise manner over a period of many years. By the end of 2012, twenty two communities had expressed interest in learning more about the project. As of July 2015, nine communities remain in the site selection process. To date (July 2015), NWMO has completed Initial Screenings for the 22 communities that expressed interest, and has completed the first phase of Preliminary Assessments (desktop) for 20 of the communities. Phase 2 of the Preliminary Assessments has been initiated in a number of communities, with field activities such as high-resolution airborne geophysical surveys and geological mapping. This paper describes the approach, methods and criteria being used to assess the geoscientific suitability of communities currently involved in the site selection process.

  12. Living microbial ecosystems within the active zone of catagenesis: Implications for feeding the deep biosphere

    NASA Astrophysics Data System (ADS)

    Horsfield, B.; Schenk, H. J.; Zink, K.; Ondrak, R.; Dieckmann, V.; Kallmeyer, J.; Mangelsdorf, K.; di Primio, R.; Wilkes, H.; Parkes, R. J.; Fry, J.; Cragg, B.

    2006-06-01

    Earth's largest reactive carbon pool, marine sedimentary organic matter, becomes increasingly recalcitrant during burial, making it almost inaccessible as a substrate for microorganisms, and thereby limiting metabolic activity in the deep biosphere. Because elevated temperature acting over geological time leads to the massive thermal breakdown of the organic matter into volatiles, including petroleum, the question arises whether microorganisms can directly utilize these maturation products as a substrate. While migrated thermogenic fluids are known to sustain microbial consortia in shallow sediments, an in situ coupling of abiotic generation and microbial utilization has not been demonstrated. Here we show, using a combination of basin modelling, kinetic modelling, geomicrobiology and biogeochemistry, that microorganisms inhabit the active generation zone in the Nankai Trough, offshore Japan. Three sites from ODP Leg 190 have been evaluated, namely 1173, 1174 and 1177, drilled in nearly undeformed Quaternary and Tertiary sedimentary sequences seaward of the Nankai Trough itself. Paleotemperatures were reconstructed based on subsidence profiles, compaction modelling, present-day heat flow, downhole temperature measurements and organic maturity parameters. Today's heat flow distribution can be considered mainly conductive, and is extremely high in places, reaching 180 mW/m 2. The kinetic parameters describing total hydrocarbon generation, determined by laboratory pyrolysis experiments, were utilized by the model in order to predict the timing of generation in time and space. The model predicts that the onset of present day generation lies between 300 and 500 m below sea floor (5100-5300 m below mean sea level), depending on well location. In the case of Site 1174, 5-10% conversion has taken place by a present day temperature of ca. 85 °C. Predictions were largely validated by on-site hydrocarbon gas measurements. Viable organisms in the same depth range have been proven using 14C-radiolabelled substrates for methanogenesis, bacterial cell counts and intact phospholipids. Altogether, these results point to an overlap of abiotic thermal degradation reactions going on in the same part of the sedimentary column as where a deep biosphere exists. The organic matter preserved in Nankai Trough sediments is of the type that generates putative feedstocks for microbial activity, namely oxygenated compounds and hydrocarbons. Furthermore, the rates of thermal degradation calculated from the kinetic model closely resemble rates of respiration and electron donor consumption independently measured in other deep biosphere environments. We deduce that abiotically driven degradation reactions have provided substrates for microbial activity in deep sediments at this convergent continental margin.

  13. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line.

    PubMed

    Suzuki, Harukazu; Forrest, Alistair R R; van Nimwegen, Erik; Daub, Carsten O; Balwierz, Piotr J; Irvine, Katharine M; Lassmann, Timo; Ravasi, Timothy; Hasegawa, Yuki; de Hoon, Michiel J L; Katayama, Shintaro; Schroder, Kate; Carninci, Piero; Tomaru, Yasuhiro; Kanamori-Katayama, Mutsumi; Kubosaki, Atsutaka; Akalin, Altuna; Ando, Yoshinari; Arner, Erik; Asada, Maki; Asahara, Hiroshi; Bailey, Timothy; Bajic, Vladimir B; Bauer, Denis; Beckhouse, Anthony G; Bertin, Nicolas; Björkegren, Johan; Brombacher, Frank; Bulger, Erika; Chalk, Alistair M; Chiba, Joe; Cloonan, Nicole; Dawe, Adam; Dostie, Josee; Engström, Pär G; Essack, Magbubah; Faulkner, Geoffrey J; Fink, J Lynn; Fredman, David; Fujimori, Ko; Furuno, Masaaki; Gojobori, Takashi; Gough, Julian; Grimmond, Sean M; Gustafsson, Mika; Hashimoto, Megumi; Hashimoto, Takehiro; Hatakeyama, Mariko; Heinzel, Susanne; Hide, Winston; Hofmann, Oliver; Hörnquist, Michael; Huminiecki, Lukasz; Ikeo, Kazuho; Imamoto, Naoko; Inoue, Satoshi; Inoue, Yusuke; Ishihara, Ryoko; Iwayanagi, Takao; Jacobsen, Anders; Kaur, Mandeep; Kawaji, Hideya; Kerr, Markus C; Kimura, Ryuichiro; Kimura, Syuhei; Kimura, Yasumasa; Kitano, Hiroaki; Koga, Hisashi; Kojima, Toshio; Kondo, Shinji; Konno, Takeshi; Krogh, Anders; Kruger, Adele; Kumar, Ajit; Lenhard, Boris; Lennartsson, Andreas; Lindow, Morten; Lizio, Marina; Macpherson, Cameron; Maeda, Norihiro; Maher, Christopher A; Maqungo, Monique; Mar, Jessica; Matigian, Nicholas A; Matsuda, Hideo; Mattick, John S; Meier, Stuart; Miyamoto, Sei; Miyamoto-Sato, Etsuko; Nakabayashi, Kazuhiko; Nakachi, Yutaka; Nakano, Mika; Nygaard, Sanne; Okayama, Toshitsugu; Okazaki, Yasushi; Okuda-Yabukami, Haruka; Orlando, Valerio; Otomo, Jun; Pachkov, Mikhail; Petrovsky, Nikolai; Plessy, Charles; Quackenbush, John; Radovanovic, Aleksandar; Rehli, Michael; Saito, Rintaro; Sandelin, Albin; Schmeier, Sebastian; Schönbach, Christian; Schwartz, Ariel S; Semple, Colin A; Sera, Miho; Severin, Jessica; Shirahige, Katsuhiko; Simons, Cas; St Laurent, George; Suzuki, Masanori; Suzuki, Takahiro; Sweet, Matthew J; Taft, Ryan J; Takeda, Shizu; Takenaka, Yoichi; Tan, Kai; Taylor, Martin S; Teasdale, Rohan D; Tegnér, Jesper; Teichmann, Sarah; Valen, Eivind; Wahlestedt, Claes; Waki, Kazunori; Waterhouse, Andrew; Wells, Christine A; Winther, Ole; Wu, Linda; Yamaguchi, Kazumi; Yanagawa, Hiroshi; Yasuda, Jun; Zavolan, Mihaela; Hume, David A; Arakawa, Takahiro; Fukuda, Shiro; Imamura, Kengo; Kai, Chikatoshi; Kaiho, Ai; Kawashima, Tsugumi; Kawazu, Chika; Kitazume, Yayoi; Kojima, Miki; Miura, Hisashi; Murakami, Kayoko; Murata, Mitsuyoshi; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Ogawa, Chihiro; Sano, Takuma; Simon, Christophe; Tagami, Michihira; Takahashi, Yukari; Kawai, Jun; Hayashizaki, Yoshihide

    2009-05-01

    Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites, we identified the key transcription regulators, their time-dependent activities and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the regulatory network. Our results indicate that cellular states are constrained by complex networks involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process.

  14. Hydrothermal activity lowers trophic diversity in Antarctic hydrothermal sediments

    NASA Astrophysics Data System (ADS)

    Bell, James B.; Reid, William D. K.; Pearce, David A.; Glover, Adrian G.; Sweeting, Christopher J.; Newton, Jason; Woulds, Clare

    2017-12-01

    Hydrothermal sediments are those in which hydrothermal fluid is discharged through sediments and are one of the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermal and background areas of the Bransfield Strait (1050-1647 m of depth). Microbial composition, biomass, and fatty acid signatures varied widely between and within hydrothermally active and background sites, providing evidence of diverse metabolic activity. Several species had different feeding strategies and trophic positions between hydrothermally active and inactive areas, and the stable isotope values of consumers were not consistent with feeding morphology. Niche area and the diversity of microbial fatty acids was lowest at the most hydrothermally active site, reflecting trends in species diversity. Faunal uptake of chemosynthetically produced organics was relatively limited but was detected at both hydrothermal and non-hydrothermal sites, potentially suggesting that hydrothermal activity can affect trophodynamics over a much wider area than previously thought.

  15. Microbial communities of the deep unfrozen: Do microbes in taliks increase permafrost carbon vulnerability? (Invited)

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Blazewicz, S.; Jones, M.; Mcfarland, J. W.; Harden, J. W.; Euskirchen, E. S.; Turetsky, M.; Hultman, J.; Jansson, J.

    2013-12-01

    The vast frozen terrain of northern latitude ecosystems is typically thought of as being nearly biologically inert for the winter period. Yet deep within the frozen ground of northern latitude soils reside microbial communities that can remain active during the winter months. As we have shown previously, microbial communities may remain active in permafrost soils just below the freezing point of water. Though perhaps more importantly, microbial communities persist in unfrozen areas of water, soil, and sediment beneath water bodies the entire year. Microbial activity in taliks may have significant impacts on biogeochemical cycling in northern latitude ecosystems because their activity is not limited by the winter months. Here we present compositional and functional data, including long term incubation data, for microbial communities within permafrost landscapes, in permafrost and taliks, and the implications of these activities on permafrost carbon decomposition and the flux of CO2 and CH4. Our experiment was conducted at the Alaska Peatland Experiment (APEX) within the Bonanza Creek LTER in interior Alaska. Our site consists of a black spruce forest on permafrost that has degraded into thermokarst bogs at various times over the last five hundred years. We assume the parent substrate of the deep (1-1.5m) thermokarst peat was similar to the nearby forest soil and permafrost C before thaw. At this site, flux tower and autochamber data show that the thermokarst bog is a sink of CO2 , but a significant source of CH4. Yet this does not tell the whole story as these data do not fully capture microbial activity within the deep unfrozen talik layer. There is published evidence that within thermokarst bogs, relatively rapid decomposition of old forest floor material may be occurring. There are several possible mechanisms for this pattern; one possible mechanism for accelerated decomposition is the overwintering activities of microbial communities in taliks of thermokarst soils. To test this idea, we conducted anaerobic incubations of deep (1m) bog soils at two different temperatures to determine microbial temperature response functions. We also measured soil profile CO2 and CH4 concentrations and functional gene assays of the deep bog microbial community. Incubation data in combination with overwinter temperature profiles show that the talik has high potential rates of CO2 and CH4 production compared to the mass of C from forest floor and permafrost C to 1m depth. Results highlight the potential importance of taliks affecting the vulnerability of permafrost carbon to decomposition and reduction to methane.

  16. Acute and chronic changes in brain activity with deep brain stimulation for refractory depression.

    PubMed

    Conen, Silke; Matthews, Julian C; Patel, Nikunj K; Anton-Rodriguez, José; Talbot, Peter S

    2018-04-01

    Deep brain stimulation is a potential option for patients with treatment-refractory depression. Deep brain stimulation benefits have been reported when targeting either the subgenual cingulate or ventral anterior capsule/nucleus accumbens. However, not all patients respond and optimum stimulation-site is uncertain. We compared deep brain stimulation of the subgenual cingulate and ventral anterior capsule/nucleus accumbens separately and combined in the same seven treatment-refractory depression patients, and investigated regional cerebral blood flow changes associated with acute and chronic deep brain stimulation. Deep brain stimulation-response was defined as reduction in Montgomery-Asberg Depression Rating Scale score from baseline of ≥50%, and remission as a Montgomery-Asberg Depression Rating Scale score ≤8. Changes in regional cerebral blood flow were assessed using [ 15 O]water positron emission tomography. Remitters had higher relative regional cerebral blood flow in the prefrontal cortex at baseline and all subsequent time-points compared to non-remitters and non-responders, with prefrontal cortex regional cerebral blood flow generally increasing with chronic deep brain stimulation. These effects were consistent regardless of stimulation-site. Overall, no significant regional cerebral blood flow changes were apparent when deep brain stimulation was acutely interrupted. Deep brain stimulation improved treatment-refractory depression severity in the majority of patients, with consistent changes in local and distant brain regions regardless of target stimulation. Remission of depression was reached in patients with higher baseline prefrontal regional cerebral blood flow. Because of the small sample size these results are preliminary and further evaluation is necessary to determine whether prefrontal cortex regional cerebral blood flow could be a predictive biomarker of treatment response.

  17. Initial geochemistry data of the Lake Ohrid (Macedonia, Albania) "DEEP" site sediment record: The ICDP SCOPSCO drilling project

    NASA Astrophysics Data System (ADS)

    Francke, Alexander; Wagner, Bernd; Krastel, Sebastian; Lindhorst, Katja; Mantke, Nicole; Klinghardt, Dorothea

    2014-05-01

    Lake Ohrid, located at the border of Macedonia and Albania is about 30 km long, 15 km wide and up to 290 m deep. Formed within a tectonic graben, Lake Ohrid is considered to be the oldest lake in Europe. The ICDP SCOPSCO (Scientific Collaboration of Past Speciation Conditions in Lake Ohrid) deep drilling campaign at Lake Ohrid in spring 2013 aimed (a) to obtain more precise information about the age and origin of the lake, (b) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (c) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (d) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. Drilling was carried out by DOSECC (Salt Lake City, USA) using the DLDS (Deep Lake Drilling System) with a hydraulic piston corer for surface sediments and rotation drilling for harder, deeper sediments. Overall, about 2,100 m of sediment were recovered from 4 drill sites. At the "DEEP" site in the center of the lake, seismic data indicated a maximum sediment fill of ca. 700 m, of which the uppermost 568 m sediment were recovered. Initial data from core catcher samples and on-site susceptibility measurements indicate that the sediment sequence covers more than 1.2 million years and provides a continuous archive of environmental and climatological variability in the area. Currently, core opening, core description, XRF and MSCL -scanning, core correlation, and sub-sampling of the sediment cores from the "DEEP" site is conducted at the University of Cologne. High-resolution geochemical data obtained from XRF-scanning imply that the sediments from the "DEEP" site are highly sensitive to climate and environmental variations in the Balkan area over the last few glacial-interglacial cycles. Interglacial periods are characterized by high Ca counts, likely associated with a high content of calcite in the sediments. Previous studies have shown that the calcite contents in sediments from Lake Ohrid are predominantly triggered by precipitation of endogenic calcite resulting from enhanced photosynthesis and higher temperatures. Moreover, high Ca counts mostly correspond to low K counts indicating reduced clastic input and a denser vegetation cover in the catchment. In contrast, high K and low Ca counts characterize glacial periods, indicating reduced precipitation of endognic calcite and enhanced deposition of clastic material. The variations in Ca and K counts mainly represent climatic variations on a glacial-interglacial timescale. Inorganic geochemistry data shall also be used to improve the age control of the "DEEP" site sequence. First findings of macroscopic tephra horizons allow a preliminary age control on the sediment succession, and peaks in K, Sr, Zr, and magnetic susceptibility might indicate the occurrence of cryptotephralayers in the sediment sequence.

  18. Acute electromyographic responses of deep thoracic paraspinal muscles to spinal manual therapy interventions. An experimental, randomized cross-over study.

    PubMed

    Fryer, Gary; Bird, Michael; Robbins, Barry; Johnson, Jane C

    2017-07-01

    This single group, randomized, cross-over study explored whether manual therapy alters motor tone of deep thoracic back muscles by examining resting electromyographic activity (EMG) after 2 types of manual therapy and a sham control intervention. Twenty-two participants with thoracic spinal pain (15 females, 7 males, mean age 28.1 ± 6.4 years) had dual fine-wire, intramuscular electrodes inserted into deep transversospinalis muscles at a thoracic level where tissues appeared abnormal to palpation (AbP) and at 2 sites above and below normal and non-tender to palpation (NT). A surface electrode was on the contralateral paraspinal mass at the level of AbP. EMG signals were recorded for resting prone, two 3-s free neck extension efforts, two 3-s resisted maximal voluntary isometric contractions (MVIC), and resting prone before the intervention. Randomized spinal manipulation, counterstrain, or sham manipulation was delivered and EMG re-measured. Participants returned 1 and 2 weeks later for the remaining 2 treatments. Reductions in resting EMG followed counterstrain in AbP (median decrease 3.3%, P = 0.01) and NT sites (median decrease 1.0%, P = 0.05) and for the surface electrode site (median decrease 2.0%, P = 0.009). Reduction in EMG following counterstrain during free neck extension was found for the surface electrode site (median decrease 2.7%, P < 0.01). Spinal manipulation produced no change in EMG, whereas counterstrain technique produced small significant reductions in paraspinal muscle activity during prone resting and free neck extension conditions. The clinical relevance of these changes is unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A PC-based system for predicting movement from deep brain signals in Parkinson's disease.

    PubMed

    Loukas, Constantinos; Brown, Peter

    2012-07-01

    There is much current interest in deep brain stimulation (DBS) of the subthalamic nucleus (STN) for the treatment of Parkinson's disease (PD). This type of surgery has enabled unprecedented access to deep brain signals in the awake human. In this paper we present an easy-to-use computer based system for recording, displaying, archiving, and processing electrophysiological signals from the STN. The system was developed for predicting self-paced hand-movements in real-time via the online processing of the electrophysiological activity of the STN. It is hoped that such a computerised system might have clinical and experimental applications. For example, those sites within the STN most relevant to the processing of voluntary movement could be identified through the predictive value of their activities with respect to the timing of future movement. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Oral Microbiome of Deep and Shallow Dental Pockets In Chronic Periodontitis

    PubMed Central

    Ge, Xiuchun; Rodriguez, Rafael; Trinh, My; Gunsolley, John; Xu, Ping

    2013-01-01

    We examined the subgingival bacterial biodiversity in untreated chronic periodontitis patients by sequencing 16S rRNA genes. The primary purpose of the study was to compare the oral microbiome in deep (diseased) and shallow (healthy) sites. A secondary purpose was to evaluate the influences of smoking, race and dental caries on this relationship. A total of 88 subjects from two clinics were recruited. Paired subgingival plaque samples were taken from each subject, one from a probing site depth >5 mm (deep site) and the other from a probing site depth ≤3mm (shallow site). A universal primer set was designed to amplify the V4–V6 region for oral microbial 16S rRNA sequences. Differences in genera and species attributable to deep and shallow sites were determined by statistical analysis using a two-part model and false discovery rate. Fifty-one of 170 genera and 200 of 746 species were found significantly different in abundances between shallow and deep sites. Besides previously identified periodontal disease-associated bacterial species, additional species were found markedly changed in diseased sites. Cluster analysis revealed that the microbiome difference between deep and shallow sites was influenced by patient-level effects such as clinic location, race and smoking. The differences between clinic locations may be influenced by racial distribution, in that all of the African Americans subjects were seen at the same clinic. Our results suggested that there were influences from the microbiome for caries and periodontal disease and these influences are independent. PMID:23762384

  1. Hydrocarbon Seeps Formations: a Study Using 3-D Seismic Attributes in Combination with Satellite Data

    NASA Astrophysics Data System (ADS)

    Garcia-Pineda, O. G.; MacDonald, I. R.; Shedd, W.

    2011-12-01

    Analyzing the magnitude of oil discharges from natural hydrocarbon seeps is important in improving our understanding of carbon contribution as oil migrates from deeper sediments to the water column, and then eventually to the atmosphere. Liquid hydrocarbon seepage in the deep water of the Gulf of Mexico (GOM) is associated with deep cutting faults, associated with vertical salt movement, that provide conduits for the upward migration of oil and gas. Seeps transform surface geology and generate prominent geophysical targets that can be identified on 3-D seismic data as seafloor amplitude anomalies maps that correlate with the underlying deep fault systems. Using 3D seismic data, detailed mapping of the northern GOM has identified more than 21,000 geophysical anomalies across the basin. In addition to seismic data, Synthetic Aperture Radar (SAR) images have proven to be a reliable tool for localizing natural seepage of oil. We used a Texture Classifier Neural Network Algorithm (TCNNA) to process more than 1200 SAR images collected over the GOM. We quantified more than 900 individual seep formations distributed along the continental shelf and in deep water. Comparison of the geophysical anomalies with the SAR oil slick targets shows good general agreement between the distributions of the two indicators. However, there are far fewer active oil slicks than geophysical anomalies, most of which are probably associated with gas seepage. By examining several sites where the location of active venting can be determined by submersibles observations, we found that the active oily vents are often spatially offset from the most intense geophysical targets (i.e. GC600, GC767, GC204, etc). In addition to the displacement of the oil by deep sea currents, we propose that during the 100K years of activity, the location of the vents on the seafloor probably migrate as carbonate cementation reduces the permeability of the upper sediment. Many of the geophysical targets may represent inactive relict sites rather than present day natural seeps of liquid or gaseous hydrocarbon.

  2. Some Convincing Evidences of a Deep Root System Within an Interfluve Aquifer of Northeast Thailand

    NASA Astrophysics Data System (ADS)

    Jean-Pierre, Montoroi; Alain, Pierret; Jean-Luc, Maeght; Worraphan, Chintachao; Somjai, Chenyapanich; Kriengsak, Srisuk

    2016-10-01

    In Northeastern Thailand, dipterocarp forest has been cut massively in recent decades to be gradually replaced by cash crops. The aerial parts of the vegetation were sold or burned while underground parts have been degraded with time on site by microbial activity that converts the plant tissues in organic matter more or less mineralized (humus). A drilling program to implant deep piezometers (> 25 m) allowed (i) to describe and characterize the superficial formations (XRD analysis); (ii) to observe and quantify the presence of root biomass at several tens of meters in depth. Additional analyses (stable carbon isotope, SEM) showed that the deep roots are mainly from tree species and aged less than 60 years. The good state of preservation suggests favourable conditions such as the presence of a renewed deep groundwater.

  3. RNase L targets distinct sites in influenza A virus RNAs.

    PubMed

    Cooper, Daphne A; Banerjee, Shuvojit; Chakrabarti, Arindam; García-Sastre, Adolfo; Hesselberth, Jay R; Silverman, Robert H; Barton, David J

    2015-03-01

    Influenza A virus (IAV) infections are influenced by type 1 interferon-mediated antiviral defenses and by viral countermeasures to these defenses. When IAV NS1 protein is disabled, RNase L restricts virus replication; however, the RNAs targeted for cleavage by RNase L under these conditions have not been defined. In this study, we used deep-sequencing methods to identify RNase L cleavage sites within host and viral RNAs from IAV PR8ΔNS1-infected A549 cells. Short hairpin RNA knockdown of RNase L allowed us to distinguish between RNase L-dependent and RNase L-independent cleavage sites. RNase L-dependent cleavage sites were evident at discrete locations in IAV RNA segments (both positive and negative strands). Cleavage in PB2, PB1, and PA genomic RNAs suggests that viral RNPs are susceptible to cleavage by RNase L. Prominent amounts of cleavage mapped to specific regions within IAV RNAs, including some areas of increased synonymous-site conservation. Among cellular RNAs, RNase L-dependent cleavage was most frequent at precise locations in rRNAs. Our data show that RNase L targets specific sites in both host and viral RNAs to restrict influenza virus replication when NS1 protein is disabled. RNase L is a critical component of interferon-regulated and double-stranded-RNA-activated antiviral host responses. We sought to determine how RNase L exerts its antiviral activity during influenza virus infection. We enhanced the antiviral activity of RNase L by disabling a viral protein, NS1, that inhibits the activation of RNase L. Then, using deep-sequencing methods, we identified the host and viral RNAs targeted by RNase L. We found that RNase L cleaved viral RNAs and rRNAs at very precise locations. The direct cleavage of IAV RNAs by RNase L highlights an intimate battle between viral RNAs and an antiviral endonuclease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats.

    PubMed

    Alcaide, María; Stogios, Peter J; Lafraya, Álvaro; Tchigvintsev, Anatoli; Flick, Robert; Bargiela, Rafael; Chernikova, Tatyana N; Reva, Oleg N; Hai, Tran; Leggewie, Christian C; Katzke, Nadine; La Cono, Violetta; Matesanz, Ruth; Jebbar, Mohamed; Jaeger, Karl-Erich; Yakimov, Michail M; Yakunin, Alexander F; Golyshin, Peter N; Golyshina, Olga V; Savchenko, Alexei; Ferrer, Manuel

    2015-02-01

    The present study provides a deeper view of protein functionality as a function of temperature, salt and pressure in deep-sea habitats. A set of eight different enzymes from five distinct deep-sea (3040-4908 m depth), moderately warm (14.0-16.5°C) biotopes, characterized by a wide range of salinities (39-348 practical salinity units), were investigated for this purpose. An enzyme from a 'superficial' marine hydrothermal habitat (65°C) was isolated and characterized for comparative purposes. We report here the first experimental evidence suggesting that in salt-saturated deep-sea habitats, the adaptation to high pressure is linked to high thermal resistance (P value = 0.0036). Salinity might therefore increase the temperature window for enzyme activity, and possibly microbial growth, in deep-sea habitats. As an example, Lake Medee, the largest hypersaline deep-sea anoxic lake of the Eastern Mediterranean Sea, where the water temperature is never higher than 16°C, was shown to contain halopiezophilic-like enzymes that are most active at 70°C and with denaturing temperatures of 71.4°C. The determination of the crystal structures of five proteins revealed unknown molecular mechanisms involved in protein adaptation to poly-extremes as well as distinct active site architectures and substrate preferences relative to other structurally characterized enzymes. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Benthic communities in chemical munitions dumping site areas within the Baltic deeps with special focus on nematodes

    NASA Astrophysics Data System (ADS)

    Kotwicki, Lech; Grzelak, Katarzyna; Bełdowski, Jacek

    2016-06-01

    Assessment of biological effects of chemical warfare agents (CWAs) dumped in the Baltic Sea has been one of the tasks of the Chemical Munitions Search & Assessment (CHEMSEA) project. Three sites have been selected for investigation: Bornholm Deep, Gotland Deep and Gdansk Deep. Fauna collected from these locations were compared with the reference area located between the studied regions at similar depths below 70 m. In total, four scientific cruises occurred in different seasons between 2011 and 2013. The total lack of any representatives of macrozoobenthos in all of the investigated dumping sites was noted. As a practical matter, the Baltic deeps were inhabited by nematodes as the only meiofauna representatives. Therefore, nematodes were used as a key group to explore the faunal communities inhabiting chemical dumping sites in the Baltic deeps. In total, 42 nematode genera belonging to 18 families were identified, and the dominant genus was Sabatieria (Comesomatidae), which constituted 37.6% of the overall nematode community. There were significant differences in nematode community structure (abundance and taxa composition) between the dumping areas and the reference site (Kruskal-Wallis H=30.96, p<0.0001). Such clear differences suggest that nematode assemblages could mirror the environmental conditions.

  6. Deep Vadose Zone Treatability Test for the Hanford Central Plateau. Interim Post-Desiccation Monitoring Results, Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Strickland, Christopher E.; Oostrom, Martinus

    A field test of desiccation is being conducted as an element of the Deep Vadose Zone Treatability Test Program. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 4 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  7. Can the hemoglobin characteristics of vesicomyid clam species influence their distribution in deep-sea sulfide-rich sediments? A case study in the Angola Basin

    NASA Astrophysics Data System (ADS)

    Decker, C.; Zorn, N.; Le Bruchec, J.; Caprais, J. C.; Potier, N.; Leize-Wagner, E.; Lallier, F. H.; Olu, K.; Andersen, A. C.

    2017-08-01

    Vesicomyids live in endosymbiosis with sulfur-oxidizing bacteria and therefore need hydrogen sulfide to survive. They can nevertheless live in a wide range of sulfide and oxygen levels and depths, which may explain the exceptional diversity of this clam family in deep-sea habitats. In the Gulf of Guinea, nine species of vesicomyid clams are known to live in cold-seep areas with pockmarks from 600 to 3200 m deep, as well as in the organic-rich sediments of the Congo deep-sea fan at 5000 m deep. Our previous study showed that two species living in a giant pockmark have different oxygen carriers, suggesting different adaptations to hypoxia. Here, we studied the hemoglobin structure and oxygen affinity in three other species, Calyptogena valdiviae, Elenaconcha guiness and Abyssogena southwardae to determine whether the characteristics of their oxygen carriers contribute to their distribution in sulfide-rich sediments at a regional scale. Documenting pairwise species associations in various proportions, we give a semi-quantitative account of their local distribution and oxygen and sulfide measurements at seven sites. Mass spectrometry showed that each vesicomyid species has four intracellular monomeric hemoglobin molecules of 15-16 kDa, all differing in their molecular mass. As expected, the monomers showed no cooperativity in oxygen binding. Their oxygen affinities were very high (below 1 Torr), but differed significantly. C. valdiviae had the highest affinity and was dominant in the Harp pockmark, the site with the lowest oxygen content (half the value of fully oxygenated water). A. southwardae dominated in the Congo Lobe area, the site with the deepest sulfides. We discuss how hemoglobin may favor an active, vertical distribution of vesicomyids in sulfide-rich sediments.

  8. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results, Fiscal Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Strickland, Christopher E.; Johnson, Christian D.

    Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km 2 (75 mi 2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agenciesmore » (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.« less

  9. South China Sea Tectonics and Magnetics: Constraints from IODP Expedition 349 and Deep-tow Magnetic Surveys

    NASA Astrophysics Data System (ADS)

    Lin, J.; Li, C. F.; Kulhanek, D. K.; Zhao, X.; Liu, Q.; Xu, X.; Sun, Z.; Zhu, J.

    2014-12-01

    The South China Sea (SCS) is the largest low-latitude marginal sea in the world. Its formation and evolution are linked to the complex continental-oceanic tectonic interaction of the Eurasian, Pacific, and Indo-Australian plates. Despite its relatively small size and short history, the SCS has undergone nearly a complete Wilson cycle from continental break-up to seafloor spreading to subduction. In January-March 2014, Expedition 349 of the International Ocean Discovery Program (IODP) drilled five sites in the deep basin of the SCS. Three sites (U1431, U1433, and U1434) cored into oceanic basement near the fossil spreading center on the East and Southwest Subbasins, whereas Sites U1432 and U1435 are located near the northern continent/ocean boundary of the East Subbasin. Shipboard biostratigraphy based on microfossils preserved in sediment directly above or within basement suggests that the preliminary cessation age of spreading in both the East and Southwest Subbasins is around early Miocene (16-20 Ma); however, post-cruise radiometric dating is being conducted to directly date the basement basalt in these subbasins. Prior to the IODP drilling, high-resolution near-seafloor magnetic surveys were conducted in 2012 and 2013 in the SCS with survey lines passing near the five IODP drilling sites. The deep-tow surveys revealed detailed patterns of the SCS magnetic anomalies with amplitude and spatial resolutions several times better than that of traditional sea surface measurements. Preliminary results reveal several episodes of magnetic reversal events that were not recognized by sea surface measurements. Together the IODP drilling and deep-tow magnetic surveys provide critical constraints for investigating the processes of seafloor spreading in the SCS and evolution of a mid-ocean ridge from active spreading to termination.

  10. Multiphoton microscopy and image guided light activated therapy using nanomaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Prasad, Paras N.

    2017-02-01

    This talk will focus on design and applications of nanomaterials exhibiting strong multiphoton upconversion for multiphoton microscopy as well as for image-guided and light activated therapy .1-3 Such processes can occur by truly nonlinear optical interactions proceeding through virtual intermediate states or by stepwise coupled linear excitations through real intermediate states. Multiphoton processes in biocompatible multifunctional nanoparticles allow for 3D deep tissue imaging. In addition, they can produce in-situ photon conversion of deep tissue penetrating near IR light into a needed shorter wavelength light for photo-activated therapy at a targeted site, thus overcoming the limited penetration of UV or visible light into biological media. We are using near IR emitters such as silicon quantum dots which also exhibit strong multiphoton excitation for multiphoton microscopy. Another approach involves nonlinear nanocrystals such as ZnO which can produce four wave mixing, sum frequency generation as well as second harmonic generation to convert a deep tissue penetrating Near IR light at the targeted biological site to a desired shorter wavelength light suitable for bio imaging or activation of a therapy. We have utilized this approach to activate a photosensitizer for photodynamic therapy. Yet another type of upconversion materials is rare-earth ion doped optical nanotransformers which transform a Near IR (NIR) light from an external source by sequential single photon absorption, in situ and on demand, to a needed wavelength. Applications of these nanotransformers in multiphoton photoacoustic imaging will also be presented. An exciting direction pursued by us using these multiphoton nanoparticles, is functional imaging of brain. Simultaneously, they can effect optogenetics for regioselective stimulation of neurons for providing an effective intervention/augmentation strategy to enhance the cognitive state and lead to a foundation for futuristic vision of super human capabilities. Challenges and opportunities will be discussed.

  11. Diazotrophy in the Deep: An analysis of the distribution, magnitude, geochemical controls, and biological mediators of deep-sea benthic nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Dekas, Anne Elizabeth

    Biological nitrogen fixation (the conversion of N2 to NH3) is a critical process in the oceans, counteracting the production of N2 gas by dissimilatory bacterial metabolisms and providing a source of bioavailable nitrogen to many nitrogen-limited ecosystems. One currently poorly studied and potentially underappreciated habitat for diazotrophic organisms is the sediments of the deep-sea. Although nitrogen fixation was once thought to be negligible in non-photosynthetically driven benthic ecosystems, the present study demonstrates the occurrence and expression of a diversity of nifH genes (those necessary for nitrogen fixation), as well as a widespread ability to fix nitrogen at high rates in these locations. The following research explores the distribution, magnitude, geochemical controls, and biological mediators of nitrogen fixation at several deep-sea sediment habitats, including active methane seeps (Mound 12, Costa Rica; Eel River Basin, CA, USA; Hydrate Ridge, OR, USA; and Monterey Canyon, CA, USA), whale-fall sites (Monterey Canyon, CA), and background deep-sea sediment (off-site Mound 12 Costa Rica, off-site Hydrate Ridge, OR, USA; and Monterey Canyon, CA, USA). The first of the five chapters describes the FISH-NanoSIMS method, which we optimized for the analysis of closely associated microbial symbionts in marine sediments. The second describes an investigation of methane seep sediment from the Eel River Basin, where we recovered nifH sequences from extracted DNA, and used FISH-NanoSIMS to identify methanotrophic archaea (ANME-2) as diazotrophs, when associated with functional sulfate-reducing bacterial symbionts. The third and fourth chapters focus on the distribution and diversity of active diazotrophs (respectively) in methane seep sediment from Mound 12, Costa Rica, using a combination of 15N-labeling experiments, FISH-NanoSIMS, and RNA and DNA analysis. The fifth chapter expands the scope of the investigation by targeting diverse samples from methane seep, whale-fall, and background sediment collected along the Eastern Pacific Margin, and comparing the rates of nitrogen fixation observed to geochemical measurements collected in parallel. Together, these analyses represent the most extensive investigation of deep-sea nitrogen fixation to date, and work towards understanding the contribution of benthic nitrogen fixation to global marine nitrogen cycling.

  12. Syringe Port: A Convenient, Safe, and Cost-Effective Tubular Retractor for Transportal Removal of Deep-Seated Lesions of the Brain.

    PubMed

    Singh, Harnarayan; Patir, Rana; Vaishya, Sandeep; Miglani, Rahul; Kaur, Amandeep

    2018-06-01

    Minimally invasive transportal resection of deep intracranial lesions has become a widely accepted surgical technique. Many disposable, mountable port systems are available in the market for this purpose, like the ViewSite Brain Access System. The objective of this study was to find a cost-effective substitute for these systems. Deep-seated brain lesions were treated with a port system made from disposable syringes. The syringe port could be inserted through minicraniotomies placed and planned with navigation. All deep-seated lesions like ventricular tumours, colloid cysts, deep-seated gliomas, and basal ganglia hemorrhages were treated with this syringe port system and evaluated for safety, operative site hematomas, and blood loss. 62 patients were operated on during the study period from January 2015 to July 2017, using this innovative syringe port system for deep-seated lesions of the brain. No operative site hematoma or contusions were seen along the port entry site and tract. Syringe port is a cost-effective and safe alternative to the costly disposable brain port systems, especially for neurosurgical setups in developing countries for minimally invasive transportal resection of deep brain lesions. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. High-pressure hydrogen respiration in hydrothermal vent samples from the deep biosphere

    NASA Astrophysics Data System (ADS)

    Morgan-Smith, D.; Schrenk, M. O.

    2013-12-01

    Cultivation of organisms from the deep biosphere has met with many challenges, chief among them the ability to replicate this extreme environment in a laboratory setting. The maintenance of in situ pressure levels, carbon sources, and gas concentrations are important, intertwined factors which may all affect the growth of subsurface microorganisms. Hydrogen in particular is of great importance in hydrothermal systems, but in situ hydrogen concentrations are largely disregarded in attempts to culture from these sites. Using modified Hungate-type culture tubes (Bowles et al. 2011) within pressure-retaining vessels, which allow for the dissolution of higher concentrations of gas than is possible with other culturing methods, we have incubated hydrothermal chimney and hydrothermally-altered rock samples from the Lost City and Mid-Cayman Rise hydrothermal vent fields. Hydrogen concentrations up to 15 mmol/kg have been reported from Lost City (Kelley et al. 2005), but data are not yet available from the recently-discovered Mid-Cayman site, and the elevated concentration of 30 mmol/kg is being used in all incubations. We are using a variety of media types to enrich for various metabolic pathways including iron and sulfur reduction under anoxic or microaerophilic conditions. Incubations are being carried out at atmospheric (0.1 MPa), in situ (9, 23, or 50 MPa, depending on site), and elevated (50 MPa) pressure levels. Microbial cell concentrations, taxonomic diversity, and metabolic activities are being monitored during the course of these experiments. These experiments will provide insight into the relationships between microbial activities, pressure, and gas concentrations typical of deep biosphere environments. Results will inform further culturing studies from both fresh and archived samples. References cited: Bowles, M.W., Samarkin, V.A., Joye, S.B. 2011. Improved measurement of microbial activity in deep-sea sediments at in situ pressure and methane concentration. Limnology and Oceanography Methods 9:499-506 Kelley, D.S., Karson, J.A., Früh-Green, G.L., Yoerger, D.R., Shank, T.M., et al. 2005. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field. Science 307:1428-1434

  14. A 1-D mechanistic model for the evolution of earthflow-prone hillslopes

    NASA Astrophysics Data System (ADS)

    Booth, Adam M.; Roering, Josh J.

    2011-12-01

    In mountainous terrain, deep-seated landslides transport large volumes of material on hillslopes, exerting a dominant control on erosion rates and landscape form. Here, we develop a mathematical landscape evolution model to explore interactions between deep-seated earthflows, soil creep, and gully processes at the drainage basin scale over geomorphically relevant (>103 year) timescales. In the model, sediment flux or incision laws for these three geomorphic processes combine to determine the morphology of actively uplifting and eroding steady state topographic profiles. We apply the model to three sites, one in the Gabilan Mesa, California, with no earthflow activity, and two along the Eel River, California, with different lithologies and varying levels of historic earthflow activity. Representative topographic profiles from these sites are consistent with model predictions in which the magnitude of a dimensionless earthflow number, based on a non-Newtonian flow rheology, reflects the magnitude of recent earthflow activity on the different hillslopes. The model accurately predicts the behavior of earthflow collection and transport zones observed in the field and estimates long-term average sediment fluxes that are due to earthflows, in agreement with historical rates at our field sites. Finally, our model predicts that steady state hillslope relief in earthflow-prone terrain increases nonlinearly with the tectonic uplift rate, suggesting that the mean hillslope angle may record uplift rate in earthflow-prone landscapes even at high uplift rates, where threshold slope processes normally limit further topographic development.

  15. Comparison between infaunal communities of the deep floor and edge of the Tonga Trench: Possible effects of differences in organic matter supply

    NASA Astrophysics Data System (ADS)

    Leduc, Daniel; Rowden, Ashley A.; Glud, Ronnie N.; Wenzhöfer, Frank; Kitazato, Hiroshi; Clark, Malcolm R.

    2016-10-01

    Hadal trenches are characterised by environmental conditions not found in any other environment, thereby providing new opportunities to understand the processes that shape deep-sea benthic communities. Technological advances have led to an increase in the number of investigations in hadal trenches over the last two decades. However, more quantitative samples including the deepest parts of trenches is needed to better understand trends in benthic diversity, abundance, biomass and community structure in these extreme habitats, and how these may be shaped by environmental and/or evolutionary factors. In this study, we describe and compare the abundance, biomass, vertical distribution in the sediment, diversity, and community structure of nematodes and other infauna in sediments from the Horizon Deep ( 10 800 m) in the Tonga Trench and a site on the edge of the trench ( 6250 m). Mean nematode abundance was six times greater at the Horizon Deep site (387 ind. 10 cm-2) than at the trench edge site (65 ind. 10 cm-2). A similar pattern was observed for biomass (15 vs 2 μgDW 10 cm-2, respectively), which likely resulted from elevated organic matter supply at the Horizon Deep site. There was no significant difference in nematode species richness between the two sites, but diversity measured using rarefaction was significantly greater at the trench edge site than at the Horizon Deep site [ES(20); 13.8 vs 7.8]. Dominance was much more pronounced in the Horizon Deep, which may be due to competitive exclusion by a small number of opportunistic species. Nematode community structure differed significantly both between sites and among sediment depth layers. The presence of subsurface peaks in pigment concentrations, bacteria abundance, and nematode abundance at the Horizon Deep site is consistent with a recent turbidite event, and may also reflect high rates of bioturbation by larger fauna resulting from high food availability. Determining the relative influences of different environmental factors on hadal trench benthic communities will require further investigation based on quantitative samples encompassing the trench axis as well as the oceanic and continental slopes.

  16. Norwegian deep-water coral reefs: cultivation and molecular analysis of planktonic microbial communities.

    PubMed

    Jensen, Sigmund; Lynch, Michael D J; Ray, Jessica L; Neufeld, Josh D; Hovland, Martin

    2015-10-01

    Deep-sea coral reefs do not receive sunlight and depend on plankton. Little is known about the plankton composition at such reefs, even though they constitute habitats for many invertebrates and fish. We investigated plankton communities from three reefs at 260-350 m depth at hydrocarbon fields off the mid-Norwegian coast using a combination of cultivation and small subunit (SSU) rRNA gene and transcript sequencing. Eight months incubations of a reef water sample with minimal medium, supplemented with carbon dioxide and gaseous alkanes at in situ-like conditions, enabled isolation of mostly Alphaproteobacteria (Sulfitobacter, Loktanella), Gammaproteobacteria (Colwellia) and Flavobacteria (Polaribacter). The relative abundance of isolates in the original sample ranged from ∼ 0.01% to 0.80%. Comparisons of bacterial SSU sequences from filtered plankton of reef and non-reef control samples indicated high abundance and metabolic activity of primarily Alphaproteobacteria (SAR11 Ia), Gammaproteobacteria (ARCTIC96BD-19), but also of Deltaproteobacteria (Nitrospina, SAR324). Eukaryote SSU sequences indicated metabolically active microalgae and animals, including codfish, at the reef sites. The plankton community composition varied between reefs and differed between DNA and RNA assessments. Over 5000 operational taxonomic units were detected, some indicators of reef sites (e.g. Flavobacteria, Cercozoa, Demospongiae) and some more active at reef sites (e.g. Gammaproteobacteria, Ciliophora, Copepoda). © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Tinkering Is Serious Play

    ERIC Educational Resources Information Center

    Bevan, Bronwyn; Petrich, Mike; Wilkinson, Karen

    2015-01-01

    Are makerspaces--where children can create gas-powered Roman chariots, singing greeting cards, or playdough circuit boards--just the site for a slightly wacky explosion of inventiveness? Or can these maker activities be channeled to support deep STEM learning? Bronwyn Bevan, director of the Exploratorium Institute for Research and Learning in San…

  18. Artificial Water Reservoir Triggered Earthquakes at Koyna, India: Completion of the 3 km deep Pilot Borehole

    NASA Astrophysics Data System (ADS)

    Gupta, H. K.; Tiwari, V. M.; Satyanarayana, H.; Roy, S.; Arora, K.; Patro, P. K.; Shashidhar, D.; Mallika, K.; Akkiraju, V.; Misra, S.; Goswami, D.; Podugu, N.; Mishra, S.

    2017-12-01

    Koyna, near the west coast of India is the most prominent site of artificial water reservoir triggered seismicity (RTS). Soon after the impoundment of the Koyna Dam in 1962, RTS was observed. It has continued till now. It includes the largest RTS earthquake M 6.3 on December 10, 1967; 22 M≥5.0, and thousands of smaller earthquakes. The entire earthquake activity is limited to an area of about 30 km x 20 km, with most focal depths being within 6 km. There is no other earthquake source within 50 km of the Koyna Dam. An ICDP Workshop held in March 2011 found Koyna to be the most suitable site to investigate reservoir- triggered seismicity (RTS) through deep drilling. Studies carried out in the preparatory phase since 2011 include airborne magnetic and gravity-gradient surveys, MT surveys, drilling of 9 boreholes going to depths of 1500 m and logging, heat flow measurements, seismological investigations including the deployment of six borehole seismometers, and LiDAR. The Second ICDP Workshop held during 16- 18 May 2014, reviewed the progress made and detailed planning of putting the borehole observatory was discussed. The site of a 3 km deep pilot borehole was debated and among the 5 possible location. Based on the seismic activity and logistics the location of the first Pilot Borehole has been finalized and the drilling started on the 21st December 2016. The 3000 m deep borehole was completed on 11th June 2017. The basement was touched at 1247 m depth and there were no sediments below basalt. Several zones with immense fluid losses were encountered. Geophysical Logging has been completed. Cores were recovered from 1269, 1892 and 2091 depths. The cores are 9 m long and with 4 inches diameter. The core recovery is almost 100%. In-situ stress measurements have been conducted at depths of 1600 m onwards.

  19. Multi-Site Diagnostic Classification of Schizophrenia Using Discriminant Deep Learning with Functional Connectivity MRI.

    PubMed

    Zeng, Ling-Li; Wang, Huaning; Hu, Panpan; Yang, Bo; Pu, Weidan; Shen, Hui; Chen, Xingui; Liu, Zhening; Yin, Hong; Tan, Qingrong; Wang, Kai; Hu, Dewen

    2018-04-01

    A lack of a sufficiently large sample at single sites causes poor generalizability in automatic diagnosis classification of heterogeneous psychiatric disorders such as schizophrenia based on brain imaging scans. Advanced deep learning methods may be capable of learning subtle hidden patterns from high dimensional imaging data, overcome potential site-related variation, and achieve reproducible cross-site classification. However, deep learning-based cross-site transfer classification, despite less imaging site-specificity and more generalizability of diagnostic models, has not been investigated in schizophrenia. A large multi-site functional MRI sample (n = 734, including 357 schizophrenic patients from seven imaging resources) was collected, and a deep discriminant autoencoder network, aimed at learning imaging site-shared functional connectivity features, was developed to discriminate schizophrenic individuals from healthy controls. Accuracies of approximately 85·0% and 81·0% were obtained in multi-site pooling classification and leave-site-out transfer classification, respectively. The learned functional connectivity features revealed dysregulation of the cortical-striatal-cerebellar circuit in schizophrenia, and the most discriminating functional connections were primarily located within and across the default, salience, and control networks. The findings imply that dysfunctional integration of the cortical-striatal-cerebellar circuit across the default, salience, and control networks may play an important role in the "disconnectivity" model underlying the pathophysiology of schizophrenia. The proposed discriminant deep learning method may be capable of learning reliable connectome patterns and help in understanding the pathophysiology and achieving accurate prediction of schizophrenia across multiple independent imaging sites. Copyright © 2018 German Center for Neurodegenerative Diseases (DZNE). Published by Elsevier B.V. All rights reserved.

  20. GAS HYDRATES AT TWO SITES OF AN ACTIVE CONTINENTAL MARGIN.

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart on the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m.

  1. Processes for design, construction and utilisation of arrays of light-emitting diodes and light-emitting diode-coupled optical fibres for multi-site brain light delivery

    PubMed Central

    Bernstein, Jacob G.; Allen, Brian D.; Guerra, Alexander A.; Boyden, Edward S.

    2016-01-01

    Optogenetics enables light to be used to control the activity of genetically targeted cells in the living brain. Optical fibers can be used to deliver light to deep targets, and LEDs can be spatially arranged to enable patterned light delivery. In combination, arrays of LED-coupled optical fibers can enable patterned light delivery to deep targets in the brain. Here we describe the process flow for making LED arrays and LED-coupled optical fiber arrays, explaining key optical, electrical, thermal, and mechanical design principles to enable the manufacturing, assembly, and testing of such multi-site targetable optical devices. We also explore accessory strategies such as surgical automation approaches as well as innovations to enable low-noise concurrent electrophysiology. PMID:26798482

  2. Characterization Efforts in a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Sassani, D.; Freeze, G. A.; Hardin, E. L.; Brady, P. V.

    2016-12-01

    The US Department of Energy Office of Nuclear Energy is embarking on a Deep Borehole Field Test to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages, including incremental construction and loading and the enhanced natural barriers provided by deep continental crystalline basement. Site characterization activities will include geomechanical (i.e., hydrofracture stress measurements), geological (i.e., core and mud logging), hydrological (i.e., packer-based pulse and pumping tests), and chemical (i.e., fluids sampled in situ from packer intervals and extracted from cores) tests. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth and interpretation of material and system parameters relevant to numerical site simulation. We explore the effects fluid density and geothermal temperature gradients (i.e., thermohaline convection) have on characterization goals in light of expected downhole conditions, including a disturbed rock zone surrounding the borehole. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Crop response to deep tillage - a meta-analysis

    NASA Astrophysics Data System (ADS)

    Schneider, Florian; Don, Axel; Hennings, Inga; Schmittmann, Oliver; Seidel, Sabine J.

    2017-04-01

    Subsoil, i.e. the soil layer below the topsoil, stores tremendous stocks of nutrients and can keep water even under drought conditions. Deep tillage may be a method to enhance the plant-availability of subsoil resources. However, in field trials, deep tillage effects on crop yields were inconsistent. Therefore, we conducted a meta-analysis of crop yield response to subsoiling, deep ploughing and deep mixing of soil profiles. Our search resulted in 1530 yield comparisons following deep and conventional control tillage on 67 experimental cropping sites. The vast majority of the data derived from temperate latitudes, from trials conducted in the USA (679 observations) and Germany (630 observations). On average, crop yield response to deep tillage was slightly positive (6% increase). However, individual deep tillage effects were highly scattered including about 40% yield depressions after deep tillage. Deep tillage on soils with root restrictive layers increased crop yields about 20%, while soils containing >70% silt increased the risk of yield depressions following deep tillage. Generally, deep tillage effects increased with drought intensity indicating deep tillage as climate adaptation measure at certain sites. Our results suggest that deep tillage can facilitate the plant-availability of subsoil nutrients, which increases crop yields if (i) nutrients in the topsoil are growth limiting, and (ii) deep tillage does not come at the cost of impairing topsoil fertility. On sites with root restrictive soil layers, deep tillage can be an effective measure to mitigate drought stress and improve the resilience of crops. However, deep tillage should only be performed on soils with a stable structure, i.e. <70% silt content. We will discuss the contribution of deep tillage options to enhance the sustainability of agricultural production by facilitating the uptake of nutrients and water from the subsoil.

  4. Status of NEMO

    NASA Astrophysics Data System (ADS)

    Migneco, E.; Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhdaef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Capone, A.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; De Bonis, G.; De Marzo, C.; De Rosa, G.; De Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Galeotti, S.; Gabrielli, A.; Gandolfi, E.; Giacomelli, G.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccione, L.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Mongelli, M.; Morganti, M.; Montaruli, T.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raffaelli, F.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Sapienza, P.; Sedita, M.; Schuller, J.-P.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.

    2006-11-01

    The activities towards the realization of a km3 Cherenkov neutrino detector carried out by the NEMO Collaboration are described. Long-term exploration of a 3500 m deep-sea site close to the Sicilian coast has shown that it is optimal for the installation of the detector. The realization of a Phase-1 project, which is under way, will validate the proposed technologies for the realization of the km3 detector on a Test Site at 2000 m depth. The realization of a new infrastructure on the candidate site (Phase-2 project) will provide the possibility to test detector components at 3500 m depth.

  5. Site Management and Monitoring Plan (SMMP) for the Mouth of Columbia River- Deep and Shallow Water Ocean Dredged Material Disposal Sites, OR/WA

    EPA Pesticide Factsheets

    This SMMP is intended to provide management and monitoring strategies for disposal in the Mouth of Columbia River- Deep and Shallow Ocean Dredged Material Disposal Sites on the border of Oregon and Washington.

  6. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity.

    PubMed

    Freemont, P S; Ollis, D L; Steitz, T A; Joyce, C M

    1986-09-01

    The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.

  7. Integrating Conceptual Knowledge Within and Across Representational Modalities

    PubMed Central

    McNorgan, Chris; Reid, Jackie; McRae, Ken

    2011-01-01

    Research suggests that concepts are distributed across brain regions specialized for processing information from different sensorimotor modalities. Multimodal semantic models fall into one of two broad classes differentiated by the assumed hierarchy of convergence zones over which information is integrated. In shallow models, communication within- and between-modality is accomplished using either direct connectivity, or a central semantic hub. In deep models, modalities are connected via cascading integration sites with successively wider receptive fields. Four experiments provide the first direct behavioral tests of these models using speeded tasks involving feature inference and concept activation. Shallow models predict no within-modal versus cross-modal difference in either task, whereas deep models predict a within-modal advantage for feature inference, but a cross-modal advantage for concept activation. Experiments 1 and 2 used relatedness judgments to tap participants’ knowledge of relations for within- and cross-modal feature pairs. Experiments 3 and 4 used a dual feature verification task. The pattern of decision latencies across Experiments 1 to 4 is consistent with a deep integration hierarchy. PMID:21093853

  8. Effects of Mg2+ on recovery of NMDA receptors from inhibition by memantine and ketamine reveal properties of a second site.

    PubMed

    Glasgow, Nathan G; Wilcox, Madeleine R; Johnson, Jon W

    2018-05-12

    Memantine and ketamine are NMDA receptor (NMDAR) open channel blockers that are thought to act via similar mechanisms at NMDARs, but exhibit divergent clinical effects. Both drugs act by entering open NMDARs and binding at a site deep within the ion channel (the deep site) at which the endogenous NMDAR channel blocker Mg 2+ also binds. Under physiological conditions, Mg 2+ increases the IC 50 s of memantine and ketamine through competition for binding at the deep site. Memantine also can inhibit NMDARs after associating with a second site accessible in the absence of agonist, a process termed second site inhibition (SSI) that is not observed with ketamine. Here we investigated the effects of 1 mM Mg 2+ on recovery from inhibition by memantine and ketamine, and on memantine SSI, of the four main diheteromeric NMDAR subtypes. We found that: recovery from memantine inhibition depended strongly on the concentration of memantine used to inhibit the NMDAR response; Mg 2+ accelerated recovery from memantine and ketamine inhibition through distinct mechanisms and in an NMDAR subtype-dependent manner; and Mg 2+ occupation of the deep site disrupted memantine SSI in a subtype-dependent manner. Our results support the hypothesis that memantine associates with, but does not inhibit at the second site. After associating with the second site, memantine can either slowly dissociate directly to the extracellular solution, or transit to the deep site, resulting in typical channel block. Memantine's relatively slow dissociation from the second site underlies the dependence of NMDAR recovery from inhibition on both memantine concentration and on Mg 2+ . Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A Strategy for Maintenance of the Long-Term Performance Assessment of Immobilized Low-Activity Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Joseph V.; Freedman, Vicky L.

    2016-09-28

    Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminantsmore » of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).« less

  10. 75 FR 76077 - Pipeline Safety: Information Collection Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    .... ADDRESSES: Comments may be submitted in the following ways: E-Gov Web Site: http://www.regulations.gov....regulations.gov , including any personal information provided. You should know that anyone is able to search... meters) deep as measured from mean low water that are at risk of being an exposed underwater pipeline or...

  11. CASE STUDY: IN-SITU SOLIDIFICATION/STABILIZATION OF HAZARDOUS ACID WASTE OIL SLUDGE AND LESSONS LEARNED

    EPA Science Inventory

    The South 8th Street site contained a 2.5 acre oily sludge pit with very low pH waste produced by oil recycling activities. This sludge was treated using in-situ solidification/stabilization technology applied by deep soil mixing augers. The problems encountered, solutions develo...

  12. Carbon and Neodymium Isotopic Fingerprints of Atlantic Deep Ocean Circulation During the Warm Pliocene

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Scher, H.; Robinson, M. M.; Dowsett, H. J.; Bell, D. B.

    2012-12-01

    Earth's future climate may resemble the mid-Piacenzian Age of the Pliocene, a time when global temperatures were sustained within the range predicted for the coming century. Surface and deep water temperature reconstructions and coupled ocean-atmosphere general circulation model simulations by the USGS PRISM (Pliocene Research Interpretation and Synoptic Mapping) Group identify a dramatic North Atlantic warm surface temperature anomaly in the mid-Piacenzian (3.264 - 3.025 Ma), accompanied by increased evaporation. The anomaly is detected in deep waters at 46°S, suggesting enhanced meridional overturning circulation and more southerly penetration of North Atlantic Deep Water (NADW) during the PRISM interval. However deep water temperature proxies are not diagnostic of water mass and some coupled model simulations predict transient decreases in NADW production in the 21st century, presenting a contrasting picture of future climate. We present a new multi-proxy investigation of Atlantic deep ocean circulation during the warm mid-Piacenzian, using δ13C of benthic foraminifera as a proxy for water mass age and the neodymium isotopic composition of fossil fish teeth (ɛNd) as a proxy for water mass source and mixing. This reconstruction utilizes both new and previously published data from DSDP and ODP cores along equatorial (Ceara Rise), southern mid-latitude (Walvis Ridge), and south Atlantic (Meteor Rise/Agulhas Ridge) depth transects. Additional end-member sites in the regions of modern north Atlantic and Southern Ocean deep water formation provide a Pliocene baseline for comparison. δ13C throughout the Atlantic basin is remarkably homogenous during the PRISM interval. δ13C values of Cibicidoides spp. and C. wuellerstorfi largely range between 0‰ and 1‰ at North Atlantic, shallow equatorial, southern mid-latitude, and south Atlantic sites with water depths from 2000-4700 m; both depth and latitudinal gradients are generally small (~0.3‰). However, equatorial Ceara Rise sites below 3500 m diverge, with δ13C values as low as -1.2‰ at ~3.15 Ma. The uniquely negative δ13C values at deep Ceara rise sites suggest that, during PRISM warmth, the oldest Atlantic deep waters may have resided along the modern deep western boundary current, while younger deep water masses were concentrated to the south and east. In the modern Atlantic, the ɛNd value of southern-sourced waters is more radiogenic than that of northern-sourced waters, providing a complimentary means to characterize Pliocene water mass geometry. ɛNd values from shallow (2500 m) and deep (4700 m) Walvis Ridge sites average -10 and -11 respectively; the shallow site is somewhat more radiogenic than published coretop ɛNd (-12), suggesting enhanced Pliocene influence of southern-sourced water masses. Ongoing analytical efforts will fingerprint Piacenzian ɛNd from north and south deep water source regions and will target additional depth transect ɛNd, allowing us to investigate the possibility that "older" carbon isotopic signatures at western equatorial sites reflect entrainment of proto-NADW while "younger" signatures at southern and eastern sites reflect the influence of southern-sourced deep water.

  13. Etiological periodontal treatment with and without low-level laser therapy on IL-1β level in gingival crevicular fluid: an in vivo multicentric pilot study.

    PubMed

    Mastrangelo, F; Dedola, A; Cattoni, F; Ferrini, F; Bova, F; Tatullo, M; Gherlone, E; Lo Muzio, L

    2018-01-01

    Cytokine proteins may have important roles during different human physiological and pathological processes. In the oral cavity, the bone loss and periodontal tissue pathology was related to inflammatory process activation. The aim of the present study was to assess the effects of etiological periodontal therapy with and without the use of Low Level Laser Therapy (LLLT) on clinical periodontal parameters and interleukin (IL)-1β level in gingival crevicular fluid (GCF) from chronic periodontitis (CP) patients. Thirty non-smoker CP patients were selected from the Foggia University Dental Clinic and other 2 private dental clinics. All patients were divided into two homogeneous randomized groups: 15 patients were treated with only scaling and root planing (group 1) and 15 patients with scaling and root planing etiological treatment and LLLT (group 2). In all sites, at baseline before treatment, the periodontal pocket depth (PPD) and bleeding on probing (BOP) were measured. In the PPD sites, the GCF samples were collected from 30 deep (≥5 mm) and shallow (≤3 mm) sites and IL-1β were evaluated at baseline, after 10 days and 1 month. In all the samples at baseline, the IL-1β concentration in GCF and BOP rate were significantly higher at deep PPD sites than at the shallow ones. After 10 days in all samples no PPD improvement was observed in the BOP rate but the IL-1 β level was statistically significantly improved (p<0.005) in group 2 compared to group 1. At 10 days and 1 month, in all deep PPD sites, PPD and BOP improvements were observed. At same time, IL-1β levels were lower and statistically significantly (p<0.005) improved in group 2 compared to group 1. The results confirmed that the periodontal etiology treatment of deep PPD sites with or with-out associated LLLT promotes periodontal health. Etiological treatment associated with LLLT, improves BOP and inflammation in periodontal disease. Moreover, the IL-1β concentration changes in GCF suggest these cytokines as a predictable marker of gingival inflammation in chronic periodontitis patients.

  14. Activation of a cryptic splice site in the mitochondrial elongation factor GFM1 causes combined OXPHOS deficiency☆

    PubMed Central

    Simon, Mariella T.; Ng, Bobby G.; Friederich, Marisa W.; Wang, Raymond Y.; Boyer, Monica; Kircher, Martin; Collard, Renata; Buckingham, Kati J.; Chang, Richard; Shendure, Jay; Nickerson, Deborah A.; Bamshad, Michael J.; Van Hove, Johan L.K.; Freeze, Hudson H.; Abdenur, Jose E.

    2017-01-01

    We report the clinical, biochemical, and molecular findings in two brothers with encephalopathy and multi-systemic disease. Abnormal transferrin glycoforms were suggestive of a type I congenital disorder of glycosylation (CDG). While exome sequencing was negative for CDG related candidate genes, the testing revealed compound heterozygous mutations in the mitochondrial elongation factor G gene (GFM1). One of the mutations had been reported previously while the second, novel variant was found deep in intron 6, activating a cryptic splice site. Functional studies demonstrated decreased GFM1 protein levels, suggested disrupted assembly of mitochondrial complexes III and V and decreased activities of mitochondrial complexes I and IV, all indicating combined OXPHOS deficiency. PMID:28216230

  15. The structure of amylosucrase from Deinococcus radiodurans has an unusual open active-site topology.

    PubMed

    Skov, Lars K; Pizzut-Serin, Sandra; Remaud-Simeon, Magali; Ernst, Heidi A; Gajhede, Michael; Mirza, Osman

    2013-09-01

    Amylosucrases (ASes) catalyze the formation of an α-1,4-glucosidic linkage by transferring a glucosyl unit from sucrose onto an acceptor α-1,4-glucan. To date, several ligand-bound crystal structures of wild-type and mutant ASes from Neisseria polysaccharea and Deinococcus geothermalis have been solved. These structures all display a very similar overall conformation with a deep pocket leading to the site for transglucosylation, subsite -1. This has led to speculation on how sucrose enters the active site during glucan elongation. In contrast to previous studies, the AS structure from D. radiodurans presented here has a completely empty -1 subsite. This structure is strikingly different from other AS structures, as an active-site-lining loop comprising residues Leu214-Asn225 is found in a previously unobserved conformation. In addition, a large loop harbouring the conserved active-site residues Asp133 and Tyr136 is disordered. The result of the changed loop conformations is that the active-site topology is radically changed, leaving subsite -1 exposed and partially dismantled. This structure provides novel insights into the dynamics of ASes and comprises the first structural support for an elongation mechanism that involves considerable conformational changes to modulate accessibility to the sucrose-binding site and thereby allows successive cycles of glucosyl-moiety transfer to a growing glucan chain.

  16. Field Test to Evaluate Deep Borehole Disposal.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest; Brady, Patrick Vane.; Clark, Andrew Jordan

    The U.S. Department of Energy (DOE) has embarked on the Deep Borehole Field Test (DBFT), which will investigate whether conditions suitable for disposal of radioactive waste can be found at a depth of up to 5 km in the earth’s crust. As planned, the DBFT will demonstrate drilling and construction of two boreholes, one for initial scientific characterization, and the other at a larger diameter such as could be appropriate for waste disposal (the DBFT will not involve radioactive waste). A wide range of geoscience activities is planned for the Characterization Borehole, and an engineering demonstration of test package emplacementmore » and retrieval is planned for the larger Field Test Borehole. Characterization activities will focus on measurements and samples that are important for evaluating the long-term isolation capability of the Deep Borehole Disposal (DBD) concept. Engineering demonstration activities will focus on providing data to evaluate the concept’s operational safety and practicality. Procurement of a scientifically acceptable DBFT site and a site management contractor is now underway. The concept of deep borehole disposal (DBD) for radioactive wastes is not new. It was considered by the National Academy of Science (NAS 1957) for liquid waste, studied in the 1980’s in the U.S. (Woodward–Clyde 1983), and has been evaluated by European waste disposal R&D programs in the past few decades (for example, Grundfelt and Crawford 2014; Grundfelt 2010). Deep injection of wastewater including hazardous wastes is ongoing in the U.S. and regulated by the Environmental Protection Agency (EPA 2001). The DBFT is being conducted with a view to use the DBD concept for future disposal of smaller-quantity, DOE-managed wastes from nuclear weapons production (i.e., Cs/Sr capsules and granular solid wastes). However, the concept may also have broader applicability for nations that have a need to dispose of limited amounts of spent fuel from nuclear power reactors. For such nations the cost for disposing of volumetrically limited waste streams could be lower than mined geologic repositories.« less

  17. Climate effect on soil enzyme activities and dissolved organic carbon in mountain calcareous soils: a soil-transplant experiment

    NASA Astrophysics Data System (ADS)

    Puissant, Jérémy; Cécillon, Lauric; Mills, Robert T. E.; Gavazov, Konstantin; Robroek, Bjorn J. M.; Spiegelberger, Thomas; Buttler, Alexandre; Brun, Jean-Jacques

    2013-04-01

    Mountain soils store huge amounts of carbon as soil organic matter (SOM) which may be highly vulnerable to the strong climate changes that mountain areas currently experience worldwide. Climate modifications are expected to impact microbial activity which could change the rate of SOM decomposition/accumulation, thereby questioning the net C source/sink character of mountain soils. To simulate future climate change expected in the 21st century in the calcareous pre-Alps, 15 blocks (30 cm deep) of undisturbed soil were taken from a mountain pasture located at 1400 m a.s.l. (Marchairuz, Jura, Switzerland) and transplanted into lysimeters at the same site (control) and at two other sites located at 1000 m a.s.l. and 600 m a.s.l. (5 replicates per site). This transplantation experiment which started in 2009 simulates a climate warming with a temperature increase of 4° C and a decreased humidity of 40 % at the lowest site. In this study, we used soil extracellular enzyme activities (EEA) as functional indicators of SOM decomposition to evaluate the effect of climate change on microbial activity and SOM dynamics along the seasons. Dissolved organic carbon (DOC) was also measured to quantify the assimilable carbon for microorganism. In autumn 2012, a first sampling step out of four (winter, spring and summer 2013) has been realized. We extracted 15 cm deep soil cores from each transplant (x15) and measured (i) DOC and (ii) the activities of nine different enzymes. Enzymes were chosen to represent the degradation of the most common classes of biogeochemical compounds in SOM. β-glucosidase, β-D-cellubiosidase, β-Xylosidase, N-acetyl-β-glucosaminidase, leucine aminopeptidase, lipase, phenoloxidase respectively represented the degradation of sugar, cellulose, hemicellulose, chitin, protein, lipid and lignin. Moreover, the fluorescein diacetate (FDA) hydrolysis was used to provide an estimate of global microbial activity and phosphatase was used to estimate phosphorus mineralization. The autumn results showed no differences for global microbial activity along the climate gradient (0.37 nKatal g-1 dry soil), no differences and a very low activity for leucine aminopeptidase and β-glucosidase and β-Xylosidase (about 0.09 nKatal g-1 dry soil) and no differences for cellulose, chitin and phosphorus mineralization. Conversely, we measured a greater activity at the highest elevation site for lipase and phenoloxydase (ANOVA test, p

  18. Integrated Metagenomic and Metatranscriptomic Analyses of Microbial Communities in the Meso- and Bathypelagic Realm of North Pacific Ocean

    PubMed Central

    Wu, Jieying; Gao, Weimin; Johnson, Roger H.; Zhang, Weiwen; Meldrum, Deirdre R.

    2013-01-01

    Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean. DNA/RNA amplifications and simultaneous metagenomic and metatranscriptomic analyses were employed to discover information concerning deep-sea microbial communities from four different deep-sea sites ranging from the mesopelagic to pelagic ocean. Within the prokaryotic community, bacteria is absolutely dominant (~90%) over archaea in both metagenomic and metatranscriptomic data pools. The emergence of archaeal phyla Crenarchaeota, Euryarchaeota, Thaumarchaeota, bacterial phyla Actinobacteria, Firmicutes, sub-phyla Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria, and the decrease of bacterial phyla Bacteroidetes and Alphaproteobacteria are the main composition changes of prokaryotic communities in the deep-sea water, when compared with the reference Global Ocean Sampling Expedition (GOS) surface water. Photosynthetic Cyanobacteria exist in all four metagenomic libraries and two metatranscriptomic libraries. In Eukaryota community, decreased abundance of fungi and algae in deep sea was observed. RNA/DNA ratio was employed as an index to show metabolic activity strength of microbes in deep sea. Functional analysis indicated that deep-sea microbes are leading a defensive lifestyle. PMID:24152557

  19. Seasonal and inter-annual variations of dissolved oxygen in the northwestern Mediterranean Sea (DYFAMED site)

    NASA Astrophysics Data System (ADS)

    Coppola, Laurent; Legendre, Louis; Lefevre, Dominique; Prieur, Louis; Taillandier, Vincent; Diamond Riquier, Emilie

    2018-03-01

    Dissolved oxygen (O2) is a relevant tracer to interpret variations of both water mass properties in the open ocean and biological production in the surface layer of both coastal and open waters. Deep-water formation is very active in the northwestern Mediterranean Sea, where it influences intermediate and deep waters properties, nutrients replenishment and biological production. This study analyses, for the first time, the 20-year time series of monthly O2 concentrations at the DYFAMED long-term sampling site in the Ligurian Sea. Until the winters of 2005 and 2006, a thick and strong oxygen minimum layer was present between 200 and 1300 m because dense water formation was then local, episodic and of low intensity. In 2005-2006, intense and rapid deep convection injected 24 mol O2 m-2 between 350 and 2000 m from December 2005 to March 2006. Since this event, the deep layer has been mostly ventilated during winter time by newly formed deep water spreading from the Gulf of Lion 250 km to the west and by some local deep mixing in early 2010, 2012 and 2013. In the context of climate change, it is predicted that the intensity of deep convection will become weaker in the Mediterranean, which could potentially lead to hypoxia in intermediate and deep layers with substantial impact on marine ecosystems. With the exception of winters 2005 and 2006, the O2 changes in surface waters followed a seasonal trend that reflected the balance between air-sea O2 exchanges, changes in the depth of the mixed layer and phytoplankton net photosynthesis. We used the 20-year O2 time series to estimate monthly and annual net community production. The latter was 7.1 mol C m-2 yr-1, consistent with C-14 primary production determinations and sediment-trap carbon export fluxes at DYFAMED.

  20. Site Selection and Deployment Scenarios for Servicing of Deep-Space Observatories

    NASA Technical Reports Server (NTRS)

    Willenberg, Harvey J.; Fruhwirth, Michael A.; Potter, Seth D.; Leete, Stephen J.; Moe, Rud V.

    2001-01-01

    The deep-space environment and relative transportation accessibility of the Weak Stability Boundary (WSB) region connecting the Earth-Moon and Sun-Earth libration points makes the Sun-Earth L2 an attractive operating location for future observatories. A summary is presented of key characteristics of future observatories designed to operate in this region. The ability to service observatories that operate within the region around the Lagrange points may greatly enhance their reliability, lifetime, and scientific return. The range of servicing missions might begin with initial deployment, assembly, test, and checkout. Post-assembly servicing missions might also include maintenance and repair, critical fluids resupply, and instrument upgrades. We define the range of servicing missions that can be performed with extravehicular activity, with teleoperated robots, and with autonomous robots. We then describe deployment scenarios that affect payload design. A trade study is summarized of the benefits and risks of alternative servicing sites, including at the International Space Station, at other low-Earth-orbit locations, at the Earth-Moon L1 location, and on-site at the Sun-Earth L2 location. Required technology trades and development issues for observatory servicing at each site, and with each level of autonomy, are summarized.

  1. The dynamics of genome replication using deep sequencing

    PubMed Central

    Müller, Carolin A.; Hawkins, Michelle; Retkute, Renata; Malla, Sunir; Wilson, Ray; Blythe, Martin J.; Nakato, Ryuichiro; Komata, Makiko; Shirahige, Katsuhiko; de Moura, Alessandro P.S.; Nieduszynski, Conrad A.

    2014-01-01

    Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology. PMID:24089142

  2. Tracing long-term vadose zone processes at the Nevada Test Site, USA

    PubMed Central

    Hunt, James R.; Tompson, Andrew F. B.

    2010-01-01

    The nuclear weapons testing programme of the USA has released radionuclides to the subsurface at the Nevada Test Site. One of these tests has been used to study the hydrological transport of radionuclides for over 25 years in groundwater and the deep unsaturated zone. Ten years after the weapon’s test, a 16 year groundwater pumping experiment was initiated to study the mobility of radionuclides from that test in an alluvial aquifer. The continuously pumped groundwater was released into an unlined ditch where some of the water infiltrated into the 200 m deep vadose zone. The pumped groundwater had well-characterized tritium activities that were utilized to trace water migration in the shallow and deep vadose zones. Within the near-surface vadose zone, tritium levels in the soil water are modelled by a simple one-dimensional, analytical wetting front model. In the case of the near-surface soils at the Cambric Ditch experimental site, water flow and salt accumulation appear to be dominated by rooted vegetation, a mechanism not included within the wetting front model. Simulation results from a two-dimensional vadose groundwater flow model illustrate the dominance of vertical flow in the vadose zone and the recharge of the aquifer with the pumped groundwater. The long-time series of hydrological data provides opportunities to understand contaminant transport processes better in the vadose zone with an appropriate level of modelling. PMID:21785525

  3. ESONET LIDO Demonstration Mission: the East Sicily node

    NASA Astrophysics Data System (ADS)

    Riccobene, Giorgio; Favali, Paolo; Andrè, Michel; Chierici, Francesco; Pavan, Gianni; Esonet Lido Demonstration Mission Team

    2010-05-01

    Off East Sicily (at 2100 m depth, 25 km off the harbour of Catania) a prototype of a cabled deep-sea observatory (NEMO-SN1) was set up and has been operational in real-time since 2005 (the cabled deep-sea multi-parameter station SN1, equipped with geophysical and environmental sensors and the cabled NEMO-OνDE, equipped with 4 broadband hydrophones). The Western Ionian Sea is one of the node sites for the upcoming European permanent underwater network (EMSO). Within the activities of the EC project ESONET-NoE some demonstration missions have been funded. The LIDO-DM (Listening to the Deep Ocean-Demonstration Mission) is one of these and is related to two sites, East Sicily and Iberian Margin (Gulf of Cadiz), the main aims being geo-hazards monitoring and warning (seismic, tsunami, and volcanic) and bio-acoustics. The LIDO-DM East Sicily installation represents a further major step within ESONET-NoE, resulting in a fully integrated system for multidisciplinary deep-sea science, capable to transmit and distribute data in real time to the scientific community and to the general public. LIDO-DM East Sicily hosts a large number of sensors aimed at monitoring and studying oceanographic and environmental parameters (by means of CTD, ADCP, 3-C single point current meter, turbidity meter), geophysical phenomena (low frequency hydrophones, accelerometer, gravity meter, vector and scalar magnetometers, seismometer, absolute and differential pressure gauges), ocean noise monitoring and identification and tracking of biological acoustic sources in deep sea. The latter will be performed using two tetrahedral arrays of 4 hydrophones, located at a relative distance of about 5 km, and at about 25 km from the shore. The whole system will be connected and powered from shore, by means of the electro-optical cable net installed at the East Sicily Site Infrastructure, and synchronised with GPS. Sensors data sampling is performed underwater and transmitted via optical fibre link, with optimal S/N ratio for all signals. This will also permit real-time data acquisition, analysis and distribution on-shore. Innovative electronics for the off-shore data acquisition and transmission systems has been designed, built and tested. A dedicated computing and networking infrastructure for data acquisition, storage and distribution through the internet has been also created. The deployment and connection of the deep sea structures will be performed using the dedicated ROV and Deep Sea Shuttle handling facilities (PEGASO, owned by INGV and INFN). LIDO-DM constitutes the enhancement of the Western Ionian site in view of the EMSO Research Infrastructure.

  4. DeepSig: deep learning improves signal peptide detection in proteins.

    PubMed

    Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Casadio, Rita

    2018-05-15

    The identification of signal peptides in protein sequences is an important step toward protein localization and function characterization. Here, we present DeepSig, an improved approach for signal peptide detection and cleavage-site prediction based on deep learning methods. Comparative benchmarks performed on an updated independent dataset of proteins show that DeepSig is the current best performing method, scoring better than other available state-of-the-art approaches on both signal peptide detection and precise cleavage-site identification. DeepSig is available as both standalone program and web server at https://deepsig.biocomp.unibo.it. All datasets used in this study can be obtained from the same website. pierluigi.martelli@unibo.it. Supplementary data are available at Bioinformatics online.

  5. Fate and groundwater impacts of produced water releases at OSPER "B" site, Osage County, Oklahoma

    USGS Publications Warehouse

    Kharaka, Y.K.; Kakouros, E.; Thordsen, J.J.; Ambats, G.; Abbott, M.M.

    2007-01-01

    For the last 5 a, the authors have been investigating the transport, fate, natural attenuation and ecosystem impacts of inorganic and organic compounds in releases of produced water and associated hydrocarbons at the Osage-Skiatook Petroleum Environmental Research (OSPER) "A" and "B" sites, located in NE Oklahoma. Approximately 1.0 ha of land at OSPER "B", located within the active Branstetter lease, is visibly affected by salt scarring, tree kills, soil salinization, and brine and petroleum contamination. Site "B" includes an active production tank battery and adjacent large brine pit, two injection well sites, one with an adjacent small pit, and an abandoned brine pit and tank battery site. Oil production in this lease started in 1938, and currently there are 10 wells that produce 0.2-0.5 m3/d (1-3 bbl/d) oil, and 8-16 m3/d (50-100 bbl/d) brine. Geochemical data from nearby oil wells show that the produced water source is a Na-Ca-Cl brine (???150,000 mg/L TDS), with high Mg, but low SO4 and dissolved organic concentrations. Groundwater impacts are being investigated by detailed chemical analyses of water from repeated sampling of 41 boreholes, 1-71 m deep. The most important results at OSPER "B" are: (1) significant amounts of produced water from the two active brine pits percolate into the surficial rocks and flow towards the adjacent Skiatook reservoir, but only minor amounts of liquid petroleum leave the brine pits; (2) produced-water brine and minor dissolved organics have penetrated the thick (3-7 m) shale and siltstone units resulting in the formation of three interconnected plumes of high-salinity water (5000-30,000 mg/L TDS) that extend towards the Skiatook reservoir from the two active and one abandoned brine pits; and (3) groundwater from the deep section of only one well, BR-01 located 330 m upslope and west of the site, appear not to be impacted by petroleum operations. ?? 2007.

  6. Using an autonomous passive acoustic observational system to monitor the environmental impact of the Gulf of Mexico oil spill on deep-diving marine mammals

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, N.; Ackleh, A.; Ma, B.; Tiemann, C.; Ioup, J. W.; Ioup, G. E.

    2012-12-01

    The Littoral Acoustic Demonstration Center (LADC) is a consortium of scientists from four universities and the U.S. Navy, which performs acoustic measurements and analysis in littoral waters. For the present work, six passive autonomous broadband acoustic sensors were deployed by LADC in the vicinity of the Deep Water Horizon oil spill site in the Northern Gulf of Mexico in fall 2010. The objective of the project is to assess long-term impact of the spill on the deep-diving residential population of marine mammals, particularly, sperm and beaked whales. Collected data were processed to detect, extract, and count acoustic signals produced by different types of marine mammals. As a next step, a statistical model which uses acoustic inputs was developed to estimate residential populations of different types of marine mammals at different distances from the spill site. The estimates were compared to population estimates from years prior to the spill, using pre-spill collected data in the area by LADC from 2001, 2002, and 2007. The results indicate different responses from sperm and beaked whales in the first months following the spill. A recently published article by our research group (Ackleh et al., J. Acoust. Soc. Am. 131, 2306-2314) provides a comparison of 2007 and 2010 estimates showing a decrease in acoustic activity and abundance of sperm whales at the 9-mile distant site, whereas acoustic activity and abundance at the 25-mile distant site has clearly increased. This may indicate that some sperm whales have relocated farther away from the spill subject to food source availability. The beaked whale population appears to return to 2007 numbers after the spill even at the closest 9-mile distant site. Several acoustically observed changes in the animals' habitat associated with the spill, such as anthropogenic noise level, prey presence, etc., can be connected with the observed population trends. Preliminary results for interpreting observed population trends will be also discussed. Follow-up experiments will be critical for understanding the long-term impact on different species. [Research supported by ONR, SPAWAR, NSF, and Greenpeace.

  7. Mechanisms and targets of deep brain stimulation in movement disorders.

    PubMed

    Johnson, Matthew D; Miocinovic, Svjetlana; McIntyre, Cameron C; Vitek, Jerrold L

    2008-04-01

    Chronic electrical stimulation of the brain, known as deep brain stimulation (DBS), has become a preferred surgical treatment for medication-refractory movement disorders. Despite its remarkable clinical success, the therapeutic mechanisms of DBS are still not completely understood, limiting opportunities to improve treatment efficacy and simplify selection of stimulation parameters. This review addresses three questions essential to understanding the mechanisms of DBS. 1) How does DBS affect neuronal tissue in the vicinity of the active electrode or electrodes? 2) How do these changes translate into therapeutic benefit on motor symptoms? 3) How do these effects depend on the particular site of stimulation? Early hypotheses proposed that stimulation inhibited neuronal activity at the site of stimulation, mimicking the outcome of ablative surgeries. Recent studies have challenged that view, suggesting that although somatic activity near the DBS electrode may exhibit substantial inhibition or complex modulation patterns, the output from the stimulated nucleus follows the DBS pulse train by direct axonal excitation. The intrinsic activity is thus replaced by high-frequency activity that is time-locked to the stimulus and more regular in pattern. These changes in firing pattern are thought to prevent transmission of pathologic bursting and oscillatory activity, resulting in the reduction of disease symptoms through compensatory processing of sensorimotor information. Although promising, this theory does not entirely explain why DBS improves motor symptoms at different latencies. Understanding these processes on a physiological level will be critically important if we are to reach the full potential of this powerful tool.

  8. Energetic Constraints of Subseafloor Life

    NASA Astrophysics Data System (ADS)

    D'Hondt, S.; Spivack, A. J.; Wang, G.

    2014-12-01

    Mean per-cell rates of catabolic activity, energy flux, and biomass turnover are orders of magnitude slower in subseafloor sediment than in the surface world. Despite extreme scarcity of electron donors, competing metabolic pathways co-occur for hundreds of meters deep in subseafloor sediment deposited over millions of years. Our study of an example site (ODP Site 1226) indicates that the energy yields of these competing reactions are pinned to a thermodynamic minimum (Wang et al., 2010). The simplest explanation of this long-term co-existence is thermodynamic cooperation, where microorganisms utilize different but co-existing pathways that remove each other's reaction products. Our Site 1226 results indicate that the energy flux to subseafloor sedimentary microbes is extremely low. Comparison to biomass turnover rates at other sites suggests that most of this flux may be used for building biomolecules from existing components (e.g., amino acids in the surrounding sediment), rather than for de novo biosynthesis from inorganic chemicals. Given these discoveries, ocean drilling provides a tremendous opportunity to address several mysteries of microbial survival and natural selection under extreme energy limitation. Some of these mysteries are centered on microbial communities. To what extent do counted cells in subseafloor sediment constitute a deep microbial necrosphere? How do different kinds of microbes interact to sustain their mean activity at low average rates for millions of years? Other mysteries relate to individual cells. How slowly can a cell metabolize? How long can a cell survive at such low rates of activity? What properties allow microbes to be sustained by low fluxes of energy? In what ways do subseafloor organisms balance the benefit(s) of maximizing energy recovery with the need to minimize biochemical cost(s) of energy recovery? References Wang, G., et al., 2010. Geochimica et Cosmochimica Acta 74, 3938-3947.

  9. Distributions of microbial activities in deep subseafloor sediments

    NASA Technical Reports Server (NTRS)

    D'Hondt, Steven; Jorgensen, Bo Barker; Miller, D. Jay; Batzke, Anja; Blake, Ruth; Cragg, Barry A.; Cypionka, Heribert; Dickens, Gerald R.; Ferdelman, Timothy; Hinrichs, Kai-Uwe; hide

    2004-01-01

    Diverse microbial communities and numerous energy-yielding activities occur in deeply buried sediments of the eastern Pacific Ocean. Distributions of metabolic activities often deviate from the standard model. Rates of activities, cell concentrations, and populations of cultured bacteria vary consistently from one subseafloor environment to another. Net rates of major activities principally rely on electron acceptors and electron donors from the photosynthetic surface world. At open-ocean sites, nitrate and oxygen are supplied to the deepest sedimentary communities through the underlying basaltic aquifer. In turn, these sedimentary communities may supply dissolved electron donors and nutrients to the underlying crustal biosphere.

  10. Tephrostratigraphy the DEEP site record, Lake Ohrid

    NASA Astrophysics Data System (ADS)

    Leicher, N.; Zanchetta, G.; Sulpizio, R.; Giaccio, B.; Wagner, B.; Francke, A.

    2016-12-01

    In the central Mediterranean region, tephrostratigraphy has been proofed to be a suitable and powerful tool for dating and correlating marine and terrestrial records. However, for the period older 200 ka, tephrostratigraphy is incomplete and restricted to some Italian continental basins (e.g. Sulmona, Acerno, Mercure), and continuous records downwind of the Italian volcanoes are rare. Lake Ohrid (Macedonia/Albania) in the eastern Mediterranean region fits this requisite and is assumed to be the oldest continuously existing lake of Europe. A continous record (DEEP) was recovered within the scope of the ICDP deep-drilling campaign SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid). In the uppermost 450 meters of the record, covering more than 1.2 Myrs of Italian volcanism, 54 tephra layers were identified during core-opening and description. A first tephrostratigraphic record was established for the uppermost 248 m ( 637 ka). Major element analyses (EDS/WDS) were carried out on juvenile glass fragments and 15 out of 35 tephra layers have been identified and correlated with known and dated eruptions of Italian volcanoes. Existing 40Ar/39Ar ages were re-calculated by using the same flux standard and used as first order tie points to develop a robust chronology for the DEEP site succession. Between 248 and 450 m of the DEEP site record, another 19 tephra horizons were identified and are subject of ongoing work. These deposits, once correlated with known and dated tephra, will hopefully enable dating this part of the succession, likely supported by major paleomagnetic events, such as the Brunhes-Matuyama boundary, or the Cobb-Mountain or the Jaramillo excursions. This makes the Lake Ohrid record a unique continuous, distal record of Italian volcanic activity, which is candidate to become the template for the central Mediterranean tephrostratigraphy, especially for the hitherto poorly known and explored lower Middle Pleistocene period.

  11. Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation.

    PubMed

    Grill, Warren M; Cantrell, Meredith B; Robertson, Matthew S

    2008-02-01

    Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents-sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as "re-orthodromically" into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.

  12. Environmental projects. Volume 16: Waste minimization assessment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the MoJave Desert, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network (DSN), the world's largest and most sensitive scientific telecommunications and radio navigation network. The Goldstone Complex is operated for NASA by the Jet Propulsion Laboratory. At present, activities at the GDSCC support the operation of nine parabolic dish antennas situated at five separate locations known as 'sites.' Each of the five sites at the GDSCC has one or more antennas, called 'Deep Space Stations' (DSS's). In the course of operation of these DSS's, various hazardous and non-hazardous wastes are generated. In 1992, JPL retained Kleinfelder, Inc., San Diego, California, to quantify the various streams of hazardous and non-hazardous wastes generated at the GDSCC. In June 1992, Kleinfelder, Inc., submitted a report to JPL entitled 'Waste Minimization Assessment.' This present volume is a JPL-expanded version of the Kleinfelder, Inc. report. The 'Waste Minimization Assessment' report did not find any deficiencies in the various waste-management programs now practiced at the GDSCC, and it found that these programs are being carried out in accordance with environmental rules and regulations.

  13. JAMSTEC E-library of Deep-sea Images (J-EDI) Realizes a Virtual Journey to the Earth's Unexplored Deep Ocean

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Azuma, S.; Matsuda, S.; Nagayama, A.; Ogido, M.; Saito, H.; Hanafusa, Y.

    2016-12-01

    The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives a large amount of deep-sea research videos and photos obtained by JAMSTEC's research submersibles and vehicles with cameras. The web site "JAMSTEC E-library of Deep-sea Images : J-EDI" (http://www.godac.jamstec.go.jp/jedi/e/) has made videos and photos available to the public via the Internet since 2011. Users can search for target videos and photos by keywords, easy-to-understand icons, and dive information at J-EDI because operating staffs classify videos and photos as to contents, e.g. living organism and geological environment, and add comments to them.Dive survey data including videos and photos are not only valiant academically but also helpful for education and outreach activities. With the aim of the improvement of visibility for broader communities, we added new functions of 3-dimensional display synchronized various dive survey data with videos in this year.New Functions Users can search for dive survey data by 3D maps with plotted dive points using the WebGL virtual map engine "Cesium". By selecting a dive point, users can watch deep-sea videos and photos and associated environmental data, e.g. water temperature, salinity, rock and biological sample photos, obtained by the dive survey. Users can browse a dive track visualized in 3D virtual spaces using the WebGL JavaScript library. By synchronizing this virtual dive track with videos, users can watch deep-sea videos recorded at a point on a dive track. Users can play an animation which a submersible-shaped polygon automatically traces a 3D virtual dive track and displays of dive survey data are synchronized with tracing a dive track. Users can directly refer to additional information of other JAMSTEC data sites such as marine biodiversity database, marine biological sample database, rock sample database, and cruise and dive information database, on each page which a 3D virtual dive track is displayed. A 3D visualization of a dive track makes users experience a virtual dive survey. In addition, by synchronizing a virtual dive track with videos, it is easy to understand living organisms and geological environments of a dive point. Therefore, these functions will visually support understanding of deep-sea environments in lectures and educational activities.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, C.A., Westinghouse Hanford

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  15. Large-Scale Distribution and Activity of Prokaryotes in Deep-Sea Surface Sediments of the Mediterranean Sea and the Adjacent Atlantic Ocean

    PubMed Central

    Giovannelli, Donato; Molari, Massimiliano; d’Errico, Giuseppe; Baldrighi, Elisa; Pala, Claudia; Manini, Elena

    2013-01-01

    The deep-sea represents a substantial portion of the biosphere and has a major influence on carbon cycling and global biogeochemistry. Benthic deep-sea prokaryotes have crucial roles in this ecosystem, with their recycling of organic matter from the photic zone. Despite this, little is known about the large-scale distribution of prokaryotes in the surface deep-sea sediments. To assess the influence of environmental and trophic variables on the large-scale distribution of prokaryotes, we investigated the prokaryotic assemblage composition (Bacteria to Archaea and Euryarchaeota to Crenarchaeota ratio) and activity in the surface deep-sea sediments of the Mediterranean Sea and the adjacent North Atlantic Ocean. Prokaryotic abundance and biomass did not vary significantly across the Mediterranean Sea; however, there were depth-related trends in all areas. The abundance of prokaryotes was positively correlated with the sedimentary concentration of protein, an indicator of the quality and bioavailability of organic matter. Moving eastwards, the Bacteria contribution to the total prokaryotes decreased, which appears to be linked to the more oligotrophic conditions of the Eastern Mediterranean basins. Despite the increased importance of Archaea, the contributions of Crenarchaeota Marine Group I to the total pool was relatively constant across the investigated stations, with the exception of Matapan-Vavilov Deep, in which Euryarchaeota Marine Group II dominated. Overall, our data suggest that deeper areas of the Mediterranean Sea share more similar communities with each other than with shallower sites. Freshness and quality of sedimentary organic matter were identified through Generalized Additive Model analysis as the major factors for describing the variation in the prokaryotic community structure and activity in the surface deep-sea sediments. Longitude was also important in explaining the observed variability, which suggests that the overlying water masses might have a critical role in shaping the benthic communities. PMID:24039667

  16. Probing reservoir-triggered earthquakes in Koyna, India, through scientific deep drilling

    USGS Publications Warehouse

    Gupta, H.; Nayak, Shailesh; Ellsworth, William L.; Rao, Y. J. B.; Rajan, S.; Bansal, B.K.; Purnachandra Rao, N.; Roy, S.; Arora, K.; Mohan, R.; Tiwari, V. M.; Satyanarayana, H. V. S.; Patro, P. K.; Shashidhar, D.; Mallika, K.

    2014-01-01

    We report here the salient features of the recently concluded International Continental Scientific Drilling Program (ICDP) workshop in Koyna, India. This workshop was a sequel to the earlier held ICDP workshop in Hyderabad and Koyna in 2011. A total of 49 experts (37 from India and 12 from 8 other countries) spent 3 days reviewing the work carried out during the last 3 years based on the recommendations of the 2011 workshop and suggesting the future course of action, including detailed planning for a full deep drilling proposal in Koyna, India. It was unanimously concluded that Koyna is one of the best sites anywhere in the world to investigate genesis of triggered earthquakes from near-field observations. A broad framework of the activities for the next phase leading to deep drilling has been worked out.

  17. Contrasting effects of deep ploughing of croplands and forests on SOC stocks and SOC bioavailability

    NASA Astrophysics Data System (ADS)

    Alcántara, Viridiana; Don, Axel; Vesterdal, Lars; Well, Reinhard; Nieder, Rolf

    2016-04-01

    Subsoils are essential within the global C cycle since they have a high soil organic carbon (SOC) storage capacity due to a high SOC saturation deficit. However, measures for enhancing SOC stocks commonly focus on topsoils. We assessed the long-term stability of topsoil SOC buried in cropland and forest subsoils by deep ploughing. Deep ploughing was promoted until the 1970s for breaking up hardpan and improving soil structure to optimize crop growth conditions. In forests deep ploughing is performed as a site preparation measure for afforestation of sandy soil aiming at increasing water availability in deeper layers and decreasing weed competition by burial of seeds. An effect of deep ploughing was the translocation of topsoil SOC into subsoils, with a concomitant mixing of SOC-poor subsoil material into the "new" topsoil horizon. Deep ploughed croplands and forests represent unique long-term "in-situ incubations" of SOC-rich material in subsoils in order to assess the effect of soil depth on SOC turnover. In this study, we sampled soil from five loamy and five sandy cropland sites as well as from five sandy forest sites, which were ploughed to 55-127 cm depth 25 to 53 years ago. Adjacent, equally managed but conventionally ploughed or not ploughed (forests) subplots were sampled as reference. On average 45 years after the deep ploughing operation, at the cropland sites, the deep ploughed soils contained 42±13 Mg ha-1 more SOC than the reference subplots down to 100 cm depth. On the contrary, at the forest sites, the SOC stocks of the deep ploughed soils contained 18±9 Mg ha-1 less SOC compared to the reference soils on average 38 years deep ploughing. These contrasting results can be explained, on the one hand, by the slower SOC accumulation in the newly formed topsoils of the deep ploughed forest soil (on average 48% lower SOC stocks in topsoil) compared to the croplands (on average 15% lower SOC stocks in topsoil). On the other hand, the buried topsoils at the forest sites exhibited similar bioavailability of SOC (measured as net C mineralization rates from short-term in-vitro incubations) as compared to the reference topsoils. In contrast, at the sandy cropland sites, net C mineralization rates were significantly lower (67%) in the buried topsoil material compared to the reference topsoil. Buried SOC in the sandy soils is thus highly stable. Together with these results, we will present data on SOC fractions and discuss their implications for our view on stability of buried SOC in croplands and forests. Our results show that deep ploughing contributes to SOC sequestration by enlarging the storage space for SOC-rich material but only under the preconditions that i) burial is accompanied by decrease in SOC bioavailability and ii) SOC accumulates considerably in the newly formed topsoil.

  18. Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy

    PubMed Central

    Pachiadaki, Maria G.; Rédou, Vanessa; Beaudoin, David J.; Burgaud, Gaëtan; Edgcomb, Virginia P.

    2016-01-01

    The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere. PMID:27375571

  19. Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy.

    PubMed

    Pachiadaki, Maria G; Rédou, Vanessa; Beaudoin, David J; Burgaud, Gaëtan; Edgcomb, Virginia P

    2016-01-01

    The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere.

  20. A Coupled Epipelagic-Meso/Bathypelagic Particle Flux Model for the Bermuda Atlantic Time-series Station (BATS)/Oceanic Flux Program (OFP) Site

    NASA Astrophysics Data System (ADS)

    Glover, D. M.; Conte, M.

    2002-12-01

    Of considerable scientific interest is the role remineralization plays in the global carbon cycle. It is the ``biological pump'' that fixes carbon in the upper water column and exports it for long time periods to the deep ocean. From a global carbon cycle point-of-view, it is the processes that govern remineralization in the mid- to deep-ocean waters that provide the feedback to the biogeochemical carbon cycle. In this study we construct an ecosystem model that serves as a mechanistic link between euphotic processes and mesopelagic and bathypelagic processes. We then use this prognostic model to further our understanding of the unparalleled time-series of deep-water sediment traps (21+ years) at the Oceanic Flux Program (OFP) and the euphotic zone measurements (10+ years) at the Bermuda Atlantic Time-series Site (BATS). At the core of this mechanistic ecosystem model of the mesopelagic zone is a model that consists of an active feeding habit zooplankton, a passive feeding habit zooplankton, large detritus (sinks), small detritus (non-sinking), and a nutrient pool. As the detritus, the primary source of food, moves through the water column it is fed upon by the active/passive zooplankton pair and undergoes bacterially mediated remineralization into nutrients. The large detritus pool at depth gains material from the formation of fecal pellets from the passive and active zooplankton. Sloppy feeding habits of the active zooplankton contribute to the small detrital pool. Zooplankton mortality (both classes) also contribute directly to the large detritus pool. Aggregation and disaggregation transform detrital particles from one pool to the other and back again. The nutrients at each depth will gain from detrital remineralization and zooplankton excretion. The equations that model the active zooplankton, passive zooplankton, large detritus, small detritus, and nutrients will be reviewed, results shown and future model modifications discussed.

  1. U.S. Geological Survey research in Handcart Gulch, Colorado—An alpine watershed with natural acid-rock drainage

    USGS Publications Warehouse

    Manning, Andrew H.; Caine, Jonathan S.; Verplanck, Philip L.; Bove, Dana J.; Kahn, Katherine G.

    2009-01-01

    Handcart Gulch is an alpine watershed along the Continental Divide in the Colorado Rocky Mountain Front Range. It contains an unmined mineral deposit typical of many hydrothermal mineral deposits in the intermountain west, composed primarily of pyrite with trace metals including copper and molybdenum. Springs and the trunk stream have a natural pH value of 3 to 4. The U.S. Geological Survey began integrated research activities at the site in 2003 with the objective of better understanding geologic, geochemical, and hydrologic controls on naturally occurring acid-rock drainage in alpine watersheds. Characterizing the role of groundwater was of particular interest because mountain watersheds containing metallic mineral deposits are often underlain by complexly deformed crystalline rocks in which groundwater flow is poorly understood. Site infrastructure currently includes 4 deep monitoring wells high in the watershed (300– 1,200 ft deep), 4 bedrock (100–170 ft deep) and 5 shallow (10–30 ft deep) monitoring wells along the trunk stream, a stream gage, and a meteorological station. Work to date at the site includes: geologic mapping and structural analysis; surface sample and drill core mineralogic characterization; geophysical borehole logging; aquifer testing; monitoring of groundwater hydraulic heads and streamflows; a stream tracer dilution study; repeated sampling of surface and groundwater for geochemical analyses, including major and trace elements, several isotopes, and groundwater age dating; and construction of groundwater flow models. The unique dataset collected at Handcart Gulch has yielded several important findings about bedrock groundwater flow at the site. Most importantly, we find that bedrock bulk permeability is nontrivial and that bedrock groundwater apparently constitutes a substantial fraction of the hydrologic budget. This means that bedrock groundwater commonly may be an underappreciated component of the hydrologic system in studies of alpine watersheds. Additionally, despite the complexity of the fracture controlled aquifer system, it appears that it can be represented with a relatively simple conceptual model and can be treated as an equivalent porous medium at the watershed scale. Interpretation of existing data, collection of new monitoring data, and efforts to link geochemical and hydrologic processes through modeling are ongoing at the site.

  2. Estimating the Effects of Conversion of Agricultural Land to Urban Land on Deep Percolation of Irrigation Water in the Grand Valley, Western Colorado

    USGS Publications Warehouse

    Mayo, John W.

    2008-01-01

    The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance being impermeable surfaces).

  3. Contrasting impacts of light reduction on sediment biogeochemistry in deep- and shallow-water tropical seagrass assemblages (Green Island, Great Barrier Reef).

    PubMed

    Schrameyer, Verena; York, Paul H; Chartrand, Kathryn; Ralph, Peter J; Kühl, Michael; Brodersen, Kasper Elgetti; Rasheed, Michael A

    2018-05-01

    Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (∼2 m) and deep-water (∼17 m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ∼10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks. While above-ground biomass was unchanged, higher diffusive O 2 uptake (DOU) rates, lower O 2 penetration depths, and higher volume-specific O 2 consumption (R) rates were found in seagrass-vegetated sediments as compared to adjacent bare sand (control) areas at the shallow-water sites. In contrast, deep-water sediment characteristics did not differ between bare sand and vegetated sites. At the vegetated shallow-water site, shading resulted in significantly lower hydrogen sulphide (H 2 S) levels in the sediment. No shading effects were found on sediment biogeochemistry at the deep-water site. Overall, our results show that the sediment biogeochemistry of shallow-water (Halodule uninervis, Syringodium isoetifolium, Cymodocea rotundata and C. serrulata) and deep-water (Halophila decipiens) seagrass meadows with different species differ in response to reduced light. The light-driven dynamics of the sediment biogeochemistry at the shallow-water site could suggest the presence of a microbial consortium, which might be stimulated by photosynthetically produced exudates from the seagrass, which becomes limited due to lower seagrass photosynthesis under shaded conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Discoveries and Conservation Efforts of Extensive Deep-Sea Coral Habitat off the Southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Reed, J. K.; Messing, C. G.; Walker, B. K.; Farrington, S.; Brooke, S.; Correa, T.; Brouwer, M.

    2012-12-01

    The deep-sea floor of the Western Atlantic off the southeastern U.S. supports a variety of deep-sea coral ecosystem (DSCE) habitats, including: coral mounds, rock terraces (Miami and Pourtalès Terraces), canyons (Agassiz and Tortugas Valleys), and island slopes (western Bahamas and northern Cuba). We used NOAA bathymetric contour maps and digital elevation models to identify and delineate the areal extent of potential DSCE habitat (50-1000 m) from northeastern Florida through the Straits of Florida. Recently, shipboard and AUV side-scan and multibeam sonar have further documented portions of the region. The resulting maps have been ground-truthed with over 250 submersible and remotely operated vehicle (ROV) dives, revealing that high-relief topographic features, including steep escarpments and rocky terraces, are good predictors of DSCE habitat in this region. The benthic biota is diverse but locally variable; for example, Lophelia and Enallopsammia stony corals dominate the deep-water mounds, whereas stylasterid corals dominate the rocky terraces where Lophelia is sporadic. Octocorals, black corals, and sponges are common at most sites but different species exhibit site-specific distributional variability. In 2011, the first of two NOAA-sponsored cruises using sonar mapping and an ROV discovered the southernmost Lophelia coral mound in the continental United States, south of the Florida Keys, offering the possibility that more Lophelia mounds may exist in this region where they were previously thought to be absent. The second cruise discovered that deep-water Oculina varicosa coral reefs extend over 70 nmi north of the current boundaries of the Oculina Habitat Area of Particular Concern (OHAPC), which was first designated as a marine protected area in 1984. These studies indicate that cold-water coral mounds are significantly more diverse and abundant in this region than previously thought. These research results were presented to NOAA and the South Atlantic Fishery Management Council (SAFMC), which led to the designation of some of these areas as HAPCs or marine protected areas, restricting bottom trawling, longlines and traps that could be destructive to the fragile coral and sponge habitat. In 2010, NOAA established five deep-water Coral HAPCs encompassing a total area of 62,714 km2 from North Carolina to south Florida; an estimated 69% of the total area of the CHAPCs is off Florida. However, we estimate that ~6,554 km2 (29.7%) of DSCE habitat remains unprotected and outside the boundaries of the CHAPCs in U.S. waters off Florida. Many activities may impact DCSEs, including bottom trawling, energy production, and even global warming. Cuba has recently opened its north slope for deep-sea oil/gas drilling, which could have serious impacts upon both deep and shallow water reefs and coastal areas of the U.S. upstream of these drilling sites. Baseline data is critical to understanding the effects of these anthropogenic activities son DSCEs. High-resolution sonar surveys combined with visual ground-truthing to create deep-water benthic habitat maps are necessary to further define the extent of DSCEs in order to protect and conserve these critical habitats.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The 20-acre White Farm Equipment Dump site is an active landfill near the north border of Charles City in Floyd County, Iowa. Drainage from the site toward the northwest and south feeds into adjacent wetland areas. The Charles City municipal wells, located 700 feet east of the site, obtain water from the deep, confined Cedar Valley aquifer. Additionally, six shallow drinking water wells that draw from an uncontrolled water table are 1,000 feet downgradient from the site. Intermittently since 1971, approximately 650,000 cubic yards of wet scrubber sludges, foundry sands, baghouse dusts, and other industrial wastes were disposed of onsite.more » The primary contaminants of concern affecting the soil, debris, and ground water are VOCs including benzene and toluene; and metals including arsenic, lead, and chromium.« less

  6. The discovery of deep-water seagrass meadows in a pristine Indian Ocean wilderness revealed by tracking green turtles.

    PubMed

    Esteban, N; Unsworth, R K F; Gourlay, J B Q; Hays, G C

    2018-03-21

    Our understanding of global seagrass ecosystems comes largely from regions characterized by human impacts with limited data from habitats defined as notionally pristine. Seagrass assessments also largely focus on shallow-water coastal habitats with comparatively few studies on offshore deep-water seagrasses. We satellite tracked green turtles (Chelonia mydas), which are known to forage on seagrasses, to a remote, pristine deep-water environment in the Western Indian Ocean, the Great Chagos Bank, which lies in the heart of one of the world's largest marine protected areas (MPAs). Subsequently we used in-situ SCUBA and baited video surveys to survey the day-time sites occupied by turtles and discovered extensive monospecific seagrass meadows of Thalassodendron ciliatum. At three sites that extended over 128 km, mean seagrass cover was 74% (mean range 67-88% across the 3 sites at depths to 29 m. The mean species richness of fish in seagrass meadows was 11 species per site (mean range 8-14 across the 3 sites). High fish abundance (e.g. Siganus sutor: mean MaxN.site -1  = 38.0, SD = 53.7, n = 5) and large predatory shark (Carcharhinus amblyrhynchos) (mean MaxN.site -1  = 1.5, SD = 0.4, n = 5) were recorded at all sites. Such observations of seagrass meadows with large top predators, are limited in the literature. Given that the Great Chagos Bank extends over approximately 12,500 km 2 and many other large deep submerged banks exist across the world's oceans, our results suggest that deep-water seagrass may be far more abundant than previously suspected. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Methane release from sediment seeps to the atmosphere is counteracted by highly active Methylococcaceae in the water column of deep oligotrophic Lake Constance.

    PubMed

    Bornemann, Maren; Bussmann, Ingeborg; Tichy, Lucas; Deutzmann, Jörg; Schink, Bernhard; Pester, Michael

    2016-08-01

    Methane emissions from freshwater environments contribute substantially to global warming but are under strong control of aerobic methane-oxidizing bacteria. Recently discovered methane seeps (pockmarks) in freshwater lake sediments have the potential to bypass this control by their strong outgassing activity. Whether this is counteracted by pelagic methanotrophs is not well understood yet. We used a (3)H-CH4-radiotracer technique and pmoA-based molecular approaches to assess the activity, abundance and community structure of pelagic methanotrophs above active pockmarks in deep oligotrophic Lake Constance. Above profundal pockmarks, methane oxidation rates (up to 458 nmol CH4 l(-1) d(-1)) exceeded those of the surrounding water column by two orders of magnitude and coincided with maximum methanotroph abundances of 0.6% of the microbial community. Phylogenetic analysis indicated a dominance of members of the Methylococcaceae in the water column of both, pockmark and reference sites, with most of the retrieved sequences being associated with a water-column specific clade. Communities at pockmark and reference locations also differed in parts, which was likely caused by entrainment of sediment-hosted methanotrophs at pockmark sites. Our results show that the release of seep-derived methane to the atmosphere is counteracted by a distinct methanotrophic community with a pronounced activity throughout bottom waters. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Trace element evidence for abrupt changes in deep South Atlantic Ocean nutrient and carbonate chemistry across the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Farmer, J. R.; Hoenisch, B.; Haynes, L.; Kroon, D.; Bell, D. B.; Jung, S.; Seguí, M. J.; Raymo, M. E.; Goldstein, S. L.; Pena, L. D.

    2016-12-01

    Pleistocene glaciations underwent a profound transition from lower amplitude 40 kyr cycles to high amplitude 100 kyr cycles between 1.2 and 0.8 Ma, an interval termed the Mid-Pleistocene Transition (MPT). While the underlying causes of the MPT are uncertain, previous studies show quasi-contemporaneous reductions in North Atlantic Deep Water (NADW) export1 and glacial atmospheric pCO22 around 0.9 Ma. Although this suggests a possible role for enhanced deep-ocean carbon storage in amplifying climate change across the MPT, few direct records of deep ocean carbonate chemistry exist for this interval to test this hypothesis. Here we present South Atlantic benthic foraminiferal B/Ca and Cd/Ca records from International Ocean Discovery Program Sites 1088, 1264 and 1267 (2.1 to 4.3 km water depth) as part of a larger study of Atlantic-wide changes in deep ocean chemistry and circulation spanning the MPT. Results show an abrupt 15-20% decrease in benthic B/Ca and 40-50% increase in Cd/Ca at 4.3 km depth (Site 1267) between 1.0 and 0.9 Ma. Site 1088, which at 2.1 km depth is sensitive to input of southern-sourced Upper Circumpolar Deep Water, shows a prolonged 25% decrease in B/Ca and 50% increase in Cd/Ca from 1.0 to 0.6 Ma. In contrast, at Site 1264 ( 2.5 km depth within the core of modern NADW) B/Ca and Cd/Ca changes across the MPT are more modest (-5% and +10%, respectively). These observations reflect on the accumulation of regenerated carbon and nutrients in the deep South Atlantic, and varying contributions of northern- and southern-sourced watermasses to each core site. Implications for deep-ocean carbon storage and forcing of the MPT will be discussed. 1Pena, L. and Goldstein, S. (2014), Science 345, 318 2Hönisch, B. et al. (2009), Science 324, 1551

  9. Microbial enzymatic activity and secondary production in sediments affected by the sedimentation pulse following the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Ziervogel, Kai; Joye, Samantha B.; Arnosti, Carol

    2016-07-01

    A large fraction of the spilled oil from the Deepwater Horizon (DwH) blowout in April 2010 reached the seafloor via sinking oil aggregates (oil snow) in a massive sedimentation that continued until late summer 2010 (;Dirty blizzard;). We measured heterotrophic microbial metabolic rates as well as porewater and sedimentary geochemical parameters at sites proximate to and distant from the wellhead to investigate microbial responses to the "Dirty Blizzard". Lipase activity and rates of bacterial protein production were highest and leucine-aminopeptidase activity was lowest in 0-2 cm sediment layers at the sites proximate to the wellhead. These results suggest that the presence of the oil snow stimulated benthic microbial enzymatic hydrolysis of oil-derived organic matter that was depleted in peptide substrates at the time of our sampling. The strong gradients in porewater DOC, NH4+, and HPO43- concentrations in the upper 6 cm of the sediments near the wellhead likewise indicate elevated heterotrophic responses to recently-sedimented organic matter. In addition to enhanced microbial activities in the 0-2 cm sediment layers, we found peaks of total organic carbon and elevated microbial metabolic rates down to 10 cm at the sites closest to the wellhead. Our results indicate distinct benthic metabolic responses of heterotrophic microbial communities, even three months after the ending of the "Dirty Blizzard". Compared to other deep-sea environments, however, metabolic rates associated with the recently deposited particulate matter around the wellhead were only moderately enhanced. Oil contaminants at the seafloor may therefore have prolonged residence times, enhancing the potential for longer-term ecological consequences in deep-sea environments.

  10. Integrating conceptual knowledge within and across representational modalities.

    PubMed

    McNorgan, Chris; Reid, Jackie; McRae, Ken

    2011-02-01

    Research suggests that concepts are distributed across brain regions specialized for processing information from different sensorimotor modalities. Multimodal semantic models fall into one of two broad classes differentiated by the assumed hierarchy of convergence zones over which information is integrated. In shallow models, communication within- and between-modality is accomplished using either direct connectivity, or a central semantic hub. In deep models, modalities are connected via cascading integration sites with successively wider receptive fields. Four experiments provide the first direct behavioral tests of these models using speeded tasks involving feature inference and concept activation. Shallow models predict no within-modal versus cross-modal difference in either task, whereas deep models predict a within-modal advantage for feature inference, but a cross-modal advantage for concept activation. Experiments 1 and 2 used relatedness judgments to tap participants' knowledge of relations for within- and cross-modal feature pairs. Experiments 3 and 4 used a dual-feature verification task. The pattern of decision latencies across Experiments 1-4 is consistent with a deep integration hierarchy. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. A deep-sea sediment transport storm

    NASA Astrophysics Data System (ADS)

    Gross, Thomas F.; Williams, A. J.; Newell, A. R. M.

    1988-02-01

    Photographs taken of the sea bottom since the 1960s suggest that sediments at great depth may be actively resuspended and redistributed1. Further, it has been suspected that active resus-pension/transport may be required to maintain elevated concentrations of particles in deep-sea nepheloid layers. But currents with sufficient energy to erode the bottom, and to maintain the particles in suspension, have not been observed concurrently with large concentrations of particles in the deep nepheloid layer2-4. The high-energy benthic boundary-layer experiment (HEBBLE) was designed to test the hypothesis that bed modifications can result from local erosion and deposition as modelled by simple one-dimensional local forcing mechanics5. We observed several 'storms' of high kinetic energy and near-bed flow associated with large concentrations of suspended sediment during the year-long deployments of moored instruments at the HEBBLE study site. These observations, at 4,880 m off the Nova Scotian Rise in the north-west Atlantic, indicate that large episodic events may suspend bottom sediments in areas well removed from coastal and shelf sources.

  12. Biogeochemical malfunctioning in sediments beneath a deep-water fish farm.

    PubMed

    Valdemarsen, Thomas; Bannister, Raymond J; Hansen, Pia K; Holmer, Marianne; Ervik, Arne

    2012-11-01

    We investigated the environmental impact of a deep water fish farm (190 m). Despite deep water and low water currents, sediments underneath the farm were heavily enriched with organic matter, resulting in stimulated biogeochemical cycling. During the first 7 months of the production cycle benthic fluxes were stimulated >29 times for CO(2) and O(2) and >2000 times for NH(4)(+), when compared to the reference site. During the final 11 months, however, benthic fluxes decreased despite increasing sedimentation. Investigations of microbial mineralization revealed that the sediment metabolic capacity was exceeded, which resulted in inhibited microbial mineralization due to negative feed-backs from accumulation of various solutes in pore water. Conclusions are that (1) deep water sediments at 8 °C can metabolize fish farm waste corresponding to 407 and 29 mmol m(-2) d(-1) POC and TN, respectively, and (2) siting fish farms at deep water sites is not a universal solution for reducing benthic impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser/LIDAR), surveying instruments, and surveying benchmarks and optical survey points. Currently an array of single and multipoint extensometers monitors the Davis Campus. A facility-wide micro seismic monitoring system is anticipated to be deployed during the latter half of 2012. This system is designed to monitor minor events initiated within the historical mined out portions of the facility. The major science programs for the coming five years consist of the MAJORANA DEMONSTRATOR (MJD) neutrinoless double beta decay experiment; the Large Underground Xenon (LUX) dark matter search, the Center for Ultralow Background Experiments at DUSEL (CUBED), numerous geoscience installations, Long-Baseline Neutrino Experiment (LBNE), a nuclear astrophysics program involving a low energy underground particle accelerator, second and third generation dark matter experiments, and additional low background counting facilities. The Sanford Lab facility is an active, U.S. based, deep underground research facility dedicated to science, affording the science community the opportunity to conduct unprecedented scientific research in a broad range of physics, biology and geoscience fields at depth. SURF is actively interested in hosting additional research collaborations and provides resources for full facility design, cost estimation, excavation, construction and support management services.

  14. Hydrothermal activity, functional diversity and chemoautotrophy are major drivers of seafloor carbon cycling.

    PubMed

    Bell, James B; Woulds, Clare; Oevelen, Dick van

    2017-09-20

    Hydrothermal vents are highly dynamic ecosystems and are unusually energy rich in the deep-sea. In situ hydrothermal-based productivity combined with sinking photosynthetic organic matter in a soft-sediment setting creates geochemically diverse environments, which remain poorly studied. Here, we use comprehensive set of new and existing field observations to develop a quantitative ecosystem model of a deep-sea chemosynthetic ecosystem from the most southerly hydrothermal vent system known. We find evidence of chemosynthetic production supplementing the metazoan food web both at vent sites and elsewhere in the Bransfield Strait. Endosymbiont-bearing fauna were very important in supporting the transfer of chemosynthetic carbon into the food web, particularly to higher trophic levels. Chemosynthetic production occurred at all sites to varying degrees but was generally only a small component of the total organic matter inputs to the food web, even in the most hydrothermally active areas, owing in part to a low and patchy density of vent-endemic fauna. Differences between relative abundance of faunal functional groups, resulting from environmental variability, were clear drivers of differences in biogeochemical cycling and resulted in substantially different carbon processing patterns between habitats.

  15. Low frequency amplification in deep alluvial basins: an example in the Po Plain (Northern Italy) and consequences for site specific SHA

    NASA Astrophysics Data System (ADS)

    Mascandola, Claudia; Massa, Marco; Barani, Simone; Lovati, Sara; Santulin, Marco

    2016-04-01

    This work deals with the problem of long period seismic site amplification that potentially might involve large and deep alluvial basins in case of strong earthquakes. In particular, it is here presented a case study in the Po Plain (Northern Italy), one of the most extended and deep sedimentary basin worldwide. Even if the studied area shows a low annul seismicity rate with rare strong events (Mw>6.0) and it is characterized by low to medium seismic hazard conditions, the seismic risk is significant for the high density of civil and strategic infrastructures (i.e. high degree of exposition) and the unfavourable geological conditions. The aim of this work is to provide general considerations about the seismic site response of the Po Plain, with particular attention on deep discontinuities (i.e. geological bedrock), in terms of potential low frequency amplification and their incidence on the PSHA. The current results were obtained through active and passive geophysical investigations performed near Castelleone, a site where a seismic station, which is part of the INGV (National Institute for Geophysics and Volcanology) Seismic National Network, is installed from 2009. In particular, the active analyses consisted in a MASW and a refraction survey, whereas the passive ones consisted in seismic ambient noise acquisitions with single stations and arrays of increasing aperture. The results in terms of noise HVSR indicate two main peaks, the first around 0.17 Hz and the second, as already stated in the recent literature, around 0.7 Hz. In order to correlate the amplified frequencies with the geological discontinuities, the array acquisitions were processed to obtain a shear waves velocity profile, computed with a joint inversion, considering the experimental dispersion curves and the HVSR results. The obtained velocity profile shows two main discontinuities: the shallower at ~165 m of depth, which can be correlated to the seismic bedrock (i.e. Vs > 800 m/) and the deeper at ~1350 m of depth, properly associable to the geological bedrock, considering the transition between the pliocenic loose sediments and the miocenic marls observable from the available stratigraphy. Numerical 1D analyses, computed to obtain the theoretical Transfer Function at the site, support the correlation between the experimental amplification peak around 0.17 Hz and the hypothesized geological bedrock. In terms of site specific SHA, the UHS expressed in displacement (MRP: 475 years) shows a significant increase if the seismic input is located at the geological bedrock (~1350 m) instead of the seismic bedrock (~165 m). Even if this increase is not relevant for the studied site, since the seismic hazard is low, it could be significant in other part of the Po Plain, where the seismic hazard is medium-high. According to the HVSR results, obtained for other available Po Plain broadband stations, the considerations of this work could represent a warning for future seismic hazard investigations in other areas of the basin.

  16. Development of variable LRFD \\0x03C6 factors for deep foundation design due to site variability.

    DOT National Transportation Integrated Search

    2012-04-01

    The current design guidelines of Load and Resistance Factor Design (LRFD) specifies constant values : for deep foundation design, based on analytical method selected and degree of redundancy of the pier. : However, investigation of multiple sites in ...

  17. Environmental Projects. Volume 9: Construction of hazardous materials storage facilities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards. This report is one in a series of reports describing environmental projects at GDSCC. The construction of two hazardous materials and wastes storage facilities and an acid-wash facility is described. An overview of the Goldstone complex is also presented along with a description of the environmental aspects of the GDSCC site.

  18. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.

    PubMed

    Pan, Xiaoyong; Shen, Hong-Bin

    2018-05-02

    RNA-binding proteins (RBPs) take over 5∼10% of the eukaryotic proteome and play key roles in many biological processes, e.g. gene regulation. Experimental detection of RBP binding sites is still time-intensive and high-costly. Instead, computational prediction of the RBP binding sites using pattern learned from existing annotation knowledge is a fast approach. From the biological point of view, the local structure context derived from local sequences will be recognized by specific RBPs. However, in computational modeling using deep learning, to our best knowledge, only global representations of entire RNA sequences are employed. So far, the local sequence information is ignored in the deep model construction process. In this study, we present a computational method iDeepE to predict RNA-protein binding sites from RNA sequences by combining global and local convolutional neural networks (CNNs). For the global CNN, we pad the RNA sequences into the same length. For the local CNN, we split a RNA sequence into multiple overlapping fixed-length subsequences, where each subsequence is a signal channel of the whole sequence. Next, we train deep CNNs for multiple subsequences and the padded sequences to learn high-level features, respectively. Finally, the outputs from local and global CNNs are combined to improve the prediction. iDeepE demonstrates a better performance over state-of-the-art methods on two large-scale datasets derived from CLIP-seq. We also find that the local CNN run 1.8 times faster than the global CNN with comparable performance when using GPUs. Our results show that iDeepE has captured experimentally verified binding motifs. https://github.com/xypan1232/iDeepE. xypan172436@gmail.com or hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online.

  19. Deep-Subterranean Microbial Habitats in the Hishikari Epithermal Gold Mine: Active Thermophilic Microbial Communities and Endolithic Ancient Microbial Relicts.

    NASA Astrophysics Data System (ADS)

    Hirayama, H.; Takai, K.; Inagaki, F.; Horikoshi, K.

    2001-12-01

    Deep subterranean microbial community structures in an epithermal gold-silver deposit, Hishikari gold mine, southern part of Kyusyu Japan, were evaluated through the combined use of enrichment culture methods and culture-independent molecular surveys. The geologic setting of the Hishikari deposit is composed of three lithologies; basement oceanic sediments of the Cretaceous Shimanto Supergroup, Quaternary andesites, and auriferous quartz vein. We studied the drilled core rock of these, and the geothermal hot waters from the basement aquifers collected by means of the dewatering system located at the deepest level in the mining sites. Culture-independent molecular phylogenetic analyses of PCR-amplified ribosomal DNA (rDNA) recovered from drilled cores suggested that the deep-sea oceanic microbial communities were present as ancient indigenous relicts confined in the Shimanto basement. On the other hand, genetic signals of active thermophilic microbial communities, mainly consisting of thermophilic hydrogen-oxidizer within Aquificales, thermophilic methanotroph within g-Proteobacteria and yet-uncultivated bacterium OPB37 within b-Proteobacteria, were detected with these of oceanic relicts from the subterranean geothermal hot aquifers (temp. 70-100ºC). Successful cultivation and FISH analyses strongly supported that these thermophilic lithotrophic microorganisms could be exactly active and they grew using geochemically produced hydrogen and methane gasses as nutrients. Based on these results, the deep-subsurface biosphere occurring in the Hishikari epithermal gold mine was delineated as endolithic ancient microbial relicts and modern habitats raising active lithotrophic thermophiles associated with the geological and geochemical features of the epithermal gold deposit.

  20. Long-period amplification in deep alluvial basins and consequences for site-specific probabilistic seismic-hazard: the case of Castelleone in the Po Plain (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Barani, S.; Mascandola, C.; Massa, M.; Spallarossa, D.

    2017-12-01

    The recent Emilia seismic sequence (Northern Italy) occurred at the end of the first half of 2012 with main shock of Mw6.1 highlighted the importance of studying site effects in the Po Plain, the larger and deeper sedimentary basin in Italy. As has long been known, long-period amplification related to deep sedimentary basins can significantly affect the characteristics of the ground-motion induced by strong earthquakes. It follows that the effects of deep sedimentary deposits on ground shaking require special attention during the definition of the design seismic action. The work presented here analyzes the impact of deep-soil discontinuities on ground-motion amplification, with particular focus on long-period probabilistic seismic-hazard assessment. The study focuses on the site of Castelleone, where a seismic station of the Italian National Seismic Network has been recording since 2009. Our study includes both experimental and numerical site response analyses. Specifically, extensive active and passive geophysical measurements were carried out in order to define a detailed shear-wave velocity (VS) model to be used in the numerical analyses. These latter are needed to assess the site-specific ground-motion hazard. Besides classical seismic refraction profiles and multichannel analysis of surface waves, we analyzed ambient vibration measurements in both single and array configurations. The VS profile was determined via joint inversion of the experimental phase-velocity dispersion curve with the ellipticity curve derived from horizontal-to-vertical spectral ratios. The profile shows two main discontinuities at depths of around 160 and 1350 m, respectively. The probabilistic site-specific hazard was assessed in terms of both spectral acceleration and displacement. A partially non-ergodic approach was adopted. We have found that the spectral acceleration hazard is barely sensitive to long-period (up to 10 s) amplification related to the deeper discontinuity whereas the displacement hazard is strongly affected. Our results show that neglecting the effects of the deeper discontinuity implies an underestimation of the hazard of up to about 49% for a mean return period (MRP) of 475 years and 57% for an MRP of 2475 years, with possible consequences on the design of very tall buildings and large bridges.

  1. Fault activation and induced seismicity in geological carbon storage – Lessons learned from recent modeling studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frederic

    In the light of current concerns related to induced seismicity associated with geological carbon sequestration (GCS), this paper summarizes lessons learned from recent modeling studies on fault activation, induced seismicity, and potential for leakage associated with deep underground carbon dioxide (CO 2) injection. Model simulations demonstrate that seismic events large enough to be felt by humans require brittle fault properties and continuous fault permeability allowing pressure to be distributed over a large fault patch to be ruptured at once. Heterogeneous fault properties, which are commonly encountered in faults intersecting multilayered shale/sandstone sequences, effectively reduce the likelihood of inducing felt seismicitymore » and also effectively impede upward CO 2 leakage. A number of simulations show that even a sizable seismic event that could be felt may not be capable of opening a new flow path across the entire thickness of an overlying caprock and it is very unlikely to cross a system of multiple overlying caprock units. Site-specific model simulations of the In Salah CO 2 storage demonstration site showed that deep fractured zone responses and associated microseismicity occurred in the brittle fractured sandstone reservoir, but at a very substantial reservoir overpressure close to the magnitude of the least principal stress. We conclude by emphasizing the importance of site investigation to characterize rock properties and if at all possible to avoid brittle rock such as proximity of crystalline basement or sites in hard and brittle sedimentary sequences that are more prone to injection-induced seismicity and permanent damage.« less

  2. Patterns and variability in geochemical signatures and microbial activity within and between diverse cold seep habitats along the lower continental slope, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Bowles, Marshall; Hunter, Kimberley S.; Samarkin, Vladimir; Joye, Samantha

    2016-07-01

    We collected 69 sediment cores from distinct ecological and geological settings along the deep slope in the Northern Gulf of Mexico to evaluate whether specific geochemical- or habitat-related factors correlated with rates of microbial processes and geochemical signatures. By collecting replicate cores from distinct habitats across multiple sites, we illustrate and quantify the heterogeneity of cold seep geochemistry and microbial activity. These data also document the factors driving unique aspects of the geochemistry of deep slope gas, oil and brine seeps. Surprisingly little variation was observed between replicate (n=2-5) cores within sites for most analytes (except methane), implying that the common practice of collecting one core for geochemical analysis can capture the signature of a habitat in most cases. Depth-integrated concentrations of methane, dissolved inorganic carbon (DIC), and calcium were the predominant geochemical factors that correlated with a site's ecological or geological settings. Pore fluid methane concentration was related to the phosphate and DIC concentration, as well as to rates of sulfate reduction. While distinctions between seep habitats were identified from geochemical signatures, habitat specific geochemistry varied little across sites. The relative concentration of dissolved inorganic nitrogen versus phosphorus suggests that phosphorus availability limits biomass production at cold seeps. Correlations between calcium, chloride, and phosphate concentrations were indicative of brine-associated phosphate transport, suggesting that in addition to the co-migration of methane, dissolved organic carbon, and ammonium with brine, phosphate delivery is also associated with brine advection.

  3. Fault activation and induced seismicity in geological carbon storage – Lessons learned from recent modeling studies

    DOE PAGES

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frederic; ...

    2016-09-20

    In the light of current concerns related to induced seismicity associated with geological carbon sequestration (GCS), this paper summarizes lessons learned from recent modeling studies on fault activation, induced seismicity, and potential for leakage associated with deep underground carbon dioxide (CO 2) injection. Model simulations demonstrate that seismic events large enough to be felt by humans require brittle fault properties and continuous fault permeability allowing pressure to be distributed over a large fault patch to be ruptured at once. Heterogeneous fault properties, which are commonly encountered in faults intersecting multilayered shale/sandstone sequences, effectively reduce the likelihood of inducing felt seismicitymore » and also effectively impede upward CO 2 leakage. A number of simulations show that even a sizable seismic event that could be felt may not be capable of opening a new flow path across the entire thickness of an overlying caprock and it is very unlikely to cross a system of multiple overlying caprock units. Site-specific model simulations of the In Salah CO 2 storage demonstration site showed that deep fractured zone responses and associated microseismicity occurred in the brittle fractured sandstone reservoir, but at a very substantial reservoir overpressure close to the magnitude of the least principal stress. We conclude by emphasizing the importance of site investigation to characterize rock properties and if at all possible to avoid brittle rock such as proximity of crystalline basement or sites in hard and brittle sedimentary sequences that are more prone to injection-induced seismicity and permanent damage.« less

  4. Benthic foraminiferal faunal and geochemical proxies as tracers for paleoenvironmental and paleoceanographic changes in the western Mediterranean over the last 24 ka

    NASA Astrophysics Data System (ADS)

    Pérez-Asensio, José N.; Cacho, Isabel; Frigola, Jaime; Pena, Leopoldo D.; Sierro, Francisco J.; Asioli, Alessandra; Kuhlmann, Jannis; Huhn, Katrin

    2017-04-01

    Paleoenvironmental and paleoceanographic changes in the western Mediterranean are reconstructed for the last 24 ka using a combination of benthic foraminiferal assemblages and geochemical proxies measured on benthic foraminiferal shells (Mg/Ca-deep water temperatures and stable isotopes). The studied materials are sediment cores HER-GC-UB06 and MD95-2043recovered at 946 m and 1841 m, respectively, from the Alboran Sea. At present, both core sites are bathed by the Western Mediterranean Deep Water (WMDW), although UB06 core is close to the boundary with the overlying Levantine Intermediate Water (LIW). Therefore, past variability of both water masses can potentially be recorded by the benthic foraminiferal proxies from the studied sites. Benthic foraminiferal assemblages and geochemical data show fluctuations in bottom-water ventilation, organic matter accumulation and deep-water temperatures related to WMDW and LIW circulation. During the glacial interval, an alternation of events showing better ventilation (higher abundance of Cibicides pachyderma) with lower temperatures and events of warmer deep water temperatures with poorer ventilation (Nonionella iridea assemblage, lower abundance of C. pachyderma) are observed. This variability might reflect stronger WMDW formation during the Last Glacial Maximum (LGM) and Heinrich Stadial 1. During the Bølling-Allerød and Younger Dryas (YD) periods, cold temperatures and the lowest oxygenation rates are recorded coinciding with the highest abundance of deep infaunal taxa on both UB06 and MD95-2043 cores. This interval was coetaneous to the deposition of an Organic Rich Layer in the Alboran Sea. However, a re-ventilation trend started at the end of the YD in the shallower site (UB06 core) whereas low-oxygen conditions prevailed until the end of the early Holocene in the deep site (MD95-2043 core). During the early Holocene a significant deep water temperature increase occurred at the shallower site suggesting the replacement of WMDW by warmer water mass, likely LIW. In the middle Holocene, highly variable bottom-water oxygenation and temperatures are observed showing warmer deep waters with less oxygen content (higher deep and intermediate infaunal abundances). The late Holocene (last 4 ka) was characterized by slightly cooler deep water temperatures and enhanced oxygen levels supporting that WMDW became dominant at the shallower site. These observations reveal that Mediterranean thermohaline system has been highly variable during the studied period supporting its high sensitivity to changing climate conditions. These results open a new insight into the Mediterranean sensitivity to Holocene climate variability.

  5. Quantifying microbial activity in deep subsurface sediments using a tritium based hydrognease enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Kallmeyer, J.

    2012-12-01

    Microbial life is widespread in Earth's subsurface and estimated to represent a significant fraction of Earth's total living biomass. However, very little is known about subsurface microbial activity and its fundamental role in biogeochemical cycles of carbon and other biologically important elements. Hydrogen is one of the most important elements in subsurface anaerobic microbial metabolism. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways. They either consume or produce protons for ATP synthesis. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy generating metabolic processes to electron acceptors such as CO2 or sulfate. H2ase enzyme targets a key metabolic compound in cellular metabolism therefore the assay can be used as a measure for total microbial activity without the need to identify any specific metabolic process. Using the highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey, in marine sediments of the Barents Sea and in deep subseafloor sediments from the Nankai Trough. H2ase activity could be quantified at all depths of all sites but the activity distribution varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3d-1 down to a depth of 1.60 m. At all sites the sulfate reduction rate profile followed the upper part of the H2ase activity profile until sulfate reduction reached the minimum detection limit (ca. 10 pmol cm-3d-1). H2ase activity could still be quantified after the decline of sulfate reduction, indicating that other microbial processes are becoming quantitatively more important. Similarly, H2ase activity could be quantified at greater depths (ca. 400 mbsf) in Nankai Trough sediments. Nankai Trough is one of the world's most geologically active accretionary wedges, where the Philippine Plate is subducting under the southwest of Japan. Due to the transient faulting, huge amounts of energy are liberated that enhance chemical transformations of organic and inorganic matter. An increase in H2ase activity could be observed at greater depth, which suggests that microbial activity is stimulated by the fault activity. Current techniques for the quantification of microbial activity in deep sediments have already reached their physical and technical limits and-in many cases- are still not sensitive enough to quantify extremely low rates of microbial activity. Additional to the quantification of specific processes, estimates of total microbial activity will provide valuable information on energy flux and microbial metabolism in the subsurface biosphere and other low-energy environments as well as help identifying hotspots of microbial activity. The tritium H2ase assay has a potential to become a valuable tool to measure total subsurface microbial activity.

  6. Pore-fluid chemistry along the main axis of an active lobe at the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Croguennec, C.; Ruffine, L.; Guyader, V.; Le Bruchec, J.; Ruesch, B.; Caprais, J.; Cathalot, C.; de Prunelé, A.; Germain, Y.; Bollinger, C.; Dennielou, B.; Olu, K.; Rabouille, C.

    2013-12-01

    The distal lobes of the Congo deep-sea fan constitute a unique in situ laboratory to study early diagenesis of marine sediments. They are located at water depth of about 5000 m and result from the deposition of sediment transported by turbidity currents along the channel-levee systems and submarine canyon connected to the Congo River. Thus, a huge amount of organic matter, transported from the river to the lobes, undergoes decomposition processes involving different oxidants present within the sedimentary column. This drastically changes the chemistry of the pore fluids, allowing the occurence of a succession of biogeochemical processes. The present study is part of an ongoing project which aims at better understanding the role and the fate of organic matter transported to the lobe systems, as well as its implication in the distribution of the living communities encountered there. Thus, pore fluids have been sampled from 8 Calypso cores in order to determine the concentration of dissolved elements. Five sites have been investigated: four of them are located along the main axis of a currently active lobe, the last one being located on a lobe disconnected from the chenals. The analyses of methane, major (Cl, SO4, Mg, Ca, K, Na) and minor (Sr, Ba, B, Li, Mn) elements have been carried out along with total alkalinity determination. The resulting profiles show a highly heterogeneous pore-fluid chemistry. Sulphate concentration near the seawater/sediment interface varies from 3 to 29 mM, indicating intense sulphate reduction. Surprisingly the lowest values are found at the site which is disconnected from the active lobe. The manganese cycle is well defined for all cores. The core recovered at the more distal lobe exhibits very peculiar pore-fluid profiles which are likely related to a geological event, most likely sediment slide and remobilization. References: Babonneau, N., Savoye, B., Cremer, M. & Klein, B., 2002. Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan, Mar. Pet. Geol., 19, 445-467. Savoye, B., Babonneau, N., Dennielou, B. & Bez, M., 2009. Geological overview of the Angola-Congo margin, the Congo deep-sea fan and its submarine valleys, Deep-Sea Res. Part II-Top. Stud. Oceanogr., 56, 2169-2182. Vangriesheim, A., Khripounoff, A. & Crassous, P., 2009. Turbidity events observed in situ along the Congo submarine channel, Deep-Sea Res. Part II-Top. Stud. Oceanogr., 56, 2208-2222. Zabel, M. & Schulz, H.D., 2001. Importance of submarine landslides for non-steady state conditions in pore water systems - lower Zaire (Congo) deep-sea fan, Mar. Geol., 176, 87-99.

  7. Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance.

    PubMed

    Wu, Yingcheng; Wu, Peiwen; Chao, Yanhong; He, Jing; Li, Hongping; Lu, Linjie; Jiang, Wei; Zhang, Beibei; Li, Huaming; Zhu, Wenshuai

    2018-01-12

    Hexagonal boron nitride has been regarded to be an efficient catalyst in aerobic oxidation fields, but limited by the less-exposed active sites. In this contribution, we proposed a simple green liquid nitrogen gas exfoliation strategy for preparation of porous monolayer nanosheets (BN-1). Owing to the reduced layer numbers, decreased lateral sizes and artificially-constructed pores, increased exposure of active sites was expected, further contributed to an enhanced aerobic oxidative desulfurization (ODS) performance up to ∼98% of sulfur removal, achieving ultra-deep desulfurization. This work not only introduced an excellent catalyst for aerobic ODS, but also provided a strategy for construction of some other highly-efficient monolayer two-dimensional materials for enhanced catalytic performance.

  8. Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance

    NASA Astrophysics Data System (ADS)

    Wu, Yingcheng; Wu, Peiwen; Chao, Yanhong; He, Jing; Li, Hongping; Lu, Linjie; Jiang, Wei; Zhang, Beibei; Li, Huaming; Zhu, Wenshuai

    2018-01-01

    Hexagonal boron nitride has been regarded to be an efficient catalyst in aerobic oxidation fields, but limited by the less-exposed active sites. In this contribution, we proposed a simple green liquid nitrogen gas exfoliation strategy for preparation of porous monolayer nanosheets (BN-1). Owing to the reduced layer numbers, decreased lateral sizes and artificially-constructed pores, increased exposure of active sites was expected, further contributed to an enhanced aerobic oxidative desulfurization (ODS) performance up to ˜98% of sulfur removal, achieving ultra-deep desulfurization. This work not only introduced an excellent catalyst for aerobic ODS, but also provided a strategy for construction of some other highly-efficient monolayer two-dimensional materials for enhanced catalytic performance.

  9. Monitoring technologies for ocean disposal of radioactive waste

    NASA Astrophysics Data System (ADS)

    Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.

    1982-01-01

    The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.

  10. Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem.

    PubMed

    Suzuki, Shino; Ishii, Shun'ichi; Wu, Angela; Cheung, Andrea; Tenney, Aaron; Wanger, Greg; Kuenen, J Gijs; Nealson, Kenneth H

    2013-09-17

    The Cedars, in coastal northern California, is an active site of peridotite serpentinization. The spring waters that emerge from this system feature very high pH, low redox potential, and low ionic concentrations, making it an exceptionally challenging environment for life. We report a multiyear, culture-independent geomicrobiological study of three springs at The Cedars that differ with respect to the nature of the groundwater feeding them. Within each spring, both geochemical properties and microbial diversity in all three domains of life remained stable over a 3-y period, with multiple samples each year. Between the three springs, however, the microbial communities showed considerable differences that were strongly correlated with the source of the serpentinizing groundwater. In the spring fed solely by deep groundwater, phylum Chloroflexi, class Clostridia, and candidate division OD1 were the major taxa with one phylotype in Euryarchaeota. Less-abundant phylotypes include several minor members from other candidate divisions and one phylotype that was an outlier of candidate division OP3. In the springs fed by the mixture of deep and shallow groundwater, organisms close to the Hydrogenophaga within Betaproteobacteria dominated and coexisted with the deep groundwater community members. The shallow groundwater community thus appears to be similar to those described in other terrestrial serpentinizing sites, whereas the deep community is distinctly different from any other previously described terrestrial serpentinizing community. These unique communities have the potential to yield important insights into the development and survival of life in these early-earth analog environments.

  11. Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem

    PubMed Central

    Suzuki, Shino; Ishii, Shun’ichi; Wu, Angela; Cheung, Andrea; Tenney, Aaron; Wanger, Greg; Kuenen, J. Gijs; Nealson, Kenneth H.

    2013-01-01

    The Cedars, in coastal northern California, is an active site of peridotite serpentinization. The spring waters that emerge from this system feature very high pH, low redox potential, and low ionic concentrations, making it an exceptionally challenging environment for life. We report a multiyear, culture-independent geomicrobiological study of three springs at The Cedars that differ with respect to the nature of the groundwater feeding them. Within each spring, both geochemical properties and microbial diversity in all three domains of life remained stable over a 3-y period, with multiple samples each year. Between the three springs, however, the microbial communities showed considerable differences that were strongly correlated with the source of the serpentinizing groundwater. In the spring fed solely by deep groundwater, phylum Chloroflexi, class Clostridia, and candidate division OD1 were the major taxa with one phylotype in Euryarchaeota. Less-abundant phylotypes include several minor members from other candidate divisions and one phylotype that was an outlier of candidate division OP3. In the springs fed by the mixture of deep and shallow groundwater, organisms close to the Hydrogenophaga within Betaproteobacteria dominated and coexisted with the deep groundwater community members. The shallow groundwater community thus appears to be similar to those described in other terrestrial serpentinizing sites, whereas the deep community is distinctly different from any other previously described terrestrial serpentinizing community. These unique communities have the potential to yield important insights into the development and survival of life in these early-earth analog environments. PMID:24003156

  12. Initial Geochemistry Data of the Lake Ohrid (Macedonia, Albania) DEEP -Site Sediment Record: The ICDP Scopsco Drilling Project

    NASA Astrophysics Data System (ADS)

    Francke, A.; Wagner, B.; Sulpizio, R.; Zanchetta, G.; Leicher, N.; Gromig, R.; Krastel, S.; Lindhorst, K.; Wilke, T.

    2014-12-01

    Ancient lakes, with sediment records spanning >1 million years, are very rare. The UNESCO World Heritage site of Lake Ohrid on the Balkans is thought to be the oldest lake in Europe. With 212 endemic species described to date, it is also a hotspot of evolution. In order to unravel the geological and evolutionary history of the lake, an international group of scientists, conducted a deep drilling campaign in spring 2013 under the umbrella of the ICDP SCOPSCO project (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid). Overall, about 2,100 m of sediments were recovered from four drill sites. At the main drill site (DEEP-site) in central parts of the lake where seismic data indicated a maximum sediment fill of ca. 700 m, a total of more than 1,500 m of sediments were recovered until a penetration depth of 569 m. Currently, core opening, core description, XRF and MSCL scanning, sub-sampling (16 cm resolution), and inorganic and organic geochemical as well as sedimentological analyses of the sediment cores from the DEEP site are in progress at the University of Cologne. Previous studies at Lake Ohrid have shown that interglacial periods are characterized by high TIC and TOC contents, likely associated with high contents of calcite and organic matter in the sediments. In contrast, during glacial periods negligible TIC and low TOC contents correspond to high K counts indicating enhanced supply of clastic material. Similar patterns can be observed in the biogeochemical analyses of the subsamples and in the XRF data of the DEEP site record. Following these variations on a glacial-interglacial time scale, TIC and TOC data obtained from the subsamples and from core catcher samples indicate that the DEEP site sequence provides a 1.2 million year old continuous record of environmental and climatological variability in the Balkan Region. The age control can be further improved by first findings of macroscopic tephra horizons. Peaks in K, Sr, Zr, and magnetic susceptibility might indicate the occurrence of additional cryptotephra layers in the sediment sequence.

  13. Deep intronic GPR143 mutation in a Japanese family with ocular albinism

    PubMed Central

    Naruto, Takuya; Okamoto, Nobuhiko; Masuda, Kiyoshi; Endo, Takao; Hatsukawa, Yoshikazu; Kohmoto, Tomohiro; Imoto, Issei

    2015-01-01

    Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 intron 5 was identified as hemizygous in affected siblings and as heterozygous in the unaffected mother. This mutation was predicted to create a cryptic splice donor site within intron 5 and activate a cryptic acceptor site at 41nt upstream, causing the insertion into the coding sequence of an out-of-frame 41-bp pseudoexon with a premature stop codon in the aberrant transcript, which was confirmed by minigene experiments. This result expands the mutational spectrum of GPR143 and suggests the utility of next-generation sequencing integrated with in silico and experimental analyses for improving the molecular diagnosis of this disease. PMID:26061757

  14. Deep intronic GPR143 mutation in a Japanese family with ocular albinism.

    PubMed

    Naruto, Takuya; Okamoto, Nobuhiko; Masuda, Kiyoshi; Endo, Takao; Hatsukawa, Yoshikazu; Kohmoto, Tomohiro; Imoto, Issei

    2015-06-10

    Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 intron 5 was identified as hemizygous in affected siblings and as heterozygous in the unaffected mother. This mutation was predicted to create a cryptic splice donor site within intron 5 and activate a cryptic acceptor site at 41nt upstream, causing the insertion into the coding sequence of an out-of-frame 41-bp pseudoexon with a premature stop codon in the aberrant transcript, which was confirmed by minigene experiments. This result expands the mutational spectrum of GPR143 and suggests the utility of next-generation sequencing integrated with in silico and experimental analyses for improving the molecular diagnosis of this disease.

  15. Discovery and Biogeochemical Investigation of Chlorinated Industrial Waste in the Deep Ocean

    NASA Astrophysics Data System (ADS)

    Lemkau, K. L.; Kivenson, V. B.; Carmichael, C. A.; Aeppli, C.; Bagby, S. C.; Wentz, K.; Baxter, A.; Paul, B. G.; Pizarro, O.; Yoerger, D.; Reddy, C. M.; Valentine, D. L.

    2014-12-01

    Prior to the 1972 US ban on DDT use, dumping of solid waste from DDT manufacturing was permitted at two locations off the coast of Southern California. Between 1947 and 1961, 37-53 million liters of DDT waste (containing an estimated 350-700 metric tons of DDT) were disposed of at these deep-ocean dumpsites. In 2011 and 2013 we explored these sites with ROV Jason and AUV Sentry, discovering the remains of ~60 barrels scattered across dumpsite 2. Strikingly, many of these barrels were surrounded by distinctive white rings suggestive of microbial activity. We describe our identification and exploration of these sites and present results from chemical analysis of sediment cores collected around waste barrels. DDT and its degradation products (DDE, DDD and DDMU) were detectable at ng to μg per gram concentrations and showed spatial trends with both distance and depth around barrels. Analysis of microbial community DNA provides a first look at the role of microbiological processes in shaping these trends.

  16. Benthic Oxygen Uptake in the Arctic Ocean Margins - A Case Study at the Deep-Sea Observatory HAUSGARTEN (Fram Strait)

    PubMed Central

    Cathalot, Cecile; Rabouille, Christophe; Sauter, Eberhard; Schewe, Ingo; Soltwedel, Thomas

    2015-01-01

    The past decades have seen remarkable changes in the Arctic, a hotspot for climate change. Nevertheless, impacts of such changes on the biogeochemical cycles and Arctic marine ecosystems are still largely unknown. During cruises to the deep-sea observatory HAUSGARTEN in July 2007 and 2008, we investigated the biogeochemical recycling of organic matter in Arctic margin sediments by performing shipboard measurements of oxygen profiles, bacterial activities and biogenic sediment compounds (pigment, protein, organic carbon, and phospholipid contents). Additional in situ oxygen profiles were performed at two sites. This study aims at characterizing benthic mineralization activity along local bathymetric and latitudinal transects. The spatial coverage of this study is unique since it focuses on the transition from shelf to Deep Ocean, and from close to the ice edge to more open waters. Biogeochemical recycling across the continental margin showed a classical bathymetric pattern with overall low fluxes except for the deepest station located in the Molloy Hole (5500 m), a seafloor depression acting as an organic matter depot center. A gradient in benthic mineralization rates arises along the latitudinal transect with clearly higher values at the southern stations (average diffusive oxygen uptake of 0.49 ± 0.18 mmol O2 m-2 d-1) compared to the northern sites (0.22 ± 0.09 mmol O2 m-2 d-1). The benthic mineralization activity at the HAUSGARTEN observatory thus increases southward and appears to reflect the amount of organic matter reaching the seafloor rather than its lability. Although organic matter content and potential bacterial activity clearly follow this gradient, sediment pigments and phospholipids exhibit no increase with latitude whereas satellite images of surface ocean chlorophyll a indicate local seasonal patterns of primary production. Our results suggest that predicted increases in primary production in the Arctic Ocean could induce a larger export of more refractory organic matter due to the longer production season and the extension of the ice-free zone. PMID:26465885

  17. Characterizing the metatranscriptomic profile of archaeal metabolic genes at deep-sea hydrothermal vents in the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Galambos, D.; Reveillaud, J. C.; Anderson, R.; Huber, J. A.

    2017-12-01

    Deep-sea hydrothermal vent systems host a wide diversity of bacteria, archaea and viruses. Although the geochemical conditions at these vents are well-documented, the relative metabolic activity of microbial lineages, especially among archaea, remains poorly characterized. The deep, slow-spreading Mid-Cayman Rise, which hosts the mafic-influenced Piccard and ultramafic-influenced Von Damm vent fields, allows for the comparison of vent sites with different geochemical characteristics. Previous metagenomic work indicated that despite the distinct geochemistry at Von Damm and Piccard, the functional profile of microbial communities between the two sites was similar. We examined relative metabolic gene activity using a metatranscriptomic analysis and observed functional similarity between Von Damm and Piccard, which is consistent with previous results. Notably, the relative expression of the methyl-coenzyme M reductase (mcr) gene was elevated in both vent fields. Additionally, we analyzed the ratio of RNA expression to DNA abundance of fifteen archaeal metagenome-assembled genomes (MAGs) across the two fields. Previous work showed higher archaeal diversity at Von Damm; our results indicate relatively even expression among archaeal lineages at Von Damm. In contrast, we observed lower archaeal diversity at Piccard, but individual archaeal lineages were very highly expressed; Thermoprotei showed elevated transcriptional activity, which is consistent with higher temperatures and sulfur levels at Piccard. At both Von Damm and Piccard, specific Methanococcus lineages were more highly expressed than others. Future analyses will more closely examine metabolic genes in these Methanococcus MAGs to determine why some lineages are more active at a vent field than others. We will conduct further statistical analyses to determine whether significant differences exist between Von Damm and Piccard and whether there are correlations between geochemical metadata and metabolic gene or archaeal MAG transcription. These efforts will lead to a better understanding of the metabolic characteristics of ancient archaea and the extent to which vent geochemistry influences local microbial metabolic profiles.

  18. Influence of habitat heterogeneity on the community structure of deep-sea harpacticoid communities from a canyon and an escarpment site on the continental rise off California

    NASA Astrophysics Data System (ADS)

    Thistle, David; Sedlacek, Linda; Carman, Kevin R.; Barry, James P.

    2017-05-01

    The sediment-covered deep-sea floor was initially thought to be environmentally homogeneous. Recent work has shown otherwise, and deep-sea ecologists have been searching for ecologically important environmental heterogeneities on different spatial and temporal scales, with particular interest in canyons. Here we report results for harpacticoid copepods from a site at 3262 m depth in the axis of Monterey Canyon and one on an escarpment 46 km away at 3090 m depth. Multivariate community analyses revealed significant differences between sites in community structure. Absolute abundance, the ratio of subadult copepodites to adults, species density, the proportion of the harpacticoid individuals that emerged, and the proportion that lived in tubes were significantly lower at the canyon site than at the escarpment site. The proportion of the harpacticoid individuals that belonged to the surface-dweller life-style group was significantly higher than at the escarpment site. These marked differences imply that ecologically important environmental heterogeneities exist. We speculate that differences between the sites in food conditions and sediment grain-size distributions are among them.

  19. Deep Borehole Field Test Research Activities at LBNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterizedmore » by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.« less

  20. Investigation of North Pond crustal fluids by poised potential methods

    NASA Astrophysics Data System (ADS)

    Jones, R. M.; Orcutt, B.

    2017-12-01

    Microbes are present in the deep subsurface but their rates of activity, potential metabolisms and roles in the environment are still largely unknown. The marine deep crustal subsurface accounts for approximately 2.3x1018 m2 of the earth's volume, making this environment potentially significant to earth processes despite low productivity inherent in resource limited conditions. This has implications for geochemical cycling and exploring limits of life, linking to the `follow the energy' approach for defining habitability on earth and further afield. Most resources for life in the marine deep crust originate from rock. One subset of lithotrophic interactions involves direct transfer between electron acceptors and donors embedded in minerals and microbes. In this investigation, poised potential methods such as chronoamperometry were used to investigate mineral-microbe electron transfer interactions in the context of North Pond, a Mid-Atlantic ridge site representative of cool, sediment-covered basalts that make up the majority of the deep marine subsurface. Electrodes were poised at potentials corresponding approximately to particular lithotrophic oxidation reactions to enrich for sub-sections of North Pond deep subsurface fluid communities that were associated with direct electron transfer at these potentials.

  1. Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site.

    PubMed

    Takizawa, M; Straube, W L; Hill, R T; Colwell, R R

    1993-10-01

    The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. The results of hybridization experiments in which DNAs extracted directly from the water overlying sediment core samples were used indicate that the reference site epibenthic community, the disposal site epibenthic community, and the community in a surface sludge plume share many members. Decreased culturability of reference site mixed cultures in the presence of sewage sludge was observed. Thus, the culturable portions of both the autochthonous and allochthonous bacterial communities at the disposal site may be inhibited in situ, the former by sewage sludge and the latter by high pressure and low temperature.

  2. Lunar Roving Vehicle parked in lunar depression on slope of Stone Mountain

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Lunar Roving Vehicle appears to be parked in a deep lunar depression on the slope of Stone Mountain in this photograph of the lunar scene at Station no. 4, taken during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. A sample collection bag is in the right foreground. Note field of small boulders at upper right.

  3. Dive and discover: Expeditions to the seafloor

    NASA Astrophysics Data System (ADS)

    Lawrence, Lisa Ayers

    The Dive and Discover Web site is a virtual treasure chest of deep sea science and classroom resources. The goals of Dive and Discover are to engage students, teachers, and the general public in the excitement of ocean disco very through an interactive educational Web site. You can follow scientists on oceanographic research cruises by reading their daily cruise logs, viewing photos and video clips of the discoveries, and even e-mailing questions to the scientists and crew. WHOI has also included an “Educator's Companion” section with teaching strategies, activities, and assessments, making Dive and Discover an excellent resource for the classroom.

  4. Dive and discover: Expeditions to the seafloor

    NASA Astrophysics Data System (ADS)

    Ayers Lawrence, Lisa

    The Dive and Discover Web site is a virtual treasure chest of deep sea science and classroom resources. The goals of Dive and Discover are to engage students, teachers, and the general public in the excitement of ocean disco very through an interactive educational Web site. You can follow scientists on oceanographic research cruises by reading their daily cruise logs, viewing photos and video clips of the discoveries, and even e-mailing questions to the scientists and crew. WHOI has also included an "Educator's Companion" section with teaching strategies, activities, and assessments, making Dive and Discover an excellent resource for the classroom.

  5. The use of antimicrobial-impregnated PMMA to manage periprosthetic infections: controversial issues and the latest developments.

    PubMed

    Tan, H L; Lin, W T; Tang, T T

    2012-10-01

    Despite improvements in intraoperative antimicrobial procedures, in surgical techniques and in implant design for joint replacement, periprosthetic infection after arthroplasty is still one of the most challenging problems encountered by orthopedic surgeons. Systemic antibiotics are not sufficiently effective to eradicate such deep infections because of the impaired blood circulation and low antibiotic concentration at the implantation site. As a local drug delivery system, antibiotic-impregnated PMMA (polymethylmethacrylate) bone cements have been widely used for prophylaxis or treatment of deep infections after total joint replacement. However, the effectiveness of antibiotic-loaded PMMA in preventing infections after arthroplasty is still controversial. Furthermore, the outcomes of established deep infections treated with this technique are not consistent. The local use of antibiotics has led to the emergence of antibiotic-resistant bacterial strains and has adverse effects on the function of osteogenic cells. Recently, many efforts have been made to identify new antibacterial agents that can be loaded into PMMA. These antimicrobial agents should exhibit good antibacterial activity against antibiotic-resistant strains and should simultaneously enhance osteointegration between the PMMA and the bone tissue. PMMA loaded with chitosan or chitosan derivatives has been demonstrated to induce improved osteogenic activity and to exhibit antibacterial activity in a preclinical study.

  6. Environmental Projects. Volume 8: Modifications of wastewater evaporation ponds

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 45 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of NASA's Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. The Goldstone Complex is managed, technically directed, and operated for NASA by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology in Pasadena, California. Activities at the GDSCC are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards: use of hazardous chemicals, asbestos, and underground storage tanks as well as the generation of hazardous wastes and the disposal of wastewater. Federal, state, and local laws governing the management of hazardous substances, asbestos, underground storage tanks and wastewater disposal have become so complex there is a need to devise specific programs to comply with the many regulations that implement these laws. In support of the national goal of the preservation of the environment and the protection of human health and safety, NASA, JPL, and the GDSCC have adopted a position that their operating installations shall maintain a high level of compliance with these laws. One of the environmental problems at the GDSCC involved four active, operational, wastewater evaporation ponds designed to receive and evaporate sewage effluent from upstream septic tank systems. One pair of active wastewater evaporation ponds is located at Echo Site, while another operational pair is at Mars Site.

  7. Data to Support Development of Geologic Framework Models for the Deep Borehole Field Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Frank Vinton; Kelley, Richard E.

    This report summarizes work conducted in FY2017 to identify and document publically available data for developing a Geologic Framework Model (GFM) for the Deep Borehole Field Test (DBFT). Data was collected for all four of the sites being considered in 2017 for a DBFT site.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Haeryong; Lee, Eunyong; Jeong, YiYeong

    Korea Radioactive-waste Management Corporation (KRMC) established in 2009 has started a new project to collect information on long-term stability of deep geological environments on the Korean Peninsula. The information has been built up in the integrated natural barrier database system available on web (www.deepgeodisposal.kr). The database system also includes socially and economically important information, such as land use, mining area, natural conservation area, population density, and industrial complex, because some of this information is used as exclusionary criteria during the site selection process for a deep geological repository for safe and secure containment and isolation of spent nuclear fuel andmore » other long-lived radioactive waste in Korea. Although the official site selection process has not been started yet in Korea, current integrated natural barrier database system and socio-economic database is believed that the database system will be effectively utilized to narrow down the number of sites where future investigation is most promising in the site selection process for a deep geological repository and to enhance public acceptance by providing readily-available relevant scientific information on deep geological environments in Korea. (authors)« less

  9. Differential effects of deep brain stimulation on verbal fluency.

    PubMed

    Ehlen, Felicitas; Schoenecker, Thomas; Kühn, Andrea A; Klostermann, Fabian

    2014-07-01

    We aimed at gaining insights into principles of subcortical lexical processing. Therefore, effects of deep brain stimulation (DBS) in different target structures on verbal fluency (VF) were tested. VF was assessed with active vs. inactivated DBS in 13 and 14 patients with DBS in the vicinity of the thalamic ventral intermediate nucleus (VIM) and, respectively, of the subthalamic nucleus (STN). Results were correlated to electrode localizations in postoperative MRI, and compared to those of 12 age-matched healthy controls. Patients' VF performance was generally below normal. However, while activation of DBS in the vicinity of VIM provoked marked VF decline, it induced subtle phonemic VF enhancement in the vicinity of STN. The effects correlated with electrode localizations in left hemispheric stimulation sites. The results show distinct dependencies of VF on DBS in the vicinity of VIM vs. STN. Particular risks for deterioration occur in patients with relatively ventromedial thalamic electrodes. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Deep Ocean Circulation and Nutrient Contents from Atlantic-Pacific Gradients of Neodymium and Carbon Isotopes During the Last 1 Ma

    NASA Astrophysics Data System (ADS)

    Piotrowski, A. M.; Elderfield, H.; Howe, J. N. W.

    2014-12-01

    The last few million years saw changing boundary conditions to the Earth system which set the stage for bi-polar glaciation and Milankovich-forced glacial-interglacial cycles which dominate Quaternary climate variability. Recent studies have highlighted the relative importance of temperature, ice volume and ocean circulation changes during the Mid-Pleistocene Transition at ~900 ka (Elderfield et al., 2012, Pena and Goldstein, 2014). Reconstructing the history of global deep water mass propagation and its carbon content is important for fully understanding the ocean's role in amplifying Milankovich changes to cause glacial-interglacial transitions. A new foraminiferal-coating Nd isotope record from ODP Site 1123 on the deep Chatham Rise is interpreted as showing glacial-interglacial changes in the bottom water propagation of Atlantic-sourced waters into the Pacific via the Southern Ocean during the last 1 million years. This is compared to globally-distributed bottom water Nd isotope records; including a new deep western equatorial Atlantic Ocean record from ODP Site 929, as well as published records from ODP 1088 and Site 1090 in the South Atlantic (Pena and Goldstein, 2014), and ODP 758 in the deep Indian Ocean (Gourlan et al., 2010). Atlantic-to-Pacific gradients in deep ocean neodymium isotopes are constructed for key time intervals to elucidate changes in deep water sourcing and circulation pathways through the global ocean. Benthic carbon isotopes are used to estimate deep water nutrient contents of deep water masses and constrain locations and modes of deep water formation. References: Elderfield et al. Science 337, 704 (2012) Pena and Goldstein, Science 345, 318 (2014) Gourlan et al., Quaternary Science Reviews 29, 2484-2498 (2010)

  11. Relative stability of deep- versus shallow-side bone levels in angular proximal infrabony defects.

    PubMed

    Heins, P; Hartigan, M; Low, S; Chace, R

    1989-01-01

    The relative changes with time, in the position of the coronal margin of the mesial and distal bone of proximal, angular infrabony defects, were investigated. Tracings of the radiographs of 51 mandibular posterior sites, treated by flap curettage, with a mean post-surgical duration of 11.8 years, were measured using a digitizer pad. The group consisting of shallow-side sites (N = 51), exhibited no significant change in the bone height with time; however, there was a significant decrease in bone height in the deep-side group (N = 51). The mean area of proximal bone decreased significantly with time. The defects were divided into early (N = 25) and advanced (N = 26) angular groups, and then into deep- and shallow-side subgroups. In the early defect group, there was a significant decrease in the mean bone height of the deep-side subgroup. There were no differences in the changes of mean bone level of the remaining 3 subgroups with time. There was no correlation between changes in bone levels of adjacent mesial and distal sides of angular defects with time (r = 0.27). There was no difference between the deep- and shallow-side groups in the number of sites which gained, lost or evidenced no change in bone height. In the study population, the bone height of 73% of the deep-side, and 84% of the shallow-side sites was either unchanged or in a more coronal position.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. The intensification of deep-water mass changes in the deep Atlantic Ocean throughout the Mid-Pleistocene climate transition

    NASA Astrophysics Data System (ADS)

    Poirier, R. K.; Billups, K.

    2012-12-01

    We examine the deep-water hydrography at Ocean Drilling Project (ODP) Site 1063 (subtropical North Atlantic, ~4600 meter water depth) using high-resolution benthic stable isotope (δ18O, δ13C) and grain size (% coarse, % Sortable Silt - SS, SS mean diameter) analyses from ~490 to 740 ka. The benthic foraminiferal δ13C record from Site 1063 provides a proxy for changes in the relative flux of lower North Atlantic Deep Water (NADW) through time. This record will refine the timing of increases in the formation of the densest components of NADW on the orbital and millennial-scale. We explore whether or not grain size analyses provide a proxy for changes in the relative velocity of the deep current. The new stable isotope data from Site 1063, when combined with the records of Poli et al. (2000), Ferretti et al. (2005), and Billups et al. (2011), tuned to the global benthic isotope stack (LR05) of Liesicki and Raymo (2004), provides a complete deep water record spanning Marine Isotope Stage (MIS) 25 to MIS 8 (~1020 to ~240 ka). Compiling published records from 16 additional sites, we use the Ocean Data View (ODV) program (Schlitzer, 2012) to map deep-water mass distributions through time. Results reveal an increasing distribution and influence of the NADW in relation to the Antarctic Bottom Water mass within interglacial periods beginning at MIS 15 continuing though the end of the Site 1063 record within MIS 9. Preliminary grain size analyses over a short interval of time reveal regular high frequency variations on the millennial scale. We anticipate having complete, high-resolution stable isotope and grain size records to discuss the hydrographic changes within the MIS 16/15 glacial/interglacial transition, as well as throughout the Mid-Pleistocene transition (MPT).

  13. Temperature Limit of the Deep Subseafloor Biosphere in the Nankai Trough Subduction Zone off Cape Muroto (IODP T-Limit Expedition 370)

    NASA Astrophysics Data System (ADS)

    Morono, Y.; Hauer, V. B.; Inagaki, F.; Kubo, Y.; Maeda, L.; Scientists, E.

    2017-12-01

    Expedition 370 of the International Ocean Discovery Program (IODP) aimed to explore the limits of life in the deep subseafloor biosphere at a location where elevated heat flow lets temperature increase with sediment depth beyond the known maximum of microbial life ( 120°C) at 1.2 km below the seafloor. Such conditions are met in the protothrust zone of the Nankai Trough off Cape Muroto, Japan, where Site C0023 was established in the vicinity of ODP Sites 808 and 1174 at a water depth of 4776 m using the drilling vessel DV Chikyu. Hole C0023A was cored down to a total depth of 1180 meters below seafloor, offshore sampling and research was combined with simultaneous shore-based investigations at the Kochi Core Center (KCC), and long-term temperature observations were started (Heuer et al., 2017). The primary scientific objectives of Expedition 370 are (a) to detect and investigate the presence or absence of life and biological processes at the biotic-abiotic transition of the deep subseafloor with unprecedented analytical sensitivity and precision; (b) to comprehensively study the factors that control biomass, activity, and diversity of microbial communities; and (c) to elucidate if continuous or episodic flow of fluids containing thermogenic and/or geogenic nutrients and energy substrates support subseafloor microbial communities in the Nankai Trough accretionary complex (Hinrichs et al., 2016). This contribution will highlight the scientific approach of our field-work and preliminary expedition results by shipboard and shorebased activities. Hinrichs K-U, Inagaki F, Heuer VB, Kinoshita M, Morono Y, Kubo Y (2016) Expedition 370 Scientific Prospectus: T-Limit of the Deep Biosphere off Muroto (T-Limit). International Ocean Discovery Program. http://dx.doi.org/10.14379/iodp.sp.370.2016 Heuer VB, Inagaki F, Morono Y, Kubo Y, Maeda L, the Expedition 370 Scientists (2017) Expedition 370 Preliminary Report: Temperature Limit of the Deep Biosphere off Muroto. International Ocean Discovery Program. http://dx.doi.org/10.14379/iodp.pr.370.2017

  14. The Effects of Natural Iron Fertilisation on Deep-Sea Ecology: The Crozet Plateau, Southern Indian Ocean

    PubMed Central

    Wolff, George A.; Billett, David S. M.; Bett, Brian J.; Holtvoeth, Jens; FitzGeorge-Balfour, Tania; Fisher, Elizabeth H.; Cross, Ian; Shannon, Roger; Salter, Ian; Boorman, Ben; King, Nicola J.; Jamieson, Alan; Chaillan, Frédéric

    2011-01-01

    The addition of iron to high-nutrient low-chlorophyll (HNLC) oceanic waters stimulates phytoplankton, leading to greater primary production. Large-scale artificial ocean iron fertilization (OIF) has been proposed as a means of mitigating anthropogenic atmospheric CO2, but its impacts on ocean ecosystems below the photic zone are unknown. Natural OIF, through the addition of iron leached from volcanic islands, has been shown to enhance primary productivity and carbon export and so can be used to study the effects of OIF on life in the ocean. We compared two closely-located deep-sea sites (∼400 km apart and both at ∼4200 m water depth) to the East (naturally iron fertilized; +Fe) and South (HNLC) of the Crozet Islands in the southern Indian Ocean. Our results suggest that long-term geo-engineering of surface oceanic waters via artificial OIF would lead to significant changes in deep-sea ecosystems. We found that the +Fe area had greater supplies of organic matter inputs to the seafloor, including polyunsaturated fatty acid and carotenoid nutrients. The +Fe site also had greater densities and biomasses of large deep-sea animals with lower levels of evenness in community structuring. The species composition was also very different, with the +Fe site showing similarities to eutrophic sites in other ocean basins. Moreover, major differences occurred in the taxa at the +Fe and HNLC sites revealing the crucial role that surface oceanic conditions play in changing and structuring deep-sea benthic communities. PMID:21695118

  15. Transport of sludge-derived organic pollutants to deep-sea sediments at deep water dump site 106

    USGS Publications Warehouse

    Takada, H.; Farrington, J.W.; Bothner, Michael H.; Johnson, C.G.; Tripp, B.W.

    1994-01-01

    Linear alkylbenzenes (LABs), coprostanol and epi-coprostanol, were detected in sediment trap and bottom sediment samples at the Deep Water Dump Site 106 located 185 km off the coast of New Jersey, in water depths from 2400 to 2900 m. These findings clearly indicate that organic pollutants derived from dumped sludge are transported through the water column and have accumulated on the deep-sea floor. No significant difference in LABs isomeric composition was observed among sludge and samples, indicating little environmental biodegradation of these compounds. LABs and coprostanol have penetrated down to a depth of 6 cm in sediment, indicating the mixing of these compounds by biological and physical processes. Also, in artificially resuspended surface sediments, high concentrations of LABs and coprostanols were detected, implying that sewage-derived organic pollutants initially deposited on the deep-sea floor can be further dispersed by resuspension and transport processes. Small but significant amounts of coprostanol were detected in the sediment from a control site at which no LABs were detected. The coprostanol is probably derived from feces of marine mammals and sea birds and/or from microbial or geochemical transformations of cholesterol. Polcyclic aromatic hydrocarbons (PAHs) in sediment trap samples from the dump site were largely from the sewage sludge and had a mixed petroleum and pyrogenic composition. In contrast, PAHs in sediments in the dump site were mainly pyrogenic; contributed either from sewage sludge or from atmospheric transport to the overlying waters. & 1994 American Chemical Society.

  16. Environmental projects. Volume 15: Environmental assessment: Proposed 1-megawatt radar transmitter at the Mars site

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 64.5 km (40 mi) north of Barstow, California. and about 258 km (160 mi) northeast of Pasadena, California, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network (DSN), one of the world's larger and more sensitive scientific telecommunications and radio navigation networks. The Goldstone Complex is managed, technically directed, and operated for NASA by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology in Pasadena, California. Activities at the GDSCC support the operation of six parabolic dish antennas located at five separate sites called Deep Space Stations (DSS's). Four sites, named Echo, Mars, Uranus, and Apollo, are operational for space missions, while the remaining Venus Site is devoted to research and development activities. The Mars Site at the GDSCC contains two antennas: the Uranus antenna (DSS 15, 34 m) and the Mars antenna (DSS 14, 70 m). This present volume deals solely with the DSS-14 Mars antenna. The Mars antenna not only can act as a sensitive receiver to detect signals from spacecraft, but it also can be used in radar astronomy as a powerful transmitter to send out signals to probe the solar system. At present, the Mars antenna operates as a continuous-wave microwave system at a frequency of 8.51 GHz at a power level of 0.5 MW. JPL has plans to upgrade the Mars antenna to a power level of 1 MW. Because of the anticipated increase in the ambient levels of radio frequency radiation (RFR), JPL retained Battelle Pacific Northwest Laboratories (BPNL), Richland, Washington, to conduct an environmental assessment with respect to this increased RFR. This present volume is a JPL-expanded version of the BPNL report titled Environmental Assessment of the Goldstone Solar System Radar, which was submitted to JPL in Nov. 1991. This BPNL report concluded that the operation of the upgraded Mars antenna at the GDSCC, with its increased potential electromagnetic radiation hazards and interferences, would have no significantly adverse biological, physical, or socioeconomic effects on the environment. Thus, a Finding of No Significant Impact (FONSI) is appropriate in accordance with local, State, Federal, and NASA environmental rules and regulations.

  17. Tackling the Challenge of Deep Vadose Zone Remediation at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Morse, J. G.; Wellman, D. M.; Gephart, R.

    2010-12-01

    The Central Plateau of the Hanford Site in Washington State contains some 800 waste disposal sites where 1.7 trillion liters of contaminated water was once discharged into the subsurface. Most of these sites received liquids from the chemical reprocessing of spent uranium fuel to recover plutonium. In addition, 67 single shell tanks have leaked or are suspected to have leaked 3.8 million liters of high alkali and aluminate rich cesium-contaminated liquids into the sediment. Today, this inventory of subsurface contamination contains an estimated 550,000 curies of radioactivity and 150 million kg (165,000 tons) of metals and hazardous chemicals. Radionuclides range from mobile 99Tc to more immobilized 137Cs, 241Am, uranium, and plutonium. A significant fraction of these contaminants likely remain within the deep vadose zone. Plumes of groundwater containing tritium, nitrate, 129I and other contaminants have migrated through the vadose zone and now extend outward from the Central Plateau to the Columbia River. During most of Hanford Site history, subsurface studies focused on groundwater monitoring and characterization to support waste management decisions. Deep vadose zone studies were not a priority because waste practices relied upon that zone to buffer contaminant releases into the underlying aquifer. Remediation of the deep vadose zone is now central to Hanford Site cleanup because these sediments can provide an ongoing source of contamination to the aquifer and therefore to the Columbia River. However, characterization and remediation of the deep vadose zone pose some unique challenges. These include sediment thickness; contaminant depth; coupled geohydrologic, geochemical, and microbial processes controlling contaminant spread; limited availability and effectiveness of traditional characterization tools and cleanup remedies; and predicting contaminant behavior and remediation performance over long time periods and across molecular to field scales. The U.S Department of Energy recognizes these challenges and is committed to a sustained, focused effort of continuing to apply existing technologies where feasible while investing and developing in new innovative, field-demonstrated capabilities supporting longer-term basic and applied research to establish the technical underpinning for solving intractable deep vadose zone problems and implementing final remedies. This approach will rely upon Multi-Project Teams focusing on coordinated projects across multiple DOE offices, programs, and site contractors plus the facilitation of basic and applied research investments through implementing a Deep Vadose Zone Applied Field Research Center and other scientific studies.

  18. Design, construction, and operation of an actively controlled deep-sea CO2 enrichment experiment using a cabled observatory system

    NASA Astrophysics Data System (ADS)

    Kirkwood, William J.; Walz, Peter M.; Peltzer, Edward T.; Barry, James P.; Herlien, Robert A.; Headley, Kent L.; Kecy, Chad; Matsumoto, George I.; Maughan, Thom; O'Reilly, Thomas C.; Salamy, Karen A.; Shane, Farley; Brewer, Peter G.

    2015-03-01

    We describe the design, testing, and performance of an actively controlled deep-sea Free Ocean CO2 Enrichment (dp-FOCE) system for the execution of seafloor experiments relating to the impacts of ocean acidification on natural ecosystems. We used the 880 m deep MARS (Monterey Accelerated Research System) cable site offshore Monterey Bay, California for this work, but the Free Ocean CO2 Enrichment (FOCE) system concept is designed to be scalable and can be modified to be used in a wide variety of ocean depths and locations. The main frame is based on a flume design with active thruster control of flow and a central experimental chamber. The unit was allowed to free fall to the seafloor and connected to the cable node by remotely operated vehicle (ROV) manipulation. For operation at depth we designed a liquid CO2 containment reservoir which provided the CO2 enriched working fluid as ambient seawater was drawn through the reservoir beneath the more buoyant liquid CO2. Our design allowed for the significant lag time associated with the hydration of the dissolved CO2 molecule, resulting in an e-folding time, τ, of 97 s between fluid injection and pH sensing at the mean local T=4.31±0.14 °C and pHT of 7.625±0.011. The system maintained a pH offset of 0.4 pH units compared to the surrounding ocean for a period of 1 month. The unit allows for the emplacement of deep-sea animals for testing. We describe the components and software used for system operation and show examples of each. The demonstrated ability for active control of experimental systems opens new possibilities for deep-sea biogeochemical perturbation experiments of several kinds and our developments in open source control systems software and hardware described here are applicable to this end.

  19. Applications for evaluation of physical properties - An example of siliceous rock permeability -

    NASA Astrophysics Data System (ADS)

    Ojima, T.

    2015-12-01

    ODP Leg. 186, two sites (Site 1150 and Site 1151) were drilled on the continental slope of the deep-sea forearc basin of northern Japan. Diatomaceous sediments were recovered Site 1150 and Site 1151, and the depth of each site is 1181.60 mbsf and 1113.60 mbsf, respectively. This area is under the influence of the Oyashio current and is one of the highly bio-productive regions of the North Pacific Ocean (Motoyama et al., 2004). The combination of high productivity and active tectonic deformation that often caused high rate accumulating of fossil and organic rich sediments. Likewise, IODP Exp. 341 was implemented on off South Alaska. Pelagic and MTD 's layer were recognized with IRD(Ice Rafted Debris). In Tohoku, The onboard results of porosity measurements show high value (50-70 %) down to 1000 mbsf, and obviously higher than nearby subduction trench, Nankai Trough (Taylor and Fisher, 1993). There is a possibility that diatomaceous shell keep a frame structure from effective stress and load pressure. On another drilling site result, DSDP Leg. 19 located 60 km to the north of ODP sites, was reported high value of porosity, but recognized only shallow range (>500 mbsf) (Shephard and Bryant, 1980). Also, South Alaska sediments show high sedimentation rate and cyclic MTD's Layer. Permeability was lower than Tohoku sediments in spite of upper depth. We focused on the relationships between physical property, microstructure, and logging data at deep range(-1000 mbsf). Logging data were collected using wireline logging (Sacks and Suyehiro, 2003; IODP Prel. Rept., 341., 2014). Based on these results, it is expected that microstructure and logging can be integrated into a general model of core-log correlation. In this presentation, We show results of microstructure using SEM, measured physical properties, and wireline logging data, respectively.

  20. Systematics of Alkali Metals in Pore Fluids from Serpentinite Mud Volcanoes: IODP Expedition 366

    NASA Astrophysics Data System (ADS)

    Wheat, C. G.; Ryan, J.; Menzies, C. D.; Price, R. E.; Sissmann, O.

    2017-12-01

    IODP Expedition 366 focused, in part, on the study of geo­chemical cycling, matrix alteration, material and fluid transport, and deep biosphere processes within the subduction channel in the Mariana forearc. This was accomplished through integrated sampling of summit and flank regions of three active serpentinite mud volcanoes (Yinazao (Blue Moon), Asùt Tesoro (Big Blue), and Fantangisña (Celestial) Seamounts). These edifices present a transect of depths to the Pacific Plate, allowing one to characterize thermal, pressure and compositional effects on processes that are associated with the formation of serpentinite mud volcanoes and continued activity below and within them. Previous coring on ODP Legs 125 and 195 at two other serpentinite mud volcanoes (Conical and South Chamorro Seamounts) and piston, gravity, and push cores from several other Mariana serpentinite mud volcanoes add to this transect of sites where deep-sourced material is discharged at the seafloor. Pore waters (149 samples) were squeezed from serpentinite materials to determine the composition of deep-sourced fluid and to assess the character, extent, and effect of diagenetic reactions and mixing with seawater on the flanks of the seamounts as the serpentinite matrix weathers. In addition two Water Sampler Temperature Tool (WSTP) fluid samples were collected within two of the cased boreholes, each with at least 30 m of screened casing that allows formations fluids to discharge into the borehole. Shipboard results for Na and K record marked seamount-to-seamount differences in upwelling summit fluids, and complex systematics in fluids obtained from flank sites. Here we report new shore-based Rb and Cs measurements, two elements that have been used to constrain the temperature of the deep-sourced fluid. Data are consistent with earlier coring and drilling expeditions, resulting in systematic changes with depth (and by inference temperature) to the subduction channel.

  1. A non-contact technique for measuring eccrine sweat gland activity using passive thermal imaging.

    PubMed

    Krzywicki, Alan T; Berntson, Gary G; O'Kane, Barbara L

    2014-10-01

    An approach for monitoring eccrine sweat gland activity using high resolution Mid-Wave Infrared (MWIR) imaging (3-5 μm wave band) is described. This technique is non-contact, passive, and provides high temporal and spatial resolution. Pore activity was monitored on the face and on the volar surfaces of the distal and medial phalanges of the index and middle fingers while participants performed a series of six deep inhalation and exhalation exercises. Two metrics called the Pore Activation Index (PAI) and Pore Count (PC) were defined as size-weighted and unweighted measures of active sweat gland counts respectively. PAI transient responses on the finger tips were found to be positively correlated to Skin Conductance Responses (SCRs). PAI responses were also observed on the face, although the finger sites appeared to be more responsive. Results indicate that thermal imaging of the pore response may provide a useful, non-contact, correlate measure for electrodermal responses recorded from related sites. Published by Elsevier B.V.

  2. 75 FR 78236 - Lock+TM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ...-foot-wide, 20-foot-deep excavated power canal; (2) a 55-foot-long, 65-foot-wide, 8-foot-deep excavated... 18 CFR 385.2001(a)(1)(iii) and the instructions on the Commission's Web site http://www.ferc.gov/docs... Web site at http://www.ferc.gov/docs-filing/elibrary.asp . Enter the docket number (P-13743-000, 13753...

  3. Alaskan Arctic Soils: Relationship between Microbial Carbon Usage and Soil Composition

    NASA Astrophysics Data System (ADS)

    Li, H.; Ziolkowski, L. A.

    2015-12-01

    Carbon stored in Arctic permafrost carbon is sensitive to climate change. Microbes are known to degrade Arctic soil organic carbon (OC) and potentially release vast quantitates of CO2 and CH4. Previously, it has been shown that warming of Arctic soils leads to microbes respiring older carbon. To examine this process, we studied the microbial carbon usage and its relationship to the soil OC composition in active layer soils at five locations along a latitudinal transect on the North Slope of Alaska using the compound specific radiocarbon signatures of the viable microbial community using phospholipid fatty acids (PLFA). Additional geochemical parameters (C/N, 13C, 15N and 14C) of bulk soils were measured. Overall there was a greater change with depth than location. Organic rich surface soils are rich in vegetation and have high PLFA based cell densities, while deeper in the active layer geochemical parameters indicated soil OC was degraded and cell densities decreased. As expected, PLFA indicative of Fungi and Protozoa species dominated in surface soils, methyl-branched PLFAs, indicative of bacterial origin, increased in deeper in the active layer. A group of previously unreported PLFAs, believed to correlate to anaerobic microbes, increased at the transition between the surface and deep microbial communities. Cluster analysis based on individual PLFAs of samples confirmed compositional differences as a function of depth dominated with no site to site differences. Radiocarbon data of soil OC and PLFA show the preferential consumption of younger soil OC by microbes at all sites and older OC being eaten in deep soils. However, in deeper soil, where the C/N ratio suggests lower bioavailability, less soil OC was incorporated into the microbes as indicating by greater differences between bulk and PLFA radiocarbon ages.

  4. Comparisons of shear-wave slowness in the Santa Clara Valley, California using blind interpretations of data from invasive and noninvasive methods

    USGS Publications Warehouse

    Boore, D.M.; Asten, M.W.

    2008-01-01

    Many groups contributed to a blind interpretation exercise for the determination of shear-wave slowness beneath the Santa Clara Valley. The methods included invasive methods in deep boreholes as well as noninvasive methods using active and passive sources, at six sites within the valley (with most investigations being conducted at a pair of closely spaced sites near the center of the valley). Although significant variability exists between the models, the slownesses from the various methods are similar enough that linear site amplifications estimated in several ways are generally within 20% of one another. The methods were able to derive slownesses that increase systematically with distance from the valley edge, corresponding to a tendency for the sites to be underlain by finer-grained materials away from the valley edge. This variation is in agreement with measurements made in the boreholes at the sites.

  5. Epidemiology of burns caused by moxibustion in Korea.

    PubMed

    Yoon, Cheonjae; Cho, Young Soon; Park, Seungchoon; Chung, Sung Phil; Choi, Young Hwan

    2016-11-01

    Moxibustion, a traditional Chinese treatment that uses dried Artemisia argyi, is a common cause of burns treated in Korean hospitals. We aimed to examine the characteristics of moxibustion-induced burns. This retrospective study examined the records of 59 patients who were treated for moxibustion-induced burns (April 2014-October 2015). All patients completed a questionnaire regarding their general characteristics and moxibustion use. The patients included 16 men and 43 women (average age: 49.1 years, 68 burn sites). Superficial second-degree burns were present at 21 sites, deep second- or third-degree burns at 44 sites, and unknown burns at 3 sites. The most common sites were the lower extremities, abdomen, and upper extremities. The most common practitioners were the patients (27/59, 45.7%) and Oriental medicine practitioners (23/59, 38.9%). The most common locations were the patient's home, Oriental medicine clinic, and moxibustion clinic. The most common reason for moxibustion was pain. Only the burn site was significantly associated with burn depth, and non-abdominal sites were 9.37-fold more likely to involve deep burns (vs. abdominal sites). Korean patients routinely undergo moxibustion, and care must be taken when using moxibustion at non-abdominal sites, due to the risk of deep burns. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  6. How was the deep scattering layers (DSLs) influenced by the Deepwater Horizon Spill? - Evidences from 10-year NTL oil/gas ADCP backscattering data collected at the spill site

    NASA Astrophysics Data System (ADS)

    Wang, Z.; DiMarco, S. F.; Socolofsky, S. A.

    2016-02-01

    There are suspicions that the 2010 DWH oil spill might have affected the biomass in the deep scattering layers (DSLs), at least during the period in which the spill was active and oil dispersants were used. The acoustic backscattering intensity (ABI) data from acoustic Doppler current profilers (ADCPs) have been shown to detect and monitor the spatial and temporal evolution of DSLs in many oceans. Since 2005 with the issue of a Notice of Lessees and Operators (NTL), namely, NTL No. 2005-G5, large amounts of continuous ADCP data have been collected by oil/gas companies in the Northern Gulf at more than 100 stations and made publically available via the National Data Buoyancy Center (NDBC) website. NTL ADCPs data have also been collected prior to, during and after the DWH spill at the spill site. The ADCP with station # 42872 was mounted on the DWH rig and collected ABI data from 2005 until the rig sank in April 2010. ADCPs with station # 42916 and 42868 were then moved into the spill region and collected ABI data during and after the spill. The deep scattering layers were well resolved by those 38 kHz with vertical range of 1000m. The SSL provides key food for many large sea-animals, including whales, dolphins, billfishes and giant tunas and therefore have important roles in the ecosystem of the deep Gulf. By carefully applying calibrations and corrections, the ABI data can be converted to biologically meaningful mean volume backscattering strength (MVBS) and areal backscattering strength (ABS). This is an effective and powerful way to study the pelagic communality dynamics in the deep scattering layers and to investigate greater details that were previously inaccessible. Utilizing the NTL data collected during the past 10 years around the DWH site, we investigate the spill influence on deep scattering layers by comparing the biomass pre- and post BP spill and comparing biomass variations in areas with and without oil contamination. Preliminary results have shown that there is a clear decrease trend of relative biomass in the deep scattering layer in 2010 after the spill. We also find extremely dense scattering patches at the depth of DSLs, which appear only during the spill and are likely formed by spill materials. Statistical analysis on the layer depth, intensity, and thickness and their variations over time are also investigated.

  7. Status of Progress Made Toward Safety Analysis and Technical Site Evaluations for DOE Managed HLW and SNF.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevougian, S. David; Stein, Emily; Gross, Michael B

    The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) is conducting research and development (R&D) on generic deep geologic disposal systems (i.e., repositories). This report describes specific activities in FY 2016 associated with the development of a Defense Waste Repository (DWR)a for the permanent disposal of a portion of the HLW and SNF derived from national defense and research and development (R&D) activities of the DOE.

  8. A 3 Kilometer Deep Window on the Interior of the Modern Nankai Accretionary Wedge: First Results from IODP Expedition 348

    NASA Astrophysics Data System (ADS)

    Tobin, Harold; Hirose, Takehiro; Demian, Saffer

    2014-05-01

    IODP Site C0002 at the Nankai Trough is now the deepest hole ever drilled in scientific ocean drilling, at 3058 meters below sea floor so far, and the first hole anywhere to access the deep interior of an active convergent margin. Site C0002 is part of the NanTroSEIZE transect off the Kii-Kumano region of Japan, imaged with 3D seismic reflection and drilled on a series of Chikyu expeditions to shed light on the processes around the up-dip edge of seismogenic locking and slip. At Site C0002, riser drilling has passed through the approximately 900 m thick Kumano forearc basin and pierced the underlying Miocene age accretionary wedge. Limited coring, extensive LWD logging, and continuous observations on drill cuttings reveal the materials and processes in the deep interior of the inner wedge. Predominantly fine-grained mudstones with common turbiditic sands were encountered, complexly deformed and exhibiting well-developed scaly clay fabrics, variable bedding dip with very steep dips prevailing, and veins that become more abundant with depth. The biostratigraphic age of the sediments in the lowermost part of the hole is thought to be ~ 9 - 11 Ma, with an assumed age of accretion of 3-5 Ma. Physical properties suggest that the inner wedge from 1600 - 3000 mbsf has quite homogeneous properties. Evidence from borehole logging, drilling parameters, and samples for the state of stress and pore pressure in this never-before accessed tectonic environment will be presented.

  9. A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation.

    PubMed

    Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam

    2013-09-01

    A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro .

  10. A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation

    PubMed Central

    Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam

    2014-01-01

    A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro. PMID:24678126

  11. Profiles, sources, and transport of polycyclic aromatic hydrocarbons in soils affected by electronic waste recycling in Longtang, south China.

    PubMed

    Huang, De-Yin; Liu, Chuan-Ping; Li, Fang-Bai; Liu, Tong-Xu; Liu, Cheng-Shuai; Tao, Liang; Wang, Yan

    2014-06-01

    We studied the profiles, possible sources, and transport of polycyclic aromatic hydrocarbons (PAHs) in soils from the Longtang area, which is an electronic waste (e-waste) recycling center in south China. The sum of 16 PAH concentrations ranged from 25 to 4,300 ng/g (dry weight basis) in the following order: pond sediment sites (77 ng/g), vegetable fields (129 ng/g), paddy fields (180 ng/g), wastelands (258 ng/g), dismantling sites (678 ng/g), and former open burning sites (2,340 ng/g). Naphthalene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[b]fluoranthene were the dominant PAHs and accounted for approximately 75 % of the total PAHs. The similar composition characteristics of PAHs and the significant correlations among individual, low molecular weight, high molecular weight, and total PAHs were found in all six sampling site types, thus indicating that PAHs originated from similar sources. The results of both isomeric ratios and principal component analyses confirmed that PAHs were mainly derived from the incomplete combustion of e-waste. The former open burning sites and dismantling sites were the main sources of PAHs. Soil samples that were taken closer to the point sources had high PAH concentrations. PAHs are transported via different soil profiles, including those in agricultural fields, and have been detected not only in 0- to 40-cm-deep soil but also in 40 cm to 80 cm-deep soil. PAH concentrations in soils in Longtang have been strongly affected by primitive e-waste recycling, particularly by former open burning activities.

  12. Site Formation Processes and Hunter-Gatherers Use of Space in a Tropical Environment: A Geo-Ethnoarchaeological Approach from South India

    PubMed Central

    Friesem, David E.; Lavi, Noa; Madella, Marco; Ajithprasad, P.; French, Charles

    2016-01-01

    Hunter-gatherer societies have distinct social perceptions and practices which are expressed in unique use of space and material deposition patterns. However, the identification of archaeological evidence associated with hunter-gatherer activity is often challenging, especially in tropical environments such as rainforests. We present an integrated study combining ethnoarchaeology and geoarchaeology in order to study archaeological site formation processes related to hunter-gatherers’ ways of living in tropical forests. Ethnographic data was collected from an habitation site of contemporary hunter-gatherers in the forests of South India, aimed at studying how everyday activities and way of living dictate patterns of material deposition. Ethnoarchaeological excavations of abandoned open-air sites and a rock-shelter of the same group located deep in the forests, involved field observations and sampling of sediments from the abandoned sites and the contemporary site. Laboratory analyses included geochemical analysis (i.e., FTIR, ICP-AES), phytolith concentration analysis and soil micromorphology. The results present a dynamic spatial deposition pattern of macroscopic, microscopic and chemical materials, which stem from the distinctive ways of living and use of space by hunter-gatherers. This study shows that post-depositional processes in tropical forests result in poor preservation of archaeological materials due to acidic conditions and intensive biological activity within the sediments. Yet, the multiple laboratory-based analyses were able to trace evidence for activity surfaces and their maintenance practices as well as localized concentrations of activity remains such as the use of plants, metals, hearths and construction materials. PMID:27783683

  13. Differential Impact of Passive versus Active Irrigation on Urban Forests in Semiarid Regions

    NASA Astrophysics Data System (ADS)

    Luketich, A. M.; Papuga, S. A.; Crimmins, M.

    2017-12-01

    The network of trees within a city provides a variety of ecosystem services such as flood mitigation and reduced heat island effects. To maintain these `urban forests' in semiarid cities, the use of scarce water resources for irrigation is often necessary. Rainwater harvesting has been widely adopted in Tucson, AZ as a sustainable water source for trees, but the effects of passive water harvesting versus active irrigation on tree canopy productivity and microclimate is largely unquantified. We hypothesize that regardless of whether trees are passively or actively irrigated, deep soil moisture will be elevated compared to natural conditions; however, we expect that increased deep soil moisture conditions will be more frequent using active irrigation. Additionally, we hypothesize that similar to natural settings, urban trees will need access deep soil moisture for transpiration. Therefore, we expect that actively irrigated trees will have more periods of transpiration than passively irrigated trees and that this will result in elevated and sustained phenological activity. We also expect that this difference will translate to more ecosystem services for a longer portion of the year in actively irrigated urban forests. Here, we compare key ecohydrological indicators of passive and active irrigation systems at two sites in Tucson, AZ. Our measurements include soil moisture, transpiration, air temperature, soil temperature, below- and within- canopy temperatures, and canopy phenology. Our first year of results suggest there are differences in transpiration, canopy greening and microclimate between the two irrigation techniques and that the magnitude of these differences are highly seasonal. This research can help to improve understanding of the practices and function of green infrastructure in semiarid cities and inform models that attempt to aggregate the influence of these urban forests for understanding watershed management strategies.

  14. NEHRP soil classifications for estimating site-dependent seismic coefficients in the Upper Mississippi Embayment

    USGS Publications Warehouse

    Street, R.; Woolery, E.W.; Wang, Z.; Harris, J.B.

    2001-01-01

    Local soil conditions have a profound influence on the characteristics of ground shaking during an earthquake. Exceptionally deep soil deposits, on the order of 100-1000 m deep, are found in the Upper Mississippi Embayment of the central United States. Shear waves (SH) from earthquakes in the New Madrid seismic zone are expected to be strongly affected by the sharp impedance contrasts at the bedrock/sediment interface, attenuation of seismic waves in the soil column, and the SH-wave velocities of the more poorly consolidated near-surface (???50 m) soils. SH-wave velocities of the near-surface soils at nearly 400 sites in the Upper Mississippi Embayment were determined using conventional seismic SH-wave refraction and reflection techniques. Based on the average SH-wave velocities of the upper 30 m of the soils, sites in the Mississippi River floodplain portion of the study area are predominantly classified as Site Class D (180-360 m/s) in accordance with the 1997 NEHRP provisions. Sites away from the active floodplains in western Kentucky and western Tennessee, the SH-wave velocities of the upper 30 m of soils typically ranged from mid-200 to mid-300 m/s. Several sites in western Kentucky had averaged SH-wave velocities greater than 360 m/s, thereby qualifying them as Site Class C (360-760 m/s) in accordance with the 1997 NEHRP provisions. One dimensional site effects, including amplification and dynamic site period, were calculated for a representative suite of sites across the Upper Mississippi Embayment at latitude ?? 38.5??. Although seismic attenuation is greater in the Mississippi River floodplain (i.e. thicker, lower velocity material), the site effects tend to be greater than in the uplands of western Tennessee because of larger impedance contrasts within the near-surface soils. ?? 2001 Elsevier Science B.V. All rights reserved.

  15. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.

    2013-09-01

    A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This ismore » an interim report including about 2 years of post-desiccation monitoring data.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aurelio, Mario; Taguibao, Kristine Joy; Vargas, Edmundo

    In the selection of sites for disposal facilities involving low- and intermediate-level radioactive waste (LILW), International Atomic Energy Agency (IAEA) recommendations require that 'the region in which the site is located shall be such that significant tectonic and surface processes are not expected to occur with an intensity that would compromise the required isolation capability of the repository'. Evaluating the appropriateness of a site therefore requires a deep understanding of the geological and tectonic setting of the area. The Philippines sits in a tectonically active region frequented by earthquakes and volcanic activity. Its highly variable morphology coupled with its locationmore » along the typhoon corridor in the west Pacific region subjects the country to surface processes often manifested in the form of landslides. The Philippine LILW near surface repository project site is located on the north eastern sector of the Island of Luzon in northern Philippines. This island is surrounded by active subduction trenches; to the east by the East Luzon Trough and to the west by the Manila Trench. The island is also traversed by several branches of the Philippine Fault System. The Philippine LILW repository project is located more than 100 km away from any of these major active fault systems. In the near field, the project site is located less than 10 km from a minor fault (Dummon River Fault) and more than 40 km away from a volcanic edifice (Mt. Caguas). This paper presents an analysis of the potential hazards that these active tectonic features may pose to the project site. The assessment of such geologic hazards is imperative in the characterization of the site and a crucial input in the design and safety assessment of the repository. (authors)« less

  17. An insight into the deep web; why it matters for addiction psychiatry?

    PubMed

    Orsolini, Laura; Papanti, Duccio; Corkery, John; Schifano, Fabrizio

    2017-05-01

    Nowadays, the web is rapidly spreading, playing a significant role in the marketing or sale or distribution of "quasi" legal drugs, hence facilitating continuous changes in drug scenarios. The easily renewable and anarchic online drug-market is gradually transforming indeed the drug market itself, from a "street" to a "virtual" one, with customers being able to shop with a relative anonymity in a 24-hr marketplace. The hidden "deep web" is facilitating this phenomenon. The paper aims at providing an overview to mental health's and addiction's professionals on current knowledge about prodrug activities on the deep web. A nonparticipant netnographic qualitative study of a list of prodrug websites (blogs, fora, and drug marketplaces) located into the surface web was here carried out. A systematic Internet search was conducted on Duckduckgo® and Google® whilst including the following keywords: "drugs" or "legal highs" or "Novel Psychoactive Substances" or "NPS" combined with the word deep web. Four themes (e.g., "How to access into the deepweb"; "Darknet and the online drug trading sites"; "Grams-search engine for the deep web"; and "Cryptocurrencies") and 14 categories were here generated and properly discussed. This paper represents a complete or systematical guideline about the deep web, specifically focusing on practical information on online drug marketplaces, useful for addiction's professionals. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment

    NASA Astrophysics Data System (ADS)

    Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.

    2017-08-01

    The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., < 1 km distance from land, < 20 m depth); however, land runoff, user conflicts and environmental impact in coastal areas are concerns and interest in developing deep water (> 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.

  19. Deciphering Equatorial Pacific Deep Sea Sediment Transport Regimes by Core-Log-Seismic Integration

    NASA Astrophysics Data System (ADS)

    Ortiz, E.; Tominaga, M.; Marcantonio, F.

    2017-12-01

    Investigating deep-sea sediment transportation and deposition regimes is a key to accurately understand implications from geological information recorded by pelagic sediments, e.g. climate signals. However, except for physical oceanographic particle trap experiments, geochemical analyses of in situsediments, and theoretical modeling of the relation between the bottom currents and sediment particle flux, it has remained a challenging task to document the movement of deep sea sediments, that takes place over time. We utilized high-resolution, multichannel reflection seismic data from the eastern equatorial Pacific region with drilling and logging results from two Integrated Ocean Drilling Program (IODP) sites, the Pacific Equatorial Age Transect (PEAT) 7 (Site U1337) and 8 (Site U1338), to characterize sediment transportation regimes on 18-24 Ma oceanic crust. Site U1337, constructed by a series of distinct abyssal hills and abyssal basins; Site U1338, located 570 km SE from Site U1337 site and constructed by a series of ridges, seamounts, and abyssal hills. These sites are of particular interest due to their proximity to the equatorial productivity zone, areas with high sedimentation rates and preservation of carbonate-bearing sediment that provide invaluable insights on equatorial Pacific ecosystems and carbon cycle. We integrate downhole geophysical logging data as well as geochemistry and physical properties measurements on recovered cores from IODP Sites U1337 and U1338 to comprehensively examine the mobility of deep-sea sediments and sediment diagenesis over times in a quasi-3D manner. We also examine 1100 km of high resolution underway seismic surveys from site survey lines in between PEAT 7 and 8 in order to investigate changes in sediment transportation between both sites. Integrating detailed seismic interpretations, high resolution core data, and 230Th flux measurements we aim to create a detailed chronological sedimentation and sediment diagenesis history of this area.

  20. Palynofacies reveal fresh terrestrial organic matter inputs in the terminal lobes of the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Schnyder, Johann; Stetten, Elsa; Baudin, François; Pruski, Audrey M.; Martinez, Philippe

    2017-08-01

    The Congo deep-sea fan is directly connected to the Congo River by a unique submarine canyon. The Congo River delivers up to 2×1012gPOC/yr, a part of which is funnelled by the submarine canyon and feeds the deep-sea environments. The more distal part of the Congo deep-sea fan, the terminal lobe area, has a surface of 2500 km2 and is situated up to 800 km offshore at depths of 4750-5000 m. It is a remarkable place to study the fate and distribution of the organic matter transferred from the continent to the deep ocean via turbidity currents. Forty-two samples were analyzed from the terminal lobes, including sites from the active channel, one of its levees and an abandoned distal channel. Samples were collected using multitube cores and push-cores using a Victor 6000 ROV, which surveyed the dense chemosynthetic habitats that locally characterize the terminal lobes. Palynofacies reveal a remarkably well-preserved, dominantly terrestrial particulate organic matter assemblage, that has been transferred from the continent into the deep-sea by turbidity currents. Delicate plant structures, cuticle fragments and plant cellular material is often preserved, highlighting the efficiency of turbidity currents to transfer terrestrial organic matter to the sea-floor, where it is preserved. Moreover, the palynofacies data reveal a general sorting by density or buoyancy of the organic particles, as the turbulent currents escaped the active channel, feeding the levees and the more distal, abandoned channel area. Finally, in addition to aforementioned hydrodynamic factors controlling the organic matter accumulation, a secondary influence of chemosynthetic habitats on organic matter preservation is also apparent. Palynofacies is therefore a useful tool to record the distribution of organic matter in recent and ancient deep-sea fan environments, an important topic for both academic and petroleum studies.

  1. Physical activity levels and perceived benefits and barriers to physical activity in HIV-infected women living in the deep south of the United States.

    PubMed

    Rehm, Kristina E; Konkle-Parker, Deborah

    2016-09-01

    Engaging in regular physical activity (PA) is important in maintaining health and increasing the overall quality of life of people living with HIV (PLWH). The deep south of the USA is known for its high rate of sedentary behavior although data on the activity levels and perceptions of the benefits and barriers to exercise in women living with HIV in the deep south are lacking. Understanding the perceived benefits and barriers to exercise can guide the development of PA interventions. We conducted a cross-sectional study to determine the PA levels and perceived benefits and barriers to exercise associated with both age and depression level in a group of HIV+ women living in the deep south. We recruited a total of 50 participants from a cohort site for the Women's Interagency HIV Study. Depression was assessed using the Center for Epidemiological Studies Depression Scale (CES-D) and benefits/barriers to exercise were measured using the Exercise Benefits and Barriers Scale (EBBS). We measured PA both subjectively and objectively using the International Physical Activity Questionnaire (IPAQ) and a Fitbit PA monitor, respectively. Our sample was predominantly African-American (96%) and the mean ±SD age, body mass index, and CES-D score were 42 ± 8.8 years, 36.6 ± 11.5 kg/m(2), and 15.6 ± 11.4, respectively. Both subjective and objective measures of PA indicated that our participants were sedentary. The greatest perceived benefit to exercise was physical performance and the greatest barrier to exercise was physical exertion. Higher overall perceived benefits were reported by women ≥43 years and women reporting higher levels of depression. There was no difference in overall barriers associated with age and depression level, but women with depression felt more fatigued by exercise. The results of this study can be helpful when designing and implementing PA interventions in women living with HIV in the deep south.

  2. Immediate versus delayed intramedullary nailing for open fractures of the tibial shaft: a multivariate analysis of factors affecting deep infection and fracture healing.

    PubMed

    Yokoyama, Kazuhiko; Itoman, Moritoshi; Uchino, Masataka; Fukushima, Kensuke; Nitta, Hiroshi; Kojima, Yoshiaki

    2008-10-01

    The purpose of this study was to evaluate contributing factors affecting deep infection and fracture healing of open tibia fractures treated with locked intramedullary nailing (IMN) by multivariate analysis. We examined 99 open tibial fractures (98 patients) treated with immediate or delayed locked IMN in static fashion from 1991 to 2002. Multivariate analyses following univariate analyses were derived to determine predictors of deep infection, nonunion, and healing time to union. The following predictive variables of deep infection were selected for analysis: age, sex, Gustilo type, fracture grade by AO type, fracture location, timing or method of IMN, reamed or unreamed nailing, debridement time (< or =6 h or >6 h), method of soft-tissue management, skin closure time (< or =1 week or >1 week), existence of polytrauma (ISS< 18 or ISS> or =18), existence of floating knee injury, and existence of superficial/pin site infection. The predictive variables of nonunion selected for analysis was the same as those for deep infection, with the addition of deep infection for exchange of pin site infection. The predictive variables of union time selected for analysis was the same as those for nonunion, excluding of location, debridement time, and existence of floating knee and superficial infection. Six (6.1%; type II Gustilo n=1, type IIIB Gustilo n=5) of the 99 open tibial fractures developed deep infections. Multivariate analysis revealed that timing or method of IMN, debridement time, method of soft-tissue management, and existence of superficial or pin site infection significantly correlated with the occurrence of deep infection (P< 0.0001). In the immediate nailing group alone, the deep infection rate in type IIIB + IIIC was significantly higher than those in type I + II and IIIA (P = 0.016). Nonunion occurred in 17 fractures (20.3%, 17/84). Multivariate analysis revealed that Gustilo type, skin closure time, and existence of deep infection significantly correlated with occurrence of nonunion (P < 0.05). Gustilo type and existence of deep infection were significantly correlated with healing time to union on multivariate analysis (r(2) = 0.263, P = 0.0001). Multivariate analyses for open tibial fractures treated with IMN showed that IMN after EF (especially in existence of pin site infection) was at high risk of deep infection, and that debridement within 6 h and appropriate soft-tissue managements were also important factor in preventing deep infections. These analyses postulated that both the Gustilo type and the existence of deep infection is related with fracture healing in open fractures treated with IMN. In addition, immediate IMN for type IIIB and IIIC is potentially risky, and canal reaming did not increase the risk of complication for open tibial fractures treated with IMN.

  3. Structural Analysis of Charge Discrimination in the Binding of Inhibitors to Human Carbonic Anhydrases I and II

    PubMed Central

    Srivastava, D. K.; Jude, Kevin M.; Banerjee, Abir L.; Haldar, Manas; Manokaran, Sumathra; Kooren, Joel; Mallik, Sanku; Christianson, David W.

    2008-01-01

    Despite the similarity in the active site pockets of carbonic anhydrase (CA) isozymes I and II, the binding affinities of benzenesulfonamide inhibitors are invariably higher with CA II as compared to CA I. To explore the structural basis of this molecular recognition phenomenon, we have designed and synthesized simple benzenesulfonamide inhibitors substituted at the para position with positively-charged, negatively-charged, and neutral functional groups, and we have determined the affinities and X-ray crystal structures of their enzyme complexes. The para-substituents are designed to bind in the midsection of the 15 Å deep active site cleft, where interactions with enzyme residues and solvent molecules are possible. We find that a para-substituted positively-charged amino group is more poorly tolerated in the active site of CA I compared with CA II. In contrast, a para-substituted negatively-charged carboxylate substituent is tolerated equally well in the active sites of both CA isozymes. Notably, enzyme-inhibitor affinity increases upon neutralization of inhibitor charged groups by amidation or esterification. These results inform the design of short molecular linkers connecting the benzenesulfonamide group and a para-substituted tail group in “two-prong” CA inhibitors: an optimal linker segment will be electronically neutral, yet capable of engaging in at least some hydrogen bond interactions with protein residues and/or solvent. Microcalorimetric data reveal that inhibitor binding to CA I is enthalpically less favorable and entropically more favorable than inhibitor binding to CA II. This contrasting behavior may arise in part from differences in active site desolvation and the conformational entropy of inhibitor binding to each isozyme active site. PMID:17407288

  4. Variations in water balance and recharge potential at three western desert sites

    USGS Publications Warehouse

    Gee, G.W.; Wierenga, P.J.; Andraski, Brian J.; Young, M.H.; Fayer, M.J.; Rockhold, M.L.

    1994-01-01

    Radioactive and hazardous waste landfills exist at numerous desert locations in the USA. At these locations, annual precipitation is low and soils are generally dry, yet little is known about recharge of water and transport of contaminants to the water table. Recent water balance measurements made at three desert locations, Las Cruces, NM, Beatty, NV, and the U.S. Department of Energy's Hanford Site in the state of Washington, provide information on recharge potential under three distinctly different climate and soil conditions. All three sites show water storage increases with time when soils are coarse textured and plants are removed from the surface, the rate of increase being influenced by climatic variables such as precipitation, radiation, temperature, and wind. Lysimeter data from Hanford and Las Cruces indicate that deep drainage (recharge) from bare, sandy soils can range from 10 to >50% of the annual precipitation. At Hanford, when desert plants are present on sandy or gravelly surface soils, deep drainage is reduced but not eliminated. When surface soils are silt loams, deep drainage is eliminated whether plants are present or not. At Las Cruces and Beatty, the presence of plants eliminated deep drainage at the measurement sites. Differences in water balance between sites are attributed to precipitation quantity and distribution and to soil and vegetation types. The implication for waste management at desert locations is that surface soil properties and plant characteristics must be considered in waste site design in order to minimize recharge potential.

  5. [Abscess at the implant site following apical parodontitis. Hardware-related complications of deep brain stimulation].

    PubMed

    Sixel-Döring, F; Trenkwalder, C; Kappus, C; Hellwig, D

    2006-08-01

    Deep brain stimulation of the subthalamic nucleus is an important treatment option for advanced stages of idiopathic Parkinson's disease, leading to significant improvement of motor symptoms in suited patients. Hardware-related complications such as technical malfunction, skin erosion, and infections however cause patient discomfort and additional expense. The patient presented here suffered a putrid infection of the impulse generator site following only local dental treatment of apical parodontitis. Therefore, prophylactic systemic antibiotic treatment is recommended for patients with implanted deep brain stimulation devices in case of operations, dental procedures, or infectious disease.

  6. Deep sediment resuspension and thick nepheloid layer generation by open-ocean convection

    NASA Astrophysics Data System (ADS)

    Durrieu de Madron, X.; Ramondenc, S.; Berline, L.; Houpert, L.; Bosse, A.; Martini, S.; Guidi, L.; Conan, P.; Curtil, C.; Delsaut, N.; Kunesch, S.; Ghiglione, J. F.; Marsaleix, P.; Pujo-Pay, M.; Séverin, T.; Testor, P.; Tamburini, C.

    2017-03-01

    The Gulf of Lions in the northwestern Mediterranean is one of the few sites around the world ocean exhibiting deep open-ocean convection. Based on 6 year long (2009-2015) time series from a mooring in the convection region, shipborne measurements from repeated cruises, from 2012 to 2015, and glider measurements, we report evidence of bottom thick nepheloid layer formation, which is coincident with deep sediment resuspension induced by bottom-reaching convection events. This bottom nepheloid layer, which presents a maximum thickness of more than 2000 m in the center of the convection region, probably results from the action of cyclonic eddies that are formed during the convection period and can persist within their core while they travel through the basin. The residence time of this bottom nepheloid layer appears to be less than a year. In situ measurements of suspended particle size further indicate that the bottom nepheloid layer is primarily composed of aggregates between 100 and 1000 µm in diameter, probably constituted of fine silts. Bottom-reaching open ocean convection, as well as deep dense shelf water cascading that occurred concurrently some years, lead to recurring deep sediments resuspension episodes. They are key mechanisms that control the concentration and characteristics of the suspended particulate matter in the basin, and in turn affect the bathypelagic biological activity.

  7. The Role of Intraseasonal Variability in Supporting the Shallow-to-Deep Transition in the Amazon

    NASA Astrophysics Data System (ADS)

    Serra, Y. L.; Rowe, A.; Adams, D. K.; Barbosa, H. M.; Kiladis, G. N.

    2016-12-01

    The shallow-to-deep convective transition over land typically refers to the growth of the convective boundary layer after sunrise, followed by the development of cumulus congestus clouds in the late morning/early afternoon and transitioning to deep convective clouds in the late afternoon and early evening. Under favorable conditions, this diurnal convection can result in organized mesoscale convective systems (MCSs) that last through the following morning. While many studies have focused on improving this process in models, the shallow-to-deep transition remains poorly represented especially over land. The recent DOE ARM mobile facility deployment in the Amazon, launched as part of GOAmazon, along with a dense GNSS network supported by Universidade do Estado do Amazonas (UEA)/Instituto Nacional de Pesquisas Espaciais (INPE) and co-located with the CHUVA Project sites for GOAmazon, are used here to examine land-based convective processes in the tropics. In particular, this aspect of a larger study of the shallow-to-deep transition explores the role of large-scale intraseasonal wave activity in supporting the growth of MCSs over the GoAmazon region. These results will be placed in the context of local forcing mechanisms for convective growth over the region in ongoing work.

  8. Competing reaction processes on a lattice as a paradigm for catalyst deactivation

    NASA Astrophysics Data System (ADS)

    Abad, E.; Kozak, J. J.

    2015-02-01

    We mobilize both a generating function approach and the theory of finite Markov processes to compute the probability of irreversible absorption of a randomly diffusing species on a lattice with competing reaction centers. We consider an N-site lattice populated by a single deep trap, and N -1 partially absorbing traps (absorption probability 0

  9. To what extent might deep venous thrombosis and chronic venous insufficiency share a common etiology?

    PubMed

    Malone, P Colm; Agutter, P S

    2009-08-01

    According to the valve cusp hypoxia hypothesis (VCHH), deep venous thrombosis is caused by sustained non-pulsatile (streamline) venous blood flow. This leads to hypoxemia in the valve pockets; hypoxic injury to the inner (parietalis) endothelium of the cusp leaflets activates the elk-1/egr-1 pathway, leading to leukocyte and platelet swarming at the site of injury and, potentially, blood coagulation. Here, we propose an extension of the VCHH to account for chronic venous insufficiency. First, should the foregoing events not proceed to frank thrombogenesis, the valves may nevertheless be chronically injured and become incompetent. Serial incompetence in lower limb valves may then generate ''passive'' venous hypertension. Second, should ostial valve thrombosis obstruct venous return from muscles via tributaries draining into the femoral vein, as Virchow illustrated, ''active'' venous hypertension may supervene: muscle contraction would force the blood in the vessels behind the blocked ostial valves to re-route. Passive or active venous hypertension opposes return flow, leading to luminal hypoxemia and vein wall distension, which in turn may impair vasa venarum perfusion; the resulting mural endothelial hypoxia would lead to leukocyte invasion of the wall and remodelling of the media. We propose that varicose veins result if gross active hypertension stretches the valve ''rings'', rendering attached valves incompetent caudad to obstructed sites, replacing normal centripetal flow in perforating veins with centrifugal flow and over-distending those vessels. We also discuss how hypoxemia-related venous/capillary wall lesions may lead to accumulation of leukocytes, progressive blockage of capillary blood flow, lipodermosclerosis and skin ulceration.

  10. Acoustic Studies of the Effects of Environmental Stresses on Marine Mammals in Large Ocean Basins

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, N.; Ma, B.; Ackleh, A. S.; Tiemann, C.; Ioup, G. E.; Ioup, J. W.

    2014-12-01

    Effects of environmental stresses on deep-diving marine mammal populations have not been studied systematically. Long-term regional passive acoustic monitoring of phonating marine mammals opens opportunities for such studies. This paper presents a unique multi-year study conducted by the Littoral Acoustic Demonstration Center (LADC) in the Northern Gulf of Mexico to understand short-term and long-term effects of anthropogenic stresses on resident populations of endangered sperm and elusive beaked whales. Both species spend many hours each day in deep dives which last about one hour each, so any visual observations for population estimates and behavioral responses are very limited. However, much more cost-efficient acoustic recordings of the phonations during dives on bottom-mounted hydrophones are not skewed by weather conditions or daylight requirements. Broadband passive acoustic data were collected by LADC in 2007 and 2010 at three ranges, 15, 40, and 80 km away from the 2010 Deep Water Horizon oil spill site. Pre-spill and post-spill data processing and comparison allow observing responses of both species to local short-term environmental condition changes and long-term responses to the spill. The short-term effects are studied by correlating daily activity cycles with anthropogenic noise curve daily and weekly cycles at different sites. The strong correlation between the decrease in overall daily activity and the increase in anthropogenic noise level associated with seismic exploration signals can be seen. After streaming raw acoustic data through detection algorithms and detailed assessment of false detection rates, the temporal densities of acoustic phonations are passed into statistical algorithms for resident population estimations. The statistically significant results have shown different regional abundance trends, associated with long-term responses to environmental stresses, for these two species.

  11. Habitability from the Surface to the Deep

    NASA Astrophysics Data System (ADS)

    Cox, A. D.; Schmidt, R.; Dahlquist, G. R.; Foster, J.; Dillard, M.

    2016-12-01

    Merging aqueous geochemical parameters of habitability with microbial identity and activity will help determine microbial contributions to observed water-rock reactions in surface to deep environments. To determine habitability for microbial life and decipher mechanisms by which microbes survive and perform chemical reactions, over one hundred sites in diverse geological and geochemical environs have been sampled for aqueous geochemistry, mineralogy, and microbial identity and activity. Sites ranged from surficial creeks and rivers to the flooded mine shafts beneath to hydrothermal features in the caldera of a supervolcano 250 km distant; these environments contain metal scarcity, extreme anoxia, and wide variations in metal, organic carbon, and oxygen scarcity, respectively. Aqueous geochemistry included in situ measurement of temperature, pH, conductivity, and dissolved oxygen by meters; field spectrophotometry for redox active species; and synchronous sample collection and preservation for water isotopes, major cations and anions, trace elements, and dissolved inorganic and organic carbon, and more. Concurrent collection and preservation of planktonic and sediment biomass at each site will allow for microbial community identification and assessment of microbial activity. DNA extraction and PCR amplification using universal, eukaryotic, bacterial, and archaeal small subunit ribosomal RNA gene primers yielded products for sequencing. For many of the aqueous geochemical parameters analyzed, including Li and B, concentrations in flooded mine shafts fell on a continuum directly between local surface waters and those resulting from hydrothermal alteration suggesting an intermediate level of water-rock interaction in flooded mine shaft habitats. Concentrations of Li and B ranged from low micromolal in surface waters to millimolal in thermal waters. Other elements - Fe, Mn, Zn, and As included - were enriched in anoxic mine shafts by three to four orders of magnitude, due to exposure to and reaction with minerals. Concentrations of Fe and Zn ranged up to tens of millimolal whereas millimolal Mn and submillimolal As concentrations were reached. The transition from mostly unreacted surface water to waters nearly in equilibrium with rock provides vast geochemical habitat for microbes to exploit.

  12. Electronic characterization of defects in narrow gap semiconductors

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1994-01-01

    We use a Green's function technique to calculate the position of deep defects in narrow gap semiconductors. We consider substitutional (including antisite), vacancy, and interstitial (self and foreign) deep defects. We also use perturbation theory to look at the effect of nonparabolic bands on shallow defect energies and find nonparabolicity can increase the binding by 10 percent or so. We consider mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS). For substitutional and interstitial defects we look at the situation with and without relaxation. For substitutional impurities in MCT, MZT, and MZS, we consider x (the concentration of Cd or Zn) in the range 0.1 less than x less than 0.3 and also consider appropriate x so E(sub g) = 0.1 eV for each of the three compounds. We consider several cation site s-like deep levels and anion site p-like levels. For E(sub g) = 0.1 eV, we also consider the effects of relaxation. Similar comments apply to the interstitial deep levels whereas no relaxation is considered for the ideal vacancy model. Relaxation effects can be greater for the interstitial than the substitutional cases. Specific results are given in figures and tables and comparison to experiment is made in a limited number of cases. We find, for example, that I, Se, S, Rn, and N are possible cation site, s-like deep levels in MCT and Zn and Mg are for anion site, p-like levels (both levels for substitutional cases). The corresponding cation and anion site levels for interstitial deep defects are (Au, Ag, Hg, Cd, Cu, Zn) and (N, Ar, O, F). For the substitutional cases we have some examples of relaxation moving the levels into the band gap, whereas for the interstitial case we have examples where relaxation moves it out of the band gap. Future work involves calculating the effects of charge state interaction and seeing the effect of relaxation on vacancy levels.

  13. Relationships between Algae, Benthic Herbivorous Invertebrates and Fishes in Rocky Sublittoral Communities of a Temperate Sea (Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ruitton, S.; Francour, P.; Boudouresque, C. F.

    2000-02-01

    In situ surveys were used to examine the contribution of benthic herbivorous invertebrates and fishes to the organization of Mediterranean rocky sublittoral communities. Shallow (1-3 m) and deep (6-8 m) sampling sites, in natural areas and on man-made structures, were characterized by a structural complexity index (cavity index and mean size of cavity aperture), algal cover (encrusting, turfy, shrubby and arborescent algae) and the density of benthic herbivorous invertebrates and fish. A relationship between structural complexity and biota was only evident for some fish species ( Diplodus spp. and Sarpa salpa) at deep sites, where they not only feed but also shelter. Three benthic herbivorous invertebrates, the sea urchins Paracentrotus lividus and Arbacia lixula, and the limpet Patella caerulea , are associated with communities dominated by encrusting algae. Variations in their abundance and role in structuring algal communities follow a depth gradient: P. caerulea and A. lixula are mainly present at shallow sites and P. lividus at deep sites. These benthic herbivorous invertebrates may account for the structure of shallow algal communities. In contrast, at deep sites, fishes (the omnivorous Diplodus spp. and the herbivorous S. salpa) have a potential importance in controlling sublittoral algae, in addition to invertebrates. It is suggested that the ecological impact of herbivorous and omnivorous fishes in temperate seas could be greater than is generally thought. Experiments should be designed to validate this postulate.

  14. Inertial bioluminescence rhythms at the Capo Passero (KM3NeT-Italia) site, Central Mediterranean Sea

    PubMed Central

    Aguzzi, J.; Fanelli, E.; Ciuffardi, T.; Schirone, A.; Craig, J.; Aiello, S.; Ameli, F.; Anghinolfi, M.; Barbarino, G.; Barbarito, E.; Beverini, N.; Biagi, S.; Biagioni, A.; Bouhadef, B.; Bozza, C.; Cacopardo, G.; Calamai, M.; Calì, C.; Capone, A.; Caruso, F.; Cecchini, S.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D’Amato, C.; D’Amico, A.; De Bonis, G.; De Luca, V.; Deniskina, N.; Distefano, C.; Di Mauro, L. S.; Fermani, P.; Ferrara, G.; Flaminio, V.; Fusco, L. A.; Garufi, F.; Giordano, V.; Gmerk, A.; Grasso, R.; Grella, G.; Hugon, C.; Imbesi, M.; Kulikovskiy, V.; Larosa, G.; Lattuada, D.; Leismüller, K. P.; Leonora, E.; Litrico, P.; Lonardo, A.; Longhitano, F.; Presti, D. Lo; Maccioni, E.; Margiotta, A.; Marinelli, A.; Martini, A.; Masullo, R.; Mele, R.; Migliozzi, P.; Migneco, E.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Musico, P.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Orzelli, A.; Papaleo, R.; Pellegrino, C.; Pellegriti, M. G.; Perrina, C.; Piattelli, P.; Poma, E.; Pulvirenti, S.; Raffaelli, F.; Randazzo, N.; Riccobene, G.; Rovelli, A.; Sanguineti, M.; Sapienza, P.; Sciacca, V.; Sgura, I.; Simeone, F.; Sipala, V.; Speziale, F.; Spitaleri, A.; Spurio, M.; Stellacci, S. M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Trovato, A.; Versari, F.; Vicini, P.; Viola, S.; Vivolo, D.

    2017-01-01

    In the deep sea, the sense of time is dependent on geophysical fluctuations, such as internal tides and atmospheric-related inertial currents, rather than day-night rhythms. Deep-sea neutrino telescopes instrumented with light detecting Photo-Multiplier Tubes (PMT) can be used to describe the synchronization of bioluminescent activity of abyssopelagic organisms with hydrodynamic cycles. PMT readings at 8 different depths (from 3069 to 3349 m) of the NEMO Phase 2 prototype, deployed offshore Capo Passero (Sicily) at the KM3NeT-Italia site, were used to characterize rhythmic bioluminescence patterns in June 2013, in response to water mass movements. We found a significant (p < 0.05) 20.5 h periodicity in the bioluminescence signal, corresponding to inertial fluctuations. Waveform and Fourier analyses of PMT data and tower orientation were carried out to identify phases (i.e. the timing of peaks) by subdividing time series on the length of detected inertial periodicity. A phase overlap between rhythms and cycles suggests a mechanical stimulation of bioluminescence, as organisms carried by currents collide with the telescope infrastructure, resulting in the emission of light. A bathymetric shift in PMT phases indicated that organisms travelled in discontinuous deep-sea undular vortices consisting of chains of inertially pulsating mesoscale cyclones/anticyclones, which to date remain poorly known. PMID:28332561

  15. Inertial bioluminescence rhythms at the Capo Passero (KM3NeT-Italia) site, Central Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Aguzzi, J.; Fanelli, E.; Ciuffardi, T.; Schirone, A.; Craig, J.; Aiello, S.; Ameli, F.; Anghinolfi, M.; Barbarino, G.; Barbarito, E.; Beverini, N.; Biagi, S.; Biagioni, A.; Bouhadef, B.; Bozza, C.; Cacopardo, G.; Calamai, M.; Calì, C.; Capone, A.; Caruso, F.; Cecchini, S.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D'Amato, C.; D'Amico, A.; de Bonis, G.; de Luca, V.; Deniskina, N.; Distefano, C.; di Mauro, L. S.; Fermani, P.; Ferrara, G.; Flaminio, V.; Fusco, L. A.; Garufi, F.; Giordano, V.; Gmerk, A.; Grasso, R.; Grella, G.; Hugon, C.; Imbesi, M.; Kulikovskiy, V.; Larosa, G.; Lattuada, D.; Leismüller, K. P.; Leonora, E.; Litrico, P.; Lonardo, A.; Longhitano, F.; Presti, D. Lo; Maccioni, E.; Margiotta, A.; Marinelli, A.; Martini, A.; Masullo, R.; Mele, R.; Migliozzi, P.; Migneco, E.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Musico, P.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Orzelli, A.; Papaleo, R.; Pellegrino, C.; Pellegriti, M. G.; Perrina, C.; Piattelli, P.; Poma, E.; Pulvirenti, S.; Raffaelli, F.; Randazzo, N.; Riccobene, G.; Rovelli, A.; Sanguineti, M.; Sapienza, P.; Sciacca, V.; Sgura, I.; Simeone, F.; Sipala, V.; Speziale, F.; Spitaleri, A.; Spurio, M.; Stellacci, S. M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Trovato, A.; Versari, F.; Vicini, P.; Viola, S.; Vivolo, D.

    2017-03-01

    In the deep sea, the sense of time is dependent on geophysical fluctuations, such as internal tides and atmospheric-related inertial currents, rather than day-night rhythms. Deep-sea neutrino telescopes instrumented with light detecting Photo-Multiplier Tubes (PMT) can be used to describe the synchronization of bioluminescent activity of abyssopelagic organisms with hydrodynamic cycles. PMT readings at 8 different depths (from 3069 to 3349 m) of the NEMO Phase 2 prototype, deployed offshore Capo Passero (Sicily) at the KM3NeT-Italia site, were used to characterize rhythmic bioluminescence patterns in June 2013, in response to water mass movements. We found a significant (p < 0.05) 20.5 h periodicity in the bioluminescence signal, corresponding to inertial fluctuations. Waveform and Fourier analyses of PMT data and tower orientation were carried out to identify phases (i.e. the timing of peaks) by subdividing time series on the length of detected inertial periodicity. A phase overlap between rhythms and cycles suggests a mechanical stimulation of bioluminescence, as organisms carried by currents collide with the telescope infrastructure, resulting in the emission of light. A bathymetric shift in PMT phases indicated that organisms travelled in discontinuous deep-sea undular vortices consisting of chains of inertially pulsating mesoscale cyclones/anticyclones, which to date remain poorly known.

  16. Potential availability of diesel waste heat at Echo Deep Space Station (DSS 12)

    NASA Technical Reports Server (NTRS)

    Hughes, R. D.

    1982-01-01

    Energy consumption at the Goldstone Echo Deep Space Station (DSS 12) is predicted and quantified for a future station configuration which will involve implementation of proposed energy conservation modifications. Cogeneration by the utilization of diesel waste-heat to satisfy site heating and cooling requirements of the station is discussed. Scenarios involving expanded use of on-site diesel generators are presented.

  17. New geochemical investigations in Platanares and Azacualpa geothermal sites (Honduras)

    NASA Astrophysics Data System (ADS)

    Barberi, Franco; Carapezza, Maria Luisa; Cioni, Roberto; Lelli, Matteo; Menichini, Matia; Ranaldi, Massimo; Ricci, Tullio; Tarchini, Luca

    2013-05-01

    Platanares and Azacualpa geothermal sites of Honduras are located in an inner part of the Caribbean Plate far from the active volcanic front of Central America. Here geology indicates that there are not the conditions for the occurrence of shallow magmatic heat sources for high-enthalpy geothermal resources. Geothermal perspectives are related to the possibility of a deep circulation of meteoric water along faults and the storage of the heated fluid in fractured permeable reservoirs. Geochemical geothermometers indicate a temperature for the deeper part of the geothermal reservoir close to 200 °C for Platanares and of 150-170 °C for Azacualpa. Calcite scaling, with subordinate silica deposition has to be expected in both sites. CO2 soil flux investigations have been carried out in both areas and reveal the presence of positive anomalies likely corresponding to the presence at depth of fractured degassing geothermal reservoirs. Compared with the geothermal areas of Central Italy whose reservoirs are hosted in carbonate rocks, e.g. Latera (Chiodini et al., 2007), the CO2 soil flux measured in Honduras is significantly lower (mean of 17 g/m2day at Platanares and of 163 g/m2day at Azacualpa) probably because of the dominant silicate nature of the deep reservoirs.

  18. Recovery of Seamount Precious Coral Beds From Heavy Trawling Disturbance with Links to Carbonate Chemistry Changes

    NASA Astrophysics Data System (ADS)

    Roark, E. B.; Baco-Taylor, A.; Morgan, N. B.; Shamberger, K.; Miller, K.; Brooks, J.

    2016-12-01

    Increasing anthropogenic impacts in the deep sea make studies of resilience and recovery time critical, with deep-sea hard-substrate habitats and large-scale disturbances having received little attention. Seamount hard-substrate habitats in particular are thought to have low resilience due to the slow growth rates and recruitment limitations of key structure-forming taxa. Seamounts of the far Northwestern Hawaiian Islands and Emperor Chain have had some of the heaviest trawl impacts in the world, from both fish and precious coral fisheries, and include sites that are still trawled and recovering ones that have been protected since establishment of the EEZ in 1977. To test the hypothesis of low resilience we compare these impacted seamounts to untrawled sites. We used the AUV Sentry in 2014 and 2015 to image nine features (three per "treatment") and analyze for substrate and visible megafauna. Sites in the "still trawled" treatment were characterized by extensive areas of bare substrate with abundant trawl scars. Sites in the "recovering" and "never trawled" locations had abundant megafauna in hard substrate areas. Initial comparisons of transects at 700m depth for three sites indicate that Yuryaku in the "still trawled" treatment had lower diversity and abundance of megafauna compared to the "recovering" and "never trawled" locations with a dominance of sea urchins. The "recovering" and "never trawled" sites were dominated by cnidarians, fishes, and echinoderms, but differed in dominant species, diversity, abundances and occurrence of dead coral skeletons. These preliminary results suggest that the recovering sites have not returned to a pre-impact community type in the 38 years since they were trawled. The megafauna distribution, in particular that of deep-sea corals, was compared to environmental water column variables at the study sites across the Northwestern Hawaiian Islands. Deep-sea corals with calcium carbonate skeletons were found living below the aragonite saturation horizon (ASH; Ωarg=1), which ranges from 500-600 m depth and deepens moving northwest along the island chain. How deep-sea corals build and maintain their skeletons in undersaturated waters is poorly understood, but it is possible that saturation horizons may play a role in their recovery rates.

  19. Early diagenesis in the Congo deep-sea fan sediments dominated by massive terrigenous deposits: Part I - Oxygen consumption and organic carbon mineralization using a micro-electrode approach

    NASA Astrophysics Data System (ADS)

    Pozzato, Lara; Cathalot, Cécile; Berrached, Chabha; Toussaint, Flora; Stetten, Elsa; Caprais, Jean-Claude; Pastor, Lucie; Olu, Karine; Rabouille, Christophe

    2017-08-01

    Organic matter (OM) transfer from the continent to the ocean occurs across margins which constitute a major area of OM recycling and burial. The lobe complex of the Congo deep-sea fan is connected to the river mouth by a canyon and alimented by recurrent turbidity currents, containing a large proportion of labile terrigenous OM and producing high sedimentation rates. These inputs support the development of ecosystems harboring rich assemblages of vesicomyid bivalves and bacterial mats, called Habitats. Here, we present O2 microprofiles and diffusive oxygen uptake rates (DOUs) obtained during the CONGOLOBE project at six sites of this active lobe complex by in situ and on-board methods based on micro-electrode profiling. The dataset is used to determine remineralization rates and study the biogeochemical dynamics of different ecosystems of the lobe area, in order to compare levee and background sediments to the Habitats developed on the flanks of the main turbiditic channel. Levee and background sediments are characterized by significantly higher DOUs than abyssal sediments at 5000 m meters depth (2-5 mmol O2 m-2 d-1versus 1.5-2.5 mmol O2 m-2 d-1) and the Habitats are hotspots of OM remineralization with DOU values ranging between 8 and 40 mmol O2 m-2 d-1. By comparing sites near the active channel to a site located 50 km away, we show that the lobe connection to the main turbiditic channel is vital to the dense benthic communities.

  20. Solution structure of the IIAChitobiose-IIBChitobiose complex of the N,N'-diacetylchitobiose branch of the Escherichia coli phosphotransferase system.

    PubMed

    Jung, Young-Sang; Cai, Mengli; Clore, G Marius

    2010-02-05

    The solution structure of the IIA-IIB complex of the N,N'-diacetylchitobiose (Chb) transporter of the Escherichia coli phosphotransferase system has been solved by NMR. The active site His-89 of IIA(Chb) was mutated to Glu to mimic the phosphorylated state and the active site Cys-10 of IIB(Chb) was substituted by serine to prevent intermolecular disulfide bond formation. Binding is weak with a K(D) of approximately 1.3 mm. The two complementary interaction surfaces are largely hydrophobic, with the protruding active site loop (residues 9-16) of IIB(Chb) buried deep within the active site cleft formed at the interface of two adjacent subunits of the IIA(Chb) trimer. The central hydrophobic portion of the interface is surrounded by a ring of polar and charged residues that provide a relatively small number of electrostatic intermolecular interactions that serve to correctly align the two proteins. The conformation of the active site loop in unphosphorylated IIB(Chb) is inconsistent with the formation of a phosphoryl transition state intermediate because of steric hindrance, especially from the methyl group of Ala-12 of IIB(Chb). Phosphorylation of IIB(Chb) is accompanied by a conformational change within the active site loop such that its path from residues 11-13 follows a mirror-like image relative to that in the unphosphorylated state. This involves a transition of the phi/psi angles of Gly-13 from the right to left alpha-helical region, as well as smaller changes in the backbone torsion angles of Ala-12 and Met-14. The resulting active site conformation is fully compatible with the formation of the His-89-P-Cys-10 phosphoryl transition state without necessitating any change in relative translation or orientation of the two proteins within the complex.

  1. Cenozoic Icehouse Forcing Mechanisms on Coccolithophorid Evolution

    NASA Astrophysics Data System (ADS)

    Henderiks, J.

    2007-12-01

    An overall macroevolutionary size decrease in marine unicellular calcifying algae, the coccolithophores, is punctuated by distinct size responses that correlate to major climatic and paleoceanographic events during the Cenozoic. Notably, major size decreases in the ancestors of the modern blooming species Emiliania huxleyi and Gephyrocapsa oceanica are recorded at the Eocene-Oligocene transition (34 Ma) and in the late Miocene (9 Ma). Coccolithophorid cell size (as reconstructed from individual coccolith biometry) is likely influenced by a variety of passive and active evolutionary selection pressures, with specific factors, such as resource availability and climatic change, determining trends in specific intervals of time. This study presents biometric data of the Noelaerhabdacaea, Calcidiscaceae and Coccolithaceae families, which together represent the bulk of coccolith-carbonate buried in Cenozoic deep-sea sediments, from multiple Deep Sea Drilling Project and Ocean Drilling Project sites covering temperate to tropical regions in the Atlantic, Indian and Pacific oceans. Despite distinct regional ecologic responses at each site, striking correspondences within the global data set call for global forcing mechanisms on the size evolution and ecological success of coccolithophores in an 'icehouse' world.

  2. Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau

    NASA Astrophysics Data System (ADS)

    Nagano, Yuriko; Miura, Toshiko; Nishi, Shinro; Lima, Andre O.; Nakayama, Cristina; Pellizari, Vivian H.; Fujikura, Katsunori

    2017-12-01

    We investigated the fungal diversity in a total of 20 deep-sea sediment samples (of which 14 samples were associated with natural asphalt seeps and 6 samples were not associated) collected from two different sites at the Sao Paulo Plateau off Brazil by Ion Torrent PGM targeting ITS region of ribosomal RNA. Our results suggest that diverse fungi (113 operational taxonomic units (OTUs) based on clustering at 97% sequence similarity assigned into 9 classes and 31 genus) are present in deep-sea sediment samples collected at the Sao Paulo Plateau, dominated by Ascomycota (74.3%), followed by Basidiomycota (11.5%), unidentified fungi (7.1%), and sequences with no affiliation to any organisms in the public database (7.1%). However, it was revealed that only three species, namely Penicillium sp., Cadophora malorum and Rhodosporidium diobovatum, were dominant, with the majority of OTUs remaining a minor community. Unexpectedly, there was no significant difference in major fungal community structure between the asphalt seep and non-asphalt seep sites, despite the presence of mass hydrocarbon deposits and the high amount of macro organisms surrounding the asphalt seeps. However, there were some differences in the minor fungal communities, with possible asphalt degrading fungi present specifically in the asphalt seep sites. In contrast, some differences were found between the two different sampling sites. Classification of OTUs revealed that only 47 (41.6%) fungal OTUs exhibited >97% sequence similarity, in comparison with pre-existing ITS sequences in public databases, indicating that a majority of deep-sea inhabiting fungal taxa still remain undescribed. Although our knowledge on fungi and their role in deep-sea environments is still limited and scarce, this study increases our understanding of fungal diversity and community structure in deep-sea environments.

  3. More frequent vaginal orgasm is associated with experiencing greater excitement from deep vaginal stimulation.

    PubMed

    Brody, Stuart; Klapilova, Katerina; Krejčová, Lucie

    2013-07-01

    Research indicated that: (i) vaginal orgasm (induced by penile-vaginal intercourse [PVI] without concurrent clitoral masturbation) consistency (vaginal orgasm consistency [VOC]; percentage of PVI occasions resulting in vaginal orgasm) is associated with mental attention to vaginal sensations during PVI, preference for a longer penis, and indices of psychological and physiological functioning, and (ii) clitoral, distal vaginal, and deep vaginal/cervical stimulation project via different peripheral nerves to different brain regions. The aim of this study is to examine the association of VOC with: (i) sexual arousability perceived from deep vaginal stimulation (compared with middle and shallow vaginal stimulation and clitoral stimulation), and (ii) whether vaginal stimulation was present during the woman's first masturbation. A sample of 75 Czech women (aged 18-36), provided details of recent VOC, site of genital stimulation during first masturbation, and their recent sexual arousability from the four genital sites. The association of VOC with: (i) sexual arousability perceived from the four genital sites and (ii) involvement of vaginal stimulation in first-ever masturbation. VOC was associated with greater sexual arousability from deep vaginal stimulation but not with sexual arousability from other genital sites. VOC was also associated with women's first masturbation incorporating (or being exclusively) vaginal stimulation. The findings suggest (i) stimulating the vagina during early life masturbation might indicate individual readiness for developing greater vaginal responsiveness, leading to adult greater VOC, and (ii) current sensitivity of deep vaginal and cervical regions is associated with VOC, which might be due to some combination of different neurophysiological projections of the deep regions and their greater responsiveness to penile stimulation. © 2013 International Society for Sexual Medicine.

  4. GRID-seq reveals the global RNA-chromatin interactome

    PubMed Central

    Li, Xiao; Zhou, Bing; Chen, Liang; Gou, Lan-Tao; Li, Hairi; Fu, Xiang-Dong

    2017-01-01

    Higher eukaryotic genomes are bound by a large number of coding and non-coding RNAs, but approaches to comprehensively map the identity and binding sites of these RNAs are lacking. Here we report a method to in situ capture global RNA interactions with DNA by deep sequencing (GRID-seq), which enables the comprehensive identification of the entire repertoire of chromatin-interacting RNAs and their respective binding sites. In human, mouse and Drosophila cells, we detected a large set of tissue-specific coding and non-coding RNAs that are bound to active promoters and enhancers, especially super-enhancers. Assuming that most mRNA-chromatin interactions indicate the physical proximity of a promoter and an enhancer, we constructed a three-dimensional global connectivity map of promoters and enhancers, revealing transcription activity-linked genomic interactions in the nucleus. PMID:28922346

  5. Combining Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO 2 in Sequestration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swart, Peter K.; Dixon, Tim

    2014-09-30

    A series of surface geophysical and geochemical techniques are tested in order to demonstrate and validate low cost approaches for Monitoring, Verification and Accounting (MVA) of the integrity of deep reservoirs for CO 2 storage. These techniques are (i) surface deformation by GPS; ii) surface deformation by InSAR; iii) passive source seismology via broad band seismometers; and iv) soil gas monitoring with a cavity ring down spectrometer for measurement of CO 2 concentration and carbon isotope ratio. The techniques were tested at an active EOR (Enhanced Oil Recovery) site in Texas. Each approach has demonstrated utility. Assuming Carbon Capture, Utilizationmore » and Storage (CCUS) activities become operational in the future, these techniques can be used to augment more expensive down-hole techniques.« less

  6. Coupled greenhouse warming and deep-sea acidification in the middle Eocene

    NASA Astrophysics Data System (ADS)

    Bohaty, Steven M.; Zachos, James C.; Florindo, Fabio; Delaney, Margaret L.

    2009-06-01

    The Middle Eocene Climatic Optimum (MECO) is an enigmatic warming event that represents an abrupt reversal in long-term cooling through the Eocene. In order to further assess the timing and nature of this event, we have assembled stable isotope and calcium carbonate concentration records from multiple Deep Sea Drilling Project and Ocean Drilling Program sites for the time interval between ˜43 and 38 Ma. Revised stratigraphy at several sites and compilation of δ18O records place peak warming during the MECO event at 40.0 Ma (Chron C18n.2n). The identification of the δ18O excursion at sites in different geographic regions indicates that the climatic effects of this event were globally extensive. The total duration of the MECO event is estimated at ˜500 ka, with peak warming lasting <100 ka. Assuming minimal glaciation in the late middle Eocene, ˜4°-6°C total warming of both surface and deep waters is estimated during the MECO at the study sites. The interval of peak warming at ˜40.0 Ma also coincided with a worldwide decline in carbonate accumulation at sites below 3000 m depth, reflecting a temporary shoaling of the calcite compensation depth. The synchroneity of deep-water acidification and globally extensive warming makes a persuasive argument that the MECO event was linked to a transient increase in atmospheric pCO2. The results of this study confirm previous reports of significant climatic instability during the middle Eocene. Furthermore, the direct link between warming and changes in the carbonate chemistry of the deep ocean provides strong evidence that changes in greenhouse gas concentrations exerted a primary control on short-term climate variability during this critical period of Eocene climate evolution.

  7. Quantifying the determinants of decremental response in critical ventricular tachycardia substrate.

    PubMed

    Beheshti, Mohammadali; Nayyar, Sachin; Magtibay, Karl; Massé, Stéphane; Porta-Sanchez, Andreu; Haldar, Shouvik; Bhaskaran, Abhishek; Vigmond, Edward; Nanthakumar, Kumaraswamy

    2018-05-28

    Decremental response evoked with extrastimulation (DEEP) is a useful tool for determining diastolic return path of ventricular tachycardia (VT). Though a targeted VT ablation is feasible with this approach, determinants of DEEP response have not been studied OBJECTIVES: To elucidate the effects of clinically relevant factors, specifically, the proximity of the stimulation site to the arrhythmogenic scar, stimulation wave direction, number of channels open in the scar, size of the scar and number of extra stimuli on decrement and entropy of DEEP potentials. In a 3-dimensional bi-domain simulation of human ventricular tissue (TNNP cell model), an irregular subendocardial myopathic region was generated. An irregular channel of healthy tissue with five potential entry branches was shaped into the myopathic region. A bipolar electrogram was derived from two electrodes positioned in the centre of the myopathic region. Evoked delays between far-field and local Electrogram (EGM) following an extrastimulus (S1-S2, 500-350 ms) were measured as the stimulation site, channel branches, and inexcitable tissue size were altered. Stimulation adjacent to the inexcitable tissue from the side opposite to the point-of-entry produces longest DEEP delay. The DEEP delay shortens when the stimulation point is farther away from the scar, and it decreases maximally when stimulation is done from a site beside a conduction barrier. Entropy increases with S2 when stimulation site is from farther away. An unprotected channel structure with multiple side-branch openings had shorter DEEP delay compared to a protected channel structure with a paucity of additional side-branch openings and a point-of-entry on the side opposite to the pacing source. Addition of a second shorter extrastimulus did not universally lead to higher DEEP delay CONCLUSIONS: Location and direction of the wavefront in relation to scar entry and size of scar determine the degree of evoked response while the number of extrastimuli has a small additional decremental effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Evidence for a persistent microbial seed bank throughout the global ocean

    PubMed Central

    Gibbons, Sean M.; Caporaso, J. Gregory; Pirrung, Meg; Field, Dawn; Knight, Rob; Gilbert, Jack A.

    2013-01-01

    Do bacterial taxa demonstrate clear endemism, like macroorganisms, or can one site’s bacterial community recapture the total phylogenetic diversity of the world’s oceans? Here we compare a deep bacterial community characterization from one site in the English Channel (L4-DeepSeq) with 356 datasets from the International Census of Marine Microbes (ICoMM) taken from around the globe (ranging from marine pelagic and sediment samples to sponge-associated environments). At the L4-DeepSeq site, increasing sequencing depth uncovers greater phylogenetic overlap with the global ICoMM data. This site contained 31.7–66.2% of operational taxonomic units identified in a given ICoMM biome. Extrapolation of this overlap suggests that 1.93 × 1011 sequences from the L4 site would capture all ICoMM bacterial phylogenetic diversity. Current technology trends suggest this limit may be attainable within 3 y. These results strongly suggest the marine biosphere maintains a previously undetected, persistent microbial seed bank. PMID:23487761

  9. LFP Oscillations in the Mesencephalic Locomotor Region during Voluntary Locomotion

    PubMed Central

    Noga, Brian R.; Sanchez, Francisco J.; Villamil, Luz M.; O’Toole, Christopher; Kasicki, Stefan; Olszewski, Maciej; Cabaj, Anna M.; Majczyński, Henryk; Sławińska, Urszula; Jordan, Larry M.

    2017-01-01

    Oscillatory rhythms in local field potentials (LFPs) are thought to coherently bind cooperating neuronal ensembles to produce behaviors, including locomotion. LFPs recorded from sites that trigger locomotion have been used as a basis for identification of appropriate targets for deep brain stimulation (DBS) to enhance locomotor recovery in patients with gait disorders. Theta band activity (6–12 Hz) is associated with locomotor activity in locomotion-inducing sites in the hypothalamus and in the hippocampus, but the LFPs that occur in the functionally defined mesencephalic locomotor region (MLR) during locomotion have not been determined. Here we record the oscillatory activity during treadmill locomotion in MLR sites effective for inducing locomotion with electrical stimulation in rats. The results show the presence of oscillatory theta rhythms in the LFPs recorded from the most effective MLR stimulus sites (at threshold ≤60 μA). Theta activity increased at the onset of locomotion, and its power was correlated with the speed of locomotion. In animals with higher thresholds (>60 μA), the correlation between locomotor speed and theta LFP oscillations was less robust. Changes in the gamma band (previously recorded in vitro in the pedunculopontine nucleus (PPN), thought to be a part of the MLR) were relatively small. Controlled locomotion was best achieved at 10–20 Hz frequencies of MLR stimulation. Our results indicate that theta and not delta or gamma band oscillation is a suitable biomarker for identifying the functional MLR sites. PMID:28579945

  10. Deep-sea ostracods from the South Atlantic sector of the Southern ocean during the Last 370,000 years

    USGS Publications Warehouse

    Yasuhara, Moriaki; Cronin, T. M.; Hunt, G.; Hodell, D.A.

    2009-01-01

    We report changes of deep-sea ostracod fauna during the last 370,000 yr from the Ocean Drilling Program (ODP) Hole 704A in the South Atlantic sector of the Southern Ocean. The results show that faunal changes are coincident with glacial/interglacial-scale deep-water circulation changes, even though our dataset is relatively small and the waters are barren of ostracods until mid-MIS (Marine Isotope Stage) 5. Krithe and Poseidonamicus were dominant during the Holocene interglacial period and the latter part of MIS 5, when this site was under the influence of North Atlantic Deep Water (NADW). Conversely, Henryhowella and Legitimocythere were dominant during glacial periods, when this site was in the path of Circumpolar Deep Water (CPDW). Three new species (Aversovalva brandaoae, Poseidonamicus hisayoae, and Krithe mazziniae) are described herein. This is the first report of Quaternary glacial/interglacial scale deep-sea ostracod faunal changes in the Southern and South Atlantic Oceans, a key region for understanding Quaternary climate and deep-water circulation, although the paucity of Quaternary ostracods in this region necessitates further research. ?? 2009 The Paleontological Society.

  11. The mitochondrial genome of a sea anemone Bolocera sp. exhibits novel genetic structures potentially involved in adaptation to the deep-sea environment.

    PubMed

    Zhang, Bo; Zhang, Yan-Hong; Wang, Xin; Zhang, Hui-Xian; Lin, Qiang

    2017-07-01

    The deep sea is one of the most extensive ecosystems on earth. Organisms living there survive in an extremely harsh environment, and their mitochondrial energy metabolism might be a result of evolution. As one of the most important organelles, mitochondria generate energy through energy metabolism and play an important role in almost all biological activities. In this study, the mitogenome of a deep-sea sea anemone ( Bolocera sp.) was sequenced and characterized. Like other metazoans, it contained 13 energy pathway protein-coding genes and two ribosomal RNAs. However, it also exhibited some unique features: just two transfer RNA genes, two group I introns, two transposon-like noncanonical open reading frames (ORFs), and a control region-like (CR-like) element. All of the mitochondrial genes were coded by the same strand (the H-strand). The genetic order and orientation were identical to those of most sequenced actiniarians. Phylogenetic analyses showed that this species was closely related to Bolocera tuediae . Positive selection analysis showed that three residues (31 L and 42 N in ATP6 , 570 S in ND5 ) of Bolocera sp. were positively selected sites. By comparing these features with those of shallow sea anemone species, we deduced that these novel gene features may influence the activity of mitochondrial genes. This study may provide some clues regarding the adaptation of Bolocera sp. to the deep-sea environment.

  12. Interhemispheric teleconnections: Late Pliocene change in Mediterranean outflow water linked to changes in Indonesian Through-Flow and Atlantic Meridional Overturning Circulation, a review and update

    NASA Astrophysics Data System (ADS)

    Sarnthein, Michael; Grunert, Patrick; Khélifi, Nabil; Frank, Martin; Nürnberg, Dirk

    2018-03-01

    The ultimate, possibly geodynamic control and potential impact of changes in circulation activity and salt discharge of Mediterranean outflow waters (MOW) on Atlantic meridional overturning circulation have formed long-standing objectives in paleoceanography. Late Pliocene changes in the distal advection of MOW were reconstructed on orbital timescales for northeast Atlantic DSDP/ODP sites 548 and 982 off Brittany and on Rockall Plateau, supplemented by a proximal record from Site U1389 west off Gibraltar, and compared to Western Mediterranean surface and deep-water records of Alboran Sea Site 978. From 3.43 to 3.3 Ma, MOW temperatures and salinities form a prominent rise by 2-4 °C and 3 psu, induced by a preceding and coeval rise in sea surface and deep-water salinity and increased summer aridity in the Mediterranean Sea. We speculate that these changes triggered an increased MOW flow and were ultimately induced by a persistent 2.5 °C cooling of Indonesian Through-Flow waters. The temperature drop resulted from the northward drift of Australia that crossed a threshold value near 3.6-3.3 Ma and led to a large-scale cooling of the eastern subtropical Indian Ocean and in turn, to a reduction of African monsoon rains. Vice versa, we show that the distinct rise in Mediterranean salt export after 3.4 Ma induced a unique long-term rise in the formation of Upper North Atlantic Deep Water, that followed with a phase lag of 100 ky. In summary, we present evidence for an interhemispheric teleconnection of processes in the Indonesian Gateways, the Mediterranean and Labrador Seas, jointly affecting Pliocene climate.

  13. Mesophotic coral ecosystems under anthropogenic stress: a case study at Ponce, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Appeldoorn, Richard; Ballantine, David; Bejarano, Ivonne; Carlo, Milton; Nemeth, Michael; Otero, Ernesto; Pagan, Francisco; Ruiz, Hector; Schizas, Nikolaos; Sherman, Clark; Weil, Ernesto

    2016-03-01

    Mesophotic coral ecosystems (MCEs) were compared between La Parguera and Ponce, off the south coast of Puerto Rico. In contrast to La Parguera, Ponce has a narrow insular shelf and hosts several river outlets, a commercial port, a regional sewage treatment plant with associated deep water outfall, and three deep dredge disposal sites. Off Ponce, MCEs receive higher (16×) rates of sedimentation than off La Parguera, a less impacted site. The most impacted sites were located offshore of Cayo Ratones and are in or down-current and in close proximity to one of the dredge disposal sites. There, MCEs are characterized by a steep, irregular, rocky slope with a cover of fine-grained, dark brown sediment, which increases with depth. At shallower depths, scattered rocky outcroppings are colonized by sponges, black corals and algae. The sediment cover contains two to three times the terrigenous content and a significantly higher percentage of the fine-grained fraction than off La Parguera. Thirteen remotely operated vehicle (ROV) dives east and west of Ponce showed that the deepest depth at which corals were observed increased with distance from Cayo Ratones and did not approach depths observed off La Parguera except at the eastern-most (up-current) site, Caja de Muertos, which was also significantly further offshore. Benthic communities off Caja de Muertos were comparable to those at La Parguera, while off Cayo Ratones, there were no mesophotic corals and sparse development of other benthic macrobiota except sponges. Management authorities should include MCEs when assessing potential impacts from anthropogenic activities and take the necessary steps to reduce local threats.

  14. Microbes of deep marine sediments as viewed by metagenomics

    NASA Astrophysics Data System (ADS)

    Biddle, J.

    2015-12-01

    Ten years after the first deep marine sediment metagenome was produced, questions still exist about the nucleic acid sequences we have retrieved. Current data sets, including the Peru Margin, Costa Rica Margin and Iberian Margin show that consistently, data forms larger assemblies at depth due to the reduced complexity of the microbial community. But are these organisms active or preserved? At SMTZs, a change in the assembly statistics is noted, as well as an increase in cell counts, suggesting that cells are truly active. As depth increases, genome sizes are consistently large, suggesting that much like soil microbes, sedimentary microbes may maintain a larger reportorie of genomic potential. Functional changes are seen with depth, but at many sites are not correlated to specific geochemistries. Individual genomes show changes with depth, which raises interesting questions on how the subsurface is settled and maintained. The subsurface does have a distinct genomic signature, including unusual microbial groups, which we are now able to analyze for total genomic content.

  15. 76 FR 50171 - Notice of Intent To Prepare an Environmental Impact Statement for the Henrys Fork Salinity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... following methods: Government-wide rulemaking Web site: http://www.regulations.gov . Follow the instructions... irrigation system improvements outlined in this plan will provide more efficient use of this water. Deep... reduction of excess deep percolation passing below the plant root zone. Deep percolation of irrigation water...

  16. Milankovitch forcing and role of Indonesian Gateway on middle Miocene climate and carbon cycle: New perspective from the South China Sea, equatorial West Pacific and East Indian Ocean

    NASA Astrophysics Data System (ADS)

    Holbourn, A.; Kuhnt, W.; Schulz, M.

    2003-04-01

    The enigmatic long-term positive carbon isotope excursion ("Monterey excursion") in the middle Miocene exhibits an apparent 400 ky cyclicity (long eccentricity cycle of the Milankovitch frequency band). Similar isotope excursion are known from the mid-Cretaceous and may be a characteristic feature of a greenhouse world with extreme warm climate, high sealevel, and a dominantly zonal circulation pattern in the world ocean. This period of extreme warmth (the mid-Miocene climate optimum) ended between 14.2 and 13.8 Ma, when a significant increase in deep-water oxygen isotopic values occurred that was related to the growth of the East Antarctic ice sheet. Plate tectonic movements between Australia and SE Asia, ultimately leading to the closure of the deep water gateway connecting the Indian and Pacific Oceans, started prior to this paleoceanographic change. We used benthic deep water oxygen and carbon isotope curves in combination with new age models at critical locations along the northern margin of the Indonesian Gateway (South China Sea, ODP Site 1146), at the western end of the gateway (NW Australian margin, ODP Site 761) and at the eastern end of the gateway (Ontong Java Plateau, ODP Site 806) to investigate the frequency and amplitude of deep water isotope fluctuations during the middle Miocene. High resolution sediment color reflectance data, benthic carbon isotopes and foraminiferal assemblages are used as proxies of deep-water ventilation and carbon flux. Our results indicate Milankovitch forcing on virtually all proxies and a change from eccentricity to precession driven cyclicity at approximately 15 Ma. Our data reveal increased carbon flux and a restricted deep water exchange between the Pacific Ocean and Indian Ocean through the Indonesian Gateway during the middle Miocene climate optimum. After 13.6 Ma, the decrease in d13C was strongest at Site 806, indicating a marked change in the deep-water circulation of the equatorial West Pacific and a switch to a more distant deep-water source.

  17. Evaluation of surficial sediment toxicity and sediment physico-chemical characteristics of representative sites in the Lagoon of Venice (Italy)

    NASA Astrophysics Data System (ADS)

    Losso, C.; Arizzi Novelli, A.; Picone, M.; Marchetto, D.; Pessa, G.; Molinaroli, E.; Ghetti, P. F.; Volpi Ghirardini, A.

    2004-11-01

    Toxic hazard in sites with varying types and levels of contamination in the Lagoon of Venice was estimated by means of toxicity bioassays based on the early life-stages of the autochthonous sea urchin Paracentrotus lividus. Elutriate was chosen as the test matrix, due to its ability to highlight potential toxic effects towards sensitive biological components of the water column caused by sediment resuspension phenomena affecting the Lagoon. Surficial sediments (core-top 5 cm deep), directly influenced by resuspension/redeposition processes, and core sediments (core 20 cm deep), recording time-mediated contamination, were sampled in some sites located in the lagoonal area most greatly influenced by anthropogenic activities. Particle size, organic matter and water content were also analysed. In two sites, the results of physical parameters showed that the core-top sediments were coarser than the 20-cm core sediments. Sperm cell toxicity test results showed the negligible acute toxicity of elutriates from all investigated sites. The embryo toxicity test demonstrated a short-term chronic toxicity gradient for elutriates from the 20-cm core sediments, in general agreement both with the expected contamination gradient and with results of the Microtox® solid-phase test. Elutriates of the core-top 5-cm sediments revealed a totally inverted gradient, in comparison with that for the 20-cm core sediments, and the presence of a "hot spot" of contamination in the site chosen as a possible reference. Investigations on ammonia and sulphides as possible confounding factors excluded their contribution to this "hot spot". Integrated physico-chemical and toxicity results on sediments at various depths demonstrated the presence of disturbed sediments in the central basin of the Lagoon of Venice.

  18. Localization of beta and high-frequency oscillations within the subthalamic nucleus region.

    PubMed

    van Wijk, B C M; Pogosyan, A; Hariz, M I; Akram, H; Foltynie, T; Limousin, P; Horn, A; Ewert, S; Brown, P; Litvak, V

    2017-01-01

    Parkinsonian bradykinesia and rigidity are typically associated with excessive beta band oscillations in the subthalamic nucleus. Recently another spectral peak has been identified that might be implicated in the pathophysiology of the disease: high-frequency oscillations (HFO) within the 150-400 Hz range. Beta-HFO phase-amplitude coupling (PAC) has been found to correlate with severity of motor impairment. However, the neuronal origin of HFO and its usefulness as a potential target for deep brain stimulation remain to be established. For example, it is unclear whether HFO arise from the same neural populations as beta oscillations. We intraoperatively recorded local field potentials from the subthalamic nucleus while advancing DBS electrodes in 2 mm steps from 4 mm above the surgical target point until 2 mm below, resulting in 4 recording sites. Data from 26 nuclei from 14 patients were analysed. For each trajectory, we identified the recording site with the largest spectral peak in the beta range (13-30 Hz), and the largest peak in the HFO range separately. In addition, we identified the recording site with the largest beta-HFO PAC. Recording sites with largest beta power and largest HFO power coincided in 50% of cases. In the other 50%, HFO was more likely to be detected at a more superior recording site in the target area. PAC followed more closely the site with largest HFO (45%) than beta power (27%). HFO are likely to arise from spatially close, but slightly more superior neural populations than beta oscillations. Further work is necessary to determine whether the different activities can help fine-tune deep brain stimulation targeting.

  19. Accurate identification of RNA editing sites from primitive sequence with deep neural networks.

    PubMed

    Ouyang, Zhangyi; Liu, Feng; Zhao, Chenghui; Ren, Chao; An, Gaole; Mei, Chuan; Bo, Xiaochen; Shu, Wenjie

    2018-04-16

    RNA editing is a post-transcriptional RNA sequence alteration. Current methods have identified editing sites and facilitated research but require sufficient genomic annotations and prior-knowledge-based filtering steps, resulting in a cumbersome, time-consuming identification process. Moreover, these methods have limited generalizability and applicability in species with insufficient genomic annotations or in conditions of limited prior knowledge. We developed DeepRed, a deep learning-based method that identifies RNA editing from primitive RNA sequences without prior-knowledge-based filtering steps or genomic annotations. DeepRed achieved 98.1% and 97.9% area under the curve (AUC) in training and test sets, respectively. We further validated DeepRed using experimentally verified U87 cell RNA-seq data, achieving 97.9% positive predictive value (PPV). We demonstrated that DeepRed offers better prediction accuracy and computational efficiency than current methods with large-scale, mass RNA-seq data. We used DeepRed to assess the impact of multiple factors on editing identification with RNA-seq data from the Association of Biomolecular Resource Facilities and Sequencing Quality Control projects. We explored developmental RNA editing pattern changes during human early embryogenesis and evolutionary patterns in Drosophila species and the primate lineage using DeepRed. Our work illustrates DeepRed's state-of-the-art performance; it may decipher the hidden principles behind RNA editing, making editing detection convenient and effective.

  20. Harpacticoid copepod diversity at two physically reworked sites in the deep sea

    NASA Astrophysics Data System (ADS)

    Thistle, David

    1998-01-01

    Grassle's and Jumars' theories of diversity maintenance in the quiescent deep sea view millimeter-to-meter-scale patchiness (mostly of biological origin) as crucial. In other deep-sea regions, episodes of strong near-bottom flow put the surficial sediment layers into motion, obliterating the biologically produced, millimeter-to-meter-scale patchiness. Under these theories, sites eroded so frequently that such patchiness is eliminated almost as soon as it is created should have lower diversities than sites where the time between erosive events is sufficient for this type of patchiness to be produced and exploited. I tested this prediction by comparing the diversities of harpacticoid copepods at two sites on Fieberling Guyot to determine whether Grassle's and Jumars' theories can be extended to the portion of the deep sea that experiences episodic erosive flows. At White Sand Swale (=WSS) (32°27.581'N, 127°47.839'W), strong near-bottom flows erode the surficial sediment daily. At Sea Pen Rim (=SPR) (32°27.631'N, 127°49.489'W), strong near-bottom flows erode the surficial sediment a few times annually. Contrary to expectation, the diversity of harpacticoid copepods was significantly greater at WSS than at SPR. However, the erosion regime at WSS may create small-scale patchiness that promotes harpacticoid diversity.

  1. Identification and characterization of a chitin deacetylase from a metagenomic library of deep-sea sediments of the Arctic Ocean.

    PubMed

    Liu, Jinlin; Jia, Zhijuan; Li, Sha; Li, Yan; You, Qiang; Zhang, Chunyan; Zheng, Xiaotong; Xiong, Guomei; Zhao, Jin; Qi, Chao; Yang, Jihong

    2016-09-15

    The chemical and biological compositions of deep-sea sediments are interesting because of the underexplored diversity when it comes to bioprospecting. The special geographical location and climates make Arctic Ocean a unique ocean area containing an abundance of microbial resources. A metagenomic library was constructed based on the deep-sea sediments of Arctic Ocean. Part of insertion fragments of this library were sequenced. A chitin deacetylase gene, cdaYJ, was identified and characterized. A metagenomic library with 2750 clones was obtained and ten clones were sequenced. Results revealed several interesting genes, including a chitin deacetylase coding sequence, cdaYJ. The CdaYJ is homologous to some known chitin deacetylases and contains conserved chitin deacetylase active sites. CdaYJ protein exhibits a long N-terminal and a relative short C-terminal. Phylogenetic analysis revealed that CdaYJ showed highest homology to CDAs from Alphaproteobacteria. The cdaYJ gene was subcloned into the pET-28a vector and the recombinant CdaYJ (rCdaYJ) was expressed in Escherichia coli BL21 (DE3). rCdaYJ showed a molecular weight of 43kDa, and exhibited deacetylation activity by using p-nitroacetanilide as substrate. The optimal pH and temperature of rCdaYJ were tested as pH7.4 and 28°C, respectively. The construction of metagenomic library of the Arctic deep-sea sediments provides us an opportunity to look into the microbial communities and exploiting valuable gene resources. A chitin deacetylase CdaYJ was identified from the library. It showed highest deacetylation activity under slight alkaline and low temperature conditions. CdaYJ might be a candidate chitin deacetylase that possesses industrial and pharmaceutical potentials. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Hydraulic Properties of Diatomaceous Structure on Physical Properties and Wire-line Logging - An example of off Sanriku, North Japan -

    NASA Astrophysics Data System (ADS)

    Ojima, T.; Saito, S.

    2013-12-01

    During Ocean Drilling Program (ODP) Leg. 186, two sites (Site 1150 and Site 1151) were drilled on the continental slope of the deep-sea forearc basin of northern Japan. Diatomaceous sediments were recovered Site 1150 (39° 10.9' N, 143° 19.9' E) and Site 1151 (38° 45.1' N, 143° 20.0' E), and the depth of each site is 1181.60 mbsf and 1113.60 mbsf, respectively. This area is under the influence of the Oyashio current and is one of the highly bio-productive regions of the North Pacific Ocean (Motoyama et al., 2004). The combination of high productivity and active tectonic deformation that often caused high rate accumulating of fossil and organic rich sediments. The onboard results of porosity measurements show high value (50-70 %) down to 1000 mbsf, and obviously higher than nearby subduction trench, Nankai Trough (Taylor and Fisher, 1993). There is a possibility that diatomaceous shell keep a frame structure from effective stress and load pressure. On another drilling site result, DSDP (Deep Sea Drilling Project) Leg. 19 located 60 km to the north of ODP sites, was reported high value of porosity, but recognized only shallow range (>500 mbsf) (Shephard and Bryant, 1980). We focused on the relationships between physical property, microstructure, and logging data at deep range(~1000 mbsf). We picked 14 samples to observe microstructure using SEM and measure permeability using flow-ump approach (1.5-4.5 MPa). Logging data were collected using wireline logging (Sacks and Suyehiro, 2003). Based on these results, it is expected that microstructure and logging can be integrated into a general model of core-log correlation. We observed many pores in and around diatom fossils using SEM even in the sample from deeper than 1000 mbsf, and measured pore size distribution and permeability at each depth. Generally, porosity decreases by effective stress and load pressure, and permeability also decrease with down hole. In this site, we recognized down hole decreases of pore space and preservations of diatom shell by using SEM. However, measured permeability displayed subtle patterns in downhole. These results can be considered that intact diatom shells don't always contribute to permeability, while fractured fabrics play good correlation with consolidation. Furthermore, correlations between water content ratio, permeability, and ithostratigraphic variance can be considered as a good index for hydraulic sedimental conditions. In this presentation, We show results of data integration of lithostratigraphy, measurements values, logging data, and physical properties.

  3. Microbial community of a hydrothermal mud vent underneath the deep-sea anoxic brine lake Urania (eastern Mediterranean).

    PubMed

    Yakimov, Michail M; Giuliano, Laura; Cappello, Simone; Denaro, Renata; Golyshin, Peter N

    2007-04-01

    The composition of a metabolically active prokaryotic community thriving in hydrothermal mud fluids of the deep-sea hypersaline anoxic Western Urania Basin was characterized using rRNA-based phylogenetic analysis of a clone library. The physiologically active prokaryotic assemblage in this extreme environment showed a great genetic diversity. Most members of the microbial community appeared to be affiliated to yet uncultured organisms from similar ecosystems, i.e., deep-sea hypersaline basins and hydrothermal vents. The bacterial clone library was dominated by phylotypes affiliated with the epsilon-Proteobacteria subdivision recognized as an ecologically significant group of bacteria inhabiting deep-sea hydrothermal environments. Almost 18% of all bacterial clones were related to delta-Proteobacteria, suggesting that sulfate reduction is one of the dominant metabolic processes occurring in warm mud fluids. The remaining bacterial phylotypes were related to alpha- and beta-Proteobacteria, Actinobacteria, Bacteroides, Deinococcus-Thermus, KB1 and OP-11 candidate divisions. Moreover, a novel monophyletic clade, deeply branched with unaffiliated 16S rDNA clones was also retrieved from deep-sea sediments and halocline of Urania Basin. Archaeal diversity was much lower and detected phylotypes included organisms affiliated exclusively with the Euryarchaeota. More than 96% of the archaeal clones belonged to the MSBL-1 candidate order recently found in hypersaline anoxic environments, such as endoevaporitic microbial mats, Mediterranean deep-sea mud volcanoes and anoxic basins. Two phylotypes, represented by single clones were related to uncultured groups DHVE-1 and ANME-1. Thus, the hydrothermal mud of hypersaline Urania Basin seems to contain new microbial diversity. The prokaryotic community was significantly different from that occurring in the upper layers of the Urania Basin since 60% of all bacterial and 40% of all archaeal phylotypes were obtained only from mud fluids. The uniqueness of the composition of the active prokaryotic community could be explained by the complex environmental conditions at the site. The interaction of oxygenated warm mud fluids with the cold hypersaline brine of the Urania Basin seems to simultaneously select for various metabolic processes, such as aerobic and anaerobic heterotrophy, sulfide- and methane-dependent chemotrophy along with anaerobic oxidation of methane, sulfate- and metal-reduction.

  4. The intensification of northern component deepwater formation during the mid-Pleistocene climate transition

    NASA Astrophysics Data System (ADS)

    Poirier, Robert K.; Billups, Katharina

    2014-11-01

    We reconstruct mid-Pleistocene (marine isotope stages (MISs) 13-18) deepwater hydrography at Ocean Drilling Program Site 1063 (4583 m water depth, subtropical North Atlantic) using benthic foraminiferal stable isotope records. These new records complete an 900 kyr long stratigraphy spanning MISs 8-29 ( 250-1030 Ka) when combined with previously published records from Site 1063. The results indicate a change in the circulation regime of the abyssal subtropical North Atlantic during MIS 17. Prior to MIS 17, no significant glacial or interglacial δ13C gradients are evident between Site 1063 and the deep South Atlantic. After MIS 17, interglacial intervals at Site 1063 are characterized by δ13C values that consistently approach those recorded in the deep North Atlantic. Comparing Site 1063 δ13C values to 26 additional published records throughout the entire Atlantic basin supports the idea that this δ13C increase is unique to the deep North Atlantic. After MIS 17, the basin-wide influence of higher δ13C values suggests an increased relative flux of northern sourced bottom waters during interglacial periods. The timing of northern sourced water influence at Site 1063 is consistent with the timing of a shift in the orientation of the Arctic Front. Thus, this shift may signify a link between the northward penetration of relatively warm, saline surface waters into the Norwegian-Greenland Seas stimulating deep convection. Our findings fit well with the model of Imbrie et al. (1993) for the importance of the Nordic heat pump in establishing strong 100 kyr cyclicity in late Pleistocene glacial cycles.

  5. Big-bubble deep anterior lamellar keratoplasty using central vs peripheral air injection: a clinical trial.

    PubMed

    Feizi, Sepehr; Daryabari, Seyed-Hashem; Najdi, Danial; Javadi, Mohammad Ali; Karimian, Farid

    2016-06-10

    To compare 2 sites of air injection to achieve Descemet membrane (DM) detachment in big-bubble deep anterior lamellar keratoplasty (DALK). In this prospective, randomized study, 48 eyes of 48 keratoconus-affected patients who underwent DALK by cornea fellows were enrolled. Each patient was randomly assigned into one of 2 groups. After trephination to approximately 80% of the corneal thickness, a 27-G needle was inserted into the stroma from the trephination site. The needle was moved radially inside the trephination site and advanced to the central or paracentral cornea in group 1. In group 2, the needle was inserted into the deep stroma from the trephination site and advanced into the peripheral cornea to approximately 1.5 mm anterior to the limbus. Air was gently injected into the deep stroma until a big bubble was formed. The rates of DM separation and complications were compared between the 2 groups. Big-bubble formation was successful in 79.2% of the eyes in the study group. A bare DM was achieved by central injection in 68.0% of group 1 and by peripheral injection in 69.6% of group 2 (p = 0.68). This rate was increased to 80.0% and 78.3% in groups 1 and 2, respectively, after the injection site was shifted when injections failed. The study groups were comparable in terms of complications including DM perforation and bubble bursting. Both injection sites were equivalent in their rates of big-bubble formation and complications. Less experienced surgeons are advised to initially inject air outside the trephination.

  6. Modelling high Arctic deep permafrost temperature sensitivity in Northeast Greenland based on experimental and field observations

    NASA Astrophysics Data System (ADS)

    Rasmussen, Laura Helene; Zhang, Wenxin; Hollesen, Jørgen; Cable, Stefanie; Hvidtfeldt Christiansen, Hanne; Jansson, Per-Erik; Elberling, Bo

    2017-04-01

    Permafrost affected areas in Greenland are expected to experience a marked temperature increase within decades. Most studies have considered near-surface permafrost sensitivity, whereas permafrost temperatures below the depths of zero annual amplitude is less studied despite being closely related to changes in near-surface conditions, such as changes in active layer thermal properties, soil moisture and snow depth. In this study, we measured the sensitivity of thermal conductivity (TC) to gravimetric water content (GWC) in frozen and thawed permafrost sediments from fine-sandy and gravelly deltaic and fine-sandy alluvial deposits in the Zackenberg valley, NE Greenland. We further calibrated a coupled heat and water transfer model, the "CoupModel", for one central delta sediment site with average snow depth and further forced it with meteorology from a nearby delta sediment site with a topographic snow accumulation. With the calibrated model, we simulated deep permafrost thermal dynamics in four 20-year scenarios with changes in surface temperature and active layer (AL) soil moisture: a) 3 °C warming and AL water table at 0.5 m depth; b) 3 °C warming and AL water table at 0.1 m depth; c) 6 °C warming and AL water table at 0.5 m depth and d) 6 °C warming and AL water table at 0.1 m depth. Our results indicate that frozen sediments have higher TC than thawed sediments. All sediments show a positive linear relation between TC and soil moisture when frozen, and a logarithmic one when thawed. Gravelly delta sediments were highly sensitive, but never reached above 12 % GWC, indicating a field effect of water retention capacity. Alluvial sediments are less sensitive to soil moisture than deltaic (fine and coarse) sediments, indicating the importance of unfrozen water in frozen sediment. The deltaic site with snow accumulation had 1 °C higher mean annual ground temperature than the average snow depth site. Permafrost temperature at the depth of 18 m increased with 1.5 °C and 3.5 °C in the scenarios with 3 °C and 6 °C warming, respectively. Increasing the soil moisture had no important additional effect to warming, although an increase in thermal offset was indicated. We conclude that below-ground sediment properties affect the sensitivity of TC to GWC, that surface temperature changes can influence the deep permafrost within a short time scale, and that differences in snow depth affect surface temperatures. Sediment type and the type of precipitation should thus be considered when estimating future High Arctic deep permafrost sensitivity.

  7. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    PubMed

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate constants in the initial intermediate formed during acylation (EAP, where EA is the acyl enzyme and P is the alcohol leaving group cleaved from the ester substrate) may be constrained such that the leaving group P must dissociate before hydrolytic deacylation can occur.

  8. Response of Bacterial Communities to Different Detritus Compositions in Arctic Deep-Sea Sediments.

    PubMed

    Hoffmann, Katy; Hassenrück, Christiane; Salman-Carvalho, Verena; Holtappels, Moritz; Bienhold, Christina

    2017-01-01

    Benthic deep-sea communities are largely dependent on particle flux from surface waters. In the Arctic Ocean, environmental changes occur more rapidly than in other ocean regions, and have major effects on the export of organic matter to the deep sea. Because bacteria constitute the majority of deep-sea benthic biomass and influence global element cycles, it is important to better understand how changes in organic matter input will affect bacterial communities at the Arctic seafloor. In a multidisciplinary ex situ experiment, benthic bacterial deep-sea communities from the Long-Term Ecological Research Observatory HAUSGARTEN were supplemented with different types of habitat-related detritus (chitin, Arctic algae) and incubated for 23 days under in situ conditions. Chitin addition caused strong changes in community activity, while community structure remained similar to unfed control incubations. In contrast, the addition of phytodetritus resulted in strong changes in community composition, accompanied by increased community activity, indicating the need for adaptation in these treatments. High-throughput sequencing of the 16S rRNA gene and 16S rRNA revealed distinct taxonomic groups of potentially fast-growing, opportunistic bacteria in the different detritus treatments. Compared to the unfed control, Colwelliaceae, Psychromonadaceae , and Oceanospirillaceae increased in relative abundance in the chitin treatment, whereas Flavobacteriaceae, Marinilabiaceae , and Pseudoalteromonadaceae increased in the phytodetritus treatments. Hence, these groups may constitute indicator taxa for the different organic matter sources at this study site. In summary, differences in community structure and in the uptake and remineralization of carbon in the different treatments suggest an effect of organic matter quality on bacterial diversity as well as on carbon turnover at the seafloor, an important feedback mechanism to be considered in future climate change scenarios.

  9. Response of Bacterial Communities to Different Detritus Compositions in Arctic Deep-Sea Sediments

    PubMed Central

    Hoffmann, Katy; Hassenrück, Christiane; Salman-Carvalho, Verena; Holtappels, Moritz; Bienhold, Christina

    2017-01-01

    Benthic deep-sea communities are largely dependent on particle flux from surface waters. In the Arctic Ocean, environmental changes occur more rapidly than in other ocean regions, and have major effects on the export of organic matter to the deep sea. Because bacteria constitute the majority of deep-sea benthic biomass and influence global element cycles, it is important to better understand how changes in organic matter input will affect bacterial communities at the Arctic seafloor. In a multidisciplinary ex situ experiment, benthic bacterial deep-sea communities from the Long-Term Ecological Research Observatory HAUSGARTEN were supplemented with different types of habitat-related detritus (chitin, Arctic algae) and incubated for 23 days under in situ conditions. Chitin addition caused strong changes in community activity, while community structure remained similar to unfed control incubations. In contrast, the addition of phytodetritus resulted in strong changes in community composition, accompanied by increased community activity, indicating the need for adaptation in these treatments. High-throughput sequencing of the 16S rRNA gene and 16S rRNA revealed distinct taxonomic groups of potentially fast-growing, opportunistic bacteria in the different detritus treatments. Compared to the unfed control, Colwelliaceae, Psychromonadaceae, and Oceanospirillaceae increased in relative abundance in the chitin treatment, whereas Flavobacteriaceae, Marinilabiaceae, and Pseudoalteromonadaceae increased in the phytodetritus treatments. Hence, these groups may constitute indicator taxa for the different organic matter sources at this study site. In summary, differences in community structure and in the uptake and remineralization of carbon in the different treatments suggest an effect of organic matter quality on bacterial diversity as well as on carbon turnover at the seafloor, an important feedback mechanism to be considered in future climate change scenarios. PMID:28286496

  10. Distribution of microbial methanogenesis, methane oxidation, and sulfate reduction in a high-temperature subduction system of the Nankai Trough off Cape Muroto (IODP Expedition 370 T-Limit, Site C0023)

    NASA Astrophysics Data System (ADS)

    Treude, T.; Kallmeyer, J.; Beulig, F.; Glombitza, C.; Schubert, F.; Krause, S.; Heuer, V.; Inagaki, F.; Morono, Y.

    2017-12-01

    The aim of the IODP Expedition 370 is to explore the temperature limit of the deep biosphere in a sub-seafloor environment located in the Nankai Trough, where in-situ sediment temperature increases from 2°C at the seafloor to about 120°C at the 1.2 km deep sediment/basement interface. Our study focuses on the exploration of potential microbial methanogenesis, anaerobic oxidation of methane (AOM), and sulfate reduction in sediments from different depths (from ca. 200 to 1170 mbsf) exposed to several temperature settings in the laboratory (40, 60, 75/80 and 95°C). The drill site, which features a décollement between ca. 758-796 mbsf, includes a sulfate-poor methanogenic zone from approx. 400 to 600 mbsf, followed by a deep methane-sulfate transition zone between approx. 600 to 800 m, which transitions into a deep sulfate-rich zone. Potential microbial activity of hydrogenotrophic methanogenesis, AOM, and sulfate reduction was determined in incubations of sediment slurries produced from whole-round cores with H2-added artificial seawater medium using radioisotope techniques (14C-bicarbonate, 14C-methane, and 35S-sulfate, respectively). Preliminary results revealed two peaks of methanogenesis activity with rates in the order of 0.2 to 0.5 pmol g-1dw d-1. One peak was located within the methane-rich zone passing into the methane-sulfate transition zone (60 to 80°C incubations), while the second peak occurred close to the basement (below 1000 mbsf, 95°C incubation). Sulfate reduction activity was generally highest above 400 mbsf ( 1000 pmol cm-3 d-1, 40°C incubation). Below 400 mbsf, rates declined to levels between 0.1 and 10 pmol cm-3 d-1 (60-95 °C incubations) without a clear trend and continued until close to the bottom of the core. The results point to potentially thermophilic and hypothermophilic microorganisms that exist under very low energy conditions. Samples from AOM incubations are currently being processed and preliminary results will be presented at the meeting as well as the results for sulfate reduction incubations with methane and acetate amendments.

  11. Passive Acoustic Thermometry Using Low-Frequency Deep Water Noise

    DTIC Science & Technology

    2015-09-30

    where potential ice noise sources contributing to the coherent arrivals shown in C-D are located (18b). In the low-frequency band used in this...seismic activity (e.g. along major undersea fault lines) or ice -breaking noise in the Polar Regions (19-22). Ice - generated ambient noise near the...using geodesic paths to obtain a simple estimate of the geographical area from where ice -generated ambient noise is likely to emanate for each site

  12. Canada's Deep Geological Repository for Used Nuclear Fuel - Geo-scientific Site Evaluation Process - 13117

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blyth, Alec; Ben Belfadhel, Mahrez; Hirschorn, Sarah

    2013-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable rock formation at a depth of approximately 500 meters (m) (1,640 feet [ft]). In May 2010, the NWMO published a nine-step site selection process that serves as the road map to decision-making on the location for the deep geological repository. The safetymore » and appropriateness of any potential site will be assessed against a number of factors, both technical and social in nature. The selected site will be one that can be demonstrated to be able to safely contain and isolate used nuclear fuel, protecting humans and the environment over the very long term. The geo-scientific suitability of potential candidate sites will be assessed in a stepwise manner following a progressive and thorough site evaluation process that addresses a series of geo-scientific factors revolving around five safety functions. The geo-scientific site evaluation process includes: Initial Screenings; Preliminary Assessments; and Detailed Site Evaluations. As of November 2012, 22 communities have entered the site selection process (three in northern Saskatchewan and 18 in northwestern and southwestern Ontario). (authors)« less

  13. A tribute to Peter A. Rona: A Russian Perspective

    NASA Astrophysics Data System (ADS)

    Sagalevich, Anatoly; Lutz, Richard A.

    2015-11-01

    In July 1985 Peter Rona led a cruise of the National Oceanic and Atmospheric Administration (NOAA) ship Researcher as part of the NOAA Vents Program and discovered, for the first time, black smokers, massive sulfide deposits and vent biota in the Atlantic Ocean. The site of the venting phenomena was the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the east wall of the rift valley of the Mid-Atlantic Ridge at 26°08‧N; 44°50‧W (Rona, 1985; Rona et al., 1986). In 1986, Peter and an international research team carried out multidisciplnary investigations of both active and inactive hydrothermal zones of the TAG field using the R/V Atlantis and DSV Alvin, discovering two new species of shrimp (Rimicaris exoculata and Chorocaris chacei) (Williams and Rona, 1986) and a hexagonal-shaped form (Paleodictyon nodosum) thought to be extinct (Rona et al., 2009). In 1991 a Russian crew aboard the R/V Akademik Mstislav Keldysh, with two deep-diving, human-occupied submersibles (Mir-1 and Mir-2) (Fig. 1), had the honor of having Peter Rona and a Canadian IMAX film crew from the Stephen Low Company on board to visit the TAG hydrothermal vent field. This was the first of many deep-sea interactions between Russian deep-sea scientists and their colleagues from both the U.S. and Canada. This expedition to the TAG site was part of a major Russian undersea program aimed at exploring extreme deep-sea environments; between 1988 and 2005, the Mir submersibles visited hydrothermal vents and cold seep areas in 20 deep-sea regions throughout the world's oceans (Sagalevich, 2002). Images of several of these areas (the TAG, Snake Pit, Lost City and 9°50‧N vent fields) were obtained using an IMAX camera system emplaced for the first time within the spheres of the Mir submersibles and DSV Alvin in conjunction with the filming of science documentaries (e.g., ;Volcanoes of the Deep Sea;) produced by the Stephen Low Company in conjunction with Emory Kristof of National Geographic and Peter Rona. The initial test of this submersible-emplaced camera system was conducted during the 1991 expedition to the TAG hydrothermal vent field.

  14. Reconstructing the Quaternary evolution of the world's most active silicic volcanic system: insights from an ˜1.65 Ma deep ocean tephra record sourced from Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Allan, Aidan S. R.; Baker, Joel A.; Carter, Lionel; Wysoczanksi, Richard J.

    2008-12-01

    The Taupo Volcanic Zone (TVZ), central North Island, New Zealand, is the most frequently active Quaternary rhyolitic system in the world. Silicic tephras recovered from Ocean Drilling Programme Site 1123 (41°47.16'S, 171°29.94'W; 3290 m water depth) in the southwest Pacific Ocean provide a well-dated record of explosive TVZ volcanism since ˜1.65 Ma. We present major, minor and trace element data for 70 Quaternary tephra layers from Site 1123 determined by electron probe microanalysis (1314 analyses) and laser ablation inductively coupled plasma mass spectrometry (654 analyses). Trace element data allow for the discrimination of different tephras with similar major element chemistries and the establishment of isochronous tie-lines between three sediment cores (1123A, 1123B and 1123C) recovered from Site 1123. These tephra tie-lines are used to evaluate the stratigraphy and orbitally tuned stable isotope age model of the Site 1123 composite record. Trace element fingerprinting of tephras identifies ˜4.5 m and ˜7.9 m thick sections of repeated sediments in 1123A (49.0-53.5 mbsf [metres below seafloor]) and 1123C (48.1-56.0 mbsf), respectively. These previously unrecognised repeated sections have resulted in significant errors in the Site 1123 composite stratigraphy and age model for the interval 1.15-1.38 Ma and can explain the poor correspondence between δ18O profiles for Site 1123 and Site 849 (equatorial Pacific) during this interval. The revised composite stratigraphy for Site 1123 shows that the 70 tephra layers, when correlated between cores, correspond to ˜37-38 individual eruptive events (tephras), 7 of which can be correlated to onshore TVZ deposits. The frequency of large-volume TVZ-derived silicic eruptions, as recorded by the deposition of tephras at Site 1123, has not been uniform through time. Rather it has been typified by short periods (25-50 ka) of intense activity bracketed by longer periods (100-130 ka) of quiescence. The most active period (at least 1 event per 7 ka) occurred between ˜1.53 and 1.66 Ma, corresponding to the first ˜130 ka of TVZ rhyolitic magmatism. Since 1.2 Ma, ˜80% of tephras preserved at Site 1123 and the more proximal Site 1124 were erupted and deposited during glacial periods. This feature may reflect either enhanced atmospheric transport of volcanic ash to these sites (up to 1000 km from source) during glacial conditions or, more speculatively, that these events are triggered by changes in crustal stress accumulation associated with large amplitude sea-level changes. Only 8 of the ˜37-38 Site 1123 tephra units (˜20%) can be found in all three cores, and 22 tephra units (˜60%) are only present in one of the three cores. Whether a tephra is preserved in all three cores does not have any direct relationship to eruptive volume. Instead it is postulated that tephra preservation at Site 1123 is 'patchy' and influenced by the vigorous nature of their deposition to the deep ocean floor as vertical density currents. At this site, at least 5 cores would need to have been drilled within a proximity of 10's to 100's of metres of each other to yield a >99% chance of recovering all the silicic tephras deposited on the ocean surface above it in the past 1.65 Ma.

  15. Mechanical-mathematical modeling for landslide process

    NASA Astrophysics Data System (ADS)

    Svalova, V.

    2009-04-01

    Landslides process is one of the most widespread and dangerous processes in the urbanized territories. In Moscow the landslips occupy about 3 % of the most valuable territory of city. There are near 20 places of deep landslides and some hundreds of shallow landslides in Moscow. In Russia many towns are located near rivers on high coastal sides. There are many churches and historical buildings on high costs of Volga River and Moscow River. The organization of monitoring is necessary for maintenance of normal functioning of city infrastructure in a coastal zone and duly realization of effective protective actions. Last years the landslide process activization took place in Moscow. The right coast of river Moscow on its significant extent within the limits of city Moscow is struck by deep block landslides with depth up to 90 - 100 m which formation occurred in preglacial time with basis of sliding in Callovian-Oxford clays of Jurassic system on 25 - 30 m below modern level of the river . One of landslide sites is on Vorob'evy mountains, on a high slope of the right coast of the river Moscow with height of 65 m. There is a historical monument - «Andreevsky monastery», based in 1648. Also there are the complex of buildings of Presidium of the Russian Academy of Sciences, constructed in 70 - 80th years of 20-th century, bridge with station of underground "Vorob'evy mountain", constructions of sport complexes. Landslide slope is in active condition, and there are many attributes of activization of deep block landslide. In June 2007 a rather big landslide took place there near ski-jump. Another landslide site is in a southeast part of Moscow, occupying the right coast of river Moscow near museum - reserve "Kolomenskoye". The slope in this place has height of 38 - 40 m. Motions of deep landslips have begun from 1960 in connection with construction of collectors. In 70th years of XX century there was a strong activization of a slope with formation of cracks by extent up to 500 m and displacement of a landslide in the plan over 1 m. Last serious activization of a landslide has taken place in 2002 with a motion on 53 cm. Catastrophic activization of the deep blockglide landslide in the area of Khoroshevo in Moscow took place in 2006-2007. A crack of 330 m long appeared in the old sliding circus, along which a new 220 m long creeping block was separated from the plateau and began sinking with a displaced surface of the plateau reaching to 12 m. Such activization of the landslide process was not observed in Moscow since mid XIX century. The sliding area of Khoroshevo was stable during long time without manifestations of activity. Revealing of the reasons of deformation and development of ways of protection from deep landslide motions is extremely actual and difficult problem which decision is necessary for preservation of valuable historical monuments and modern city constructions. The reasons of activization and protective measures are discussed. Structure of monitoring system for urban territories is elaborated. Mechanical-mathematical model of high viscous fluid was used for modeling of matter behavior on landslide slopes. Equation of continuity and an approximated equation of the Navier-Stockes for slow motions in a thin layer were used. The results of modelling give possibility to define the place of highest velocity on landslide surface, which could be the best place for monitoring post position. Model can be used for calibration of monitoring equipment and gives possibility to investigate some fundamental aspects of matter movement on landslide slope.

  16. Bacterial abundance and activity in deep-sea sediments from the eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Eardly, D. F.; Carton, M. W.; Gallagher, J. M.; Patching, J. W.

    Results are presented from four cruises to the Porcupine Abyssal Plain (PAP site) that took place during the BENGAL project from September 1996 to March 1998, and two cruises to the PAP and an oligotrophic site (EUMELI) that took place during the DEEPSEAS project between September 1993 and March 1994. Bacterial abundances in sediment and sediment contact water were measured by epifluorescence microscopy. Bacterial activity was determined by 3H-thymidine incorporation as a measure of DNA synthesis, and by 3H-leucine incorporation as a measure of protein synthesis. Activities were measured under atmospheric and in situ pressures and temperatures. Bacterial activity was usually higher in samples incubated at in situ pressure than those incubated at atmospheric pressure indicating that a barophilic community was dominant. Inter-cruise comparisons of abundance and activity during the BENGAL project showed no firm evidence of there being a seasonal response in the benthic microbial community to any episodic phytodetritus event. This was probably because of inter-annual variations in the quality and quantity of phytodetritus deposition at the PAP site, the rapid remineralization of fresh organic material by the microbial communities and the timing of cruises to the study area. 3H-thymidine and 3H-leucine incorporation in sediments was higher during the BENGAL period than the DEEPSEAS programme. A methodological change in the 3H-thymidine incorporation technique for sediments may explain the differences in DNA synthesis observed between the two projects, whereas the lower levels of protein synthesis observed during the DEEPSEAS programme probably reflected both inter-annual variations in activity at the PAP site and the lower productivity that prevailed at surface at the EUMELI oligotrophic site. Rates of 3H-thymidine incorporation in sediment contact water were similar during both projects.

  17. Earth Science Research at the Homestake Deep Underground Science and Engineering Laboratory

    NASA Astrophysics Data System (ADS)

    Roggenthen, W.; Wang, J.

    2004-12-01

    The Homestake Mine in South Dakota ceased gold production in 2002 and was sealed for entry in 2003. The announcement of mine closure triggered the revival of a national initiative to establish a deep underground facility, currently known as the Deep Underground Science and Engineering Laboratory (DUSEL). The National Science Foundation announced that solicitations were to be issued in 2004 and 2005, with the first one (known as S-1) issued in June, 2004. The focus of S-1 is on site non-specific technical requirements to define the scientific program at DUSEL. Earth scientists and physicists participated in an S-1 workshop at Berkeley in August, 2004. This abstract presents the prospects of the Homestake Mine to accommodate the earth science scientific programs defined at the S-1 workshop. The Homestake Mine has hundreds of kilometers of drifts over fifty levels accessible (upon mine reopening) for water evaluation, seepage quantification, seismic monitoring, geophysical imaging, geological mapping, mineral sampling, ecology and geo-microbiology. The extensive network of drifts, ramps, and vertical shafts allows installation of 10-kilometer-scale seismograph and electromagnetic networks. Ramps connecting different levels, typically separated by 150 ft, could be instrumented for flow and transport studies, prior to implementation of coupled thermal-hydro-chemical-mechanical-biological processes testing. Numerous large rooms are available for ecological and introduced-material evaluations. Ideas for installing instruments in cubic kilometers of rock mass can be realized over multiple levels. Environmental assessment, petroleum recovery, carbon sequestration were among the applications discussed in the S-1 workshop. If the Homestake Mine can be expediently reopened, earth scientists are ready to perform important tests with a phased approach. The drifts and ramps directly below the large open pit could be the first area for shallow testing. The 4,850 ft level is the next target area, which has a large lateral extent. Geophysical sensor stations could be installed at this level, together with stations along two main shafts accessing this level, and one winze below. After dewatering, rock mechanics and geotechnical engineering investigators could actively participate in room siting and excavation, at depths up to 8,000 ft. Geochemistry and geo-microbiology scientists would prefer additional drilling in deep zones beyond the mining and flooding perturbations. Additional earth science programs are being developed for the Homestake Mine, utilizing multiple levels and shafts. Many physics experiments require a site "as deep as possible" and special conditions to reduce background and cosmic rays. The Homestake Mine offers a very deep site and a vast amount of data and knowledge associated with its 125 years of mining operation. The cores from exploratory drilling into a mechanical strong unit, the Yates Formation, are available for scientific and engineering evaluations. A team from many institutions is being formed by Kevin Lesko, a neutrino scientist with experience in detecting neutrino oscillations with deep detectors in Canada and Japan. It is time for the United States to establish a DUSEL deep and large enough for next-generation physics and earth science long-term experiments. The Homestake Mine has these necessary attributes. The collaboration welcomes participation and contribution from scientists and engineers in the physics and earth science community for multi-disciplinary research during and after the restoration and conversion of the Homestake Mine.

  18. A Framework for Transparently Accessing Deep Web Sources

    ERIC Educational Resources Information Center

    Dragut, Eduard Constantin

    2010-01-01

    An increasing number of Web sites expose their content via query interfaces, many of them offering the same type of products/services (e.g., flight tickets, car rental/purchasing). They constitute the so-called "Deep Web". Accessing the content on the Deep Web has been a long-standing challenge for the database community. For a user interested in…

  19. Characterising Atlantic deep waters during the extreme warmth of the early Eocene 'greenhouse'.

    NASA Astrophysics Data System (ADS)

    Cameron, A.; Sexton, P. F.; Anand, P.; Huck, C. E.; Fehr, M.; Dickson, A.; Scher, H. D.; van de Flierdt, T.; Westerhold, T.; Roehl, U.

    2014-12-01

    The meridional overturning circulation (MOC) is a planetary-scale oceanic flow that is of direct importance to the climate system because it transports heat, salt and nutrients to high latitudes and regulates the exchange of CO2 with the atmosphere. The Atlantic Ocean plays a strong role in the modern day MOC however, it is unclear what role it may have played during extreme climate conditions such as those found in the early Eocene 'greenhouse'. In order to resolve the Atlantic's role in the MOC during the early/middle Eocene, we present a multi-proxy approach to investigate changes in ocean circulation, water mass geometry, sediment supply to the deep oceans and the physical strength of deep waters from four different IODP drill sites. Neodymium isotopes (ɛNd), REE profiles and cerium anomalies measured in fossilised fish teeth help to characterise geochemical changes to water masses throughout the Atlantic whilst bulk sediment ɛNd and XRF-core scan data documents changes in sediment supply to the region. Sortable silt data provides a physical constraint on the strength of deep-water movements during the extreme climatic conditions of the early Eocene. We utilise expanded and continuous sequences from two sites in the North west Atlantic spanning the early to middle Eocene recently recovered on IODP Exp. 342 (1403, 1409) that are located on the Newfoundland Ridge, directly in the flow path of today's Deep Western Boundary Current. We also present data from equatorial Demerara Rise (IODP site 1258) and from further north at the mouth of the Labrador Sea (ODP Site 647).

  20. Collaboration for Education with the Apple Learning Interchange

    NASA Astrophysics Data System (ADS)

    Young, Patrick A.; Zimmerman, T.; Knierman, K. A.

    2006-12-01

    We present a progressive effort to deliver online education and outreach resources in collaboration with the Apple Learning Interchange, a free community for educators. We have created a resource site with astronomy activities, video training for the activities, and the possibility of interactive training through video chat services. Also in development is an online textbook for graduate and advanced undergraduate courses in stellar evolution, featuring an updatable and annotated text with multimedia content, online lectures, podcasts, and a framework for interactive simulation activities. Both sites will be highly interactive, combining online discussions, the opportunity for live video interaction, and a growing library of student work samples. This effort promises to provide a compelling model for collaboration between science educators and corporations. As scientists, we provide content knowledge and a compelling reason to communicate, while Apple provides technical expertise, a deep knowledge of online education, and a way for us to reach a wide audience of higher education, community outreach, and K-12 educators.

  1. Drilling into the deep interior of the Nankai accretionary prism: Preliminary results of IODP NanTroSEIZE Expedition 348

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Hirose, T.; Saffer, D. M.; Toczko, S.; Maeda, L.

    2014-12-01

    International Ocean Discovery Program (IODP) Expedition 348, the latest advance of the NanTroSEIZE project, started on 13 September 2013 and was completed on 29 January 2014. During Expedition 348, the drilling vessel Chikyu advanced the ultra-deep riser hole at Site C0002, located 80 km offshore of the Kii Peninsula, from a depth of 860 meters below sea floor (mbsf) to 3058.5 mbsf, the world record for the deepest scientific ocean drilling, and cased it for future deepening. The drilling operation successfully obtained data on formation physical properties from logging while drilling (LWD) tools, as well as from lithological analyses of cuttings and core from the interior of the active accretionary prism at the Nankai Trough. IODP Site C0002 is the currently only borehole to access the deep interior of an active convergent margin. Preliminary scientific results of Expedition 348 are as follows: (1) Fine-grained turbiditic mudstones with coarser silty and sandy interbeds, exhibiting steep dips (between ~60 and 90 degrees) are predominant in the prism down to ~3000 mbsf. The biostratigraphic age of the sediments in the lowermost part of the hole is thought to be 9-11 Ma, with an assumed age of accretion of 3-5 Ma. (2) Slickenlined surfaces, deformation bands and mineral veins are present throughout the drilled interval, while well-developed scaly clay fabrics are increasingly observed below ~2200 mbsf. A substantial fault zone with well-developed foliation was successfully cored from the deep interior of the prism at ~2205 mbsf. (3) Porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf. However, physical properties including grain density, electrical conductivity and P-wave velocity suggest fairly homogeneous properties in the interior of the prism between ~2000 and 3000 mbsf. (4) Mud gas analysis during the riser drilling indicates that a source of methane gas shifts from microbial origin to thermogenic at around 2325 mbsf. (5) The maximum horizontal principal stress at ~2200 mbsf is in the NE-SW direction. The inner wedge at ~ 2000 mbsf is currently in a strike-slip stress regime.

  2. Impact of water mass mixing on the biogeochemistry and microbiology of the Northeast Atlantic Deep Water

    NASA Astrophysics Data System (ADS)

    Reinthaler, Thomas; Álvarez Salgado, Xosé Antón; Álvarez, Marta; van Aken, Hendrik M.; Herndl, Gerhard J.

    2013-12-01

    The extent to which water mass mixing contributes to the biological activity of the dark ocean is essentially unknown. Using a multiparameter water mass analysis, we examined the impact of water mass mixing on the nutrient distribution and microbial activity of the Northeast Atlantic Deep Water (NEADW) along an 8000 km long transect extending from 62°N to 5°S. Mixing of four water types (WT) and basin scale mineralization from the site where the WT where defined to the study area explained up to 95% of the variability in the distribution of inorganic nutrients and apparent oxygen utilization. Mixing-corrected average O2:N:P mineralization ratios of 127(±11):13.0(±0.7):1 in the core of the NEADW suggested preferential utilization of phosphorus compounds while dissolved organic carbon mineralization contributed a maximum of 20% to the oxygen demand of the NEADW. In conjunction with the calculated average mineralization ratios, our results indicate a major contribution of particulate organic matter to the biological activity in the NEADW. The variability in prokaryotic abundance, high nucleic acid containing cells, and prokaryotic heterotrophic production in the NEADW was explained by large scale (64-79%) and local mineralization processes (21-36%), consistent with the idea that deep-water prokaryotic communities are controlled by substrate supply. Overall, our results suggest a major impact of mixing on the distribution of inorganic nutrients and a weaker influence on the dissolved organic matter pool supporting prokaryotic activity in the NEADW.

  3. Partial androgen insensitivity syndrome caused by a deep intronic mutation creating an alternative splice acceptor site of the AR gene.

    PubMed

    Ono, Hiroyuki; Saitsu, Hirotomo; Horikawa, Reiko; Nakashima, Shinichi; Ohkubo, Yumiko; Yanagi, Kumiko; Nakabayashi, Kazuhiko; Fukami, Maki; Fujisawa, Yasuko; Ogata, Tsutomu

    2018-02-02

    Although partial androgen insensitivity syndrome (PAIS) is caused by attenuated responsiveness to androgens, androgen receptor gene (AR) mutations on the coding regions and their splice sites have been identified only in <25% of patients with a diagnosis of PAIS. We performed extensive molecular studies including whole exome sequencing in a Japanese family with PAIS, identifying a deep intronic variant beyond the branch site at intron 6 of AR (NM_000044.4:c.2450-42 G > A). This variant created the splice acceptor motif that was accompanied by pyrimidine-rich sequence and two candidate branch sites. Consistent with this, reverse transcriptase (RT)-PCR experiments for cycloheximide-treated lymphoblastoid cell lines revealed a relatively large amount of aberrant mRNA produced by the newly created splice acceptor site and a relatively small amount of wildtype mRNA produced by the normal splice acceptor site. Furthermore, most of the aberrant mRNA was shown to undergo nonsense mediated decay (NMD) and, if a small amount of aberrant mRNA may have escaped NMD, such mRNA was predicted to generate a truncated AR protein missing some functional domains. These findings imply that the deep intronic mutation creating an alternative splice acceptor site resulted in the production of a relatively small amount of wildtype AR mRNA, leading to PAIS.

  4. Cost of oviposition site selection in a water strider Aquarius paludum insularis: egg mortality increases with oviposition depth.

    PubMed

    Hirayama, Hiroyuki; Kasuya, Eiiti

    2010-06-01

    Females generally avoid selecting sites for oviposition which have a high predation risk to increase offspring survival. Previous studies have focused on costs to ovipositing females. However, although offspring may also incur costs by being oviposited at low predation risk sites, no studies have focused on costs to offspring. Such costs to offspring were examined by using Aquarius paludum insularis, females of which avoid eggs parasitism by ovipositing at deep sites. Deep sites are safe from egg parasitism but may be unsuitable for hatching due to environmental factors. We examined the costs to offspring at deep sites by comparing the hatching rate, the duration to hatching and the proportion of drowned larvae between eggs that were set at three levels of water depth (0 cm, 25 cm and 50 cm depth). While the hatching rate at 50 cm was lower than that at 0 cm, the rate at 25 cm did not differ from that at 0 cm. Duration to hatching and the proportion of drowned larvae did not differ between the three depths. It is suggested that the declining survival rate of A. paludum eggs was due to increased water pressure at greater depth. Such a cost may exist in other species and such an observation may aid in understanding oviposition site selection. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Tension zones of deep-seated rockslides revealed by thermal anomalies and airborne laser scan data

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Bečkovský, David; Gajdošík, Juraj; Opálka, Filip; Plan, Lukas; Winkler, Gerhard

    2015-04-01

    Open cracks, tension fractures and crevice caves are important diagnostic features of gravitationally deformed slopes. When the cracks on the upper part of the slope open to the ground surface, they transfer relatively warm and buoyant air from the underground in cold seasons and thus could be detected by the infrared thermography (IRT) as warmer anomalies. Here we present two IRT surveys of deep-seated rockslides in Austria and the Czech Republic. We used thermal imaging cameras Flir and Optris, manipulated manually from the ground surface and also from unmanned aerial vehicle and piloted ultralight-plane platforms. The surveys were conducted during cold days of winter 2014/2015 and early in the morning to avoid the negative effect of direct sunshine. The first study site is the Bad Fischau rockslide in the southern part of the Vienna Basin (Austria). It was firstly identified by the morphostructural analysis of 1-m digital terrain model from the airborne laser scan data. The rockslide is superimposed on, and closely related to the active marginal faults of the Vienna basin, which is a pull apart structure. There is the 80-m-deep Eisenstein Show Cave situated in the southern lateral margin of the rockslide. The cave was originally considered to be purely of hydrothermal (hypogene) karstification; however its specific morphology and position within the detachment zone of the rockslide suggests its relation to gravitational slope-failure. The IRT survey revealed the Eisenstein Cave at the ground surface and also several other open cracks and possible cleft caves along the margins, headscarp, and also within the body of the rockslide. The second surveyed site was the Kněhyně rockslide in the flysch belt of the Outer Western Carpathians in the eastern Czech Republic. This deep-seated translational rockslide formed about eight known pseudokarst crevice caves, which reach up to 57 m in depth. The IRT survey recognized several warm anomalies indicating very deep deformation of the slope. When compared to digital terain model, some of these thermal anomalies suggest large unexplored crack systems deep in the rock-slope failure. As a conclusion we notice that especially when compared to topographic structures visualized on high accuracy digital terrain models, detecting the thermal anomalies could significantly contribute to understanding the subsurface occurrence of the tension fractures and voids within deep-seated rockslide bodies.

  6. Crystal Structure of Homoserine Transacetylase from Haemophilus Influenzae Reveals a New Family of alpha/beta-Hydrolases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirza,I.; Nazi, I.; Korczynska, M.

    2005-01-01

    Homoserine transacetylase catalyzes one of the required steps in the biosynthesis of methionine in fungi and several bacteria. We have determined the crystal structure of homoserine transacetylase from Haemophilus influenzae to a resolution of 1.65 A. The structure identifies this enzyme to be a member of the alpha/beta-hydrolase structural superfamily. The active site of the enzyme is located near the end of a deep tunnel formed by the juxtaposition of two domains and incorporates a catalytic triad involving Ser143, His337, and Asp304. A structural basis is given for the observed double displacement kinetic mechanism of homoserine transacetylase. Furthermore, the propertiesmore » of the tunnel provide a rationale for how homoserine transacetylase catalyzes a transferase reaction vs. hydrolysis, despite extensive similarity in active site architecture to hydrolytic enzymes.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlack, K. S.; Abramowitz, H.; Miller, I. S.

    About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal.« less

  8. Occurrence of microbial acetate-oxidation in ~2 km-deep coal-bearing sediments off the Shimokita Peninsula, Japan (IODP Expedition 337)

    NASA Astrophysics Data System (ADS)

    Ijiri, A.; Inagaki, F.

    2015-12-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 337 in 2012, the riser-drilling vessel Chikyu extended the previous world depth record of scientific ocean drilling and made one of the deepest scientific borehole down to 2466 m below the seafloor (mbsf) at Site C0020 Hole A off the Shimokita Peninsula, Japan. The sedimentary sequence consists of 17 lignite layers below 1.5 km bellow the seafloor. Microbiological and geochemical data consistently showed evidence for the existence of microbial communities associated with lignite coal beds in the coal-bearing sediments (Inagaki and Hinrichs et al., Science, 2015). Since lignite coals produce substantial dissolved organic compounds during the burial alternation process, volatile fatty acids may play important roles for microbial life and its activity in the deep sedimentary environment. To address this hypothesis, we measured methanogenic and acetate-oxidation activities by radiotracer incubation experiments using 14C-labelled substrate ([2-14C]-acetate) immediately after core recovery. Activity of aceticlastic methanogenesis was observed in the sediment above the coal-baring layers (>1990 mbsf), ranging from 0.2 to 1.2 pmol cm-3 d-1. The highest activity was observed in a coal-bed horizon at 1990 mbsf. However, aceticlastic methanogenesis was below the detection limit in sediment samples below the 2 km-coal layers. Activity of acetate oxidation to CO2 was measured by 14CO2 production rate from [2-14C]-acetate. Interestingly, the acetate-oxidation activity was observed in sediments above the coal beds, which values were generally higher than those of methanogenesis with the maximum value of 33 pmol cm-3 d-1 at 1800 mbsf. The rates gradually decreased with increasing depth from 1800 mbsf and reached below the detection limit (i.e., 0.05 pmol cm-3 d-1) in 2 km-deep coal-bed samples. The occurrence of relatively high acetate oxidation at ~1800 mbsf above the coal formation suggests that microbes respire acetate with available electron acceptors such as glauconitic iron oxides in the deep sedimentary environment.

  9. Aliphatic hydrocarbons and triterpenes of the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Méjanelle, Laurence; Rivière, Béatrice; Pinturier, Laurence; Khripounoff, Alexis; Baudin, François; Dachs, Jordi

    2017-08-01

    Hydrocarbons were analyzed in sediments from the Congo River deep-sea fan, from the Congo River, and in sinking particles collected by sediment traps 40 m above the sediment. Studied sites encompassed three lobes of decreasing age of formation along the canyon: sites A, F and C and a another lobe system, disconnected from the active channel since 4 ka, Site E. Terrestrial long-chain odd n-alkanes were dominant in all sediments of the lobe system. Unsaturated terpenoids sourced by higher plants, such as gammacerene, lupene, ursene and oleanene, were also detected. At site C, characterized by high accumulation rates (10-20 cm yr-1), the organic matter spends less time in the oxic layer than at other sites and high phytadiene concentrations 10-17 μg gOC-1) evidenced recent terrestrial and phytoplanktonic remains reworked in anaerobic conditions. In these sediments, organic carbon-normalized concentrations of terrestrial alkanes and terpenoids were several fold higher than in the lobe sediments with lower accumulation rates (sites A and F), arguing for a more rapid degradation of terrestrial hydrocarbons than bulk organic carbon in the first steps of pre-diagenesis. Ample variations in the contributions of biomarkers from higher plants, ferns, bacteria and angiosperms, indicate an heterogeneous contribution of the soil and vegetation detritus delivered to the Congo lobe sediments. Lower concentrations in terrestrial hydrocarbons at site E, 45 km away from the active canyon, indicated that river particles are still admixed to the dominant marine organic matter. Diploptene and hop-7(21)-ene have a dual origin, from terrestrial and marine microorganisms. Scatter in their relationship to gammacerene argues for a contribution of marine microorganisms, in addition to soils-sourced microorganisms. The close distribution patterns of diploptene, hop-21-ene, hop-7(21)ene and neohop-13(18)-ene is in line with the hypothesis of sequential clay-catalyzed isomerisation of bacterial hopenes. Terrestrial biomarker accumulation fluxes at site C are one order of magnitude higher than vertical pelagic flux, demonstrating the magnitude of the inputs delivered through turbiditic transport in the submarine canyon. Crude oil contamination was evidenced at the disconnected site E (UCM, C21 to C26 tricyclic diterpanes, CPI) and, in smaller amounts, in some sediments from sites A and C. It may be related to marine crude oil extraction and transport. A short-chain mode of alkanes with an even predominance is evidenced in sediments of the lobe complex and likely sources, crude oil, microorganisms and ferns, are discussed.

  10. Hydrothermal and Chemosynthetic Ecosystems in the Southern Ocean: Current Knowledge on their Biology Paper 217790

    NASA Astrophysics Data System (ADS)

    Linse, K.; Rogers, A. D.; Bohrmann, G.; Copley, J.; Tyler, P. A.

    2017-12-01

    The existence of hydrothermal and other chemosynthetic ecosystems is not surprising in the Antarctic, with its active volcanoes, mid-ocean ridges and back-arc basins, and abundance of marine mammals. In the last two decades a variety of active chemosynthetic ecosystems have been discovered in the Southern Ocean, including low- and high-temperature hydrothermal vents, methane seeps, and whalefalls. Here a summary of the data from the known chemosynthetic communites will be presented, comparing the faunas of vent sites in the Bransfield Strait with those of the East Scotia Ridge (ESR) and the South Sandwich Arc, assessing the fauna at the South Georgia methane seep sites, and discussing the fauna on Antarctic whale falls. As the faunal assemblages of the ESR vents are the most studied in detail to date, this talk therefore focusses on the diversity and composition of the ESR macrofaunal assemblages, their foodweb structure and microdistributions in relation to fluid chemistry and microbiology, and their phylogenetic and biogeographic relationships. The Southern Ocean drives the global ocean conveyor belt, and is suggested to be the centre of origin for global deep-sea fauna, as well as a region of high deep-sea species diversity. In the context of chemosynthetic environments, it may provide a gateway connecting the global vent and seep systems. The mostly endemic species of Southern Ocean vent macrofauna show links to either one or more oceans (Atlantic, Indian, and Pacific), with some evidence for circum-Antarctic connection. The ESR species Gigantopelta chessoia, Kiwa tyleri and Vulcanolepas scotiaensis have their closest known relatives at the Longqi Vent Field on the Southwest Indian Ridge (SWIR), and one species of polynoid polychaete is known from ESR and SWIR vents. Meanwhile, Lepetdrilus sp. and a vesiocomyid clam are linked with species in the Atlantic vent fields. The stichasterid Paulasterias tyleri, the polychaete Rarricirrus jennae and the anthozoan Relicanthus daphneae have close molecular genetic links with North-eastern Pacific chemosynthetics sites. The presence of Paulasterias tyleri at vent fields (ESR & AAR) and in the Ross Sea could indicate further active hydrothermal sites with associated chemosysthetic ecosystems there and potentially in other Antarctic regions.

  11. Torpor and basking after a severe wildfire: mammalian survival strategies in a scorched landscape.

    PubMed

    Matthews, Jaya K; Stawski, Clare; Körtner, Gerhard; Parker, Cassandra A; Geiser, Fritz

    2017-02-01

    Wildfires can completely obliterate above-ground vegetation, yet some small terrestrial mammals survive during and after fires. As knowledge about the physiological and behavioural adaptations that are crucial for post-wildfire survival is scant, we investigated the thermal biology of a small insectivorous marsupial (Antechinus flavipes) after a severe forest fire. Some populations of antechinus survived the fire in situ probably by hiding deep in rocky crevices, the only fire-proof sites near where they were trapped. We hypothesised that survival in the post-fire landscape was achieved by decreasing daytime activity and using torpor frequently to save energy. Indeed, daytime activity was less common and torpor expression was substantially higher (≥2-fold) at the post-fire site than observed in an unburnt control site and also in comparison to a laboratory study, both when food was provided ad libitum and withheld. Basking in the post-fire site was also recorded, which was likely used to further reduce energy expenditure. Our data suggest that torpor and basking are used by this terrestrial mammal to reduce energy and foraging requirements, which is important in a landscape where food and shelter are limited and predation pressure typically is increased.

  12. Suppression and facilitation of auditory neurons through coordinated acoustic and midbrain stimulation: investigating a deep brain stimulator for tinnitus

    NASA Astrophysics Data System (ADS)

    Offutt, Sarah J.; Ryan, Kellie J.; Konop, Alexander E.; Lim, Hubert H.

    2014-12-01

    Objective. The inferior colliculus (IC) is the primary processing center of auditory information in the midbrain and is one site of tinnitus-related activity. One potential option for suppressing the tinnitus percept is through deep brain stimulation via the auditory midbrain implant (AMI), which is designed for hearing restoration and is already being implanted in deaf patients who also have tinnitus. However, to assess the feasibility of AMI stimulation for tinnitus treatment we first need to characterize the functional connectivity within the IC. Previous studies have suggested modulatory projections from the dorsal cortex of the IC (ICD) to the central nucleus of the IC (ICC), though the functional properties of these projections need to be determined. Approach. In this study, we investigated the effects of electrical stimulation of the ICD on acoustic-driven activity within the ICC in ketamine-anesthetized guinea pigs. Main Results. We observed ICD stimulation induces both suppressive and facilitatory changes across ICC that can occur immediately during stimulation and remain after stimulation. Additionally, ICD stimulation paired with broadband noise stimulation at a specific delay can induce greater suppressive than facilitatory effects, especially when stimulating in more rostral and medial ICD locations. Significance. These findings demonstrate that ICD stimulation can induce specific types of plastic changes in ICC activity, which may be relevant for treating tinnitus. By using the AMI with electrode sites positioned with the ICD and the ICC, the modulatory effects of ICD stimulation can be tested directly in tinnitus patients.

  13. Temporal Differences in Flow Depth and Velocity Distributions and Hydraulic Microhabitats Near Bridges of the Lower Platte River, Nebraska, 1934-2006

    USGS Publications Warehouse

    Ginting, Daniel; Zelt, Ronald B.

    2008-01-01

    As part of a collaborative study of the cumulative impacts on stream and riparian ecology of water and channel management practices in the lower Platte River, Nebraska, this report describes a study by the U.S. Geological Survey in cooperation with the Lower Platte South Natural Resources District that summarizes: (1) temporal differences in distribution of streamflow depth, velocity, and microhabitats among five discrete 11-water-year periods 1934-44, 1951-61, 1966-76, 1985-95, and 1996-2006, and (2) the effects of bridge proximity on distribution of streamflow depth, velocity, and microhabitat of the Platte River when cross sections were measured at a similar discharge. The scope of the study included the four presently (2008) active streamflow-gaging stations located near bridges over the lower Platte River at North Bend, near Leshara, near Ashland, and at Louisville, Nebraska, and the most downstream streamflow-gaging station within the central Platte River segment near Duncan, Nebraska. Generally, in cases where temporal differences in streamflow depth and velocity were evident, at least one of the water-year periods from 1934 through 1995 had deeper streamflow than the recent water-year period (1996-2006). Temporal differences in distributions of streamflow depth were not strongly associated with differences in either climatic conditions or the maximum peak flow that occurred prior to the latest discharge measurement during each period. The relative cross-sectional area of most hydraulic niches did not differ among the water-year periods. Part of this apparent uniformity likely was an artifact of the broad microhabitat classification used for this study. In cases where temporal differences in relative cross-sectional area of hydraulic niches were evidenced, the differences occurred during high- and low-flow conditions, not during median flow conditions. The temporal differences in relative cross-sectional area were found more frequently for hydraulic niches defined by moderate and fast velocities than for hydraulic niches defined by slow velocities. Generally, any significant increase or decrease in the relative cross-sectional areas of hydraulic niches during the water-year periods from 1934 through 1995 had disappeared during the most recent water-year period, 1996-2006. Deep-Swift niche was the predominant hydraulic niche for all near-bridge sites on the lower Platte River for high- and median-flow conditions. The Deep-Swift niche also was the predominant niche for the near-bridge sites near Ashland and at Louisville for low-flow conditions; for the near-bridge sites at North Bend and near Leshara, streamflow cross-sectional areas during low-flow conditions were shared among the Shallow-Moderate, Intermediate-Moderate, Intermediate-Swift, and Deep-Swift hydraulic niches. For the near-bridge site near Duncan, the site farthest downstream in the central Platte River system, the Deep-Swift hydraulic niche was predominant only during high-flow conditions; during median- and low-flow conditions the relative cross-sectional area was shared among the Shallow-Slow, Shallow-Moderate, Intermediate-Moderate, and Intermediate-Swift hydraulic niches. Significant temporal differences in the relative cross-sectional area of the Deep-Swift hydraulic niche were found for sites near the two farthest downstream bridges near Ashland and at Louisville, but only for low-flow conditions. The Deep-Swift microhabitat was of special interest because it is the preferred hydraulic habitat during the adult life of the endangered pallid sturgeon (Scaphirhynchus albus). Temporal differences in relative cross-sectional areas of the Glide low-flow geomorphic microhabitat that contained the Deep-Swift hydraulic niche also indicated that relative cross-sectional areas of the Glide during the 1951-61 and 1996-2006 water-year periods were lower than during the 1966-76 period. The temporal differences indicated that any significant temporal chang

  14. Fuzzy Clustering of Multiple Instance Data

    DTIC Science & Technology

    2015-11-30

    depth is not. To illustrate this data, in figure 1 we display the GPR signatures of the same mine buried at 3 in deep in two geographically different...target signature depends on the soil properties of the site. The same mine type is buried at 3in deep in both sites. Since its formal introduction...drug design [15], and the problem of handwritten digit recognition [16]. To the best of our knowledge, Diet - terich, et. al [1] were the first to

  15. Using chloride and chlorine-36 as soil-water tracers to estimate deep percolation at selected locations on the U.S. Department of Energy Hanford Site, Washington

    USGS Publications Warehouse

    Prych, Edmund A.

    1998-01-01

    A chloride mass-balance method and a chlorine-36 isotope bomb-pulse method were used to estimate long-term average rates of deep percolation at at the U.S. Department of Energy Hanford Site. Because the bomb-pulse method typically gives an upper limit and the mass-balance method may underestimate, estimates from both methods probably bracket actual rates.

  16. Biodiversity and community composition of sediment macrofauna associated with deep-sea Lophelia pertusa habitats in the Gulf of Mexico

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Bourque, Jill R.; Frometa, Janessy

    2014-01-01

    Scleractinian corals create three-dimensional reefs that provide sheltered refuges, facilitate sediment accumulation, and enhance colonization of encrusting fauna. While heterogeneous coral habitats can harbor high levels of biodiversity, their effect on the community composition within nearby sediments remains unclear, particularly in the deep sea. Sediment macrofauna from deep-sea coral habitats (Lophelia pertusa) and non-coral, background sediments were examined at three sites in the northern Gulf of Mexico (VK826, VK906, MC751, 350–500 m depth) to determine whether macrofaunal abundance, diversity, and community composition near corals differed from background soft-sediments. Macrofaunal densities ranged from 26 to 125 individuals 32 cm−2 and were significantly greater near coral versus background sediments only at VK826. Of the 86 benthic invertebrate taxa identified, 16 were exclusive to near-coral habitats, while 14 were found only in background sediments. Diversity (Fisher’s α) and evenness were significantly higher within near-coral sediments only at MC751 while taxon richness was similar among all habitats. Community composition was significantly different both between near-coral and background sediments and among the three primary sites. Polychaetes numerically dominated all samples, accounting for up to 70% of the total individuals near coral, whereas peracarid crustaceans were proportionally more abundant in background sediments (18%) than in those near coral (10%). The reef effect differed among sites, with community patterns potentially influenced by the size of reef habitat. Taxon turnover occurred with distance from the reef, suggesting that reef extent may represent an important factor in structuring sediment communities near L. pertusa. Polychaete communities in both habitats differed from other Gulf of Mexico (GOM) soft sediments based on data from previous studies, and we hypothesize that local environmental conditions found near L. pertusa may influence the macrofaunal community structure beyond the edges of the reef. This study represents the first assessment of L. pertusa-associated sediment communities in the GOM and provides baseline data that can help define the role of transition zones, from deep reefs to soft sediments, in shaping macrofaunal community structure and maintaining biodiversity; this information can help guide future conservation and management activities.

  17. The ``Adopt A Microbe'' project: Web-based interactive education connected with scientific ocean drilling

    NASA Astrophysics Data System (ADS)

    Orcutt, B. N.; Bowman, D.; Turner, A.; Inderbitzen, K. E.; Fisher, A. T.; Peart, L. W.; Iodp Expedition 327 Shipboard Party

    2010-12-01

    We launched the "Adopt a Microbe" project as part of Integrated Ocean Drilling Program (IODP) Expedition 327 in Summer 2010. This eight-week-long education and outreach effort was run by shipboard scientists and educators from the research vessel JOIDES Resolution, using a web site (https://sites.google.com/site/adoptamicrobe) to engage students of all ages in an exploration of the deep biosphere inhabiting the upper ocean crust. Participants were initially introduced to a cast of microbes (residing within an ‘Adoption Center’ on the project website) that live in the dark ocean and asked to select and virtually ‘adopt’ a microbe. A new educational activity was offered each week to encourage learning about microbiology, using the adopted microbe as a focal point. Activities included reading information and asking questions about the adopted microbes (with subsequent responses from shipboard scientists), writing haiku about the adopted microbes, making balloon and fabric models of the adopted microbes, answering math questions related to the study of microbes in the ocean, growing cultures of microbes, and examining the gases produced by microbes. In addition, the website featured regular text, photo and video updates about the science of the expedition using a toy microbe as narrator, as well as stories written by shipboard scientists from the perspective of deep ocean microbes accompanied by watercolor illustrations prepared by a shipboard artist. Assessment methods for evaluating the effectiveness of the Adopt a Microbe project included participant feedback via email and online surveys, website traffic monitoring, and online video viewing rates. Quantitative metrics suggest that the “Adope A Microbe” project was successful in reaching target audiences and helping to encourage and maintain interest in topics related to IODP Expedition 327. The “Adopt A Microbe” project mdel can be adapted for future oceanographic expeditions to help connect the public at large to cutting-edge, exploratory research and for engaging students in active learning.

  18. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    USGS Publications Warehouse

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  19. A major change in North Atlantic deep water circulation during the Early Pleistocene transition 1.6 million years ago

    NASA Astrophysics Data System (ADS)

    Khélifi, N.; Frank, M.

    2013-12-01

    The global ocean-climate system has been highly sensitive to the formation and advection of deep water in the North Atlantic but its evolution over the Pliocene-Pleistocene global cooling is not fully understood. In particular, changes in the sources and mixing of prevailing deep waters are not well constrained. Here we present new records of the bottom-water radiogenic neodymium isotope (ϵNd) variability obtained from three DSDP/ODP sites at water depths between 2100 and 5000 m in the Northeast Atlantic to reconstruct changes in deep water circulation over the past 4 million years. Prior to 1.6 million years ago (Ma), we find ϵNd values primarily oscillating between -9 and -11 at all sites, consistent with enhanced vertical mixing of water masses. At 1.6 Ma, the ϵNd signatures synchronously shifted to less radiogenic values around -12 at different water depths and water mass signatures gradually became more distinct. Since then values and amplitudes of "glacial/interglacial" ϵNd oscillations have been similar to the Late Quaternary at each site. This change 1.6 Ma reflects a major reorganization of deep water circulation in the Northeast Atlantic towards a more stratified water column with distinct water masses accompanying the enhanced response of climate to the Earth's obliquity forcing during the Early Pleistocene transition.

  20. Formation of carbonate concretions in deep-sea sediment below the CCD and above an active gas hydrate system

    NASA Astrophysics Data System (ADS)

    Dicus, C. M.; Snyder, G. T.; Dickens, G. R.

    2004-12-01

    Site 1230 of the Ocean Drilling Program targeted the chemistry and microbiology of an active deep-water gas hydrate system in the Peru Trench. The site is noteworthy because, at nearly 6000 m water depth, it lies well below the carbonate compensation depth and the sediments comprise mostly terrigenous clays and biogenic silica. Shipboard work at this site delineated a prominent sulfate-methane transition (SMT) at 8-10 m below seafloor (mbsf) as well as some carbonate horizons. In this study, we present calcium and strontium data for pore waters and sediments at this site, including across the SMT. Concentration profiles show that dissolved Ca2+ diffuses downward from the seafloor toward the SMT, where a sharp inflection indicates consumption of Ca2+ into an authigenic phase. Dissolved Sr2+, on the other hand, diffuses upward from depth toward the SMT. Again, however, a prominent inflection suggests removal of Sr2+ to sediment. The inferences from pore water profiles are borne out by sediment chemistry. Large peaks in the calcium and strontium content of sediment mark the SMT. The calcium and strontium fronts reach ˜2700 and ˜5 mmol/kg, respectively, at 9 mbsf, which are much greater than average background values of ˜10 and ˜1 mmol/kg. These authigenic fronts are primarily composed of carbonate minerals, as determined by acetic acid extractions and x-ray diffraction. Because the calcium and strontium fronts coincide with both the SMT and changes in dissolved chemistry, it is proposed that the carbonates are currently forming as follows: methane rising from the underlying gas hydrate system reacts with dissolved sulfate through anaerobic oxidation of methane which releases HCO3- and alkalinity and causes carbonate precipitation. The overall process has been observed elsewhere; the Peru Trench is interesting, however, because the process leads to carbonate in sediments otherwise devoid of carbonate.

  1. Astronaut Charles Duke photographed collecting lunar samples at Station 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Charles M. Duke Jr., lunar module pilot of the Apollo 16 lunar landing mission, is photographed collecting lunar samples at Station no. 1 during the first Apollo 16 extravehicular activity at the Descartes landing site. This picture, looking eastward, was taken by Astronaut John W. Young, commander. Duke is standing at the rim of Plum crater, which is 40 meters in diameter and 10 meters deep. The parked Lunar Roving Vehicle can be seen in the left background.

  2. Identification of Free-Living and Particle-Associated Microbial Communities Present in Hadal Regions of the Mariana Trench.

    PubMed

    Tarn, Jonathan; Peoples, Logan M; Hardy, Kevin; Cameron, James; Bartlett, Douglas H

    2016-01-01

    Relatively few studies have described the microbial populations present in ultra-deep hadal environments, largely as a result of difficulties associated with sampling. Here we report Illumina-tag V6 16S rRNA sequence-based analyses of the free-living and particle-associated microbial communities recovered from locations within two of the deepest hadal sites on Earth, the Challenger Deep (10,918 meters below surface-mbs) and the Sirena Deep (10,667 mbs) within the Mariana Trench, as well as one control site (Ulithi Atoll, 761 mbs). Seawater samples were collected using an autonomous lander positioned ~1 m above the seafloor. The bacterial populations within the Mariana Trench bottom water samples were dissimilar to other deep-sea microbial communities, though with overlap with those of diffuse flow hydrothermal vents and deep-subsurface locations. Distinct particle-associated and free-living bacterial communities were found to exist. The hadal bacterial populations were also markedly different from one another, indicating the likelihood of different chemical conditions at the two sites. In contrast to the bacteria, the hadal archaeal communities were more similar to other less deep datasets and to each other due to an abundance of cosmopolitan deep-sea taxa. The hadal communities were enriched in 34 bacterial and 4 archaeal operational taxonomic units (OTUs) including members of the Gammaproteobacteria, Epsilonproteobacteria, Marinimicrobia, Cyanobacteria, Deltaproteobacteria, Gemmatimonadetes, Atribacteria, Spirochaetes, and Euryarchaeota. Sequences matching cultivated piezophiles were notably enriched in the Challenger Deep, especially within the particle-associated fraction, and were found in higher abundances than in other hadal studies, where they were either far less prevalent or missing. Our results indicate the importance of heterotrophy, sulfur-cycling, and methane and hydrogen utilization within the bottom waters of the deeper regions of the Mariana Trench, and highlight novel community features of these extreme habitats.

  3. Identification of Free-Living and Particle-Associated Microbial Communities Present in Hadal Regions of the Mariana Trench

    PubMed Central

    Tarn, Jonathan; Peoples, Logan M.; Hardy, Kevin; Cameron, James; Bartlett, Douglas H.

    2016-01-01

    Relatively few studies have described the microbial populations present in ultra-deep hadal environments, largely as a result of difficulties associated with sampling. Here we report Illumina-tag V6 16S rRNA sequence-based analyses of the free-living and particle-associated microbial communities recovered from locations within two of the deepest hadal sites on Earth, the Challenger Deep (10,918 meters below surface-mbs) and the Sirena Deep (10,667 mbs) within the Mariana Trench, as well as one control site (Ulithi Atoll, 761 mbs). Seawater samples were collected using an autonomous lander positioned ~1 m above the seafloor. The bacterial populations within the Mariana Trench bottom water samples were dissimilar to other deep-sea microbial communities, though with overlap with those of diffuse flow hydrothermal vents and deep-subsurface locations. Distinct particle-associated and free-living bacterial communities were found to exist. The hadal bacterial populations were also markedly different from one another, indicating the likelihood of different chemical conditions at the two sites. In contrast to the bacteria, the hadal archaeal communities were more similar to other less deep datasets and to each other due to an abundance of cosmopolitan deep-sea taxa. The hadal communities were enriched in 34 bacterial and 4 archaeal operational taxonomic units (OTUs) including members of the Gammaproteobacteria, Epsilonproteobacteria, Marinimicrobia, Cyanobacteria, Deltaproteobacteria, Gemmatimonadetes, Atribacteria, Spirochaetes, and Euryarchaeota. Sequences matching cultivated piezophiles were notably enriched in the Challenger Deep, especially within the particle-associated fraction, and were found in higher abundances than in other hadal studies, where they were either far less prevalent or missing. Our results indicate the importance of heterotrophy, sulfur-cycling, and methane and hydrogen utilization within the bottom waters of the deeper regions of the Mariana Trench, and highlight novel community features of these extreme habitats. PMID:27242695

  4. Copepod colonization of organic and inorganic substrata at a deep-sea hydrothermal vent site on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Plum, Christoph; Pradillon, Florence; Fujiwara, Yoshihiro; Sarrazin, Jozée

    2017-03-01

    The few existing studies on deep-sea hydrothermal vent copepods indicate low connectivity with surrounding environments and reveal high endemism among vents. However, the finding of non-endemic copepod species in association with engineer species at different reduced ecosystems poses questions about the dispersal of copepods and the colonization of hydrothermal vents as well as their ecological connectivity. The objective of this study is to understand copepod colonization patterns at a hydrothermal vent site in response to environmental factors such as temperature and fluid flow as well as the presence of different types of substrata. To address this objective, an in situ experiment was deployed using both organic (woods, pig bones) and inorganic (slates) substrata along a gradient of hydrothermal activity at the Lucky Strike vent field (Eiffel Tower, Mid-Atlantic Ridge). The substrata were deployed in 2011 during the MoMARSAT cruise and were recovered after two years in 2013. Overall, copepod density showed significant differences between substrata types, but was similar among different hydrothermal activity regimes. Highest densities were observed on woods at sites with moderate or low fluid input, whereas bones were the most densely colonized substrata at the 2 sites with higher hydrothermal influence. Although differences in copepod diversity were not significant, the observed trends revealed overall increasing diversity with decreasing temperature and fluid input. Slates showed highest diversity compared to the organic substrata. Temperature and fluid input had a significant influence on copepod community composition, resulting in higher similarity among stations with relatively high and low fluid inputs, respectively. While vent-specialists such as dirivultids and the tegastid Smacigastes micheli dominated substrata at high vent activity, the experiment demonstrated increasing abundance and dominance of non-vent taxa with decreasing temperature and fluid input. Effects of the substratum type on community composition were not significant, although at sites with moderate or low fluid input, woods exhibited distinctive communities with high densities and relative abundance of the taxon Nitocrella sp. In conclusion, copepod colonization and species composition were mainly influenced by hydrothermal fluid input and temperature rather than the type of substratum. The outcome of this study provides fundamental knowledge to better understand copepod colonization at hydrothermal vents.

  5. Optimization of remediation strategies using vadose zone monitoring systems

    NASA Astrophysics Data System (ADS)

    Dahan, Ofer

    2016-04-01

    In-situ bio-remediation of the vadose zone depends mainly on the ability to change the subsurface hydrological, physical and chemical conditions in order to enable development of specific, indigenous, pollutants degrading bacteria. As such the remediation efficiency is much dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. These conditions are usually determined in laboratory experiments where parameters such as the chemical composition of the soil water solution, redox potential and water content of the sediment are fully controlled. Usually, implementation of desired optimal degradation conditions in deep vadose zone at full scale field setups is achieved through infiltration of water enriched with chemical additives on the land surface. It is assumed that deep percolation into the vadose zone would create chemical conditions that promote biodegradation of specific compounds. However, application of water with specific chemical conditions near land surface dose not necessarily results in promoting of desired chemical and hydraulic conditions in deep sections of the vadose zone. A vadose-zone monitoring system (VMS) that was recently developed allows continuous monitoring of the hydrological and chemical properties of deep sections of the unsaturated zone. The VMS includes flexible time-domain reflectometry (FTDR) probes which allow continuous monitoring of the temporal variation of the vadose zone water content, and vadose-zone sampling ports (VSPs) which are designed to allow frequent sampling of the sediment pore-water and gas at multiple depths. Implementation of the vadose zone monitoring system in sites that undergoes active remediation provides real time information on the actual chemical and hydrological conditions in the vadose zone as the remediation process progresses. Up-to-date the system has been successfully implemented in several studies on water flow and contaminant transport in the unsaturated zone including enhanced bioremediation of contaminated deep vadose zone (40 m depth). Manipulating subsurface conditions for enhanced bioremediation was demonstrated through two remediation projects. One site is characterized by 20 m deep vadose zone that is contaminated with gasoline products and the other is a 40 m deep vadose zone that is contaminated with perchlorate. In both cases temporal variation of the sediment water content as well as the variations in the vadose zone chemical and isotopic composition allowed real time detection of water flow velocities, contaminants transport rates and bio-degradation degree. Results and conclusions from each wetting cycle were used to improve the following wetting cycles in order to optimize contaminants degradation conditions while minimizing leaching of contaminants to the groundwater.

  6. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico

    PubMed Central

    White, Helen K.; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M.; Cordes, Erik E.; Quattrini, Andrea M.; Nelson, Robert K.; Camilli, Richard; Demopoulos, Amanda W. J.; German, Christopher R.; Brooks, James M.; Roberts, Harry H.; Shedd, William; Reddy, Christopher M.; Fisher, Charles R.

    2012-01-01

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems. PMID:22454495

  7. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico.

    PubMed

    White, Helen K; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M; Cordes, Erik E; Quattrini, Andrea M; Nelson, Robert K; Camilli, Richard; Demopoulos, Amanda W J; German, Christopher R; Brooks, James M; Roberts, Harry H; Shedd, William; Reddy, Christopher M; Fisher, Charles R

    2012-12-11

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals' ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.

  8. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico

    USGS Publications Warehouse

    White, Helen K.; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M.; Cordes, Erik E.; Quattrini, Andrea M.; Nelson, Robert K.; Camilli, Richard; Demopoulos, Amanda W.J.; German, Christopher R.; Brooks, James M.; Roberts, Harry H.; Shedd, William; Reddy, Christopher M.; Fisher, Charles R.

    2012-01-01

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.

  9. Authigenic carbonates from methane seeps of the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Pierre, Catherine; Fouquet, Yves

    2007-06-01

    Submersible investigations with the ROV Victor 6000 of some pockmark structures on the seafloor of the Congo deep-sea fan have shown that they are active venting sites of methane-rich fluids, associated with abundant fauna and carbonate crusts. Moreover, methane hydrates have been observed both outcropping and deep in the sediments in the centre of the “Regab” giant pockmark. Authigenic carbonates, mostly calcite sometimes mixed with aragonite, are cementing the sedimentary matrix components and fauna; diatoms are abundant but only as moulds, indicating that biogenic silica dissolution occurred in situ synchronous with carbonate precipitation. The occurrence of diagenetic barite and pyrite in some carbonate crusts demonstrates that they can be formed either within the sulphate/methane transition zone or deeper in sulphate-depleted sediments. The oxygen isotopic compositions of the diagenetic carbonates (3.17 6.01‰ V-PDB) indicate that precipitation occurred with bottom seawater mixed with a variable contribution of water from gas hydrate decomposition. The very low carbon isotopic compositions of the diagenetic carbonates (-57.1 to -27.75‰ V-PDB) demonstrate that carbon derives mostly from the microbial oxidation of methane.

  10. Patterns of Occurrence and Marine Mammal Acoustic Behavior in Relation to Navy Sonar Activity Off Jacksonville, Florida.

    PubMed

    Oswald, Julie N; Norris, Thomas F; Yack, Tina M; Ferguson, Elizabeth L; Kumar, Anurag; Nissen, Jene; Bell, Joel

    2016-01-01

    Passive acoustic data collected from marine autonomous recording units deployed off Jacksonville, FL (from 13 September to 8 October 2009 and 3 December 2009 to 8 January 2010), were analyzed for detection of cetaceans and Navy sonar. Cetaceans detected included Balaenoptera acutorostrata, Eubalaena glacialis, B. borealis, Physeter macrocephalus, blackfish, and delphinids. E. glacialis were detected at shallow and, somewhat unexpectedly, deep sites. P. macrocephalus were characterized by a strong diel pattern. B. acutorostrata showed the strongest relationship between sonar activity and vocal behavior. These results provide a preliminary assessment of cetacean occurrence off Jacksonville and new insights on vocal responses to sonar.

  11. Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307)

    PubMed Central

    Webster, Gordon; Blazejak, Anna; Cragg, Barry A; Schippers, Axel; Sass, Henrik; Rinna, Joachim; Tang, Xiaohong; Mathes, Falko; Ferdelman, Timothy G; Fry, John C; Weightman, Andrew J; Parkes, R John

    2009-01-01

    The Porcupine Seabight Challenger Mound is the first carbonate mound to be drilled (∼270 m) and analyzed in detail microbiologically and biogeochemically. Two mound sites and a non-mound Reference site were analyzed with a range of molecular techniques [catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), quantitative PCR (16S rRNA and functional genes, dsrA and mcrA), and 16S rRNA gene PCR-DGGE] to assess prokaryotic diversity, and this was compared with the distribution of total and culturable cell counts, radiotracer activity measurements and geochemistry. There was a significant and active prokaryotic community both within and beneath the carbonate mound. Although total cell numbers at certain depths were lower than the global average for other subseafloor sediments and prokaryotic activities were relatively low (iron and sulfate reduction, acetate oxidation, methanogenesis) they were significantly enhanced compared with the Reference site. In addition, there was some stimulation of prokaryotic activity in the deepest sediments (Miocene, > 10 Ma) including potential for anaerobic oxidation of methane activity below the mound base. Both Bacteria and Archaea were present, with neither dominant, and these were related to sequences commonly found in other subseafloor sediments. With an estimate of some 1600 mounds in the Porcupine Basin alone, carbonate mounds may represent a significant prokaryotic subseafloor habitat. PMID:18826439

  12. Geodynamic models of the deep structure of the natural disaster regions of the Earth

    NASA Astrophysics Data System (ADS)

    Rodnikov, A. G.; Sergeyeva, N. A.; Zabarinskaya, L. P.

    2012-04-01

    Investigation of the deep structure and creation of geodynamic models of natural disaster regions are important for understanding of the nature of such phenomena as earthquakes, eruptions of volcanoes, tsunami and others. Carrying out of such researches is necessary for definition of areas of potential risk, forecasting and the prevention of negative consequences of acts of nature. Research region is active continental margins of the Sea of Okhotsk, and especially the area of Neftegorsk earthquake which has occurred on May, 28th 1995 in the North Sakhalin and caused many victims and destructions. The geodynamic model of the lithosphere in the region of Neftegorsk earthquake has been constructed along the profile crossing the North Sakhalin Basin, Deryugin Basin and ophiolite complex between them. The Deryugin Basin was formed at the site of an ancient deep trench after the subduction of the Okhotsk Sea Plate under Sakhalin. The basin is located above a hot plume in the mantle at a depth of 25 km. The ophiolite belt of ultramafic magmatic rocks is an ancient (K2-Pg) paleosubduction zone separating the Deryugin basin from the North Sakhalin Basin. The thickness of the ancient seismic focal zone is 80 km. It is probably that the structures of the North Sakhalin have been formed in the following way. In the Late Cretaceous the oceanic Okhotsk Sea Plate subducted under Sakhalin, the eastern part of which was an andesite island arc. Approximately in Miocene the subduction of the plate apparently ceased. In that time the Tatar Rift Strait was formed. Ophiolite rocks of the subduction zones as a result of compression have been squeezed out on a surface. The ophiolite complex combined by the ultrabasic rocks, fixes position of ancient subduction zone. It is probable that the manifestation of the Neftegorsk earthquake was a result of activization of this ancient subduction zone. On a surface the subduction zone manifests itself as deep faults running along Sakhalin. The center of the Neftegorsk earthquake was directly formed by burst of activity of this ancient subduction zone. From a position of the ancient subduction zone under Sakhalin, which is a cause of strong earthquakes here, it follows that the region is one of seismic dangerous in Russia. Constructed on the basis of complex interpretation of the geologic-geophysical data the geodynamic models of natural disaster regions give the chance: to study a deep structure under seismic dangerous zones; to investigate a role of deep processes in the upper mantle in formation of structures of earth crust; to relate the geological features, tectonomagmatic, hydrothermal activity with the processes in the upper mantle; to plot maps in detail with zones of increasing risks to prevent active building or other economic activities in such dangerous regions.

  13. Comparative bacterial community analysis in relatively pristine and anthropogenically influenced mangrove ecosystems on the Red Sea.

    PubMed

    Ullah, Riaz; Yasir, Muhammad; Khan, Imran; Bibi, Fehmida; Sohrab, Sayed Sartaj; Al-Ansari, Ahmed; Al-Abbasi, Fahad; Al-Sofyani, Abdulmohsin A; Daur, Ihsanullah; Lee, Seon-Woo; Azhar, Esam I

    2017-08-01

    Mangrove habitats are ecologically important ecosystems that are under severe pressure worldwide because of environmental changes and human activities. In this study, 16S rRNA gene amplicon deep-sequencing was used to compare bacterial communities in Red Sea mangrove ecosystems at anthropogenically influenced coastal sites with those at a relatively pristine island site. In total, 32 phyla were identified from the mangrove rhizospheres, with Proteobacteria predominating at each of the studied sites; however, the relative abundance was significantly decreased at the coastal sites (Mastorah, MG-MS; Ar-Rayis, MG-AR) compared with the pristine island site near Dhahban (MG-DBI). The phyla Actinobacteria, Firmicutes, Acidobacteria, Chloroflexi, Spirochetes, and Planctomycetes were present at a relative abundance of >1% at the MG-MS and MG-AR sites, but their concentration was <1% at the MG-DBI site. A total of 1659 operational taxonomic units (OTUs) were identified at the species level, and approximately 945 OTUs were shared across the different sampling sites. Multivariate principal coordinate data analysis separated the MG-DBI site from the MG-AR and MG-MS cluster. Specific bacterial taxa were enriched at each location, and in particular, the genera Pseudoalteromonas and Cobetia were predominantly identified in the MG-DBI site compared with the anthropogenically influenced coastal sites.

  14. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.

    PubMed

    Kim, Seong Gon; Theera-Ampornpunt, Nawanol; Fang, Chih-Hao; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-08-01

    Gene expression is mediated by specialized cis-regulatory modules (CRMs), the most prominent of which are called enhancers. Early experiments indicated that enhancers located far from the gene promoters are often responsible for mediating gene transcription. Knowing their properties, regulatory activity, and genomic targets is crucial to the functional understanding of cellular events, ranging from cellular homeostasis to differentiation. Recent genome-wide investigation of epigenomic marks has indicated that enhancer elements could be enriched for certain epigenomic marks, such as, combinatorial patterns of histone modifications. Our efforts in this paper are motivated by these recent advances in epigenomic profiling methods, which have uncovered enhancer-associated chromatin features in different cell types and organisms. Specifically, in this paper, we use recent state-of-the-art Deep Learning methods and develop a deep neural network (DNN)-based architecture, called EP-DNN, to predict the presence and types of enhancers in the human genome. It uses as features, the expression levels of the histone modifications at the peaks of the functional sites as well as in its adjacent regions. We apply EP-DNN to four different cell types: H1, IMR90, HepG2, and HeLa S3. We train EP-DNN using p300 binding sites as enhancers, and TSS and random non-DHS sites as non-enhancers. We perform EP-DNN predictions to quantify the validation rate for different levels of confidence in the predictions and also perform comparisons against two state-of-the-art computational models for enhancer predictions, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy and takes less time to make predictions. Next, we develop methods to make EP-DNN interpretable by computing the importance of each input feature in the classification task. This analysis indicates that the important histone modifications were distinct for different cell types, with some overlaps, e.g., H3K27ac was important in cell type H1 but less so in HeLa S3, while H3K4me1 was relatively important in all four cell types. We finally use the feature importance analysis to reduce the number of input features needed to train the DNN, thus reducing training time, which is often the computational bottleneck in the use of a DNN. In this paper, we developed EP-DNN, which has high accuracy of prediction, with validation rates above 90 % for the operational region of enhancer prediction for all four cell lines that we studied, outperforming DEEP-ENCODE and RFECS. Then, we developed a method to analyze a trained DNN and determine which histone modifications are important, and within that, which features proximal or distal to the enhancer site, are important.

  15. Fault identification using multidisciplinary techniques at the Mars/Uranus Station antenna sites

    NASA Technical Reports Server (NTRS)

    Santo, D. S.; Schluter, M. B.; Shlemon, R. J.

    1992-01-01

    A fault investigation was performed at the Mars and Uranus antenna sites at the Goldstone Deep Space Communications Complex in the Mojave desert. The Mars/Uranus Station consists of two large-diameter reflector antennas used for communication and control of deep-space probes and other missions. The investigation included interpretation of Landsat thematic mapper scenes, side-looking airborne radar transparencies, and both color-infrared and black-and-white aerial photography. Four photolineaments suggestive of previously undocumented faults were identified. Three generally discrete morphostratigraphic alluvial-fan deposits were also recognized and dated using geomorphic and soil stratigraphic techniques. Fourteen trenches were excavated across the four lineaments; the trenches show that three of the photolineaments coincide with faults. The last displacement of two of the faults occurred between about 12,000 and 35,000 years ago. The third fault was judged to be older than 12,000 years before present (ybp), although uncertainty remains. None of the surface traces of the three faults crosses under existing antennas or structures; however, their potential activity necessitates appropriate seismic retrofit designs and loss-prevention measures to mitigate potential earthquake damage to facilities and structures.

  16. Remote sensing for assessing the zone of benefit where deep drains improve productivity of land affected by shallow saline groundwater.

    PubMed

    Kobryn, H T; Lantzke, R; Bell, R; Admiraal, R

    2015-03-01

    The installation of deep drains is an engineering approach to remediate land salinised by the influence of shallow groundwater. It is a costly treatment and its economic viability is, in part, dependent on the lateral extent to which the drain increases biological productivity by lowering water tables and soil salinity (referred to as the drains' zone of benefit). Such zones may be determined by assessing the biological productivity response of adjacent vegetation over time. We tested a multi-temporal satellite remote sensing method to analyse temporal and spatial changes in vegetation condition surrounding deep drainage sites at five locations in the Western Australian wheatbelt affected by dryland salinity-Morawa, Pithara, Beacon, Narembeen and Dumbleyung. Vegetation condition as a surrogate for biological productivity was assessed by Normalised Difference Vegetation Index (NDVI) during the peak growing season. Analysis was at the site scale within a 1000 m buffer zone from the drains. There was clear evidence of NDVI increasing with elevation, slope and distance from the drain. After accounting for elevation, slope and distance from the drain, there was a significant increase in NDVI across the five locations after installation of deep drains. Changes in NDVI after drainage were broadly consistent with measured changes at each site in groundwater levels after installation of the deep drains. However, this study assessed the lateral extent of benefit for biological productivity and gave a measure of the area of benefit along the entire length of the drain. The method demonstrated the utility of spring NDVI images for rapid and relatively simple assessment of the change in site condition after implementation of drainage, but approaches for further improvement of the procedure were identified. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Seismic evidence for a possible deep crustal hot zone beneath Southwest Washington.

    PubMed

    Flinders, Ashton F; Shen, Yang

    2017-08-07

    Crustal pathways connecting deep sources of melt and the active volcanoes they supply are poorly understood. Beneath Mounts St. Helens, Adams, and Rainier these pathways connect subduction-induced ascending melts to shallow magma reservoirs. Petrogenetic modeling predicts that when these melts are emplaced as a succession of sills into the lower crust they generate deep crustal hot zones. While these zones are increasingly recognized as a primary site for silicic differentiation at a range of volcanic settings globally, imaging them remains challenging. Near Mount Rainier, ascending melt has previously been imaged ~28 km northwest of the volcano, while to the south, the volcano lies on the margin of a broad conductive region in the deep crust. Using 3D full-waveform tomography, we reveal an expansive low-velocity zone, which we interpret as a possible hot zone, linking ascending melts and shallow reservoirs. This hot zone may supply evolved magmas to Mounts St. Helens and Adams, and possibly Rainier, and could contain approximately twice the melt volume as the total eruptive products of all three volcanoes combined. Hot zones like this may be the primary reservoirs for arc volcanism, influencing compositional variations and spatial-segmentation along the entire 1100 km-long Cascades Arc.

  18. Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption

    PubMed Central

    Valentine, David L.; Mezić, Igor; Maćešić, Senka; Črnjarić-Žic, Nelida; Ivić, Stefan; Hogan, Patrick J.; Fonoberov, Vladimir A.; Loire, Sophie

    2012-01-01

    The irruption of gas and oil into the Gulf of Mexico during the Deepwater Horizon event fed a deep sea bacterial bloom that consumed hydrocarbons in the affected waters, formed a regional oxygen anomaly, and altered the microbiology of the region. In this work, we develop a coupled physical–metabolic model to assess the impact of mixing processes on these deep ocean bacterial communities and their capacity for hydrocarbon and oxygen use. We find that observed biodegradation patterns are well-described by exponential growth of bacteria from seed populations present at low abundance and that current oscillation and mixing processes played a critical role in distributing hydrocarbons and associated bacterial blooms within the northeast Gulf of Mexico. Mixing processes also accelerated hydrocarbon degradation through an autoinoculation effect, where water masses, in which the hydrocarbon irruption had caused blooms, later returned to the spill site with hydrocarbon-degrading bacteria persisting at elevated abundance. Interestingly, although the initial irruption of hydrocarbons fed successive blooms of different bacterial types, subsequent irruptions promoted consistency in the structure of the bacterial community. These results highlight an impact of mixing and circulation processes on biodegradation activity of bacteria during the Deepwater Horizon event and suggest an important role for mixing processes in the microbial ecology of deep ocean environments. PMID:22233808

  19. Nighttime foraging by deep diving echolocating odontocetes off the Hawaiian islands of Kauai and Ni'ihau as determined by passive acoustic monitors.

    PubMed

    Au, Whitlow W L; Giorli, Giacomo; Chen, Jessica; Copeland, Adrienne; Lammers, Marc; Richlen, Michael; Jarvis, Susan; Morrissey, Ronald; Moretti, David; Klinck, Holger

    2013-05-01

    Remote autonomous ecological acoustic recorders (EARs) were deployed in deep waters at five locations around the island of Kauai and one in waters off Ni'ihau in the main Hawaiian island chain. The EARs were moored to the bottom at depths between 400 and 800 m. The data acquisition sampling rate was 80 kHz and acoustic signals were recorded for 30 s every 5 min to conserve battery power and disk space. The acoustic data were analyzed with the M3R (Marine Mammal Monitoring on Navy Ranges) software, an energy-ratio-mapping algorithm developed at Oregon State University and custom MATLAB programs. A variety of deep diving odontocetes, including pilot whales, Risso's dolphins, sperm whales, spinner and pan-tropical spotted dolphins, and beaked whales were detected at all sites. Foraging activity typically began to increase after dusk, peaked in the middle of the night and began to decrease toward dawn. Between 70% and 84% of biosonar clicks were detected at night. At present it is not clear why some of the known deep diving species, such as sperm whales and beaked whales, concentrate their foraging efforts at night.

  20. Seismic evidence for a possible deep crustal hot zone beneath Southwest Washington

    USGS Publications Warehouse

    Flinders, Ashton; Shen, Yang

    2017-01-01

    Crustal pathways connecting deep sources of melt and the active volcanoes they supply are poorly understood. Beneath Mounts St. Helens, Adams, and Rainier these pathways connect subduction-induced ascending melts to shallow magma reservoirs. Petrogenetic modeling predicts that when these melts are emplaced as a succession of sills into the lower crust they generate deep crustal hot zones. While these zones are increasingly recognized as a primary site for silicic differentiation at a range of volcanic settings globally, imaging them remains challenging. Near Mount Rainier, ascending melt has previously been imaged ~28 km northwest of the volcano, while to the south, the volcano lies on the margin of a broad conductive region in the deep crust. Using 3D full-waveform tomography, we reveal an expansive low-velocity zone, which we interpret as a possible hot zone, linking ascending melts and shallow reservoirs. This hot zone may supply evolved magmas to Mounts St. Helens and Adams, and possibly Rainier, and could contain approximately twice the melt volume as the total eruptive products of all three volcanoes combined. Hot zones like this may be the primary reservoirs for arc volcanism, influencing compositional variations and spatial-segmentation along the entire 1100 km-long Cascades Arc.

  1. Tracking solvent and protein movement during CO2 release in carbonic anhydrase II crystals

    PubMed Central

    Kim, Chae Un; Song, HyoJin; Avvaru, Balendu Sankara; Gruner, Sol M.; Park, SangYoun; McKenna, Robert

    2016-01-01

    Carbonic anhydrases are mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO2/HCO3−. Previously, the X-ray crystal structures of CO2-bound holo (zinc-bound) and apo (zinc-free) human carbonic anhydrase IIs (hCA IIs) were captured at high resolution. Here, we present sequential timeframe structures of holo- [T = 0 s (CO2-bound), 50 s, 3 min, 10 min, 25 min, and 1 h] and apo-hCA IIs [T = 0 s, 50 s, 3 min, and 10 min] during the “slow” release of CO2. Two active site waters, WDW (deep water) and WDW′ (this study), replace the vacated space created on CO2 release, and another water, WI (intermediate water), is seen to translocate to the proton wire position W1. In addition, on the rim of the active site pocket, a water W2′ (this study), in close proximity to residue His64 and W2, gradually exits the active site, whereas His64 concurrently rotates from pointing away (“out”) to pointing toward (“in”) active site rotameric conformation. This study provides for the first time, to our knowledge, structural “snapshots” of hCA II intermediate states during the formation of the His64-mediated proton wire that is induced as CO2 is released. Comparison of the holo- and apo-hCA II structures shows that the solvent network rearrangements require the presence of the zinc ion. PMID:27114542

  2. Angiotensin-I-converting enzyme and its relatives

    PubMed Central

    Riordan, James F

    2003-01-01

    Angiotensin-I-converting enzyme (ACE) is a monomeric, membrane-bound, zinc- and chloride-dependent peptidyl dipeptidase that catalyzes the conversion of the decapeptide angiotensin I to the octapeptide angiotensin II, by removing a carboxy-terminal dipeptide. ACE has long been known to be a key part of the renin angiotensin system that regulates blood pressure, and ACE inhibitors are important for the treatment of hypertension. There are two forms of the enzyme in humans, the ubiquitous somatic ACE and the sperm-specific germinal ACE, both encoded by the same gene through transcription from alternative promoters. Somatic ACE has two tandem active sites with distinct catalytic properties, whereas germinal ACE, the function of which is largely unknown, has just a single active site. Recently, an ACE homolog, ACE2, has been identified in humans that differs from ACE in being a carboxypeptidase that preferentially removes carboxy-terminal hydrophobic or basic amino acids; it appears to be important in cardiac function. ACE homologs (also known as members of the M2 gluzincin family) have been found in a wide variety of species, even in those that neither have a cardiovascular system nor synthesize angiotensin. X-ray structures of a truncated, deglycosylated form of germinal ACE and a related enzyme from Drosophila have been reported, and these show that the active site is deep within a central cavity. Structure-based drug design targeting the individual active sites of somatic ACE may lead to a new generation of ACE inhibitors, with fewer side-effects than currently available inhibitors. PMID:12914653

  3. Sulfate Reduction and Sulfide Biomineralization By Deep-Sea Hydrothermal Vent Microorganisms

    NASA Astrophysics Data System (ADS)

    Picard, A.; Gartman, A.; Clarke, D. R.; Girguis, P. R.

    2014-12-01

    Deep-sea hydrothermal vents are characterized by steep temperature and chemical gradients and moderate pressures. At these sites, mesophilic sulfate-reducing bacteria thrive, however their significance for the formation of sulfide minerals is unknown. In this study we investigated sulfate reduction and sulfide biomineralization by the deep-sea bacterium Desulfovibrio hydrothermalis isolated from a deep-sea vent chimney at the Grandbonum vent site (13°N, East Pacific Rise, 2600 m water depth) [1]. Sulfate reduction rates were determined as a function of pressure and temperature. Biomineralization of sulfide minerals in the presence of various metal concentrations was characterized using light and electron microscopy and optical spectroscopy. We seek to better understand the significance of biological sulfate reduction in deep-sea hydrothermal environments, to characterize the steps in sulfide mineral nucleation and growth, and identify the interactions between cells and minerals. [1] D. Alazard, S. Dukan, A. Urios, F. Verhe, N. Bouabida, F. Morel, P. Thomas, J.L. Garcia and B. Ollivier, Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents, Int. J. Syst. Evol. Microbiol., 53 (2003) 173-178.

  4. Geohydrology of deep-aquifer system monitoring-well site at Marina, Monterey County, California

    USGS Publications Warehouse

    Hanson, Randall T.; Everett, Rhett; Newhouse, Mark W.; Crawford, Steven M.; Pimentel, M. Isabel; Smith, Gregory A.

    2002-01-01

    In 2000, a deep-aquifer system monitoring-well site (DMW1) was completed at Marina, California to provide basic geologic and hydrologic information about the deep-aquifer system in the coastal region of the Salinas Valley. The monitoring-well site contains four wells in a single borehole; one completed from 930 to 950 feet below land surface (bls) in the Paso Robles Formation (DMW1-4); one 1,040 to 1,060 feet below land surface in the upper Purisima Formation (DMW1-3); one from 1,410 to 1,430 feet below land surface in the middle Purisima Formation (DMW1-2); and one from 1,820 to 1,860 feet below land surface in the lower Purisima Formation (DMW1-1). The monitoring site is installed between the coast and several deep-aquifer system supply wells in the Marina Coast Water District, and the completion depths are within the zones screened in those supply wells. Sediments below a depth of 955 feet at DMW1 are Pliocene age, whereas the sediments encountered at the water-supply wells are Pleistocene age at an equivalent depth. Water levels are below sea level in DMW1 and the Marina Water District deep-aquifer system supply wells, which indicate that the potential for seawater intrusion exists in the deep-aquifer system. If the aquifers at DMW1 are hydraulically connected with the submarine outcrops in Monterey Bay, then the water levels at the DMW1 site are 8 to 27 feet below the level necessary to prevent seawater intrusion. Numerous thick fine-grained interbeds and confining units in the aquifer systems retard the vertical movement of fresh and saline ground water between aquifers and restrict the movement of seawater to narrow water-bearing zones in the upper-aquifer system.Hydraulic testing of the DMW1 and the Marina Water District supply wells indicates that the tested zones within the deep-aquifer system are transmissive water-bearing units with hydraulic conductivities ranging from 2 to 14.5 feet per day. The hydraulic properties of the supply wells and monitoring wells are similar, even though the wells are completed in different geologic formations.Geophysical logs collected at the DMW1 site indicate saline water in most water-bearing zones shallower than 720 feet below land surface and from about 1,025 to 1,130 feet below land surface, and indicate fresher water from about 910 to 950 feet below land surface (DMW1-4), 1,130 to 1,550 feet below land surface, and below 1,650 feet below land surface. Temporal differences between electromagnetic induction logs indicate possible seasonal seawater intrusion in five water-bearing zones from 350 to 675 feet below land surface in the upper-aquifer system.The water-chemistry analyses from the deep-aquifer system monitoring and supply wells indicate that these deep aquifers in the Marina area contain potable water with the exception of the saline water in well DMW1-3. The saline water from well DMW1-3 has a chloride concentration of 10,800 milligrams per liter and dissolved solids concentration of 23,800 milligrams per liter. The source of this water was determined not to be recent seawater based on geochemical indicators and the age of the ground water. The high salinity of this ground water may be related to the dissolution of salts from the saline marine clays that surround the water-bearing zone screened by DMW1-3. The major ion water chemistry of the monitoring wells and the nearby MCWD water-supply wells are similar, which may indicate they are in hydraulic connection, even though the stratigraphic layers differ below 955 feet below land surface.No tritium was detected in samples from the deep monitoring wells. The lack of tritium suggest that there is no recent recharge water (less than 50 years old) in the deep-aquifer system at the DMW1 site. The carbon-14 analyses of these samples indicate ground water from the monitoring site was recharged thousands of years ago.

  5. A deep learning method for lincRNA detection using auto-encoder algorithm.

    PubMed

    Yu, Ning; Yu, Zeng; Pan, Yi

    2017-12-06

    RNA sequencing technique (RNA-seq) enables scientists to develop novel data-driven methods for discovering more unidentified lincRNAs. Meantime, knowledge-based technologies are experiencing a potential revolution ignited by the new deep learning methods. By scanning the newly found data set from RNA-seq, scientists have found that: (1) the expression of lincRNAs appears to be regulated, that is, the relevance exists along the DNA sequences; (2) lincRNAs contain some conversed patterns/motifs tethered together by non-conserved regions. The two evidences give the reasoning for adopting knowledge-based deep learning methods in lincRNA detection. Similar to coding region transcription, non-coding regions are split at transcriptional sites. However, regulatory RNAs rather than message RNAs are generated. That is, the transcribed RNAs participate the biological process as regulatory units instead of generating proteins. Identifying these transcriptional regions from non-coding regions is the first step towards lincRNA recognition. The auto-encoder method achieves 100% and 92.4% prediction accuracy on transcription sites over the putative data sets. The experimental results also show the excellent performance of predictive deep neural network on the lincRNA data sets compared with support vector machine and traditional neural network. In addition, it is validated through the newly discovered lincRNA data set and one unreported transcription site is found by feeding the whole annotated sequences through the deep learning machine, which indicates that deep learning method has the extensive ability for lincRNA prediction. The transcriptional sequences of lincRNAs are collected from the annotated human DNA genome data. Subsequently, a two-layer deep neural network is developed for the lincRNA detection, which adopts the auto-encoder algorithm and utilizes different encoding schemes to obtain the best performance over intergenic DNA sequence data. Driven by those newly annotated lincRNA data, deep learning methods based on auto-encoder algorithm can exert their capability in knowledge learning in order to capture the useful features and the information correlation along DNA genome sequences for lincRNA detection. As our knowledge, this is the first application to adopt the deep learning techniques for identifying lincRNA transcription sequences.

  6. Environmental projects. Volume 7: Environmental resources document

    NASA Technical Reports Server (NTRS)

    Kushner, Len; Kroll, Glenn

    1988-01-01

    The Goldstone Deep Space Communications Complex (GDSCC) in Barstow, California, is part of the NASA Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. Goldstone is managed, directed and operated by the Jet Propulsion Laboratory of Pasadena, California. The GDSCC includes five distinct operational sites: Echo, Venus, Mars, Apollo, and Mojave Base. Within each site is a Deep Space Station (DPS), consisting of a large dish antenna and its support facilities. As required by NASA directives concerning the implementation of the National Environmental Policy Act, each NASA field installation is to publish an Environmental Resources Document describing the current environment at the installation, including any adverse effects that NASA operations may have on the local environment.

  7. Sources of high frequency seismic noise: insights from a dense network of ~250 stations in northern Alsace (France)

    NASA Astrophysics Data System (ADS)

    Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien

    2015-04-01

    Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced seismic noise. Effects of other types of seismic sources, such as industries or wind, are also observed but usually have a more limited spatial extension and a specific signature in the spectrograms.

  8. Controls on deep drainage beneath the root soil zone in snowmelt-dominated environments

    NASA Astrophysics Data System (ADS)

    Hammond, J. C.; Harpold, A. A.; Kampf, S. K.

    2017-12-01

    Snowmelt is the dominant source of streamflow generation and groundwater recharge in many high elevation and high latitude locations, yet we still lack a detailed understanding of how snowmelt is partitioned between the soil, deep drainage, and streamflow under a variety of soil, climate, and snow conditions. Here we use Hydrus 1-D simulations with historical inputs from five SNOTEL snow monitoring sites in each of three regions, Cascades, Sierra, and Southern Rockies, to investigate how inter-annual variability on water input rate and duration affects soil saturation and deep drainage. Each input scenario was run with three different soil profiles of varying hydraulic conductivity, soil texture, and bulk density. We also created artificial snowmelt scenarios to test how snowmelt intermittence affects deep drainage. Results indicate that precipitation is the strongest predictor (R2 = 0.83) of deep drainage below the root zone, with weaker relationships observed between deep drainage and snow persistence, peak snow water equivalent, and melt rate. The ratio of deep drainage to precipitation shows a stronger positive relationship to melt rate suggesting that a greater fraction of input becomes deep drainage at higher melt rates. For a given amount of precipitation, rapid, concentrated snowmelt may create greater deep drainage below the root zone than slower, intermittent melt. Deep drainage requires saturation below the root zone, so saturated hydraulic conductivity serves as a primary control on deep drainage magnitude. Deep drainage response to climate is mostly independent of soil texture because of its reliance on saturated conditions. Mean water year saturations of deep soil layers can predict deep drainage and may be a useful way to compare sites in soils with soil hydraulic porosities. The unit depth of surface runoff often is often greater than deep drainage at daily and annual timescales, as snowmelt exceeds infiltration capacity in near-surface soil layers. These results suggest that processes affecting the duration of saturation below the root zone could compromise deep recharge, including changes in snowmelt rate and duration as well as the depth and rate of ET losses from the soil profile.

  9. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema

    None

    2017-12-09

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  10. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema

    None

    2018-05-16

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  11. Why Is My Voice Changing? (For Teens)

    MedlinePlus

    ... enter puberty earlier or later than others. How Deep Will My Voice Get? How deep a guy's voice gets depends on his genes: ... of Use Notice of Nondiscrimination Visit the Nemours Web site. Note: All information on TeensHealth® is for ...

  12. Material and physical model for evaluation of deep brain activity contribution to EEG recordings

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen

    2015-12-01

    Deep brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that deep brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether deep brain activity could be observed from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of deep brain structures, is clearly observed from surface potential recordings. Therefore, it is highly possible that deep brain activity could be observed from EEG recordings and deep brain activity could be measured using the noninvasive scalp EEG technique.

  13. Stimulation sites in the subthalamic nucleus projected onto a mean 3-D atlas of the thalamus and basal ganglia.

    PubMed

    Sarnthein, Johannes; Péus, Dominik; Baumann-Vogel, Heide; Baumann, Christian R; Sürücü, Oguzkan

    2013-09-01

    In patients with severe forms of Parkinson's disease (PD), deep brain stimulation (DBS) commonly targets the subthalamic nucleus (STN). Recently, the mean 3-D Morel-Atlas of the basal ganglia and the thalamus was introduced. It combines information contained in histological data from ten post-mortem brains. We were interested whether the Morel-Atlas is applicable for the visualization of stimulation sites. In a consecutive PD patient series, we documented preoperative MRI planning, intraoperative target adjustment based on electrophysiological and neurological testing, and perioperative CT target reconstruction. The localization of the DBS electrodes and the optimal stimulation sites were projected onto the Morel-Atlas. We included 20 patients (median age 62 years). The active contact had mean coordinates Xlat = ±12.1 mm, Yap = -1.8 mm, Zvert = -3.2 mm. There was a significant difference between the initially planned site and the coordinates of the postoperative active contact site (median 2.2 mm). The stimulation site was, on average, more anterior and more dorsal. The electrode contact used for optimal stimulation was found within the STN of the atlas in 38/40 (95 %) of implantations. The cluster of stimulation sites in individual patients-as deduced from preoperative MR, intraoperative electrophysiology and neurological testing-showed a high degree of congruence with the atlas. The mean 3D Morel Atlas is thus a useful tool for postoperative target visualization. This represents the first clinical evaluation of the recently created atlas.

  14. Active Eruptions in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Resing, J. A.; Embley, R. W.

    2009-12-01

    NE Lau Response Team: K Rubin, E Baker, J Lupton, M Lilley, T Shank, S Merle, R Dziak, T Collasius (Jason 2 Expedition Leader), N Buck, T Baumberger, D Butterfield, D Clague, D Conlin, J Cowen, R Davis, L Evans, J Huber, M Keith, N Keller, P Michael, E Podowski, A-L Reysenbach, K Roe, H Thomas, S Walker. During a May 2009 cruise to W Mata volcano in the NE Lau Basin, we made the first observations of an active eruption on the deep-sea floor. The cruise was organized after volcanic activity was detected at two sites (W Mata volcano and NE Lau Spreading Center, NELSC) during a Nov. 2008 NOAA-PMEL expedition. At that time, both sites had elevated H2 concentrations and volcaniclastic shards in the hydrothermal plumes. Moored hydrophone data since Jan 2009 indicate that the activity at W Mata has been continuous between these expeditions. Results of our cruise and other work suggest that the NE Lau Basin hosts an unusually high level of magmatic activity, making it an ideal location to study the effects of magmatic processes on hydrothermal activity and associated ecosystems. W Mata was visited with 5 ROV Jason 2 dives and 2 dives with the MBARI autonomous mapping vehicle in May 2009. It was actively erupting at the 1200 m deep summit during each, so a hydrophone was deployed locally to collect acoustic data. Ship and shore-based analysis of HD video, molten lava, rocks, sediments, hot spring waters, and micro- and macro biological specimens collected by Jason 2 have provided a wealth of data. The eruption itself was characterized by extrusion of red, molten lava, extensive degassing, formation of large magma bubbles, explosive pyroclast ejection, and the active extrusion of pillow lavas. The erupting magmas are boninite, a relatively rare magma type found only at convergent margins. The hydrothermal fluids are generally acidic and all diffuse fluids collected were microbially active, even those at pH <3. W Mata was host to shrimp similar to those found at several other submarine volcanoes including actively erupting NW Rota. Two dives were also conducted on the NELSC, which was no longer erupting and showed no signs of extensive eruption-related hydrothermal activity. A new lava flow was found beneath the Nov. 2008 zone of near-bottom water column temperature anomalies. Preliminary radiometric dating of lavas is consistent with a Nov. 2008 eruption. For >20 yrs the PMEL-Vents and NSF RIDGE programs have sought to observe active eruptions to understand their impacts and modes of occurrence, yet these dynamic events have been difficult to capture. This response cruise produced new insights on submarine volcanism, including the first documented back-arc spreading center eruption, the first boninitic eruption, and the first observation of pillow lava formation in the deep sea, arguably one of Earth’s most common surface rock forms. The “rapidity” with which we were able to return to these sites aided in this success. The cruise on the R/V TG Thompson was funded by NSF through the R2K, MARGINS, and MGG programs, and by NOAA Ocean Exploration and PMEL. Over 37 letters of interest were submitted from the scientific community to join the cruise and/or to receive samples, from which a multidisciplinary team of petrologists, fluid chemists, oceanographers, geophysicists, and macro- and micro- biologists was assembled.

  15. Authigenic minerals related to carbon and sulfur biogeochemical cycling from deep-sea active methane seeps offshore South-West Africa

    NASA Astrophysics Data System (ADS)

    Pierre, C.; Blanc-Valleron, M.; Demange, J.; Boudouma, O.; Pape, T.; Himmler, T.; Fekete, N.; Spiess, V.

    2011-12-01

    The South-West African continental margin is well known for occurrences of active methane-rich fluid seeps that are associated with seafloor pockmarks in a broad range of water depths, from the shelf to the deep basins. High gas flares in the water column, luxurious oases of benthic fauna, gas hydrate accumulations and diagenetic carbonate crusts have been observed at these seeps. During the M76/3a expedition of R/V METEOR (summer 2008) gravity cores recovered abundant authigenic carbonate concretions from five pockmarks of the South-West African margin including previously studied sites (Hydrate Hole, Worm Hole, Regab Pockmark) and two sites (Deep Hole, Baboon Cluster) newly discovered during the cruise. Carbonate concretions were mostly associated to sediments settled by seep-associated benthic macrofauna and bearing shallow gas hydrates. We present new results of the comprehensive analysis of the mineralogy and isotope geochemistry of the diagenetic carbonates sampled in the five pockmarks. The mineralogy of authigenic carbonates is dominated by magnesian calcite and aragonite, associated occasionally with dolomite. The oxygen and carbon isotopic compositions of authigenic carbonates (+2.4 < δ18O % V-PDB < +6.2 ; -61.0 < δ13C % V-PDB < -40.1) indicate that microbial anaerobic oxidation of methane (AOM) was the main process controling carbonate precipitation within sub-seafloor sediments deposited from the glacial-time up to the present. The frequent occurrence of diagenetic gypsum crystals within the sediments demonstrates that bio-irrigation with oxygenated bottom water by the burrowing activity of benthic fauna caused the secondary oxidation of reduced sulfur (hydrogen sulfide and pyrite) that was produced by sulfate reducting bacteria as a by-product of AOM; during the sulfide oxidation process, the released acidity induced the partial dissolution of carbonates. Our results demonstrate also the strong link that existed between the carbon and sulfur cycles in cold seep systems where the anoxic-oxic boundary may move within the sediment due to variations in the strength of the methane flux.

  16. The Study of Geotechnical Properties of Sediment in C-C Zone in the Northeastern Pacific for Deep-sea Mining

    NASA Astrophysics Data System (ADS)

    Chi, S.; Kim, K.; Lee, H.; Ju, S.; Yoo, C.

    2007-12-01

    Recently the market price of valuable metals are rapidly increased due to the high demand and limited resources. Therefore, manganese (Mn)-nodules (Polymetallic nodules) in the Clarion-Clipperton fracture zone have stimulated economic interest. Nickel, copper, cobalt and manganese are the economically most interesting metals of Mn-nodules. In order to mine Mn-nodules from sea floor, understanding the geotechnical properties of surface sediment are very important for two major reasons. First, geotechnical data are required to design and build the stable and environmentally acceptable mining vehicles. Second, deep-sea mining activity could significantly effect on the surface layer of deep sea floor. For example, surface sediments will be redistributed through the resuspension and redeposition. Reliable sedimentological and soil mechanical baseline data of the undisturbed benthic environment are essential to assess and evaluate these environmental impacts by mining activity using physical and numerical modeling. The 225 times deployments of the multiple corer guaranteed undisturbed sediment samples in which geotechnical parameters were measured including sediment grain size, density, water content, shear strength. The sea floor sediments in this study area are generally characterized into three different types as follow. The seabed of the middle part (8-12° N) of this study area is mainly covered with biogenic siliceous sediment compared with pelagic red clays in the northern part (16-17° N). However, the southern part (5-6° N) is dominant with calcareous sediments because its water depth is shallower than the carbonate compensation depth (CCD). This result suggests that middle area, covered with siliceous sediment, is more feasible for commercial mining than northern area, covered with pelagic red clay, with the consideration of the nodule miner maneuverability and the environmental impact. Especially, middle part with the highest nodule abundance and valuable metal contents is mainly (more than 90% of area) covered with consolidated sediments, which are expected to be appropriate for effective miner movement. Furthermore, middle part with coarse siliceous sediments could be less environmentally disturbed by the mining activity. It makes middle part more plausible site than other sites in this study area for the commercial mining.

  17. Does navigated transcranial stimulation increase the accuracy of tractography? A prospective clinical trial based on intraoperative motor evoked potential monitoring during deep brain stimulation.

    PubMed

    Forster, Marie-Therese; Hoecker, Alexander Claudius; Kang, Jun-Suk; Quick, Johanna; Seifert, Volker; Hattingen, Elke; Hilker, Rüdiger; Weise, Lutz Martin

    2015-06-01

    Tractography based on diffusion tensor imaging has become a popular tool for delineating white matter tracts for neurosurgical procedures. To explore whether navigated transcranial magnetic stimulation (nTMS) might increase the accuracy of fiber tracking. Tractography was performed according to both anatomic delineation of the motor cortex (n = 14) and nTMS results (n = 9). After implantation of the definitive electrode, stimulation via the electrode was performed, defining a stimulation threshold for eliciting motor evoked potentials recorded during deep brain stimulation surgery. Others have shown that of arm and leg muscles. This threshold was correlated with the shortest distance between the active electrode contact and both fiber tracks. Results were evaluated by correlation to motor evoked potential monitoring during deep brain stimulation, a surgical procedure causing hardly any brain shift. Distances to fiber tracks clearly correlated with motor evoked potential thresholds. Tracks based on nTMS had a higher predictive value than tracks based on anatomic motor cortex definition (P < .001 and P = .005, respectively). However, target site, hemisphere, and active electrode contact did not influence this correlation. The implementation of tractography based on nTMS increases the accuracy of fiber tracking. Moreover, this combination of methods has the potential to become a supplemental tool for guiding electrode implantation.

  18. Probabilistic estimation of long-term volcanic hazard under evolving tectonic conditions in a 1 Ma timeframe

    NASA Astrophysics Data System (ADS)

    Jaquet, O.; Lantuéjoul, C.; Goto, J.

    2017-10-01

    Risk assessments in relation to the siting of potential deep geological repositories for radioactive wastes demand the estimation of long-term tectonic hazards such as volcanicity and rock deformation. Owing to their tectonic situation, such evaluations concern many industrial regions around the world. For sites near volcanically active regions, a prevailing source of uncertainty is related to volcanic hazard. For specific situations, in particular in relation to geological repository siting, the requirements for the assessment of volcanic and tectonic hazards have to be expanded to 1 million years. At such time scales, tectonic changes are likely to influence volcanic hazard and therefore a particular stochastic model needs to be developed for the estimation of volcanic hazard. The concepts and theoretical basis of the proposed model are given and a methodological illustration is provided using data from the Tohoku region of Japan.

  19. Hydrogeology and physical characteristics of water samples at the Red River aluminum site, Stamps, Arkansas, April 2001

    USGS Publications Warehouse

    Czarnecki, John B.; Stanton, Gregory P.; Freiwald, David A.

    2001-01-01

    The Red River Aluminum site near Stamps, Arkansas, contains waste piles of salt cake and metal byproducts from the smelting of aluminum. The waste piles are subjected to about 50 inches of rainfall a year, resulting in the dissolution of the salts and metal. To assess the potential threat to underlying ground-water resources at the site, its hydrogeology was characterized by measuring water levels and field parameters of water quality in 23 wells and at 2 surface-water sites. Seventeen of these monitor wells were constructed at various depths for this study to allow for the separate characterization of the shallow and deep ground-water systems, the calculation of vertical gradients, and the collection of water samples at different depths within the flow system. Lithologic descriptions from drill-hole cuttings and geophysical logs indicate the presence of interbedded sands, gravels, silts, and clays to depths of 65 feet. The regionally important Sparta aquifer underlies the site. Water levels in shallow wells indicate radial flow away from the salt-cake pile located near the center of the site. Flow in the deep system is to the west and southwest toward Bodcau Creek. Water-level data from eight piezometer nests indicate a downward hydraulic gradient from the shallow to deep systems across the site. Values of specific conductance (an indicator of dissolved salts) ranged from 215 to 196,200 microsiemens per centimeter and indicate that saline waters are being transported horizontally and vertically downward away from the site

  20. Surface deformations as indicators of deep ebullition fluxes in a large northern peatland

    USGS Publications Warehouse

    Glaser, P.H.; Chanton, J.P.; Morin, P.; Rosenberry, D.O.; Siegel, D.I.; Ruud, O.; Chasar, L.I.; Reeve, A.S.

    2004-01-01

    Peatlands deform elastically during precipitation cycles by small (??3 cm) oscillations in surface elevation. In contrast, we used a Global Positioning System network to measure larger oscillations that exceeded 20 cm over periods of 4-12 hours during two seasonal droughts at a bog and fen site in northern Minnesota. The second summer drought also triggered 19 depressuring cycles in an overpressured stratum under the bog site. The synchronicity between the largest surface deformations and the depressuring cycles indicates that both phenomena are produced by the episodic release of large volumes of gas from deep semi-elastic compartments confined by dense wood layers. We calculate that the three largest surface deformations were associated with the release of 136 g CH4 m-2, which exceeds by an order of magnitude the annual average chamber fluxes measured at this site. Ebullition of gas from the deep peat may therefore be a large and previously unrecognized source of radiocarbon depleted methane emissions from northern peatlands. Copyright 2004 by the American Geophysical Union.

  1. Impact of protists on a hydrocarbon-degrading bacterial community from deep-sea Gulf of Mexico sediments: A microcosm study

    NASA Astrophysics Data System (ADS)

    Beaudoin, David J.; Carmichael, Catherine A.; Nelson, Robert K.; Reddy, Christopher M.; Teske, Andreas P.; Edgcomb, Virginia P.

    2016-07-01

    In spite of significant advancements towards understanding the dynamics of petroleum hydrocarbon degrading microbial consortia, the impacts (direct or indirect via grazing activities) of bacterivorous protists remain largely unknown. Microcosm experiments were used to examine whether protistan grazing affects the petroleum hydrocarbon degradation capacity of a deep-sea sediment microbial community from an active Gulf of Mexico cold seep. Differences in n-alkane content between native sediment microcosms and those treated with inhibitors of eukaryotes were assessed by comprehensive two-dimensional gas chromatography following 30-90 day incubations and analysis of shifts in microbial community composition using small subunit ribosomal RNA gene clone libraries. More biodegradation was observed in microcosms supplemented with eukaryotic inhibitors. SSU rRNA gene clone libraries from oil-amended treatments revealed an increase in the number of proteobacterial clones (particularly γ-proteobacteria) after spiking sediments with diesel oil. Bacterial community composition shifted, and degradation rates increased, in treatments where protists were inhibited, suggesting protists affect the hydrocarbon degrading capacity of microbial communities in sediments collected at this Gulf of Mexico site.

  2. Carbonate sedimentation in an extensional active margin: Cretaceous history of the Haymana region, Pontides

    NASA Astrophysics Data System (ADS)

    Okay, Aral I.; Altiner, Demir

    2016-10-01

    The Haymana region in Central Anatolia is located in the southern part of the Pontides close to the İzmir-Ankara suture. During the Cretaceous, the region formed part of the south-facing active margin of the Eurasia. The area preserves a nearly complete record of the Cretaceous system. Shallow marine carbonates of earliest Cretaceous age are overlain by a 700-m-thick Cretaceous sequence, dominated by deep marine limestones. Three unconformity-bounded pelagic carbonate sequences of Berriasian, Albian-Cenomanian and Turonian-Santonian ages are recognized: Each depositional sequence is preceded by a period of tilting and submarine erosion during the Berriasian, early Albian and late Cenomanian, which corresponds to phases of local extension in the active continental margin. Carbonate breccias mark the base of the sequences and each carbonate sequence steps down on older units. The deep marine carbonate deposition ended in the late Santonian followed by tilting, erosion and folding during the Campanian. Deposition of thick siliciclastic turbidites started in the late Campanian and continued into the Tertiary. Unlike most forearc basins, the Haymana region was a site of deep marine carbonate deposition until the Campanian. This was because the Pontide arc was extensional and the volcanic detritus was trapped in the intra-arc basins and did not reach the forearc or the trench. The extensional nature of the arc is also shown by the opening of the Black Sea as a backarc basin in the Turonian-Santonian. The carbonate sedimentation in an active margin is characterized by synsedimentary vertical displacements, which results in submarine erosion, carbonate breccias and in the lateral discontinuity of the sequences, and differs from blanket like carbonate deposition in the passive margins.

  3. Identification of the subthalamic nucleus in deep brain stimulation surgery with a novel wavelet-derived measure of neural background activity

    PubMed Central

    Snellings, André; Sagher, Oren; Anderson, David J.; Aldridge, J. Wayne

    2016-01-01

    Object A wavelet-based measure was developed to quantitatively assess neural background activity taken during surgical neurophysiological recordings to localize the boundaries of the subthalamic nucleus during target localization for deep brain stimulator implant surgery. Methods Neural electrophysiological data was recorded from 14 patients (20 tracks, n = 275 individual recording sites) with dopamine-sensitive idiopathic Parkinson’s disease during the target localization portion of deep brain stimulator implant surgery. During intraoperative recording the STN was identified based upon audio and visual monitoring of neural firing patterns, kinesthetic tests, and comparisons between neural behavior and known characteristics of the target nucleus. The quantitative wavelet-based measure was applied off-line using MATLAB software to measure the magnitude of the neural background activity, and the results of this analysis were compared to the intraoperative conclusions. Wavelet-derived estimates were compared to power spectral density measures. Results The wavelet-derived background levels were significantly higher in regions encompassed by the clinically estimated boundaries of the STN than in surrounding regions (STN: 225 ± 61 μV vs. ventral to STN: 112 ± 32 μV, and dorsal to STN: 136 ± 66 μV). In every track, the absolute maximum magnitude was found within the clinically identified STN. The wavelet-derived background levels provided a more consistent index with less variability than power spectral density. Conclusions The wavelet-derived background activity assessor can be calculated quickly, requires no spike sorting, and can be reliably used to identify the STN with very little subjective interpretation required. This method may facilitate rapid intraoperative identification of subthalamic nucleus borders. PMID:19344225

  4. Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy

    PubMed Central

    Liu, Ning; Cui, Xu; Bryant, Daniel M.; Glover, Gary H.; Reiss, Allan L.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying brain function because it is non-invasive, non-irradiating and relatively inexpensive. Further, fNIRS potentially allows measurement of hemodynamic activity with high temporal resolution (milliseconds) and in naturalistic settings. However, in comparison with other imaging modalities, namely fMRI, fNIRS has a significant drawback: limited sensitivity to hemodynamic changes in deep-brain regions. To overcome this limitation, we developed a computational method to infer deep-brain activity using fNIRS measurements of cortical activity. Using simultaneous fNIRS and fMRI, we measured brain activity in 17 participants as they completed three cognitive tasks. A support vector regression (SVR) learning algorithm was used to predict activity in twelve deep-brain regions using information from surface fNIRS measurements. We compared these predictions against actual fMRI-measured activity using Pearson’s correlation to quantify prediction performance. To provide a benchmark for comparison, we also used fMRI measurements of cortical activity to infer deep-brain activity. When using fMRI-measured activity from the entire cortex, we were able to predict deep-brain activity in the fusiform cortex with an average correlation coefficient of 0.80 and in all deep-brain regions with an average correlation coefficient of 0.67. The top 15% of predictions using fNIRS signal achieved an accuracy of 0.7. To our knowledge, this study is the first to investigate the feasibility of using cortical activity to infer deep-brain activity. This new method has the potential to extend fNIRS applications in cognitive and clinical neuroscience research. PMID:25798327

  5. Environmental projects, volume 11. Environmental assessment: Addition to operations building, Mars site

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An Environmental Assessment was performed of the proposed addition to building G-86 at the Mars Site, which will provide space for new electronic equipment to consolidate the Deep Space Network (DSN) support facilities from other Goldstone Deep Space Communication Complex (GDSCC) sites at the Mars Site, and will include a fifth telemetry and command group with its associated link monitor, control processor, and operator consoles. The addition of these facilities will increase the capability of the DSN to support future sophisticated NASA spacecraft missions such as the International Solar and Terrestrial Physics (ISTP) Program. The planned construction of this building addition requires an Environmental Assessment (EA) document that records the existing environmental conditions at the Mars Site, that analyzes the environmental effects that possibly could be expected from the construction and use of the new building addition, and that recommends measures to be taken to mitigate any possible deleterious environmental effects.

  6. Autoradiographic localization of endothelin-1 binding sites in porcine skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Y.D.; Springall, D.R.; Wharton, J.

    Autoradiographic techniques and {sup 125}I-labeled endothelin-1 were used to study the distribution of endothelin-1 binding sites in porcine skin. Specific endothelin-1 binding sites were localized to blood vessels (capillaries, deep cutaneous vascular plexus, arteries, and arterioles), the deep dermal and connective tissue sheath of hair follicles, sebaceous and sweat glands, and arrector pili muscle. Specific binding was inhibited by endothelin-2 and endothelin-3 as well as endothelin-1. Non-specific binding was found in the epidermis and the medulla of hair follicles. No binding was found in connective tissue or fat. These vascular binding sites may represent endothelin receptors, in keeping with themore » known cutaneous vasoconstrictor actions of the peptide. If all binding sites are receptors, the results suggest that endothelin could also regulate the function of sweat glands and may have trophic effects in the skin.« less

  7. Laparoscopic mesh repair of transverse rectus abdominus muscle and deep inferior epigastric flap harvest site hernias.

    PubMed

    Ravipati, Nagesh B; Pockaj, Barbara A; Harold, Kristi L

    2007-08-01

    The transverse rectus abdominus muscle (TRAM) flap is one of the treatment options for breast reconstruction. TRAM flap reconstruction donor site herniation rates range from 1% to 8.8%. Traditionally, these hernias were treated by an open primary repair with or without the addition of onlay mesh. We report laparoscopic approach to treat TRAM and deep inferior epigastric perforator flap (DIEP) harvest site hernias with mesh. We treated 5 patients, 4 from TRAM and 1 from DIEP flap harvest site hernias during the period of October 2003 to January 2006. Two of these patients underwent previous open mesh repair with recurrence. All of these patients underwent laparoscopic hernia repair using polytetrafluoroethylene dual mesh. Follow-up ranged 6 to 31 months without any recurrences. Laparoscopic mesh repair of ventral hernias located at TRAM and DIEP flap harvest sites can be performed safely and with a low rate of recurrence.

  8. Deep Borehole Disposal Safety Analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Stein, Emily; Price, Laura L.

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept.more » It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.« less

  9. Origin of the diagenetic carbonate crusts and concretions from the mud volcanoes of the Nile deep-sea fan

    NASA Astrophysics Data System (ADS)

    Gontharet, S.; Pierre, C.; Blanc Valleron, M.; Rouchy, J.; Fouquet, Y.; Bayon, G.

    2004-12-01

    During the NAUTINIL cruise (September -October 2003), 22 submersible dives have been realized in the Nile deep-sea fan area to investigate by a multidisciplinary approach, selected mud volcanoes which are very abundant and of various morphologies in the whole area (Loncke et al., 2004). The deepest site (3019 m) located in the western part of the deep-sea fan, corresponds to a large caldera (about 8 km of diameter) where brines are seeping along the flanks of the structure and are sometimes collected in pools and lakes. The other sites in the central and eastern parts of the Nile deep-sea fan correspond respectively to pock-marks located at 2120 m and to a mud volcano located at 1130 m where active fluid ventings were identified by the presence of living benthic organisms (mainly vestimentiferan worms; rarely bivalves). At these three sites, hard carbonate crusts cover irregularly the sea floor and are sometimes present as dispersed fragments within the topmost sediments. The sediments from the venting areas are organic-rich and have a strong H2S smell which is indicative of active sulfate reduction. Petrographic observations and XRD analyses of the carbonate crusts indicate that aragonite, calcite, Mg-calcite are the dominant authigenic carbonate phases with a minor contribution of dolomite ; small concretions of ankerite occur occasionally in the sediments of the eastern delta. Millimeter sized barite concretions have also been discovered in the pock-marks sediments. The oxygen and carbon isotopic compositions of the bulk carbonate from crusts and concretions exibit large variations : -0.67 < \\delta18O\\permil PDB < 4.66 -44.17< \\delta13C \\permil PDB < 3.10 The distribution of the isotopic values is explained by the mixing of the authigenic carbonates with the sedimentary matrix which corresponds itself to a mixture of pelagic sediments and mud breccia issued from the mud volcano activity. The rather large range of \\delta18O values might reflect variable sources of diagenetic fluids. Typically, the very low \\delta13C values of the authigenic carbonates indicate that CH4 was the major source of carbon which was oxidized as CO2, either through bacterial sulfate reduction within the sediment, or via bacterial aerobic oxidation at the sea floor. Similar isotopic values were previously measured in the diagenetic carbonate crusts from the mud volcanoes of the Mediterranean Ridge area (Aloisi et al., 2000) as well as in other areas of cold seeps outside the Mediterranean sea (for instance Gulf of Mexico, Cascadia margin, Barbados prism). References: Aloisi G., Pierre C., Rouchy J.M., Foucher J.P., Woodside J. and the Medinaut Scientific Party, 2000. E.P.S.L., 184, 321-338. Loncke L., Gaullier V., Bellaiche G., and Mascle J., 2004. A.A.P.G. Bull

  10. The use of photo-mosaics, bathymetry and sensor data into geographic information system for site description and faunal distribution analysis at the Menez Gwen Hydrothermal vent field

    NASA Astrophysics Data System (ADS)

    Marcon, Y.; Sahling, H.; Bohrmann, G.

    2012-04-01

    The Menez Gwen hydrothermal vent is located on the Mid-Atlantic Ridge at a depth of about 800m. Although it has been the focus of several expeditions and studies, the sites of active venting at Menez Gwen are still under described, and it is not possible to get a global picture of the sites from the published data. Exploration of deep-sea environments is commonly performed using remotely operated vehicles (ROV) equipped with sensors, cameras and powerful lights. But strong attenuation of light in the deep-sea constrains visual surveys to be carried out from a few meters only above the seafloor, thus limiting the extent of the field of view. Moreover, ROV-mounted positioning systems usually lack accuracy and cannot be relied on for accurate relative positioning of sensor measurements, samplings, and features of interest. Such limitations are hindrances for many applications. In particular, site description or mapping of deep-sea benthic fauna over an area of study usually requires lengthy surveys, and reliability of navigation data becomes a major issue. Also, studying small-scale spatial variations of a physicochemical parameter needs positions of sensor measurements or samplings to be known precisely. To overcome this problem, maps of the seafloor can be generated in the form of geo-referenced video- or photo-mosaics. Mosaics are constructed by assembling overlapping images together into a larger image of the scene. To reduce the effects of drift in the navigation data, the construction of the mosaics uses robust feature detection and mapping capabilities to precisely relate consecutive images together. After geo-referencing in a Geographic Information System (GIS), points of measurements and sampling can be accurately pinpointed onto the mosaics to allow for spatial analyses. During cruise M82/3 to the Menez Gwen hydrothermal vent system, high-resolution photo-mosaics of several sites of hydrothermal activity were constructed and geo-referenced into GIS systems. The mosaics, together with high-resolution ship-borne bathymetry, allowed unravelling the layout and morphology of the system at different scales. Through GIS analyses, the distribution of the faunal communities in relation to the fluid emission points was mapped and sensor data were integrated to allow describing the spatial variation of water temperature based on CTD measurements. Results include calculation of mussel beds surfaces and inferred estimates of biomass of Bathymodiolus azoricus. Acknowledgements: This work is supported by the European Commission under the EU Framework 7 funded Marie Curie Initial Training Network (ITN) SENSEnet (contract n°237868), and funded through DFG Research Center / Excellence Cluster "The Ocean in the Earth System".

  11. Habitat, Fauna, and Conservation of Florida's Deep-Water Coral Reefs

    NASA Astrophysics Data System (ADS)

    Reed, J. K.; Pomponi, S. A.; Messing, C. G.; Brooke, S.

    2008-05-01

    Various types of deep-water coral habitats are common off the southeastern United States from the Blake Plateau through the Straits of Florida to the eastern Gulf of Mexico. Expeditions in the past decade with the Johnson-Sea- Link manned submersibles, ROVs, and AUVs have discovered, mapped and compiled data on the status, distribution, habitat, and biodiversity for many of these relatively unknown deep-sea coral ecosystems. We have discovered over three hundred, high relief (15-152-m tall) coral mounds (depth 700-800 m) along the length of eastern Florida (700 km). The north Florida sites are rocky lithoherms, whereas the southern sites are primarily classic coral bioherms, capped with dense 1-2 m tall thickets of Lophelia pertusa and Enallopsammia profunda. Off southeastern Florida, the Miami Terrace escarpment (depth 300-600 m) extends nearly 150 km as a steep, rocky slope of Miocene-age phosphoritic limestone, which provides habitat for a rich biodiversity of fish and benthic invertebrates. Off the Florida Keys, the Pourtalès Terrace (depth 200- 460 m) has extensive high-relief bioherms and numerous deep-water sinkholes to depths of 250-610 m and diameters up to 800 m. The dominant, deep-water, colonial scleractinian corals in this region include Oculina varicosa, L. pertusa, E. profunda, Madrepora oculata, and Solenosmilia variabilis. Other coral species include hydrozoans (Stylasteridae), bamboo octocorals (Isididae), numerous other gorgonians, and black corals (Antipatharia). These structure-forming taxa provide habitat and living space for a relatively unknown but biologically rich and diverse community of crustaceans, mollusks, echinoderms, polychaete and sipunculan worms, and associated fishes. We have identified 142 taxa of benthic macro-invertebrates, including 66 Porifera and 57 Cnidaria. Nearly 100 species of fish have been identified to date in association with these deep-water coral habitats. Paull et al. (2000) estimated that over 40,000 individual deep-water lithoherms may occur on the Blake Plateau and Straits of Florida, perhaps exceeding the areal extent of all the shallow-water reefs of the southeastern U.S. Our research program has provided data on the status of knowledge concerning these deep-reef habitats to the South Atlantic Fishery Management Council (SAFMC). Currently pending is a proposal by the SAFMC for a deep- water coral Habitat Area of Particular Concern (HAPC) that would extend from North Carolina to south Florida (78,888 km2) to protect these diverse and irreplaceable resources from destructive fishing activities such as bottom trawling. Deep-water reefs worldwide have been severely impacted by bottom trawling, including the deep-water Oculina coral reefs off central eastern Florida, which are structurally similar to the Lophelia reefs. Over a 30-year period, up to 99% of unprotected portions of the Oculina reefs were destroyed by rock shrimp trawling, whereas reefs designated as the Oculina HAPC in 1984 were protected from trawling and long-lines and are still relatively healthy. Numerous fisheries may target the deep-water Lophelia reef habitat including royal red shrimp, golden crab, and various fin fish.

  12. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies.

    PubMed

    Glover, A G; Gooday, A J; Bailey, D M; Billett, D S M; Chevaldonné, P; Colaço, A; Copley, J; Cuvelier, D; Desbruyères, D; Kalogeropoulou, V; Klages, M; Lampadariou, N; Lejeusne, C; Mestre, N C; Paterson, G L J; Perez, T; Ruhl, H; Sarrazin, J; Soltwedel, T; Soto, E H; Thatje, S; Tselepides, A; Van Gaever, S; Vanreusel, A

    2010-01-01

    Societal concerns over the potential impacts of recent global change have prompted renewed interest in the long-term ecological monitoring of large ecosystems. The deep sea is the largest ecosystem on the planet, the least accessible, and perhaps the least understood. Nevertheless, deep-sea data collected over the last few decades are now being synthesised with a view to both measuring global change and predicting the future impacts of further rises in atmospheric carbon dioxide concentrations. For many years, it was assumed by many that the deep sea is a stable habitat, buffered from short-term changes in the atmosphere or upper ocean. However, recent studies suggest that deep-seafloor ecosystems may respond relatively quickly to seasonal, inter-annual and decadal-scale shifts in upper-ocean variables. In this review, we assess the evidence for these long-term (i.e. inter-annual to decadal-scale) changes both in biologically driven, sedimented, deep-sea ecosystems (e.g. abyssal plains) and in chemosynthetic ecosystems that are partially geologically driven, such as hydrothermal vents and cold seeps. We have identified 11 deep-sea sedimented ecosystems for which published analyses of long-term biological data exist. At three of these, we have found evidence for a progressive trend that could be potentially linked to recent climate change, although the evidence is not conclusive. At the other sites, we have concluded that the changes were either not significant, or were stochastically variable without being clearly linked to climate change or climate variability indices. For chemosynthetic ecosystems, we have identified 14 sites for which there are some published long-term data. Data for temporal changes at chemosynthetic ecosystems are scarce, with few sites being subjected to repeated visits. However, the limited evidence from hydrothermal vents suggests that at fast-spreading centres such as the East Pacific Rise, vent communities are impacted on decadal scales by stochastic events such as volcanic eruptions, with associated fauna showing complex patterns of community succession. For the slow-spreading centres such as the Mid-Atlantic Ridge, vent sites appear to be stable over the time periods measured, with no discernable long-term trend. At cold seeps, inferences based on spatial studies in the Gulf of Mexico, and data on organism longevity, suggest that these sites are stable over many hundreds of years. However, at the Haakon Mosby mud volcano, a large, well-studied seep in the Barents Sea, periodic mud slides associated with gas and fluid venting may disrupt benthic communities, leading to successional sequences over time. For chemosynthetic ecosystems of biogenic origin (e.g. whale-falls), it is likely that the longevity of the habitat depends mainly on the size of the carcass and the ecological setting, with large remains persisting as a distinct seafloor habitat for up to 100 years. Studies of shallow-water analogs of deep-sea ecosystems such as marine caves may also yield insights into temporal processes. Although it is obvious from the geological record that past climate change has impacted deep-sea faunas, the evidence that recent climate change or climate variability has altered deep-sea benthic communities is extremely limited. This mainly reflects the lack of remote sensing of this vast seafloor habitat. Current and future advances in deep-ocean benthic science involve new remote observing technologies that combine a high temporal resolution (e.g. cabled observatories) with spatial capabilities (e.g. autonomous vehicles undertaking image surveys of the seabed). Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Effectiveness of deep cleaning followed by hydrogen peroxide decontamination during high Clostridium difficile infection incidence.

    PubMed

    Best, E L; Parnell, P; Thirkell, G; Verity, P; Copland, M; Else, P; Denton, M; Hobson, R P; Wilcox, M H

    2014-05-01

    Clostridium difficile infection (CDI) remains an infection control challenge, especially when environmental spore contamination and suboptimal cleaning may increase transmission risk. To substantiate the long-term effectiveness throughout a stroke rehabilitation unit (SRU) of deep cleaning and hydrogen peroxide decontamination (HPD), following a high incidence of CDI. Extensive environmental sampling (342 sites on each occasion) for C. difficile using sponge wipes was performed: before and after deep cleaning with detergent/chlorine agent; immediately following HPD; and on two further occasions, 19 days and 20 weeks following HPD. C. difficile isolates underwent polymerase chain reaction ribotyping and multi-locus variable repeat analysis (MLVA). C. difficile was recovered from 10.8%, 6.1%, 0.9%, 0% and 3.5% of sites at baseline, following deep cleaning, immediately after HPD, and 19 days and 20 weeks after HPD, respectively. C. difficile ribotypes recovered after deep cleaning matched those from CDI cases in the SRU during the previous 10 months. Similarly, 10/12 of the positive sites identified at 20 weeks post-HPD harboured the same C. difficile ribotype (002) and MLVA pattern as the isolate from the first post-HPD CDI case. CDI incidence [number of cases on SRU per 10 months (January-October 2011)] declined from 20 before to seven after the intervention. HPD, after deep cleaning with a detergent/chlorine agent, was highly effective for removing environmental C. difficile contamination. Long-term follow-up demonstrated that a CDI symptomatic patient can rapidly recontaminate the immediate environment. Determining a role for HPD should include long-term cost-effectiveness evaluations. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding.

    PubMed

    Wasson, A P; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Richards, R A; Watt, M

    2014-11-01

    We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4-178.5cm (60%) for depth; 0.09-0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (-0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Reliability of temperatures measured at standard monitoring sites as an index of brain temperature during deep hypothermic cardiopulmonary bypass conducted for thoracic aortic reconstruction.

    PubMed

    Akata, Takashi; Setoguchi, Hidekazu; Shirozu, Kazuhiro; Yoshino, Jun

    2007-06-01

    It is essential to estimate the brain temperature of patients during deliberate deep hypothermia. Using jugular bulb temperature as a standard for brain temperature, we evaluated the accuracy and precision of 5 standard temperature monitoring sites (ie, pulmonary artery, nasopharynx, forehead deep-tissue, urinary bladder, and fingertip skin-surface tissue) during deep hypothermic cardiopulmonary bypass conducted for thoracic aortic reconstruction. In 20 adult patients with thoracic aortic aneurysms, the 5 temperature monitoring sites were recorded every 1 minute during deep hypothermic (<20 degrees C) cardiopulmonary bypass. The accuracy was evaluated by the difference from jugular bulb temperature, and the precision was evaluated by its standard deviation, as well as by the correlation with jugular bulb temperature. Pulmonary artery temperature and jugular bulb temperature began to change immediately after the start of cooling or rewarming, closely matching each other, and the other temperatures lagged behind these two temperatures. During either situation, the accuracy of pulmonary artery temperature measurement (0.3 degrees C-0.5 degrees C) was much superior to the other measurements, and its precision (standard deviation of the difference from jugular bulb temperature = 1.5 degrees C-1.8 degrees C; correlation coefficient = 0.94-0.95) was also best among the measurements, with its rank order being pulmonary artery > or = nasopharynx > forehead > bladder > fingertip. However, the accuracy and precision of pulmonary artery temperature measurement was significantly impaired during and for several minutes after infusion of cold cardioplegic solution. Pulmonary artery temperature measurement is recommended to estimate brain temperature during deep hypothermic cardiopulmonary bypass, even if it is conducted with the sternum opened; however, caution needs to be exercised in interpreting its measurements during periods of the cardioplegic solution infusion.

  16. Functional correlates of the therapeutic and adverse effects evoked by thalamic stimulation for essential tremor

    PubMed Central

    Gibson, William S.; Jo, Hang Joon; Testini, Paola; Cho, Shinho; Felmlee, Joel P.; Welker, Kirk M.; Klassen, Bryan T.; Min, Hoon-Ki

    2016-01-01

    Deep brain stimulation is an established neurosurgical therapy for movement disorders including essential tremor and Parkinson’s disease. While typically highly effective, deep brain stimulation can sometimes yield suboptimal therapeutic benefit and can cause adverse effects. In this study, we tested the hypothesis that intraoperative functional magnetic resonance imaging could be used to detect deep brain stimulation-evoked changes in functional and effective connectivity that would correlate with the therapeutic and adverse effects of stimulation. Ten patients receiving deep brain stimulation of the ventralis intermedius thalamic nucleus for essential tremor underwent functional magnetic resonance imaging during stimulation applied at a series of stimulation localizations, followed by evaluation of deep brain stimulation-evoked therapeutic and adverse effects. Correlations between the therapeutic effectiveness of deep brain stimulation (3 months postoperatively) and deep brain stimulation-evoked changes in functional and effective connectivity were assessed using region of interest-based correlation analysis and dynamic causal modelling, respectively. Further, we investigated whether brain regions might exist in which activation resulting from deep brain stimulation might correlate with the presence of paraesthesias, the most common deep brain stimulation-evoked adverse effect. Thalamic deep brain stimulation resulted in activation within established nodes of the tremor circuit: sensorimotor cortex, thalamus, contralateral cerebellar cortex and deep cerebellar nuclei (FDR q < 0.05). Stimulation-evoked activation in all these regions of interest, as well as activation within the supplementary motor area, brainstem, and inferior frontal gyrus, exhibited significant correlations with the long-term therapeutic effectiveness of deep brain stimulation (P < 0.05), with the strongest correlation (P < 0.001) observed within the contralateral cerebellum. Dynamic causal modelling revealed a correlation between therapeutic effectiveness and attenuated within-region inhibitory connectivity in cerebellum. Finally, specific subregions of sensorimotor cortex were identified in which deep brain stimulation-evoked activation correlated with the presence of unwanted paraesthesias. These results suggest that thalamic deep brain stimulation in tremor likely exerts its effects through modulation of both olivocerebellar and thalamocortical circuits. In addition, our findings indicate that deep brain stimulation-evoked functional activation maps obtained intraoperatively may contain predictive information pertaining to the therapeutic and adverse effects induced by deep brain stimulation. PMID:27329768

  17. Molecular Determinants of Mutant Phenotypes, Inferred from Saturation Mutagenesis Data.

    PubMed

    Tripathi, Arti; Gupta, Kritika; Khare, Shruti; Jain, Pankaj C; Patel, Siddharth; Kumar, Prasanth; Pulianmackal, Ajai J; Aghera, Nilesh; Varadarajan, Raghavan

    2016-11-01

    Understanding how mutations affect protein activity and organismal fitness is a major challenge. We used saturation mutagenesis combined with deep sequencing to determine mutational sensitivity scores for 1,664 single-site mutants of the 101 residue Escherichia coli cytotoxin, CcdB at seven different expression levels. Active-site residues could be distinguished from buried ones, based on their differential tolerance to aliphatic and charged amino acid substitutions. At nonactive-site positions, the average mutational tolerance correlated better with depth from the protein surface than with accessibility. Remarkably, similar results were observed for two other small proteins, PDZ domain (PSD95 pdz3 ) and IgG-binding domain of protein G (GB1). Mutational sensitivity data obtained with CcdB were used to derive a procedure for predicting functional effects of mutations. Results compared favorably with those of two widely used computational predictors. In vitro characterization of 80 single, nonactive-site mutants of CcdB showed that activity in vivo correlates moderately with thermal stability and solubility. The inability to refold reversibly, as well as a decreased folding rate in vitro, is associated with decreased activity in vivo. Upon probing the effect of modulating expression of various proteases and chaperones on mutant phenotypes, most deleterious mutants showed an increased in vivo activity and solubility only upon over-expression of either Trigger factor or SecB ATP-independent chaperones. Collectively, these data suggest that folding kinetics rather than protein stability is the primary determinant of activity in vivo This study enhances our understanding of how mutations affect phenotype, as well as the ability to predict fitness effects of point mutations. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Chemical gradients in sediment cores from an EPA reference site off the Farallon Islands - Assessing chemical indicators of dredged material disposal in the deep sea

    USGS Publications Warehouse

    Bothner, Michael H.; Gill, P.W.; Boothman, W.S.; Taylor, B.B.; Karl, Herman A.

    1998-01-01

    Heavy metal and organic contaminants have been determined in undisturbed sediment cores from the US Environmental Protection Agency reference site for dredged material on the continental slope off San Francisco. As expected, the concentrations are significantly lower than toxic effects guidelines, but concentrations of PCBs, PAHs, Hg, Pb, and Clostridium perfringens (a bacterium spore found in sewage) were nearly two or more times greater in the surface sediments than in intervals deeper in the cores. These observations indicate the usefulness of measuring concentration gradients in sediments at the San Francisco deep ocean disposal site (SF-DODS) where a thin (0.5 cm thick) layer of dredged material has been observed beyond the boundary. This thin layer has not been chemically characterized by the common practice of homogenizing over the top 10 cm. An estimated 300 million cubic yards of dredged material from San Francisco Bay are expected to be discharged at the SF-DODS site during the next 50 years. Detailed depth analysis of sediment cores would add significant new information about the fate and effects of dredged material in the deep sea.

  19. PolyA_DB 3 catalogs cleavage and polyadenylation sites identified by deep sequencing in multiple genomes

    PubMed Central

    Wang, Ruijia; Nambiar, Ram; Zheng, Dinghai

    2018-01-01

    Abstract PolyA_DB is a database cataloging cleavage and polyadenylation sites (PASs) in several genomes. Previous versions were based mainly on expressed sequence tags (ESTs), which had a limited amount and could lead to inaccurate PAS identification due to the presence of internal A-rich sequences in transcripts. Here, we present an updated version of the database based solely on deep sequencing data. First, PASs are mapped by the 3′ region extraction and deep sequencing (3′READS) method, ensuring unequivocal PAS identification. Second, a large volume of data based on diverse biological samples increases PAS coverage by 3.5-fold over the EST-based version and provides PAS usage information. Third, strand-specific RNA-seq data are used to extend annotated 3′ ends of genes to obtain more thorough annotations of alternative polyadenylation (APA) sites. Fourth, conservation information of PAS across mammals sheds light on significance of APA sites. The database (URL: http://www.polya-db.org/v3) currently holds PASs in human, mouse, rat and chicken, and has links to the UCSC genome browser for further visualization and for integration with other genomic data. PMID:29069441

  20. An activity-based near-infrared glucuronide trapping probe for imaging β-glucuronidase expression in deep tissues.

    PubMed

    Cheng, Ta-Chun; Roffler, Steve R; Tzou, Shey-Cherng; Chuang, Kuo-Hsiang; Su, Yu-Cheng; Chuang, Chih-Hung; Kao, Chien-Han; Chen, Chien-Shu; Harn, I-Hong; Liu, Kuan-Yi; Cheng, Tian-Lu; Leu, Yu-Ling

    2012-02-15

    β-glucuronidase is an attractive reporter and prodrug-converting enzyme. The development of near-IR (NIR) probes for imaging of β-glucuronidase activity would be ideal to allow estimation of reporter expression and for personalized glucuronide prodrug cancer therapy in preclinical studies. However, NIR glucuronide probes are not yet available. In this work, we developed two fluorescent probes for detection of β-glucuronidase activity, one for the NIR range (containing IR-820 dye) and the other for the visible range [containing fluorescein isothiocyanate (FITC)], by utilizing a difluoromethylphenol-glucuronide moiety (TrapG) to trap the fluorochromes in the vicinity of the active enzyme. β-glucuronidase-mediated hydrolysis of the glucuronyl bond of TrapG generates a highly reactive alkylating group that facilitates the attachment of the fluorochrome to nucleophilic moieties located near β-glucuronidase-expressing sites. FITC-TrapG was selectively trapped on purified β-glucuronidase or β-glucuronidase-expressing CT26 cells (CT26/mβG) but not on bovine serum albumin or non-β-glucuronidase-expressing CT26 cells used as controls. β-glucuronidase-activated FITC-TrapG did not interfere with β-glucuronidase activity and could label bystander proteins near β-glucuronidase. Both FITC-TrapG and NIR-TrapG specifically imaged subcutaneous CT26/mβG tumors, but only NIR-TrapG could image CT26/mβG tumors transplanted deep in the liver. Thus NIR-TrapG may provide a valuable tool for visualizing β-glucuronidase activity in vivo.

  1. Limitations of microbial hydrocarbon degradation at the Amon Mud Volcano (Nile Deep Sea Fan)

    NASA Astrophysics Data System (ADS)

    Felden, J.; Lichtschlag, A.; Wenzhöfer, F.; de Beer, D.; Feseker, T.; Pop Ristova, P.; de Lange, G.; Boetius, A.

    2013-01-01

    The Amon mud volcano (MV), located at 1250 m water depth on the Nile Deep Sea Fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulphate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition and microbial activities over three years, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulphide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. Furthermore, within three years, cell numbers and hydrocarbon degrading activity increased at the gas-seeping sites. The low microbial activity in the hydrocarbon-vented areas of Amon mud volcano is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer mud volcano area is limited by hydrocarbon transport.

  2. A cluster-randomised quality improvement study to improve two inpatient stroke quality indicators.

    PubMed

    Williams, Linda; Daggett, Virginia; Slaven, James E; Yu, Zhangsheng; Sager, Danielle; Myers, Jennifer; Plue, Laurie; Woodward-Hagg, Heather; Damush, Teresa M

    2016-04-01

    Quality indicator collection and feedback improves stroke care. We sought to determine whether quality improvement training plus indicator feedback was more effective than indicator feedback alone in improving inpatient stroke indicators. We conducted a cluster-randomised quality improvement trial, randomising hospitals to quality improvement training plus indicator feedback versus indicator feedback alone to improve deep vein thrombosis (DVT) prophylaxis and dysphagia screening. Intervention sites received collaborative-based quality improvement training, external facilitation and indicator feedback. Control sites received only indicator feedback. We compared indicators pre-implementation (pre-I) to active implementation (active-I) and post-implementation (post-I) periods. We constructed mixed-effect logistic models of the two indicators with a random intercept for hospital effect, adjusting for patient, time, intervention and hospital variables. Patients at intervention sites (1147 admissions), had similar race, gender and National Institutes of Health Stroke Scale scores to control sites (1017 admissions). DVT prophylaxis improved more in intervention sites during active-I period (ratio of ORs 4.90, p<0.001), but did not differ in post-I period. Dysphagia screening improved similarly in both groups during active-I, but control sites improved more in post-I period (ratio of ORs 0.67, p=0.04). In logistic models, the intervention was independently positively associated with DVT performance during active-I period, and negatively associated with dysphagia performance post-I period. Quality improvement training was associated with early DVT improvement, but the effect was not sustained over time and was not seen with dysphagia screening. External quality improvement programmes may quickly boost performance but their effect may vary by indicator and may not sustain over time. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  3. Bioaccumulation of chemical warfare agents, energetic materials, and metals in deep-sea shrimp from discarded military munitions sites off Pearl Harbor

    NASA Astrophysics Data System (ADS)

    Koide, Shelby; Silva, Jeff A. K.; Dupra, Vilma; Edwards, Margo

    2016-06-01

    The bioaccumulation of munitions-related chemicals at former military deep-water disposal sites is poorly understood. This paper presents the results of human-food-item biota sampling to assess the potential for bioaccumulation of chemical warfare agents, energetic materials, arsenic, and additional munitions-related metals in deep-sea shrimp tissue samples collected during the Hawai'i Undersea Military Munitions Assessment (HUMMA) project to date. The HUMMA investigation area is located within a former munitions sea-disposal site located south of Pearl Harbor on the island of O'ahu, Hawai'i, designated site Hawaii-05 (HI-05) by the United States Department of Defense. Indigenous deep-sea shrimp (Heterocarpus ensifer) were caught adjacent to discarded military munitions (DMM) and at control sites where munitions were absent. Tissue analysis results showed that chemical warfare agents and their degradation products were not present within the edible portions of these samples at detectable concentrations, and energetic materials and their degradation products were detected in only a few samples at concentrations below the laboratory reporting limits. Likewise, arsenic, copper, and lead concentrations were below the United States Food and Drug Administration's permitted concentrations of metals in marine biota tissue (if defined), and their presence within these samples could not be attributed to the presence of DMM within the study area based on a comparative analysis of munitions-adjacent and control samples collected. Based on this current dataset, it can be concluded that DMM existing within the HUMMA study area is not contributing to the bioaccumulation of munitions-related chemicals for the biota species investigated to date.

  4. Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: Insights from the K isotopic composition (41K/39K) of deep-sea pore-fluids

    USGS Publications Warehouse

    Santiago Ramos, Danielle P.; Morgan, Leah; Lloyd, Nicholas S.; Higgins, John A.

    2018-01-01

    In situ Al-silicate formation, also known as “reverse weathering,” is an important sink of many of the major and minor cations in seawater (e.g. Mg, K, and Li). However, the importance of this sink in global geochemical cycles and isotopic budgets of these elements remains poorly constrained. Here, we report on the potassium isotopic composition (41">41K/39">39K) of deep-sea sediment pore-fluids from four (Integrated) Ocean Drilling Program sites (1052, U1378, U1395 and U1403) to characterize potassium isotopic fractionation associated with the formation of authigenic Al-silicate minerals in marine sediments and its role in elevating the 41">41K/39">39K of seawater relative to bulk silicate Earth. Isotopic ratios are obtained by high-resolution multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) in cold plasma conditions with a long-term external reproducibility of ca. 0.17‰. We find that, although all sites are characterized by pore-fluid K concentrations that decline with increasing depth, their K isotopic profiles vary systematically from site-to-site; at sites characterized by rapid sedimentation rates, pore-fluid profiles of 41">41K/39">39K are relatively invariant whereas at sites characterized by slow sedimentation rates, 41">41K/39">39K declines with depth by up to 1.8‰. Results from 1-D diffusion-advection-reaction models suggest that these differences may result from a complex interplay between sedimentation rate and fractionation of K isotopes during diffusion, Al-silicate authigenesis, and ion exchange. Model simulations suggest fractionation factors between 0.9980 and 1.0000 for reverse weathering reactions in deep-sea sediments. Although deep-sea sites do not constitute major sinks of K in seawater, some of the processes responsible for K isotopic fractionation at these sites (diffusion and Al-silicate authigenesis) likely play a role in determining the 41">41K/39">39K of seawater.

  5. Borehole dilatometer installation, operation, and maintenance at sites in Hawaii

    USGS Publications Warehouse

    Myren, G.D.; Johnston, M.J.S.; Mueller, R.J.

    2006-01-01

    In response to concerns about the potential hazard of Mauna Loa volcano in Hawaii, the USGS began efforts in 1998 to add four high-resolution borehole sites. Located at these sites are; strainmeters, tiltmeters, seismometers, accelerometers and other instrumentation. These instruments are capable of providing continuous monitoring of the magma movement under Mauna Loa. Each site was planned to provide multi-parameter monitoring of volcanic activity. In June of 2000, a contract was let for the core drilling of three of these four sites. They are located at Hokukano (west side of Mauna Loa) above Captain Cook, Hawaii; at Mauna Loa Observatory (11,737 feet near the summit), and at Mauna Loa Strip Road (east side of Mauna Loa). Another site was chosen near Halema'uma u' and Kilauea's summit, in the Keller deep well. (See maps). The locations of these instruments are shown in Figure 1 with their latitude and longitude in Table 1. The purpose of this network is to monitor crustal deformation associated with volcanic intrusions and earthquakes on Mauna Loa and Kilauea volcanoes. This report describes the methods used to locate sites, install dilatometers, other instrumentation, and telemetry. We also provide a detailed description of the electronics used for signal amplification and telemetry, plus techniques used for instrument maintenance. Instrument sites were selected in regions of hard volcanic rock where the expected signals from magmatic activity were calculated to be a maximum and the probability of earthquakes with magnitude 4 or greater is large. At each location, an attempt was made to separate tectonic and volcanic signals from known noise sources for each instrument type.

  6. Precision time distribution within a deep space communications complex

    NASA Technical Reports Server (NTRS)

    Curtright, J. B.

    1972-01-01

    The Precision Time Distribution System (PTDS) at the Golstone Deep Space Communications Complex is a practical application of existing technology to the solution of a local problem. The problem was to synchronize four station timing systems to a master source with a relative accuracy consistently and significantly better than 10 microseconds. The solution involved combining a precision timing source, an automatic error detection assembly and a microwave distribution network into an operational system. Upon activation of the completed PTDS two years ago, synchronization accuracy at Goldstone (two station relative) was improved by an order of magnitude. It is felt that the validation of the PTDS mechanization is now completed. Other facilities which have site dispersion and synchronization accuracy requirements similar to Goldstone may find the PTDS mechanization useful in solving their problem. At present, the two station relative synchronization accuracy at Goldstone is better than one microsecond.

  7. Development of variable LRFD \\0x03C6 factors for deep foundation design due to site variability [summary].

    DOT National Transportation Integrated Search

    2012-01-01

    Both the Florida Department of Transportation : (FDOT) and the Federal Highway Administration : (FHWA) specify use of fixed resistance factors () : for Load and Resistance Factored Design (LRFD) of : deep foundations, depending on design approach :...

  8. Low-Latency Telerobotic Sample Return and Biomolecular Sequencing for Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Lupisella, M.; Bleacher, J.; Lewis, R.; Dworkin, J.; Wright, M.; Burton, A.; Rubins, K.; Wallace, S.; Stahl, S.; John, K.; Archer, D.; Niles, P.; Regberg, A.; Smith, D.; Race, M.; Chiu, C.; Russell, J.; Rampe, E.; Bywaters, K.

    2018-02-01

    Low-latency telerobotics, crew-assisted sample return, and biomolecular sequencing can be used to acquire and analyze lunar farside and/or Apollo landing site samples. Sequencing can also be used to monitor and study Deep Space Gateway environment and crew health.

  9. Geochemical Characterisation as a means of Distinguishing between Deep and Shallow Groundwater in the Karoo Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Swana, K.

    2015-12-01

    Although heralded as the solution to the world's energy shortage, shale-gas is proving to be extremely problematic from an environmental perspective. Fracking has in many instances led to the contamination of shallow groundwater resources in the vicinity of extraction sites. South Africa has significant energy issues and fracking has many attractions for the country as whole from an alternative energy supply perspective and also from a development perspective. However, the target region, the Karoo Basin, is a very water stressed region with significant ecological and agricultural value. The aim of this project was to establish whether it is possible to distinguish between deep and shallow groundwater throughout the Karoo using a wide variety of geochemical tracers. However, it is not possible to access groundwater located at depths of > 2500m. Therefore, waters derived from thermal springs and boreholes were used as proxies for deep groundwater. Eight locations within the Karoo Basin were chosen for sampling. Two sites were sampled at each location, one from a thermal spring or borehole and one from a shallow borehole in close proximity to the deep site. All of the samples were measured for temperature, pH, EC and alkalinity in the field and collected for major cations and anions, trace elements, O and H isotopes, Sr, B, Ra, Rn and CDIC isotopes, carbon 14, tritium, chlorine 36, He 4, and noble gases. From these analyses it was possible to differentiate thermal groundwater from shallow groundwater. The thermal groundwaters are interpreted to be deep because of their low carbon 14 content and further work, such as comparison of residence times using applicable tracers, is being completed to confirm this. A provisional list of tracers most reliable in identifying deep and shallow groundwater in the area has been developed and this can be used for monitoring programmes to assess the interaction of deep and shallow groundwater should fracking commence in the Karoo.

  10. Shelfal sediment transport by undercurrents forces turbidity current activity during high sea level, Chile continental margin

    NASA Astrophysics Data System (ADS)

    Bernhardt, Anne; Hebbeln, Dierk; Regenberg, Marcus; Lückge, Andreas; Strecker, Manfred. R.

    2016-04-01

    Understanding the links between terrigenous sediment supply and marine transport and depositional processes along tectonically active margins is essential to decipher turbidite successions as potential archives of climatic and seismic forcings and to comprehend timing and quantity of marine clastic deposition. Sequence stratigraphic models predict coarse-grained terrigenous sediment delivery to deep-marine sites mainly during sea-level fall and lowstand. Marine clastic deposition during periods of transgression and highstand has been attributed to the continued geomorphic connectivity between terrestrial sediment sources and marine sinks (e.g., rivers connected to submarine canyons) often facilitated by narrow shelves, high sediment supply causing delta migration to the shelf edge, and/or abrupt increases in sediment supply due to climatic variability or catastrophic events. To decipher the controls on Holocene highstand turbidite deposition, we analyzed twelve sediment cores of spatially disparate, coeval Holocene turbidite systems along the Chile margin (29-40°S) with changing climatic and geomorphic characteristics but uniform changes of sea level. Intraslope basins in north-central Chile (29-33°S) offshore a narrow to absent shelf record a shut-off of turbidite activity during the Holocene. In contrast, core sites in south-central Chile (36-40°S) offshore a wide continental shelf have repeatedly experienced turbidite deposition during sea-level highstand conditions, even though most of the depocenters are not connected via canyons to sediment sources. The interplay of stable high sediment supply related to strong onshore precipitation in combination with a wide shelf, over which undercurrents move sediment towards the shelf edge, appears to control Holocene turbidite sedimentation and sediment export to the deep sea.

  11. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects.

    PubMed

    White, Lawrence M; Sussman, Marshall S; Hurtig, Mark; Probyn, Linda; Tomlinson, George; Kandel, Rita

    2006-11-01

    To prospectively assess T2 mapping characteristics of normal articular cartilage and of cartilage at sites of arthroscopic repair, including comparison with histologic results and collagen organization assessed at polarized light microscopy (PLM). Study protocol was compliant with the Canadian Council on Animal Care Guidelines and approved by the institutional animal care committee. Arthroscopic osteochondral autograft transplantation (OAT) and microfracture arthroplasty (MFx) were performed in knees of 10 equine subjects (seven female, three male; age range, 3-5 years). A site of arthroscopically normal cartilage was documented in each joint as a control site. Joints were harvested at 12 (n = 5) and 24 (n = 5) weeks postoperatively and were imaged at 1.5-T magnetic resonance (MR) with a 10-echo sagittal fast spin-echo acquisition. T2 maps of each site (21 OAT harvest, 10 MFx, 12 OAT plug, and 10 control sites) were calculated with linear least-squares curve fitting. Cartilage T2 maps were qualitatively graded as "organized" (normal transition of low-to-high T2 signal from deep to superficial cartilage zones) or "disorganized." Quantitative mean T2 values were calculated for deep, middle, and superficial cartilage at each location. Results were compared with histologic and PLM assessments by using kappa analysis. T2 maps were qualitatively graded as organized at 20 of 53 sites and as disorganized at 33 sites. Perfect agreement was seen between organized T2 and histologic findings of hyaline cartilage and between disorganized T2 and histologic findings of fibrous reparative tissue (kappa = 1.0). Strong agreement was seen between organized T2 and normal PLM findings and between disorganized T2 and abnormal PLM findings (kappa = .92). Quantitative assessment of the deep, middle, and superficial cartilage, respectively, showed mean T2 values of 53.3, 58.6, and 54.9 msec at reparative fibrous tissue sites and 40.7, 53.6, and 61.6 msec at hyaline cartilage sites. A significant trend of increasing T2 values (from deep to superficial) was found in hyaline cartilage (P < .01). Fibrous tissue sites had no significant change with depth (P > .59). Qualitative and quantitative T2 mapping helped differentiate hyaline cartilage from reparative fibrocartilage after cartilage repair at 1.5-T MR imaging.

  12. Gateways and Water Mass Mixing in the Late Cretaceous North Atlantic

    NASA Astrophysics Data System (ADS)

    Asgharian Rostami, M.; Martin, E. E.; MacLeod, K. G.; Poulsen, C. J.; Vande Guchte, A.; Haynes, S.

    2017-12-01

    Regions of intermediate/deep water formation and water-mass mixing in the North Atlantic are poorly defined for the Late Cretaceous, a time of gateway evolution and cooler conditions following the Mid Cretaceous greenhouse. Improved proxy data combined with modeling efforts are required to effectively evaluate the relationship between CO2, paleogeography, and circulation during this cooler interval. We analyzed and compiled latest Cretaceous (79 - 66 Ma) ɛNd and δ13C records from seven bathyal (paleodepths 0.2 - 2 km) and eight abyssal (paleodepths > 2 km) sites in the North Atlantic. Data suggest local downwelling of Northern Component Water (NCW; ɛNd -9.5 and δ13C 1.7 ‰) is the primary source of intermediate/deep water masses in the basin. As this water flows southward and ages, δ13C values decrease and ɛNd values increase; however, additional chemical changes at several sites require mixing with contributions from several additional water masses. Lower ɛNd ( -10) and higher δ13C ( 1.9 ‰) values in the deep NW part of the basin indicate proximal contributions from a region draining old continental crust, potentially representing deep convection following opening of the Labrador Sea. In the deep NE Iberian Basin, higher ɛNd ( -7) and lower δ13C ( 0.8 ‰) during the Campanian suggest mixing with a Tethyan source (ɛNd -7 and δ13C 0.1 ‰) whose importance decreased with restriction of that gateway in the Maastrichtian. Data from bathyal sites suggest additional mixing. In the SE Cape Verde region, observed ɛNd variations from -10 in the Campanian to -13 and -12 in the early and late Maastrichtian, respectively, may record variations in output rates of Tethyan and/or NCW sources and Demerara Bottom Water (ɛNd -16), a proposed warm saline intermediate water mass formed in shallow, equatorial seas. Pacific inflow through the Caribbean gateway impacts intermediate sites at Blake Nose (ɛNd values -8), particularly the shallowest site during the late Maastrichtian, although this influence is greatly reduced relative to the Mid Cretaceous. We compare our proxy-based interpretations of North Atlantic intermediate/deep water circulation with model simulations of the Late Cretaceous performed using NCAR CESM1.2 that test the sensitivity of circulation to changes in atmospheric CO2 and paleogeographic gateways.

  13. High intraspecific variability in the diet of a deep-sea nematode: Stable isotope and fatty acid analyses of Deontostoma tridentum on Chatham Rise, Southwest Pacific

    NASA Astrophysics Data System (ADS)

    Leduc, Daniel; Brown, Julie C. S.; Bury, Sarah J.; Lörz, Anne-Nina

    2015-03-01

    Small deep-sea organisms may exhibit a high degree of intraspecific variability in diet due to their ability to exploit a wide range of food sources and patchiness in food availability. Trophic interactions of small deep-sea benthic organisms, however, remain poorly understood. Here we describe spatial variation in diet/trophic level of the common deep-sea nematode Deontostoma tridentum on Chatham Rise, Southwest Pacific, using carbon and nitrogen stable isotope and fatty acid analyses. We also analysed sediment organic matter (SOM) and compared the isotopic composition of D. tridentum to other benthic and suprabenthic macrofaunal taxa with a variety of feeding modes. Variability in D. tridentum δ13C and δ15N signatures was high both among sites and within a single site on the southern flank of Chatham Rise. Among-site variation in SOM δ13C signatures was not sufficient to explain variation in nematode isotopic signatures. The presence of a positive correlation between δ13C and δ15N signatures of D. tridentum (both among and within sites) could suggest that differences in trophic level is the cause behind this variation. Nitrogen isotope data suggest the presence of 1-3 trophic levels in this species, which may reflect differences in prey availability, nematode body size, or habitat (benthic versus epizoic). Nematode δ15N values exceeded those of all other taxa we investigated, including other predators, but reasons for this enrichment remain unclear. The fatty acid composition of D. tridentum did not vary substantially between sites and was characterised by relatively high levels of 18:1n9 (15-20%) and polyunsaturated fatty acids (PUFAs; 22%). Although limited inferences can be made based on fatty acid composition due to the potential impacts of non-dietary factors, high levels of PUFAs indicate that D. tridentum represents a good source of these essential nutrients to higher trophic levels. In conclusion, our results show that (1) some deep-sea organisms exhibit a high degree of intraspecific variability in diet, and (2) nematodes may be an important source of PUFAs for larger animals in deep-sea environments, where the quality of SOM is low.

  14. LaaA, a novel high-active alkalophilic alpha-amylase from deep-sea bacterium Luteimonas abyssi XH031(T).

    PubMed

    Song, Qinghao; Wang, Yan; Yin, Chong; Zhang, Xiao-Hua

    2016-08-01

    Alpha-amylase is a kind of broadly used industrial enzymes, most of which have been exploited from terrestrial organism. Comparatively, alpha-amylase from marine environment was largely undeveloped. In this study, a novel alkalophilic alpha-amylase with high activity, Luteimonas abyssi alpha-amylase (LaaA), was cloned from deep-sea bacterium L. abyssi XH031(T) and expressed in Escherichia coli BL21. The gene has a length of 1428bp and encodes 475 amino acids with a 35-residue signal peptide. The specific activity of LaaA reached 8881U/mg at the optimum pH 9.0, which is obvious higher than other reported alpha-amylase. This enzyme can remain active at pH levels ranging from 6.0 to 11.0 and temperatures below 45°C, retaining high activity even at low temperatures (almost 38% residual activity at 10°C). In addition, 1mM Na(+), K(+), and Mn(2+) enhanced the activity of LaaA. To investigate the function of potential active sites, R227G, D229K, E256Q/H, H327V and D328V mutants were generated, and the results suggested that Arg227, Asp229, Glu256 and Asp328 were total conserved and essential for the activity of alpha-amylase LaaA. This study shows that the alpha-amylase LaaA is an alkali-tolerant and high-active amylase with strong potential for use in detergent industry. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett Shale formation.

    PubMed

    Fontenot, Brian E; Hunt, Laura R; Hildenbrand, Zacariah L; Carlton, Doug D; Oka, Hyppolite; Walton, Jayme L; Hopkins, Dan; Osorio, Alexandra; Bjorndal, Bryan; Hu, Qinhong H; Schug, Kevin A

    2013-09-03

    Natural gas has become a leading source of alternative energy with the advent of techniques to economically extract gas reserves from deep shale formations. Here, we present an assessment of private well water quality in aquifers overlying the Barnett Shale formation of North Texas. We evaluated samples from 100 private drinking water wells using analytical chemistry techniques. Analyses revealed that arsenic, selenium, strontium and total dissolved solids (TDS) exceeded the Environmental Protection Agency's Drinking Water Maximum Contaminant Limit (MCL) in some samples from private water wells located within 3 km of active natural gas wells. Lower levels of arsenic, selenium, strontium, and barium were detected at reference sites outside the Barnett Shale region as well as sites within the Barnett Shale region located more than 3 km from active natural gas wells. Methanol and ethanol were also detected in 29% of samples. Samples exceeding MCL levels were randomly distributed within areas of active natural gas extraction, and the spatial patterns in our data suggest that elevated constituent levels could be due to a variety of factors including mobilization of natural constituents, hydrogeochemical changes from lowering of the water table, or industrial accidents such as faulty gas well casings.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halliwell, Stephen

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concretemore » with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)« less

  17. The use of an optical method to evaluate prokaryotic oxygen consumption under high pressure condition

    NASA Astrophysics Data System (ADS)

    Garel, M.; Martini, S.; Lefèvre, D.; Tamburini, C.

    2016-02-01

    The heterotrophic prokaryotes are the main contributor to organic matter degradation in the ocean and particularly in the deep ocean. Nowadays, a classical way to evaluate the prokaryotic carbon demand (PCD) needs the estimation of both prokaryotic heterotrophic production (PHP) and prokaryotic respiration (PR). PHP measurements in deep-sea waters are relatively well documented and the importance of maintaining the in situ conditions (pressure and temperature) to avoid bias of the real deep-sea activities has been highlighted. However, no accurate methodology is available to measure directly, under in situ conditions (pressure and temperature) PR in the dark ocean. This study is presenting PR measurements under in situ conditions. High-pressure bottles have been adapted with a non-invasive sensor to measure prokaryotic oxygen consumption. The methodology is based on fluorescence quenching where molecular oxygen quenches the luminescence of planar-optode-oxygen sensor widely used in oceanography. Firstly, accuracy, detection limit, precision and response time of oxygen concentration measurements have been investigated in relation to an increase of hydrostatic pressure. Secondly, we will present experiments performed on natural prokaryotic consortium mixed with freshly collected particles to assess the O2 consumption in relation with increasing hydrostatic pressure (150 m depth per day). Finally, first results of coupled PHP and PR measurements at in situ conditions (temperature and pressure) from mesopelagic and bathypelagic samples of the Atlantic Ocean (PAP site), will be discussed. Finally, we will discuss first results of coupled PHP and PR measurements at in situ conditions (temperature and pressure) from Atlantic Ocean mesopelagic and bathypelagic samples (PAP site).

  18. Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey)

    PubMed Central

    Glombitza, Clemens; Stockhecke, Mona; Schubert, Carsten J.; Vetter, Alexandra; Kallmeyer, Jens

    2013-01-01

    As part of the International Continental Drilling Program deep lake drilling project PaleoVan, we investigated sulfate reduction (SR) in deep sediment cores of the saline, alkaline (salinity 21.4‰, alkalinity 155 m mEq-1, pH 9.81) Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB) and at Ahlat Ridge (AR) and reached a maximum depth of 220 m. Additionally, 65–75 cm long gravity cores were taken at both sites. SR rates (SRR) were low (≤22 nmol cm-3 day-1) compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. SR could be detected down to 19 mblf (meters below lake floor) at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM) concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM. We thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical, or chemical parameters over relatively short distances. PMID:23908647

  19. Shall We Inject Superficial or Deep to the Plantar Fascia? An Ultrasound Study of the Treatment of Chronic Plantar Fasciitis.

    PubMed

    Gurcay, Eda; Kara, Murat; Karaahmet, Ozgur Zeliha; Ata, Ayşe Merve; Onat, Şule Şahin; Özçakar, Levent

    We compared the effectiveness of ultrasound (US)-guided corticosteroid, injected superficial or deep to the fascia, in patients with plantar fasciitis. Thirty patients (24 females [75%] and 6 males [25%]) with unilateral chronic plantar fasciitis were divided into 2 groups according to the corticosteroid injection site: superficial (n = 15) or deep (n = 15) to the plantar fascia. Patient heel pain was measured using a Likert pain scale and the Foot Ankle Outcome Scale (FAOS) for foot disability, evaluated at baseline and repeated in the first and sixth weeks. The plantar fascia and heel pad thicknesses were assessed on US scans at baseline and the sixth week. The groups were similar in age, gender, and body mass index (p > .05 for all). Compared with the baseline values, the Likert pain scale (p < .001 for all) and FAOS subscale (p < .01 for all) scores had improved at the first and sixth week follow-up visits in both groups. Although the plantar fascia thickness had decreased significantly in both groups at the sixth week (p < .001 for both), the heel pad thickness remained unchanged (p > .05 for both). The difference in the FAOS subscales (pain, p = .002; activities of daily living, p = .003; sports/recreational activities, p = .008; quality of life, p = .009) and plantar fascia thickness (p = .049) showed better improvement in the deep than in the superficial injection group. US-guided corticosteroid injections are safe and effective in the short-term therapeutic outcome of chronic plantar fasciitis. Additionally, injection of corticosteroid deep to the fascia might result in greater reduction in plantar fascia thickness, pain, and disability and improved foot-related quality of life. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Holocene precipitation changes in the deep tropics recorded by Speleothems (Invited)

    NASA Astrophysics Data System (ADS)

    Wang, X.; Auler, A. S.; Edwards, R.; Kong, X.; Cheng, H.; Cruz, F. W.; Wang, Y.; Broecker, W. S.

    2010-12-01

    We have obtained a high-resolution oxygen isotope (δ18O) record of cave calcite from Paraiso Cave, eastern Amazon, which covers most of the Holocene. Its chronology was determined by U-Th ages from three column-shaped stalagmites. Their δ18O profiles replicate among their contemporaneous growth periods. Therefore, the samples were likely precipitated under equilibrium conditions and their oxygen isotopic variations are primarily caused by climate change. We find that the δ18O decreases steadily from ~11.0 to 5.0 thousand years ago, with a growth gap between ~8.4 to 6.3 thousand years ago, and then gradually increases until the present. The large amplitude of the δ18O change (up to 4 per mil) suggests that the variation in δ18O value is dominated by meteoric precipitation change at this equatorial site. In order to investigate the interactions between the Intertropical Convergence Zone (ITCZ), monsoons and El Niño-Southern Oscillation (ENSO) activity during the Holocene, we compare the Paraiso record to speleothem records from other locations in the deep tropics, namely, cave sites from Flores, Borneo and Peru. We find that all these speleothem records are consistent, with a progressive δ18O decrease (rainfall increase) during the early Holocene, probably in response to the southward retreat of the ITCZ from its northernmost location in the early Holocene. This is evident from the strong anti-correlation between the speleothem monsoonal records from China and southern Brazil. However, our record is distinct from the others during the last 4 thousand years, when it switches to a continuous δ18O increase (rainfall decrease) trend, while the others flatten out. We propose that, during the late Holocene, the strengthened South American Summer Monsoon may override the ENSO influence and cause the discrepancy in precipitation between eastern Amazon and other deep tropical cave sites.

  1. Responsible vendors, intelligent consumers: Silk Road, the online revolution in drug trading.

    PubMed

    Van Hout, Marie Claire; Bingham, Tim

    2014-03-01

    Silk Road is located on the Deep Web and provides an anonymous transacting infrastructure for the retail of drugs and pharmaceuticals. Members are attracted to the site due to protection of identity by screen pseudonyms, variety and quality of product listings, selection of vendors based on reviews, reduced personal risks, stealth of product delivery, development of personal connections with vendors in stealth modes and forum activity. The study aimed to explore vendor accounts of Silk Road as retail infrastructure. A single and holistic case study with embedded units approach (Yin, 2003) was chosen to explore the accounts of vendor subunits situated within the Silk Road marketplace. Vendors (n=10) completed an online interview via the direct message facility and via Tor mail. Vendors described themselves as 'intelligent and responsible' consumers of drugs. Decisions to commence vending operations on the site centred on simplicity in setting up vendor accounts, and opportunity to operate within a low risk, high traffic, high mark-up, secure and anonymous Deep Web infrastructure. The embedded online culture of harm reduction ethos appealed to them in terms of the responsible vending and use of personally tested high quality products. The professional approach to running their Silk Road businesses and dedication to providing a quality service was characterised by professional advertising of quality products, professional communication and visibility on forum pages, speedy dispatch of slightly overweight products, competitive pricing, good stealth techniques and efforts to avoid customer disputes. Vendors appeared content with a fairly constant buyer demand and described a relatively competitive market between small and big time market players. Concerns were evident with regard to Bitcoin instability. The greatest threat to Silk Road and other sites operating on the Deep Web is not law enforcement or market dynamics, it is technology itself. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Impact of dissolution on the sedimentary record of the Paleocene-Eocene thermal maximum

    NASA Astrophysics Data System (ADS)

    Bralower, Timothy J.; Kelly, D. Clay; Gibbs, Samantha; Farley, Kenneth; Eccles, Laurie; Lindemann, T. Logan; Smith, Gregory J.

    2014-09-01

    The input of massive amounts of carbon to the atmosphere and ocean at the Paleocene-Eocene Thermal Maximum (PETM; ˜55.53 Ma) resulted in pervasive carbonate dissolution at the seafloor. At many sites this dissolution also penetrated into the underlying sediment column. The magnitude of dissolution at and below the seafloor, a process known as chemical erosion, and its effect on the stratigraphy of the PETM, are notoriously difficult to constrain. Here, we illuminate the impact of dissolution by analyzing the complete spectrum of sedimentological grain sizes across the PETM at three deep-sea sites characterized by a range of bottom water dissolution intensity. We show that the grain size spectrum provides a measure of the sediment fraction lost during dissolution. We compare these data with dissolution and other proxy records, electron micrograph observations of samples and lithology. The complete data set indicates that the two sites with slower carbonate accumulation, and less active bioturbation, are characterized by significant chemical erosion. At the third site, higher carbonate accumulation rates, more active bioturbation, and possibly winnowing have limited the impacts of dissolution. However, grain size data suggest that bioturbation and winnowing were not sufficiently intense to diminish the fidelity of isotopic and microfossil assemblage records.

  3. Deep Sleep and Parietal Cortex Gene Expression Changes Are Related to Cognitive Deficits with Age

    PubMed Central

    Buechel, Heather M.; Popovic, Jelena; Searcy, James L.; Porter, Nada M.; Thibault, Olivier; Blalock, Eric M.

    2011-01-01

    Background Age-related cognitive deficits negatively affect quality of life and can presage serious neurodegenerative disorders. Despite sleep disruption's well-recognized negative influence on cognition, and its prevalence with age, surprisingly few studies have tested sleep's relationship to cognitive aging. Methodology We measured sleep stages in young adult and aged F344 rats during inactive (enhanced sleep) and active (enhanced wake) periods. Animals were behaviorally characterized on the Morris water maze and gene expression profiles of their parietal cortices were taken. Principal Findings Water maze performance was impaired, and inactive period deep sleep was decreased with age. However, increased deep sleep during the active period was most strongly correlated to maze performance. Transcriptional profiles were strongly associated with behavior and age, and were validated against prior studies. Bioinformatic analysis revealed increased translation and decreased myelin/neuronal pathways. Conclusions The F344 rat appears to serve as a reasonable model for some common sleep architecture and cognitive changes seen with age in humans, including the cognitively disrupting influence of active period deep sleep. Microarray analysis suggests that the processes engaged by this sleep are consistent with its function. Thus, active period deep sleep appears temporally misaligned but mechanistically intact, leading to the following: first, aged brain tissue appears capable of generating the slow waves necessary for deep sleep, albeit at a weaker intensity than in young. Second, this activity, presented during the active period, seems disruptive rather than beneficial to cognition. Third, this active period deep sleep may be a cognitively pathologic attempt to recover age-related loss of inactive period deep sleep. Finally, therapeutic strategies aimed at reducing active period deep sleep (e.g., by promoting active period wakefulness and/or inactive period deep sleep) may be highly relevant to cognitive function in the aging community. PMID:21483696

  4. Deepest and hottest hydrothermal activity in the Okinawa Trough: the Yokosuka site at Yaeyama Knoll

    PubMed Central

    Miyazaki, Junichi; Kawagucci, Shinsuke; Makabe, Akiko; Takahashi, Ayu; Kitada, Kazuya; Torimoto, Junji; Matsui, Yohei; Tasumi, Eiji; Shibuya, Takazo; Nakamura, Kentaro; Horai, Shunsuke; Sato, Shun; Ishibashi, Jun-ichiro; Kanzaki, Hayato; Nakagawa, Satoshi; Hirai, Miho; Takaki, Yoshihiro; Okino, Kyoko; Watanabe, Hiromi Kayama; Kumagai, Hidenori

    2017-01-01

    Since the initial discovery of hydrothermal vents in 1977, these ‘extreme’ chemosynthetic systems have been a focus of interdisciplinary research. The Okinawa Trough (OT), located in the semi-enclosed East China Sea between the Eurasian continent and the Ryukyu arc, hosts more than 20 known vent sites but all within a relatively narrow depth range (600–1880 m). Depth is a significant factor in determining fluid temperature and chemistry, as well as biological composition. However, due to the narrow depth range of known sites, the actual influence of depth here has been poorly resolved. Here, the Yokosuka site (2190 m), the first OT vent exceeding 2000 m depth is reported. A highly active hydrothermal vent site centred around four active vent chimneys reaching 364°C in temperature, it is the hottest in the OT. Notable Cl depletion (130 mM) and both high H2 and CH4 concentrations (approx. 10 mM) probably result from subcritical phase separation and thermal decomposition of sedimentary organic matter. Microbiota and fauna were generally similar to other sites in the OT, although with some different characteristics. In terms of microbiota, the H2-rich vent fluids in Neuschwanstein chimney resulted in the dominance of hydrogenotrophic chemolithoautotrophs such as Thioreductor and Desulfobacterium. For fauna, the dominance of the deep-sea mussel Bathymodiolus aduloides is surprising given other nearby vent sites are usually dominated by B. platifrons and/or B. japonicus, and a sponge field in the periphery dominated by Poecilosclerida is unusual for OT vents. Our insights from the Yokosuka site implies that although the distribution of animal species may be linked to depth, the constraint is perhaps not water pressure and resulting chemical properties of the vent fluid but instead physical properties of the surrounding seawater. The potential significance of these preliminary results and prospect for future research on this unique site are discussed. PMID:29308272

  5. Deepest and hottest hydrothermal activity in the Okinawa Trough: the Yokosuka site at Yaeyama Knoll

    NASA Astrophysics Data System (ADS)

    Miyazaki, Junichi; Kawagucci, Shinsuke; Makabe, Akiko; Takahashi, Ayu; Kitada, Kazuya; Torimoto, Junji; Matsui, Yohei; Tasumi, Eiji; Shibuya, Takazo; Nakamura, Kentaro; Horai, Shunsuke; Sato, Shun; Ishibashi, Jun-ichiro; Kanzaki, Hayato; Nakagawa, Satoshi; Hirai, Miho; Takaki, Yoshihiro; Okino, Kyoko; Watanabe, Hiromi Kayama; Kumagai, Hidenori; Chen, Chong

    2017-12-01

    Since the initial discovery of hydrothermal vents in 1977, these `extreme' chemosynthetic systems have been a focus of interdisciplinary research. The Okinawa Trough (OT), located in the semi-enclosed East China Sea between the Eurasian continent and the Ryukyu arc, hosts more than 20 known vent sites but all within a relatively narrow depth range (600-1880 m). Depth is a significant factor in determining fluid temperature and chemistry, as well as biological composition. However, due to the narrow depth range of known sites, the actual influence of depth here has been poorly resolved. Here, the Yokosuka site (2190 m), the first OT vent exceeding 2000 m depth is reported. A highly active hydrothermal vent site centred around four active vent chimneys reaching 364°C in temperature, it is the hottest in the OT. Notable Cl depletion (130 mM) and both high H2 and CH4 concentrations (approx. 10 mM) probably result from subcritical phase separation and thermal decomposition of sedimentary organic matter. Microbiota and fauna were generally similar to other sites in the OT, although with some different characteristics. In terms of microbiota, the H2-rich vent fluids in Neuschwanstein chimney resulted in the dominance of hydrogenotrophic chemolithoautotrophs such as Thioreductor and Desulfobacterium. For fauna, the dominance of the deep-sea mussel Bathymodiolus aduloides is surprising given other nearby vent sites are usually dominated by B. platifrons and/or B. japonicus, and a sponge field in the periphery dominated by Poecilosclerida is unusual for OT vents. Our insights from the Yokosuka site implies that although the distribution of animal species may be linked to depth, the constraint is perhaps not water pressure and resulting chemical properties of the vent fluid but instead physical properties of the surrounding seawater. The potential significance of these preliminary results and prospect for future research on this unique site are discussed.

  6. Crystal structure of the glycosidase family 73 peptidoglycan hydrolase FlgJ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Wataru; Ochiai, Akihito; Momma, Keiko

    Glycoside hydrolase (GH) categorized into family 73 plays an important role in degrading bacterial cell wall peptidoglycan. The flagellar protein FlgJ contains N- and C-terminal domains responsible for flagellar rod assembly and peptidoglycan hydrolysis, respectively. A member of family GH-73, the C-terminal domain (SPH1045-C) of FlgJ from Sphingomonas sp. strain A1 was expressed in Escherichia coli, purified, and characterized. SPH1045-C exhibited bacterial cell lytic activity most efficiently at pH 6.0 and 37 deg. C. The X-ray crystallographic structure of SPH1045-C was determined at 1.74 A resolution by single-wavelength anomalous diffraction. The enzyme consists of two lobes, {alpha} and {beta}. Amore » deep cleft located between the two lobes can accommodate polymer molecules, suggesting that the active site is located in the cleft. Although SPH1045-C shows a structural homology with family GH-22 and GH-23 lysozymes, the arrangement of the nucleophile/base residue in the active site is specific to each peptidoglycan hydrolase.« less

  7. Deep sea corals and carbonate mounds of the nw european margin: a biogeochemical perspective

    NASA Astrophysics Data System (ADS)

    Kiriakoulakis, K.; White, M.; Bett, B.; Wolff, G. A.

    2003-04-01

    The deep-sea, scleractinian, reef-forming coral Lophelia pertusa is widespread along the NW European Continental Margin and its presence has been documented since the 19th century. However little is known about its ecology, biochemistry and particularly its relationship with the carbonate mounds it is often associated with. The characterisation of particulate organic matter (POM), which fuels the Lophelia pertusa ecosystems and the sediments on and around the coral/mound sites, may potentially shed light on the biogeochemical processes of the deep water coral (DWC) ecosystems. In this study, POM (20--40 m above bottom) and sediments have been collected from five mound/coral sites along the European Continental Slope (water depth ˜500--1000 m) with distinct oceanographic and sedimentological conditions, (Darwin, Logachev, Pelagia, Hovland and Belgica Mounds located around the Rockall Trough and Porcupine Seabight). Coral densities and mound sizes, shapes and conditions vary significantly from site to site. POM at these sites are significantly different, particularly with respect to the lipid concentrations relative to organic carbon, which are much higher at the Darwin Mounds (N.Rockall Trough; ˜1000m depth) than the rest of the sites (46.63 -- 225.11 mg g-1 and 0.49 -- 14.21 mg g-1 respectively). Polyunsaturated fatty acids (PUFAs), which are used as proxies of labile organic matter are also abundant at the Darwin Mounds, indicating that POM is 'fresh'. Scanning electron microscopy carried out on filtered material from this area confirms this. These mounds are affected by a branch of the poleward slope current, which, in combination with enhanced Ekman downwelling, could transport appreciable amounts of high quality organic matter to the depth that they are found. Lipid (including PUFAs) concentrations at the Pelagia Mounds (SE Rockall Trough; ˜700 m) although lower than at the Darwin Mounds are higher than at the other sites. This location is also influenced by a poleward slope current. In contrast, at the Logachev (S.Rockall Bank; ˜500--700 m), Hovland (N.Porcupine Seabight; ˜600--900 m) and Belgica (S. Porcupine Seabight; ˜700--900 m) Mounds the combination of tidal, and backwater geostrophic bottom currents probably results in entrapment and/or recirculation of organic material, with important consequences on its lability/freshness. Initial results on the sediments from four of the above sites show a significant correlation (R^2 = 0.87) between sedimentary total organic carbon (TOC) and carbonate content (0--10 cm depth integrated values). This may indicate a direct relationship between carbonate and organic matter, perhaps via microbial activity, which is often suggested as the main driving force for mound genesis.

  8. Water movement through thick unsaturated zones overlying the central High Plains aquifer, southwestern Kansas, 2000-2001

    USGS Publications Warehouse

    McMahon, Peter B.; Dennehy, K.F.; Michel, R.L.; Sophocleous, M.A.; Ellett, K.M.; Hurlbut, D.B.

    2003-01-01

    The role of irrigation as a driving force for water and chemical movement to the central High Plains aquifer is uncertain because of the thick unsaturated zone overlying the aquifer. Water potentials and profiles of tritium, chloride, nitrate, and pesticide concentrations were used to evaluate water movement through thick unsaturated zones overlying the central High Plains aquifer at three sites in southwestern Kansas. One site was located in rangeland and two sites were located in areas dominated by irrigated agriculture. In 2000?2001, the depth to water at the rangeland site was 50 meters and the depth to water at the irrigated sites was about 45.4 meters. Irrigation at the study sites began in 1955?56. Measurements of matric potential and volumetric water content indicate wetter conditions existed in the deep unsaturated zone at the irrigated sites than at the rangeland site. Total water potentials in the unsaturated zone at the irrigated sites systematically decreased with depth to the water table, indicating a potential existed for downward water movement from the unsaturated zone to the water table at those sites. At the rangeland site, total water potentials in the deep unsaturated zone indicate small or no potential existed for downward water movement to the water table. Postbomb tritium was not detected below a depth of 1.9 meters in the unsaturated zone or in ground water at the rangeland site. In contrast, postbomb tritium was detected throughout most of the unsaturated zone and in ground water at both irrigated sites. These results indicate post-1953 water moved deeper in the unsaturated zone at the irrigated sites than at the rangeland site. The depth of the interface between prebomb and postbomb tritium and a tritium mass-balance method were used to estimate water fluxes in the unsaturated zone at each site. The average water fluxes at the rangeland site were 5.4 and 4.4 millimeters per year for the two methods, which are similar to the average water flux (5.1 millimeters per year) estimated using a chloride mass-balance method. Tritium profiles in the unsaturated zone at the irrigated sites were complicated by the presence of tritium-depleted intervals separating upper and lower zones containing postbomb tritium. If the interface between prebomb and postbomb tritium was at the top of the tritium-depleted interval and postbomb tritium detected beneath that interval was from the declining water table in the area, then the average water flux at the irrigated sites was estimated to be 21 to 54 millimeters per year. If postbomb tritium detected beneath the tritium-depleted interval was from bypass or preferential water movement through the local unsaturated zone instead of the declining water table, then the minimum water flux at the irrigated sites was estimated to be 106 to 116 millimeters per year. In either case, water fluxes at the irrigated sites were at least 4 to 12 times larger than the flux at the rangeland site, indicating irrigation was an important driving force for water movement through the unsaturated zone. The presence of postbomb tritium and large nitrate and total pesticide concentrations (24 milligrams per liter as nitrogen and 0.923 microgram per liter, respectively) in ground water at the irrigated sites indicates irrigation water also was an important driving force for chemical movement to the water table. The persistence of a downward hydraulic gradient from the deep unsaturated zone to the water table at the irrigated sites, in addition to large nitrate and atrazine concentrations in deep soil water (34 milligrams per liter as nitrogen and 0.79 microgram per liter, respectively), indicate that the deep unsaturated zone will be a source of nitrate and atrazine to the aquifer in the future.

  9. Earthquake prediction using extinct monogenetic volcanoes: A possible new research strategy

    NASA Astrophysics Data System (ADS)

    Szakács, Alexandru

    2011-04-01

    Volcanoes are extremely effective transmitters of matter, energy and information from the deep Earth towards its surface. Their capacities as information carriers are far to be fully exploited so far. Volcanic conduits can be viewed in general as rod-like or sheet-like vertical features with relatively homogenous composition and structure crosscutting geological structures of far more complexity and compositional heterogeneity. Information-carrying signals such as earthquake precursor signals originating deep below the Earth surface are transmitted with much less loss of information through homogenous vertically extended structures than through the horizontally segmented heterogeneous lithosphere or crust. Volcanic conduits can thus be viewed as upside-down "antennas" or waveguides which can be used as privileged pathways of any possible earthquake precursor signal. In particular, conduits of monogenetic volcanoes are promising transmitters of deep Earth information to be received and decoded at surface monitoring stations because the expected more homogenous nature of their rock-fill as compared to polygenetic volcanoes. Among monogenetic volcanoes those with dominantly effusive activity appear as the best candidates for privileged earthquake monitoring sites. In more details, effusive monogenetic volcanic conduits filled with rocks of primitive parental magma composition indicating direct ascent from sub-lithospheric magma-generating areas are the most suitable. Further selection criteria may include age of the volcanism considered and the presence of mantle xenoliths in surface volcanic products indicating direct and straightforward link between the deep lithospheric mantle and surface through the conduit. Innovative earthquake prediction research strategies can be based and developed on these grounds by considering conduits of selected extinct monogenetic volcanoes and deep trans-crustal fractures as privileged emplacement sites of seismic monitoring stations using an assemblage of physical, chemical and biological sensors devised to detect precursory signals. Earthquake prediction systems can be built up based on the concept of a signal emission-transmission-reception system, in which volcanic conduits and/or deep fractures play the role of the most effective signal transmission paths through the lithosphere. Unique "precursory fingerprints" of individual seismic structures are expected to be pointed out as an outcome of target-oriented strategic prediction research. Intelligent pattern-recognition systems are to be included for evaluation of the signal assemblages recorded by complex sensor arrays. Such strategies are expected however to be limited to intermediate-depth and deep seismic structures. Due to its particular features and geotectonic setting, the Vrancea seismic structure in Romania appears to be an excellent experimental target for prediction research.

  10. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds.

    PubMed

    Trembath-Reichert, Elizabeth; Morono, Yuki; Ijiri, Akira; Hoshino, Tatsuhiko; Dawson, Katherine S; Inagaki, Fumio; Orphan, Victoria J

    2017-10-31

    The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be "hot spots" for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13 C- or 15 N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50-2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell-targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates.

  11. PdBI cold dust imaging of two extremely red H – [4.5] > 4 galaxies discovered with SEDS and CANDELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caputi, K. I.; Popping, G.; Spaans, M.

    2014-06-20

    We report Plateau de Bure Interferometer (PdBI) 1.1 mm continuum imaging toward two extremely red H – [4.5] > 4 (AB) galaxies at z > 3, which we have previously discovered making use of Spitzer SEDS and Hubble Space Telescope CANDELS ultra-deep images of the Ultra Deep Survey field. One of our objects is detected on the PdBI map with a 4.3σ significance, corresponding to S{sub ν}(1.1 mm)=0.78±0.18 mJy. By combining this detection with the Spitzer 8 and 24 μm photometry for this source, and SCUBA2 flux density upper limits, we infer that this galaxy is a composite active galacticmore » nucleus/star-forming system. The infrared (IR)-derived star formation rate is SFR ≈ 200 ± 100 M {sub ☉} yr{sup –1}, which implies that this galaxy is a higher-redshift analogue of the ordinary ultra-luminous infrared galaxies more commonly found at z ∼ 2-3. In the field of the other target, we find a tentative 3.1σ detection on the PdBI 1.1 mm map, but 3.7 arcsec away of our target position, so it likely corresponds to a different object. In spite of the lower significance, the PdBI detection is supported by a close SCUBA2 3.3σ detection. No counterpart is found on either the deep SEDS or CANDELS maps, so, if real, the PdBI source could be similar in nature to the submillimeter source GN10. We conclude that the analysis of ultra-deep near- and mid-IR images offers an efficient, alternative route to discover new sites of powerful star formation activity at high redshifts.« less

  12. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds

    PubMed Central

    Trembath-Reichert, Elizabeth; Morono, Yuki; Ijiri, Akira; Hoshino, Tatsuhiko; Dawson, Katherine S.; Inagaki, Fumio

    2017-01-01

    The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be “hot spots” for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13C- or 15N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50–2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell–targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates. PMID:29078310

  13. Long-lived groupers require structurally stable reefs in the face of repeated climate change disturbances

    NASA Astrophysics Data System (ADS)

    Karkarey, R.; Kelkar, N.; Lobo, A. Savio; Alcoverro, T.; Arthur, R.

    2014-06-01

    Benthic recovery from climate-related disturbances does not always warrant a commensurate functional recovery for reef-associated fish communities. Here, we examine the distribution of benthic groupers (family Serranidae) in coral reef communities from the Lakshadweep archipelago (Arabian Sea) in response to structural complexity and long-term habitat stability. These coral reefs that have been subject to two major El Niño Southern Oscillation-related coral bleaching events in the last decades (1998 and 2010). First, we employ a long-term (12-yr) benthic-monitoring dataset to track habitat structural stability at twelve reef sites in the archipelago. Structural stability of reefs was strongly driven by exposure to monsoon storms and depth, which made deeper and more sheltered reefs on the eastern aspect more stable than the more exposed (western) and shallower reefs. We surveyed groupers (species richness, abundance, biomass) in 60 sites across the entire archipelago, representing both exposures and depths. Sites were selected along a gradient of structural complexity from very low to high. Grouper biomass appeared to vary with habitat stability with significant differences between depth and exposure; sheltered deep reefs had a higher grouper biomass than either sheltered shallow or exposed (deep and shallow) reefs. Species richness and abundance showed similar (though not significant) trends. More interestingly, average grouper biomass increased exponentially with structural complexity, but only at the sheltered deep (high stability) sites, despite the availability of recovered structure at exposed deep and shallow sites (lower-stability sites). This trend was especially pronounced for long-lived groupers (life span >10 yrs). These results suggest that long-lived groupers may prefer temporally stable reefs, independent of the local availability of habitat structure. In reefs subject to repeated disturbances, the presence of structurally stable reefs may be critical as refuges for functionally important, long-lived species like groupers.

  14. CO2 dynamics in the Amargosa Desert: Fluxes and isotopic speciation in a deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Striegl, Robert G.; Prudic, David E.; Stonestrom, David A.

    2005-01-01

    Natural unsaturated-zone gas profiles at the U.S. Geological Survey's Amargosa Desert Research Site, near Beatty, Nevada, reveal the presence of two physically and isotopically distinct CO2 sources, one shallow and one deep. The shallow source derives from seasonally variable autotrophic and heterotrophic respiration in the root zone. Scanning electron micrograph results indicate that at least part of the deep CO2 source is associated with calcite precipitation at the 110-m-deep water table. We use a geochemical gas-diffusion model to explore processes of CO2 production and behavior in the unsaturated zone. The individual isotopic species 12CO2, 13CO2, and 14CO2 are treated as separate chemical components that diffuse and react independently. Steady state model solutions, constrained by the measured δ13C (in CO2), and δ14C (in CO2) profiles, indicate that the shallow CO2 source from root and microbial respiration composes ∼97% of the annual average total CO2 production at this arid site. Despite the small contribution from deep CO2 production amounting to ∼0.1 mol m−2 yr−1, upward diffusion from depth strongly influences the distribution of CO2 and carbon isotopes in the deep unsaturated zone. In addition to diffusion from deep CO2 production, 14C exchange with a sorbed CO2 phase is indicated by the modeled δ14C profiles, confirming previous work. The new model of carbon-isotopic profiles provides a quantitative approach for evaluating fluxes of carbon under natural conditions in deep unsaturated zones.

  15. Sedimentary and Paleoceanographic Responses to the South China Sea Basin Evolution

    NASA Astrophysics Data System (ADS)

    Jian, Z.; Liu, Z.; Jin, H.; Larsen, H. C.; Alvarez Zarikian, C. A.; Stock, J. M.; Sun, Z.; Klaus, A.

    2017-12-01

    As the largest marginal sea of the western Pacific, the South China Sea (SCS) has experienced a complete Wilson cycle, which had inevitably exerted a profound impact on the sedimentary environment and ocean circulation. Based on the results of four ODP/IODP expeditions to the SCS since 1999, together with other research data in this region, this study aims to explore the sedimentary and paleoceanographic responses to the tectonic events and basin evolution in the SCS. The early history of the SCS from land to deep sea was revealed by foraminiferal fauna: (1) The SCS evolved from continental shelf to an upper bathyal environment around the Oligocene/Eocene boundary, and significantly deepened at the turn of Oligocene/Miocene; (2) The early Oligocene SCS was deep but its shelf was narrow, evidenced by the Para-Tethys type deep-sea agglutinated benthic foraminifers and abundant transported shallow-water species at ODP Site 1148. Along with the SCS basin formation and the development of this semi-closed basin, the deep-sea benthic foraminiferal δ13C decreased when the Antarctic ice sheet began to reestablish at 14 Ma, the Indonesian Seaway and the southern SCS deep-water channel were closed at 10 Ma, the Luzon arc collided with Taiwan at 6.5 Ma, and the Bashi Strait was restricted at 1.2 Ma. Nd isotopes of shark teeth at ODP Site 1148 also support these inferences. An early to middle Miocene succession of red clay was found at all sites deeper than 3500 m water depth, which may be correlated to a basin-wide event related to deep circulation of oxygenated water from the western Pacific. After the earliest late Miocene carbonate crash, the red clay disappeared while the large carbonate platforms were drowned and remarkably shrank in the SCS. Late Miocene sediments display a succession of hemi-pelagic and turbidite deposits, indicating that the deep basin entered its modern state below the CCD. Frequent turbidites ended when Pliocene growth of deep-sea manganese-nodules reoccurred in the SCS. The data show that the SCS can serve as a natural laboratory to study the relationship between paleoceanographic changes and tectonic events.

  16. Effects of deep breathing on internal oblique and multifidus muscle activity in three sitting postures

    PubMed Central

    Ko, Min-Joo; Jung, Eun-Joo; Kim, Moon-Hwan; Oh, Jae-Seop

    2018-01-01

    [Purpose] This study was to investigate differences in the level of activity of the external oblique (EO), internal oblique (IO), and multifidus (MF) muscles with deep breathing in three sitting postures. [Subjects and Methods] Sixteen healthy women were recruited. The muscle activity (EO, IO, MF) of all subjects was measured in three sitting postures (slumped, thoracic upright, and lumbo-pelvic upright sitting postures) using surface electromyography. The activity of the same muscles was then remeasured in the three sitting postures during deep breathing. [Results] Deep breathing significantly increased activity in the EO, IO, and MF compared with normal breathing. Comparing postures, the activity of the MF and IO muscles was highest in the lumbo-pelvic upright sitting posture. [Conclusion] An lumbo-pelvic upright sitting posture with deep breathing could increase IO and MF muscle activity, thus improving lumbo-pelvic region stability. PMID:29706695

  17. 50 CFR 679.21 - Prohibited species bycatch management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Region Web site (http://alaskafisheries.noaa.gov/). (c) Salmon taken in the BS pollock fisheries... GOA groundfish species or species group. (B) Deep-water species fishery. Fishing with trawl gear... combine management of available trawl halibut PSC limits in the second season deep-water and shallow-water...

  18. Submersible observations along the southern Juan de Fuca Ridge: 1984 Alvin program.

    USGS Publications Warehouse

    Normark, William R.; Morton, Janet L.; Ross, Stephanie L.

    1987-01-01

    In September 1984, the research submersible Alvin provided direct observations of three major hydrothermal vent areas along the southernmost segment of the Juan de Fuca Ridge (JFR). The submersible operations focused on specific volcanologie, structural, and hydrothermal problems that had been identified during the preceding 4 years of photographic, dredging, acoustic imaging, and geophysical studies along a 12-km-long section of the ridge. A continuously maintained (from 1981 to the present) net of seafloor-anchored acoustic transponders allowed the observations from Alvin to be directly tied to all previous U.S. Geological Survey data sets and National Oceanic and Atmospheric Administration water column surveys from 1984 to the present. The three vent areas studied are the largest of at least six areas identified by previous deep-towed camera surveys that lie within a deep cleft, which marks the axis of symmetry of the JFR in this region. The cleft appears to be the locus of eruption for this segment of the JFR. The vent areas, at least in part, are localized near what appear to be previous volcanic eruptive centers marked by extensive lava lake collapse features adjacent to the cleft at these sites. Each hydrothermal area has several active discharge sites, and sulfide deposits occur as clusters (15–100 m2) of small chimneys, individual large chimneys, or clusters of large branched chimneys. We review the dive program and present a brief synthesis of the geology of the vent sites together with sample and track line compilations.

  19. Greenland deep boreholes inform on sliding and deformation of the basal ice

    NASA Astrophysics Data System (ADS)

    Dahl-Jensen, D.

    2017-12-01

    Repeated measurements of the deformation of the deep boreholes on the Greenland ice sheet informs on the basal sliding, near basal deformation and in general on the horizontal velocity through the ice. Results of the logging of the boreholes at Dye3, GRIP, NGRIP, NEEM and Camp Century through the last 40 years by the Danish Ice and Climate group will be presented and discussed. The results on the flow will be compared with the information on ice properties, impurity load and bedrock entrained material from the deep ice cores and the radio echo sounding images near the drill sites.The results show that the basal movement often happens in an impurity rich zone above the bedrock while pure basal sliding is limited even in the presence of basal water and significant basal melt.Most of the deep ice core sites are located close to ice divides where the surface velocity is limited so significant basal sliding is not expected. Exceptions are the surface velocities at Camp Century and Dye 3, both being 13 m/yr.Finally, the ongoing deep drilling at EGRIP will shortly be presented where we are drilling in the center of the North East Greenland Ice Stream (NEGIS).

  20. Deep Shear Wave Velocity of Southern Bangkok and Vicinity

    NASA Astrophysics Data System (ADS)

    Wongpanit, T.; Hayashi, K.; Pananont, P.

    2017-09-01

    Bangkok is located on the soft marine clay in the Lower Chao Phraya Basin which can amplify seismic wave and can affect the shaking of buildings during an earthquake. Deep shear wave velocity of the sediment in the basin are useful for study the effect of the soft sediment on the seismic wave and can be used for earthquake engineering design and ground shaking estimation, especially for a deep basin. This study aims to measure deep shear wave velocity and create 2D shear wave velocity profile down to a bedrock in the southern Bangkok by the Microtremor measurements with 2 seismographs using Spatial Autocorrelation (2-SPAC) technique. The data was collected during a day time on linear array geometry with offsets varying between 5-2,000 m. Low frequency of natural tremor (0.2-0.6 Hz) was detected at many sites, however, very deep shear wave data at many sites are ambiguous due to man-made vibration noises in the city. The results show that shear wave velocity of the sediment in the southern Bangkok is between 100-2,000 ms-1 and indicate that the bedrock depth is about 600-800 m, except at Bang Krachao where bedrock depth is unclear.

  1. Changes in North Atlantic deep-sea temperature during climatic fluctuations of the last 25,000 years based on ostracode Mg/Ca ratios

    USGS Publications Warehouse

    Dwyer, Gary S.; Cronin, Thomas M.; Baker, Paul A.; Rodriguez-Lazaro, Julio

    2000-01-01

    We reconstructed three time series of last glacial-to-present deep-sea temperature from deep and intermediate water sediment cores from the western North Atlantic using Mg/Ca ratios of benthic ostracode shells. Although the Mg/Ca data show considerable variability (“scatter”) that is common to single-shell chemical analyses, comparisons between cores, between core top shells and modern bottom water temperatures (BWT), and comparison to other paleo-BWT proxies, among other factors, suggest that multiple-shell average Mg/Ca ratios provide reliable estimates of BWT history at these sites. The BWT records show not only glacial-to-interglacial variations but also indicate BWT changes during the deglacial and within the Holocene interglacial stage. At the deeper sites (4500- and 3400-m water depth), BWT decreased during the last glacial maximum (LGM), the late Holocene, and possibly during the Younger Dryas. Maximum deep-sea warming occurred during the latest deglacial and early Holocene, when BWT exceeded modern values by as much as 2.5°C. This warming was apparently most intense around 3000 m, the depth of the modern-day core of North Atlantic deep water (NADW). The BWT variations at the deeper water sites are consistent with changes in thermohaline circulation: warmer BWT signifies enhanced NADW influence relative to Antarctic bottom water (AABW). Thus maximum NADW production and associated heat flux likely occurred during the early Holocene and decreased abruptly around 6500 years B.P., a finding that is largely consistent with paleonutrient studies in the deep North Atlantic. BWT changes in intermediate waters (1000-m water depth) of the subtropical gyre roughly parallel the deep BWT variations including dramatic mid-Holocene cooling of around 4°C. Joint consideration of the Mg/Ca-based BWT estimates and benthic oxygen isotopes suggests that the cooling was accompanied by a decrease in salinity at this site. Subsequently, intermediate waters warmed to modern values that match those of the early Holocene maximum of ∼7°C. Intermediate water BWT changes must also be driven by changes in ocean circulation. These results thus provide independent evidence that supports the hypothesis that deep-ocean circulation is closely linked to climate change over a range of timescales regardless of the mean climate state. More generally, the results further demonstrate the potential of benthic Mg/Ca ratios as a tool for reconstructing past ocean and climate conditions.

  2. NEMO: Status of the Project

    NASA Astrophysics Data System (ADS)

    Migneco, E.; Aiello, S.; Amato, E.; Ambriola, M.; Ameli, F.; Andronico, G.; Anghinolfi, M.; Battaglieri, M.; Bellotti, R.; Bersani, A.; Boldrin, A.; Bonori, M.; Cafagna, F.; Capone, A.; Caponnetto, L.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; D'Amico, V.; De Marzo, C.; De Vita, R.; Distefano, C.; Gabrielli, A.; Gandolfi, E.; Grimaldi, A.; Habel, R.; Italiano, A.; Leonardi, M.; Lo Nigro, L.; Lo Presti, D.; Margiotta, A.; Martini, A.; Masetti, M.; Masullo, R.; Montaruli, T.; Mosetti, R.; Musumeci, M.; Nicolau, C. A.; Occhipinti, R.; Papaleo, R.; Petta, C.; Piattelli, P.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Romita, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, M.; Sapienza, P.; Schuller, J. P.; Sedita, M.; Sokalski, I.; Spurio, M.; Taiuti, M.; Trasatti, L.; Ursella, L.; Valente, V.; Vicini, P.; Zanarini, G.

    2004-11-01

    The activities towards the realisation of a km3 Cherenkov neutrino detector, carried out by the NEMO Collaboration are described. Long term exploration of a 3500 m deep site close to the Sicilian coast has shown that it is optimal for the installation of the detector. A complete feasibility study, that has considered all the components of the detector as well as its deployment, has been carried out demonstrating that technological solutions exist for the realization of an underwater km3 detector. The realization of a technological demonstrator (the NEMO Phase 1 project) is under way.

  3. Discovery and Characterization of Cold Seep Vents Using a Mass Spectrometer Operating aboard an Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Camilli, R.; Macelloni, L.; Asper, V.; Woolsey, M.; Williams, J.; Diercks, A.; Lutken, C. B.; Sleeper, K.

    2009-12-01

    A chemical and bathymetric survey was conducted in June 2009 at a known gas hydrate site approximately 900 meters deep in the Gulf of Mexico Mississippi Canyon 118 block. This survey used the EagleRay autonomous underwater vehicle equipped with a TETHYS in-situ mass spectrometer and EM 2000 multibeam sonar. Results indicate previously unobserved active sea floor methane seeps that correlate with bathymetric depressions and a geologic fault. These data suggest linkage of the methane cold seeps to an underlying thermogenic hydrocarbon reservoir.

  4. Site Transfer Functions of Three-Component Ground Motion in Western Turkey

    NASA Astrophysics Data System (ADS)

    Ozgur Kurtulmus, Tevfik; Akyol, Nihal; Camyildiz, Murat; Gungor, Talip

    2015-04-01

    Because of high seismicity accommodating crustal deformation and deep graben structures, on which have, urbanized and industrialized large cities in western Turkey, the importance of site-specific seismic hazard assessments becomes more crucial. Characterizing source, site and path effects is important for both assessing the seismic hazard in a specific region and generation of the building codes/or renewing previous ones. In this study, we evaluated three-component recordings for micro- and moderate-size earthquakes with local magnitudes ranging between 2.0 and 5.6. This dataset is used for site transfer function estimations, utilizing two different spectral ratio approaches 'Standard Spectral Ratio-(SSR)' and 'Horizontal to Vertical Spectral Ratio-(HVSR)' and a 'Generalized Inversion Technique-(GIT)' to highlight site-specific seismic hazard potential of deep basin structures of the region. Obtained transfer functions revealed that the sites located near the basin edges are characterized by broader HVSR curves. Broad HVSR peaks could be attributed to the complexity of wave propagation related to significant 2D/3D velocity variations at the sediment-bedrock interface near the basin edges. Comparison of HVSR and SSR estimates for the sites located on the grabens showed that SSR estimates give larger values at lower frequencies which could be attributed to lateral variations in regional velocity and attenuation values caused by basin geometry and edge effects. However, large amplitude values of vertical component GIT site transfer functions were observed at varying frequency ranges for some of the stations. These results imply that vertical component of ground motion is not amplification free. Contamination of HVSR site transfer function estimates at different frequency bands could be related to complexities in the wave field caused by deep or shallow heterogeneities in the region such as differences in the basin geometries, fracturing and fluid saturation along different propagation paths. The results also show that, even if the site is located on a horst, the presence of weathered zones near the surface could cause moderate frequency dependent site effects.

  5. Neodymium and carbon isotopic fingerprints of warm Pliocene circulation throughout the deep Atlantic

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Scher, H. D.; Dowsett, H. J.; Robinson, M. M.

    2013-12-01

    The mid-Piacenzian age of the Pliocene is the most recent interval in Earth's history to sustain global warmth within the range predicted for the 21st century. To understand this interval, the USGS PRISM Project has developed a reconstruction of global conditions at 3.264-3.025 Ma, which includes a significant North Atlantic warm SST anomaly coupled with increased evaporation. Warm anomalies are also detected in the deep ocean as far as 46°S, suggesting that enhanced meridional overturning circulation may have been responsible for more southerly penetration of North Atlantic Deep Water (NADW). However, deep temperature proxies are not diagnostic of water mass, and some coupled model simulations predict transient decreases in NADW production in the 21st century, presenting a contrasting picture of future climate. We present a new multi-proxy synthesis of Atlantic deep ocean circulation during the PRISM interval, using the neodymium isotopic composition (ɛNd) of fossil fish teeth as a proxy for water mass source and the δ13C of benthic foraminifera as a proxy for water mass age. This reconstruction utilizes both new and previously published data from 11 DSDP and ODP sites in the North Atlantic (Site 610) and along depth transects from equatorial Ceara Rise, southern mid-latitude Walvis Ridge, and south Atlantic Meteor Rise/Agulhas Ridge. Published data from ferromanganese crusts constrain Pliocene Antarctic deep waters at ~ ɛNd = -8, distinct from the less radiogenic ɛNd = -11.5 that characterizes Pliocene northern component water (NCW). These values fingerprint northern and southern sources throughout the Atlantic basin. Pliocene fish teeth from Site 610 (2400 m water depth) and from four Ceara Rise sites (3000-4300 m) preserve distinctly North Atlantic ɛNd. When averaged across the PRISM interval, mean values for these five sites range from ɛNd = -10.97 to -10.25, and the Pliocene depth transect closely mirrors the structure of the modern column, indicating that Ceara Rise was dominantly influenced by NCW at all depths. In contrast, Walvis Ridge water column structure was significantly different in the Pliocene. Today, a core of NADW between 1800 and 3500 m overlies abyssal southern component water (SCW). During the Pliocene, however, sites at 4000 and 4700 m were influenced exclusively by NCW, with PRISM mean ɛNd of -11.14 and -11.45. In contrast, mean ɛNd = -9.86 indicates that the shallowest site (2500 m), which sits in the core of NADW today, was instead influenced by SCW throughout the PRISM interval. The Meteor Rise/Agulhas Ridge transect provides further evidence for south Atlantic restructuring in the warm Pliocene. At the deepest Agulhas Ridge site (3700 m), PRISM mean ɛNd = -8.47, an unequivocally SCW signature. Today, the shallower Meteor Rise sites (2000 and 2500 m) are within NADW, yet mean PRISM ɛNd = -7.68 and -7.82 - more radiogenic than the SCW end member - raising the possibility that south Atlantic intermediate waters incorporated both Pacific and Antarctic components in the Pliocene.

  6. MBARI Mapping AUV: A High-Resolution Deep Ocean Seafloor Mapping Capability

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Kirkwood, W. J.; Thomas, H.; McEwen, R.; Henthorn, R.; McGill, P.; Thompson, D.; Sibenac, M.; Jensen, S.; Shane, F.; Hamilton, A.

    2005-05-01

    The Monterey Bay Aquarium Research Institute (MBARI) is developing an autonomous seafloor mapping capability for deep ocean science applications. The MBARI Mapping AUV is a 0.53 m (21 in) diameter, 5.1 m (16.7 ft) long, Dorado-class vehicle designed to carry four mapping sonars. The primary sensor is a 200 kHz multibeam sonar producing swath bathymetry and sidescan. In addition, the vehicle carries 100 kHz and 410 kHz chirp sidescan sonars, and a 2-16 kHz sweep chirp subbottom profiler. Navigation and attitude data are obtained from an inertial navigation system (INS) incorporating a ring laser gyro and a 300 kHz Doppler velocity log (DVL). The vehicle also includes acoustic modem, ultra-short baseline navigation, and long-baseline navigation systems. The Mapping AUV is powered by 6 kWhr of Li-polymer batteries, providing expected mission duration of 12 hours at a typical speed of 1.5 m/s. All components of the vehicle are rated to 6000 m depth, allowing MBARI to conduct high-resolution mapping of the deep-ocean seafloor. The sonar package is also be mountable on ROV Ventana, allowing surveys at altitudes less than 20 m at topographically challenging sites. The vehicle was assembled and extensively tested during 2004; this year we are commencing operations for MBARI science projects while continuing the process of testing and integrating the complete suite of sensors and systems. MBARI is beginning to use this capability to observe the changing morphology of dynamic systems such as submarine canyons and active slumps, to map deep-water benthic habitats at resolutions comparable to ROV and submersible observations, to provide basemaps for ROV dives, and to provide high resolution bathymetry and subbottom profiles as part of a variety of projects requiring knowledge of the seafloor. We will present initial results from surveys in and around Monterey Canyon, including high resolution repeat surveys of four sites along the canyon axis.

  7. IODP Expedition 337: Deep Coalbed Biosphere off Shimokita - Microbial processes and hydrocarbon system associated with deeply buried coalbed in the ocean

    NASA Astrophysics Data System (ADS)

    Inagaki, Fumio; Hinrichs, Kai-Uwe; Kubo, Yusuke; IODP Expedition 337 Scientists

    2016-06-01

    The Integrated Ocean Drilling Program (IODP) Expedition 337 was the first expedition dedicated to subseafloor microbiology that used riser-drilling technology with the drilling vessel Chikyu. The drilling Site C0020 is located in a forearc basin formed by the subduction of the Pacific Plate off the Shimokita Peninsula, Japan, at a water depth of 1180 m. Primary scientific objectives during Expedition 337 were to study the relationship between the deep microbial biosphere and a series of ˜ 2 km deep subseafloor coalbeds and to explore the limits of life in the deepest horizons ever probed by scientific ocean drilling. To address these scientific objectives, we penetrated a 2.466 km deep sedimentary sequence with a series of lignite layers buried around 2 km below the seafloor. The cored sediments, as well as cuttings and logging data, showed a record of dynamically changing depositional environments in the former forearc basin off the Shimokita Peninsula during the late Oligocene and Miocene, ranging from warm-temperate coastal backswamps to a cool water continental shelf. The occurrence of small microbial populations and their methanogenic activity were confirmed down to the bottom of the hole by microbiological and biogeochemical analyses. The factors controlling the size and viability of ultra-deep microbial communities in those warm sedimentary habitats could be the increase in demand of energy and water expended on the enzymatic repair of biomolecules as a function of the burial depth. Expedition 337 provided a test ground for the use of riser-drilling technology to address geobiological and biogeochemical objectives and was therefore a crucial step toward the next phase of deep scientific ocean drilling.

  8. Impact on demersal fish of a large-scale and deep sand extraction site with ecosystem-based landscaped sandbars

    NASA Astrophysics Data System (ADS)

    de Jong, Maarten F.; Baptist, Martin J.; van Hal, Ralf; de Boois, Ingeborg J.; Lindeboom, Han J.; Hoekstra, Piet

    2014-06-01

    For the seaward harbour extension of the Port of Rotterdam in the Netherlands, approximately 220 million m3 sand was extracted between 2009 and 2013. In order to decrease the surface area of direct impact, the authorities permitted deep sand extraction, down to 20 m below the seabed. Biological and physical impacts of large-scale and deep sand extraction are still being investigated and largely unknown. For this reason, we investigated the colonization of demersal fish in a deep sand extraction site. Two sandbars were artificially created by selective dredging, copying naturally occurring meso-scale bedforms to increase habitat heterogeneity and increasing post-dredging benthic and demersal fish species richness and biomass. Significant differences in demersal fish species assemblages in the sand extraction site were associated with variables such as water depth, median grain size, fraction of very fine sand, biomass of white furrow shell (Abra alba) and time after the cessation of sand extraction. Large quantities of undigested crushed white furrow shell fragments were found in all stomachs and intestines of plaice (Pleuronectes platessa), indicating that it is an important prey item. One and two years after cessation, a significant 20-fold increase in demersal fish biomass was observed in deep parts of the extraction site. In the troughs of a landscaped sandbar however, a significant drop in biomass down to reference levels and a significant change in species assemblage was observed two years after cessation. The fish assemblage at the crests of the sandbars differed significantly from the troughs with tub gurnard (Chelidonichthys lucerna) being a Dufrêne-Legendre indicator species of the crests. This is a first indication of the applicability of landscaping techniques to induce heterogeneity of the seabed although it remains difficult to draw a strong conclusion due the lack of replication in the experiment. A new ecological equilibrium is not reached after 2 years since biotic and abiotic variables are still adapting. To understand the final impact of deep and large-scale sand extraction on demersal fish, we recommend monitoring for a longer period, at least for a period of six years or even longer.

  9. Mössbauer investigations to characterize Fe lattice sites in sheet silicates and Peru Basin deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Lougear, André; König, Iris; Trautwein, Alfred X.; Suess, Erwin

    A procedure to classify different Fe lattice sites, i.e., OH-group geometries, in the clay mineral content of deep-sea sediments was developed using Mössbauer spectroscopy at low temperature (77 K). This speciation is of interest with regard to the redox behavior, reactivity and color of marine sediments, since substantial iron redox transitions (associated with sediment color change) have been documented for the structural sheet silicate iron. Lattice site classification was achieved for the Fe(II) fraction, all of which is structural clay Fe(II) in the sediments under investigation. Whereas the major part of the Fe(III) is structural clay iron as well, there is a small Fe(III) fraction in oxide minerals. Therefore, further elaboration of the procedure would be required to also achieve lattice site classification for the Fe(III) fraction. Analysis of the Mössbauer spectra is based on computer fits, the input parameters of which were derived from a separate study of Fe(II)-rich pure chlorites. The procedure of classification is qualified to investigate, e.g., in laboratory experiments, the site-specific reaction rates and the effects on sediment color of iron redox transitions in the sheet silicate content of sediments. The new skills were successfully applied in environmental impact studies on the mining of polymetallic nodules from the Peru Basin deep-sea floor.

  10. The Search for Eight Glacial Cycles of Deep-Water Temperatures and Global ice Volume From the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Ferretti, P.; Elderfield, H.; Greaves, M.; McCave, N.

    2007-12-01

    It has been recently suggested "a substantial portion of the marine 100-ky cycle that has been object of so much attention over the past quarter of a century is, in reality, a deep-water temperature signal and not an ice volume signal" (Shackleton, 2000). There are currently few records available of deep-water temperature variations during the Pleistocene and most of our understanding is inferred from the oxygen isotopic composition (δ18O) of benthic foraminifera from deep-sea sediments. However, variations in benthic δ18O reflect some combination of local to regional changes in water mass properties (largely deep- water temperature) as well as global changes in seawater δ18O (δ18Osw) resulting from the growth and decay of continental ice. Recent studies suggest that benthic foraminiferal Mg/Ca may be useful in reconstructing deep-water temperature changes, but the application of this method to benthic species has been hampered by a number of unresolved issues, such as uncertainties related to the calibration for benthic Mg at the coldest temperatures. Here we present deep-sea Mg/Ca and δ18O records for the past eight glacial cycles in benthic foraminiferal ( Uvigerina spp.) calcite from a marine sediment core recovered in the mid Southern latitudes. Ocean Drilling Program Site 1123 was retrieved from Chatham Rise, east of New Zealand in the Southwest Pacific Ocean (3290 m water depth). This site lies under the Deep Western Boundary Current (DWBC) that flows into the Pacific Ocean, and is responsible for most of the deep water in that ocean; DWBC strength is directly related to processes occurring around Antarctica. Temperatures derived via pore fluid modeling of the last glacial maximum are available from Site 1123 and represent an important tool to constrain deep-water temperatures estimates using Mg/Ca. In selected time slices, we measured B/Ca ratios in Uvigerina in order to gain information on the deep-water carbonate saturation state and have data of Mg/Ca and B/Ca on planktonic species, which also provides evidence on carbonate saturation state. These results permit preliminary discussion of the magnitude of the deep-water temperature changes during glacial/interglacial transitions and the interglacials themselves. In particular, our deep-water temperature estimates confirm that interglacial stages before 430 ka were characterized by less pronounced warmth - at least in the deeper southern Pacific - than those of the past four climatic cycles, a pattern previously observed in the deuterium record from EPICA Dome C. We examine the relative contributions of deep-water temperature and ice volume to the benthic δ18O signal. The phase relationship between the two signals is tentatively assessed for the middle/late Pleistocene, when different patterns of climate variability have been inferred from marine and ice cores records.

  11. 49 CFR 575.106 - Tire fuel efficiency consumer information program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tires, deep tread, winter-type snow tires, space-saver or temporary use spare tires, tires with nominal... deep tread, winter-type snow tires and limited production tires that it manufactures which are exempt... to have included in the database of information available to consumers on NHTSA's Web site. (ii...

  12. 49 CFR 575.106 - Tire fuel efficiency consumer information program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tires, deep tread, winter-type snow tires, space-saver or temporary use spare tires, tires with nominal... deep tread, winter-type snow tires and limited production tires that it manufactures which are exempt... to have included in the database of information available to consumers on NHTSA's Web site. (ii...

  13. 49 CFR 575.106 - Tire fuel efficiency consumer information program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tires, deep tread, winter-type snow tires, space-saver or temporary use spare tires, tires with nominal... deep tread, winter-type snow tires and limited production tires that it manufactures which are exempt... to have included in the database of information available to consumers on NHTSA's Web site. (ii...

  14. Deep Space Gateway Support of Lunar Surface Ops and Tele-Operational Transfer of Surface Assets to the Next Landing Site

    NASA Astrophysics Data System (ADS)

    Kring, D. A.

    2018-02-01

    The Deep Space Gateway can support astronauts on the lunar surface, providing them a departure and returning rendezvous point, a communication relay from the lunar farside to Earth, and a transfer point to Orion for return to Earth.

  15. Horizontal Planting of Green Ash Cuttings on a Sharkey Clay Site

    Treesearch

    H. E. Kennedy

    1974-01-01

    Horizontally planted green ash cuttings made from 1-0 seedlings sprouted and grew well, as did seedlings and vertically planted cuttings. Ten- and l4-inch cuttings planted 1 and 3 inches deep sprouted best. Two-inch-long cuttings and ones planted 6 inches deep performed unsatisfactorily.

  16. Continuation of down-hole geophysical testing for rock sockets.

    DOT National Transportation Integrated Search

    2013-11-01

    Site characterization for the design of deep foundations is crucial for ensuring a reliable and economic substructure design, as unanticipated site conditions can cause significant problems and disputes during construction. Traditional invasive explo...

  17. A major change in North Atlantic deep water circulation 1.6 million years ago

    NASA Astrophysics Data System (ADS)

    Khélifi, N.; Frank, M.

    2014-07-01

    The global ocean-climate system has been highly sensitive to the formation and advection of deep overflow water from the Nordic Seas as integral part of the Atlantic Meridional Overturning Circulation (AMOC) but its evolution over the Pliocene-Pleistocene global cooling is not fully understood. In particular, changes in the sources and mixing of prevailing deep waters that were involved in driving overturning throughout the Pliocene-Pleistocene climate transitions are not well constrained. Here we investigate the evolution of a substantial deep southward return overflow of the AMOC over the last 4 million years. We present new records of the bottom-water radiogenic neodymium isotope (ϵNd) variability obtained from three sediment cores (DSDP site 610 and ODP sites 980/981 and 900) at water depths between 2170 and 5050 m in the northeast Atlantic. We find that prior to the onset of major Northern Hemisphere glaciation (NHG) ∼3 million years ago (Ma), ϵNd values primarily oscillated between -9 and -11 at all sites, consistent with enhanced vertical mixing and weak stratification of the water masses during the warmer-than-today Pliocene period. From 2.7 Ma to ∼2.0 Ma, the ϵNd signatures of the water masses gradually became more distinct, which documents a significant advection of Nordic Seas overflow deep water coincident with the intensification of NHG. Most markedly, however, at ∼1.6 Ma the interglacial ϵNd signatures at sites 610 (2420 m water depth (w.d.)) and 980/981 (2170 m w.d.) synchronously and permanently shifted by 2 to 3 ϵNd units to less radiogenic values, respectively. Since then the difference between glacial and interglacial ϵNd values has been similar to the Late Quaternary at each site. A decrease of ∼2ϵNd units at 1.6 Ma was also recorded for the deepest water masses by site 900 (∼5050 m w.d.), which thereafter, however, evolved to more radiogenic values again until the present. This major ϵNd change across the 1.6 Ma transition reflects a significant reorganization of the overturning circulation in the northeast Atlantic paving the way for the more stratified water column with distinct water masses prevailing thereafter.

  18. Muscle enzyme activities in a deep-sea squaloid shark, Centroscyllium fabricii, compared with its shallow-living relative, Squalus acanthias.

    PubMed

    Treberg, Jason R; Martin, R Aidan; Driedzic, William R

    2003-12-01

    The activities of several enzymes of energy metabolism were measured in the heart, red muscle, and white muscle of a deep and a shallow living squaloid shark, Centroscyllium fabricii and Squalus acanthias, respectively. The phylogenetic closeness of these species, combined with their active predatory nature, similar body form, and size makes them well matched for comparison. This is the first time such a comparison has been made involving a deep-sea elasmobranch. Enzyme activities were similar in the heart, but generally lower in the red muscle of C. fabricii. Paralleling the trend seen in deep-sea teleosts, the white muscle of C. fabricii had substantially lower activities of key glycolytic enzymes, pyruvate kinase and lactate dehydrogenase, relative to S. acanthias or other shallow living elasmobranchs. Unexpectedly, between the squaloid sharks examined, creatine phosphokinase activity was higher in all tissues of the deep living C. fabricii. Low white muscle glycolytic enzyme activities in the deep-sea species coupled with high creatine phosphokinase activity suggests that the capacity for short burst swimming is likely limited once creatine phosphate supplies have been exhausted. Copyright 2003 Wiley-Liss, Inc.

  19. Smoldering Remediation of Coal-Tar-Contaminated Soil: Pilot Field Tests of STAR.

    PubMed

    Scholes, Grant C; Gerhard, Jason I; Grant, Gavin P; Major, David W; Vidumsky, John E; Switzer, Christine; Torero, Jose L

    2015-12-15

    Self-sustaining treatment for active remediation (STAR) is an emerging, smoldering-based technology for nonaqueous-phase liquid (NAPL) remediation. This work presents the first in situ field evaluation of STAR. Pilot field tests were performed at 3.0 m (shallow test) and 7.9 m (deep test) below ground surface within distinct lithological units contaminated with coal tar at a former industrial facility. Self-sustained smoldering (i.e., after the in-well ignition heater was terminated) was demonstrated below the water table for the first time. The outward propagation of a NAPL smoldering front was mapped, and the NAPL destruction rate was quantified in real time. A total of 3700 kg of coal tar over 12 days in the shallow test and 860 kg over 11 days in the deep test was destroyed; less than 2% of total mass removed was volatilized. Self-sustaining propagation was relatively uniform radially outward in the deep test, achieving a radius of influence of 3.7 m; strong permeability contrasts and installed barriers influenced the front propagation geometry in the shallow test. Reductions in soil hydrocarbon concentrations of 99.3% and 97.3% were achieved in the shallow and deep tests, respectively. Overall, this provides the first field evaluation of STAR and demonstrates that it is effective in situ and under a variety of conditions and provides the information necessary for designing the full-scale site treatment.

  20. First columbellid species (Gastropoda: Buccinoidea) from deep-sea hydrothermal vents, discovered in Okinawa Trough, Japan.

    PubMed

    Chen, Chong; Watanabe, Hiromi Kayama; Araya, Juan Francisco

    2017-12-12

    The molluscan diversity of deep-sea chemosynthetic ecosystems in Japan has been in general well documented with about 80 described species, of which over half are gastropods (Sasaki et al. 2005; Fujikura et al. 2012; Sasaki et al. 2016). Recently, however, a number of novel hydrothermal vent sites were discovered in the area using multibeam echo-sounding (Nakamura et al. 2015), providing opportunities for new discoveries. As a part of ongoing studies documenting the biodiversity of such sites, we present the first record of Columbellidae from hydrothermal vents, with a new species recovered from Natsu and Aki sites, in the Iheya North hydrothermal field (for map and background on the vent field see Nakamura et al. 2015).

  1. [Surgical site infections after cesarean section: results of a five-year prospective surveillance].

    PubMed

    Barbut, F; Carbonne, B; Truchot, F; Spielvogel, C; Jannet, D; Goderel, I; Lejeune, V; Milliez, J

    2004-10-01

    To determine the incidence of surgical site infections and to identify risk factors for infections. A prospective study of surgical site infections (SSI) after cesarean section was carried out from September 1997 to September 1998 (pilot study) and from January 2000 to August 2003, using the methodology of the American National Nosocomial Infection Surveillance System. Follow up of women was performed by midwives until discharge and during the post-natal visit. Suspected surgical site infections were confirmed by surgeons and infection control practitioners. The microbiological file of each patient was edited 30 days after cesarean section. Risk factors were analyzed using a logistic regression model. During the pilot study, infection rate was estimated at 3.2%. At multivariate analysis, factors independently associated with an increased risk of SSI were ASA score > 1, performance of cesarean section in a room not dedicated to this activity, and use of an open urine drainage system. During the following years (2000-2003), infection rates progressively decreased to reach 1.9% in 2003. Infections included superficial wound infections (involving skin and subcutaneous tissue) (47%), deep wound infections (involving deep and soft tissue (fascia and muscle) (20%) and organ/space infections (i.e. endometritis, pelvic abscess) (33%). Infections occurred after patient discharge in 47.5% of cases and diagnosis was based only on clinical findings in 30% of cases. Infected patients were hospitalized longer (median: 6 days) than non infected patients. Prospective surveillance of SSI led to better awareness of infectious problems among health care workers, to identification of risk factors and evaluation of health procedures. Surveillance contributed to a decrease in nosocomial infections.

  2. Broadband records of earthquakes in deep gold mines and a comparison with results from SAFOD, California

    USGS Publications Warehouse

    McGarr, Arthur F.; Boettcher, M.; Fletcher, Jon Peter B.; Sell, Russell; Johnston, Malcolm J.; Durrheim, R.; Spottiswoode, S.; Milev, A.

    2009-01-01

    For one week during September 2007, we deployed a temporary network of field recorders and accelerometers at four sites within two deep, seismically active mines. The ground-motion data, recorded at 200 samples/sec, are well suited to determining source and ground-motion parameters for the mining-induced earthquakes within and adjacent to our network. Four earthquakes with magnitudes close to 2 were recorded with high signal/noise at all four sites. Analysis of seismic moments and peak velocities, in conjunction with the results of laboratory stick-slip friction experiments, were used to estimate source processes that are key to understanding source physics and to assessing underground seismic hazard. The maximum displacements on the rupture surfaces can be estimated from the parameter , where  is the peak ground velocity at a given recording site, and R is the hypocentral distance. For each earthquake, the maximum slip and seismic moment can be combined with results from laboratory friction experiments to estimate the maximum slip rate within the rupture zone. Analysis of the four M 2 earthquakes recorded during our deployment and one of special interest recorded by the in-mine seismic network in 2004 revealed maximum slips ranging from 4 to 27 mm and maximum slip rates from 1.1 to 6.3 m/sec. Applying the same analyses to an M 2.1 earthquake within a cluster of repeating earthquakes near the San Andreas Fault Observatory at Depth site, California, yielded similar results for maximum slip and slip rate, 14 mm and 4.0 m/sec.

  3. Deep-sea nematode assemblage has not recovered 26 years after experimental mining of polymetallic nodules (Clarion-Clipperton Fracture Zone, Tropical Eastern Pacific)

    NASA Astrophysics Data System (ADS)

    Miljutin, Dmitry M.; Miljutina, Maria A.; Arbizu, Pedro Martínez; Galéron, Joëlle

    2011-08-01

    We investigated nematode assemblages inhabiting the 26-year-old track created by experimental deep-sea mining of polymetallic nodules, and two adjacent, undisturbed sites, one with nodules and one without nodules. The aim was to compare density, assemblage structure, and diversity indices in order to assess the process of recovery of the nematode assemblage inhabiting the disturbed site. This experimental dredging was conducted in 1978 by the Ocean Minerals Company (USA) in the area of a French mining claim in the Clarion-Clipperton Fracture Zone (Tropical Eastern Pacific) at a depth of about 5000 m. The nematode assemblage had not returned its initial state 26 years after the experimental dredging: the total nematode density and biomass within the dredging track were significantly lower than outside the track; the biodiversity indices showed significantly lower nematode diversity within the track; and the structure of the nematode assemblage within the track differed significantly from those in the two undisturbed sites outside the track. However, there were no significant differences in the mean body volumes of adult nematodes and adult-juvenile ratios between the track and reference sites. Parameters such as the rate of sediment restoration (which depends on local hydrological conditions) and the degree and character of the disturbance appeared to be of considerable importance for the recovery rate of the deep-sea nematode assemblages and their ability to recolonize disturbed areas. The rates of recolonization and recovery may vary widely in different deep-sea regions.

  4. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks

    PubMed Central

    Avsec, Žiga; Cheng, Jun; Gagneur, Julien

    2018-01-01

    Abstract Motivation Regulatory sequences are not solely defined by their nucleic acid sequence but also by their relative distances to genomic landmarks such as transcription start site, exon boundaries or polyadenylation site. Deep learning has become the approach of choice for modeling regulatory sequences because of its strength to learn complex sequence features. However, modeling relative distances to genomic landmarks in deep neural networks has not been addressed. Results Here we developed spline transformation, a neural network module based on splines to flexibly and robustly model distances. Modeling distances to various genomic landmarks with spline transformations significantly increased state-of-the-art prediction accuracy of in vivo RNA-binding protein binding sites for 120 out of 123 proteins. We also developed a deep neural network for human splice branchpoint based on spline transformations that outperformed the current best, already distance-based, machine learning model. Compared to piecewise linear transformation, as obtained by composition of rectified linear units, spline transformation yields higher prediction accuracy as well as faster and more robust training. As spline transformation can be applied to further quantities beyond distances, such as methylation or conservation, we foresee it as a versatile component in the genomics deep learning toolbox. Availability and implementation Spline transformation is implemented as a Keras layer in the CONCISE python package: https://github.com/gagneurlab/concise. Analysis code is available at https://github.com/gagneurlab/Manuscript_Avsec_Bioinformatics_2017. Contact avsec@in.tum.de or gagneur@in.tum.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:29155928

  5. Diversity And Abundance Of Deep-Water Coral Mounds In The Straits Of Florida: A Result of Adaptability To Local Environments?

    NASA Astrophysics Data System (ADS)

    Correa, T. B.; Grasmueck, M.; Eberli, G.; Viggiano, D. A.; Rosenberg, A.; Reed, J. K.

    2007-12-01

    To improve the understanding of the Florida-Bahamas deep-water coral mound ecosystem, Autonomous Underwater Vehicle (AUV) surveys were conducted on five coral mound fields throughout the Straits of Florida (three sites at the base of slope of Great Bahama Bank (GBB), one in the middle of the Straits (MS) and one at the base of the Miami Terrace (MT)) in water depths of 590 to 860 m. The AUV provides high-resolution bathymetric maps, sub-bottom profiles and oceanographic data. The AUV survey sites were subsequently groundtruthed via sample collection and video transects, using the Johnson Sealink submersible. Contrary to previous surveys, we found a high diversity in coral mound morphology between sites separated by 15 to 80 km. The MT site is characterized by sinusoidal coral mound ridges, while the MS site contains densely clustered small coral mounds. Meanwhile, mounds of the GBB region are better developed, with some individual mounds reaching up to 90 m in height. Benthic coverage of live corals also differs between sites; the GBB sites are characterized by mounds densely covered by large thickets of live corals, while small thickets of mostly dead corals dominate the MT and MS sites. Several environmental factors may explain these differences. For example, bottom current patterns change between sites. The MT and the MS sites have a unidirectional regime (southward or northward flow, respectively), whereas the GBB sites have a tidal current regime. Sedimentation patterns as depicted by sub-bottom profiles also vary between the sites; coral mounds in the GBB area appear to receive higher sediment input, which can significantly enhance mound growth rates as the reef framework baffles and traps mobile sediments. However, coral mounds that cannot keep-up with the sedimentation rate are buried. Therefore, in the high sedimentation areas of GBB, flourishing live coral mounds are limited to elevated positions (i.e. plateaus, ridges crests) where sediment accumulation is lessened. Corals in these raised locations also benefit from increased exposure to nutrient-rich tidal currents, supporting a denser live coral coverage. Sub-bottom profiles of the MT site show undulating coral ridges developed on top of a relatively flat sub-surface, indicating that antecedent topography is not the only factor determining mound distribution. The integrated AUV data suggest that variable environmental factors, such as sedimentation and current patterns, contribute to the high diversity between coral mound sites of the Straits of Florida. Environmental conditions change over distances of only a few kilometers creating localized and diverse deep-water coral habitats. The deepwater fauna adapts to the local oceanographic and geological conditions. This results in an unexpectedly high abundance of deep-water coral communities with diverse expressions.

  6. Linking online sexual activities to health outcomes among teens.

    PubMed

    O'Sullivan, Lucia F

    2014-01-01

    New digital technologies are highly responsive to many of the developmental needs of adolescents, including their need for intimate connection and social identity. This chapter explores adolescents' use of web-based sexual information, texting and "sexting," online dating sites, role-playing games, and sexually explicit media, and presents new data comparing the interpersonal and intrapersonal health outcomes among youth who engage in online sexual activities to those who do not. Despite the media-stoked concerns surrounding adolescents' participation in online sexual activities, the ubiquity of online activities and close overlap between online and offline activities indicate that this type of behavior should not be pathologized or used as a metric of problem behavior. The chapter concludes with implications for parents, educators, researchers, counselors, and health care providers, a call to challenge our deep discomfort around adolescent sexuality and to harness these technologies in ways that help promote growth and positive development. © 2014 Wiley Periodicals, Inc.

  7. Environmental projects. Volume 13: Underground storage tanks, removal and replacement. Goldstone Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Bengelsdorf, Irv

    1991-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 40 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. Activities at the GDSCC are carried out in support of six large parabolic dish antennas. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel oil, hydraulic oil, and waste oil. These fluids are stored in underground storage tanks (USTs). This present volume describes what happened to the 26 USTs that remained at the GDSCC. Twenty-four of these USTs were constructed of carbon steel without any coating for corrosion protection, and without secondary containment or leak detection. Two remaining USTs were constructed of fiberglass-coated carbon steel but without secondary containment or leak protection. Of the 26 USTs that remained at the GDSCC, 23 were cleaned, removed from the ground, cut up, and hauled away from the GDSCC for environmentally acceptable disposal. Three USTs were permanently closed (abandoned in place).

  8. Litter in submarine canyons off the west coast of Portugal

    NASA Astrophysics Data System (ADS)

    Mordecai, Gideon; Tyler, Paul A.; Masson, Douglas G.; Huvenne, Veerle A. I.

    2011-12-01

    Marine litter is of global concern and is present in all the world's oceans, including deep benthic habitats where the extent of the problem is still largely unknown. Litter abundance and composition were investigated using video footage and still images from 16 Remotely Operated Vehicle (ROV) dives in Lisbon, Setúbal, Cascais and Nazaré Canyons located west of Portugal. Litter was most abundant at sites closest to the coastline and population centres, suggesting the majority of the litter was land sourced. Plastic was the dominant type of debris, followed by fishing gear. Standardised mean abundance was 1100 litter items km -2, but was as high as 6600 litter items km -2 in canyons close to Lisbon. Although all anthropogenic material may be harmful to biota, debris was also used as a habitat by some macro-invertebrates. Litter composition and abundance observed in the canyons of the Portuguese margin were comparable to those seen in other deep sea areas around the world. Accumulation of litter in the deep sea is a consequence of human activities both on land and at sea. This needs to be taken into account in future policy decisions regarding marine pollution.

  9. Identification of autism spectrum disorder using deep learning and the ABIDE dataset.

    PubMed

    Heinsfeld, Anibal Sólon; Franco, Alexandre Rosa; Craddock, R Cameron; Buchweitz, Augusto; Meneguzzi, Felipe

    2018-01-01

    The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model.

  10. Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals.

    PubMed

    Lyubenova, Lyudmila; Nehnevajova, Erika; Herzig, Rolf; Schröder, Peter

    2009-07-01

    Tobacco, Nicotiana tabacum, is a widely used model plant for growth on heavy-metal-contaminated sites. Its high biomass and deep rooting system make it interesting for phytoextraction. In the present study, we investigated the antioxidative activities and glutathione-dependent enzymes of different tobacco clones optimized for better Cd and Zn accumulation in order to characterize their performance in the field. The improved heavy metal resistance also makes the investigated tobacco clones interesting for understanding the plant defense enzyme system in general. Freshly harvested plant material (N. tabacum leaves) was used to investigate the antioxidative cascade in plants grown on heavy metal contaminated sites with and without amendments of different ammonium nitrate and ammonium sulfate fertilizers. Plants were grown on heavily polluted soils in north-east Switzerland. Leaves were harvested at the field site and directly deep frozen in liquid N(2). Studies were concentrated on the antioxidative enzymes of the Halliwell-Asada cycle, and spectrophotometric measurements of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18) were performed. We tried to explain the relationship between fertilizer amendments and the activity of the enzymatic defense systems. When tobacco (N. tabacum) plants originating from different mutants were grown under field conditions with varying fertilizer application, the uptake of cadmium and zinc from soil increased with increasing biomass. Depending on Cd and Zn uptake, several antioxidant enzymes showed significantly different activities. Whereas SOD and CAT were usually elevated, several other enzymes, and isoforms of GST were strongly inhibited. Heavy metal uptake represents severe stress to plants, and specific antioxidative enzymes are induced at the cost of more general reactions of the Halliwell-Asada cycle. In well-supplied plants, the glutathione level remains more or less unchanged. The lack of certain glutathione S-transferases upon exposure to heavy metals might be problematic in cases when organic pollutants coincide with heavy metal pollution. When planning phytoremediation of sites, mixed pollution scenarios have to be foreseen and plants should be selected according to both, their stress resistance and hyperaccumulative capacity.

  11. Environmental projects. Volume 14: Removal of contaminated soil and debris

    NASA Technical Reports Server (NTRS)

    Kushner, Len

    1992-01-01

    Numerous diverse activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of six parabolic dish antennas. Some of these activities can result in possible spills or leakages of hazardous materials and wastes stored both above ground in steel drums and below ground in underground storage tanks (UST's). These possible leaks or spills, along with the past practice of burial of solid debris and waste in trenches and pits, could cause local subsurface contamination of the soil. In 1987, the Jet Propulsion Laboratory (JPL), retained Engineering-Science, Inc. (E-S), Pasadena, California, to identify the specific local areas within the GDSCC with subsurface soil contamination. The E-S study determined that some of the soils at the Apollo Site and the Mars Site were contaminated with hydrocarbons, while soil at a nonhazardous waste dumpsite at the Mojave Base site was contaminated with copper. This volume is a JPL-expanded version of the PE209 E-S report, and it also reports that all subsurface contaminated soils at the GDSCC were excavated, removed, and disposed of in an environmentally acceptable way, and the excavations were backfilled and covered in accordance with accepted Federal, State, and local environmental rules and regulations.

  12. The origin, source, and cycling of methane in deep crystalline rock biosphere.

    PubMed

    Kietäväinen, Riikka; Purkamo, Lotta

    2015-01-01

    The emerging interest in using stable bedrock formations for industrial purposes, e.g., nuclear waste disposal, has increased the need for understanding microbiological and geochemical processes in deep crystalline rock environments, including the carbon cycle. Considering the origin and evolution of life on Earth, these environments may also serve as windows to the past. Various geological, chemical, and biological processes can influence the deep carbon cycle. Conditions of CH4 formation, available substrates and time scales can be drastically different from surface environments. This paper reviews the origin, source, and cycling of methane in deep terrestrial crystalline bedrock with an emphasis on microbiology. In addition to potential formation pathways of CH4, microbial consumption of CH4 is also discussed. Recent studies on the origin of CH4 in continental bedrock environments have shown that the traditional separation of biotic and abiotic CH4 by the isotopic composition can be misleading in substrate-limited environments, such as the deep crystalline bedrock. Despite of similarities between Precambrian continental sites in Fennoscandia, South Africa and North America, where deep methane cycling has been studied, common physicochemical properties which could explain the variation in the amount of CH4 and presence or absence of CH4 cycling microbes were not found. However, based on their preferred carbon metabolism, methanogenic microbes appeared to have similar spatial distribution among the different sites.

  13. The origin, source, and cycling of methane in deep crystalline rock biosphere

    PubMed Central

    Kietäväinen, Riikka; Purkamo, Lotta

    2015-01-01

    The emerging interest in using stable bedrock formations for industrial purposes, e.g., nuclear waste disposal, has increased the need for understanding microbiological and geochemical processes in deep crystalline rock environments, including the carbon cycle. Considering the origin and evolution of life on Earth, these environments may also serve as windows to the past. Various geological, chemical, and biological processes can influence the deep carbon cycle. Conditions of CH4 formation, available substrates and time scales can be drastically different from surface environments. This paper reviews the origin, source, and cycling of methane in deep terrestrial crystalline bedrock with an emphasis on microbiology. In addition to potential formation pathways of CH4, microbial consumption of CH4 is also discussed. Recent studies on the origin of CH4 in continental bedrock environments have shown that the traditional separation of biotic and abiotic CH4 by the isotopic composition can be misleading in substrate-limited environments, such as the deep crystalline bedrock. Despite of similarities between Precambrian continental sites in Fennoscandia, South Africa and North America, where deep methane cycling has been studied, common physicochemical properties which could explain the variation in the amount of CH4 and presence or absence of CH4 cycling microbes were not found. However, based on their preferred carbon metabolism, methanogenic microbes appeared to have similar spatial distribution among the different sites. PMID:26236303

  14. Subsurface dolomite formation during post-depositional flow of sulphate-bearing fluids from underlying salt giants: Early Pliocene example at DSDP Leg 42A, Site 374, Ionian Abyssal Plain

    NASA Astrophysics Data System (ADS)

    McKenzie, Judith A.; Evans, Nick; Hodell, David; Aloisi, Giovanni; Vasconcelos, Crisogono

    2017-04-01

    Deciphering exact mechanisms for the formation of massive dolomite deposits has long been an enigma in sedimentary geology. The recognition that microbes can play a role in the dolomite precipitation process has added a new dimension to the study of the origin of dolomite formations in both shallow and deep-water environments. This scientific advance has evolved, particularly, through the investigation of dolomite-containing, organic-rich hemipelagic sediments cored on various continental margins during DSDP and ODP drilling campaigns, as well as intensive evaluations of modern hypersaline dolomite-precipitating environments with complementary culture experiments conducted in the laboratory. For example, the association of an active subsurface microbial community in contact with underlying brines of unknown origin leading to in situ dolomite precipitation has been observed in a Quaternary sequence of hemi-pelagic, organic carbon-rich sediments drilled on the Peru Margin, ODP Leg 201, Site 1229 (1). Specifically, it can be concluded that the long-term activity of subsurface microbes can be maintained by post-depositional flow of sulfate-bearing fluids from underlying large-scale evaporite deposits, or salt giants, promoting in situ dolomite precipitation. Another example of dolomite precipitation directly associated with the underlying Messinian salt giant was found at DSDP Leg 42A, Site 374 in the Ionian Abyssal Plain. Deep-sea drilling recovered a lowermost Pliocene sequence of diagenetically altered sediment (Unit II) separating the overlying Pliocene open-marine deposits (Unit I) and the underlying end Messinian dolomitic mudstone with gypsum layers (Unit III). The lower portion of this altered interval contained in Core 11, Section 2 (378.0 - 381.5 mbsf) comprises a dolomicrite with an unusual crystal morphology (2). The original interstitial water geochemical profiles indicate that a saline brine is diffusing upwards from below and into the dolomicrite sequence. There appears to be on-going bacterial sulfate reduction in this boundary zone between the evaporitic and normal pelagic sediments with a significant decrease in sulfate concentrations, whereas the chloride profile remains constant. It was concluded that the earliest Pliocene marine sediments of Unit II had been dolomitized after burial as a consequence of ionic migration across a steep Mg-concentration gradient (3). However, with the addition of a microbial factor into the study of the dolomite precipitation process, an alternate interpretation is possible. We propose that, at the location of DSDP Leg 42A, Site 374, modern subsurface dolomite precipitation is ongoing and the site is a "natural laboratory" in which to investigate the microbial phenomenon in the context of a giant evaporite deposit. This actualistic example may provide a new model for the origin of massive dolomite deposits associated with other salt giants in the rock record. (1) Meister, P., et al., 2007. Sedimentology, 54, 1007-1031. (2) Bernoulli, D. & Mélières, F., 1978. In: Hsü, K., Montadert, L. et al., 1978. Initial Reports of the Deep Sea Drilling Project, Volume 42, Part 1, 621-633. (3) McDuff, R.E., et al., 1978. In: Hsü, K., Montadert, L. et al., 1978. Initial Reports of the Deep Sea Drilling Project, Volume 42, Part 1, 561-568.

  15. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.

    2004-12-01

    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be spatially extensive, from sub-room-size scale to ten-kilometer scale. The DUSEL sites with vertical depth and lateral extent can accommodate many different experiments. Hydrologic studies can characterize the in-flow along drifts, ramps, and shafts. Geophysical and rock mechanics studies can have seismic and electromagnetic sensors stationed on site, for both local monitoring of excavations and long-term stability, and mine-scale network of sensors to form a large aperture for tomography imaging. The geo-biochemical studies can include the ecological evaluation of the effects of introduced materials and the search for the origin of life in isolated fluid pockets at depth. The muon flux can be measured underground to detect empty space (or lack of it) above detectors, as demonstrated at the Chephren pyramid, Egypt, in the 1970s and currently at the Pyramid of the Sun, Mexico. Conventional geophysical tomography, with wave propagation through rock mass, can be extended to include particle rays, with high-energy muon flux as an example. Muons interacting with atoms have implications for both geochemical and biological processes. This type of research can further promote collaboration between earth scientists with physicists. A deep laboratory can accommodate a deep campus for suites of physics detectors, and several campuses at different depths within the same site for earth science experiments in rock mechanics, hydrology, geochemistry, ecology, geo-microbiology, coupled processes, and many other branches of earth and planetary sciences.

  16. Effects of non-aqueous fluids cuttings discharge from exploratory drilling activities on the deep-sea macrobenthic communities

    NASA Astrophysics Data System (ADS)

    Santos, M. F. L.; Lana, P. C.; Silva, J.; Fachel, J. G.; Pulgati, F. H.

    2009-01-01

    This paper assesses the effects of non-aqueous fluids (NAFs-type III) cuttings discharge from exploratory drilling activities on deep-sea macrobenthic communities in the Campos Basin, off the southeastern Brazilian coast, Rio de Janeiro State. One hundred and fifty nine sediment samples were taken with a 0.25 m 2 box corer at a depth of 902 m on three monitoring cruises: first cruise—before drilling (April 2001), second cruise—after drilling (July 2001), and third cruise—one year after drilling (July 2002). The results indicated no significant changes in values of density, number of families and functional groups related to drilling activities in the reference area (2500 m distance), and biological variations may be result from the natural variability of the fauna. Evidence indicates that drilling activities led to measurable effects on the community structure related to NAF cuttings discharge but were limited to a 500 m radius from the drilling well. Such effects were much more evident at isolated sites in the impact area (WBF and WBF+NAF areas) and are characterized as localized impacts. One year after drilling, a recolonization was observed, with the probable recovery of the macrobenthic community in most of the study area; only at part of the WBF+NAF area (stations 05, 24 and 36) was the community still undergoing recovery.

  17. The vent microbiome: patterns and drivers

    NASA Astrophysics Data System (ADS)

    Pachiadaki, M.

    2015-12-01

    Microbial processes within deep-sea hydrothermal vents affect the global biogeochemical cycles. Still, there are significant gaps in our understanding of the microbiology and the biogeochemistry of deep-sea hydrothermal systems. Vents differ in temperature, host rock composition and fluid chemistry; factors that are hypothesized to shape the distribution of the microbial communities, their metabolic capabilities and their activities. Using large-scale single cell genomics, we obtained insights into the genomic content of several linkages of a diffuse flow vent. The genomes show high metabolic versatility. Sulfur oxidation appears to be predominant but there is the potential of using a variety of e- donors and acceptors to obtain energy. To further assess the ecological importance of the vent auto- and heterotrophs, the global biogeography of the analyzed lineages will be investigated by fragment recruitment of metagenomes produced from the same site as well as other hydrothermal systems. Metatranscriptomic and metaproteomic data will be integrated to examine the expression of the predominant metabolic pathways and thus the main energy sources driving chemoautotrophic production. The comparative analysis of the key players and associated pathways among various vent sites that differ in physicochemical characteristics is anticipated to decipher the patterns and drivers of the global dispersion and the local diversification of the vent microbiome.

  18. Mud extrusion and ring-fault gas seepage - upward branching fluid discharge at a deep-sea mud volcano.

    PubMed

    Loher, M; Pape, T; Marcon, Y; Römer, M; Wintersteller, P; Praeg, D; Torres, M; Sahling, H; Bohrmann, G

    2018-04-19

    Submarine mud volcanoes release sediments and gas-rich fluids at the seafloor via deeply-rooted plumbing systems that remain poorly understood. Here the functioning of Venere mud volcano, on the Calabrian accretionary prism in ~1,600 m water depth is investigated, based on multi-parameter hydroacoustic and visual seafloor data obtained using ship-borne methods, ROVs, and AUVs. Two seepage domains are recognized: mud breccia extrusion from a summit, and hydrocarbon venting from peripheral sites, hosting chemosynthetic ecosystems and authigenic carbonates indicative of long-term seepage. Pore fluids in freshly extruded mud breccia (up to 13 °C warmer than background sediments) contained methane concentrations exceeding saturation by 2.7 times and chloride concentrations up to five times lower than ambient seawater. Gas analyses indicate an underlying thermogenic hydrocarbon source with potential admixture of microbial methane during migration along ring faults to the peripheral sites. The gas and pore water analyses point to fluids sourced deep (>3 km) below Venere mud volcano. An upward-branching plumbing system is proposed to account for co-existing mud breccia extrusion and gas seepage via multiple surface vents that influence the distribution of seafloor ecosystems. This model of mud volcanism implies that methane-rich fluids may be released during prolonged phases of moderate activity.

  19. A study of possible ``reef effects'' caused by a long-term time-lapse camera in the deep North Pacific

    NASA Astrophysics Data System (ADS)

    Vardaro, M. F.; Parmley, D.; Smith, K. L.

    2007-08-01

    The aggregation response of fish populations following the addition of artificial structures to seafloor habitats has been well documented in shallow-water reefs and at deeper structures such as oil extraction platforms. A long-term time-lapse camera was deployed for 27 four-month deployment periods at 4100 m in the eastern North Pacific to study abyssal megafauna activity and surface-benthos connections. The unique time-series data set provided by this research presented an opportunity to examine how deep-sea benthopelagic fish and epibenthic megafauna populations were affected by an isolated artificial structure and whether animal surveys at this site were biased by aggregation behavior. Counts were taken of benthopelagic grenadiers, Coryphaenoides spp., observed per week as well as numbers of the epibenthic echinoid Echinocrepis rostrata. No significant correlation ( rs=-0.39; p=0.11) was found between the duration of deployment (in weeks) and the average number of Coryphaenoides observed at the site. There was also no evidence of associative behavior around the time-lapse camera by E. rostrata ( rs=-0.32; p=0.19). The results of our study suggest that abyssal fish and epibenthic megafauna do not aggregate around artificial structures and that long-term time-lapse camera studies should not be impacted by aggregation response behaviors.

  20. Environmental projects, volume 10. Environmental assessment: New 34-meter antenna at Apollo site

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Goldstone Deep Space Communications Complex (GDSCC) is part of NASA's Deep Space Network (DSN), one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. A detailed description of the GDSCC is presented. At present the Venus Station has an unused 9-meter antenna and a 26-meter (85 ft) antenna known as DSS-13. Construction of a new 34-meter (111.5 ft) antenna at the Venus site is under way to replace the present DSS-13 26-meter antenna. The proposed construction at the Apollo Site of a new, high efficiency, 34-meter, multifrequency beam waveguide-type antenna to replace the aging, 20-year old, DSS-12 34-meter antenna located at the Echo Site is analyzed. This new 34-meter antenna, to be constructed at the Apollo Site and to be known as DSS-18, will be of a design similar to the new DSS-13 34-meter antenna now being constructed at the Venus Site. When the new 34-meter antenna is completed and operational at the Apollo Site (planned for 1993), the old DSS-12 34-meter antenna at the Echo Site will be decommissioned, dismantled, and removed.

  1. Heat flow and thermal history of the Anadarko basin, Oklahoma

    USGS Publications Warehouse

    Carter, L.S.; Kelley, S.A.; Blackwell, D.D.; Naeser, N.D.

    1998-01-01

    New heat-flow values for seven sites in the Anadarko basin, Oklahoma, were determined using high-precision temperature logs and thermal conductivity measurements from nearly 300 core plugs. Three of the sites are on the northern shelf, three sites are in the deep basin, and one site is in the frontal fault zone of the northern Wichita Mountains. The heat flow decreased from 55 to 64 mW/m2 in the north, and from 39 to 54 mW/m2 in the south, due to a decrease in heat generation in the underlying basement rock toward the south. Lateral lithologic changes in the basin, combined with the change in heat flow across the basin, resulted in an unusual pattern of thermal maturity. The vitrinite reflectance values of the Upper Devonian-Lower Mississippian Woodford formation are highest 30-40 km north-northwest of the deepest part of the basin. The offset in highest reflectance values is due to the contrast in thermal conductivity between the Pennsylvanian "granite wash" section adjacent to the Wichita uplift and the Pennsylvanian shale section to the north. The geothermal gradient in the low-conductivity shale section is elevated relative to the geothermal gradient in the high-conductivity "granite wash" section, thus displacing the highest temperatures to the north of the deepest part of the basin. Apatite fission-track, vitrinite reflectance, and heat-flow data were used to constrain regional aspects of the burial history of the Anadarko basin. By combining these data sets, we infer that at least 1.5 km of denudation has occurred at two sites in the deep Anadarko basin since the early to middle Cenozoic (40 ?? 10 m.y.). The timing of the onset of denudation in the southern Anadarko basin coincides with the period of late Eocene erosion observed in the southern Rocky Mountains and in the northern Great Plains. Burial history models for two wells from the deep Anadarko basin predict that shales of the Woodford formation passed through the hydrocarbon maturity window by the end of the Permian section in the deep basin moved into the hydrocarbon maturity window during Mesozoic burial of the region. Presently, the depth interval of the main zone of oil maturation (% Ro = 0.7-0.9) is approximately 2800-3800 m in the eastern deep basin basin and 2200-3000 m in the western deep basin. The greater depth to the top of the oil maturity zone and larger depth range of the zone in the eastern part of the deep basin are due to the lower heat flow associated with more mafic basement toward the east. The burial history model for the northern shelf indicates that the Woodford formation has been in the early oil maturity zone since the Early Permian.

  2. [Oncologic gynecology and the Internet].

    PubMed

    Gizler, Robert; Bielanów, Tomasz; Kulikiewicz, Krzysztof

    2002-11-01

    The strategy of World Wide Web searching for medical sites was presented in this article. The "deep web" and "surface web" resources were searched. The 10 best sites connected with the gynecological oncology, according to authors' opinion, were presented.

  3. Incidence of the concrete scalp deformity associated with deep scalp donor sites and management with the Unna cap.

    PubMed

    Carter, Y M; Summer, G J; Engrav, L H; Hansen, F L; Costa, B A; Matsumura, H

    1999-01-01

    The scalp has become a popular donor site for split-thickness skin grafts. This donor site does, however, have complications, including the concrete scalp deformity, which consists of hairs embedded in a thick, desiccated, exudative crust. This article presents our burn unit's experience with this complication. Fifty-six patients underwent scalp skin graft harvesting between 1984 and 1996. All grafts were quite thick and were used for resurfacing facial burns. Thirty-eight donor sites were treated with medicated gauze, and 18 were treated with the Unna cap, which is an Unna dressing applied over Aquaphor gauze (Beiersdorf, Norwalk, Conn). Eighteen of the 38 patients (32%) treated with medicated gauze developed the concrete scalp deformity. None of the patients treated with the Unna cap developed the deformity. Although useful, the deep scalp donor site has complications, including the concrete scalp deformity. However, with use of the Unna cap dressing, we have had no occurrences of this problem.

  4. Effects of Plasma Hydrogenation on Trapping Properties of Dislocations in Heteroepitaxial InP/GaAs

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Chatterjee, B.

    1994-01-01

    In previous work, we have demonstrated the effectiveness of a post-growth hydrogen plasma treatment for passivating the electrical activity of dislocations in metalorganic chemical vapor deposition (MOCVD) grown InP on GaAs substrates by a more than two order of magnitude reduction in deep level concentration and an improvement in reverse bias leakage current by a factor of approx. 20. These results make plasma hydrogenation an extremely promising technique for achieving high efficiency large area and light weight heteroepitaxial InP solar cells for space applications. In this work we investigate the carrier trapping process by dislocations in heteroepitaxial InP/GaAs and the role of hydrogen passivation on this process. It is shown that the charge trapping kinetics of dislocations after hydrogen passivation are significantly altered, approaching point defect-like behavior consistent with a transformation from a high concentration of dislocation-related defect bands within the InP bandgap to a low concentration of individual deep levels after hydrogen passivation. It is further shown that the "apparent" activation energies of dislocation related deep levels, before and after passivation, reduce by approx. 70 meV as DLTS fill pulse times are increased from 1 usec. to 1 msec. A model is proposed which explains these effects based on a reduction of Coulombic interaction between individual core sites along the dislocation cores by hydrogen incorporation. Knowledge of the trapping properties in these specific structures is important to develop optimum, low loss heteroepitaxial InP cells.

  5. First biological measurements of deep-sea corals from the Red Sea

    PubMed Central

    Roder, C.; Berumen, M. L.; Bouwmeester, J.; Papathanassiou, E.; Al-Suwailem, A.; Voolstra, C. R.

    2013-01-01

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ‘deep-sea’ and ‘cold-water’ corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited. PMID:24091830

  6. First biological measurements of deep-sea corals from the Red Sea.

    PubMed

    Roder, C; Berumen, M L; Bouwmeester, J; Papathanassiou, E; Al-Suwailem, A; Voolstra, C R

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with 'deep-sea' and 'cold-water' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  7. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.

    PubMed

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter

    2017-04-01

    Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson's disease, and helps inform how adaptive deep brain stimulation might best be delivered. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.

  8. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease

    PubMed Central

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling

    2017-01-01

    Abstract Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson’s disease, elevations in beta activity (13–35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson’s disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson’s disease, and helps inform how adaptive deep brain stimulation might best be delivered. PMID:28334851

  9. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.

    PubMed

    Pan, Xiaoyong; Shen, Hong-Bin

    2017-02-28

    RNAs play key roles in cells through the interactions with proteins known as the RNA-binding proteins (RBP) and their binding motifs enable crucial understanding of the post-transcriptional regulation of RNAs. How the RBPs correctly recognize the target RNAs and why they bind specific positions is still far from clear. Machine learning-based algorithms are widely acknowledged to be capable of speeding up this process. Although many automatic tools have been developed to predict the RNA-protein binding sites from the rapidly growing multi-resource data, e.g. sequence, structure, their domain specific features and formats have posed significant computational challenges. One of current difficulties is that the cross-source shared common knowledge is at a higher abstraction level beyond the observed data, resulting in a low efficiency of direct integration of observed data across domains. The other difficulty is how to interpret the prediction results. Existing approaches tend to terminate after outputting the potential discrete binding sites on the sequences, but how to assemble them into the meaningful binding motifs is a topic worth of further investigation. In viewing of these challenges, we propose a deep learning-based framework (iDeep) by using a novel hybrid convolutional neural network and deep belief network to predict the RBP interaction sites and motifs on RNAs. This new protocol is featured by transforming the original observed data into a high-level abstraction feature space using multiple layers of learning blocks, where the shared representations across different domains are integrated. To validate our iDeep method, we performed experiments on 31 large-scale CLIP-seq datasets, and our results show that by integrating multiple sources of data, the average AUC can be improved by 8% compared to the best single-source-based predictor; and through cross-domain knowledge integration at an abstraction level, it outperforms the state-of-the-art predictors by 6%. Besides the overall enhanced prediction performance, the convolutional neural network module embedded in iDeep is also able to automatically capture the interpretable binding motifs for RBPs. Large-scale experiments demonstrate that these mined binding motifs agree well with the experimentally verified results, suggesting iDeep is a promising approach in the real-world applications. The iDeep framework not only can achieve promising performance than the state-of-the-art predictors, but also easily capture interpretable binding motifs. iDeep is available at http://www.csbio.sjtu.edu.cn/bioinf/iDeep.

  10. Considerations for the measurement of core, skin and mean body temperatures.

    PubMed

    Taylor, Nigel A S; Tipton, Michael J; Kenny, Glen P

    2014-12-01

    Despite previous reviews and commentaries, significant misconceptions remain concerning deep-body (core) and skin temperature measurement in humans. Therefore, the authors have assembled the pertinent Laws of Thermodynamics and other first principles that govern physical and physiological heat exchanges. The resulting review is aimed at providing theoretical and empirical justifications for collecting and interpreting these data. The primary emphasis is upon deep-body temperatures, with discussions of intramuscular, subcutaneous, transcutaneous and skin temperatures included. These are all turnover indices resulting from variations in local metabolism, tissue conduction and blood flow. Consequently, inter-site differences and similarities may have no mechanistic relationship unless those sites have similar metabolic rates, are in close proximity and are perfused by the same blood vessels. Therefore, it is proposed that a gold standard deep-body temperature does not exist. Instead, the validity of each measurement must be evaluated relative to one's research objectives, whilst satisfying equilibration and positioning requirements. When using thermometric computations of heat storage, the establishment of steady-state conditions is essential, but for clinically relevant states, targeted temperature monitoring becomes paramount. However, when investigating temperature regulation, the response characteristics of each temperature measurement must match the forcing function applied during experimentation. Thus, during dynamic phases, deep-body temperatures must be measured from sites that track temperature changes in the central blood volume. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Deep To Shallow, Time Transgressive Shift In The Source Of Bottom Waters On Demerara Rise Inferred From Neodymium Isotopes In Fish Debris

    NASA Astrophysics Data System (ADS)

    Isaza-Londoño, C.; MacLeod, K. G.; Martin, E. E.; Jiménez Berrocoso

    2008-12-01

    Between the Campanian and Danian, ɛNd values of fish debris from four sites on Demerara Rise (tropical North Atlantic) shift by ~5 units from -16 to -11. Low values from Campanian and early Maastrichtian samples are similar to values measured on most other Late Cretaceous samples from Demerara sites, whereas the post-shift values are similar to Late Cretaceous and Paleogene values observed at a number of other North Atlantic deep sea sites. In addition, at the two relatively deep sites studied (Ocean Drilling Program [ODP] Sites 1258 and 1260), the shift begins near the base of the Maastrichtian Abathomphalus mayaroensis planktonic foraminifera Zone and values increase over an interval representing several million years of deposition. In two relatively shallow sites (OSP Sites 1259 and 1261), on the other hand, ɛNd values remain low through the highest Cretaceous samples measured, which are from near the top of the Abathomphalus mayaroensis Zone. Therefore, low values persist for several million years longer at the shallower sites. At Site 1259, no Paleogene samples have been analyzed yet, but at Site 1261 values shift from ~-16.5 to ~-13 in samples separated by ~3.5 m and bracketing the Cretaceous/Paleogene (K/T) boundary. Unfortunately, the K/T boundary is not complete at Site 1261, so the relationship to the K/T event is unclear. Ongoing work is focused on constraining the relationship between ɛNd shifts and the K/T boundary using the more complete record at Site 1259 and at examining whether there is any high frequency variation superimposed on the gradual trends observed, especially at the deeper sites. Regardless of the outcome of the these analyses, assuming the low ɛNd values characteristic of most the Late Cretaceous on Demerara Rise are the signature of a locally formed intermediate water mass, the existing data already indicate that the importance of downwelling in the tropical North Atlantic began to wane in the mid- Maastrichtian and had apparently ceased by the earliest Paleogene.

  12. Benthic Foraminiferal Assemblages during ETM2: Variations by Geography and Depth

    NASA Astrophysics Data System (ADS)

    Thomas, E.

    2017-12-01

    Early Paleogene hyperthermal events were perturbations of the global carbon cycle of varying magnitude, characterized by global warming and ocean acidification. The most extreme was the Paleocene-Eocene Thermal Maximum (PETM; 55.9 Ma), with Eocene Thermal Event 2 (ETM2) 1.8 myr later. These events of different magnitude allow us to investigate whether the response of biota to hyperthermal events scales with the magnitude of the event (given by its carbon isotope excursion). During the PETM deep-sea benthic foraminifera suffered severe extinction; assemblages directly postdating the extinction have low diversity and high dominance of opportunistic taxa. Faunas had partially recovered before ETM2, but never recovered the full pre-PETM diversity. Across ETM2, assemblages at Walvis Ridge (SE Atlantic) Sites 1263 (paleodepth 1500m) and 1262 (paleodepth 3600m) (Jennions et al., 2015) and at Site 1209 (Shatsky Rise, subtropical Pacific, paleodepth 1900 m) and Site 1215 (tropical eastern Pacific Ocean) did not suffer extinction. All sites saw temporary declines in diversity and equity, increased abundance of low-food indicators, and declining benthic foraminiferal accumulation rates, possibly linked to increased remineralization in the water column (Lewis et al. 2017). ETM2 records for deep Pacific Site 1215 are incomplete, because the site was close to, and at times, below the CCD, but assemblages are similar to these at deeper Site 1262 (above the Atlantic CCD), with abundant oligotrophic taxa. ETM2 assemblages at Site 1209 and 1263 both have more rectilinear and buliminid taxa than the deeper sites, indicative of a higher food supply. Site 1263, the shallowest of the studied sites, saw a much more severe decline in diversity and abundance of benthic foraminifera than Site 1209, and than both deeper sites. Deep-sea benthic assemblages thus show no simple correlation between the magnitude of hyperthermal events and that of the global biotic response, but have strong geographic and bathymetric variability. Jennions, S. M., Thomas, E., Schmidt, D. N., Lunt, D., and Ridgwell, A., 2015, Paleoceanography, 30 1059-1077 Lewis, A., Griffith, E. M., Thomas, E., and Winguth, A., 2017. Marine Export Production and Remineralization during early Eocene hyperthermal events. AGU, this session.

  13. Extensive forearm deep venous thrombosis following a severe infliximab infusion reaction.

    PubMed

    Ryan, Barbara M; Romberg, Marielle; Wolters, Frank; Stockbrugger, Reinhold W

    2004-09-01

    Here we describe a patient with Crohn's disease who developed a severe infliximab infusion reaction (IIR), complicated 1 day later by severe swelling of the forearm and hand ipsilateral to the site of infliximab infusion. This proved to be extensive forearm deep venous thrombosis. The site of thrombosis and the chronological relationship with the IIR implicates a hypersensitivity to infliximab in the causation of the venous thrombosis in this case. With an increasing trend towards re-treating patients with known IIRs, clinicians should be aware of this potentially serious and previously unreported complication.

  14. Electromagnetic sounding of the moon using Apollo 16 and Lunokhod 2 surface magnetometer observations /preliminary results/

    NASA Technical Reports Server (NTRS)

    Vanian, L. L.; Vnutchokova, T. A.; Fainberg, E. B.; Eroschenko, E. A.; Dyal, P.; Parkin, C. W.; Daily, W. D.

    1977-01-01

    A technique of deep electromagnetic sounding of the moon using simultaneous magnetic-field measurements at two lunar surface sites is described. The method, used with the assumption that deep electrical conductivity is a function only of lunar radius, has the advantage of allowing calculation of the external driving field from two surface-site measurements only and therefore does not require data from a lunar orbiting satellite. A transient-response calculation is presented for the example of a magnetic-field discontinuity, measured simultaneously by Apollo 16 and Lunokhod 2 surface magnetometers.

  15. Electromagnetic Sounding of the Moon Using Apollo 16 and Lunokhod 2 Surface Magnetometer Observations (Preliminary Results)

    NASA Technical Reports Server (NTRS)

    Vanyan, L. L.; Vnutchokova, T. A.; Fainberg, E. B.; Eroschenko, E. A.; Dyal, P.; Parkin, C. W.; Parkin, C. W.

    1977-01-01

    A new technique of deep electromagnetic sounding of the Moon using simultaneous magnetic field measurements at two lunar surface sites is described. The method, used with the assumption that deep electrical conductivity is a function only of lunar radius, has the advantage of allowing calculation of the external driving field from two surface site measurements only, and therefore does not require data from a lunar orbiting satellite. A transient response calculation is presented for the example of a magnetic field discontinuity of February 13, 1973, measured simultaneously by Apollo 16 and Lunokhod 2 surface magnetometers.

  16. Coccolith and silicoflagellate stratigraphy, northern mid-Atlantic Ridge and Reykjanes Ridge, Deep Sea Drilling Project Leg 49

    USGS Publications Warehouse

    Bukry, David

    1979-01-01

    Leg 49 of the Deep Sea Drilling Project recovered 192 cores at eight drilling sites, 407 through 414 (Figure 1). Light-microscope techniques were used to study the cocoliths, silicoflagellates, and sponge spicules of 120 samples from these cores. The cocolith zonation of the samples follows Bukry (1975a), and is summarized in Figure 2. Silicoflagellate zonation, summarized in Figure 3, is explained in the text. Siliceous sponge spicules are common in many samples and are briefly discussed and illustrated. One new silicoflagellate, Distephanus sulcatus, from the Plicene of Site 407, is described.

  17. Spatial Variability of the Background Diurnal Cycle of Deep Convection around the GoAmazon2014/5 Field Campaign Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burleyson, Casey D.; Feng, Zhe; Hagos, Samson M.

    The Amazon rainforest is one of a few regions of the world where continental tropical deep convection occurs. The Amazon’s isolation makes it challenging to observe, but also creates a unique natural laboratory to study anthropogenic impacts on clouds and precipitation in an otherwise pristine environment. Extensive measurements were made upwind and downwind of the large city of Manaus, Brazil during the Observations and Modeling of the Green Ocean Amazon 2014-2015 (GoAmazon2014/5) field campaign. In this study, 15 years of high-resolution satellite data are analyzed to examine the spatial and diurnal variability of convection occurring around the GoAmazon2014/5 sites. Interpretationmore » of anthropogenic differences between the upwind (T0) and downwind (T1-T3) sites is complicated by naturally-occurring spatial variability between the sites. During the rainy season, the inland propagation of the previous day’s sea-breeze front happens to be in phase with the background diurnal cycle near Manaus, but is out of phase elsewhere. Enhanced convergence between the river-breezes and the easterly trade winds generates up to 10% more frequent deep convection at the GoAmazon2014/5 sites east of the river (T0a, T0t/k, and T1) compared to the T3 site which was located near the western bank. In general, the annual and diurnal cycles during 2014 were representative of the 2000-2013 distributions. The only exceptions were in March when the monthly mean rainrate was above the 95th percentile and September when both rain frequency and intensity were suppressed. The natural spatial variability must be accounted for before interpreting anthropogenically-induced differences among the GoAmazon2014/5 sites.« less

  18. MAGA, a new database of gas natural emissions: a collaborative web environment for collecting data.

    NASA Astrophysics Data System (ADS)

    Cardellini, Carlo; Chiodini, Giovanni; Frigeri, Alessandro; Bagnato, Emanuela; Frondini, Francesco; Aiuppa, Alessandro

    2014-05-01

    The data on volcanic and non-volcanic gas emissions available online are, as today, are incomplete and most importantly, fragmentary. Hence, there is need for common frameworks to aggregate available data, in order to characterize and quantify the phenomena at various scales. A new and detailed web database (MAGA: MApping GAs emissions) has been developed, and recently improved, to collect data on carbon degassing form volcanic and non-volcanic environments. MAGA database allows researchers to insert data interactively and dynamically into a spatially referred relational database management system, as well as to extract data. MAGA kicked-off with the database set up and with the ingestion in to the database of the data from: i) a literature survey on publications on volcanic gas fluxes including data on active craters degassing, diffuse soil degassing and fumaroles both from dormant closed-conduit volcanoes (e.g., Vulcano, Phlegrean Fields, Santorini, Nysiros, Teide, etc.) and open-vent volcanoes (e.g., Etna, Stromboli, etc.) in the Mediterranean area and Azores, and ii) the revision and update of Googas database on non-volcanic emission of the Italian territory (Chiodini et al., 2008), in the framework of the Deep Earth Carbon Degassing (DECADE) research initiative of the Deep Carbon Observatory (DCO). For each geo-located gas emission site, the database holds images and description of the site and of the emission type (e.g., diffuse emission, plume, fumarole, etc.), gas chemical-isotopic composition (when available), gas temperature and gases fluxes magnitude. Gas sampling, analysis and flux measurement methods are also reported together with references and contacts to researchers expert of each site. In this phase data can be accessed on the network from a web interface, and data-driven web service, where software clients can request data directly from the database, are planned to be implemented shortly. This way Geographical Information Systems (GIS) and Virtual Globes (e.g., Google Earth) could easily access the database, and data could be exchanged with other database. At the moment the database includes: i) more than 1000 flux data about volcanic plume degassing from Etna and Stromboli volcanoes, ii) data from ~ 30 sites of diffuse soil degassing from Napoletan volcanoes, Azores, Canary, Etna, Stromboli, and Vulcano Island, several data on fumarolic emissions (~ 7 sites) with CO2 fluxes; iii) data from ~ 270 non volcanic gas emission site in Italy. We believe MAGA data-base is an important starting point to develop a large scale, expandable data-base aimed to excite, inspire, and encourage participation among researchers. In addition, the possibility to archive location and qualitative information for gas emission/sites not yet investigated, could stimulate the scientific community for future researches and will provide an indication on the current uncertainty on deep carbon fluxes global estimates

  19. The Sulcis Storage Project: Status of the First Italian Initiative for Pilot-Scale Geological Sequestration of CO2

    NASA Astrophysics Data System (ADS)

    Plaisant, A.; Maggio, E.; Pettinau, A.

    2016-12-01

    The deep aquifer located at a depth of about 1000-1500 m within fractured carbonate in the Sulcis coal basin (South-West Sardinia, Italy) constitutes a potential reservoir to develop a pilot-scale CO2 storage site. The occurrence of several coal mines and the geology of the basin also provide favourable condition to install a permanent infrastructures where advanced CO2 storage technologies can be developed. Overall, the Sulcis project will allow to characterize the Sulcis coal basin (South West Sardinia, Italy) and to develop a permanent infrastructure (know-how, equipment, laboratories, etc.) for advanced international studies on CO2 storage. The research activities are structured in two different phases: (i) site characterization, including the construction of an underground and a fault laboratories and (ii) the installation of a test site for small-scale injection of CO2. In particular, the underground laboratory will host geochemical and geophysical experiments on rocks, taking advantages of the buried environment and the very well confined conditions in the galleries; in parallel, the fault laboratory will be constructed to study CO2 leakage phenomena in a selected fault. The project is currently ongoing and some preliminary results will be presented in this work as well as the structure of the project as a whole. More in detail, preliminary activities comprise: (i) geochemical monitoring; (ii) the minero-petrographycal, physical and geophysical characterization of the rock samples; (iii) the development of both static and dynamic geological models of the reservoir; (iv) the structural geology and fault analysis; (v) the assessment of natural seismicity through a monitoring network (vi) the re-processing and the analysis of the reflection seismic data. Future activities will comprise: (i) the drilling of shallow exploration wells near the faults; (ii) the construction of both the above mentioned laboratories; (iii) drilling of a deep exploration well (1,500 m); (iv) injection tests. Preliminary analyses show that the rocks of the carbonate formation present a low porosity, but the formation is characterized by a good permeability for fractures and karst. The faults are typically sealed and petrophysical properties of caprock and reservoir are spatially heterogeneous.

  20. Five Hundred and Seventy Three Holes in the Bottom of the Sea-Some Results From Seven Years of Deep-Sea Drilling

    ERIC Educational Resources Information Center

    Davies, T. A.

    1976-01-01

    Described are the background, operation, and findings of the work of the deep sea drilling vessel Glomar Challenger, which has taken 8,638 core samples from 573 holes at 392 sites on the floor of the Earth's oceans. (SL)

  1. Effect of deep vs. shallow tillage on onion stunting and onion bulb yield, 2012

    USDA-ARS?s Scientific Manuscript database

    A field experiment was conducted at a site inoculated with R. solani AG 8 at the Oregon State University Hermiston Agricultural Research and Extension Center in Hermiston, OR to determine the effect of plowing (deep tillage) vs. rototilling (shallow tillage) on onion stunting caused by R. solani AG ...

  2. Digging Deeper: The Deep Web.

    ERIC Educational Resources Information Center

    Turner, Laura

    2001-01-01

    Focuses on the Deep Web, defined as Web content in searchable databases of the type that can be found only by direct query. Discusses the problems of indexing; inability to find information not indexed in the search engine's database; and metasearch engines. Describes 10 sites created to access online databases or directly search them. Lists ways…

  3. 75 FR 78234 - Lock+TM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... project (Project No. 13780-000) would consist of: (1) An 85-foot-long, 100-foot-wide, 14-foot-deep excavated power canal; (2) a 95-foot-long, 100-foot-wide, 10-foot-deep excavated tailrace; (3) a 100-foot...)(iii) and the instructions on the Commission's Web site http://www.ferc.gov/docs-filing/efiling.asp...

  4. 76 FR 28224 - Science Advisory Board Staff Office; Notification of a Public Teleconference of the Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ... Advisory Board can be found at the EPA SAB Web site at http://www.epa.gov/sab . SUPPLEMENTARY INFORMATION..., and human health effects. The Deep Water Horizon spill identified the need for additional research on alternative spill response technologies; environmental impacts of chemical dispersants under deep sea...

  5. Photoacoustic diagnosis of burns in rats: two-dimensional photo-acoustic imaging of burned tissue

    NASA Astrophysics Data System (ADS)

    Yamazaki, Mutsuo; Sato, Shunichi; Saito, Daizo; Okada, Yoshiaki; Kurita, Akira; Kikuchi, Makoto; Ashida, Hiroshi; Obara, Minoru

    2003-06-01

    We previously reported that for rat burn models, deep dermal burns and deep burns can be well differentiated by measuring the propagation time of the photoacoustic signals originated from the blood in the healthy skin tissue under the damaged tissue layer. However, the diagnosis was based on point measurement in the wound, and therefore site-dependent information on the injuries was not obtained; such information is very important for diagnosis of extended burns. In the present study, we scanned a photoacoustic detector on the wound and constructed two-dimensional (2-D) images of the blood-originated photoacoustic signals for superficial dermal burns (SDB), deep dermal burns (DDB), deep burns (DB), and healthy skins (control) in rats. For each burn model, site-dependent variation of the signal was observed; the variation probably reflects the distribution of blood vessels in the skin tissue. In spite of the variation, clear differentiation was obtained between SDB, DDB, and DB from the 2D images. The images were constructed as a function of post burn time. Temporal signal variation will be also presented.

  6. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining.

    PubMed

    Jones, Daniel O B; Kaiser, Stefanie; Sweetman, Andrew K; Smith, Craig R; Menot, Lenaick; Vink, Annemiek; Trueblood, Dwight; Greinert, Jens; Billett, David S M; Arbizu, Pedro Martinez; Radziejewska, Teresa; Singh, Ravail; Ingole, Baban; Stratmann, Tanja; Simon-Lledó, Erik; Durden, Jennifer M; Clark, Malcolm R

    2017-01-01

    Commercial-scale mining for polymetallic nodules could have a major impact on the deep-sea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities.

  7. Hydrothermal impacts on trace element and isotope ocean biogeochemistry.

    PubMed

    German, C R; Casciotti, K A; Dutay, J-C; Heimbürger, L E; Jenkins, W J; Measures, C I; Mills, R A; Obata, H; Schlitzer, R; Tagliabue, A; Turner, D R; Whitby, H

    2016-11-28

    Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2015 The Authors.

  8. Hydrothermal impacts on trace element and isotope ocean biogeochemistry

    PubMed Central

    Dutay, J.-C.; Heimbürger, L. E.; Jenkins, W. J.; Measures, C. I.; Mills, R. A.; Obata, H.; Turner, D. R.; Whitby, H.

    2016-01-01

    Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035265

  9. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining

    PubMed Central

    Kaiser, Stefanie; Sweetman, Andrew K.; Smith, Craig R.; Menot, Lenaick; Vink, Annemiek; Trueblood, Dwight; Greinert, Jens; Billett, David S. M.; Arbizu, Pedro Martinez; Radziejewska, Teresa; Singh, Ravail; Ingole, Baban; Stratmann, Tanja; Simon-Lledó, Erik; Durden, Jennifer M.; Clark, Malcolm R.

    2017-01-01

    Commercial-scale mining for polymetallic nodules could have a major impact on the deep-sea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities. PMID:28178346

  10. Reverted glutathione S-transferase-like genes that influence flower color intensity of carnation (Dianthus caryophyllus L.) originated from excision of a transposable element

    PubMed Central

    Momose, Masaki; Itoh, Yoshio; Umemoto, Naoyuki; Nakayama, Masayoshi; Ozeki, Yoshihiro

    2013-01-01

    A glutathione S-transferase-like gene, DcGSTF2, is responsible for carnation (Dianthus caryophyllus L.) flower color intensity. Two defective genes, DcGSTF2mu with a nonsense mutation and DcGSTF2-dTac1 containing a transposable element dTac1, have been characterized in detail in this report. dTac1 is an active element that produces reverted functional genes by excision of the element. A pale-pink cultivar ‘Daisy’ carries both defective genes, whereas a spontaneous deep-colored mutant ‘Daisy-VPR’ lost the element from DcGSTF2-dTac1. This finding confirmed that dTac1 is active and that the resulting reverted gene, DcGSTF2rev1, missing the element is responsible for this color change. Crosses between the pale-colored cultivar ‘06-LA’ and a deep-colored cultivar ‘Spectrum’ produced segregating progeny. Only the deep-colored progeny had DcGSTF2rev2 derived from the ‘Spectrum’ parent, whereas progeny with pale-colored flowers had defective forms from both parents, DcGSTF2mu and DcGSTF2-dTac1. Thus, DcGSTF2rev2 had functional activity and likely originated from excision of dTac1 since there was a footprint sequence at the vacated site of the dTac1 insertion. Characterizing the DcGSTF2 genes in several cultivars revealed that the two functional genes, DcGSTF2rev1 and DcGSTF2rev2, have been used for some time in carnation breeding with the latter in use for more than half a century. PMID:24399917

  11. Reverted glutathione S-transferase-like genes that influence flower color intensity of carnation (Dianthus caryophyllus L.) originated from excision of a transposable element.

    PubMed

    Momose, Masaki; Itoh, Yoshio; Umemoto, Naoyuki; Nakayama, Masayoshi; Ozeki, Yoshihiro

    2013-12-01

    A glutathione S-transferase-like gene, DcGSTF2, is responsible for carnation (Dianthus caryophyllus L.) flower color intensity. Two defective genes, DcGSTF2mu with a nonsense mutation and DcGSTF2-dTac1 containing a transposable element dTac1, have been characterized in detail in this report. dTac1 is an active element that produces reverted functional genes by excision of the element. A pale-pink cultivar 'Daisy' carries both defective genes, whereas a spontaneous deep-colored mutant 'Daisy-VPR' lost the element from DcGSTF2-dTac1. This finding confirmed that dTac1 is active and that the resulting reverted gene, DcGSTF2rev1, missing the element is responsible for this color change. Crosses between the pale-colored cultivar '06-LA' and a deep-colored cultivar 'Spectrum' produced segregating progeny. Only the deep-colored progeny had DcGSTF2rev2 derived from the 'Spectrum' parent, whereas progeny with pale-colored flowers had defective forms from both parents, DcGSTF2mu and DcGSTF2-dTac1. Thus, DcGSTF2rev2 had functional activity and likely originated from excision of dTac1 since there was a footprint sequence at the vacated site of the dTac1 insertion. Characterizing the DcGSTF2 genes in several cultivars revealed that the two functional genes, DcGSTF2rev1 and DcGSTF2rev2, have been used for some time in carnation breeding with the latter in use for more than half a century.

  12. Supporting Faculty Learning About Teaching: The On the Cutting Edge Website

    NASA Astrophysics Data System (ADS)

    Fox, S.; Iverson, E. A.; Manduca, C. A.; Kirk, K. B.; McDaris, J. R.; Ormand, C. J.; Bruckner, M. Z.

    2011-12-01

    The On the Cutting Edge website captures information about teaching geoscience from workshop participants and leaders. Designed to both support workshop participants in making use of ideas developed at the workshop and to allow a broader audience to access these ideas, the site includes more than 4900 pages of content in 39 topical collections with more than 1400 community-contributed teaching activities. The site is well used: in 2010, 850,000 visitors made more than one million visits to the site viewing more than 2.1 million pages. To obtain a more detailed understanding of site use within our target population, we interviewed a sample of 30 geoscience faculty. Five primary uses were described repeatedly and in depth: finding ideas for teaching, understanding what colleagues are doing in specific teaching situations, learning about methods, tools, or topic in education or geoscience, finding visualizations, and networking or career planning. Interviewees could describe particular instances where they made use of teaching materials and could cite reasons why they believed this improved student learning. To understand how these uses are manifest in the weblogs, a sample of 73 sessions that lasted at least 10 minutes, and viewed 10 or more pages were selected from March 2009 logs. Sessions were selected to sample heavy use of one or more topical collections, and to sample the diversity of log characteristics. The sessions were described qualitatively and the resulting descriptions categorized. Four recognizable use patterns emerged: activity browsing in some cases combined with study of a pedagogic method, browsing visualizations and associated topical content, digging deep within a particular topical collection, and cross-site browsing. These patterns seem consistent with the uses reported in the interviews. An analysis of characteristics of all sessions in 2008 viewing 10 or more pages indicate that the major uses described in the interview study by 30 faculty are in fact widespread among the 16,000 users seeing 10 or more pages. The most widespread identifiable use is finding teaching activities or finding out what colleagues are doing in a particular teaching situation (20-40% of use). Roughly 30% of use appears to be related to seeking visualizations for class. Another 20% of use includes learning about pedagogic methods, though that may not be the users' intention when they enter the site. As in the interview study, use associated with finding career information is significant though less common (10% of use). The relative distribution of page views across modules is well aligned with the reported uses, and offers further confirmation that these uses are widely represented in the deep sessions.

  13. Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean

    NASA Astrophysics Data System (ADS)

    Slotnick, B. S.; Lauretano, V.; Backman, J.; Dickens, G. R.; Sluijs, A.; Lourens, L.

    2015-03-01

    Major variations in global carbon cycling occurred between 62 and 48 Ma, and these very likely related to changes in the total carbon inventory of the ocean-atmosphere system. Based on carbon cycle theory, variations in the mass of the ocean carbon should be reflected in contemporaneous global ocean carbonate accumulation on the seafloor and, thereby, the depth of the calcite compensation depth (CCD). To better constrain the cause and magnitude of these changes, the community needs early Paleogene carbon isotope and carbonate accumulation records from widely separated deep-sea sediment sections, especially including the Indian Ocean. Several CCD reconstructions for this time interval have been generated using scientific drill sites in the Atlantic and Pacific oceans; however, corresponding information from the Indian Ocean has been extremely limited. To assess the depth of the CCD and the potential for renewed scientific drilling of Paleogene sequences in the Indian Ocean, we examine lithologic, nannofossil, carbon isotope, and carbonate content records for late Paleocene - early Eocene sediments recovered at three sites spanning Ninetyeast Ridge: Deep Sea Drilling Project (DSDP) Sites 213 (deep, east), 214 (shallow, central), and 215 (deep, west). The disturbed, discontinuous sediment sections are not ideal, because they were recovered in single holes using rotary coring methods, but remain the best Paleogene sediments available from the central Indian Ocean. The δ13C records at Sites 213 and 215 are similar to those generated at several locations in the Atlantic and Pacific, including the prominent high in δ13C across the Paleocene carbon isotope maximum (PCIM) at Site 215, and the prominent low in δ13C across the early Eocene Climatic Optimum (EECO) at both Site 213 and Site 215. The Paleocene-Eocene thermal maximum (PETM) and the K/X event are found at Site 213 but not at Site 215, presumably because of coring gaps. Carbonate content at both Sites 213 and 215 drops to <5% shortly after the first occurrence of Discoaster lodoensis and the early Eocene rise in δ13C (~52 Ma). This reflects a rapid shoaling of the CCD, and likely a major decrease in the net flux of 13C-depleted carbon to the ocean. Our results support ideas that major changes in net fluxes of organic carbon to and from the exogenic carbon cycle occurred during the early Paleogene. Moreover, we conclude that excellent early Paleogene carbonate accumulation records might be recovered from the central Indian Ocean with future scientific drilling.

  14. Deep Learning for Automated Extraction of Primary Sites From Cancer Pathology Reports.

    PubMed

    Qiu, John X; Yoon, Hong-Jun; Fearn, Paul A; Tourassi, Georgia D

    2018-01-01

    Pathology reports are a primary source of information for cancer registries which process high volumes of free-text reports annually. Information extraction and coding is a manual, labor-intensive process. In this study, we investigated deep learning and a convolutional neural network (CNN), for extracting ICD-O-3 topographic codes from a corpus of breast and lung cancer pathology reports. We performed two experiments, using a CNN and a more conventional term frequency vector approach, to assess the effects of class prevalence and inter-class transfer learning. The experiments were based on a set of 942 pathology reports with human expert annotations as the gold standard. CNN performance was compared against a more conventional term frequency vector space approach. We observed that the deep learning models consistently outperformed the conventional approaches in the class prevalence experiment, resulting in micro- and macro-F score increases of up to 0.132 and 0.226, respectively, when class labels were well populated. Specifically, the best performing CNN achieved a micro-F score of 0.722 over 12 ICD-O-3 topography codes. Transfer learning provided a consistent but modest performance boost for the deep learning methods but trends were contingent on the CNN method and cancer site. These encouraging results demonstrate the potential of deep learning for automated abstraction of pathology reports.

  15. Integrated geological-geophysical models of unstable slopes in seismogenic areas in NW and SE Europe

    NASA Astrophysics Data System (ADS)

    Mreyen, Anne-Sophie; Micu, Mihai; Onaca, Alexandru; Demoulin, Alain; Havenith, Hans-Balder

    2017-04-01

    We will present a series of new integrated 3D models of landslide sites that were investigated in distinctive seismotectonic and climatic contexts: (1) along the Hockai Fault Zone in Belgium, with the 1692 Verviers Earthquake (M 6 - 6.5) as most prominent earthquake that occurred in that fault zone and (2) in the seismic region of Vrancea, Romania, where four earthquakes with Mw > 7.4 have been recorded during the last two centuries. Both sites present deep-seated failures located in more or less seismically active areas. In such areas, slope stability analyses have to take into account the possible contributions to ground failure. Our investigation methods had to be adapted to capture the deep structure as well as the physico-mechanical characteristics that influence the dynamic behaviour of the landslide body. Field surveys included electrical resistivity tomography profiles, seismic refraction profiles (analysed in terms of both seismic P-wave tomography and surface waves), ambient noise measurements to determine the soil resonance frequencies through H/V analysis, complemented by geological and geomorphic mapping. The H/V method, in particular, is more and more used for landslide investigations or sites marked by topographic relief (in addition to the more classical applications on flat sites). Results of data interpretation were compiled in 3D geological-geophysical models supported by high resolution remote sensing data of the ground surface. Data and results were not only analysed in parallel or successively; to ensure full integration of all inputs-outputs, some data fusion and geostatistical techniques were applied to establish closer links between them. Inside the 3D models, material boundaries were defined in terms of surfaces and volumes. Those models were used as inputs for 2D dynamic numerical simulations completed with the UDEC (Itasca) software. For some sites, a full back-analysis was carried out to assess the possibility of a seismic triggering of the landslides.

  16. X-linked Alport syndrome caused by splicing mutations in COL4A5.

    PubMed

    Nozu, Kandai; Vorechovsky, Igor; Kaito, Hiroshi; Fu, Xue Jun; Nakanishi, Koichi; Hashimura, Yuya; Hashimoto, Fusako; Kamei, Koichi; Ito, Shuichi; Kaku, Yoshitsugu; Imasawa, Toshiyuki; Ushijima, Katsumi; Shimizu, Junya; Makita, Yoshio; Konomoto, Takao; Yoshikawa, Norishige; Iijima, Kazumoto

    2014-11-07

    X-linked Alport syndrome is caused by mutations in the COL4A5 gene. Although many COL4A5 mutations have been detected, the mutation detection rate has been unsatisfactory. Some men with X-linked Alport syndrome show a relatively mild phenotype, but molecular basis investigations have rarely been conducted to clarify the underlying mechanism. In total, 152 patients with X-linked Alport syndrome who were suspected of having Alport syndrome through clinical and pathologic investigations and referred to the hospital for mutational analysis between January of 2006 and January of 2013 were genetically diagnosed. Among those patients, 22 patients had suspected splice site mutations. Transcripts are routinely examined when suspected splice site mutations for abnormal transcripts are detected; 11 of them showed expected exon skipping, but others showed aberrant splicing patterns. The mutation detection strategy had two steps: (1) genomic DNA analysis using PCR and direct sequencing and (2) mRNA analysis using RT-PCR to detect RNA processing abnormalities. Six splicing consensus site mutations resulting in aberrant splicing patterns, one exonic mutation leading to exon skipping, and four deep intronic mutations producing cryptic splice site activation were identified. Interestingly, one case produced a cryptic splice site with a single nucleotide substitution in the deep intron that led to intronic exonization containing a stop codon; however, the patient showed a clearly milder phenotype for X-linked Alport syndrome in men with a truncating mutation. mRNA extracted from the kidney showed both normal and abnormal transcripts, with the normal transcript resulting in the milder phenotype. This novel mechanism leads to mild clinical characteristics. This report highlights the importance of analyzing transcripts to enhance the mutation detection rate and provides insight into genotype-phenotype correlations. This approach can clarify the cause of atypically mild phenotypes in X-linked Alport syndrome. Copyright © 2014 by the American Society of Nephrology.

  17. Conserving archaeological sites as biological and historical resources in the Gulf of Mexico: the effects of crude oil and dispersant on the biodiversity and corrosion potential of shipwreck bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Salerno, J. L.; Little, B.; Lee, J.; Ray, R.; Hamdan, L. J.

    2016-02-01

    There are more than 2,000 documented shipwrecks in the Gulf of Mexico. Historic shipwrecks are invaluable cultural resources, but also serve as artificial reefs, enhancing biodiversity in the deep sea. Oil and gas-related activities have the potential to impact shipwreck sites. An estimated 30% of the oil from the Deepwater Horizon spill was deposited in the deep-sea, in areas that contain shipwrecks. We conducted field and laboratory experiments to determine if crude oil, dispersed oil, and/or dispersant affect the community composition, metabolic function, and/or corrosion potential of microorganisms inhabiting shipwrecks. Platforms containing carbon steel coupons (CSC) (n = 34 per platform) were placed at impacted and non-impacted shipwrecks or into four experimental microcosm tanks. After a 2-week acclimation period, tanks were treated with crude oil and/or dispersant or received no treatment. CSC and seawater (SW) samples for bacterial genetic analysis were collected bi-weekly (at 16 wks for field samples). Proteobacteria dominated field and lab CSC bacterial communities (77-97% of sequences). Field CSC bacterial communities differed at each wreck site (P = 0.001), with oil-impacted sites differing from control sites. Lab CSC bacterial communities differed between all treatment groups (P = 0.005) and changed over the course of the experiment (P = 0.001). CSC bacterial species richness, diversity, and dominance increased with time across all treatments indicating the recruitment and establishment of microbial biofilms on CSCs. SW bacterial communities differed between treatment groups (P = 0.001), with the dispersant treatment being most dissimilar from all other treatments (P < 0.01), and changed over time (P = 0.001). Oil- and oil/dispersant-treated CSCs exhibited higher corrosion compared to dispersant and control treatments. These findings indicate that exposure to oil and/or dispersant may alter bacterial community composition and corrosion potential.

  18. Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins.

    PubMed

    Subburaj, Saminathan; Chung, Sung Jin; Lee, Choongil; Ryu, Seuk-Min; Kim, Duk Hyoung; Kim, Jin-Soo; Bae, Sangsu; Lee, Geung-Joo

    2016-07-01

    Site-directed mutagenesis of nitrate reductase genes using direct delivery of purified Cas9 protein preassembled with guide RNA produces mutations efficiently in Petunia × hybrida protoplast system. The clustered, regularly interspaced, short palindromic repeat (CRISPR)-CRISPR associated endonuclease 9 (CRISPR/Cas9) system has been recently announced as a powerful molecular breeding tool for site-directed mutagenesis in higher plants. Here, we report a site-directed mutagenesis method targeting Petunia nitrate reductase (NR) gene locus. This method could create mutations efficiently using direct delivery of purified Cas9 protein and single guide RNA (sgRNA) into protoplast cells. After transient introduction of RNA-guided endonuclease (RGEN) ribonucleoproteins (RNPs) with different sgRNAs targeting NR genes, mutagenesis at the targeted loci was detected by T7E1 assay and confirmed by targeted deep sequencing. T7E1 assay showed that RGEN RNPs induced site-specific mutations at frequencies ranging from 2.4 to 21 % at four different sites (NR1, 2, 4 and 6) in the PhNR gene locus with average mutation efficiency of 14.9 ± 2.2 %. Targeted deep DNA sequencing revealed mutation rates of 5.3-17.8 % with average mutation rate of 11.5 ± 2 % at the same NR gene target sites in DNA fragments of analyzed protoplast transfectants. Further analysis from targeted deep sequencing showed that the average ratio of deletion to insertion produced collectively by the four NR-RGEN target sites (NR1, 2, 4, and 6) was about 63:37. Our results demonstrated that direct delivery of RGEN RNPs into protoplast cells of Petunia can be exploited as an efficient tool for site-directed mutagenesis of genes or genome editing in plant systems.

  19. Viking landing sites

    NASA Technical Reports Server (NTRS)

    Panagakos, N.

    1973-01-01

    A valley near the mouth of the 20,000-foot-deep Martian Grand Canyon has been chosen by NASA as the site of its first automated landing on the planet Mars. The landing site for the second mission of the 1975-76 Viking spacecraft will probably be an area about 1,000 miles northeast of the first site, where the likelihood of water increases the chances of finding evidence of life.

  20. Evaluating an Exterior Insulation and Finish System for Deep Energy Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Podorson, David

    Exterior insulation and finish systems (EIFS) are proprietary synthetic formulations that are applied to the exterior walls of buildings to serve as insulation and exterior cladding. The insulation thickness can vary from less than one inch to a foot or more. In this project the applicability of EIFS for residential deep energy retrofits was investigated through modeling and a case study home. The home was retrofitted using a site-applied four-inch-thick EIFS. Site-specific details were developed as required for the residential retrofit application. Site work and the costs of the EIFS system were documented. The demonstration home was modeled using Buildingmore » Energy Optimization energy and cost analysis software to explore cost effectiveness of various EIFS insulation thicknesses in two climate locations.« less

  1. Verification of an optimized stimulation point on the abdominal wall for transcutaneous neuromuscular electrical stimulation for activation of deep lumbar stabilizing muscles.

    PubMed

    Baek, Seung Ok; Cho, Hee Kyung; Jung, Gil Su; Son, Su Min; Cho, Yun Woo; Ahn, Sang Ho

    2014-09-01

    Transcutaneous neuromuscular electrical stimulation (NMES) can stimulate contractions in deep lumbar stabilizing muscles. An optimal protocol has not been devised for the activation of these muscles by NMES, and information is lacking regarding an optimal stimulation point on the abdominal wall. The goal was to determine a single optimized stimulation point on the abdominal wall for transcutaneous NMES for the activation of deep lumbar stabilizing muscles. Ultrasound images of the spinal stabilizing muscles were captured during NMES at three sites on the lateral abdominal wall. After an optimal location for the placement of the electrodes was determined, changes in the thickness of the lumbar multifidus (LM) were measured during NMES. Three stimulation points were investigated using 20 healthy physically active male volunteers. A reference point R, 1 cm superior to the iliac crest along the midaxillary line, was used. Three study points were used: stimulation point S1 was located 2 cm superior and 2 cm medial to the anterior superior iliac spine, stimulation point S3 was 2 cm below the lowest rib along the same sagittal plane as S1, and stimulation point S2 was midway between S1 and S3. Sessions were conducted stimulating at S1, S2, or S3 using R for reference. Real-time ultrasound imaging (RUSI) of the abdominal muscles was captured during each stimulation session. In addition, RUSI images were captured of the LM during stimulation at S1. Thickness, as measured by RUSI, of the transverse abdominis (TrA), obliquus internus, and obliquus externus was greater during NMES than at rest for all three study points (p<.05). Transverse abdominis was significantly stimulated more by NMES at S1 than at the other points (p<.05). The LM thickness was also significantly greater during NMES at S1 than at rest (p<.05). Neuromuscular electrical stimulation at S1 optimally activated deep spinal stabilizing muscles, TrA and LM, as evidenced by RUSI. The authors recommend this optimal stimulation point be used for NMES in the course of lumbar spine stabilization training in patients having difficulty initiating contraction of these muscles. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Sediment-deposition rates and organic compounds in bottom sediment at four sites in Lake Mead, Nevada, May 1998

    USGS Publications Warehouse

    Covay, K.J.; Beck, D.A.

    2001-01-01

    In May 1998 the U.S. Geological Survey, in cooperation with the University of Nevada, Las Vegas, investigated rates of sediment deposition and concentrations of selected synthetic organic compounds at four sites in Lake Mead. Sediment cores were extracted from two sites (one shallow and one deep) in Las Vegas Bay, from one site in the Overton Arm, and from one site near the historic confluence of the Colorado and Virgin Rivers. The sediment cores were age-dated using cesium-137 and were analyzed for the presence of organochlorine compounds (pesticides and degradation products, polychlorinated biphenyls, dioxins, and furans) and for semivolatile organic compounds (polycyclic aromatic hydrocarbons and phenols). Sediment-deposition rates after impoundment of the Colorado River by Hoover Dam were determined by measuring the accumulation of mass during three different periods: (1) from the approximate impoundment date for each site (1935-37) to the initial occurrence of cesium-137 in the atmosphere (1952); (2) from 1952 to the maximum concentration of cesium-137 in the atmosphere (1964); and (3) from 1964 to the collection date of the sample (1998). Sediment-deposition rates for the entire post-impoundment period (1935-98) averaged 1.45 (g/cm2)/yr (grams per square centimeter per year) at the Las Vegas Bay shallow site, 1.25 (g/cm2)/yr at the Las Vegas Bay deep site, 0.80 (g/cm2)/yr at the Overton Arm site, and 0.65 (g/cm2)/yr at the Colorado and Virgin Rivers confluence site. Sediment-deposition rates after impoundment of the Colorado River by Hoover Dam were determined by measuring the accumulation of mass during three different periods: (1) from the approximate impoundment date for each site (1935-37) to the initial occurrence of cesium-137 in the atmosphere (1952); (2) from 1952 to the maximum concentration of cesium-137 in the atmosphere (1964); and (3) from 1964 to the collection date of the sample (1998). Sediment-deposition rates for the entire post-impoundment period (1935-98) averaged 1.45 (g/cm2)/yr (grams per square centimeter per year) at the Las Vegas Bay shallow site, 1.25 (g/cm2)/yr at the Las Vegas Bay deep site, 0.80 (g/cm2)/yr at the Overton Arm site, and 0.65 (g/cm2)/yr at the Colorado and Virgin Rivers confluence site. Total numbers of synthetic organic compounds detected in sediment samples were 48 at the Las Vegas Bay shallow site, 57 at the Las Vegas Bay deep site, 26 at the Overton Arm site, and 31 at the Colorado and Virgin Rivers confluence site. The most commonly detected organochlorine pesticide and polychlorinated biphenyl compounds were dichlorodiphenyldichloroethane and dichlorodiphenyldichloroethylene. The most commonly detected dioxin compounds were tetrachlorodibenzo-p-dioxin and octochlorodibenzo-p-dioxin. The most commonly detected furan compounds were tetrachlorodibenzofuran and octochlorodibenzofuran. The most commonly detected polycyclic aromatic hydrocarbons included perylene, benzo[g,h,i]perylene, 2,6-dimethylnaphthalene, and indeno[1,2,3-c,d]pyrene. The most commonly detected phenol compound was phenol.

  3. Long-term Measurement of Sediment Resuspension and Gas Hydrate Stability at a Gulf of Mexico Seep Site

    NASA Astrophysics Data System (ADS)

    Vardaro, M. F.; Bender, L. C.; MacDonald, I. R.

    2003-12-01

    To study the temporal topographic and hydrologic changes in Gulf of Mexico cold seeps, we deployed a deep-sea time-lapse camera, several temperature probes and an ADCP mooring at the continental shelf seep community surrounding a gas hydrate outcropping. The digital camera recorded one still image every six hours for three months in 2001, every two hours for the month of June 2002 and every six hours for the month of July 2002. A pair of 300 kHz Workhorse acoustic Doppler current profilers (ADCPs) attached to a 540 meter-long mooring were anchored approximately 2 km from the site in 2002. Temperature probes were deployed at the site over the entire experimental period. The data recovered provide a comprehensive record of gas hydrate mound processes. We calculated biological activity by identifying fauna observed in the time-lapse record and recording the number of individuals and species seen in each image. 1,381 individual organisms representing over 20 species were observed. An average of 4.6 (+/-3.0) organisms were seen in each frame during the three-month deployment, while 3.6 (+/-4.2) were seen per frame in the one-month deployment. An extensive amount of sediment suspension and redistribution occurred during the deployment period. By digitally analyzing the luminosity of the water column above the mound and plotting the results over time the turbidity at the site could be quantified. A 24.1-hour diurnal pattern can be seen in the record, indicating a possible tidal or inertial component to deep-sea currents in this area. Contrary to expectations, there was no major change in shape or size of the gas hydrate outcrop being studied. This indicates a higher degree of stability than laboratory studies or prior in situ observations have shown. The stable topography of the gas hydrate mound combines with high organic output and sediment turnover to serve as a focus of benthic predatory activity. The frequency and recurrence of sediment resuspension indicate that change in the depth and local distribution of surface sediments is a robust feature of the benthos at this site. Because the sediment interface is a critical environment for hydrocarbon oxidation and chemosynthesis, short term variations and heterogeneity may be important attributes of these settings.

  4. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China

    NASA Astrophysics Data System (ADS)

    Lin, W.; Gan, H.

    2017-12-01

    Hot dry rock (HDR) geothermal resource is one of the most important clean energy in future. Site selection a HDR resource is a fundamental work to explore the HDR resources. This paper compiled all the HDR development projects domestic and abroad, and summarized the location of HDR geothermal geological index. After comparing the geological background of HDR in the southeast coastal area of China, Yangjiang Xinzhou in Guangdong province, Leizhou Peninsula area, Lingshui in Hainan province and Huangshadong in Guangzhou were selected from some key potential target area along the southeast coast of China. Deep geothermal field model of the study area is established based on the comprehensive analysis of the target area of deep geothermal geological background and deep thermal anomalies. This paper also compared the hot dry rock resources target locations, and proposed suggestions for the priority exploration target area and exploration scheme.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, S.E. Jr.; Chung, K.T.

    Anaerobic bacteria were isolated from deep subsurface sediment samples taken at study sites in Idaho (INEL) and Washington (HR) by culturing on dilute and concentrated medium. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. Although the number of isolates was small (18 INEL, 27 HR) some general patterns could be determined. Most strains could utilize all the carbon sources, however the glycerol and melizitose utilization was positive for 50% or less of the HR isolates. Catalase activity (27.78% at INEL, 74.07% at HR) and tryptophan metabolism (11.12% at INEL, 40.74% at HR) weremore » significantly different between the two study sites. MPN and viable counts indicate that sediments near the water table yield the greatest numbers of anaerobes. Deeper sediments also appear to be more selective with the greatest number of viable counts on low-nutrient mediums. Likewise, only strictly obligate anaerobes were found in the deepest sediment samples. Selective media indicated the presence of methanogens, acetogens, and sulfate reducers at only the HR site.« less

  6. Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals

    PubMed Central

    Wu, Fan; Stark, Eran; Ku, Pei-Cheng; Wise, Kensall D.; Buzsáki, György; Yoon, Euisik

    2015-01-01

    SUMMARY We report a scalable method to monolithically integrate microscopic light emitting diodes (μLEDs) and recording sites onto silicon neural probes for optogenetic applications in neuroscience. Each μLED and recording site has dimensions similar to a pyramidal neuron soma, providing confined emission and electrophysiological recording of action potentials and local field activity. We fabricated and implanted the four-shank probes, each integrated with 12 μLEDs and 32 recording sites, into the CA1 pyramidal layer of anesthetized and freely moving mice. Spikes were robustly induced by 60 nW light power, and fast population oscillations were induced at the microwatt range. To demonstrate the spatiotemporal precision of parallel stimulation and recording, we achieved independent control of distinct cells ~50 μm apart and of differential somatodendritic compartments of single neurons. The scalability and spatiotemporal resolution of this monolithic optogenetic tool provides versatility and precision for cellular-level circuit analysis in deep structures of intact, freely moving animals. PMID:26627311

  7. Isolated oxygen defects in 3C- and 4H-SiC: A theoretical study

    NASA Astrophysics Data System (ADS)

    Gali, A.; Heringer, D.; Deák, P.; Hajnal, Z.; Frauenheim, Th.; Devaty, R. P.; Choyke, W. J.

    2002-09-01

    Ab initio calculations in the local-density approximation have been carried out in SiC to determine the possible configurations of the isolated oxygen impurity. Equilibrium geometry and occupation levels were calculated. Substitutional oxygen in 3C-SiC is a relatively shallow effective mass like double donor on the carbon site (OC) and a hyperdeep double donor on the Si site (OSi). In 4H-SiC OC is still a double donor but with a more localized electron state. In 3C-SiC OC is substantially more stable under any condition than OSi or interstitial oxygen (Oi). In 4H-SiC OC is also the most stable one except for heavy n-type doping. We propose that OC is at the core of the electrically active oxygen-related defect family found by deep level transient spectroscopy in 4H-SiC. The consequences of the site preference of oxygen on the SiC/SiO2 interface are discussed.

  8. Restoration of the Apollo Heat Flow Experiments Metadata

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Stephens, M. K.; Taylor, P. T.; Williams, D. R.; Hills, H. K.; Nakamura, Y.

    2015-01-01

    Geothermal heat flow probes were deployed on the Apollo 15 and 17 missions as part of the Apollo Lunar Surface Experiments Package (ALSEP). At each landing site, the astronauts drilled 2 holes, 10-m apart, and installed a probe in each. The holes were 1- and 1.5-m deep at the Apollo 15 site and 2.5-m deep at the Apollo 17 sites. The probes monitored surface temperature and subsurface temperatures at different depths. At the Apollo 15 site, the monitoring continued from July 1971 to January 1977. At the Apollo 17 site, it did from December 1972 to September 1977. Based on the observations made through December 1974, Marcus Langseth, the principal investigator of the heat flow experiments (HFE), determined the thermal conductivity of the lunar regolith by mathematically modeling how the seasonal temperature fluctuation propagated down through the regolith. He also determined the temperature unaffected by diurnal and seasonal thermal waves of the regolith at different depths, which yielded the geothermal gradient. By multiplying the thermal gradient and the thermal conductivity, Langseth obtained the endogenic heat flow of the Moon as 21 mW/m(exp 2) at Site 15 and 16 mW/m(exp 2) at Site 17.

  9. Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks

    PubMed Central

    Soper, Colin; Wicker, Evan; Kulick, Catherine V.; N’Gouemo, Prosper; Forcelli, Patrick A.

    2016-01-01

    Because sites of seizure origin may be unknown or multifocal, identifying targets from which activation can suppress seizures originating in diverse networks is essential. We evaluated the ability of optogenetic activation of the deep/intermediate layers of the superior colliculus (DLSC) to fill this role. Optogenetic activation of DLSC suppressed behavioral and electrographic seizures in the pentylenetetrazole (forebrain+brainstem seizures) and Area Tempestas (forebrain/complex partial seizures) models; this effect was specific to activation of DLSC, and not neighboring structures. DLSC activation likewise attenuated seizures evoked by gamma butyrolactone (thalamocortical/absence seizures), or acoustic stimulation of genetically epilepsy prone rates (brainstem seizures). Anticonvulsant effects were seen with stimulation frequencies as low as 5 Hz. Unlike previous applications of optogenetics for the control of seizures, activation of DLSC exerted broad-spectrum anticonvulsant actions, attenuating seizures originating in diverse and distal brain networks. These data indicate that DLSC is a promising target for optogenetic control of epilepsy. PMID:26721319

  10. Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks.

    PubMed

    Soper, Colin; Wicker, Evan; Kulick, Catherine V; N'Gouemo, Prosper; Forcelli, Patrick A

    2016-03-01

    Because sites of seizure origin may be unknown or multifocal, identifying targets from which activation can suppress seizures originating in diverse networks is essential. We evaluated the ability of optogenetic activation of the deep/intermediate layers of the superior colliculus (DLSC) to fill this role. Optogenetic activation of DLSC suppressed behavioral and electrographic seizures in the pentylenetetrazole (forebrain+brainstem seizures) and Area Tempestas (forebrain/complex partial seizures) models; this effect was specific to activation of DLSC, and not neighboring structures. DLSC activation likewise attenuated seizures evoked by gamma butyrolactone (thalamocortical/absence seizures), or acoustic stimulation of genetically epilepsy prone rates (brainstem seizures). Anticonvulsant effects were seen with stimulation frequencies as low as 5 Hz. Unlike previous applications of optogenetics for the control of seizures, activation of DLSC exerted broad-spectrum anticonvulsant actions, attenuating seizures originating in diverse and distal brain networks. These data indicate that DLSC is a promising target for optogenetic control of epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Dense array recordings in the San Bernardino Valley of landers-big bear aftershocks: Basin surface waves, Moho reflections, and three-dimensional simulations

    USGS Publications Warehouse

    Frankel, Arthur

    1994-01-01

    Fourteen GEOS seismic recorders were deployed in the San Bernardino Valley to study the propagation of short-period (T ≈ 1 to 3 sec) surface waves and Moho reflections. Three dense arrays were used to determine the direction and speed of propagation of arrivals in the seismograms. The seismograms for a shallow (d ≈ 1 km) M 4.9 aftershock of the Big Bear earthquake exhibit a very long duration (60 sec) of sustained shaking at periods of about 2 sec. Array analysis indicates that these late arrivals are dominated by surface waves traveling in various directions across the Valley. Some energy is arriving from a direction 180° from the epicenter and was apparently reflected from the edge of the Valley opposite the source. A close-in aftershock (Δ = 25 km, depth = 7 km) displays substantial short-period surface waves at deep-soil sites. A three-dimensional (3D) finite difference simulation produces synthetic seismograms with durations similar to those of the observed records for this event, indicating the importance of S-wave to surface-wave conversion near the edge of the basin. Flat-layered models severely underpredict the duration and spectral amplification of this deep-soil site. I show an example where the coda wave amplitude ratio at 1 to 2 Hz between a deep-soil and a rock site does not equal the S-wave amplitude ratio, because of the presence of surface waves in the coda of the deep-soil site. For one of the events studied (Δ ≈ 90 km), there are sizable phases that are critically reflected from the Moho (PmP and SmS). At one of the rock sites, the SmS phase has a more peaked spectrum that the direct S wave.

  12. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    NASA Astrophysics Data System (ADS)

    Máguas, C.; Rascher, K. G.; Martins-Loução, A.; Carvalho, P.; Pinho, P.; Ramos, M.; Correia, O.; Werner, C.

    2011-12-01

    In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW) availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels) in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader) and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy). Species comparison revealed that variability in pre-dawn water potential (Ψpre) and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya) and phreatophyte (Salix repens) species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic exploitation, in plant species from sand dunes, is variable, being particularly relevant for deep rooted species and phreatophytes, which seem to depend heavily on access to GW.

  13. Deep-towed CSEM survey of gas hydrates in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kannberg, P.; Constable, S.

    2017-12-01

    Controlled source electromagnetic (CSEM) surveys are increasingly being used to remotely detect hydrate deposits in seafloor sediments. CSEM methods are sensitive to sediment pore space resistivity, such as when electrically resistive hydrate displaces the electrically conductive pore fluid, increasing the bulk resistivity of the sediment. In July 2017, a two-week research cruise using an upgraded and expanded "Vulcan" towed receiver system collected over 250 line km of data at four sites in the Gulf of Mexico (GoM) thought to have hydrate bearing sediments. Hydrate bearing horizons at the survey sites ranged from 400-700 m below seafloor. Modeling suggested an array with source receiver offsets of up to 1600 m would be needed to properly image the deep hydrate. A deep towed electromagnetic transmitter outputting 270 Amps was towed 100 m above seafloor. Six Vulcan receivers, each recording three-axis electric field data, were towed at 200 m intervals from 600-1600 m behind the transmitter. The four sites surveyed, Walker Ridge 313, Orca Basin, Mad Dog, and Green Canyon 955, are associated with the upcoming GOM^2 coring operation scheduled for 2020. Wells at WR313 and GC955 were logged as part of a joint industry drilling project in 2009 and will be used to ground truth our inversion results. In 2008, WR313 and GC955 were surveyed using traditional CSEM seafloor receivers, accompanied by a single prototype Vulcan towed receiver. This prior survey will allow comparison of results from a seafloor receiver survey with those from a towed receiver survey. Seismic data has been collected at all the sites, which will be used to constrain inversions. In addition to the four hydrate sites surveyed, two lines were towed over Green Knoll, a deep-water salt dome located between Mad Dog and GC955. Presented here are initial results from our recent cruise.

  14. Cavity detection and delineation research. Part 1: Microgravimetric and magnetic surveys: Medford Cave Site, Florida

    NASA Astrophysics Data System (ADS)

    Butler, D. K.

    1982-03-01

    This report reviews the scope of a research effort initiated in 1974 at the U.S. Army Engineer Waterways Experiment Station with the objectives of (a) assessing the state of the art in geophysical cavity detection and delineation methodology and (b) developing new methods and improving or adapting old methods for application to cavity detection and delineation. Two field test sites were selected: (a) the Medford Cave site with a relatively shallow (10- to 50-ft-deep) air-filled cavity system and (b) the Manatee Springs site with a deeper (approximately 100-ft-deep) water-filled cavity system. Results of field studies at the Medford Cave site are presented in this report: (a) the site geology, (b) the site topographic survey, (c) the site drilling program (boreholes for geophysical tests, for determination of a detailed geological cross section, and for verification of geophysical anomalies), (d) details of magnetic and microgravimetric surveys, and (e) correlation of geophysical results with known site geology. Qualitative interpretation guidelines using complementary geophysical techniques for site investigations in karst regions are presented. Including the results of electrical resistivity surveys conducted at the Medford Cave site, the qualitative guidelines are applied to four profile lines, and drilling locations are indicated on the profile plots of gravity, magnetic, and electrical resistivity data. Borehole logs are then presented for comparison with the predictions of the qualitative interpretation guidelines.

  15. Inferior vena cava filter insertion through the popliteal vein: enabling the percutaneous endovenous intervention of deep vein thrombosis with a single venous access approach in a single session

    PubMed Central

    Kim, Hyoung Ook; Kim, Jae Kyu; Park, Jin Gyoon; Yim, Nam Yeol; Kang, Yang Jun; Jung, Hye Doo

    2016-01-01

    PURPOSE We aimed to evaluate the efficiency of placing an inferior vena cava (IVC) filter through the same popliteal vein access site used for percutaneous endovenous intervention in patients with extensive lower extremity deep vein thrombosis. METHODS This retrospective study included 21 patients who underwent IVC filter insertion through the popliteal vein over a three-year period. Patient medical records were reviewed for the location of the deep vein thrombosis, result of filter removal, and total number of endovascular procedures needed for filter insertion and recanalization of the lower extremity venous system. Follow-up lower extremity computed tomography (CT) venography was also reviewed in each patient to assess the degree of filter tilt in the IVC. RESULTS All patients had extensive lower extremity deep vein thrombosis involving the iliac vein and/or femoral vein. Seventeen patients showed deep vein thrombosis of the calf veins. In all patients, IVC filter insertion and the recanalization procedure were performed during a single procedure through the single popliteal vein access site. In the 17 patients undergoing follow-up CT, the mean tilt angle of the filter was 7.14°±4.48° in the coronal plane and 8.77°±5.49° in the sagittal plane. Filter retrieval was successful in 16 of 17 patients (94.1%) in whom filter retrieval was attempted. CONCLUSION Transpopliteal IVC filter insertion is an efficient technique that results in low rates of significant filter tilt and enables a single session procedure using a single venous access site for filter insertion and percutaneous endovenous intervention. PMID:27559713

  16. Aligning and synchronization of MIS5 proxy records from Lake Ohrid (FYROM) with independently dated Mediterranean archives: implications for DEEP core chronology

    NASA Astrophysics Data System (ADS)

    Zanchetta, Giovanni; Regattieri, Eleonora; Giaccio, Biagio; Wagner, Bernd; Sulpizio, Roberto; Francke, Alex; Vogel, Hendrik; Sadori, Laura; Masi, Alessia; Sinopoli, Gaia; Lacey, Jack H.; Leng, Melanie J.; Leicher, Niklas

    2016-05-01

    The DEEP site sediment sequence obtained during the ICDP SCOPSCO project at Lake Ohrid was dated using tephrostratigraphic information, cyclostratigraphy, and orbital tuning through the marine isotope stages (MIS) 15-1. Although this approach is suitable for the generation of a general chronological framework of the long succession, it is insufficient to resolve more detailed palaeoclimatological questions, such as leads and lags of climate events between marine and terrestrial records or between different regions. Here, we demonstrate how the use of different tie points can affect cyclostratigraphy and orbital tuning for the period between ca. 140 and 70 ka and how the results can be correlated with directly/indirectly radiometrically dated Mediterranean marine and continental proxy records. The alternative age model presented here shows consistent differences with that initially proposed by Francke et al. (2015) for the same interval, in particular at the level of the MIS6-5e transition. According to this new age model, different proxies from the DEEP site sediment record support an increase of temperatures between glacial to interglacial conditions, which is almost synchronous with a rapid increase in sea surface temperature observed in the western Mediterranean. The results show how a detailed study of independent chronological tie points is important to align different records and to highlight asynchronisms of climate events. Moreover, Francke et al. (2016) have incorporated the new chronology proposed for tephra OH-DP-0499 in the final DEEP age model. This has reduced substantially the chronological discrepancies between the DEEP site age model and the model proposed here for the last glacial-interglacial transition.

  17. An Evaluation of Deep-Sea Benthic Megafaunal Communities in the Northern Gulf of Mexico Using Industrial ROVS and Video Imagery

    NASA Astrophysics Data System (ADS)

    Sharuga, S. M.; Benfield, M. C.

    2016-02-01

    The Deepwater Horizon oil spill in 2010 created a need for more thorough studies of deep-sea benthic biota, especially in soft-sediment areas of the Northern Gulf of Mexico (GoM). These benthic environments are increasingly vulnerable as demand and exploitation of resources in these areas grow. A 15°, 250 m long radial transect survey design was developed for use with industrial remotely operated vehicles (ROVs) to quantify benthic megafaunal communities in the vicinity of the MC252 well. Further, a customized database system was developed to explore natural and anthropogenic factors potentially responsible for influencing benthic megafaunal characteristics in this area. Biotic and abiotic characteristics were extracted from ROV videos collected one year after the Deepwater Horizon spill at seven study sites ranging from 2-39 km away from MC252, and located at depths from 850-1500 m. Seafloor environments differed amongst the sites, with differences found to be related to location and depth. Benthic megafauna in ten taxonomic categories were evaluated in order to compare benthic community characteristics, including density and diversity. Overall, community composition was found to be primarily related to depth and, to a lesser degree, site location. Results from this study suggest that depth, location, and the abiotic environment (ex. seafloor features, including anthropogenic disturbance) play important roles in the abundances and diversity of deep-sea benthic megafauna in the Northern GoM and should be considered when conducting environmental studies. This study demonstrates the utility of industrial-based deep-sea imaging platforms as a readily accessible option for collecting valuable information on deep-sea environments. These platforms exhibit excellent potential for use in determining baseline data and evaluating ecosystem changes and/or recovery.

  18. External Barium Affects the Gating of KCNQ1 Potassium Channels and Produces a Pore Block via Two Discrete Sites

    PubMed Central

    Gibor, Gilad; Yakubovich, Daniel; Peretz, Asher; Attali, Bernard

    2004-01-01

    The pore properties and the reciprocal interactions between permeant ions and the gating of KCNQ channels are poorly understood. Here we used external barium to investigate the permeation characteristics of homomeric KCNQ1 channels. We assessed the Ba2+ binding kinetics and the concentration and voltage dependence of Ba2+ steady-state block. Our results indicate that extracellular Ba2+ exerts a series of complex effects, including a voltage-dependent pore blockade as well as unique gating alterations. External barium interacts with the permeation pathway of KCNQ1 at two discrete and nonsequential sites. (a) A slow deep Ba2+ site that occludes the channel pore and could be simulated by a model of voltage-dependent block. (b) A fast superficial Ba2+ site that barely contributes to channel block and mostly affects channel gating by shifting rightward the voltage dependence of activation, slowing activation, speeding up deactivation kinetics, and inhibiting channel inactivation. A model of voltage-dependent block cannot predict the complex impact of Ba2+ on channel gating in low external K+ solutions. Ba2+ binding to this superficial site likely modifies the gating transitions states of KCNQ1. Both sites appear to reside in the permeation pathway as high external K+ attenuates Ba2+ inhibition of channel conductance and abolishes its impact on channel gating. Our data suggest that despite the high degree of homology of the pore region among the various K+ channels, KCNQ1 channels display significant structural and functional uniqueness. PMID:15226366

  19. Deep subsurface microbial processes

    USGS Publications Warehouse

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of other habitats, the study of deep subsurface microbiology is still in its infancy.

  20. Dive report: Alvin dive #1461; September 28, 1984 (JD 272); Plume site, southern Juan de Fuca Rift

    USGS Publications Warehouse

    Holcomb, R.T.; Kappel, Ellen S.; Ross, Stephanie L.

    1987-01-01

    Dive 1461 was the seventh of nine dives during a sea-going field program to investigate hydrothermal activity along the crest of the southern Juan de Fuca Ridge. During this dive on the Plume site, ALVIN crossed the western floor of the axial valley and traversed about 300 ra of the rim and floor of the narrow inner cleft. Hydrotherraal vents were observed only along the east wall of the inner cleft, and venting was concentrated in a single area less than 50 ra long near the base of that wall. The principal vents extended up the wall from the floor of the cleft to a height of about 10 m. Deposits of hydrothermal minerals occur as incrustations and chimneys on the floor and wall of the cleft. Associated with the hydrothermal vents is a community of vent organisms dominated by vestimentiferan worms and fluffy materials of uncertain nature. The inner cleft at the Plume Site is about 60 ra wide and 15-30 m deep. It has a simple U-shaped profile north of the active vent area, but to the south it contains at least one high, narrow ridge which converges with the east wall of the cleft at the site of hydrothermal venting. This area was also the site of a volcanic eruption, which occurred sometime earlier. Like many similar but subaerial examples, this eruption was episodic, but the cause of its interruptions is not yet known. The present hydrotherraal activity appears to be a residual effect of that last eruption, and the rate of hydrothermal deposition will probably decline in this area until another eruption occurs.

  1. Structural Dissection of the Maltodextrin Disproportionation Cycle of the Arabidopsis Plastidial Disproportionating Enzyme 1 (DPE1)*

    PubMed Central

    O'Neill, Ellis C.; Stevenson, Clare E. M.; Tantanarat, Krit; Latousakis, Dimitrios; Donaldson, Matthew I.; Rejzek, Martin; Nepogodiev, Sergey A.; Limpaseni, Tipaporn; Field, Robert A.; Lawson, David M.

    2015-01-01

    The degradation of transitory starch in the chloroplast to provide fuel for the plant during the night requires a suite of enzymes that generate a series of short chain linear glucans. However, glucans of less than four glucose units are no longer substrates for these enzymes, whereas export from the plastid is only possible in the form of either maltose or glucose. In order to make use of maltotriose, which would otherwise accumulate, disproportionating enzyme 1 (DPE1; a 4-α-glucanotransferase) converts two molecules of maltotriose to a molecule of maltopentaose, which can now be acted on by the degradative enzymes, and one molecule of glucose that can be exported. We have determined the structure of the Arabidopsis plastidial DPE1 (AtDPE1), and, through ligand soaking experiments, we have trapped the enzyme in a variety of conformational states. AtDPE1 forms a homodimer with a deep, long, and open-ended active site canyon contained within each subunit. The canyon is divided into donor and acceptor sites with the catalytic residues at their junction; a number of loops around the active site adopt different conformations dependent on the occupancy of these sites. The “gate” is the most dynamic loop and appears to play a role in substrate capture, in particular in the binding of the acceptor molecule. Subtle changes in the configuration of the active site residues may prevent undesirable reactions or abortive hydrolysis of the covalently bound enzyme-substrate intermediate. Together, these observations allow us to delineate the complete AtDPE1 disproportionation cycle in structural terms. PMID:26504082

  2. Low endemism, continued deep-shallow interchanges, and evidence for cosmopolitan distributions in free-living marine nematodes (order Enoplida)

    PubMed Central

    2010-01-01

    Background Nematodes represent the most abundant benthic metazoa in one of the largest habitats on earth, the deep sea. Characterizing major patterns of biodiversity within this dominant group is a critical step towards understanding evolutionary patterns across this vast ecosystem. The present study has aimed to place deep-sea nematode species into a phylogenetic framework, investigate relationships between shallow water and deep-sea taxa, and elucidate phylogeographic patterns amongst the deep-sea fauna. Results Molecular data (18 S and 28 S rRNA) confirms a high diversity amongst deep-sea Enoplids. There is no evidence for endemic deep-sea lineages in Maximum Likelihood or Bayesian phylogenies, and Enoplids do not cluster according to depth or geographic location. Tree topologies suggest frequent interchanges between deep-sea and shallow water habitats, as well as a mixture of early radiations and more recently derived lineages amongst deep-sea taxa. This study also provides convincing evidence of cosmopolitan marine species, recovering a subset of Oncholaimid nematodes with identical gene sequences (18 S, 28 S and cox1) at trans-Atlantic sample sites. Conclusions The complex clade structures recovered within the Enoplida support a high global species richness for marine nematodes, with phylogeographic patterns suggesting the existence of closely related, globally distributed species complexes in the deep sea. True cosmopolitan species may additionally exist within this group, potentially driven by specific life history traits of Enoplids. Although this investigation aimed to intensively sample nematodes from the order Enoplida, specimens were only identified down to genus (at best) and our sampling regime focused on an infinitesimal small fraction of the deep-sea floor. Future nematode studies should incorporate an extended sample set covering a wide depth range (shelf, bathyal, and abyssal sites), utilize additional genetic loci (e.g. mtDNA) that are informative at the species level, and apply high-throughput sequencing methods to fully assay community diversity. Finally, further molecular studies are needed to determine whether phylogeographic patterns observed in Enoplids are common across other ubiquitous marine groups (e.g. Chromadorida, Monhysterida). PMID:21167065

  3. Soil Carbon and Nitrogen Pools and Assessment of Soil Mitigation of N Removal for Biomass for Energy in the coastal Douglas-fir zone of Oregon, Washington and British Columbia.

    NASA Astrophysics Data System (ADS)

    Harrison, Robert; James, Jason; Dietzen, Christiana; Littke, Kimberly

    2017-04-01

    Biomass, carbon and nitrogen pools in soil (1 m depth) and tree components in 68 intensively-managed Douglas-fir plantations in western Oregon and Washington USA, and British Columbia Canada. The potential removal of N with bole-only and total aboveground harvesting was compared to total ecosystem pools of N to determine the relative removals compared to the total ecosystem N pools to assign a risk rating to each potential harvest site for N removal, with <=10% of total removed being a threshhold at which there would be little potential for N removal concerns over a 55-year rotation, and 30% or greater a cause for significan concern or the potential amelioration of losses with N fertilization. Additional research on 22 of the sites for deep rooting and soil C and N pools up to 4 m depth showed that there were unanticipated and formerly unrecognized large pools of C and N below 1 m depth, and as deep as we were capable of sampling (4 m). Analysis of organic matter in the soil profiles indicate significant differences in binding of organic matter to mineral components of soil at depth, dependent on pH-dependent charge sources primarily associated with volcanic activity in the region. Characterization of PZNC and pH dependent charge at one site showed substantial anion exchange capacity and the ability to bind organic acids and DOC leaching through the soil profile.

  4. Research on image retrieval using deep convolutional neural network combining L1 regularization and PRelu activation function

    NASA Astrophysics Data System (ADS)

    QingJie, Wei; WenBin, Wang

    2017-06-01

    In this paper, the image retrieval using deep convolutional neural network combined with regularization and PRelu activation function is studied, and improves image retrieval accuracy. Deep convolutional neural network can not only simulate the process of human brain to receive and transmit information, but also contains a convolution operation, which is very suitable for processing images. Using deep convolutional neural network is better than direct extraction of image visual features for image retrieval. However, the structure of deep convolutional neural network is complex, and it is easy to over-fitting and reduces the accuracy of image retrieval. In this paper, we combine L1 regularization and PRelu activation function to construct a deep convolutional neural network to prevent over-fitting of the network and improve the accuracy of image retrieval

  5. Comparing the impacts of hiking, skiing and horse riding on trail and vegetation in different types of forest.

    PubMed

    Törn, A; Tolvanen, A; Norokorpi, Y; Tervo, R; Siikamäki, P

    2009-03-01

    Nature-based tourism in protected areas has increased and diversified dramatically during the last decades. Different recreational activities have a range of impacts on natural environments. This paper reports results from a comparison of the impacts of hiking, cross-country skiing and horse riding on trail characteristics and vegetation in northern Finland. Widths and depths of existing trails, and vegetation on trails and in the neighbouring forests were monitored in two research sites during 2001 and 2002. Trail characteristics and vegetation were clearly related to the recreational activity, research site and forest type. Horse trails were as deep as hiking trails, even though the annual number of users was 150-fold higher on the hiking trails. Simultaneously, cross-country skiing had the least effect on trails due to the protective snow cover during winter. Hiking trail plots had little or no vegetation cover, horse riding trail plots had lower vegetation cover than forest plots, while skiing had no impact on total vegetation cover. On the other hand, on horse riding trails there were more forbs and grasses, many of which did not grow naturally in the forest. These species that were limited to riding trails may change the structure of adjacent plant communities in the long run. Therefore, the type of activities undertaken and the sensitivity of habitats to these activities should be a major consideration in the planning and management of nature-based tourism. Establishment of artificial structures, such as stairs, duckboards and trail cover, or complete closure of the site, may be the only way to protect the most sensitive or deteriorated sites.

  6. Changes in deep-sea carbonate-hosted microbial communities associated with high and low methane flux

    NASA Astrophysics Data System (ADS)

    Case, D. H.; Steele, J. A.; Chadwick, G.; Mendoza, G. F.; Levin, L. A.; Orphan, V. J.

    2012-12-01

    Methane seeps on continental shelves are rich in authigenic carbonates built of methane-derived carbon. These authigenic carbonates are home to micro- and macroscopic communities whose compositions are thus far poorly constrained but are known to broadly depend on local methane flux. The formation of authigenic carbonates is itself a result of microbial metabolic activity, as associations of anaerobic methane oxidizing archaea (ANME) and sulfate reducing bacteria (SRB) in the sediment subsurface increase both dissolved inorganic carbon (DIC) and alkalinity in pore waters. This 1:1 increase in DIC and alkalinity promotes the precipitation of authigenic carbonates. In this study, we performed in situ manipulations to test the response of micro- and macrofaunal communities to a change in methane flux. Methane-derived authigenic carbonates from two locations at Hydrate Ridge, OR, USA (depth range 595-604 mbsl), were transplanted from "active" cold seep sites (high methane flux) to "inactive" background sites (low methane flux), and vise versa, for one year. Community diversity surveys using T-RFLP and 16S rRNA clone libraries revealed how both bacterial and archaeal assemblages respond to this change in local environment, specifically demonstrating reproducible shifts in different ANME groups (ANME-1 vs. ANME-2). Animal assemblage composition also shifted during transplantation; gastropod representation increased (relative to control rocks) when substrates were moved from inactive to active sites and polychaete, crustacean and echinoderm representation increased when substrates were moved from active to inactive sites. Combined with organic and inorganic carbon δ13C measurements and mineralogy, this unique in situ experiment demonstrates that authigenic carbonates are viable habitats, hosting microbial and macrofaunal communities capable of responding to changes in external environment over relatively short time periods.

  7. Evaluation of Polyethylene Passive Samplers to Estimate Deep Water PCB Concentrations at the Palos Verdes Shelf Superfund Site

    EPA Science Inventory

    The Palos Verdes Superfund site is located in over 50 meters of water on the continental shelf and slope off the coast of southern California (USA). The site includes 27 km2 of seabed contaminated over several decades by municipal treatment plant effluent discharged via outfall ...

  8. Eco-physiology of Acer saccharum trees on glade-like sites in central Missouri

    Treesearch

    Eric J. Rhodenbaugh; Stephen G. Pallardy

    1993-01-01

    Although sugar maple (Acer saccharum Marsh.) is not considered drought tolerant, it is common on xeric limestone glade-like sites in central Missouri. Acer saccharum on such sites may be a drought-tolerant ecotype or may have access to deep water supply through bedrock cracks. We investigated these possibilities during the 1990...

  9. Telephoto lens view of Silver Spur in the Hadley Delta region from Apollo 15

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A telephoto lens view of the prominent feature called Silver Spur in the Hadley Delta region, photographed during the Apollo 15 lunar surface extravehicular activity at the Hadley-Apennine landing site. The distance from the camera to the spur is about 10 miles. The field of view across the bottom is about one mile. Structural formations in the mountain are clearly visible. There are two major units. The upper unit is characterized by massive subunits, each one of which is approximately 200 feet deep. The lower major unit is characterized by thinner bedding and cross bedding.

  10. Trade-offs between enzyme fitness and solubility illuminated by deep mutational scanning

    PubMed Central

    Bacik, John-Paul; Wrenbeck, Emily E.; Michalczyk, Ryszard; Whitehead, Timothy A.

    2017-01-01

    Proteins are marginally stable, and an understanding of the sequence determinants for improved protein solubility is highly desired. For enzymes, it is well known that many mutations that increase protein solubility decrease catalytic activity. These competing effects frustrate efforts to design and engineer stable, active enzymes without laborious high-throughput activity screens. To address the trade-off between enzyme solubility and activity, we performed deep mutational scanning using two different screens/selections that purport to gauge protein solubility for two full-length enzymes. We assayed a TEM-1 beta-lactamase variant and levoglucosan kinase (LGK) using yeast surface display (YSD) screening and a twin-arginine translocation pathway selection. We then compared these scans with published experimental fitness landscapes. Results from the YSD screen could explain 37% of the variance in the fitness landscapes for one enzyme. Five percent to 10% of all single missense mutations improve solubility, matching theoretical predictions of global protein stability. For a given solubility-enhancing mutation, the probability that it would retain wild-type fitness was correlated with evolutionary conservation and distance to active site, and anticorrelated with contact number. Hybrid classification models were developed that could predict solubility-enhancing mutations that maintain wild-type fitness with an accuracy of 90%. The downside of using such classification models is the removal of rare mutations that improve both fitness and solubility. To reveal the biophysical basis of enhanced protein solubility and function, we determined the crystallographic structure of one such LGK mutant. Beyond fundamental insights into trade-offs between stability and activity, these results have potential biotechnological applications. PMID:28196882

  11. Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic

    NASA Astrophysics Data System (ADS)

    Billups, K.; Channell, J. E. T.; Zachos, J.

    2002-01-01

    At Ocean Drilling Program (ODP) Site 1090 on the Agulhas Ridge (subantarctic South Atlantic) benthic foraminiferal stable isotope records span the late Oligocene through the early Miocene (25-16 Ma) at a temporal resolution of ~10 kyr. In the same time interval a magnetic polarity stratigraphy can be unequivocally correlated to the geomagnetic polarity timescale (GPTS), thereby providing secure correlation of the isotope record to the GPTS. On the basis of the isotope-magnetostratigraphic correlation we provide refined age calibration of established oxygen isotope events Mi1 through Mi2 as well as several other distinctive isotope events. Our data suggest that the δ18O maximum commonly associated with the Oligocene/Miocene (O/M) boundary falls within C6Cn.2r (23.86 Ma). The δ13C maximum coincides, within the temporal resolution of our record, with C6Cn.2n/r boundary and hence to the O/M boundary. Comparison of the stable isotope record from ODP Site 1090 to the orbitally tuned stable isotope record from ODP Site 929 across the O/M boundary shows that variability in the two records is very similar and can be correlated at and below the O/M boundary. Site 1090 stable isotope records also provide the first deep Southern Ocean end-member for reconstructions of circulation patterns and late Oligocene to early Miocene climate change. Comparison to previously published records suggests that basin to basin carbon isotope gradients were small or nonexistent and are inconclusive with respect to the direction of deep water flow. Oxygen isotope gradients between sites suggest that the deep Southern Ocean was cold in comparison to the North Atlantic, Indian, and the Pacific Oceans. Dominance of cold Southern Component Deep Water at Site 1090, at least until 17 Ma, suggests that relatively cold circumpolar climatic conditions prevailed during the late Oligocene and early Miocene. We believe that a relatively cold Southern Ocean reflects unrestricted circumpolar flow through the Drake Passage in agreement with bathymetric reconstructions.

  12. The change in deep cervical flexor activity after training is associated with the degree of pain reduction in patients with chronic neck pain.

    PubMed

    Falla, Deborah; O'Leary, Shaun; Farina, Dario; Jull, Gwendolen

    2012-09-01

    Altered activation of the deep cervical flexors (longus colli and longus capitis) has been found in individuals with neck pain disorders but the response to training has been variable. Therefore, this study investigated the relationship between change in deep cervical flexor muscle activity and symptoms in response to specific training. Fourteen women with chronic neck pain undertook a 6-week program of specific training that consisted of a craniocervical flexion exercise performed twice per day (10 to 20 min) for the duration of the trial. The exercise targets the deep flexor muscles of the upper cervical region. At baseline and follow-up, measures were taken of neck pain intensity (visual analogue scale, 0 to 10), perceived disability (Neck Disability Index, 0 to 50) and electromyography (EMG) of the deep cervical flexors (by a nasopharyngeal electrode suctioned over the posterior oropharyngeal wall) during performance of craniocervical flexion. After training, the activation of the deep cervical flexors increased (P<0.0001) with the greatest change occurring in patients with the lowest values of deep cervical flexor EMG amplitude at baseline (R(2)=0.68; P<0.001). There was a significant relationship between initial pain intensity, change in pain level with training, and change in EMG amplitude for the deep cervical flexors during craniocervical flexion (R(2)=0.34; P<0.05). Specific training of the deep cervical flexor muscles in women with chronic neck pain reduces pain and improves the activation of these muscles, especially in those with the least activation of their deep cervical flexors before training. This finding suggests that the selection of exercise based on a precise assessment of the patients' neuromuscular control and targeted exercise interventions based on this assessment are likely to be the most beneficial to patients with neck pain.

  13. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial.

    PubMed

    Weaver, Frances M; Follett, Kenneth; Stern, Matthew; Hur, Kwan; Harris, Crystal; Marks, William J; Rothlind, Johannes; Sagher, Oren; Reda, Domenic; Moy, Claudia S; Pahwa, Rajesh; Burchiel, Kim; Hogarth, Penelope; Lai, Eugene C; Duda, John E; Holloway, Kathryn; Samii, Ali; Horn, Stacy; Bronstein, Jeff; Stoner, Gatana; Heemskerk, Jill; Huang, Grant D

    2009-01-07

    Deep brain stimulation is an accepted treatment for advanced Parkinson disease (PD), although there are few randomized trials comparing treatments, and most studies exclude older patients. To compare 6-month outcomes for patients with PD who received deep brain stimulation or best medical therapy. Randomized controlled trial of patients who received either deep brain stimulation or best medical therapy, stratified by study site and patient age (< 70 years vs > or = 70 years) at 7 Veterans Affairs and 6 university hospitals between May 2002 and October 2005. A total of 255 patients with PD (Hoehn and Yahr stage > or = 2 while not taking medications) were enrolled; 25% were aged 70 years or older. The final 6-month follow-up visit occurred in May 2006. Bilateral deep brain stimulation of the subthalamic nucleus (n = 60) or globus pallidus (n = 61). Patients receiving best medical therapy (n = 134) were actively managed by movement disorder neurologists. The primary outcome was time spent in the "on" state (good motor control with unimpeded motor function) without troubling dyskinesia, using motor diaries. Other outcomes included motor function, quality of life, neurocognitive function, and adverse events. Patients who received deep brain stimulation gained a mean of 4.6 h/d of on time without troubling dyskinesia compared with 0 h/d for patients who received best medical therapy (between group mean difference, 4.5 h/d [95% CI, 3.7-5.4 h/d]; P < .001). Motor function improved significantly (P < .001) with deep brain stimulation vs best medical therapy, such that 71% of deep brain stimulation patients and 32% of best medical therapy patients experienced clinically meaningful motor function improvements (> or = 5 points). Compared with the best medical therapy group, the deep brain stimulation group experienced significant improvements in the summary measure of quality of life and on 7 of 8 PD quality-of-life scores (P < .001). Neurocognitive testing revealed small decrements in some areas of information processing for patients receiving deep brain stimulation vs best medical therapy. At least 1 serious adverse event occurred in 49 deep brain stimulation patients and 15 best medical therapy patients (P < .001), including 39 adverse events related to the surgical procedure and 1 death secondary to cerebral hemorrhage. In this randomized controlled trial of patients with advanced PD, deep brain stimulation was more effective than best medical therapy in improving on time without troubling dyskinesias, motor function, and quality of life at 6 months, but was associated with an increased risk of serious adverse events. clinicaltrials.gov Identifier: NCT00056563.

  14. Milankovitch-scale correlations between deeply buried microbial populations and biogenic ooze lithology

    USGS Publications Warehouse

    Aiello, I.W.; Bekins, B.A.

    2010-01-01

    The recent discoveries of large, active populations of microbes in the subseafloor of the world's oceans supports the impact of the deep biosphere biota on global biogeochemical cycles and raises important questions concerning the functioning of these extreme environments for life. These investigations demonstrated that subseafloor microbes are unevenly distributed and that cell abundances and metabolic activities are often independent from sediment depths, with increased prokaryotic activity at geochemical and/or sedimentary interfaces. In this study we demonstrate that microbial populations vary at the scale of individual beds in the biogenic oozes of a drill site in the eastern equatorial Pacific (Ocean Drilling Program Leg 201, Site 1226). We relate bedding-scale changes in biogenic ooze sediment composition to organic carbon (OC) and microbial cell concentrations using high-resolution color reflectance data as proxy for lithology. Our analyses demonstrate that microbial concentrations are an order of magnitude higher in the more organic-rich diatom oozes than in the nannofossil oozes. The variations mimic small-scale variations in diatom abundance and OC, indicating that the modern distribution of microbial biomass is ultimately controlled by Milankovitch-frequency variations in past oceanographic conditions. ?? 2010 Geological Society of America.

  15. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mary A.; Tangyunyong, Paiboon; Cole, Edward I.

    2016-01-14

    Laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes (LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increased leakage ismore » not present in devices without AVM signals. Transmission electron microscopy analysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less

  16. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    DOE PAGES

    Miller, Mary A.; Tangyunyong, Paiboon; Edward I. Cole, Jr.

    2016-01-12

    In this study, laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes(LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increasedmore » leakage is not present in devices without AVM signals. Transmission electron microscopyanalysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less

  17. MaGa, a web-based collaborative database for gas emissions: a tool to improve the knowledge on Earth degassing

    NASA Astrophysics Data System (ADS)

    Frigeri, A.; Cardellini, C.; Chiodini, G.; Frondini, F.; Bagnato, E.; Aiuppa, A.; Fischer, T. P.; Lehnert, K. A.

    2014-12-01

    The study of the main pathways of carbon flux from the deep Earth requires the analysis of a large quantity and variety of data on volcanic and non-volcanic gas emissions. Hence, there is need for common frameworks to aggregate available data and insert new observations. Since 2010 we have been developing the Mapping Gas emissions (MaGa) web-based database to collect data on carbon degassing form volcanic and non-volcanic environments. MaGa uses an Object-relational model, translating the experience of field surveyors into the database schema. The current web interface of MaGa allows users to browse the data in tabular format or by browsing an interactive web-map. Enabled users can insert information as measurement methods, instrument details as well as the actual values collected in the field. Measurements found in the literature can be inserted as well as direct field observations made by human-operated instruments. Currently the database includes fluxes and gas compositions from active craters degassing, diffuse soil degassing and fumaroles both from dormant volcanoes and open-vent volcanoes from literature survey and data about non-volcanic emission of the Italian territory. Currently, MaGa holds more than 1000 volcanic plume degassing fluxes, data from 30 sites of diffuse soil degassing from italian volcanoes, and about 60 measurements from fumarolic and non volcanic emission sites. For each gas emission site, the MaGa holds data, pictures, descriptions on gas sampling, analysis and measurement methods, together with bibliographic references and contacts to researchers having experience on each site. From 2012, MaGa developments started to be focused towards the framework of the Deep Earth Carbon Degassing research initiative of the Deep Carbon Observatory. Whithin the DECADE initiative, there are others data systems, as EarthChem and the Smithsonian Institution's Global Volcanism Program. An interoperable interaction between the DECADE data systems is being planned. MaGa is showing good potentials to improve the knowledge on Earth degassing firstly by making data more accessible and encouraging participation among researchers, and secondly by allowing to observe and explore, for the first time, a gas emission dataset with spatial and temporal extents never analyzed before.

  18. Proposed Drill Sites

    DOE Data Explorer

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  19. Synthesis, characterization and preclinical studies of two-photon-activated targeted PDT therapeutic triads

    NASA Astrophysics Data System (ADS)

    Spangler, C. W.; Starkey, J. R.; Rebane, A.; Meng, F.; Gong, A.; Drobizhev, M.

    2006-02-01

    Photodynamic therapy (PDT) continues to evolve into a mature clinical treatment of a variety of cancer types as well as age-related macular degeneration of the eye. However, there are still aspects of PDT that need to be improved in order for greater clinical acceptance. While a number of new PDT photo-sensitizers, sometimes referred to as second- or third- generation therapeutic agents, are currently under clinical investigation, the direct treatment through the skin of subcutaneous tumors deeper than 5 mm remains problematic. Currently approved PDT porphyrin photo-sensitizers, as well as several modified porphyrins (e.g. chlorins, bacteriochlorins, etc.) that are under clinical investigation can be activated at 630-730 nm, but none above 800 nm. It would be highly desirable if new PDT paradigms could be developed that would allow photo-activation deep in the tissue transparency window in the Near-infrared (NIR) above 800 nm to reduce scattering and absorption phenomena that reduce deep tissue PDT efficacy. Rasiris and MPA Technologies have developed new porphyrins that have greatly enhanced two-photon absorption ( P A ) cross-sections and can be activated deep in the NIR (ca. 780-850 nm). These porphyrins can be incorporated into a therapeutic triad that also employs an small molecule targeting agent that directs the triad to over-expressed tumor receptor sites, and a NIR onephoton imaging agent that allows tracking the delivery of the triad to the tumor site, as well as clearance of excess triad from healthy tissue prior to the start of PDT treatment. We are currently using these new triads in efficacy studies with a breast cancer cell line that has been transfected with luciferase genes that allow implanted tumor growth and post- PDT treatment efficacy studies in SCID mouse models by following the rise and decay of the bioluminescence signal. We have also designed highly absorbing and scattering collagen breast cancer phantoms in which we have demonstrated dramatic cell kill to a depth of at least 4 cm. We have also demonstrated that at the wavelength and laser fluences used in the treatment of implanted tumors in the mouse mammary fat pads, there is little, if any, damage to the skin or internal mouse organs. In addition, we have also demonstrated that the implanted tumors can be treated to a depth of more than 1 cm by direct radiation through the dorsal side of the mouse.

  20. Measuring the Pulse of Mars

    NASA Image and Video Library

    2018-01-25

    Elysium Planitia, a flat-smooth plain just north of the equator makes for the perfect location from which to study the deep Martian interior. Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, is designed to study the deep interior of Mars. The mission seeks the fingerprints of the processes that formed the rocky planets of the solar system. Its landing site, Elysium Planitia, was picked from 22 candidates, and is centered at about 4.5 degrees north latitude and 135.9 degrees east longitude; about 373 miles (600 kilometers) from Curiosity's landing site, Gale Crater. The locations of other Mars landers and rovers are labeled. InSight's scientific success and safe landing depends on landing in a relatively flat area, with an elevation low enough to have sufficient atmosphere above the site for a safe landing. It also depends on landing in an area where rocks are few in number. Elysium Planitia has just the right surface for the instruments to be able to probe the deep interior, and its proximity to the equator ensures that the solar-powered lander is exposed to plenty of sunlight. https://photojournal.jpl.nasa.gov/catalog/PIA22232

Top